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SUMMARY 

Stomatal index was measured in leaves of first-year seedlings of sycamore (Acer pseudoplatanus 

L.) transplanted into woodland. Leaves of seedlings growing at high density exhibited a lower stomatal 

index than those of seedlings growing at low density (P<0.002). Stomatal index was shown to be 

responsive to light climate and soil moisture. Seedlings at high density had higher leaf-weight ratios 

(P<0.05) and lower root:shoot ratios (P<0.05). The adaptive significance of these differences is discussed 

in relation to sycamore's shade-tolerance. 

A survivorship study of first-year sycamore seedlings showed that seedling mortality was density

depenJent but not distance-dependent. Mortalities due to fungal infection and wilt were particularly high 

and showed strong density-dependence. The relative importance of density- and distance-dependent 

mortality in recruitment processes in temperate and tropical forests is discussed. 



INTRODUCTION 

The sycamore (Acer pseudoplatanus L.) is a naturalized deciduous tree with remarkably successful 

natural regeneration. It is often considered to be an alien weed but its natural regeneration has been 

exploited by forestry. Its ecology is reviewed by Jones (1945) and this has been updated by Grime et al. 

(1988). The sycamore has been the subject of numerous studies for many decades, and is still being 

investigated. Recently, physiological mechanisms that contribute to the shade tolerance of sycamore 

seedlings have been proposed (Taylor and Davies 1985, 1986a, 1986b, 1988). The occurrence of 

abundant sycamore seedlings beneath a woodland canopy may be explained by sycamore's ability to 

maintain loosened cell walls and growth for limited periods in the dark. The common occurrence of 

sycamore in wetter areas (Pigott 1984) correlates with sycamore leaves exhibiting high cell wall 

extensibility and high turgor at the same time, allowing rapid growth. Other recent studies in plant 

physiology have investigated the intluencc of environmental parameters on stomatal differentiat,on in 
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leaves (Schoch eta/. 1980). A study by Ferris (1991) dcmonstrntcd that the stomatal index of leaves of 

sycamore seedlings responded to the environmental parameters of light intensity and soil moisture, these 

conditions being simulated in greenhouse experiments. It is important to determine whether this 

response occurs in th<" field where other envircumental parameters are more variable compared to a 

greenhouse environment. Therefore the stomaral index response has been monitored for seedlings of 

Acer pseudop!atanus transplanted into the field. 

Stomatal index is essential in confirming the validity of stomatal frequency as an indicator that 

stomatal differentiatinn rates h<~ve been modified in response to a change in one or more environmental 

parameters. Stomat:;l Jt>nsity (SD) is influenced direl'lly by leaf expansion, in particular that resulting 

from the expansion u' epidermal cells. A leaf that bas its expansion restricted by factors such as light 

and water stress but b:;s not otherwise altered its r:lle of stomatal differentiation will have an increased 

stom;;tal frequency simply as a result of the decreased space between stonwta. To conclude that the 

variation in SD comp:;red to another environment is due to a change in stomatal differentiation might be 

wrong. If the stomat:il index is determined for such a leaf the differences in SD will be seen to have been 

caused by a reduction in the size of cpidcrmalcclls alone, and it can be concluded that the leaf is indeed 

showing no change in rates of stomatal difkrcntiation. When a leaf has a stomatal frequency that is the 



result of a genuine change in stomatal differentiation rates then the stomatal index will show a similar 

change to stomatal frequency. This is illustrated by a study of the response of stomatal frequency to 

raised COz pressure (Woodward & Bazzaz 1988), where the observation of raised stomatal frequency 

with decreased COz pressure was confirmed by a similar raise in stomatal index, allowing the 

conclusion to be drawn that the raise in SD had indeed been caused by a change in rates of stomatal 

differentiation. 

Any study of the influence of environment on stomatal differentiation should involve either the 

determination of SI or the determination of both SO and SI. However, when immature leaves are being 

assessed the SD may be inaccurate (Larsen 1968). Stomatal index remains constant as a leaf expands, 

but the stomatal density varies with the relative expansion of the epidermal cells. In addition the size of 

stomata increases as the leaf expands, so the immature leaf cannot be used to assess guard cell kngth, 

which is an indicator of leaf adaptation to environmental parameters. Therefore only SI was detennined 

for the leaves studied. 

Stomatal index is determined very early on in the lifetime of any given leaf. Studies by Schoch et 

a!. (1980) on Vigna sinensis indicate that the Sl of new leaves is determined by the light levels incident 

on the other mature leaves during the six days r:ior to the expansion of the new leaf. Therefore in the 

present study only the third and fourth leaves! :;1\·c:s were studied to ensure that the their stomatal 

indices were inlluenccd by the woodland envirunmcnt as n.:corded, and not intluenced by previous 

conditions in the greenhouse. 
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The production llfa large nun1her ofsteds mo~t years by adult sycamores results in profuse natural 

regeneration in sycamore \\"Clods. This makes S)Tamore woodlands suitable silts for studying recruitment 

processes. There has been much study of the inllu.:nce of the parent tree on its progeny (Janzen 1970; 

Cia rk & Cia rk 1984), involving investigations of tbL: impact of a variety of distance-responsive and 

density responsive agents on the progeny. The studies attempt to determine whether survival of progeny 

is related to distance from the parent tree, and if so why.l'vlany of these studies are on isolated seed-trees 

in tropical forests, where the distamT mechanism is simple. The study in Moorhouse Wood is an 

investiga lion of the survivorship of syca n1orL: st:t:dli ngs, <1nd in particular relative to distance from the 

parent tree. Due to the woodland being reprL:sent:ltive of a temperate forest the trees are closely spaced. 
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In Moorhouse Wood the adult sycamores are particularly closely spaced, and as a result their seed

shadows overlap. Since no isolated adult sycamores could be found with a reasonable level of seedlings 

beneath, the methods used in tropical forests could not be used. Instead a number of distance-scores have 

been devised which take into account a seedling's proximity to not one but many parent trees. Three 

scores are used; one to assess the proximity to a parent seed-tree, and two to assess the proximity to 

parent canopies. The tirst score, the seed-tree distance-score, is the cumulative sum of the reciprocals of 

the distances between a seedling and all parent trees within 25-m. The point of reference for seedlings is 

the centre of their quadrat. The other scores, canopy distance-scores, are based on the seed-tree score 

weighted by the girth of the parent trees. This is based on the assumption that tree girth and canopy size 

are positively correlated. Two canopy scores are calculated, one ignoring all trees over 15-m from the 

quadrat in question, referred to as the canopy (15m) distance-score, the other having a cutoff at 25m, 

referred to as the canopy (25m) distance-score. The 15m score is used to assess the intluence of :1gents 

that range from the canopy for a distance up to 15m such as larvae. The 25m score is used to assess the 

general effect the canopy has ovn a wider area on factors such as light climate and soil moisture, and as 

a measure of the proximity to a seed source, tree~ of larger girth and canopy being assumed to produce 

more seeds than trees of smaller girth and cano:·y. 

A survivorship study was carrid out to d .:tnmine the causes of seedling mortality in the wood. 

Mortality in seedlings is usually attributed to wilt, fungal infection or predation by animals. Predation in 

the form of defoliation by invertebrates ranging from the p:m:nt tree was assessed sepnratcly, to 

determine the relative importam·c of predators from and outside thc canopy. Predators outside the 

canopy were assumed to be voles and slugs but only the latter were observed. There are numerous banks 

in the wood, cspel·ially along the northern cdgc of the study :1rca, and much evidence of tunnels in and 

around these banks and through<.Jllt the wood in gcnnal. The large numbcr of rodents in Durham 

woodlands has been demonstrated by trap studic~ (Ashby llJ59), and this is assumed to be indicative of 

the potential impact of thcsc prcdators today. 
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MATERIALS AND METHODS 

Study sites 

Hollingside Wood (NZ275405) is a deciduous woodland in Durham. The major tree species include 

sycamore (Acer pseudoplatanus), beech (Fagus sylvatica) and Scots pine (Pinus sylvestris). The 

transplantation study was conducted on a south-east facing slope in a stand of almost pure mature 

sycamore, with scattered individuals of mature beech and immature horse-chestnut (Aesculeus 

hippocastanum). The stand contains very little natural regeneration of tree species. The ground flora at 

the time of the study consisted of mature bluebells (Endymion non-scripws) throughout the site, and 

scattered patches of Rubus. 

Moorhouse Wood (NZ310460) is a deciduous woodland 5 miles north of Durham. The most 

abundant tree species are oak (Quercus), birch (Bewla), hawthorn (Crataegus) and beech (Fagt.s). The 

natural regeneration study was conduch.:d in an area of the wood containing mature sycamore trees. One 

side of the study area was bounded by the knee on the north side of the wood. The woodland in the 

study area is very uneven-aged with much natural regeneration of all tree species, especially sycamore. 

The ground flora is well-developed over most of the site but some areas lack both a groumi flora and a 

litter layer. Tbc ground !lora consists variably o: ivy (Hedera helix), Brachypodium sylvaticum, Rubus, 

Oxalis, and stitchwort (Stella ria lwlostea). TIL n: is much cvidence of rodent activity in the study area, 

there being numcrous burrows in the woodland lloor and hanks, probably of voles and rabbits. 

I. Transplanted population 

The source of plant material for the transplanted population was natural regeneration of sycamore 

from one mature garden tree in Gilesgatc Moor. Emerging seedlings with only the cotyledons and in 

some cases the first true lcaf-pair wcre uprooted with an intact rootball and potted into 7.5 em pots 

containing ICI potting and bedding compost (medium grade sphagnum peat). The plants were 

established and grown in an unheated greenhouse for four weeks. Compost was kept moist and plants 

shaded from intense sunlight. The llucnce rate of photosynthetically active-radiation (PAR) in the 

greenhouse was approximately IOU ~tmoiin-2 s-1. Two weeks prior to transplantation into the field, 

twelve groups of five seedlings were repotted into 18.5 em pots with the same compost. 

The plants were installed in Hollingside Wood on June 1 in a pure stand of mature sycamore 

(Figure Ia). At each point two metres from the c;tst and west side of six mature syc-amores one pot of 
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five seedlings and three single potted seedlings were buried flush with the soil. The latter were the 

isolated treatment plants. On June 10 the lengths of all seedlings' leaves were recorded, and light levels 

(PAR and R/FR) Scm above the top of the seedlings was measured with SKYE lightmeters from 3 to 

4pm under a clear sky. 

Measurement of leaf characteristics 

Plants were removed from the wood on July 5. Lengths of all seedlings' leaves, original and new 

were measured, and growth rates calculated. Stomatal peels were taken from the third and fourth leaf-

pairs for all the single plants and from three of the grouped-plants. One thin 0.5 em diameter circle of 

clear nail vamish was applied to the abaxial side of each leaf, between the major and secondary veins, 

left to dry for 15 minutes and removed with Sellotape. Five fields of view of0.048875 mm2 (x400 

magnification) were randomly selected from each peel, centred on intervenal tissue and avoiding 

vascular tissue. Stomatal number and epidermal number was counted. Stomatal density mm-2 and 

stomatal index were calculated for each leaf: 

Stomatal density mm-2 = mc<Jll of stomatal counts offive fields of view x (110.048875) 

Stomatal index per= number of stomata per field of view 
field of view number r :·stomata + number of epidermal cells per field of view 

Stomatal index per leaf= me 11l of stomatal indices of five fields of view 

Fresh and dry \veights of leaves, stems and roots were determined for all surviving seedlings. E.1ch 

leaf was cut from the stem at the base of the petiole, and stems cut from the roots at the soil surface. 

Compost was washed from the roots. All plant p;1rts were immediately weighed fresh. Leaves were 

photocopied and leaf area estimated: 

Le;il" area= maximum width x kngth (from petiole insertion to tip) x 0.73 

All plant parts were dried to constant weight at" SO oc for at least 24 hours and weighed again. Dry 

weight ratios, root:shoot ratios and dry: fresh wt:ight ratios were calculated for each seedling: 

Leaf-weight ratio= WL I WT 
Stem-weight ratio = IV B I WT 
Root-weight ratio= WR I WT 
Root:shoot ratio= WR I (WL +IVa 

WL, w8 , WR and IVJ<Ife the leaf, sll:m, root and total plant dry weights, respectively. 



Measurement of soil moisture 

Soil samples of approximately 15 g were taken from each pot and from the woodland soil adjacent 

to each pot. Soil was dried at 105 °C for 12 hours, and soil moisture on a wet basis calculated from the 

equation: 

Soil moisture= mass of fresh soil sample- mass of oven drv soil sample 
mass of fresh soil sample 

2. Field population 

In May 1992, the density of sycamore seedlings and percent:1ge cover of ground layer species was 

measured in 64 systematically spaced 1 m2 quadral5 marked out every 5-m in a rectangular grid 50-m 

by 35-Hl in Moorhouse Wood (Fif:,'l.Jre !b). In addition canopy composition above each quadrat and the 

percentage of ground covered by leaf litter were abo recorded in each quadrat. Light levels (PA.~ and 

R!FR) were measured at seedling height in cad1 quadrat on June 16 from 3 to 4pm under a clear sky. 

Seedling survi\·orship was determined from :'v!ay l) to July 18 at ten day intervals. At the first 

census the location of all sycamore seedlings in t:ach quadrat was recorded on graph paper, and each 

seedling marked with a numbered toothpick. Tht: height (from base of stem to growing tip of shoot) and 

leaf-lengths (true-lcaws only) of all Sl'.cdlings \\IS measured. At subsequent censuses, dead seedlings 

were recorded as ha\·ing either wilted, rolled, LiS;ippean.:d or been bitten by an animal (incisor marks 

were often evident). The height and leaf-lengths of survivors was remcasurcd. Newly germinated 

seedlings were marked and measured, and their location recorded. 

The location of all adult sycamon:s (n= 12) in <Jnd aruund the grid was recorded, and the total girth 

(in metres) at breast-height (1.3-m) nH:astJred li1r ciJL'h tree. The dis!;Jnce (in metres) from each quadrat 

to each adult tree wa~ L·akui;Jted. Three adult-proximity scores were calculated for each quadrat: 

Seed-tree distance-score = [I 1/ ( dist;JnL-c to treen) ri 
for n=l..l2 

If the distance to treen is greater than 25-m it is not included in the calculation. This score is a 
measure of the ab:;o!utc proximity or the quadrat tu adult trees. 

Canopy (15m) distance-score = [ 2: 1/ ((distance to trcen) X ( 1/ treell girth)) r1 

for n=l..I2 
If the distance to trcen is greater than 15-m it is not included in the calcui;Jtion. 

Canopy (25m) distance-score = [ 2: 1/ ((distance to trcen) X ( 1/ treen girth)) r1 

forn=I..I2 
If the distance to trcen is greater than 25-m it is not included in the calculation. 
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RESULTS 

Stomatal Index 

Table 1 sununarises the effect of competition on stomatal index (SI) for leaves 3 and 4, and the 

influence of pot soil moisture. Paired !-tests indicate significant differences in SI between the two levels 

of competition for both leaves, SI being lower in the competing plants than the isolated plants. Further 

paired t-tests indicate no significant difference between leaves 3 and 4, ie no pattern going up the stem 

in either of the treatments. A paired t-test indicates a significant difference between the moisture levels 

in the two treatments, but of only approximately 2.5%. 

Figure 2 illustrates the correlation between Sl and soil moisture summarised in Table 1. SI is 

signifi(;antly reduced (P<0.1 for isolated plants; P<0.05 for competing pl;mts) by a rise in soil moisture 

within the treatments group. 

Table 1: Summary of mean stomatal index and mean pot soil moisture at each treatment. 

Treatment SI 3rd leaf SI 4th lellf Soil moisture_(%) 

Isolllted 0.081306 0.0894 81.29 
2x s.e. 0.003512 0.0042 0.6537 
Competing 0.062507 0.0682 78.78 
2x s.e. 0.002574 OJJ048 0.2040 

P< 0.002 0.001 0.01 

Mellns of SI and 2x s.e.:3rd leaf, n=10 rep! it ~1tcs per treatment. 4th leaf n=4 plants per trelltment. Mean 
pot soil moisture: n= 10 replicates. 
Dllta for individual replicates and treatmen:s arc listed in Appendix 1. 

There are significant differences in the allocation of dry matter to plant organs between the two 

treatments. Allocation may be expressed in three ways, weight ratios, proportions, and individual ratios 

(Table 2). 
Table 2: Summary of allocation ratios at the two treatnH.:nts, and results of paired t-tesl<;. 

Ratio L\\R SWR RWR Lprop Sprop RSR L:R L:S R:S 

Treatment 

Isolated 0.5110 0.1787 0.3103 1.1306 0.2232 0.4908 1.8609 3.1024 1.8290 
s.e. 0.0?.37 0.0122 0.0166 0.0730 0.0212 0.0590 0.1260 0.2562 0.1085 

Competing 0.57 -l1 0.1814 0.2445 1.4117 0.2268 0.3340 2.5623 3.4109 1.4743 

s.e. 0.0085 0.00lJ9 U.0096 U.U387 O.U166 0.0188 0.1068 0.1649 0.1252 

P< 0.05 NS ().()! 0.()1 NS 0.05 0.002 NS 0.05 

LWR=Ieaf weight ratio; SWR=stem weight ratio; RWR=root weight ratio; Lprop=leat I (stem+ root); 
Sprop=stem I (leaf+ root); RSR=root:shoot ratio; L:R=leaf:root ratio; L:S=leaf:stem ratio; R:S=root:stem 
ratio. Means of ratios and s.e.: n= 10 replicates per treatment. 
Data for individual replicates and treatments is shown in Appendix 2. 
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Figure 2: Response of stomatal index to pot soil moisture, for the two competition treatments. 
Graph shows means and 2x s.e. of SI lor each replicate. Data for the competing treatment are of 12 
replicates; data for the isolated treatment are or 10 replicates. 

A higher level of competition results in a <gnificantly higher allocation of dry matter to leaves 

(higher LWR, Lprop) and lower allocation tor ;ot:; (lower RWR, RSR). This is confirmed by the ratio 

L:R, higher for the competing pl:1nts. When stem is considered, there is no significant difference in the 
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L:S ratio, but there is a lower R:S ratio in the competing plants, indicating that with respect to stem, the 

leaf is given priority to resources over the root in the competing plants. 

Table 3 shows the correlations between the total dry weights of plants and the various allocation 

ratios. 

Table 3: Summary of the regression of the allocation ratios against total pbnt dry weight. 

LWR SWR RWR Lprop Sprop RSR L:R L:S R:S 

I~< 0.3303 0.0000 0.3685 0.3041 0.0006 0.3347 0.3251 0.0067 0.2941 
0.002 NS 0.002 0.01 NS 0.002 0.01 NS 0.02 

Regression: n=73 plants. 

Total plant dry \\eight is correlated positively with LWR, Lprop and L:R ratio and negatively with 

RWR, RSR and R:S ratio. The L:S ratio docs not show any significant pattern with plant dry weight, nor 

do the ratios Sprop or SWR. 
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The ratios that are significantly different between treatments also show a significant correlation 

with total dry weight, and the converse holds for the ratios showing no significant differences. This 

suggests that total dry weight is the causal agent behind the differences in ratios. Total plant dry weights 

are shown inTable 4. 

Table 4: Means of total plant dry weight-; in each treatment. 

Treatment Mean total plant dry wei.ght (g) 
Isolated 0.2965 
2x s.e. 0.0441 
Competing 0.2961 
2x s.e. 0.1112 

Means and s.e.: Isolated treatment, n=23 plants; Competing treatment, n=50 plants. 
Data for each treatment is given in Appendix 2. 

A paired t-test finds no significant di!Terences in total plant dry weight between the treatments. 

However, grouping of the mean total dry weights may obscure the individual differences betweer: pairs 

of results. Appendix 2 lists the total dry weights for each site and treatment. In seven of the 11 r:airs the 

tot a I dry \\·eights of the con1peti ng pia nts exceeds that or the isola ted pia nts, suggesting that pia nt weight 

rather than any difference between tl11.: treatments is the cause !'or the difference in ratios. 

There is no evidence of a correlation between pot soil moisture and any of the ratios, indicating that 

the higher soil moisture or the isolated treatme:.t pots is not a cause of dil'ferences in ratios. 

There is no evidcm-e of secondary thickening as determined from dry:fresh weight ratios, of roots, 

stems or the total plant as pl;1nts mature. (Tabk 5). 

Table 5: Summary of regression or dry: fresh weight ratios for roots, stems and total plant against 
tot a I pia nt dry weight. 

roots 
0.1453 

NS 
Regression: n=73 plants. 

stem 
0.0134 

NS 

total 1lant 
0.1007 

NS 

The dit'ferena: in light intensity and spectral quality between replicates (Appendix 3) was too small 

for the influence of light levels to be determined. 

Survivorship studv 

Density 



623 seedlings were counted at the first census and 17 had germinated by subsequent censuses. Of 

these 513 had died by the final census, leaving 127 survivors. Initial seedling density ranged from 0 to 

70m-2, final density from 0 to 16m-2 (Figure 3). Both frequency distributions are significantly 

different (P<O.OOl) from a Poisson distribution indicating the non-randomness of seedling density. 
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Figure 3: Frequency distributions of seedling den~ity in Moorhouse Wood. (a) Census 1; (b) Census 7. 
Density classes: O=none; 5=1-5; 10=6-10; 15=11-15 etc. 
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The initial pattern of seedling distribution" ith respect to 1x1rent trees is leptokurtic, most seedlings 

falling in a circle around the pan.:nttrccs (Figurt: -la). The final census shows a more even distribution of 

seedlings (Figure 4b). Distance in Figure 4 is Sl"L'd-trcc distance. 

Seedling densities in each quadrat are giwn in Table 6. The survival of the population as a whole 

is shown in Figure 5. Two typiL·al survivorship curves arc shown in Figure 6 on a log scale. Survivorship 

curves of populations that have not reached zno density can be compared to determine whether there is 

a difference in death rates between the populations, using a statistic such as Peto & Peto's logrank test 

(Pyke 1988). (Populations that have reached zero arc compared by the Mann-Whitney Utest). The 
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logrank test finds no significant difference in death rates between the numerically similar populations in 

quadrats (25,1) and (20,5). This statistic has not been used to compare each survivorship curve with all 

others, since this is tedious and probably statistically unwise. Instead the death rate in each quadrat has 
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Figure 4: The change in seedling density with distance from parent trees, for quadrats in Moorhouse 
Wood. (a) initial density; (b) final density. Density in seedlings m -2. 

been estimated from the initial slope or dedine or each curve. This was determined by fitting a 

regression equation to the slope between the t'irst iind rourth census data points of log survivorship curves 

such as those shown in Figure 6. 

Initial density is highly eorreliited (P<tl.OU!) with slope of decline (Figure 7), suggesting density-

dependent mortality. The risk of mortality of a seedling is directly intlueneed by their proximity to a 

neighbouring seedling. A linear regression equation fitted to the data indicates a zero slope at an initial 

density of 1.9 seedlings m-2. 



Slope plotted against seed-tree distance (Figure 8) shows a distribution similar to that of Figure 4, 

of initial density versus seed-tree distance. The higher risk of mortality nearer the parent tree is due to 

density and slope being superimposed on the distance axis. 
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Figure 5: Survivorship curve for the total sample population of sycamore seedlings in Moorhouse 
Wood. Population size plotted on a log scale. Symbols:x =population size; 0 =cumulative 
percentage mortality. 
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Figure 6: Survivorship curves of high and low density quadrat populations in Moorhouse Wood. 
Symbols: x =quadrat (20,5); 0 =quadrat (15,16). 

The mortality of seedlings can abo be expressed by the percentage survival of seedlings in each 

quadrat but this is not as satisfactory as slope of decline, since only initial and final density are 

considered, and seedling deaths at low density are exaggerated when expressed on a percentage basis. 

However ultimately it is not the rate of death but the magnitudc of death that determines the future 

14 
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distribution of seedlings, and percentage survival is a suitable measure of this. Figure 9 shows the 

percentage survival at different densities. There is a trend of increasing survival at lower density, which 
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Figure 7: 1l1e rei:Jtionship between seedling mortality rate :1nd initial seedling density. (Rate a:· 
mortality or slope of decline of population estimated from the gradient of survivorship curves). 
Regression line equation: y = -ll.34 + O.lSx; r2 = 0.93 
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Figure 8: The change in mortality rate with dist:lllLT from the parent trees. Rate of mortality as for 
Figure 7. Regression line equation: y = 5.1 - 2.5x; r2 = 0.15 

would be expected further from a parent tree. This is confirmed in Figure 10, survival being lower closer 

to a tree, but the pattern is obscured by the quadr;ils in which there was low initial density close to a 

parent tree. This is probably because of overlapping seed-shadows. 



16 

The totals that make up percentage survival, initial and final density are shown regressed in Figure 
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Figure 9: The relationship between seedling survival and initial density. 
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Figure 10: The relationship between seedling survival and distance from the parent trees. 

1 LIt indicates that there is a maximum density \\'hich can be maintained (approxinwtely 10 seedlings 

m·2 ). Figure 12 sho-.'-S the total number of death~ regressed ag:~inst initial density. If seedling mortality 

fitted a model whereby densities were reduced or m:~int:~ined at a "target" density such as 10 m·2 purely 

on the basis of the ditlerence between the initial :~nd t:~rgd density, then these data would fit a straight 

line with the equation y = x- 10, (the dotted line in Figure 12). The linear regression of Figure 12 



suggests that the "target" density is 1.8 seedlings m-2. This confinns the estimate of a stable density of 

1.9 determined from Figure 7, and the final density centred around approximately 2 seedlings m-2 in 

Figure 4b. 
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Figure 11: The relationship between final seedling density and initial density. 
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Figure 12: The relationship between initial seedling density and totals deaths. Regression line 
equation: y = -1.62 = 0.92r: r2=0.95 ;dolled line has equationy = x- 10 

There is no significant correlation between the percentage vegetation cover in the quadrat and 
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percentage survival of seedlings, suggesting the seedlings can tolerate high levels of competition (Figure 

13). 
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Figure 13: The relationship between seedling surviv:~l and percentage vegetation cover of the q~adrat. 
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Table 6: Number of seedlings in each quadrat at each census. Quadrat coordinates referred to in the text 
are in the fonn (north side, east side). Dates of each census:(!) 16 May; (2) 26 May; (3) 6 June; (4) 16 
June; (5) 26 June; (6) 8 Jul ; (7) 18 July. 

North coordinate of quadrat 
East Census 0 5 10 15 20 25 30 35 40 45 

coordinate 

1 3 14 27 47 50 66 58 11 6 10 
2 2 11 27 47 46 62 54 10 6 10 
3 0 1 17 32 23 31 40 1 6 10 

1 4 0 0 7 11 6 12 31 0 4 10 
5 () 0 () I 2 4 21 () 4 9 
6 () () () 1 2 2 16 0 4 9 
7 () () () () 2 2 16 () 4 9 

1 1 I3 I2 22 70 40 19 5 8 2 
2 1 11 12 18 68 41 18 5 7 2 
3 () () 9 13 38 39 16 4 7 2 

" 4 0 0 7 4 14 3() 14 3 7 2 -
5 0 0 4 2 4 20 13 2 6 2 
6 0 () 4 1 2 15 13 1 6 2 
7 () 0 4 0 2 15 13 0 6 2 

1 () 3 2 12 11 11 5 5 2 I 
2 0 3 2 10 12 11 5 5 2 I 
3 () 3 1 9 12 9 4 3 2 0 

I1 4 0 3 () 5 9 ~ (_ 4 2 2 0 
5 0 3 () 3 6 7 3 1 2 0 
6 0 3 () 2 6 6 3 1 2 0 
7 () 3 () 2 5 6 3 1 2 0 

1 0 0 0 5 2 8 3 3 2 1 
2 () () () 4 2 R (_ 3 2 2 I 

3 0 () 0 4 2 5 2 1 2 1 

I6 4 () 0 0 4 2 2 1 0 2 1 

5 0 0 0 3 2 2 1 0 2 1 
6 0 0 () 3 2 2 1 0 2 I 
7 0 0 0 3 2 2 1 0 2 I 

1 () 0 0 1 2 6 0 3 0 6 
2 0 () 0 1 1 6 0 2 0 6 
3 () 0 () () 1 4 {) 2 0 6 

21 4 {) () () 0 1 1 0 0 0 5 
5 0 0 () () 1 1 0 0 0 4 

6 0 0 () 0 1 1 () 0 0 4 
7 () () () () 1 1 () () 0 4 

1 0 () 0 1 2 5 0 0 8 15 

2 0 () () () 1 5 0 0 3 15 
3 () () () 0 1 3 0 0 3 I3 

26 4 () () () () 1 1 0 0 2 13 
5 0 () () {) () () 0 0 2 10 
6 0 () () () () () 0 () 2 IO 
7 0 () () () () () () 0 1 10 

1 {) 0 3 11 

2 () 0 2 7 

3 0 0 2 4 

31 4 0 0 2 2 

5 0 0 2 2 

6 0 0 1 1 
7 0 0 1 0 



Causes of mortality 

The causes of mortality between the censuses are summarised in Table 7. 

Table 7: Sununary of the number of seedlings dying from each cause between each census. 

Census Cause of mortality 
interval wilted gone rotten animal Total 

1-2 22 23 5 9 59 
2-3 28 45 105 15 193 
3-4 89 33 8 23 153 
4-5 68 5 0 10 83 
5-6 13 5 0 2 20 
6-7 4 0 0 1 5 

Total 224 111 118 60 513 

Figure 14 illustrates the density dependent nature of each mortality, fungal infection and wilt 

showing this to a greater extent than the other causes. 
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Figure 14: The relationship between seedling density and level of mortality from each cause. Seedling 
density classes: a, 1-9; b, 10-19; l", 20-29; d, 30-39; e, 40-49; r, 50-59; g, 60+. 
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Figure 15 shm\·s the number of deaths plotted on a distanee axis, using seed-tree distance. It shows 

a similar distribution to those of initial density (Figure 4a) and slope of decline (Figure 7). 

The percentage of seedlings per quadrat dying from fungal infcetion or wilt are shown regressed 

against seed-tree distance in Figun.: 16. There is only a weakly significant correlation (P<O.l) for rotting 
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and no significant correlation for wilt. There arc no significant correlations between the percentage of 

seedlings dying from animal or unknown ("gone") causes and seed-tree distance. There is no correlation 

between light levels and the percentage of seedlings dying from any cause. (Light levels at each quadrat 

are listed in Appendix 5). 
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Figure 15: The relationship between mnrt;,;ity and distance from parent trees. Number of deaths from 
each cause at each distance-score class. Distance-score classes are: 1, 0-1; 2, 1.1 -2; 3, 2.1-3; 4, 3.1-4; 
5, 4.1-5; 6, 5.1-6. 
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Figure 16: The relationship between deaths from fungal infection and wilting, and distance from 
parent trees. Symbols: 0 = rotten; x =wilted. 
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Figure 17: Influence of invertebrate leaf damage on seedling morta Jity. Top (a): relationship between 
mean mortality rate of seedlings and percentage leaf damage; Centre (b): frequency distribution of 
levels of leaf damage in all seedlings; Boaom (c) : relationship between leaf damage and cause of 
seedling death. 

The influence of leaf damage apparently caused by invertebrates is shown in Figure 17. Mortality-

rate (Figure 17a) suggest that plants receiving least damage are most likely to die, but this is simply 
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because there are more undamaged leaves than damaged, as shown in Figure 17b. There is no indication 
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Figure 18: The influence of invcrtcbrall' leaf damage. (;r) The relationship between the number of 
seedlings defoliated per quadr;rt and initial seedling density; (b) The relationship between mean leaf 
damage per seedling and seedling density; (c) The change in mcan dam;rge per seedling with distance 
from parent trees; (d) The change in the pcrccnt;rgc of seedlings defoliated per quadrat with distance 
from parent trees. 
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that an increase in leaf d;1mage increases the probability of dying from rot or wilt (Figure 17c). The only 

indication of multiple causes of mortality in the whole study is of seedlings weakened by fungal infection 

subsequently dying of wilt. This suggests that the various causes of mortality are compensatory and 

unrelated to leaf damage. If the probability of de;rth for a particular seedling is high then the seedling 

will die of the first mortillity c;ruse th;rt arises, which will be random due to the unpredictability of 

weather and predators. 

Since invertebrate damage has been demonstrated to be of little significance, (Figure 17c), the 

distribution of invertebrate damage is not of particular interest, but since it may assume relevance in 

other situations it is therefore now considered. The distribution of invertebrate leaf-damage is shown in 

Figure 18. There is evidence of density-dependence in tenns of the number of seedlings attacked or left 
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unharmed per quadrat (Figure !~a). When the mean damage per seedling per quadrat is determined the 

pattern is less dear. Figure 1~b shows the mean damage per seedling per quadrat regressed against 

initial density, and Figure 18c against canopy (15m) distance-score. Neither of the regressions are 

significant, but the general indication is th;tt me;tn seedling damage is greater closer to the tree. The lack 

of a clear pattern in Figures 1~b and l~c is due to mean seedling damage per quadrat being an 

unsatisfactory summary of invertebrate damage in the quadrat. An additional reason is suggested by a 

plot of percentage of seed! i ngs dam;tgt:d per quadrat aga ins! canopy (15m) distance-score (Figure 18d). 

This shows that a high percentage of seedlings are damaged at all distances from the canopy. This 

confirms a suspicion that seedlings arc predated by invertebrates falling from canopies other than 

sycamore, e.g. oak and hawthorn. This u,uJd rt:sult in there being no particular pattern of the percentage 

damage versus distance from the parent tn:e, but the obvious increase in percentage damage close to the 

adult indicates that there is some distancc-dcpendcncc.Jt is interesting that this is the only potential 

mortality factor to show distance dcpcnc.lt:n. e, but has no realised impact on mortality. 
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Figure 19: The influenct: of primary kaf length on seedling survival: (a) Frequency distribution of leaf 
lengths at census 1; (b) Frequency distribution of leaf lengths of survivors at census 7. 

The influence of primary leaf length on seedling survival is shown in Figure 19. The initial leaf 

lengths of the 623 seedlings in census 1 arc shown in Figure 19a, and those of the 127 survivors in 

Figure 19b. It should be noted that the 0-cm category in Figure 19b includes both those seedlings that 

had no primary leaves and those whose primary leaves were bitten off. Also the length of longer leaves 

has been reduced by herbivory. Increases due to growth should also be taken into account, but even when 

this is considered there is a clear indication that the seedlings with bigger leaves survive better. No 

attempt has been made to compare these distributions because the seedlings most probably bad different 
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germination dates and therefore different opportunities for leaf grcn\1h, and because of the complications 

described above. 

The inlluence of leaf length on susn:ptibility to the various causes of mortality is shown in Figure 

20. Again no a !tempt has been made to cktermine the significa nee of the shapes of these distributions 

since they are the cumulative result of dc:1tbs over the whole season, but it can be concluded that all the 

mortalities have their greatest effect on the U-l·m class (seedlings with only the cotyledons and no first 

leaf-pair, or a bitten off leaf-pair). Fungal infection has most impact on smaller leaves and wilt mostly 

affects leaves of intermediate size, but this is a consequence of the frequency distributions existing at the 

time most of those mortalities occurred. \'lost rot occurred when the leaves were small (hence the 

distribution of Figure 20h), leaving a population of intermediate-sized leaves which were subsequently 

exposed to drier conditions, hence thL· l:1rgc number of intermediate-sized leaves dying from wilt (Figure 

20a). 
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Figure 20: The relationship between leaf length and cause of mortality: Frequency distribution of leaf 
lengths of seedlings dying from: (a) wilt; (b) fungal infection; (c) unknown cause; (d) animal predation. 

The influence of animals (Figure 20d) has been analysed further in an attempt to overcome the 

problems described above. The mean length of primary leaves at the time of each predation was 
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determined, and the length of the predated leaf regressed against that of the mean leaf-length available 

in the quadrat in which the predation occurred (Figure 21). The significant correlation (P<O.OOI) 
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Figure 21: The relationship between kaf-.ength :1nd pred;Jtion by ilninwls over the whole period. 

suggests !hilt ilnimals predate seedlings \\'ith a kat'- length similar to that of the meiln avililable, i.e. they 

do not select the biggest leaves. 

The growth of seedlings' primary leaves is shown in Figure 22. It should be noted !hilt these curves 

tenninate upon deilth, therefore the decline in growth rate towards the end of the period may not be 

evident. 
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Figure 22: Growth of primary leaves in Moorhouse Wood from census 1 to 7. Each curve is for one 
leaf of the primary-pair, for all seedlings in the quadrat. Sets of curves are ranked from 0 (shaded) to 25 
(open habitat), according to the value of PAR in the quadrat. Top: Quadrats (0,1) to (25,11); bottom: 
Quadrats (25,16) to (43,31). 
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DISCUSSION 

Transplant study 

The results of the experiment in Hollingside Wood suggest that grouping plants together at high 

density has several physiological effects on the plants. The differences between the two treatments may 

indicate the causes of the differential growth of the plants under the two treatments. The differences 

between the treatments are mainly those of light levels, root competition and soil moisture, the latter 

being not a deliberately imposed condition, but a consequence of the size of the pot. 

The two treatments received the same irradiance of PAR, but the competing plants are self-shading 

which will result in some plants' leaves receiving irradiance of a lower intensity and a reduced R/FR 

ratio. Measurement of the light microclimate within competing plants was not recorded at the time of 

the experiment, but subsequent measurements found the R/FR ratio beneath seedlings' leaves to be 0.63 

compared to 0.93 above the leaf, in blue sky conditions. It is assumed that a similar reduction would 

have occurred in the woodland where the R/FR ratio above the leaf was approximately 0.73 during the 

course of the experiment. Fitter (1987) describes the competition by plants for PAR, competition being 

governed by the nature of the incident photons, which may be absorbed, transmitted or reflected by a 

leaf. Live leaves absorb 85% of visible PAR and scatter 85% of NIR wavelengths (Norman and 

Campbell 1989). Transmitted light has an enhanced far-red component due to leaves being opaque to 

light below 700 nm and transparent to light above 700 nm. 

There was a significant difference (approximately 2.5%) between the moisture levels in the two 

treatments. This was sufficient to cause a difference in SI within treatments, but not sufficient to 

influence dry matter allocation, suggesting that SI is more sensitive to water conditions in the plant or 

soil than the mechanism which determines dry matter allocation. Schoch eta/. (1984) propose that 

phytochrome influences global plant morphology, suggesting that the allocation ratios are less 

responsive to soil moisture than light or other factors. The levels of soil moisture were insufficiently 

stressful to test this. 

The plants in the two treatments all had the same volume of soil to grow in, but those planted in 

groups were free to exploit a larger pool of soil resources (water and nutrients) and influence the root 

chemistry of neighbouring plants. 
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The influence of these differences on SI and plant morphology will now be considered in turn. 

The influence of light on rates of photosynthesis of sun and shade plants has been determined by 

several authors, but less study has been done on the intluence of light on SI. However the two are related 

and the findings of the former aid an understanding of the mechanism of the latter. 

The light saturation curves of sun and shade plants in general have been studied by (Boardman 

1977, Dale 1982), and those of birch (Betula) and sycamore have been detennined by Taylor and Davies 

(1988). All studies showed the sun-adapted plants to have higher light saturated curves. 

Numerous studies indicate the positive relation between light intensity and stomatal density 

(Fetcher et al. 1983; Dean et at. 1982; Abrams & Kubiske 1990; Carpenter & Smith 1975; Fernandez 

1973; Schoch eta!. 1984; Young & Yavitt 1987). 

Several studies have related the two observations. Holmgren (1968) studied the light saturation 

curves of sun and shade ecotypes of Solidaga virgaurea. Sun plants had both higher light saturation 

curves and higher SD. Will mot and Moore (1973) studied the rates of C02 exchange in sun and shade 

leaves of the sun and shade species Silene alba and S.dioica. Rates were higher for the sun leaves, and 

this was more marked in the light adapted species. In addition the differences in leaf area and stomatal 

density between the species (smaller leaf, higher SO in S.alba) were consistent with the idea that S.alba 

is physiologically and anatomically adapted to grow under higher light levels. The relationship between 

net photosynthesis and stomatal conductance (related to SD) has been demonstrated for A triplex 

triangularis (Bjorkman 1981). Although differences in stomatal conductance between sun and shade 

plants cannot account for the differences in photosynthesis between plants, an increased stomatal 

conductance in response to increased light levels is an important factor since it allows the plant to 

express its increased intrinsic photosynthetic capacity. More importantly the differences in stomatal 

conductance between light regimes were accompanied by corresponding differences in stomatal 

frequency, the leaves under higher light levels having 2-3 times the stomatal density of shade plants. 

These findings suggest that the positive relation between light intensity, light saturation and SI can be 

applied to other species. 

An additional observation in studies of sun and shade-leaves is the reduction in size of guard cells 

at higher light intensities (Young and Yavitt 1987). Theoretically, smaller guard cells should have 

increased C02 diffusion per unit area and reduced water loss compared to larger guard cells (Bidwell, 



1974). However other studies of tree species have found no consistent differences in guard cell length 

between sun and shade-leaves (Abrams and Kubiske 1990; Fetcher et al. 1983). 
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Bjorkman (1981) suggested that obligate shade plants have very limited capacity for adjustments to 

increase the capacity for light-saturated photosynthesis in response to increased light intensity. 

Sycamore seedlings are not obligate shade plants, but shade-tolerant, therefore they will have some 

capacity for response to higher light intensities. Taylor and Davies (1988) showed that in sycamore 

photosynthesis became light-saturated at approximately 300 j.Ullol m-2 s-1, but below 200 j.UllOl m-2 s-1 

had a higher rate of net photosynthesis than birch. It is suggested therefore that the observed response of 

raised SI at higher light levels is the same as that seen by Bjorkman (1981) in A. triangularis; the 

increase in SI increases the diffusive transport of C02 and therefore the rate of photosynthesis of the 

seedling; as a result the plant is able to express its increased intrinsic photosynthetic capacity, within the 

range over which a response is possible. Since sycamore does not respond to light intensity above 300 

j.Ullol m-2 s-1 it would be of interest to determine whether SI is also unresponsive. It is assumed that the 

light intensity in Hollingside Wood was always below 300 j.Ullol m-2 s-1, (the maximum light intensity 

recorded was 122 j.Ullol m-2 s- 1 ), i.e. within the range of light intensities at which a response might be 

expected. 

The studies described above concern the influence of light intensity on SI. The effect of the spectral 

quality of light, i.e. shade, on SI has been determined for Vigna sinensis (Schoch eta/. 1984). The study 

indicates that phytochrome plays a role in stomatal differentiation, thereby influencing SI. 

The influence of soil moisture on SD has been shown in several studies, each indicating that a 

reduction in soil moisture is associated with a higher SD (Gindel 1969; Abrams 1986). Studies of the 

leaves of xeric and mesic trees (Tobiessen & Kana 1974; Carpenter & Smith 1975) found that in 

addition to a lower SD xeric species had smaller guard cells. However a mesic tree will exhibit xeric leaf 

characters under enough stress. A study of poplars (Populus) growing under severe drought conditions 

found leaves with high SD and small guard cell lengths, xeric characters in a normally mesic tree 

(Larsen 1961). The smaller stomata may be able to respond more quickly to low leaf water potential than 

the large stomata of mesic species. It has been suggested that the ranking of species from xeric to mesic 

results in a ranking similar to that of shade-tolerant to sun-adapted plants (Abrams & Kubiske 1990). 
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The differences in leaf morphology between sun and shade leaves have been found to be consistent with 

differences between mesic and xeric species, respectively (Tobiessen & Kana 1974; Abrams 1986). This 

suggests that the peculiar leaf structure of a sun leaf serves the dual purposes of increased C02 uptake 

and improved water conservation. However this assumes that plants in a sunny environment are also in a 

xeric environment, and since this is not always the case the stomata will not always be serving this dual 

purpose. This is evident in a study of SD in hardwood trees (Carpenter & Smith 1975) in which stomatal 

density was lower for the xeric species but unrelated to the shade-tolerance of the species. 

The results of the experiment in Hollingside suggest that soil moisture has an influence within 

treatments, i.e. when light levels are similar. However when all plants are considered independent of 

light there is no significant change in SI with moisture level. Since the competing plants are all at a 

lower moisture level than the isolated plants, they might be expected to have a higher SD and therefore a 

higher Sl. The fact that the competing plants exhibit a lower SI yet at a lower moisture suggests that the 

influence of light is more dominant, and that the difference in soil moisture is too small to cause an 

opposing change in SI. 

The discussion of environmental influences on SI has been limited to the two factors, namely light 

and moisture, about which an assessment can be made. Since stomatal frequency is sensitive to a number 

of environmental variables including light, water relations and temperature, caution should be used 

when assessing the adaptive significance of stomatal frequency and SI. Indeed the third difference 

between the two treatments highlights the complexity of the mechanism. The difference in soil volume 

available for exploitation may result in the competing plants having altered water relations. Other 

factors discussed below have resulted in different allocation ratios between the two treatments. 

Differences in root density, Ieafiness and plant water relations in general can all influence the plant's 

rate of photosynthesis and need for water conservation measures, and therefore will have an influence on 

SI. The roots of competing plants do not appear to exhibit any morphological signs of competition, being 

of similar density as those of the isolated plants. However they may have modified root chemistry as a 

result of their proximity to neighbouring conspecific roots, and root chemistry has been suggested as 

another factor which influences SI. In this situation the change in SI is presumably not of adaptive 

significance but a consequence of the influence of the roots on the rate of stomatal differentiation (J .A. 
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Pearson, pers. comm.). A mechanism by which light influences leaf morphology and thereby SI has been 

suggested by Schoch et al. (1984), that phytochrome may direct global plant morphogenesis. An 

increased export of assimilates away from leaves in shade might decrease the energy supply to the 

leaves, and thereby alter the stomatal differentiation and SI. 

The influence of environmental parameters on resource partitioning in the plant has been 

determined particularly in terms of the effect of the light environment (Evans & Hughes 1961; Hiroi & 

Monsi 1963; Bjorkman 1981). Plant morphology may be influenced more by light than other factors 

(Schoch et al. 1984). The observed increase in LWR in the competing plants may be the result of 

competition with neighbouring plants for PAR. Harper (1977) notes that plants grown at high density or 

in shade tend to adjust their root: shoot ratio in favour of shoot, and develop a shallower root system. 

Evans & Hughes (1961) noted that an increased LWR in Impatiens parviflora grown in shade was 

largely at the expense of root growth, but soil conditions were not ideal. A reduced RWR may not be 

harmful in shaded environments with adequate nutrient levels and favourable water relations. It is 

assumed that the levels of moisture and nutrients in were adequate in both treatments in Hollingside, 

and therefore that any responses of L WR and R WR are not at the expense of other organs but due to a 

change in the absolute weight of the organs. There is an indication that this was the difference between 

the two treatments, because root density appears to be similar in both treatments, the main difference 

lying in the leafiness of the plants. It is suggested that the grouped plants are competing not for soil 

resources but for light. Evidence of competition for light is required and this can only be obtained from 

an analysis of the ratios. 

Shade results in a reduced RSR (Dowell 1956; Helliwell & Harrison 1979; Fetcher et al. 1983), 

increased LWR, and leaves are commonly thinner and larger (Fitter 1987). LWR is more labile in plants 

adapted to high light intensity than in shade-adapted plants. Generally woodland species show little 

response to increased shade whereas plants of open conditions have a very plastic response. Therefore 

the response of LWR in shade should indicate the shade-tolerance of sycamore. Fitter & Ashmore (1974) 

found the L WR of the shade-tolerant Veronica montana to be unaltered by shade stress. But Loach 

(1970) found that the shade-tolerant tree species Acer rubrum and Quercus rubra showed a substantial 

increase in LWR in response to shade. A series of studies by Taylor and Davies (1985, 1986a, 1986b, 
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1988) showed that a low photon fluence rate at a low RJFR ratio and higher humidity resulted in 

increased leaf turgors favourable for the growth of sycamore leaves. This demonstrates that sycamore is 

not unresponsive to shade, but does not indicate the influence of shade on resource partitioning. 

However there are indications that resource partitioning is influenced by plant maturity. This 

would suggest that sycamore's responsiveness to light as demonstrated above is not the only factor 

affecting resource partitioning. Correlations have been demonstrated between total plant dry weight and 

allocation ratios (Table 3). A correlation between LWR and total dry weight has been found in Impatiens 

parvijlora (Evans 1972) and Helianthus annuus (Hiroi & Monsi 1963). It is concluded that resource 

partitioning in sycamore responds to both light and total dry weight, but the relative importance of light 

cannot be determined from the experimental data due to the additive effects of these factors in the 

treatments. Therefore it would be of value to determine the influence of light independent of total dry 

weight, by using seedlings of similar total dry weight. However if the different light treatments result in 

plants of different total dry weights at the end of the experiment, which is entirely possible, then the 

influence of light will still be uncertain. Such an investigation may therefore be impossible. 

An interesting observation concerning the effect of age is shown in Helianthus annuus (Hiroi & 

Monsi 1963). Plants were observed to become increasingly shade-intolerant with age. If this conclusion 

holds for plants other than obligate sun species then this implies that sycamore will become less shade

tolerant as it matures. Saplings might be expected to have higher demands for light to enable them to 

support their increased biomass. However sycamore seedlings have been observed to survive for many 

years in a stunted state in conditions of deep shade, growing very slowly, then growing faster when light 

intensity increases (Okali 1961). Sycamore saplings have similar shade-tolerances to seedlings (Grime et 

a/. 1988) suggesting that conclusions based on obligate sun-plant species cannot be applied to shade

tolerant species. 

The measurements of leaf length from the seedlings in Moorhouse Wood provide an interesting 

record of the response of naturally regenerated seedlings to environmental variables (Figure 22). There 

is no clear correlation between light intensity and leaf length. However light levels were only measured 

once and are probably not representative of the light climate during the whole season. There is 

substantial variation in leaf length of seedlings which presumably germinated at the same time, and this 
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is worthy of further investigation. Taylor and Davies (1988) concluded that leaf growth in sycamore is 

controlled by changes in leaf turgor. It is therefore possible that water supply to growing seedlings may 

limit growth. In areas of lower rainfall reduced leaf turgor may lead to reduced leaf growth and this may 

be particularly harmful as the yield turgor for sycamore is high (Taylor & Davies 1985). 

Most of the growth curves in Figure 22 indicate an abrupt termination of growth at around the fifth 

census. If leaf growth is under genetic rather than environmental control then the leaves may have 

ceased growing because they had reached a predetermined size within a certain time. But if the leaves 

are responsive to environmental changes then these may have caused the cessation of growth. Possible 

causes are canopy closure, photoperiod and reduced soil moisture. The abrupt nature of the termination 

seems to preclude photoperiod as a cause. It might also preclude canopy closure but this can be 

remarkably rapid. However the amount of shade cast by the canopy would have to be great to reduce the 

growth of leaves to such an extent. The lengths and rates of leaf extension of sycamore leaves grown at 

25 J.UllOl m-2 s-1 at a R!FR of 0.26 were similar to those grown at 250 J.UllOl m-2 s-1 at a R/FR of 1.65 

(Taylor & Davies 1988). Therefore it is suggested that leaves have gone into a period of dormancy 

induced by a water deficit, such as that demonstrated by Charles-Edwards et al. (1987) in Liriodendron. 

A criticism of this is the simultaneity of the cessation of growth, which could only occur if the same 

water deficit was experienced by all seedlings throughout the wood. The likelihood of the soil becoming 

dry throughout the wood is uncertain. This could be investigated by measuring soil depth beneath each 

seedling to determine its chances of experiencing water deficit during periods of low rainfall. 

Survivorship study 

Density 

The non-randomness of the initial and final frequency distributions (Figure 4) suggests that 

seedlings are clumped. This is expected to some extent in a wind-blown seed, but an observation 

suggests that there may be another cause. Seedlings often germinated in pairs approximately 2 em apart 

obviously from the same unseparated samara. Unseparated fruits will not windmill away from the tree 

increasing the density directly beneath the seed-tree above that expected if all seeds were to separate. 

The leptokurtic curve shown in Figure 4a is not a smooth distribution but it demonstrates that 

density is generally higher closer to the tree. This has been observed in other trees, for example beech 
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(Fagus grandifolia) (Harcombe et al. 1982). There are many quadrats with low initial density closer 

than expected to a parent tree. This is a result of overlapping seed-shadows, the consequence of the seed

trees being less than 25 m apart. However these quadrats highlight a feature of the seedling distribution. 

If seed-shadows overlap, which they certainly do in Moorhouse Wood, the seeds from one tree should 

artificially increase the density beneath a neighbouring seed-tree resulting in an increased density but 

not altering the overall shape of the density distribution around a tree. This has not occurred in this 

study. Instead of adding to the seedlings already there the seeds from a neighbouring tree are raising the 

density above zero. This occurs because some of the trees have a distribution that is either extremely 

flattened or extremely clumped. Both of these are likely to have occurred in the wood. Some of the trees 

had no apparent seed shadow, and others had seed shadows that were very clumped. This explains how 

seeds blown into a neighbour's seed shadow can raise the density above zero, and why seedling density 

can be low very close to the parent tree. 

The density-dependent nature of the mortality as illustrated in Figures 7 and 12 suggests that 

density is the major influence over the future distribution of the seedlings, at least until the end of the 

first year. This is supported by the fmdings of Van Miegroet et al. (1981). In a two year study of 

seedlings from germination, mortality during the growing seasons was demonstrated to be density

dependent. In contrast, Hibbs (1979) observed the mortality of seedlings of Acer pensylvanicum to be 

density-independent. This was due to the first-year seedlings being spaced many plant-diameters apart 

and therefore not likely to have been competing. 

The survival of seedlings both at lower density and further from the parent tree (Figure 9 and 10) 

has also been observed in a study of seedlings of beech (Fagus grandifolia) (Harcombe et al. 1982). 

The regression of initial and final densities (Figure 11) suggests that the final density is attained in 

either of two ways. If the initial density is at or below 10m-2 it may be maintained at that density, or 

decline. If the initial density is above 10m-2 it either declines to zero or near zero or declines to 10m-2. 

This seems to hold for some of the quadrats with higher initial density but the validity of this is less 

certain for the quadrats with low initial density, where there is much variation in the final density 

attained. A similar pattern was observed for seedlings of beech (Fagus grandifolia) (Harcombe et al. 

(1982). 
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The regression of total deaths versus initial density (Figure 12) suggests that the density-dependent 

mortality fits a simple model whereby the mechanism reducing numbers operates equally at all densities, 

rather than a fixed percentage of the seedlings being killed, although the two mechanisms would 

produce much the same result below densities of about 1000 seedlings m-2. The minimum level 

sustainable is particularly low suggesting that the causes of mortality are very efficient at killing not only 

dense clumps of seedlings but also less dense groups which might have been considered reasonably 

isolated but were in fact still too densely packed for them all to survive. There is probably an annual 

variation in the minimum density sustainable since very high densities of young sycamore saplings occur 

in other similar sycamore woods in Durham with probably similar opportunities for natural regeneration 

to occur. The minimum density sustainable is probably a product of the peculiarities of the weather 

during the year, the light environment of the woodland and the population size of seedling predators. 

Since all of these will vary from year to year the densities sustainable will also vary. Van Miegroet et al. 

(1981) found that sycamore seedlings had no minimum initial density below which it could not survive 

in competition with ash (Fraxinus excelsior). In comparison ash seedlings apparently required a 

minimum initial density of 30 seedlings m-2 in order to survive competition with sycamore. Although 

there was little evidence of competition from other tree seedlings in Moorhouse Wood this is indicative 

of the ability of sycamore to sustain populations at very low densities. 

Sycamore seedlings are apparently very tolerant of competition from vegetation in the quadrat, 

percentage survival being independent of percentage vegetation cover in the quadrat (Figure 13). This is 

contrary to the finding of Jones (1945), and confirmation of the fmding of Helliwell (1965). 

Causes of mortality 

Seedlings died from wilt, fungal infection or predation by animals. Seedlings which disappeared 

without trace were not allocated to one of these groups since there was an equal chance that they had 

died of any of the causes. These are the same causes of mortality observed in a survivorship study of 

Acer pensylvanicum seedlings (Hibbs 1979), except in that study seedling disappearance was attributed 

to predation. 

The causes of mortality varied over the period studied with fungal infection being most important 

at the start of the period. There was a very high level of rainfall between census I and 2 which resulted 
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in a week-long period of high humidity before the wood dried out. This provided ideal conditions for 

fungal infection, which accounted for 23% of a II deaths by the end of the period. Deaths due to wilt 

occurred throughout the period, and can be split into stages. Initially wilt was due to dry soil conditions. 

Later, fungal infection weakened a large number of seedlings, which subsequently wilted. These 

seedlings should perhaps have been classified as dying from rot but since it was difficult to distinguish 

between seedlings weakened through infection and those weakened simply through poor rooting, they 

were all classified as having wilted. If they had been distinguishable then fungal infection may have 

accounted for 43% of all deaths, if the 23 that wilted by census 3 and 89 by census 4 were reclassified. 

Animals (assumed to be slugs and voles) seem to have been most active earlier in the period, but 

the lower rate of predation later may be due to their ignoring the subsequently lower density of 

seedlings. There is no evidence of selection of leaves of particular lengths. The predation observed is 

probably the combined effect of slugs, voles and other unknown predators, therefore no conclusion can 

be drawn of the relevance of speci fie predators. However of more significance is the finding that 

predators in general are no more important than any other cause of mortality. 

The seedlings that disappeared without trace, classified as "gone" in Table 7, were probably a result 

of the other causes, seedlings either wilting to an unidentifiable state, rotting completely or being 

completely eaten. If these deaths were equally distributed between the three causes it indicates the 

rapidity of the recycling of dead plants, and the need for close attention to seedlings over time. The 

interval between censuses, ten days, was sufficiently long enough for a reasonable number of deaths to 

occur, but too long to allow all the processes to be observed accurately. 

The conclusion drawn from the analysis of seedling deaths (Figures 14, 15 and 16) is that mortality 

is density-dependent and distance-independent. Invertebrate leaf damage, the only potential cause of 

mortality showing any indication of distance-dependence has no influence over the fate of seedlings. The 

frequency distribution of percentage leaf damage, similar to those seen for other tree species (Edwards & 

Wratten 1983) suggests that leaves have some defence mechanism to prevent excessive defoliation, but 

there is no mention of this in the literature (Jones 1945; Grime eta!. 1988). This may be due to the wet 

weather which occurred at the peak of the invertebrate's feeding period. However the ephemerality of 

invertebrates on sycamore in spring is well known (pers.conun. Tim Waters). 



38 

As a consequence the main factor influencing a seedling's chances of survival is its proximity to 

neighbouring seedlings. Mechanisms are understood by which all three causes of mortality, wilt, fungal 

infection and predation can act in a density-dependent manner. Harper (1977) describes the positive 

correlation between the rate of advance of the damping-off fungus Pythiwn and the density of seedlings 

in a variety of plant species. Harper (1977) reviews the behaviour of seedling predators and concludes 

that well dispersed seed escapes predation more effectively clumped seeds. It is assumed that this also 

holds for seedlings. The density-dependence of wilting may be due to the cumulative effect of the 

seedlings' exploitation of the same soil resources, in particular water. In a dense group a consequence of 

seedlings rooting in the same soil horizon may be that the water resource is insufficient to provide the 

needs of all the plants. The importance of high leaf turgor in growing sycamores has been stressed 

(Taylor & Davies 1985). 

The lack of distance-dependence in the three causes of mortality can also be explained. The 

distance-independence of opportunistic predators such as slugs and voles is obvious. Fungal infection by 

generalist pathogens such as species of Pythium and Fusariwn will occur wherever there are suitable 

conditions for the pathogen to overcome the seedling's defences. Seedlings weakened by excessive 

defoliation or excessive shade will be susceptible to infection from such organisms, and since this can 

occur anywhere, this cause of mortality will be distance-independent. Although the levels of light and 

humidity prevailing beneath the canopy of a parent sycamore provide an environment unsuitable for 

growth and suitable for fungal infection this is true beneath any adult tree, so no pattern will be seen by 

assessing the distance from sycamore adults, but might be seen if the distance to any trees was 

considered. The distance-independence of wilt occurs for similar reasons with levels of light and soil 

moisture probably being the important factors, and these too are unrelated to distance to adult 

sycamores. 

Janzen (1970) proposed that a combination of "distance-responsive agents", herbivores which 

normally feed on adult trees, and density-responsive predators or pathogens would cause 

disproportionately high seedling mortality close to adult trees. It is concluded that in Moorhouse Wood it 

is only the density-responsive agents that are the cause of the distribution of seedlings being less 

clumped around adults than was the initial postdispersal seed shadow (Figure 4b ). Clark and Clark 

(1984) evaluated Janzen's (1970) model and noted that the higher progeny mortality closer to the parent 
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tree could result from factors other than predators or pathogens. There could be interference from the 

parent tree, such as allelopathy or destructive litterfall. There was evidence of the latter in Moorhouse 

Wood. The week of high rainfall was also a week of very high wind-speeds, which blew leaves from the 

adults onto seedlings beneath which provided a humid environment suitable for fungal infection to 

occur. Competition between seedlings for light, water and nutrients could be the dominant cause of 

density-dependent seedling mortality, as described above for wilting. Clark & Clark (1984) state that if 

such self-thinning occurs then the influence of predators and pathogens cannot be demonstrated. 

The only support for Janzen's (1970) hypothesis is the evidence of density-dependence of the 

seedling predators and pathogens. The seedlings will survive anywhere where density is low enough to 

prevent density-dependeny mortality. Since this is usually furthest from the tree, this is where the best 

survival is most commonly observed, but as demonstrated it is not the only place. 

Although survival over the first few months has been demonstrated to be density-dependent rather 

than distance-dependent, this may not be the case in subsequent years. Mortality in the second growing 

season may be distance-dependent, a seedling's requirements for water, light and nutrients being higher 

than that of a first-year seedling. Distance-dependent mortality, with higher mortality adjacent to the 

parent tree will then result in recruitment tending to "drift" further from the tree as it ages. The 

importance of external factors should not be ignored in the study of mortality. Van Miegroet et a/.(1981) 

demonstrated that seedling deaths over winter were more important than those occurring during the 

growing season. Bolton (1949) observed 90% survival of first-year sycamore seedlings to mid-July, but 

only 5% of the initial germination survived to mid-September and 2% to January. 

The evidence on seedling leaf length seems to suggest that larger leaves improves the survival of 

seedlings. This may indicate a general relation between seedling size and survival. The height of the 

surviving seedlings was not analysed, but Collins (1990) found no relation between survival and 

seedling height or the number of leaves per seedling for Acer rubrum and Betula lutea. 

A number of other causes can influence the survival of seedlings, but these have not been studied in 

detail here. Measurements of the abundance and types of litter in each quadrat were recorded, but since 

vegetation had such an insignificant effect on survival, the data on litter was not analysed. The litter 

layer may assume more importance in a site with little vegetation. The depth and composition of the 
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litter layer has been shown to be of importance to seedling survival in several studies (Yamamoto & 

Tsutsumi 1985; Collins 1990). Light can also have a profound intluence on seedling survival. However 

the influence of light in Moorhouse Wood has not been clearly detenuined since measurements were 

only taken on one day. The intluence of light has been demonstrated in similar studies (Yamamoto & 

Tsutsumi 1985; Perkins eta!. 1988; Collins 1990). 

Ecology 

In conclusion, the results of this study confirm the shade-tolerance of sycamore, and suggest that 

there are a number of physiological and ecological adaptations which contribute to its success in a 

variety of growth conditions, and when subjected to a variety of potential mortality factors. However the 

intluences of environmental parameters have been considered in isolation. The growth and survival of 

seedlings is influenced by the cumulative response of the seedling to all environmental factors, therefore 

future studies should attempt to determine the iniluence of stomatal index and growth fonu on leaf 

damage, and vice versa. Conclusions from isolated physiological and ecological studies might then 

provide a greater understanding of the ecology of sycamore. 
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Appendices 

Appendix 1: Stomatal index of the third and fourth leaf for each site and treatment. 

SI, 3rd leaf SI. 4th leaf 
Site Competing 2x s.e. Isolated 2x s.e. Competing I Isolated 

1e 0.0687 0.016 0.0734 0.0055 0.0698 0.0891 
4e 0.0729 0.0074 0.0687 0 
5e 0.0724 0.0074 0.0838 0 0.0804 0.0994 
6e 0.0636 0 0.0938 0 
1w 0.0467 0.0128 0.0792 0.001 
2w 0.06 0.007 0.0743 0 
3w 0.0583 0.0063 0.0749 0.0124 
4w 0.0588 0.0068 0.091 0.0376 0.0577 0.0788 
5w 0.0629 0.0019 0.1005 0 
6w 0.0607 0.0014 0.0735 0.0027 0.0649 0.0903 



Appendix 2: Mean total plant dry weight, and mean resource allocation ratios for each treatment and 
site. Abbreviations as for Table 2. 

Sill; Mean 2x s.e. RWR 2x s.e. SWR 2x s.e. LWR 2x s.e. L:R 2x s.e. 
Canpeting total dry 

weight 

1e 0.139 0.016 0.257 0.045 0.158 0.041 0.586 0.029 2.325 0.458 
2e 0.379 0.051 0.209 0.02 0.217 0.051 . 0.573 0.062 2.752 0.484 
4e 0.398 0.049 0.248 0.053 0.172 0.019 0.58 0.038 2.469 0.78 
5e 0.384 0.031 0.207 0.034 0.187 0.032 0.605 0.008 2.986 0.526 
6e 0.124 0.021 0.264 0.157 0.223 0.08 0.514 0.153 2.584 2.004 
1w 0.094 0.009 0.292 0.114 0.153 0.019 0.554 0.098 2.021 0.967 
2w 0.403 0.052 0.242 0.049 0.175 0.016 0.584 0.055 2.531 0.718 
3w 0.301 0.039 0.209 0.086 0.236 0.167 0.555 0.245 3.039 2.849 
4w 0.538 0.125 0.219 0.057 0.168 0.022 0.613 0.045 2.921 0.821 
5w 0.237 0.027 0.255 0.066 0.171 0.034 0.574 0.055 2.437 0.98 
6w 0.263 0.020 0.286 0.075 0.136 0.039 0.578 0.061 2.121 0.719 

Isolated 

1e 0.257 0.052 0.282 0.072 0.164 0.033 0.554 0.039 2.026 0.671 
2e 0.104 0.047 0.413 0.628 0.203 0.007 0.384 0.635 1.717 4.146 
4e 0.156 0.044 0.31 0.133 0.156 0.052 0.534 0.081 1.777 1.026 
5e 1.336 0.000 0.218 0 0.222 0 0.56 0 2.568 0 
6e 0.305 0.000 0.304 0 0.154 0 0.542 0 1.781 0 
1w 0.197 0.079 0.308 0.165 0.154 0.063 0.538 0.111 2.075 1.834 
2w 0.093 0.069 0.368 0.205 0.265 0.296 0.367 0.501 1.135 1.994 
3w 0.19 0.013 0.293 0.1-+9 0.145 0.029 0.562 0.178 2.02 1.636 
4w 0.157 0.016 0.352 0.096 0.186 0.039 0.462 0.073 1.369 0.639 
5w 0.173 0.000 0.264 0 0.135 0 0.6 0 2.274 0 
6w 0.289 0.080 0.301 0.024 0.181 0.024 0.518 0.045 1.727 0.289 

Competing L:S 2x S.C. R:S 2x s.e. Lprop 2x s.e. Sprop 2x s.e. RSR 2x s.e. 

1e 3.841 0.91 1.715 0.673 1.42 0.175 0.189 0.059 0.348 0.083 
2e 2.712 0.969 0.98 0.236 1.359 0.338 0.28 0.083 0.265 0.032 
4e 3.385 0.261 1.475 0.428 1.396 0.218 0.208 0.028 0.335 0.093 
5e 3.295 0.498 1.153 0.352 1.533 0.052 0.232 0.049 0.264 0.054 
6e 2.484 0.984 1.373 1.323 1.175 0.677 0.294 0.135 0.397 0.322 
1w 3.609 0.375 1.944 0.995 1.277 0.46 0.181 0.026 0.426 0.246 
2w 3.377 0.559 1.388 0.278 1.435 0.314 0.212 0.024 0.323 0.088 
3w 3.213 3.844 0.97 0.36 1.548 1.669 0.33 0.296 0.27 0.133 
4w 3.688 0.474 1.337 0.504 1.606 0.294 0.202 0.03~ 0.284 0.099 
5w 3.498 0.883 1.611 0.809 1.383 0.35 0.207 0.047 0.351 0.118 
6w 4.416 1.171 2.27 1.28 1.396 0.361 0.159 0.053 0.41 0.158 

Isolated 

1e 3.412 0.456 1.772 0.808 1.25 0.2 0.197 0.047 0.397 0.141 
2e 1.912 3.202 2.026 3.027 0.873 1.931 0.254 O.Ql1 0.988 2.127 
4e 3.439 0.634 2.046 1.537 1.153 0.374 0.186 0.074 0.456 0.281 
5e 2.516 0 0.98 0 1.271 0 0.286 0 0.279 0 
6e 3.529 0 1.981 0 1.184 0 0.182 0 0.437 0 
lw 3.619 1.111 2.227 1.692 1.21 0.562 0.184 0.09 0.47 0.322 
2w 1.95 4.066 1.516 0.919 0.713 1.355 0.389 0.56 0.604 0.521 
3w 3.917 2.001 2.003 0.631 1.329 0.946 0.17 0.039 0.423 0.3 
4w 2.52 0.554 1.955 0.856 0.871 0.262 0.229 0.058 0.555 0.216 
5w 4.432 0 1.949 0 1.503 0 0.157 0 0.359 0 
6w 2.881 0.649 1.665 0.137 1.079 0.201 0.222 0.035 0.431 0.05 



Appendix 3: Light levels in Hollingside Wood. 

Site PAR ilffiOI s-1 m-2 R!FR ratio 

le 25 0.80 
lw 122 0.75 
2e 19 0.75 
2w 21 0.74 
3e 20 0.75 
3w 22 0.75 
4e 18 0.73 
4w 36 0.76 
5e 67 0.85 
5w 22 0.75 
6e 25 0.74 
6w 24 0.74 



Appendix 4: Distance scores, vegetation cover and seedling densities in quadrats in Moorhouse Wood. 

Quadrat Seed-tree Canopy Canopy Percent Initial Final Percent Total 
(north,east) distance (15m) (25m) vegetation density density survival deaths 

score distance distance cover 
score score 

( 0, 1) 3.4 2.1 1.6 25 3 0 0 3 
( 0,4.6) 4.0 2.7 2.0 0 1 0 0 1 
( o. 11) 5.8 4.8 3.0 78 0 
( 0, 16) 9.7 4.4 30 0 
( 0,21) 21.2 8.7 80 0 
( 0, 26) 80 0 
( 5, 1) 0.6 0.3 0.3 0 14 0 0 14 
( 5, 5) 2.9 1.5 1.4 0 13 0 0 13 

( 5, 10.7) 4.0 4.2 2.4 50 3 3 100 0 
( 5, 16) 4.9 3.1 80 0 
( 5, 21) 7.3 3.7 90 0 
( 5, 26) 21.4 12.5 100 0 

( 10, 1.4) 2.3 1.3 1.1 0 27 0 0 27 
( 10, 5) 2.4 1.6 1.2 15 12 4 33 8 

( 10, 11) 3.6 2.8 2.3 60 2 0 0 2 
( 10,17) 4.5 2.7 0 0 
( 10, 21) 5.0 3.0 70 0 
( 10, 26) 16.5 5.0 75 0 
( 15, I) 1.6 1.1 0.9 100 47 0 0 47 
( 15, 5) 2.0 1.5 1.1 90 22 0 0 22 

( 15, 11) 2.8 2.5 1.6 50 12 2 17 10 
( 15, 16) 3.3 14.9 1.8 70 5 3 60 2 
( 15, 20) 3.1 13.4 2.0 15 I 0 0 I 
( 15, 26) 5.7 7.5 2.9 75 I 0 0 I 
( 20, I) 0.8 0.6 0.5 5 50 2 4 48 

( 20, 5.5) 1.7 1.2 1.0 25 70 2 3 68 
(20, 11) 2.5 3.0 1.4 50 11 5 45 6 
( 20, 16) 2.3 9.8 1.4 3 2 2 100 0 
( 20, 21) 2.4 7.2 1.6 50 2 I 50 I 
( 20, 26) 3.0 5.4 2.0 75 2 0 0 2 
( 24, I) 1.0 0.8 0.7 0 66 2 3 64 
( 25, 5) 1.8 1.2 1.0 15 40 15 38 25 

( 25, II) 2.1 1.7 1.2 10 II 6 55 5 
( 25, 16) 1.9 6.8 1.4 15 8 2 25 6 
( 25, 21) 0.8 1.2 0.7 0 6 I 17 5 
( 25, 26) 2.1 2.3 1.6 100 5 0 0 5 
( 30, I) 1.8 0.7 0.7 90 58 16 28 42 

( 30, 4.3) 2.1 0.9 0.9 25 19 13 68 6 
( 30, II) 2.1 2.0 1.3 0 5 3 60 2 
( 30. 16) 2.0 8.3 1.4 0 3 I 33 2 
( 30, 21) 1.6 2.6 1.2 70 0 
( 30, 26) 1.9 1.9 1.2 100 0 
( 30. 31) 2.1 1.5 1.4 40 0 
( 34, 2) 0.7 0.2 0.2 5 II 0 0 II 

( 35, 4.3) 1.9 0.8 0.6 0 5 0 0 5 
( 35, II) 2.1 2.2 1.0 0 5 I 20 4 
( 35, 16) 2.0 2.4 1.1 0 3 0 0 3 
( 35,21) 2.0 2.6 1.4 25 3 0 0 3 
( 35, 26) 1.5 1.6 1.1 95 0 
( 35, 30) 0.6 0.6 0.5 100 0 
( 39, 2) 2.6 1.5 0.8 0 6 4 67 2 
( 40, 4) 2.5 1.8 0.9 30 8 6 75 2 

( 40, II) 2.2 3.1 1.1 15 2 2 100 0 
( 40.5, 16) 2.3 6.9 1.3 10 2 2 100 0 
( 40, 21) 2.1 2.7 1.2 55 0 
( 40, 26) 1.7 1.7 1.5 100 8 I 13 7 
( 38. 31) 0.8 0.8 0.7 100 3 I 33 2 
( 45, I) .u 1.2 1.2 10 10 9 90 I 
( 45, 3) 3.8 1.2 1.1 90 2 2 100 0 

( 45, II) 2.6 1.5 1.1 5 I 0 0 I 
( 45, 16) 2.7 12.7 1.3 100 I I 100 0 
( 45, 21) 2.2 3.3 1.3 100 6 4 67 2 
( 45, 26) 1.2 1.3 1.3 85 15 10 67 5 
( 43, 31) 1.6 1.8 1.5 95 II I 9 10 



Appendix 5: Details of mortalities, light levels and invertebrate damage in quadrats in Moorhouse 
Wood. 

Mean 
Quadrat Numbers of seedlings killed by each mortality Light levels percent Percent 

(north,east) invert. seedlings 
Wilt Gone Animal Rot PARj.Uilol R/FRratio leaf damaged 

s-1m-:l damage 

( 0, 1) 2 1 0 0 9 0.83 0.0 0 
( 0, 4.6) 1 0 0 0 16 0.77 2.5 0 
( 0, 11) 25 0.74 
( 0, 16) 13 0.77 
( 0, 21) 11 0.79 
( 0, 26) 19 0.76 
( 5, I) 9 5 0 0 5 0.73 5.5 29 
( 5, 5) I 12 0 0 32 0.94 9.9 46 

( 5, 10.7) 0 0 0 0 21 0.77 0.7 33 
( 5, 16) 13 0.74 
( 5, 21) 5 0.79 
( 5, 26) 8 0.80 

( 10, 1.4) 14 9 4 I 31 0.97 13.0 39 
( 10, 5) 6 2 0 0 21 0.80 11.1 50 

( 10, 11) 0 I 1 0 12 0.69 25.0 50 
( 10, 17) 11 0.76 
( 10, 21) 6 0.78 
( 10, 26) 10 0.77 
( 15, 1) 24 9 5 17 3 0.80 14.2 27 
( 15, 5) 12 6 I 4 6 0.75 12.2 35 

( 15, 11) 2 4 1 3 13 0.75 4.0 25 
( 15, 16) I 0 1 0 11 0.77 2.8 40 
( 15, 20) 0 0 0 I 6 0.80 12.5 100 
( 15, 26) I 0 0 0 29 0.76 5.0 100 
( 20, I) 15 8 2 24 8 0.77 12.0 47 

( 20, 5.5) 31 9 7 21 16 0.75 16.6 53 
(20,11) 7 0 0 0 12 0.69 16.0 50 
( 20, 16) 0 0 0 0 8 0.80 48.5 100 
( 20, 21) 0 1 0 0 11 0.77 6.3 50 
( 20, 26) 1 0 1 0 14 0.79 0.0 0 
( 24, 1) 21 9 10 25 9 0.75 8.1 33 
( 25, 5) 21 2 2 1 9 0.77 13.6 54 

( 25, 11) 2 1 I 1 14 0.76 14.5 64 
( 25, 16) 0 0 3 3 10 0.76 17.9 38 
( 25, 21) 3 0 0 2 5 0.76 3.9 50 
( 25, 26) 2 I I I 7 0.77 20.5 40 
( 30, 1) 19 II II 3 7 0.80 6.9 33 

( 30, 4.3) 1 0 2 3 16 0.77 16.7 68 
(30,11) 0 I I 0 14 0.79 59.8 80 
( 30, 16) 0 1 0 I 12 0.76 13.0 100 
( 30, 21) 12 0.78 
( 30, 26) 16 0.78 
(30, 31) 6 0.80 
( 34, 2) 4 4 1 2 3 0.83 11.6 18 

( 35, 4.3) 3 0 I I 20 0.79 34.4 80 
( 35, 11) 3 0 0 I 6 0.79 4.3 60 
( 35, 16) I I I 0 15 0.77 1.7 33 
( 35, 21) 2 I 0 0 13 0.77 0.0 0 
( 35, 26) 9 0.77 
( 35, 30) 7 0.77 
( 39, 2) 2 0 0 0 9 0.82 23.1 67 
( 40, 4) 1 I 0 0 8 0.78 12.7 50 

( 40, II) 0 0 0 0 14 0.77 2.5 50 
( 40.5, 16) 0 0 0 0 12 0.80 3.0 50 
( 40, 21) 7 0.77 
( 40, 26) 5 2 0 0 12 0.77 15.8 38 
(38,31) 1 I 0 0 14 0.77 17.3 100 

( 45, I) 1 0 0 0 22 0.80 17.8 70 
( 45, 3) 0 0 0 0 12 0.74 34.5 100 

( 45, II) 0 0 0 I 15 0.78 55.0 100 
( 45, 16) 0 0 0 0 14 0.77 0.0 0 
( 45, 21) 0 I I 0 4 0.92 18.8 50 
( 45, 26) 4 0 0 I 14 0.77 26.7 73 
( 43, 31) 1 7 2 I 11 0.73 9.5 25 


