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ABSTRACT 

Palaeotidal changes are one of the least known factors of the sea-level record variation 

at the local scale (Shennan, 1986a; Devoy, 1987). This thesis extends knowledge of tidal 

alterations with sea-level change by means of an approach integrating numerical tidal 

models with geological stratigraphic data recording former tidal heights. 

The last 10,000 years. (the Holocene period) were chosen for study due to the sed­

imentary sequence available recording sea-level changes. Two macro-tidal embayments, 

the Wash and Morecambe Bay, are examined for palaeotidal changes by running a series 

of seven numerical tidal models from the scale of the north-east Atlantic to that of the 

bays. In order to obtain results to the required resolution to carry out the work, two new 

tidal models were developed for the Wash. 

Tidal model simulations for lowering of sea depths from current bathymetric values 

without coastline shape changes showed reductions of a maximum of 10% of the sea-level 

reductions in the bays. Changes to tidal altitudes were not so great for alterations to 

coastal shape alone, where no modification of present sea depth values was included. A 

combination of sea depth and coastline changes used in the reconstruction of former tidal 

height patterns within the embayments showed differences corresponding broadly to the 

variations in altitude of sea-level index points within the Wash Fenlands, although altitudi­

nal differences are within the model error band for tidal prediCtions. For Morecambe Bay, 

however, tidal inundation does not occur to altitudes predicted by sea-level index points 

and it is suggested, following Tooley (1978, 1987), that neotectonic movements may well 

have influenced the Holocene sea-level record in this area. Better palaeogeographic data 

are required for more accurate palaeotidal simulations in embayments. Sediment com­

paction is also identified as an area requiring further research in the attempt to explain 

altitudinal variation of sea-level index points within local areas and so enable regional 

comparisons of sea-level change to be made. 
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1.1. Subject of the thesis 

CHAPTER 1 

INTRODUCTION 

Sea-level, or the relationship of the altitude of the land to that of the sea, is modified 

by a number of factors. This is due to changes to both the land and sea, such as tectonic 

movements, which may cause the level of the land relative to the sea to rise or fall, and 

eustatic factors, which may; for example, reduce the volume of water in the sea during 

a glacial or cold period when there is an increase in the proportion of water stored on 

land (in the form of ice) compared with that in the oceans. These work on a variety of 

temporal and spatial scales and it is their interaction which causes the altitude of the sea 

relative to the land to change. 

The sea-level change factor with the highest frequency is that due to tidal movements, 

excluding the effects of wave action. In most parts of the world, sea-level rises and falls 

twice daily due to tides, for reasons which will be examined in Chapter 3, although in 

some areas, such as Karumba in Australia (Pugh, 1987), the rise and fall may be diurnal 

and in other parts of the world very complicated rise and fall patterns exist. 

Few attempts have been made to assess the significance of tidal changes on the sea-level 

history of areas. Most sea-level studies have assumed that tidal regimes have remained 

constant over time. A study of former tidal patterns might offer an explanation of the 

variation within an embayment in the altitude of sea-level index points, which are locations 

in a stratigraphic section identified as having a particular relationship to a level of the sea, 

such as the mean high water of spring tides. Inclusion of tidal variations in the sea-level 
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history of an area would give a clearer picture of local sea-level change, and not just the 

history of movement of mean high water of spring tides, for example. It would also enable 

the amount of sea-level change recorded due to other factors, such as sediment compaction 

and hydrological changes, to be assessed. A broader estimate of the order of magnitude 

of change of tidal patterns with time allows sea-level curves to be reduced to the same 

baseline. The paucity of studies on this topic has led to the study of palaeo-tidal changes 

in this thesis. To elucidate this problem numerical models for tidal prediction are linked 

with geological evidence of altitudes reached by the sea to simulate the tidal regimes at 

former sea-levels. 

Together with the factors which determine the amount of sea-level change in any place, 

the indicators of sea-level from the geological record and their accuracy must be assessed 

in order to obtain a full determination of past sea-level change. Features used as sea-level 

indicators in obtaining the record of former sea-levels and their accuracy are discussed in 

the next section. 

1.2. Sea-level indicators 

In a stratigraphic section the sequence of organic and clastic sediments is used as an 

indicator of sea-level changes. However, it cannot be assumed that the presence of a peat 

layer overlying sand or silt, for example, represents a decrease in the marine influence, 

suggesting a lowering of sea-level, from lithostratigraphic evidence alone. Furthermore, it 

is possible that local morphological changes within an estuary may give rise to a sediment 

sequence suggesting a sea-level regression, for example (Carter et al., 1990). Analysis 

of the micro- and macro-fossil content of the sequence is also required to establish the 

presence or absence of marine indicators. These may be pollen from plants tolerant 

to inundation by salt water or marine or brackish water diatoms. A large number of 

indicators of sea-level have been used by different researchers. It is not intended to give a 
' 

detailed account here. A good summary of features used as indicators of sea-level may be 

found in van de Plassche (1986). Discussion in this section will concentrate on the criteria 
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used to establish a former sea-level. 

Van de Plassche (1977) recognised that to establish any single observation on a former 

sea-level, three criteria are required, namely 

(a) an indicative meaning (i.e. the relationship of the phenomenon to a water level) 

(b) an altitude 

(c) an age. 

Shennan (1980) produced an assessment of the indicative meaning in relation to sea­

level of a number of commonly used materials. These are shown in Table 1.1 below. 

Shennan (1986a) notes that the reference tide level given to assess the relationship of a 

phenomenon to sea-level may not be constant. For example, basis peat, has a varying 

indicative range (Shennan, 1980, suggests approximately 0.8 metre from work in the 

Fenland) depending on factors such as the tidal range at the time of deposition in the 

area in which it is found. Basis peat is a bed of organic material which has been formed 

on pre-Holocene deposits and in which a causal relation can be proved between formation 

of the peat and sea-level rise (Lange and Menke, 1967), as distinct from basal peat, 

which is the term used when a causal relation between peat formation and sea-level rise 

cannot be proved (Behre et al., 1979). Furthermore, there is a lack of information on 

the contemporary relationships between tide-levels, soil conditions and the succession 

of coastal plant communities which lead to the formation of transgressive or regressive 

overlaps of organic or clastic beds (Tooley, 1978) as most have been altered by man. A 

further problem is that ecosystems which exist naturally today may not be the same 

as those which existed under different climatic conditions or under the same climatic 

conditions a few thousand years ago (Huntley, 1990) so that it may be extremely difficult 

to obtain any indicative meaning. 

With reference to the indicative range of samples from the Fenland shown in Table 1.1, 

Shennan (1986a) stresses that the indicative meaning depends on the nature of the strati­

graphic overlap (e.g. whether it was formed during a rising or during a falling sea-level). 
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Table 1.1. Indicative Range and Reference Water Level for some Commonly Dated Materials {after Shennan, 1980). 

Default values, IGCP Project 61 (Streif, pers. comm.) 

Phragmites peat 
Sedge peat 
Fenwood peat 
Moss peat (not in raised bog) 

--Puccinella grasses 
Spartina grasses 

Indicative Range 

70cm 
40cm 
80cm 
10cm 
40cm 
30cm 

Reference Water Level 

Mean High Tide+ 18cm 
(b) Mean High Tide + 20cm (est.) 
(a) Mean High Tide+ 40cm 
(b) Mean High Tide + 20cm 
Mean High Tide ± Ocm 
Mean High Tide - 30cm 

(a) only in coastal fen and level backswamps, otherwise groundwater table 

(b) decreases with distance from open coast, approaches Mean Sea Level in lagoons and coastal backswamp 

(est.) estimate only 

Proposed values (inferred from Godwin, 1940; Kidson and Heyworth, 1979; van de Plassche, 1979; Tooley, 1979) 

Phragmites or monocotylydonous peat: 
- directly above saltmarsh deposit 
- directly below saltmarsh deposit 
- directly above fen wood deposit 
- directly below fen wood deposit 
- middle of layer 

Fen wood peat: 
- directly above Phragmites or salt marsh 
- directly below Phragmites or salt marsh 

Basis peat: 

MHWST Mean High Water of Spring Tides 

HAT Highest Astronomical Tide 

Indicative Range 

20cm 
20cm 
20cm 
20cm 
70cm 

20cm 
20cm 

?80cm 

Reference Water Level 

((MHWST + HAT)/2) - 20cm 
MHWST- 20cm 
MHWST- lOcm 
((MHWST + HAT)/2) - 10cm 
infer from stratigraphy 

(MHWST + HAT)/2 
MHWST 

Mean Tide Level to MHWST 



Shennan (1986a) suggests that the reference water level for each type of indicator should 

be given as a mathematical expression of tidal parameters (such as the mid-point between 

mean high water of spring tides and highest astronomical tide) rather than a single tide 

level ± a constant factor as the constant will indicate very different inundation character­

istics for areas of different tidal range. He also stresses the importance of assessment of 

the accuracy of reference tide levels. This latter point is very important as sites used to 

indicate sea-level are rarely near tide gauges. The length of the inundation period is the 

most important factor determining the growth of plants of different species. A seasonal 

change in tidal patterns may be important here too. The shape of the tidal curve, which 

may be very complicated (as discussed in Chapter 3), determines the length of inundation 

at a particular altitude. The magnitude and frequency of occurrence of storms raising 

sea-level is therefore a further influence. Storms may result in standing water in an area 

for an indefinite length of time. The shape of the tidal curve and storm incidence need 

to be carefully assessed, especially in macrotidal areas, to obtain the correct indicative 

meaning for a sample. Palaeo-tidal changes must also be assessed as they determine how 

all the factors mentioned above have changed over time. 

The second of van de Plassche's (1977) points concerning indicative meaning, that 

of sample altitude, is divided into two parts by Shennan (1986a); errors affecting the 

measured altitude of stratigraphic boundaries and errors associated with estimating the 

original altitude of stratigraphic boundaries. Errors of measurement may arise during 

measurement of depth in a: borehole (see Chapter 4), during levelling of the site to an 

Ordnance Survey benchmark and finally with the assessment of the benchmark's accuracy 

to Ordnance Datum Newlyn (Shennan, 1986a). A high sampling density (Shennan, 1986a, 

suggests a thirty metre grid) will help to reduce errors of depth measurement in a borehole 

as a large number of records from a small area, over which the stratigraphy may be 

assumed to be reasonably uniform, will allow for a borer sampling the sediment having 

been sunk into the ground at slightly different angles in different places. The accuracy of 

levelling depends on the length of the survey line from Newlyn. Benchmarks are locally 
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accurate to ±0.01 metre relative to each other, but inter-regional comparisons within 

England may only be accurate to ±0.15 metre (Shennan, 1986a). 

Errors affecting the original altitude of stratigraphic boundaries in regions not recently 

tectonically active (i.e. for the period during and since the sediments were deposited) 

are largely due to sediment compaction. Changes in local groundwater levels and river 

discharge, together with tidal effects, may also be important. Jelgersma (1961) stated 

that amounts of compaction may vary from 0% to 90%, depending on the nature of 

the sediments involved. Coarse-grained sediments suffer less compaction than organic 

materials. The difference between these two sediment types may lead to changes in altitude 

of the order of metres since sediment deposition (Streif, 1979). The depositional history 

of an area is also important in determining amounts of compaction as variations in the 

weight of overlying materials will alter amounts of compaction. Similarly where local 

pore water pressure is high due to poor drainage the sediment will be unable to undergo 

great amounts of compaction as it will be nearly impossible to decrease the void space. 

Desiccation, however, which may be due to a fall of sea-level or a lowering of the water 

table, will lead to overconsolidation of sediments (Greensmith and Tucker, 1971). 

Streif (1979) suggests that the formation of intercalated peat layers is possible with 

a relatively slow rate of sea-level rise, which may include minor oscillations, associated 

with a slightly greater bog growth rate. The transgressive overlap forms when the rate of 

sea-level rise outstrips the rate of bog growth and, from this time, normal compaction of 

the peat increases with the increasing sediment overburden. However, Behre et al. (1979) 

explain cyclic peat formation as a result of either a rising ground surface or a lowering of 

mean high water and groundwater levels. 

Behre et al. (1979) noted that peat layers resting on incompressible material eliminate 

altitudinal errors related to compaction. However, this leaves the possibility that peat 

growth unrelated to sea-level may occur. The alternative method is to correct altitudes for 

sediment compaction. A reduction in thickness of the sediments amounting to a halving of 
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their original altitudinal range at deposition is often assumed to have occurred ( cf. Firth 

and Haggart, 1989), with no test to determine the actual amount of compaction. Smith 

(1985) used a soil mechanics technique, the oedometer test, on Holocene sediments in the 

N ar Valley, Norfolk, to obtain values for the reduction of void ratio with increasing applied 

load. This technique provides potentially useful quantitative estimates of compaction, but 

needs to be applied to sediments with different stress histories to give a better appreciation 

of the relationship between compressibility and lithostratigraphy which it provides (Smith, 

1985). 

The age of the sample used to indicate a former sea-level is also subject to error. In 

most cases organic layers, adjacent to clastic marine sediments, are dated by the radio­

carbon method. Dates for rises and falls of the water table or sea-level are thus obtained. 

This method is better developed than, for example, luminescence techniques of dating 

clastic sediments (Bailiff, personal communication). The limitations of the radiocarbon 

method, as summarised by Bradley (1985), must, however, be borne in mind when assess­

ing the accuracy of the given age of the organic material. Micro- and macrofossil analysis 

of the content of sediments in the sequence is also necessary to distinguish between a rise 

or fall in groundwater level and that of sea-level. 

A further problem with the radiocarbon dating of organic sediments is the size of the 

sample required for dating. Where the organic content is low a sample covering a large 

vertical range may be required to obtain a date. This reduces the accuracy of the date 

obtained as an indication of water level movement. 

An assessment is made below (in Chapter 1.3) of the work which has been carried out 

so far on the topic of palaeo-tidal changes. This falls broadly into two categories; that of 

analysis of sediments and that of (largely numerical) modelling. 
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1.3. Past work on tidal changes 

1.3.1. Sedimentary analysis 

Roep et al. ( 197 5) believed that fossil floodmarks (characterised by concentrations of 

light material, such as shells, driftwood and peat, and stratigraphic boundaries curving 

steeply upwards inland), evidence of marine bioturbation and eolian excavation could be 

used as indicators of palaeo mean high water. They estimated the palaeotidal range by 

comparison of the thickness of units in the sedimentary sequence with those formed under 

present day tidal conditions. Roep and Beets (1988) analysed sedimentary structures in 

coastal barrier deposits and deduced that the tidal range in the Netherlands was about 4 

metres around 4,000 to 5,000 years B.P. and was reduced to approximately 3 metres by 

2,000 years B.P., at which level it has remained to the present day. 

The problem with analysis of sediments, as in the work outlined above, concerns the 

origin of the deposits and structures. The coastal barrier sediments may be just the effect 

of a temporary change of sea-level or a storm surge, or may, indeed, be indicative of sea­

level over decades or centuries. The altitude of peat growth in relation to sea-level is still 

under discussion (see, for example, Shennan, 1986a; Firth and Haggart, 1989). Shells may 

be found over the whole width of the beach and both above high water mark and below 

low water mark. Driftwood and other items of flotsam and jetsam may mark the highest 

level reached by the sea or that of the maximum altitude attained at the last high tide 

level. Such items cannot be used to indicate a mean high water level of the sea. Roep 

et al. (1975) point out in their paper (page 13) that marine bioturbation must occur in 

areas frequently covered by the sea, so denying the possibility that evidence of this can 

be used as an indication of mean high water. Evidence of eolian excavation in a marine 

environment, not subsequently modified by the action of the sea, must occur above the 

highest level reached by wave action, ruling out its use as an indication of mean high 

water level. Estimation of tidal range from the thickness of sedimentary units is, at best, 

an elementary method. It d0es not allow, for example, for the possibility of a sea-level 
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rise or fall during sediment deposition or an increase or decrease in the rate or amount of 

sediment supply. 

1.3.2. Modelling 

One of the first attempts at modelling former tidal patterns was that by Jardine (1975). 

Jardine considered methods of calculating former tidal regimes within gulfs and estuaries. 

He simplified the shapes of gulfs and estuaries. Gulfs are represented as embayments 

with approximately parallel sides and approximately constant depth, while estuaries both 

decrease in depth and have sides which converge towards the head. Jardine used these 

models in combination with the equation for the wavelength of the tidal wave 

wavelength= period of tidal wave x velocity of tidal wave (1.1) 

L = T(gh)0·5 (1.2) 

to obtain firstly, for gulfs, the relationship of the distance of a site from the entrance to 

the gulf to tidal range and, secondly, for estuaries, comparison of mean depth, breadth 

and cross-sectional area of channels within the estuary to these values at the seaward 

entrance to the estuary. The equations produced allow calculation of the tidal range at 

any point within the gulf or estuary by comparison with the tidal range at its seaward 

entrance. Either tidal range at the mouth of the gulf or estuary may be altered or the 

shape of the gulf or estuary may be changed to represent its shape at a former sea-level. 

Jardine's (1975) argument is only valid for changes of sea-level which produce a known 

change to tidal range at the mouth of the gulf or estuary (which is a circular argument) or 

for changes of sea-level within a gulf or estuary (for example, due to different sedimentation 

patterns). The applicability of the model is further limited by the simplifying assumptions 

made about the shape of gulfs and estuaries. 

A different approach was used by Scott and Greenberg (1983) who considered the 
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tidal development in the Bay of Fundy, Canada, over the last 7,000 years. They used 

a numerical tidal model with input of the bathymetry of the area and tide-generating 

forces to reconstruct tidal patterns. To obtain former tidal heights, Scott and Greenberg 

used, as a basis, five sea-level curves from around the Bay produced by analysis of marsh 

foraminifera. Changes in relative sea-level were applied in the model as a plane surface, 

without taking account of the palaeogeography of the area. No additional changes in shore­

line configuration were included in the model. A further problem was that the foraminifera 

used to obtain the sea-level curve are higher high water indicators (approximately equiv­

alent to mean high water of spring tides). They therefore include the combined effect of a 

change in mean sea-level and change of magnitude of the tidal range, so that the amount 

of change of sea-level cannot be directly deduced. 

Scott and Greenberg's (1983) results gave tidal ranges up to 75% lower than the 

present approximately 12 metre tidal range in the Bay of Fundy at 7,000 years B.P., 

with 75% of the present tidal range reached by 4,000 years B.P. However, in view of the 

assumptions made, these figures cannot be directly related to any former configuration of 

the Bay. 

More recent examples of the approach to changes of tidal patterns using numerical 

tidal models include those of Franken (1987) and Austin (1988, 1991). Both authors 

lowered sea-level as a plane surface over the extent of the models of the north-west Eu­

ropean continental shelf taking sea-levels from published sea-level curves. Franken (1987) 

suggested from his work that a lowering of sea-level by 20 metres corresponded to a one 

to one-and-a-half metre tidal range along the Netherlands coast at 7,700 years B.P. This 

is contrary to the work of Roep and Beets (1988), who suggested that tidal ranges were 

greater than present in the early Holocene along the Dutch coast. Austin (1988, 1991) 

also concluded that tidal ranges had generally been lower than present at lower sea-levels 

although his work was limited to the use of one tidal constituent. Neither author included 

any palaeogeographic data in his tidal model, again limiting the usefulness of the results. 
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Proctor and Carter (1989) studied the tidal and sedimentary regime of Cook Strait, 

New Zealand, over the post-glacial period. They used palaeogeographic information relat­

ing to former sea-levels to assess the response of the lunar semi-diurnal tidal constituent 

(M2) to the closure and opening of Cook Strait. The primary aim of the study was to 

explain the distribution of sediments on the floor of Cook Strait and, although assessment 

was made of the variation of amplitude of the M2 tide, no overall change to tidal ranges 

could be obtained as only the one tidal constituent was examined. 

1.3.3. Unanswered questions 

The approaches to palaeo-tidal change outlined in Chapter 1.3.1 and Chapter 1.3.2 

above make assumptions of varying quality and have been used for different purposes. 

The study of tidal changes at different sea-levels on the local scale, which was identified 

above (Chapter 1.2) as an area for research, requires a different approach. Sedimentary 

structures alone have been shown to be insufficient to reconstruct tidal patterns and 

numerical tidal models require modification to reflect the shape of coastlines and sea 

depths at former sea-levels. With these facts in mind, Chapter 1.4 outlines the aims of 

the work in this thesis. 

1.4. Aims of the project 

1.4.1. What is the magnitude of tidal variations within embayments? 

Tidal changes at the local scale have not been considered in detail. The work of Jardine 

(1975) comes closest to this, but involves simplistic models. Shennan (1986b) argued that 

it is important to establish an accurate chronology of sea-level change (and therefore assess 

any tidal effects) on a local scale before regional comparisons may be made. In order to 

attempt this analysis, establishment of the present day variation of tidal range within the 

chosen embayments is necessary, followed by an assessment of how this has changed in the 

past. This will permit an ans'wer to the question as to whether variations in the altitude 

of sea-level index points within the embayments may be explained by tidal changes. 
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1.4.2. What effect does the shape of the coastline of an embayment have 

on tidal variations? 

The effect of a change in shape of the coastline of an embayment on the tidal regime 

has not been studied for former sea-levels. This work needs to be carried out to assess the 

accuracy of reconstructions which lower sea-level as a plane surface, making no further 

alteration for former coastline shapes. The availability of sufficient stratigraphic data 

to permit palaeogeographic reconstructions of coastal areas will enable this work to be 

carried out with the use of numerical tidal models. 

1.4.3. What effect does the sea-bed morphology have on tidal variations? 

Changes in the distribution of sea bed sediment accumulations over time may have 

an effect on tidal regimes. No data are available for offshore palaeo-sea depths, but 

modification of the bathymetry at former sea-levels using figures for isostatic movement of 

the land from Shennan (1989) permits some attempt to model this. The importance of this 

factor may be assessed by modifying sea depths for the present shoreline for comparison 

with tide gauge records. These tests will allow assessment of the relative importance of 

changes to sea-bed morphology, sea-level and coastal configuration. 

1.4.4. What is the contribution of neotectonics and sediment compaction to 

altitudinal variations of sea-level index points within the chosen embayments? 

The results from work outlined above will permit assessment of the amount of expla­

nation of the variation within the embayments of the altitude of sea-level index points 

due to tidal changes. An assessment of remaining variation due to sediment compaction 

and neotectonic movements will be made. The relative contribution of each factor to the 

altitudinal variation of sea-level index points may then be obtained. Assessment of the 

influence of neotectonic movement will be by taking a map of faults of the area and deter­

mining whether a group of sea-level index points on one side is significantly higher than 

those on the other side of a fault at a given time. It is recognised that neotectonic move­

ment does not necessarily occur along pre-existing fault lines, but the presence of existing 
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fault lines may be used to relieve stress. This method covers, therefore, a likely means of 

neotectonic movement. Analysis of possible effects of compaction around the embayment 

may be carried out by assessing the loading effects over time from the stratigraphic record, 

obtaining figures to apply from the literature. Isostatic movements of the land will be 

excluded from this analysis due to their inclusion in the sea depth modifications of the 

tidal models. 

1.4.5. What are the implications of answers to 1.4.1 to 1.4.4 above for a 

future rise of sea-level? 

An assessment of the possible implications of the research into present and former 

tidal patterns will be made for a sea-level rise. It has been predicted that sea-level will 

rise due to combinations of gases warming the earth's atmosphere, as a result of man's 

actions, causing ice from ice caps and glaciers to melt (see, for example, Houghton et 

al., 1990). The importance of bathymetric changes vis-a-vis coastline changes will be 

considered. 

1.5. Study areas 

The Holocene (the last 10,000 years) sedimentary record offers a greater possibility for 

a detailed study of sea-level change than for a period further back in time. There is often a 

good sequence of sediments preserved from this period which has not been destroyed by, for 

example, glacial action. Sediments are best preserved in depositional environments, such 

as embayments in the coastline, and this has influenced the choice of field areas for study in 

the thesis. Shennan (1986a) also notes that study of tidal changes will be more important 

for macrotidal, than meso- or microtidal, areas, although areas which have macrotidal 

ranges now may have had microtidal ranges a few thousand years ago and vice versa. 

For these reasons this study focusses on an assessment of the influence of tidal changes 

within two macrotidal embayments in the U.K. during the Holocene post-glacial period in 

which there is sedimentary evidence which records sea-level changes. Radiocarbon dating 

of sediments permits construction of palaeogeographic maps for the embayments during 
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the Holocene. Numerical tidal models, which accurately predict present-day tides, are 

used with the palaeo-data to reconstruct former tidal patterns. The embayments chosen 

for study, The Wash and Morecambe Bay, have different histories during the Holocene 

in terms of isostatic movement. In addition the shape of their coastlines has altered in 

different ways during the Holocene as Morecambe Bay is surrounded by much higher 

land than The Wash. A greater area of low-lying land has therefore been open to marine 

inundation in the area of The Wash compared with Morecambe Bay, where inundation has 

only been possible up river valleys. Therefore the potentially different palaeogeographies 

of the two areas may have allowed different tidal responses between the two embayments, 

giving the possibility of a good comparative study. In the case of both embayments 

there is a good stratigraphic record covering the Holocene period linked to a number 

of radiocarbon dates (271 in The Wash Fenlands and 48 in Morecambe Bay), providing 

sea-level index points. The locations of the field areas are shown in Figures 1.1 and 1.2. 

The geological development of each of the chosen field areas in relation to sea-level 

change is discussed in the next chapter. This is followed by an outline of tidal theory 

and tidal modelling. The implementation of the stratigraphic data from the field areas 

into the form of palaeogeographic maps and their use in the tidal models is the subject of 

Chapters 4 and 5. Results and analysis of data are presented in Chapter 6. In Chapter 7 

the possible influence of factors other than tidal changes on the altitude of sea-level index 

points within the embayments under study is examined. The conclusions are presented 

in Chapter 8 together with suggestions for further research. 
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CHAPTER 2 

THE GEOLOGICAL DEVELOPMENT OF THE FIELD AREAS 

This chapter is divided into sections of different temporal periods to outline the geological 

background of the Fenland and Morecambe Bay and provide a comparison of the two areas 

in terms of their development. First, the solid geology and structural histories of the areas 

are outlined and contrasted. Next, more detailed attention is paid to their Pleistocene 

development. Finally, the evolution of the Fenland and Morecambe Bay during the Holocene 

is discussed with particular attention to the palaeogeography of the areas and the interaction 

of this with sea-level change. 

2.1. Geology and pre-Quaternary history of the Fenland and Morecambe Bay 

2.1.1. Pre-Quaternary geology and structural history of the Fenland area 

The solid geology of the Wash Fenlands is composed of Jurassic and Cretaceous strata 

of primarily clays and limestones. The area lies on the western edge of the North Sea basin. 

This factor has affected its geological history, as is described below. 

Depression of the North Sea basin probably commenced in the late Carboniferous (Kent, 

1975). Deposition in this complex north-south graben system during the Mesozoic era was 

largely controlled by epeirogenic movements. The troughs formed in the area of the Wash 

are shown in Figure 2.1. A consequence of this was that the basin was opened to the ocean 

at times to the north and at others to the south. The alternating marine transgressive and 

regressive sequences recognised from the Holocene Fenland deposits are thus also character­

istic of the Jurassic and Cretaceous strata. Both the Jurassic and Cretaceous strata were 

deposited sub-aqueously, but there was a long period of relative land uplift and denudation 
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Figure 2.1. The Main Structural Features Influencing the British Isles (after Naylor and 
Mounteney, 1975). 
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between these two phases (Chatwin, 1961; Swinnerton and Kent, 1976). At the transition 

from the Jurassic to the Cretaceous, the late Kimmerian phase of rifting affected the entire 

North Sea area (Ziegler and Louwerens, 1979). Rapid subsidence occurred in the Viking 

graben, but strong diapirism of the Zechstein salts partly obscured this tectonic phase in the 

central graben. A number of minor rifting phases interrupted the progressive subsidence of 

the central North Sea rift dome during the Cretaceous. 

Subsidence was concentrated along the central axis of the North Sea basin and the 

strata of eastern England have a consequent low easterly dip. At the end of the Cretaceous, 

a number of inversion troughs were formed as a consequence of the Laramide tectonic phase 

in the North Sea, including the Sole Pit Trough near The Wash (Pegrum et al., 1975). In this 

period, the North Sea area was slightly uplifted, causing the Cretaceous sea to retreat. There 

was continuous sedimentation in the North Sea during the Tertiary era, with considerably 

less disturbance associated with the major structural features, although subsidence occurred 

over the whole area and salt dome intrusion continued. 

The second important structural feature of the area is the concealed Anglo-Brabant 

massif, which reaches as far north as The Wash (Figure 2.1). It is an area folded and 

compacted by Caledonian movements which has been substantially unaffected by tectonic 

movements since this time. The massif comprises a plateau-like surface over pre-Mesozoic 

rocks. This is a high block above which the Upper Cretaceous strata truncate the Jurassic 

and rest directly on Palaeozoic rocks. This area was one of relative stability between the 

surrounding troughs throughout the whole of Permian and Mesozoic times (Kent, 1975). The 

massif has remained close to sea-level throughout the Mesozoic and has undergone oscillation 

of only around 100 metres with little erosion or deposition. 

2.1.2. Pre-Quaternary solid geology and structure of Morecambe Bay 

The solid geology of the catchment area of Morecambe Bay consists of rocks from In­

gletonian (late Caledonian or early Ordovician) to Permo-Triassic in age, although those in 

the immediate neighbourhood of the Bay are Silurian and younger. The origin of the rocks 
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in this area is related to the position of north-west England on the edge of the Ordovician 

Iapetus Ocean which, at that time, divided northern England from Scotland. It is thought 

that the Iapetus Ocean was shrinking during the Ordovician by subduction of ocean crust on 

both sides of the Ocean (Broadhurst, 1985). The Ordovician volcanic rocks were probably 

produced as a consequence of this subduction and may have been part of a volcanic island 

arc system. Upper Ordovician and Silurian rocks indicate a return to marine sedimentation 

(Moseley, 1978; Broadhurst, 1985). 

The Iapetus Ocean closed by the end of the Silurian and, with phases of compression, 

the resultant north-east/south-west trending Caledonian folds and thrusts were formed. No 

sediments of the subsequent Devonian period are found in north-west England. The Car­

boniferous, however, is well represented in the area. The Lower Carboniferous limestones 

were deposited in a marine environment in which the sea progressively flooded the area and 

subsequently fluctuated over it. In the Upper Carboniferous, the area was in a deltaic en­

vironment and there was a progressive decrease in the marine influence. At the very end 

of this period, faulting and folding occurred. This deformation is believed to have been the 

result of the collision of plates south of Britain which caused the formation of the Hercynian 

structures across central Europe. 

The Permo-Triassic in north-west England is represented by rocks which the sedimentary 

structures suggest were deposited in fluvial, lacustrine and aeolian continental environments 

(Broadhurst, 1985). The Permian was characterised by normal faulting, associated with 

crustal extension as a precursor to the opening of the Atlantic Ocean during the Triassic. 

There are no representatives of subsequent geological periods around Morecambe Bay until 

the Pleistocene is reached. 

Morecambe Bay lies on the north-eastern edge of the Manx-Furness basin which is one 

of a series of basins extending from the Celtic Sea through the Irish Sea to western Scotland. 

These basins have a general north-east / south-west trend and are dominated partly by the 

trend of the Caledonian mountain chains of Wales and Scotland and partly by the north-
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north-east / south-south-west fractures, believed to be associated with the breakup of the 

European- North American continent (Naylor and Mounteney, 1975). 

The structure of the southern part of Morecambe Bay and the offshore area is, however, 

not well known. The evidence suggests that the floor of the Bay comprises a synclinal 

structure (Bott, 1978), trending north-east/south-west, with simple faulting on its western 

flank and more complicated folding on the eastern side. The main syncline is thought to 

be cut by an extension of the Cumbrian Coast Boundary Fault and other associated faults 

(Patrick, 1987). 

In more detail, the oldest rocks are at the headwaters of the catchments draining into 

Morecambe Bay (Patrick, 1987) and become younger seawards. The outcropping rocks also 

become younger from north to south clockwise around the Bay. The north-western part 

of the Bay is characterised by north-west/south-east trending normal faults cutting slightly 

folded Carboniferous beds which dip east and south-east at low angles. The Carboniferous 

rocks along the east coast of Morecambe Bay are folded into anticlines and synclines which 

trend generally north-east/south-west, cut by some normal faults trending approximately 

north-west/south-east. The regional trend of folding and faulting is north-south dominant 

with periodic phases of reactivation of movement in this direction (Moseley, 1972). 

2.1.3. Comparison of the geological history of the Fenland and Morecambe Bay 

Morecambe Bay and the Wash Fenland belong to different structural units and factors 

which have influenced the evolution of one have had very little or no effect on the geological 

development of the other area. The structural background of the Fenland is largely related 

to the evolution of the North Sea graben system, whereas Morecambe Bay, on the other side 

of the country, owes its structural history to the plate movements prior to the opening of the 

Atlantic Ocean. The differences are mainly due to the influence of more recent geological 

deposition in the formation of the Fenland area, compared with the much greater age of 

the rocks around Morecambe Bay. The structural features of the Fenland are, therefore, far 

simpler than those of Morecambe Bay, where a considerably greater number of fault lines 
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and folded rocks are found, reflecting the former position of the area on a plate margin. 

2.2. Pre-Holocene Quaternary geology of the field areas 

2.2.1. Quaternary geology of the Fenland before 10,000 years B.P. 

In the Pleistocene epoch of the Quaternary period (i.e. 2 million to 10,000 years B.P.) 

(Mangerud et al., 1974), a combination of warm and cold episodes, isostatic and tectonic 

movements and alterations in the configuration of the geoid resulted in fluctuations of sea­

level. The number of glacial - interglacial cycles in the Pleistocene has not yet been deter­

mined in many areas of the world. Initially, four glacial - interglacial cycles were recognised 

by Penck and Bruckner (1909) in the Alps. More recent work in other areas ofthe world, such 

as that on oxygen isotope ratios from oceanic foraminifera (e.g. Shackleton and Opdyke, 

1973, 1976, 1977) and on loess (e.g. Kukla, 1975), has led to the recognition of at least 

seventeen glacial - interglacial cycles in the Pleistocene. The number and cause of climatic 

fluctuations within the Pleistocene is still the subject of considerable discussion (see, for 

example, Transactions of the Royal Society of Edinburgh ser.C vol.18( 4), 1990). The pattern 

of events in the Fenland during the Pleistocene is, therefore, by no means certain, but an 

attempt will be made below to outline the most important factors in the geological record. 

The recognition of three glacial (Anglian, Wolstonian and Devensian) and two interglacial 

(Hoxnian and Ipswichian) phases in Britain from field evidence has since been questioned. 

Bristow and Cox (1973), from stratigraphical work in East Anglia, found evidence to sug­

gest that the Anglian and Wolstonian were two separate glacial phases within one cold stage. 

Summaries of the arguments both for and against the presence of a Wolstonian glaciation 

have been presented, most recently, in Shotton (1986) and Straw (1983). Rose (1987) pro­

posed, based on lithological evidence, that the term "Wolstonian" should be abandoned for 

the stage between the Hoxnian and Ipswichian interglacial stages as the type Wolstonian 

glacial sediments were deposited before and during the Anglian stage and not subsequent to 

it. Gibbard and Turner (1988), however, argued for the retention of the Wolstonian stage as 

representative of a cold stage between the Hoxnian and Ipswichian interglacials. 
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The main recorded evidence of glaciation from the Fenland area comprises the Stick­

ney moraine in Lincolnshire and a chalky boulder clay underlying much of the Holocene 

deposits. The chalky boulder clay is exposed in the cliffs at Hunstanton and outcrops to 

form the Fenland "islands", at places such as Apes Hall, Butcher's Hill, Manea and Stonea 

in the Ely district (Gallais, 1989). The Stickney moraine represents the southern limit of ice 

during the Devensian, whilst the chalky boulder clay, which predates it, is believed to have 

been deposited by an ice sheet from northern England, based on its geological composition, 

which comprises rocks almost exclusively from Lincolnshire, Cambridgeshire and Norfolk. 

Quaternary deposits in the Fenland are shown in Figure 2.2. 

Perrin et al. (1979) attribute the formation of the Wash-Fens basin to erosion by ice 

that deposited the Lowestoft Till. They suggest that the main source of the ice passed 

through the mouth of the Wash and then spread out over eastern England in a fan shape. 

Gallais (1979) suggests that the Fenland valleys have a fluvio-glacial origin, as the valleys 

beneath the glacial deposits appear to be broad, structurally-controlled and form a dendritic 

pattern draining towards the Wash. Subglacial tunnel valleys would have steeper sides 

and be narrower than those found from seismic profiling. Thus the direction of the main 

drainage system was pre-glacial and has only been modified and partly filled with deposits 

during glacial episodes. A number of rivers which used to run west and then north from the 

pre-glacial chalk escarpment in Norfolk, such as theNar (Gallais, 1979), have been altered 

to run in a more northerly direction. Buried valleys are cut to about -70 metres O.D. in 

the Terrington and Denver area, with a deeper valley at the mouth of the Wash, cut down 

to about -100±15 metres O.D. (Wingfield et al., 1978). This gives an indication of the fall 

of relative sea-level during the glacial periods in the Quaternary and of the nature of the 

surface over which marine transgression occurred. 

The Nar Valley beds in Norfolk comprise over thirty metres of fluviatile sands and 

marine clays rising to 30 metres above present sea-level (Gallo is, 1989) of Hoxnian age 

(Ventris, 1986). The Nar Valley beds have been correlated with the Third terrace of the 

River Cam (West, 1972), on the basis of incorporated fauna which suggested deposition in 
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Figure 2.2. The Quaternary Geology of the Fenland (from Woodland, 1977). 
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a cool temperate marine environment (Baden-Powell, 1934) and a maximum high tide level 

of twelve to thirteen metres O.D. (West, 1972). They also correlate (Davey, 1991) with 

the Woodston Beds in the western Fenland, which are a series of fluviatile and estuarine 

sediments, comprising silty clays and fine sands, overlying a basal gravel of probable fluvial 

origin (Horton et al., 1991 ). 

The chalky boulder clay, in central parts of the Fenland, is unconformably overlain by 

up to six metres of shelly sand and flint gravel that Baden-Powell (1934) termed the March 

Gravels. Gallais (1989) suggested that the March Gravels were deposited in a low energy 

marine environment, comparable with the southern part of the Wash today. In common 

with Skertchly (1877), Gallais suggests that the sources of the March Gravels are the river 

terrace gravels of the Great Ouse and the Cam at their seaward limit (from evidence of 

their bedding dipping northwards towards the Wash), although this requires a higher sea­

level than present, in a cooler climate. A raised beach at Hunstanton is thought to have 

been formed at the same time as the deposition of the March Gravels, from faunal evidence 

(Gallais, 1989), although the two features have differing lithologies. However, Bridgland et 

al. (1991) have recently questioned the age of the March Gravels. The March Gravels have 

been correlated by Castleden (1980) with the Second terrace of the River Cam. Ipswichian 

sediments occur within the First terrace deposits, so the March Gravels may be of intra­

Saalian age (Bridgland et al., 1991) and not represent the Ipswichian high sea-level. 

Subsequent to the glaciation which deposited the chalky boulder clay there was a tem­

perate phase during which the sea presumably covered at least part of the Fenland area 

(Gallais, 1989). A peat bed at Tattershall has been identified as of Ipswichian age on the 

basis of its pollen assemblage ( Catt, 1977) and is interpretated as of fluvial origin by Holyoak 

and Preece (1985). At Tattershall Castle, Holyoak and Preece (1985) identify the peat as 

representative of riverside mud inundated only by spring tides on the basis of its macrofossil 

content. The peat at Tattershall Thorpe, however, is higher above sea-level and contains 

no evidence of brackish conditions (Holyoak and Preece, 1985). Thus the incorporated flora 

and fauna indicate that it is of supra-tidal origin, although the peat lies a few metres below 
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present mean sea-level. 

Straw and Clayton (1979) remark that Ipswichian deposits at Tattershall and Wretton 

are overlain by Devensian gravels, whereas in the southern and south-western parts of the 

Fenland, Ipswichian deposits were converted into terraces before the Devensian gravels accu­

mulated at a lower altitude beneath them. From this, they suggest slight relative subsidence 

of the north-eastern part of the Fenland before the middle Devensian, as a consequence of an 

early Devensian ice advance into the Wash gap. West (1972) also suggested that differential 

land movements may have occurred in addition to changes of sea-level, as lower Pleistocene 

marine deposits have been recorded at 183 metres O.D. at Netley Heath in Surrey, whereas 

the Crag deposits, which mark the Plio-Pleistocene boundary, are found at approximately 

O.D. in south-east Suffolk. 

Following a fall of sea-level to just below the present altitude, as indicated by the First 

and Second terraces of the rivers Cam, Lark and Great Ouse, amongst others, sea level fell 

to much lower levels during the Devensian glaciation. In Lincolnshire, the Stickney moraine 

is matched closely across the Wash by the Heacham moraine, which passes into drift banked 

up against a former sea cliff at Hunstanton (Straw and Clayton, 1979). A till, lithologically 

similar to that at Hunstanton, is also found in patches beneath the Wash, although not in 

such large quantities as that of the chalky boulder clay. The Fenland was largely a lake area 

to the south and west of this ice limit (Straw, 1963). 

The Fenland "islands", isolated low hills standing on an almost flat plain, of solid and 

Pleistocene deposits, are thought to have been formed at the end of the Pleistocene period 

(Gallais, 1989), within a lake or shallow sea. Gravel deposits of differing origin surround the 

"islands", but in the Ely district (Gallais, 1989) all are characterised by a marked change of 

slope on their sides beneath the Holocene deposits, from five to seven degrees above to less 

than one degree below the Holocene deposits. Gallais mentions that formation of the break 

of slope on the "islands" cann:ot readily be linked to the deposition of Holocene deposits as 

the peats and salt marsh clays which form the base of the Holocene sequence do not have 
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erosional contacts with the surface beneath. West (1991a, 1991b) has identified thermokarst 

activity in the area in the Devensian so it is possible that the "islands" were surrounded by 

alases, or thaw lakes, which resulted in their steep sides. 

West (1980), from a study of pre-glacial Pleistocene sequences in East Anglia, found 

evidence of only a small (2-3 metre) deformation of land within the area in the Cromerian, 

though he did not take compaction of sediments into account in his work. West (1980) also 

found an altitudinal variation of 5-6 metres in Pastonian sediments in the same area which he 

suggests may indicate deformation in pre-Beestonian times. The amount of post-Cromerian 

deformation in East Anglia is not known, but West (1980) suggests that little variation in 

altitudes implies either that there has been little movement or that it has occurred parallel 

to the coast. 

Jelgersma (1979) compared the altitude of lpswichian (Eemian) sea-levels from south­

east England with those found on the continent. Sea-levels from Belgium to Denmark have 

been recorded from present values to about eight metres below, whereas those along the 

North Sea coast of south-east England have been reported from one metre below to fifteen 

metres above present sea-level. Jelgersma suggests that these altitudinal differences may be 

due to differences in tectonic down warping in and around the North Sea basin. 

Eden et al. (1978) noted that the maximum average rate of Tertiary subsidence in the 

North Sea was around five millimetres per 100 years, compared with an average subsidence of 

approximately thirty millimetres per 100 years in the northern part of the North Sea during 

the Quaternary. Caston (1979) suggested that average Quaternary sedimentation rates may 

have been as high as 0.3 to 0.5 metres per 1,000 years, which is up to ten times as high 

as the comparable rate for the Tertiary. His work, based primarily on data from 188 wells, 

showed that Quaternary sediments are up to ten kilometres thick in parts of the North Sea. 

Stoker et al. (1985) note that stratigraphic evidence shows an extensive Lower Pleistocene 

sequence in the U.K. sector of the southern and central North Sea which thickens eastwards 

to the centre of the basin where up to 500 metres of sediment are found. 
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Eden et al. (1978) suggest that the increasingly rapid subsidence rate has resulted in 

sediments of the later part of the Quaternary comprising a disproportionate amount of those 

deposited since the beginning of the Tertiary. Clarke (1973) also drew attention to increasing 

average rates of subsidence in the central North Sea since the Cretaceous, although his data 

points were not well distributed temporally and water depths may not have been accurately 

assessed (Eden et al., 1978). Eden et al. (1978) calculated the maximum tectonic subsidence 

for the North Sea for the late Pleistocene using Marner's (1972) late- and post-glacial sea­

level curve, extended to 130,000 years B.P. using estimates of temperature variations based 

on the work of Coope (1974) and by the use of polar ice front positions from analysis by 

Mcintyre et al. (1972). From this, they concluded that average subsidence rates for the 

late Pleistocene are not due to tectonic subsidence alone and suggested that glacial sediment 

loading might also be responsible. 

More recently, Preece et al. (1990) have shown that there was uplift in the area of the 

Isle of Wight before, during and after the lpswichian. The differences in elevation of marine 

deposits of this age in north-west Europe had previously been attributed to subsidence of 

the southern North Sea (West, 1972; Zagwijn, 1983). The evidence of Preece et al. (1990) 

suggests that the English Channel area has not been tectonically stable since the lpswichian, 

as assumed by Zagwijn in calculationg the rate of down warping of The Netherlands from 

that time to the present as 142 millimetres per 1,000 years. It is now thought probable that 

part of the difference in elevation of lpswichian deposits across the Channel is the result of 

uplift in the Channel area. 

2.2.2. Quaternary geology of Morecambe Bay before 10,000 years B.P. 

Sediments of Quaternary age predominate around the coastline of Morecambe Bay and 

offshore within the Bay. Buried valleys cut in solid rock beneath the Bay have altitudes of 

-60 to -80 metres O.D., suggesting that Morecambe Bay probably existed as an embayment 

of the Irish Sea during each interglacial, when sea-level reached approximately present levels 

(Tooley, 1987). 
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In the north-eastern part of the Irish Sea, Permo-Triassic rock is overlain, over most 

of the area, by boulder clay a few metres thick (Pantin, 1977). Pinger profiles, vibrocores 

and boreholes show that the boulder clay is overlain by well-bedded proglacial water-laid 

sediments over much of the area. These are, in turn, overlain by marine and estuarine 

sediments which are less well-bedded due to the effects of bioturbation. The proglacial water­

laid sediments are thought to be Devensian in age, deposited during deglaciation. Erosion 

of boulder clay from the surrounding land by meltwater streams would have produced an 

abundant supply of material for these deposits (Pantin, 1978). It is suggested that a sea­

level rise resulted in the deposition of the marine beds, which may be glacio-marine in origin 

(Pantin, 1977). The surficial Quaternary deposits surrounding Morecambe Bay are shown 

in Fig. 2.3. 

There is no unequivocal evidence for pre-Devensian Quaternary deposits or landforms 

within the Morecambe Bay area (Pennington, 1978; Tooley, 1987). Ashmead (1974) and 

Tooley (1987) have reviewed the available evidence from the Carboniferous limestone caves 

around the Bay. A peat of possible lpswichian age was recorded between two tills in the 

north-western part of the Bay (Kendall, 1881 ). However, no record of a peat layer was found 

by the Institute of Geological Sciences (Anon., 1972) when a bore was put down in the area, 

although the top 26 metres, which may have contained the peat layer, were not sampled. 

Erosive features around Morecambe Bay have been proposed as indicators of Quaternary 

sea levels (Ashmead, 1974; Tooley, 1987). Ashmead (1974) assigned a Devensian age, from 

archaeological evidence, to some possible sea caves and notches at +12 to +30 metres O.D., 

although Tooley (1985) linked marine features of this altitude to the Hoxnian, on the basis 

of a Hoxnian sea level of +23 metres O.D. recognised by West (1972). It is possible, though, 

that the limestone features are of phreatic origin (Gale, 1981) and do not indicate a former 

level of the sea. 

Tooley (1987) suggests that, during the Devensian, ice from the Irish Sea affected the 

western part of Morecambe Bay, whilst ice from a Lake District ice cap influenced the rest 
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Figure 2.3. The Quaternary Geology of Morecambe Bay (from Woodland, 1977). 
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of the Bay. A tripartite sequence of glacial deposits has been recognised widely across 

Lancashire (Hull, 1864, cited in Mitchell et al., 1973; King, 1976), consisting of a Lower Till, 

above which are the Middle Sands and an Upper Till. It is widely believed (King, 1976; 

Johnson, 1985; Huddart et al., 1977; Vincent, 1985; Tooley, 1987) that the till and sand 

sequence of Lancashire represents one glaciation with an oscillating ice front. The lithology 

of the two tills is similar and both contain shells derived from the floor of the Irish Sea 

(King, 1976). In places, the Middle Sands are missing and it is impossible to separate the 

tills. On the floor of the northern part of Morecambe Bay, Knight (1977) found one till 

unit, up to 55 metres thick, overlaid by varved clays, silts and sands, which Vincent and 

Lee (1981) interpreted as sedimentation in a proglaciallake on an outwash plain. Eyles and 

McCabe (1989) believe that the glacial lacustrine deposits were deposited up to 40 metres 

above present sea-level. 

Vincent (1985) summarises Huddart's (1971) sedimentological work on the tills of north-

west England and concludes that soon after 26,000 years B.P. glaciers from the Lake District 

deposited a till over fluvio-glacial sediments. These valley glaciers were then overrun by a 

combined Scottish - north Lake District ice sheet which deposited a further till and formed 

extensive drumlin fields. This ice decayed in situ and left sequences of meltwater channels 

and fluvioglacial deposits on the fells around Black Coombe, north-west of the Duddon 

estuary (Smith 1967, 1977). 'Fhe upper of the two tills found in the region from Walney 

Island to the mainland is thought to have been deposited by a readvance of the Irish Sea 

ice, from the origin of erratics contained in the till. A second readvance of the Irish Sea ice 

north of Black Coombe left till deposits at altitudes below 60 metres. 

Numerous landforms indicative of glaciation, such as drumlins, eskers and kettleholes, 

are found around Morecambe Bay. The varved sediments, found on the floor of the Bay 

(Knight, 1977), indicate sedimentation during deglaciation in a freshwater proglacial lake 

(Tooley, 1987). These varved clays are overlaid by slightly overconsolidated clays, silts and 

sands, interpreted by Knight (1977) as alluvial fan deposits, but reinterpreted by Vincent 

and Lee (1981) as outwash plain sediments. The slightly overconsolidated nature of the 
' 
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sediments is attributed to a period of desiccation, which allowed the outwash plain deposits 

to form the loessic sediments found around Morecambe Bay. 

The pattern of deglaciation of the Morecambe Bay area is not well supported by dates. 

Organic material, subsequent to deglaciation, has been dated to about 12,000 years B.P. in 

kettleholes near Morecambe Bay (Tooley, 1987). Tooley mentions, though, that evidence 

from the Windermere Basin gives dates of 14,330±230 years B.P. and 14,623±360 years 

B.P. in the Windermere Interstadial soon after the deglaciation of this area (Coope and 

Pennington, 1977), with plant evidence suggesting alpine conditions. At this time, silts 

and clays not trapped in the lake basins were swept into Morecambe Bay (Vincent, 1985). 

Sediments in the Windermere area indicate an interstadial of cool temperate conditions 

around 11,000 to 14,000 years B.P. There is no available evidence relating to these changing 

environmental conditions from sediments in Morecambe Bay (Tooley, 1987). 

2.2.3. Comparison of the pre-10,000 years B.P. Quaternary history of the two 

areas 

Differences between the Pleistocene history of the Fenland and Morecambe Bay, as with 

the earlier geological development of the areas, again predominate over their similarities. 

Morecambe Bay was much closer to centres of ice accumulation, such as the Lake District, 

than the Fenland and has therefore experienced erosion during glacial episodes, whereas the 

Fenland has been at the outer margin of ice advance and consequently has many features 

of glacial deposition. Glacial deposits from Morecambe Bay relate, probably exclusively, to 

the last period of glaciation during the Devensian as any deposits from previous glaciations 

appear to have been eroded away. Beyond the fact that two tills are recognised as present in 

the Fenland and only the later, Devensian, is recorded by two tills of this age in Morecambe 

Bay, it is difficult to make further comparison of the Pleistocene deposits of the areas, as no 

features which can be ascribed with certainty to a particular interglacial have been recorded 

in the Morecambe Bay area. Buried valleys are, however, present in both areas. These 

indicate that sea-level fell to a minimum of about -80 metres O.D. in both Morecambe Bay 
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and the Fenland during periods of low sea-level in glacial stages. 

2.3. The Holocene development of the Wash Fenlands and Morecambe Bay 

In this section, the existing theories as to the development of the field areas during 

the last 10,000 years are discussed and compared. Factors influencing the accuracy of the 

proposed schemes are mentioned, but further clarification of these is given in Chapter 7. 

In Chapter 4, the palaeogeographies of the field areas, which have been reconstructed at 

selected times, are presented. 

2.3.1. The Wash Fenlands 

Stratigraphic evidence of sea-level change in the Fenland has been recorded for well 

over a hundred years (e.g. Wheeler, 1868; Skertchly, 1877). With the exception of that 

of Skertchly, though, the accounts were very descriptive. Skertchly, however, attempted 

to correlate the changes between different parts of the Fenland and assign causes to the 

variations in the deposits which he found. He divided the Fenland deposits into three types: 

gravel lands, silt lands and peat lands, and discussed the development of each in relation 

to the other. Skertchly recognised that peat beds occur both above and below a layer of 

clastic sediments in the Fenland, with surface peat beds occurring in the western part and 

silt at the surface in the east. He acknowledged that this illustrated an interplay between 

salt and freshwater influences in the development of the Fenland: "The marks which the sea 

put upon the land were ... beds of light flocculent silt ... The cognisance of the fresh-water 

was peat. Whenever fresh-water stagnated, peat grew. And, as the sea was continually 

damming itself back, by piling up its silt beds, the peat followed its retreating footsteps 

until the changing climate had so altered as to have become unfavourable to its growth" 

(Skertchly, 1877, p.129). Skertchly also recognised the existence of gravels underlying much 

of the Holocene deposits of the Fenland, but overlying the boulder clay. He suggested that 

the gravels were probably of different origin in different parts of the Fenland and proposed 

that they were either of fluvial or of marine origin. The origin of the Fenland gravels is still 

under discussion (see, for example, Gallois, 1989). 
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Subsequent work on the Fenland commenced with that of Godwin and the Fenland 

Research Committee in the 1930s, based heavily on stratigraphic and pollen analytical work, 

with some radiocarbon dates added in the 1960s. Godwin and Clifford (1938) established 

the four-fold division of the Fenland deposits into the upper silt, upper peat, fen clay and 

lower peat. Godwin (1978) revised his earlier work (e.g. Godwin, 1940) and produced a new 

relative sea-level curve for the Fenland. In this, he proposed time periods for the deposition 

of the peats and silty clays. Godwin suggested that, following the growth of the lower peat 

on the pre-Flandrian surface, the fen clay was deposited from the first marine transgression 

into the area in the Holocene, after 8,422±170 years B.P., the date of a moorlog trawled 

up from the Leman and Ower Banks (Godwin and Willis, 1959). The upper peat formed 

subsequent to this at around 3,000 to 3,500 years B.P. (Godwin, 1978), associated with a 

standstill or lowering of the level of the sea. Around 2,500 years B.P. a relative sea-level rise 

occurred in the Fenland which led to depostion of the upper silt associated with extensive 

coastal salt marshes. Freshwater was ponded back as the silt was deposited at the tidal limit 

of the rivers. This led to the development of the Fenland meres, such as Whittlesey Mere, 

most of which persisted until the drainage of the Fenland commenced in the seventeenth 

century. 

Gallois (1979) applied the names lower peat, Barroway Drove Beds, Nordelph Peat and 

Terrington Beds to the four-fold sequence of deposits which he found in the Wisbech and 

King's Lynn areas, corresponding to Godwin's lower peat, fen clay, upper peat and upper 

silt. Gallois (1989) extended this new terminology, based on the names of sites where these 

beds are found, to cover the Ely district. The dates given to the phases of deposition in 

the Ely district by Gallois (1989) accord well with those of Godwin (1978). The oldest 

peats in the Ely area formed in river channels and poorly drained hollows between 9,000 and 

7,000 years B.P. and were overlain by a freshwater peat which formed as the Fenland basin 

became flooded as a result of the rising sea-level. Subsequent to this, Gallois (1989) suggested 

that a marine transgression occurred about 4, 700 years B.P. which deposited intertidal clay 

and silt. A relative fall of sea-level between about 4,000 and 2,050 years B.P. produced a 

34 



second widespread peat which was, itself, inundated by a relative sea-level rise during which 

intertidal deposits were laid down. 

Radiocarbon dating of deposits was not possible until the 1960s (Willis, 1961 ). A number 

of Godwin's sites were revisited and samples were taken for dating. Prior to this, Godwin's 

classificatory scheme was entirely lithostratigraphic and its application to different areas of 

the Fenland could, therefore, give no indication of whether the deposits found were of com­

parable ages. Gallais' (1979, 1989) use of site names to describe the stratigraphy is, similarly, 

not of great chronostratigraphic value. His scheme was only intended to be of lithostrati­

graphic use. In both cases, the authors have worked largely in the southern Fenland and 

subsequent work has shown that the tendencies of sea-level were not necessarily synchronous 

or of equal magnitude in different parts of the Fenland (Godwin and Vishnu-Mittre, 1975; 

Shennan, 1986a; Waller, 1988). 

Shennan ( 1986b) presented evidence based on stratigraphic and micropaleontological 

studies combined with radiocarbon dating, updating his former work (Shennan, 1980, 1981, 

1982), which led him to conclude (Shennan, 1986a) that at least seven separate periods of 

positive sea-level tendency (which he termed 'Wash') could be found within the Fenland, the 

most recent of which were identified with the aid of archaeological evidence (e.g. Churchill, 

1970). In addition, Shennan (1986a) makes the point that between c. 4,500 and 4,200 years 

B.P., during which the upper peat of the southern Fenland began to form in the Denver -

Flaggrass - Wood Fen - Shippea Hill area, the fen clay had not yet reached its major period 

of deposition in other sedimentary basins to the north and west. Deposition of the fen clay 

continued in these basins until about 3,300 years B.P. 

Shennan (1986a) drew a curve of sea-level change over the last 7,000 years in the Fenland 

(Figure 2.4) with an error band for altitudinal variation of the mean high water spring tide 

level. The results are shown for this tidal level as this is taken to be the sea-level recorded 

by most sea-level indicators. The curve shows that the level of mean high water of spring 

tides has risen from about -8.5 :metres O.D. at 6,600 years B.P. to its present value of +3.8 
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metres O.D. with periods of positive and negative tendency, as noted above. 

Shennan (1986a) noted differential crustal movements along the east coast of England 

during the Holocene. He refers to significant differences for 5,200 to 5,300 years B.P. between 

Hartlepool and the Fenland, and for about 6,200 years B.P. between Spurn and the Fenland, 

allowing for present differences in mean high water of spring tides. The reality of these 

differences must be put into perspective in the light of results presented in Chapter 5 of this 

thesis. Shennan (1989) extended this work with 58 radiocarbon-dated sea-level index points 

from the Fenland. The results had a coefficient of determination, or explanatory value for 

land movement, of 58% and showed a trend of linear subsidence of the Fenland until 5,000 

years B.P. of approximately minus one metre per 1,000 years (with 37 data points). For the 

period from the present to 6,500 years B.P., a linear solution was not such a good fit to the 

data set. 

Shennan (1980, 1986a) also drew attention to the fact that the whole Fenland area cannot 

be simply divided up into a quadripartite sedimentary sequence as areas of more peat and 

silt / clay intercalations exist, especially near to the present coastline. In addition, Shennan 

(1986a) discussed the spatial variation in the sediments composing the "fen clay" and "upper 

silt" deposits. The sediments which make up the "fen clay" layer are composed, typically, 

of c.55% clay, c.45% silt and less than 5% of fine sand away from the creek systems. Seale 

(1975) showed that a finely laminated silt loam or sandy silt loam is more characteristic of the 

roddons (former river channels). The "upper silt" deposits are generally coarser than those 

of the "fen clay", but, similarly, become coarser in the major channels (Shennan, 1986a). In 

both cases, a low energy environment of deposition is suggested by the nature of the clastic 

sediments. Similar sedimentary environments existed in each period of positive tendency of 

sea-level movement with different parts of the Fenland undergoing their maximum extents 

of marine or estuarine inundation at different times (Shennan, 1986a). 

Waller (1988), in a preliminary report of the Fenland Project (which is attempting to 

integrate palaeoenvironmental :changes in the Fenland with archaeological evidence), has 
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Figure 2.4. Sea-level curve for the Fenland with an error band for mean high water of spring 
tides (after Shennan, 1986). 
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considered the sedimentary evidence of each basin separately in terms of the tendencies of 

sea-level movement that have occurred. Within the south-eastern Penland basin, to the north 

and east of Ely, dates of the deposition of the fen clay range from 4,350±60 years B.P. for 

the onset of marine conditions at Peacock's Farm to 3,955±70 years B.P. at Pymore. Waller 

mentions that this corresponds more closely to Godwin and Clifford's (1938) chronology, 

from archaeological evidence, than to that of Shennan (1986a), who suggests that fen clay 

deposition finished in this region at c.4,500 radiocarbon years before present Waller's (1988) 

dates and stratigraphic evidence from Farcet in the March - Chatteris - Ramsey - Whittlesey 

basin suggest that the marine deposits of this region may be equivalent to those at Bourne Fen 

(Shennan, 1986b), as suggested by Shennan (1986a). From work in East Fen in Lincolnshire 

and further south along the Wisbech bypass, Waller suggests that the marine phase which 

deposited the upper silts occurred at an earlier date in Lincolnshire than to the south, 

accounting for the differences in age ascribed to this phase between Godwin's chronology 

and that of Shennan (1986a). 

Results of the Fenland Project suggest that in Roman times settlement was possible for 

the first time on a marine silt that had been deposited during the Iron Age (Hall, 1988). The 

date of commencement of this drier phase is not certain, however. Hallam (1970) pointed 

out that silting of drainage channels occurred from 200 A.D. onwards, but suggested that a 

small transgression also occurred in the third and fourth centuries. Potter (1981) attributed 

the flooding to freshwater rather than a marine incursion. Studies of salterns (Smith, 1970) 

suggest a transgressive period from around 1,550 to 1,150 years B.P. (Shennan, 1986a). It 

has been proposed that this was due to a lack of maintenance of Roman sea defences after 

the Romans had left the area (Salway, 1970). Subsequent to this, changes in the extent of 

the coastline were substantially affected by land reclamation works and periods of positive or 

negative sea-level tendency are difficult to separate from man's influence (Shennan, 1986a). 

The different ideas concerning former sea-level tendencies in the Penland, the major 

representatives of which have been described above, reflect the considerable differences in 

opmwn as to the former coastal geography of the Wash Fenland area. The situation is 
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complicated by the fact that the present coastline is artificial as man has built sea defences 

to protect the Fenland from flooding. Therefore, no equivalent environments to those in 

which the intercalated clays, silts, sands and peats of the Fenland were deposited currently 

exist in the area. Shennan (1986b) mentions that there is a need to produce a model 

of the palaeogeographic environments in which fine particles of marine origin can become 

intercalated with organic deposits of terrestrial origin, thus combining the horizontal and 

vertical movements of the coastline. Three main hypotheses have been proposed in the 

literature and these are discussed below. 

Shennan (1986b) has divided the models of coastal sequences into those proposing a 

static barrier across the Wash, those favouring a migrating barrier or barrier islands, or 

the alternative of an open coast. The hypothesis of a static barrier across the Wash was 

suggested by Swinnerton (1931), who proposed that some linear sand and gravel ridges 

currently found offshore to the north of the Wash are the eroded remnants of a barrier which 

formerly extended across the mouth of the Wash and northwards offshore from Lincolnshire. 

However, Robinson (1968) and Jeffrey (personal communication, 1989) have illustrated that 

the sand ridges are constantly being moved by tidal currents. By contrast, Eisma et al. 

(1979) and Jeffrey (personal communication, 1989) believe that the morainic ridges are relict 

features, which are undergoing little alteration at present. The advantage of the hypothesis 

was that it explained the formerly sheltered environment in which deposition occurred and 

the current eroding nature of the Lincolnshire coastline. 

A modified version of Swinnerton's (1931) static barrier hypothesis was proposed by 

Godwin (1978). He claimed that the initial Flandrian rise of sea-level would have encoun­

tered a barrier of glacial drift, such as that related to the Hunstanton boulder clay, across 

the mouth of the Wash. Godwin suggested that, when this barrier was breached, the fen clay 

was deposited in a lagoonal environment behind it. Deposition of the fen clay in a lagoonal 

environment has, however, been questioned by Shennan (1986b) from evidence at Adven­

turer's Land. Further, there is no evidence that a continuous barrier of morainic material 

has ever existed across the mouth of the Wash. Godwin (1940) admits that no barrier has 
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been identified in relation to the fen clay formation. 

A second hypothesis is that of a migrating barrier, moving progressively shorewards with 

a rise of sea-level. Such barriers have been identified in many areas, such as the south coast 

of the U.S.A. in the Gulf of Mexico (e.g. Leatherman, 1987) and the Netherlands coast 

(Jelgersma, 1966, 1979; Hageman, 1969). Similar features are found on the north Norfolk 

coast, although these, such as Scolt Head Island and Blakeney Point, are largely the result 

of longshore drift. No irrefutable evidence of such barrier islands has been found, though. 

Evans and Mostyn (1979), from exploratory exposures made for a gas pipeline, describe sands 

with ripple marks which they ascribe to former sand bars. However, no further analysis of 

the sediments has been made. 

A further point of interest concerning the barrier hypotheses is that of the tidal regime 

in which they would exist, as pointed out by Shennan (1986b ). Barrier islands have been 

shown to be best developed in microtidal regimes (Hayes, 1975), with tidal ranges of 0 to 2 

metres (Davies, 1964), and are not generally found in macrotidal regions (with a tidal range 

of over four metres), such as that of the Wash at the present day. The plausibility of this 

hypothesis can, therefore, be assessed in part with regard to the results shown in the current 

study. 

The third hypothesis proposes an open coast with no more than local intertidal barriers 

(Shennan, 1980, 1981, 1986b ). It is suggested that a low gradient shoreline would have ex­

isted from the Pre-Flandrian smface, giving low energy depositional environments with large 

intertidal flats. This concurs with the majority of evidence of deposits in the Fenland which 

were laid down in low energy conditions. The three hypotheses outlined above are consid­

ered further with the construction of palaeogeographic maps from stratigraphic evidence in 

Chapter 4. 

Most Holocene sediments in the North Sea are derived from sediments already present 

in the area at the end of the Pleistocene period (Jelgersma, 1979; Johnson et al., 1972) and 

there is little current input from fluvial sources (Wilmot and Collins, 1981; Veenstra, 1971). 
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By and large, the Holocene in this area has been characterised by reworking of Quaternary 

deposits. Sedimentation has occurred in some areas of the North Sea, such as on top of the 

Dogger Bank, where an additional fifteen metres of sediments have accumulated (Eisma et 

al., 1979; Eisma, 1981 ). Scouring of the Outer Silver Pit immediately to the south-west of 

the Dogger Bank has also occurred (Jeffrey, personal communication, 1989). Other than 

this, some sediment has accumulated in the "deeps" in the northern part of the North Sea. 

Strong tidal currents in the south-western part of the North Sea have led to the development 

of linear sand ridges, parallel to current directions, and sand can be observed in motion on 

these ridges (Lees, 1980, 1981). 

In a study of the Wash, Callois (1979) found a basal peat overlying till and covered by 

sand in the intertidal zones. Wingfield et al. (1978) and Balson (personal communication, 

1989) show that the present-day sediments of the Wash consist of gravels in the central and 

outer part of the estuary, derived from glacial tills, with increasingly finer material found 

shorewards onto the tidal flats. To the north of the Wash, off the Lincolnshire coast, de Serra 

(1799) reported inter-tidal islands of peat and clay, which are no longer present. Shennan 

(1986b) suggested that these may have been a seaward extension of the basal peat layer 

found by Swinnerton (1931 ). 

2.3.2. Morecambe Bay 

Stratigraphic observations relevant to the Holocene history of Morecambe Bay have been 

reported from the late nineteenth century onwards (e.g. Kendall, 1900). The first major 

work dealing with sea-level changes in north-west England was, however, that of Cresswell 

(1953, 1957, 1958), who was primarily concerned with the search for raised beaches, which he 

identified geomorphologically as "areas of very flat ground" (Cresswell, 1958, p.80), compris­

ing "an unconsolidated deposit (whether it be of shingle, sand, silt or clay, or heterogeneous) 

that has been laid down as the result of marine action on the open coast or in estuaries". 

Cresswell (1958) levelled much of the Creenodd and Kent estuaries and surrounding 

areas, where he found fine clayey silts in the upper parts of his boreholes, with coarser, fine 
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sandy silt at lower levels. He discovered that the average altitude of the 126 boreholes which 

he made was 15.25 feet (approximately 3.7 metres) above O.D., with a maximum variation 

of two feet (or 0.6 metre) on either side of this. Cresswell concluded that the "accordance 

of the levels in the different estuaries, which are entirely cut off from one another excepting 

by sea, appears to show conclusively that the deposits are of one origin, that is, that they 

are estuarine and cannot be of lake origin with ice dams at the estuary mouths" ( Gresswell, 

1958, p.88). 

No techniques were used by Gresswell to determine under what conditions the silts and 

sands which he found had been deposited. Higher up the estuaries, peat layers were found 

in boreholes. Pollen analyses were carried out on peat layers from borings in the Duddon 

estuary, just west of Morecambe Bay, and peats found in borings in the Greenodd estuary. 

From the pollen found in the peat layers, Gresswell (1958) concluded that a transgressive 

period had occurred in Morecambe Bay between the deposition of the two peat layers. 

Oldfield and Smith carried on the work around Morecambe Bay. Their interests were 

mainly in the post-glacial vegetational changes which had occurred (e.g. Oldfield, 1960a, 

1963; Smith, 1959), but pollen spectra were also used to suggest dates of transgressive and 

regressive overlaps where sequences of clays intercalated with peats were found. Organic 

deposits of Ellerside Moss, in the Leven estuary (Oldfield and Statham, 1963), overlying 

the clay - silt transgression of around 3,800 B.C. (Cresswell, 1958) include the elm decline 

period, which has been dated between 5,435 to 4,810 radiocarbon years before present in 

the north-eastern part of Morecambe Bay (Smith et al., 1971). Oldfield (1960b) also found 

evidence of a marine transgression in Silverdale Moss in the north-eastern part of Morecambe 

Bay from the same time. Smith (1959) dated a regressive overlap on Helsington Moss, north 

of the Kent estuary, to 5,277±120 years B.P. at +4.88 metres O.D. Oldfield (1963) suggested 

that pollen evidence of marked elm declines and "Landnam" ("land-taking") phases around 

Morecambe Bay indicates early Neolithic forest clearances by man. Tooley (1987) mentions 

that clearances over 600 or so years would result in soil erosion and an increased sediment 

supply to Morecambe Bay. He ·implies that the apparent relative fall of sea-level might be 
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partly due to major sediment input to the Bay. 

The most recent work carried out concerning sea-level changes around Morecambe Bay is 

that by Tooley (e.g. Tooley, 1974, 1978, 1980, 1987). Tooley (1978) has summarised present 

knowledge of sea-level changes in Morecambe Bay (see Fig. 2.5). Tooley (1987) concurs with 

Oldfield (1963) to associate the end of marine sedimentation in Morecambe Bay with the 

elm decline around 5,000 years B.P., as mentioned above. He draws together evidence from 

around the Bay to suggest, as did Oldfield (1963) that there was a significant change in the 

shape of Morecambe Bay at this time as the sea did not progress as far up the estuaries and 

colonisation of former tidal flats occurred. 

Tooley (1987) also reports more recent data concerning relative sea-level movements. 

At Arnside Moss, in the north-eastern part of Morecambe Bay, a saltmarsh soil overlies a 

peat at +5.7 metres O.D., dated to 1,545±35 years B.P., while further south, at Heysham 

Moss, a clayey silt was found overlaid by peat, dated at 4,190±150 years B.P. In addition, 

Tooley (unpublished) has recorded four periods of transgressive and regressive overlap from 

Skelwith Pool, by the eastern part of the Leven estuary, between about +2. 7 and about +5.9 

metres O.D. 

Buried and intertidal peat beds have been recorded in the offshore part of the Bay 

between -17.6 and -11.1 metres O.D. (Knight, 1977), dating from 9,270±200 years B.P. 

to 7,995±80 years B.P., respectively. From their pollen assemblages, these organic deposits 

suggest that peat growth occurred as a result of the ponding back of water consequent upon 

a relative sea-level rise (Huddart et al., 1977; Tooley, 1980). In many cases, there is a change 

to brackish water conditions in the peats, followed by minerogenic intertidal deposits. 

Offshore the basal peat layer is very thin and not present in all boreholes. Above this, 

lying directly on the till where the peat is absent, is a clayey layer, between 5 and 45 metres 

thick, covered by silty sands with shells up to the present surface. These, together with the 

peats found in Heysham Harbour by Soil Mechanics Limited in 1967, at the site of the nuclear 

power station, and the cross-section of Heysham Harbour by Reade (1902) and the sections 
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from Barrow Harbour, described by Kendall (1900) in 1880, are the only offshore records 

from the Bay. The three boreholes by Soil Mechanics Limited show a sequence similar to 

that obtained for the barrage survey (Knight, 1977). A peat layer up to about a metre thick 

overlies clayey gravel and sand. Above the peat is a five metre thick sequence of clay on 

top of which sand with shells is found. Reade's cross-section is almost identical to this. In 

Barrow Harbour, Kendall (1900) found a silty clay overlying the peat. 

Wingfield (personal communication, 1989) has shown, from a seismic profile, that Holo­

cene sediments have accumulated in the Lune Deep, just west of the southern part of More 

cambe Bay. Other "deeps" in the Irish Sea, particularly those off Dublin, Eire, have also 

seen accumulation of deposits during the Holocene (Whittington, 1977; Dobson, 1977b ), but 

otherwise redistribution of sediments from the last glacial stage is all that has occurred on 

the floor of the Irish Sea during the Holocene. 

In general, the radiocarbon dates from the offshore peats in Morecambe Bay (Knight, 

1977) show younger ages at higher altitudes. A rapid rise of relative sea-level is suggested 

around 8,000 to 7,000 years B.P. as an onshore peat layer at Rusland Valley, north of the 

Leven estuary, gives a date of 7,750±100 years B.P. at -0.3 metres O.D. (Tooley, 1987). 

Dickinson (1973) found a marine clay in this area at -0.75 to +1.35 metres O.D., deposited 

between about 7,000 and 8,000 years B.P. (Hibbert et al., 1971). Tooley (1978, 1987) relates 

this to possible neotectonic movement associated with isostatic movements in Morecambe 

Bay. Isostatic movement would be expected to be greater nearer the former centre of ice 

accumulation to the north of Morecambe Bay. However, Tooley (1978) points out that the 

gradients on the, now buried, beaches were reversed in Morecambe Bay between 7,000 to 

8,000 years B.P., dipping towards the former centre of ice loading at 11.9 metres per 100 

kilometres, before assuming the expected southward dip north of Morecambe Bay at 11.7 

metres per 100 kilometres. 

Flemming (1982) analysed the radiocarbon-dated sea-level index points from the More­

cambe Bay area and concluded that relative subsidence is characteristic of the area, but that 
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the subsidence was more rapid during the eighth to ninth millenium of radiocarbon years 

before present. This work was continued by Shennan (1987, 1989). Shennan (1987), working 

with data from north-west England, calculated a zero land uplift rate for the past 5,000 or 

6,000 radiocarbon years with an exponential decrease before that. Compared with an expo­

nential curve for isostatic uplift, the sea-level index point for 8,000 years B.P. in the dataset 

appears as a 6 metre residual. Shennan (1987) suggests that this can be partly explained 

by sediment consolidation and by using a sea-level band drawn through the error boxes of 

the data points. In his 1989 paper, Shennan recognises a clear distinction between the on­

shore and intertidal index points. The onshore points show an exponential decline in uplift 

which is approximately linear for the last 6,000 years (0.35±0.12 millimetres per annum). 

He comments that the large error bands that may arise for the older intertidal index points 

are insufficient to reconcile these data with the onshore data and proposes that differential 

crustal movements are a possible explanation together with changes in palaeo-tidal range. 

2.3.3. Comparison of the development of the Fenland and Morecambe Bay during 

the Holocene 

The extensive low-lying nature of the Fenland has attracted many research workers 

interested in ecological (particularly vegetation) and sea-level changes. Morecambe Bay, by 

contrast, is surrounded by a smaller area of lowland, despite the fact that half of its area 

dries out at low tide. Much more research has been carried out concerning the development 

of the Fenland during the Holocene than is the case for Morecambe Bay. In addition to 

research interests, the use of the Fenland as high grade farmland has led to a need to build 

roads and lay pipelines across the area, involving stratigraphic investigations (e.g. Monk, 

1976; Evans and Mostyn, 1979). The greater relief around Morecambe Bay has meant that 

such investigations have been far fewer on the low-lying Holocene sediments here, which, 

including the estuary area, cover a far smaller area of land ( c.600 km2
) than in the Fenland 

( c.6,000 km2
). 

In addition to the far greater volume of work carried out in the Fenland, initially by 
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nineteenth century workers such as Skertchly (1877), followed by the Fenland Research Com­

mittee in the 1930s and carried on most recently by the Fenland Project, the spatial spread 

of stratigraphic investigations is also far better in the Fenland. In Morecambe Bay, most 

Holocene stratigraphic work has been carried out around the estuaries of the Kent and the 

Leven in the northern part of the Bay. Some work has also been carried out on the eastern 

and southern sides of the Bay, for example at Heysham and Pilling Moss, but the number of 

these investigations is far fewer than in the northern area. Much of the area of the Fenland, 

by contrast, has been covered in terms of its Holocene stratigraphy. 

The accounts above illustrate that both the former and the current geographies of the 

two field areas are quite different. The Wash is, essentially, an open embayment from the 

North Sea and the evidence presented above suggests that it has taken on similar shapes, 

although sometimes of much greater extent, throughout the Holocene. Morecambe Bay, 

however, is an embayment with large river valleys entering it from surrounding areas of high 

relief, of the order of 100 metres, compared with the gently sloping land around the Fenland 

of c.25 metres. At various times during the Holocene, when relative sea-levels have risen, the 

river valleys have been flooded, rather than a larger bay area being opened up as in the case 

of later Holocene transgressions in The Wash. This is due to the geology of Morecambe Bay 

compared with The Wash; the former is surrounded by much higher land than the latter. 

Work on isostatic movement (Shennan, 1987, 1989) has shown that whereas Morecambe 

Bay underwent uplift until c.6,000 years B.P. and has since been relatively stable, the Fen­

land, located further from former centres of ice accumulation, has undergone slight subsidence 

during the Holocene. However, Shennan et al. (1983) showed (Fig. 2.6) that between c.2,500 

and 6,800 years B.P. there were a number of transgressive and regressive sea-level tendencies 

which coincide between the Fenland and north-west England (the latter of which includes 

an area beyond the extent of Morecambe Bay). 

The record of sea-level cha~ges goes back much further in Morecambe Bay than in the 

Fenland as the sea did not reach the Fenland until about 7,000 years B.P., whereas there is 
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evidence of a transgression and then regression in Morecambe Bay before 8,000 years B.P. The 

major part of the dated records from Morecambe Bay relate to the time prior to 5,000 years 

B.P., while those for the Fenland are mostly between 5,500 and 2,500 years B.P. In addition, 

a far greater number of dated stratigraphic records are available for the Fenland. The dates 

used in this study to reconstruct the palaeogeographies of the Fenland and Morecambe 

Bay during the Holocene in Chapter 4 are given in Appendix 4.2. Reconstructions of the 

palaeogeography of the field areas in this study are limited to current sea depths modified by 

allowances for isostatic movement and sea-level altitude data obtained from sea-level curves 

in the surrounding areas. Further details are given in Chapter 4. 
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CHAPTER 3 

TIDAL THEORY AND TIDAL MODELS 

In this chapter an outline of tidal theory is given. Tidal theory is developed in the 

context of the present study to illustrate the factors important to tidal movements on 

the continental shelf and at the estuary scale. The ways in which changes to the tide 

may occur at different sea-levels are discussed, although they are not all identified in the 

present study. The last section of this chapter is devoted to an explanation of methods of 

modelling tidal movement and their relative advantages and disadvantages. The approach 

used in this study is examined briefly, but will be explained in greater detail in Chapter 

5. 

3.1. Tidal theory 

3.1.1. Tidal generation. 

A number of theories as to the motion of tides, or periodic movements of the sea, 

have been proposed. These were initially based on superstition (Pugh, 1987) rather than 

scientific fact. Sir Isaac Newton made a major advance in the understanding of the 

generation of tides. He applied the theory of gravitational attraction to illustrate the 

tidal response of a hypothetical completely water-covered earth. The resulting theoretical 

equilibrium tide could be explained by the fact that two bodies attract each other with a 

force proportional to the product of their masses and inversely proportional to the square 

of the distance between them. The equilibrium tide is the elevation of the sea surface 

that would be in equilibrium with the tidal forces if the earth were covered with water 

to such a depth that the response is instantaneous (Pugh, 1987). The equilibrium tide 
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accounts for the broad features of the observed tides, which are complicated, in detail, by 

the presence of land masses and non-uniform bathymetry of the oceans. Its importance 

lies in its use as a reference to which the observed phases and amplitudes of the harmonic 

constituents (discussed in Chapter 3.1.6.1) can be related. It also indicates the important 

harmonic constituents to be included in a correct tidal analysis model (Pugh, 1987). 

Laplace formulated the equations of tidal movement on a rotating earth from the the­

oretical solution explained by Newton (Pugh, 1987). Laplace's equations have provided 

the basis of understanding tidal movement as a response to periodic forces. From the pe-

riodicities of the tidal forces, Lord Kelvin developed the first method of harmonic analysis 

of tides. He showed that the tidal forces could be analysed into astronomical components, 

each with its own frequency, related to the periodicities of movements of different heavenly 

bodies. The procedure involved is explained in more detail later in this Chapter. 

The tide-generating force at a point X on the earth is defined as the difference in 

attractive force of the heavenly bodies (mainly the moon) experienced at X and that 

experienced at the centre of the earth (Doodson and Warburg, 1941). Considering only 

the influence of the moon, from Newton's Second Law of Motion, the force towards the 

moon at X is (Pugh, 1987) 

(3.1) 

(see Fig. 3.1), where g is the gravitational constant (6.67x10- 11 Nm2 kg-2), me is the 

mass of the earth (5.97x10 24kg), mz is the mass of the moon (7.35x1022kg), Rt is the 

distance from the centre of the earth to the centre of the moon ( 384, 400km) and R is 

the equatorial radius of the earth (6, 378km). The force necessary to keep the earth in its 

orbit in relation to the moon is the same as for a particle at 0 (the centre of the earth): 

(3.2) 



where g, me, mz and Rz are as defined in equation 3.1. The tide-generating force at X is 

the difference between these two forces: 

(3.3) 

with R ~ 6,378 kilometres and Rz ~ 384,400 kilometres, 

(3.4) 

and 

(3.5) 

Therefore the net force towards the moon is of magnitude 

(3.6) 

at X directed along XM. Similar calculations at Z show that the gravitational attraction 

is too weak here to exert an influence and there is a net force away from the moon of the 

same magnitude. The net force at Y is towards the centre of the earth and is of magnitude 

(3.7) 

The fine line on the diagram (Fig. 3.1) illustrates the resulting shape of the ocean 

surface for the equilibrium tide. The solid earth rotates within the equilibrium ellipsoid. 

The tide is generated by the differences between the gravitational attractive forces on 

the earth's surface and the position of the earth's surface. The tide-generating effect of 

other heavenly bodies may be developed in a similar way, although their greater distance 

from the earth considerably reduces their tide-generating effects compared with that of 
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the moon. The influence of the sun is next in importance, although its effect is only 0.46 

times that of the moon. 

The amplitudes of the equilibrium tide are small. At the equator, amplitudes reach 

a maximum of circa 0.88 feet (0.267 metres) for the lunar semi-diurnal tide (Doodson 

and War burg, 1941 ). Observed tides are generally much larger than the equilibrium tide 

because of the presence of land masses and variations in the bathymetry of the seas, but 

their oscillations occur at the same frequencies as those of the equilibrium tide. 

Variations associated with the precession of the equinoxes, obliquity of the ecliptic 

and eccentricity of the orbit of astronomical bodies and the degree to which these are in 

or out of phase with each other affect the strength of the tide-generating force at any given 

location at any given time. The precession of the equinoxes is the cycle of movement of 

equal length of nights and days during the year, when the sun crosses the equator. These 

are currently in March and September, but vary in timing throughout the year on a 26,000 

year cycle. The variation is caused by movement of the position of the earth's equator 

relative to the stellar background, so affecting the timing of maximum tide-generating 

potential. The variation of the plane of the earth's revolution around the sun is from 

23°27' north to 23°27' south of the equator each year. This is known as the obliquity 

of the ecliptic and affects the location of maximum tide-generating potential. Finally, 

astronomical bodies orbit around each other in elliptical, rather than circular, paths, as 

shown by Newton and Kepler (Pugh, 1987). This means that the degree of proximity of 

one body to another, and hence the tide-generating potential, varies in magnitude with 

time. The most extreme tidal forces occur when the moon, sun and earth are in line and 

at their closest respective distances. 

Maximum tidal amplitudes generally occur a few days after the astronomical maxi­

mum tide-producing force. This lag is due to the inability of the tidal wave on earth to 

keep up the speed of progression around the earth required by the astronomical forces, 

due to varying water depths. The time lag is less in the southern hemisphere, where there 
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are fewer land masses and the water is deep enough to allow a faster speed of progression 

of the tidal wave, the speed of which is given by 

1 
c = (gh)! (3.8) 

where c is the speed of progression of the tidal wave (in metres per second), g is the 

gravitational constant and h is the water depth in metres. 

In the wide and deep ocean basins, observed tides are generated by external gravi-

tational forces, whereas in shelf seas, tides are driven by co-oscillation with the oceanic 

tides. Energy from the oceans is dissipated on continental shelves by bottom friction. 

3.1.2. Shallow water effects 

Three factors contribute to distort the tidal wave in shallow water on continental 

shelves and in estuaries (Pugh, 1987): 

(a) the amplitude of the tidal wave IS a significant proportion of the total 

water depth in these areas 

(b) the stronger currents which develop in shallow water are resisted by drag due 

to bottom friction. This eventually removes much of the propagating energy and 

reduces amplitudes. 

(c) varying widths and depths cause complicated tidal patterns to develop with 

curvature of flow. 

Components of the tidal wave may be written in terms of harmonic constituents, as 

is explained below. The main tide-generating forces in the oceans are the lunar and solar 

semi-diurnal (twice-daily) and diurnal (daily) constituents. The non-linear distortions to 

the tidal wave in shallow water may be expressed in terms of harmonic constituents which 

have angular frequencies that are multiples, sums or differences of the main diurnal and 

semi-diurnal tidal constituents. Higher harmonic constituents, which have at least two 

tidal cycles per day, are more generally of greater importance than low frequency campo-
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nents, such as 2MS2 which represents the difference S2 - M2 and has a semi-diurnal period. 

The phase of the higher harmonics relative to the basic tidal wave constituents controls 

the shape of the tidal curve. The relative importance of higher harmonic constituents is 

greater near amphidromic systems of the semi-diurnal and diurnal tidal constituents, for 

example, around Southampton, Hampshire, where double high waters occur. 

Bottom friction opposes flow and removes energy from the motion of the tidal wave, 

reducing its amplitude. Drag and current speeds have been shown to be related (Pugh, 

1987) by:-

(3.9) 

where Tb is the bottom stress, Cn is a dimensionless drag coefficient, pis the water density 

and q is the current vector. 

The value of Cn depends on the level above the sea bed at which the current is 

measured. For measurements at one metre above the sea bed, Cn is generally between 

0.0015 and 0.0025. Taylor (1919) reported an average value of 0.0024 for the Irish Sea. 

Higher harmonics are associated with the asymmetry of the tidal wave, which may be 

generated in shallow water. In general, wave speed (c) is related to depth by the formula 

given in Eqn. 3.9, but where wave amplitude is comparable with total depth, 

(3.10) 

where g is the gravitational constant, his the water depth in metres and (is the displace-

ment of the water level from its mean value in metres, is a more accurate representation. 

This suggests that waves become asymmetrical in shallower waters. 

Variations of bottom topography and coastal configuration affect tidal movements. 

Tidal currents tend to follow the contours of the coast (Pugh, 1987). Sea-levels are slightly 
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Figure 3.2. The Curvature of Streamlines for Tidal Flows near a Coast (after Pugh, 
1987). The surface gradients which produce the curvature are represented by the 
arrows perpendicular to the coast which point down the slope. The situation is 
reversed half a tidal cycle later, but the surface gradients do not change direction. 
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lowered at headlands and raised in bays as a consequence when currents are strong (see 

Fig. 3.2), although this effect does not occur at slack water. The relative depression 

of sea-level twice in the tidal cycle (during both flood and ebb) leads to the apparent 

development of higher harmonic constituents near headlands. 

Shallow water effects are important in a palaeotidal context as lower sea-levels at 

former times increased the extent of shallow water area over the north-west European 

continental shelf. This was especially the case in embayments and the Wash Fenlands 

area in particular was covered by a shallow water sea in the mid-Holocene. 

3.1.3. Resonance 

Tides undergo reflection at sudden changes of depth, such as the continental shelf edge 

and coastal boundaries. The combination of reflected and incident waves can produce a 

pattern of standing waves, which have alternate nodes of zero amplitude and antinodes 

of maximum amplitude, separated by a distance of i, where A is the wavelength of the 

progressive wave. For example, large amplitudes would be produced at the head of bays 

with lengths which correspond to a quarter of the tidal wavelength, viz: 

4L 
--1 

(gh)2 
(3.11) 

where L is the distance from the sea to the head of the bay in kilometres, g is the 

gravitational constant and h is the water depth. For the M2 tide, quarter wave resonance 

would occur in a basin of 250 kilometres length and 50 metres water depth (Pugh, 1987). 

No energy is transmitted by standing waves, since they consist of two progressive waves 

of equal amplitude travelling in opposite directions. 

Resonance effects may be important in a palaeotidal context. This has been shown to 

be the case in the Bay of Fundy (Scott and Greenberg, 1983). Scott and Greenberg (1983) 

traced the increase in tidal range in the Bay of Fundy during the Holocene as related, 

at least partly, to the change in shape and water depth in the Bay which has led to the 
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formation of standing waves, increasing tidal heights reached by resonance effects. 

3.1.4. Kelvin waves 

Kelvin waves are long-waves influenced by the earth's rotation. Tides on continental 

shelves may be regarded as Kelvin waves. Kelvin waves are discussed here as changes to 

the tidal wave on the continental shelf at different sea-levels are of direct relevance to the 

present study. 

The rotation of the earth causes a deflection of currents towards the right in the 

northern hemisphere. Obstruction of such currents by a coastline results in changes in 

water level. This build-up of water gives rise to a pressure gradient across the path of wave 

movement. At equilibrium, this balances the Coriolis force due to water particle motion. 

A combination of Kelvin waves travelling in opposite directions results in the tidal wave 

rotating about a nodal point, called an amphidrome, instead of oscillating at a nodal line 

at a quarter of a wavelength from the head of the basin. If the reflected Kelvin wave is 

weaker than the ingoing Kelvin wave, the amphidrome is displaced from the centre of the 

channel to the left of the direction of the in-going tidal wave in the northern hemisphere. 

The strength of Kelvin waves may vary with changes of sea-level (Franken, 1987). Franken 

(1987) found, from a tidal model of the continental shelf with reductions of current sea 

depths, that a lower water depth gives lower propagating speeds of Kelvin waves and, by 

increasing friction, decreases the amplitude of Kelvin waves. With water depths below 

30 metres in the southern North Sea, he found that tidal penetration (and therefore tidal 

amplitudes) were considerably reduced due to a large amount of energy dissipation. 

3.1.5. Residual flow 

In addition to the tidal movements related to movements of particular heavenly bodies, 

there are mean and residual currents. Residual movements may be driven by density 

gradients, wind stress or tidal motions. The speed of such currents is typically a few 

orders of magnitude less than tidal currents. Residual currents are important, though, 

because their persistence may allow them to dominate the distribution and movement of 
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Figure 3.3. Eddies Produced by Headlands and Islands which impede tidal currents. 

A. Residual eddy generated when the streamline 'overshoots' the headland (after 
Robinson, 1983). ' 

B. Residual eddy generated by a headland, as a result of the torque induced by 
greater bottom friction inshore than offshore (after Robinson, 1983). 

C. The pattern of four eddies generated by an island in a tidal stream (after Pugh, 
1987). 
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water salinity levels and temperatures and affect the transport of sediment and pollutants 

(Robinson, 1983). Higher tidal harmonics accompany the generation of residual flows 

(Mardell and Pingree, 1981 ). 

Mean currents are generated by the interaction of tidal currents with coastal features 

and bottom topography and are, therefore, very important in estuaries. Headland eddies 

have often been observed and they have been studied in some detail by Pingree and 

Maddock (1977a,b; 1979a), Pingree (1978) and Maddock and Pingree (1978). Bottom 

friction is more important in the shallower water near the coast than in deeper water 

further offshore. The difference in influence of bottom friction across the flow produces 

vorticity within the flow, which is equal and opposite when the flow reverses. At headlands, 

the tidal stream does not follow the coastline closely downstream from the headland, 

resulting in positive vorticity being carried offshore in this area, with negative vorticity 

on the upstream side (Figure 3.3a). This is not balanced completely by the return flow 

unless the headland is symmetrical. 

An alternative explanation to the generation of headland eddies which explains the 

production of residual vorticity when the streamline pattern around the headland is almost 

the same for both tidal stream directions (Robinson, 1983). Bottom friction may be 

considered proportional to the second power of the tidal velocity, in which case, where a 

current shear occurs, the bottom friction exerts a net torque on the sea (Robinson, 1983). 

Thus, even in a case of constant water depth, the bottom friction resulting from increased 

velocities inshore around the headland would exert a torque to produce vorticity in the 

flow leaving the headland. Positive vorticity is carried to the east and negative vorticity 

to the west of the headland (Figure 3.3b ). By this mechanism, the vorticity is generated 

only at the headland and so cannot be cancelled on the return flow, so two residual gyres 

remain. This explanation does not require flow separation at a headland creating eddies 

by the principle of continuity which requires a return flow or by tidal asymmetry and 

therefore has a more general application. However, once residual vorticity is present, tidal 

asymmetry is a consequence and vorticity is also produced within the flow where there 
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is sloping bottom topography. Four residual eddies (shown in Figure 3.3c) are generated 

as both mechanisms act as local vorticity sources around islands (Pingree and Maddock, 

1979b). 

Huthnance (1973) developed a two-dimensional representation of tidal currents which 

flow obliquely to sand bars which can account for the mean clockwise residual circulation 

around the parallel sand bars off the Norfolk coast. Provided there is a component of 

flow across (normal to) the linear sand bars, the flow is constricted vertically and the 

conservation of potential vorticity gives anticyclonic vorticity. This pattern is reversed 

as the flow moves into deeper water to the lee of the sand bars and cyclonic vorticity is 

created. The net effect over a tidal cycle is for negative vorticity over the shallow area 

and positive vorticity (Figure 3.4a) in the surrounding deep water. The resulting current 

pattern has residual flows parallel to the sand bars. 

Bottom friction also generates vorticity as the stream is greater in shallower water 

than deeper water. Cyclonic vorticity is produced as the stream moves on to the sand 

bar and anticyclonic vorticity as the stream moves off it. This vorticity is advected with 

the stream flow so that cyclonic vorticity is found on the sand bar and anticyclonic in 

the surrounding deeper water. Thus with a tidal flow in one direction the effects of flow 

constriction and bottom friction oppose each other, whilst in the other direction they are 

reinforced (Figure 3.4b and c). The case where they are reinforced is the most common 

with parallel sand banks, such as those off the Norfolk coast (Robinson, 1983). In such 

cases the residual circulation appears to be reinforcing and is strengthened, although the 

sediment transport processes involved (beyond the scope of this thesis) have not yet been 

widely explored. 

Friction effects may change at different sea-levels and with different palaeogeographies 

(e.g. due to an increase or decrease in shallow water areas), so giving alterations in residual 

flow. Sea-level changes may also alter residual flow patterns as the strength of the tidal 

current will be affected by both water depth and constriction (either later ally or vertically) 
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A. The vorticity generated by the stretching and squeezing of a water column passing 
over a ridge (after Robinson, 1983). 

B. Vorticity generated by differential friction over a ridge (after Robinson, 1983). 

C. Vorticity generated by differential friction over a ridge with current streams 
following a different direction from those shown in Figure 3.4b (after Robinson, 
1983). 
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of flow as a result of the change to the geography of the area, altering the residual flow 

pattern. Changes to residual flow patterns at former sea-levels are not examined further 

in this thesis, but are discussed as they are of potential importance to sedimentation and 

current flow changes with sea-level and tidal change and, as such, provide an area for 

more detailed research into the changes to the tidal regime in bays and estuaries than is 

presented in this thesis. 

3.1.6. Tidal analysis 

3.1.6.1. Harmonic analysis of tides 

The basis of harmonic analysis is the representation of the tidal wave at a given point 

by a combination of harmonic constituents which represent the effects of the different 

heavenly bodies (Godin, 1972). The contributions of the various constituents to the tidal 

wave are represented by their amplitudes and phase values calculated according to their 

angular frequency, in the form 

(3.12) 

where He is the tidal amplitude of constituent e, 9e is a phase lag of constituent e in 

radians relative to the high water of the equilibrium tide at Greenwich, t is time with 

t = 0 at equilibrium high water and 17e is the angular frequency of constituent e. The 

period of the e th constituent is given by 

(3.13) 

Shallow water terms may be expressed as higher harmonics of the main tidal con-

stituents, as mentioned above. Shallow water terms in the fourth- and sixth- order (even 

order) bands (e.g. M4, M6, 2MS2) are usually more important than those in the odd 

order bands (e.g. M3) (Doodson and Warburg, 1941). In addition, nodal modulation 

terms are often included in the harmonic analysis of tides. The nodal factors, f and n, 

64 



are adjustments of amplitude and phase made for the 18.61 year nodal cycle of lunar dec-

lination. For the M2, lunar semi-diurnal, tidal constituent, amplitudes vary by 4% over 

the cycle. For M2 the maximum value of f is 1.037 at maximum declination {28°36'). 

For solar constituents, the nodal factor {!) is 1.0 and the nodal angle ( n) is 0.0. If nodal 

modulation terms are included, the equation above is rewritten (Pugh, 1987) as 

(3.14) 

where He is the tidal amplitude of constituent e, Ve is the phase angle of constituent e of 

the equilibrium tide at time zero, fe is the nodal factor and ne is the nodal angle. 

The tidal function (Pugh, 1987) 

T(t) = Zo + L Hefe cos[cret- ge + (Ve + ne)] (3.15) 
e 

is fitted to the observed tidal curve in harmonic analysis, where T(t) is the computed tide 

level in metres at time t, and Zo is the mean sea-level in metres, so that the standard 

error (between observed and computed tide levels) is zero, or as near to this as possible. 

The choice of tidal constituents to include in the analysis depends on their amplitudes 

relative to each other in the expansion of the astronomical forcing for any given position 

on the earth. Least squares fitting is performed by matrix inversion methods. The length 

of observed data determines the number of constituents which may be separated in an 

analysis. For example, to determine M2 and 82 independently requires 

360 
hours = 14.77 days 

(30.00- 28.98) 
(3.16) 

as the angular frequency of S2 is 30.00° per hour and that of M2 is 28.98° per hour. It 

therefore takes the time given in equation 3.15 for M2 and S2 to come into phase with 

each other. 
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Non-harmonic terms, such as mean spring range, may be expressed in terms of har-

monic constituents. In a semi-diurnal dominated tidal area, such as the north-west Euro-

pean continental shelf, at syzygy, when the moon, earth and sun are in line, the gravita-

tiona! forcing reaches its maximum value, resulting in spring tides. The combined values 

of the Mz and Sz amplitudes, together with the mean sea-level, then approximate to the 

level of mean high water of spring tides (Doodson and Warburg, 1941), in the absence of 

shallow water effects. Higher harmonic tidal constituents, especially M4 and MS4, modify 

the values in shallow water areas. 

3.1.6.2. Response analysis of tides 

An alternative to the harmonic analysis of tides involves the use of response analysis 

techniques. In the discussion below, use is made of the concept of gravitational potential 

in a more general development of the tidal forces than that described in Chapter 3.1.1. 

Gravitational potential is the work which must be done against the force of attraction to 

remove a particle of unit mass to an infinite distance from the body (Pugh, 1987). The 

gravitational potential at a point Y on the surface of the Earth (Dy ), following Figure 

3.1, may be defined as 

Oy = _gmz 
MY 

(3.17) 

where g is the gravitational constant, mz is the mass of the moon and MY is the distance 

from a point Y on the surface of the earth to M, the centre of the moon. From applying 

the cosine law to equation 3.16 

(3.18) 

where R is the equatorial radius of the earth, Rz is the distance from the centre of the 

earth to the centre of the moon and ¢ is the angle of latitude at which point Y lies on 

the surface of the earth. Substituting in 3.17, this gives 
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(3.19) 

which may be rewritten 

(3.20) 

as the fourth and higher terms may be neglected because ~ ~ 6~ and they therefore have 

little influence on the tide generating potential. 

Munk and Cartwright {1966) expressed the gravitational potential (!1) at the surface 

of the earth in complex spherical harmonics, which may be written (Pugh, 1987) 

00 00 

!1(8, x, t) = L L g[ai(t)ui(8, x) + bivi(8, x)] (3.21) 
i=O m=O 

where 8, x, t are north co-latitude {90° -latitude), east longitude and time variables, 

respectively and ai and bi are real and imaginary parts of a complex time-varying coef-

ficient computed from lunar and solar motion and u and v are latitudinal and longitudinal 

velocities, i and m are the number of points at which calculations are made in the latitu-

dinal and longitudinal directions, respectively. The tidal variations are expressed in terms 

of the weighted sum of past values of each spherical harmonic of the potential. The more 

detailed the result required, the more past values must be included in the analysis. 

The method of response analysis leaves the physical characteristics of the ocean as a 

"black box" for further study (Pugh, 1987). However, harmonic analysis has the advantage 

of representing the individual tidal constituents in units of length and time which are useful 

for further analysis. The method of harmonic analysis is adopted in this study for this 

reason. 
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3.2. Tidal modelling 

3.2.1. Methods of tidal modelling 

Tidal models are used in order to predict or simulate the tidal regime of an area. 

Analysis of tide gauge records would indicate the most important tidal constituents at a 

point, but does not provide the dynamic methods of modelling and the length of recorded 

tidal observations limits its potential for assessing past or future tides. A physical model 

of the area under investigation would be possible, but may also exclude factors such as 

the rotation of the earth (Noye and Flather, 1990). Electrical analogue models have also 

been used (Ishiguiro, 1972), but have the disadvantage of inflexibility in that application 

to a new region would probably require reconstruction. The most widely used method of 

tidal modelling is, therefore, mathematical. 

Mathematical models can be considered as comprising two main types; analytical and 

numerical. An analytical solution provides the values of the desired unknown quantity 

at any location in a body. However, analytical solutions can be obtained only for certain 

simplified situations. It is generally not possible to specify a complex quantity completely 

accurately in mathematical terms. This is accommodated in tidal models by use of appro­

priate boundary conditions (discussed below) which permit inflow and outflow of water 

at different states of the tide to maintain an equilibrium condition. Analytical methods, 

using simplified equations and idealised bathymetry, provide an insight into the factors 

affecting the generation and propagation of tides in a particular area. 

Numerical methods provide approximate, but acceptable, solutions at a number of 

discrete points in the body (Desai and Abel, 1972). Numerical methods are needed to 

obtain solutions for actual seas (Noye and Flather, 1990). Numerical modelling overcomes 

many of the difficulties with other methods mentioned above and, with the development of 

computers, has become the most widely used method of tidal modelling. The advantages 

of this method, with its ability to specify bathymetry in each grid rectangle and predict 

tidal movements over wide areas, allowing input of oceanic tide-generating effects at the 
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estuary scale, mean that it is the most suitable method for use in this study. 

3.2.1.1. Criteria for consideration in the development of a numerical model 

Examination of a chart of the area to be modelled (Noye and Flather, 1990), together 

with a consideration of the problem to be solved, should determine the choice of the model 

to be used. Three-dimensional tidal models, in which the hydrodynamic equations are 

solved in two horizontal co-ordinates and the vertical (i.e. with depth) changes of these 

are modelled, are generally only used for tidal computations in deep sea areas, such as the 

Atlantic Ocean, where stratification is important in the water column (see, for example, 

Davies, 1983). In the area of the continental shelf, variations in water depth are relatively 

small and so vertical velocities are insufficient to warrant the extra computation of current 

variations with depth (Gunn and Yenigun, 1987). Two-dimensional models which employ 

depth-averaging are, therefore, more widely used from the scale of the continental shelf to 

that of an individual estuary and are used in this study. One-dimensional models, which 

have both depth- and lateral- averaging, are used for tidal rivers where there are only 

gradual changes in cross-section. 

If the region to be studied is large, it may be necessary to take into account the cur­

vature of the earth and use equations formulated in spherical polar, rather than Cartesian 

coordinates (Noye and Flather, 1990). This has been applied in a model of the north-west 

European continental shelf (Flather, 1976). 

Grid size for the model is another consideration in the development of tidal models. 

A regular grid covering the area of the model is the simplest form, but where detailed 

information is required in one area, smaller grid widths may be introduced. This method 

was adopted by Garrett and Greenberg (1977), reducing grid sizes in a series of steps to 

obtain detailed tidal results for the Bay of Fundy, Canada. Interpolation is necessary from 

regions of low to high resolution to introduce tidal input to the finer resolution grid area 

from that generated in the coarse model grid at the open boundary of the finer model grid. 

There are two methods of dynamical connection of different grid sized models (Stephens, 
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1983). Different meshes can be dynamically connected by the coincidence of grid points 

along their common boundaries, but with no subsequent feedback to larger grid models. 

An alternative type of dynamical connection is that of dynamical patching with feedback, 

as used by Proctor (1981 ), into the coarser grid areas. The latter method is more difficult 

to program and does not add greatly to the accuracy of final results and so has not been 

used in this study. Use of a fine model grid in shallow water areas permits the resolution 

of tidal components with wavelengths of the size of the model grid which are smaller than 

those which can be resolved by a model with a larger grid area. It is also possible to use 

an irregular grid, but the advantages of flexibility to model boundaries and optimisation 

of the timestep for explicit models are offset by much increased programming complexity 

(Noye and Flather, 1990). 

Open boundaries occur where the edge of the model joins another body of water; closed 

boundaries are solid boundaries which are land-water interfaces. Closed boundaries are 

modelled by assuming that the component of current flow normal to the boundary is zero, 

as water does not, in normal circumstances, cross coastlines. 

The simplest method of modelling an open sea boundary uses specification of sea 

surface elevation, or the normal component of current flow, as a function of position and 

time (Noye and Flather, 1990). The radiation condition is more complicated and is used to 

avoid incorrect reflections at open boundaries. It takes the form of a specified relationship 

between surface elevation and currents. Input of tides is achieved by applying the formula 

for the speed of the tidal wave, (gh)~, to the difference between the total elevation and 

current to be introduced (Flather, 1979). In this study, a radiation condition is used to link 

the models in a nested grid system (explained in Chapter 5.1) with resolution increasing 

down to the estuary scale, and the amplitudes and phases of the tidal constituents are 

converted into currents of varying magnitudes, introduced latitudinally and longitudinally 

along the boundaries of the models. 

The initial state of the sea, in the form of a prescribed distribution of surface elevation 
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and components of currents, must also be specified for time-dependent problems (Noye 

and Flather, 1990). In many cases, and in this study, it is assumed that the sea is at 

rest initially, with no current flows or variations in elevation. From this "cold" start, the 

tidal solution is obtained by solving the equations with the appropriate forcing, for a time 

long enough for the influence of the initial state to be eliminated by either dissipation or 

radiation of energy across the open boundaries (Noye and Flather, 1990). 

In summary, then, the information necessary for input to a numerical tidal model 

consists of the water depths relative to mean sea-level in the region covered by the model, 

tidal data for the open sea boundaries and tide-producing and propagating mechanisms 

within the model area. The appropriate form of the hydrodynamic equations and model 

grids depends on the nature of the problem to be solved. 

3.2.1.2. Numerical modelling 

Numerical models are based on the principles of Newton's second Law of Motion 

(acceleration = force per unit mass) and continuity (i.e. the conservation of water volume 

within the tidal model). The hydrodynamic equations describe tidal movement. The 

hydrodynamic equations have been mentioned above but are summarised again here. The 

first hydrodynamic equation comes from the vertical equation of motion and represents 

changing hydrostatic pressure with depth. This varies due to changes of atmospheric 

pressure and the weight of water above any point in the water column, as is shown in the 

equation 

(3.22) 

where Pzd is the hydrostatic pressure at a point at depth Zd metres below the water 

surface, P A is the atmospheric pressure on the water surface, p is water density, g is 

acceleration due to gravity and ( is the displacement of the water level from its mean 

value in metres (Pugh, 1987, p.89). This equation comes from the hydrostatic equation 
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f)p 
-=-pg az 

with P = PA at Z = ( (the sea surface). 

(3.23) 

The continuity equation states that water is conserved. Since water density is assumed 

to be constant with depth, a volume of water is equivalent to its mass. In other words, 

as the total volume of water remains constant, a decrease in water level in one area will 

be compensated for by an increase elsewhere. The equation for this is expressed as 

o( a a - + -(Du) + -(Dv) = 0 
8t ox f)y 

(3.24) 

where t is time in hours and x and y are latitudinal and longitudinal distances, and u and 

v are the latitudinal and longitudinal velocities, respectively (Pugh, 1987, p.90). 

Finally, the momentum equations are used latitudinally and longitudinally in the tidal 

calculations. These are, essentially, Newton's second law of motion expressed in the two 

directions, although the earth's rotation gives rise to additional acceleration in the form 

of the Coriolis force. The force is composed of tidal forces, pressure forces and shear 

forces (on the upper and lower surfaces) acting on the water (Pugh, 1987). The resulting 

equations may be written 

8u 8u 8u ( 8( an) F B - + v- + u- - fcv = -g - + - + -at oy ax ax ax pD 

av av av ( o( an) c B - + u- + v- +feu = -g - + - + -at ax oy oy oy pD 

(3.25) 

(3.26) 

where t, u, v, x, y and p are as defined above, j is the Coriolis parameter, n is the 

gravitational potential of the equilibrium tide, F is stress in the x direction and G is 

stress in the y direction and the subscript B denotes bottom stress. Integrating the 
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momentum equations gives the flows in the latitudinal and longitudinal directions which 

cause the changes in the water level described by the continuity equation. 

A large number of methods of numerical modelling have been developed. The most 

widely used fall broadly into the categories of finite element and finite difference methods. 

3.2.1.2.1. Finite difference models 

Finite difference methods in tidal modelling involve the rewriting of the hydrody-

namic differential equations into finite difference form (Dronkers, 1974). For example, the 

simplest finite difference approximation to the equation 

(3.27) 

IS 

~(y + k)- 2~(y) + ?x-(Y- k) _ ~(y)- 2~(y) + ~(y) 
k2 j2 (3.28) 

This is obtained by replacing the partial derivatives by finite difference quotients, using 

the increments j and kin the x andy directions respectively (Forsythe and Wasow, 1960). 

Beginning with the known solution at y = -k, values for the grid points can be calculated 

for y = 2k, 3k, etc. Grid values for the next value of y are calculated as a difference from 

the current value of t. Derivatives at a point are approximated by difference quotients 

over a small interval, so that ~~ is replaced by t where f::t.y is small. 

In application to tidal modelling, grid point tidal values are computed at a selected 

time interval. A requirement of the finite difference method is that the solution of the dif-

ference equations must converge to the solution of the differential equations when the size 

of the grid boxes approaches zero. Many examples of the use of finite difference schemes 

for the computation of the propagation of tidal waves can be found in the literature (see, 

for example, Brebbia and Connor, 1988; Noye and Flather, 1990). 

The quality of the input data and complicated and time-consuming nature of the 

calculations required by the finite element method do not justify its use in the present 
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study. Finite difference methods generally give solutions that are either as accurate as 

the data warrant or as accurate as is necessary for the technical purposes for which the 

data are required (Smith, 1978). Finite difference numerical tidal models are, therefore, 

employed in this research. 

Finite difference methods fall into the categories of implicit and explicit schemes. 

These are now discussed in turn. 

3.2.1.2.1.1. Implicit schemes 

Implicit methods couple new, unknown, values at grid points by a set of equations 

which must be solved simultaneously. Thus it is necessary to solve a subsystem for all 

components at once before a single one can be determined (Forsythe and Wasow, 1960). 

Thus, at first sight, implicit methods appear to involve a large amount of computational 

effort. However, they have the advantage that a longer timestep (time interval between 

calculations for individual grid points) may be used than with explicit methods, saving 

computational time. To counter this, though, there is a concomitant danger that low 

accuracy of the solution may result from use of timesteps which are too long in implicit 

schemes, giving results with a lower degree of accuracy. Examples of the use of semi­

implicit schemes abound in the literature. Backhaus (1985), for instance, has developed 

a semi-implicit finite difference model for the North Sea area. 

3.2.1.2.1.2. Explicit schemes 

Explicit schemes are completely different with regard to numerical procedure and 

stability from implicit methods and much simpler to apply. With explicit methods the k 

th time approximation to the j th grid point component uk,j of uk can be determined 

without the necessity of simultaneously determining a group of other components of Uk 

(Forsythe and Wasow, 1960). Thus a new value at any given grid point is calculated only 

from the known values at other grid points, so only one equation is treated at any time 

(Ramming and Kowalik, 1980). Explicit schemes must satisfy the criteria for stability, 

examined below, in order to ensure valid and accurate solutions. 
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The explicit finite difference scheme is preferred in this study due to the potentially 

greater accuracy of the results obtained. The method used is almost identical to that of 

Flather (1976) and is elaborated below and in Chapter 5. 

3.2.1.1.2.3. Criteria to be satisfied by numerical models 

The difference equations contain (implicitly) a certain method of solution and so 

should satisfy a number of requirements which are essential, both for deriving a proper 

solution and for a sufficiently high degree of approximation (Ramming and Kowalik, 1980): 

(a) Consistency - if the grid width, hw, and timestep, AT, vanish, the difference 

equations should approach the differential equations. 

related to the degree of approximation. 

This is closely 

(b) Stability - if errors due to rounding off and truncation do not grow with time, 

the method is stable. 

(c) Convergence - if hw and AT vanish, the difference equations should not only 

approach the differential equations, but the solutions of the two sets of 

equations should also approach each other, or converge. 

The "equivalence theorem" of Lax and Richtmyer (1956) states that consistency and 

stability are necessary and sufficient for convergence, if the correct method of introducing 

intital values to the model is used and there are no turbulent discontinuities (Ramming 

and Kowalik, 1980). In this case, a separate analysis of convergence is generally not 

necessary. 

Explicit finite difference schemes must satisfy the consistency criterion in the formu-

lation of the equations used. They must also satisfy the condition for numerical stability 

due to Courant et al. (1928) 

2AT < 2hws 
y'2ghmax 

(3.29) 

where AT and g are as defined above and hws is the smallest grid width (for a model with 
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variable grid sizes) and hmax is the maximum mean sea depth, or bathymetric value, in 

the model. The physical significance of equation 3.29 is that 

hws 
(3.30) 

is the time taken for the fastest possible gravity wave to travel across a grid square. Thus 

the model timestep must take into account the width of the model grid and the water 

depth. 

The application of the outline of tidal theory and modelling given in this chapter to 

the study carried out is explained in Chapter 5. Chapter 4 details the stratigraphic data 

available for the palaeogeographic reconstructions of the study areas. In Chapter 6 it is 

shown how the stratigraphic data are linked into the tidal models for palaeotidal study 

and results of the work are presented. 
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CHAPTER4 

PALAEOGEOGRAPHIC MAPS 

Many methods have been used to reconstruct the shape of a land surface at a former 

time. For each of these, the minimum requirement is knowledge of the erosional and de­

positional history of an area (i.e. the sedimentary sequence), together with information 

concerning the age of the lithological units. The data available for The Wash Fenlands and 

Morecambe Bay, in terms of both the stratigraphic and the chronostratigraphic record, are 

now discussed, followed by factors taken into consideration when producing the palaeo­

geographic maps for the present study. 

4.1. Stratigraphic record 

Details of the Holocene sediments in the field areas were collected with use of the 

scheme devised by Troels-Smith (1955) in a format similar to that of the Strat program 

(Everett and Shennan, 1987). By this means the nature, thickness and depth of each 

sedimentary layer in a borehole or section log is recorded. With the aid of grid references, 

sedimentary units may be correlated over large areas. 

Stratigraphic records exist in a variety of forms. Most researchers note the depths 

and thicknesses of sediments of a given type together with descriptions of the sediments 

(e.g. Jennings and Smyth, 1982). However, Holocene stratigraphic data are not always 

recorded for the purpose of research into the area concerned. Many construction firms 

have recorded Holocene sediments whilst undertaking explorations for foundations and 

searching for material for road and building works. In most cases the main aim is to 

establish the nature of the underlying geology and so accurate records of the Holocene 
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sequences are often not kept (e.g. Mineral Assessment Reports, B.G.S.). Interpretations 

put on the data are a further problem. Some workers (e.g. Cresswell, 1958) note the 

presence of "inter-tidal marine deposits" in a description of clastic deposits of sand, silt 

or clay. It is not usually possible to determine the origin of a deposit in the field before 

laboratory work, so this brings into question the reliability and accuracy of the description 

provided. 

The means of obtaining the stratigraphic sequence is also variable. Sections, such 

as those available along cleaned dyke sides, provide the best data as the lateral extent 

of sediments may be seen easily. Boreholes provide only point records of sediments and 

therefore run the risk of recording features which are of only very local significance, such 

as rod dons (former river channels) in the Fenland, in place of the regional stratigraphic 

changes. This is shown clearly in Plate 4.1. The cleaned dyke section contains a roddon, 

giving an area of clastic sediments on either side of which the sediments have a much 

greater organic content at the same altitude. A borehole taken through the roddon would, 

therefore, be unrepresentative of the overall regional stratigraphy. Most stratigraphic 

records are, however, from boreholes as few sections are available. Shennan (1980) noted 

the sources of errors in recording stratigraphic data (see Table 4.1) and gave estimates 

of the magnitude of errors involved. At maximum, the figures suggest a possible error of 

0.81 metres in identification of the altitude of stratigraphic boundaries, although Shennan 

(1980) suggests a figure of circa 0.30 metres. 

4.1.1. The Wash Fenlands 

Stratigraphic data for The Wash Fenlands have been collected from a number of 

sources with varying quality. The Mineral Assessment Reports by the British Geolog­

ical Survey were essentially concerned with the pre-Quaternary geology of the Fenland 

and so do not provide very detailed data concerning the Holocene sequences. Strati­

graphic records from scientific journals and data provided by colleagues at the University 

of Durham were also collected and these, together with a large database of over 700 
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Plate 4.1. A former river channel (roddon) shown by the light -coloured silty material 

intruded through the darker peat in the cleaned dyke section at Morton Fen. 



00 
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Table 4.1. Errors affecting the measured altitude of stratigraphic boundaries, after Shennan (1980}, from work 

in the Fenland. 

Type of error 

Identification of boundary 
Measurement of depth - handcoring 

- commercial 
Compaction and extrusion of piston cores 
Duits gouge 
Angle of borehole 
Levelling to nearest benchmark 
Accuracy of benchmark to O.D. 
Sampling density- boreholes (one per 180 x 30 metres) 

Amount of error (metres) 

±0.01 
±0.01 
±0.25 
-0.06 
-0.20 

~ +0.04 
~ ±0.02 

±0.15 
c.±0.14 

Total 

Maximum error (metres) 

-0.01 

-0.25 

-0.20 
-0.04 
-0.02 
-0.15 
-0.14 

-0.81 



Figure 4.1. Spatial Distribution of 2069 Borehole Records Showing Holocene Stratigraphy 

in The Wash Fenlands. The scale is shown by a 10 x 10 kilometre grid. 
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Figure 4.2. Spatial Distribution of Borehole Records Showing Holocene Stratigraphy in 
Morecambe Bay and surrounding areas. 
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borehole records from the Fenland project, form the data on which construction of the 

Fenland palaeogeographic maps has been based. The distribution of the boreholes used 

for stratigraphic information is shown in Figure 4.1. Reference was also made to Soil Sur­

vey Reports, especially Robson (1988). The sources used for stratigraphic records from 

the Fenland are given in Appendix 4.1. 

It had been hoped to include stratigraphic data from the bottom of The Wash. The 

data available are given in Wingfield et al. (1978). Unfortunately, no cores of the stratig­

raphy were available and only surface sediments were collected. Geophysical traverses 

had been made across The Wash and, from these, a map of pre-Holocene rockhead con­

tours had been constructed in the same Report. This provided a limit to the base of the 

Holocene sediments, although it is possible that erosion of sediments occurred when the 

sea transgressed the area in the post-Devensian sea-level rise. 

4.1.2. Morecambe Bay 

The amount of stratigraphic data for the Holocene sequences in the area of Morecambe 

Bay is considerably less than that for The Wash Fenlands, as discussed in Chapter 2.3.3. 

There are no Mineral Assessment Reports for this area. The data available have been 

collected from research papers, many of which are summarised in Tooley (1987), and col­

leagues at the University of Durham. The distribution of boreholes used for stratigraphic 

information is shown in Figure 4.2. 

Offshore data in Morecambe Bay collected from the barrage feasibility study (Knight, 

1977) have already been discussed in Chapter 2.3.2. This is included in the full database 

on which construction of the palaeogeographic maps has been based, sources for which 

are given in Appendix 4.2. 

4.2. Chronostratigraphic record 

Dating of the sediments in the stratigraphic sequence is necessary to obtain a time for 

their deposition. Dates of the same age are needed from as many sites within the field area 
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as possible over a wide area on a close enough spacing to enable extrapolation between 

the points with as high a probability of accuracy as possible. From the 1960s onwards 

radiocarbon dating has been applied to determine the age of sediments (e.g. Willis, 1961). 

Dating of the upper and lower contacts of a peat layer with other sediments provides an 

estimate of the minimum (for the upper contact) age of deposition of the sediment above 

and the maximum (for the lower contact) age of deposition of the sediment below. 

The dates used in this study are all radiocarbon dates on peat. Techniques, such as 

thermoluminescence dating, for determining the age of clastic sediments have not been 

developed to the same degree of accuracy as radiocarbon dating and have not been used 

to date positions in the stratigraphic column in the current study. 

Radiocarbon dates are given as a year plus or minus a number of years which represent 

one standard error in the date due to the precision of measurement in the laboratory 

(Kidson, 1982). In addition the accuracy of dates is affected by contamination of the 

sediment being dated by younger or older carbon, tending to reduce or increase the age of 

the resultant date on the peat. Furthermore, the assumption that levels of 14C have not 

varied over time is not true (de Vries, 1958; Suess, 1970). Corrections have to be made 

to the radiocarbon timescale for comparison with sidereal ages. For this reason, all 14C 

dates given in the text are expressed in radiocarbon years or are given with the equivalent 

radiocarbon age in brackets, converted using the formula of Klein et al. (1982). 

The expense of radiocarbon dating reduces the number of assays made. In general, 

the stratigraphy of one borehole from a field area is taken as the best representative of the 

regional stratigraphic sequence. A core of sediment is then taken from this location for 

further analysis (e.g. particle size, pollen and diatom analysis) and, if the research budget 

permits, samples are taken from any peat layers present for dating. Thus the number of 

radiocarbon dates available is far less than the total amount of stratigraphic information 

for each of the field areas in the present study. 

The altitudinal range from which material is collected for dating is a further impor-
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tant factor in determining the error of the radiocarbon date. Variations in the rapidity 

of sediment deposition mean that for a rapidly depositing sediment a date may be ob­

tained to a higher degree of altitudinal accuracy than for a slowly depositing sediment. 

Post-depositional compaction of sediments in an area of slow deposition will increase the 

influence of older and younger material. 

4.2.1. The Wash Fenlands 

The spatial distribution of radiocarbon dates from the Fenland is shown in Figure 

4.3. It can be seen that dated sediments do not cover the whole of the Fenland area, but 

tend to be clustered in a few locations. This is largely due to two factors. Firstly, peat 

deposits are more widespread further from The Wash as they were only formed beyond 

the marine limit and surface peat layers, which formerly existed nearer to The Wash, have 

largely disappeared due to erosion by wind and peat cutting by man (Godwin, 1978). The 

second explanation for the spatial distribution of dated sediments is that research workers 

have concentrated their efforts on understanding the stratigraphy and environmental de­

velopment of relatively small areas in detail. When combined with several similar studies, 

between which some stratigraphic evidence is available, this permits correlation between 

sites and consequently a good understanding of the environmental history of the whole 

area may be obtained (Shennan et al., 1983). Sufficient stratigraphic information for cor­

relation between sites is available in the Fenland for 3,000, 4,000 and 5,000 radiocarbon 

years before present. It is for these times that palaeogeographic maps of the area have 

been constructed although this was not the primary factor in determining at which times 

palaeogeographic reconstructions would be made for study of tidal changes, as is discussed 

below. 

There are 271 radiocarbon dates available in the Fenland area. Details of these are 

given in Appendix 4.3 and Figure 4.5. The most recent radiocarbon date from the Fenland 

is 755 years B.P. and the oldest, 10,650 years .B.P. Most dates are concentrated around 

the mean of 3,691 years B.P., with a standard deviation of 1,361 years. This was taken 
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Figure 4.3. Spatial Distribution of Radiocarbon Dates in The Wash Fenlands. 
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Figure 4.5. Histogram to Show the Temporal Distribution 

of Radiocarbon Dates from The Wash Fenlands. 

Years B.P. No. of Observations 

Midpoint Count 
1000 3 ** 
2000 55 **************************** 
3000 69 *********************************** 
4000 94 *********************************************** 
5000 25 ************* 
6000 16 ******** 
7000 4 ** 
8000 3 ** 
9000 1 * 

10000 0 
11000 1 * 

Each * represents 2 observations 

Total of 271 radiocarbon dates 
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Figure 4.6. Histogram to Show the Temporal Distribution 

of Radiocarbon Dates from Morecambe Bay 

and surrounding areas. 

Years B.P. No. of Observations 

Midpoint Count 
0 2 ** 

1000 3 *** 
2000 5 ***** 
3000 3 *** 
4000 8 ******** 
5000 18 ****************** 
6000 18 ****************** 
7000 11 *********** 
8000 8 ******** 
9000 7 ******* 

Each * represents 1 observation 

Total of 83 radiocarbon dates 
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into account when determining the times for which palaeogeographic maps of the area 

would be constructed as most information which could be used to obtain the former 

geography of the area was available within the period of 3,691 ± 1,361 years B.P. A more 

important factor in this respect, though, was the effect of a change in shape of the coastline 

and sea depths and so this was the primary influence on the choice of palaeogeographic 

reconstructions used in the study. 

4.2.2. Morecambe Bay 

The spatial distribution of radiocarbon dates from the Morecambe Bay area is shown 

m Figure 4.4. There are 83 dates available in total and details of these are given in 

Appendix 4.4. Compared with the Fenland, there are far fewer dates available but, as 

noted in Chapter 2.3.3, the Morecambe Bay area is much smaller than that of the Wash 

Fenlands. In Morecambe Bay the dates are, in general, representative of marine limits 

in the estuaries which are separated by high land making stratigraphic correlation more 

difficult than in the Fenland. 

The histogram in Figure 4.6 shows the temporal distribution of radiocarbon dates in 

the Holocene, though, as in the Fenland, these are not all related to sea-level indicators. 

The dates range from 170 to 9,360 years B.P. with a mean of 5,459 years B.P. and standard 

deviation of 2,138 years. They are, therefore, in general older than those available from 

the Fenland. This is also reflected in the fact that palaeogeographic reconstructions of 

Morecambe Bay have been made for 5,000 and 8,000 years B.P. as the shape of the Bay 

was considerably different from that of the present at those times giving an impetus for 

investigation of the tidal regimes. 

4.3. Construction of palaeogeographic maps 

Maps showing the former geography of an area have been constructed for many dif­

ferent purposes and hence by a number of methods. Much work on the former physical 

geography of north Germany has been carried out using stratigraphic records, especially 

by Barckhausen et al. (1977) and Barckhausen and Streif (1978). The sequence map has 
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been developed by these researchers. It represents the spatial extension of sedimentary 

sequences by classifying them into profile types which can then be represented by maps. 

This lithological system has to be linked with a chronostratigraphic system in order to 

obtain a clarification of the coastal development in terms of time and space. It has been 

used to produce geological sheets of Holocene sequences at scales of 1:25,000, such as 

that of Emden West (Barckhausen and Streif, 1978). This provides a three-dimensional 

picture of the sub-surface geology which is of use for scientific purposes and also provides 

information for construction of buildings and roads, for example. 

Palaeogeographic maps may also be drawn using the simple method of marking out the 

contours of the former land surface and, where relevant, the coastline. This method has 

been used by Waller (in press) to draw palaeogeographic maps of The Wash Fenland during 

the Holocene. The information provided does not extend to the subsurface sedimentary 

sequence in this case and is therefore less useful for construction purposes. 

For this study palaeogeographic information is required in sufficient detail to provide a 

coastal boundary in the tidal model at a resolution of approximately one square kilometre. 

This resolution was decided upon from consideration of the available stratigraphic and 

chronostratigraphic data and the possibility of obtaining information on local tidal changes 

during the Holocene from construction of palaeogeographic maps. The method used has 

therefore been similar to that of Waller (in press), although contours on the former land 

surface were not needed in the present case. From plots of the locations of sea-level index 

points and with reference to the dates of these and surrounding, undated, stratigraphy, 

the coastline has been drawn. This was done for times when there were judged to be 

stratigraphic and chronostratigraphic data available requiring a minimum of interpolation 

and extrapolation at the scale needed and the shape of inlets was different, both from that 

of the present and from other times during the Holocene giving added purpose to the study 

of the tidal regime at that time. Factors affecting the accuracy of sea-level reconstructions 

are discussed in Chapter 1. 
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Quaternary sediments, from the Quaternary Sediments U.K. (South) sheet (Wood­

land, 1977), were taken into account when drawing former coastlines, especially in the 

Morecambe Bay area where less Holocene stratigraphic data are available. The contours 

from latest edition metric 1:25,000 Ordnance Survey map sheets were also used to avoid 

interpolating or extrapolating the former coastline over areas of high land. 

Detailed modifications to sea depth data were not possible from the stratigraphic 

data available, as discussed in Chapter 2.3.1 and Chapter 2.3.2. The only dated contacts 

available are from changes from marine to terrestrial conditions or vice versa. Sea depths 

for the times of palaeogeographic reconstruction have been obtained from Morner's (1976) 

eustatic sea-level curve. However, as shown by Waller (in press), stratigraphic data provide 

information on the general locations of river channels prior to post-glacial inundation of the 

Fenland and sea depths were deepened locally to allow for these in the palaeogeographic 

reconstructions. For a given time of reconstruction, the tidal models used (see Chapter 

5) have been run with the number of metres of sea depth reduced according to that read 

from the eustatic curve. For the two most detailed tidal models for both The Wash and 

Morecambe Bay, sea depths were further modified according to the isostatic curves drawn 

for the areas by Shennan (1987, 1989). 

Indicators of eustatic sea-level and isostatic movement are generally only available on 

land. Modification of the offshore bathymetry from data obtained from land records is, 

therefore, potentially inaccurate. The influence of hydroisostasy and sediment movements, 

in particular, on sea depths is an unknown factor and no attempt has been made to take 

its influence into account in this thesis. The possible influence of factors not taken into 

account in this study in determining the altitude at which sea-level indicators are found 

is discussed in Chapter 7. 

4.3.1. The Wash Fenlands 

The present sea-level water depths for the EC3 model are shown in Figure 4.7. For the 

Fenland, the shape of the former coastline was reconstructed at 3,000, 4,000 and 5,000 
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years B.P., as shown in Figures 4.8, 4.9 and 4.10. The variations in extent of marine 

inundation in different parts of the Fenland justify the use of these three reconstructions, 

as do the adequacy of the stratigraphic and chronostratigraphic datasets. Sea-level in 

the tidal models is not lowered for the 3,000 and 4,000 years B.P. reconstructions, but is 

reduced by 2 metres to be representative for 5,000 years B.P., according to the eustatic 

curve of Marner (1976), shown in Figure 4.11. 

Variations in sea-level due to isostatic effects (Shennan, 1987, 1989) meant that the 

depths in the two most detailed models were further modified, after Shennan (1989, table 

2), beyond the influence of a eustatic sea-level change. At 3,000 years B.P. sea-level east 

of the Norfolk coast was increased by two metres and further increased by another metre 

for the 4,000 and 5,000 years B.P. reconstructions to take the subsidence of the area over 

this time period into account. In the Wash area and to the north, sea-level was increased 

by three metres for 3,000 years B.P., four metres for 4,000 years B.P. and five metres for 

5,000 years B.P. 

4.3.2. Morecambe Bay 

The present sea-level water depths for the LBM model are shown in Figure 4.12. 

A reconstruction of the coastline of Morecambe Bay was made for 5,000 years B.P., as 

shown in Figure 4.13, at which time the sea extended to its greatest distance up the river 

estuaries. Two further reconstructions were made for 8,000 years B.P., when sea-level 

was much lower than at present and covered a much smaller area of the Bay than it does 

today. These are shown in Figures 4.14 and 4.15. 

From the eustatic sea-level curve of Marner (1976), sea-level was lowered by two metres 

in the tidal models to represent the situation at 5,000 years B.P. For 8,000 years B.P. sea 

depths were reduced by 15 metres, in the tidal models, from the eustatic curve. These 

depths were further modified for isostatic effects after Shennan (1989). At 5,000 years 

B.P. sea-level west of south Lancashire in the tidal model was reduced by one metre. In 

the Morecambe Bay area sea-level was lowered by two metres, while to the north, in the 
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Figure 4.7. EAST COAST 3 MODEL Present Sea-Level 
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Figure 4.lo. EAST COAST 3 MODEL at 5,000 years B.P. Sea-Level 
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Figure 4.11. The Regional Eustatic Curve (of Marner, 1984), with and without 
oscillations (after Shennan, 1989). 
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Solway Firth, it was lowered by a further five metres. For 8,000 years B.P. two different 

runs of the tidal models were used with different sea depths due to the variation in isostatic 

effects shown for this time period in Shennan (1989, Figure 8), Figure 4.11. A "maximum" 

sea-level run was carried out, with depths reduced by five metres off south Lancashire, 

two metres off north Lancashire, increased by eight metres around Morecambe Bay and 

lowered by fifteen metres in the Solway Firth area. For the "minimum" sea-level run, the 

depths were lowered by eight metres off Lancashire, ten metres around Morecambe Bay 

and eighteen metres in the Solway Firth. 

The structure of the tidal models used for the field areas is described in Chapter 5. 

The method by which sea depths and coastline shapes are entered in the tidal models is 

also explained. 
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CHAPTER 5 

TIDAL MODEL METHODOLOGY 

5.1. Tidal models used 

The tidal models used in the present study employ programs which were essentially 

written by Dr. Roger Flather of the Proudman Oceanographic Laboratory, Birkenhead, 

although some modifications to the basic programs have been made to facilitate running 

the models at lower sea-levels. The modifications are outlined in Chapter 6.1. The models 

employ the explicit finite difference scheme discussed in Chapter 3. 

A series of models has been used to study the tides in The Wash and Morecambe Bay. 

The area covered for the intended study is required to be such that changes in sea-level 

may be reasonably assumed not to affect tidal variations at its boundary. This led to the 

use of a nested series of models from the north-east Atlantic ocean where there is little 

change in the ratio of mean sea-level to water depth. This point is discussed further in 

Chapter 6. The need to resolve the detail of tidal patterns in the Wash and Morecambe 

Bay so that changes in the tidal regime can be related to palaeogeographic data led to 

the choice of a system of "nested" models. 

It was decided that the quantity and quality of palaeogeographic data available for 

reconstructions of The Wash and Morecambe Bay at times during the Holocene were 

insufficient to permit greater accuracy of tidal computations than that obtained from 

a grid size returning values for tidal calculations from an area of 1/81 st of a degree of 

latitude and 1/54th of a degree of longitude. The choice of this grid size was also partly 

determined from the resolution of a set of bathymetric data available for the area of the 
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Figure 5.1. Diagram to show the increase in resolution from one model to the next model 

down the hierarchy. 
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north-east Atlantic Ocean, which were available on a resolution of a third of a degree 

of latitude and half of a degree of longitude. The lack of bathymetric data available to 

the required resolution of approximately one square kilometre over the area of this model 

was one factor which led to the decision to use more than one tidal model. Another 

factor was the enormous computing requirement which would have been necessary to 

make tidal calculations to the required resolution over the entire area of this model. This, 

together with the fact that data to this resolution were only required in Morecambe Bay 

and The Wash and no detailed palaeogeographic data were available beyond these areas, 

meant that the approach adopted was to run a series of tidal models in a nested hierarchy 

with increasing spatial resolution into The Wash and Morecambe Bay. Output from one 

model was interpolated and, where necessary, extrapolated as input along the boundary 

to the next, more detailed, model down the scale. The input data are discussed further 

in Chapter 5.2. 

The nested hierarchical method of running tidal models has been used by a number of 

authors, including Garrett (1972), who ran tidal models of the area of the Bay of Fundy 

with a model with a finer grid in the inner part of the Bay. An alternative solution was 

used by Greenberg (1975) who employed one tidal model with variations in the size of 

the grid mesh in different parts of the model. This increases the amount and complexity 

of programming required for the model but has the advantage that any tidal generation 

that occurs in the area with finer grid spacing is allowed to flow out into and interact with 

the tidal waves generated in the coarser grid area of the model. The method employed in 

this study allows the fine grid solution to differ from that obtained from the coarse grid 

boundary, as discussed in Chapter 3. 

The reasons for running each of the models separately were that, firstly, the amount of 

tidal generation below the scale of the north-west European continental shelf is relatively 

small (Pugh, 1987). Secondly, a considerably greater amount of effort would be required 

in programming tidal movements with several changes in grid size within one model. 

Thirdly, running the models separately facilitated the identification of errors within each 
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Figure 5.2. North-East Atlantic Model (NEA) 
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model and provided a means of comparison of tidal results to check the output of the 

models for present sea-level. 

The increase of resolution at each stage in the model hierarchy was nine times that of 

the preceding model, so that where one tidal value was returned for an area in the coarser 

model, this was replaced by nine figures in the finer resolution model, as shown in Figure 

5.1. This step of increase in resolution was chosen as it was considered to represent a good 

balance between the necessary increase in resolution and degree of interpolation required 

to keep consistency of model results. The method of interpolation used is described in 

Chapter 5.2. 

5.1.1. North-east Atlantic Model 

The north-east Atlantic model covers an area from 37° North to 71°401 North and 30° 

West to 25°30' East, with a grid resolution of a third of a degree latitude and half of a 

degree longitude, or approximately 30 x 30 kilometres, varying with latitude. The grid 

of this model is shown in Figure 5.2. The bathymetric data for this model were obtained 

from the Proudman Oceanographic Laboratory, Birkenhead. 

5.1.2. Models for The Wash 

Tidal input data were obtained from the north-east Atlantic model and interpolated 

as boundary data to the East Coast Model (ECM) by the method described in Chapter 

5.2 below. The East Coast Model extends from 49°201 North to 55° North and 1°101 West 

to 4°401 East, with a grid resolution of one ninth of a degree latitude and one sixth of a 

degree longitude. The grid of this model is shown in Figure 5.3. The bathymetric data 

for this model were again obtained from the Proudman Oceanographic Laboratory. 

The next model down the hierarchy from the East Coast Model is EC3. The extents of 

this model are from 52°8.89' North to 53°57.78' North and 0°13.3' West to 2°56.671 East, 

with a grid resolution of 1/27th of a degree latitude and 1/18th of a degree longitude. The 

setup and bathymetric data for this model were collected from Admiralty Charts no.s 105, 
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106, 107, 108, 109, 121, 1187, 1190, 1200, 1503, 1504 and 1543 by the methods described 

in Chapter 5.2. The grid of this model is shown in Figure 5.4. 

To obtain the resolution required for the palaeotidal work, a further model, the WASH 

model, was developed to a grid resolution of 1 I 81 st of a degree latitude and 1 I 54th of a 

degree longitude, extending from 52°47.4' North to 53°19.26' North and 0°1.11 West to 

0° 58.91 East. The data for this model were, again, obtained from Admiralty Charts (no. 

108 and no. 1200). The grid of the WASH model is shown in Figure 5.5. 

5.1.3. Models for Morecambe Bay 

Three models, of the same resolution as those for the Wash, were again run to obtain 

the required resolution for tidal results in Morecambe Bay. All the bathymetric data 

for these models were provided by the Proudman Oceanographic Laboratory. The West 

Coast Model (WCM), corresponding to the ECM for The Wash, covers the area from 50° 

North to 56°20' North and 8° West to 3°20' West, as shown in Figure 5.6. The Liverpool 

Bay Model (LBM), corresponding to the EC3 model for The Wash, covers the area from 

53°13.3' North to 54°56.67' North and 4°36.67' West to 2°50' West, as shown in Figure 

5.7. The Morecambe Bay Model (MBM), at the same resolution as the WASH model on 

the east coast of the U.K., extends from 53°48.891 North to 54°17.78' North and 3°30' 

West to 2°47.78' West, as shown in Figure 5.8. 

5.2. Input data 

Input data to run the tidal model are organised by two programs in the scheme 

employed here. The first takes the bathymetric data and either determines from this 

where the tidal calculations are to be made or reads in this data too. The second program 

arranges the tidal input data. 

5.2.1. Bathymetric data 

The bathymetric data for use as sea depths in the tidal models were mostly available 

from the Proudman Oceanographic Laboratory. For the EC3 and WASH models, however, 
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the data were collected from Admiralty Charts. The method used, in this case, was to 

overlay tracing paper on the chart with a grid drawn to the appropriate latitudinal / 

longitudinal scale required for the model. The mean value of the spot depths in each 

grid square was then taken as a representative value of the sea depth for that area. This 

method was modified in some nearshore areas in The Wash in order to resolve channel 

flow up rivers. In these areas, the very narrow nature of the channel meant that much 

of the grid rectangle comprised tidal flats, with altitudes above zero. In such cases the 

sea depth values from the channel were averaged and used as the depth value for the grid 

rectangle. The criterion used to determine whether a grid rectangle is "land" or "sea" is 

whether more or less than half of the area which it covers is "land" or "sea", respectively. 

The same criterion was applied by the staff of the Proudman Oceanographic Laboratory 

in the extraction of their depth data. 

Bathymetric data obtained from the Admiralty charts were relative to chart datum. 

These values were corrected to mean sea-level by adding the distance from the mean spring 

tide level (taken as half the mean spring range - the equivalent of the amplitudes of M2 

together with S2) to mean tide level at Lowestoft and Immingham, the standard ports 

from the Admiralty Tide Tables (1990) in the area covered by the EC3 model. 

From Table 5.1 it can be seen that the ratio of the mean spring tide level to mean 

tide level is approximately 1.5:1.0. A routine from the International Mathematics and 

Statistics Library (IMSL) was therefore used to interpolate results of ECM for values of 

(M2 + S2) x 1.5 over the area of the EC3 and Wash models at the appropriate resolution 

for each model. IMSL routine IQHSCV was used for this purpose. This routine pro­

vides smooth surface fitting for irregularly distributed data points and so overcomes the 

problem of interpolating results at irregular coastal boundaries in the tidal model. The 

interpolating function used is a fifth-degree polynomial in each triangle of a triangulation 

of the x - y projection of the surface. The interpolating function is continuous and has 

continuous first-order partial derivatives. The information required for use of the routine 

consists of the distance of points used for interpolation from the required location and the 
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Table 5.1. Calculation of interpolation factor to apply to chart datum depths in order to obtain values for mean 
sea-level. 

Standard Ports 

lmmingham 

Lowest oft 

Mean Spring Tide Level (M2 + S2) 

(2.28 + 0.75) = 3.03 metres 

(0.70 + 0.21) = 0.91 metres 

Mean Tide Level (MTL) 

4.10 metres 

1.50 metres 

Ratio (MTL/MSTL) 

(4.10/3.03) = 1.35 

(1.50/0.91) = 1.65 



values of the data points used. The output consists of a matrix of the interpolated values. 

The interpolated values of (M2 + 82) x 1.5 were then added to those at chart datum to 

give mean sea-level depths for use in the EC3 and WASH tidal models. 

5.2.1.1. Labels 

Labels are used to indicate what calculations are to be carried out for each element. 

Elements are distinct from grid rectangles, as shown in Figure 5.9. Each element consists 

of one u (latitudinal) and one v (longitudinal) current value, together with a z value of 

sea surface elevation, whereas a grid rectangle has u and v currents flowing into and out 

of it. Where a z is at a point of dry land, a zero is put into the label. Where a value of a 

neighbouring z is zero, resulting in no current flow in one direction, a zero value is given 

to the appropriate u or v component. Where values are positive, "1"s are written into the 

label and the z, u or v value is then used in the calculations of the model. Examples of 

resulting labels are shown in Figure 5.10. 

The next step is definition of labels along the model boundaries and filling in with 

zero values for the land and parts of the grid outside the model boundaries. For an open 

sea boundary a value of "2", rather than "1", is used to indicate that a modification to 

the normal calculation must be made to allow for this fact. There is also a provision for 

spits, where there is a narrow section of land extending across the grid rectangle, but of 

insufficient width for the whole grid rectangle to be included as land. In these cases, no 

flow at a u or v point may be specified, with a zero value at the appropriate point in the 

label, as shown in Figure 5.11. Thus it is possible to establish, by this means, where the 

tidal calculations have to be made and to provide the bathymetric input data for the tidal 

model. 

5.2.2. Tidal input 

Tidal calculations within the model area are made from the hydrodynamic equations 

described in Chapter 3 which are written in spherical polar coordinates in the model. 

However, as mentioned in Chapter 3.2.1.1, the tidal input is needed on the model boundary 
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Figure 5.9. Diagram to show the distinction between a grid box and an element 

grid box 

element 

u 

'--

u, u Ia ti tudinal, longitudinal currents 
z sea surface elevation 
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Figure 5.10. Examples of labels for various combinations of land and sea 
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Figure 5.11. Diagram to illustrate the conversion of real land and sea parameters into model 

format 

y 

' u 

u:O 

u, u al'e Ia ti tudinal and longitudinal 
CUl'l'ents 

z is sea sul'f ace elevation 
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with open sea areas to provide the external tidal input from the oceans and to link together 

the series of tidal models. Tidal results from the next model up the scale are interpolated as 

boundary input to the more detailed model, although, in the case of the north-east Atlantic 

model, the tidal data for boundary input were provided by the Proudman Oceanographic 

Laboratory, Birkenhead. 

For each tidal constituent used in the tidal models, the amplitude and phase values 

are read in from the grid rectangles of the less detailed model which correspond with the 

boundary of the tidal model for which input data is required. These are stored, for each 

constituent, in the form 

Hcosc9 (5.1) 

Hsinc9 (5.2) 

where H is the tidal amplitude and c9 is the phase lag, equivalent to ( CJt- g) from equation 

3.12. 

In a fuller development, the tidal input q, defined as the sea surface elevation on the 

model boundary, given by (, is expressed in harmonic form as, for example, 

k 

( = L feHecos( Cle + ne- Ce- 9e) 
e=l 

(5.3) 

where CJe is the speed and Ce is the phase of th'e corresponding Equilibrium constituent 

at Greenwich at time t = 0 and fe, ne are nodal factors which may be modified to allow 

for the 18.61 year variation in amplitude and phase of the constituent. The values of Ce, 

fe and ne are computed for M2 and S2 with the input of the Equilibrium Tide in the 

north-east Atlantic model only. 

The method of interpolation used to obtain the tidal boundary input 1s that of 

weighted averages. Examples of calculations are given in Figure 5.12. 
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Figure 5.12. Examples of calculations used to obtain the tidal input on an open boundary 

from a smaller resolution model 
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5.3. Model program 

The area of the north-east Atlantic Ocean extends from 37° North to 71 °40' North, 

so the curvature of the earth and variation with latitude of the Coriolis acceleration are 

taken into account by using spherical coordinates (Flather, 1976). It is assumed that 

bottom stress is related to depth-mean current by the vector equation 

(5.4) 

where Tb is the bottom stress, k is a constant, p is the water density and q is the current 

vector. The equilibrium tide was only included in the north-east Atlantic model and is 

therefore excluded here. In this two-dimensional model, the equations of continuity and 

depth-mean motion are therefore written as 

a( 1 { a a } 
at + Rcos¢ ax (Du) +a¢ (Dvcos¢) = 0 (5.5) 

au u au v a . 
at + Rcos¢ ax + Rcos¢ a¢ ( ucos¢) - 2wsm¢v 

(5.6) 

av u av v av u2tan¢ . 
-a + ¢a + R -a + R + 2wsm¢u t Rcos X ¢ 

(5.7) 

where X is east-longitude and ¢ is latitude, t is time, ( is the elevation of the sea surface 

above the mean value and uq and Vq are components of the depth mean current in the 

directions of increasing x and ¢, respectively, D is total water depth (h + (), h is the 
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undisturbed depth of water, R is the mean radius of the earth assumed spherical, w is 

the angular speed of the earth's rotation, s is a coefficient of bottom friction and g is the 

acceleration of the earth's gravity. 

The hydrodynamic equations and equation of continuity are solved by means of finite 

difference techniques. The grid consists of a rectangular array of m rows and i columns. 

Elements, each consisting of a (-point (or z-point ), a u-point and a v-point are numbered 

consecutively 

j = 1, ... , i, i + 1, ... , 2i, ... , (m- 1)i + 1, ... , mi 

counting by element from left to right along each row and moving down row by row. 

Discrete values of the variables at grid points are denoted by subscripts. The basic tidal 

equations are written in finite difference form as (Proctor and Flather, 1983) 

Equation of continuity: 

it+~t it { Jt t dt t kt t A.. kt t A..} .,. -.,. 1 U:":U·- · 1u. l · ·V· ·COS'f'- ·V·COS'f' 
J J + J J J- J- + J-Z J-Z J J = Q 

!J..t Rcos</Ji !J..x IJ.¢; 
(5.8) 

U-equation of motion: 

g '>J+z '>J J J J 

{ 

i~+~t- i~+~t} sut.+~t(ut.2 + il)t 
= Rcos¢; !J..x - d} (5.9) 

V-equation of motion: 



(5.10) 

where Rc~sq;~(ucos</J) is approximated by ]l~ in the U-equation (5.9) and the term 
2 R tan</J is ignored in the V-equation (5.10). uj and vj are the latitudinal and longitudinal 

components of the depth-mean current at u- or v-point j at time t, vJ = i[vJ + vj+l + 

vJ-i+l + vJ-i] and uj is represented in the same way, replacing each v in the equation 

above with a u. fit is the timestep, (j is the sea-surface elevation above the undisturbed 

water depth hj at (-point j, sis the friction coefficient and dj = ![hj + (j + hj+l + (j+1] 

and kj = ~[hj + (j + hj+i + (j+il· 

The model provided by Dr. Roger Flather of the Proudman Oceanographic Labora-

tory has two possible means of tidal calculations along the open boundary. The first is an 

elevation-specified condition in which the amplitude and phase of each tidal constituent 

are input along the boundary. The boundary elevation is thus specified as a function of 

position and time by the equation 

( = ((s', t) = Hcos(O't- g) (5.11) 

where ( is the sea surface elevation, s' and t are elements of space and time, H is tidal 

amplitude, g is the gravitational constant and 0' is the angular frequency. The second 

method is a radiation condition which prescribes a relationship between elevation and 

current at the boundary. The radiation condition used is written as 

c ~ 

q=q+-((-() 
h 

(5.12) 

(where c = (gh) 112 and q, (describe the tidal input, as q represents the componenet of 

depth-mean current normal to the boundary, q is the depth-mean current, cis the speed 
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of progression of the tidal wave, h is the water depth, g, the gravitational constant, ( (- () 

represents the difference of the computed sea surface elevation from the prescribed tidal 

input) seeks to prevent the artificial reflection from the open boundary of disturbances 

generated within the model by making them propagate out, locally, as free progressive 

waves (Proctor and Flather, 1983). 

At a coastline the boundary condition is set to 

q=O (5.13) 

where q = 0 is the component of depth-mean current along the outward-directed normal 

to the boundary. 

The bottom friction parameter is set at 0.0025 in the present model. The value of 

0.0025 used in the present study is similar to that found from observations by Taylor 

(1919), as discussed in Chapter 3.1.2. This factor may have changed during the Holocene 

with shallower water levels, as is discussed in Chapter 6. 

Two factors in the model input data were changed between the north-east Atlantic 

model and the more detailed coastal models. In the north-east Atlantic model the Equi-

librium tide is included in tidal calculations because of its influence on tide generation in 

the oceans. There is, however, little effect from the Equilibrium tide on the continental 

shelf (Pugh, 1987). Horizontal eddy viscosity was used in the north-east Atlantic model, 

but excluded from the shallower water models. It was employed in the north-east Atlantic 

model to smooth out grid-scale oscillations at the shelf break. 

A further parameter altered between models is the timestep which, as explained in 

Chapter 3, must satisfy the equation 

D.T < D.S 
y'2ghmax 

(5.14) 
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where !J.T is the timestep in seconds, !J.S is the grid width, g is acceleration due to gravity 

and hmax is the maximum water depth in the model. This is varied between models due 

to the control of water depth. The timesteps used in calculations for each of the models 

are given in Table 5.2. 

Tidal calculations in areas of the models which dry out, such as tidal flats, are depen­

dent on the depth difference between neighbouring grid rectangles for the tidal calculation 

to be employed. Flather and Hubbert (1990) have reviewed and extended the methods of 

modelling areas that dry out. 

The method used in the current model (Flather and Heaps, 1975) requires definition of 

a critical depth for drying (1.0 metre used in this study) and a critical elevation difference 

( 0.1 metres here) chosen so as to prevent the drying and flooding of a grid rectangle at 

alternate timesteps. The critical depth for drying is needed to prevent problems with the 

calculation of surface and bottom terms in the momentum equations in which the total 

water depth is in the denominator. 

Flather and Hubbert (1990) divided the drying procedures used in numerical models 

into two types. The first are those useful in embayments with large, shallow and relatively 

flat areas, separated by deep channels and creeks. The entire bay area may be water­

covered at high tide, but as levels fall the shallow areas are exposed and ultimately the 

flow is confined to the deeper channels. A variety of methods have been used in this case 

to determine when a grid rectangle becomes wet or dry. Most methods use a condition 

of zero normal flow, q = 0, on the coastal boundary, which is constrained to follow the 

sides of grid rectangles and thus moves in discrete steps. This is a simple scheme and is 

used in the present model, but may have the disadvantage of generating "noise" where 

compromises have to be made for the movement of the land-water interface in steps of 

discrete grid rectangles. 

Flather and Hubbert's (1990) second group of drying processes comprise nearshore 

regions characterised by relatively uniform shelving bathymetry. Sielecki and Wurtele 
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Table 5.2. Timesteps used for the Tidal Models 

Tidal Model Timestep (seconds) 

North-east Atlantic Model 72.00000 

West Coast Model 60.00000 

East Coast Model 186.30900 

Liverpool Bay Model 60.00000 

East Coast 3 Model 93.15451 

Morecambe Bay Model 10.00000 

Wash Model 20.00000 
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(1970) used a technique involving linear extrapolation of total water depth and momen­

tum for use in the continuity equation at each grid rectangle containing the land-water 

interface. Lynch and Gray (1980) used a different method, with the finite element tech­

nique, involving deformation of the grid. At the land-water interface, the velocity of a 

fluid particle is equal to the velocity with which the interface moves. This may cause large 

additional amounts of computation. Johns et al. (1982) used a similar method with the 

finite difference technique. 

The second group of drying processes represent the physical process of inundation 

and drying much more satisfactorily than the first group, but tend to be much more 

complex and difficult to apply in areas with large tidal flats and creek systems (Flather 

and Hubbert, 1990), such as The Wash and Morecambe Bay. The first method described 

above is therefore used in the present tidal model. 

5.4. Harmonic analysis 

Harmonic analysis of the tidal data was carried out from the model results. This 

was done in order to obtain the amplitude and phase of each tidal constituent for use as 

boundary input to the next model down the hierarchy. 

Harmonic analysis is carried out using the Gauss-Seidel method. The elevation and 

current data obtained from the model program is set up in the form of elements of a 

matrix. The series of simultaneous equations thus obtained are solved over time for the 

frequency of each tidal constituent required. The equation thus takes the form 

Ex ~r- 1 = HO (5.15) 

where E is a matrix consisting of the values of elements predicted from the model, H 0 

is a matrix consisting of the values of amplitude and phase of the required harmonic 

constituents and ~T is the timestep used in the tidal model. 
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5.4.1. Constituents used 

Tidal constituents were chosen to obtain an estimate of the level of mean high water 

of spring tides for each grid rectangle. The level of mean high water of spring tides is 

required as it is the altitude recorded by most sea-level indicators, as discussed in Chapter 

1. Doodson and War burg (1941) provided a basic estimate of the level of mean high water 

of spring tides ( zo) as 

(5.16) 

neglecting shallow water constituents. Shallow water constituents were, however, consid­

ered to be important in the field areas, following the discussion in Doodson and Warburg 

(1941). Shallow water harmonics of M2 and S2 have therefore been included in the anal­

ysis from each model. The constituents used for input to the tidal models within the 

continental shelf are therefore M2, S2, 2MS2 (or Meu2), M4, M6 and MS4. It was noted 

in Chapter 3 that the even-order shallow water constituents tend to have a greater effect 

on tidal amplitudes than the odd-order constituents. The constituents chosen were used 

following Doodson and Warburg (1941). 

The method of obtaining a value for mean high water of spring tides at each grid 

element was to take the maximum value from a 15 day run of the tidal model, covering 

a spring-neap tidal cycle. This also covered a long enough time span for M2 and S2 to 

be analysed independently (see discussion in Chapter 3.1.6.1.), so that input on the open 

boundary to the next model down the hierarchy for each constituent could be obtained. 

This did not provide a mean value for the altitude of high water of spring tides, but longer 

runs of each model were not possible in the time available with the existing computing 

resources. An estimate of the maximum error in obtaining a mean value for the high 

water of spring tides was taken as half of the difference between the figure for Mean High 

Water of Spring tides (MHWS) and that for Mean High Water of Neap tides (MHWN) 

from the Admiralty Tide Tables (1990) (see Table 5.3). This method assumes, by taking 
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Table 5.3. Mean High Water Altitudes for The Wash and Morecambe Bay (from Admiralty Tide 
Tables, 1990) 

Mean High Water of Spring Tides MHWS 

Mean High Water of Neap Tides MHWN 

Tidal heights are given in metres relative to Chart Datum. 

Location 

The Wash 

Hunstanton 
West Stones 
King's Lynn 
Wisbech Cut 
Lawyers Sluice 
Tabs Head 
Boston 
Skegness 
Inner Dowsing Light Tower 

Morecambe Bay 

Barrow (Ramsden Dock) 
Hawes Point 
Ulverston 
Arnside 
Morecambe 
Heysham 

MHWS 

7.4 
7.0 
6.8 
7.0 
7.0 
7.5 
6.8 
6.9 
6.4 

9.1 
9.2 
9.3 
9.8 
9.5 
9.4 

MHWN 

5.6 
5.4 
5.0 
5.1 
5.2 
5.6 
4.8 
5.3 
5.1 

7.1 
7.1 
7.3 
7.6 
7.4 
7.4 

Difference {MHWS- MHWN) 

1.8 
1.6 
1.8 
1.9 
1.8 
1.9 
2.0 
1.6 
1.3 

2.0 
2.1 
2.0 
2.2 
2.1 
2.0 



the midpoint between MHWS and MHWN, that the variation in range of the spring 

tides is equal to that of the neap tides. For The Wash, the MHWS - MHWN tidal height 

differences vary from 2.00 metres at Boston to 1.60 metres at West Stones and 1.30 metres 

at the Inner Dowsing, beyond the mouth of The Wash, giving a maximum error in the 

estimation of MHWS of between 0.65 and 1.00 metres. For Morecambe Bay, differences 

vary from 2.20 metres at Arnside to 2.00 metres at Barrow, Heysham and Ulverston, 

giving a maximum error in the estimate of MHWS of 1.00 to 1.10 metres. The accuracy 

of model results for present sea-level in comparison with figures for the mean high water 

of spring tides from the Admiralty Tide Tables (1990) is assessed in Chapter 6. 

Abstraction of maximum water levels was preferred to calculation of the level of mean 

high water of spring tides from the equation provided by Doodson and War burg (1941) 

(Eqn. 5.37 above) due to the distortion to the tidal wave in shallow water areas created 

by the drying out of shallow water areas model calculations. If an area were to dry out at 

any state of the tide, calculation of the harmonic terms could only be based on the part of 

the tidal curve for the time during which the sea inundated the area and the constituents 

would therefore have amplitudes which are lower than in reality. This reduction of the 

amplitude of tidal constituents would result in an incorrect model prediction value for 

the mean high water of spring tides wherever drying out occurs during a tidal cycle. In 

presentation of the model results in Chapter 6, the terms "maximum tidal altitudes" 

or "maximum tidal heights" are employed when discussing the model results used as 

equivalents to the mean spring high tide levels. 

Model results, based on the aims of the study outlined in Chapter 1, are presented and 

analysed in Chapter 6. The results are considered relative to the contribution of factors 

not studied in this thesis in determining the altitudinal variation of sea-level index points 

within each embayment in Chapter 7 and the conclusions are presented in Chapter 8. 
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CHAPTER 6 

TIDAL CHANGES WITHIN THE WASH AND MORECAMBE BAY 

6.1. Procedure adopted to obtain results 

Seven tidal models, described in Chapter 5, were used to obtain tidal simulations. 

Each of these used essentially the same FORTRAN 77 programs, outlined below. For 

each model, two programs were run prior to the tidal simulation program. The first of 

these consists of reading in sea depth data for the model run and the location of any 

spits, the number of grid rectangles per degree latitude and longitude and the latitudinal 

and longitudinal locations of the model boundaries. The labels for each grid rectangle 

(described in Chapter 5.2.1.1) may be either read in as part of the dataset or calculated 

from the bathymetric data to determine whether 'l's or 'O's should be assigned to the z, 

u and v values. The location of the edge of the model grid is calculated and when this 

is reached appropriate labels for open boundaries are assigned, as described in Chapter 

5. 2.1.1. These data are stored in binary format for use in the tidal model. 

The second program used to set up data for the tidal model consists of reading tidal 

input on the model open boundaries into binary format. The tidal data is read in and 

stored in the form of H cos c9 and H sin c9 (see Chapter 5.2.2) for each of the non-zero z, u 

and v label positions on the open boundaries of the tidal models for each tidal constituent. 

Data for each tidal constituent is also needed; viz. the speed of the constituent, coefficients 

for the nodal factors f and n (described in Chapter 5.2.2) and coefficients for the phase 

of the equilibrium tide at Greenwich at the start time (t = 0) of the model run. The 

equilibrium tide is only used in the North-east Atlantic model as explained in Chapter 
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5.2. 

The tidal model program uses the bathymetric data to calculate tidal heights for each 

grid rectangle based on the open boundary tidal input and resolution of the equations 

of continuity and momentum within the model grid area. The equations on which the 

FORTRAN 77 program is based together with other variables used in the model are 

explained in Chapter 5.3. The timestep (interval between tidal calculations) for each 

model was set according to the bathymetric values to comply with equation 3.23 to relate 

the size of the grid spacing and water depth to the timestep used to ensure stability of 

the numerical solution. Table 5.2 gives the timesteps used in each tidal model. A series 

of parameters and counters are used to determine the number of timesteps in the model 

run. The number of timesteps was set to allow for a length of 15 days' model run to cover 

the 14.77 days needed for the separation of M2 and 82 in harmonic analysis, described in 

Chapter 3.1.6.1. 

Modification to the basic tidal model program obtained from Dr. Roger Flather of 

the Proudman Oceanographic Laboratory was made to facilitate running the tidal models 

at lower sea-levels. Calculations of tidal heights based on the tidal generation within the 

model area were made for each grid rectangle prior to the addition of the tidal influence 

from the open boundary of the model. This was done to avoid the effect within the model 

of zero tidal heights due to drying on the open boundary at some stages of the tide at 

lower sea-levels. The consequent lack of tidal propagation would give zero water depth 

values while tidal generation within the model area alone might result in inundation of 

the grid rectangles concerned. This overcame the problem of inclusion of a zero current 

value for the element where a non-zero value had been specified in the labels in the setup 

data. 

The model program obtained from the Proudman Oceanographic Laboratory was 

further modified to write out the maximum tidal height recorded in each grid rectangle 

over the length of the model run. The maximum values were used as a surrogate for mean 
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high water of spring tides values, as explained in Chapter 5.4.1. 

In order to obtain tidal open boundary input for each of the six tidal constituents (M2 , 

82, Meu2, M4, M6 and MS4) down the model hierarchy, harmonic analysis was carried out 

on the results of all except the WASH and MBM models. The model results are written 

out in the form of equation 5.36 to give the computed tidal amplitude (H) and phase 

speed ( c9 ) for each of the elevation ( z) and latitudinal ( u) and longitudinal ( v) currents. 

The harmonic analysis results are then converted into H cos c9 and H sin c9 results by 

multiplying the tidal amplitude by the cosine and sine of the phase speed value for each 

tidal constituent for each z , u and v value. 

The harmonic analysis results are used as tidal boundary input to the next model 

down the hierarchy using a weighted interpolation method on the principle of least squares, 

illustrated in Figure 5.12. Input of the constituents to each model gives the best potential 

of predicting mean high water of spring tides heights, following Doodson and Warburg 

(1941 ). In the case of the North-east Atlantic model, however, open boundary tidal input 

in deep water was only available from the Proudman Oceanographic Laboratory for the 

semi-diurnal constituents, M2 and 82 . The remaining four constituents were analysed 

from the results of the north-east Atlantic model for input on the boundaries of the WCM 

and ECM models on the continental shelf. The interpolation method used for obtaining 

values on the open boundaries of the models is the simplest available and takes into 

account variations in the tidal values related to their distance from the required grid 

rectangle, so allowing for non-linearity in tidal values in neighbouring grid rectangles . 

The interpolation shown in Figure 5.12 was at the same scale for each model down the 

hierarchy as the increase in resolution from one model to the next was always nine-fold. 

The interpolation method was modified in coastal areas to avoid use of areas which dried 

out in the tidal cycle and had distorted harmonic analysis results as a consequence of the 

flattening of the sine and cosine waves fitted to the tidal model results in the harmonic 

analysis method. To allow for non-use of grid rectangles which dried out, heavier positive 

weighting values were given to grid rectangle results in the immediate neighbourhood of 
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the required point than those shown in Figure 5.12 and negative weighting was applied 

to more results from distant grid rectangles. 

The tidal model program, together with the programs for setting up the bathymetry 

and tidal input data and the harmonic analysis program, may be viewed on application 

to Dr. Roger Flather, Proudman Oceanographic Laboratory, Birkenhead. 

6.2. Limitations of the analysis 

Limitations of the analysis of model results fall into two categories; those resulting 

from assumptions made with the model parameter changes at lower sea-levels and the 

accuracy of reconstructing the former palaeogeographies of the areas from the geological 

information available. The accuracy of model parameters used is discussed here, while 

factors affecting the accuracy of the sedimentary record from which the palaeogeographic 

reconstructions are derived are the subject of Chapter 7. 

6.2.1. Ocean/ shelf boundary tidal changes 

A nested series of models was run in order to obtain input to the bay models from 

the Atlantic Ocean. This was carried out in order to avoid changes to tidal amplitudes 

in the embayments caused by inaccuracy in assessing the open boundary tidal input at 

the continental shelf edge. Tidal input from the ocean was considered to be important in 

the study as a result of the different predominant mechanisms involved in tidal amplitude 

generation on the continental shelf compared with those of the open ocean. Much larger 

tidal amplitudes are found on the continental shelf than those in the open ocean due 

to the different mechanisms involved in tidal generation in each area. The tide on the 

continental shelf is driven by co-oscillation with the ocean tide. 

No modifications were made to the open boundary tidal input supplied by the Proud­

man Oceanographic Laboratory for the NEA model for changes of sea-level. This is 

justified by the argument that the shape of the ocean basins and alterations to astronom­

ical variables, which affect the gravitational forcing potential of the tide, are assumed not 
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to have changed significantly during the Holocene. Furthermore, other external factors 

affecting the ocean tide, such as the influence of other shelf tides and interaction of the 

tide with changing oceanographic and climatic patterns, which are not easily quantifiable 

are likely to have been small, as argued by Austin (1991 ). 

In a test of the effect of shelf changes on the ocean tide, Austin (1991) compared 

his results for lower sea-level simulations using a model of the continental shelf for those 

of the present author from the NEA model. He found that use of the NEA model tidal 

boundary input for a reduced sea depth simulation of 15 metres resulted in elevations of 

the M2 tide 5% lower at coasts than using the model covering the continental shelf alone. 

6.2.2. Sea bed friction 

The bottom friction parameter used in the tidal models is maintained as s = 0.0025 

in all model simulations. Pingree and Griffiths (1979) found that the value of s used for 

the continental shelf area caused overestimation of local M2 amplitudes in shallow water 

areas, such as coastal embayments. This suggests that tidal amplitudes may have been 

lower than model simulations indicate during the early Holocene in particular when there 

were extensive areas of shallow seas. Austin (1991) also points out that the underwater 

topography immediately following glacial scouring and deposition may have imposed a 

different effective bed roughness than that of the present day. It was noted in Chapter 

2 that much offshore sedimentation during the Holocene has consisted of redistribution 

of pre-existing deposits, largely controlled by bathymetry (Caston, 1979). Both these 

factors suggest that slightly higher values of the bottom friction coefficient may be ap­

propriate within the embayments, especially for lower sea-levels than present. However, 

as is shown in Chapter 6.4, heights of mean high water of spring tides are predicted with 

reasonable accuracy in both the Wash and Morecambe Bay for present sea-levels. The 

friction coefficient is at best a crude estimate (Taylor, 1919), as discussed in Chapter 5, 

and results from the tidal models are relatively insensitive to changes in this parameter 

(Flather, 1976). 
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6.2.3. Eustatic sea-level changes 

Changes in eustatic sea-level made in the present study employ Marner's (1976, 1980, 

1984) eustatic curve which shows an oscillating rise in sea-level to approximately 5,000 

years B.P. from which time sea-levels are shown as oscillating around present values. 

However, Shennan (1987, 1989) modified this in his assessment of isostatic changes during 

the Holocene to smooth out the oscillations, as shown in Figure 4.13. Debate continues 

in the literature ( cf. Kidson, 1982) on whether the Holocene sea-level rise has occurred 

in a series of oscillations or a smooth increase in sea depths to approximately present 

levels at 5,000 years B.P. Marner's eustatic curve includes data from Scandinavia which is 

shown, even at the present day, to be subject to neotectonic movements along faults ( cf. 

Anundsen, 1985) associated with the large amount of isostatic uplift recovery from the 

last glacial. This casts doubt on whether the oscillations in Marner's curve are the result 

of real eustatic sea-level change or more local sea-level change factors. Marner's curve is 

used in this study as a best estimate of eustatic sea-level changes during the Holocene. 

A further incentive in employment of Marner's eustatic sea-level estimations was the use 

of these by Shennan (1987, 1989) in his work on isostatic movements in Britain during 

the Holocene. The results of Shennan's work are employed to modify sea depths in the 

palaeogeographic reconstructions of the embayments in order to include an estimate of 

sea-level change as a result of isostatic movements. Shennan (1987) estimated the error 

in the use of Marner's eustatic curve as being of the order of ± 2 metres. 

6.2.4. Isostatic bathymetry changes 

Sea depth modifications are made in the palaeogeographic reconstructions of the Wash 

and Morecambe Bay for the response of the land to glacial unloading, following calcu­

lations by Shennan (1987, 1989). However, two factors are noted in the use of these 

calculations. Firstly, Shennan's analysis is based on the existing sea-level index point 

record and therefore contains errors related to the accuracy of these points in reflecting 

sea-level. Secondly, no account is made for hydroisostatic changes due to post-glacial 
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water loading effects on former land areas which would reduce the amount of any crustal 

rebound. 

Results of Shennan's work (1987, 1989) are used as best estimates of isostatic move­

ments during the Holocene in this study. Discussion continues in the literature concerning 

models of crustal response to ice/ water loading ( cf. Marner, 1987; Peltier, 1987) and with­

out sufficient knowledge of rheological properties it is difficult to assess the accuracy of 

any proposed model. 

Post-glacial isostatic movements cannot be neglected in reconstructions of former 

land/sea-level altitudes in Britain. Shennan's results (1989) show linear subsidence during 

the Holocene of approximately 1.0 metre per thousand years in the Fenland, compared 

with a eustatic sea-level change of about 2.0 metres over the last 5,000 years. Lack of 

data on neotectonic movements precludes any changes to model bathymetries as a result 

of this factor. This point is discussed further in Chapter 7. 

6.2.5. Sediment movements 

Offshore sediment variations are not studied directly in this thesis, although a test 

of the influence of sediment pattern changes within embayments is made, such as might 

occur with the movement of sand banks. The details of this modification to the present 

sea-level models are given in Chapter 6.4. Sediment movement during the Holocene has 

largely consisted of a redistribution of pre-existing sediments, as is discussed in Chapter 

2, with infilling of 'deeps', such as the Lune Deep, Morecambe Bay. Linear sand banks 

have also been formed in the shallower waters of the North Sea and are associated with 

the action of currents. Austin ( 1991) suggested that the localised nature of the sediment 

changes may imply that their effects on tides may also be localised. The test carried out 

in Chapter 6.4 simulating sediment distribution changes within the embayments under 

study therefore provides a test of this suggestion. 
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6.3. Presentation of results 

In this chapter, results of the tidal model runs are presented for The Wash and More­

cambe Bay. Results of the NEA, WCM and ECM models are not presented as these were 

only run in order to obtain results for input to other models down the hierarchy allowing 

for changes to the tidal regime at different sea-levels at the continental shelf edge. A 

summary of the models used in producing the results examined in this thesis is given in 

Table 6.1. Due to the limited amount of time and computing resources available it has 

not been possible to analyse a:ll the model runs intended. In place of analysing the WASH 

and MBM models (very expensive in terms of computing time and space) for robustness, 

sea depth changes and coastline changes results for the nine square kilometre (EC3 and 

LBM) models are compared with present sea-level run resuts. Results of the EC3 and 

LBM models for present sea-level and palaeogeographic coastlines with depth changes 

are compared with the finest (one square kilometre) WASH and MBM embayment model 

runs. 

In assessing the accuracy of the model runs, it was recognised that whereas the models 

return one average value for the tide in each grid rectangle, tide gauge observations rep­

resent point samples within or adjacent to the model grid rectangle. Emphasis is placed 

on the overall distribution of comparisons between model predictions and observations 

although the only means of checking results is at point locations. The point locations 

chosen for use in the analysis of results are, in the main, at the coastline or on or near po­

sitions of a former simulated coastline position in a given model, especially in the WASH 

and MBM models. The points have been chosen so as to provide a comparison with the 

sea-level index point data (discussed in Chapter 6.9.1 and 6.9.2), which provide evidence 

of the location and altitude of the coastline around the embayments during the Holocene. 

The same points are used in all the statistical analyses and representations of the model 

simulations in histograms, scatter plots and diagrams of the descriptive statistics of the 

model simulations. Statistical techniques applied to the model results in this chapter 

are not designed for spatial data, but are used as best estimates of accuracy, although 
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Table 6.1. Table to Summarise the Characteristics of each Tidal Model employed. 

Model Name Short Name Latitudinal Extent Longitudinal Extent 
in full used in the text 

North-east Atlantic Model NEA 37° North- 71°40.00' North 30° West - 25°30.001 East 
East Coast Model ECM 49°20.00' North - 55° North 1°10.00' West- 4°40.00' East 
East Coast 3 Model EC3 52°8.891 North- 53°57.78' North 0°13.30' West - 2°56.67' East 
WASH Model WASH 52°47.40' North- 53°19.26' North 0°1.10' West- 0°58.90' East 
West Coast Model WCM 50° North- 56°20.001 North 8° West - 3°20.00' West 
Liverpool Bay Model LBM 53°13.30' North - 54°56.67' North 4°36.67' West - 2°50.00' West 
Morecambe Bay Model MBM 53°48.89' North- 54°17.78' North 3°30.00' West- 2°47.78' West 

Approximate Grid 
Resolution (km) 

30 X 30 
9x9 
3 X 3 
1 X 1 
9x9 
3x3 
1 X 1 



it is recognised that spatial changes due to a factor not examined here may influence 

the results. Alterations to tidal altitudes using different model sea-levels and coastlines 

may occur due to a variable not included in the analysis. Description of model results, 

presented in diagrammatic form in the figures in Volume 2 of this thesis (with the original 

data for all simulations in Appendix 6.3, presented on diskette), is followed by compar­

isons of changes to tidal altitudes within and between model simulations. A summary of 

the model simulations carried out is given in Table 6.2. 

Model results are referred to mean sea-level as zero. However, sea-level index point 

altitudes are given relative to Ordnance Datum. To facilitate comparison of results, Table 

6.3 gives the differences between Ordnance Datum and mean sea-level, taken from the 

Admiralty Tide Tables (1990). It is common to express results in tidal studies relative to 

mean sea-level from the tidal models and this procedure is adopted here. It can be seen 

from Table 6.3 that values for Ordnance Datum (defined as the average value of mean 

sea-level at Newlyn, Cornwall, from 1915 to 1921) do not differ greatly from those for 

mean sea-level in The Wash and Morecambe Bay, reaching a maximum for mean sea­

level of 0.36 metres above O.D. at Skegness, in the area of The Wash, and 0.21 metres 

above O.D. at Barrow, Morecambe Bay. Due to relative sea-level rise, O.D. is now about 

0.2 metres below mean sea-level at Newlyn (Admiralty Tide Tables, 1990). When this 

figure is subtracted from results in Table 6.3, the differences between sea-level index point 

altitudes (related to O.D.) and mean sea-level are minimal, with a maximum difference 

of 0.16 metre at Skegness. The error involved in making the assumption of O.D. equal 

to mean sea-level is minimal in the light of the errors in model predictions of maximum 

tidal heights shown below. 

In the next section, the ability of the tidal models to simulate observed tidal heights 

at the present day is assessed. After this the series of tests carried out on the tidal models 

is described, outlining the reasoning behind the use of each test, presenting the results 

of each for The Wash and Morecambe Bay and assessing their usefulness in terms of the 

study of tidal component to sea-level changes within the embayments during the Holocene. 
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Table 6.2. Table to show Model Simulations Carried Out (indicated by 'Yes'). 

Model Name Present Sea-Level 
(0] 

NEA Yes 
ECM Yes 
EC3 Yes 
WASH Yes 
WCM Yes 
LBM Yes 
MBM Yes 

Modification 1 
(spit) 

Yes 

Yes 

Modification 2 
(depth changes) 

Yes 

Yes 

Model Name Reduced Sea Depth Simulations (metres reduction compared with present sea-level) 

NEA 
ECM 
EC3 
WASH 
WCM 
LBM 
MBM 

Model Name 

NEA 
ECM 
EC3 
WASH 
WCM 
LBM 
MBM 

(2] (5] (10] (15] 

Yes Yes Yes Yes 
Yes Yes Yes Yes 
Yes Yes Yes Yes 

Yes Yes Yes Yes 
Yes Yes Yes Yes 

Palaeocoastline Simulations 
3,000 Years B.P. 4,000 Years B.P. 5,000 Years B.P. 8,000 Years B.P. 

Yes Yes Yes 

Yes Yes 

Model N a.me Palaeogeographic Reconstructions 

NEA 
ECM 
EC3 
WASH 
WCM 
LBM 
MBM 

3,000 Years B.P. 4,000 Years B.P. 5,000 Years B.P. 8,000 Years B.P. 8,000 Years B.P. 
(higher sea-level) (lower sea-level) 

Yes 
Yes 

Yes 
Yes 
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Yes 
Yes 

Yes 
Yes 

Yes 
Yes 

Yes 
Yes 



Table 6.3. Altitude of Mean Sea-Level (MSL) relative to Ordnance Da­

tum (OD) in metres (from Admiralty Tide Tables, 1990) 

Location 

The Wash 

Skegness 

Tabs Head 

Hunstanton 

Cromer 

Morecambe Bay 

Barrow 

Hawes Point 

Heysham 
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Difference (MSL- OD) 

0.36 

0.12 

0.05 

0.22 

0.21 

0.19 

0.20 



6.4. Accuracy of model results 

Results for present sea-levels for EC3, WASH, LBM and MBM models are presented to 

compare the tidal model computations with tide gauge observations to show the accuracy 

of prediction of tidal heights by the models used. Bathymetric data for LBM and MBM 

for present sea-levels were obtained from the Proudman Oceanographic Laboratory. The 

bathymetry and labels used in running the EC3 and WASH models compiled for this 

research (as described in Chapter 5.1.2 Chapter and 5.2.1) are given in Appendix 6.1. 

The tidal input data for all six constituents for each model for present sea-level runs is 

given in Appendix 6.2. Tidal input for EC3 and LBM models was obtained from the 

ECM and WCM models, respectively and results from the EC3 and LBM models were, 

in turn, used to provide the tidal input for the WASH and MBM models. Tidal model 

results are obtained for present day maximum sea-levels during a 15 day model run after 

the influence of the initial state of the model had been removed by running the model for 

7 days prior to the 15 day period. 

6.4.1. The Wash 

The EC3 model (in Figure 6.1) shows highest maximum tidal altitudes in the western 

half of the Wash bay and Humber estuary of over 3.5 metres. A pattern of steadily 

decreasing heights towards the amphidromic point in the southern North Sea off Lowestoft, 

where maximum heights are below 0.5 metre, is shown outside the mouth of the bay. 

Figures from the model at tide gauge locations, given in Table 6.5 and located in Figure 

6.2, show the increasing maximum tidal heights into the Wash from values of 3.296 metres 

at Gibraltar Point and 3.414 metres at Hunstanton to a maximum of 3.844 metres at Tabs 

Head. The histogram of EC3 model results for present sea-level (Figure 6.3) in conjunction 

with Figure 6.1 shows that results for maximum tidal heights are below these values over 

much of the model area outside the Wash. 

Descriptive statistics for the EC3 model, given in Table 6.6 and illustrated in Figure 

6.4, give a mean value for maximum sea-levels of 2.132 metres above mean sea-level, with 
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Table 6.4.a. Accuracy of Model Results Compared with Observations in metres (from Admiralty Tide Tables, 

1990) 

Location MHWS (ATT) 

The Wash 

Bull Sand Fort 2.87 

Inner Dowsing 2.60 

Skegness 2.79 

Tabs Head 3.68 

West Stones 3.20 

Hunstanton 3.60 

Cromer 3.23 

MHWS Mean High Water of Spring Tides 

ATT Admiralty Tide Tables 

Model Predictions 

EC3 WASH 

3.14 -

2.89 3.15 

3.17 3.30 

3.84 4.00 

3.37 3.96 

3.41 3.71 

2.39 -

Difference (computed - observed) 

EC3 WASH 

0.17 -
0.29 0.55 

0.38 0.51 

0.20 0.32 

0.17 0.76 

-0.19 0.11 

-0.84 -



...... 
~ 
00 

Table 6.4.b. Accuracy of Model Results Compared with Observations in metres (from Admiralty Tide Tables, 

1990) 

Location MHWS (ATT) 

Morecambe Bay 

Workington 3.78 

Barrow 4.14 

Hawes Point 4.31 

Heysham 4.30 

Fleetwood 4.22 

Formby 3.85 

New Brighton 4.16 

Llandudn·o 3.37 

MHWS Mean High Water of Spring Tides 

ATT Admiralty Tide Tables 

Model Predictions 

LBM MBM 

3.56 -
3.97 4.19 

3.92 4.15 

4.02 4.39 

3.82 4.18 

3.60 -
3.70 -
3.20 -

Difference (computed- observed) 

LBM MBM 

-0.22 -
-0.17 -0.05 

-0.39 -0.16 

-0.28 0.09 

-0.40 -0.04 

-0.25 -

-0.46 -

-0.17 -



Table 6.5. EC3 Model Maximum Sea-Levels (Metres} 

Location M1 M2 0 -2 -5 -10 -15 1a 1b 2a 2b 3a 3b 

Rough Gas Field 2.429 2.425 2.433 2.418 2.454 2.290 2.196 2.431 2.422 2.429 2.404 2.426 2.412 
North Star Rig 1.485 1.481 1.485 1.489 1.474 1.383 1.380 1.476 1.481 1.479 1.469 1.473 1.501 
Withernsea 2.693 2.691 2.699 2.685 2.721 2.507 0.000 2.707 2.702 2.703 2.689 2.701 2.688 
West Sole 2.121 2.114 2.124 2.112 2.127 1.950 1.943 2.109 2.093 2.108 2.046 2.105 2.099 
Immingham 3.720 3.712 3.744 3.679 3.012 0.000 0.000 3.527 3.184 3.531 3.035 3.510 3.171 
Easington 2.787 2.780 2.794 2.734 2.758 2.541 0.000 2.829 2.785 2.828 2.757 2.823 2.803 
OSTG 236 2.080 2.073 2.083 2.077 2.082 1.907 1.834 2.067 2.046 2.054 1.983 2.062 2.058 
Bull Sand Fort 3.120 3.114 3.137 2.945 2.753 2.864 0.000 3.068 2.934 3.068 2.880 3.063 2.948 
Conoco 1.384 1.379 1.384 1.395 1.404 1.331 1.184 1.373 1.385 1.366 1.363 1.369 1.427 
6ZW 1.444 1.436 1.442 1.456 1.484 1.401 1.173 1.421 1.445 1.404 1.405 1.415 1.485 
8ZY 1.200 1.195 1.199 1.208 1.210 1.135 1.010 1.182 1.221 1.182 1.208 1.177 1.262 
Inner Dowsing 2.834 2.855 2.887 2.813 2.791 2.448 2.349 2.847 2.738 2.826 2.603 2.843 2.774 
Indefatigable 1.054 1.050 1.053 1.063 1.067 0.972 0.842 1.039 1.087 1.038 1.089 1.034 1.128 
Station B81 1.358 1.348 1.356 1.374 1.411 1.334 1.121 1.336 1.362 1.320 1.322 1.330 1.420 
Skegness 3.057 3.135 3.169 3.069 2.975 0.000 0.000 3.032 2.803 2.992 2.643 3.055 2.898 
4ZQ 1.762 1.758 1.773 1.782 1.830 1.678 1.358 1.765 1.741 1.737 1.655 1.757 1.798 
Shell- Esso 1.206 1.196 1.204 1.220 1.256 1.153 0.951 1.185 1.226 1.168 1.191 1.180 1.293 
Gibraltar Point 3.130 3.261 3.296 3.216 3.092 0.000 0.000 2.993 2.700 2.983 2.488 3.034 2.842 
Leman Bight 1.124 1.115 1.122 1.139 1.175 1.066 0.869 1.103 1.149 1.087 1.121 1.099 1.221 
Tabs Head 3.643 3.806 3.844 3.793 0.000 0.000 0.000 2.877 2.590 2.945 2.263 3.112 2.855 
Hunstanton 3.355 3.381 3.414 3.468 3.377 0.000 0.000 2.812 2.336 2.895 2.080 2.893 2.590 
Cromer 2.285 2.296 2.319 2.294 2.327 1.972 0.000 2.288 2.219 2.239 2.068 2.278 2.270 
Roaring Middle 3.412 3.547 3.580 3.656 3.577 2.992 0.000 2.852 2.419 2.983 2.126 2.973 2.684 
West Stones 3.243 3.336 3.369 3.566 3.738 0.000 0.000 2.495 2.318 2.966 1.992 2.667 2.568 
Caister 1.083 1.087 1.095 1.087 1.133 1.057 0.000 0.000 0.000 1.063 1.080 1.078 1.187 
Gorleston 1.025 1.029 1.037 1.024 1.067 1.017 0.000 0.000 0.000 1.005 1.018 1.021 1.121 
OSTG 276 0.417 0.425 0.431 0.415 0.410 0.366 0.304 0.416 0.421 0.402 0.397 0.417 0.466 
WG 0.228 0.227 0.227 0.192 0.148 0.239 0.241 0.237 0.217 0.245 0.221 0.238 0.196 

Key 

M1 Modification 1 
M2 Modification 2 

0 Present Sea-Level 
-2 -2 Metres Sea-Level 
-5 -5 Metres Sea-Level 

-10 -10 Metres Sea-Level 
-15 -15 Metres Sea-Level 
1a 3,000 years B.P. coastline 
1b 3,000 years B.P. palaeogeography 
2a 4,000 years B.P. coastline 
2b 4,000 years B.P. palaeogeography 
3a 5,000 years B.P. coastline 
3b 5,000 years B.P. palaeogeography 

The positions of the locations named in this Table are shown on the model grid in Figure 6.2. 
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Table 6.6. Descriptive Statistics for EC3 Model Simulations. 

Model Simulation Mean Median Standard Minimum Maximum Lower Upper 

Deviation Quartile Quartile 

Modification 1 2.096 2.100 1.024 0.228 3.720 1.201 3.104 

Modification 2 2.116 2.093 1.053 0.227· 3.806 1.195 3.130 

Present Sea-Level 2.132 2.103 1.065 0.227 3.844 1.200 3.161 

-2 Metres 2.120 2.094 1.058 0.192 3.793 1.211 3.038 

-5 Metres 1.959 1.956 1.032 0.000 3.738 1.184 2.783 
..... 
c:.ro 

-10 Metres 1.272 1.242 0.952 0.000 2.992 0.271 1.966 0 

-15 Metres 0.670 0.272 0.776 0.000 2.349 0.000 1.181 

3,000 years B.P. coastline 1.910 2.088 1.019 0.000 3.527 1.183 . 2.842 

3,000 years B.P. palaeogeography 1.822 2.069 0.923 0.000 3.184 1.222 2.672 

4,000 years B.P. coastline 2.002 2.081 0.930 0.245 3.531 1.171 2.932 

4,000 years B.P. palaeogeography 1.807 1.987 0.750 0.221 3.035 1.195 2.467 

5,000 years B.P. coastline 2.005 2.083 0.927 0.238 3.510 1.178 2.880 

5,000 years B.P. palaeogeography 1.970 2.078 0.823 0.196 3.171 1.270 2.752 

The locations of the points employed to obtain the statistics are shown in Figure 6.2. 

The data used are given in Table 6.5. 



a range from a minimum value of 0.227 metres to the maximum of 3.844 metres at Tabs 

Head. The standard deviation about the mean value is 1.065 metres, showing that the 

distribution does not record a strong concentration of tidal heights about the mean value 

but rather a spread of values over more than 2 metres of the approximately 2.6 metre 

range of the data. The spread of the distribution is also shown in the histogram in Figure 

6.3, in which only one class (0.5 to 1.0 metres) is not represented, and by the smooth 

progression of increasing tidal heights from the amphidromic point off Lowestoft into the 

Wash embayment and Humber estuaries illustrated in Figure 6.1. The median value of 

2.103 metres is close to the mean value and suggests that the distribution is close to normal 

around the mean value, as is shown by the histogram. This is also suggested by the upper 

and lower quartile values (Table 6.6) which differ from the mean by approximately the 

standard deviation value of 1.065 metres. 

The accuracy of EC3 model results is shown in comparison with tide gauge observa­

tions for the mean high water of spring tides from the Admiralty Tide Tables (1990). The 

maximum difference shown is 0.84 metre underprediction of the model results at Cromer, 

but differences in the Wash area are within 0.2 metre. The pattern of change of mean 

high water spring tides values within the EC3 model, compared with values from the 

Admiralty Tide Tables, shows that the mean high water of spring tides results are well 

reproduced by the model. The results of both tidal observations and predictions by the 

model show maximum height values for the mean high water of spring tides near Tabs 

Head, with decreases in height towards the outer part of the Wash bay area. 

The WASH model (Figure 6.5) reproduces the pattern of increase in mean high water 

of spring tides heights shown by EC3, but with greater detail in the variations shown. 

Model predictions rise to 4.0 metres at Tabs Head, giving a slightly greater overestimate 

of the mean high water spring tide height here than from the EC3 model. The pattern 

of higher tidal predictions using the WASH model compared with EC3 results is shown 

throughout the results. Comparison results from the locations given in Table 6. 7 and 

Figure 6.6, as for EC3 shows a maximum difference of 0. 76 metre overprediction of tidal 
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Table 6.7. WASH Model Maximum Sea-Levels (Metres) 

Location 0 

Inner Dowsing 3.153 
Skegness 3.301 
Gibraltar Point 3.471 
Burnham (Overy Staithe) 3.139 
Wells 3.111 
Tabs Head 3.999 
Hunstanton 3.711 
Roaring Middle 3.871 
West Stones 3.962 
Point 1 0.000 
Point 2 0.000 
Point 3 0.000 
Point 4 0.000 
Point 5 0.000 

Key 

0 Present Sea-Level 
1 3,000 years B.P. palaeogeography 
2 4,000 years B.P. palaeogeography 
3 5,000 years B.P. palaeogeography 

1 2 3 

2.814 3.007 2.840 
2.960 3.152 3.000 
2.923 3.239 3.010 
2.659 2.919 2.686 
2.646 2.894 2.674 
2.586 3.274 2.973 
2.671 3.205 2.799 
2.720 3.320 2.896 
2.571 3.327 2.732 
2.374 2.788 3.114 
2.263 2.822 2.748 
2.514 3.262 2.673 
2.279 0.000 2.830 
2.483 2.947 2.564 

The positions of the locations named in this Table are shown on the model grid in 
Figure 6.6. 
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Table 6.8. Descriptive Statistics for WASH Model Simulations. 

Model Simulation Mean Median Standard Minimum Maximum Lower Upper 

Deviation Quartile Quartile 

Present Sea-Level* 3.524 3.471 0.368 3.111 3.999 3.146 3.916 

Present Sea-Level 2.266 3.146 1.776 0.000 3.999 0.000 3.751 

3,000 years B.P. palaeogeography 2.605 2.616 0.214 2.263 2.960 2.456 2.744 

4,000 years B.P. palaeogeography 2.868 3.079 0.847 0.000 3.327 2.876 3.265 

5,000 years B.P. palaeogeography 2.824 2.815 0.158 2.564 3.114 2.683 2.978 
,_. 
~, 

~ 

The locations from which data have been used to obtain the results presented above are shown in Figure 6.6. 

The data are given in Table 6. 7. 

* Present Sea-Level data omitting points 1 to 5 in Table 6.8. 



heights at West Stones. WASH model results in the outer part of the bay at Hunstanton 

are, however, closer to observations (with an overprediction of 0.11 metre). 

Statistical analysis gives a mean value of 3.524 metres (Table 6.8 and Figure 6. 7), 

omitting the five points inland from the present sea-level coastline, which is, again, slightly 

higher than that for the EC3 model. The median, at 3.4 71 metres, also shows that 

the tidal heights in the Wash embayment are, on average, higher than those from the 

EC3 model, where a greater spread in values is observed. The minimum value of 3.111 

metres, maximum of 3.999 metres and standard deviation of 0.368 metres illustrate the 

concentration of present sea-level maximum tidal heights in the Wash at between 3 and 

4 metres above mean sea-level. The bimodality of the data, between the generally high 

values of maximum tidal heights in the Wash and the five 'dry' points, is clearly seen in 

the histogram in Figure 6.8. 

In summary, maximum tidal heights of over 3 metres are recorded in the Wash em­

bayment, with lower tidal heights seaward from the mouth of the ·wash. Observations of 

mean high water of spring tides compared with maximum tidal altitudes obtained from 

running the tidal models over a spring-neap cycle of 15 days show that the model results 

have a maximum error of 0.84 metre at Cromer in the EC3 model and 0. 76 metre at West 

Stones in the WASH model. There is a greater tendency towards overprediction of mean 

high water of spring tides values in the WASH model compared with the EC3 model. The 

reasons for this are not known, but may be related to the location of tide gauges used 

for comparisons with regard to depths used in the model bathymetric data. The results 

suggest that in the Wash a maximum error of ± 0.80 metres should be allowed for with 

EC3 model results and the same figure for the WASH model results. 

6.4.2. Morecambe Bay 

The LBM model shows (Figure 6.9) an increase in maximum tidal altitudes into the 

inner (especially the north-eastern) part of Morecambe Bay and the Solway Firth, rising 

to altitudes of over 4.5 metres, as shown in Table 6.9. A steady decrease of maximum 
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Table 6.9. LBM Model Maximum Elevations (Metres) 

Location Ml 
Cree town 3.102 
35 Irish Sea 3.194 
Workington 3.385 
Ramsay 2.958 
34 Irish Sea 3.433 
Lowsy Point 3.680 
Douglas 2.835 
Barrow 4.058 
Hawes Point 4.022 
Morecambe 4.251 
Halfway Shoals 3.765 
Heysham 4.105 
Wyre Light 3.965 
Glasson Docks 4.094 
Fleetwood 3.912 
Std. Irish Sea 2.940 
10 Irish Sea 3.311 
Formby 3.696 
Queens Channel 3.642 
OSTG 3.687 
New Brighton 3.840 
Wylfa Head 2.486 
Amlwch 2.811 
Hilbre Island 3.696 
Llandudno 3.302 
Beaumaris 3.213 

Key 

M1 Modification 1 
M2 Modification 2 

M2 
3.266 
3.348 
3.565 
3.052 
3.305 
3.574 
2.781 
3.986 
3.928 
4.163 
3.677 
4.066 
3.880 
4.040 
3.817 
2.852 
3.224 
3.599 
3.542 
3.581 
3.676 
2.401 
2.725 
3.643 
3.196 
3.107 

0 Present Sea-Level 
-2 -2 Metres Sea-Level 
-5 -5 Metres Sea-Level 

-10 -10 Metres Sea-Level 
-15 -15 Metres Sea-Level 

0 
3.279 
3.349 
3.558 
3.051 
3.305 
3.577 
2.778 
3.972 
3.924 
4.155 
3.675 
4.022 
3.877 
4.011 
3.822 
2.847 
3.221 
3.600 
3.535 
3.578 
3.702 
2.402 
2.724 
3.635 
3.195 
3.092 

1a 5,000 years B.P. coastline 

-2 
3.575 
3.281 
3.481 
2.954 
3.263 
3.515 
2.726 
0.000 
3.958 
3.910 
3.582 
3.834 
3.738 
3.834 
3.703 
2.784 
3.169 
3.553 
3.514 
3.541 
3.683 
2.346 
2.688 
3.509 
3.249 
3.355 

1b 5,000 years B.P. palaeogeography 
2a 8,000 years B.P. coastline 

-5 -10 -15 
0.000 0.000 0.000 
3.002 1.822 3.026 
3.205 2.071 2.707 
2.773 2.011 2.691 
2.985 2.219 3.003 
0.000 0.000 0.000 
2.460 2.014 2.363 
0.000 0.000 0.000 
0.000 0.000 0.000 
3.685 0.000 0.000 
3.322 2.684 0.000 
3.412 0.000 0.000 
3.396 2.756 3.890 
3.327 0.000 0.000 
3.376 2.942 3.741 
2.520 2.119 2.502 
2.909 2.355 2.900 
3.295 2.618 0.000 
3.230 2.663 0.000 
3.273 2.633 0.000 
3.414 2.596 0.000 
2.188 1.821 2.324 
2.435 2.032 2.520 
0.000 0.000 0.000 
2.920 2.387 2.938 
0.000 0.000 0.000 

2b 8,000 years B.P. palaeogeography higher sea-level 
2c 8,000 years B.P. palaeogeography lower sea-level 

1a 1b 2a 
3.218 0.000 3.368 
3.253 3.319 3.401 
3.451 3.517 3.606 
2.997 2.970 3.080 
3.276 3.262 3.304 
3.552 0.000 0.000 
2.761 2.744 2.793 
0.000 0.000 0.000 
3.946 0.000 0.000 
4.055 0.000 3.942 
2.730 2.724 3.626 
2.992 2.974 0.000 
3.779 3.738 3.760 
4.196 0.000 0.000 
0.000 0.000 3.711 
2.807 2.800 2.838 
3.222 3.200 3.203 
3.660 3.636 0.000 
3.605 3.547 3.446 
3.627 3.577 3.467 
3.699 3.750 0.000 
2.373 2.361 2.429 
2.686 2.660 2.727 
3.654 3.704 0.000 
3.200 3.200 3.167 
3.128 3.389 0.000 

2b 2c 
0.000 0.000 
2.989 2.562 
0.000 0.000 
2.728 0.000 
3.195 3.014 
0.000 0.000 
2.568 2.473 
0.000 0.000 
0.000 0.000 
0.000 0.000 
3.598 0.000 
0.000 0.000 
3.768 0.000 
0.000 0.000 
3.728 0.000 
2.667 2.636 
3.104 3.071 
0.000 0.000 
0.000 0.000 
0.000 0.000 
0.000 0.000 
2.382 2.456 
2.614 2.582 
0.000 0.000 
3.108 0.000 
0.000 0.000 

The positions of the locations named in this Table are shown on the model grid in Figure 6.10. 
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Table 6.10. Descriptive Statistics for LBM Model Simulations. 

Model Simulation Mean Median Standard Minimum Maximum Lower Upper 

Deviation Quartile Quartile 

Modification 1 3.515 3.661 0.472 2.486 4.251 3.171 3.925 

Modification 2 3.461 3.570 0.455 2.401 4.163 3.173 3.833 

Present Sea-Level 3.457 3.568 0.451 2.402 4.155 3.169 3.836 

-2 Metres 3.259 3.511 0.780 0.000 3.958 3.115 3.688 

-5 Metres 2.351 2.952 1.359 0.000 3.685 1.641 3.323 

-10 Metres 1.529 2.023 1.168 0.000 2.942 0.000 2.601 ..... 
c:ro en -15 Metres 1.331 0.000 1.503 0.000 3.890 0.000 2.755 

5,000 years B.P. coastline 3.072 3.237 1.010 0.000 4.196 2.795 3.655 

5,000 years B.P. palaeogeography 2.349 2.972 1.497 0.000 3.750 0.000 3.524 

8,000 years B.P. coastline 2.149 2.959 1.628 0.000 3.942 0.000 3.451 

8,000 years B.P. palaeogeography 1.402 0.000 1.575 0.000 3.768 0.000 3.018 

higher sea-level 

8,000 years B.P. palaeogeography 0.723 0.000 1.221 0.000 3.071 0.000 2.460 

lower sea-level 

The locations from which the data are taken to obtain these statistics are shown in Figure 6.10. 

The data are given in Table 6.9. 



tidal altitudes reached into the Irish Sea from those areas is also shown, with maximum 

tidal altitudes in the south-western part of the model of under 2.0 metres. In Morecambe 

Bay itself, a decline in maximum tidal heights from the north-east to the south-west is 

shown of about 1.0 metre. Model results give a prediction of mean high water of spring 

tides at Morecambe, in the east of the bay, of 4.155 metres, declining to 3.822 metres at 

Fleetwood near the south-west entrance to the bay. 

The histogram (Figure 6.11) shows a peak in the data from Table 6.9 at between 

3.5 and 4.0 metres. This coincides well with the mean value of 3.457 metres (Table 

6.10 and Figure 6.12) and the median of 3.568 metres. The standard deviation value of 

under 0.5 metre also shows that there is a strong concentration of maximum tidal height 

values around 3.5 metres in the model. The range of the maximum tidal heights is from a 

minimum of 2.402 metres to a maximum of 4.155 metres, but the lower and upper quartile 

values are between 3 and 4 metres. 

The MBM model (Figure 6.13) shows a similar pattern to that of LBM, but with 

greater detail of changes. Model results for maximum tidal altitudes (given in Table 6.11 

and Figure 6.14) are shown as above 4.5 metres in the northern and extreme eastern parts 

of the bay, decreasing to values of between 4.0 and 4.25 metres across the entrance to 

the bay. The range in maximam tidal heights within the MBM model area is from 3. 7 45 

metres to 4.973 metres (Table 6.12 and Figure 6.15). Thus the results from the MBM 

model show maximum tidal heights which are higher and less widely spread (standard 

deviation 0.333 metre) than those from the LBM model. The histogram (Figure 6.16) 

also illustrates the peaked distribution. 

Maximum differences in tidal height predictions between the LBM and MBM models 

occur at Fleetwood at the entrance to the bay, with heights of 4.18 metres predicted from 

MBM and 3.82 metres from LBM. This is also reflected in the difference in comparison of 

predicted and observed tidal heights between the models. 

Within Morecambe Bay, the LBM model shows maximum differences of 0.40 metres' 
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Table 6.11. MBM Model Maximum Sea-Levels (Metres) 

Location 0 1 2 3 

Lowsy Point 3.885 0.000 0.000 0.000 
Barrow 4.186 0.000 0.000 0.000 
Morecambe 4.478 0.000 0.000 0.000 
Hawes Point 4.148 0.000 0.000 0.000 
Halfway Shoals 3.982 0.000 0.000 0.000 
Heysham 4.353 0.000 0.000 0.000 
Glasson Docks 4.507 0.000 0.000 0.000 
Wyre Light 4.162 3.917 3.704 0.000 
Fleetwood 4.176 0.000 0.000 0.000 
Point 1 4.973 0.000 0.000 0.000 
Point 2 4.710 0.000 0.000 0.000 
Point 3 4.202 0.000 0.000 0.000 
Point 4 3.956 3.751 3.557 0.000 
Point 5 3.745 3.522 3.399 0.000 

Key 

0 Present Sea-Level 
1 5,000 years B.P. palaeogeography 
2 8,000 years B.P. palaeogeography higher sea-level 
3 8,000 years B.P. palaeogeography lower sea-level 

The positions of the locations named in this Table are shown on the model grid in 
Figure 6.14. 
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Table 6.12. Descriptive Statistics for MBM Model Simulations. 

Model Simulation Mean Median Standard Minimum Maximum Lower Upper 

Deviation Quartile Quartile 

Present Sea-Level 4.247 4.181 0.333 3.745 4.973 3.976 4.485 

5,000 years B.P. palaeogeography 0.799 0.000 1.590 0.000 3.917 0.000 0.880 

8,000 years B.P. palaeogeography 0.761 0.000 1.514 0.000 3.704 0.000 0.850 

higher sea-level 

8,000 years B.P. palaeogeography 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

...... lower sea-level 
CJ1 
<.0 

The locations from which the data have been taken to obtain these statistics are shown in Figure 6.14. 

The original data are presented in Table 6.11. 



underprediction of the mean high water of spring tides heights at Fleetwood. Results 

beyond Morecambe Bay reach a maximum error of 0.46 metres at New Brighton with 

LBM. MBM model results are much closer to observations, reaching a maximum difference 

of 0.16 metres underprediction at Hawes Point. These results suggest that errors of± 0.5 

metres should be allowed in results from LBM, but only ± 0.20 metres for MBM due to 

the much better tidal height predictions from this model. 

6.4.3. Comparison of The Wash and Morecambe Bay 

Maximum tidal heights are greater (at maximums of over 4.5 metres) in Morecambe 

Bay than the Wash (where they reach over 3.5 metres) by about one metre. The pattern 

of variation of tidal heights is similar in both bays with higher maximum tidal heights 

found in the inner areas than at the mouth of the bay. The extent of this change is, again, 

greater in Morecambe Bay than the Wash, varying by up to a metre in the former and 

0.5 metre in the latter. 

Model results show differences from observations of up to about ±0.8 metre in the 

EC3 and WASH models. This error is reduced to within 0.5 metre of observations for 

LBM and 0.2 metre for MBM. The better predictions for the west coast may be due to 

better quality bathymetric representations in the models than was available for the east· 

coast area. 

The magnitude of the error in maximum tidal altitudes in the Wash is of a similar 

order to the variation in range of present day maximum tidal height variations within the 

bay, whereas results for Morecambe Bay have an error term of at most (for LBM) half 

of the difference in maximum tidal heights within the bay. This suggests that a greater 

reliance may be placed on the accuracy of different model simulations used in the case of 

Morecambe Bay than for those of the Wash. 

6.5. Robustness of the tidal models 

An assessment of the sensitivity of model results to local bathymetry and coastline 
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changes within the model area was made by altering present sea-level depth data and 

labels in the EC3 and LBM models. These tests were carried out to determine the extent 

of the influence on tidal patterns of local changes within the model compared with those 

introduced by altering depths or coastline shapes over the whole model area. 

The first modification (Mod. 1) comprised a test of the influence of an alteration 

to tidal input to the embayments as a result of coastline shape changes. To enter this 

into the tidal models a spit was introduced by making the appropriate changes to labels 

outlined in Chapter 5.2.1.1. The spit in the Wash was run westward from Hunstanton at 

approximately 52°58'N to a position in the middle of the Wash at 0°18'E. A similar modi­

fication was made for application to Morecambe Bay by extending a spit from Cumbria at 

approximately latitude 54°18'N towards the Isle of Man, ending at 4°01W. The locations 

of the spits are shown by the black lines on the diagrams of maximum tidal altitudes for 

Mod. 1. 

The choice of a modification comprising a spit running westwards from Hunstanton 

in The Wash was influenced by the possibility of a former morainic barrier across part 

of the mouth of The Wash, following Godwin's (1978) suggestion (see Chapter 2.3.1). 

Barriers are, however, best developed in microtidal regimes (Hayes, 1975) and the extent 

of the influence of the presence of a barrier in lowering the tidal range to contribute to its 

self-perpetuation led to the examination of the hypothesis that considerably lower tidal 

heights than at present would be found in the inner part of The Wash with the barrier in 

place. 

For Morecambe Bay, a spit was run westwards from Cumbria towards the Isle of Man 

in an attempt to simulate a reduction of tidal input to Morecambe Bay from the north 

which would have occurred as a consequence of the post-glacial uplift of areas near the 

former centres of ice accumulation. It is recognised that an uplifted area would not take 

the form of a spit of land extending from the current coast but would probably have 

consisted of a much greater extent of dry land in the area of the spit and to the north 
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of it. The modification was made in the form of a spit for compatibility with the similar 

modification made to The Wash. 

The second modification (Mod. 2) to the present day tidal models consisted of depth 

changes within the embayments. Depths were altered in the tidal models by swapping 

the model depths in the bathymetric setup data on one side of an imaginary line running 

down the middle of each bay from centre of its mouth with those depths on the other 

side of the line. By this means, the order of magnitude of depth changes was maintained, 

but the location of deep and shallow areas within the bays was altered. This modification 

provides a test within The Wash and Morecambe Bay of the effect of the accuracy of 

knowledge of sea depths. The accuracy of knowledge of past offshore sea depths is limited 

due to the lack of availability of dated sediment sequences from such areas. This, in turn, 

is due to both the lack of available techniques for obtaining the required information and 

the current movement of sea bed sediments within the shallow embayments. Results of 

this modification permit some assessment of the magnitude and spatial extent of error in 

tidal model results for former sea-levels employing sea depths based on only eustatic and 

isostatic sea depth alterations. 

6.5.1. Modification 1 - Introduction of a spit 

6.5.1.1. The Wash 

Results of the EC3 model including the introduction of a spit across part of the mouth 

of the Wash (Mod. 1 above) show (Figure 6.17) highest tidal altitudes (above 3.5 me­

tres) in the inner part of The Wash, between Tabs Head and West Stones, comprising 

approximately one quarter of the area of The Wash. However, the area of maximum tidal 

altitudes above 3.5 metres is not as great as for the present day simulation in which max­

imum tidal altitudes over the whole of the western part of the Wash are above 3.5 metres. 

Figure 6.18 shows that the spit has lowered maximum tidal heights on the northern shore 

of the Wash in particular. There is also a slight lowering of maximum tidal altitudes in the 

North Sea beyond the mouth of the Wash compared with the present situation, shown by 
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comparison of the present day tidal simulation results with those of the spit modification. 

The histogram for the EC3 Mod. 1 simulation (Figure 6.19) shows very little difference 

from that for present sea-level. The descriptive statistics (Table 6.6 and Figure 6.4) are 

comparable in value with those for the present sea-level model simulation. There is a 

slight decrease in the range of maximum tidal height values within the Wash for the Mod. 

1 simulation. The minimum value is raised by 0.001 metre and the maximum lowered 

by 0.124 metre. However, this maximum value is not found at the same location in 

each simulation, so that there is a maximum difference of 0.201 metres between the two 

simulations at Tabs Head in the inner Wash, with a mean of 0.036 metres over all the 

EC3 model observations. Both the upper and lower quartiles are very slightly (0.057 and 

0.001 metre) higher than for present sea-level. The median value (2.100 metres) again 

nearly coincides with that of the mean. Differences are greater in the Wash, as would 

be expected from the location of the spit, with the minimum difference here being 0.059 

metres at Hunstanton. The scatter plot (Figure 6.20) shows the tendency for the higher 

maximum tidal heights to be reduced, compared with the present sea-level situation, 

whereas those locations with lower maximum tidal heights (outside the Wash, as shown 

in Figure 6.17) are almost identical to the present day situation. 

6.5.1.2. Morecambe Bay 

The introduction of a spit from Cumbria towards the Isle of Man to the north of 

Morecambe Bay in the LBM model shows an increase in maximum tidal altitudes reached 

in the inner part of Morecambe Bay (Figure 6.21 and Figure 6.22) especially in the north­

east corner, compared with an unmodified simulation of present day conditions. There 

is a five-fold increase in the area of maximum tidal altitudes over 4.5 metres in the area 

of the Kent and Leven estuaries. In general over the model area, tidal altitudes show 

an increase south of the spit and a decrease to the north. The area of higher maximum 

tidal altitudes extends further west in the case of the Mod. 1 results than for the present 

sea-level results south of the spit, whereas to the north, the area of lower tidal altitudes 
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increase extends further west than with the unmodified simulation. 

A comparison of the maximum tidal altitudes reached, using the data in Table 6.9 

at tide gauge stations, gives a range of differences from present sea-level results of -0.138 

to 0.177 metres, with increases of the order of 0.10 metre in Morecambe Bay (at Barrow 

and Morecambe, for example). The locations of maximum and minimum highest tidal 

altitudes, however, change between the models. Table 6.10 shows that the minimum 

value for the dataset is raised by 0.084 metre from the present sea-level simulation to 

the Mod. 1 simulation, while the maximum value is also raised, by 0.096 metre. These 

slight increases in maximum tidal altitude values are reflected in the upper and lower 

quartile results which are, again, slightly greater for Mod. 1 than for the present sea-level 

situation. The mean difference over the whole of the model area is -0.058 metres (Table 

6.10). The median value is 0.146 metre greater than that of the mean for Mod. 1 results 

(Table 6.10). The difference between the mean and median results has increased slightly 

(less than 0.05 metre) over the results for the present sea-level simulation, but there is 

still very little difference between the two values. The greatest differences are immediately 

south of the spit in the Irish Sea. A slightly greater spread of much of the data is shown by 

the higher standard deviation value for Mod. 1, at 0.472 metres, compared with the value 

for the present day simulation (Table 6.10). However, the histogram (Figure 6.23) shows 

overall that there is very little difference in the distribution of the maximum tidal height 

values from the present day situation, shown in Figure 6.11. A scatter plot of present 

sea-level results against those of Mod. 1 (Figure 6.24) shows the greater spread of the 

data, with some points having higher maximum tidal heights and others lower maximum 

tidal heights than at the present day. 

6.5.2. Modification 2 - Depth changes within the embayments 

6.5.2.1. The Wash 

The pattern of maximum tidal altitudes in the Wash in the EC3 model following 

depth changes is very similar to that for the present day simulation (Figures 6.25 and 
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6.26). Only slight decreases in tidal altitudes reached in the Wash are apparent in a 

few areas from comparison of the diagrammatic results of this simulation compared with 

that for the present day. Comparison of results from the tide gauge stations throughout 

the EC3 model given in Table 6.5, shows differences of between 0.000 and 0.038 metres 

compared with present sea-level results. The maximum difference is, as with Mod. 1, at 

Tabs Head in the inner part of the Wash. Maximum tidal altitudes are typically reduced 

by over 0.03 metre at stations in the Wash, compared with the mean reduction of 0.016 

metre throughout the model (Table 6.6), showing that the influence of depth changes is 

mainly within the bay. Taking the results for maximum tidal altitudes at the locations 

in Table 6.5 as a whole, Table 6.6 shows that the median, standard deviation, minumum, 

maximum and upper and lower quartile values all fall slightly compared with the present 

sea-level simulation, but by less than 0.04 metre. The histogram (Figure 6.27) shows an 

almost identical spread of the data to that for the present sea-level. Figure 6.20 shows 

virtually no change from present sea-level results in a scatter plot of the data. Therefore 

the effect of changing the bathymetry within the Wash embayment has been to give a 

very slight lowering (less than 0.04 metre) of maximum tidal heights but with a similar 

pattern to that for the present day. 

6.5.2.2. Morecambe Bay 

The diagramatic results of LBM with depth changes in Morecambe Bay show only 

very minor changes (Figures 6.28 and 6.29) compared with the present day simulation. 

The maximum tidal altitudes are slightly increased (with two squares shaded as having 

tidal altitudes of over 4.5 metres) in the north-east corner of the Bay and slightly reduced 

(to just below 4.0 metres) at the northern entrance to the Bay near Hawes Point. A 

comparison of the tide gauge station results in Table 6.9 for the present sea-level run 

compared with that for Mod. 2 shows a very slight overall increase in maximum tidal 

altitudes for Mod. 2, with a mean value of 0.004 metre. Table 6.10, taking the results 

for all the locations in Table 6.9 together, illustrates the very minor differences between 

the two simulations in the descriptive statistics results. In general the maximum tidal 
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altitudes increase for Mod. 2 in Morecambe Bay by only less than 0.01 metre (Table 

6.10), although the maximum figure for the whole model (0.044 metre) is recorded at 

Heysham (Table 6.9). The histogram (Figure 6.30) also shows that the spread of the data 

is almost identical to that for the present sea-level (Figure 6.11), as does the scatter plot 

(Figure 6.24). 

6.5.3. Comparison of results 

The differences in comparison with the results for an unmodified simulation of present 

day maximum tidal heights show that the greatest changes to tidal heights occur in the 

immediate neighbourhood of the modifications carried out. With all the modifications, 

except for the spit extending across the Irish Sea some distance north of Morecambe 

Bay, this has resulted in maximum changes to the tidal heights within the embayments 

under study. The amount of change in tidal heights for Mod. 1 throughout the EC3 and 

LBM models corresponds closely between the models, reaching a maximum of circa 0.2 

metre in both models and averaging only a few centimetres. The direction of change of 

tidal heights within the embayments is, however, different with heights increased with the 

introduction of the spit for Morecambe Bay but decreased in the Wash. This can probably 

best be explained by the location of the spits with regard to the direction of tidal wave 

propagation in both areas, although detailed examination of this factor is beyond the 

scope of the present study. 

In the case of the Wash, the spit created a barrier which gave lower than present 

maximum tidal heights in the Wash, but tidal heights were not lowered anywhere near 

the extent of becoming meso- or micro-tidal in the Wash behind the barrier and the spit 

had even less of an influence on the tidal heights in the North Sea beyond the Wash. There 

is, in any case, little geological evidence of a morainic barrier across the Wash during the 

Holocene (Shennan, 1986a). The higher than present maximum tidal heights reached in 

Morecambe Bay and to the south of the spit in the Irish Sea, however, suggest a possibility 

that higher tidal ranges may have been seen in this part of the Irish Sea when the area 
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to the north was land and the only opening to the sea was to the south. This hypothesis 

is tested more rigorously, employing palaeogeographic reconstructions of Morecambe Bay 

for the early Holocene, below. 

Modification 2, in which sea depths were altered within the embayments, showed 

smaller changes to maximum tidal heights in both embayments than occurred as a result 

of the introduction of the spits. Average changes for the EC3 and LBM models were circa 

two centimetres, reaching maximum figures of around four centimetres in the inner parts 

of the bays. The directions of change in tidal heights compared with those for the present 

day simulation again differed between the two bays, decreasing in the Wash with the 

modification, but increasing in the inner part of Morecambe Bay. This may be attributed 

to the exact location of depth changes in relation to movement of the tidal wave, whose 

amplitude is reduced by dissipation of tidal energy in extensive shallow water areas. The 

order of magnitude of the maximum tidal height changes is similar in both embayments 

which suggests that this may be taken as a guide to the error due to inexact knowledge of 

the palaeobathymetries of the embayments in the palaeogeographic reconstructions below 

in which sea depths are altered according to eustatic and isostatic sea-level changes. 

The differences recorded between the modified model simulations and that for the 

present day are measured in terms of centimetres. In this respect they are so low that 

they fall within the figures for accuracy of the computed present day tidal model results 

compared with observations at the tide gauge stations. This suggests that use of the 

tidal models for palaeogeographic reconstructions of the Wash and Morecambe Bay may 

provide results from which the magnitude of overall maximum tidal height changes can 

be assessed with a good degree of reliability even in the absence of detailed knowledge of 

former sea depths within the embayments. However, the alterations to the pattern of tidal 

height changes as a consequence of the modifications suggest that the pattern of changes 

to tidal heights within the embayments may be less easy to simulate without detailed 

knowledge of the palaeocoastline and palaeobathymetry of an area. 
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6.6. Reduced sea depth simulations 

A first estimate of tidal changes resulting from sea depth changes was made by making 

uniform subtractions of 2, 5, 10 and 15 metres to the bathymetry of the tidal models 

at the present day. These are referred to in the text below as [2], [5], [10] and [15] 

for simplicity, with the present sea-level simulation designated as [0]. The sea depth 

reductions correspond to sea-level altitudes at 5,000, 6,500, 7, 700 and approximately 8,000 

years B.P. from Marner's (19.76, 1980, 1984) eustatic curve. The depth reductions were 

chosen to reflect the development of the present tidal regime during the Holocene sea-level 

nse. 

Tidal changes were studied from an analysis of sea depth reductions to present day 

tidal models by Franken (1987) and Austin (1988, 1991 ). However, the present study 

differs in two respects from those of Franken and Austin. The model area used by Franken 

and Austin was the whole of the north-west European continental shelf, at resolutions of 

approximately 30 x 30 kilometres and 8 x 9 kilometres, respectively. In this study, tidal 

input from reduced sea-levels over the scale of the north-east Atlantic is applied at the 

scale of individual coastal emlDayments with model grid resolutions of approximately 3 x 

3 kilometres. Furthermore the studies by Franken and Austin consisted of examinations 

of the change of one tidal constituent, M2, whereas the present study incorporates six 

constituents in order to assess changes to the height of mean high water of spring tides. 

The importance of shelf edge boundary conditions was discussed in Chapter 6.2.1. Austin 

(1991) noted overestimates of 5% near the coast in amplitudes of the M2 tide with the 

continental shelf model compared with results obtained by the present author from the 

north-east Atlantic model with sea depths reduced by 15 metres. Results such as these 

suggest that the methods appl~ed in this thesis provide a more realistic simulation of tides 

at lower sea-levels than has previously been attempted. The local effects in embayments 

are also illustrated at the scale employed in the present study, whereas this has previously 

been recognised as an unresolved problem (Austin, 1991). 
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Sea depth reduction simulations were carried out by making uniform depth reductions 

to the bathymetries used as input to the tidal model. No changes were made to the labels 

in the tidal models so that tidal inundation might still occur up to the present coastline 

if high enough tide levels were attained during the model run. 

6.6.1. The Wash 

Results of the EC3 model between present sea-level [OJ and simulation of a sea-level 

reduced by 2 metres [2) (Figures 6.31 and 6.32) show an increase in the area of maximum 

tidal altitudes above 3.5 metres in the Wash, extending over two-thirds of the area of the 

Bay compared with only the western half of the Bay from the [OJ results. The magnitude 

of tidal changes is not great, however. Over much of the model area tidal altitude changes 

are less than ±0.10 metres. In the Wash, the increase in maximum tidal altitudes is most 

marked (at over 0.20 metres) in the south, near King's Lynn, and decreases northwards, 

with the mouth of the Bay in the east and an area near Tabs Head in the west showing 

slight decreases of maximum tidal altitudes (of less than approximately 0.10 metres). 

An examination of the figures of change at tide gauge stations listed in Table 6.5 

shows that mean maximum tidal heights are lower (2.120 compared with 2.132 metres) 

in the EC3 model with sea-levels reduced by 2 metres (Table 6.6). Results in the Wash 

show reductions of typically circa 0.05 metre, but an increase of 0.203 metres at West 

Stones in the south-western corner for [2] compared with [0]. Values for all the descriptive 

statistics are lower for [2) than [0), but by not more than 0.051 metre (Table 6.6). The 

mean and median values are within 0.04 metre, the standard deviation is reduced in 

[2) to 1.058 metre, compared with 1.065 metre for [0], showing a very slightly reduced 

spread around the mean value for much of the maximum tidal altitudes results. The 

minimum and maximum values are also reduced slightly, showing a general tendency for 

lower maximum tidal heights with the reduction of 2 metres to sea depths. Figure 6.33 

shows an almost identical spread of the data to that for present sea-level. The count for 

the 2.5 to 3.0 metre class has, however, increased by one at the expense of the 3.0 to 3.5 
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metre class, showing a reduction in maximum tidal heights reached for the [2J simulation 

compared with the [OJ simulation. The scatter plot (Figure 6.34) shows a more varied 

pattern of change of maximum tidal altitudes for locations with maximum tidal heights 

over 2.5 metres for both [OJ and [2] simulations. There is a tendency for values just over 

2.5 metres for [0] to be reduced slightly with the [2] simulation, while those over 3.0 metres 

are, in some cases (as at West Stones), increased. 

Between present sea-level and the simulation of a sea-level reduction of 5 metres [5J an 

increase in the area of maximum tidal altitudes reached above 0.20 metres is again found 

in the southern part of the Wash (Figures 6.35 and 6.36). In the central and northern 

parts of the Bay, however, maximum tidal altitudes are reduced by amounts ranging from 

0.0 to 0.3 metres. The magnitude of changes shown by throughout most of the EC3 model 

area is again within 0.10 metre, as with the comparison between [0] and [2]. Maximum 

tidal altitudes remain above 3.5 metres in the inner (western) half of the Wash bay. The 

tide gauge station results give mean values of maximum tidal altitudes approximately 0.2 

metre lower compared with present sea-level results for EC3 (Table 6.6). The median 

value remains close to that of the mean. West Stones is the only station in the Wash 

to show an increase in maximum tidal altitudes, at 3. 738 metres for [5] compared with 

3.369 metres for [OJ and 3.566 metres for [2]. Gibraltar Point shows a tendency in the 

opposite direction, with maximum tidal altitudes of 3.092 for [5J compared with 3.296 for 

[OJ. Figure 6.37 shows that the greatest differences (of over 0.5 metre) between the [2] and 

[5] simulations occur in the Humber estuary. The changes in the Wash itself are generally 

within ±0.25 metre. 

The reduction in maximum tidal altitudes is typically of the order of less than 0.05 

metre within the Wash for [5] compared with [0] (Table 6.6). However, the minimum 

value of 0.0 metres in the decriptive statistics shows that drying out occurs as Tabs Head 

has become dry land as a res~lt of the reduction in sea depths (Table 6.5). The maximum 

value of the highest tidal heights reached in the Wash is reduced by over 0.1 metre for 

[5] compared with [OJ, and by over 0.05 metre from [2] (Table 6.6). A reduction by 0.033 
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metre in the standard deviation from [OJ to [5] indicates less spread in height of most of 

the maximum tidal altitudes within the model area. Values of both the upper and lower 

quartiles are reduced compared with both [OJ and [2] simulations, especially that of the 

upper quartile, again indicating that most of the values of maximum tidal heights are not 

spread over so large a range of values. The histogram (Figure 6.38) shows fewer counts 

in the higher maximum tidal altitude classes (such as 3.5 to 4.0 metres) and more in the 

2.5 to 3.0 metre and 0.0 to 0.5 metre classes. Figure 6.34 shows that the scatter of values 

at the locations in Table 6.5 for [5) compared with [OJ have the greatest differences above 

3.0 metres, where both increases and decreases in maximum tidal altitudes are shown at 

[5) compared with the [0] results. 

The simulation of a sea-level reduction of 10 metres [10] shows that the coastal area 

of the present Wash bay is dry land and the southern part of the mouth of the bay has 

also been extended northwards due to an increase in the land area north of Hunstanton 

(Figures 6.39 and 6.40). Maximum tidal altitudes are reduced by well over a metre 

for [10) compared with [OJ in much of the Wash and surrounding parts of the northern 

Norfolk and east Lincolnshire coasts (Table 6.6). The magnitude of maximum tidal height 

changes decreases considerably in to the North Sea, where tidal reductions are generally 

of the order of less than 0.2 metres. In the EC3 model mean maximum tidal altitudes 

for tide gauge stations at [10] are 1.272 metres, representing a reduction of circa 0.85 

metre compared with the present. However, this figure is not representative of the actual 

change in tidal altitudes as a number of the tide gauge stations record zero values due 

to locations inland of the [10] coast. Roaring Middle is the only station left in the sea 

in the Wash. The changes recorded at this station showed a slight increase in maximum 

tidal heights for [2] compared with [OJ (figures of 3.656 and 3.580 metres, respectively), 

but then decreased to 3.577 at [5] and 2.992 metres at [10], giving an overall decrease 

compared with [0] of circa 0.6 metres at [10]. Figure 6.41 shows that in part of the Wash 

there is a decrease in the maximum tidal altitudes from [5] to [10] of over 0.5 metre, with 

the amount of decrease in ~aximum tidal altitudes lessening into the North Sea. The 
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westward movement of the amphidromic point off Lowestoft is shown by the increase in 

maximum tidal altitudes in this area between the [5] and [10] simulations. 

The histogram for [10] (Figure 6.42), using data from Table 6.5, shows a considerable 

change from that for [5]. The two classes above 3.0 metres now have no counts, whilst those 

below 2.0 metres register an increase. Indeed, the highest recorded maximum tidal altitude 

(Table 6.6) is now 2.992 metres. The upper quartile value of 1.966 metres represents a 

fall of over a metre from the [0] value and of over 0.8 metre from the [5] value. The lower 

quartile has decreased by nearly a metre from the [0] value and the reduced spread in 

tidal heights reached is further reflected in the drop in the standard deviation to below 

1.0 metre. The scatter plot (Figure 6.34) shows a pattern of increased reductions of 

maximum tidal altitudes for those locations which had the higher values for [0]. 

There is only a narrow channel left down the central part of the Wash with the 15 metre 

sea-level reduction simulation [15] (Figures 6.43 and 6.44). Maximum tidal altitudes are 

considerably reduced, by the order of 1.25 metres compared with present sea-level results 

in the vicinity of the Wash. Changes of up to 0.5 metre in maximum tidal altitudes are 

found in the North Sea area. No tide gauge station results are available in the Wash for 

comparison of maximum tidal altitudes due to their inland locations as a result of the 

lowering of sea-level. Figure 6.45 shows reductions in parts of the Wash embayment of 

over 0.75 metre in maximum tidal altitudes from [10] to [15], larger reductions than were 

shown from [5] to [10]. Table 6.6, which includes data from the now inland tide gauges, 

gives a mean value of 0.670 metres for maximum tidal altitudes in the EC3 model at 

[15]. This represents a reduction of approximately 1.5 metres from the [0] value and 0.6 

metre from the [10] value. The median is now 0.4 metre below the mean value (Table 

6.6), indicating that most of the data are now in the 0.0 to 0.5 metre class (Figure 6.46), 

below the mean value, due to the drying out of large parts of the original model area. 

The highest maximum tidal altitude from Table 6.5 is now 2.349 metres. The standard 

deviation, 0. 776 metres, shows a reduction of approximately 0.3 metre in the spread of 

most of the data around the mean value compared with [OJ. The upper quartile for the 
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dataset is reduced to 1.181 metres and the lower quartile (at 0.0 metres) reflects the fact 

that most of the locations used in the analysis have now dried out. The scatter plot (Figure 

6.34) emphasises the large number of tide gauge locations which have dried out and the 

considerable reduction of [10] maximum tidal altitudes compared with those for [0], which 

is accentuated for the stations which recorded the higher maximum tidal altitudes in [0]. 

Discussed in terms of the tidal development of the area during the Holocene, results 

from the [0] to [2] simulation show changes of within 0.10 metre in maximum tidal altitudes 

attained, with increases of slightly greater than this amount in the Wash. Comparisons 

from the simulations of [2] to [5] show differences within 0.1 metre for much of the EC3 

model area. However, an increase of over 0.2 metres in maximum tidal altitudes from [2] 

to [5] in the southern Wash is shown, contrasting with the decrease in maximum tidal 

altitudes of 0.1 to 0.2 metres in the central and northern part of the Wash. From [5] to 

[10] there is a decrease of maximum tidal altitudes over most of the EC3 model area by 

up to 0.25 metre. This is accentuated in the vicinity of the Wash to 0.5 metre, with some 

decreases of even greater amounts in the central Wash. Between [10] and [15] the overall 

model differences in maximum tidal altitudes are again up to 0.25 metre, but within the 

Wash minimum differences are over 0.50 metre and rise to over 0.75 metre in the inner, 

western, part of the Wash. Analysis of variance results (Table 6.13) show greater variation 

between the results for the [OJ, [2] and [5] simulations and transformed results from the 

[10] and [15] simulation results than within model tidal altitudes. 

In summary the results show a general decrease in maximum tidal altitudes with 

lower sea-level simulations, but this pattern is more complicated in the Wash bay. The 

amphidromic point off Lowestoft in the North Sea is seen to move westward with the 

reduction in sea depths. This was also noted by Franken (1987) and Austin (1988, 1991). 

The magnitude of tidal range remains similar in all simulations, but is based on signifi­

cantly lower values for [10] and [15]. The pattern of change to maximum tidal altitudes 

is more complicated within the Wash, with increases of maximum tidal altitudes at [2] 

compared with [0] and extended to increase in maximum tidal altitudes at [5] in the south-
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Table 6.13. EC3 Model: Analysis of Variance Results From Data in Table 6.5. 

Model Simulations: Present Sea-Level, -2, -5, -10 and -15 Metres Sea-Levels 

Mean value for [0] simulation = 2.132 m. 

Mean value for [5] simulation = 1.959 m. 

Mean value for [15] simulation = 0.670 m. 

F = 11.98 Degrees of freedom = 4, 23 

Mean value for [2] simulation = 2.120 m. 

Mean value for [10] simulation = 1.272 m. 

Critical F value for 0.05 probability = 2.80 

A significant difference is shown in the maximum tidal altitudes between the simulations. 

Model Simulations: Present Sea-Level, 3,000, 4,000 and 5,000 Years B.P. Coastlines 

Mean value for [OJ simulation = 2.132 m. 

Mean value for [4c] simulation = 2.002 m. 

F = 0.24 Degrees of freedom = 3, 24 

Mean value for [3c] simulation = 1.910 m. 

Mean value for [5c] simulation = 2.005 m. 

Critical F value for 0.05 probability = 3.01 

No significant difference is shown in the maximum tidal altitudes between the simulations. 

Model Simulations: Present Sea-Level, 3,000, 4,000 and 5,000 Years B.P. Palaeo­

geographic Reconstructions 

Mean value for [0] simulation = 2.132 m. Mean value for [3p] simulation = 1.822 m. 

Mean value for [4p] simulation = 1.807 m. Mean value for [5p] simulation = 1.970 m. 

F = 0.80 Degrees of freedom = 3, 24 Critical F value for 0.05 probability= 3.01 

No significant difference is shown in the maximum tidal altitudes between the simulations. 

Model Simulations: 3,000, 4,000 and 5,000 Years B.P. Palaeogeographic Reconstruc­

tions 

Mean value for [3p] simulation = 1.822 m. Mean value for [4p] simulation = 1.807 m. 

Mean value for [5p] simulation = 1.970 m. 

F = 0.33 Degrees of freedom = 2, 25 Critical F value for 0.05 probability= 3.38 

No significant difference is shown in the maximum tidal altitudes between the simulations. 

m. represents metres 
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ern Wash, but decreases in tidal heights in the northern part of the Wash, as described 

above. Comparison of [10J and [15J with [OJ shows that maximum tidal altitudes are low­

ered throughout the Wash, but the greatest change to tidal variations within the bay is 

between the [OJ, [2J and [5J simulations. 

6.6.2. Morecambe Bay 

Results of the LBM model for [2J (Figure 6.4 7) show reductions in maximum tidal 

altitudes reached compared with the present sea-level tidal model results. Drying out of 

some coastal areas occurs in the Solway Firth and Morecambe Bay and in the estuar­

ies to the south. The difference diagram, [OJ minus [2J simulation (Figure 6.48), shows 

that most changes to maximum tidal heights reached represent a lowering of within 0.25 

metre of current tidal maximum altitudes, although around Arnside and Morecambe in 

the north-eastern part of Morecambe Bay differences are greater than these values. At 

Hawes Point on the northern entrance to Morecambe Bay maximum tidal altitudes are 

slightly increased for [2J over the [OJ simulation. Maximum tidal altitudes reached are also 

increased in the [2J simulation along the north Wales coast. 

The tide gauge data in Table 6.9 show that the mean maximum tidal altitudes reached 

in the LBM model are lower for [2J than [OJ by circa 0.2 metre at 3.259 compared with 3.457 

(Table 6.10), respectively, although this may be influenced by the zero value resulting from 

the inland location of Barrow at [2J. In Morecambe Bay, the reduction of maximum tidal 

altitudes is typically 0.2 metre, for example 4.155 at [OJ to 3.910 at [2J at Morecambe, with 

greater reductions in the north-eastern part of the bay. The median value, like the mean, 

is reduced with the [2J simulation compared with [OJ. However, the difference between 

the mean and median values is increased for the [2] simulation, showing the influence of 

the 0.0 metre value for Barrow in reducing the mean value of maximum tidal heights for 

[2]. This is also shown by the histogram in Figure 6.49, in which most of the observations 

are grouped in the 3.5 to 4.0 metre class. The 0.0 metre value has also influenced the 

standard deviation, which has increased from 0.451 metres for [0] to 0. 780 metres for [2]. 
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There is a reduction of approximately 0.2 metres in the maximum values of highest tidal 

heights, shown in Table 6.10, from [0] to [2]. The zero value at Barrow has reduced the 

minimum figure by 2.402 metres from that of the [OJ simulation and so extended the range 

of the data from under 2 metres to nearly 4 metres. The upper and lower quartile values 

are both reduced from the [0] figures, indicating the general lowering of maximum tidal 

heights for the [2] simulation. The scatter plot in Figure 6.50 shows that at some locations, 

the [2] simulation has resulted in an increase in maximum tidal altitudes, compared with 

[0], especially for Creetown and Beaumaris at the northern and southern extremes of the 

model, but in general there has been a reduction of maximum tidal altitudes with the 

lowering of mean sea-level by two metres. 

Comparison of present sea-level results [0] with those for a simulated lowering of sea­

level by 5 metres [5] (Figures 6.51 and 6.52) show greater tidal changes than for [2]. In 

much of the LBM model, maximum tidal altitudes are reduced by between 0.25 and 0.50 

metre compared with present sea-level results. There are modifications to this in coastal 

areas, with increased reductions (of up to over 0. 75 metre) in Morecambe Bay and the 

Solway Firth and smaller reductions (of the order of 0.0 to 0.25 metre) along the north 

Wales coast in particular. Maximum tidal altitudes reached in the north-eastern part of 

Morecambe Bay are between 3.5 and 4.0 metres, compared with results of up to over 4.5 

metre reached at present sea-level. The reductions in tidal altitudes are greatest in the 

inner (eastern) part ofMorecambe Bay. Tide gauge station results from Table 6.9 indicate 

reductions of the order of 0.3 metre (3.414 compared with 3.702 metres at New Brighton, 

for example) for LBM but are greater within Morecambe Bay, for example 3.412 compared 

with 4.022 metres at Morecambe and in the north-eastern part of the bay. Comparison 

between the [2] and [5] results (Figure 6.53) show the greatest changes at Glasson Docks 

in Morecambe Bay, where maximum tidal altitudes are reduced from 3.834 metres for [2] 

to 3.327 metres for [5] (Table 6.9). 

The descriptive statistics (Table 6.10) show a reduction in the mean value of maximum 

tidal altitudes attained of 1.106 metres from the [0] to [5] results. The decrease in the 
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median value is not so great (at 0.616 metres) between the two simulations, showing that 

the mean value is influenced by the drying out of coastal areas as sea-level is lowered in 

the tidal model. This is clearly shown by the bimodality of the histogram in Figure 6.54. 

The influence of the areas that have 0.0 metre sea-levels as a consequence of their position 

inland from the coast at [5] is also reflected in the increase in the standard deviation from 

its values for [OJ and [2] to 1.359 metres. The general lowering of tidal heights is indicated 

by the reduction of the maximum value for highest tidal altitudes by 0.4 70 metre from [0] 

to [5] and the associated reduction of both the upper and lower quartile values from [0] to 

[5] (Table 6.10). However, the lower quartile's substantial reduction (of circa 1.5 metres) 

between [OJ and [5] must be largely attributed to the number of tide gauges which are dry 

land at [5]. The scatter plot of reduced sea depth simulations against present sea-level 

results (Figure 6.50) indicates a general lowering of maximum tidal altitudes compared 

with both [0] and [2] at [5]. The scatter plot also shows that this lowering is increased 

for some of the originally higher (approximately 4 metre) maximum tidal altitudes, which 

are those found in Morecambe Bay itself. 

Comparison of present sea-level results with those for a simulated lowering of sea-level 

by 10 metres [10] (Figures 6.55 and 6.56) show reduced maximum tidal altitudes compared 

with [0], especially in a line running from the Isle of Man to Cumbria, approximately in 

the same location as that of the spit introduced as Mod. 1 in Chapter 6.4.1. Maximum 

tidal altitudes are increased by over a metre compared with present sea-level results to 

the north of this line, reaching a maximum of over 1. 75 metres difference on the southern 

Scottish coast. In Morecambe Bay the differences in maximum tidal altitudes are between 

0. 75 and 1.25 metre. However, the highest tidal altitudes reached in the model are still 

in the north-eastern part of Morecambe Bay. Drying of the bay at this sea-level means 

that most tide gauge stations are inland, but results for Halfway Shoals in the northern 

entrance to the bay show a co~siderably greater reduction of maximum tidal altitudes at 

this sea-level compared with other simulations. At Halfway Shoals the difference compared 

with present sea-level results is almost 1.0 metre (2.684 metres for [10] and 3.675 metres 
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for [OJ). Between the [5J and [10J simulations, Figure 6.57 shows reductions in maximum 

tidal altitudes of over a metre in the northern part of the model and general reductions 

of between 0.5 and 1.0 metre over the model as a whole. The difference between the [5J 

and [10J simulations at Halfway Shoals, Morecambe Bay, is 0.638 metre (Table 6.9). 

The histogram for the LBM [10] simulation (Figure 6.58) shows even stronger bi­

modality in the data than that for [5J, as more of the model area becomes dry land. The 

mean value (Table 6.10) for maximum tidal altitudes is now nearly two metres below that 

for [OJ. The median value differs from that for the mean by almost 0.5 metre, so drawing 

attention to the bimodality of the data. The standard deviation value, although slightly 

lower than that for [5], remains at over a metre due to the large number of tide gauges 

which have dried out and consequently have zero values for maximum tidal altitudes al­

though those which remain in the sea have maximum tidal altitude values of up to 2.942 

metres (Table 6.10). The upper quartile value of 2.601 metres is also due to the concen­

tration of maximum tidal altitude values between 2.0 and 3.0 metres (Figure 6.58). The 

lower quartile value of 0.0 metres is explained by the large number of tide gauges which 

have dried out at [10J. The scatter plot (in Figure 6.50) shows that all the tide gauge 

locations have much lower maximum tidal altitudes for [10J than [OJ, especially for those 

locations in which maximum tidal altitudes for the [0] simulation were around 3.5 metres. 

By contrast with the increasing amounts of reduction in the maximum tidal altitudes 

noted with lower sea-levels above, maximum tidal altitudes are reduced from [OJ for [15J 

(Figures 6.59 and 6.60) by between only 0.25 and 0.50 metre over much of the model in 

line for those of the [5] simulation compared with [OJ. In Morecambe Bay this change is 

even more marked with maximum tidal altitudes recorded within ± 0.25 metre of those of 

[0]. Greater reductions than 0.75 metre are, however, present at the mouth of the Solway 

Firth in the north-eastern corner of the LBM model. The Wyre Light near the southern 

entrance to Morecambe Bay is the only tide gauge station in the vicinity of Morecambe 

Bay not inland with the [15] simulation. The reverse in the trend of maximum tidal 

altitudes is noted here, with a very slight increase in the maximum tidal altiudes reached 
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compared with those for present sea-level, with figures of 3.890 metres at [15] compared 

with 3.877 metres for [0] at Wyre Light. Between [10] and [15] (Figure 6.61), maximum 

tidal altitudes are increased by as much as 1.204 metres at 35 Irish Sea in the north of 

the model. In general there is an increase in maximum tidal heights from [10] to [15] of 

between 0.5 and 1.0 metres. In the entrance to Morecambe Bay, the Wyre Light shows a 

change from 2.756 metres ([10]) to 3.890 metres ([15]). 

More than half the tide gauge stations in Table 6.9 are dry land with the [15] sim­

ulation, giving a median value of 0.0 metres. This is clearly shown in the histogram 

(Figure 6.62) and acts as a bias on the statistics (Table 6.10). The mean maximum tidal 

altitude value has fallen by almost 0.2 metre from the [10] simulation as a consequence 

of the drying out of the tide gauge stations. The maximum recorded value (from Table 

6.9) for the maximum tidal altitude in the model has risen by nearly a metre from that 

for the [10] simulation to 3.890 metres. The standard deviation has, as a consequence 

of the increase in altitude of maximum tidal heights attained, increased from its value 

for the [10] simulation to 1.503 metres. Figure 6.50 shows that maximum tidal altitudes 

from the [15] simulation are in line with those from the [5] simulation, although for higher 

tidal altitudes (above 3.8 metres maximum tidal altitudes with the [0] simulation), the 

[15] results exceed the heights reached by the [2] simulation where the tide gauge stations 

have not been taken inland from the coast at [15] with the reduction in sea depths. 

Diagrams of differences between successive reduced sea depth simulations best show 

the alterations in the sequence of maximum tidal heights at lower sea-levels. For the [2] 

simulation, subtracting results for [5) shows an overall decrease in the maximum tidal 

altitudes in LBM at the lower sea-level of between 0.20 and 0.30 metre. For the centre 

of Morecambe Bay this difference is increased to between 0.30 and 0.40 metre, as is also 

found along the north Wales coast. Differences in the north-eastern part of Morecambe 

Bay are only of the order of 0.20 metre. 

For comparisons of [5] and [10] results, the differences are greater than between the 
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[2] and [5] simulations. There is also a much greater range of differences in the case of 

comparisons from [5] to [10] results than from [2] to [5] differences. Maximum reductions 

from [5] to [10] are greater than 1.25 metres in the northern part of the LBM model, but 

decrease south-westwards to figures of below 0.25 metre. In Morecambe Bay, reductions 

in tidal altitudes are of the order of 0.75 metre from [5] to [10]. 

Between [10] and [15], differences in maximum tidal altitudes reached in the LBM 

model are in the opposite sense from those of previous sea-level reductions. Maximum 

tidal altitudes increase with the reduction in sea-level from [10] to [15]. Areas where this 

occurs to over 1.25 metres are present in the north of the LBM model. The smallest 

increases in tidal altitudes occur in the southwestern part of the model. In Morecambe 

Bay, there is an increase of maximum tidal altitudes of the order of a metre in the central 

part of the Bay and slightly greater increases in the coastal areas around the edge of the 

Bay. Analysis of variance results (Table 6.14) show greater differences in tidal heights 

between the [0], [2], [5], [10] and [15] simulations than within these simulations. 

There is an overall reduction in maximum tidal heights reached with lower sea-level 

simulations, but the trend is not linear and reverses with the lowest sea-level simulation, 

[15], for which an overall increase in maximum heights is noted in the LBM model. In 

Morecambe Bay, changes are not uniform over the area of the bay and also vary in 

magnitude with each simulation. There is a tendency for greater changes in maximum tidal 

altitudes to occur with the [10] and [15] simulations, for which the present coastal areas of 

Morecambe Bay are inland, but, as with the Wash, the variation within Morecambe Bay 

in the degree of change to maximum tidal altitudes is greatest between [0], [2] and [5]. The 

magnitude of tidal range variations within the model remains similar for all simulations, 

but the base tidal heights on which changes occur are the main cause of change in tidal 

heights, as for the Wash. This is shown in the results from the analysis of variance. 
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Table 6.14. LBM Model: Analysis of Variance Results From Data in Table 6.9. 

Model Simulations: Present Sea-Level, -2, -5, -10 and -15 Metres Sea-Levels 

Mean value for [0] simulation = 3.457 m. 

Mean value for [5] simulation = 2.351 m. 

Mean value for [15] simulation = 1.331 m. 

F = 19.45 Degrees of freedom = 4, 21 

Mean value for [2] simulation = 3.259 m. 

Mean value for [10] simulation = 1.529 m. 

Critical F value for 0.05 probability = 2.84 

A significant difference is shown in the maximum tidal altitudes between the simulations. 

Model Simulations: Present Sea-Level, 5,000 and 8,000 Years B.P. Coastlines 

Mean value for [0] simulation = 3.457 m. Mean value for [5c] simulation = 3.072 m. 

Mean value for [8c] simulation = 2.149 m. 

F = 9.11 Degrees of freedom = 2, 23 Critical F value for 0.05 probability = 3.42 

A significant difference is shown in the maximum tidal altitudes between the simulations. 

Model Simulations: Present Sea-Level, 5,000 Years B.P. and 8,000 Years B.P. Higher 

and Lower Sea-Level Palaeogeographic Reconstructions 

Mean value for [0] simulation = 3.457 m. Mean value for [5p] simulation = 2.349 m. 

Mean value for [8ph] simulation = 1.402 m. Mean value for [8pl] simulation = 0.723 

m. 

F = 22.87 Degrees of freedom = 3, 22 Critical F value for 0.05 probability = 3.05 

A significant difference is shown in the maximum tidal altitudes between the simulations. 

Model Simulations: 5,000 Years B.P. and 8,000 Years B.P. Higher and Lower Sea- Level 

Palaeogeographic Reconstructions 

Mean value for [5p] simulation = 2.349 m. Mean value for [8ph] simulation = 1.402 

m. 

Mean value for [8pl] simulation = 0. 723 m. 

F = 8.38 Degrees of freedom = 2, 23 Critical F value for 0.05 probability = 3.42 

A significant difference is shown in the maximum tidal altitudes between the simulations. 

m. represent metres 
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6.6.3. Comparison of The Wash and Morecambe Bay 

An overall decrease in the maximum tidal altitudes reached is shown for reduced 

sea depth simulations in the Wash and Morecambe Bay. However, in the LBM model 

maximum tidal altitudes are shown to increase for [15] compared with results from [10]. 

Furthermore, there are variations in the overall trend towards reduced tidal altitudes 

within the Wash and Morecambe Bay, shown by the increase in maximum tidal altitudes 

in the southern Wash and decrease in maximum tidal altitudes at the same time in the 

central and northern parts of the bay from [0] to [2], for example. This illustrates that 

a simple linear model of decreasing maximum tidal altitudes with lower eustatic sea­

levels cannot be used within the embayments, emphasising the importance of the study 

of tidal variations within such local coastal areas for different sea-levels. The variations in 

maximum tidal altitudes are accentuated within the Wash and Morecambe Bay compared 

with other areas offshore in the models, showing the greater importance of local changes 

to coastline and bathymetry compared with the effect of sea depth reductions on offshore 

areas with more uniform bathymetry than is found in the coastal zone. 

Eustatic sea-level change is the major factor in determining changes in the land/ sea 

interface altitudes. The relative importance of the tidal factor in comparison with this 

eustatic change is shown by the magnitude of variations of maximum sea-level altitude 

changes with the reduced sea depth simulations. In the Wash, using results from the EC3 

model, there is a decrease by circa 0.6 metre at Roaring Middle from [OJ to [10] showing 

a 6% change in tidal heights compared with the overall eustatic sea-level change. For 

Morecambe Bay, Halfway Shoals and the Wyre Light show decreases of circa 1.0 metre 

from [0] to [10], giving a 10% change in tidal heights with a eustatic fall of sea-level 

of 10 metres. The maximum magnitude of changes to tidal heights at lower sea-levels 

is therefore greater in Morecambe Bay than the Wash. The present altitude of current 

maximum tidal heights is higher in Morecambe Bay than in the Wash, so that there is a 

greater potential for absolute tidal levels to decrease in Morecambe Bay than in the Wash. 

Analysis of variance results show that the variation of maximum tidal altitudes between 
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the results of EC3 and LBM at lower sea-levels converges towards similar tidal ranges in 

each model. 

6. 7. Coastline modifications 

Following the test carried out above, which used sea depth changes as a means of 

assessing tidal changes during the Holocene in the Wash and Morecambe Bay, the coast­

line in the study areas was modified to reflect the changes in shape to the bays during 

the Holocene. The same principle as in the previous section was used in order to deter­

mine which palaeogeographic reconstructions to use in the Wash and Morecambe Bay. 

Palaeogeographic reconstructions of the coastline were entered into the tidal models for 

times when each Bay took on a shape distinctly different in its development following 

post-glacial inundation in the early Holocene from that of its present shape. Thus the 

coastline shape is separated as a factor for study alone permitting the influence of the 

shape of the land/ sea boundary on the tidal regime to be studied and comparison with 

the tidal changes consequent on sea depth reductions studied in Chapter 6.5 above to be 

made. 

Construction of the palaeogeographic coastline of The Wash and Morecambe Bay com­

prised establishing the shape of the former coastline. The shape of the former coastlines 

was drawn using the stratigraphic data to link dated sea-level index points as described 

in Chapter 4.3. The former coastline shapes of the embayments were entered into the 

tidal models (EC3 for the Wash Fenland area and LBM for the Morecambe Bay area) by 

appropriate changes to the labels in the setup data. Sea depths were left at zero water 

depth values for areas beyond the present coastline in the former coastline simulations. 

6. 7.1. The Wash 

The simulations of the shape of the Wash at 3,000, 4,000 and 5,000 years B.P. all show 

a considerable increase on the current area of tidal inundation of the bay, as discussed 

in Chapter 2. The palaeocoastline simulation at 3,000 years B.P. [3c] simulation for EC3 

(Figure 6.63) shows that the area of highest maximum tidal altitudes reached occurs in 
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the area of Skegness and Gibraltar Point, with maximum tidal altitudes decreasing south­

westwards into the Wash towards Roaring Middle and eastwards into the North Sea from 

here. Maximum tidal heights in the southern Wash are between 1.5 and 2.0 metres and 

in the west, between 2.0 and 2.5 metres, whilst in the present Wash bay area, maximum 

tidal heights are over 2.5 metres. 

The descriptive statistics in Table 6.6 show a mean value from tide gauge locations 

for maximum tidal altitudes with the [3c] simulation of 1.910 metres. The median value 

is only slightly higher, at just over two metres and the histogram in Figure 6.64 shows a 

spread of the tide gauge maximum tidal altitude values across most of the classes. This is 

also indicated by the standard deviation of just over 1.0 metre and the lower and upper 

quartiles, which show a fairly even distribution of the data between the minimum value 

of 0.0 and the maximum of 3.527 metres. 

Results from the EC3 model show maximum tidal altitudes reached with the 4,000 

years B.P. coastline [4c] (Figure 6.65) are over 3.0 metres along the northern shore of the 

present Wash bay area and extending southwards to Roaring Middle. Maximum tidal 

altitudes decrease in all directions away from this area, giving altitudes of over 2.0 metres 

along the former northern shore of the bay and declining to just over 1.0 metre in the 

south of the former bay area. 

Figure 6.66 shows that the tide gauges record maximum tidal altitudes in most of the 

classes of the histogram, but with large counts (10 and 9, respectively) recorded in the 1.0 

to 1.5 metre and 2.5 to 3.0 metre classes. The mean value of just over 2 metres (Table 6.6) 

is close to that for the median, which, in conjunction with the evidence of the histogram, 

indicates a fairly even spread of the data around the mean value. The standard deviation 

is just under a metre and the upper and lower quartile results indicate that the maximum 

tidal altitudes reached at the tide gauge locations are generally well spread between the 

minimum of 0.245 metres and the maximum of 3.531 metres, although it is noted that the 

upper and lower quartile results fall within the classes shown to have the largest counts 
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on the histogram. 

The 5,000 years B.P. coastline [5c] in the Wash for the EC3 model (Figure 6.67) 

again shows a situation of maximum tidal altitudes over 3.0 metres along the northern 

and central parts of the Wash and along the Lincolnshire coast to just north of Skegness. 

Tidal altitudes decrease to maximum values of over 1.5 metre in the south of the former 

bay area, but are not reduced below 2.0 metres in the north-western part of the area. 

The descriptive statistics for the [5c] simulation (Table 6.6) show that the mean and 

median values for the maximum tidal heights are almost coincident at just over 2 metres 

so that the mean value almost represents the mid-point of the dataset when the maximum 

tidal altitudes values are placed in rank order. The standard deviation is just under a 

metre, as with the [3c] and [4c] simulations. Like the [3c] and [4c] simulations, the lower 

and upper quartile values, in conjunction with the minimum value (of 0.238 metres) and 

maximum value (of 3.510 metres) suggest that the maximum tidal altitudes reached at 

the tide gauge stations are generally well spread over the dataset, although a gap in the 

0.5 to 1.0 metre class is shown on the histogram (Figure 6.68) with a count of ten in the 

neighbouring 1.0 to 1.5 metre class. 

To illustrate the general trends to maximum tidal changes with the palaeocoastline 

simulations, results for the EC3 model are compared for present sea-level with each of the 

palaeocoastline simulations and between each of these simulations. The broad changes 

which occur are more clearly visible at this scale than with use of the finer WASH model 

grid. 

Subtracting results for [3c] from the [OJ simulation (Figure 6.69) shows a pattern of 

increasing differences (from about 0.5 metre) into the Wash, reaching a maximum of 

above 1.0 metre near Tabs Head. Tide gauge stations give results of 2.877 metres for [3c] 

compared with 3.844 metres for [0] at Tabs Head but only 2.993 metres for [3c] compared 

with 3.296 [OJ at Gibraltar Point. This illustrates the reduction in maximum tidal altitudes 

into the Wash with the [3c] simulation compared with that for the present day. The 
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situation for [OJ minus [4cJ (Figure 6. 70) shows a similar pattern, with differences of 0.5 

metre common in the Wash, rising to over 0. 75 metre near Tabs Head where a slightly 

higher maximum tidal altitude of 3.112 metres is recorded. This is repeated for the [OJ 

minus [5cJ situation (Figure 6.71), but the differences are not so great, averaging between 

0.25 and 0.5 metre in the central part of the Wash, but rising again towards Tabs Head 

though again the difference here is less than for [3c] or [4c] with a maximum tidal altitude 

of 3.112 metres recorded. This pattern suggests that the general trend in the current 

Wash bay area with the palaeocoastline reconstructions has been for a similar pattern 

of tidal changes to be developed with each palaeocoastline simulation, with differences 

from the present sea-level situation decreasing further back in time. The descriptive 

statistics in Table 6.6 show little difference in mean values or the spread of the data 

between the palaeocoastline simulations. A scatter plot of the palaeocoastline simulations 

against present sea-level results (Figure 6.72) only shows significant differences from the 

present sea-level results where present sea-level maximum tidal altitudes are above 3.0 

metres. Where this is the case, tide gauge data for the [3cJ simulation are, almost without 

exception, reduced below 3.0 metre maximum tidal altitudes. This pattern also applies 

to the [4c] and [5c] simulations, but is slightly less marked in these cases. 

The pattern of changes to maximum tidal altitudes is not as simple for comparisons 

between the palaeocoastline simulations as for the situation compared with the present 

day. Differences for the EC3 model for [3cJ minus [4cJ (Figure 6. 73) show little change in 

the area of the present Wash bay, but up to over 0. 75 metre higher maximum tidal altitudes 

were reached in the southern part of the current Fenland area, with larger differences also 

found in the north-west (up to about 0.5 metre). The situation from [4c] minus [5c] results 

(Figure 6.74) shows changes within 0.25 metre over much of the present area of the Wash 

bay, but decreases in maximum tidal altitudes of over 0.25 metre in the inner part of the 

former bay (the present Fenland area) for [5c]. This situation is reversed, however, near 

King's Lynn, where [5c] maximum tidal altitudes increase by over 0. 75 metre compared 

with [4c]. Analysis of variance results (Table 6.13) show smaller variations within the bay 
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than between the different palaeocoastline simulations from comparisons of current tide 

gauge results. 

In summary, maximum tidal altitudes are shown as similar to those of the present in 

the current Wash bay area, but in place of the increase in tidal altitudes into the inner 

bay, the coastline modifications result in a decrease in maximum tidal altitudes into the 

former Fenland area. Between the palaeocoastline reconstructions, the order of changes 

is relatively small (within 0.25 metre), but this pattern is modified locally in the south­

eastern and north-western coastal areas which show decreases to maximum tidal heights of 

over 0.5 metre between the palaeocoastline simulations. The differences between present 

and palaeocoastline variations of maximum tidal heights within the Wash are less than 

the variations in tidal heights within the present day bay area. 

6.7.2. Morecambe Bay 

The coastline at 5,000 years B.P. [5c] in LBM shows maximum tidal altitudes (Figure 

6. 75) in the northern half of Morecambe Bay of over 4.0 metres, with values of between 3.5 

and 4.0 metres in the outer (western) part of the bay. Maximum tidal altitudes decrease 

westwards to around 2.0 metres on the western edge of the model. There is a greater area 

of tidal inundation than for present sea-level in the bay at [5c]. 

The maximum and minimum values of the data, at 4.196 and 0.0 metres, with the 

upper and lower quartile range results and histogram (Figure 6. 76) show that the data are 

concentrated between 2.5 and 4.0 metres with a tailing off to two counts of zero causing 

the difference of 2. 795 metres between the minimum and lower quartile results. Figure 

6. 76, together with the descriptive statistics results in Table 6.10, shows a concentration 

of the maximum tidal altitudes for the LBM [5c] simulation between 2.5 and 4.0 metres. 

Both the mean and median fall in the 3.0 to 3.5 metre class. The standard deviation value 

of just over a metre reflects well this concentration in the distribution. 

For [8c], LBM results show maximum tidal heights (Figure 6.77) above 4.0 metres 

only in the northernmost part of Morecambe Bay, but maximum tidal altitudes over 
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the remainder of the bay area are above 3.5 metres. There is a westwards decrease in 

maximum tidal altitudes to 2.0 metres on the western edge of the model. The coastline 

reconstruction for [8cJ has resulted in a smaller area of tidal inundation than at present 

in the bay. 

The [8cJ simulation has a distinctly bimodal ditribution (Figure 6. 78) due to the inland 

location of a number of tide gauge stations. The mean value has therefore been reduced 

to 2.149 metres. The median value is above this, at 2.959 metres, but again does not 

reflect the concentration of the maximum tidal altitudes from tide gauge locations on the 

coast or further out to sea which record modal values in the 3.0 to 3.5 metre class (Figure 

6. 78). The standard deviation value, at 1.628 metres, reflects the wide spread of the tide 

gauge data from Table 6.9 between the minimum value of 0.0 and the maximum of 3.942 

metres. This is also shown in the wide interquartile range of 3.451 metres. 

Results of LBM are compared with [OJ situation and between the two palaeocoastline 

simulations, as was done for EC3 in the Wash. Comparisons with the present-day situation 

for [5cJ (Figure 6.79) show reductions of maximum tidal altitudes of up to 0.5 metre in 

the northern part of Morecambe Bay with a maximum change of 3.675 metres [OJ to 2. 730 

metres [5cJ at Halfway Shoals. There is a strong gradient of change into the northern part 

of Morecambe Bay, with much of Morecambe Bay showing reductions in maximum tidal 

heights typical of the changes in the Irish Sea of less than 0.1 metre such as the change 

from 3.877 metres [OJ to 3. 779 metres [5cJ at the Wyre Light. Maximum tidal heights are 

reduced by up to 0.2 metre in the Solway Firth area, but the changes in Morecambe Bay 

are by far the greatest in the model area. 

Compared with the present day situation, results for LBM of the 8,000 year coast­

line (Figure 6.80) show reductions of maximum tidal altitudes of up to 0.5 metre in the 

northern part of Morecambe Bay with a change from 4.155 metres [OJ to 3.942 metres 

[8c] at Morecambe. The changes to tidal heights within Morecambe Bay are more ex­

tensive than for the present sea-level at [8c], with the whole of the eastern and southern 
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half of Morecambe Bay showing reductions of maximum tidal altitudes of at least 0.1 to 

0.2 metre. The maximum tidal height reductions in the Irish Sea and the north-eastern 

part of Morecambe Bay are again less than 0.1 metre, as for the [OJ minus [8c] situation, 

although in this case there are areas of less than 0.1 metre increase in maximum tidal 

heights in the western part of the LBM model and near the Wirral. The scatter plot in 

Figure 6.81 shows that in general there is a slight decrease in maximum tidal altitudes 

reached in the palaeocoastline simulations compared with that for the present day, but in 

two cases maximum tidal altitudes with both the [5c] and [8c] simulations are reduced by 

more than a metre. 

Differences between the [5c] and [8c] model simulations (Figure 6.82) show that re­

ductions in maximum tidal altitudes are greatest in the southern part of LBM, typically 

around 0.2 metre reduction from the [5c] situation at [8c], compared with increases in 

maximum tidal heights of the same order in the north of the model. Morecambe Bay 

reflects this pattern in miniature, with reductions in tidal altitudes of the same order as 

in the Irish Sea in the southern part of the bay and increases in the northern areas of both. 

Analysis of variance results (Table 6.14) show greater variation in tidal heights within the 

model than between results for the different palaeocoastline simulations. 

In summary, maximum tidal altitudes are reduced compared with the present for 

both simulations. There is a greater area of maximum tidal altitudes above 4.0 metres in 

Morecambe Bay for [5c] than for [8c]. The overall change in maximum tidal altitudes is 

of the order of 0.1 to 0.2 metres between [0] and [5c] and [8c] simulations, but changes 

are up to 0.5 metre in the north-eastern parts of Morecambe Bay and also reach greater 

values than 0.1 to 0.2 metres in other embayments, such as the Solway Firth. 

6.7.3. Comparison of The Wash and Morecambe Bay 

The range of maximum tidal altitudes reached in both bays with the palaeocoastline 

simulations remains similar to those of the present day. Differences are accentuated in 

the areas of highest maximum tidal heights in the present inner bay areas. In the case of 
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the Wash, where tidal inundation occurs over a considerably greater area than at present 

for [3c], [4c] and [5c], the pattern of tidal heights in the former bay differs from the [OJ 

situation in which an increase in tidal heights further into the bay is evidenced. For each 

of [3c], [4c] and [5c] there is a decrease into the inner bay areas of maximum tidal altitudes. 

In Morecambe Bay, however, the inner bay area remains as with the present day situation. 

Changes in the coastline for [5c] and [8c] applied in this case do not increase or decrease 

the area of tidal inundation to the extent of the simulations carried out for the Wash. 

Differences between the present day and palaeocoastline simulations for both the Wash 

and Morecambe Bay in the range of maximum tidal altitudes are less than the differences 

in the range within each embayment. The analysis of variance results do not take into 

account the tidal heights in the Fenland area in the Wash model which is inundated for 

[3c], [4c] and [5c]. In this area there are no tide gauge stations to provide comparative 

results. This part of the Wash does show significantly lower maximum tidal altitudes than 

are shown in the present Wash bay. Differences in maximum tidal altitudes are greater 

within both embayments than between the palaeocoastline reconstructions, but where 

there is a considerably greater area of inundation (shown in the Wash for [3c], [4c] and 

[5c]), the range in maximum tidal altitudes within the embayments increases considerably 

over that of the present day. 

6.8. Palaeogeographic reconstructions 

A more realistic assessment of tidal variations during the Holocene may be made from 

combining the palaeocoastlines with bathymetric data for the former sea-level in question. 

Problems with obtaining such palaeo-sea depth data were noted in Chapter 2 above due 

to the lack of datable geological evidence for sea-levels from offshore locations, but an 

attempt is made here is simulate the palaeotidal regime of the Wash and Morecambe Bay 

using estimates of former sea depths from eustatic and isostatic land/ sea level changes 

modified within the embayments using the available stratigraphic data for the embayments 

during the Holocene. 
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In order to obtain the palaeogeography of the embayments, the same palaeocoastline 

reconstructions were used as in Chapter 6. 7 above, but with modifications to sea depths 

within the areas of the EC3 and LBM models. Sea depth modifications were made using 

information from the stratigraphy to suggest the locations of river channels prior to marine 

inundation of the embayments. In these former channels, sea depths were increased com­

pared with the surrounding areas. Elsewhere, water depths were estimated using isostatic 

land movements (after Shennan, 1987, 1989) to modify the altitude of the existing land 

surface. Beyond this, eustatic sea-levels were also added in to the changes in sea depths 

to give the palaeogeographic sea depths used. The resulting palaeogeographic sea depths 

were described in Chapter 4 and shown in Figures 4.8-4.10 and 4.13-4.15 for the EC3 and 

LBM models. The sea depth and label data for the palaeogeographic reconstructions of 

all the models is given in Appendix 6.1. 

6.8.1. The Wash 

Results for palaeogeographic simulations were obtained from both the EC3 and WASH 

models for this area. Results are presented first for the EC3 model and then for the 

WASH model. The differences between the results for the models at different resolutions 

are noted. 

For the palaeogeographic reconstruction at 3,000 years B.P. [3p] with the EC3 model 

(Figure 6.83), maximum tidal heights in most of the Wash are between 2.5 and 3.0 metres, 

with areas of lower heights (by up to 0.5 metre) around the Hunstanton, King's Lynn, 

Roaring Middle area. The pattern of maximum tidal heights remains similar to that of 

the present day in the North Sea area .. Differences show maximum tidal heights up to 1.5 

metres lower in the southern half of the Wash area compared with present sea-level results 

(Figure 6.84), with a change from 3.844 to 2.590 metres at Tabs Head, for example. The 

corresponding differences are less in the northern part of the Wash, generally within 0.5 

metre of present sea-level results, as illustrated by the change from 3.296 for [OJ to 2. 700 

metres for [3p] at Gibraltar Point. 
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Descriptive statistics (Table 6.6) give a mean value for maximum tidal altitudes from 

the data in Table 6.5 of 1.822 metres for the EC3 model with the [3pJ simulation. The 

median is slightly higher at 2.069 metres and the 0.0 metres minimum value, maximum 

of 3.184 metres and the histogram (Figure 6.85) show that the mean and median results 

have been influenced by the four tide gauge stations which are inland from the coast for 

this simulation. The upper and lower quartile results (2.672 metres and 1.222 metres) 

give a better indication of the distribution of the data for tide gauge stations reached by 

the sea with the [3pJ simulation. The scatter plot (Figure 6.86) shows a general decline 

in maximum tidal altitudes, especially where these were above 2.5 metres for the [OJ 

simulation where reductions are of a metre or more. There is, however, a tendency for 

some of the highest maximum tidal altitudes (above 3.5 metres for the present sea-level 

simulation) to show smaller reductions in maximum tidal altitudes than the maximum 

tidal altitudes which were between 2.5 and 3.5 metres for the [OJ simulation. 

The WASH model results (Figure 6.87) show a much greater range of changes than is 

apparent from the EC3 model. There is a range of approximately 1.0 metre in maximum 

tidal heights within the Wash for [3p], with maximum tidal heights of over 3.0 metres 

in the south of the former embayment and in the northern half of the present Wash bay 

area, with a figure of 2.923 metres for maximum tidal altitudes at Gibraltar Point, for 

example, compared with 3.471 metres for the present day. In the central part of the 

current Fenland area, however, maximum tidal altitudes are shown to be typically of the 

order of 2.0 metres. Compared with the present day simulation (Figure 6.88) maximum 

tidal altitudes are shown to decrease in the present Wash embayment area by over a metre. 

For example, the decrease in maximum tidal altitudes from [OJ to [3pJ at West Stones is 

1.389 metres and that at Roaring Middle is 1.151 metres. 

The [3pJ simulation shows mean maximum tidal altitudes of 2.605 metres, close to the 

median value of 2.616 metres. The histogram (Figure 6.89) shows that all the locations 

record maximum tidal altitudes in two class, namely 2.0 to 2.5 metres and 2.5 to 3.0 metres 

above mean sea-level. The minimum and maximum values within these classes are 2.263 
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and 2.960 metres. This lack of spread in the data is mirrored in the standard deviation 

of 0.214 metres and upper and lower quartile values of 2.744 metres and 2.456 metres, 

respectively. The scatter plot (Figure 6.90) shows that the maximum tidal altitudes 

recorded in the Wash for [3pJ fall well below those from the [OJ simulation and that this 

trend increases for higher maximum tidal altitudes (above 3.5 metres in the [OJ simulation). 

The increased detail of the palaeogeographic simulation for the WASH model high­

lights the maximum tidal altitude changes. Whereas the broad pattern for both EC3 and 

WASH shows decreasing maximum tidal altitudes into the current Fenland area, only the 

WASH model shows the modification of this towards increased tidal altitudes in the south 

of the former embayment and the lowering of tidal altitudes in the central Fenland area, 

together with decreases of over a metre in maximum tidal altitudes at [3pJ compared with 

the [OJ simulation in the area of the present embayment. 

Results of the 4,000 years B.P. [4pJ palaeogeographic simulation for EC3 (Figure 6.91) 

show maximum tidal altitudes between 2.0 and 2.5 metres in the greater part of the bay 

area, but increases above these figures are shown in the southernmost and northwestern­

most parts of the former Fenland area. Comparisons with present sea-level results show 

the greatest differences in the inner half of the embayment, with [OJ simulation results over 

1.5 metre higher than results from [4p]. Taking comparison for Tabs Head in the western 

Wash and Gibraltar Point on the northern coastline, results for [OJ compared with [4pJ 

(Figure 6.92) show changes from 3.844 to 2.263 and from 3.296 to 2.488 metres, respec­

tively, illustrating the magnitude of changes. Changes from [3pJ to [4pJ (Figure 6.93) show 

decreases in maximum tidal altitudes of approximately 0.3 metre in the present Wash em­

bayment with smaller changes (less than 0.1 metre) beyond the mouth of the Wash in 

the North Sea. The scatter plot (Figure 6.86) shows that a much greater reduction in 

maximum tidal altitudes is .recorded between the [OJ and [4pJ simulations than between 

the [OJ and [3p] simulations, with the decrease in maximum tidal altitudes from [0] again 

substantially increased where [0] maximum tidal altitudes are over 3.0 metres. 
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The highest maximum tidal altitude recorded in Table 6.5 is just over 3.0 metres for 

the [4p] simulation. The minimum is 0.221 metres, but the lower and upper quartile 

values (1.195 metres and 2.467 metres) reflect the spread of most of the data, as shown 

in the histogram in Figure 6.94. The standard deviation at 0.750 metres around the 

mean of 1.807 metres also indicates that most of the maximum tidal altitudes for the [4p] 

simulation fall between 1.0 and just over 2.5 metres. 

The Wash model for [4p] (Figure 6.95) shows a very complicated pattern of maximum 

tidal altitudes and some drying out of areas in the Fenland. The presence of these 'islands' 

may be indicative of the poor estimate of the bathymetry for the Wash at this time in that 

the depths used in the tidal model were insufficient for tidal inundation of these areas. No 

geological evidence is available, however, to test this suggestion. Maximum tidal altitudes 

in the present Wash bay area are about 3.25 metres, considerably (greater than 0. 75 

metre) higher than those shown for the EC3 model at this time. The palaeogeographic 

reconstruction shows marine inundation of a number of embayments in the present Fenland 

area in the Wash model. The pattern of maximum tidal heights reached in these Fenland 

bays is complicated, with increases in tidal altitudes (of 0.25 metre or more) occurring 

towards the western end of some of these, but no increases of maximum tidal altitudes 

occurring in others. Overall, there is a variation in the maximum tidal altitudes reached 

of approximately 1.0 metre within the Wash embayment as shown at 4,000 years B.P. 

Compared with the present sea-level maximum tidal altitudes, results for the WASH 

model for [4p] (Figure 6.96) indicate reductions of over 0.5 metre in the present Wash 

embayment area, but smaller reductions (only 0.1 or 0.2 metre) beyond the mouth of the 

Wash. The magnitude and spatial variation of the maximum tidal altitudes shown in 

the results of the WASH model are considerably greater than that for the EC3 model. 

Maximum tidal altitudes in the present Wash area are higher at [4p] than those recorded 

for [3p] (Figure 6.97), with increases from 2.923 metres at [3p] to 3.239 metres at [4p] at 

Gibraltar Point, for example, and corresponding figures of 2.586 and 3.274 metres at Tabs 

Head. 
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The histogram (Figure 6.98) shows that maximum tidal altitudes are concentrated 

between 2.5 and 3.5 metres for locations not inland of the coastline at [4p]. The mean value 

is approximately 0.2 metre below that for the median as a consequence of the influence of 

drying out at one location for the [4p] reconstruction. Highest maximum tidal altitudes 

are, however, 0.367 metres higher for [4p] than [3p]. The standard deviation is influenced 

by the inland location of one point used in the analysis, but the upper and lower quartiles 

( 3.265 and 2.876 metres) provide a better reflection of the distribution of maximum tidal 

altitudes for [4p]. The scatter plot (Figure 6.90) shows a reduction in maximum tidal 

altitudes compared with present, but by a lower amount than that for the [3p] simulation, 

in contrast with the EC3 model [4p] results which suggested that maximum tidal altitudes 

were reduced further at [4p] than [3p]. 

The 5,000 years B.P. palaeogeography results [5p] for the EC3 model (Figure 6.99) 

show maximum tidal altitudes of 2.5 to 3.0 metres in the Wash, with again little change to 

the tidal patterns of the North Sea. Maximum tidal altitudes are within the range of 2.5 

to 3.0 metres over most of the area of the former Wash embayment, increasing to just over 

3.0 metres in the southernmost parts of the current Penland area. Comparison of results 

for Tabs Head and Gibraltar Point with present sea-level results (Figure 6.100) shows 

reductions from 3.844 to 2.855 and from 3.296 to 2.842 metres, respectively, indicating 

the order of the reductions to be approximately a metre in the inner Wash area and 0.5 

metre by the mouth of the Wash. 

The difference between the [4p] and [5p] simulations (Figure 6.101) shows that max­

imum tidal altitudes are slightly higher for [5p] than [4p] across the model area, with 

maximum differences in the Tabs Head and Roaring Middle areas of the inner part of the 

present Wash embayment. This is also clearly seen from the scatter plot (Figure 6.86) in 

which [5p] maximum tidal altitudes are shown as higher than those for [3p]. The scatter 

plot does, however, show the same general trend with decreases of up to about a metre 

from present sea-level maximum tidal altitudes for [5p] where present sea-levels recorded 

maximum tidal altitudes above 3.0 metres. The mean value for maximum tidal altitudes 
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from the [5p] simulation is (Table 6.6) 1.970 metres, close to the median value. The data 

range from 0.196 metres to 3.171 metres, but are concentrated within the upper and lower 

quartile range from 2. 752 to 1.270 metres, as is shown by the histogram (Figure 6.102). 

Results for [5p] of the WASH model (Figure 6.103) show a more complicated pattern 

than for EC3 as with the other palaeocoastline simulations. In general, maximum tidal 

altitudes recorded are less than for [4p], but slightly greater than with [3p]. WASH model 

results for [5p] are higher in the outer bay and lower in the inner part of the present bay 

than recorded for [5p] with the EC3 model. Results at Tabs Head and Gibraltar Point 

with WASH for [5p] are 2.674 and 3.010 metres for maximum tidal altitudes for the WASH 

at [5p], for example. 

Compared with the present sea-level simulation, the [5p] results (Figure 6.104) show 

decreases of maximum tidal altitudes which increase further into the present Wash em­

bayment, reaching 1.230 metres at West Stones. Between the [4p] and [5p] simulations, 

Figure 6.105 shows that decreases of about 0.5 metre occur in maximum tidal altitudes 

in the southern part of the present Wash embayment, although these differences are only 

about 0.2 metre at the northern entrance to the Wash. 

The histogram for the WASH model [5p] simulation (Figure 6.106) shows that maxi­

mum tidal altitudes are concentrated around the mean value of 2.824 metres, with maxi­

mum and minimum values of 3.114 and 2.564 metres (Table 6.8). The standard deviation 

of 0.158 metre and the upper and lower quartiles suggest that most of the maximum tidal 

altitudes are very close to the mean value indeed. 

6.8.2. Morecambe Bay 

The LBM model shows an east to west decrease in maximum tidal altitudes for the 

5,000 years B.P. palaeogeographic simulation [5p] (Figure 6.107), as is also shown for 

the present day. Maximum tidal heights reached are not so great, however, for the [5p] 

simulation as for [OJ (Figure 6.108), with heights reaching maximum values of 3.5 metres 

in the eastern part of the model, approximately 1.0 metre lower than present sea-level 
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results for Morecambe Bay. The lack of tidal inundation in Morecambe Bay over as great 

an area is indicated by the sea-level index point data which record the former coastline 

as surrounding a greater area of sea than for the present day situation. This may be 

attributed to poor representation of bathymetry due to lack of knowledge of exact sea 

depth values for 5,000 years B.P. Tide gauge station results show a reduction from 4.022 

to 2.974 metres at Heysham, but only a change from 3.877 to 3.738 metres at the Wyre 

Light at the entrance to the bay. Figure 6.109 shows that the scatter plot of [5p] results 

against those for the [0] simulation indicate lower maximum tidal altitudes for [5p] than 

[0], but with a large variation in the amount of the lowering. 

Statistical results (Table 6.10) show that mean maximum tidal altitudes are 2.349 

metres, below the median value of 2.972 metres. This difference is explained by the 

histogram (Figure 6.110) which shows that a large number of tide gauge locations (seven) 

are inland from the coast at [5p]. There is a large spread in non-zero maximum tidal 

altitudes recorded, which reach a maximum of 3.750 metres at New Brighton. 

Figure 6.111 shows that Morecambe Bay is largely dry in the MBM model [5p] sim­

ulation. There is, however, a very large increase in maximum tidal altitudes just south 

of Morecambe Bay along the Lancashire coast, where maximum tidal altitudes in an em­

bayment formed at this sea-level are over 12 metres in one location and above 5 metres 

in others. It appears that resonance (discussed in Chapter 3) may be important here in 

causing such large tidal heights. Much of Morecambe Bay itself, however, is dry with the 

[5p] simulation. The Wyre Light is not dry, though, and a reduction of maximum tidal 

altitudes from 4.162 [OJ to 3.828 metres [5p] is recorded here. This decrease clearly shows 

the higher altitudes of the finer grid model results as present sea-level results for LBM are 

only tens of centimetres higher than the [5p] result at the Wyre Light for MBM. 

Comparison of results for [5p] with [0] (Figure 6.112) indicates a general reduction of 

about 0.2 metre in maximum tidal heights in the Irish Sea. However, extensive areas of 

the inner part of the bay are dry land and where drying out has not occurred maximum 
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tidal altitudes are, in general, reduced by the order of at least 0.5 metre in the Bay at 

[5pJ. The scatter plot (Figure 6.113) shows that the three locations which are not dry 

(Table 6.11) have maximum tidal altitudes reduced by about 0.5 metre from those for 

[OJ. The histogram (Figure 6.114) shows that the locations which are not dry all have 

maximum tidal altitudes within the 3.5 to 4.0 metre class. In view of the bias to the 

descriptive statistics resulting from the drying out of so much of the model, the maximum 

tidal altitudes shown by the histogram must be taken as a best estimate of the heights 

reached over the model area as a whole. 

The 8,000 year B.P. palaeogeographic reconstructions were made using two sets of sea 

depth data due to the uncertainty of error in sea-level index point altitudinal data at this 

time noted by Shennan (1987). The details of the sea depths used in these are given in 

Chapter 4 and shown as used in the tidal models in Appendix 6.1. 

LBM model results for the higher sea-level at 8,000 years B.P. [8phJ (Figure 6.115) 

show maximum tidal altitudes over 3.5 metres in the area of Morecambe Bay, with the 

pattern of maximum tidal altitudes decreasing westwards, as for present sea-level. The 

greater part of the current area of Morecambe Bay is dry land at this sea-level, but results 

at the Wyre Light show a decrease from 3.877 to 3. 768 metres in maximum tidal altitudes 

from [OJ to [8phJ. Figure 6.116 shows that maximum tidal altitudes are generally reduced 

by between 0.1 and 0.2 metre from [OJ to [8ph]. The difference of the [8ph] simulation 

with that for [5pJ is shown (Figure 6.117) to vary considerably around the model. There 

is virtually no difference in the maximum tidal altitudes for [5pJ to [8phJ at the Wyre 

Light, whereas an increase of 0.874 metres is shown at Halfway Shoals. Slightly reduced 

maximum tidal altitudes between the two simulations are, however, evident over much 

of the model. The scatter plot in Figure 6.109 shows the general reduction in maximum 

tidal altitudes for [8phJ compared with [OJ and [5p], but also considerable variation from 

place to place in the amount of the difference. 

' More than half of the stations used in the statistical analyses are inland from the 
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coast at [8phJ, as Figure 6.118 illustrates. The remaining locations record maximum tidal 

altitudes varying from 2.0 to 4.0 metres, according to the histogram. The highest recorded 

maximum tidal altitude is 3. 768 metres at the Wyre Light, in the entrance to Morecambe 

Bay. 

MBM model results for [8phJ (Figure 6.119) give maximum tidal altitudes of about 

3. 7 metres in the inner part of the bay which is still subject to inundation at this sea-level, 

indicating reductions of the order of 0.75 metre compared with present sea-level results 

for the same area (Figure 6.120). Compared with the [5pJ simulation, Figure 6.121 shows 

a general reduction of 0.2 metre in maximum tidal altitudes. The scatter plot (Figure 

6.113) shows a reduction in maximum tidal altitudes for the [8phJ simulation beyond that 

for [5pJ compared with [OJ results. 

Almost all the locations used in constructing the histogram for the MBM [8phJ sim­

ulation (Figure 6.122) are inland from the coastline at [8phJ. Those that remain have 

maximum tidal altitudes between 3.399 and 3. 704 metres. In view of the large amount 

of drying out of the locations used to obtain the descriptive statistics the usefulness of 

these statistics is very limited, other than showing the highest recorded maximum tidal 

altitude. 

The lower sea-level simulation at 8,000 years B.P. shows that only the mouth of the 

current Morecambe Bay is not dry land in the LBM model (Figure 6.123). The LBM 

model shows maximum tidal altitudes at the mouth of the current Morecambe Bay as 

over 3.5 metres, as with the simulation using the higher sea-level at 8,000 years B.P. 

There is a similar pattern of decrease westwards of maximum tidal altitudes in the Irish 

Sea as for [8ph], but lower maximum tidal heights are shown in the north of the model 

area, between the Scottish coast and the Isle of Man with the reduced sea-level in the 

model. Compared with the [OJ simulation (Figure 6.124), reductions in maximum tidal 

altitudes increase from south to north in the model, reaching 0.632 metre at 35 Irish Sea. 

Differences with the [5pJ simulation (Figure 6.125) reach 0.757 metre at the same location 
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and 0.427 metre in comparison with the [8ph] simulation (Figure 6.126). Figure 6.109 

shows that maximum tidal altitudes for [8pl] vary widely in comparison with those for [0], 

but show reductions in maximum tidal altitudes in almost all cases. 

The histogram (Figure 6.127) is a better indicator of the variation in maximu tidal 

altitudes for those tide gauge stations which are not inland from the coast at [8pl] than the 

descriptive statistics, which are strongly influenced by the zero maximum tidal altitudes 

recorded for the tide gauge stations that have dried out. The highest maximum tidal 

altitude recorded is 3.071 metres and the histogram shows that the remaining maximum 

tidal altitudes fall within the range of 2.0 to 3.5 metres on the histogram. 

The whole of the MBM model is dry for the [8pl] sea-level, as is shown by the nd the 

scatter plot in Figure 6.113. This is also shown by the scatter plot in Figure 6.113. 

6.8.3. Comparison of The Wash and Morecambe Bay 

Maximum tidal altitudes are reduced in the palaeogeographic model reconstructions 

compared with the present day results in the embayments. Comparisons by analysis of 

variance in the present area of the Wash bay using EC3 results show that the range in 

maximum tidal altitudes reached within this area does not differ significantly compared 

with the changes for the palaeogeographic reconstructions (Tables 6.13 and 6.15). The 

diagrammatic results suggest that it is the pattern of maximum tidal altitudes within 

the embayments which shows the most change from the present day situation. An overall 

decrease of about 0.5 metre in maximum tidal altitudes in the present Wash bay is noted by 

comparison with the present day situation. In the inundated Fenland area, the maximum 

tidal altitudes reached vary to a greater extent in more local patterns than is shown by 

the present day results in the Wash bay. The difference between the [5p] results for the 

EC3 model and the [5p] results from the WASH model suggests that local coastline and 

bathymetric changes may be very important in obtaining accurate results as the greater 

detail of the WASH model shows, in this instance, that the scale of the simulation can 

influence the results. 
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Table 6.15. WASH Model: Analysis of Variance Results From Data in Table 6.7. 

Model Simulations: Present Sea-Level, 3,000, 4,000 and 5,000 Years B.P. Palaeo­

geographic Reconstructions 

Mean value for [0] simulation = 2.266 m. Mean value for [3p] simulation = 2.605 m. 

Mean value for [4p] simulation = 2.868 m. Mean value for [5p] simulation = 2.824 m. 

F = 1.08 Degrees of freedom = 3, 10 Critical F value for 0.05 probability = 3. 71 

No significant difference is shown between the maximum tidal altitudes in the simulations. 

Model Simulations: 3,000, 4,000 and 5,000 Years B.P. Palaeogeographic Reconstruc­

tions 

Mean value for the [3p] simulation = 2.605 m. 

2.868 m. 

Mean value for the [5p] simulation = 2.824 m. 

Mean value for the [4p] simulation = 

F = 1.77 Degrees of freedom= 2, 11 Critical F value for 0.05 probability= 3.98 

No significant difference is shown between the maximum tidal altitudes in the simulations. 

m. represents metres 
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Table 6.16. MBM Model: Analysis of Variance Results From Data in Table 6.11. 

Model Simulations: Present Sea-Level, 5,000 Years B.P. and 8,000 Years B.P. Higher 

and Lower Sea-Level Palaeogeographic Reconstructions 

Mean value for the [OJ simulation = 4.24 7 m. 

0.799 m. 

Mean value for the [5p] simulation = 

Mean value for the [8ph] simulation = 0. 761 m. Mean value for the [8pl] simulation = 
0.000 m. 

F = 40.97 Degrees of freedom = 3, 10 Critical F value for 0.05 probability = 3. 71 

A significant difference is shown between the maximum tidal altitudes for the simulations. 

Model Simulations: 5,000 Years B.P. and 8,000 Years B.P. Higher and Lower Sea-Level 

Palaeogeographic Reconstructions 

Mean value for the [5p] simulation = 0. 799 m. 

0.761 m. 

Mean value for the [8pl] simulation = 0.000 m. 

Mean value for the [8ph] simulation = 

F = 1.06 Degrees of freedom = 2, 11 Critical F value for 0.05 probability = 3.98 

No significant difference is shown between the maximum tidal altitudes for the simulations. 

m. represents metres 
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The considerable drying out of Morecambe Bay using the palaeogeographic recon­

structions makes use of tide gauge station analysis of variance on the changes within the 

bay compared with the present day situation difficult, however, this is presented together 

with analysis of variance between the palaeogeographic simulations excluding the present 

day simulation to give an indication of the changes between the simulations (Table 6.16). 

Table 6.14 gives the analysis of variance results for LBM. However, the general tendency 

is for reduced maximum tidal heights at earlier times in the Holocene. The increase in 

maximum tidal altitudes along the Lanca,shire coast south of Morecambe Bay at [Sp] (to .. 
heights of over 12 metres in one location) shows, as with the [Sp] simulation differences 

between the WASH and EC3 models that the scale of the simulation may play an impor­

tant part in the results. The results from [Sp] and [8ph] and [8pl] for Morecambe Bay 

suggest that considerably greater knowledge of the palaeobathymetry is needed for this 

area, as is discussed in more detail below. 

6.9. Discussion 

Austin (1991) noted six ways in which tidal model validation for the tidal regimes 

at former sea-levels may be attempted. He noted that results of changes to tides shown 

indicate much lower tidal changes compared with historical changes shown by tide gauges. 

Woodworth et al. (1990) presented data showing trends of similar magnitude for changes 

of mean tide and mean sea-levels for some European tide gauges. However, the absolute 

magnitude of the tide gauge trends, measured in centimetres, is lower than some of the 

changes in maximum tidal heights found in this study. Results presented in this Chapter 

concur with those of Austin (1991) in noting tidal changes of lower orders of magnitude 

compared with mean sea-level changes. 

Historical changes to tidal patterns at different sea-levels occur on different temporal 

and spatial scales from those studied in this thesis which extend over thousands of years 

and tens of kilometres in the changes in spatial extent of marine inundation. The other 

major category of evidence indicative of palaeotidal heights which may be used to validate 
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model results is that of sedimentary evidence. 

Use of sedimentary evidence in palaeotidal work was discussed in Chapter 1. Such data 

may be used to derive direct indications of former tidal heights or indications of other 

aspects of tidal changes. Coarse grained sandy material is indicative of higher current 

speeds than clay and silt deposits, whilst changes to the faunal and floral populations 

of nearshore areas occur with different salinity levels and lengths of tidal inundation, 

for example. In this thesis, examination of tidal changes is confined to the alterations 

in mean high water of spring tides, taken as equivalent to the maximum tidal altitudes 

derived from the tidal models of the Wash and Morecambe Bay run for a fifteen day 

period. Testing of model results is therefore undertaken by comparison with the altitude 

of sea-level indicators of mean high water of spring tides. 

6.9.1. The Wash 

The age/altitude graphs of Shennan (1987, 1989) show a decrease in altitude for older 

sea-level index points in the Wash Fenland. Shennan accounted for this trend by post­

glacial isostatic subsidence of the area. However, in detail there are variations in the 

altitude of sea-level index points within the Fenland for any given time, which may partly 

reflect tidal changes within the local area. 

In the Wash Fenlands at 3,000 ± 200 years B.P. (taken as the standard error for 

radiocarbon dates, following Shennan (1989)), dated index points (from Appendix 4.3) 

vary by almost three metres from depths of -1.93 metres 0. D. (date reference Q2599) to 

+0.95 metres O.D. (date reference HV8644). For 4,000 ± 200 years B.P. the range is from 

-4.15 metres O.D. at Weiland Wash for an assay from Cambridge University (referenced 

as WW4C) to -0.12 metres O.D. (date reference Q2565), showing an increase to four 

metres in the altitudinal range of the sea-level index points at this time. At 5,000 ± 200 

years B.P., dated points vary from -5.83 metres O.D. (date reference IGS121) to -3.04 

metres O.D. (date reference Q580). The number of dates available at different times varies 

as was shown in Figure 4.5 and discussed in Chapter 4. 
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Results from the palaeotidal simulations for reduced sea depths, coastline changes 

and palaeogeographies of the area corresponding to 3,000, 4,000 and 5,000 years B.P. may 

be compared with the pattern of sea-level index point altitudes at those times to assess 

the quality of reproduction of maximum tidal height changes shown by the models. The 

number of sea-level index points available is insufficient for comparisons of within-bay 

tidal changes for earlier periods in the Holocene. 

Higher altitudes of sea-level index points (such as that at Chapel Point on the east 

Lincolnshire coast, date reference Q844) occur in the north of the Fenland area at about 

3,000 years B.P., with lower altitudes in the western part of the area at Morten Fen (date 

reference Q2599, for example). Southern Fenland results, such as that at Welney Wash 

(date reference Q2820), are also low. For the period 4,000 ± 200 years B.P., sea-level 

index point altitudes are again higher in the north, such as that at Chapel Point (date 

reference Q685) compared with the southern and western Fenland results, those of Wood 

Fen, Ely, and Adventurers' Land (date references Q544 and SRR1589) being cases in 

point. Around 5,000 years B.P., the Spalding results (e.g. date references IGS119 and 

IGS121) show lower altitudes in Lincolnshire than are found in Cambridgeshire to the 

south (at Shippea Hill, date reference Q581, for example). 

The present sea-level variations in the Wash show increases in maximum tidal altitudes 

into the inner part of the bay near Tabs Head. Reduced sea-levels of two metres showed 

decreases of less than 0.10 metre in maximum tidal altitudes in the north and west of the 

present bay area, but increases of the order of 0.20 metre in the south. These results are 

within the error band of ± 0.80 metre established for the accuracy of the tidal models at 

the present day, but the tendency of higher maximum tidal altitudes in the north of the 

Wash area which they show is reflected in the sea-level index point altitudinal variations 

in the Fenland. 

Palaeocoastline simulations show greater absolute changes in maximum tidal heights 

within the Wash than the simulated reduction of sea-level lowered by two metres from 
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the present level. The general pattern of maximum tidal height changes again accords 

well with the areas of higher and lower sea-level index points around the Fenland, but the 

tendency for differences of the tidal regime to decrease, compared with the present day 

situation, further back in time does not concur with the changes in sea-level index point 

altitudes which decrease at a greater rate earlier in the Holocene. Sediment compaction, 

affecting the altitude of sea-level index points, may be an influence in this pattern. It 

should be noted again, though, that the tidal altitude changes of less than 1.0 metre for 

the palaeocoastline simulations compared with the present day situation are within the 

model error assessment figures. 

Palaeogeographic simulations show a complicated pattern of variation of maximum 

tidal altitudes within the Wash Fenland, making comparisons with sea-level index point 

altitude changes more difficult. The series of embayments shown for 4,000 years B.P., some 

with changes of maximum tidal altitudes locally of 0.5 metre, is a particular problem. The 

overall tendency is, however, for higher maximum tidal altitudes in the north of the former 

Fenland and the lowest results in the west, reflecting the spatial variation in the altitudinal 

distribution of the sea-level index points. For many parts of the present Wash bay the 

tidal changes shown with the palaeogeographic reconstructions are still within the error 

band of ± 0.80 metres for the accuracy of the present sea-level maximum tidal height 

patterns. 

6.9.2. Morecambe Bay 

Shennan's (1987, 1989) graphs show an exponential increase in the altitude of sea­

level index points for Morecambe Bay towards the early Holocene, the trend of which is 

accounted for by post-glacial isostatic uplift of the area. The variations on this trend 

may reflect neotectonic movements, tidal changes or other factors (Tooley, 1987). The 

contribution of tidal variations is assessed below. 

Within 200 years of 5,000 years B.P., sea-level index points vary from around +5.0 

metres O.D. (e.g. date reference HV3460) in the north-east of the bay with lower altitudes 
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south of the Morecambe Bay area (such as date reference HV3845). The altitudinal 

differences within the bay itself are difficult to assess due to the lack of dated sea-level 

index points for the area. At 8,000 ± 200 years B.P., sea-level index point altitudes 

are around -11.0 to -16.0 metres O.D. (e.g. date reference HV3362) at sites currently 

offshore within the bay. However, the curve for post-glacial isostatic recovery of the area 

drawn by Shennan (1989) implies that sea-level index point altitudes should be up to over 

20 metres higher than shown. Two palaeogeographic reconstructions for the area were 

made to allow for both possibilities in the tidal modelling experiments. The paucity of 

dates makes altitudinal variations within the bay difficult to assess from the geological 

data. 

Sea depth reduction tidal simulations for two and fifteen metres lower sea-levels than 

present may be compared with the sea-level index point altitudes for 5,000 and 8,000 

years B.P., respectively. Maximum tidal altitudes shown from model results are lower 

than present for 5,000 years B.P., whereas sea-level index points suggest that tidal heights 

should be increased compared with present values at this time. For the sea-level reduction 

of fifteen metres, almost the entire bay area is dry land, so that again tidal inundation 

does not occur so far into the bay area as the sea-level index points imply should be the 

case. 

Palaeocoastline simulations for 5,000 and 8,000 years B.P. also fall short of inundation 

of areas shown to have been on the coast by sea-level index points. Maximum tidal alti­

tudes are reduced for both simulations, whereas an increase in the height of the highest 

tides should have occurred according to geological information at 5,000 years B.P. Changes 

in the bathymetry not reproduced in these model simulations are a possible cause of the 

lack of correspondence with sea-level index point altitudes. However, palaeogeographic 

simulations incorporating sea depth changes for 5,000 and 8,000 years B.P. similarly show 

smaller areas of inundation than suggested from the geological record. A considerably im­

proved knowledge of the detail of palaeogeographic changes to Morecambe Bay, especially 

with regard to depth changes within the bay may provide tidal simulations correspond-
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ing more cloasely with the sea-level index point record. Variables such as neotectonic 

movements, suggested by Tooley (1978, 1987), may play an important role in this respect. 

6.9.3. Comparison of The Wash and Morecambe Bay 

An attempt at validation of model results for tidal changes during the Holocene sug­

gests that neither sea depth reductions nor former coastline shapes used individually in 

model simulations for tides are sufficient to give an accurate assessment of the magnitude 

and pattern of change to tidal regimes within the bays studied. Similarly, an attempt 

at tidal simulations using palaeogeographic data for coastline and bathymetry changes 

highlights the low quantity of the palaeogeographic data available for such work. 

The overall pattern of maximum tidal heights reached shown in the geological record is 

reflected in the results for modelling of the Wash. An assessment of the magnitude of tidal 

changes is limited by the errors in the accuracy both of tidal model maximum tidal height 

predictions (of within 0.80 metre) and of the altitude of sea-level index points (discussed in 

Chapter 1). Results for Morecambe Bay show maximum areas of tidal inundation which 

are less than those indicated by sea-level index points and a considerably more detailed 

knowledge of the palaeogeography of this area should be attained to aid in overcoming 

this problem. 

The factors affecting the accuracy of palaeogeographic reconstructions of the embay­

ments and their possible contribution to the variations in sea-level index point altitudes 

within the local areas of the Wash Fenlands and Morecambe Bay are discussed in Chapter 

7. An assessment of the conclusions from the model results with respect to the aims of 

the study is presented in Chapter 8, together with suggestions for further research. 
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CHAPTER 7 

NEOTECTONICS AND SEDIMENT COMPACTION 

7.1. Neotectonic movements 

Shennan (1987) states that controlling factors on the sea-level record at the estuary/ 

bay scale may be illustrated by assessing the differences between local sea-level curves and 

the proposed regional eustatic curve (Marner, 1980). In this study an examination has 

been made of the effect of tidal changes at different sea-levels on the altitudinal variation 

of sea-level index points within the Wash Fenland and Morecambe Bay. In Chapter 1 

a brief outline was given of other factors affecting the variation within a local area of 

sea-level index point altitude. These factors are considered in more detail here and their 

relevance to the field areas examined in the thesis is considered. 

Neotectonic movements, or recent earth movements, other than those of isostatic 

origin, are one variable in the local sea-level change equation. There are no major fault 

lines running through the area of The Wash, although minor faulting running northeast 

- southwest and northwest - southeast is shown on the British Geological Survey solid 

geology sheets for Spurn and East Anglia (1985 and 1985). Greensmith and Tucker 

(1980) recorded evidence of differential subsidence on the Essex coast to the south of the 

Fenland area. However, no evidence offault movements has been recorded in the literature 

for the Wash Fenlands during the Holocene marine inundations and the scale of isostatic 

movements (at one metre per thousand years) suggest that these land movements have had 

little influence on the sea-level record of the Wash Fenland area. Sediment compaction, 

discussed below, may have been of greater importance. 
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In Morecambe Bay considerable differences were shown between the location of sea­

level index points from the stratigraphic record and the areas reached by tidal inundation 

from the model simulations for former sea-levels. Tooley (1978, 1987) proposed that neo­

tectonic movements had occurred in the bay. Figure 7.1 shows the distribution of faults 

in the area of Morecambe Bay. There are three major fault lines running across parts of 

the bay from directions of between north-south and northwest-southeast. Morecambe Bay 

lies much nearer to former centres of ice accumulation in the north of England and Scot­

land than the Fenland and has therefore undergone considerably more isostatic recovery 

(Shennan, 1987, 1989). It is possible that these isostatic movements may have reactivated 

the faults during the Holocene so that the current relationship of sea-level index points to 

Ordnance Datum may reflect these movements in addition to sea-level change. Ringrose 

(1987) identified stress patterns in the area which contribute further evidence to support 

this suggestion. 

Neotectonic movements associated with post-glacial isostatic recovery have been iden­

tified in Scotland (Sissons, 1972; Sissons and Cornish, 1982) during reconstruction of the 

history of sea-level change. Studies in Scandinavia (e.g. Anundsen, 1985) have also iden­

tified this phenomenon, but very little work has been carried out in Britain on recent 

neotectonic movements (Davenport and Ringrose, 1985), probably due to the fact that 

the scale of current movements is generally very small (measured in terms of millimetres 

per annum at maximum) and that the potential for these movements is especially low in 

densely populated areas. 

Neotectonic movements may have caused some of the altitudinal variation of sea-level 

index points at the bay scale, possibly in association with isostatic recovery, especially 

in an area where isostatic recovery has been measured at the rate of several metres per 

thousand years, as in Morecambe Bay. Rapid rates of isostatic movements may have 

reactivated old fault lines in such areas. This is a topic which deserves more attention in 

interpretation of the sea-level record near former centres of ice accumulation. 
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Figure 7.1. The Structural Setting of Morecambe Bay {after Patrick, 1987). 
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7.2. Sediment compaction 

The importance of sediment compaction to sea-level studies, particularly its effect 

on the altitude and age of sea-level index points, was outlined briefly in Chapter 1. A 

further examination is made here of the influence of the reduction in volume of a sediment 

resulting from a lessening of the pore space in terms of its spatial and temporal, lateral and 

vertical, variation. This factor has a potential influence on the accuracy of construction of 

palaeogeographic maps used in the study and analysis of the altitudinal and age variation 

of the sea-level index points. 

The factors contributing to the altitudinal and temporal effects of sediment com­

paction in an area may be divided into four main elements: 

(a) the nature and thickness of the sediments involved 

(b) the length of time since deposition and erosional/ depositional cycles which have 

occurred during this period 

(c) the nature and depth of former and existing overlying sediments 

(d) variations in local drainage over time, which may have caused changes to the 

nature of the sediments. 

Coarse-grained sediments, such as sand, suffer least compaction, whereas organic and 

fine-grained sediments, especially peats, clays and silts, are most affected. Compaction, 

therefore, has implications for sediments based on the sea-level history of an area. Clays 

and silts are deposited in quiet water environments, such as salt marshes, whereas sand is 

found in areas where currents are stronger, generally further offshore. Peat growth may 

occur in association with stagnant water, landward of salt marshes. Therefore an area 

with a sea-level history of marine inundation in some depth of water may be characterised 

by a sandy stratigraphic sequence which is unlikely to undergo much compaction. By 

contrast, an area which has a history of being on the landward edge of a salt marsh, with 

a large amount of peat growth, may be compacted to a very small fraction of its original 

thickness. Altitudinal variations of sea-level index points may be related to the sequence 
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of sea-level change in this way. 

Stratigraphic records suggest that the southern Fenland and areas not currently sub­

ject to inundation in Morecambe Bay were locations of quiet water sedimentation, char­

acterised by deposition of intercalated peat and silt/clay sequences. These areas may 

thus have undergone more compaction than the northern Fenland, for example, where a 

greater proportion of the sediments are sands. The absolute altitudinal variation caused 

will be greater for thicker beds, given the same relative amount of compaction through­

out. Streif (1979) points out that compaction may lead to a significant change in the 

altitudinal range of sediments as a compaction value of 50% for a peat bed would give a 

reduction in thickness of a two metre bed, at the time of deposition, to one metre following 

compaction. 

Compaction occurs through three main mechanisms: 

(a) settlement of the sediment under its own weight ( autocompaction) 

(b) desiccation by prolonged surface exposure (such as may occur with a fall of 

sea-level) leading to overconsolidation, which will affect sediments to greater 

depths with an increase in the length of exposure (Greensmith and Tucker, 1971) 

(c) deposition of a burden of overlying sediments. 

Compaction does not occur at an even rate through time and variations in the rates of 

erosion and deposition (and therefore sediment load) may complicate the picture. The 

palaeogeographic maps show that different parts of the field areas were subject to inun­

dation at different times. Compaction of sediments underlying those under examination 

will lower the altitude of the overlying sediments (Van de Plassche, 1980). At the site 

of the former Whittlesey Mere in the Fenland a peat layer is shown to vary in altitude 

depending on the nature of the sediments above or below it in the stratigraphic sequence 

(Godwin and Vishnu-Mittre, 1975, figure 22). 

213 



7.3. Other factors 

No account has been taken in this study of sediment movement patterns which may 

have caused local depth variations and therefore within-estuary apparent sea-level change, 

such as that recorded in Chezzetcook Inlet, Nova Scotia, by Carter et al. (1990). This 

emphasises the need for detailed examination of potential sea-level index points in terms 

of their lithology, stratigraphic context and micro- and macro- faunal assemblages. More 

detailed study of this variable might allow local depth and coastal changes to be taken into 

account in the tidal models and so give a more realistic simulation of former tidal patterns. 

There is, however, no evidence of more than a few metres of sediment deposition in either 

the Wash or Morecambe Bay during the Holocene and so factors such as sedimento­

isostasy are not considered to have influenced the altitude of sea-level index points in 

either bay. 

Tidal studies may be of more use to sea-level change researchers than simply assessing 

the relevance of tidal height changes to altitudinal variations of sea-level index points 

within embayments. Preece et al. (1990) used a tidal model of the English Channel 

to test possible palaeobathymetries based on evidence of stratified seas from the present 

eastern Solent area. This approach may be more difficult to apply at the local scale in 

estuarine embayments where changes in salinity and stratification occur on the scale of 

tidal cycles. 

A wide range of factors influence the pattern and nature of the sea-level record. The 

accuracy of sea-level index points was examined in Chapter 1. Geoidal changes are not 

considered to be of significance for the time and space scales in this study (Shennan, 1987). 

Similarly, other aspects of the sea-level change equation are not relevant to consideration 

of the causes of altitudinal variation of sea-level index points within embayments over the 

last few thousand years. 
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CHAPTER 8 

CONCLUSIONS 

"The value of palaeotidal work lies in aiding the precise evaluation on meso-macrotidal 

coasts of the relationship between a sea-level indicator's height and a former sea-level 

position" (Devoy, 1987, p.22). The most reliable sea-level indicators occur in sediments 

from the uppermost portion of the tidal range (Scott and Greenberg, 1983), where changes 

in tidal amplitude over time will have the greatest effect, variably distorting the 'true' 

sea-level record and the reconstruction of sea-level movements derived from these sea­

level index points (Devoy, 1987). "The application of numerical studies of tidal amplitude 

is essential, therefore, in aiding quantification of this distortion and obtaining a more 

accurate prediction offuture changes in coastal position" (Devoy, 1987, p.23). This thesis 

has contributed towards understanding of tidal changes in association with the sea-level 

change record, as is summarised below. 

8.1. The magnitude of tidal variations within embayments 

Maximum tidal variations within the two macro-tidal embayments studied changed 

within 0.5 metre for the Wash, but by over 0.8 metre in the case of Morecambe Bay, 

for maximum tidal heights reached in the course of a spring-neap cycle at present sea­

level simulated by numerical modelling. The finer resolution estuary models enlarged 

these differences and for Morecambe Bay showed higher degrees of correspondence with 

observational data. However, in general the pattern of tidal height variations agrees well 

with the observational data obtained from Admiralty Tide Tables (1990). Sea-level index 

point altitudinal variations, however, show greater variations for former times than the 
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currently recorded tidal differences within the embayments, varying by the order of metres. 

8.2. The effect of the coastline shape of an embayment have on tidal variations 

For the Wash three palaeocoastline simulations were carried out. These all recorded 

less difference in tidal variations within the present bay area than for the present day, 

although greater changes were shown over the current Fenland area between the simula­

tions. The same was true for Morecambe Bay, except for the simulation for 8,000 years 

B.P., when much of the bay was dry. When sea depth changes were introduced in addition 

to coastal shape changes, noticeable alterations were evident to the tidal heights reached 

within the embayments. 

8.3. The effect of the sea-bed morphology on tidal variations 

Reductions of sea depths in the tidal models showed considerable alterations to the 

altitudinal range of maximum tidal heights reached within the embayments for sea level 

reductions of more than 5 metres. Full palaeogeographic reconstructions of the Wash 

and Morecambe Bay used eustatic sea-level reductions of at most 2 metres, except for 

the 8,000 year B.P. reconstruction of Morecambe Bay for which a eustatic sea-level of 15 

metres below present was used. Therefore the tidal changes in the embayments were less 

than for all except the lower sea-level only simulations and were of much lower orders of 

magnitude than changes to mean sea-level. 

8.4. The contribution of neotectonics and sediment compaction to the altitu­

dinal variations of sea-level index points within the chosen embayments 

Neotectonic movements during the post-glacial period are a possible cause of altitu­

dinal variations of sea-level index point heights within Morecambe Bay, which is located 

near a former centre of ice accumulation and has therefore undergone tens of metres of 

isostatic movement. This area is also characterised by faults in the basement geology, 

which may have been reactivated by isostatic movement. Neotectonic movements offer a 

possible explanation for the wide difference between the predicted tidal inundation in the 
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Bay at 8,000 years B.P. from the sea-level index point record and the situation produced 

by tidal model simulation in this study. In the Wash Fenlands, however, little isostatic 

movement has taken place and there are no major fault systems in the basement geology 

which are likely to have been reactivated by the minor isostatic recovery which occurred 

in the post-glacial period. 

Sediment compaction is a phenomenon which, potentially, has a considerable effect 

on the sea-level record. It is variable in its effect within an embayment and assessment of 

the extent of its influence cannot easily be made without very detailed knowledge of the 

palaeogeographic history of an area. 

Both neotectonic movements and sediment compaction remain as 'unknown' factors 

in the sea-level change equations of the Wash and Morecambe Bay. To these must be 

added the effect of sediment movements within the bays and other local changes which 

may have affected the palaeogeography of the embayments. 

8.5. The implications of the results of this study for a rise of sea-level 

Simulation of the former maximum tidal heights reached in The Wash and Morecambe 

Bay has shown that tidal altitudes vary with changing sea-levels and so this must be 

taken into account in any assessment of a sea-level rise. In general the results showed that 

lower tidal heights were found with lower sea-levels in broad embayments, but this was 

modified by changes in the coastline shapes particularly those noted by the formation of 

embayments within the Fenland area at 4,000 years B.P., necessitating assessment to be 

made of this factor in a simulation of tidal conditions with a sea-level rise. Furthermore, 

the scale differences noted between the 5,000 years B.P. palaeogeographic simulations for 

the Wash between the EC3 and WASH models, giving higher tidal altitudes in the latter 

than for the 3,000 and 4,000 years B.P. simulations with the reverse situation for the EC3 

simulations, suggests that the scale of modelling may have an important influence on the 

results. This is shown to be especially important locally with the apparent resonance effect 

in the MBM model 5,000 years B.P. palaeogeographic simulation leading to maximum 
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tidal altitudes of over 12 metres in an embayment created with this sea-level along the 

Lancashire coast. The LBM model does not show this embayment in the same way due 

to the scale of modelling. 

8.6. Recommendations for further research 

A number of recommendations for the course of future research into sea-level change 

and tidal changes in particular may be made from the results of this study. These essen­

tially fall into the categories of tightening up on the assumptions made in the research 

by improving the database (especially palaeogeographic data) and adding more factors in 

to the tidal simulations with higher resolution models, such as assessment of the change 

in tidal and other currents at different sea-levels (and so permitting study of sediment 

movement patterns). Tidal analysis per se may also be carried out as a study of the 

importance of different tidal constituents at different sea-levels in an area. When suffi­

ciently good data are available for a wide area, the tidal factor may then be eliminated as 

an 'unknown' from the regional sea-level picture, permitting correspondence of sea-level 

histories between areas to be made. Possible sea-level rise scenarios may also be simulated 

for assessment of consequent tidal changes. Sea-level index points have been used in this 

study to represent approximately the altitude of mean high water of spring tides. How­

ever, this neglects variations in sea-level heights as a result of meteorological influences. 

Sea-level altitudes may be temporarily increased as a result of storm activity and the 

combined effect of an increase in the incidence of storminess and tidal height changes is a 

further area of potential for study. 

8.7. Conclusions of the research with regard to sea-level change studies 

The statements by Devoy (1987, p.22) that 

"Within a confined coastal environment local tidal range may differ considerably from 

that at the open coast. In a funnel-shaped estuary tidal amplification often rises landward, 

due to confinement of the tidal wave as it progresses up-estuary (the 'estuary effect', 

Fairbridge, 1961 ). Conversely a reduction in tidal range takes place when the tidal wave, 
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after passing through a confined coastal inlet, enters a flanking basin with a large storage 

capacity ('flood-basin effect', VanVeen, 1950). Dissipation of tidal energy due to water/ 

bed interface friction also results in a decrease in tidal amplitude (Allen et al., 1980)." 

are justified by the results presented in this thesis. Therefore, where a good palaeogeo­

graphic reconstruction of an area is possible, the former tidal patterns may be simulated 

to assess the contribution of tidal changes to the overall and within-embayment sea-level 

change record. 
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121. Flamborough Head to Withernsea. (1988) 

1187. Outer Silver Pit. (1988) 

1190. Flamborough Head to Blakeney Point. (1981) 

1200. The Wash Ports. (1987) 

1503. Outer Dowsing to Smith's Knoll including Indefatigable Banks. (1988) 

1504. Cromer to Orford Ness. (1988) 

1505. Netherlands Gas Fields. (1988) 

1543. Winterton Ness to Orford Ness. (1988) 
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Appendix 4.1. Stratigraphic data sources for The Wash Fenlands 

Dr. D. Donoghue, Durham University, personal communication 

Evans and Mostyn ( 1979) 

Gallais (1979) 

Gallais (1989) 

Godwin (1940) 

Godwin and Clifford (1938) 

Godwin and Vishnu-Mittre (1975) 

Godwin and Willis (1959) 

Monk (1976) 

Robson (1988) 

Shennan (1980) 

Shennan (1986a) 

Smith (1970) 

Waller (1980) 

Dr. M. Waller, English Heritage Fenland Project, personal communication 

Willis (1961) 

Wingfield et al. (1978) 

Mineral Assessment Reports, British Geological Survey, numbers 53, 54, 60, 73, 
80, 93, 94, 96, 100, 108, 110, 123, 124, 128, 130. 
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Appendix 4.2. Stratigraphic data sources for Morecambe Bay 

Dickinson (1973) 

Gresswell (1957) 

Gresswell (1958) 

Knight (1977) 

Oldfield (1960a) 

Oldfield (1960b) 

Oldfield (1963) 

Smith (1959) 

Tooley (1974) 

Tooley (1978) 

Dr. M. Tooley, Durham University, personal communication 

Dr. Y. Zong, Durham University, personal communication 
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Key 

Grid ref. 
Lab. code 
Date 
Error 
Altitude 

Grid ref. 

55260 29400 
57000 28700 
52470 33090 
52478 33096 
53567 30182 
52417 31914 
56295 31327 
56100 31600 
52478 33096 
55260 29400 
55260 29400 
56100 31600 
51953 30524 
55260 29400 
50410 37137 
54016 31608 
56100 31600 
56100 31600 
55740 36880 
56100 31600 
53875 30525 
51500 35500 
51920 30845 
54790 29300 
50000 30000 
52411 31908 
51232 31997 
55630 37325 
55630 37325 
51296 31976 
50000 30000 
51232 31997 

Appendix 4.3. Wash Fenland radiocarbon dates 

Ordnance Survey map reference 
Date reference (laboratory code) 
Radiocarbon age (years before present) 
Standard error of radiocarbon date (years) 
Altitude of material dated relative to Ordnance Datum in metres 

Lab. code Date Error Altitude Place Name 

Q823 1212 154 0.40 Welney Wash 
Q713 1464 154 2.43 Hockwold, Norfolk 
IGS78A 1555 100 -3.00 Spalding, Lincolnshire 
IGS78B 1615 100 -3.00 Spalding, Lincolnshire 
SRR1588 1845 50 -0.67 Adventurers' Land 4 
IGS124 1875 100 0.90 Spalding, Lincolnshire 
IGS126 1875 100 0.00 Setch, Norfolk 
Q549 1875 110 0.00 Saddlebow, Norfolk 
IGS77 1915 100 -3.00 Spalding, Lincolnshire 
Q820 1940 130 0.40 Welney Wash 
Q819 1970 100 0.20 Welney Wash 
Q550 2070 110 -0.02 Saddlebow, Norfolk 
SRR1767 2220 50 0.00 Werrington 
Q829 2227 90 0.40 Welney Wash 
Q1163 2253 80 0.00 Washingborough Fen 
SRR1755 2270 50 -0.37 Park Farm 
Q806 2275 100 -0.12 Saddlebow, Norfolk 
Q807 2377 100 -0.23 Saddlebow, Norfolk 
Q81 2455 110 0.00 Ingoldmells, Lincolnshire 
Q805 2495 110 0.00 Saddlebow, Norfolk 
SRR1759 2510 50 0.10 Plash Farm 
HAR3362 2540 100 2.50 Walcott Common 
WW5 2550 60 1.50 Welland Wash 5 
Q2113 2555 45 0.00 Mane a 
Q310 2560 110 0.00 Fordy Trackway 

HV10808 2595 60 1.45 Cowbit Wash 

HV9266 2625 65 1.26 Bourne Fen, Lincolnshire 

Q687 2630 110 0.40 Chapel Point, Lincolnshire 

Q688 2630 110 -2.74 Chapel Point, Lincolnshire 

HV9264 2635 100 0.93 Bourne Fen, Lincolnshire 

BM722 2677 123 0.00 Burwell Fen 

HV9267 2780 70 1.06 Bourne Fen, Lincolnshire 
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Grid Ref. Lab. Code Date Error Altitude Place Name 

55630 37325 Q844 2815 100 0.12 Chapel Point, Lincolnshire 

51232 31997 HV8644 2970 65 0.95 Bourne Fen, Lincolnshire 

51500 33500 HAR1749 3010 80 0.52 Horbling Fen, Lincolnshire 
53024 30260 SRR1756 3050 50 -0.47 Park Farm 
54340 29850 Q531 3065 110 0.28 Flaggrass, March 
53810 30198 SRR1764 3080 200 0.00 Guyhirn Washes 

56295 31327 IGS127 3215 100 -1.00 Setch, Norfolk 

53344 31084 SRR1758 3250 50 0.00 Gedney Hill 
52300 28600 Q546 3260 110 -1.25 Ugg Mere, Huntingdonshire 
56000 31000 Q547 3305 120 0.00 Magdalene Bend, Norfolk 

55630 37325 Q686 3340 110 0.02 Chapel Point, Lincolnshire 

50000 30000 BM1469 3340 45 0.00 Lowes Farm, Norfolk 

51953 30524 SRR1768 3390 40 0.00 Werrington 
52050 28900 Q403 3400 120 -2.45 Holme Fen 

51296 31976 HV9265 3415 45 0.10 Bourne Fen, Lincolnshire 

52050 28900 Q404 3415 120 -2.45 Holme Fen 

52200 28400 Q545 3415 110 0.00 Woodwalton Fen 

51232 31997 HV9268 3430 60 0.63 Bourne Fen, Lincolnshire 

51232 31997 HV8646 3435 65 0.95 Bourne Fen, Lincolnshire 

51812 29844 IGS58 3475 100 -0.90 Peterborough 

51232 31997 HV8645 3485 75 0.76 Bourne Fen, Lincolnshire 

52368 31923 IGS117 3570 100 -1.95 Spalding, Lincolnshire 

51232 31997 HV8648 3580 90 0.21 Bourne Fen, Lincolnshire 

51232 31997 HV8647 3595 325 0.91 Bourne Fen, Lincolnshire 

52000 35500 HAR149 3620 130 0.00 Woodhall Spa, Lincolnshire 

51500 33500 HAR1750 3750 70 0.05 Horbling Fen, Lincolnshire 

51860 35570 HAR148 3770 130 -1.25 Woodhall Spa, Lincolnshire 

50000 30000 BM1443 3850 60 0.00 Lowes Farm, Norfolk 

52474 31445 WW4B 3860 80 -4.05 Weiland Wash 4 

56100 31600 Q489 3905 120 -0.73 Saddlebow, Norfolk 

56100 31600 Q490 3915 120 -0.70 Saddlebow, Norfolk 

55630 37325 Q685 3943 100 -1.82 Chapel Point, Lincolnshire 

51720 36190 IGS109 3945 100 -1.45 Woodhall Spa, Lincolnshire 

51860 35570 HAR189 3950 120 -1.25 Woodhall Spa, Lincolnshire 

51790 36020 IGS111 3980 100 -0.90 Woodhall Spa, Lincolnshire 

56440 27600 BIRM1 4001 66 0.00 lsleham, Cambridgeshire 

52474 31445 WW4C 4030 80 -4.15 Weiland Wash 4 

54200 29600 Q532 4055 110 -0.45 Flaggrass, March 

51860 35850 HAR147 4080 130 -0.90 Woodhall Spa, Lincolnshire 

55900 30100 Q264 4085 110 -1.50 Denver Sluice 

51860 35850 HAR151 4116 130 -0.90 Woodhall Spa, Lincolnshire 

51860 35770 IGS112 4130 100 -1.25 Woodhall Spa, Lincolnshire 

51720 36190 IGS110 4155 100 -1.70 Woodhall Spa, Lincolnshire 

51720 36190 HAR150 4162 130 -1.45 Woodhall Spa, Lincolnshire 

53567 30182 SRR1589 4180 75 -4.06 Adventurers' Land 4 

52050 28900 Q405 4190 130 -3.15 Holme Fen 
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Grid Ref. Lab. Code Date Error Altitude Place Name 

55600 28300 Q544 4195 110 -1.50 Wood Fen, Ely 
50000 30000 BM1525 4200 220 0.00 Burwell Fen 
56440 27600 BIRM12 4201 60 0.00 lsleham, Cambridgeshire 
50000 30000 Q1039 4204 60 0.00 Mildenhall Fen 
51720 36190 HAR192 4210 110 -1.70 Woodhall Spa, Lincolnshire 

56300 31300 Q2448 4210 65 0.00 Wormegay 
53024 30260 SRR1766 4310 140 0.00 South Farm 
53810 30198 SRR1765 4340 60 0.00 Guyhirn Washes 
53100 29200 Q474 4345 110 -0.27 Glass Moor, Ramsey 
55530 27040 Q129 4380 140 0.00 Wicken Fen 
55900 30100 Q263 4390 120 -1.50 Denver Sluice 
52368 31923 IGS118 4445 100 -2.52 Spalding, Lincolnshire 
51823 29827 IGS57 4460 105 -1.30 Peterborough 
53370 31113 SRR1762 4460 80 0.00 Sycamore Farm 

55650 28140 Q589 4495 120 0.00 Queen Adelaide, Ely 

53567 30182 SRR1590 4500 50 -4.27 Adventurers' Land 4 

53875 30525 SRR1760 4520 70 -4.13 Plash Farm 

52100 35700 BIRM447 4570 150 0.00 Tattershall 
55530 27040 Q130 4605 110 0.00 Wicken Fen 
55900 31480 Q31 4690 120 -5.70 Wiggenhall 
56280 28470 Q499 4695 120 -3.20 Shippea Hill, Cambridgeshire 

56280 28470 Q580 4800 120 -3.04 Shippea Hill, Cambridgeshire 

56280 28470 Q525/6 4870 120 -3.50 Shippea Hill, Cambridgeshire 

52368 31923 IGS119 4890 100 -5.09 Spalding, Lincolnshire 

52370 31932 IGS64 4950 100 -3.70 Spalding, Lincolnshire 

56280 28470 Q527 /8 4950 120 -3.50 Shippea Hill, Cambridgeshire 

52050 28900 Q406 4958 130 -3.85 Holme Fen 

52474 31445 WW4D 5000 70 -4.65 Welland Wash 4 

52411 31908 HV10016 5075 50 -5.18 Cowbit Wash 

56280 28470 Q581 5130 120 -3.05 Shippea Hill, Cambridgeshire 

52474 31445 WW4A 5140 60 -4.95 Welland Wash 4 

52427 31919 IGS121 5175 100 -5.83 Spalding, Lincolnshire 

56280 28470 Q583 5295 120 -3.50 Shippea Hill, Cambridgeshire 

56280 28470 Q582 5310 120 -3.35 Shippea Hill, Cambridgeshire 

56280 28470 Q585 5330 120 -3.70 Shippea Hill, Cambridgeshire 

52411 31908 HV10017 5435 70 -5.81 Cowbit Wash 

56295 31327 IGS128 5440 100 -3.70 Setch, Norfolk 

56280 28470 Q584 5465 120 -3.65 Shippea Hill, Cambridgeshire 

52411 31908 HV10806 5570 70 -5.92 Cowbit Wash 

53567 30182 HV9261 5580 70 -7.99 Adventurers' Land 2 

52427 31919 IGS122 5600 100 -6.23 Spalding, Lincolnshire 

52368 31923 IGS120 5665 100 -5.60 Spalding, Lincolnshire 

52411 31908 HV10807 5675 115 -6.02 Cowbit Wash 

53567 30182 HV10817 5840 90 -6.92 Adventurers' Land 4 

52427 31919 IGS123 5905 100 -6.49 Spalding, Lincolnshire 

53370 31113 SRR1763 6010 200 0.00 Sycamore Farm 
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Grid Ref. Lab. Code Date Error Altitude Place Name 

52427 31919 IGS123 5905 100 -6.49 Spalding, Lincolnshire 
53370 31113 SRR1763 6010 200 0.00 Sycamore Farm 
53875 30525 SRR1761 6080 60 -8.45 Plash Farm 
52527 32675 IGS76 6220 120 -7.06 Spalding, Lincolnshire 
52527 32675 IGS75 6240 120 -8.46 Spalding, Lincolnshire 
53567 30182 HV9262 6275 125 -8.05 Adventurers' Land 2 
53567 30182 HV9263 6415 185 -8.12 Adventurers' Land 2 
53567 30182 HV10011 6575 95 -7.87 Adventurers' Land 4 
52010 28930 Q1296 6600 120 -5.00 Holme Fen 
56280 28470 Q586 6695 150 -3.90 Shippea Hill, Cambridgeshire 
52010 28930 Q1297 6794 120 -5.00 Holme Fen 
56280 28470 Q587 7610 150 -4.00 Shippea Hill, Cambridgeshire 
54010 31487 SRR1757 7690 400 -9.12 Elm Tree Farm 
56280 28470 Q588 8620 160 -4.30 Shippea Hill, Cambridgeshire 

The remaining dates are given in Waller (in press). 
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Appendix 4.4. Radiocarbon dates from the Morecambe Bay area 

Key 

Grid ref. 
Lab. code 
Date 
Error 
Altitude 

Grid ref. 

32722 39284 
33936 45989 
33933 45988 
33932 45990 
34100 46400 
33000 40400 
33441 48627 
32700 40858 
33304 40787 
33260 40762 
33260 40762 
32950 40290 
33202 40838 
33202 40838 
33202 40838 
33202 40838 
33202 40838 
34884 37614 
34884 37614 
33490 42858 
33490 42858 
33490 42858 
33471 42879 
34239 46083 
34160 44486 
33350 47465 
33202 40838 
33202 40838 
33220 47791 
33293 47636 
33208 47190 
34672 47895 

Ordnance Survey grid reference 
Date reference (laboratory code) 
Radiocarbon date (years before present) 
Standard error of radiocarbon date (years) 
Altitude of material dated relative to Ordnance Datum in metres 

Lab. code Date Error Altitude Place Name 

BIRM1013 3980 70 1.82 Mockbeggar Wharf 
BIRM139 9195 155 -16.37 Heysham, Lancashire 
BIRM140 8925 200 -16.04 Heysham, Lancashire 
BIRM141 9270 200 -17.60 Heysham, Lancashire 
GU664 7544 306 0.00 Morecambe, Lancashire 
GU666 4351 46 0.00 Alt-mouth, Lancashire 
HAR3709 7750 100 -0.39 Rusland 
HVOOOO 170 65 2.53 Formby Foreshore 
HV12537 7015 90 -0.20 New Cut, Lancashire 
HV12539 6840 85 0.99 New Cut, Lancashire 
HV12540 6870 235 0.52 New Cut, Lancashire 
HV2679 4545 90 3.14 Alt-mouth, Lancashire 
HV2680A 6750 175 0.15 Downholland, Lancashire 
HV2681 4325 345 0.30 Downholland, Lancashire 
HV2682 4600 430 1.06 Downholland, Lancashire 
HV2683 5565 205 1.27 Downholland, Lancashire 
HV2684 4045 395 1.86 Downholland, Lancashire 
HV2685 5250 385 1.29 Helsby Marsh, Lancashire 
HV2686 5470 155 0.73 Helsby Marsh, Lancashire 
HV2916 2270 65 4.22 Lytham, Lancashire 
HV2917 3090 135 3.70 Lytham, Lancashire 
HV2918 3150 150 3.50 Lytham, Lancashire 
HV2919 4960 210 3.39 Lytham, Lancashire 
HV2920 4190 150 4.49 Heysham, Lancashire 
HV3052 4900 450 4.80 Lousanna, Lancashire 
HV3356 8685 175 -15.48 Morecambe Bay 
HV3357 4695 110 0.24 Downholland, Lancashire 
HV3358 6050 65 1.06 Downholland, Lancashire 
HV3360 7725 95 -15.84 Morecambe Bay 
HV3361 8740 65 -16.54 Morecambe Bay 
HV3362 7995 80 -11.16 Morecambe Bay 
HV3460 5015 100 4.98 Arnside Moss, Lancashire 
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Grid Ref. Lab. Code Date Error Altitude Place Name 

34672 47895 HV3461 1545 35 5.65 Arnside Moss, Lancashire 

34486 46646 HV3462 8330 125 -16.03 Morecambe Bay 
32205 48477 HV3840 4760 45 5.29 Duddon Estuary, Lancashire 

32225 48520 HV3841 4960 50 4.06 Duddon Estuary, Lancashire 

30768 48841 HV3842 2820 55 6.66 Annas Mouth, Cumbria 

30795 49090 HV3843 7160 75 0.91 Bootie, Cumbria 
33495 48024 HV3844 5435 105 3.72 Ellerside Moss, Lancashire 

33309 42947 HV3845 5005 65 3.09 Lytham, Lancashire 

33490 42858 HV3846 830 50 6.52 Lytham, Lancashire 

33238 40839 HV3847 5615 45 1.59 Downholland, Lancashire 

33212 43578 HV3933 4800 75 2.24 Peel, Lancashire 

33212 43578 HV3934 6535 110 -0.83 Peel, Lancashire 

33365 40819 HV3935 6760 95 -0.14 Downholland, Lancashire 

33365 40819 HV3936 6980 55 -0.38 Downholland, Lancashire 

33796 42863 HV4124 5945 50 0.88 Nancy's Bay, Lancashire 

33796 42863 HV4125 7605 85 -2.33 Nancy's Bay, Lancashire 

33796 42863 HV4126 6885 80 -1.17 Nancy's Bay, Lancashire 

33796 42863 HV4127 6025 85 0.46 Nancy's Bay, Lancashire 

33837 42799 HV4128 5775 85 1.93 Nancy's Bay, Lancashire 

33837 42799 HV4129 5950 85 1.52 Nancy's Bay, Lancashire 

33837 42799 HV4130 6245 115 1.13 Nancy's Bay, Lancashire 

33837 42799 HV4131 6290 85 0.97 Nancy's Bay, Lancashire 

33352 42747 HV4343 8390 105 -11.14 Starr Hills, Lancashire 

33394 42946 HV4344 4895 95 2.87 Heyhouses Lane, Lancashire 

33394 42946 HV4345 7820 60 -9.65 Heyhouses Lane, Lancashire 

33394 42946 HV4346 8575 105 -9.75 Heyhouses Lane, Lancashire 

34454 44837 HV4347 4830 140 2.95 Moss Farm, Lancashire 

30310 38261 HV4348 4725 65 2.43 Rhyl 

33309 42947 HV4417 805 70 5.63 Lytham, Lancashire 

33127 40817 HV4705 4090 170 3.42 Downholland, Lancashire 

33796 42863 HV4706 6950 175 -2.46 Nancy's Bay, Lancashire 

33796 42863 HV4707 5880 180 -1.22 Nancy's Bay, Lancashire 

33490 42775 HV4708 1370 85 4.60 Ansdell, Lancashire 

32695 40642 HV4709 2335 120 5.08 Formby, Lancashire 

34603 40715 HV4711 6195 80 0.00 Firswood Road, Lancashire 

33482 42754 HV5215 1795 240 4.04 Ansdell, Lancashire 

32700 40858 HV5219 390 55 0.00 Formby Foreshore, Lancashire 

30824 49623 HV5221 9360 65 -0.77 Ravenglass, Cumbria 

30838 49161 HV5227 6230 85 3.18 Williamsons, Lancashire 

33837 42799 HV5294 6250 55 1.39 Nancy's Bay, Lancashire 

32238 40839 HV8649 6050 80 2.12 Downholland, Lancashire 

32238 40839 HV8650 6210 100 1.84 Downholland, Lancashire 

32238 40839 HV8651 5985 195 1.88 Downholland, Lancashire 

33873 42799 HV9260 2330 65 3.27 Nancy's Bay, Lancashire 

34600 47500 Q256 5734 129 2.93 Silverdale Moss, Lancashire 

34600 47500 Q260 6590 144 3.55 Silverdale Moss, Lancashire 
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Grid Ref. Lab. Code Date Error Altitude Place Name 

34600 47500 Q261 5865 115 3.85 Silverdale Moss, Lancashire 
32600 38900 Q620A 3695 110 3.05 Moreton, Cheshire 
32600 38900 Q620B 3680 110 3.05 Moreton, Cheshire 
34700 49000 Q85 5277 120 4.88 Helsington Moss, Westmorland 
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Appendices 6.1 - 6.3: Data on Diskettes 

Appendix 6.1 Bathymetric and label data for model simulations 

Appendix 6.2 Tidal input for model simulations 

Appendix 6.3 Maximum sea-level elevations from model simulations 

All data are presented in ASCII format on IBM 1.44 MB formatted diskettes. The 

contents of Appendices 6.1 and 6.2 are on diskette 1, whilst the Appendix 6.3 data are 

on diskette 2. Two copies of each diskette are provided. The programs, in which the 

data in Appendices 6.1 and 6.2 were employed and from which the data in Appendix 6.3 

were obtained, were run on the Cray computers at the University of London Computer 

Centre using the FORTRAN 77 compilers avaiable under the COS and UNICOS operating 

systems. The programs employed were essentially those of Dr. Roger Flather of the 

Proudman Oceanographic Laboratory, Birkenhead, as explained in Chapter 5. 

Appendix 6.1 Bathymetric and label data for model simulations 

Contents 

EC3 Model 

File Name 

PRSETO.EC3 

PRSETMl.EC3 

PRSETM2.EC3 

PRSET3P.EC3 

PRSET4P.EC3 

PRSET5P.EC3 

Model Simulation 

Present sea depths and labels 

Modification 1 depths and labels 

Modification 2 depths and labels 

3,000 years B.P. palaeogeography depths and labels 

4,000 years B.P. palaeogeography depths and labels 

5,000 years B.P. palaeogeography depths and labels 

The present sea depths were employed for the -2, -5, -10 and -15 metre sea-level simula­

tions and were read into the model with depths reduced by the amount required for the 
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simulation, namely 2, 5, 10 or 15 metres. For the palaeocoastline simulations, present sea 

depths were used in combination with the labels employed for the corresponding palaeo­

geographic simulation. For example, the 3,000 years B.P. coastline simulation employs 

present sea depths and the labels from the 3,000 years B.P. palaeogeographic simulation. 

WASH Model 

File Name 

PRSETO.WAS 

PRSET3P.WAS 

PRSET4P.WAS 

PRSET5P.WAS 

LBM Model 

File Name 

PRSETO.LBM 

PRSETM1.LBM 

PRSETM2.LBM 

PRSET5P.LBM 

PRSET8PH.LBM 

PRSET8PL.LBM 

Model Simulation 

Present sea depths and labels 

3,000 years B.P. palaeogeography depths and labels 

4,000 years B.P. palaeogeography depths and labels 

5,000 years B.P. palaeogeography depths and labels 

Model Simulation 

Present sea depths and labels 

Modification 1 sea depths and labels 

Modification 2 sea depths and labels 

5,000 years B.P. palaeogeography depths and labels 

8,000 years B.P. palaeogeography higher sea-level 

depths and labels 

8,000 years B.P. palaeogeography lower sea-level 

depths and labels 

The present sea depths were employed for the -2, -5, -10 and -15 metre simulations and 

were read into the model with sea depths reduced by the amount required for the simula­

tion, namely 2, 5, 10 or 15 metres. For the palaeocoastline simulations, present sea depths 

were used in combination with the labels employed for the corresponding palaeogeographic 

simulation, as with the EC3 model. 

MBM Model 

File Name 

PRSETO.MBM 

PRSET5P.MBM 

PRSET8PH.MBM 

Model Simulation 

Present sea depths and labels 

5,000 years B.P. palaeogeography depths and labels 

8,000 years B.P. palaeogeography higher sea-level 
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PRSET8PL.MBM 

depths and labels 

8,000 years B.P. palaeogeography lower sea-level 

depths and labels 

Format of the Data in the Files for Appendix 6.1 

In each file the format of the data is as follows:-

1. Header statement giving the model name and the simulation to which the sea depths 

apply. 

2. Arrays of depth data in which the number in the first column refers to the row of the 

data on the model grid, numbered from north to south. The second and subsequent up 

to twenty columns give the depth values from west to east across the model grid. These 

arrays of depth data commence on the model western boundary and values east of the 

initial twenty columns of depth data are given in the same format in successive arrays 

beneath this. At the top of each of these arrays is a header statement giving the model 

name and the words "Depths in metres". Each array is ended by the number "1" in the 

intial column on the line immediately following the end of the depth data. 

3. Following the depth data, the model labels are laid out arrays with identical format to 

the arrays of depth data. A header statement at the top of each array gives the model 

name and the word "Labels". The number in the first column refers to the row of the 

data on the model grid, numbered from north to south. The label data values are given in 

the second and subsequent up to twenty columns from west to east across the model grid, 

commencing at the model western boundary. Values east of the initial twenty columns of 

label data are given in the same format in successive arrays beneath this. Each array is 

ended by the number "1" in the initial column on the line immediately following the end 

of the label data, except the last array at the end of the file which has no indication of 

termination of the array. 
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Appendix 6.2 Tidal input for model simulations 

Contents 

EC3 Model 

File Name 

PRTINO.EC3 

PRTIN2.EC3 

PRTIN5.EC3 

PRTIN10.EC3 

PRTIN15.EC3 

Model Simulation 

Present sea-level tidal input 

-2 metres sea-level tidal input 

-5 metres sea-level tidal input 

-10 metres sea-level tidal input 

-15 metres sea-level tidal input 

The tidal input for Modifications 1 and 2 is the same as that for present sea-level. This is 

also the case for simulations of the 3,000 and 4,000 years B.P. coastlines and palaeogeogra­

phys. The tidal inputs for the 5,000 years B.P. coastline and palaeogeographic simulations 

are the same as those for sea-level reduced by 2 metres. 

WASH Model 

File Name 

PRTINO.WAS 

PRTIN3P.WAS 

PRTIN4P.WAS 

PRTIN5P.WAS 

LBM Model 

File Name 

PRTINO.LBM 

PRTIN2.LBM 

PRTIN5.LBM 

PRTIN10.LBM 

PRTIN15.LBM 

Model Simulation 

Present sea-level tidal input 

3,000 years B.P. palaeogeography tidal input 

4,000 years B.P. palaeogeography tidal input 

5,000 years B.P. palaeogeography tidal input 

Model Simulation 

Present sea-level tidal input 

-2 metres sea-level tidal input 

-5 metres sea-level tidal input 

-10 metres sea-level tidal input 

-15 metres sea-level tidal input 

The tidal input for Modific'ations 1 and 2 is the same as that for present sea-level. The 

5,000 years B.P. coastline and palaeogeographic simulations employ the -2 metres sea-
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level tidal input. The tidal input for the 8,000 years B.P. coastline and palaeogeographic 

simulations is the same as that for sea-level reduced by 15 metres from its present mean 

depth values. 

MBM Model 

File Name 

PRTINO.MBM 

PRTIN5P.MBM 

PRTIN8P.MBM 

Model Simulation 

Present sea-level tidal input 

5,000 years B.P. palaeogeography tidal input 

8,000 years B.P. palaeogeography (higher 

and lower sea-levels) tidal input 

Format of the Data in the Files for Appendix 6.2 

In each file the format of the data is as follows:-

1. Header statement giving the model name and the simulation to which the tidal input 

data apply. 

2. Three numbers, representing in turn the number of open boundary z, u and v points (see 

Chapter 5.2.2), are given on the next line of text. 

3. The number of tidal constituents is given as an integer value on the next line. Chapter 

5.4.1 explains that six constituents are used in each simulation, namely Meu2, M2, S2, 

M4, MS4 and M5. 

4. The next section is repeated in turn for each tidal constituent. 

a. Firstly, the angular frequency of the constituent is given. This is followed on the next 

line by four numbers, representing the coefficients of nodal factor fe, followed by the three 

coefficients of nodal factor ne on the next line. The three integers on the line beneath 

this represent the coefficients for 9e, the phase angle of the equilibrium tide at time t = 0. 

These coefficients are ignored by the model program if the equilibrium tide is not employed 

in the tidal calculation. The equilibrium tide was only used in the north-east Atlantic 

model, as explained in Chapter 5.2.2. 

b. Then come the amplitude and phase values, stored in the form H cosc9 (see Chapter 

5.2.2) for each of the open boundary z points, read in from west to east and north to 

south around the model bo~ndary. These are written as eight numbers per line to the end 
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of the data. The corresponding amplitude and phase values stored in the form H sincg for 

the open boundary z points follow. The same procedure is then used for laying out the u 

and v point H coscg and H sincg values. 

c. The same procedure as laid out above is repeated for each tidal constituent commencing 

with the angular frequency of the constituent. 
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Appendix 6.3 Maximum sea-level elevations from model simulations 

(approximately equivalent to mean high water of spring tides results 

in metres above mean sea-level) 

Contents 

EC3 Model 

File Name 

PRMAXO.EC3 

PRMAXMl.EC3 

PRMAXM2.EC3 

PRMAX2.EC3 

PRMAX5.EC3 

PRMAX10.EC3 

PRMAX15.EC3 

PRMAX3C.EC3 

PRMAX4C.EC3 

PRMAX5C.EC3 

PRMAX3P.EC3 

PRMAX4P.EC3 

PRMAX5P.EC3 

WASH Model 

File Name 

PRMAXO.WAS 

PRMAX3P.WAS 

PRMAX4P.WAS 

PRMAX5P.WAS 

LBM Model 

File Name 

PRMAXO.LBM 

PRMAXMl.LBM 

PRMAXM2.LBM 

Model Simulation 

Present sea-level 

Modification 1 

Modification 2 

-2 metre simulation 

-5 metre simulation 

-10 metre simulation 

-15 metre simulation 

3,000 years B.P. coastline 

4,000 years B.P. coastline 

5,000 years B.P. coastline 

3,000 years B.P. palaeogeography 

4,000 years B.P. palaeogeography 

5,000 years B.P. palaeogeography 

Model Simulation 

Present sea-level 

3,000 years B.P. palaeogeography 

4,000 years B.P. palaeogeography 

5,000 years B.P. palaeogeography 

Model Simulation 

Present sea-level 

Modification 1 

Modification 2 
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PRMAX2.LBM 

PRMAX5.LBM 

PRMAX10.LBM 

PRMAX15.LBM 

PRMAX5C.LBM 

PRMAX8C.LBM 

PRMAX5P.LBM 

PRMAX8PH.LBM 

PRMAX8PL.LBM 

MBM Model 

File Name 

PRMAXO.MBM 

PRMAX5P.MBM 

PRMAX8PH.MBM 

PRMAX8PL.MBM 

-2 metres sea-level 

-5 metres sea-level 

-10 metres sea-level 

-15 metres sea-level 

5,000 years B.P. coastline 

8,000 years B.P. coastline 

5,000 years B.P. palaeogeography 

8,000 years B.P. palaeogeography - higher sea-level 

8,000 years B.P. palaeogeography - lower sea-level 

Model Simulation 

Present sea-level 

5,000 years B.P. palaeogeography 

8,000 years B.P. palaeogeography - higher sea-level 

8,000 years B.P. palaeogeography - lower sea-level 

Format of the Data in the Files for Appendix 6.3 

In each file the format of the data is as follows:-

1. Header statement giving the model name and simulation. 

2. Statement saying "Maximum Elevations (metres)", or words to that effect. 

3. Arrays of the data, laid out in similar format to the bathymetric data. The results 

are given with "*" representing a land/ dry value in a grid rectangle and the figures 

representing the maximum sea elevations in metres above this. The arrays are numbered 

across and down from north to south and west to east, with (1,1) representing the north­

western most grid rectangle in the model. A line with grid numbers from west to east is 

followed by the array of data which commences in each case with an integer representing 

the grid row numbered from north to south and is followed by the model results. These 

are given typically with nineteen columns of data on each line. The end of each array 

is marked by a "0" in the first column. Each subsequent array is numbered across and 

down in similar fashion so that results for a particular model grid rectangle may be easily 

obtained. The last array in each file is not terminated with a "0". 
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