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Abstract

The discovery of neutrino oscillations is one of the most important in

the recent history of particle physics, being the first evidence of physics

beyond the Standard Model. We describe the theoretical framework of

the neutrino oscillation model, motivate the necessity for a new genera-

tion of neutrino oscillation experiments and study the phenomenological

factors which influence the design of these experiments.

We perform the first detailed study of a European super-beam setup

using the CERN to Pyhäsalmi baseline of 2285 km, analysing the physics

reach of this setup with a 100 kiloton liquid argon detector and compar-

ing its performance to that of a 50 kiloton liquid scintillator detector

and a 440 kiloton water Čerenkov detector. The liquid argon and liquid

scintillator detectors are found to perform best, providing sensitivity to

θ13, δ and the mass hierarchy for sin2 2θ13 > 10−2.

A potential successor to super-beam experiments is a neutrino fac-

tory. We study a low-energy neutrino factory, a setup which has so far

not been analysed in any detail, performing optimisation studies and

an analysis of its sensitivity to oscillation parameters and non-standard

matter interactions. We show that for sin2 2θ13 > 4 × 10−3, a low-

energy neutrino factory using a 20 kiloton totally active scintillating

detector has 100% CP coverage for hierarchy sensitivity and θ13 discov-

ery, and has greater sensitivity to CP violation than the high-energy

neutrino factory. We consider the novel concept of including the ‘plat-

inum channels’ in addition to the ‘golden channels’, showing that this

is a powerful way of resolving the degeneracies between the oscillation

and non-standard parameters. This enhances the sensitivity, such that

the low-energy neutrino factory can put upper bounds & 10−2 on the

non-standard interaction parameters εeµ and εeτ .
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Chapter 1.

Introduction

Neutrino physics is a diverse and vibrant area of study, spanning the fields of particle

physics, cosmology, astrophysics, nuclear physics and geophysics. Yet despite the fact

that neutrinos are one of the most abundant particles in the universe, we know relatively

little about them. Their tiny interaction cross-sections makes them one of the most

elusive particles in spite of their vast natural abundance; to detect and observe them

requires the design and construction of very specific experiments and detectors.

We are currently living in one of the most exciting eras of particle physics, thanks to

the construction of the Large Hadron Collider (LHC). This is the world’s most powerful

particle accelerator and the largest physics experiment ever built. The LHC is designed

to answer the question of how particles become massive, by creating and detecting the

Higgs boson (if it exists) predicted by the Standard Model of particle physics. In addi-

tion, the LHC has the capability to confirm and improve upon precision measurements

of the electro-weak parameters, enabling us to test the Standard Model more precisely

than ever. But first and foremost, the LHC is a discovery machine - it is designed to

probe physics at an energy scale higher than any other previous experiment, in a quest

to search for physics beyond the Standard Model.

In view of this, it would be easy to forget that there are other ways in which we can

search for new physics, and which may be complementary to the physics discovered by

the LHC. Neutrinos form part of the Standard Model, and yet we do not have anywhere

near the quantity of information about them as we do about the other particles in the

model, nor do we have as precise measurements of their properties. In fact, the tau

neutrino was the last Standard Model particle to be observed (apart from the Higgs

boson), and this was not until as recently as 2000. So the questions we should ask are

what neutrino properties are still unknown, which are we able to measure and how, and

3
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what can be deduced from them? These are questions we shall address in this thesis by

studying the phenomenon of neutrino oscillations.

The discovery that neutrinos oscillate was announced by the Super-Kamiokande col-

laboration in 1998. It is considered to be one of the most pivotal discoveries in the

recent history of particle physics because the fact that neutrinos oscillate implies that

they have non-zero masses, contrary to the predictions of the Standard Model. Thus,

neutrino oscillations are the first evidence of physics beyond the Standard Model and

that the current theory is incomplete. Although neutrino oscillations are a phenomenon

which occurs at low energies relative to the energies of modern hadron colliders, they

still give us vital hints and evidence about the existence of high-energy new physics.

Therefore it seems wise to pursue this course of investigation and to obtain as much

information about neutrino oscillations as possible since in that way we have a good

chance of extracting several clues of new physics.

There are three key oscillation parameters which we still need to measure - the mixing

angle, θ13, which we know is close to zero, the Dirac phase, δ, which indicates that CP

violation is present if not equal to zero or π, and the ordering of the neutrino mass

states. Knowing the value of θ13 and δ will enable us to piece together the full neutrino

mixing matrix. This should give us clues about the physics of the flavour sector of the

Standard Model, one of the least understood aspects of the model. We know that the

neutrino mixing matrix is very different from the quark mixing matrix, but we need

to know why this is so and therefore precisely how it differs. Hence we are required

to measure the neutrino mixing parameters to the same precision as the quark mixing

parameters. The Dirac phase is also important because a discovery of CP violation in

the neutrino sector is a pointer towards leptogenesis, but CP violation is only possible

if θ13 is non-zero since the phase is only physical if all three mixing angles are non-zero.

So it is also vital to gain more knowledge about the value of θ13 as soon as possible. In

this way we can establish if we will be capable of measuring δ and the mass ordering,

and also to decide which is the best experiment to build.

In view of this, it is important to consider all the potential experimental setups which

are feasible and are likely to have a good physics reach in order to make an informed

decision as to which is the best. The candidate experiments include super-beams and

neutrino factories. Super-beams are more powerful versions of conventional neutrino

beams and have the advantage of being a well-established and proven technology; there-

fore these are experiments which can be built some time in the relatively near future.

Super-beams have been thoroughly studied in both the US and Japan, but relatively
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little effort has been invested so far in considering setups within Europe. But in order

to choose the best experimental setup, these options should also be seriously considered

as we have in this thesis.

Super-beams can give us hints as to the value of θ13, or if θ13 is suitably large, they

may also be able to make a measurement of δ and the mass ordering. These measure-

ments will be limited by systematic errors, backgrounds and statistics which prevent

these experiments from making measurements if θ13 is very small. In this scenario, an

experiment such as a β-beam or a neutrino factory will be necessary, both of which have

been extensively studied in the literature. A neutrino factory is an experiment designed

to produce a very pure and intense beam of neutrinos which propagate over distances of

thousands of kilometres before being detected. The necessity for extremely long base-

lines stems from the need to exploit matter effects which will enable us to determine

the neutrino mass ordering. The concept of a low-energy neutrino factory which is a

version of a neutrino factory using much lower energy neutrinos and a shorter baseline

than the standard neutrino factory setup, has up until now been side-lined in favour of

the higher energy setup. Whilst it is true that the high-energy neutrino factory has a

very impressive physics reach, it is important to ask whether this is the optimal setup

for all scenarios. This is a question which we will answer by showing that a low-energy

neutrino factory may sometimes perform better than the high-energy neutrino factory.

Thus it is far from obvious that the standard high-energy neutrino factory is always the

best option, and we must carefully consider and compare its performance to that of the

low-energy neutrino factory.

In the rest of this chapter we shall put the main work of this thesis into context by

describing how neutrinos fit into the Standard Model of particle physics and some of the

questions which we still need to answer about them. At the end of the chapter we will

give an outline of the remainder of the thesis.

1.1. Neutrinos: the story begins

The story of the neutrino (denoted by the Greek letter ν) began in 1930 when Wolfgang

Pauli postulated the existence of a neutral particle to explain the ‘missing energy’ ob-

served in the beta decay of radioactive ions. The process was thought to be a two-body

decay, with a neutron decaying into a proton and electron, as only the initial and final

nuclei and a free electron were observed in the process. This decay was therefore ex-
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pected to produce a single monochromatic electron line, corresponding to the difference

in mass between the neutron (or rather the the initial nucleus), and the proton (the final

nucleus) and electron. Instead, a continuous spectrum of electron energies was observed.

We know now that this ‘missing energy’ is that carried away by the neutrino, an idea

which was first expressed by Wolfgang Pauli in December 1930 in a letter written to a

gathering of physicists in Tübingen [1]. However, Pauli considered the work too imma-

ture to publish! But the Italian physicist Enrico Fermi took Pauli’s idea and went on to

develop the theory of weak interactions [2, 3], and it is he who named the particle ‘little

neutral one’ in Italian. However, it was not until 1956 that the neutrino was actually

discovered by Reines and Cowan [4], who detected the anti-electron neutrinos produced

from a radioactive source, earning Reines the Nobel Prize in 1995.

In 1962 the muon neutrino was discovered at Brookhaven National Laboratory, in a

collaboration led by Leon Lederman, Melvin Schwartz and Jack Steinberger [5] - they

won the 1988 Nobel prize as a result. They created the first ever neutrino beam by

taking protons from the Alternating Gradient Synchrotron, colliding them into a target

to produce a shower of pions, and then allowing the pions to decay into muons and

muon neutrinos. This is still the method by which neutrino beams are produced, as we

will describe in more detail in Chapter 3. A detector was placed several metres away

from the target, with a heavy iron wall in between the beam and the detector. The

muons were unable to pass through the wall but the neutrinos could. The fact that

muons were seen in the detector indicated that these neutrinos were producing muons

and not electrons when they interacted, thereby indicating that they were different to

the neutrinos detected by Reines and Cowan.

In 1975 the tau lepton was discovered [6], arousing suspicions that there should be a

third neutrino, the tau neutrino. The existence of three light neutrino species was later

confirmed by the LEP experiment [7] which measured Z0 decays. By measuring the

total width of the Z0, and the width of all the visible decays into hadrons and charged

leptons, the ‘invisible’ width could be attributed to decays into neutrinos. The data

were consistent with the existence of three neutrinos. However, the tau neutrino was

not observed until 2000 by the DONUT (Direct Observation of NU Tau) experiment [8]

which detected the tau neutrinos produced from the decay of charmed particles. We

shall explain in Section 3.3.4 why it took so long for this observation to be made!
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1.2. Neutrinos in the Standard Model

The Standard Model of particle physics describes the fundamental particles of nature and

their interactions which are encoded in the Standard Model Lagrangian. It is a quantum

field theory based upon the concept of mathematical symmetries and groups. The

strong, weak and electromagnetic interactions are completely specified by demanding

local gauge invariance under the SU(3), SU(2) and U(1) groups, respectively, with the

weak and electromagnetic interactions being unified into a single force [9, 10, 11]. There

is also a fourth interaction - gravity - which is yet to be consistently incorporated into

the Standard Model. However, the strong, weak and electromagnetic interactions are

well understood and theoretical predictions have been rigourously tested experimentally.

The picture which has emerged is that the strong force is felt only by quarks, which are

charged under the SU(3) group (‘colour charge’), and not by leptons. It is mediated

by massless gluons, and is most relevant for sub-nuclear interactions. The ‘weak’ force,

which will be discussed shortly, is mediated by the heavy W± and Z0 gauge bosons,

making it a short-range force. It is felt by both quarks and leptons. The electromagnetic

force is mediated by the massless photon and thus has infinite range. Particles which

have electric charge interact via this force.

Neutrinos are leptons and appear in the Standard Model as the SU(2) partners of the

charged leptons. They are the only electrically neutral matter particle in the Standard

Model. Therefore they interact only via the weak force. Like all the other matter

particles they are fermions (they have 1
2
-integer spin).

The matter particles of the Standard Model are shown in Table 1.1. For our purposes

we have divided them simply into SU(2) doublets and SU(2) singlets as we shall only be

concerned with weak interactions. The relevant weak interaction terms of the Lagrangian

(for neutrinos only) are

Lν = − ig√
2
ν̄Lγ

µeLW
+
µ − ig√

2
ēLγ

µνLW
−
µ (1.1a)

− ig

2 cos θW
ν̄Lγ

µνLZ
0
µ + H.C., (1.1b)

(H.C. is the hermitian conjugate) where θW is the Weinberg mixing angle. Note that only

left-handed (L) particles appear - the weak interaction is maximally parity-violating [12]

which means that it couples only to left-handed particles and right-handed anti-particles.

This is why, unlike all other particles, only the left-handed neutrinos and right-handed
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anti-neutrinos are present in the Standard Model - the right-handed neutrinos and left-

handed anti-neutrinos, if they exist, do not interact with any other Standard Model

particle. The discovery that all neutrinos are left-handed was first made by the 1957

Goldhaber experiment [13].

The ‘handedness’ of the particle refers to its chirality, which is property labelling the

γ5 matrix eigenvalue of the particle field (see Appendix A). A general field, ψ, can be

decomposed as

ψ =
1

2
(1− γ5)ψ +

1

2
(1 + γ5)ψ

= ψL + ψR. (1.2)

The factors 1
2
(1∓ γ5) are the left- and right-handed projection operators. We see, using

the properties of the γ5 matrix in Appendix A, that ψL has a γ5 matrix eigenvalue of

−1 and ψR has an eigenvalue of +1. The weak interaction distinguishes between these.

A connection to directly observable properties can be made in the relativistic limit,

when the chirality of a particle becomes equal to its helicity (the direction of spin with

respect to the direction of motion) but in all other cases, this relation does not hold. A

fundamental distinction between the two properties is that helicity is a frame-dependent

quantity (for massive particles), but chirality is Lorentz-invariant ; for massive particles,

it is possible to Lorentz boost to a frame where the particle’s velocity is reversed but

the spin remains unchanged so that the helicity is reversed. However, a particle which is

chirally left-handed in one frame and therefore undergoes weak interactions also interacts

in all frames, irrespective of its helicity in those frames.

Eq. (1.1a) describes charged-current (CC) interactions, mediated by a charged W±

boson:

να + ℓ−β → νβ + ℓ−α , ν̄α + ℓ+β → ν̄β + ℓ+α , (1.3a)

να + qd → ℓ−α + qu, ν̄α + qu → ℓ+α + qd, (1.3b)

where qu is any up-type quark (or down-type anti-quark), qd is any down-type quark (or

up-type anti-quark) and α = e, µ, τ . An example is shown in Fig 1.1a.

Eq. (1.1b) describes neutral-current (NC) interactions, mediated by a neutral Z0

boson:

να +X → να +X, ν̄α +X → ν̄α +X, (1.4)
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να ℓ−α

W−

ℓ−β νβ

να να

Z0

X X

(a) A charged-current interaction. (b) A neutral-current interaction.

Figure 1.1.: Example of a charged-current and a neutral-current neutrino interaction.

an example of which is shown in Fig 1.1b, where X can be any lepton (or anti-lepton)

or quark (or anti-quark). All of these interactions are extremely rare relative to the

interaction rates of other Standard Model particles because of the tiny interaction cross-

sections of neutrinos. For example, the total charged-current cross-section for muon

neutrinos to interact with a nucleon at energies of a few GeV is ∼ 10−42m2/ GeV [14],

which can be compared with the cross-section for a photon to interact with a proton

(∼ 10−32m2/ GeV) [14]. This is the reason why neutrinos were not discovered until

several years after they were theoretically predicted, and for the development of giant

kiloton scale detectors in neutrino experiments.

The idea of currents in particle physics is directly analagous to the idea in relativistic

quantum mechanics where the 4-vector Jµ = (ρ, j) describes the probability and flux

densities. In particle physics, in the case of charged-currents, Jµ is associated with the

current and flux densities of electromagnetic charge. The charged-currents take the form

Jµ+
CC = ν̄αγ

µ1

2
(1− γ5)ℓ−α , (1.5)

for interactions between neutrinos and charged leptons. Quarks also interact weakly

and have a similar current. The hermitian conjugates of these currents are the charge-

lowering currents,

(Jµ+
CC)

† = Jµ−
CC = ℓ̄−αγ

µ1

2
(1− γ5)να, (1.6)

for leptonic interactions, and similarly for the quark interactions.
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For neutral-currents there is no transfer of electric charge. For neutrinos, the current

is simply

Jµ
NC = ν̄Lγ

µνL. (1.7)

Now the Lagrangian Eq. (1.1) can be written more compactly in terms of currents and

the amplitudes for weak interaction processes expressed as

ACC =

(

g√
2
Jµ
CC

)

1

M2
W − q2

(

g√
2
J†
CCµ

)

, (1.8a)

ANC =

(

gNC√
2
Jµ
NC

)

1

M2
Z − q2

(

gNC√
2
J†
NCµ

)

, (1.8b)

where g is a fundamental coupling constant which describes the strength of the weak

interactions, MW is the mass of the W± boson (∼ 80 GeV), gNC = g
cos θW

, MZ = MW

cos θW

is the mass of the Z0 boson and q is the 4-momentum transferred by the interaction.

In a low-energy interaction where q2 ≪ M2
W , which is applicable to all the cases we

shall consider, we can describe Standard Model neutrino interactions with an effective

Lagrangian,

Leff = −2
√
2GF (J

µ
CCJ

†
CCµ + Jµ

NCJ
†
NCµ), (1.9)

where GF =
√
2g2

8M2
W

is known as the Fermi coupling constant (the numerical constants are

set by convention). In these circumstances, the interaction is essentially point-like and

it can be seen that the weak interaction is ‘weak’ not because g is intrinsically weak,

but because MW is heavy. At high energies such that q2 ∼ M2
W , the weak interaction

becomes comparable in strength to the electromagnetic interaction.

1.3. Dirac or Majorana?

One of the most important questions in neutrino physics is whether neutrinos are Dirac

particles like the other Standard Model fermions, or whether they areMajorana particles

(named after the Italian physicist Ettore Majorana who first developed the theory [15]).

Only electrically neutral particles can be Majorana, which is why neutrinos are the only

matter candidate in the Standard Model.
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SU(2) doublets SU(2) singlets

First generation

(

νe

e

)

L

(

u

d

)

L

eR uR dR

Second generation

(

νµ

µ

)

L

(

c

s

)

L

µR cR sR

Third generation

(

ντ

τ

)

L

(

t

b

)

L

τR tR bR

Table 1.1.: The matter content of the Standard Model.

A Dirac fermion is described by a 4-component Dirac spinor which can be written

in terms of two 2-component Weyl spinors, ψ− and ψ+, if we choose to use the Weyl

representation:

ψ =





ψ−

ψ+



 . (1.10)

Then left-handed and right-handed spinors can be written as

ψL =





ψ−

0



 , ψR =





0

ψ+



 , (1.11)

which have γ5 eigenvalues of −1 and +1 and transform independently under the Lorentz

group without mixing. ψL and ψR correspond to a particular fermion (a 2-component

spinor describes a spin-1
2
particle) e.g. e−L and e−R . For every field there is a conjugate

field, ψc, which corresponds to the anti-particle (e+L and e+R in our example). The fields

are related via the charge-conjugation matrix, C (see Appendix B):

ψc = Cψ̄T . (1.12)

In the general case, ψ and ψc correspond to different species, for instance an electron

and a positron, which are distinct because they have opposite electric charges. For a
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Dirac fermion, such as an electron, there are four distinct particles, e−R, e
+
R, e

−
L and e+L ,

all of which have the same mass but have different electric charges and chiralities.

Now consider a situation where ψ+ is related to ψ− (Appendix B) such that

ψc = ψ. (1.13)

Then ψ is a self-conjugate field. This is the Majorana condition which defines a Majo-

rana spinor. For a Majorana fermion, there are only two distinct particles of opposite

chiralities which are otherwise identical. Note that this would imply that lepton number

is violated (this quantity is otherwise conserved in the Standard Model) because in the

Standard Model all leptons (including neutrinos) have lepton number L = 1 and all

anti-leptons L = −1. We have observed νL and ν̄R, but have not seen νR and ν̄L. If neu-

trinos are Majorana then we could have processes where νL,R ↔ ν̄L,R transitions occur

which would mean that L is not conserved. Then processes such as neutrinoless double-

beta decay could occur (see Ref. [16] for a review). This process is shown in Fig. 1.2b,

together with standard double-beta decay in Fig. 1.2a. The standard double-beta de-

cay occurs in some cases when the ordinary single-beta decay is energetically forbidden;

then two neutrons in the nucleus are simultaneously converted to two protons (two down

quarks are converted into two up quarks) which is accompanied by the emission of two

electrons and two anti-electron neutrinos. The reverse process can also occur, in which

case two electrons and two electron neutrinos are emitted. Now if lepton number is not

conserved, then it is possible for a single (anti-) electron neutrino to be both emitted

and absorbed as shown in Fig. 1.2b. This process can be searched for by experiments

which measure the energies of the electrons emitted in double-beta decays - if a pair of

neutrinos is also emitted in the standard decay then there will be some ‘missing energy’,

but in a neutrinoless double-beta decay there is no missing energy so the energies of

the electrons should precisely match the difference between the initial and final nuclei.

Information about such experiments can be found in Refs. [17, 18, 19, 20, 21, 22, 23, 24].

Lepton number violation is of the utmost interest because it explains how an excess

of leptons over anti-leptons in the early universe could have arisen. This could have

been converted into an excess of baryons over anti-baryons (baryogenesis via leptogenesis

[25, 26]) and thus provide a mechanism to explain the matter/ anti-matter asymmetry

of the universe - one of the biggest puzzles of fundamental physics. Hence knowing

whether neutrinos are Majorana particles or not is of considerable importance! We shall
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d u

W± e−

ν̄e

d u

W±

ν̄e

e−

d u

d u

W±

W±

e−

e−

ν̄e

a) Double-beta decay. b) Neutrinoless double-beta decay.

Figure 1.2.: Double-beta decay and neutrinoless double-beta decay.

mention the topic of leptogenesis again in Chapter 2 when we discuss CP violation in

the neutrino sector.

1.4. Neutrino masses

The discussion of Dirac and Majorana particles leads naturally onto the topic of neutrino

masses. A general overview of the topic can be found in e.g. Ref. [27]. A key pillar of the

Standard Model, formulated by Glashow, Weinberg and Salam in the 1960’s [9, 10, 11]

is the mechanism of electro-weak symmetry breaking. This symmetry of the model is

spontaneously broken, giving rise to a massive ‘Nambu-Goldstone boson’ [28, 29, 30] -

the Higgs boson [31, 32, 33] - the discovery of which is one of the primary goals of the

Large Hadron Collider (LHC). It is through the Higgs mechanism [31, 32, 33] that the

particles of the Standard Model become massive; a model in which all the symmetries

are preserved predicts only the existence of massless particles.

In a sense, ‘mass’ is a property which arises from the interaction between left- and

right-handed fields; ψL and ψR remain entirely independent of one another except when

they are coupled by a mass term. In the Higgs mechanism, the resulting mass is known
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as a Dirac mass and arises from the coupling between the left- and right-handed com-

ponents of the same field. The corresponding terms in the Lagrangian are

LD =
1

2
mD(ψ̄LψR + ψ̄RψL + ψ̄c

Lψ
c
R + ψ̄c

Rψ
c
L), (1.14)

which can be written as

LD =
1

2
mD(ψ̄ψ + ψ̄cψc), (1.15)

because ψ̄LψL = ψ̄RψR = 0. By writing the Lagrangian like this, Eq. (1.15) also makes

it explicit that the mass eigenstates are ψ = ψR + ψL and ψc = ψc
R + ψc

L.

However, we could also couple the left- and right-handed components of conjugate

fields e.g. (ψ)L and (ψc)R to produce Majorana mass terms. If we note that

(ψc)R =
1

2
(1 + γ5)ψc =

(

1

2
(1− γ5)ψ

)c

= (ψL)
c = ψc

L, (1.16)

which means that the right-handed component of the conjugate field is the same as

the conjugate of the left-handed component of the field (and vice-versa), then we can

also think of Majorana mass terms as coupling left-handed (right-handed) fields to the

conjugate of the left-handed (right-handed) fields:

LM = mM1(ψ̄
c
LψL + ψ̄Lψ

c
L) +mM2(ψ̄

c
RψR + ψ̄Rψ

c
R). (1.17)

So these terms mix neutrinos and anti-neutrinos and therefore violate lepton number,

as was mentioned at the end of Section 1.3. We can also write the Majorana mass terms

more compactly as

LM = mM1ν̄ν +mM2N̄N, (1.18)

where ν = ψL + ψc
L and N = ψR + ψc

R are the Majorana mass eigenstates which are

self-conjugate, and mM1 and mM2 are symmetric mass matrices (see e.g. Ref. [27]). Now

if we identify ν as being the Standard Model neutrino pair (νL, ν̄R), then N is a second

Majorana pair of neutrinos not predicted by the Standard Model. These may be sterile

(non-interacting) and could have much larger masses than ν - these heavy right-handed

neutrinos appear frequently in beyond the Standard Model theories.
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The most general term mass term which can be written is thus the sum of Eq. (1.14)

and (1.18) which can be written in matrix form as

Lmass = ( ν̄ N̄ )





mM1
1
2
mD

1
2
mD mM2









ν

N



 . (1.19)

The mass matrix can be diagonalised to yield the mass eigenvalues

M± =
1

2

(

mM1 +mM2 ±
√

(mM1 −mM2)2 +m2
D

)

, (1.20)

with corresponding eigenstates

φ+ = ν cos θ +N sin θ, φ− = ν sin θ −N cos θ, (1.21)

where

tan 2θ =
mD

mM1 −mM2
. (1.22)

The mass eigenstates are again self-conjugate. So the most general mass term for a four-

component fermion field (1.19) describes two pairs of Majorana particles with different

masses. When mM1 = mM2 = 0 then θ = π
4
and the mass eigenvalues are M± = ±1

2
mD.

To obtain the physical mass eigenstates (which have positive masses) we need to perform

a chiral transformation of the states (1.21) (see e.g. Section 13.2 of Ref. [34]) to obtain

the solutions

χ+ =
1√
2
(ψL + ψc

L + ψR + ψc
R) = φ+, (1.23a)

χ− =
1√
2
(−ψL + ψc

L − ψR + ψc
R), (1.23b)

which both have masses of 1
2
mD and are both self-conjugate - although χc

+ = χ+ and

χc
− = −χ−, the minus sign can be absorbed into the matrix C since the matrix −C has

the same properties (Eq. (B.2)) as C (this indicates that χ+ and χ− have opposite CP

parities). Since these are degenerate eigenstates, any linear combination of them is also

an eigenstate. If we choose the solutions to be (χ+ ± χ−) then we recover our Dirac

solutions from Eq. (1.15), ψ = ψL + ψR and ψc = ψc
L + ψc

R. Thus we find that a pair

of Majorana states with degenerate masses and opposite CP parities is equivalent to a

Dirac state of the same mass.
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The reason for not including right-handed neutrinos and left-handed anti-neutrinos

in the Standard Model initially was that they simply had not been observed, and it was

assumed that they were Dirac particles. As neutrinos were, for a long time, thought to be

massless, this was also consistent with the fact that there should only be one handedness

of neutrino - the presence of both chiralities would imply that neutrinos should have a

non-zero Dirac mass. Today, we know that neutrinos have non-zero masses (because of

neutrino oscillations, as explained in the next chapter) but that they are many orders of

magnitude smaller than the mass of the next lightest particle, the electron (the current

bound is mνe . 2 eV [35]), although we have yet to measure the exact neutrino mass.

Thus it is questionable whether neutrinos acquire mass through the Higgs mechanism as

this requires an explanation for why their Higgs interactions are so tiny relative to that

of the other particles. On the other hand, generating neutrino masses through Majorana

couplings requires the presence of terms which violate lepton number, a quantity which

is otherwise conserved in the Standard Model.

A popular idea is that neutrinos become massive via a ‘see-saw’ mechanism [36, 37],

which requires the presence of a heavy sterile (NR, N̄L) pair to generate both Dirac

and Majorana mass terms, as in Eq. (1.19), with mM1 = 0 and mD ≪ mM2. In this

way, the smallness of the Standard Model neutrino masses is a direct consequence of

the heaviness of the sterile neutrinos which are expected to have masses of the order

of the grand unification scale. The development of these see-saw models, and others,

to explain tiny neutrino masses is currently a very active field of theoretical research

(see Ref. [38] for a review) as is the experimental quest to make a measurement of the

absolute neutrino mass [35, 39, 40, 41].

The question of whether neutrinos are Majorana or Dirac particles is of fundamental

importance but may unfortunately remain unanswered for many years to come! A

discovery that neutrinos are Dirac particles would imply that they have Dirac masses,

the smallness of which would require an explanation. In addition we would know that

lepton number, like baryon number, is conserved in the Standard Model. If, however, we

find that neutrinos are Majorana particles, then the see-saw mechanism becomes a likely

explanation of the smallness of neutrino masses and additionally we will have found that

lepton number is not conserved in the Standard Model. This would make leptogenesis

seem like a plausible scenario.
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1.5. Outline of the thesis

In the remainder of this thesis we will focus our attention on the phenomena of neutrino

oscillations from the theoretical, phenomenological and experimental perspectives. In

Chapter 2 we will describe the theory and formalism behind neutrino oscillations. We will

discuss neutrino oscillations in vacuum and then oscillations in matter, describing how

‘matter effects’ alter the oscillations relative to the vacuum case. We also summarise

our current knowledge of the neutrino oscillation parameters. Following this we will

introduce non-standard interactions which are lepton flavour-changing processes that

may arise from physics beyond the Standard Model, explaining why neutrino oscillation

experiments are ideal tools for hunting for such processes.

The experiments which are designed to detect these phenomena are discussed in

Chapter 3. To begin with, we explain how the design of a neutrino oscillation experiment

is linked to the theory described in Chapter 2. The components of past, current and

future neutrino oscillation experiments are then described. We discuss their benefits

and limitations and introduce the super-beam and neutrino factory which are potential

future experiments that we study in this thesis. We then describe the techniques used

to simulate and analyse these experiments.

The phenomenology at these experiments is the topic of Chapter 4. The golden

channel, the νe → νµ channel, which is the channel that a neutrino factory is primarily

designed to observe, is discussed in detail; super-beams measure the νµ → νe channel

which is phenomenologically similar. We show how the unknown mixing parameters,

θ13, δ and the mass hierarchy, can be extracted from the spectrum of the golden channel

and how the value of θ13 and matter effects influence these measurements. We briefly

mention the other channels which may be accessible and finish with a discussion about

degeneracies, explaining the problem and some possible solutions.

Super-beams, which are more powerful versions of conventional neutrino beams, are

studied in Chapter 5. We optimise and assess the potential of a super-beam within Eu-

rope as part of the Large Apparatus for Grand Unification and Neutrino Astrophysics

(LAGUNA) design study. There are seven possible European baselines and three de-

tector options - liquid argon, liquid scintillator and water Čerenkov - being considered

by this design study; up until now, only the shortest baseline with one of the detector

options has been studied in detail. In the first half of the chapter we perform studies

of the liquid scintillator detector which is so far the least well-developed of the three
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detector technologies, in order to ascertain the potential and limiting factors of this

detector. In the second half we perform the first detailed study of the potential of the

longest LAGUNA baseline - 2285 km from CERN to Pyhäsalmi - which is the baseline

that will have the best physics reach, considering all three of the detector options. These

are setups which can be stepping stones towards the physics goals of an experiment such

as the neutrino factory, the topic of Chapters 6 and 7.

Neutrino factories have, in general, been thoroughly analysed in the literature, al-

though a low-energy version of the setup has not yet been extensively studied as most

effort has been concentrated on the standard high-energy neutrino factory. In Chapter 6

we introduce, optimise and analyse the performance of a low-energy neutrino factory as

part of the International Design Study for the Neutrino Factory. The low-energy version

of the neutrino factory uses much lower energy neutrinos than the standard high-energy

neutrino factory and therefore a shorter baseline of around 1000 km rather than several

thousands of kilometres is required. For the first time, we consider the possibility of

adding the platinum channels, νµ → νe and ν̄µ → ν̄e, to the setup, as well as considering

the effect of altering factors such as the energy threshold of the detector. We show that

although the high-energy neutrino factory is optimal for very small values of θ13 (such

that sin2 2θ13 . 10−3), the low-energy setup actually performs better for larger values

of θ13, in terms of sensitivity to CP violation. As well as the discovery potential of the

experiment, we also consider the precision with which it can measure the oscillation

parameters.

We then go on to analyse the ability of the low-energy neutrino factory to detect

non-standard interactions in Chapter 7. These are neutrino interactions not predicted

by the Standard Model and so their detection would be a direct signal of new physics. It

turns out that long-baseline neutrino oscillation experiments are ideal tools for searching

for these signals and so we should, if possible, incorporate their detection into the opti-

misation and analysis of the low-energy neutrino factory. We show how the combination

of the golden and platinum channels at a low-energy neutrino factory is an extremely

powerful way of resolving the degeneracies between the oscillation and non-standard

parameters, thereby increasing the sensitivity of the setup.

Finally, in Chapter 8 we draw our conclusions.



Chapter 2.

Neutrino oscillations and

non-standard interactions

In this chapter we will introduce the main topic of this thesis - neutrino oscillations -

the phenomenon of neutrinos changing flavour as they propagate through space. The

discovery that neutrinos oscillate is one of the most important in the recent history of

particle physics as oscillations only occur if neutrino masses are non-zero, as will be

explained. So neutrino oscillations were the first evidence that neutrinos had non-zero

masses and thus that the Standard Model, with its prediction of massless neutrinos, was

incomplete.

We will derive the probabilities for neutrino oscillations both in vacuum and in mat-

ter, describing the Mikheyev-Smirnov-Wolfenstein effect. We will then go on to introduce

non-standard interactions which are neutrino interactions other than those predicted by

the Standard Model, and which may thus provide clues of new physics. We will describe

the formalism and explain why future long-baseline oscillation experiments are powerful

tools for searching for these interactions.

2.1. The birth of neutrino oscillation physics

In 1957 the Italian physicist Bruno Pontecorvo first postulated that neutrinos might

oscillate [42]. Some years later, in the 1960’s, uncertainty about neutrino properties

began to arise due to the ‘solar neutrino problem’: at that time, understanding of

solar processes had reached a level that enabled confident predictions to be made about

the expected flux of electron neutrinos arriving at the earth from the sun. However,

19
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experiments measuring this flux observed only about a third of that predicted; the first

experiment to detect this deficit was Ray Davis’ Homestake Experiment [43], for which

Davis won the Nobel Prize in 2002.

Suspicions that the problem was due to neutrino oscillations, as predicted by Pon-

tecorvo, culminated in 1998 when the Super-Kamiokande collaboration [44] released

results which showed that their detector was seeing a deficit of atmospheric muon neu-

trinos which was consistent with a model where muon neutrinos oscillated into tau

neutrinos. The proof that neutrinos were oscillating between flavours, and not just dis-

appearing, came in 2001 when the SNO experiment [45] became the first experiment to

be sensitive to the total flux of neutrinos arriving from the sun. In this way they showed

that the total flux, of all three flavours combined, was consistent with that predicted

by solar models, thereby implying that neutrinos born as electron neutrinos in the sun

were oscillating into different flavours en-route to the earth.

Pontecorvo postulated the existence of neutrino oscillations following the observation

of particle mixing in the neutral meson sector where K0 mesons were seen to oscillate

into K̄0. Similarly, B0 and D0 mesons also oscillate into their anti-particles. These

oscillations occur because the flavour (interaction) eigenstates of these particles do not

coincide with the mass (propagating) eigenstates. The two sets of states can then be

linked by a mixing matrix; in the quark sector this is the Cabbibo-Kobayashi-Maskawa

(CKM) matrix [46, 47] whilst in the neutrino sector the mixing matrix is called the

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [48]. The mass states are conven-

tionally denoted as ν1, ν2 and ν3 whilst the flavour states are νe, νµ and ντ :











ν1

ν2

ν3











=











Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3





















νe

νµ

ντ











.

In the absence of sterile neutrinos, the three Standard Model neutrinos are the only

ones to exist and the PMNS matrix is a unitary 3 × 3 matrix. It can be parameterised

by three mixing angles and three complex phases (see Appendix C) and written as the
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product of three 2× 2 rotation matrices and two phase matrices,

U = U23U13,δU12Vζ

=











1 0 0

0 c23 s23

0 −s23 c23





















c13 0 s13e
±iδ

0 1 0

−s13e∓iδ 0 c13





















c12 s12 0

−s12 c12 0

0 0 1





















eiζ1/2 0 0

0 eiζ2/2 0

0 0 1











=











c12c13 s12c13 s13e
±iδ

−s12c23 − c12s13s23e
∓iδ c12c23 − s12s13s23e

∓iδ c13s23

s12s23 − c12s13c23e
∓iδ −c12s23 − s12s13c23e

∓iδ c13c23





















eiζ1/2 0 0

0 eiζ2/2 0

0 0 1











,

where sjk = sin θjk and cjk = cos θjk and the upper signs on the phase δ refers to

neutrinos, and the lower sign to anti-neutrinos. The angles θjk (or rather, the physically

measurable combinations of cos θjk and sin θjk) describe the mixing between the j and

k sectors. The phase δ is called the Dirac phase and, if not equal to zero or π, and

all three mixing angles are non-zero, indicates that CP violation occurs in the neutrino

sector (CP violation is only possible if there is mixing between more than two families

[47]). The phases ζ1 and ζ2 are the Majorana phases which are only physical if neutrinos

are Majorana particles, and can be detected only via experiments where the Majorana

character of neutrinos manifests itself - in lepton number violating processes such as

neutrinoless double-beta decay. Since neutrino oscillations violate lepton flavour but not

lepton number, the Majorana character of neutrinos will not be exhibited in oscillations

and so the Majorana phases are irrelevant to neutrino oscillation physics.

2.2. Neutrino oscillations in vacuum

The simplest case of neutrino oscillations are those that occur in vacuum. Here we will

outline the calculation of the probability for these oscillations. A rigourous derivation

requires the consideration and treatment of quantum mechanical wave packets, as de-

scribed in Ref. [49] and briefly discussed in Appendix D, but for simplicity we shall

use the commonly-used equal momentum approximation which, although not being a

generally true assumption, produces the correct result for our situations.
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We must first note that the neutrino mass states, |ν1〉, |ν2〉 and |ν3〉, are the physically
propagating states which evolve according to the time-dependent Schrödinger equation,

−i ∂
∂t

|νj〉 = Ĥ|νj〉, (2.1)

where j = 1, 2, 3. The solutions are plane waves of the form e−iEjt|νj〉.

We wish to calculate the probability that a neutrino which starts as flavour α oscil-

lates into a neutrino of flavour β after propagating a distance L - neutrino oscillation

experiments measure only the distance, and not the time, over which a neutrino prop-

agates. Since the mass states and not the flavour states are those which propagate, we

need to write both the initial and final states in terms of the mass states. The initial

state is

|ψ(x = 0)〉 = |να〉 =
3
∑

j=1

U∗
αj |νj〉, (2.2)

which after propagating a distance x = L in time t becomes

|ψ(x = L)〉 =
3
∑

j=1

U∗
αje

−iEjt|νj〉, (2.3)

so that the amplitude for να → νβ is

〈νβ|ψ(L)〉 =
3
∑

j=1

U∗
αjUβje

−iEjt, (2.4)

where we have used the fact that the mass states are orthonormal: 〈νk|νj〉 = δjk. Now

we use the equal-momentum assumption,

Ej =
√

p2j +m2
j ≃ p

(

1 +
m2

j

2p2

)

, (2.5)

where p is the common momentum of all the mass states, and the relativistic approxi-

mation t ≃ L, so that

〈νβ|ψ(L)〉 =
3
∑

j=1

U∗
αjUβje

−iL

(

p+
m2

j
2p

)

. (2.6)
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(Here we see that one of the problems with the equal-momentum assumption is that the

neutrino states only appear to propagate in time and not space - the spatial dependence

is only introduced by using the t ≃ L approximation). The probability is the square of

the amplitude, and to a good approximation we can set p−1 ≃ E−1. The probability is

then

Pνα→νβ(L,E) =

∣

∣

∣

∣

∣

∣

3
∑

j=1

U∗
αjUβje

−iL

(

p+
m2

j
2E

)∣

∣

∣

∣

∣

∣

2

, (2.7)

which can be simplified (see Appendix D) by using the unitarity condition
∑3

j=1 U
∗
αjUβj =

δαβ = |∑3
j=1U

∗
αjUβj |2 and the half-angle relation 1− cos θ = 2 sin2 θ

2
to obtain the final

expression,

Pνα→νβ(L,E) = δαβ − 4
∑

j>k

Re[U∗
αjUβjUαkU

∗
βk] sin

2

(

∆m2
jkL

4E

)

(2.8a)

+ 2
∑

j>k

Im[U∗
αjUβjUαkU

∗
βk] sin

(

∆m2
jkL

2E

)

. (2.8b)

Thus, from Eq. (2.8) we find that neutrino oscillations depend upon the parameters of

the PMNS matrix (the three angles θ13, θ23 and θ12, and the CP phase δ), on the mass-

squared differences between neutrino mass states (∆m2
31 = m2

3 −m2
1, ∆m

2
32 = m2

3 −m2
2

and ∆m2
21 = m2

2 − m2
1), on the distance between the neutrino source and the point

at which it is detected (the ‘baseline’ L), and on the neutrino energy, E. Neutrino

oscillation experiments measure oscillation probabilities as a function of E; usually L

is fixed but there is a range of neutrino energies. The fact that oscillations have been

observed which depend on two mass-squared splittings is evidence that at least two

neutrino masses are non-zero.

Eq. (2.8a) is the CP conserving part of the probability, whilst Eq. (2.8b) (the imag-

inary part) denotes the CP violating part of the probability. The implication of CP

violation by non-real numbers stems from the fact that the CP operator transforms

i → −i. In neutrino oscillations, the only possible complex quantity is eiδ and so if δ

is equal to 0 or π then CP is conserved, whereas for any other value, CP is violated

(if all three mixing angles are non-zero). It is also possible that the Majorana phases

mentioned in Section 2.1 may violate CP, but as we mentioned there, these phases are

not relevant to neutrino oscillations.
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Shortly, in Section 2.3, we will describe in detail our current knowledge of the neutrino

mixing parameters. For now, we will only mention that we know that ∆m2
32 ≃ ∆m2

31

and that the magnitude of this quantity is ∼ 30 times larger than ∆m2
21 so that Eq. (2.8)

can sometimes be simplified by making the approximation ∆m2
32 = ∆m2

31. Then there

are only two, not three, different oscillation frequencies. Further simplifications can be

made depending on the particular value of L
E
being considered:

• If L
E
is very small, then all of the

∆m2
jk

L

4E
are much less than unity so sin

(

∆m2
jk

L

4E

)

≃ 0.

Effectively, there are no oscillations.

• If L
E

is very large so all of the
∆m2

jk
L

4E
are much greater than unity, then all the

oscillation modes are very rapid and, within the energy and spatial ranges visible

in a detector, cannot be resolved. The CP conserving terms, sin2
(

∆m2
jk

L

4E

)

, average

to 1
2
whilst the CP violating terms, sin

(

∆m2
jk

L

2E

)

, average to zero.

• If
∆m2

21L

4E
∼ O(1) then

|∆m2
31|L

4E
≫ 1, and the rapid ∆m2

31 oscillations are modulated

by the slower ∆m2
21 oscillations. Only these slower oscillations can be seen. An

example is the KamLAND experiment [50] which measured the ν̄e → ν̄e channel

using ν̄e’s from nuclear reactors with energies of a few MeV. The baseline was 180

km which means that
|∆m2

31|L
4E

≃ 100 whereas
∆m2

21L

4E
≃ 4. The probability in this

case is then (see Appendix E for a detailed derivation)

Pν̄e→ν̄e ≃ 1− sin2 2θ12 sin
2

(

∆m2
21L

4E

)

, (2.9)

which is plotted in Fig. 2.1a as a function of L
E

(using the value of θ12 given in

Section 2.3).

• If
|∆m2

31|L
4E

∼ O(1), implying that
∆m2

21L

4E
≪ 1, then effectively there are only ∆m2

31

oscillations. An example is the MINOS experiment [51] which measures the νµ → νµ

channel using neutrinos with E ∼ 1 GeV and a baseline of L = 735 km. In this

case,
|∆m2

31|L
4E

≃ 2 whereas
∆m2

21L

4E
≃ 0.07 so that the probability is (Appendix E)

Pνµ→νµ ≃ 1− sin2 2θ23 sin
2

(

∆m2
31L

4E

)

, (2.10)

which is plotted in Fig. 2.1b (using the value of θ23 given in Section 2.3).
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Figure 2.1.: Oscillation probability for the a) KamLAND experiment (Pν̄e→ν̄e with L
E ∼ 105

km/ GeV and θ12 = 34◦) and b) MINOS experiment (Pνµ→νµ with L
E ∼ 103 km/

GeV and θ23 = 42◦).
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Thus we see that it is necessary to have different experiments with different baselines

and energies in order to be able to measure all of the oscillation parameters. In the

following section we review the results of past and current experiments to show which of

the parameters have already been measured and which of them still need to be measured.

Following this, we shall discuss neutrino oscillations in matter.

2.3. Current knowledge of neutrino mixing

parameters

The results of past and current neutrino oscillation experiments tell us the following

about the neutrino oscillation parameters: one angle, θ13, is approximately zero, whilst

another angle, θ23, is approximately maximal (π
4
). The third angle, θ12, has an interme-

diate value. As yet there is no infomation about the phase δ except for a recent tentative

bound from Super-Kamiokande [52]. We know that one mass-squared splitting, ∆m2
21, is

positive (i.e. m2 > m1) and that it is very much smaller than the magnitude of the other

two splittings. Thus, as was already mentioned in Section 2.2, it is sometimes possible

to make the approximation ∆m2
31 ≃ ∆m2

32, which we shall use throughout this chapter.

Although the magnitude of this quantity has been accurately measured, we do not know

its sign i.e. whether it is positive or negative, which corresponds to us not knowing the

mass hierarchy (explained shortly). The most recent values for these parameters at the

time of writing, obtained by a global fit to all existing oscillation data, can be found in

Ref. [53] which gives the following 3σ ranges:

• ∆m2
21 = 7.59+0.61

−0.69 × 10−5 eV2

• ∆m2
31 = +2.51+0.39

−0.36×10−3 eV2 (normal hierarchy), −2.40+0.37
−0.39×10−3 eV2 (inverted)

• θ12 = 34.4+3.2
−2.9 degrees

• θ23 = 42.3+11.4
−7.1 degrees

• θ13 ≤ 13.2 degrees

• δ ⊂ [0, 360] degrees.

This information can be depicted diagrammatically, as in Fig. 2.2.
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Of the mass-squared splittings, ∆m2
21 is called the ‘solar mass-squared difference’ as

this is the parameter which modulates the frequency of solar νe oscillations, whereas

∆m2
31 is called the ‘atmospheric mass-squared difference’ as this parameter controls

the frequency of atmospheric νµ oscillations. The fact that we do not know whether

the atmospheric mass-squared difference is positive or negative corresponds to us not

knowing the ordering of the neutrino mass states. ‘Normal ordering’ corresponds to

a scheme in which ν1 is the lightest species - this would be consistent with the mass

hierarchy of the other particles in the Standard Model where the first generation is

the lightest (although the first generation neutrino is the νe, which does not have a

definite mass, it is predominantly composed of ν1 and so ν1 can be associated with the

first generation). The opposite, ‘inverted ordering’, corresponds to a scheme in which

ν3 is the lightest species. The phrases ‘normal hierarchy’ and ‘inverted hierarchy’ are

often used interchangeably with ‘normal ordering’ and ‘inverted ordering’, as they are

in this thesis. Strictly speaking, ‘ordering’ refers only to the ordering of masses as just

described, whereas ‘hierarchy’, of which there are three types, also takes into account

the absolute scale of the masses as well as the ordering:

• Normal hierarchical spectrum: m1 ≪ m2 ≪ m3

• Inverted hierarchical spectrum: m3 ≪ m1 ≃ m2

• Quasi-degenerate spectrum: m1 ≃ m2 ≃ m3 ≫ 0.

Neutrino oscillation experiments therefore provide information about the mass ordering,

but not the mass hierarchy, as they are sensitive to mass-squared differences but not

absolute masses.

The values of the mixing angles tell us the following (see Fig. 2.2): ν1 consists

predominantly of νe with an approximately equal admixture of νµ and ντ . ν2 is an

approximately equal mix of all three flavours, and ν3 consists mostly (and possibly

entirely) of an exactly or nearly equal mix of νµ and ντ . It is the value of the angle

θ13 which determines the size of the νe component in ν3, and θ23 the relative amount of

νµ and ντ . The extreme case of this mixing scheme is that described by ‘tri-bimaximal

mixing’ [54] when θ13 is exactly zero and θ23 exactly maximal, so-called because ν2 is

‘trimaximally’ mixed and ν3 is ‘bimaximally’ mixed. All data so far are consistent with

this scheme, but only precision measurements in the future will be able to tell us whether

or not this scheme is adhered to exactly in nature.
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Figure 2.2.: A schematic diagram of the mass spectrum and flavour content of the neutrino
mass eigenstates: each mass eigenstate is a linear superposition of the flavour
eigenstates (shown by different colours), and the mass-squared differences but
not the absolute masses are known. Details are given in the text below.
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In recent years there have been several tantalising (if not necessarily statistically

significant!) hints that θ13 may be non-zero [55]. In summary, different groups obtain

best fits values for sin2 θ13 of between 0.01 and 0.02, with a significance of between 1σ and

2σ, when performing global fits. The data which contributes to favouring a non-zero θ13

includes the 2008 KamLAND data [56], the 2009 MINOS data [57] (although this hint

has now disappeared following the acquisition of more data since then), and the 2010

Super-Kamiokande data [58]. A non-zero θ13 is of extreme interest phenomenologically,

because a non-zero value of θ13 is required in order for CP violation to be possible in the

neutrino sector - CP violation can only occur if there is mixing between more that two

families, and hence all three mixing angles must be non-zero. Additionally, a non-zero

value of θ13 is required in order for us to be able to determine the mass hierarchy from

neutrino oscillations. Theoretically, the value of θ13 is also of vital importance - even

if θ13 is precisely zero at some high energy (grand unification) scale which is indicative

of an exact flavour symmetry, then at low energies it is expected to deviate from zero.

If it is exactly zero even at low energy scales then this will be a hint of some powerful

conservation law at work. Either way, the precise value of θ13 (and also of θ23) will

help to put tight constraints on several models. The hunt for θ13 continues with the

experiments mentioned in Section 3.4. A summary of the current status and prospects

for measuring θ13 can be found in Ref. [55].

The final parameter is the CP phase, δ, about which there is currently no infor-

mation apart from a preliminary result from Super-Kamiokande [52] which obtains

141◦ < δ < 297◦ at 68% confidence. Ascertaining whether or not CP violation exists

in the neutrino sector is one of the most important goals of future neutrino oscillation

experiments, because the discovery of CP violation in the neutrino sector at the low en-

ergies of neutrino oscillation experiments could indicate the presence of the high-energy

CP violation required for leptogenesis to have occurred in the early universe [25, 26].

Previously it was thought that the existence of low-energy leptonic CP violation did not

guarantee the existence of the high-energy CP violation required for leptogenesis, but

work in Refs. [59, 60] showed that this was not necessarily the case in all circumstances.

Hence a discovery of CP violation in neutrino oscillations would be a hint in favour of

leptogenesis!
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2.4. Neutrino oscillations in matter

Having described neutrino oscillations in vacuum, we will now move onto examining

neutrino oscillations in matter. This is relevant for the long-baseline terrestrial experi-

ments such as those studied in this thesis, where neutrinos propagate through the earth

between source and detector. The phenomenon was first discussed by Lincoln Wolfen-

stein when he realised that there could be neutrino oscillations in matter even if all

neutrinos are massless [61] due to the interactions of neutrinos with matter. Neutri-

nos propagating through the earth interact with electrons and up and down quarks in

the earth. All flavours of neutrino will interact via neutral-current interactions, but

only νe and ν̄e will interact with the electrons in charged-current interactions. Thus the

neutral-current interactions introduce a flavour-symmetric term into the propagation

Hamiltonian, whereas the charged-currents distinguish between flavours. The effect of

these interactions is to add an effective potential onto the neutrino energy; the neutral-

current interactions will contribute equally to all neutrino flavours so for our purposes

we only need to calculate the potential induced by the charged-current interactions; in

other words we need to calculate the potential induced on an electron neutrino by the

electrons in the earth. We start by looking at the terms in the Lagrangian relevant to

electron neutrinos, including both the kinetic and ‘potential terms’ (and ignoring mass

terms):

Lνe = ν̄eLiγ
µ∂µνeL − 2

√
2GF (ν̄eLγ

µνeL)(ēLγµeL), (2.11)

where GF is the Fermi coupling constant, as in Eq. (1.9), and we have performed a Fierz

rearrangement on the charged-current term in that equation to obtain our ‘potential

term’. The equation of motion for νe (using the Euler-Lagrange equations) is then

(iγµ∂µ + 2
√
2GFγ

µ〈ēLγµeL〉)νeL = 0. (2.12)

Now we can assume that the background through which the neutrinos are propagating

is static (this assumption is obviously not Lorentz invariant!) and therefore that all the

electrons are at rest. In this case, only the time-like component of the electron potential,
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〈ēLγµeL〉, is non-zero. Then

〈ēLγµeL〉 = δµ0〈ēLγµeL〉
= δµ0〈e†LeL〉

=
1

2
δµ0ne, (2.13)

where ne is the number density of electrons in the matter through which the neutrinos

are propagating and we require a factor of 1
2
because neutrinos only interact with the

left-handed electrons. Our equation of motion becomes

(iγµ∂µ +
√
2GFneγ

0)νeL = 0 (2.14)

which has plane-wave solutions with

E = p+
√
2GFne. (2.15)

The positive sign becomes a negative sign for anti-neutrinos. The ‘potential’,
√
2GFne,

is commonly denoted by A. The calculation of the potential arising from the neutral-

current interactions is similar.

In vacuum, in the mass basis, the Hamiltonian is simply a diagonal matrix, Ĥvac
mass =

diag(E1, E2, E3), which, using the approximation Ej −Ek ≈ ∆m2
jk

2E
as in Section 2.2, and

defining
∆m2

jk

2E
= ∆jk, becomes

Ĥvac
mass =











E1 0 0

0 E1 0

0 0 E1











+











0 0 0

0 ∆21 0

0 0 ∆31











. (2.16)

The first term is a diagonal constant which will simply contribute a global phase factor

to the solutions and so can be neglected. The matter interaction terms can be converted

into the mass basis using the PMNS matrix and added to obtain the Hamiltonian in

matter (the neutral-current terms are a diagonal constant which again can be neglected):

Ĥmat
mass =











0 0 0

0 ∆21 0

0 0 ∆31











± U











A 0 0

0 0 0

0 0 0











U †. (2.17)
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where the upper (+) sign is for neutrinos, the lower (−) sign is for anti-neutrinos and

A =
√
2GFne. The propagation of neutrinos in matter is described by the Schrödinger

equation, similar to Eq. (2.1), and diagonalisation of Eq. (2.17) will yield the eigenvectors

and eigenvalues of the matter Hamiltonian, corresponding to the propagating matter

states and their energies. In the case that ne is constant along the propagation path

so that A is constant, Eq. (2.1) can be solved exactly. In the case that A varies along

the baseline, such as for long baselines traversing multiple layers of the earth, Eq. (2.1)

can only be solved numerically, except for some particular circumstances which we will

discuss shortly.

In the limit that ∆21 = 0 we have a scenario where there is no 1 ↔ 2 mixing - in

this limit these two states have degenerate masses and so no oscillations occur between

them. Therefore there are only 1 ↔ 3 and 2 ↔ 3 oscillations. So we can effectively set

θ12 to zero and have a simplified mixing scenario where there are only three parameters:

∆m2
31, θ13 and θ23 (the Dirac phase, δ, is not physical unless there are three non-zero

mixing angles, as explained in Section 2.1).

We will discuss this two-family scenario first, then afterwards consider the situation

where we make the approximation that A is constant along the propagation path, which

is valid for the experimental setups which we consider in the subsequent chapters. There

we perform the matrix diagonalisation perturbatively, rather than exactly, in order to

produce a simpler analytic form. We will follow the method used in Appendix C of

Ref. [62], which treats the quantity ∆21 as the perturbation. This is a valid approxima-

tion since the relevant scales involved are ∆21, ∆31 and A, with
∆21

∆31
∼ 0.03 and A

∆31
∼ 0.3

for the energies and value of A which we consider (see Chapter 4), and so it is ∆21 and

not A which we treat as the perturbation.

2.4.1. A two-family approximation: νe ↔ ντ oscillations in

matter

For simplicity, let us first consider a scenario where there are only 1 ↔ 3 oscillations

so that the effective mixing matrix is Ueff = U13 (which is effectively a 2 × 2 rotation

matrix) and ν = (νe, ντ ). The mass eigenstates are then |ν1〉 = cos θ13|νe〉 − sin θ13|ντ 〉
and |ν2〉 = sin θ13|νe〉 + cos θ13|ντ 〉 (and similar for ν̄). The Hamiltonian is given by
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Eq. (2.17) with ∆21 = 0 and U = U13:

Ĥmat =





0 0

0 ∆31



±





A cos2 θ13 A sin θ13 cos θ13

A sin θ13 cos θ13 A sin2 θ13



 , (2.18)

The eigenvectors are

|νmat
1 〉 = cos θm∓|νe〉 − sin θm∓|ντ 〉, (2.19a)

|νmat
2 〉 = sin θm∓|νe〉+ cos θm∓|ντ 〉, (2.19b)

where the mixing angle in matter, θm∓, is related to the mixing angle in vacuum, θ13,

by [61]

tan 2θm∓ =
∆31 sin 2θ13

∆31 cos 2θ13 ∓A
. (2.20)

The vacuum limit corresponds to A = 0. For A 6= 0 and if we consider neutrinos,

if the mass hierarchy is normal so ∆31 > 0 and there is a potential such that A =

∆31 cos 2θ13 then θm is maximal. So there is maximal mixing between ν1 and ν3 in

matter even though θ13 is very small and there is very little mixing in vacuum - this is

the resonance condition when neutrino oscillations are maximally enhanced in matter

(and anti-neutrino oscillations are suppressed). If the mass hierarchy is inverted, then

there is a resonance for anti-neutrinos and the neutrino oscillations are suppressed. This

is called the Mikheyev-Smirnov-Wolfenstein (MSW) effect [61, 63]. Finally, if A ≫ ∆31

then oscillations are suppressed for both neutrinos and anti-neutrinos.

Now let us consider the case of a non-constant matter potential, such that A is a

function of the distance travelled by the neutrino, L. From Eq. (2.20) we see that if A

is varying, then the evolution of θm is given by

dθm
dL

= ±1

2

∆31 sin 2θ13
(∆31 cos 2θ13 − A)2 + (∆31 sin 2θ13)2

dA

dL
, (2.21)

where we have used the relations

cos 2θm =
∆31 cos θ13 − A

√

(∆31 cos 2θ13 − A)2 + (∆31 sin 2θ13)2
, (2.22a)

sin 2θm =
∆31 sin 2θ13

√

(∆31 cos 2θ13 − A)2 + (∆31 sin 2θ13)2
. (2.22b)
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In general this situation cannot be studied analytically, because the eigenstates νmat
1 and

νmat
2 are then also functions of L and mix with one another at each point of propagation

(see, for example, Ref. [27]). However, in an adiabatic process, the potential varies

sufficiently slowly to enable the propagating neutrino state to adapt to the change, such

that the initial state is an eigenstate of the initial Hamiltonian, the final state is an

eigenstate of the final Hamiltonian, and there is negligible mixing between eigenstates

at each point. This occurs if dθm
dL

≪ 1 which corresponds to

dA

dL
≪ ∆31 sin 2θ13

(∆31 cos 2θ13 − A)2 + (∆31 sin 2θ13)2
. (2.23)

Coincidentally, it is just such a situation which caused the ‘solar neutrino problem’

that first aroused suspicions of neutrino oscillations! Solar neutrinos are created deep

within the sun’s interior, and are born as νe’s. The electron density in the sun varies

approximately exponentially, decreasing away from the centre of the sun until it drops

to zero in empty space. The density at the centre is very high, so that A is very

large. This means that θm−
(L = 0) ≃ π

2
, so that in our two-family approximation the

matter state νmat
2 (L = 0) is essentially the same as νe (in fact, it is 1 ↔ 2 oscillations

which are relevant for solar neutrinos and not 1 ↔ 3 oscillations, but we will use our

two-family approximation to explain the principle). As the neutrino travels outwards

towards the sun’s surface, because the electron density varies slowly, the state is always

an eigenstate of the Hamiltonian at that point, at all points along the path. However,

the flavour content of this state evolves as A and hence θm−
changes. In other words, the

flavour content of the eigenstate at a distance L from the centre, νmat
2 (L), is a function

of L (through A). So the neutrino which was born as a νe at the centre of the sun does

evolve as it propagates outwards, but it evolves such that it is always the ‘second’ state

of the Hamiltonian at that particular point. Therefore when it reaches the sun’s surface,

the neutrino is now a pure νvac2 state - the eigenstate in vacuum - and this is the state

which propagates through space to the earth. So it is ν2’s and not νe’s which arrive at

the earth; therefore the probability that we detect a solar neutrino as a νe is |〈νe|ν2〉|2
and not unity as originally expected!
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2.4.2. Three-family oscillations in matter: a perturbative

approach

Returning to a full three-family mixing scenario, our task is to find a matrix which trans-

forms from the flavour basis into the matter basis; in this way we can derive oscillation

probabilities in matter using an identical method to the derivation in vacuum (Sec-

tion 2.2) but with an altered mixing matrix. We sketch out the solution here, with more

detail being given in Appendix F. In the limit ∆21 = 0 we can still set θ12 = 0, as in the 2-

family approximation, although we now have to consider 2 ↔ 3 oscillations in addition to

1 ↔ 3 oscillations. The effective mixing matrix is then Ueff = U23U13 although only θ13 is

modified by A, as in the two-family case (because U23 [diag(A, 0, 0)]U
†
23 = [diag(A, 0, 0)]).

We start with the Hamiltonian in the flavour basis:

Ĥmat
fl = U †

eff











0 0 0

0 0 0

0 0 ∆31











Ueff ±











A 0 0

0 0 0

0 0 0











, (2.24)

which is diagonalised to [64]

Ĥmat
fl = (Ū

(0)
∓ )†











∆31±A−B∓

2
0 0

0 0 0

0 0 ∆31±A+B∓

2











Ū
(0)
∓ , (2.25)

where

Ū
(0)
∓ = U23(θ23)U13(θm∓), (2.26a)

B∓ =
√

(∆31 cos 2θ13 ∓ A)2 + (∆31 sin 2θ13)2. (2.26b)

θm∓ is the same as in Eq. (2.20) and again, the upper signs refer to neutrinos and the

lower signs to anti-neutrinos. We use the superscript (0) to denote that this is the mixing

matrix in the limit ∆21 = 0. The rows of Ū
(0)
∓ are the eigenvectors, with corresponding

eigenvalues given by λ1 =
∆31±A−B∓

2
, λ2 = 0 and λ3 =

∆31±A+B∓

2
. Now we can introduce

∆21 as a perturbation, which needs to be written in the matter basis. In the mass basis,

the perturbation is Ĥ
(1)
mass = [diag(0,∆21, 0)] and in the flavour basis,

Ĥ
(1)
fl = U †Ĥ(1)

massU, (2.27)
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where U is now the full PMNS matrix involving all three mixing angles. The matrix

Ū
(0)
∓ transforms between the flavour and matter bases, such that

Ĥ
(1)
fl = (Ū

(0)
∓ )†Ĥ

(1)
matŪ

(0)
∓ , (2.28)

and so Ĥ
(1)
mat is given by

Ĥ
(1)
mat = Ū

(0)
∓ Ĥ

(1)
fl (Ū

(0)
∓ )†

= Ū
(0)
∓ UĤ(1)

massU
†(Ū

(0)
∓ )†. (2.29)

Using quantum mechanical perturbation theory, the first order corrections to the eigen-

values are given by the diagonal entries of the perturbation:

λ
(1)
j = Ĥ

(1)
jj , (2.30)

and the first order corrections to the eigenvectors are given by

v
(1)
j =

∑

k 6=j

Ĥ
(1)
jk

λ
(0)
j − λ

(0)
k

v
(0)
j . (2.31)

The explicit expressions can be found in Appendix C of Ref. [62] and are also given in

Appendix F. Thus we now have a matrix, Ū∓ = Ū
(0)
∓ + Ū

(1)
∓ (where Ū

(1)
∓ is the matrix

composed of the vectors v
(1)
j ), to first order in ∆21, which transforms from the flavour

basis into the matter basis. The derivation of neutrino oscillation probabilities in matter

is now identical to that in vacuum, except for the substitution of U with Ū∓.

2.4.3. Matter effects - a brief summary

The presence of matter alters the propagation Hamiltonian for neutrinos relative to the

vacuum case. Therefore, the neutrino eigenstates in matter must necessarily be different

to the eigenstates in vacuum (which are the mass eigenstates). In vacuum, we know that

the flavour states are a linear combination of the mass states with coefficients determined

by the mixing angles (and complex phase) of the PMNS matrix; of course we can invert

this statement and say that the mass states are a linear combination of the flavour

states. In matter, we can think of these relationships as remaining the same, with the

only alteration being that the values of the mixing angles are altered. For instance, we
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can say that in vacuum the coefficient of ντ in ν1 is sin θ where θ = θ13 (ignoring the CP

phase for now); in matter this relation still holds but with θ = θm.

A simplified but intuitive explanation is that interactions with matter cause neutrinos

to be refracted, like light, and charged-current interactions mean that νe’s are refracted

more than the other neutrino flavours. This makes νe’s effectively more heavy relative

to the vacuum case. The effect is similar for ν̄e’s, but since anti-neutrinos have opposite

‘weak charge’ to neutrinos, the weak interactions have the opposite effect and so ν̄e’s

become effectively lighter. Referring back to Fig. 2.2 we see that the majority of the νe

state is contained within ν1 and ν2, and so making νe heavier corresponds to increasing

the masses of ν1 and ν2 as shown in Fig. 2.3 (although the vacuum mass states are not

the physically propagating states in matter, the explanation still holds). Thus for a

normal hierarchy, ∆m2
31 is effectively decreased which means that neutrino oscillations

are enhanced in matter in the case of a normal hierarchy, as the energy gap between

neutrino states is decreased. In the case of an inverted hierarchy, ∆m2
31 is effectively

increased and so neutrino oscillations are suppressed in matter in the case of an inverted

hierarchy. The opposite is true for anti-neutrinos.

Figure 2.3.: In the case of a normal hierarchy, the propagating vacuum states, ν1 and ν2,
become heavier in matter, decreasing the mass gap between these eigenstates
and ν3. Thus oscillations are enhanced, whereas the opposite is true for an
inverted hierarchy. For anti-neutrinos, oscillations are suppressed for a normal
hierarchy and enhanced for an inverted hierarchy.
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The fact that the oscillatory behaviour of neutrinos in matter is dependent upon

the mass hierarchy is exactly the technique which will be used by future long-baseline

oscillation experiments to determine the hierarchy.

2.5. Non-standard interactions

As neutrino interactions are incredibly rare, the chance of a neutrino interacting more

than once in the detector is, essentially, zero so that a neutrino will never leave a direct

track in a detector. The only way of inferring that a neutrino interaction has occurred

is by observing the signatures of the other particles produced in the interaction. The

Standard Model tells us that the flavour of a neutrino cannot be determined from a

neutral-current interaction, but that it can be determined by the flavour of the charged

lepton which is produced in a charged-current interaction (see Section 1.2). In other

words, if, for instance, an e− is detected then it is assumed that the incoming neutrino

was a νe because that is what the Standard Model predicts. But what if this assumption

is wrong?

In addition to oscillation measurements, it is also possible for neutrino oscillation

experiments to search for signals from new physics which exhibit themselves as neutrino

non-standard interactions. The term ‘non-standard interactions’ (NSI’s) is used in this

context to refer to any neutrino interactions which are not described by the Standard

Model, but arise from some new physics mechanism. They will therefore be mediated

by some heavy new particle, which means that in a low-energy experiment the interac-

tions can be effectively described as a point-like interaction, exactly analogous to the

discussion of the weak interaction in Section 1.2. The effective low-energy vertex looks

simply like a four-point vertex, which will be suppressed ∼ 1
M2

NSI
. Conventionally, this

interaction strength is parameterised by the dimensionless parameter εαβ , which is the

ratio of the strength of the NSI interaction, να → νβ, relative to the strength of the weak

interaction, GF . A rough estimate of the magnitude of εαβ can be made using

εαβ ∼ M2
W

M2
NSI

∼ 10−2, (2.32)

with MNSI ∼ 1 TeV as in Refs. [65, 66].

NSI’s can arise at each of the three stages of an oscillation experiment: the point

of neutrino production (‘source effects’), during propagation (‘matter effects’), or at the



Neutrino oscillations and non-standard interactions 39

osc
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νµ νe e−

µ−
ντ νe e−
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µ−
νµ ντ e−
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µ−
νµ νe

NSI

e−

Figure 2.4.: Oscillation and non-standard processes which could lead to a νµ → νe event.

point of detection (‘detector effects’), as discussed in e.g. Refs. [67, 68, 69]. In the case

of source effects, the question we wish to answer is whether, for example, the neutrinos

produced from the decays of µ− are always νµ and ν̄e, or if sometimes there are some

non-standard processes leading to other neutrino flavours being produced? Similarly,

for detector effects, we would like to know whether the detection of an e− is always an

indicator that the incoming neutrino was a νe. These possibilities are shown in Fig. 2.4

where we show how the apparent observation of a νµ → νe oscillation could actually be

instigated by a NSI at any of the stages. This has sparked recent interest in the idea of

using near detectors at oscillation experiments to search for source NSI’s [70], by looking

for ‘zero-point’ interactions - flavour changes which occur even when L = 0. The most

powerful channel for such discoveries turns out to be the νµ → ντ channel, now dubbed

the ‘discovery channel’ [71]. Lepton flavour violating interactions such as µ → eγ will

also be able to provide powerful constraints on these source NSI’s [72, 73].

The NSI’s in which we will be interested in this thesis are those which arise in the

process of neutrino propagation - they are a non-standard matter effect. Essentially, they

describe a neutrino flavour change instigated by some interaction between the original

incoming neutrino and other matter particles - either electrons or up or down quarks in

the case of terrestrial experiments [74]. They are defined by the addition of the following
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terms to the Lagrangian:

LNSI = GF ε
f∓
αβ [f̄γ

µ(1∓ γ5)f ][ν̄αγµ(1− γ5)νβ], (2.33)

where f = e, u, d and α, β = e, µ, τ . These terms have a similar form to the Standard

Model charged-current terms defined in Section 1.2 except that we also allow for the pos-

sibility that the charged leptons may be right- or left-handed. The quantum-mechanical

Hamiltonian (Eq. (2.24)) is altered by the addition of the term

Ĥfl = U †











0 0 0

0 ∆21 0

0 0 ∆31











U ± A











1 + εee εeµ εeτ

ε∗eµ εµµ εµτ

ε∗eτ ε∗µτ εττ











, (2.34)

where εαβ = εβα because Ĥ must be Hermitian. This then implies that the diagonal

entries must be real, whereas the non-diagonal entries can be complex and thus con-

tain additional, possible CP violating, phases φαβ: εαβ = |εαβ|eiφαβ [65]. To solve the

Schrödinger equation we can treat the NSI matrix as a perturbation, considering each

element in turn, and follow a similar method to Section 2.4.2 to derive relatively sim-

ple analytic expressions for oscillation probabilities to leading order in the NSI’s. More

detail is given in Appendix G.

The recent (statistically insignificant) hints of apparent CPT violation in the MINOS

experiment [75], which observed the atmospheric mass-squared splitting to be different

(larger) for ν̄µ → ν̄µ oscillations than νµ → νµ oscillations could be explained by matter

NSI’s instead of CPT violation. In Ref. [76] it was shown how a non-zero εµτ could alter

the oscillation phase, with opposite signs for neutrinos and anti-neutrinos, thus leading

to the apparent discrepancy in ∆m2
32.

Interest in studying NSI’s at long-baseline oscillation experiments arose after it was

recognised that oscillation experiments would be particularly powerful tools for measur-

ing NSI’s because of the presence of an interference term between the oscillation and

non-standard processes in the amplitude for the transition να → νβ [66] - a neutrino

flavour change can occur either via a NSI process or via a standard oscillation. The am-

plitude for the flavour change is the square of this sum: |NSI (να → νβ)+osc (να → νβ)|2
and thus the leading order contribution to the NSI term is linear rather than quadratic in

εαβ. This is beneficial if the amplitude of the oscillation is much greater than that of the

NSI transition, but this is not necessarily true of the channels which future long-baseline
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experiments seek to observe and which are discussed in the next chapter. However,

exactly because the signals of some of these channels, in particular the golden channel,

νe → νµ, are suppressed by θ13, it may be possible that the NSI effect is actually of a

comparable size to the standard oscillation. Thus, these channels may actually have an

enhanced sensitivity to NSI’s because there is less of an oscillatory ‘background’.

The question of how to theoretically generate measurably large matter NSI’s whilst

respecting the gauge symmetry of the Standard Model has been rigorously studied in the

literature e.g. in Refs. [74, 77]. We are interested in those NSI’s which have the possibility

of being detected in oscillation experiments - those that involve four leptons, such as

in Fig. 2.4 and Eq. (2.33), and which may arise from the gauge-invariant dimension-6

operator

O6 =
1

Λ2
(L̄σγ

λLρ)(L̄τγλLζ), (2.35)

where L is the leptonic SU(2) doublet. The problem is that as well as flavour-changing

neutrino transitions, gauge-invariance demands that there must also necessarily be

flavour-changing charged lepton transitions of the same strength. However, there al-

ready exist strong bounds on several charged lepton flavour violating processes. For

instance, for σ = µ and ρ = τ = ζ = e, there would be a neutrino vertex νµνee
−e− which

must be accompanied by a four charged lepton vertex, µ−e−e−e−. The neutrino vertex

is not bounded but the µ→ 3e branching ratio is constrained to the level of 10−12 [14];

bounds such as these must somehow be evaded if we want to create observable neutrino

NSI’s. The findings from Ref. [77] were that there is only one possible parameter, εττ ,

which may be created at the dimension-6 level and is not yet constrained by bounds

on charged lepton processes if we consider mechanisms with one mediator only. Other

parameters may be created in more complex schemes with more than one mediator, or at

the dimension-8 level; in the latter case several cancellation conditions must be imposed

to evade the charged lepton bounds.

So theoretically, the outlook for observable NSI’s is not hopeful! However, from an

experimental outlook with no theoretical prejudice, there do exist some NSI parameters

which are not yet bounded below the observable level (∼ 10−3) [78, 79] and which may

be within the reach of near-term future experiments. Additionally, we should be open-

minded and bear in mind the possibility that NSI’s may be created by mechanisms which

we have not yet considered. In any case, a rigorous test of our current assumptions and

theories can be made by placing the best possible bounds on as many NSI parameters
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as possible; a null observation and placing stronger bounds on NSI parameters would

reinforce our evidence that certain aspects of the Standard Model are correct, whereas

a discovery of non-zero NSI’s would be definitive evidence of exciting new physics!



Chapter 3.

Neutrino oscillation experiments

Having presented the theoretical perspective of neutrino oscillations, in this chapter we

will introduce the experimental aspects of neutrino oscillation physics. To begin with,

we explain how the design of an experiment is linked to the theory described in the

previous chapter. Then we will go on to describe the various neutrino sources and

detector technologies which are used currently and those that will be used in the future,

including a description of the super-beam and neutrino factory experiments that we

study in this thesis. We then describe how these experiments can be simulated and how

we perform quantitative comparisons between them.

3.1. From oscillation probabilities to oscillation

experiments

The design of any experiment is guided by the signal for which it is being designed to

measure, and so the starting point for neutrino oscillation experiments is to examine the

form of the oscillation spectrum. Primarily, this is a sinusoidal function of the ratio L
E

(Eq. (2.8)). For experiments detecting solar or atmospheric neutrinos, both L and E are

fixed by the production mechanism and the location of the source (e.g. the sun) so by

counting the number of neutrinos observed and comparing it to the number expected to

have been produced at the source, it is possible to fit the data, for that fixed value of L

and E, to Eq. (2.8) and thereby deduce the values of the oscillation parameters on which

that channel depends. As with any experiment, we want to maximise the number of

events - this is especially true of neutrino experiments since neutrino interaction cross-

sections are so tiny as mentioned in Section 1.2 - by using high fluxes and large detectors

43
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if possible. The total number of events in an experiment is given by

N = flux× cross-section× detector mass× running time, (3.1)

where the flux is the number of neutrinos per unit energy per unit area, at a specific

distance away from the neutrino source and the cross-section is specific to the target

(detector) material and is the number of interactions per unit of target mass per unit

time per unit flux. We should also take into account the efficiency of the detector (as we

will in Chapters 5, 6 and 7) and therefore multiply by the percent efficiency. Therefore

to maximise the number of signal events, we should try to maximise all of these factors.

For man-made neutrino sources, it is possible to choose the ratio L
E
, or to choose a

range of values by producing neutrinos with a band of energies for a single fixed baseline,

and also to choose which oscillation channel(s) to observe. Disappearance experiments

are those that detect neutrinos which are of the same flavour as those produced at the

source - they measure the ‘survival probabilities’ - the να → να channels. Appearance

experiments instead detect neutrinos which have oscillated into other flavours during

their propagation - να → νβ with β 6= α. In all cases the aim is to produce neutrinos

with an energy spectrum such that it is possible to observe a significant portion of an

oscillation wavelength for the baseline being studied. As described in Section 2.1, this

is only possible if the argument of the spectral functions is ∼ O(1); if it is much less

than unity then the oscillation wavelength is too long to be observable within the given

energy range and so the spectrum appears to be flat; if it is much greater than one then

the oscillations are too rapid to be resolved by the detector. Thus, for a chosen ratio of
L
E
, we can have sensitivity to either the solar oscillations by making

∆m2
21L

4E
∼ 1, or to

the atmospheric oscillations by choosing
|∆m2

31|L
4E

∼ 1, as was shown in Fig 2.1. A precise

measurement of ∆m2
21 or ∆m2

31 can then be made by making detailed measurements of

the spectral dependence, in particular the energy-dependent position of the oscillation

peak. The amplitude of the peak gives information about the mixing angle(s) relevant to

the specific channel. As an example, the MINOS experiment [51], as already mentioned

in Section 2.2 measures the νµ → νµ survival probability. At their baseline of 735 km

and energy of ∼ 1 GeV, the probability is given by Pµµ ∼ 1 − sin2 2θ23 sin
2
(

∆m2
31L

4E

)

which is plotted in Fig. 3.1, as a function of the neutrino energy E (rather than L
E

as in Fig. 2.1). Thus we can see that the amplitude of the oscillation is given by the

value of sin2 2θ23 whereas the position of the minimum depends on the value of |∆m2
31|.

Specifically, the position of the first minimum (this terminology refers to the minimum

which occurs at the highest energy) is where
|∆m2

31|L
4E

= π
2
. Thus by measuring the energy
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at which this occurs, Emin, it is possible to infer |∆m2
31| via |∆m2

31| = 2πEmin

L
. Note that

the dependence on the square of sin
(

∆m2
31L

4E

)

is the reason why we do not yet know

whether ∆m2
31 is positive or negative.

Figure 3.1.: Oscillation probability for νµ → νµ at 735 km (MINOS experiment). The am-
plitude of the oscillation is determined by the value of sin2 2θ23 and the position
of the oscillation maxima and minima are determined by the value of |∆m2

31|.

3.2. Oscillation experiments: neutrino sources

Since the dawn of the solar neutrino problem and suspicions that neutrinos might oscil-

late, there have been a multitude of experiments designed to test different regions of the

neutrino mixing parameter space which have eventually led to the successful measure-

ment of the parameters described in Section 2.3. These experiments have used neutrinos

from both natural and man-made sources in conjunction with a diverse array of neutrino

detectors, described below.

3.2.1. Natural neutrino sources

Neutrinos are produced in several naturally occurring sources including the sun, the

atmosphere, supernovae and from the background radiation of rocks. The first two of
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these can be used to study neutrino oscillations, with the advantage that it costs nothing

to produce the neutrinos!

In the case of solar neutrinos, νe’s are produced in multiple solar processes, mostly the

pp (proton-proton) chain, resulting in a set of fluxes which are predicted by solar models

[80]. The energies of solar neutrinos take values up to 107 eV. With current detection

methods it is not possible to detect the entire energy range within one detector; a

detector will only be sensitive to a portion of the energy spectrum. Solar neutrino

experiments compare the number of neutrinos detected over a specific energy range at

the fixed sun-to-earth baseline of ∼ 108 km and compare it to the number predicted

theoretically.

Atmospheric neutrinos are produced as decay products in hadronic showers which

result from collisions of cosmic rays with nuclei in the upper atmosphere. Electron and

muon neutrinos are produced in the decay chain of charged pions: π+ → µ+νµ, and

similarly for π−. The µ+ then decay via µ+ → ν̄µe
+νe (similarly for µ−). The ratio of

atmospheric νµ+ ν̄µ : νe+ ν̄e is therefore expected to be 2 : 1 for neutrinos with energies

up to ∼ 2 GeV (higher energy muons reach the earth before decaying); the fact that

a smaller ratio was observed by experiments such as Soudan-2 [81] was evidence that

muon neutrinos were ‘disappearing’, hinting at neutrino oscillations.

The energies of atmospheric neutrinos are typically in the range 0.1 GeV to 100 GeV.

At the distance of L ∼ 10 km between the upper atmosphere and the earth’s surface,

neutrinos travelling directly from the atmosphere to the earth’s surface (‘down-going’)

do not oscillate; it is the neutrinos with energies of a few GeV that travel through

the earth to reach the detector (‘up-going’) which will oscillate. Atmospheric neutrino

experiments thus observe neutrino oscillations as a function of both the neutrino energy,

and the angular distribution of the neutrinos.

3.2.2. Man-made neutrino sources

There are several advantages to using artificially produced neutrinos is an experiment:

the neutrinos can be directed specifically at a detector, the flux is far greater than that

of any natural source, and it is possible to place a second detector very near to the

source to measure, rather than theoretically predict, the unoscillated spectrum which

can’t be done for solar or atmospheric neutrinos! Most importantly, it is possible to

choose the ratio L
E

which we wish to observe by tuning the energy of the beam and
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choosing the position of the detector with respect to the neutrino source. When the aim

of past experiments was to measure the values of the mass-squared splittings, without

any prior hints as to their magnitudes, different regions could be explored by situating

the detector at different baselines. Now that these values are known to within a few per

cent, the baseline is chosen such that the detector is situated at the position of the first

oscillation maximum in order to maximise the signal rate.

The two artificial neutrino sources used today are nuclear reactors, and particle ac-

celerators. Neutrinos from nuclear reactors are produced in the beta-decay of radioactive

products, where a ν̄e is emitted. The energy is typically a few MeV. Although this is

fixed, there is freedom to choose the baseline i.e. the location of the detector.

Neutrino beams created by particle accelerators provide the most intense sources of

neutrinos available. An initial beam of protons is brought to collision with a graphite

target, producing a secondary shower of mesons - mainly π± and K±. Focusing magnets

allow either the positive or negative mesons to be selected. The positively-charged

mesons decay into a νµ beam: π+ → µ+νµ and K+ → µ+νµ, whereas ν̄µ are created

in a similar process by the decay of π− and K−. Thus an intense beam of νµ (ν̄µ) is

produced, with energies centred on a value determined by the energy of the proton beam.

The precise energy spectrum is dictated by the kinematics of the meson decay. A small

amount of secondary decay, µ+ → e+νeν̄µ, also occurs (and similarly for µ−), so that a

νµ (ν̄µ) beam contains intrinsic contamination from νe and ν̄µ (ν̄e and νµ) at the level of

a few percent.

3.3. Oscillation experiments: neutrino detectors

As pointed out in Section 2.5, ‘neutrino detectors’ do not actually detect neutrinos! They

detect the particles produced or scattered as the result of a neutrino interaction which

can be either a charged-current interaction, in which case the flavour of the neutrino

can be identified, or neutral-current interactions, which give no information about the

neutrino flavour.

Different detectors are sensitive to different lepton energies and flavours, which has

led to a huge variety of detectors being used by past and current experiments. Unlike

other particle detectors such as those used in collider experiments, neutrino detectors

are essentially homogeneous as there is no need for multiple layers to detect multiple
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types of particle. The emphasis instead is on maximising the event rate by maximising

the volume of the detector, in order to maximise the chance of an interaction.

There are essentially two geometries for neutrino detectors - segmented and unseg-

mented. A segmented detector is one which is instrumented in sections, which means

that these detectors are capable of tracking the path of a particle, of handling multi-

source events, and that the detection medium may not be the same as the interaction

(target) medium. Unsegmented detectors are instrumented as a single unit which means

that for the same quantity and cost of electronics as a segmented detector, a much

larger volume can be instrumented. However, multi-source events cannot be analysed.

The detection medium is the same as the target medium. The detection medium in all

detectors is either a Čerenkov medium or a scintillator, which will now be described.

3.3.1. Čerenkov detectors

Čerenkov radiation is emitted when a charged particle travels through a medium at a

speed greater than that with which light travels through the medium. In the case of

neutrino detectors, these particles will be the charged leptons produced or scattered

in a neutrino interaction. The emitted light can be amplified and detected by photo-

multiplier tubes (PMT’s) and the information used to reconstruct the particle’s energy,

direction and flavour, and the interaction point and type (neutral-current or charged-

current). Probably the most famous neutrino detector is the water Čerenkov (WC)

Super-Kamiokande [44] detector, a steel tank filled with 50 kton of ultra-pure water

with ∼ 11000 PMT’s mounted on the walls (Fig. 3.2). WC detectors are capable of

measuring low-energy (. 1 GeV) νe (ν̄e) and νµ (ν̄µ) events down to ∼ 5 MeV, when

most events are quasi-elastic, ναn→ ℓ−αp and ν̄αp→ ℓ+αn.

In addition to water, other materials can be used as the Čerenkov medium, depending

on the energies and flavours of the particles that the detector is designed for. For

instance, the SNO detector [45] used D2O instead of ordinary water which enabled

additional channels to be accessible at low energies, such as the neutral-current process

να(ν̄α)D → pnνα(ν̄α). The MiniBooNE detector [82] uses mineral oil, in which particles

emit both Čerenkov and scintillation light, whereas the IceCube neutrino telescope [83]

is situated in the ice of the South Pole, allowing a very large volume (1 km3) of pure ice

to be used as the Čerenkov medium.
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Figure 3.2.: The 50 kton water Čerenkov detector, Super-Kamiokande.

3.3.2. Scintillator detectors

Scintillating materials are those that produce light shortly after absorbing energy from a

passing particle. In a neutrino detector, this light can be collected either by PMT’s e.g.

the future LENA detector [84], as for Čerenkov detectors, or read out by optical fibres

as in the MINOS detectors [85]. MINOS is a tracking calorimeter - alternating planes of

iron target and plastic scintillator enable the path of the lepton to be tracked, from which

its kinematics and properties can be reconstructed. The advantages of using iron as a

target are that it is dense, enhancing the interaction cross-section, and also that it is easy

to magnetise. This is important for MINOS as it enables the momentum of the lepton to

be determined very accurately, from its curvature in the magnetic field. Magnetisation

will be important at a future neutrino factory (Section 3.5.3) when determination of the

charge of the lepton is essential.

The next generation of scintillator detectors will be totally active scintillator detec-

tors.

Totally Active Scintillating Detector (TASD)

The TASD [86] is a tracking calorimeter detector currently being used in the MINERvA

experiment [87], and it will also be used in the forthcoming NOvA experiment [88]. The
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phrase ‘totally active’ or ‘active target’ refers to the fact that all of the target medium is

also the detector medium. This is different from other tracking calorimeters such as the

MINOS detectors, where iron sheets constitute the target, and these are interleaven with

layers of plastic scintillator which form the detector medium. The MINERvA detector

is composed of extruded plastic tubular modules filled with a liquid scintillator such

as mineral oil, with wavelength-shifting fibres embedded into each module. The use of

liquid scintillator ensures sensitivity to low energy particles and the fine sampling means

that this detector has excellent energy and spatial resolution. The optimal geometry

for the plastic extrusions in terms of granularity and accurate vertex reconstruction has

been determined to be triangular.

3.3.3. Liquid Argon Time Projection Chamber (LArTPC)

Liquid argon detectors were first proposed in Refs. [89, 90]. They are ionisation detectors,

which means that when a particle passes through the liquid argon, it leaves a path of

ionisation electrons which can be detected, tagging the path of the incoming particle.

In a LArTPC, the paths of the ionisation electrons are drifted using an electric field.

At one end of the detector there is a set of wires oriented in such a way that the time,

magnitude and position of each path can be reconstructed. Snapshots are recorded

at a frequency of ∼ 40 MHz, of the relative appearance of the ionisation electrons,

thus allowing the particles to effectively be tracked in real-time. Put in sequence, the

paths can be reconstructed, which results in bubble-chamber-like images such as the one

shown in Fig. 3.3 from the ArgoNEUT experiment [91]. Specific interactions can be

reconstructed from the track topology and the energy deposited along each track.

Liquid argon detectors enable excellent energy measurement and particle identifica-

tion to be performed, thanks to their exceptional ability to resolve particle trajectories.

The most successful LArTPC to date is the ArgoNEUT detector, which has a mass of

0.24 ton. In order to be effective for neutrino oscillation physics, a mass of the order of

100 kton is required. Much work is needed to prove that this scalability of six orders of

magnitude is feasible, and also to address the problem of how to magnetise a detector of

this scale. Another particular problem is how to obtain and maintain the purity of such

a large quantity of liquid argon - reactive atoms and molecules which contaminate the

liquid argon will absorb the ionisation electrons, depleting the signal. However, progress

is becoming increasingly rapid with research groups in both the US [92] and Japan [93]

working hard to aim towards a kton-scale detector.
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Figure 3.3.: An event from ArgoNEUT, a 0.24 ton LArTPC. From
http://t962.fnal.gov/Images.html.
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3.3.4. ντ detection

Recent interest in technologies to detect ντ ’s has partly been motivated by the desire to

experimentally verify the predictions for the ντ channels made by the standard three-

family oscillation model, which is the goal of the OPERA experiment [94]. A more

recently developed motivation is the realisation that the best way to search for and

bound the NSI’s mentioned in Section 2.5 is by looking for the νµ → ντ channel with

a near detector [70]. Unfortunately, the experimental search for ντ ’s turns out to be

extremely challenging!

In the first place, it is difficult to make a ντ undergo a charged-current interaction -

the threshold for τ production is ∼ 3.5 GeV which is above the beam energies produced

by current accelerators. Secondly, even if this is possible, τ ’s are very difficult to detect

because of their extremely short lifetime (291 femtoseconds) - even if highly boosted,

the decay length is only a few millimetres. Thus to see the signature of a τ - a short

τ track followed by decay via a kink or to multi-prongs - requires a very fine-grained

detector with excellent spatial resolution.

The ντ was first detected by the DONUT (Direct Observation of NU Tau) experiment

[8] which observed the ντ ’s produced from the decay of charmed particles. Later on,

CHORUS [95] was the first experiment to search for ντ ’s produced by the oscillation of

νµ’s and νe’s (they obtained a null result as the L
E
value was too small). Currently running

now is the OPERA experiment [94], which is optimised to detect the ντ ’s produced from

the oscillation of νµ’s produced at CERN. All of these experiments used ‘emulsion cloud

chamber’ (ECC) detectors - thin films of photographic emulsion interleaved with thicker

layers of target material, such as iron. In order for a τ to be identified, it must interact

in the target material, and then the τ -specific signature - a kink or multi-prong decay -

must occur in one of the layers of emulsion (Fig. 3.4). Altering the thicknesses of the

target and emulsion layers changes the properties of the detector.

This technology has proven to be successful, but incredibly painstaking and inefficient

- the chance of an appropriate τ interaction is extremely low, added to which the scanning

of the emulsion layers must be done manually. The OPERA collaboration have recently

succeeded in detecting their first ντ candidate [94], but with an expected event rate of

around two per year, this technology as it currently stands is not sufficiently efficient to

produce viable statistics! Developments in the forthcoming years may improve upon this,

or a better candidate for ντ detection may turn out to be liquid argon time projection

chambers (Section 3.3.3).
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Figure 3.4.: Alternating layers of target and emulsion in the OPERA detector, and a kinked
track characteristic of a ντ event. From cerncourier.com.

3.4. The future of neutrino oscillation experiments

The first neutrino oscillation experiments sought to verify the existence of neutrino

oscillations - Homestake [43], Super-Kamiokande [44], SNO [45], GALLEX [96], SAGE

[97] and Kamiokande [98]. Once accomplished, the next goal became to measure the

oscillation parameters. Of these, the first to be measured turned out to be the solar

mixing angle and mass-squared splitting (θ12 and ∆m2
21), measured by KamLAND [50],

and the atmospheric mixing angle and corresponding mass-squared splitting (θ23 and

∆m2
31), measured by MINOS and Super-Kamiokande. It is these experiments and others

which have consistently given us the measurements we now have, given in Section 2.3,

and have enabled us to build the current model of three-family neutrino oscillations.

The exception is the LSND anomaly and, very recently, the latest MiniBooNE data.

The LSND (Liquid Scintillator Neutrino Detector) experiment [99, 100] was an accel-

erator experiment searching for ν̄µ → ν̄e and later νµ → νe oscillations at a baseline

of 30 m and energies between ∼ 20 MeV and ∼ 200 MeV. They detected a positive

signal at 3.8σ confidence, consistent with neutrino oscillations driven by a mass-squared

splitting of between 0.2 eV2 and 10 eV2, implying that at least one neutrino has a mass

> 0.4 eV. Recall that all other experiments had produced data consistent with a solar

mass-squared splitting of ∼ 8 × 10−5 eV2 and an atmospheric mass-squared splitting
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of ∼ 2.5 × 10−3 eV2, so that the LSND data seemed to imply the existence of at least

one additional neutrino, much heavier than the three Standard Model neutrinos. As an

independent test of this result, the MiniBooNE (Mini-Booster Neutrino Experiment) ex-

periment [101] was designed and constructed specifically to independently test the same

region of parameter space as LSND. A decade after LSND, the most recent MiniBooNE

data [102] are intriguing: the neutrino data are inconsistent with LSND oscillations but

the (limited) anti-neutrino data appear to be consistent with the original anomaly (the

data is only compatible with a no-oscillation model at 0.5% probability). The story

continues...

LSND aside, the goal of future oscillation experiments is to complete and confirm the

model of three-family oscillations. The current generation of experiments (T2K [103],

DoubleChooz [104], Daya Bay [105], RENO [106]) have been designed to measure the

third mixing angle, θ13. Those being developed to start running (hopefully) in the next

10 to 15 years - NOvA [88], LBNE [107], LAGUNA [108] - seek to detect CP violation, if

it exists, to search for a still smaller value of θ13 if it has not yet been discovered by the

current generation of experiments, and to identify the mass hierarchy. These experiments

can be successful only if sin2 2θ13 & 10−2. The experiments needed if sin2 2θ13 is smaller

than this value are described in the next section.

3.5. Next-generation neutrino oscillation

experiments

The goal of the next generation of neutrino oscillation experiments is to either make a

discovery of θ13 and CP violation and determine the mass hierarchy if these have not

already been achieved by previous experiments or, if another experiment has already

succeeded in making a measurement of one or more of these parameters, then to make a

high-precision measurement of θ13 and δ, and furthermore, to search for NSI’s. In order

to do this, they will be designed to measure the νe → νµ and ν̄e → ν̄µ or νµ → νe and

ν̄µ → ν̄e channels. These are subdominant oscillation channels, suppressed by a factor

of sin2 2θ13, and are chosen because a single channel allows for the possibility to extract

a measurement of θ13, δ and the mass hierarchy. These channels will be discussed fully

in the next chapter.
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Next-generation experiments are designed to make precision measurements. This

desire for precision in the neutrino sector stems partly from the need to match the

precision which has been obtained in the quark sector for the parameters of the CKM

matrix. Theoretically, it is expected that at some scale both the quark and the lepton

mixing matrices are unified. The test of any model which predicts the way in which

this unification is broken at the electro-weak scale can only be tested if the parameters

of both matrices are measured to a similar degree of precision. At present, the CKM

parameters have experimental errors of ∼ 1% whereas the most precisely known neutrino

mixing parameters have errors of ∼ 10%.

In order to accomplish these tasks, it will be necessary to use long baselines of

over ∼1000 km in order to exploit matter effects to make a measurement of the mass

hierarchy (Section 2.4). In order to achieve an adequately high flux in spite of the

very long baseline, an extremely intense production source is required. There are three

proposed candidates: the super-beam, the β-beam and the neutrino factory.

3.5.1. The super-beam

A ‘super-beam’ is the term used to describe a more powerful version (> 1 MW) of a

conventional accelerator neutrino beam (Section 3.2.2). The first of these is T2K [103].

It is possible to construct either a conventional narrow-band beam, like T2K, or a

wide-band beam as is envisioned for LBNE [107] which has a broader spread of neutrino

energies. In addition, the detector(s) can be placed on-axis or off-axis. On-axis means

that the detector is placed directly perpendicular to the neutrino beam. Off-axis means

that the detector is off-set from the line of the neutrino beam (by ∼ 1◦) - the reason

for doing this is that the kinematics of the neutrino production mean that in an off-

axis position, a high flux of neutrinos with a very narrow spread of energies is obtained

(Fig. 3.5). The decision to use a narrow-band or wide-band beam and an on-axis or

off-axis detector depends on the specific goals of the experiment.

The advantage of a super-beam is that both the accelerator and detector facilities

required are proven technologies. The main drawback is the presence of the intrinsic νe

(ν̄e) contamination of the νµ (ν̄µ) beam which limits the precision of the measurement

of the νµ → νe (ν̄µ → ν̄e) channel which is the primary channel of the super-beam.

Additionally, there is a lack of precision relative to β-beams and neutrino factories with

which the beam flux can be predicted - the beam originates from a hadronic decay and
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Figure 3.5.: Neutrino beam spectra on-axis (OA0) and off-axis by 2◦ (OA2), 2.5◦ (OA2.5)
and 3◦ (OA3). Taken from Ref. [109].

therefore is difficult to predict down to the percent level. The use of a near detector

will help to alleviate both of these problems, as will the results from current and future

neutrino fixed-target experiments, run specifically to measure neutrino fluxes and cross-

sections. We shall study super-beam setups in Chapter 5.

3.5.2. The β-beam

A β-beam [110] is produced from the decay of boosted radioactive ions, resulting in an

extremely pure beam of νe or ν̄e. The neutrino flux depends on the end-point kinetic

energy of the electron produced in the decay, the γ factor of the ion, and the baseline. As

the kinematics of the leptonic decay process are known very well, the neutrino flux can

be calculated very precisely once these three factors are fixed. The absolute purity of the

beam is an advantage; the disadvantages are the technological and practical difficulties

associated with constructing an accelerator which can produce sufficiently boosted ions

(the more highly boosted the ions, the more energetic the neutrinos) to enable the β-

beam to be used with a very long baseline. The physics potential of a variety of β-beam

setups has been extensively analysed in studies such as Refs. [111, 112, 113, 114, 115, 116].
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3.5.3. The neutrino factory

A neutrino factory [117] is seen to be the ultimate neutrino oscillation experiment. As

for a super-beam, the initial beam is a proton beam which produces a secondary beam

of pions. The pions decay into muons and neutrinos, but rather than using the neutrinos

from this secondary beam, the neutrino factory captures the muons and accelerates them.

The muons decay via µ− → νµe
−ν̄e and µ

+ → ν̄µe
+νe, with the neutrinos having a range

of energies up to the energy of the accelerated muons. Thus this tertiary neutrino beam

consists of a pure mix of 50% νµ (ν̄µ) and 50% ν̄e (νe), allowing for up to twelve oscillation

channels to be studied. In addition, an extremely high intensity can be reached, and

all beam characteristics can be very precisely predicted as the neutrinos are produced

by a leptonic decay which is a lot ‘cleaner’ than a hadronic process. The design of the

neutrino factory is the task of the International Design Study for the Neutrino Factory

(IDS-NF) [86], to which part of the work in this thesis contributes.

Fig. 3.6 shows the experimental layout of the accelerator section of the experiment.

The conventional neutrino factory setup, as defined by the IDS-NF, accelerates muons

to 25 GeV, with an estimated 1.4 × 1021 muons per year per polarity (µ− and µ+)

being produced. The muons are divided into two racetrack-shaped storage rings; in

the straight sections the muons decay to form the neutrino beam. One beam is aimed

towards the ‘intermediate detector’ at a baseline of between 3000 km and 5000 km, and

the second beam is aimed at the far detector at the ‘magic baseline’ (see Section 4.5) of

7000 km to 8000 km. The exact lengths of the baselines are subject to restrictions from

geographical locations. Each of the detectors is a magnetised iron neutrino detector

(MIND) [118], the closer one having a mass of 100 kton and the farther one a mass

of 50 kton. These are essentially larger versions of the MINOS detectors described in

Section 3.3.2. A near detector (or possibly more than one), the exact design of which is

still under consideration, will be situated close to the straight section(s) of one or both

of the muon storage rings to make flux and cross-section measurements, and to search

for NSI’s as described in Section 2.5. This setup is what we shall refer to from now

onwards as the ‘high-energy neutrino factory’ (HENF) to make a clear distinction from

the low-energy neutrino factory (LENF) which is the topic of Chapters 6 and 7.

The neutrino factory exploits the ‘golden’ signature of the wrong-sign muon events

[117, 119] - muons with opposite sign to the muons stored in the neutrino factory. If

µ+ are stored, wrong-sign muons (µ−) result from νe → νµ oscillations, and can be used

to measure the mixing angle θ13, determine the neutrino mass hierarchy, and search
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Figure 3.6.: Layout of the neutrino factory accelerator complex as defined by the Interna-
tional Design Study for the Neutrino Factory. From Ref. [86].
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for CP violation (see next chapter). In addition to the wrong-sign muon signal there

will also be right-sign muon events. These events come from the disappearance muon

neutrino channel, ν̄µ → ν̄µ (νµ → νµ), if µ
+ (µ−) are stored. The discrimination of

the wrong and right sign muons requires the identification of charged-current νµ and ν̄µ

interactions, and the measurement of the sign of the produced muon. If the interacting

neutrinos have energies of more than a few GeV, standard neutrino detector technology

based on large magnetised tracking calorimeters, like those described in Section 3.3, can

be used to measure wrong-sign muons with high efficiencies and very low backgrounds.

This has been shown to work for neutrino factories with energies of about 20 GeV or

more [62, 86, 120].

Neutrino factories have been shown to be extremely sensitive tools for studying neu-

trino oscillation physics [62, 117, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129,

130, 131, 132, 133, 134, 135, 136, 137, 138] and the HENF setup described above has

been found to be optimal both in terms of standard oscillation physics and for NSI

searches [67, 139, 140].

In this thesis we shall study a low-energy neutrino factory. An obvious question, in

view of the excellent performance of the HENF, is why one should consider an alternative,

and in particular, lower energy setup? ‘Low-energy’ in this context means that the

muons are accelerated to around 5 GeV, rather than 25 GeV, and the corresponding

(single) baseline is O(1000) km [136, 137]. The physics motivation for this idea will be

demonstrated at the end of Chapter 6 when we shall see that for a particular range

of values of sin2 2θ13, a neutrino factory with a shorter baseline and lower energy is

more sensitive to CP violation than the HENF setup, whilst still retaining a similar

sensitivity to θ13 and the mass hierarchy as the HENF. Practical advantages of the

LENF include cost - an accelerator for 5 GeV muons will cost substantially less than a

25 GeV accelerator - and construction factors.

We will focus on the experimental optimisation of the low-energy neutrino factory

and analyse its sensitivity to both oscillation parameters and NSI’s in Chapters 6 and

7.
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3.6. Simulations of future experiments

3.6.1. GLoBES

Current experiments collect and analyse real data. In order to probe the power of future

experiments, we need to simulate data, which means simulating firstly the ‘true’ events

(events which actually occur, as created by nature), and then the ‘reconstructed’ events

seen by the experiment. The true event is an incident neutrino with a specific energy.

This is transmitted via secondary particles and detector properties into a reconstructed

event which will hopefully be a good approximation to the original neutrino event. In

general, reconstructed events will not correspond exactly to the true events because no

experiment is perfect - there are experimental limitations and finite measurement errors.

The question we need to address is how these limitations and errors affect our ability to

obtain information about the true neutrino events.

A software package which is designed to do precisely this is the General Long-Baseline

Experiment Simulator (GLoBES) [141, 142] which has been used for all the simulations

described in this thesis. Each of the three components of an oscillation experiment -

production, propagation (oscillation) and detection - are simulated, using information

specified by the user. The information used to simulate the source and detector is

specified in the ‘experiment file’. The beam composition, power, flux and running time

must be defined to describe the source. The detector is described in terms of its mass,

energy range, energy-dependent energy resolution, energy-dependent efficiencies, energy-

dependent backgrounds and systematic errors for each of the channels which it can

detect. Cross-section files, as a function of neutrino energy, must also be defined - we

use those that come with GLoBES, which originate from Refs. [143, 144]. In addition,

the baseline and a matter profile type must be specified. We have used a constant

average density (calculated by GLoBES from Refs. [145, 146]) together with a matter

density uncertainty of 2% which provides a very good approximation for the baselines

which we shall be simulating.

The baseline and matter information are used to simulate the propagation stage.

The user must specify true values for all the oscillation parameters from which the

oscillation probabilities for all specified channels are calculated. In the case that a

baseline-dependent matter density profile is chosen, the profile is divided up into steps

of constant density. In our case of constant density, there is just one step. The Hamilto-

nian in matter (see Eq. (2.17)) with the specified true values of the oscillation parameters
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and a matter potential calculated from the matter profile, is diagonalised at each step,

propagating the neutrino transition amplitude along that step. The final oscillation

probability is the square of the sum of all the transition amplitudes. From these proba-

bilities and the source information, the rates of all the specified oscillation channels are

defined - these are the true rates. To obtain the reconstructed rates, each true event is

transformed by the detector properties which maps it onto a reconstructed event.

We want to know if it is possible to infer the true values of the oscillation parameters

from the reconstructed rates. To do this, GLoBES performs a statistical ‘parameter

estimation’ test where the user can choose how many and which parameters are to

be constrained. Constraints are performed using a chi-squared (χ2) minimisation test.

Ideally, a minimisation should be performed over all parameters except those which are

being constrained. GLoBES is designed to perform these multi-parameter minimisations

efficiently, which is fortunate since the neutrino oscillation space contains six oscillation

parameters and the matter density is also treated in GLoBES as an oscillation parameter,

so that there are seven possible parameters over which to minimise!

In reality, a neutrino oscillation experiment, either real or simulated, follows a Pois-

son distribution: the measurement is of a discrete number of events within an allocated

time period, the events are independent of one another (ignoring the dead-time of the

detector electronics which is essentially irrelevant considering the tiny neutrino cross-

sections) and there is a predicted number of expected events. For a parameter estimation,

a comparison is made between the detected data and a set of hypotheses, where each

hypothesis is an oscillation model where the oscillation parameters take particular val-

ues. By making this comparison, it can be seen which sets of parameters are statistically

compatible with the data, and hence particular parameters can be constrained. In a real

experiment, the hypotheses are based on the data taken at the near detector which gives

the number of unoscillated events expected, taking into account the detector response.

A set of oscillation parameters is then chosen and the oscillated data expected at the far

detector are inferred from the near detector data and the chosen set of oscillation pa-

rameters. In simulations, it is assumed that the unoscillated data and detector response

will be known to a certain accuracy specified by the values of the systematic errors, and

the expected oscillated data are inferred from these assumptions.

Experiments have a finite energy resolution and so events are ‘binned’ into energy

bins of a finite width. For a given energy bin j, the likelihood of measuring xj events
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given a hypothesised number µj is

L(xj , µj) =
µ
xj

j e−µj

xj !
. (3.2)

However, it is also necessary to include the effects of the systematic errors mentioned

above, which can be treated as Gaussian:

L(xj , µj, nj,k, σj,k) =
∏

k

µ
xj

j e−µj

xj !
e
−

n2
j,k

2σ2
j,k , (3.3)

where nj,k = sj,k − ρj,k, the indices k correspond to each of the individual errors, sj,k is

the actual value of the systematic error k in bin j, ρj,k is the mean value of the error

k in bin j and σj,k is its standard deviation. In the case that there are a large number

of events, the Poisson distribution can be approximated as a Gaussian distribution with

mean and variance µj such that the likelihood is

L(xj , µj, nj,k, σj,k) =
∏

k

√
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2

2µj e
−
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2σ2
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A χ2 minimisation corresponds to finding the value of µj and the values of the nj,k’s

and σj,k’s which maximise the likelihood L(xj , µj, nj,k, σj,k); this is the ‘best-fit’ point.

Maximising the likelihood corresponds to minimising the ‘χ2 statistic’,

χ2 =
∑

j,k

(xj − µj)
2

µj
+

n2
j,k

2σ2
j,k

. (3.5)

In our simulations we have treated the systematic errors as being uncorrelated, which

means that each of the nj,k’s and σj,k’s are minimised independently. More sophisticated

treatments are possible but for our current studies these would have a negligible effect

on the results. The minimisation is performed for each bin, and the sum of all the

minimised χ2 values for each bin gives the total χ2
min.

A χ2 fit means that the χ2 statistic is simply evaluated for each given set of hypothe-

sised parameter values, although the systematics are still minimised. Again, the χ2 value

is evaluated for each bin individually and the sum gives the total χ2. The parameter set

which gives the smallest value of χ2 is the best-fit point. At this point it is important

to make the distinction between the true values of the parameters and their test values.

The true values are the parameter values which are used to simulate the real data, and



Neutrino oscillation experiments 63

thus are those values which we are supposing that nature has chosen. The test values are

the parameter values of the hypothesis being tested. In our simulations, the minimum

value of χ2 will always be zero and the best-fit point will always lie at the true values

(assuming that we include in our hypotheses the one which actually corresponds to the

true values) because the data are simulated according to a model which is identical to

one of our hypotheses, the detector response is fully accounted for by minimising over

the systematic errors, and statistical fluctuations are not included; therefore there will

be a perfect correpondence between the simulated data and one of the hypotheses. If

this were not the case such that χ2
min 6= 0, then the measure of compatibility would be

the value of ∆χ2 which is the difference between the χ2 value at a point and χ2
min. Since

χ2
min = 0 in our simulations, ∆χ2 is the same as χ2. This quantity is indicative of how

compatible the data are with the hypothesis.

In this thesis, we perform one- and two-parameter fits. For a parameter estimation,

this corresponds to having one or two degrees of freedom (d.o.f.) - this is a different

definition than that for a ‘goodness-of-fit’ test. In the case of a one-parameter fit, for

instance θ13, we want to know how likely it is that a particular value of θ13 is compatible

with the data, regardless of the values of all the other parameters. Therefore we want to

find the minimum value of χ2 for that particular value of θ13 by marginalising over all

the other parameters - this means simply that all the other parameters, including the

matter density and systematic errors, are allowed to vary so that the smallest χ2 value

can be found. If this value is below a certain confidence level (conventionally 3σ - 99.7%

confidence or 5σ - 99.99994% confidence; the corresponding value of χ2 depends on the

number of degrees of freedom) then that θ13 value is consistent with the data at 3σ (5σ).

In the case of two-parameter fits, for instance θ13 and δ, we want to know how likely it

is that a pair of these values is compatible with the data, regardless of the value of all

the other parameters. These results are conventionally shown as contour plots with the

68% (1σ), 90% and 95% (2σ) contours displayed. The power of GLoBES is not only

that it can perform these computations efficiently, but that by fixing certain parameters

to take certain values, degenerate solutions can be located by forcing the minimiser into

a local minimum rather than the global minimum. This is most commonly used to

obtain the ‘fake’ solutions arising from the hierarchy degeneracy (see Section 4.5) - if

we simulate a true normal hierarchy, with the true ∆m2
31 being positive, then start the

minimiser at a negative value of ∆m2
31, it is possible to see if there are regions in which

an inverted hierarchy is also compatible with the data. In order to do this we need

to find the minimum possible χ2 assuming an inverted hierarchy, relative to the true

minimum (χ2 = 0). To prevent the minimiser from falling into the true minimum, the
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allowed values of ∆m2
31 can be constrained by specifying an input error. Input errors are

also always specified for the other parameters - usually the 1σ errors from experiments

- in order to ensure that the minimiser locates the correct minimum.

3.6.2. Statistical analysis and standard performance indicators

In order to compare the performances of different experiments, as will be done in Chap-

ters 5 and 6, it is necessary to take into account that because oscillation probabilities

and therefore experimental sensitivities are dependent upon the values of θ13 and δ (see

Section 4.1), especially if comparing experiments which measure different oscillation

channels and are therefore optimally sensitive to different regions of the θ13 − δ plane,

the performance of the experiment needs to be assessed for all possible pairs of values of

θ13 and δ. The merit of an experiment is judged to be the amount of ‘coverage’ it obtains

in this plane - as the values of θ13 and δ are unknown, the best experiment is the one

which has the best chance of being able to obtain measurements for the largest number

of possible (θ13, δ) values. Computationally, this means setting up a two-dimensional

grid of points in the θ13 − δ plane, and at each point setting these values to be the true

values with which the data are simulated. A χ2 fit as described in the previous section is

then performed at each point, so that it is possible to see in which regions of the θ13 − δ

parameter space the experiment has sensitivity.

There are two conventional presentation methods. The first is to show sensitivities as

a function of both sin2 2θ13 (this parameter is used rather than θ13 itself since the golden

channel probability depends on the quantity sin2 2θ13 rather than θ13 - see Chapter 4) and

δ so that one can see explicitly the regions of the parameter space to which a particular

experiment is sensitive. In general, the smaller the value of sin2 2θ13 the harder it is to

make a measurement. But the minimum value of sin2 2θ13 for which an experiment has

sensitivity depends on the value of δ - these points are those that lie along the displayed

contour. All points which lie to the right-hand side of the contour (assuming sin2 2θ13 is

displayed on the horizontal axis) are the points for which the particular measurement can

be made, and all points to the left are those to which the experiment has no sensitivity.

The second method is more useful for making precise quantitative comparisons be-

tween different experiments. Sensitivities are shown as a function of sin2 2θ13 but are

given in terms of the ‘CP-fraction’ (also called the ‘δ-fraction’). This is a measure of

the fraction of points in δ-space for which the measurement is successful, for a fixed

value of sin2 2θ13. In other words, if the computer simulation is written such that the
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δ-space is divided into n steps (n + 1 points separated by a step-size of 2π
n+1

) then the

CP-fraction for each value of sin2 2θ13 is the number of points for which a measurement

was successful divided by (n + 1). This fraction is calculated for each value of sin2 2θ13

and the points are plotted. A perfect experiment would achieve a CP-fraction of 1 for

all values of sin2 2θ13; realistically the CP-fraction drops as sin2 2θ13 decreases.

The three standard performance indicators which are used are the following:

• θ13 discovery potential is the ability of an experiment to exclude a value of

θ13 = 0 , if the true value of θ13 is non-zero. At each point in the sin2 2θ13 − δ

plane, those pair of values are set to be the true values with which the data are

simulated. The question is how compatible the detected data are with a hypothesis

where θ13 = 0 - this is the test value. A χ2 minimisation of the data is performed

with all parameters left free to be minimised over except for θ13 (which is fixed

at zero). This includes the sign (positive or negative) of ∆m2
31 i.e. it may be

possible that the best fit is obtained with the incorrect hierarchy. The point at

which the χ2 value is minimal is the best-fit point, and will lie somewhere in the

θ13 = 0 plane. We need to know where this minimum value of χ2 lies relative to a

certain threshold (3σ in this thesis). If it lies above the threshold then this indicates

that a good fit cannot be obtained to θ13 = 0 and thus θ13 can be excluded at 3σ

confidence, indicating that its value is non-zero. If, on the other hand, the χ2 value

lies below the threshold then it is possible to fit the data to θ13 = 0 and thus this

point cannot be excluded, indicating that θ13 is too small to be measured by this

experiment. Typically this will be for small true values of sin2 2θ13, and maximal

values of δ where cancellation can occur between the CP and atmospheric terms

(see Section 4.1).

• CP discovery potential is the ability to exclude a value of δ = 0 or π which

corresponds to being able to confirm that there is CP violation in the neutrino

sector. The computational method is similar to that for θ13 discovery, but instead

of fixing the test value to be θ13 = 0, the test points are δ = 0 and δ = π. These

values are fixed and all other parameters are minimised over to find the best-fit

point. Again, this marginalisation includes the sign of ∆m2
31. Whichever of δ = 0

or π has the lower χ2 value is taken to be the best-fit point, and whether this χ2

value lies above or below the 3σ threshold determines the plotted curves. This

measurement is difficult for values of δ which lie close to 0 or π and becomes

progressively easier as the value of δ approaches maximal CP violation (±π
2
).
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• Hierarchy sensitivity is the ability to exclude the wrong mass hierarchy. In the

case of simulating a true normal hierarchy, for each point in the sin2 2θ13− δ plane,

a fit is forced to an inverted hierarchy, allowing all other parameters to vary to find

the best-fit point. If the χ2 value at this point lies below the 3σ threshold then it

is not possible to identify the mass hierarchy at that confidence level as good fits

can be obtained to both hierarchies. If the χ2 value is above the threshold, then

the wrong hierarchy can be excluded at 3σ confidence.

An additional presentation tool which is used for more qualitative purposes are the

‘potato plots’ (as they are informally known!) which display the results of the two-

parameter θ13 − δ fits. These are used to gauge the sensitivity of an experiment to

θ13 and δ and are also a useful way of visualising degenerate solutions. These are the

plots which appear in, for example, Fig. 6.4. The pairs of values of θ13 and δ which

are compatible with the detected data at the 68%, 90% and 95% confidence levels are

enclosed by the contours. The displaced ‘satellite’ which appear in Fig. 6.4a (which is for

a true value of θ13 = 1◦), at the δ = 90◦ point but at the wrong value of θ13, corresponds

to the region which is compatible with the data if the wrong hierarchy is assumed. The

fact that there are no wrong-hierarchy regions in the θ13 = 5◦ plot (Fig. 6.4b) indicates

that the hierarchy can be correctly identified at the 95% confidence level in this case.



Chapter 4.

Phenomenology of future

long-baseline oscillation experiments

In this chapter we will describe the oscillation phenomenology at future long-baseline

neutrino oscillation experiments, in the context of a neutrino factory. The phenomenol-

ogy of a super-beam is qualitatively similar. To begin with, we will examine the primary

channel at the neutrino factory - the so-called ‘golden channel’, νe → νµ, showing how

measurements of θ13, δ and the mass hierarchy can be extracted. We will then return

to the topic of matter effects, considering their effects at different baselines, then briefly

mention the other oscillation channels which may be accessible to a neutrino factory.

Finally, we will discuss the problem of degeneracies and explain why the ‘magic base-

line’ is so magical! In this chapter, we shall concentrate only on the standard oscillation

parameters, leaving an examination of the non-standard interactions until Chapter 7.

4.1. The golden channel, νe → νµ

As already mentioned, a neutrino factory will search for the wrong-sign muons from

the νe → νµ and ν̄e → ν̄µ channels. These are the so-called golden channels [62],

named because this single channel is rich enough to provide information on all the

unknown oscillation parameters - θ13, δ and the mass hierarchy (sign(∆m2
31)). The fact

that this channel is highly suppressed by the small value of θ13 and therefore is a sub-

dominant oscillation mode, is the reason that not until recently has there been sufficient

technological development to realistically allow for the observation of this channel. T2K

is the first experiment to do so [103].

67
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Let us begin by first considering the golden channel probability in vacuum. This is

simply an application of Eq. (2.8), and the result is

P vac
νe→νµ = s2213s

2
23

(

c212 sin
2

(

∆31L

2

)

+ s212 sin
2

(

∆32L

2

))

(4.1a)

+
1

2
s213c13s212s223 cos δ

(

sin2

(

∆31L

2

)

− sin2

(

∆32L

2

))

(4.1b)

+
1

4
s213c13s212s223 sin δ (sin (∆31L)− sin (∆32L)) (4.1c)

+

(

c213s
2
212c

2
23 −

1

2
s2213s

2
212s

2
23 +

1

2
s213c13s212c212s223 cos δ

)

×

sin2

(

∆21L

2

)

(4.1d)

− 1

4
s213c13s212s223 sin δ sin (∆21L) . (4.1e)

We use a notation where sjk = sin θjk, s2jk = sin 2θjk, cjk = cos θjk, c2jk = cos 2θjk,

∆jk =
∆m2

jk

2E
, E is the neutrino energy and L is the baseline. The probability for anti-

neutrinos is obtained by exchanging δ → −δ (this is also the probability for the νµ → νe

channel which super-beams observe). Note that we have not automatically made the

approximation ∆m2
32 = ∆m2

31 as it will soon be made apparent that this is not a valid

assumption for all the situations which we shall consider.

The terms in line (4.1a) and also those terms which involve cos δ - (4.1b) and (4.1d)

- are the CP conserving terms. Those which depend on sin δ - (4.1c) and (4.1e) - are the

CP violating terms. The prefactor of the CP violating terms, s213c13s212s223 sin δ, is the

Jarlskog prefactor which forms part of the Jarlskog determinant, J [147], an invariant

originally defined as being the commutator of the up-type and down-type quark mass

matrices but which applies analogously to the neutrino sector. When written in terms

of the lepton mass matrices it becomes apparent that J vanishes if any two masses are

identical, which translates into mixing angles as saying that CP is conserved if any of

the mixing angles are zero (neutrino states with identical masses will not mix). When

written as above in terms of mixing parameters, it can be seen that CP violation vanishes

also if δ = 0 or π. All CP violating effects in the Standard Model are proportional to J .

The simplest situation to consider first is for an energy and baseline tuned to the

atmospheric oscillations only. In this case we can use the ∆m2
32 = ∆m2

31 approximation
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and Eq. (4.1) reduces to a simple form which is dependent only upon θ13, θ23 and ∆m2
31:

P vac,atm
νe→νµ ≈ s2213s

2
23 sin

2

(

∆31L

2

)

. (4.2)

This approximation becomes more precise as the length of the baseline is decreased as

this minimises contamination from matter effects, improves the approximation ∆32L ≈
∆31L, and also suppresses the solar terms, (4.1d) and (4.1e), by minimising the value

of ∆21L. It is valid for the T2K experiment [103] which has a baseline of 295 km, and

can therefore search for θ13 via this appearance channel, independently of the reactor

experiments which measure the ν̄e disappearance probability given in Section 4.4.2. Note

that in this regime there is no sensitivity to CP violation, nor to the mass hierarchy.

Next we consider an intermediate situation where the baseline is long but matter

effects are neglected. In this situation we cannot immediately neglect any terms in

Eq. (4.1) as the quantity sin∆21L and the difference between ∆32L and ∆31L may now

be of a comparable magnitude to the term (4.1a), depending on the value of θ13. We

write everything in terms of two oscillation frequencies by making use of the relation

∆m2
32 = ∆m2

31 −∆m2
21, which applies to both hierarchies (refer to Fig. 2.2) with ∆m2

31

and ∆m2
32 being positive in the case of a normal hierarchy and negative in an inverted

hierarchy. We also make the approximation sin∆21L ≈ ∆21L and consider all terms

which are second order in s213 and ∆21L:

P vac,L
νe→νµ = s2213s

2
23 sin

2

(

∆31L

2

)

(4.3a)

+ s213c13s212s223

(

∆21L

2

)

sin

(

∆31L

2

)

cos

(

δ − ∆31L

2

)

(4.3b)

+ c213s
2
212c

2
23

(

∆21L

2

)2

. (4.3c)

So in this situation there are three terms and sensitivity to θ13, δ and the mass

hierarchy (sign(∆m2
31)). Again, the anti-neutrino probability is obtained by exchanging

δ → −δ. The term (4.3a) is known as the atmospheric term and is sensitive to θ13,

(4.3b) is the CP term which is sensitive to δ and sign(∆m2
31), and (4.3c) is the solar

term which is sensitive to none of the above parameters. These will be mentioned again

shortly when we include matter effects. The CP term is also called the interference term

because it arises from mixing between the atmospheric and solar regimes. In the case of

maximal CP violation, δ = π
2
or 3π

2
, the probabilities for normal and inverted hierarchies
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are identical and so cannot be distinguished. For all other values of δ these probabilities

are different and can, in principle, be distinguished as shown in Fig. 4.1. Here we show

the probabilites for both normal hierarchy (NH) and inverted hierarchy (IH) for θ13 = 3◦

and δ = 0 (solid lines) and π
4
(dashed lines). We use a baseline of 1300 km which is

the standard LENF baseline we shall be using in Chapters 6 and 7. From this plot it

can be seen that the IH spectrum is essentially an inversion of the NH spectrum which

arises because the hierarchy sensitivity originates from the factor of sin
(

∆31L
2

)

in the CP

term; changing the sign of ∆m2
31 changes the CP term from a positive interference to a

negative interference.
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Figure 4.1.: Golden channel probability for a normal hierarchy (NH) and inverted hierarchy
(IH) at 1300 km without matter effects, with θ13 = 3◦ and δ = 0 and π

4 . (The
values of the other oscillation parameters are sin2 2θ12 = 0.3, θ23 = π

4 , ∆m2
21 =

8.0× 10−5 eV2 and |∆m2
31| = 2.5× 10−3 eV2).

Relevant to the neutrino factory and other long-baseline experiments is the oscillation

probability including matter effects. A calculation of the golden channel probability,

following the method described in Section 2.4.2 by treating ∆21 as a perturbation, is
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described in detail in Appendix F. The result is

Pmat
νe→νµ = s2213s

2
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sin2
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AL

2

)

, (4.4c)

where A =
√
2GFne as derived in Section 2.4. To obtain the anti-neutrino probability,

exchange δ → −δ and A → −A. The first line of the probability, (4.4a), is the atmo-

spheric term which is quadratic in sin 2θ13 and will be dominant in the scenario that

θ13 is large (sin2 2θ13 & 10−2), and at high energies. The atmospheric term provides

sensitivity to θ13, the mass hierarchy, and is sensitive to the octant of θ23 (θ23 <
π
4
or

> π
4
). The second line, (4.4b), is the CP term which is linear in sin 2θ13 and dominates

for intermediate values of θ13 if δ is not close to 0 or π. The dependence on δ enters via

the oscillatory cosine term which can take either a positive or negative sign depending on

the value of the phase. This can lead to constructive or destructive interference between

the atmospheric and CP terms, meaning that sensitivities to θ13 and the mass hierarchy

are strongly dependent on the value of δ. Due to the inverse dependence on energy, the

CP term becomes most visible at lower energies; therefore it is important to have access

to the second oscillation maximum, by using a detector with a low energy threshold, to

establish if CP is violated. Thus a shorter baseline and therefore lower energy is desir-

able to enable a clean measurement of δ, whereas a higher energy and, especially, a long

baseline, guarantees sensitivity to the mass hierarchy, as will be explained shortly. The

third line, (4.4c), is the solar term which is independent of δ and the mass hierarchy,

and is dominant in the case that θ13 is very small (sin2 2θ13 . 10−4). In this regime,

measurements will be extremely challenging.

It is the dependence of the golden channel spectrum on the value of θ13 which makes

the measurement of θ13 so crucial. The phenomenology changes drastically depending on

the magnitude of sin2 2θ13, and dictates the optimisation of the experiment. In Figs. 4.2

and 4.3 we show how each of the three individual terms varies with the value of sin2 2θ13.

The largest value of sin2 2θ13 = 0.1 corresponds roughly to the 3σ bound given in [53]

(θ13 ≃ 10◦). The CP term is shown for three values of the CP phase: δ = 0, π
4
and π

2
.

In Figs. 4.2a and 4.2b we show the terms in the case of a normal mass hierarchy for an
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energy of, respectively, 1 GeV and 5 GeV. In Figs. 4.3a and 4.3b we show the same for

an energy of 3 GeV (this is the region of the first oscillation peak for the LENF baseline

and so is the most important part of the energy spectrum), and show the terms for both

the cases of a normal and an inverted hierarchy.

The atmospheric term (red) is proportional to sin2 2θ13 (although here it is shown on

a log scale, so does not appear that way!) and thus grows more rapidly with θ13 than

the other terms. It is proportional to (1 − 2EA
∆m2

31
)−2 which means that it is enhanced at

high energies.

The CP term (green) is proportional to sin 2θ13 and therefore grows more slowly with

θ13 than the atmospheric term. Its primary dependence on energy is E−1 and as such

it is enhanced at low energies. The CP term is the only one which can take a negative

or positive sign, depending on the type of hierarchy and the value of δ. It is for this

reason that experimental sensitivities will be heavily dependent upon not just the value

of θ13, but also on the value of δ and the hierarchy - there are some values for which

the CP term interferes destructively with the atmospheric and solar terms, leading to

cancellation in certain parts of the spectrum.

Finally, the solar term (blue) is essentially a background term, as it has no dependence

on any of the parameters. It is unaffected by the value of θ13, so that in the regime that

θ13 is very small and the other terms are suppressed, the solar term remains constant and

will dominate. It has a E−2 dependence, such that it can be ‘beaten’ by high energies -

the atmospheric term overtakes the solar term at a smaller value of sin2 2θ13 at higher

energies, and although increasing the energy also suppresses the CP term, the solar term

is suppressed more quickly.

4.2. θ13, δ and the mass hierarchy from the golden

channel

In Fig. 4.4 we show how the values of θ13 and δ affect the golden channel spectrum. In

Fig. 4.4a we fix a value of δ = 0 and a normal mass hierarchy, and show the spectrum for

values of θ13 = 1◦, 3◦ and 10◦ (sin2 2θ13 ≃ 10−3, 10−2 and 10−1). As mentioned above, the

atmospheric term has the strongest dependence on θ13, and grows with energy. Therefore

it is most prominent at the first oscillation peak (the highest energy maximum), and so

the effect of θ13 is greatest at this first peak - it can be seen in Fig. 4.4a that the change
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Figure 4.2.: Variation of the atmospheric, CP and solar terms of the golden channel at 1300
km, including matter effects, as a function of sin2 2θ13, for a) E = 1 GeV and
b) E = 5 GeV, in the case of a normal hierarchy. The y axis shows the partial
probability for each of the terms. Values of δ = 0, π

4 and π
2 are shown. (The

values of the other parameters are sin2 2θ12 = 0.3, θ23 = π
4 , ∆m2

21 = 8.0 × 10−5

eV2, |∆m2
31| = 2.5× 10−3 eV2 and A = 1.4× 10−22 GeV).
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Figure 4.3.: Variation of the atmospheric, CP and solar terms of the golden channel at 1300
km, including matter effects, as a function of sin2 2θ13 for E = 3 GeV, for
a) normal hierarchy and b) inverted hierarchy. The y axis shows the partial
probability for each of the terms. Values of δ = 0, π

4 and π
2 are shown. (The

values of the other parameters are sin2 2θ12 = 0.3, θ23 = π
4 , ∆m2

21 = 8.0 × 10−5

eV2, |∆m2
31| = 2.5× 10−3 eV2 and A = 1.4× 10−22 GeV).
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in size of the first oscillation peak for different values of θ13 is more drastic than for the

second or third peak.

In Fig. 4.4b we fix a value of θ13 = 3◦ and a normal mass hierarchy, and show values

of δ = 0, π
2
, π and 3π

2
. The value of δ affects both the amplitude and the position of

the oscillation. As mentioned above, the CP term can interfere either constructively or

destructively with the other two terms, hence the reason for the effect on the oscillation

amplitude. In addition, the CP term contains spectral sine and cosine factors, and so

δ shifts the position of the oscillation peaks. Comparing the lines for δ = π
2
(green)

and δ = π (blue), we see an example of how it may be difficult to distinguish between

these two cases - even though these correspond to the extreme scenarios of maximal CP

violation and CP conservation, the spectra look very similar and distinguishing between

them may be a difficult task.

In Fig. 4.5 we again fix a value of θ13 = 3◦ and show how the hierarchy affects the

spectrum, for both a CP conserving (δ = 0 - red line) and maximally CP violating

(δ = π
2
- blue line) case. The solid and dotted lines correspond to, respectively, normal

and inverted hierarchies. Here we see an illustration of what was described in Section 2.4

- that for neutrinos (which we are currently considering), oscillations are enhanced for a

normal hierarchy, and suppressed for an inverted hierarchy. This is at least always true

if we consider the region of the first oscillation maximum, but is not necessarily true at

the lower energy peaks, where it can be seen that the amplitude for δ = 0 is actually

slightly greater for an inverted than normal hierarchy. The reason for this is that at

lower energies the atmospheric term is less relevant. The solar term starts to become

relevant, which has no dependence on the hierarchy, and the amplitude of the lower

energy peaks is then determined primarily by the sign of the CP term which depends

on both δ and the hierarchy. Any combination which results in a CP term with positive

sign will enhance the probability (for instance, inverted hierarchy and δ = 0 or normal

hierarchy and δ = π
2
, as shown here) and any combination which results in a negative

term will suppress the oscillation.

The optimisation of the neutrino factory is dictated by these considerations and the

need to be able to resolve the different spectra shown in Figs. 4.4 and 4.5 to extract the

values of θ13, δ and the mass hierarchy. This leads to the following requirements, which

also apply to any other experiment measuring the golden channel:
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(a) Effect of θ13 on the golden channel probability (δ = 0, normal hierarchy).
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(b) Effect of δ on the golden channel probability (θ13 = 3◦, normal hierarchy).

Figure 4.4.: Alteration of the golden channel spectrum at 1300 km, including matter effects,
by a) θ13 (θ13 = 1◦, 3◦ and 10◦) with δ = 0 and a normal hierarchy and b)
δ (δ = 0, π

2 , π and 3π
2 ) with θ13 = 3◦ and a normal hierarchy. (The values

of the other parameters are sin2 2θ12 = 0.3, θ23 = π
4 , ∆m2

21 = 8.0 × 10−5 eV2,
|∆m2

31| = 2.5 × 10−3 eV2 and A = 1.4 × 10−22 GeV).
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• θ13 determines the magnitude of the oscillation peaks. The fact that θ13 is small

is the reason that the appearance channel is so strongly suppressed relative to the

disappearance channels. Therefore high statistics are required.

• The CP phase δ manifests itself most prominently at low energies, for instance at

the second oscillation maximum, due to the inverse dependence on energy of the

CP term. In other words, it is easier to distinguish between CP conservation (δ = 0

or π) and CP violation at the second oscillation peak than at the first. For this

reason, it is important that future detectors have a low energy threshold so that

the second peak can be observed.

• Conversely, the difference between a normal and inverted mass hierarchy is easier to

observe at high energies (the first oscillation peak) than at low energies (the second

peak). It is driven by the matter effects discussed in Section 2.4 and is the reason

that long baselines are needed for these experiments, which is discussed further in

the next section.
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Figure 4.5.: Alteration of the golden channel spectrum at 1300 km, including matter effects,
by sign(∆m2

31) for θ13 = 3◦ and δ = 0 and π
2 . (The values of the other parameters

are sin2 2θ12 = 0.3, θ23 = π
4 , ∆m2

21 = 8.0 × 10−5 eV2, |∆m2
31| = 2.5 × 10−3 eV2

and A = 1.4 × 10−22 GeV).

In summary, for an experiment to successfully extract the oscillation parameters

from the spectrum of the golden channel, the following are required: high statistics, a
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detector with a low energy threshold, and a long baseline. It is also advantageous to

have a detector which has good energy resolution, such that the shape of the spectrum

can be accurately resolved as this enables similar shaped spectra arising from different

parameter values to be distinguished from one another.

4.3. Matter matters

The importance of a long baseline becomes obvious by comparing Eqs. (4.2) and (4.3)

- a long-baseline makes the interference term non-negligible, introducing CP violating

dependence and hierarchy dependence into the probability. The effect of a non-zero

matter potential can be seen by comparing Eqs. (4.3) and (4.4). We shall discuss two

matter-related topics: the effect of matter on determining the mass hierarchy, and the

effect on the detection of CP violation.

4.3.1. Matter effects and the mass hierarchy

A short-baseline experiment has no sensitivity to the mass hierarchy as Eq. (4.2) shows.

A long baseline with no matter effects does, except for particular values of δ (Eq. (4.3)),

as does a long baseline with matter effects included. The baseline at which matter effects

become relevant for hierarchy determination can be seen by comparing the oscillation

spectra for different baselines with and without matter effects as shown in Figs. 4.6

and 4.7. In Fig. 4.6 we consider baselines of 500 km (Fig. 4.6a) and 1300 km (Fig. 4.6b),

which is the LENF baseline. In Fig. 4.7 we consider baselines of 4000 km (Fig. 4.7a)

- the HENF near detector baseline, and 8000 km (Fig. 4.7b) - the HENF far detector

baseline, for θ13 = 3◦ and δ = 0. For the two shortest baselines (Fig. 4.6), we take the

average matter density to be ∼ 2.7g/cm3 (density of the earth’s crust) which converts

to A = 1.4 × 10−22 GeV. For the two longer baselines (Fig. 4.7) the beamline will also

cross a portion of the earth’s mantle, and the average density is taken to be ∼ 4.3g/cm3

which means that A = 2.2× 10−22 GeV.

At all baselines, the effect described in Section 2.4 can be seen: matter enhances

the oscillations for a normal hierarchy around the first oscillation maximum (so the

probability is greater in matter than in vacuum) and suppresses the oscillations for an

inverted hierarchy (so the probability is smaller in matter than in vacuum). This is not

necessarily true for the lower energy peaks which are not so susceptible to matter effects
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- the matter dependence of each of the terms in Eq. (4.4) roughly follows the energy

dependence of each of the terms described in Section 4.1. In addition, there is also an

energy-shift of the oscillation since the oscillations now depend on sin
(

(∆31−A)L
2

)

rather

than sin
(

∆31L
2

)

.

Starting with the shortest baseline of 500 km (Fig. 4.6a), it is actually apparent that

in this case matter effects are detrimental to the ability to separate the two hierarchies.

The separation between the two spectra is more pronounced in the vacuum case. How-

ever, making the distinction in either the vacuum or matter case would be very difficult

- take note of the scale of the oscillations. For the 1300 km baseline (Fig. 4.6b), the

difference between the NH and IH is altered but not increased significantly relative to

the vacuum case. However, the difference in either the vacuum or matter case is a lot

more prominent than for the 500 km baseline (again, take note of the scale) - only at

baselines greater than ∼ 1000 km is it experimentally feasible to differentiate between

the hierarchies.

For the longer baselines (Figs. 4.7a and 4.7b), matter effects are far more signifi-

cant. The effects are clearly visible at the first oscillation maximum, and particularly

favourable in the case of a normal hierarchy when the oscillations are enhanced, thus

increasing the statistics. It is also obvious to see that at these baselines the splitting

between the normal and inverted hierarchy spectra is hugely enhanced at the first oscil-

lation maximum, and this is how the HENF will determine the mass hierarchy.

4.3.2. Matter effects and CP violation

CP violation implies that there is a difference between the way that particles and anti-

particles behave. Theoretically, it is possible to make a measurement of CP violation

using one channel alone, for instance just the golden channel, by extracting a measure-

ment of δ from the oscillation spectrum. The problem is that there are degeneracies and

correlations between the parameters, which will be described later in this chapter and in

Appendix H. Also, the accuracy of the measurement is limited by experimental errors.

Therefore, to search for such a theoretically important phenomenon, it is preferable to

make a direct observation of CP violation; that is by directly observing a difference in

the behaviours of neutrinos and anti-neutrinos. In the vacuum case, Eq. (4.1) tells us

that there is only a difference between neutrino and anti-neutrino probabilities if δ 6= 0

or π. However, from Eq. (4.4) we find that even if δ = 0, neutrinos and anti-neutrinos
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Figure 4.6.: Difference between normal hierarchy (NH) and inverted hierarchy (IH) for vac-
uum and matter oscillations at a baseline of a) 500 km and b) 1300 km. (The
values of the other parameters are sin2 2θ12 = 0.3, θ23 = π

4 , ∆m2
21 = 8.0 × 10−5

eV2, |∆m2
31| = 2.5× 10−3 eV2 and A = 1.4× 10−22 GeV).
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Figure 4.7.: Difference between normal hierarchy (NH) and inverted hierarchy (IH) for vac-
uum and matter oscillations at a baseline of a) 4000 km and b) 8000 km. (The
values of the other parameters are sin2 2θ12 = 0.3, θ23 = π

4 , ∆m2
21 = 8.0 × 10−5

eV2, |∆m2
31| = 2.5× 10−3 eV2 and A = 2.2× 10−22 GeV).
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have different oscillation probabilities in matter because they interact differently with

matter - the matter potential A is positive for neutrinos and negative for anti-neutrinos

(see Section 2.4). The question is then how we know whether an observed asymmetry

between neutrinos and anti-neutrinos is due to genuine CP violation, described by δ, or

simply due to the CP asymmetry of the earth. This problem becomes worse for longer

baselines when the matter effects are most significant. Unfortunately, as just shown

above, long baselines are necessary to make a measurement of the mass hierarchy!

In Figs. 4.8 and 4.9 we compare the effects of true and ‘fake’ (matter-induced) CP

violation for different baselines. The value of θ13 is taken to be 3◦, a normal hierarchy

is considered (as this is when matter effects are most prominent), and we show the

difference between the neutrino and anti-neutrino spectra for δ = π
2
in vacuum (maximal

genuine CP violation, no matter effects) and δ = 0 with matter effects (no genuine CP

violation, only matter effects). We use the same baselines as earlier: 500 km, 1300 km,

4000km and 8000 km.

For δ = π
2
, it can be seen that matter effects (dotted lines) look very different to

genuine CP violation (solid lines) - genuine CP violation and matter effects affect the

neutrino and anti-neutrino spectra in very different ways. However, this is not necessarily

true for all the other values of δ. At the shortest baseline of 500 km (Fig. 4.8a) we see

that the effect of genuine CP violation is much greater than that due to matter effects;

therefore there is no danger of the two effects being confused at this baseline. At a

baseline of 1300 km (Fig. 4.8b), the effect of genuine CP violation is still greater than

that from matter effects so that the two effects are still distinguishable. At 4000 km

(Fig. 4.9a) the effects are roughly of the same magnitude, and at 8000 km (Fig. 4.9b)

the matter effects are clearly dominant. So potentially, for these very long baselines,

this could pose a problem. The solution used by the HENF is to use the magic baseline

which will be described in Section 4.5.

4.4. Other oscillation channels

The other oscillation channels which may be accessible to a neutrino factory are listed

below.
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Figure 4.8.: Difference between genuine CP violation and fake CP violation from matter
effects (with A = 1.4 × 10−22 GeV) at a baseline of a) 500 km and b) 1300
km, for θ13 = 3◦, δ = 0 and π

2 and a normal hierarchy. (The values of the
other parameters are sin2 2θ12 = 0.3, θ23 = π

4 , ∆m2
21 = 8.0 × 10−5 eV2 and

|∆m2
31| = 2.5 × 10−3 eV2).
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Figure 4.9.: Difference between genuine CP violation and fake CP violation from matter
effects (with A = 2.2 × 10−22 GeV) at a baseline of a) 4000 km and b) 8000
km, for θ13 = 3◦, δ = 0 and π

2 and a normal hierarchy. (The values of the
other parameters are sin2 2θ12 = 0.3, θ23 = π

4 , ∆m2
21 = 8.0 × 10−5 eV2 and

|∆m2
31| = 2.5 × 10−3 eV2).
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4.4.1. The νµ disappearance channel, νµ → νµ

The probability for this channel is:

Pνµ→νµ ≃ 1− s2223 sin
2

(

∆21L

2

)

+
∆31L

2
c212s

2
223 sin (∆31L) (4.5)

+ O(∆21s213,∆
2
21, s

2
213).

It is easy to gain very high statistics for this channel, as the probability is of order unity

and an extremely high νµ flux is possible from a neutrino factory. This channel does not

contain any information on new parameters, but it is from here that the most precise

measurements of θ23 (but not the octant) and |∆m2
31| can be obtained. The limiting

factors are the systematic errors associated with the neutrino fluxes and interaction

cross-sections, which is not necessarily the case for appearance channels, such as the

golden channel. The reason is that if, for instance, we run the neutrino factory in

µ− mode so that we produce νµ’s and ν̄e’s, then if we try to measure θ13 via the νµ

disappearance channel, we are searching for a deficit of νµ’s. This is going to be an effect

which is at or below the percent level, which means that the initial flux of νµ needs to

be known to a precision of greater than a percent for this to be a precise measurement.

However, if we instead search for an appearance channel such as the golden channel

(ν̄e → ν̄µ if we run in µ− mode), then we are not limited by our knowledge of the initial

ν̄µ content of the beam, as we know that this is precisely zero. Hence, if we detect a ν̄µ

then it is known with certainty (particle identification and other detector uncertainties

aside) that this has arisen from the oscillation of a ν̄e.

4.4.2. The νe disappearance channel, νe → νe

If electron detection is possible, as in a TASD or LArTPC for example, it will be feasible

to look for the νe and ν̄e disappearance channels, νe → νe and ν̄e → ν̄e:

Pνe→νe ≃ 1− s2213 sin
2

(

(∆31 −A)L

2

)

. (4.6)

This is the channel used in reactor experiments to obtain bounds on θ13, but contains

no information on either δ or the mass hierarchy. It cannot be used to make a precision
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measurement of θ13, as can the golden channel, because it is a disappearance channel and

so again is limited by the systematic errors of the flux and cross-section measurements.

4.4.3. The ντ appearance channel, νµ → ντ

For standard oscillations this channel adds nothing to that gained by a precision mea-

surement of the νµ channel - the νµ− ντ symmetry means that the probabilites for these

two channels are essentially identical. To obtain a probability with ντ instead of νµ,

νµ ↔ ντ , simply requires the interchanges s23 → c23 and c23 → −s23.

The fact that muons are very much easier to detect experimentally than taus is the

reason that the νµ disappearance channel is used and not the ντ channel. In addition,

for a LENF or a super-beam, the beam energy is not sufficiently high to enable the

production of a significant number of taus. However, the true power of this channel lies

in the detection of non-standard interactions, as mentioned in Section 2.5.

4.4.4. The platinum channel, νµ → νe

The platinum channel is the primary channel of a super-beam experiment. It is the

T-conjugate of the golden channel, and so its probability is identical to Eq. (4.4) but

with the exchange δ → −δ. The phenomenology of this channel is therefore very similar

to the golden channel, but we will illustrate the power of the synergy between these two

channels in the next section.

4.5. Degeneracies

Neutrino oscillation experiments suffer from the problem of degeneracies [148, 149, 150,

151, 152, 153, 154, 155, 156, 157] - that is that the oscillation probability for a particular

channel may be invariant under the transformation of one or more parameters, making it

impossible to identify which are the true values. In the simplest cases, the degeneracy of a

single parameter does not affect the measurement of any other parameters. For example,

returning to the example of MINOS from Section 3.1, the disappearance probability is

Pµµ ≃ 1 − sin2 2θ23 sin
2
(

∆31L
2

)

. This probability is invariant under the transformations

θ23 ↔ π
2
−θ23 and ∆m2

31 ↔ −∆m2
31, either singly or simultaneously. Here, θ23 and ∆m2

31
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are the true values of the parameters i.e. those which appear in nature, rather than the

values which are produced by an experiment. Thus, from νµ disappearance experiments

alone, we cannot identify the octant of θ23 if its value is not precisely
π
4
, and neither can

we identify the mass hierarchy. However, the lack of knowledge about either of these

parameters does not affect a measurement of the other parameter.

The situation becomes more complicated when considering the golden channel, from

which we want to extract three unknown parameters - θ13, δ and sign(∆m2
31) from an

oscillation probability which is dependent not only upon these parameters, but also

on several others (Eq. (4.4)). We then need to consider to what extent the lack of

precision on the ‘known’ parameters, for instance the size of the error bars and the lack of

knowledge on the octant of θ23, will affect our measurement of the unknown parameters.

Additionally, in trying to determine several parameters from a single experiment, even

a very precise measurement allows for different combinations of (θ13, δ, sign(∆m
2
31))

to be fitted to the data, severely weakening the sensitivity to these parameters. Many

strategies have been advocated to resolve this problem which in general involve another

detector [158, 159, 160, 161, 162, 163, 164], the combination with other experiments

[134, 135, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177] and/ or the

addition of new channels [129, 130, 178]. An algebraic treatment of degeneracies can be

found in Refs. [127, 136] and in Appendix H.

The strategies mentioned above for resolving degeneracies all work on the basic prin-

ciple that the data sets obtained from different channels and/ or different L
E

will have

degenerate solutions which appear in different parts of the parameter space. So the fake

solutions from one data set can be eliminated by the combination with another data set.

Only the true solution appears in both data sets. This is illustrated in Fig. 4.10 which

shows simulated data from two different setups fitted to simulated true values of (θ13,

δ, sign(∆m2
31)) = (1◦, π

2
, +1). Fig. 4.10a shows data from only a single channel - the

golden channel, νe → νµ, whereas Fig. 4.10b shows data from both this channel and the

platinum channel, νµ → νe. In both cases, the 68%, 90% and 95% contours are shown,

with the solid lines corresponding to the regions obtained when the data are fitted to the

correct (normal) hierarchy, and the dashed lines corresponding to a fit to the incorrect

(inverted) hierarchy. In this particular case, it can be seen that if we have data from

only the golden channel, then the effect of not knowing the hierarchy is to decrease

the precision of the θ13 measurement. However, with two channels, the wrong-hierarchy

solutions occur in different regions of the parameter space and thus can be eliminated,

leaving only the true solution which is identified by both data sets. In this particular
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example one can see that if we had instead started off with only the platinum channel,

then for this particular value of θ13 and δ, the wrong-hierarchy solution is not displaced

significantly from the true solution and so would not affect the measurement. However,

there are other points in the parameter space for which the same problem occurs as for

the golden channel; hence the synergy of using both channels together.
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(a) Data from one channel (νe → νµ only).
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Figure 4.10.: Eliminating degenerate solutions by combining data from complementary chan-
nels.
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In Chapters 6 and 7 we shall target the problem of degeneracies by considering

detectors which may be able to detect the platinum channel. If we compare the forms of

the probabilities, the golden channel, νe → νµ, is given by Eq. (4.4), the CP-conjugated

golden channel, ν̄e → ν̄µ, is obtained by exchanging δ → −δ and A→ −A, the platinum
channel, νµ → νe, is the T-conjugate of the golden channel and is obtained by exchanging

δ → −δ, and the CP-conjugated platinum channel, ν̄µ → ν̄e (which is the CPT-conjugate

of the golden channel), is obtained by exchanging A→ −A.

νe → νµ ν̄e → ν̄µ

νµ → νe ν̄µ → ν̄e

CP

δ → −δ, A→ −A

T

δ → −δ
CPT

A→ −A

Now we can try to understand the degeneracy shown in Fig. 4.10. For the golden

channel, we are interested only in those terms in Eq. (4.4) which have dependence upon

θ13, δ and sign(∆m2
31). Therefore we shall neglect the solar term and look only at the

atmospheric and CP terms, considering a value of δ = π
2
as used in Fig. 4.10:

Pνe→νµ = s2213s
2
23

sin2
(

(∆31−A)L
2

)

(

1− A
∆31

)2 (4.7a)

+ s213c13s212s223
∆21

A
sin

(

AL

2

) sin
(

(∆31−A)L
2

)

1− A
∆31

cos

(

∆31L

2
− π

2

)

. (4.7b)

In order to understand how the sign(∆m2
31) degeneracy arises, consider the effect of

making the transformation ∆m2
31 → −∆m2

31 on Equation 4.7. For both the atmospheric

and CP terms, we have to look at the fraction

sin2
(

(∆31−A)L
2

)

(

1− A
∆31

)2 . (4.8)
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Expanding out the numerator we find that this term can be written as

sin2

( |∆31|L
2

)

cos2
(

AL

2

)

+ cos2
( |∆31|L

2

)

sin2

(

AL

2

)

(4.9)

± 2 sin

( |∆31|L
2

)

cos

( |∆31|L
2

)

sin

(

AL

2

)

cos

(

AL

2

)

,

where the upper + sign refers to a normal hierarchy, and the lower − sign to an inverted

hierarchy. So the only difference is in the bottom line which, over the spectrum, will

on average be equal for both hierarchies - therefore this particular term is not greatly

sensitive to the hierarchy.

The denominator is
(

1∓ A
|∆31|

)2

. The quantity A
|∆31| takes the value ∼ 0.3 at the

first oscillation peak at ∼ 3 GeV. So if the data are fitted (incorrectly) to an inverted

hierarchy, then the denominator is larger than it should truly be for a normal hierarchy

and therefore the fraction (4.8) takes a smaller value than the true value. To compensate

for this when fitting the data, a larger value of θ13 than the true value must be chosen,

and hence in Fig. 4.10 we see that the wrong-hierarchy fit lies at a larger value of θ13 than

the true value. This effect will be greater for the atmospheric term than the CP term,

as the atmospheric term has a quadratic dependence on the fraction whereas the CP

term has only a linear dependence. The hierarchy also affects the term cos
(

∆31L
2

− π
2

)

,

which is simply ± sin
(

|∆31|L
2

)

. Around the first oscillation peak (and also the second),

sin
(

|∆31|L
2

)

is always positive, so in the case of a normal hierarchy the CP term takes

the same sign as the atmospheric term and adds constructively, whereas for an inverted

hierarchy, the CP term takes the opposite sign and so adds destructively. Therefore the

same effect occurs here as for the fraction (4.8) and the probability appears to be smaller

than the true value. So once again, to compensate, it is necessary to fit to a larger value

of θ13 which quadratically increases the atmospheric term.

If we consider instead the platinum channel, νµ → νe, then the probability is iden-

tical except for the exchange δ → −δ in the CP term, which is then dependent on

cos
(

∆31L
2

+ π
2

)

= ∓ sin
(

|∆31|L
2

)

. The positive and minus signs are exchanged for normal

and inverted hierarchies relative to the golden channel, so that in the case of a normal

hierarchy, the CP term adds destructively to the atmospheric term whereas for an in-

verted hierarchy, the CP term adds constructively. So if we incorrectly fit to the IH then

the probability looks larger than it really is, and this counteracts the effect of fitting

the wrong hierarchy to the factor (4.8) which means that the measurement of θ13 is not

significantly affected.
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Thus we demonstrate how different channels are affected differently by parameter

degeneracies, such that multiple channels can provide complementary information in

different regions of parameter space, enabling degeneracies to be resolved. We shall

return to this topic in Chapter 7 when we discuss degeneracies in the context of non-

standard interactions.

The magic baseline

The ultimate weapon for resolving degeneracies in neutrino oscillation physics is the

so-called ‘magic baseline’ [179] which forms part of the standard HENF setup. It corre-

sponds to the baseline at which AL
2

= π. For earth matter densities, the magic baseline

is at around 7500 km assuming an average earth density of ∼ 4.3g/cm3. At this baseline,

terms (4.4b) and (4.4c) in Eq. (4.4) are zero. The only non-zero term is the atmospheric

term, and so at this baseline there are only two parameters on which the spectrum

depends - θ13 and sign(∆m2
31) - as there is no dependence on δ. Fitting only two pa-

rameters instead of three significantly reduces the problem of degeneracies, enabling a

high-precision measurement of θ13 to be made. Additionally, as there are no CP vio-

lating effects, it must be the case that any observed asymmetry between neutrinos and

anti-neutrinos is due purely to matter effects. Therefore at the magic baseline it is also

possible to obtain a good estimate of these effects which is fed back into the measurement

made at the second detector which measures the full oscillation probability, including

the CP term.

Clearly, the magic baseline is a highly desirable feature to incorporate into an ex-

periment, but there are severe technical challenges associated with the construction of

a 7500 km baseline experiment!
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Chapter 5.

Long-baseline experiments within

Europe: the LAGUNA project

5.1. Introduction to LAGUNA

The Large Apparatus for Grand Unification and Neutrino Astrophysics (LAGUNA)

project [108, 180, 181] is a European design study for the development of a kiloton-scale

underground particle detector. The detector will be a multi-purpose facility with a broad

physics reach - searching for proton decay, detecting astrophysical neutrinos, and it will

also be used as part of a long-baseline neutrino oscillation experiment.

The LAGUNA study focuses on assessing the potential of three different detector

technologies (listed below) and seven possible baselines (Table 5.1) within Europe. The

neutrino beam is assumed to originate from CERN, Geneva, and the baseline will be

determined by the position of the detector. For the purposes of minimising backgrounds,

the detector must be situated underground and so the choice of locations is limited to

locations where there is already an existing mine which could accommodate a large-

scale detector, or to locations where it would be possible to expand an existing mine.

The practical considerations of building a gigantic detector deep underground include

engineering, construction, safety and transportation issues, all of which are considered

in the design study. We shall be evaluating the physics potential of the project. The

possible locations of the detectors, their distances from CERN and the energies of the

first oscillation maximum (ignoring matter effects) are shown in Table 5.1.

The options for the detector are:
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Location Distance from CERN [km] 1st osc max [GeV]

Fréjus (France) 130 0.26

Canfranc (Spain) 630 1.27

Umbria (Italy) 665 1.34

Sierozsowice (Poland) 950 1.92

Boulby (UK) 1050 2.12

Slanic (Romania) 1570 3.18

Pyhäsalmi (Finland) 2300 4.65

Table 5.1.: The seven potential sites being studied by the LAGUNA design study. From
Ref. [181].

• LENA (a multipurpose detector for Low Energy Neutrino Astronomy and proton

decay) [84] - 50 kton liquid scintillator detector.

• MEMPHYS (MEgaton Mass PHYSics) [182] - 440 kton water Čerenkov detector.

• GLACIER (Giant Liquid Argon Charge Imaging ExpeRiment) [183] - 100 kton

liquid argon detector.

The physics reach will be determined primarily by the length of the baseline as has

been discussed in the previous chapters. We also need to consider the potential of each

of the three possible detectors when used with each of the baselines - as mentioned

in Section 3.3, different detectors perform optimally for different particle energies and

types. Also, for practical reasons, not all the sites would be able to accommodate all of

the detectors - for instance, it is not possible to build a water Čerenkov detector in a

salt mine as salt is water-soluble!

The final component of the experiment is the beam. Several β-beam configurations

have been studied, spanning a large range of γ-factors [114, 115, 116]. The higher the

γ-factor, the higher the neutrino energy, and so a high γ is necessary if one of the longer

baselines is to be used. However, recent developments in the accelerator schedule at

CERN have since limited these options to only a low-γ β-beam as studied in Ref. [114]

which would be appropriate for the CERN-Fréjus baseline of 130 km, but none of the

other baselines. The best option at present therefore seems to be a super-beam, as

studied in Ref. [181]. This is a realistic possibility for which the technology is already

well established, and can be applied within the intended time period - the intention is

for LAGUNA to begin running in roughly a decade. This is in contrast to a neutrino
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factory, which is the topic of the next two chapters, which is a far-future option intended

to follow after experiments such as LAGUNA.

5.2. Baseline studies

The baseline-dependence of oscillation physics has already been covered in Chapter 4.

In essence, for the seven sites which we are considering, the longer the baseline the

better, as this makes it more likely that a measurement of the mass hierarchy will be

successful. None of the baselines is sufficiently long for matter effects to be significantly

confused with genuine CP violation, as for the HENF. However, it may be possible that

a shorter baseline combined with a particular detector can give similar or better results

to a longer baseline, which would mean that the energy requirements of the beam are

less aggressive and would also provide more flexibility for choosing the detector site.

5.3. The LENA detector for use with a super-beam

Water Čerenkov detectors are already very well-understood following the success of de-

tectors such as Super-Kamiokande [44]. The development of giant liquid argon detectors

is in progress, as mentioned in Section 3.3 [92, 93]. However, giant liquid scintillator

detectors have been less well studied and so it is useful to perform some preliminary

studies to gauge the potential and limitations of such a detector.

The LENA (Low Energy Neutrino Astronomy) detector [108] is a proposed large

volume liquid scintillator detector, primarily for the observation of proton decay and

low energy neutrinos from natural sources (the earth and astrophysical sources). The

detector has the benefit of having excellent particle identification and energy resolution.

Here we will study how this detector performs in a neutrino oscillation experiment.

5.3.1. The beam

The use of the LENA detector in a β-beam experiment has been studied in Ref. [184], as

part of a LENF in Ref. [185], and in a wide-band super-beam in Ref. [186]. We consider a

standard super-beam, using a simulated beam optimised for the NOvA experiment [88].

NOvA has a baseline of 812 km so we will use a similar baseline of 950 km - CERN to
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Sierozsowice. The beam composition is predominantly νµ (ν̄µ) with ∼ 1% contamination

from νe (ν̄e) and an energy peak at ∼ 2 GeV. The source power is 1021 protons on target

per year (1.12 MW target power). We consider 5 years’ running time in neutrino mode,

and 5 years in anti-neutrino mode. Although the beam configuration will obviously

affect the sensitivity of the experiment, and the NOvA beam is not precisely optimal for

our setup, the purpose of this study is to analyse the performance of the detector.

5.3.2. Detector design

The factors we consider with respect to the detector design are listed below. We set

all these parameters to their ‘reference’ values (also shown below) and alter each one in

turn to observe its effect on the experimental sensitivity. We assume that the detector

is capable of measuring electrons and muons, enabling us to observe the νµ → νµ and

νµ → νµ channels as well as the νµ → νe and ν̄µ → νe channels. As mentioned in

Section 3.5.1, the main disadvantage of a super-beam is the intrinsic contamination

from νe (ν̄e) which acts as a background to the νe (ν̄e) appearance channels i.e. it is not

possible to distinguish an electron that originates from an intrinsic νe from the beam

(background event) from a νµ which has oscillated into a νe (signal event).

• Energy resolution: reference value - 5% of the particle’s true energy, for all

particles [187, 188].

• Energy threshold: reference value - 1.0 GeV for all particles.

• Fiducial mass: reference value - 50 kton [180].

• Detection efficiency: reference value - 90% for all particles [188].

• Background level: this includes misidentification of electrons and muons (almost

negligible for LENA [188] but we include, conservatively, a misidentification rate

of 10−4). However, the dominant factor for a super-beam is the intrinsic νe con-

tamination. We will use a reference background of 45% of the intrinsic νe content

of the beam, which is half that of the signal. The same background estimate (half

the signal efficiency) is used by NOvA, which will have a near detector to measure

the neutrino fluxes prior to oscillation, thereby giving an estimate of the intrinsic

νe (ν̄e) spectrum. In addition, cross-section and fixed-target experiments currently

being conducted will help to improve the estimates on these predictions in the near

future.
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• Systematic errors: reference value - 5%, uncorrelated (see Section 3.6.1).

5.3.3. Simulations and results

We have used the GLoBES software package (Section 3.6.1) to simulate the experiment

and use the same true values of the oscillation parameters as those in Ref. [189]: sin2 θ12 =

0.3, θ23 = π
4
, ∆m2

21 = 8.0 × 10−5 eV2, and |∆m2
31| = 2.5 × 10−3 eV2 with a 10%

uncertainty on the atmospheric parameters, 4% uncertainty on the solar parameters,

and 2% uncertainty on the matter density (these ‘uncertainty’ values are the ones which

we use as input errors for each of the parameters). These are not the most recent best-fit

values but are the values used by other groups to perform studies with which we shall

be comparing. We use values of θ13 = 2◦ and 5◦ (sin2 2θ13 ∼ 5× 10−3 and ∼ 10−1), and

δ = 0◦, ±90◦ and ±180◦. We use θ13 = 2◦ rather than 1◦ as we will in Chapters 6 and 7,

as this setup does not have as powerful a reach as the neutrino factory. We show the

68%, 90% and 95% confidence level regions obtained in the θ13 − δ plane from each of

the detector configurations, and try to fit the simulated data to both the correct true

hierarchy (normal) and the wrong (inverted) hierarchy. The fits to the correct hierarchy

are shown by the red solid lines, and those to the wrong hierarchy by the dashed blue

lines. If no fits to the wrong hierarchy are shown, this indicates that the mass hierarchy

can be correctly identified at the 95% confidence level by that particular configuration.

Energy resolution

We simulate values of σ(E)
E

= 5% and 1% for the energy resolution (more details on the

energy resolution will be given in Section 6.2.2) and show the results in Fig. 5.1. Note

that Figs. 5.1a and Figs. 5.1b correspond to the results obtained when all the parameters

are set to their reference values, so these are the results of the reference setup. Current

estimates indicate that a resolution better than 5% should be feasible [187]. We find

that the results obtained with an energy resolution of 10% are very similar to those with

5%, but improving to 1% (bottom row) does have some benefit, most notably for large

θ13 (5◦). Therefore, although it is beneficial to optimise the energy resolution as much

as possible, it is not a crucial factor and a value of ∼ 10% is adequate.
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Figure 5.1.: θ13 − δ precision with an energy resolution of σ(E)
E = 5% (top row) and 1%

(bottom row), and θ13 = 2◦ (left column) and 5◦ (right column). The 68%, 90%
and 95% contours are shown for δ = 0◦, ±90◦ and ±180◦.



Long-baseline experiments within Europe: the LAGUNA project 99

Energy threshold

We use values of 0.5 GeV and 1.5 GeV for the detection threshold. The results for a 1.0

GeV threshold are shown in Figs. 5.2a and 5.2b. We assume the detector efficiencies to

be energy independent, such that the efficiency is the same (90%) for all energies above

the threshold. The first oscillation maximum at a baseline of 950 km is at ∼ 1.9 GeV

and so there is little benefit in reducing the threshold significantly below this value. In

particular, for small θ13, a very low energy threshold has very little benefit. But it is

essential to try to detect the entire oscillation peak - the results for a threshold of 1.5

GeV (bottom row) are worse than those for the reference value of 1.0 Gev (Fig. 5.2).

The results are significantly worse if the energy threshold is 2.0 GeV (not shown).

Statistics - detector mass, detection efficiency, running time

To assess the impact of statistics on this setup we have simulated a detector with a mass

of 100 kton (twice that of the reference setup) and 150 kton (Fig. 5.3). Roughly, this

is equivalent to doubling and trebling the beam flux or the running time. Increasing

the detector efficiency will also increase the statistics, although with an anticipated

detection efficiency of around 90%, increasing or decreasing the efficiency by ∼ 10% has

little effect. It is clear to see that roughly doubling the statistics (100 kton instead of

50 kton) will significantly improve the experimental performance, for all values of θ13

- compare Figs. 5.3a and 5.3b with Figs. 5.1a and 5.1b. The improvement gained by

increasing to 150 kton from 100 kton is less pronounced

Background levels

The dominant background comes from the intrinsic νe (ν̄e) content of the beam. We

also include backgrounds from other channels: for the νµ (ν̄µ) disappearance channels we

include 10−4 of the neutral-current νµ (ν̄µ) rates, and for the νe (ν̄e) appearance channels

we include 10−4 of the charged-current and neutral-current νµ (ν̄µ) rates i.e. we assume

a particle misidentification rate of 10−4. For the νe (ν̄e) background we study values of

90% and 10% of these events (45% is the reference value). This is a very large range,

but we see from Fig. 5.4 that these values appear to be irrelevant for the case of large

θ13 (5
◦). However, for small θ13, the backgrounds have a large effect as they significantly

reduce the signal to background ratio
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(a) θ13 = 2◦, energy threshold= 0.5 GeV.
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(b) θ13 = 5◦, energy threshold= 0.5 GeV.
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(c) θ13 = 2◦, energy threshold= 1.5 GeV.
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(d) θ13 = 5◦, energy threshold= 1.5 GeV.

Figure 5.2.: θ13 − δ precision with an energy threshold of 0.5 GeV (top row) and 1.5 GeV
(bottom row), and θ13 = 2◦ (left column) and 5◦ (right column). The 68%, 90%
and 95% contours are shown for δ = 0◦, ±90◦ and ±180◦.
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(a) θ13 = 2◦, detector mass = 100 kton.
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(b) θ13 = 5◦, detector mass = 100 kton.
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(c) θ13 = 2◦, detector mass = 150 kton.
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(d) θ13 = 5◦, detector mass = 150 kton.

Figure 5.3.: θ13−δ precision with a detector mass of 100 kton (top row) and 150 kton (bottom
row), and θ13 = 2◦ (left column) and 5◦ (right column). The 68%, 90% and 95%
contours are shown for δ = 0◦, ±90◦ and ±180◦.
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(a) θ13 = 2◦, background=90%.
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(b) θ13 = 5◦, background= 90%.
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(c) θ13 = 2◦, background= 10%.
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(d) θ13 = 5◦, background= 10%.

Figure 5.4.: θ13 − δ precision with a background level of 90% (top row) and 10% (bottom
row), and θ13 = 2◦ (left column) and 5◦ (right column). The 68%, 90% and 95%
contours are shown for δ = 0◦, ±90◦ and ±180◦.
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Systematic errors

We simulate systematic errors of 10% and 2% (5% is the reference value) showing the

results in Fig. 5.5. We find that systematic errors have a large effect on the sensitivity,

for all values of θ13, and thus that considerable effort should be made to minimise them.
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(a) θ13 = 2◦, systematics= 10%.
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(b) θ13 = 5◦, systematics= 10%.
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(c) θ13 = 2◦, systematics= 2%.
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Figure 5.5.: θ13 − δ precision with a systematic error of 10% (top row) and 2% (bottom
row), and θ13 = 2◦ (left column) and 5◦ (right column). The 68%, 90% and 95%
contours are shown for δ = 0◦, ±90◦ and ±180◦.

5.4. Super-beam with a 2285 km baseline

We expect that the CERN-Pyhäsalmi baseline of 2285 km will give the best physics

reach; therefore we will assess how well a super-beam with this baseline can perform
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and compare it to the results of other similar experiments. Again, we take the true

values of the oscillation parameters to be those given in Ref. [189].

5.4.1. Beam and baseline setup

We use a simulated beam flux from A. Longhin [190] optimised for a baseline of 2285

km - the peak is at ∼ 4.6 GeV which is the energy of the first oscillation peak. The

spectra of the ν and ν̄ beams are shown in Fig. 5.6, which shows that in addition to

the main νµ (ν̄µ) content, the beam also contains ∼ 1% contamination from νe (ν̄e) and

∼ 10% contamination from ν̄µ and ν̄e (νµ and νe). The fluxes correspond to the CERN

high-power PS2 (HP-PS2) configuration [181]: 50 GeV protons with 3×1021 protons on

target (PoT) per year. 2 years’ of ν running and 8 years’ of ν̄ running is assumed; the

running time is asymmetric because the flux of ν̄’s is much less that the flux of ν’s so a

time of 2 + 8 years gives an approximately equal number of ν’s and ν̄’s.

5.4.2. 100 kton liquid argon detector

In this study we primarily consider the performance of a 100 kton liquid argon time-

projection chamber (Section 3.3.3). We perform some very detailed simulations using

the most recent information available. We simulate the following features:

• Energy resolution: we use the migration matrices from L. Esposito and A. Rub-

bia [191]. These describe the energy-dependent ability of the detector to reconstruct

the energy of the incident particle.

• Efficiency: we assume 80% efficiency for all particles and all interaction types, based

on information from B. Fleming reported in Ref. [192]; this is also the value used

in Ref. [107].

• Detector backgrounds: primarily particle misidentification and neutral-current events

being mistaken for charged-current events. We assume the NC background to be

0.5% of all NC channels, based on the estimates from Ref. [107] and assume that

the particle misidentification rate is negligible.

• Intrinsic νe (ν̄e) beam background: the rejection of this background stems purely

from the ability to predict or measure the intrinsic νe (ν̄e) component of the beam.

Theoretical predictions can be made based on measurements from fixed-target ex-
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Figure 5.6.: Neutrino content of the a) νµ beam and b) ν̄µ beam.
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periments and, ideally, from the use of a near-detector which measures the un-

oscillated beam spectrum. NOvA [88] and T2K [103] estimate that they can reduce

this component of their background to ∼ 50% of the total νe (ν̄e) content using

these methods; we will also assume this value in most of our simulations.

• Intrinsic ν̄ (ν) background in ν (ν̄) beam: this forms ∼ 10% of the beam as can

be seen from Fig. 5.6. As the detector is not magnetised there is no way of dis-

tinguishing between positively and negatively charged leptons, and therefore it is

not possible to distinguish between ν and ν̄. In the case that CP is conserved, this

is not relevant as ν and ν̄ will behave the same way. However, since one of the

primary aims of the experiment is to detect the presence of CP violation, it is cru-

cial to distinguish between ν and ν̄ and so this background needs to be minimised.

We estimate that ∼ 5% should be realistic (half of the total content, similar to

the way we estimate that the ν̄e (νe) beam background will be half of the total ν̄e

(νe) content), given current knowledge of neutrino beam fluxes and planned future

experiments.

• Systematic errors: these apply separately to errors on the signal and background

events. We estimate 5% on both signal and background, uncorrelated, as in

Ref. [193].

• Uncertainty in matter density: based on Ref. [194] we use a 2% uncertainty on the

matter profile of the baseline.

Quasi-elastic events and τ detection

Simulations of liquid argon detectors distinguish between the detection of quasi-elastic

(QE) and non-quasi-elastic (nQE) events. The typical energy of a QE event is . 1.5

GeV although there are still a few QE events at higher energies. We are studying a

baseline of 2285 km for which the oscillation maximum is at ∼ 4.6 GeV, and so we

expect that a beam optimised for this baseline will have relatively few events in the QE

region. The information from low-energy events contributes mainly to the sensitivity to

CP violation, and so the QE events will be most valuable for CP discovery.

We also consider the possibility of being able to detect the τ appearance channels,

νµ → ντ and ν̄µ → ν̄τ . τ detection is experimentally very challenging (Section 3.3.4) and

is therefore only of benefit if the additional events produce a significant improvement

to the performance. Our expectation is that because the peak energy of the beam is
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only slightly above the τ detection threshold of 3.5 GeV, only a very small amount of τ

production is kinematically feasible which, conbined with the difficulties of τ detection,

will not contribute significantly. We have simulated a configuration including the νµ →
ντ and ν̄µ → ν̄τ channels, using an optimistic efficiency of 50% for τ detection and

assuming that the background is 10−3 of the νµ → νµ channel rate.

The effects of the QE events, and of including τ detection, are shown in Fig. 5.7. We

show how the omission of QE events (green lines) and the addition of τ detection (blue

dotted lines) affects the sensitivity of the experiment. The omission of QE events affects

only the CP discovery, as expected. Therefore we should consider how the sensitivity

to CP violation changes if the efficiency and background for the QE events is different

from the nQE events.

As expected, the addition of the τ channels has a negligible effect on all sensitivities.

Systematic errors

We find that the magnitude of the systematic errors is crucial to the performance of the

setup. In Fig. 5.8 we show how a pessimistic estimate of a 20% systematic error on the

backgrounds (with 5% error on the signal) gives much worse results than a 5% error on

both signal and background. Significant improvement is obtained if the errors can be

further reduced to 2% (on both signal and background). Also we show how changing the

detection efficiency affects the results - the blue lines are for 100% efficiency (rather than

80%) and 20% systematics - from which we find that the effect is significant, especially

for CP discovery.

5.4.3. Comparison of liquid argon detector with other

detectors and experiments

We will now compare the performance of the LAGUNA experiment with a liquid argon

detector to that of the other LAGUNA detectors.

For the MEMPHYS detector (440 kton water Čerenkov), from Ref. [107] we take

the efficiency of all channels to be 40% and the beam νe (ν̄e) background to be 40%.

We assume that the background from the ν̄ (ν) component of the ν (ν̄) beam is ∼ 5%.

The energy resolution is taken from Ref. [195] (page 83): σ(E) = 0.017 + 0.007
√

Eµ

for muons, and σ(E) = 0.006 + 0.026
√
Ee, which we assume (naively) to be true at all
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Figure 5.7.: Configurations with QE events and no τ detection, no QE events and no τ

detection, and QE events and τ detection for a) θ13 discovery potential, b) CP
discovery potential and c) hierarchy sensitivity.
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Figure 5.8.: Effect of systematic errors (20%, 5% and 2%) and efficiency (80% and 100%) on
a) θ13 discovery potential, b) CP discovery potential and c) hierarchy sensitivity.
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energies. We assume an energy threshold of 0.1 GeV and a maximum energy of 10 GeV

and use similar binning as in Ref. [107] (0-0.5 Gev, 0.5-1.0 GeV, 1.5-2.0 GeV, 2.0-3.0

GeV, 3.0-10.0 GeV). From Ref. [107], the NC background is 5%.

For the LENA detector (50 kton liquid scintillator), we assume the fiducial mass to

be 50 kton from Ref. [180], the efficiency (all channels) to be 90% for all particles with

negligible misidentification rate (from Ref. [188]), and the energy resolution to be 5% of

the particle’s true energy, for all particles from Refs. [187, 188]. We assume an energy

threshold of 1.0 GeV, systematic errors of 5% as for the other detectors, the beam νe (ν̄e)

background to be 50%, the background from the ν̄ (ν) component of the ν (ν̄) beam is

∼ 5%, and the NC background is 0.5% for all channels, as for the liquid argon detector.

We also compare the performance of the LAGUNA setup to that of other experiments

which may be running at around the same time. In Fig. 5.9 we show the θ13 discovery

potential, CP discovery potential and hierarchy sensitivity, as a function of sin2 2θ13 and

δ for the LAGUNA setup with a liquid argon detector (solid red lines), WC detector

both with a realistic 5% NC background (solid green lines) and when this background

is hypothetically removed (dashed green lines), and the liquid scintillator detector with

a pessimistic 5% NC background (solid blue lines) and with the estimated 0.5% NC

background (dashed blue lines). We compare these results with the estimated results of

the LBNE experiment [107] with a WC detector (solid grey lines) and a LAr detector

(solid pink lines), and to the Super Proton Linac (SPL) setup (solid light blue lines) as

described in Ref. [114].

The LAGUNA setup with a WC or liquid scintillator detector, when a 5% NC back-

ground is included, has no sensitivity to CP violation. The effect of the NC backgrounds

on the WC detector is more severe than for the LENA detector. With a 0.5% NC back-

ground for LENA, the performance is roughly identical to that of the LAr detector,

despite the fact that LENA only has half the mass of the LAr detector; this must be due

in part to the assumption of very good energy resolution (5%) at all energies. In this

case, the LAr detector and LENA begin to have sensitivity to θ13 for sin
2 2θ & 10−3 and

to δ and the mass hierarchy for sin2 2θ & 10−2. The WC detector has roughly an order

of magnitude less sensitivity to δ and the mass hierarchy. When the NC background on

the WC detector is (hypothetically!) removed, the WC detector performs better than

either the LAr detector or LENA, especially for CP violation (because WC detectors are

optimal for detecting low-energy QE events which provide the most sensitivity to CP

violation).
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The SPL setup, with a baseline of 130 km, has no sensitivity to the mass hierarchy

although it has a better performance for θ13 and CP discovery (down to sin2 2θ13 ≃ 10−3)

than any of the LAGUNA setups or LBNE - the SPL beam is used with a WC detector

which is an ideal detector to use at this baseline and energy. LBNE has a similar

sensitivity to θ13 and the mass hierarchy as the LAGUNA setup, although it has better

CP sensitivity partly because the beam setup is more aggressive. As for LAGUNA,

LBNE performs better with a LAr detector than with a WC detector (when including

realistic NC backgrounds).

5.5. Summary

In the first half of this chapter we performed some preliminary studies of a 50 kton liquid

scintillator detector as there has been relatively little work carried out on this technology

so far. We considered a scenario where θ13 is small (2◦) and one in which θ13 is large

(5◦). In the case of small θ13 we found that the sensitivity is limited by backgrounds and

statistics. In the case of large θ13 we found that the limiting factors are statistics and

systematics. In either case it is essential to have an energy threshold below the energy

of the first oscillation maximum. The values of the efficiency and energy resolution are

not crucial.

In the second half we assessed the potential of a 100 kton liquid argon detector when

used with the HP-PS2 beam from CERN and the CERN to Pyhäsalmi baseline of 2285

km. We performed a sophisticated detailed simulation, including migration matrices for

the energy resolution. We found that even though there is a possibility that a liquid argon

detector could detect τ ’s and therefore the τ appearance channels might be accessible,

the beam energy at this baseline is not sufficiently above the τ detection threshold to

produce a useful number of τ events so that τ detection is essentially useless. We also

found that quasi-elastic events are very important for CP sensitivity which means that if

a liquid argon detector has different detection properties for quasi-elastic and non-quasi-

elastic events, then we should consider how the differences impact upon the sensitivity

to CP violation. We then showed that the values of the systematic errors have a large

effect on the performance of the experiment which means that a lot of effort should be

invested into minimising them.

Finally, we compared the performance of the LAGUNA beam with a 2285 km baseline

and each of the three LAGUNA detectors - 100 kton liquid argon, 440 kton water
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(a) θ13 discovery potential.

(b) CP discovery potential.

(c) Hierarchy sensitivity.

Figure 5.9.: Comparison of the LAGUNA liquid argon, water Čerenkov and liquid scintilla-
tor detectors, with the LBNE and SPL experiments, showing a) θ13 discovery
potential, b) CP discovery potential and c) hierarchy sensitivity.
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Čerenkov and 50 kton liquid scintillator - with that of the proposed SPL experiment

and the proposed LBNE setup. We found that the SPL with its 130 km baseline and

water Čerenkov detector (which is the optimal detector for this baseline) has the best

sensitivity to θ13 and δ (down to sin2 2θ13 ≃ 10−3); however it has no sensitivity to

the mass hierarchy because of the short baseline. LBNE with either a liquid argon or

water Čerenkov detector also performs very well, partly due to the aggressive beam

setup. Of the LAGUNA detectors, the liquid argon and liquid scintillator detectors

have nearly identical performances, in spite of the liquid scintillator detector having

only half the mass of the liquid argon detector - this is due to the assumption of its

excellent background rejection and energy resolution. Their performance is competitive

with that of LBNE in terms of sensitivity to θ13 and the mass hierarchy. We find

that the water Čerenkov detector with a realistic 5% neutral-current background has no

sensitivity to CP violation, but when this background is (hypothetically) removed then

it does, and performs better than the other LAGUNA detectors. Similarly we find that

if a 5% neutral-current background is included in the liquid scintillator detector then

its performance is much diminished, although not quite as dramatically as the water

Čerenkov detector. Therefore it is crucial to minimise this background and to establish

a reliable estimate of its value in order for realistic simulations and comparisons to be

performed.
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Chapter 6.

Oscillation measurements at a

low-energy neutrino factory

In this chapter we present work regarding the measurement of standard oscillation pa-

rameters at a low-energy neutrino factory. We will describe the experimental setup and

the optimisation studies performed in order to refine the experimental design of the

low-energy neutrino factory. Then we investigate the physics performance of the opti-

mised setup, both in terms of its discovery potential and its precision, and compare its

discovery potential to that of the high-energy neutrino factory and other long-baseline

experiments.

A large proportion of the material in Sections 6.2, 6.3 and 6.5 is reproduced from

Ref. [196].

6.1. Experimental setup

In our standard setup for the LENF we will assume a baseline of 1300 km and a 20

kton TASD (Section 3.3.2). The baseline corresponds to the US baseline from Fermi

National Accelerator Laboratory (FNAL), Illinois, to the Deep Underground Science and

Engineering Laboratory (DUSEL) [197], Soudan. However, the results of these studies

are not completely specific to this baseline and will remain qualitatively similar for other

baselines of the same scale - this is discussed further in Section 6.6.

The accelerator section of the LENF is shown in Fig. 6.1 from where it can be

compared to the HENF accelerator in Fig. 3.6. The practical advantages of using a

115
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much lower muon energy are that the accelerator is smaller and simpler to construct,

and there is only one storage ring pointing to a single baseline.

Figure 6.1.: Layout of the low-energy neutrino factory accelerator complex. From A. Bross.

The development of the TASD for the LENF is being led by A. Bross at Fermilab

National Accelerator Laboratory. The current design has ∼ 105 modules of plastic

scintillator bars with a total mass of 30 kton and fiducial mass of 20 kton and uses

the same triangular geometry as MINERvA, which was described in Section 3.3.2. The

dimensions of the detector are shown in Fig. 6.2a. The entire detector will be placed

in a 0.5 tesla magnetic field by constructing a ‘magnetic cavern’ out of superconducting

transmission lines originally developed for the Very Large Hadron Collider superferric

magnets [198], an idea conceived by A. Bross. As will be shown, the TASD is an

extremely powerful detector for a LENF. Research and development is ongoing, with one

of the main challenges being to find a practical and affordable method of magnetising

the TASD.

Studies carried out prior to this thesis have shown that a neutrino factory with a

muon energy of around 4 GeV enables very precise measurements of the unknown neu-

trino oscillation parameters to be made [136, 137]. The setup exploits a fully active

calorimeter within a magnet, such as the TASD, which ensures the detection of lower

energy muons. A magnetised LArTPC (Section 3.3.3) may also be a possibility. The

possibility of a LENF with non-magnetic detectors has also been explored by the au-
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(a) Dimensions of the TASD.

(b) Triangular modules provide the optimal geometry for spatial
resolution.

Figure 6.2.: The totally active scintillating detector (TASD). Images courtesy of A. Bross.
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thors of Ref. [199] although we will only be considering setups with magnetised detectors.

Electron charge identification may also become possible in a LENF equipped with either

a TASD or LArTPC - therefore, in addition to the wrong and right-sign muons, there

will also be wrong and right-sign electrons from the ν̄e (νe) appearance channel (the

platinum channel) and the νe (ν̄e) disappearance channel if µ
+ (µ−) are stored in the de-

cay ring. However, distinguishing the electron signature from the neutral-current events

will present a very difficult task. We shall discuss the platinum channel in Section 6.2.6.

6.2. Optimisation studies

In this section we will describe optimisation studies of the LENF, assuming the setup

just described. The aim of these studies is to ascertain how each experimental variable

affects the performance of the experiment, and to identify the optimal value if there

is one. This will give an indication as to which aspects of the experiment design are

the most important in order to produce the optimal configuration for maximal physics

performance. For the purposes of these studies, it is sufficient to display the results in

terms of qualitative ‘potato plots’ which give an indication as to the precision of the

measurements which can be made on θ13, δ and sign(∆m2
31). The results are always

shown for two different values of θ13 - 1◦ and 5◦ (sin2 2θ13 ∼ 10−3 and ∼ 10−2) - corre-

sponding to ‘small’ and ‘large’ values of θ13, respectively, and for four different values of

δ - 0, ±90◦ and 180◦. These are the extreme values of δ and any degeneracies which may

arise are likely to be located at one or more of these points (see Sections 4.1 and 4.5).

This work is a continuation of the studies in Refs. [136, 137]. Since these initial studies

were performed, advances in the accelerator and detector technologies have enabled

improved estimates of the experimental parameters to be made, for which we assess the

effects. A summary of the assumptions made for the initial studies, and the refined

assumptions used for this present work are given in Table 6.1. e± detection was not

considered in the original studies; it will be discussed in Section 6.2.6. Backgrounds are

defined in Section 6.2.5.

In all simulations, we take the ‘true’ value of all the known oscillation parameters

to be the same as in Ref. [189], as in the previous chapter: sin2 θ12 = 0.3, θ23 = π
4
,

∆m2
21 = 8.0 × 10−5 eV2, and |∆m2

31| = 2.5 × 10−3 eV2 with a 10% uncertainty on the

atmospheric parameters, 4% uncertainty on the solar parameters, and 2% uncertainty

on the matter density (these ‘uncertainty’ values are the ones which we use as input
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Parameter Previous assumption Current assumption

Baseline 1480 km 1300 km

Muon energy 4.12 GeV 4.5 GeV

Muon dcays/ year/ polarity 5× 1020 1.4× 1021 decays

Running time/ polarity 10 years 10 years

Detector fiducial mass 20 kton 20 kton

Energy threshold 0.5 GeV 0.5 GeV

Energy resolution 30% 10%

Efficiency for µ± (dis)appearance 73% (all energies) 73% ≤ 1 GeV

94% > 1 GeV

Background on µ± (dis)appearance 10−3 10−3

Efficiency for e± appearance - 37% ≤ 1 GeV

47% > 1 GeV

Background on e± appearance - 10−2

Systematics 2% (uncorrelated) 2% (uncorrelated)

Table 6.1.: Assumptions used in the initial LENF studies [136, 137], and the refined assump-
tions used in the present work.

errors for each of the parameters). As we mentioned in Chapter 5, although these values

are not the most recent best-fit values, the purpose of using them is to be consistent

with studies performed by other groups, thus allowing for a fair quantitative comparison

to be made. In any case, as the values have not changed significantly and all the

parameters are marginalised over in the simulations, the precise value used should have

virtually no effect on the results. We use the exact oscillation probabilities including

matter effects (calculated by GLoBES), and all parameters are marginalised over unless

otherwise specified. We have also assumed a true normal hierarchy in all simulations

unless otherwise stated, and have verified that the results are qualitatively similar for a

true inverted hierarchy.

6.2.1. Muon energy

In order to determine the value of the optimal muon energy, it is necessary to look at

the neutrino spectrum produced from the decay of muons of a particular energy. The

‘muon energy’ refers to the energy of the muons in the storage ring which decay into
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the neutrino beam. There is some spread of muon energies about the nominal value.

The maximum energy of any neutrino is the energy of the muon from which it was

produced. The aim of the optimisation is to maximise the number of signal (oscillating)

events whilst simultaneously minimising the background. Backgrounds arise from non-

oscillating events at an energy above that of the oscillation region which produces higher-

energy charged-current and neutral-current events. Pions can also be produced by high-

energy neutrinos in processes such as νµp→ µ−pπ+; this is a particular problem for the

TASD as distinguishing between the electron and pion signatures is very difficult.

The optimal muon energy depends upon the baseline used as this determines the

position of the oscillation region. Here we consider a baseline of 1300 km, with a dis-

cussion about alternative baselines and energies given in Section 6.6. In Fig. 6.3 we

show the spectra of neutrinos produced from the decay of muons of different energies -

3.0 GeV (red), 4.5 GeV (green), 6.0 GeV (blue) and 7.5 GeV (purple). The number of

neutrinos corresponds to the total number of νµ and ν̄e if µ− are stored, or ν̄µ and νe

if µ+ are stored. Also shown are the golden channel probabilities (for which the y-axis

scale is not relevant) for both normal and inverted hierarchies (black solid and dotted

lines, respectively) so that the oscillation region can be seen. The region of the first

peak is around 2 to 3 GeV, so we are interested in all events at and below this energy.

Using a muon energy of 3 GeV, the neutrino spectrum peaks at 2 to 2.5 GeV. There

are no events above ∼ 4.5 GeV. Using a muon energy of 4.5 GeV, there is a significant

increase in the number of events in the range 1.5 to 3 GeV, where oscillations occur.

Moving up to 6 GeV gives a slight increase in the number of higher-energy oscillating

events although there is also a slight decrease of low-energy events, and a muon energy

of 7 GeV gives no increase in the number of oscillating events (in fact, there is a slight

decrease) but there is a large number of high-energy background events. From this it is

expected that the optimal muon energy is around 4.5 to 5 GeV.

In Fig. 6.4 we show how altering the muon energy affects the precision of the θ13 − δ

measurement. Results are shown for an energy of 4.12 GeV as in the original studies

(solid red lines), 5.0 GeV (solid green lines) and 6.0 GeV (dotted blue lines). There is

a visible improvement in increasing the energy from 4.12 GeV to 5 GeV which is a lot

more evident for small θ13. A further increase to 6.0 GeV does not significantly change

the results in either case, which is consistent with the expectations of the previous

paragraph. Taking into account this, and practical considerations for the accelerator

design, the reference energy for the LENF setup is taken to be 4.5 GeV.
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Figure 6.3.: Neutrino spectra arising from different muon energies. Shown in black is the
golden channel probability for normal hierarchy (solid line) and inverted hierar-
chy (dotted line).
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Figure 6.4.: 68%, 90% and 95% contours in the θ13 − δ plane for muon energies of 4.12 GeV
(solid red lines), 5.0 GeV (solid green lines) and 6.0 GeV (dotted blue lines) for
a) θ13 = 1◦ and b) θ13 = 5◦ and δ = 0◦, ±90◦ and 180◦.
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6.2.2. Energy resolution

The energy resolution is the accuracy with which a particle’s energy is measured and

reconstructed by the detector and analysis software. The energy resolution is important

as it enables the shape of the spectrum to be reconstructed accurately. This is vital

in order to be able to distinguish between similarly-shaped spectra which arise from

different parameter combinations. Essentially all information about the oscillation pa-

rameters is encoded in the shape of the spectrum. So theoretically, the more perfect

the energy resolution, the more accurate the measurement. In practice, the performance

of the experiment will be limited by other factors as well so that there will be some

threshold value below which no further gain is obtained.

In GLoBES, the energy resolution, σ(E), is parameterised as the function σ(E) =

αE+β
√
E+γ. This can be understood roughly as follows: the term αE will arise due to

measurements of the energy from a track length, where the percentage error is usually

roughly constant; β
√
E is a Poisson term which takes into account the fact that the

sampler is finite and so has an error proportional to the square root of the event number

∼
√
E; and the constant γ describes energy-independent effects such as the dark count

of the electronics. For the TASD, we consider only the α term i.e. assume a constant

percentage error.

In Fig. 6.5 we show how the revised estimate of σ(E) = 10% (solid red lines) im-

proves upon the performance of the original estimate of 30% (dotted blue lines). The

measurement of all the parameters θ13, δ and the mass hierarchy is improved. This is

visible for large as well as small θ13. More optimistic values for the energy resolution

have been simulated and it has been found that they offer no improvement beyond the

value of 10%. As this is a value which appears to be experimentally feasible, 10% is

taken to be the reference value.

6.2.3. Energy detection threshold

The most stringent requirement on the detection threshold is that it must lie below the

value of the first oscillation maximum - this is the region from which most information

is obtained, and is the signal region with the highest statistics. It may also be preferable

for the detection threshold to lie below the second oscillation maximum because, as

explained in Section 4.1, CP violation is most visible at low energies such as at the

second oscillation maximum. In Fig. 6.6 we investigate how vital this property is, by
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Figure 6.5.: 68%, 90% and 95% contours in the θ13− δ plane for an energy resolution of 30%
(dotted blue lines) and 10% (solid red lines) for a) θ13 = 1◦ and b) θ13 = 5◦ and
δ = 0◦, ±90◦ and 180◦.

comparing our current assumption of a 0.5 GeV threshold (detection is possible at 73%

efficiency from 0.5 GeV; maximum efficiency of 94% is reached at 1.0 GeV), shown by

the solid red lines, to a scenario where the threshold is at 1.5 GeV (maximum efficiency

reached at 2 GeV), shown by the dotted blue lines. It can be seen that there is actually

very little difference between the two scenarios - only a slight gain in the resolution of

the mass hierarchy for small θ13. So although, in theory, the second oscillation maximum

should help, we have found that in practice there aren’t sufficient events in that region of

the energy spectrum for much useful information to be extracted - this is in agreement

with the findings recently published in Ref. [200]. The statistics at the first oscillation

maximum, combined with good energy resolution, ensure that the shape of the spectrum

around the first maximum can be probed sufficiently accurately to enable the oscillation

parameters to be determined.

6.2.4. Statistics

Increasing the number of events in an experiment decreases the statistical error on the

measurement and therefore the more events, the better. This number can be increased

in a number of ways: by increasing the initial flux of neutrinos (by increasing the initial

proton intensity), by running the beam for a longer period of time, or by increasing the

mass of the detector. All of these are limited by economic and practical factors!
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Figure 6.6.: 68%, 90% and 95% contours in the θ13 − δ plane for an energy threshold of 0.5
GeV (solid red lines) and 1.5 GeV (dotted blue lines) for a) θ13 = 1◦ and b)
θ13 = 5◦ and δ = 0◦, ±90◦ and 180◦.

The efficiency of a detector is the proportion of incident events it detects relative to

the actual number of events which occur in the detector. It is limited by both hardware

and software factors, such as the finite spacing of detector components and electronics,

electronic dead-time, and software reconstruction efficiencies. In essence, the effect of

a higher efficiency is to increase the statistics and so the performance will always be

improved by a higher efficiency.

6.2.5. Backgrounds

For simulation purposes, backgrounds are assumed to arise primarily from neutral-

current events which are wrongly identified as charged-current events, and from charge

misidentification, such that a fixed percentage of events from any channel which pro-

duces a lepton of the same flavour but opposite charge to that of the channel signal

is taken to be the background. The signal channels and their associated backgrounds

which are used in our simulations are shown in Table 6.2.
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Polarity mode Signal channel Background channels

νµ → νµ NC νµ → νµ, CC ν̄e → ν̄µ

µ− ν̄e → ν̄µ NC νµ → νµ, CC νµ → νµ

νµ → νe NC ν̄e → ν̄e, CC ν̄e → ν̄e

ν̄µ → ν̄µ NC ν̄µ → ν̄µ, CC νe → νµ

µ+ νe → νµ NC ν̄µ → ν̄µ, CC ν̄µ → ν̄µ

ν̄µ → ν̄e NC νe → νe, CC νe → νe

Table 6.2.: Backgrounds assumed on each of the LENF channels.

6.2.6. The platinum channel

The synergy between the golden and platinum channels was described in Section 4.5.

As explained, theoretically the combination will work to resolve degeneracies. However

we find that practically, when the difficulty of detecting the platinum channel signal is

taken into account and realistic values for the efficiency and backgrounds are used, the

power of the platinum channel may be diminished to the extent that more can be gained

by improving other aspects of the detector and experiment, than by inclusion of the

platinum channel.

We define Scenario 1 to be the one in which only µ± detection is possible, giving

us access to only the νµ and ν̄µ appearance and disappearance channels. In Scenario

2 it is also possible to detect e± and hence exploit the additional information from the

νe and ν̄e appearance (platinum) channels. To illustrate the impact of the addition of

these channels to our setup, in Fig. 6.7 we compare the sensitivities of the two scenarios

when using a muon decay rate of 5.0× 1020 (left column) as used in Refs. [136, 137] and

1.4×1021 (right column) per year, varying the background level of the νe (ν̄e) appearance

channel from a hypothetical zero (top row) to 10−2 (bottom row). Thus we show how the

value of the platinum channel depends on the statistics and background level assumed,

and also how an increase in statistics affects the experimental performance.

In the case of the lower statistics, we observe that the addition of the platinum channel

with zero background produces a drastic improvement in sensitivity to all parameters.

For a background of 10−2 the improvement is much smaller but can still help to alleviate

the hierarchy degeneracy (see Ref. [178]). At higher backgrounds we find that this gain

is lost. In the case of the high statistics, we already observe a smaller improvement for

zero background, which becomes insignificant at a background level of 10−2. Thus we
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conclude that since the estimated background on the νe (ν̄e) appearance channels will

be at best ∼ 10−2, the platinum channel could help in the measurement of the mass

hierarchy if statistics are limited to 5.0 × 1020 useful muon decays per year, whereas it

will be almost irrelevant for the higher statistics scenario. An increase in statistics in

the golden channel provides a much larger improvement in the performance than the

addition of the platinum channel if background levels below 10−2 cannot be achieved.
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Figure 6.7.: Comparison of Scenario 1 (νµ and ν̄µ appearance and disappearance only - dotted
blue lines), and Scenario 2 (νe and ν̄e appearance included - solid red lines) when
using 5.0× 1020 µ± decays per year (left) and 1.4× 1021 decays per year (right),
and a background of zero (top row) or 10−2 (bottom row) on the νe (ν̄e) channels.
The 68%, 90% and 95% confidence level contours in the θ13− δ plane are shown,
for θ13 = 1◦ and δ = 0◦, ±90◦ and ±180◦.
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6.2.7. Systematic errors

‘Systematic errors’ is the term used to encompass all non-random errors in the experi-

ment. The dominant source of systematic errors in any neutrino oscillation experiment

is from the flux and cross-section uncertainties. One of the strengths of the neutrino

factory is that the initial flux can be predicted to a much greater precision than for

any other experiment, and so the systematic error associated with this measurement is

relatively small. The cross-section uncertainties are specific to the detector being used

- events have to be modelled and predicted for interactions within the specific detector

material and configuration. Other sources of systematic errors are calibration errors, the

error on the mass of the detector, and there can also be systematic errors specific to the

detector being used. The effect of making a more conservative estimate of 5% for the

systematic errors, rather than 2%, is found to be almost negligible.

6.3. Physics performance

Here we present the results which can be obtained by the reference setup defined in

the previous section (Table 6.1), in terms of 3σ θ13 discovery potential, CP discovery

potential, and sensitivity to the mass hierarchy in the sin2 2θ13 − δ plane (Fig. 6.8). In

addition we also consider the 3σ sensitivity to θ23 in the sin2 2θ13− sin θ23 plane, both in

terms of the ability to exclude a maximal value of θ23 (Fig. 6.9a) and to identify the octant

of θ23 (Fig. 6.9b). The results from our optimised setup described in Section 6.2 are

shown by the solid green lines. We have also considered a setup where only the statistics

are altered, to 2.8 × 1021 decays per year (solid red lines), and a setup where only the

muon energy is increased to 6.0 GeV (dashed blue lines). From this we demonstrate that

for all the observables considered, doubling the flux is always preferable to an increase

in energy.

For θ13 discovery potential, CP discovery potential and θ23 sensitivity we only show

the results for a normal hierarchy, having verified that similar results are obtained for

an inverted hierarchy. We have assumed in Fig. 6.9 (θ23 sensitivity) a value of δ = 90◦

although we have also studied other values of δ and find no strong dependence on the

CP phase, since sensitivity to θ23 is mainly obtained from terms with no dependence on

δ in the oscillation probabilities discussed in Section 4.1. For the exclusion of θ23 = 45◦,

an upward curve is seen for large θ13. This can be understood because the addition of a
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(a) θ13 discovery potential. (b) CP discovery potential.

(c) Hierarchy sensitivity (normal hierarchy). (d) Hierarchy sensitivity (inverted hierarchy).

Figure 6.8.: 3σ confidence level contours in the sin2 2θ13− δ plane for a) θ13 discovery poten-
tial, b) CP discovery potential, c) hierarchy sensitivity (for true normal hierar-
chy) and d) hierarchy sensitivity (for true inverted hierarchy), for muon energies
of 4.5 GeV and 6 GeV, and fluxes of 1.4×1021 muon decays per year per polarity
and 2.8× 1021 muon decays per year per polarity.

large θ13 to the νµ disappearance probability introduces an asymmetry in θ23 that shifts

the contours to larger values (see Eq. 1 and Fig. 8 of Ref. [201]).

We note that this setup has remarkable sensitivity to θ13 and δ for values of sin
2 2θ13 >

10−4, and that its sensitivity to the mass hierarchy is an order of magnitude better

that that of other proposed experiments exploiting the same baseline e.g. the wide-
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(a) Sensitivity to θ23 6= 45◦. (b) Sensitivity to the θ23 octant.

Figure 6.9.: 3σ allowed regions in the sin2 2θ13 − sin θ23 plane for a) potential to exclude
θ23 = 45◦ and b) sensitivity to the θ23 octant, for δ = 90◦ and muon energies of
4.5 GeV and 6 GeV, and fluxes of 1.4× 1021 muon decays per year per polarity
and 2.8× 1021 muon decays per year per polarity.

band beam experiment in Refs. [107, 202, 203]. We can attribute these qualities to the

unique combination of high statistics and good background rejection coupled with an

intermediate baseline, allowing for a clean measurement of the CP phase whilst also

allowing for the mass hierarchy to be determined for sin2 2θ13 > 10−3.

We have also explored how the precision with which θ13, δ and the deviation from

maximal θ23 could eventually be measured at the LENF, varies as a function of exposure

(detector mass × decays) per polarity. Our standard setup corresponds to 20 kton ×
1.4 × 1021 decays/ year × 10 years = 2.8 × 1023 kton × decays per polarity. The gain

in precision is much less pronounced for values larger than 6 × 1023 kton × decays per

polarity, hence it may not be worth trying to increase the exposure beyond this value.

Fig. 6.10a shows the 1σ error expected in the measurement of the mixing angle θ13

at the LENF as a function of the exposure (in kton × decays) per polarity, assuming

that nature has chosen θ13 = 5◦. The dependence of these results on the value of the CP

violating phase is very mild. The 1σ error in the extraction of θ13 when no backgrounds

and no systematic errors are included in the analysis is illustrated in Fig. 6.10b. Com-

paring the two panels we observe that non-zero systematics and backgrounds effectively

halve the exposure.
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(a) Sensitivity to θ13, including systematic er-
rors and backgrounds.

(b) Sensitivity to θ13, no systematic errors and
backgrounds.

Figure 6.10.: 1σ error in the measurement of the θ13 mixing angle for a simulated value
of θ13 = 5◦ and δ = 0◦ and ±90◦ when a) including systematic errors and
backgrounds and b) no systematic errors and backgrounds are included.

Fig. 6.11a shows the 1σ error expected in the measurement of the CP phase δ as

a function of the exposure for a simulated value of θ13 = 5◦, for different values of δ.

The results are highly dependent on the value of the CP violating phase, as expected.

For δ = 90◦, there are strong correlations with θ13, as can be seen from Fig. 6.7, and

therefore the error in the measurement of δ is larger. The 1σ error in the extraction of δ

when no backgrounds and no systematic errors are included in the analysis is illustrated

in Fig. 6.11b. Switching off systematic errors and backgrounds has a larger impact for

the δ = 0◦ case, again effectively halving the exposure, since correlations among δ and

θ13 are negligible when δ = 0◦ and the precision is more limited by the background and

systematic errors instead.

We also explore the sensitivity to maximal mixing, i.e. the ability to exclude θ23 =

45◦, versus the exposure. We present the 3σ results in Fig. 6.12. We have used a simu-

lated value of θ13 = 0◦ here (so that δ is irrelevant) as the sensitivity to θ23 maximality

comes primarily from the νµ (ν̄µ) disappearance channels which are not dependent on

θ13.
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(a) Sensitivity to δ, including systematic er-
rors and backgrounds.

(b) Sensitivity to δ, no systematic errors and
backgrounds.

Figure 6.11.: 1σ error in the measurement of δ for a simulated value of θ13 = 5◦ and δ = 0◦

and ±90◦ when a) including systematic errors and backgrounds and b) no
systematic errors and backgrounds are included.

(a) Sensitivity to θ23 6= 45◦, including system-
atic errors and backgrounds.

(b) Sensitivity to θ23 6= 45◦, no systematic
errors and backgrounds.

Figure 6.12.: 3σ regions for which maximal θ23 can be excluded, using a simulated value
of θ13 = 0◦ when a) including systematic errors and backgrounds and b) no
systematic errors and backgrounds are included.
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6.4. Measurement precision as a function of θ13

In Figs. 6.10 and 6.11 the 1σ errors on the measurement of θ13 and δ as a function

of exposure were displayed. It is also interesting to observe how the errors vary as a

function of θ13 to provide some indication of the kind of precision which can be expected

for particular values of θ13.

In Fig. 6.13 we show the fractional error on θ13 as a function of the actual true

value of θ13. For θ13 . 1◦ this error is large because the solar term is dominant. For

large values of θ13 when the atmospheric term is dominant, the number of oscillation

events scales roughly as N ∼ sin2 2θ13 ∼ θ213. The error on this number scales roughly

as
√
N ∼ θ13. Therefore the fractional error, σ(θ13)

θ13
, is constant for large θ13. Our LENF

setup can achieve an error of ∼ 5% in this region, and roughly a ∼ 20% error when

θ13 = 1◦. These results are for a value of δ = 0, but the value of δ has no significant

effect on the precision.
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Figure 6.13.: θ13-dependence of the 1, 2 and 3σ errors on the measurement of θ13 for δ = 0◦.

In Fig. 6.14 we show the absolute error on the measurement of θ23 for θ23 = 45◦.

In Fig. 6.14a we show, separately, the positive (solid lines) and negative (dotted lines)

errors on this measurement, whereas Fig. 6.14b shows the total error i.e. the sum of

the positive and negative errors. Most of the information on θ23 comes from the νµ

disappearance channel ∼ sin2 2θ23; as this is insensitive to the octant of θ23 the errors

obtained from this channel should be symmetric. The discrepancy in the magnitudes of

the positive and negative errors therefore must arise from information from the golden

channel and can be explained by considering the θ23-dependence of the terms which are

dominant in each particular region. For small θ13 when the solar term is dominant, the
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contribution from θ23 comes from cos2 θ23 (see Eq. (4.4)). At θ23 = 45◦, the gradient of

this function is steeper for the region above 45◦ than for below and so it is easier to make

a measurement in the upper quadrant. Therefore the negative error should be larger as

this is the harder measurement. For large θ13, the atmospheric term depends on sin2 θ23

for which the gradient is steeper in the lower than the upper quadrant; hence the positive

error is larger. A sharp dip can be seen in the positive 1σ error; this occurs because

of the contribution to the νµ disappearance probability for large θ13 (see the comment

about Fig. 6.9 in Section 6.3). The total error (Fig. 6.14b) is roughly independent of θ13

and is ∼ 2.5◦ at 1σ for the LENF. Again, these results are for δ = 0 and the value of

the CP phase does not affect the sensitivity to θ23.
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Figure 6.14.: θ13-dependence of the 1, 2 and 3σ errors on the measurement of θ23 for δ = 0◦.
The positive and negative errors are shown separately in a), and the total errors
in b).

In Fig. 6.15 we show the absolute errors on the measurement of δ, for four different

values of δ. For θ13 & 2◦ the error is roughly constant - ∼ 10◦ − 20◦ at 1σ depending on

the value of δ. Again, the correlations between θ13 and δ = 90◦ are apparent from the

way that the error aymptotes more slowly for δ = 90◦, in addition to the fact that the

errors are larger.
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Figure 6.15.: θ13-dependence of the 1, 2 and 3σ errors on the measurement of δ, for a) δ = 0◦,
b) δ = 45◦, c) δ = 90◦ and d) δ = −90◦.
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6.5. Liquid argon detector and comparison with

other experiments

Recently there has been much interest in the possibility of constructing a kiloton-scale

liquid argon (LAr) detector [89, 91, 92, 93, 183]. If such a detector can be magnetised, it

could be utilised in combination with a LENF and we have performed some preliminary

studies to assess the potential of a 100 kton LAr detector for this experiment. As the

design of large LAr detectors is still in the early stages, there are large uncertainties in the

estimates for the detector performance. We assume an efficiency of 80% on all channels

and 5% energy resolution for quasi-elastic events, then consider a range of values for

the other parameters. In the most conservative scenario, we assume 5% systematics,

20% energy resolution for non quasi-elastic events, and backgrounds of 5× 10−3 on the

νµ (ν̄µ) (dis)appearance channels and 0.8 on the νe (ν̄e) appearance channels (private

communication reported in Ref. [192]). For the optimistic scenario we use values identical

to the TASD: 2% systematics, 10% energy resolution for non quasi-elastic events, and

backgrounds of 1× 10−3 on the νµ (ν̄µ) (dis)appearance channels and 1× 10−2 on the νe

(ν̄e) appearance channels. We find that varying the systematics, energy resolution and

νe (ν̄e) background do not play a large role in altering the results; the dominant effect

comes from the variation of the νµ (ν̄µ) background.

In Fig. 6.16 the results of the LENF with both the TASD and the two assumptions

for the LAr detector are compared with other long-baseline experiments. We show the

3σ results for θ13 discovery, CP discovery potential, and hierarchy sensitivity (for normal

hierarchy only) as a function of sin2 2θ13 in terms of the CP fraction. In order to make

a fair comparison, we have used half the flux stated in Section 6.2 for the LENF, to

make it consistent with the other experiments which assume only 5 years per polarity of

observation. However, we believe that the fluxes in Section 6.2 are feasible. The results

from the TASD are shown by the red line and those from the LAr detector are shown

by the blue band. The right-hand edge of the band corresponds to the conservative

estimate of the detector performance, and the left-hand edge to the most optimistic

estimate. As the optimistic scenario assumes an almost identical performance to the

TASD, the left-hand edge of the blue band also corresponds to the results obtainable

from a 100 kton TASD. Results from the HENF [86], wide-band beam [107, 202, 203],

T2HK [103], 100γ β-beam [110], 350γ β-beam [111, 112] and four-ion β-beam [113] are

also shown.
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(a) θ13 discovery potential. (b) CP discovery potential.

(c) Hierarchy sensitivity.

Figure 6.16.: Comparison of 3σ allowed contours for the LENF with a 20 kton TASD (red
line) and 100 kton LAr detector (blue band), the HENF (black line), the wide-
band beam (purple line), T2HK (yellow line) and three β-beams (green, orange,
light blue lines) for a) θ13 discovery potential, b) CP discovery potential and
c) hierarchy sensitivity.

In terms of sensitivity to θ13, a conservative LENF is an order of magnitude less sen-

sitive than the HENF, but is still competitive with the β-beam experiments, giving an

approximately equal performance to the four-ion β-beam (which requires two baselines

to resolve the degeneracy problem, as for the HENF). However, the performance of an
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aggressive LENF setup surpasses that of all other experiments except for the HENF. For

CP violation, the LENF gives remarkable results: the most optimistic setup outperforms

the HENF for all values of θ13, and even the most conservative setup gives a superior

performance for sin2 2θ13 > 2 × 10−3, again equaling that of the four-ion β-beam. For

sensitivity to the mass hierarchy, the LENF gives an improvement over all other experi-

ments apart from the higher energy setup and the four-ion β-beam with their challenging

7000 km baseline.

6.6. Baseline optimisation

The study in Section 6.2.1 indicates that for a 1300 km baseline, an energy of around

4.5 GeV is optimal. However, it is possible to be more quantitative about this, and

one should also consider the possibility of using different baselines as there are several

possible combinations for accelerator and detector sites over the world. Therefore the

experimental sensitivities can be analysed as a function of the baseline, L, and the muon

energy, E. The results for θ13 discovery, CP discovery and hierarchy sensitivity are shown

in Fig. 6.17. The results are shown for θ13 = 2◦ and the contour numbers refer to the

CP-fraction that can be measured at each value of L and E (the contour at the highest

energy gives the highest CP-fraction in all cases).

For θ13 discovery (Fig. 6.17a), it can be seen that the baseline is unimportant and

that 100% coverage can be obtained for all baselines, provided that the energy is above

that of the first oscillation maximum. The LENF is in the optimal region.

CP discovery (Fig. 6.17b) is more complicated as a sufficiently long baseline and high

energy are required in order to determine the mass hierarchy and therefore eliminate any

degeneracies, whereas low energies enhance the effect of CP violation (Section 4.1) and

a shorter baseline decreases the uncertainty on matter effects (Section 4.3.2). Therefore

the absolute optimal point is at a baseline of around 1800 km and 15 GeV. However

there is a large region which is nearly optimal - the variation shown by the contours is

only ∼ 10% - and the defined LENF setup lies within this region.

The sensitivity to the hierarchy (Fig. 6.17c), as explained in Section 4.3.1, increases

for longer baselines and higher energies. For this particular value of θ13 = 2◦, the LENF

is in the optimal region where 100% coverage can be obtained.
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The results are qualitatively similar for other values of θ13 - the values of the displayed

contours will change but the general shape remains the same.
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(a) θ13 discovery potential.

 0

 2

 4

 6

 8

 10

 12

 14

 500  1000  1500  2000  2500  3000

E
n
e
rg

y 
[G

e
V

]

Baseline [km]

0.74, 0,78, 0.82

(b) CP discovery potential.
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(c) Hierarchy sensitivity.

Figure 6.17.: a) θ13 discovery potential, b) CP discovery potential and c) hierarchy sensitivity
as a function of baseline, L, and muon energy, E, for θ13 = 2◦.

6.7. Summary

We have optimised a low-energy neutrino factory setup with a baseline of 1300 km,

defining a reference setup to be one with a muon energy of 4.5 GeV and 1.4×1021 useful

muon decays per year, per polarity, running for ten years per polarity. For the detector

we assume a totally active scintillating detector (TASD) with a fiducial mass of 20 kton,
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energy threshold of 0.5 GeV, energy resolution of 10%, efficiency for µ± detection of 73%

below 1 GeV and 94% above, efficiency for e± detection of 37% below 1 GeV and 47%

above, and a background level of 10−3 on the νe → νµ (ν̄e → ν̄µ) and νµ → νµ (ν̄µ → ν̄µ)

channels and 10−2 on the νµ → νe (ν̄µ → ν̄e) channels. We have also considered a 100

kton liquid argon detector and found that its performance would equal or surpass that

of the 20 kton TASD.

We have demonstrated how improving the energy resolution and statistics improves

the performance of the setup, showing that in particular high statistics play a vital role.

For the defined setup, an energy threshold below the energy of the second oscillation

maximum is not crucial; there are insufficient events at this energy to yield any useful

information. We have also shown how the combination of golden and platinum channels

could be a powerful way of resolving degeneracies, especially in the case of limited

statistics. However, once realistic background levels of at least 10−2 are considered for

the platinum channel, the improvement achieved by adding this channel is negligible.

Therefore, more effort should be invested into achieving larger statistics for the golden

channel than in improving the platinum channel, at least for standard physics searches.

Using our optimised setup, the LENF can have sensitivity to θ13 and δ for sin
2 2θ13 >

10−4, competitive with the HENF. Sensitivity to the mass hierarchy is accessible for

sin2 2θ13 > 10−3, better than other experiments using the same baseline. Even if the flux

is halved to equal that of other long-baseline experiments, the LENF is still competitive,

performing especially well for CP discovery at large values of θ13. For sin
2 2θ13 > 4×10−3,

the LENF has 100% CP coverage for hierarchy sensitivity and θ13 discovery, and has

greater sensitivity to CP violation than the HENF. We have also studied the sensitivity

to θ23, finding that it is possible to exclude maximal θ23 at 3σ for θ23 . 43◦ and θ23 & 47◦,

roughly independent of θ13, and to identify the octant for θ23 . 37◦ and θ23 & 53◦.

We also studied the precision of the setup, in terms of the size of the 1σ errors on

each of the parameters. We found that for sin2 2θ & 10−3, our setup can measure θ13

with a ∼ 5% 1σ error, θ23 to within ± ∼ 2.5◦ and δ to within ∼ ±10◦. For exposures up

to ∼ 6 × 1023 kton × decays per polarity, this precision is significantly improved. The

effect of non-zero systematic errors and backgrounds is to effectively halve the exposure.

Finally, we showed how setups with different values of L and E can have similar

performances, finding that our current LENF setup is one that is nearly optimal.
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Chapter 7.

Non-standard interactions at a

low-energy neutrino factory

In the previous chapter we performed a detailed analysis of the sensitivity of the low-

energy neutrino factory to the oscillation parameters θ13, δ, θ23 and the mass hierarchy.

A reference setup to measure these parameters was defined and summarised in Sec-

tion 6.7. In this chapter we shall examine the potential of this setup to measure the

non-standard matter interactions described in Section 2.5, with the only alteration be-

ing that we use a setup running for 5 years per polarity, as for the high-energy neutrino

factory, rather than the anticipated 10 years per polarity. In particular, we will focus on

the synergy between the golden and platinum channels which we will show is particularly

powerful for resolving degeneracies and hence increases the sensitivity to non-standard

interactions. We also consider the effect of adding a second baseline to resolve these

degeneracies.

7.1. Non-standard interactions in the golden channel

To examine NSI’s from the phenomenological viewpoint, the starting point is to examine

the golden channel probability, including NSI’s. The NSI parameters, like the the ratio
∆21

∆31
, are treated as perturbations to the Hamiltonian; in this case we take the unper-

turbed Hamiltonian to be that which is first order in ∆21. We then follow a similar

method to the one described in Section 2.4.2. A detailed derivation is described in Ap-

pendix G. After expanding the probability to second order in the small parameters s213,

∆21 and all the NSI parameters εαβ (where α, β = e, µ or τ), the only NSI terms which

141
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remain are those proportional to εeµ and εeτ :
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, (7.1i)

where sjk = sin θjk, cjk = cos θjk and ∆jk =
∆m2

jk

2E
as before. The CP conjugate channel,

Pν̄e→ν̄µ, takes a similar form with the transformations δ → −δ, A → −A, φeµ → −φeµ

and φeτ → −φeτ . The platinum channel, Pνµ→νe, is obtained by interchanging δ → −δ,
and the CP conjugate platinum channel, Pν̄µ→ν̄e, by interchanging A→ −A, φeµ → −φeµ

and φeτ → −φeτ .

The fact that we are considering matter-induced NSI’s is apparent from the depen-

dence of all the NSI terms on sin
(

AL
2

)

. For the LENF with its baseline of 1300 km, this

factor is ∼ 0.4. If it were possible to use a baseline such that AL = π (L = 4400 km), the

NSI terms would be maximised. Incidentally, the HENF near detector baseline nearly

coincides with this value. Conversely, if L is chosen such that AL = 2π - the magic

baseline - then all the NSI terms vanish. Thus the magic baseline is not just a powerful

tool for resolving the degeneracies between oscillation parameters, but additionally it
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has the power to minimise the confusion between oscillation and NSI parameters. This,

and the fact that the HENF uses a high energy which enhances matter effects, including

non-standard matter effects, makes it a near-optimal setup for studying NSI’s. This has

been studied in depth by several authors [67, 139, 140, 204, 205, 206, 207].

From the point of view of detecting NSI’s (assuming that they exist!) in neutrino

oscillation experiments, the most favourable condition will be if the εαβ’s are of roughly

the same magnitude as sin 2θ13, which is the parameter that controls the amplitude of

the oscillations. This would correspond to, for example, εαβ ∼ 10−2 (very large) and

θ13 ∼ 0.3◦ (very small). This would put θ13 beyond the reach of the LENF, but maybe

just accessible to the HENF. Were this the case, then the unusual situation would arise

that the non-standard effects are of a comparable magnitude to the standard oscillation

effects. The problem then is whether it is possible to distinguish the two effects from

one another. In the scenario that the NSI’s are very much smaller than sin 2θ13 then

detecting them will be very difficult, but on the bright side it means that they will

not interfere with the oscillation measurements! In the scenario that the NSI’s are

large whilst θ13 is very small such that the non-standard effects are larger than the

golden channel oscillations, distinguishing between the oscillations and NSI effects may

be problematic.

Referring to Eq. (7.1) we can see that if all the phases (δ, φeµ, φeτ) are zero, optimal

sensitivity is obtained via the ν̄e → ν̄µ and ν̄µ → ν̄e channels, when all three of the terms

dependent on εeµ ((7.1d), (7.1e), (7.1f)) take the same sign. However, in the general

case, the degree of sensitivity will be heavily dependent on the values of the phases. If

either of the NSI parameters is exceptionally large, such that terms (7.1f) and (7.1i) are

dominant, it will not be possible to distinguish between them as they look identical.

In Fig. 7.1 we show how the presence of εeµ and εeτ modify the oscillation probability,

for θ13 = 3◦ (sin2 2θ13 ∼ 10−2), δ = 0 and εeµ = εeτ = 0.01. Even in this scenario where

the NSI’s are very large, distinguishing them from the standard oscillation will not be

easy as all the spectra are very similar. The largest discrepancy occurs at the first

oscillation peak so this will be the most important region for the detection of NSI’s, as

for standard oscillations. The second peak cannot realistically be used, especially when

considering that the flux at these energies is very low. Therefore we shall consider only

the first oscillation peak for our discussion.

If both the NSI phases, φeµ and φeτ , are zero, εeµ is more prominent than εeτ -

compare the red and green lines to see that the green line (εeµ = 0.01) is slightly more
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distinct from the black line than the red line (εeτ = 0.01). This is because for our

chosen values of θ13 = 3◦, εeµ = 0.01 and εeτ = 0.01, the NSI terms (7.1d), (7.1e), (7.1g)

and (7.1h) are larger than (7.1f) and (7.1i). (7.1d) and (7.1e) interfere constructively

whilst (7.1g) and (7.1h) interfere destructively. The opposite effect occurs if we choose

φeτ and φeµ = π
2
(blue and purple) with δ = 0, because the cosine factor in (7.1d) and

(7.1g) is simply sin
(

∆31L
2

)

whereas the factor in (7.1e) and (7.1h) is − sin
(

∆31L
2

)

. So in

this case, (7.1g) and (7.1h) interfere constructively whereas (7.1d) and (7.1e) interfere

destructively. Therefore εeτ will be easier to detect in this case.

Clearly, the situation is very complicated, especially if both εeµ and εeτ are non-zero

and have non-zero phases. Here we have only considered a simple case where all the

phases are set to zero and we study the correlations between the NSI and oscillation

parameters for this case.
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Figure 7.1.: Golden channel probability including the NSI parameters εeτ and εeµ, for θ13 =
3◦, δ = 0, εeτ and εeµ = 0 and 0.01, and φeτ and φeµ = 0 and π

2 .

From a phenomenological perspective, there are two main items to address:

• The NSI-oscillation degeneracy: the problem of degeneracies in neutrino oscillation

experiments has been well established and was described in Section 4.5. When

taking into account the possibility of NSI’s, the parameter space is vastly expanded

and so the problem is magnified. Of particular concern is the question of whether

NSI’s can interfere with the measurement of the standard oscillation parameters.
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For example, supposing that δ = 0 so CP is conserved, then we want to know

whether it is possible for NSI’s to mimic CP violation and fake a non-zero value of

δ? More precisely, how does expanding the parameter space by marginalising over

NSI parameters affect the sensitivity to the oscillation parameters?

Note that this is not a problem for the HENF where the magic baseline comes to

the rescue - recall that the magic baseline is such that sin
(

AL
2

)

= 0. This not only

eliminates the CP and solar terms from the standard oscillation probability, but

also all the NSI terms vanish at this baseline. This then eliminates any confusion

between θ13, the mass hierarchy and the NSI parameters, making the oscillation

sensitivity of the HENF setup virtually immune to interference from NSI’s.

• How precisely can the NSI parameters be measured? Current bounds on εeµ and

εeτ are O(1) [78, 79]. Any next-generation experiment should aim to improve on

these bounds by at least an order of magnitude.

We will consider both these points with particular emphasis on how the platinum

channels significantly affect the results. It was found in the previous chapter that the

platinum channel is redundant for oscillation measurements if the statistics are suffi-

ciently high, which indicates that the platinum channel does not add anything that

cannot be accomplished by other design optimisations. However, we shall see that this

is not the case for NSI’s.

7.2. Simulation details - MonteCUBES

The computational techniques used in the simulations of standard neutrino oscillation

were described in Section 3.6.1. For the purposes of including NSI’s into the simulations,

GLoBES by itself is not the best tool. The reason for this is that the minimisation algo-

rithm used by GLoBES becomes more inefficient as the dimension of the parameter space

is increased, such as by the inclusion of NSI’s. If the entire NSI matrix (see Eq. 2.34) were

to be included into the simulations, this would add another nine parameters (six moduli

and three phases) into the parameter space, on top of the existing six oscillation param-

eters and the matter density. The minimisation technique used by GLoBES is based on

setting up an N -dimensional grid for an N -dimensional parameter space, and making n

samplings per parameter. Therefore O(nN) evaluations are performed to establish the

number of events and χ2 value at each point, which means that the computation time



146 Non-standard interactions at a low-energy neutrino factory

scales exponentially with the number of parameters, N . So adding an additional nine

NSI parameters to the seven oscillation parameters is not very time-efficient! The only

option to perform an analysis in a reasonable amount of time is to only include one, or at

most two, NSI parameters at a time into the simulations. In most cases this gives a good

approximation to the real situation, but in order to be really rigourous it is necessary

to include correlations between all the NSI and oscillation parameters.

The MonteCUBES (Monte Carlo Utility Based Experiment Simulator) software pack-

age [208] was designed precisely for this purpose. It is a plug-in to GLoBES which allows

for the GLoBES experiment files to be used, whilst implementing a more efficient min-

imisation method by using Markov Chain Monte Carlo algorithms. These scale poly-

nomially, rather than exponentially, with the number of parameters. Additionally it

enables the modified oscillation probabilities, including NSI parameters, to be automat-

ically defined and calculated exactly, rather than having to manually reset and specify

them in GLoBES.

Although the computational technique is different, the statistical analysis used in

these NSI studies is essentially the same as that described in Section 3.6.2. We have

performed only two-parameter fits in this chapter in order to illustrate the correlations

between the NSI and oscillation parameters. The main focus is the impact of the plat-

inum channel, so we once again use the notation where Scenario 1 denotes a setup which

measures only the νµ and ν̄µ appearance (golden) and disappearance channels, whereas

Scenario 2 is the setup which can also detect the platinum channels. The usual 68%,

90% and 95% contours are shown.

7.3. Degeneracies between oscillation and NSI

parameters

7.3.1. εeµ = 0, εeτ = 0

In Figs. 7.2a and 7.2b we show the 68%, 90% and 95% allowed regions in the θ13 − δ

plane for true values of θ13 = 5◦ and δ = 0, for the case when we fit to a standard

oscillation model only i.e. we set all NSI parameters to zero and do not marginalise over

them. In Fig. 7.2b we show the results when marginalisation over all oscillation and NSI

parameters is performed. We find that for Scenario 1 (blue dashed lines), the precision



Non-standard interactions at a low-energy neutrino factory 147

of the measurement of θ13 is significantly weakened. The width of the 95% contour is

approximately doubled by including a marginalisation over the NSI parameters. The

precision of the CP measurement is also weakened, but to a lesser extent. However we

find that the inclusion of the platinum channels makes this setup far more robust, with

the inclusion of NSI’s having barely any effect.

We can understand this by comparing the oscillation probabilities for the golden and

platinum channels around the region of the first oscillation maximum where (∆31−A)L =

π. In the case of large θ13, the golden channel probability is given approximately by:

Pνe→νµ ≃ s2213s
2
23

(

1− A
∆31

)2 (7.2a)

+
s213c13s212s223

1− A
∆31
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A
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2

)
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− 4εeµ
s213c23s

2
23
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(
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2
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(
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)
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− 4εeτ
s213c23s

2
23

1− A
∆31

sin

(
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2

)

cos

(

π + AL

2
− δ + φeτ

)

. (7.2d)

The confusion between the NSI’s and θ13 arises because the NSI terms, (7.2c) and

(7.2d), have a similar energy dependence to the atmospheric term (since A
∆31

is small in

our setup,
(

1− A
∆31

)2

≃
(

1− 2A
∆31

)

). Additionally, our setup has no sensitivity to the

NSI phases (see Fig. 7.3); therefore it is possible to fit to a larger than true value of θ13

by choosing εeµ and/ or εeτ to be non-zero, and the NSI phases to take values such that

terms (7.2c) and (7.2d) are negative. Alternatively, it is possible to fit to a smaller than

true value of θ13 by choosing non-zero NSI’s with phases that make terms (7.2c) and

(7.2d) positive. δ is affected less because the CP term has a different energy dependence

to the NSI terms which therefore makes it harder to mimic.
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Consider now the CP conjugate platinum channel:

Pν̄µ→ν̄e ≃ s2213s
2
23
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1− A
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)2 (7.3a)

+
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Note the sign differences in terms (7.3c) and (7.3d) compared to the golden channel.

Algebraically, if the two probabilities (7.2) and (7.3) are added together, then for φeµ =

φeτ = 0 the sum is simply the atmospheric and CP terms, identical to the situation

where there are no NSI’s. So, assuming a sufficient number of platinum events, this

helps to explain why the golden and platinum channels together give a sensitivity to

θ13 and δ which is identical to that obtained in the case where there are no NSI’s. The

situation is different if θ13 is small. In this case different terms are dominant and the

golden channel probability is
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whereas the CP conjugate platinum channel is

Pν̄µ→ν̄e ≃ s213c13s212s223
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There are many more relevant terms which make the spectrum more complicated.

Once again, algebraically summing the probabilities results in only the oscillation terms

if φeµ = φeτ = 0, so theoretically the combination of golden and platinum channels

should still help to resolve degeneracies. However, in Figs. 7.2c and 7.2d we show the

same as Figs. 7.2a and 7.2b but for a true value of θ13 = 1◦. From here it can be seen

that the impact of the platinum channel is much reduced. This is in direct contrast to

the standard oscillation case where, from Fig. 6.7, we saw that for θ13 = 1◦, the platinum

channel has a large effect (for low statistics). The plots for larger values of θ13 were not

shown but it was found that the effect of the platinum channels decreases for large values

of θ13. This is because statistics are the limiting factor for oscillation measurements, and

this is automatically increased by a large value of θ13 (larger oscillations and therefore

more signal events). This sensitivity to statistics was quantitatively studied by the

authors of Ref. [209], for standard oscillation measurements. Whilst statistics are crucial

in this case, it is not so for NSI’s. We have compared the performance of the LENF

when running for 5 years per polarity (the running time used in all the simulations in this

chapter) and when running for 10 years per polarity (the original estimated flux), and

find that the sensitivity to NSI’s is barely affected by a doubling of statistics. This implies

that, running for 5 years per polarity, the LENF sensitivity to NSI’s is not limited by

the statistical error but by the correlations between the oscillation and NSI parameters.
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Figure 7.2.: Sensitivity to θ13 and δ when marginalising over only oscillation parameters (left
column) and all oscillation and NSI parameters (right column), for true values
of δ = 0, εeµ = εeτ = 0 and θ13 = 5◦ (top row) and 1◦ (bottom row).
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Figure 7.3.: Sensitivity to φeµ (left) and φeτ (right) for true values of θ13 = 5◦, δ = 0 and
φeµ = φeτ = 0. There is no sensitivity to either of the phases.

7.3.2. εeµ 6= 0, εeτ 6= 0

Next we show how non-zero NSIs impact upon the measurement of θ13 and δ. In Fig. 7.4

we compare the results obtained when εeµ and εeτ are both zero (blue dotted lines), to

the case when either or both are non-zero (red solid lines), for Scenario 1 (left-hand

column) and Scenario 2 (right-hand column). Once again we are marginalising over

all oscillation and NSI parameters. We choose εeµ = 0.01 and εeτ = 0 with θ13 = 5◦.

Similar results are obtained for εeµ = 0 and εeτ = 0.01. In this case, the effect of

non-zero NSI’s is minimal, with only a ∼ 10% decrease in precision on the θ13 and δ

measurements for Scenario 1, and an even smaller change for Scenario 2. In Fig. 7.5, we

show a more challenging case, where both εeµ and εeτ = 0.01 and θ13 is small (1◦). Now

there is a much larger impact on the precision of the measurements, for both scenarios.

Interestingly, only the upper error on θ13 is affected which at least means that there is

no danger of faking a zero value of θ13 if θ13 is really non-zero. This occurs because for

small θ13, the dominant θ13-dependent term is the CP term. To fake a smaller value

of θ13 requires cancellation of this term, which is difficult because of its unique energy

dependence. However, it is still possible to fake a larger value of θ13 because the NSI

terms can mimic the atmospheric term.
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Figure 7.4.: Effect of non-zero εeµ (red solid lines) on the measurement of θ13 and δ, compared
to εeµ = 0 (blue dotted lines), for a) Scenario 1 and b) Scenario 2, for θ13 = 5◦

and δ = 0◦.
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Figure 7.5.: Effect of non-zero εeµ and εeτ (red solid lines) on the measurement of θ13 and δ,
compared to εeµ = εeτ = 0 (blue dotted lines), for a) Scenario 1 and b) Scenario
2, for θ13 = 5◦ and δ = 0◦.
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7.3.3. Precision measurement of NSI’s

Here we study the sensitivity to the NSI parameters themselves, rather than how their

presence affects the sensitivity to the oscillation parameters. We simulate values of

θ13 = 1◦ and 5◦, and εeµ and εeτ = 0 or 0.01, comparing the performances of Scenarios

1 and 2.

In Fig. 7.6 we have used εeµ = 0 and εeτ = 0 for θ13 = 1◦ (top row) and 5◦ (bottom

row). We can obtain bounds of the order of 10−2 on both NSI parameters. For θ13 = 1◦,

Scenario 2 (red solid lines) gives a bound which is ∼ 10% better than that of Scenario 1

(blue dotted lines) at the 95% CL. For θ13 = 5◦, the difference is ∼ 30%. For θ13 = 5◦,

the sensitivity to εeµ is greater than for εeτ because of the cancellation between the εeτ

terms mentioned earlier, which is most prominent at this value of θ13. For θ13 = 1◦ the

cancellation is less severe and so the sensitivity to both NSI parameters is roughly equal.

In Fig. 7.7 we use εeµ = 0.01 and εeτ = 0 and show the sensitivity to θ13 and εeµ. We

find (not shown) that the sensitivity to εeτ is not significantly affected i.e. the sensitivity

to εeτ is not altered by a non-zero value of εeµ. In Fig. 7.8 we use εeµ = 0 and εeτ = 0.01

and show the sensitivity to εeτ . Similarly, we have found that the sensitivity to εeµ is

not affected.

For θ13 = 1◦, εeµ = 0.01 and εeτ = 0, we can nearly exclude εeµ = 0 at 68% confidence;

for θ13 = 5◦ we can do this at 90% confidence. However the sensitivity to non-zero εeτ

is not as good, and it is not possible to exclude εeτ = 0.

In Fig. 7.9 we now consider a similar situation to Fig. 6.7, when we simulate a hypo-

thetically perfect platinum channel (same efficiency as for the golden channel, negligible

background). We use εeµ and εeτ = 0 and show the sensitivity to the NSI parameters, as

in Fig. 7.6. In this case we find that the platinum channel helps even for small values of

θ13. Since the performance is enhanced by a higher efficiency and minimal background,

but not by an increase in statistics alone, this implies that the platinum channel requires

a critical signal to background ratio to be effective.

7.4. Alternative baselines

Now we consider how a different baseline affects the sensitivity to NSI’s. Matter NSI’s

are enhanced by high energies - their energy dependence is the same as the atmospheric
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Figure 7.6.: Sensitivity to εeµ (left) and εeτ (right) for true values of εeµ = εeτ = 0 and
θ13 = 1◦ (top) and 5◦ (bottom) and δ = 0◦.
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term (see Equation (7.1)) - and by long baselines, since the more matter there is, the

larger the effect of the NSI’s. In Fig. 7.10 we show the sensitivity to θ13 and εeτ for

θ13 = 5◦ and εeτ = 0 for our original LENF baseline of 1300 km and 4.5 GeV (dotted

blue lines), for a 2500 km baseline with 6 GeV muons (green lines), and for a setup with

two detectors at 1300 km and 2500 km with 6 GeV muons (red lines).

The 2500 km baseline has better sensitivity to the NSI’s, as expected, but is less

sensitive to θ13 than the 1300 km baseline - this is indicative that a shorter baseline

suppresses NSI’s and therefore maximises sensitivity to the oscillation parameters. We

have also simulated a baseline of 800 km and find that the combination with the 1300

km baseline slightly improves the sensitivity to the oscillation parameters but has no

effect on the NSI sensitivity. However, the combination of the 1300 km and 2500 km

baselines gives a drastic improvement upon either of the single baselines. Remembering

that this is not just down to doubling the statistics, this demonstrates that the different

energy dependencies of each of the baselines helps to resolve the degeneracies between

the oscillation and NSI parameters.

7.5. The role of the platinum channel

The platinum channel has been discussed extensively in this chapter and the previous

one. From a practical point of view, we need to know precisely how valuable the platinum

channel is, and whether its benefits outweigh the technical difficulties of incorporating

it into the experimental design.

For standard oscillation measurements, we found that the most important factor for

the LENF is statistics, and that increasing the number of golden channel events improves

the performance of the experiment more than anything else. There are no severe inherent

degeneracies which cannot be resolved given sufficiently good statistics and detector

performance. However, in the case that the actual flux turns out to be lower than

expected, then the platinum channel could be a powerful way of resolving degeneracies.

Here we briefly return to our analysis of the oscillation parameters to quantify how

the ability to detect electrons can compensate for a lower than expected flux. The

benefits of the platinum channel here are two-fold: firstly it increases the number of

events observed, thus increasing the statistics, and secondly the complementarity of

the platinum channels and the golden channels means that the benefit is greater than

that obtained by simply increasing the signal of the golden channel by the number of
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platinum events. We compare the 3σ CP discovery potential and hierarchy sensitivity

obtained when using the estimated flux of 1.4× 1021 muon decays per year per polarity

and running for 10 years per polarity (a total of 2.8 × 1022 decays), shown by the solid

red lines, with the results obtained by using 1× 1021 muon decays per year per polarity,

running for 5 years per polarity (1.0×1022 decays, corresponding to the standard HENF

setup but where all the muons go to a single LENF detector, rather than being split

between two HENF detectors), both with the platinum channel (dotted blue lines) and

without (dotted green lines). This is assuming that the νe detection efficiency is 47%

and that the background level is 10−2 as in the previous chapter.

The benefit of the platinum channel is most prominent for 10−3 . sin2 2θ13 . 10−2.

Recall that the LENF performance is best, relative to the other options including the

HENF, for sin2 2θ13 & 10−3 (see Fig. 6.16). For 1.0 × 1022 decays and sin2 2θ13 ∼ 10−3,

the platinum channel increases CP sensitivity by ∼ 10% although higher statistics are

always better. For hierarchy sensitivity, if sin2 2θ13 . 4× 10−3 then higher statistics are

better, for 4×10−3 . sin2 2θ13 . 10−2 the platinum channel gives ∼ 20% more coverage,

and for sin2 2θ13 > 10−2 the platinum channel is unnecessary.

Therefore the best option obviously depends on the value of θ13 (as measured by the

current generation of experiments). In the case that sin2 2θ13 . 10−3, the best option

is to use the HENF as no other setup has sensitivity in this region. In the case that

10−3 . sin2 2θ13 . 10−2 the LENF is a viable option, with the addition of the platinum

channel giving a ∼ 10 − 20% increase in CP coverage for CP discovery and hierarchy

sensitivity. The coverage for θ13 discovery is already nearly maximal in this range, but

will also be enhanced. For sin2 2θ13 & 10−2 the LENF is still a good option, but the

platinum channel adds very little to the oscillation sensitivity.

For NSI measurements, the LENF sensitivity is limited by the degeneracies between

the oscillation and NSI parameters. To resolve this, complementary information from

an additional channel or baseline is required. Statistics are not important for NSI mea-

surements as they do not help to disentangle the degeneracies, and increasing the total

number of muon decays above 1.4 × 1022 does not have any benefit. For the efficiency

and background level which we assume for the platinum channel (47%, 10−2), the plat-

inum channel is only helpful if θ13 & 5◦, but if the performance of this channel can be

sufficiently improved (technically difficult!) the platinum channel will also be useful for

small θ13.
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Figure 7.11.: 3σ a) CP discovery potential and b) hierarchy sensitivity for 1.0× 1022 decays
and 2.8 × 1022 decays, comparing Scenarios 1 and 2.

7.6. Summary

We have analysed the sensitivity of the LENF to the NSI parameters εeµ and εeτ . We

have found that the sensitivity of the setup is limited by the degeneracies between the

standard oscillation and NSI parameters, and that therefore increasing the statistics,

by itself, does not increase the sensitivity of the setup. This is in direct contrast to

the results we obtained in the previous chapter for standard oscillation parameters.

Instead, it is necessary to include information from a complementary channel, such as

the platinum channel, or a second baseline. For an assumed efficiency of 47% for the

platinum channel and background of 10−2, its impact is greatest for large values of θ13

- again, this is in direct contrast to the oscillation parameter measurements. However,

the fact that a platinum channel with negligible background has an impact for all values

of θ13 indicates that there is a critical signal to background threshold which must be

overcome in order for this channel to become effective.

If including a second baseline, adding a longer baseline gives the best results since

matter NSI’s are enhanced by high energies and long baselines.

Using the reference LENF setup defined in Section 6.7, including the platinum chan-

nel but using a running time of 5 years per polarity rather than 10 years, the LENF

has sensitivity to εeµ and εeτ down to ∼ 10−2. This is a significant improvement upon

the current bounds, but it is not as strong as the bounds which the HENF can obtain



160 Non-standard interactions at a low-energy neutrino factory

(10−3 or below). Unfortunately, there is no way to reach this level of sensitivity with

the energy and baseline of the LENF.

The general value of the platinum channel was then discussed. With the current

estimated performance, from the point of view of oscillation measurements, it is only

advantageous to incorporate these channels if statistics are lower than the anticipated

value, or if sin2 2θ13 ∼ 10−3. If sin2 2θ13 is smaller than this then the HENF is a

better option, whereas if sin2 2θ13 is very large, then the LENF performance is already

optimal and the platinum channel adds nothing. However, for NSI measurements, it is

advantageous to incorporate these channels regardless of the flux, and it is most effective

for large values of θ13. So if optimising the LENF for oscillation measurements, which we

find to be statistics-limited, the priority should be to increase the statistics of the golden

channel before incorporating the platinum channel. However, if the optimisation is for

NSI’s, then the improvement of the platinum channel performance should be prioritised

so that it also becomes effective for small values of θ13.



Chapter 8.

Conclusions

8.1. Summary and conclusions

In the era of the Large Hadron Collider, the largest and most ambitious physics experi-

ment ever built, it is easy to think that collider experiments such as these will provide us

with the answers to all the unsolved problems in particle physics. Whilst it is true that

hadron colliders are the perfect arena in which to study topics such as the physics of

electro-weak symmetry breaking, are they necessarily the best tools for studying aspects

such as flavour physics, or the physics of the leptonic sector of the Standard Model?

The fact that our first evidence of physics beyond the Standard Model came from the

discovery of neutrino oscillations indicates that the neutrino sector can provide us with

many clues of physics at high energies, from a low-energy perspective.

Neutrinos are the Standard Model particles about which we have the least infor-

mation, as we found in Chapters 1 and 2 - we still have to establish whether they are

Dirac or Majorana particles, we do not yet know whether there is CP violation in the

neutrino sector, the mixing matrix which controls the three-family oscillations is not yet

complete, and we have yet to measure the masses of the neutrinos and the ordering of

the masses. The first two of these questions have resounding implications not just for

particle physics, but also from a cosmological perspective. For the first, it is interesting

in itself to discover whether neutrinos are Dirac particles like the other Standard Model

fermions, or whether they are Majorana particles and thus fundamentally different. But

one of the consequences of Majorana neutrinos is that it leads to the possibility of lepton

number violation, a quantity which is otherwise conserved in the Standard Model. If

lepton number is violated then it means that leptogenesis is possible (Section 1.3). This

161
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is the process whereby a net lepton/ anti-lepton asymmetry is generated in the early

universe. This can be converted into a baryon asymmetry and thus provides a mecha-

nism to explain the matter/ anti-matter asymmetry of the universe - one of the biggest

unsolved mysteries in fundamental physics today. The question of whether neutrinos are

Dirac or Majorana can only be answered by dedicated neutrino experiments which are

sensitive to the lepton-number violating processes characteristic of Majorana neutrinos,

such as neutrinoless double-beta decay.

The answer to the second question regarding CP violation has similar implications to

the first; if there is CP violation in low-energy neutrino oscillations then this may be an

indicator towards the existence of the high-energy CP violation required for leptogenesis.

The possibility for CP violation in the neutrino sector originates from the three-family

mixing of neutrinos - a complex 3 × 3 matrix is parameterised by three mixing angles

and one complex phase; the phase is physical only if all three mixing angles are non-zero.

So to measure CP violation we need to measure this phase, δ, but before we do so we

need to establish if all the mixing angles are indeed non-zero.

The mixing angles, and the CP phase, δ, can be measured by observing neutrino

oscillations, described in Chapter 2. Particle oscillations are a quantum-mechanical

phenomena which occur when the particle mass eigenstates (the propagating states)

and the flavour states (the interaction states) do not coincide. For neutrinos, we showed

that the oscillations are dependent not only upon the three mixing angles (θ12, θ23, θ13)

and complex phase (δ) of the neutrino mixing matrix (the PMNS matrix) but also on

the mass-squared differences between the neutrino mass eigenstates (∆m2
21, ∆m

2
32 and

∆m2
31 where ∆m2

jk = m2
j − m2

k), and the ratio L
E

where L is the distance over which

the neutrino has propagated (the ‘baseline’) and E is its energy. We described how,

by varying the ratio L
E

and by choosing to observe different oscillation channels, an

experiment could be tuned to be sensitive to different oscillation parameters. In this

way, past experiments have successfully measured the so-called solar parameters, θ12 and

∆m2
21, and the so-called atmospheric parameters, θ23 (although experiments have so far

only actually measured sin2 2θ23 which means that we do not know whether θ23 is greater

or less than 45◦) and ∆m2
32 ≃ ∆m2

31. The emerging picture of the mixing angles is of

one which follows the pattern of ‘tri-bimaximal mixing’. This pattern predicts the value

of θ13 to be exactly zero; our current experimental bound on this angle is at present very

weak (. 13◦ at 3σ). The picture of the neutrino masses is one where ∆m2
21 > |∆m2

32|
and ∆m2

32 ≃ ∆m2
31 although we do not know whether ∆m2

32 and ∆m2
31 are positive or

negative; in other words we do not know the mass hierarchy - which mass eigenstate is
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the lightest or heaviest. At present there has also not been any significant measurement

of the CP phase, δ.

It is the primary goal of future neutrino oscillation experiments to measure these

unknown oscillation parameters. By doing so they will enable us to put rigourous con-

straints on theoretical models of new physics. By measuring δ they will hint at whether

or not leptogenesis is a viable possibility, and they will give us strong clues about the

physics of flavour in the Standard Model. This is one of the least well-understood as-

pects of the model. The emerging pattern of neutrino mixing is very different to that

of mixing in the quark sector; an obvious question is why this should be so? To answer

this question definitively requires precision measurements of the neutrino mixing param-

eters. Past and current experiments (Chapter 3) have done well so far to measure the

atmospheric and solar parameters to ∼ 10% accuracy, but to obtain the desired precision

down to the ∼ 1% level, to match the accuracy obtained in the quark sector, necessi-

tates a new generation of long-baseline neutrino oscillation experiments (Section 3.5).

These experiments also turn out to be a powerful tool for searching for non-standard

interactions (Section 2.5) - lepton flavour-changing interactions arising from new physics

processes.

It is important not just to build a future experiment which is capable of making the

desired measurements, but to choose and build the best one. We discussed in Chapter 4

how the design of a next-generation experiment depends crucially on the value of θ13

- we saw that the value of θ13 dictates which of the terms in the νe → νµ channel

probability are dominant. This is the so-called ‘golden channel’ which future experiments

are designed to measure, chosen because measurements of all the unknown oscillation

parameters can be made from this single channel. The reason why no experiments

to date have been able to observe the golden channel is because it is a sub-dominant

channel, suppressed by θ13, and current experiments do not yet have the power to make

such precise measurements. The smaller the value of θ13, the smaller the amplitude of

the oscillations and the more difficult the task will be.

In the scenario that sin2 2θ13 & 10−2 then super-beam experiments should be able to

make some preliminary measurements of the oscillation parameters in the relatively near

future since the technology required is very similar to that used by current conventional

neutrino beams. Even at this stage, we still want to build the optimal experiment

which is why it is important to consider all potential setups which have a good physics

reach. We studied European super-beam setups, in the context of the European Large

Apparatus for Grand Unification and Neutrino Astrophysics (LAGUNA) design study,
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which as yet have not been seriously considered. Three detectors are being considered

by the design study: a 100 kton liquid argon time projection chamber, a 440 kton water

Čerenkov detector, and a 50 kton liquid scintillator detector. Of these, liquid scintillator

detectors are the least well developed. We therefore performed some preliminary studies

(Section 5.3) to ascertain the potential of such a detector and to determine the factors

which most affect its performance. We found that for small θ13 it is the background level

which limits the performance, whereas for large θ13 it is the systematic errors. We then

went on to study the potential of a super-beam using the 2285 km baseline from CERN

to Pyhäsalmi, finding that if a 100 kton liquid argon or 50 kton liquid scintillator detector

is used, this setup can have sensitivity to θ13, δ and the mass hierarchy for sin2 2θ13 &

10−2 which is competitive with experiments such as the US LBNE experiment. This

limit is set mostly by the intrinsic beam background of a super-beam - this is the

∼ 1% νe(ν̄e) content of the νµ (ν̄µ) beam which acts as a background to the νµ → νe

(ν̄µ → ν̄e) channels that super-beam experiments detect. Therefore, whilst super-beams

such as the LAGUNA setup can measure the oscillation parameters if θ13 is large, thus

helping us to choose which experiment we should build next, it cannot make truly precise

measurements and neither will it have any sensitivity if θ13 is small.

If θ13 is very small such that sin2 2θ13 . 10−4, then the only experiment capable of

making the required measurements is one which has a very long baseline, of the order of

several thousands of kilometres, with a corresponding neutrino energy of several tens of

GeV. This is because, as we showed in Section 4.3, ‘matter effects’ enhance the difference

in the oscillation probabilities for normal and inverted mass hierarchies, thus making it

easier to distinguish between the two hierarchies especially if θ13 is very small. Measuring

the hierarchy is important in itself, but also because if we are unable to determine the

hierarchy, then this is detrimental to our measurement of the other parameters because

of the degeneracies between the parameters (Section 4.5). Matter effects are enhanced

by a long baseline and high energy and so it is natural to expect that a longer baseline is

always preferable. Comparison studies between various long-baseline experiments have

shown that this is indeed the case if θ13 is very small; however we have to address the

question of whether this is true for other values of θ13.

One such long-baseline experiment is the neutrino factory (Section 3.5.3), an experi-

ment capable of producing an extremely intense and pure neutrino beam consisting of an

equal mix of νµ and ν̄e (or ν̄µ and νe) from the decay of muons. It is because of this high

flux and purity that the neutrino factory has been found to be an incredibly powerful

neutrino oscillation experiment with a very impressive physics reach. This is aided by
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the fact that the beam properties can be predicted to a high degree of accuracy, because

of the leptonic nature of the neutrino production which is very ‘clean’. Additionally, a

large number of oscillation channels are accessible because of the initial mixed flavour

content of the beam. The standard neutrino factory setup, as defined by the Interna-

tional Design Study for the Neutrino Factory, uses a neutrino beam of energy ∼25 GeV

and two detectors - one at ∼4000 km and a second at the magic baseline of ∼7500 km

(Section 4.5). This combination of two baselines enables parameter degeneracies to be

resolved, making it an optimal setup for measuring the neutrino oscillation parameters

and also for searching for non-standard interactions.

Prior to the work of this thesis, no detailed studies of a low-energy neutrino factory

had been performed. In Chapter 6 we performed detailed simulations of this setup. The

low-energy neutrino factory is a neutrino factory which uses a neutrino beam of energy

∼5 GeV and a corresponding single baseline of ∼1000 km together with a magnetised

totally active scintillating detector. It was originally proposed because of the realisation

that at this energy and baseline, the oscillation spectrum is very rich, potentially enabling

for all the desired oscillation parameters to be measured if sin2 2θ13 & 10−3 without the

need for very high energies and an extremely long baseline. We performed optimisation

studies of this setup to gauge which factors should most influence the experimental

design.

We considered, for the first time, the addition of the platinum channels (Section 6.2.6),

νµ → νe and ν̄µ → ν̄e, to the setup. In theory, these channels are complementary to

the golden channels and thus help to resolve the degeneracies which otherwise limit the

precision of the measurements. However we found that in practice, the technical diffi-

culties associated with detecting the platinum channel (in particular, distinguishing the

electron signal from the neutral-current and pion backgrounds, and correctly identifying

the charge of the electron) mean that the theoretical gain is lost; for an experimen-

tally realistic efficiency of 47% and background level of 10−2 it is not possible to obtain

any useful information (for comparison, the efficiency for muon detection is 94% with

a background of 10−3). In certain circumstances, such as if only around a third of our

predicted exposure can be achieved, the platinum channel is useful. However, in gen-

eral, the small benefit does not appear to be worthy of the technical effort required to

optimise the detector for electron detection.

An additional finding was that, contrary to popular belief amongst the long-baseline

community, being able to measure the second oscillation maximum in addition to the

first maximum does not significantly improve the performance of the experiment (Sec-
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tion 6.2.3). Theoretically, the observation of the second maximum should aid our mea-

surement of CP violation because this is an effect which is most prominent at low

energies. Also the information from the second maximum should be complementary to

that from the first maximum, which again should help to resolve degeneracies. But we

find once again that in practice, this theoretical gain is lost. The reason is that a beam

optimised to peak around the region of the first oscillation maximum has relatively few

events around the second peak; the difference in statistics in these two regions means

that essentially no useful information can be extracted from the second peak. In our

setup, there is such a high flux at the first maximum, and the energy resolution of the

detector is so good that it is possible to probe the shape of the spectrum around the

first oscillation peak sufficiently accurately to negate the necessity for complementary

information from the second peak.

The main message which emerged from our optimisation studies was that maximum

effort should be put into obtaining as many golden channel events as possible, in the

energy region of the first oscillation peak. We found that the benefit of increasing the

statistics of the experiment always outweighs any other optimisation. If we can obtain

an exposure of 2.8 × 1023 kton × decays per polarity (1.4 × 1021 muon decays per year

per polarity, running for 5 years per polarity with a 20 kton detector) then a low-energy

neutrino factory with a baseline of 1300 km, muon energy of 4.5 GeV and a 20 kton

magnetised totally active scintillating detector, or liquid argon detector, has sensitivity

to θ13 and the mass hierarchy, at 3σ confidence, for sin2 2θ13 & 10−3. We can also

determine whether θ23 is greater or less than 45◦ if the deviation is & 8◦, and exclude

maximal θ23 if the deviation is & 2◦. In addition, we find that for sin2 2θ13 & 10−3, this

setup has better sensitivity to CP violation than the high-energy neutrino factory (and,

for sin2 2θ13 > 4 × 10−3 also has 100% CP coverage for the mass hierarchy and θ13).

This occurs because of the difficulty in distinguishing between genuine CP violation,

as described by the phase δ, and apparent ‘CP violation’ due to the CP asymmetry of

the baseline: we explained in Section 4.3.2 how matter effects fake CP violation - the

fact that the earth contains only matter and not anti-matter means that neutrinos and

anti-neutrinos interact differently as they propagate through the earth. However, this

is exactly the effect of CP violation - a distinction between the oscillation properties of

neutrinos and anti-neutrinos. Therefore it is imperative that we can distinguish between

genuine CP violation and fake CP violation due to matter effects if we want to make a

precision measurement of δ. For large values of θ13, the sensitivity of the high-energy

neutrino factory to CP violation becomes limited by the systematic uncertainty of the

matter density of the baseline; this limits the accuracy to which the matter effects can
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be predicted. In contrast, the low-energy neutrino factory with its shorter baseline does

not suffer from this problem, enabling it to maintain its CP sensitivity in this region.

Yet the baseline is sufficiently long such that when combined with the high statistics of

the setup, the mass hierarchy can still be determined - this is a unique feature of the

low-energy neutrino factory.

We also studied the precision of the setup, in terms of the size of the 1σ errors on

each of the parameters. We analysed the errors as a function of θ13 (Section 6.4), finding

that for sin2 2θ & 10−3, our setup can measure θ13 with a ∼ 5% 1σ error, θ23 to within

± ∼ 2.5◦ and δ to within ∼ ±10◦. We found that for exposures up to ∼ 6 × 1023 kton

× decays per polarity, the precision is significantly improved. The effect of non-zero

systematic errors and backgrounds was found to be to effectively halve the exposure.

Finally, in Section 6.6 we showed how setups with different values of L and E can have

similar performances, finding that our current setup is indeed one that is nearly optimal.

We assessed the sensitivity of the low-energy neutrino factory to non-standard matter

interactions in Chapter 7. These are flavour-changing non-standard matter effects, not

predicted by the Standard Model, and so they are a direct signal of new physics. They

can be modelled in our experiments as effective four-point interactions with strength

εαβ, relative to the weak coupling constant. This parameter describes the rate of the

process να → νβ . Although measurably large non-standard interactions (& 10−4) are

theoretically difficult to generate at scales above the electro-weak scale, it is still impor-

tant to search for them both as a means of confirming our Standard Model predictions

and because of the possibility that they may arise from mechanisms which we have not

yet considered - it is good to be open-minded!

The low-energy neutrino factory has sensitivity to the non-standard matter parame-

ters εeµ and εeτ . We found that our setup could put bounds on these parameters down to

the level of ∼ 10−2. This is roughly an order of magnitude better than current bounds,

but an order of magnitude worse than the bounds which a high-energy neutrino factory

could obtain - non-standard matter interactions are enhanced by a long baseline and

high energy and so the high-energy setup is optimal for these non-standard searches.

We found that the sensitivity of our setup is limited by the degeneracies between the

standard oscillation parameters and non-standard parameters. This is not something

which can be resolved by simply increasing statistics, but requires the addition of com-

plementary information from either a second baseline or complementary channels. So

in this situation the platinum channels are necessary to optimise the performance of

the experiment. With the predicted efficiency and background, the platinum channels
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have most effect for large θ13. We found that if this performance could be hypothetically

improved then the platinum channels become useful also for small values of θ13 - this

indicates that there is a threshold signal to background ratio which must be exceeded

for these channels to be effective. The platinum channels help not only to measure the

non-standard parameters, but also to maintain our sensitivity to the oscillation param-

eters which is otherwise severely inhibited when we marginalise over the non-standard

parameters, even if they are all zero, as well as the oscillation parameters.

8.2. Outlook

Rapid progress is being made with respect to the design of the neutrino factory. The tech-

nological, logistical and economic problems are also becoming apparent in the process!

A recent development is that the distinction between the high-energy and low-energy

neutrino factory setups is far from clear - whereas it was previously thought (at the time

that the work of this thesis was being performed) that these were two distinct setups us-

ing two distinct detector technologies, we now realise that this is not necessarily the best

way to approach the experimental design. This development is due in part to progress in

the work on the magnetised iron neutrino detector which is the detector being designed

for the high-energy neutrino factory. New selection algorithms mean that the efficiencies

of the lower energy bins have recently been increased so that it is possible to obtain a

reasonable number of events around the ∼ 5 GeV peak of the low-energy setup [118].

Coupled with the finding that contrary to popular belief, the second oscillation maxi-

mum is not necessary if we have sufficient events at the first oscillation maximum, this

means that we could also consider using the iron detector with the low-energy neutrino

factory, especially if we consider slightly longer baselines than the 1300 km baseline of

our reference setup (so that the oscillation region is at a slightly higher energy).

There is a strong case to build a neutrino factory rather than a super-beam, even if

our current generation of experiments discover that θ13 is large, from the point of view

of precision and also in the search for non-standard interactions. The extremely high

fluxes which a neutrino factory can achieve, in conjunction with the absolute purity

of the beam, aid not only the discovery potential of the neutrino factory, but also its

precision. In the introductory chapters of this thesis we highlighted the physics moti-

vation for making precise measurements of the oscillation parameters and for searching

for non-standard interactions - neutrino oscillations provide a window to high-energy
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physics from a low-energy perspective. The more precisely we can measure the oscil-

lation parameters, the more strongly we can constrain models of new physics, and the

more precise the clues are that point us towards the correct theory. The discovery of

neutrino oscillations was the first evidence that there is physics beyond the Standard

Model; it is not unlikely that neutrino oscillations will bring us yet more evidence in the

future.
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Appendix A.

γ-matrices

The Lorentz group can be represented by any set of matrices which obey the same

commutation rules as the group algebra. We are interested in representations which

correspond to spin-1
2
particles (fermions). A set of matrices which form such a represen-

tation are

Sµν =
i

4
[γµ, γν ], (A.1)

where γµ and γν are the γ-matrices. A four-component field that Lorentz transforms

according to Sµν is called a Dirac spinor. The number of γ matrices corresponds

to the number of space-time dimensions; therefore we have a set of four matrices,

{γ0, γ1, γ2, γ3}. They satisfy the anti-commutation relations

{γµ, γν} = 2ηµνI, (A.2)

where ηµν is the metric tensor and I is the 4×4 identity matrix. The explicit form of the

matrices is representation-dependent but their algebra is not. There is a fifth matrix,

γ5, which does not form part of the representation but is useful to define as it has some

important properties. It is related to the other four γ-matrices via

γ5 =
i

4!
ǫνµσργ

νγµγσγρ

= iγ0γ1γ2γ3, (A.3)
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and has the properties

{γ5, γµ} = 0, (A.4a)

(γ5)2 = I, (A.4b)

(γ5)† = I. (A.4c)

If we choose to use the Weyl representation (also called the chiral representation), as in

Section 1.2, then the γ-matrices take the block-diagonal form

γ0 =





0 1

1 0



 , γj =





0 σj

−σj 0



 , γ5 =





−1 0

0 1



 , (A.5)

where σj are the 2×2 Pauli matrices. Dirac spinors can be written in this representation

in terms of two two-component Weyl spinors, ψ− and ψ+:

ψ =





ψ−

0



+





0

ψ+





= ψL + ψR, (A.6)

where L and R denote left-handed and right-handed. Now it is easy to see that γ5ψL,R =

∓ψL,R.



Appendix B.

Charge-conjugation and the

Majorana condition

The Standard Model Lagrangian is invariant under continuous Lorentz transformations,

but there are also three discrete transformations which we can perform. These are

charge-conjugation, parity reversal and time reversal. Time reversal corresponds to the

transformation (t,x) → (−t,x); for instance (νe → νµ) → (νµ → νe). Parity reversal is

a spatial reflection, (t,x) → (t,−x); for example this reverses the helicity of a particle.

Charge-conjugation transforms a particle of a given helicity to an anti-particle with the

same helicity (by convention). All experimental observations so far indicate that the

combination CPT is a complete symmetry. In other words, the Standard Model is

invariant under this combination of transformations.

For our discussion of Majorana particles, we are interested in charge-conjugation

matrix. A spinor corresponding to a particle with momentum p and spin s, ψs(p), is

related to the spinor of the anti-particle with the same momentum and spin, (ψs(p))c,

via

ψc = Cψ̄T (B.1)

where C is the charge-conjugation matrix which has the properties

C†C = I, (B.2a)

CT = −C, (B.2b)

CγµC−1 = −γµ. (B.2c)
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In the Weyl representation, C takes the explicit form

C = −iγ2γ0, (B.3)

where the γ-matrices are defined in Appendix A. Then Eq. (B.1) becomes





ψ−

ψ+





c

=





0 −iσ2

iσ2 0









ψ−

ψ+





∗

. (B.4)

Now we can see that the Majorana condition (Eq. (1.13)), ψc = ψ, corresponds to the

condition

ψ− = −iσ2ψ∗
+ or equivalently ψ+ = iσ2ψ∗

−. (B.5)



Appendix C.

Parameterisation of the PMNS

matrix

To count the number of independent parameters in the PMNS matrix, first consider a

generic n×n complex matrix. This has 2n2 degrees of freedom (n2 real and n2 imaginary).

Imposing the constraint of unitarity, which is required in order for transition probabilities

to be unitary, imposes 1
2
n(n+1) constraints on the real components and 1

2
n(n+1) on the

imaginary components - a total of n(n+ 1) constraints. This leaves n2 − n parameters.

If we first consider the CKM matrix, V CKM , which describes mixing in the quark sector,

this appears in the Standard Model Lagrangian in terms such as

LCKM ∼W+
µ V

CKM
jk ℓ̄ujγ

µ(1 + γ5)ℓdk +W−
µ V

CKM†
jk ℓ̄djγ

µ(1 + γ5)ℓuk, (C.1)

where ℓuj are the up-type quarks and ℓdj are the down-type quarks. Now we can remove

n − 1 phases from the CKM matrix by redefining the quark fields: |ℓuj〉 → eiθuj |ℓuj〉
and similarly for the down-type quarks. Amplitudes such as 〈ℓuj|ℓuj〉 are invariant. As

all the other quark terms in the Standard Model are flavour-diagonal, they also remain

invariant under this redefinition.

Only n− 1 and not n phases can be removed because one phase is an overall phase

(rather than just a relative phase like the others). So the CKM matrix has n2−n− (n−
1) = n2 − 2n + 1 free parameters. To ascertain how many of these are real angles and

how many are complex phases, we can compare it to a real orthogonal matrix. This has

n2 real parameters and orthogonality imposes 1
2
n(n + 1) constraints, leaving 1

2
n(n − 1)

independent parameters which are all real. Therefore the orthogonal complex quark

mixing matrix is parameterised by 1
2
n(n − 1) real mixing angles and so the remaining
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1
2
(n−1)(n−2) parameters must be complex phases. Hence in the Standard Model where

n = 3, the CKM matrix contains three mixing angles and one complex phase.

Returning now to neutrinos and the PMNS matrix, UPMNS, this appears in the

Standard Model Lagrangian in the terms

LPMNS ∼W+
µ U

PMNS
jk ν̄jγ

µ(1 + γ5)ℓk +W−
µ U

PMNS†
jk ℓ̄jγ

µ(1 + γ5)νk, (C.2)

where ℓj is any up or down-type quark. Three of the phases can still be removed

by redefining the charged lepton fields, but the phases of the neutrino fields cannot

automatically be redefined because of the possibility that they are Majorana fields; if

νj = νcj and we redefine |νj〉 → eiθj |νj〉, then 〈νj|νj〉 → 〈νj |νj〉e2iθj ; this means that these

phases are physical. Thus the additional n − 1 phases must be retained, and these are

the Majorana phases. The PMNS matrix can then be written as a product of three 2×2

rotation matrices and two phase matrices as given in Eq. (2.1).



Appendix D.

Neutrino oscillations in vacuum

Derivation of oscillation probabilities using the equal momenta assumption

The probability for the oscillation να → νβ, in vacuum, is given by

Pνα→νβ(L,E) =

∣

∣

∣

∣

∣

∣

3
∑

j=1

U∗
αjUβje

−iL

(

p+
m2

j
2p

)∣

∣

∣

∣

∣

∣

2

, (D.1)

as given in Eq. (2.7). Writing this out explicitly, we have

Pνα→νβ(L,E) =

(

U∗
α1Uβ1e

−iL

(

p+
m2

1
2p

)

+ U∗
α2Uβ2e

−iL

(

p+
m2

2
2p

)

+ U∗
α3Uβ3e

−iL

(

p+
m2

3
2p

)
)

×


Uα1U
∗
β1e

iL

(

p+
m2

1
2p

)

+ Uα2U
∗
β2e

iL

(

p+
m2

2
2p

)

+ Uα3U
∗
β3e

iL

(

p+
m3

j
2p

)


 . (D.2)

The diagonal terms are

|Uα1|2|Uβ1|2 + |Uα2|2|Uβ2|2 + |Uα3|2|Uβ3|2

=

∣

∣

∣

∣

∣

3
∑

j=1

U∗
αjUβj

∣

∣

∣

∣

∣

2

− (U∗
α1Uα2Uβ1U

∗
β2 + U∗

α1Uα3Uβ1U
∗
β3 + U∗

α2Uα3Uβ2U
∗
β3 + C.C.)

= δαβ − 2Re[U∗
α1Uα2Uβ1U

∗
β2]− 2Re[U∗

α1Uα3Uβ1U
∗
β3]− 2Re[U∗

α2Uα3Uβ2U
∗
β3], (D.3)

where C.C. denotes the complex conjugate and we have used the unitarity condition
∑3

j=1U
∗
αjUβj = δαβ = |

∑3
j=1U

∗
αjUβj |2.
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The cross-terms are

(U∗
α1Uα2Uβ1U

∗
β2e

−i
∆m2

12L

2E + U∗
α1Uα3Uβ1U

∗
β3e

−i
∆m2

13L

2E + U∗
α2Uα3Uβ2U

∗
β3e

−i
∆m2

23L

2E + C.C.)

= 2Re[U∗
α1Uα2Uβ1U

∗
β2] cos

(

∆m2
21L

2E

)

− 2Im[U∗
α1Uα2Uβ1U

∗
β2] sin

(

∆m2
21L

2E

)

+ 2Re[U∗
α1Uα3Uβ1U

∗
β3] cos

(

∆m2
31L

2E

)

− 2Im[U∗
α1Uα3Uβ1U

∗
β3] sin

(

∆m2
31L

2E

)

+ 2Re[U∗
α2Uα3Uβ2U

∗
β3] cos

(

∆m2
32L

2E

)

− 2Im[U∗
α2Uα3Uβ2U

∗
β3] sin

(

∆m2
32L

2E

)

. (D.4)

Adding all the terms together and using the half-angle relation 1 − cos θ = 2 sin2 θ
2
, we

obtain the final expression as given in Eq. (2.8):

Pνα→νβ(L,E) = δαβ − 4
∑

j>k

Re[U∗
αjUβjUαkU

∗
βk] sin

2

(

∆m2
jkL

4E

)

+ 2
∑

j>k

Im[U∗
αjUβjUαkU

∗
βk] sin

(

∆m2
jkL

2E

)

. (D.5)

In this derivation we have assumed that all the neutrino mass states carry equal

momenta, as described in Section 2.2, and that after time t, the mass eigenstate j picks

up a phase factor e−iEjt. This is equivalent to the assumption that the neutrino states are

plane waves which is the origin of the problem mentioned in Section 2.2 - the probability

of finding a particle described by a plane wave does not depend on the spatial coordinate,

implying that oscillation probabilities are a function only of time and not space.

We could instead have used the assumption that all the neutrino mass eigenstates

have equal energies and performed a slightly different derivation, assuming that after a

displacement x the mass eigenstate j picks up a factor e−ip·x; this would result in oscil-

lation probabilities that do evolve in space. However, neither this assumption of equal

energies, nor the assumption of equal momenta, is Lorentz invariant (the eigenstates

have different masses and thus different velocities, so they cannot have equal energies or

momenta in all frames). In addition there is no reason to assume that the neutrino mass

states produced in a weak interaction have either the same momenta or energies (see,

for example, Ref. [210]). The exception is for hypothetical ‘Mössbauer neutrinos’ [211] -

neutrinos emitted from recoilless electron capture processes - when the mass eigenstates

are expected to have equal energies - however this is a highly specialised case!
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The wave packet approach

Here we will give a brief summary of the derivation given in Ref. [49], using wave packets,

which does not require the use of the equal momenta or equal energies assumptions.

A wave-packet is basically described by a plane wave multiplied by some shape func-

tion (often Gaussian) which localises the wave. If we assume that the shape function

is sharply peaked about p = pj with width σp ≪ pj , then the wave packet, ψj(t,x),

describing a propagating neutrino mass eigenstate νj , can be written as

ψj(t,x) ≃ ei(p·x−Ej(p)t)f s
j (x− vg

j t), (D.6)

where f s
j (x−vg

j t) is the shape factor (the superscript s denotes that this is the neutrino

produced at the source) and vgj is the group velocity of the wave packet for νj . In

general, different mass eigenstates will have different shape factors. A neutrino of flavour

α, emitted at the source, is then

|να(t,x)〉 =
3
∑

j=1

U∗
αjψ

s
j(t,x)|νj〉, (D.7)

whereas a neutrino of flavour β which is detected is

|νβ(x− L)〉 =
3
∑

j=1

U∗
βjψ

D
j (x− L)|νj〉. (D.8)

Note that there is no time dependence in this detected state since the detection process

is essentially time independent. Also the average momenta of the source and detected

states of the same neutrino mass eigenstate may be different because the detector may

not be sensitive to the exact energy spectrum of the emitted state. The transition

amplitude for να → νβ is

Aαβ(t, L) =

∫

d3x〈νβ(x− L)|να(t,x)〉

=

3
∑

j=1

U∗
αjUβj

∫

d3x(ψD
j (x− L))∗ψs

j(t,x), (D.9)

and the probability, Pαβ, is the square of this amplitude. One must also integrate over

time, taking into account the temporal response function of the detector. Now neutrino

oscillations are caused by the evolving differences in phases between the mass eigenstates,
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so this is the part of Pαβ in which we are interested. The phase difference between the

states j and k is

∆φjk = (Ej − Ek)t− (pj − pk)L

= ∆Ejkt−∆pjkL, (D.10)

where Ej =
√

p2j +m2
j . This phase difference is Lorentz invariant. Now let us consider

the situation where |∆Ejk| ≪ E (where E is the average energy). This corresponds to

relativistic or quasi-degenerate neutrinos. In this case we can correctly use the approxi-

mation

∆Ejk =
∂E

∂p
∆pjk +

∂E

∂m2
∆m2

jk

= vg∆pjk +
1

2E
∆m2

jk, (D.11)

so that

∆φjk =
∆m2

jkt

2E
− (L− vgt)∆pjk. (D.12)

The first term is the standard oscillation phase which is recovered if we make the equal

momenta assumption so that ∆p = 0 and the second term vanishes. But note that the

second term also vanishes at the centre of the wave packet when L = vgt but is non-zero

at all other points in the wave packet. Thus we can identify the first term as being the

phase accumulated by a point-like neutrino over the distance L, whereas the second term

takes into account the finite size of the wave packet. In most oscillation experiments, the

neutrinos which are produced are highly relativistic so that the condition |∆Ejk| ≪ E

is satisfied. In addition, the neutrinos are produced coherently - that is that the spatial

extent of their wave packets is much less than the oscillation wavelength; if this condition

is not met then oscillations will not occur. This means that the second term in Eq. (D.12)

vanishes. Using t ≃ L for our ultra-relativistic neutrinos, we then recover the familiar

oscillation phase
∆m2

jk
L

2E
, the same answer which we obtained by using the equal momenta

assumption. However, although this assumption leads to the correct answer by means

of a simple derivation, it is not, in general, the correct reasoning. The correct reasons

are those outlined above and explained in more detail in Ref. [49].



Appendix E.

Oscillation probabilities for

KamLAND and MINOS

We will derive the oscillation probabilities for the KamLAND and MINOS experiments,

neglecting matter effects. This is a valid assumption for both the KamLAND baseline of

180 km and the MINOS baseline of 735 km since matter effects do not become significant

until the baseline exceeds ∼ 1000 km. We can therefore start from the general vacuum

oscillation probability, Eq. (2.8),

Pνα→νβ(L,E) = δαβ (E.1a)

− 4
∑

j>k

Re[U∗
αjUβjUαkU

∗
βk] sin

2

(

∆m2
jkL

4E

)

(E.1b)

+ 2
∑

j>k

Im[U∗
αjUβjUαkU

∗
βk] sin

(

∆m2
jkL

2E

)

. (E.1c)

In the case of KamLAND we need to calculate the ν̄e → ν̄e probability so in Eq. (E.1)

we have α = β = e; therefore (E.1a) is equal to 1 and (E.1c) is zero. KamLAND has
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L
E
∼ 180km

1MeV
so that

∆m2
31L

4E
≃ 100 and

∆m2
21L

4E
≃ 4. Therefore the sum in (E.1b) is equal to

∑

j>k

Re[U∗
αjUβjUαkU

∗
βk] sin

2

(

∆m2
jkL

4E

)

= |Ue2|2|Ue1|2 sin2

(

∆m2
21L

4E

)

+ |Ue3|2(|Ue1|2 + |Ue2|2) sin2

(

∆m2
31L

4E

)

(E.2)

= c413s
2
12c

2
12 sin

2

(

∆m2
21L

4E

)

+ s213c
2
13 sin

2

(

∆m2
31L

4E

)

(E.3)

≃ s212c
2
12 sin

2

(

∆m2
21L

4E

)

(E.4)

using the approximation s213 ≃ 0 and c213 ≃ 1 because θ13 is small

=
1

4
s2212 sin

2

(

∆m2
21L

4E

)

, (E.5)

and the total probability is then

Pν̄e→ν̄e ≃ 1− sin2 2θ12 sin
2

(

∆m2
21L

4E

)

. (E.6)

For MINOS, we need to calculate the νµ → νµ probability; this is again a disappearance

channel like the KamLAND channel so that (E.1a) is equal to 1 and (E.1c) is zero.

MINOS has L
E
∼ 735 km

1 GeV so that
∆m2

31L

4E
≃ 2 and

∆m2
21L

4E
≃ 0.07. (E.1b) is equal to

|Uµ2|2|Uµ1|2 sin2

(

∆m2
21L

4E

)

+ |Uµ3|2(|Uµ1|2 + |Uµ2|2) sin2

(

∆m2
31L

4E

)

≃ |Uµ3|2(|Uµ1|2 + |Uµ2|2) sin2

(

∆m2
31L

4E

)

(E.7)

because sin2

(

∆m2
21L

4E

)

≃ 0

= |Uµ3|2(1− |Uµ3|2) sin2

(

∆m2
31L

4E

)

(E.8)

using the unitarity condition
∑3

j=1 U
∗
αjUβj = |∑3

j=1U
∗
αjUβj|2 = δαβ

= c213s
2
23(1− c213s

2
23) sin

2

(

∆m2
31L

4E

)

(E.9)

≃ s223c
2
23 sin

2

(

∆m2
31L

4E

)

(E.10)

using c213 ≃ 1

=
1

4
s2223 sin

2

(

∆m2
31L

4E

)

, (E.11)
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so that the probability is

Pνµ→νµ ≃ 1− sin2 2θ23 sin
2

(

∆m2
31L

4E

)

. (E.12)
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Appendix F.

Calculation of the golden channel

probability

The probability for the golden channel, νe → νµ, in vacuum, is an application of Eq. (2.8),

Pνe→νµ = − 4
∑

j>k

Re[U∗
ejUµjUekU

∗
µk] sin

2

(

∆m2
jkL

4E

)

+ 2
∑

j>k

Im[U∗
ejUµjUekU

∗
µk] sin

(

∆m2
jkL

2E

)

, (F.1)

where Uαj are the elements of the usual PMNS matrix given in Eq. (2.1). The final

expression is given by Eq. (4.1),

P vac
νe→νµ = s2213s

2
23

(

sin2

(

∆31L

2

)

+ sin2

(

∆32L

2

))

+
1

2
s213c13s212s223 cos δ

(

sin2

(

∆31L

2

)

− sin2

(

∆32L

2

))

+
1

4
s213c13s212s223 sin δ (sin (∆31L)− sin (∆32L))

+

(

c213s
2
212c

2
23 −

1

4
s2213s

2
212s

2
23 + s213c13s212c212s223 cos δ

)

sin2

(

∆21L

2

)

− 1

4
s213c13s212s223 sin δ sin (∆21L) , (F.2)

with the expression for the anti-neutrino probability obtained by setting δ → −δ.

To calculate the probability in matter we use the method described in Section 2.4.2 to

calculate a mixing matrix in matter, which transforms from the neutrino flavour states

to states which propagate in matter. We start with the Hamiltonian in matter which

185
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we will write in the flavour basis because the matter potential takes a simple diagonal

form in this basis (only the electron component is non-zero):

Ĥfl = U †
eff











0 0 0

0 ∆21 0

0 0 ∆31











Ueff ±











A 0 0

0 0 0

0 0 0











, (F.3)

where A =
√
2GFne (see Section 2.4), Ueff = U23U13 as explained in Section 2.4.2 and

the upper (+) sign applies to neutrinos and the lower (−) sign to anti-neutrinos. In the

limit ∆21 = 0 this matrix is diagonalised to (see Ref. [64])

Ĥ
(0)
fl = Ū †

∓











∆31±A−B∓

2
0 0

0 0 0

0 0 ∆31±A+B∓

2











Ū∓, (F.4)

where

Ū∓ = U23(θ23)U13(θm∓), (F.5a)

B∓ =
√

(∆31 cos 2θ13 ∓A)2 + (∆31 sin 2θ13)2, (F.5b)

tan 2θm∓ =
∆31 sin 2θ13

∆31 cos 2θ13 ∓ A
, (F.5c)

and all the upper signs apply to neutrinos and the lower signs to anti-neutrinos. We use

the superscript (0) to denote that this is the Hamiltonian in the limit ∆21 = 0. Thus

the mixing matrix in matter, in the limit ∆21 = 0, is Ū∓ = U23(θ23)U13(θm∓). Explicitly,

this is

Ū∓ =











cθm∓
0 sθm∓

e±iδ

−sθm∓
s23e

∓iδ c23 s23cθm∓

−sθm∓
c23e

∓iδ −s23 c23cθm∓











, (F.6)

which we will now call Ū
(0)
∓ . If we rewrite Eq. (F.4) in the conventional form for matrix

diagonalisation, Λ = S−1MS, where S is a matrix whose columns are the eigenvectors
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of M and Λ is the diagonal matrix of eigenvalues, and use the fact that Ū †
∓ = Ū−1

∓ , then











∆31±A−B∓

2
0 0

0 0 0

0 0 ∆31±A+B∓

2











= Ū∓H
(0)
fl Ū †

∓. (F.7)

Now it is clear that the columns of Ū∓, which we will call (v
(0)
1 , v

(0)
2 , v

(0)
3 ), are the

eigenvectors in matter in the flavour basis with corresponding eigenvalues given by

λ
(0)
1 =

∆31 ± A−B∓
2

, (F.8a)

λ
(0)
2 = 0, (F.8b)

λ
(0)
3 =

∆31 ± A+B∓
2

. (F.8c)

We now want to find the first order corrections to Ū∓ in the case of non-zero ∆21. The

first-order corrections to the eigenvectors are given by quantum-mechanical perturbation

theory as

v
(1)
j =

∑

k 6=j

Ĥ
(1)
jk

λ
(0)
j − λ

(0)
k

v
(0)
k , (F.9)

and the first order corrections to the eigenvalues are

λ
(1)
j = Ĥ

(1)
jj , (F.10)

where Ĥ
(1)
jk are the elements of the first order perturbation to the Hamiltonian. In the

vacuum (mass) basis, this perturbation is

Ĥ(1)
mass =











0 0 0

0 ∆21 0

0 0 0











, (F.11)

and in the flavour basis,

Ĥ
(1)
fl = U †Ĥ(1)

massU, (F.12)



188 Calculation of the golden channel probability

where U is the full PMNS matrix involving all three mixing angles. The matrix Ū
(0)
∓

transforms between the flavour and matter bases, such that

Ĥ
(1)
fl = (Ū

(0)
∓ )†Ĥ

(1)
matŪ

(0)
∓ , (F.13)

and so Ĥ
(1)
mat is given by

Ĥ
(1)
mat = Ū

(0)
∓ Ĥ

(1)
fl (Ū

(0)
∓ )†

= Ū
(0)
∓ U †Ĥ(1)

massU(Ū
(0)
∓ )†. (F.14)

Defining

θ̄∓ = θ13 − θm∓, (F.15)

Ĥ
(1)
mat is given by

Ĥ
(1)
mat =











c12cθ̄∓ s12cθ̄∓ −sθ̄∓e±iδ

−s12 c12 0

−c12sθ̄∓e∓iδ −s12sθ̄∓e∓iδ cθ̄∓





















0 0 0

0 ∆21 0

0 0 0











×











c12cθ̄∓ −s12 −c12sθ̄∓e±iδ

s12cθ̄∓ c12 −s12sθ̄∓e±iδ

−sθ̄∓e∓iδ 0 cθ̄∓











=











∆21s
2
12c

2
θ̄∓

1
2
∆21s212cθ̄∓ −1

2
∆21s

2
12s2θ̄∓e

±iδ

1
2
∆21s212cθ̄∓ ∆21c

2
12 −1

2
∆21s212sθ̄∓e

±iδ

−1
2
∆21s

2
12s2θ̄∓e

±iδ −1
2
∆21s212sθ̄∓e

∓iδ ∆21s
2
12s

2
θ̄∓











. (F.16)
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Using Eq. (F.9), the first order corrections to the eigenvectors (columns of Ū∓) are

v
(1)
1 =

∆21s212cθ̄∓
∆31 ±A−B











0

c23

−s23











+
∆21s

2
12s2θ̄∓e

±iδ

2B











sθ̄∓e
±iδ

s23cθ̄∓

c23cθ̄∓











, (F.17a)

v
(1)
2 =

∆21s212cθ̄∓
−∆31 ∓ A+B











cθ̄∓

−s23sθ̄∓e∓iδ

−c23sθ̄∓e∓iδ











+
∆21s212sθ̄∓e

∓iδ

∆31 ± A+B











sθ̄∓e
±iδ

s23cθ̄∓

c23cθ̄∓











,(F.17b)

v
(1)
3 =

−∆21s
2
12s2θ̄∓e

±iδ

2B











cθ̄∓

−s23sθ̄∓e∓iδ

−c23sθ̄∓e∓iδ











−
∆21s212sθ̄∓e

±iδ

∆31 ±A +B











0

c23

−s23











,(F.17c)

so that the mixing matrix, to first order in ∆21, is

Ū∓ =











cθ̄∓ 0 sθ̄∓e
∓iδ

−sθ̄∓s23e±iδ c23 s23cθ̄∓

−sθ̄∓c23e±iδ −s23 c23cθ̄∓











+











| | |
v
(1)
1 v

(1)
2 v

(1)
3

| | |











, (F.18)

which we will denote by

Ū∓ =











| | |

V∆21
1 V∆21

2 V∆21
3

| | |











. (F.19)

The probability for νe → νµ in matter is given by

Pνe→νµ = − 4
∑

j>k

Re[(Ū∓)
∗
ej(Ū∓)µj(Ū∓)ek(Ū∓)

∗
µk] sin

2

(

∆m2
jkL

4E

)

+ 2
∑

j>k

Im[(Ū∓)
∗
ej(Ū∓)µj(Ū∓)ek(Ū∓)

∗
µk] sin

(

∆m2
jkL

2E

)

, (F.20)

which is exactly analagous to the vacuum solution, Eq. (F.1), but with the replacement

of U with Ū∓. Keeping only the terms up to first order in ∆21, the explicit form of the
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solution is

Pνe→νµ = s223s
2
2θm∓

sin2

(

B∓L

2

)

(F.21)

− s223s
2
12

(

s4θm∓
s2θ̄∓ sin2

(

B∓L

2

∆21

B∓
+ s22θm∓

c2θ̄∓ sin(B∓L)
∆21L

2

))

+ s212s223s2θm∓
sin

(

B∓L

2

)

∆21 ×
[

sin

(

λ
(0)
1 L

2

)

cos

(

±δ − λ
(0)
3 L

2

)(

cθm∓
cθ̄∓

λ
(0)
1

−
sθm∓

sθ̄∓

λ
(0)
3

)

− sθm∓
sθ̄∓ cos δ sin

(

B∓L

2

)

1

λ
(0)
3

]

.

If we expand θm∓ and B∓ in terms of θ13 and keep only terms up to second order in

θ13 (or rather, s13 and s213), then we recover the expression given in Eq. (4.4).



Appendix G.

The golden channel probability

including non-standard interactions

Let us first discuss the possible processes which can lead to the apparent detection of

a golden channel event (νe → νµ, and similarly for anti-neutrinos). For example, in

a neutrino factory, it is assumed that the neutrino produced at the source from the

decay of a µ+, together with ν̄µ and e+, is a νe, and that when a µ− is detected it

was accompanied by a νµ. However, non-standard interactions (NSI’s) at the source or

detector can mean that these assumptions may not always be true. We shall consider

these source and detector NSI’s first, and discuss matter (propagation) NSI’s afterwards.

There are several transitions which can lead to a νe → νµ transition with only source and

detector NSI’s. We will use the notation Γαβ to denote the amplitude for the standard

oscillation να → νβ at a baseline L so that

osc
νe νµ µ−

e+
= Γeµ.

Now we could have source NSI’s (εs) which contribute to the transition amplitude in

processes such as

NSI
osc

ντ νµ µ−

e+
= εseτΓτµ,

191



192 The golden channel probability including non-standard interactions

and detector NSI’s (εd) in processes such as

NSI

νe νe µ−

e+
= εdeµ.

To obtain the total probability we have to add and square all the amplitudes:

Pνe→νµ(ε
s, εd) = |Γeµ + εseeΓeµ + εseµΓµµ + εseτΓτµ + Γeeε

d
eµ + Γeµε

d
µµ + Γeτε

d
τµ +O(Γ2, ε2)|2

= |Γeµ|2 + 2Re[Γ∗
eµ(ε

s
eeΓeµ + εseµΓµµ + εseτΓτµ + Γeeε

d
eµ + Γeµε

d
µµ + Γeτε

d
τµ)]

+O(Γ3, ε2). (G.1)

To consider the effect of each of the NSI parameters, we need to remember that the golden

channel oscillation probability is suppressed by sin2 2θ13 (see Section 4.1) whereas the

disappearance probabilities, νe → νe and νµ → νµ, are O(1), as is νµ → ντ and ντ → νµ

(at the oscillation maximum, Γee ∼ 1 and Γµµ ∼ Γµτ ∼ Γτµ ∼ 1
2
). So the NSI’s which

are linked to these channels (all of those listed above except for εsee) may significantly

enhance the transition rate if ε > Γeµ.

However, we are interested in matter NSI’s which cannot be calculated in the same

way as above, because matter NSI’s alter the propagation Hamiltonian (source and

detector NSI’s do not) which means that they cannot be decoupled from and treated

separately to oscillations. Matter NSI’s add additional terms on to the propagation

Hamiltonian which we can treat as a perturbation as we will assume that they are small

(εαβ . ∆21

∆31
). We will then use an identical method to that used in Appendix F, when

∆21 was treated as a perturbation. In this case we take the unperturbed Hamiltonian

to be the Hamiltonian in matter to first order in ∆21 (Ĥ
(0)+ Ĥ(1) as given by Eqs. (F.4)

and (F.12)) and the unperturbed mixing matrix to be the matrix which is first order in

∆21 (Eq. (F.18)).

The perturbation from matter NSI’s, in the flavour basis, is

Ĥfl
NSI = A











εee εeµ εeτ

εµe εµµ εµτ

ετe εµτ εττ











, (G.2)
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which must necessarily be Hermitian as the Hamiltonian must be Hermitian. Thus

the diagonal entries must be real whereas the off-diagonal entries can be complex with

possible CP violating phases. So we can rewrite this as

ĤNSI
fl = A











εee εeµe
±iφeµ εeτe

±iφeτ

εeµe
∓iφeµ εµµ εµτe

±iφµτ

εeτe
∓iφeτ εµτe

±iφµτ εττ











, (G.3)

where here the εαβ are real parameters which are the moduli of the NSI’s. So there are

nine parameters (six moduli and three phases) in the perturbation. To transform to the

matter basis, we use the relation

Ĥmat
NSI = Ū∓Ĥ

NSI
fl Ū †

∓. (G.4)

We will only consider the mixing matrix to zeroth order in ∆21, Ū∓ = Ū
(0)
∓ , as given

in Eq. (F.6) because ultimately, in the final probability, we shall only be keeping terms

which are second order in (θ13, ∆21, εαβ) so at this stage it is adequate to keep only

the perturbative terms which are first order in these quantities. For simplicity, we can

‘switch on’ one parameter at a time, setting all the others to zero, then add all the terms

together at the end. As an example, we shall consider the case when only εeτ 6= 0. In

this case the perturbation is (we shall suppress the subscripts eτ to simplify the notation

so that ε = εeτ and φ = φeτ)

ĤNSI
fl = Ū

(0)
∓ A











0 0 εe±iφ

0 0 0

εe∓iφ 0 0











(Ū
(0)
∓ )† (G.5)

= Aε











−2sθ̄∓cθ̄∓c23 cos(φ− δ) −cθ̄∓s23e±iφ c23(c
2
θ̄∓
e±iφ − s2

θ̄∓
e∓i(φ−2δ))

−cθ̄∓s23e∓iφ 0 −sθ̄∓s23e∓i(φ−δ)

c23(c
2
θ̄∓
e∓iφ − s2

θ̄∓
e±i(φ−2δ)) −sθ̄∓s23e±i(φ−δ) 2sθ̄∓cθ̄∓c23 cos(φ− δ)











.

We will again use Eq. (F.9) to find the corrections to the eigenvectors of the mixing

matrix, Eq. (F.18), to first order in ε. We will then be able to write a mixing matrix

which is first order both in ∆21 and in ε.

We will be calculating the transition probability for the process νe → νµ, up to

second order in the quantities (s13, ∆21, ε). We know from Eq. (2.8) that the oscillation
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probability is fourth order in the matrix elements; therefore it is sufficient to keep only

terms which are first order in (θ13, ∆21, ε) when calculating the corrections to the mixing

matrix. All the elements of ĤNSI
fl are already first order in ε, so for the denominator

of Eq. (F.9) we only need to include the leading order contribution of the eigenvectors

i.e. we only need Γ
(0)
j and can neglect Γ

(1)
j . Similarly, we can neglect factors ∼ s13 so

that B∓ ≃ ∆31 ∓ A. With these simplifications, we then have the following first-order

corrections to the eigenvectors, where the vectors V∆21
j denote the columns of the matrix

Eq. (F.18):

Vε
1 = vε12V

∆21
2 + vε13V

∆21
3 , (G.6a)

Vε
2 = vε21V

∆21
1 + vε23V

∆21
3 , (G.6b)

Vε
3 = vε31V

∆21
1 + vε32V

∆21
2 , (G.6c)

where

vε12 = −εcθ̄∓s23e∓iφ, (G.7a)

vε13 =
±Aεc2

θ̄∓
c23e

∓iφ

±A−∆31
, (G.7b)

vε21 = εcθ̄∓s23e
±iφ, (G.7c)

vε23 =
±Aεsθ̄∓s23e±i(φ−δ)

∆31
, (G.7d)

vε31 =
±Aεc2

θ̄∓
c23e

±iφ

∆31 ∓ A
, (G.7e)

vε32 =
∓Aεsθ̄∓s23e∓i(φ−δ)

∆31

. (G.7f)

Our mixing matrix in matter, to first order in ∆21 and ε, is then

Ū∓(∆21, ε) =











| | |
V∆21

1 V∆21
2 V∆21

3

| | |











+











| | |
Vε

1 Vε
2 Vε

3

| | |











. (G.8)
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Keeping only terms which are at most first order in sθ̄∓ and ∆21 the first term is

Ū∓(∆21) =











cθ̄∓ ∓ cθ̄∓
∆21s212

2A
sθ̄∓e

∓iδ

±∆21c23s212
2A

− sθ̄∓s23e
±iδ c23 cθ̄∓s23

∓∆21s23s212
2A

− sθ̄∓c23e
±iδ −s23 cθ̄∓c23











, (G.9)

and the second term, Ū∓(ε), will be proportional to ε. In other words we can write

[Ū∓(∆21, ε)]αj = [Ū∆21
∓ ]αj + vεjk[Ū

∆21
∓ ]αk. (G.10)

This will simplify the final step, which is to calculate the transition probability for

νe → νµ. In this situation it will be easier to start from the form of the probability

given in Eq. (D.2), with Uαβ replaced by the matrix Ū∓(∆21, ε), and Ej replaced with

the eigenvalues of Ū∓(∆21, ε) which we shall call Λj. These eigenvalues are the sum of

the eigenvalues of Ū∓(∆21), to first order in ∆21 (the sum of Eq. (F.8) and the diagonal

elements of Eq. (F.16)), which we shall call λj, and the perturbation (ĤNSI)jj:

λ1 = ±A +∆21s
2
12c

2
θ̄∓
, (G.11a)

λ2 = ∆21c
2
12, (G.11b)

λ3 = ∆31 +∆21s
2
12s

2
θ̄∓
, (G.11c)

Λ1 = ±A +∆21s
2
12c

2
θ̄∓

∓ 2Aεsθ̄∓cθ̄∓c23 cos(φ− δ), (G.11d)

Λ2 = ∆21c
2
12, (G.11e)

Λ3 = ∆31 +∆21s
2
12s

2
θ̄∓

± 2Aεsθ̄∓cθ̄∓c23 cos(φ− δ), (G.11f)

where we have used B∓ ≃ ∆31 ∓ A. If we call Ū∓(∆21, ε) simply Ũ for simplicity then

the transition probability is

Pνe→νµ(∆21, ε) = (Ũ∗
e1Ũµ1e

iΛ1L + Ũ∗
e2Ũµ2e

iΛ2L + Ũ∗
e3Ũµ3e

iΛ3L)×
(Ũe1Ũ

∗
µ1e

−iΛ1L + Ũe2Ũ
∗
µ2e

−iΛ2L + Ũe3Ũ
∗
µ3e

−iΛ3L). (G.12)

We have already calculated the probability in matter, to second order in ∆21, in the

absence of NSI’s - this is the standard oscillation probability given in Eq. (4.4). Therefore

we wish to calculate the additional terms ∼ ε. As we are working up to second order in

the small quantities, these will be terms ∼ εsθ̄∓, ∼ ε∆21 or ∼ ε2. Using Eq. (G.10) and
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calling Ū∆21
∓ simply U̇ , the relevant terms are

Pνe→νµ(ε) = 2Re[|U̇e1|2U̇∗
µ1(v

ε
12U̇µ2 + vε13U̇µ3)

+ |U̇µ2|2U̇∗
e2v

ε
21U̇e1

+ |U̇µ3|2U̇∗
e3v

ε
31U̇e1

+ U̇∗
e1U̇
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e1U̇

∗
µ3[U̇µ1v
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ε
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+ U̇µ2U̇
∗
µ3[U̇

∗
e2v

ε
31U̇e1 + U̇e3v

ε
21U̇e1]e

i(Λ2−Λ3)L]. (G.13)

We can use the same method to calculate the contributions from εmee, ε
m
eµ, ε

m
µµ, ε

m
µτ and

εmττ . We find that, to second order in θ13, ∆21 and ε, the only NSI parameters which

contribute to the golden channel are εmeµ and εmeτ , which contribute the terms

P ε
νe→νµ = 4εeµs213c23s

2
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, (G.14)

which is in agreement with the solutions obtained by Refs. [139] and [140] even though

we have used a different method.



Appendix H.

An algebraic treatment of

degeneracies

Future neutrino oscillation experiments seek to measure θ13, δ and the mass hierarchy.

In addition, we would like to measure other unknown quantities e.g. the quadrant of

θ23, and non-standard interactions. We need to consider how these unknown quantities

are correlated in order to establish how the measurement of one parameter affects the

measurement of another, and so that we can find solutions in the case that these correla-

tions destroy the experimental sensitivity. As an example, we will look at the correlation

between θ13 and δ. The observation of CP violation in the neutrino sector is one of the

main goals of a neutrino factory and related experiments, and so we need to ask how, if

θ13 is unknown, this will affect our sensitivity to CP violation. In other words, we need

to know how many values of (θ13, δ), in addition to the true values, which we will call

(θ̄13, δ̄), the data can be fitted to. In order to do this we will return once again to the

golden channel probability in matter, Eq. (4.4),

Pνe→νµ = s2213s
2
23

sin2
(

(∆31−A)L
2

)

(

1− A
∆31

)2

+ s213c13s212s223
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)
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2
− δ

)

+ c213s
2
212c

2
23

(

∆21

A

)2

sin2

(

AL

2

)

, (H.1)
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where A =
√
2GFne. We are interested only in the parameters θ13 and δ so let us rewrite

this equation more compactly as

Pνe→νµ = Xs2213 + Y s213 cos

(

∆31L

2
− δ

)

+ Z. (H.2)

We want to find s213 as a function of δ by solving

P (s213, δ) = P (s̄213, δ̄) (H.3)

→ Xs2213 + Y s213 cos

(

∆31L

2
− δ

)

+ Z = P (s̄213, δ̄)

→ s213 =
−Y
2X

cos

(

∆31L

2
− δ

)

±
√

Y 2

4X2
cos2

(

∆31L

2
− δ

)

+
1

X
(P (s̄213, δ̄)− Z)).

From this we see that it is possible to fit to any value of δ if there are no constraints on

θ13 - Eq. (H.3) is a continuous locus of points in the s213−δ plane. The accuracy to which

δ can be constrained is thus correlated to the accuracy with which θ13 is constrained,

if we have only a single channel and baseline. However, in all the experimental setups

we have considered in this thesis, we have assumed that there will be both neutrino

and anti-neutrino running. For anti-neutrinos we can obtain a similar expression to

Eq. (H.3) by exchanging A ↔ −A and δ ↔ −δ. The question then is whether the

neutrino and anti-neutrino curves intersect at more than one point? If they do, then

this means that there is at least one other pair of solutions (s213, δ), other than the true

solution, (s̄213, δ̄), and that it is impossible to determine which is the true solution if

we do not have additional information. If, however, the curves only intersect at a single

point (the true solution) then there are no degenerate solutions, and the combination of

neutrino and anti-neutrino data is sufficient to enable us to determine the true values of

θ13 and δ.

This method can also be applied to the other unknown parameters, for example to

see how the sign of ∆m2
31 or the octant of θ23 is correlated to θ13 and δ, and also to

examine the correlations between NSI and standard oscillation parameters.



Appendix I.

Simulation details

In this appendix we provide a summary of the AEDL (Abstract Experiment Definition

Language) files which were used with GLoBES to implement the simulations described

in Chapter 5 (Table I.1) and in Chapters 6 and 7 (Table I.2). We present the refer-

ence setups only; refer to the main text to obtain the details of each of the individual

simulations.

We will briefly describe the ‘background’ entries in the tables: for the super-beam,

‘νe → νe’ refers to the intrinsic beam background and the ‘wrong polarity’ background

refers to the anti-neutrino component of the neutrino beam, and neutrino component of

the anti-neutrino beam. For the LENF, the backgrounds on each channel are estimated

to arise primarily from charge misidentification and neutral-current events; the entries

are a fraction of the detected channel rates (channel rates including detector efficiencies)

which result in leptons of the wrong sign to that of the signal channel.
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Liquid argon Water Čerenkov Liquid scintillator

Flux from A. Longhin from A. Longhin from A. Longhin

Running time/ 2 years ν 2 years ν 2 years ν

polarity 8 years ν̄ 8 years ν̄ 8 years ν̄

Detector mass 100 kton 440 kton 50 kton

Energy threshold 0.1 GeV 0.1 GeV 1 GeV

Maximum energy 10 GeV 10 GeV 7 GeV

Bin widths/ GeV 0.15 for first bin 0.4,0.5,0.5, 0.05 for 1 < E < 3

0.25 for all others 0.5,1.0,7.0 0.1 for 3 < E < 5

0.25 for 5 < E < 7

Matter profile constant average constant average constant average

Baseline 2285 km 2285 km 2285 km

Energy resolution matrices from 0.007
√
E + 0.017 for µ± 0.05E for µ±

L. Esposito 0.026
√
E + 0.006 for e± 0.05E for e±

Cross-sections From Refs. [143, 144] From Refs. [143, 144] From Refs. [143, 144]

Efficiency for 80% 40% 90%

µ± disappearance

Background on 50% νe → νµ 40% νe → νµ 50% νe → νµ

µ± disappearance 5% wrong polarity 5% wrong polarity 5% wrong polarity

0.5% NC 5% NC 0.5% NC

Efficiency for 80% 40% 90%

e± appearance

Background on 50% νe → νe 40% νe → νe 50% νe → νe

e± appearance 5% wrong polarity 5% wrong polarity 5% wrong polarity

0.5% NC 5% NC 0.5% NC

Systematics on 5% 5% 5%

signal

Systematics on 5% 5% 5%

background

Table I.1.: Description of the super-beam reference setups used in Chapter 5.
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Totally active Liquid argon

scintillating detector

Flux built-in GLoBES flux built-in GLoBES flux

Muon energy 4.5 GeV 4.5 GeV

Muon decays/ 1.4× 1021 1.4× 1021

year/ polarity

Running time/ 10 (5) years 10 (5) years

polarity

Detector fiducial mass 20 kton 100 kton

Energy threshold 0.5 GeV 0.5 GeV

Maximum energy 6 GeV 6 GeV

Bin widths/ GeV 0.1,0.2,0.2,0.2,0.2,0.2,0.2, 0.1,0.2,0.2,0.2,0.2,0.2,0.2,

0.25,0.25,0.25,0.25,0.3,0.3, 0.25,0.25,0.25,0.25,0.3,0.3,

0.4,0.5,0.5,0.5,0.5 0.4,0.5,0.5,0.5,0.5

Matter profile constant average constant average

Baseline 1300 km 1300 km

Energy resolution 0.1Eν 0.05E for QE events

(0.1− 0.2)E for non-QE events

Cross-sections From Refs. [143, 144] From Refs. [143, 144]

Efficiency for 94% 80%

µ± (dis)appearance

Background on 1× 10−3 (1− 5)× 10−3

µ± (dis)appearance

Efficiency for 0 (Scenario 1) 80%

e± appearance 47% (Scenario 2)

Background on 0.01 0.01− 0.8

e± appearance

Systematics on 2% 2%

signal

Systematics on 2% 2%

background

Table I.2.: Description of the low-energy neutrino factory setups used in Chapters 6 and 7.
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