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Abstract of Thesis for Ph.D.,
“A Theoretical Study of Spectroscopic Properties of van der Waals Trimers.”

Adam Cooper, Durham University, 26 September 1992.

A method for performing calculations on the lower bound states of van der Waals
trimers is developed, which models atom-atom-diatom trimers with basis functions in
all five degrees of freedom. Spherical harmonic and distributed Gaussian functions and
solutions of one-dimensional adiabatic Hamiltonians are used as basis functions. Arg
was examined as a precursor system. No spectroscopy has been perfdrmed on Arg, nor
is this currently feasible. For the systems considered, most experimental data exists for
vicl = 0 ArpHCI so this is the main target of the work. Predictions are made for Ar,DCI,
for vycy = 1 AryHCI, and for vgr = 0,1 Ar, HF ; experiments are currently in progress

on some of these systems.

The current state of knowledge of the pair potentials of the Ar-Ar, and Ar-HF/Cl
systems is summarised. Physical models for important three-body potential terms are
suggested; these arise from dipoles induced on the argon atoms, dispersion effects, orbital
deformation and the Ar; overlap-induced field. The parameters in the models come from

the literature, where possible, and otherwise from a fit to some ab-initio data points for

the Ars and Ar,HCI trimers (Chalasinski et al.).

Calculations on Arg with various two- and three-body potentials are presented and
discussed in the context of earlier work. For AryHCI a comparison is made with earlier,
approximate, work (Hutson, Halberstadt and Beswick). The possible effects of Hamilto-
nian approximations are discussed before addressing the effects of individual three-body
components. Two sets of three-body parameters are assessed, and indicate that the
physical models used are substantially appropriate, although deficient in detail; agree-
ment with experiment is good, with changes in frequencies of about 1.5cm™? arising from
the best three-body model. The most important three-body component is found to be
the interaction of the overlap-induced field with the HCl permanent multipoles, with the

dispersion effects slightly less important and other terms much less so.
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1: Introduction.

This thesis is divided into ten chapters. Following the introductory remarks of this
chapter, chapters 2 to 4 describe the basis-set methods which have been used, chapters
5 and 6 discuss intermolecular potential models, and chapters 7 to 9 set out and discuss

the results obtained. A summary of the main conclusions is given in chapter 10.

I shall now briefly discuss the factors which influenced the methods employed and
motivated the work presented in the following chapters. In particular, I shall indicate
the significance of examining van der Waals trimers, the extent of the experimental data

available, and the current knowledge of pertinent intermolecular forces.

Much of the subtlety of Chemistry, Physics and Biology cannot be understood with-
out an understanding of intermolecular potentials. Reaction kinetics, phase behaviour,
crystal structure, thermodynamic properties of matter, transport kinetics and much more
besides are all important potential dependent phenomena. In addition, the theoretical
determination of accurate intermolecular potentials by fitting calculations to known ex-
perimental results may allow the prediction of behaviour under conditions inaccessible to

experiment, for example in the interstellar medium.

Spectroscopy of the vibrations of molecules, clusters, or solids provides an important
method of measuring the effects of intermolecular forces; it is not possible to directly
measure these forces. The aim of this thesis is to explore theoretical methods for the study
of the vibrations of trimeric van der Waals systems, and hence to perform calculations

on such systems.

Weakly bound molecules, such as the ones I have investigated, are important because
they exhibit large amplitude motions and tunnelling effects in the vibrations; much of
the potential surface affects the vibrational energy levels. Thus we can obtain a potential
energy surface for a wide range of geometries. The wide range of a potential surface may
allow the different contributions to the intermolecular potential to. be separated out since
each will have its own form of coordinate dependence. The physics of large amplitude

motion has motivated a substantial experimental [1] [2] [3] [4] [5] and theoretical [6] effort

1: Introduction.



2

to determine complete intermolecular potentials. Before about ten years ago bulk gas
properties were the common source of data for determining intermolecular potentials,
but, following progress in experimental methods, spectroscopic and scattering results
are currently used to greater effect. Classical bulk gas properties, such as viscosity and
second virial coefficients, provide the least information as their interpretation usually
leads only to a radial distribution function, which is in some sense averaged over angular
orientation. Transport properties can sometimes give more information, particularly for
molecular systems, where the Senftleben-Beenakker effect can be used to gain information
on anisotropic interactions. Within the framework of this thesis these methods are of
historical interest only, and are reviewed in the literature [7] [8]. The previous two
references also survey a substantial body of knowledge on the subject of intermolecular

forces, the formalisms of which are dealt with more rigorously by Grey and Gubbins [9)].

In some special cases scattering experiments in molecular beams can lead to ‘good’
intermolecular potentials (‘good’ implies that the results allow a wide range of proper-
ties to be accurately calculated). Following the development of laser technology and of
spectroscopy, measurements of the rotation-vibration spectra of complexes have been of
greater utility, and it is the comparison of these with the calculated rotation-vibration
energy levels of weakly bound molecules that forms the basis for the analysis of my results.
This is done for trial potentials, which are assessed by the correlation of the calculated
quantities with the spectroscopic transitions and properties that are measured. A re-
view of the determination of intermolecular forces from spectroscopy of van der Waals

molecules has been published by Hutson [10].

Van der Waals (VDW) molecules are a common example of weakly bound species,
which therefore execute wide amplitude motion, although all molecules in highly excited
states execute wide amplitude motion similar to VDW molecules [11]. VDW molecules
are a preferred system of study, however, because wide amplitude motion occurs for
small numbers of vibrational quanta. Large amplitude dynamical behaviour is not as
easily modelled as the more rigid vibrations of most chemically bound molecules; many
alternative formulations of the theory of floppy molecules are to be found in the litera-

ture [12] [13] [14]. The classical normal mode approach, while appropriate for everyday
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molecules like water in all but their highest vibrational states, becomes increasingly in-
appropriate as the amplitudes of motion get larger. For instance, a bending mode of a
rigid molecule becomes almost an intra—molecular rotation when the amplitude of the
motion is large so that a completely different description of the motion is required. The
traditional practice of assigning normal mode quantum numbers to vib-rotational eigen-
states, while justifiable in a rigid molecule régime can become meaningless as floppyness
increases; a different set of quantum numbers becomes appropriate. This can often be
seen by inspection of the computed eigenvectors of a basis-set calculation. However, sin-
gle quantum excitations in a floppy molecule often display motion similar to a normal
mode. Large amplitude motions also preclude the analysis of spectroscopic results using
the static equilibrium molecular geometry as a model for physical observables [15]. Sub-
stantial differences exist between, for example, a rotational constant predicted from the
molecular geometry at the intermolecular potential minimum and that which is actually
observed. Instead a rotational constant should be predicted by the expectation value of

an element of the inverted inertia tensor of the complex.

The coupled channel propagator method and full basis-set matrix method form two
distinct ways of solving the vib-rotational problem. The propagator method has been
developed over a number of years [16] into a very efficient method of solution that is quick
and does not require excessive computer memory [17]. The disadvantage of the propagator
method is that it does not give explicit wavefunctions so that many observables cannot be
extracted in a straightforward manner [18], such as spectral line intensities and moments
of inertia. Since I wish to pursue such properties I will concentrate on full basis-set

methods.

Ar,HCI has been the subject of recent spectroscopic investigations in the microwave
region by pulsed nozzle FT spectroscopy [19] and in the far infrared using a continuous
supersonic jet with a tunable probe [20]. Previous theoretical calculations [21] have
shown that Ar,HCI is a system with spectroscopic observables which show sensitivity to
non-additive forces. That treatment involved fixing the two argon atoms and performing
calculations on the dynamics of HCl in their field using the BOUND program [17]to solve

the coupled equations. This approximation has been shown to be too drastic by the more
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recent far infrared work.

Ar;HF has also been studied in both the microwave [22] and far infrared experiments

are in progress by the Nesbitt group.

Several more complicated Ar,,HX species have also been spectroscopically observed
by the microwave work of the Gutowsky group: ArsHCI [23], ArsHF [24] and Ar4HF [25).
Ar HF complexes have also been studied in the near infrared [26). Species with more
than two argon atoms in the cluster are rather too complicated for the current state of

theoretical methods, other than qualitative treatments.

Reliable intermolecular potentials are known for Ar-Ar, Ar-HCl and for Ar-HF
interactions. In all cases, the potential surface is supported by accurate modelling of
physical and spectroscopic parameters. Both of the Ar, HX molecules are floppy so that
the complex dynamics sample a large part of the potential hypersurface; this is essential

if meaningful information relating to intermolecular forces is to be elucidated.

In general, the intermolecular potential between more than two atoms or molecules
is not simply the sum of interactions between all pairs [27]. This arises from the fact that
each monomer affects the electron distribution in all the others. For example, only half
of the third virial coefficient of argon arises from two-body interactions. The properties

of condensed media are therefore poorly modelled by pairwise sum potentials.

Currently, very little is known about real three-body forces, despite considerable
effort on the part of ab-initio theoreticians. Supermolecule calculations are notoriously
inaccurate, while the application of perturbative methods allows various contributions to
be calculated. The calculations are still computationally very expensive and there ma;y be
many significant terms in third and fourth order perturbative corrections. Developments
in the ab-initio field are current. The sensitivity of spectroscopic parameters to the
intermolecular potential can, in principle, be used to refine a potential which is based

upon ab-initio calculations.

In my work basis-set methods are used with argon motions included to model the
cluster dynamics more accurately than previously, when argon motions were neglected.

Using a model which has full dynamical freedom, the effect of changes in the intermolec-
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ular potential is investigated, particularly with focus on plausible three-body effects. The
quality of agreement between theoretical and spectroscopic observables allows an assess-
ment of the accuracy of the intermolecular potential and by having a potential function

with terms based on physical effects can give insight into these effects.

The objective of the work to be described is to assess the magnitude and effect of
realistic three-body forces by studying model systems, such as Arz, Ar,HCl and Ar,HF,

and comparing with experiment, where possible.

1: Introduction.
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Basis-set Methods For Modelling Molecular Motions

2.1

In this chapter I assess the suitability of a variety of choices of basis-function types
for describing wide-amplitude motion. The applicability of a basis-set of distributed
Gaussians is reviewed, and calculations are performed using three possible candidates
for modelling angular motions with differing rigidity. The background terminology and
algebra, which is built upon in the following two chapters, is laid out in the first half of
this chapter.

Basis-set methods have been dominated by the Rayleigh-Ritz variational principle
[28], although other methods have been used [29]. If an exact wavefunction, ¥ is ap-
proximated by a basis-set expansion ¥,,, = va ® ci¢; then we need to solve the secular

equations:

> ci(pil H — Eappldps) = 0. (1)

7

In matrix form the secular equations are of the form
(H—- EppS)c =0, (2)

where H is a matrix of elements H;; = (¢:|H |¢;) and S is an overlap matrix with elements
Sij = (#ild;)-

The quality of the approximation depends on the suitability of the ¢; to describe the
system and Ny; N4 may be smaller as the ¢; are made more like the real wavefunction

and may have no sensible value if the ¢; are not physically suitable.

Choice of Basis Function

In the field of interest the basis functions commonly used are Legendre Polynomials
and distributed Gaussians. Legendre Polynomials are suitable for wide amplitude bending
coordinates since these functions are rotational eigenfunctions. Distributed Gaussians are
suitable for wide amplitude stretching type coordinates. Harmoﬁic oscillator functions
are of less utility, for van der Waals complexes, since they rely on the existence of a well

defined equilibrium structure about which small vibrations are executed, but they may
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find use where this is the case. Legendre Polynomials suffer from not being a very flexible
basis-set; they have no variational parameters. An extension of the Legendre function is
the Jacobi function, which is as a special case identical to the Legendre function. The
Jacobi function has two parameters, which can be fitted to place basis function emphasis
at the angle required and to control its width. Jacobi polynomials have been little used

so far, perhaps due to the existence of simpler functions. They have been successfully

applied to excited states in water [30].

The distributed Gaussian basis (DGB) method models a function in one coordinate
by a number of Gaussians with centres distributed on that coordinate. There is a co-
efficient in the exponential chosen, or varied, to optimise the solution. There are also
various ways of spacing the Gaussian centres. One limitation of this method is that a
function which extends over an infinite space can only be flexibly defined over the finite
range of the distribution; points outside this are forced to have function values given only
by the ‘tails’ of the Gaussians. The DGB does, however, posses a great deal of flexibility
over the range of the distribution, and moreover the degree of flexibility is controllable

by the size of the basis.

Harmonic oscillator and Legendre functions and the DGB all have the advantage
that the kinetic energy terms in the coordinate of the function can be analytic, whereas
quadrature integration is required for Jacobi polynomials. All of these, except the DGB,
are orthogonal polynomials, over the range (-1,+1) for Jacobi and Legendre, whereas
the DGB set is never orthogonal, although the overlap integrals are analytic. Since the
DGB is used in secular equation methods of solution, non-orthogonality slows down the
eigenvalue-finding step since the non-unit overlap matrix must be decomposed and the
Hamiltonian matrix transformed [31]. The use of distributed Gaussians has in some ways
revolutionised the field since it eases the direct calculation of eigenfunctions as well as
eigenvalues. The DGB approach is substantially documented in the literature, having
been applied to Morse potentials approximating C-H and H-H bonds [32] [33], but was
popularised by Ba¢ié, Hamilton, Light and coworkers [34], and app.lied to LICN/LiNC [35]
and HCN/HNC [36]. The DGB method has been variously extended to other systems,

and has been used to also model an angular coordinate in Ar—CO; [37]. In some of these

2: Basis-set Methods For Modelling Molecular Motions
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calculations [35](38] a discrete variable representation (DVR) of the angular motion has
been used where angular and radial motions are strongly coupled. In contrast I shall use

a conventional finite basis representation (FBR).

The Distributed Gaussian Basis (DGB).

The use of a Gaussian basis has the advantage that kinetic energy and overlap
integrals are analytic. Defining the distributed Gaussian basis as a set of real Gaussians
on (—o0 < z < 400) ,

pi(z) = (2;1‘

) : exp [~4i(z — 2i)?], (3)

we need to choose the centres z; and scaling factors 4;. If we define the following terms,

for a pair of Gaussians,

AR+ Ao R
Pu’ - A:’ +Ail ’ (4)
1
44;A, \ *
- (*5) (5)
Q2 = VA& + Az, (6)
A; Ay
Q3 - m:: (7)
Qs = Qs(R; — Ra)?, (8)
and
N;p = Q]E_Q‘, (9)

then the overlap matrix elements are:

Siiv = Nii'ﬁ, (10)
Q>

and the kinetic energy matrix elements are:

2

h
Ky = Nﬁ'IQa(l —2Q4)Siir. (11)

Hamilton and Light [39] showed that the exact method used for finding the A; is not

critical and give the prescription:

4c? c? c?
A; = i A= —/—mm—; ANy = 12).
($i+1 - 3{—1)2 ! (2’2 - 21)2 N (zN - $N—1)2 ( )

2: Basis-set Methods For Modelling Molecular Motions
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I shall use this throughout. The parameter c is still a variable, and needs to be small
enough that the basis-set adequately covers the space of the function the DGB is mod-
elling, yet large enough to describe sharply changing parts of a wavefunction. The value
of ¢ may be found according to the variational principle.

Hamilton and Light [39]proposed that the z; are best determined by finding the
positions of the N —1 nodes of a function ¥ . They did this semi-classically by satisfying

the conditions:

7 p(z)dz = % Tp(m)dz =, (13)

where Tpi, is the inner classical turning point for the highest energy of interest and
p(z) is the classical momentum. However, other workers have elected to use equally
spaced Gaussian functions [40] [41]. An equally-spaced DGB needs to be slightly larger
than following [42] for high accuracy but can offer substantial savings in matrix element

calculations, and is the preferred method in my calculations.

A Comparison Of Some Angular Basis Functions

The choice of basis function is determined by the shape of the potential. Comparisons
are made for potentials of the form V(8) = ). V;Pi(cosf), where P;(z) is a Legendre
polynomial and the sum over ¢ is very short. In terms of an atom-diatom system, the
coeflicients in this potential provide a measure of the angular rigidity of the potential.
The computational effort involved in the calculations of a matrix element for different
types of basis functions is quite different (table 1), and in marginal cases may lead to
choosing a basis type which requires a slightly larger basis-set size. The great speed of
the Legendre basis matrix setup in this example is due to the fact that the potential
is modelled in terms of Legendre polynomials, making the matrix elements completely
analytic 3—j symbols [43]. A longer expansion of V() would increase the times for this
method by a greater proportion than for the others, more so for a realistic potential.
A realistic potential would either have matrix elements evaluated by quadrature, or the
coeflicients in a polynomial expansion of the potential would be evaluated by quadrature;
both of these tasks are of similar computational effort to the calculation of H.O. matrix

integrals. A real system would have similar setup times for H.O. and Legendre basis-sets

2: Basis-set Methods For Modelling Molecular Motions
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of the same size.

Table 1. Some approximate timings for a SUN 3/60 (timed to limited precision).

H.O. Setup |Legendre Setup |Jacobi Setup | Diagonalise
Basis Size Time/s Time/s Time/s Time/s
10 0.06 0.003 0.30 0.06
20 0.24 0.008 1.4 0.25
30 0.6 0.013 4.0 0.65
40 1.4 0.022 8.5 14
50 2.9 0.026 16.0 24

The matrix setup for a Jacobi function basis-set is seen (table 1) to take between
five and six times as long as the H.O. function case (or for Legendre functions in a real
system). This great time discrepancy is due to extensive recursion relationships necessary
to evaluate the function and its derivatives, which are required to calculate the (non-
analytic) Jacobi function kinetic matrix elements. Bearing in mind the diagonalisation
times given it will not be worth using Jacobi functions unless an incredibly smaller basis-

set is required if time, rather than storage, is a restricting computational factor.

Legendre Polynomial Basis and Hamiltonian Matrix Elements.

For the set of basis functions, P, which are Legendre polynomials normalised on

(_]-a l)s
2k +1

o Py (cos 8), (14)

Pi(cos ) =

the atom-diatom bender Hamiltonian for J = 0 is written:
H= 52 + V(9), (15)

where the rotational constant of the molecular complex is

h2
b= : (16)
2uRZ,

It is preferred to scale the Hamiltonian to measure the degree of bender localisation by

a single variable equal to V2 /b, giving:

m=ﬁ+%ame (17)

2: Basis-set Methods For Modelling Molecular Motions
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where the potential expansion V() is taken only to a single term for simplicity.

The matrix elements between basis functions are simple:

(m|Haln) = (m?|n) + =2 (m| Po(cos 6)}n) (18)
where
(mli*[n) = bpmn(n +1) (19)

and the final integral evaluates as a 3—j symbol [43]:

(mle(cos0)|n):\/(2m+1)(2n+1)(1g : :) (20)

The form of the 3—j symbol leads to non—zero matrix elements only for cases where

(m + n + 2) is even and (m,n,2) satisfy a triangle relationship.

Harmonic Oscillator Basis and Hamiltonian Matrix Elements.
A harmonic oscillator basis function in cosf, for an equilibrium at cosf = 0, is
defined as
¢o(cos 8) = N, H,(v? cosf)exp (—% cos? 0) , (21)

where H,(z) is a Hermite Polynomial and N, a normalisation factor,

() ()

and v is the H.O. scale factor. Defining p = cos 8, and using the single term potential

N

expansion, the b-scaled Hamiltonian for J = 0 is written,. with 72 expressed explicitly, as:
. 0 o WV
= ——(1— p?)— + =P 8). 2
H’ a#( © )6# + b Z(COS ) ( 3)

The solutions of the harmonic oscillator equation (i.e. with a kinetic term bd?/du?), with
potential V = V, cos? 8, have v = \/m. Thus an estimate of 4 can be made by ap-
proximating the potential as quadratic and assuming that the kinetic term is numerically
similar. This estimate is poor, and in practice < is a variational parameter. If the first;
kinetic, term in H, is denoted K, there are matrix elements:

2

(m| K |n) = —<m|5‘9;2-1n> — (20 — 1)y (mla?In) + v (miu? In)+

2: Basis-set Methods For Modelling Molecular Motions
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2<mm%|n>, (24)

where the identity [44]
2

g;Fq(—§>HAﬂJ=—@n+1—ﬁkn(~%>HAﬂ (25)

has been used. If the integral range of cos 8 of (—1,1) is approximated as (—o0, +00) then
we have a kinetic energy term with known analytic integrals [45]. This approximation is
clearly valid only if the potential is strongly anisotropic. Since the H.O. basis functions
are solutions for small amplitude motion, this approximation is not expected to be the

limit on the quality of the solutions.

The potential integrals must be evaluated by Gauss—Hermite quadrature. Gauss-
Hermite quadrature is not limited to the range (—1,+1) so similar restrictions apply to
the potential anisotropy as for the kinetic term if the potential integral is to be meaning-
ful. The position of the extreme quadrature points should be monitored and a judgement
made as to whether the integration is good, inaccurate to some degree, or invalid (quadra-
ture points with cos§ outside (—1,1)).

In a highly anisotropic system, the Hamiltonian may be approximated by setting
(1 —p?) = 1 in the classically allowed region. I call this the ‘Highly Rigid’ approximation.
If the potential is separated into a quadratic part and a residual the matrix element,

evaluation of

7 62 Va oni
m=—mf+hf“#+mmm (26)

is simplified since the first two terms are the harmonic oscillator operator equation. The

matrix elements are then just integrals over the residual potential plus the harmonic

oscillator energies,

Vimrmonic (27)

E,,=2(v+-;-) 5 ,

which appear in diagonal matrix elements only due to the orthogonality of the basis.

Such an approximation finds little validity in Van der Waals molecular complexes since

they are not rigid enough to justify it.

2: Basis-set Methods For Modelling Molecular Motions
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2.6 Jacobi Polynomial Basis and Hamiltonian Matrix Elements.

The Jacobi polynomials, Pna'ﬂ)(:c),- are a set of orthogonal polynomials on (—1,1)
which can be considered to be an extension of Legendre Polynomials insomuch as they
contain the Legendre Polynomials as a special set, when a = 0 and 8 = 0. Orthogonality

is obtained through a weight function:
1
/(1 — 2)*(1 + z)P PL2P)(2) PP (g)dz = 0; n#m and a,0>-1. (28)
-1

The Jacobi basis functions are therefore defined to be
BEO() = (1 - 2)*/7(1 + 2)P Pl (), (29)

The parameters a and § are varied so as to make the basis functions appropriate for
the potential. Estimates of these parameters can be made by consulting plots of the
basis functions, but the variational principle is the best way to determine their values.
This adds an additional computation time over Legendre and H.O. bases with zero and
one variational parameters respectively. However, in a multidimensional problem these
parameters may be evaluated for a single degree of freedom and hence can add little
to the total computational effort. An inspection of the form of the weighted Jacobi
polynomials, depicted in figure 1, indicates their suitability for wide amplitude motions

with equilibrium geometries of arbitrary angle.

The spread of these functions is controlled by the size of a and 3 and the equilibrium
position by their ratio.

For the same Hamiltonian as for the harmonic oscillator basis, a set of nine basic
integrals for the kinetic energy operator are obtained (i.e. integrals with simple operators
such as z"ﬂ—mm), which do not seem to have analytic solutions in the general case despite
much effort to this end. The explicit form of Jacobi polynomials is cumbersome, so not
amenable to efficient computation, and numerically difficult to calculate accurately. It
is therefore necessary to use a recursion relation in n for Bs.a'ﬂ)(z) and for derivatives

dm(B,(,a’ﬂ )(z)) /dz™ to perform the quadrature. This makes the evaluation of Jacobi basis

matrix elements quite time-consuming relative to the harmonic oscillator and Legendre
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Fig. 1. Weighted Jacobi Polynomials for Three Choices of a and 3; o = 20,8 = 20[1],
a=20,=25,a=20,=30 A forn =0 and n = 2.
cases. In some potentials however, as already mentioned, these other two basis-sets may

not converge for sensible basis-sizes.
Comparative Results for Angular Basis Functions.

When Is the ‘Highly Rigid’ Approximation Good?

The ground state energy for varying rigidity of the angular potential is shown in
figure 2, where A and B are for the ‘Highly Rigid’ Approximation and C for the exact

Hamiltonian; A and C are for an eight function basis and B for a ten function one.

From figure 2 it is clear that the error due to approximating the Hamiltonian is much
larger than any convergence error. From the graph there is observed to be an approx-
imately inverse relationship between the relative energy and V,/b. Extrapolating to
greater anisotropy leads to the conclusion that the approximate curve will only have
reached 1 x 10~ from the abscissa for V2/b ~ 8 x 10°, which represents a highly rigid
system. For states higher than the ground state the error will become progressively worse,

so that the ‘Highly Rigid’ approximation is not valid.
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Fig. 2. Comparison of ‘Highly Rigid’ vs. Exact Hamiltonian Ground State Energies.

Harmonic Oscillator or Legendre Polynomial?

Calculations were performed for the potential V' (8) = V; Py(cos §). Convergence of a
H.O. basis is depicted graphically (figure 3) and compared with an unconverged Legendre
polynomial basis.

The inadequacies of each type of basis function at low V,/b for H.0. and high V, /b for
Legendre are clearly seen, larger basis-sets being required in these limits. H.O. results for
lower V,/b are not calculable since the quadrature scheme starts to place points outside
the valid range of integration, a caution mentioned earlier. For equal basis-sizes of 15

functions, the ‘crossover’ point in accuracy for the ground state is at V5/b = 90.
The graph (figure 4) for the n = 2 eigenvalue does not show an appreciable change
in the location of the ‘crossover’ point, indicating that the n = 0 and n = 2 state are of
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Fig. 3. Results of H.O. Basis Calculation with 7 (1), 10 (®) and 15 (A) Functions
and Legendre Basis with 15 Functions (+) for the Ground State, Relative to a
Converged Calculation.

similar rigidity.

Although care should be exercised in extending observations from a fictional system
to real ones, it is apparent thét for anisotropies V2 /b less than about 100 the Legendre
basis is more compact, and above this an H.O. basis is better. This is lower than might be
estimated by arguments about small displacements being required for the H.O. basis to
be appropriate. In these calculations it is apparent that at the ‘crossover’ point there is
still quite a large difference between the results from the two basis-set calculations. Thus
there will be some systems which fall into the region where neither basis-set provides
a good description, for limited basis-sizes. Such cases nﬁght be better described using

a Jacobi polynomial basis. Additionally, the results presented may give a misleading
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Fig. 4. The n = 2 Eigenvalue for 15 Basis Functions for H.O. (1) and Legendre (0)

bases.

impression about the suitability of H.O. basis functions in real potentials which do not
have a quadratic-looking potential. In such cases, small ﬁumbérs of H.O. functions may
no longer provide reasonable approximations to the wavefunction, even when the motion
is sufficiently localised that we might otherwise expect them to. This may arise since
H.O’s are the eigenfunctions of a quadratic potential, admittedly with a slightly different

kinetic energy term. This qualification would need to be tested for a real system.

Legendre or Jacobi Polynomial?

To evaluate the advantages of the Jacobi basis a potential V = Vi Pi(cosf) +
V2 Py(cos 0) was used, with the V, coefficient fixed. In addition to examining the ex-

pression of wavefunctions for arbitrary equilibrium angle in this section, calculations
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described in the previous section showed the need for a basis-set which has an angular

range which is suitable for the potential. Jacobi basis functions should satisfy both of

these requirements.
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Fig. 5. Difference Between n = 2 Eigenvalue for 15 Legendre and Jacobi Basis Func-

tions.

From the plot of the difference between resultslfor Legendre and Jacobi polynomial
basis functions (figure 5) it can be seen that for V2/b ~~ 100 there is less than 107°
difference, indicating that the Jacobi basis is not able to improve on the errors relative
to a H.O basis in the previous section. Comparing the graphs indicates that the Jacobi
basis becomes better as the anisotropy increases, and is always at least as good as the
Legendre. This progressive improvement, with V; /b, parallels an increase in the opi’.imal

values of the parameters o and 3; the smaller the parameter, the more the function looks
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like a Legendre polynomial. The values for @ and § are determined variationally for each
different basis-set size, although the values obtained for small basis-set size are generally
adequate for large sets. For values of V2 /b in the region of a few hundred, the optimal
parameters lead to functions which are sufficiently similar to Legendre polynomials and
change the ground state energy sufficiently slowly that finding the minimum of this with
respect to the parameters is quite hard. Computationally the NAG algorithm E04JAF is
often unable to locate a minimum. Consequently I choose to perform calculations with
Vo /b = 1500 when I vary V;/b and conclude that in the ‘crossover’ region noted in the

previous section Jacobi basis functions are not able to bridge the gap between H.O and

Legendre functions.

Three graphs (figure 7) are reproduced for V2/b = 1500 which compare Legendre
and Jacobi bases relative to a Jacobi -basis-set which is converged to better than 107
(V2/b reduced units) for the lowest 10 eigenvalues. All three of the basis-sets presented
have ground states identical to better than 10~7. The reasons for the greater number
of Legendre basis functions were discussed in the previous section. It can be seen (table
2) that the movement of the potential minimum affects the Jacobi parameters in the
expected way; the parameters listed move the function centre from very close to 90° to

about 95°.

Table 2. The effect on optimal o and 8 of varying V; /b for ten Jacobi polynomials and

Va /b = 1500.

Vi/b B

50.0 40.300 39.600
100.0 40.394 39.629
150.0 40.394 39.629
200.0 41.694 38.343
250.0 41.694 38.343
300.0 43.735 36.317

The Jacobi results are clearly rather good , certainly being comparable to the H.O.

basis discussed previously. The oscillating behaviour of the results for Legendre poly-
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Fig. 6. The Legendre Polynomials of Small Order.

nomial basis-sets is due to the potential minimum moving through points where there
are either zeroes or stationary points in the Legendre polynomials. Where a stationary
point coincides with the potential minimum even-order wavefunctions (i.e. those with a
maximum value at the potential minimum) will be better expressed than odd-order ones,
and vice-versa. Such a case appears to occur at V;/b =~ 200. The reason for the great
improvement obtained by using Jacobi polynomials over Legendre ones for expressing
localised wavefunctions is easily seen from plots of the Legendre functions (figure 6), by

comparison with the previously presented plots of Jacobi functions.
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Fig. 7. Results Using Jacobi Bases of size 10 [1] and 15 (T) and a Legendre basis of

size 30 A for the n = 3, n = 5 and n = 8 eigenstates.
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Some Theoretical Methods for Floppy Triatomics.

Using the groundwork laid out in the preceding chapter, I now formulate a number
of three-dimensional models, and apply them to Ars in chapter 8. The methods which
I describe are designed for floppy triatomics; much earlier work has been published for
more rigid systems [46] [47]. The Ar; system is a suitable prototype trimer as it is one
step below Ar,HX, for which experimental data are available, on the conceptual and
computational ladder. Forward references to Ar,HCl (chapter 4) are made to indicate

some of the areas where extensions to the trimer models will be required.

I have investigated three methods of calculating triatomic eigenstates as applied to
Ars. Two of these use a Jacobi coordinate system and so treat the system in the Cyp,(M)
subgroup of its full molecular symmetry, D3,(M) (since it has an equilateral triangle
equilibrium geometry). The full D3, symmetry is used in a normal mode treatment us-
ing harmonic oscillator functions (H.O’s) as a basis. All three methods perform J = 0
(rotationless) calculations. In purely vibrational calculations it is appropriate to clas-
sify the molecular symmetry by the nuclear permutation groups S; and S3 rather than
C2,(M) and D3,(M). This is done for one method which uses Jacobi coordinates. The
Jacobi coordinates appropriate are as described for Ar,HX except that § and ¢ are no
longer relevant since the HX is ‘reduced’ to an Ar atom. This leaves a conceptual atom
pair with separation p and a centre of mass R away from the third atom. The angle

between R and p is defined as x. Figure 8 shows the coordinate system graphically.

Both Jacobi methods use a DGB for the R coordinate but differ in the p and x
functions used and in the use of symmetrisation of basis functions in Method II. Calcula-
tions using hyperspherical coordinates in a coupled channel method (48] are available for
comparison. Results of other methods utilising hyperspherical coordinates with different
potentials [49] [50] may also be compared with mine. The suitability of the methods
described below, ranked in terms of degree of molecular floppiness goes: normal mode -

Jacobi schemes — hyperspherical.

The normal mode method assumes that the system is rigid enough that all displace-
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Fig. 8. The Triatomic Jacobi Coordinates.

ments are small, and is likely to provide poor solutions to the Ars problem, the errors
increasing rapidly with increasing eigenstate energy. The Jacobi methods are more suit-
able for non-rigid systems as they permit limited large amplitude motion. The first Jacobi
method (‘Method I') uses H.O.’s in p and x and is of debatable validity: inspection of
the potential plots (see appendix A) indicates that the use of H.O. functions in p is
possibly unwise. Indeed, it is found that many more functions are required in p than x
for convergence. More specialised functions in p than x are used in the second Jacobi
method (‘Method II’) and it is found that much fewer functions in p and x are needed.
In addition, in Method II, the same number of functions in p as in x are required, a good
indicator that the tailored functions are effective. All of these methods are unsuitable
for cases where the amplitudes of motion are sufficient to ‘rearrange’ a molecule. This
is because the basis functions are inappropriate for describing this type of motion in the
coordinate systems used. This places a limit of ¥ = +90° on the range of rotation of
the ‘diatom’. Hyperspherical methods allow naturally for such mo'tions, but I am limited
to calculating eigenstates which do not extend into such a régime. The implementation

of a hyperspherical method for trimeric species to give exact results via a close coupling
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calculation has been described for Hi, (H;)s and Nes [48]and has also been applied to

Ary by the same authors [51].

Methods of Solution — Normal Coordinate Method

The lower energy levels of a chemically bound triatomic molecule would usually be
obtained from a normal-mode calculation. However, this method has several potential
disadvantages for a floppy molecule such as Arj; the vibrations are highly anharmonic,
requiring a large basis set to represent them, and there are configurations that can be
represented by more than one set of normal coordinate values. Nevertheless, it is iﬁter-
esting to investigate how well a normal mode calculation can manage in practice for a

molecule of this type.

The normal coordinates for a D3, molecule may be derived from symmetry rules in
the traditional manner [52). They have symmetries A; and E. The transformation from
normal coordinates, @;, to an z-y plane of cartesian atomic displacements in the plane
of the molecule, {Az;, Ay;} is:

Qs — Q1+ Q2 (30)

Az, = ,——3m, Ay, B ’

_ V3(Q1-Q2) — Qs . @1+Q:—-v3Qs
A:1:2 - 2\/3? ’ Ay2 - 2\/3? ) (31)
Azaz_ﬁ(Ql—Q2)+Q3 Ay __Q1+Q2+\/§Q3. (32)

2v/3m ’ T 2v/3m

Mass scaling results in the factors (3m)'%, where m is the atomic mass. ); represents

the totally symmetric vibration; ), and ()3 represent the E orthogonal degenerate pair.

The vibrational wavefunction is expanded in an unsymmetrised product basis:

N N N

U(Q1,Q2,Q3) = D D) cijedi(@1)8x(Q2)b1(Qs), (33)
i k1

where the ¢ are normalised harmonic oscillator functions:
1 1
$;(@:) = N;iH; (v} Qi) exp (—;n@?) : (34)

Here j is the quantum number and 7 labels the mode so that H;(z) is a Hermite Polyno-
mial and N;; a normalisation factor,

w- (i)' ()"
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The 4; are scale factors and determine the units of the @;, Az; and Ay;. The values
of the scale factors are determined by a variational calculation using a single function,
minimising the ground state energy for each normal coordinate with a one-dimensional
Hamiltonian using NAG routine E04JAF,

~ h2 o?
H; = 2 an + (Qt) (36)

The potential function V(Q;) is the full system potential evaluated with the other normal

coordinates set equal to zero. The full vibrational Hamiltonian
h
H zan +V QlaQZ)QS) (37)

may then be diagonalised, in the basis described, using the above transformations to

evaluate the potential.

A Hamiltonian matrix is set up in the orthodox manner. The potential integrals are
evaluated by Gauss-Hermite quadrature using NAG routine DO1BBF, and the kinetic

energy integrals are analytic [53]:

($:(Q1)0;(Q2)bx(@s)| — Z 3Qz 7165(@1)85 (Q2)w (@s)) =
(G4 3m = 3V Dimbiama — 3T+ Db ) S bus
+ ((J' + %)72 - %\/J"(J’Tl)“/ﬁﬁ'—z - %m‘725j;i'+2) biir bichr
+ ((k + %)73 - %\/’m—)‘n«?kk'—z - %\/l"(T'*'_l)_735kk’+2) birbjy.  (38)

3.2 Jacobi Coordinate Method 1.

The Hamiltonian in Jacobi coordinates is:

A R? [ 62 R
e () re S

2uR \ OR? My.p
-3 \ a3z 5 (J —Jar V(R, p,
g (774 Gurtd ~ 0+ V(B
where _ .
2MA, ~2 a 2 a )
= = — - 40
# 3 and  Ja. dcosx ((1 €08 X)Bcosx ’ (40)
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i.e. the reduced mass, g, is that of the ‘atom-diatom’ complex.

The basis-set used is a product basis of a DGB in R and H.O. functions in cos x and

N, Ny Ng

U(cosx,p, R) = z Z Z cijepi(cos x)dj(p — po)¥r(R), 1+ J < gmax; (41)

1=0 j=0 k=0
the sum being restricted in this way allows a more size efficient basis. The ¢ are nor-
malised harmonic oscillator functions, as previously described, having three variable pa-
rameters, pg, 7, and 7, The H.O. point of zero displacement in the real coordinates is pq,
and may be approximately determined from the minimum on the potenfia.l energy sur-
face. Since the potential is not symmetric this is not the optimum value, as for the ground
state (p) is greater than the value of p at the potential minimum. The optimal value of py
may be determined variationally. The potential is symmetric in x, with an equilibriuxﬁ at
cosx = 0, so that there is no choice in the function centre. The DGB consists of equally

spaced functions ¥(R), with parameters determined as discussed earlier.

The problem is solved in two stages. First, it is necessary to determine good values
for the harmonic oscillator scale factors, v, and v,, and maybe the zero—point of the p
function, po. This is done by freezing R at its equilibrium value and diagonalising the

Hamiltonian matrix with the basis
\I’H.O.(COSXaP) = Z Z cij¢i(c°s X)¢j(p - PO), 1 +] S Amax (42)
i :

varying the parameters to minimise the ground state energy using the NAG routine

E04JAF. Once these parameteérs are determined, the full Hamiltonian is diagonalised in

the basis ¥.

Jacobi Coordinate Method II.

This method is a simplification of the theoretical method used for ArHX trimers;
only the triatom-specific details are given here. |
Functions are chosen to model the motion in each coordinate according to the extent

of freedom and boundary conditions.
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o A set of gaussians v¥;(R) distributed equally on R (i.e. a DGB) is used to model
the large amplitude stretch. The spread of each gaussian is calculated in terms of a

variational parameter, ‘c’, and the range of distribution is convergence determined.

e Orthonormal one-dimensional functions T, (p) and ®,(cosx), determined as eigen-
functions of effective potentials, are used for the p and x degrees of freedom. The

method of calculating these functions is described later.

The basis function is now:
Y, = 1/7,-(R)<I>,,(cos X)Tw(P)a (43)

the collection of the index 7 and the quantum numbers {v,w} are denoted a. The basis-
set is described by the DGB size, Npgg > ¢ > 1, and the quantum nurl;ber restrictions
Umax > v > 0, w > 0 and gmax > v + w. Symmetrisation following the method described
in the section dealing with Ar,HX theory is applied. In contrast to ArHX, where the
alternating symmetry of the HX rotational functions with respect to space inversion, E*,
allows for both values of the parity, €, vibrational wavefunctions of triatomic complexes
must have e even. That is to say E* is only a symmetry operation on an Arg ro-vibrational
wavefunction; here only the vibrational wavefunction is determined, so that symmetry
group is the permutation group, S, rather than C2,(M). Hence the symmetry labels are
A' and A"; A; and B; in C5, map to A' and A" in S, respectively. The symmetry with
respect to argon permutation, 7, is found to impose the restriction that (v 4+ n) must be

even; symmetry separates calculations with odd and even functions in x vibrations.

For Arjs, the exchange of two particles must leave the sign of the total wavefunction
unchanged, since Ar nuclei are bosons. Rotational functions alternate in symmetry with
respect to argon permutation. This may be shown by noting that the D;\’;K rotational
functions transform with character (—1)¥ under (12) permutation, hence vibrational
states with a given  will only exist if (—1)7 = (—1)* since the argon nuclei are spinless,
and hence must have a symmetric nuclear spin wavefunction. Since I am calculating
vibrational, rather than J = 0 states I require both values of to be used (I distinguish
between a J = 0 and vibrational calculation since I calculate 7 = 1 states, which do not

exist for J = 0). States which are symmetric under (12) permutation have n = 0 and are
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labelled A' and states which are antisymmetric have = 1 and are labelled A". The 4,
label in Dy, (M) maps to A' in Sz, while the E pair are formed from the representation

A'@® A". The energetic difference between the two components of the E pair will indicate

the degree of convergence of the basis-set.

The Calculation of T,(p) and &,(cos x)

Tw(p) and ®,(cosx) are calculated as eigenstates of a part of the Hamiltonian
operator which relates to the coordinate of interest. This contains an one-dimensional
effective potential V.g which is a cut on the full potential energy surface. This is an
adiabatic Hamiltonian. Some criteria are required to determine appropriate values for
the coordinates of the cut. It is important to examine the forms of trimer potentials in
general to get some indication of the relative importance of any coordinate by itself. In
particular, we do not wish to use a cut which unduly restricts T or ® nor one which

gives them too great a spread. Some numerical results of the method described here are

presented in chapter 7.

Examination of potential cuts for triangular trimers (plots for Ar; and Ar,HCI/F
are given in appendices A, B and C) shows that there is strong dependence of V(x) with
respect to R. To pick a value of R.,; as being that for equilibrium is clearly unsuitable
as ®(cosx) will be too restricted. We wish to allow freedom in x in the presence of
excitation in R and so select Ry, = (R);, where (R); is the expectation value of R for
the first state excited in R of a calculation with p and x clamped at their equilibrium
values. p.y; = (p); is used, where (p); is the expectation value of p of T1(p). The choice

of pcut is likely to be less critical due to the rather square appearance p versus cosx

potentials.

For V(p), cos xcut = 0 is used as the only rational choice. An inspection of p versus
R plane cuts on the potentials of interest shows that there is a minimum for Ry below
which T(p) will be too restricted, in general. Using the same recipe as for ®(cos x) will

avoid this and should provide a suitable value on the basis of the same arguments.
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The one-dimensional adiabatic Hamiltonians are simply:

X K (9
HlD:P == Marp (W)p + V(R‘:ut,p,COS Xcut) (44)
and
H A + Y + V(R ) (45)
= cuty Pcuty COS .
1D MArme 2/"R3ut Tas b Peut X

The Matrix Elements.

The vibrational Hamiltonian is as above for the Jacobi I method, with J = 0, since
it is only coordinate-dependent. Much of the kinetic part of the Hamiltonian, H, can
be evaluated analytically, whereas the potential part must be evaluated using numerical

methods. It is appropriate to rearrange H by defining:

. X . K? 0?
Kp:Kp,0+Kp,r:_M—A;;(a_I)2)p, (46)
X i X K? R: O\ .
KX = KX,O + K = (MAIP2 + 2#R2>]ir (47)
and
V(R,p,x) = Vo(p) + Vo(x) + V+(R, p, X) (48)
such that:
(Kpo + Va(p) — EL)Tu(p) =0 (49)
and
(Kx,0 + Vo(x) — E3)®u(cos x) = 0. (50)

That is ﬁlD,p = Kp,o + Vo(p) and ﬁlD,x =K 0 + Vo(x). The Hamiltonian is now:

A R %
H = Y (W) R+ V.(R,p,x)+

vao + f(p,,- + IA{XvO + K 1 + %(p) + %(X)' (51)

Thus only the residual potential V, need be integrated over since we have the EY and

E? and T,, and &, are orthonormal functions. This is an advantage since less precision

is demanded of the integration in p and cos .
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We can also make savings in the R part of the potential integral evaluation. For an
equally spaced DGB, products of pairs of DGB basis functions have centres at or exactly
in between one of the basis function centres. If, at each of these 2Npgg — 1 centres, the

potential in R is expanded as a Taylor series V(z) = ) Cnz™ we obtain an integral of

form:
/md’i'(R)V(R)z,b,-(R)dR = Z Can /°° zzne_“zzdz, (52)
0 ~ —oo

where £ = R — Rcentrey Reentre 1S the centre of a product of two DGB basis functions and

a is twice the DGB exponent. The integral is a well-known analytic one:

(53)

> 22n —az? (2n—1)(2n— ) 1
/ e dz (2a)

&,

_—0

The Taylor expansion only needs to be carried out at 2Npgp — 1 points and can be
performed from a grid of a small number points covering the whole range of R. I used a

variant on CACM algorithm 416 [54] for this.

The analytic DGB basis-function overlap-integral is defined as
Sei= [ o (RIG(R)AR = e sRR2, (54)
0
where g is the DGB exponent, and the R kinetic term is defined as

o [0 (kg )RR = 2 Susalt — o(Re = Rl (65)

The kinetic energy term in cos x is analytic if the $,(cos x) are expressed as an expansion

of harmonic oscillators. It can be shown that if

N G . d
K= 6cosx(1 s X)Bcosx (56)

then integrals between harmonic oscillator functions,

onl2) = (2) % (2,,1,,!) Bt exp(~12*/2), (57)

where H,(y) is a Hermite polynomial, are:

n(n+1)+3

) | 1
(n|Kln) = —y(n + 5) + = 7
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(n +2lK1n) = 1 (m +21)(" + 2)
(n+ 4R n) = _\/(n+ 1)(n+i)(n+3)(n+4). (58)

If &,(cosx) =D, cg:’)t,aﬁ(cos x) then
=) Y Y m K [n). (59)

The symmetry of the ®,(cos x) and the properties of the (m|K|n) ensure that KX, =0

unless v — v’ is even. This is also guaranteed by the basis-set symmetrisation used.

The numerically evaluated terms are defined by

Th = I / vom ey man, (60)
R [ 1
T =g /0 o (R) o $i(R)R (61)
and
5 e (PPas — p)
Uy = To(p) et —2)x (p)dp. 62
- / (LT o) (62)

The Hamiltonian matrix element is then:

Hyy = 6yry [5,,,,, (K,.’?,. + Sy:(E2 + EY )) - T},,.Kg‘,,,] — S U K%, +

/ dR/ dp/ d(cos x)¥i (R)Pv (cos X)L (p)V(R,p,x)¢,(R) v(cos X) T (p).
(63)

3.4 A Note on the Symmetries of Overtone States of Arj.

Overtone levels of a doubly degenerate state have degeneracy v + 1, where v is the
sum of quantum numbers in each component of the pair. For example, there is a set of

degenerate wavefunctions W3 o, ¥2 1, W12 and ¥g 3 for a total of three quanta.

The procedure for establishing the symmetry labels of these overtones is well estab-
lished [53] and is expounded below. If the degenerate pair of fuﬁctions are denoted Q,
and Q;, a operator R will transform among this pair:’ R(Qa) = R,aQ. + R,bQ, and
R(Qs) = RyaQ. + RybQs. Using a set of normal coordinates it is possible to arrange for
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ﬁ(Qa) = R,Q. and R(Q:) = RysQp since the character under a transformation is not
coordinate dependent. Hence the character of a degenerate set of states with v quanta

under the application of R w times, xv+(R"), can be written:

for v = 2 we have

R(QX) = RIQ:, (64)
R(QaQs) = RaRsQu Qs (65)
and
R(Q}) = R}Q3, (66)
giving
x2(R) = R2 + R, R, + R? (67)
and for v = 3 we have
R(Q3) = R3@Q3, (68)
R(QiQs) = RIRQ:Qs, (69)
R(QaQ}) = RaR}Q.Q} (70)
and
R(Q}) = Ry @3, (71)
giving
x2(R) = R3 + R2Ry + R, R? +'R§. (72)

Since x;(RY) = RY + Ry, we can write x2(R) = %—[X1(R)X2(R) +x1(R?)], and generalise
to:

Xe(B) = 2 (R)xe-1(R) + xa(R*)) (73)

This equation gives the character of any overtone of a doubly degenerate fundamental
under an arbitrary operation R.

Using the equation for the character of an overtone, with the character table for
symmetry group Dsy, it can be shown that for two quanta in an F fundamental x,(E) =

x2(or) = 3, x2(Cs) = x2(Ss3) = 0 and x2(C2) = x2(0,) = 1; i.e. the overtone has
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The character table for Dgy:

E 2C; 3C, o 2S5 30,
4, 1 1 1 1 1 1
A1 1 -1 1 1 -1
E 2 -1 0 2 -1 0
A1 1 1 -1 -1 -1

1

2

Ay
EI

1 -1 -1 -1 1
-1 0 -2 1 0

symmetry A; @ E. The three quantum overtone has x3(E) = x3(or) = 4, x3(Cs) =
x3(S3) = 1 and x3(C2) = x3(0») = 0 and has symmetry A; & A2 @ E.

The above has repercussions in the S; symmetrised treatment since E maps to
A' ® A" and A, also maps to A”. Hence for three quanta there will be two states of A’

symmetry (an = 0 calculation) and two states of A" symmetry (n = 1); correlation of

these results with Dj, labels will not be trivial.
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The Theory Used to Model the Dynamics of Ar,HX Systems.

4.1

Building on the Jacobi II method, which was described in the previous chapter, and
found to be the most efficient method tested in chapter 8, I now describe in detail the
method which is used to calculate the lower bound-states of ArHX trimers in chapter
9. The coordinate system is first described followed by the Hamiltonian operator in this
coordinate system. Some angular momentum terms are neglected from the Hamitonian
in order to make the resulting matrix of tractable size. Using previously described basis
functions, a symmetrised basis-set is written down and the algebra involved in the cal-
culation of matrix elements between these functions is explicitly laid out. The methods
which have been used to improve the efficiency of matrix element evaluation are also
explained. The method by which relative band intensities were calculated, using analytic
integrals, is also described. Finally, the simplifications arising from clamping the argon

atoms are summarised.

The Coordinate System.

As is commonplace in the study of the dynamics of weakly bound complexes, body-
fixed Jacobi coordinates are extended. The Jacobi coordinates consist of the separation,
p, of the two argon atoms, the distance between the Ar; centre-of-mass and the HX
centre-of-mass, R, and the angle between the vectors along p and R. Extension of these
coordinates is necessary to account for the structure of the HX; two angles, # and ¢, are
defined in the convention of spherical-polar coordinates. # is the angle between the vector
along R and the HX bond-vector, with # = 0 defined at the geometry when the H atom
is closer to the Ar, centre-of-mass than X is. ¢ orientates the HX about the vector along
R, for a given 8§, and is defined as a multiple of # when the HX bond-vector lies in the

same plane as the Ar; nuclei. This coordinate system is illustrated in figure 9.

A full consideration of the ro-vibrational dynamics would then describe the orientation
of the complex in space by three (Euler) orientation angles [55] [43]. This approach is

complicated since it would almost fully quantise internal angular momentum on the Ar;
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Ar

Fig. 9. The Body-fixed Jacobi-type coordinates for Ar,HX.

to HX axis, while the complex is a near symmetric top with its top axis perpendicular
to the molecular plane. The complications which arise in the consideration of angular

momentum coupling are bypassed in this work by considering the purely vibrational

problem. This does not preclude comparison of results with spectroscopy and so is

not a drastic measure; rotational constants may be estimated from expectation value

calculations.

The Hamiltonian.
The vibrational Hamiltonian in Jacobi coordinates, treating HX as a rigid rotor with

rotational constant byx, is [21]:

. B2 62 2 h? 2
Hyp, =— 2R (a—R;)R + buxjax + m]m

2 /s 52 . | (74)
T Map (b—‘;;)P + 2R (Jux +jar)® + V(R,p,x,6, ¢),
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where . = 2Mp, Mux /(2M4a, + Myux) is the collisional reduced mass of the complex,
M, is the argon atomic mass and jgx and ja, are the body fixed angular momentum
operators for HX and Ar, motions respectively.

V(R,p,x,0,¢) is the trimer intermolecular potential averaged over the HX internal
vibration. This potential depends, at least in principle, on the HX vibrational quantum
number.

The coupling of the angular motions of the Ar, and the HX through the cross term

JHX"JAr is neglected, giving the Hamiltonian:

. R: [ 82 K? R? R,
H = — —_ )32 -2
2uR <6R2)R " (be " ZuRz)JHx " (Mmp2 * 2uR2)“'

R? 8?
- Ma.p <5’;{>P + V(Raan:ead’)'

(75)

The Basis Functions Used.

Functions are chosen to model the motion in each coordinate according to the extent
of freedom and boundary conditions.

o Spherical harmonics Y;(6,¢) in the phase convention of Condon and Shortley [56]
are rotational eigenfunctions in free space and are chosen as a basis-set for HX motion
since this is only weakly hindered.

o A set of gaussians 1;(R) distributed equally on R (i.e. a DGB) is used to model

the large amplitude stretch. The spread of each gaussian is calculated in terms of a

variational parameter, ‘c’, and the range of distribution is determined by convergence.

o Orthonormal one-dimensional functions T,,(p) and ®,(cosx), determined as eigen-
functions of effective potentials, are used for the p and x degrees of freedom. The

method of calculating these functions was described in the section on triatomic the-
ory.
Symmetrised basis functions arising from a restricted direct product of functions in

each body-fixed coordinate are used.
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Ar,HX has the molecular symmetry (MS) group C3,(M) [57]. Under the primitive

symmetry operations of argon permutation, (12) and space fixed inversion, E*, we have

the character table:

E (12) E* (12)

[ V)
— P e
Pt
|
ot
|
[y

In the Ar,HX vibration-only problem, unlike Arz, E* symmetrically transforms the
vibrational wavefunction so that the character table of the ro-vibrational molecular sym-
metry group still applies. When considering the symmetry of the complete wavefunction,
it must be borne in mind that rotational functions alternate in symmetry with respect

to E*.

The effect of each symmetry operation on the basis functions may be found from
the transformation properties of the coordinates in them. With the coordinate system

described above we may write:

(12)(07 d’aX) —’(0,77 + ¢,7I' - X);
E*(Ba ¢’X) _)(0’ _¢aX); (76)

(12)*(0a ¢aX) _’(07 -T = (,b,‘l'l' - X)a

from which it is possible to deduce the function transformation properties:

E ®,(cos x) Yi(6,4)
(12) [ (—)"®u(cosx) (-)*Y;r(6,¢)
E* | ®y(cosx) (-)*Y;-x(6,9)

(12)" [(=)°®@o(cosx)  Yj—x(d,9)

With this information the primitive functions can be projected out to give sym-

metrised basis functions:

4: The Theory Used to Model the Dynamics of AroHX Systems.



4.4

38

1
RREET A

[Y5e(6,8) + (=) <Y;_4(6, ¢)],

®,(cos x) Tw(p)X
(77)

where the symbols € and 7 determine the symmetry label which applies to the function:

(—1)¢ gives the character with respect to space inversion, E*, and (—1)7 the character
with respect to permutation, (12).

The collection of the index ¢, the quantum numbers {v,w,j,k} and the symbols €
and 7 is denoted a. The basis-set is described by the DGB size, Npgp >t > 1, and the
quantum number restrictions v > v 2 0, w > 0, gmax > ¥V + W, Jmax > J > 0. Two
restrictions apply to k. Physically, j > k > 0 but the basis-set may be reduced by only
using low & for high j.

Some quantum number combinations are eliminated by symmetry, so reducing the
basis-set size; (7 + v + k) must be even and k = 0 functions are only included if € = 0.

Argon nuclei are bosons, however, so (12) permutation must not change the total
wavefunction sign. In addition, argon nuclei are spinless, so that the nuclear spin part of
the total wavefunction is symmetric, so that (12) permutation must not change the sign
of the vibrational-rotational wavefunction. This symmetry restriction is not absolute,
however, since the rotational functions alternate in symmetry under the operations (12)
and E*; all vibrational symmetries are represented in a ro-vibrational spectrum. Hence
(vibration only) calculations should be performed for both values of 7 and the K selection

borne in mind.

The Matrix Elements.

Much of the kinetic part of the Hamiltonian, H, can be evaluated analytically,

whereas the potential part must be evaluated using numerical methods. It is appropriate

to rearrange H by defining:

. . . h2 62 .
K, =Ko+ K, = —m 6_p2 P (78)
R . A 52 ‘hz ) ‘
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and
V(R,p,x,8,¢) = Va(p) + Vo(x) + Vo(R, p, , 6, 9) (80)
such that:
(Koo + Volp) — E)Tu(p) =0 (81)
and
(Kx0 + Vo(x) — Ey)@s(cos x) = 0. (82)

That is ng,p = IA(,,,O + Vo(p) and ﬁ1D,x = IA(X,O + Vo(x). The Hamiltonian is now:

- R [ 8 RN\,
"= " 2uR (bﬁ)R+ (bﬁx + 2;AR2>]HX+

Vi(R,p,x,0,4) + KP,O + RP,T + f(x,o + Rx,r + Va(p) + Vo(x). (83)

Thus only the residual potential V, need be integrated over since we have the EX and
E? and T, and ®, are orthonormal functions. This is an advantage since less precision
is demanded of the integration in p and cosx.

Efficient evaluation of potential matrix elements is possible by expanding the resid-
ual potential as a series of spherical harmonics in § and ¢ at a given (R, p, cos x) point.
We may then take advantage of the analytic properties of an integral of three spheri-
cal harmonics. The potential is symmetric about ¢ = 0 so that the expansion can be

symmetrised:

{
Vo(R,0,%0:8,8) = 3 O Fim(R, 0, x)[Yim(8,) + (~1)"Yiim(8,@)]/2.  (84)

I m=0
Since spherical harmonics are orthogonal, the coefficients F;4 are evaluated by multiplying

both sides of the expression for the series by Y (8, $) and integrating:
2 27 g
Foq(R,p,x) = ——/ dd)/ sin§d0 Y, (8, 9)Vr(R,p,x,0, ). (85)
(14 840) Jo 0

Having reduced the potential to such a series, the (8, ¢) integrals reduce to sets of

integrals which can be expressed in terms of 3-j symbols [43]:

2w T . — ] . . .
: (25" +1)@I+1)(25+1) (5" 1 5 ) (.’l’ lj
d ikt Xim Y ik = .
/0 ¢/o sin 0d8 Y Yim Yjk \/ ym wmk)\ 000 (86)
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If this integral is denoted

il
[fc'mk}’ (87)

the properties of 3-j symbols give:
l' . |' .
b 2 I O L A
[k'mk] B [—k’ -m —k}’ (88)

T
[i, 2}:0 unless k'+m+k=0 and j +1+7j iseven. (89)
m

The following numerically evaluated terms are also defined:

/ ¢‘ )( cut t )‘gb,(R) (90)
R: [ 1
Toi= g / i (R) 2 9 R)dR (91)
and
— (pcut )
Vura = = [ 1w B ) (92)

The Hamiltonian matrix element is:
Hyq = 6j; [5,“ [5,,,,,,, [5,,,,, <K,.’,‘,. + Sioi(bucj(j + 1) + EX + ED)+
T,-:,-j(j + 1)) - TifiK;c’v:l — S{I;Uw'wKZ,(,v]J'i‘
dR/ dp/ d(cos x) Fim(R,p,x)(-)*
(1+5k0 (1+6k'0)’ / Zn;)

(¥ |2 ]+ )k“'[i:;_jk]+[_j,;:,fzﬂ.+(‘)‘+k[_j;r,ijk})- (93)

Calculation of Band Intensities.

It is important to calculate transition intensities for comparison with experiment and
to predict which other bands might be observable. The intensity of a transition between
two vibrational states a and b,i.e. a band intensity, is proportional by a state-independent

factor to:

Iab = IIob,—llz + lIab,0|2 + IIab,llzv . (94)

where

Topq = <a|qulb>- (95)
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Parallel (a-type) transitions are identified by I +1 = 0; conversely perpendicular tran-

sitions have I3 o = 0. The vibration-only basis function is:

! ! . Cos
\I’wwjk \/ﬁd)i(R)@v( X)‘rw(p)x
[Y5x(6, 6) + (=)*<Y;-x(6, 8)]. (96)

If cS::,j,): is an eigenvector component for a vibrational eigenfunction a, which has the

given €,7, then:

)* JSasen) (ie'n') o 1 7. 5)
ajen) (bie'n e+1f €'+
a.b,q Z Z 14+ 5k0 (1 + 51:’0) tvak 1.vw_1’k'S‘ ‘FJJ’kk’ ’ (97)

twvjk i ’k’
where analytic expressions for integrals of the spherical harmonics Y}, previously defined

give us:
8,8 1 jl .7 1 .7 J 1 j’ ! J 1 j'
I\( ) ), — 7 _\s __\&+s .
ji'kk',g — l:_qul]-’_( ) [ —k! +( ) qu, +( ) kq—k’ (98)
This provides a compact and efficient method of evaluating band intensities.

The Theory Used for Clamped Ar; Calculations.

In the same nomenclature as previously, the clamped Ar, Hamiltonian is:

. K2 6? 1 2
Hgy = —2/1.R (6R2)R+ (be + 2 R2>]Hx + V(R, 0a¢;Pﬁx,Xﬁx)' (99)

V(R, 8, ¢; psix, Xfix) now depends parametrically on pgy and xsy. For cases where y * 3
the symmetry of the system is lower than the full dynamics case so that only E* is a

symmetry operation. The symmetrised basis functions are, following the same treatment

as before:

= (R)Y;a(6,6) + ()Y a(6,4). (100)

¥a V2(1 + ko)

Now the only symmetry restriction is that £ = 0 basis functions are excluded if € is odd.

In the same nomenclature as the full dynamics case the Hamiltonian matrix element

is then:

Hyg = b1 [51:'1: ((K,-I?,- + Siri(buxi(F +1)) + Tisg (5 + 1))] +
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oo i
! A dRE Z Flm(Rﬂxvpﬁvaﬁx)(_l)k'x

(1 + 6xo)¥(1 + br0)? T =0
A R A M EAT e EAEN
This formalism is used to calculate the values of R.,: which are required in the calcu-
lation of T and & (see chapter 3 for a description of the scheme for determining T and &
basis-sets, and chapter 7 for some results). The coupling of motion in different coordinates
could, in principle, also be examined through a clamped Ar; calculation; calculations for

non-equilibrium values of p and x would be performed, and the perturbations to the

stretch mode and HX bending states examined.
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5: The Pair Intermolecular Potentials.

In this chapter I review the forms of some well-established pair potentials which are
relevant to the trimers considered in this thesis; the pair potentials for Ar, and ArHX

have been the subject of much previous study.

Rare gas atom interactions were probably the first to be studied quantitatively and a
plethora of functional forms have been suggested, many being reviewed by Aziz [58]. The
interactions of RgHX complexes other than ArHCl have been less extensively studied,
although the methodology developed for one member of this group may, in principle, be

extended routinely to the others.

5.1 The Argon-Argon Potential.

Aziz and Chen developed the variation on the Hartree-Fock Dispersion (HFD) po-
tential, termed HFD-C [59], which I use; the HFD approach originates from the work of
Scoles and coworkers [60] [61]. The HFD-C potential satisfactorily reproduces physical
properties including the second virial coefficient, viscosity, thermal conductivity, diffu-
sion, differential cross-sections, total cross-sections and dimer spectroscopic results. In

addition the HFD-C potential has a simple form which can be physically interpreted.

VHFD—C(P) = 1fl-e];mlsive(P) + Vattractive(P) (102)
v;epulsive(P) = E*A*z‘ye—a'z (103)
j=2 c
* 2j+6
Va’ttractive(P) = —€ F(z) Z #—Q—G- (104)
i=0

F(z) =exp(—{§ - 1}2) z <D

F(z)=1 z2>D

, (105)

where ¢ = ;& and the parameters appear in table 3, where €* is the well depth.

Viepulsive(p) is a modified Born-Mayer type potential and includes the effects of ex-

change repulsion and SCF deformation. V,iiractive(p) is a dispersion energy with the sum
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taken to include dipole-dipole, dipole-quadrupole and quadrupole-quadrupole terms. At
intermediate and short ranges orbital overlap reduces correlation and the dispersion en-

ergy is damped; F(z) fulfills this réole.
A variant on the HFD-C potential, termed HFD-B2, has been developed more re-

cently by Aziz and Slaman [62]. It has
V;epulsive(P) = EtA*e—a‘z-}-ﬁ‘zz, (106)

and slightly modified coefficients. The HFD-B2 potential is also improved at long range,
compared to the HFD-C. Comparison of the lowest few bound states of Ar; shows very

little effect of the improvement of HFD-B2 over HFD-C.

Table 3. Parameters of the HFD-C and HFD-B2 potentials for Ar-Ar.

HFD-C HFD-B2
e*/kgK 143.224 143.224
rm/A 3.759 3.7565
a* 16.345655 10.77874743
B* - -1.8122004
Y 2 -
A*  9.502720 x 10% 2.26210716 x 10°
ce 1.0914254 1.10785136
cs 0.6002595 0.56072459
€10 0.3700113 0.34602794
D . 1.4 1.36

5.2 The Argon-HX Potential.

The Ar-HCIl potential has only been accurately determined much more recently than
Ar,, since much more sophisticated experimental techniques must be applied; typically
individual clusters in a molecular beam must be spectroscopically probed in the infrared.
The potential has largely been developed by Hutson and Howard [63] [64] and more
recently refined by Hutson giving the H6(3) [65] and H6(4,3,0) potentials [66].
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The same methods of parameterisation have also been applied to other Rg-HX com-
plexes [67] [68].
As with the HFD-C potential the H6(3) potential is based on physically comprehen-

sible contributions:

VHG(x)(Ra 0) = I/short(}?vaa) + ‘/ind(R, 0) + Vdisp(R) 0), (107)
with exchange repulsion and SCF deformation modelled by
Vibort(R, 0) = A(9)e PR, (108)

induction modelled by single centre dipole plus quadrupole on the HX polarising the

argon

I/ind(}za 0) = - aAry'%IX[l + Pz(COS 0)]R_6

109
— 6aarpux Oux cosd 9R™7 ( )

and dispersion interactions described by

8
Vdisp(R’o) = - Z Cn(o)Dn(R)R_ni (110)
n=6
where
_sr\~ (BR)™
Dn(R)=1-¢PR)" — (111)
m=0

is a Tang and Toennies damping function [69] and is implicitly a function of  through
the dependence of 8 on 4.

The fitted parameters in the H6(3) potential are the Legendre co-efficients of the
three functions # and the angular dependence of well depth, () and radial minimum

position, R, (6), for example:
€(8) = Z exPr(cosb). (112)
A

The other unknown parameters, such as A(6), are calculated to reproduce the given well

depth and radial minimum position.

More recent work, on ArHF [70], has lead to an improvement of the precision, utility

and parameterisation of the functional form. The improved potential parameterisation

5: The Pair Intermolecular Potentials.



46

is known as H6(4,3,2) for ArHF and has also been applied to ArHCl [66], when it is
called H6(4,3,0); the parénthetica.l numbers give the maximum order, A, of the Legendre
expansion for increasing power, k, of 7. The H6(3) and H6(4,3,);) potentials are quite
similar, H6(4,3,X;) having dependence on the HX vibrational state included by a short
power series in the Legendre expansions of the angular dependence of well depth and
radial minimum position and g, for example:

€(6,7) = Y _ exxPa(cosb)n*. (113)
Iy

The parameter 7 is the mass reduced vibrational quantum number of the HX,
1
n=(v+ 5)/(#Hx)1/2- (114)

Electrical properties, such as HX dipole and dispersion coefficients are written as a three

term power series in 7.

The modified potential terms are:

Vibort(R, 6,7) = A(6,7)e PR, (115)
10
Vdisp(Ra 0177) = - Z C‘n.(B,n)Dn(R)R—n, (116)
n=6
and more strikingly
1
Vind(Rvovn) = —§aArIFI27 (117)

where F' is the electric field at the Ar atom due to a ‘point charge plus quadrupole’
(PCQ) charge distribution on the HX. The PCQ model compactly describes the field by
placing charges on both of the nuclear centres and a quadrupole on the halide; higher
order multipoles are implicitly accounted for so that the PCQ model is superior to a
single centre dipole plus quadrupole model.

Plots of the two-body potentials for the trimers Ars, Ar,HCl and Ar,HF are given

in appendices A, B and C.
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A Discussion of Relevant Three-body Effects.

6.1

The current state of knowledge on the subject of three-body forces, which are relevant
to Ars and ArpHX systems, is rather poor, and mostly consists of suggestions, rather than

broadly accepted fact.

Firstly, some recent work using ab-initio methods is described, in order to define
terms used in the comparison of ab-initio and model data. A division of the most impor-
tant three-body effects into four physical effects is made and the mathematical forms of

these components is described. The four terms described arise from:
1. dispersion effects consisting of triple-dipole and higher order terms,
2. the interaction of dipoles induced on the argon atoms by HX permanent multipoles,
3. orbital deformation due to exchange and overlap repulsion,

and

4. the interaction of HX permanent multipoles with the electrostatic field which results

from the overlap effects of the two argon atoms.

The parameters introduced in the mathematical models of the three-body effects are
determined on the basis of monomer physical properties wherever possible, or varied to
match model to ab-initio values. The comparison of the model three-body potential with
the ab-initio data for both Ars and Ar HCI forms the content of the last two sections of

this chapter.

The ab-initio Perspective.

Ab-initio methods can take two routes to a determination of intermolecular forces;
either a supermolecule approach or a perturbative approach may be used. The su-
permolecule method obtains the interaction energy as a difference between the sum of
monomer energies and the energy of the complex. These two nufnbers are substantially
greater than their difference and even when the monomer energies are evaluated using

numerically consistent methods (e.g. Boys and Bernardi counterpoise method [71]) there
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may be errors in the large energies of the same order as the interaction energy. In addition
to this serious drawback the supermolecule method does not break down the components
of the interaction, a desirable feature from the point of view of understanding intermolec-

ular interactions.

A perturbative method to deal with calculations of intermolecular forces known
as Intermolecular Mgller-Plesset Perturbation Theory (IMMPT) has been developed by
Warszawa theoreticians [72] [73]. Further work by Chalasinski et al. has firmly established
the value this approach [74] [75] and it has been applied to a number of systems: Arj;
and Arq4 [76], (HF), [75], AtNH; [77], (HF)3 and (HCl); [78] and Ar,HCI [79).

In brief, the IMMPT method partitions the supermolecule hamiltonian to separate
out the monomer terms. Both the interaction and electron correlation terms are treated

as perturbations; that is we have a double perturbation expansion:
H=H+Wy.+V. (118)

H° is the unperturbed hamiltonian and is a sum of Fock operators for the monomers; that

is Aa. sum of energy operators at the SCF level of theory, consisting of kinetic, Coulomb
and exchange terms, which act on spin-orbit functions. Vi’imm is a sum of ‘fluctuation
potentials’ for the monomers and handles the correlation effects and V is the interaction
operator of the monomers. The intermolecular interaction energy corrections, €(*), may

then be categorised in terms of the order of perturbation with respect to W}ntm, j, and

V, 1. Hence (*% is a correction term corresponding to the interaction of Hartree-Fock
(i.e. uncorrelated) molecules at k** order in V and e(*" is the correction to (*%) arising

from changes intramolecular correlation at I*" order in Wigya.

Defining AE(™) as being the correction due to n'® order of IMMPT, the interaction

energy for a trimer may be decomposed as follows:
®
AESCF = AE(®) + AEQY) = AEHL 4 A ESCF—def (119)
AEHL is the Heitler-London interaction energy between undeformed SCF monomers.

AESCF~def {5 due to relaxation of the molecular orbitals in the electrostatic field
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caused by the other particles, subject to the Pauli principle. We may further decom-
pose AEHL;

AERL = {19 JL . (0 (10 4 AL 4 Aw. (120)

exc €exch

The terms Ay and Aw are small zeroth order exchange terms by which the egg%

of IMMPT differs from €L, ; no physical meaning is attributed to them. They
account for the appearance of AE(%) in the expression for AESCF above. Ap is
zero for a complete basis and Aw is generally negligibly small. The e( % term is of
electrostatic origin and is additive. Non-additivity arises from €, , which is always
short-range and decays as e %P asymptotically, and from AESCF—d¢f which for
complexes containing a molecule with a permanent multipole has an R™™ asymptotic

limit due to interactions of permanent with orbital deformation induced multipoles.

An e *E asymptotic limit for AESC¥~9¢f applies in systems which do not contain a

permanent multipole.

AE® = G2 + i) + g’ + Wi+ W (121)

The electrostatic interaction of relaxed orbitals (i.e. trimer, rather than monomer,

(20)

disp? 8T€ additive whereas the induc-

SCF orbitals), 5&; i), and the dispersion energy, €

tion interaction, e(nd) , the intermolecular correlation correction to the SCF deforma-

(2)

tion energy, W,_; and the correlation energy correction allowing for exchange effects,
W(xc)h are not. The ei(:g) term contains both straight-forward induced multipole-
permanent multipole energies and terms arising from overlap effects. In the cases
where e( d) does not form the leading term, systems containing a permanent mul-
tipole moment will have non-additivity of AE(?) dominated at long range by the
W§e2 term. Whichever of fi(:g) or W‘g:f) dominates, a R~" long range character is
expected. In the absence of a permanent moment ei(:do) does not exist and both W(2)

components asymptotically follow an exponential decay. The exchange component

always dominates at very short-range.

AE® = 2 + ) + ciiap + chna’ + Wia + Wikl (122)
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Here non-additivity arises from the W(®) terms and the €(3%) terms. eg:g is dominated
by the triple-dipole dispersion energy at long range, so decays as R~? in this limit,
but includes all three-body dispersion terms. The higher multipole dispersion terms

have R™" behaviour with n > 9 and so become more important as R is decreased.

All other terms behave as do the analogous terms of lower perturbation order.

6.2 Dispersion Forces.

The importance of many-body potentials has been apparent for many years; work
to resolve the failure of additive potentials to account for the lattice sums for rare gas
solids was the first to address many-body effects. The first functional form was developed
to describe three-body dispersion effects in such systems [80], the triple-dipole (Axilrod-

Teller) term:

v , (3 cos @, cos P, cos 3 + 1)
ddd = V123
R}, R}, R}, ’

where ®; is the angle subtended by vectors from particle 7 to the other two and R;; is

(123)

the 7 — j interparticle separation (see figure 10).

Fig. 10. Three Atom Coordinate System.

During the early 1970s much work was done on investigating the contribution of
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higher multipole-order dispersion forces [81] [82]. This work found that although the

triple-dipole term was dominant the dipole-dipole-quadrupole term,

P OK 3 [(9cos 3 — 25 cos 3Ps3) + 6 cos(®; — P2)(3 + 5cos 2fI>3)]

Yada = Zaq 16 R}, Ris Ry (124)

accounted for about 20 % of the three-body dispersion energy for the rare gas lattices
from Neon to Xenon. Higher terms than this amounted to only a few percent of the total
when summed. The same conclusions are presented in the review of Meath & Koulis [83].
Note that the expression given is for a quadrupole on one of the atoms. The total energy
is therefore a sum of three terms with permuted atom labels. Bell and Zucker [81}have
summarised some double perturbation theory results for rare gas trimers, from which the
values required for Ars are vy33 = 3Z§321 = 3.786 x 10° cm~1A® and Zc(iz)q = 1.352 x 10°
cm~1AL,

More recently, using complex tensor representations of the various orders of polar-
isability and perturbation theory to high order, general equations for dispersion forces
between any number of arbitrary molecules including hyperpolarisability effects have been
derived [84] [85] [86]. The generality of these expressions hides the physics behind the

interactions.

If the foundations upon which these derivations are built are used with the methods
and symbolism of Buckingham [87], one can write expressions for three bodies for any
order of dispersion multipole. Expressions already exist for the triple-dipole potential,
Vbop [88] [89], where the upper case ‘D’ indicates that the equation describes a molecular,

rather than an atomic (‘d’), system.

VoD = g 35 oz (Lap)is (Lay i Lp)mn (e )ib () 3m (2 i (125)

where the suffices a, 3, denote the three bodies, T is an orientation tensor (symmetric)

[87],

3 Ra Ra - 5;
(Taﬂ)u ( ﬂl) I(Z ﬂlll 2 ’ (126)
af

where (Raﬂ),- is the i*® component of a particle to particle unit vector, a is a polarisability

tensor and vy33 is a grouping of parameters that depend only on the molecules.
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The explicit form of this expression simplifies slightly when it is made specific to the

atom-atom-molecule case:

Qatom 0 0
gatom = 0 Qatom 0 ) (127)
0 0 Qatom

oy + Agsin®fcos? ¢ Agsin’fsingcosd  Agsinf cosf cos ¢
= Agsin’@singcosd ay + Agsin®fsin®’d Agsinfcosfsing |,
Ay sinfcosfcos ¢ A, sinfcosfsin ¢ a) + A, cos? 8
(128)

Qs xialmolecule

where Ay = @) — a1, and 6 and ¢ are as defined for the molecular complex.

Hence the anisotropic triple-dipole energy may be evaluated by finding the tensor
elements and evaluating the sums in the equation for Vppp.

Literature values for polarisabilities are available. I used those summarised by Bu-
lanin et al. [90], listed in table 4. The low anisotropy of the HCl polarisability suggests
that to a first approximation an Axilrod-Teller term may correctly represent the triple-
dipole potential for Ar,HCl. The validity of such an expression is investigated later. The
hydrogen fluoride molecule is less than a quarter as polarisable, so three-body dispersion

effects in AroHF will be correspondingly less significant, although more anisotropic.

Table 4. Relevant polarisabilities in A% (Bulanin et al.).

apr  1.6421
agcrL 2.284
apoy  2.554
ayr; 0.638
agr 0.831

The principal features of a triple-dipole dispersion term are that it is repulsive for
(equilateral) triangular geometries and attractive for linear geometries; electron correla-
tion between particle pairs interferes for triangular geometries.

Kumar and Meath have evaluated isotropic dispersion energy coefficients for a wide
range of combinations of rare gas and hydrogen halide systems [91]‘. They have a method
which uses dipole oscillator strength distributions to obtain v;,5 = 3.7015 x 105cm_1A9

for Ars, vi2s = 5.4155 x 105cm~1A° for Ar,HCI and 1125 = 2.7774 x 105cm~1A° for
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ArpHF. This is an isotropic coeflicient so strictly is not the only parameter actually
required for the Ar,HX systems, but is the best estimate available. It does however
represent a good starting point, which may be refined if necessary. Plots of V44 and
Vopp for Ars and Ar;HCl may be found in appendices A (Ars) and B (Ar,HCI).

As for pairwise dispersion, exchange effects lead to a damping at short range. Tang
and Toennies have investigated functional forms of two-body damping functions and
conclude that a single form, D,(R), which has well-defined and physically reasonable

behaviour, is of universal applicability [92].
Dn(R) =1—¢ PR Z wR) . (129)

The value of § here is assumed to be the same as to the exponent in the Born-Mayer
term.

I propose that the form of the damping function for a three-centre problem is can
be synthesised as a product of D, functions in each inter-particle distance, although this
is an extension which Tang and Toennies did not propose. For a triple-dipole potential
D3 functions are of the correct order in R, and we synthesise the triple-dipole damping

function, D333, where:
Dimn = DI(R12)Dm(R13)Dn(R23)- (130)

The values of (3;; are taken as the exponent in the short-range terms of the two-body
potentials. For the HFD-C Ar—Ar potential the exponent in the repulsive term evaluates
as a*/p;m = 4.34887". The isotropic value of the exponent for the H6(3) potential
(3.5771&—1 for ArHCl)) is used for B in the remaining two D3 functions, irrespective of
the whether the H6(3) or H6(4,3,0) potential is used. The importance of the damping
term is investigated in calculations presented below. Analogous terms may be written by

simple extension for higher order dispersion multipoles.

Electrostatic Induction Effects.

There is also a three-body energy arising from the interaction of multipoles induced

on the argon atoms by the permanent multipoles on the HX. It has been found [90]that
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a single-centre multipole expansion up to hexadecapole satisfactorily accounts for the
dipole moment functions of the Ar-HX. van ‘der Waals complexes. The single-centre
multipoles used are given in table 5. Although the more modern ab-initio technique of
Distributed Multipole Analysis provides a more accurate description of the electrostatic
field by distributing multipoles, the single centre expansion is good enough for the current

application.

Table 5. HCl and HF centre-of-mass located multipoles.

Moment for

Multipole HCI HF
Q@:/D  1.0930 1.8022
Q./DA  3.445 2.273
Qs/DA? 2446 1.699
Q4/DA® 4.704 1.804

The potential at a point (r,8) from the origin of a set of multipoles of a linear

molecule is given by the expression:
V(r,6) = E =Lp 6 131
(r,6) : 7.1;+1 1(cos 8), ( )

where @); is the magnitude of the multipole with rank I, P(z) is a Legendre polynomial,

and the coordinates are defined in figure 11.

The electric field vector, E, at (r,8) induces a dipole vector, y, in a particle (with

polarisability tensor a) at that point:
E(r,0) = -VV(r,0), u(r,8) = aE(r,0). (132)

Since spherically symmetric systems have an 4 tensor with all elements zero there is no
dipole component due to field gradient at a rare gas atom and no quadrupole induced by
a uniform field. The small effects due to hyperpolarisabilities are neglected.

If the operator V is applied through the chain rule, and E resolved into cartesian

components, the following expressions are obtained:

E, = Z ,,.g-lz sin 8 cos ¢ P, (cos 8), (133)
i
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AL
molecular axis \_/ \/

A HX Molecule

Fig. 11. Coordinates for Field Due to a Multipole.

E, = Z % sin  sin ¢ P] {(cos §), (134)
l
E, = z ;?—_:; (P,'_H(cos 6) cos 8 — Pj(cos 0)), (135)
]
where [44]
dP(x )
Fi(z) = P2 _ (P (e) ~ 2Py(a)). (136)

Induced dipoles have an interaction potential given by:
1 . .
Vaa = —;;(3(P ~p#a)(p - pB) — pa - BB), (137)

where A and B label induction centres (argon atoms) and p is the unit vector from A to
B. This is the three-body component of induction energy which is due to the electrostatic

field of the HX. Plots of V 4 for ArHCI may be found in appendix B.

8.4 Ab-initio Calculations on Ar; Overlap Multipoles.

The electronic interaction of two argon atoms will result in displacement of the

electron distribution from the atomic case: multipoles will be induced. For a homonuclear
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pair of atoms, symmetry dictates that the lowest order multipole induced will be an axially
symmetric quadrupole. There will be multipoles of higher order, however, and the electric
field should properly be described by a Distributed Multipole Analysis [93].

An ab-initio analysis of the Ar, overlap multipoles was undertaken to determine
both the scale and possible simple representations of the created field. A 26s/16p even
tempered (no contraction) basis-set was obtained, with the Gaussian exponents, (; i,

generated according to [94]:
Inln B = b;In M + b}, (138)

where M is the number of Gaussians to be used with angular quantum number !,
lna; = aq; 111(,31 - 1) + a;, (139)

and

Gi=af  i=1,2,3..M, (140)

Values for a; and b are given by Schmidt & Ruedenberg and extended to d and f functions

by Wells [95]; these generating parameters are given in table 6.

Table 6. Parameters for generating an even tempered (2N)s/(N +3)p + Nad + N¢f basis-

set for argon.

I= 0 1 2 3
ar| 0.5262 0.9930 1.4598 1.9266
a! [ -2.6897 -3.3397 -3.9897 —4.6396
by | ~0.5428 —0.5086 —0.4744 —0.4402
b | 1.4224 1.1239 0.8254 0.5269

—

Using these parameters the tabulated 26s/16p even tempered basis-set was generated

(table 7).
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Table 7. 26s/16p even tempered basis-set for Ar.

s Functions
Primitive = Exponents

1 0.139832

2 0.283692

3 0.575554

4 1.167685

5 2.369001

6 4.806234

7 9.750897

8 19.782639

9 40.135056
10 81.426077

11 165.197379
12 335.152755
13 679.958543
14 1379.501179
15 2798.734601
16 5678.078052
17 11519.695491
18 23371.180000
19 47415.494186
20 96196.644284
21 195163.933865
22 395948.958149
23 803301.995168
24 1629740.607120
25 3306420.826128
26 6708072.825634

p Functions
Primitive Exponents
27 0.084019
28 0.178062
29 0.377366
30 0.799750
31 1.694905
32 3.592003
33 7.612514
34 16.133161
35 34.190924
36 72.460645
37 153.565464
38 325.450483
39 689.725499
40 1461.731628
41 3097.840164
42 6565.236395

57

With this basis-set, the CADPAC [96] program was used to perform a SCF cal-

culation and Distributed Multipole Analysis [93]for four Ar-Ar internuclear distances.

Multipole sites on the centre-of-mass, the nuclei, or all of the centre-of-mass and nulcei

were used. The moments calculated for each of these schemes were calculated for an

internuclear separation p = 6.5a9, and are listed in table 8.
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Table 8. DMA description of Ar, for p = 6.5a9, with three choices of multipole sites.

Multipole moments are in atomic units.

Multipole| C.O.M. Only Nuclear Sites Only Nuclear Sites and C.0.M.
Rank Nucleus at —z Nucleus at +2z | Nucleus at —2 Nucleus at 4z Origin
0 0.00000000 0.00000000 0.00000000 -0.00566599  -0.00566599  0.0113319’
1 0.00000000 0.01418851 -0.01418851 -0.00155434  0.00155434 0.0000000¢
2 -0.11890593 | 0.03277238 0.03277238 -0.00694488  -0.00694488 -0.0055286
3 0.00000000 0.09794836 -0.09794835 0.00663051  -0.00663051  0.0000000(
4 -1.91979847 | 0.18474037 0.18474037 0.00674475 0.00674475 -0.0432253'
5 -0.00000015 | 0.20219612 -0.20219612 0.00566530  —0.00566530  0.0000000(
6 -37.16806442 | -0.64003759  -0.64003759 0.00268010 0.00268010 —0.1500113!

The single-centre multipoles only represent the field properly at long range whereas

multiple sites will decrease the radius outside which the multipole series converges the

field; high-order multipoles are implicitly described by lower order moments on a number

of sites. In order to assess how many multipole centres, and how many moments, are

required to model the field correctly for configurations of interest, a variety of multipole

distributions were examined. An equilateral triangular geometry with side p = 6.5a¢ was

used with argon atoms on two corners and the field evaluated at the third corner; the

inner turning point of Ar; is close to p = 6.5a,.

Table 9.
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Potential and field at the third corner of an equilateral triangle, table and en-

ergies in atomic units, described through various multipole distributions, for

Arg .

Multipole Arrangement

Potential

Field

Up to rank 6 on Nuclear Sites and C.0.M.
Up to rank 6 on Nuclear Sites Only
Up to rank 2 on Nuclear Sites and C.0.M.
Up to rank 1 on Nuclear Sites and C.0.M.
Up to rank 2 on Nuclear Sites Only
Rank 1 on Nuclear Sites Only
Rank 2 on C.0.M. Only

2.486 x 107* 1.122 x 10~
2.484 x 107* 1.128 x 10~*
2.547 x 10™* 1.164 x 10~*
3.064 x 107 1.400 x 10~*
3.056 x 10~* 1.462 x 10~¢
3.358 x 107 1.342 x 10~*
3.333 x 10~* 1.776 x 10~*
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Table 9 gives the potential and field at the third corner, and shows that multipoles
up to rank 2 on all three sites are required to get close to the converged field at this
geometry; multipoles up to rank 6 on all three sites give a nearly converged field. Further
reductions in the complexity of the multipole arrangement lead to rather larger errors.
If a compact representation of the field is sought, the siting of dipole moments on the
nuclear centres seems to offer the best trade-off between economy and precision. A single
quadrupole is only 50% in error for the field and will be expected to be a better model
for a small increase in p from the value given, which is close to the inner turning-point.
Either nucleus centred dipoles or a centre-of-mass located quadrupole only require one

multipole moment as a function of p to be known.
A model, which uses a single Gaussian effective electron in its derivation, for the
quadrupole induced by overlap effects is known [97]:

2

_ P
(')def - 2(1 _ eﬁzpz/z) ’ (141)

where the value of 8 = 1.08A~! has been suggested for a pair of Argon atoms [98]. In
view of the existence of this equation I will compare its results with abd-initio results using
the basis-set given above with a view to using it as a simple model for the Ar, overlap

field.

Table 10. ‘Ab-initio and model values for Ar, (single centre) overlap quadrupole in atomic

units.
plag| Ab-initio Qy(c) Oger Model Oder Model
with 26s/16p Basis with 8 = 1.084~1 with 8 = 0.936A !
5.8 -0.291 -0.0695 -0.276
6.5 -0.119 -0.0595 -0.119
7.0 -0.0598 -0.0082 ~0.0602
7.7 ~0.0209 -0.0019 -0.0206

If the centre-of-mass quadrupole moments (table 10) calculated using CADPAC are
used and a plot of In(1 — p?/2Q;(.)) vs. p? is made, where Qy(.) is the value of the single

centre quadrupole, the ab-initio points are seen to lie close to the model and a value of
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g = 0.936A7" is obtained. This is rather smaller than the value of B = 1.08471, which
was based on calculations of Ar-Kr collision induced dipoles: but rather larger than the
value originally suggested by Jansen [97]. The ratio of quadrupole moments between
these two choices of 8 ranges from about four to ten, for the range of p calculated, so it

is clearly important to use the revised value of 8 in the current work.

The modelling of the overlap field of a pair of argon atoms will be important in

three-body effects in Ar,HX and the calculation of transition dipole moments in Arj.

Short Range Effects.

Three-body components also arise in short-range parts of potentials due to ex-
change, €L, + 3% >l Wé:c)h, an overlap component of ei(:g) and SCF orbital deformation,
AESCF_d°f+Zn> 1 Wé:f). In molecular systems permanent multipoles produce long range
effects due to SCF deformation, however. More ab-initio results are required to assess the
validity of proposed mathematical models for short-range three-body effects, particularly
in view of the importance of the three-body SCF deformation term, which is about twice
tlnllat of the exchange repulsion term for Ar,HCI in the vicinity of the equilibrium geome-
try [79]). This is in contrast to atomic systems where three-body terms in €k, dominate.
The non-additive contribution to AESCF~4¢f for an atomic system arises from coopera-
tive or contra-operative orbital displacement and so is negative for a triangular geometry
and positive for a linear geometry; the presence of a permanent multipole moment will

introduce a term, of either sign, which is due to interaction of permanent multipoles with

multipoles induced on a pair of other particles by SCF deformation.

For Ar,HX, an inspection of the multipole moments of HX and a pair of argon atoms,
and the multipole-quadrupole interaction equations [99] suggests that limiting consider-
ation to the interactions of the deformation quadrupole with the permanent dipole and
quadrupole moments on the HX will be adequate. A model for the quadrupole induced

by overlap effects was introduced in the previous section:

Ouct/DA = 4.8032082—P/ Ay (142)

(1 — Po-aee?’/2)’
where the factor 4.8032082 arises from unit conversion.
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Table 11. The overlap-induced quadrupole and interaction energy for varying argon sepa-

ration for selected Bo_ger (for Ar HCL, R = 3.5A, cosx = 0, cos = 1, ¢ = 0).

p/A Oqer/DA Vo_detu/cm™ Vo_geto/cm™!
Bo—aet/A™ = 0.936 0.965 1.000 1.080 ( 0.965 )
3.0 -0.428 -0.332 -0.243 -0.114 18.273 32.911
3.1 -0.348 -0.266 -0.191 -0.085 14.632 26.353
3.2 -0.280 -0.211 -0.148 -0.063 11.593 20.880
3.3 -0.224 -0.165 -0.113 -0.046 9.089 16.370
3.4 -0.177 -0.128 -0.086 -0.033 7.051 12.699
3.5 -0.138 -0.098 -0.064 -0.023 5.412 9.747
3.6 —-0.107 -0.075 -0.048 -0.016 4.110 7.402
3.7 -0.082 -0.056 -0.035 -0.011 3.088 5.562
3.8 -0.062 -0.042 -0.025 -0.008 2.296 4.136
3.9 -0.047 -0.031 -0.018 -0.005 1.689 3.042
4.0 -0.035 -0.022 -0.013 -0.003 1.230 2.215
4.1 -0.026 -0.016 —0.009 -0.002 0.886 1.596
4.2 -0.019 -0.011 -0.006 -0.001 0.632 1.138
4.3 -0.013 -0.008 -0.004 -0.001 0.446 0.803
4.4 -0.010 -0.006 -0.003 -0.001 0.311 0.560

The interaction energy of @4.r and an HX dipole, p, is given by [87]

3®defp’

Vo_defy = SR [cos 6(3 cos® x — 1) + 2sin 6 cos ¢ cos x sin x] (143)

and for an HX quadrupole, 9, is

Vo_deteo = 32;;;@ [1 — 5(cos? x + cos® 8) + 17 cos® x cos® 6+

2sin? x sin? 6 cos? ¢ 4 16 sin x sin 8 cos x cos 6 cos ¢). (144)

Plots of Vo _dery and Vo_gere for ArHCI may be found in appendix B.

Table 11 lists values of the overlap-induced quadrupole for four choices of B _der, as
well as the interaction energy between the quadrupole and the HCl (multipole moments

as quoted elsewhere). The value of the induced quadrupole is seen to be rather sensitive
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to the value of fo—der. The quadrupole moment should be compared with a value of

3.445DA for the HCl quadrupole.

Three-body deformation energetics which do not arise from the interaction of HX
multipoles with overlap-induced multipoles are not accessible in such physically intelli-
gible forms as the above potentials. Some ab-initio calculations have been performed,
however [100]. Previous work on the exchange repulsion term has suggested that to a
good approximation the potential is proportional to sums of the squares of terms similar
to orbital overlap integrals [101] [102]. This approach does not lead to useful mathemat-
ical functions and instead I use the expressions of Jansen [97]. Jansen used a Gaussian
effective-electron method and analytic perturbation Hamiltonian expressions to derive
the three-body contribution to the interaction of three atoms at first and second-order
perturbation including the effects of electron exchange. The second-order terms are very

complicated and are not considered here.

Table 12. Integrals used in Gaussian electron calculations.

Integral Value for Gaussian functions

A, exp(—(*R2,/2)

A exp(—A*R}./2)

AL exp(—A2 R}, /2)

A%, A, + A% + AL — 280pA6cA0c
Gaa(s) = Ghi(a) (28//7)F(B*RZ,)
Gab(a) = Gab(s) (28/v/T)AasF(B2R2,/4)

Gc(a) (28/v/m) A F(B* R 4.)

Gac(h) (28/Vm) A F(B* Ry )

Aabab B(2/)'/*F(B*RZ,/2)

Aaabs B(2/m) 2 AL,

Agbac ,3(2/7")1/2Ach(ﬂzRi(bc)/z)

Aabeb B(2/m)'? BacF(B R}, y/2)

Aaabe B(2/m)! /1 AuyAacF(B* RS, /8)

Agsbe B(2/m) '/ Aap Ay F(B*RE,/8)

Labelling the atoms a, b and ¢, several analytic integrals arise in the Gaussian electron
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description; these are quoted in table 12, using the abbreviations:
1 [ /(7) erfz
F(z*) = 5/ exp(—y*)dy = —\/g )——, (145)
0 T

and Ry(ac) is a Jacobi vector length.

If E; denotes the energy of the first-order Hamiltonian between the zeroth-order
(anti-symmetrised Gaussian) wavefunction of an arbitrary triplet of atoms, and Ego) the
same for the sum of the three isolated pairs then we are interested in the three-body
energy, E; — Ego) . The three particle perturbation Hamiltonian is expressible as a sum

of pair Hamiltonians so that:
E, = E{(ab) + E{(ac) + E}(bc), (146)

and expressions for E] are related to each other by permutation of indices.

8= S e 2 et B
+2Aai : iaz:CAbc Gab(a) t+ A"; : ig:cAbc Gac(s)
Ab; : i%:cAac Giroay + Aa;a—b—_Agll:abb
_I_Aac(xiajbz gb:‘labcb) + Abc(‘iaibcA E;‘labac)), (147)

where Sjansen 18 a factor, introduced in this work, which may be used to scale the energy
to ab-initio, or other, data.

The first-order two-body energy of a—b (i.e. the energy when cis removed to infinity)
is:

1 1
R,, 1-—A2

abe

E;(O)(ﬂ-b) = SJansen ( [2Gaa(b) - 2AabGab(a) - Aabab + Aaabb]) . (148)

The energy correction due to three-body effects for three atoms is, therefore:
Viansen = E! (ab) — EX®(ab) + E!(ac) — E!®(ac) + E!(bc) — E{O(be). (149)

A molecular system is somewhat more complicated to treat by this method. Instead

of treating the electron distribution of the Ar,HX in the Gaussian electron approximation,
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a crude adjustment is made which is applicable to the Ar, HCI system only. Since the HCI
molecule is isoelectronic with the Ar atox:ﬁ, the dipole-independent short-range effects are
modelled assuming that the HCI electron distribution is identical to that of argon, but
displaced a distance japsen from the HCl centre of mass, towards the H atom. The
potential derived using this adjustment is denoted f}Jansen. The HF analogue is not so

simple to deal with.

The parameters Sjansen, BJansen a0d 6jansen for AraHCI are are empirical. If the
first-order energy for Ar; is the target then Sjyspgen = 1.2 X 10°Acm™! and the value
of Bjansen should be close to that applicable to the induced quadrupole case. Since the
Gaussian electron model is rather artificial, the value of 3 need not be the same in different
applications; the model will be differently deficient depending upon the phenomenon
which it is describes. In the Ar, HCI case there is not the same guide for a suitable value
for Sjansen because of the introduction of the displacement éjapsen- In addition, 8 may
be expected to be significantly different since it must approximate electron distributions
for both Ar and HCl. The Argon trimer value is still a good point to start a fit, however.
83ansen must be determined with only physical commonsense as a guideline; §5ap5en Will
be much less than half the HCI internuclear distance.

Although it must be stressed that the equations presented above are for a first-
order perturbative hamiltonian and that the form of the second-order term is different,
there is value in attempting to fit the functions to ab-initio sums of first and second-
order energy corrections. In such cases the a priori estimates of the parameters become
less appropriate. The view that the sum of first- and second-order ab-initio terms rha.y
be modelled by a first-order equation is supported, for the argon trimer in linear to
triangular configurations, by the results of Jansen which show similar behaviour for first

and second-order terms.

Plots of Vi pgen for Ars and thsen for Ar,HCl may be found in appendices A and
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6.6 Model and ab-initio Values for Ar; Three-body Potentials.

The ab-initio results presented in this section are from Chalasifiski el al. [76], the

breakdown of which appears in table 13.

Table 13. Breakdown of three-body ab-initio energies (in cm™!) for various equilateral
triangular configurations of side p. (Including the effect of neglecting BSSE [t]

and including f polarisation functions [}].)

p/A &

exch

AEJF AESCF AE® = W® AE® W® {7 5 56)_ 1) AE®

2.646 -603.34 -30.51 -633.84 95.69 36.65 —46.97 83.62 -501.5  -585.1 -14.49
3.175 -46.73 -3.95 -50.68 15.49 12.58 -4.78 17.36 -22.61 -39.97 -3.47

3.704 -3.20 -0.31 -3.51 2.02 3.88 —0.42 4.30 2.46 -1.84  -1.08
3.704t - - 0.29 5.75 3.5 - - 981 - -1.93
3.704t - - -3.47 2.37 4.78 - - 3.69 - -1.38
4233 -0.20 -0.02 -0.22 0.24 1.21 -0.04 1.25 1.23 -0.02 -0.35

Using the ab-initio data, listed above, it is possible to assess some of the model

three-body potential terms.

The damped sum of the dispersion terms ngi:;del) = Viaa D333 + VaaqDss4 should be

compared with eg?:g (see table 14). Discrepancies of both sign occur between these two

quantities. If the undamped sum of the dispersion terms V3gq and V3qq is compared with

e((i?:g, greater deviations from the ab-initio values are observed. Damping is thus seen to

be important at the shorter ranges quoted. The discrepancy between ng;;del) and eg?:g

is greater at short-range, where either higher order R™™ terms or greater damping than

is modelled may account for the difference.

Table 14. Comparison of three-Body ab-initio and model dispersion terms.

p/A I/ddd D333 Vddq D344 zgli:;del) 651?:3

2.646 81.80 0.990 9.78 0.975 90.52 83.62
3.175 15.87 0.998 1.32 0.995 17.15 17.36
3.704 3.97 1.000 0.24 0.999 4.21 4.30
4.233 1.19 1.000 0.06 1.000 1.25 1.25
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Since there are no physical parameters Viansen, the results of using three pairs of
parameters, Sjansen and Bansen, are shown. The parameters in Vja,4en Were chosen to
approximately model three sets of ab-initio data. From left to right, in table 15, the

model potential is designed to describe AESCF, AESCF 4 AE®) and £0G) - 5&?:3-

Deviations of the three model potentials from the corresponding ab-tnitio term occur
due to the inadequacy of the equation for Viapsen, which is clearly of slightly the wrong
shape. As stated earlier, the Jansen equations are only meant to model the first-order
term, AESCF. However, we know that the second-order effects predicted by Jansen have
the same behaviour as the first-order ones so we may fit the first-order equations to
AESCF + AE®) with good reason. However, caution should be taken with regard to the
fit to (4 — eg?:g since the behaviour of the third order terms is not known; the agreement

between so few data-points is not enough to support such an extension.

Table 15. Comparison of three-body ab-initio and model short-range (Jansen) terms.

p/A ab-initio Viansen
S/Aecm™! = 4.3 x 10° 7.5 x 10° 8.0 x 10°
AESCF AESCF L AE@ £(®) - )| g/A-1= 1230 1310  1.305
2.646 | -633.84  -538.15 ~585.1 -571.69 -525.77 -584.72
3.175 | -50.68 ~35.19 ~39.97 -55.34 -36.00 —40.93
3.704| -3.51 ~1.49 ~1.84 -3.26 -1.43  -1.67
4.233| -0.22 0.02 ~0.02 012 -0.03  -0.04

Wells [95]has calculated three-body energies for Arg at the Hartree-Fock level for
an equilateral triangular geometry and some isosceles distortions. Table 16 shows the
comparison of Viansen (S/Acm™! = 4.3 x 10° and 4/A~! = 1.230) with the Wells results.
The equilateral geometry energy is consistent with the results of Chalasinski el al., so
Viansen agrees also. The change in sign of both model and ab-initio data occurs at about
the same distortion, although the magnitude of the model effect is much greater in this
region. How much this disagreement is due to model inadequacy and how much to ab-
inilio errors is not known; the effect of basis-set superposition makes small energies of low

reliability, while the model for Viapnsen is based on rather simplistic assumptions. Without
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disregarding the discrepancies, the results of Wells support the use of Viansen-

Table 16. Comparison of three-body ab-initio (due to Wells) and model short range

(Jansen) terms for isosceles distortions, showing the effect of function coun-

terpoise (FC).

Hartree-Fock Interaction in cm™?

R/A p/A|No FC Site-site FC Model

3.253 3.756{ —2.56 -2.66 -2.40
2.656 5.311{ 0.0081 -0.0419 -0.435
1.878 6.506( 0.0937  0.0599 0.347
0.0 7.512 0.142 0.141 0.377

More ab-initio data is really required for Ars, for geometries other than equilateral
triangular at shorter range than Wells used, to verify that the Jansen equations have

the correct behaviour. Contour plots of the model three-body potential with parameters

based on matching with ab-initio points are given in appendix A.

6.7 Model and ab-initio Values for Ar,HCl Three-body Potentials.

The ab-initio results given are unpublished results by Chalasinski et al. [79]; tables

17 and 18 give a breakdown of the ab-tnitio components.

Table 18. Breakdown of three-body ab-initio energies (in cm™?) for varied HCI orientation

(R = 3.509A, p = 3.861A, ¢ = 0° cos x = 0).

6/° | ly AESSF €2 W® AESCF AE® AE® ) + W) €))) )

exch in

10| 0.89 215 -1.96 3.72 3.04 1.76 5.57 -0.89 6.46 10.37
20047 119 -1.60 3.20 1.66 1.60 5.05 -0.74 5.79 8.32
30 (-0.13 0.18 -1.11 2.54 0.04 1.43 4.39 -0.55 4.94 5.86
40 (-0.81 -0.50 -0.65 1.97 -1.32 1.32 3.75 -0.41 4.16 3.75
50 |-1.54 -0.75 -0.27 1.61 -2.28 1.34 3.29 -0.32 3.61 2.35

The model potentials use the mathematical models described elsewhere is this chap-

ter with the parameters documented in the appropriate section of text, except the vari-
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Table 17. Breakdown of three-body ab-initio energies (in cm™!) for various triangular

configurations (¢ = 0°, cos x = 0).

R/A p/A cost| ey ABSF 2 W AESCF AE® AE® ) + W {9 5O
3.6403.175 1 |15.18 5.84 -159923.81 21.01 7.82 9.05 -3.18  12.23 37.88
3.6053.332 1 |9.27 5.04 -10.1815.91 14.31 573 825  -2.40  10.64 28.28
3.4723.861 1 |1.04 252 -2.10 3.92 3.57 1.82 577 -0.95  6.72 11.16
3.2904.458 1 [-0.19 117 -0.33 0.79 099 045 3.63  -0.34  3.97 5.7
3.0835.021 1 |-0.08 0.66 -0.05 0.18 0.58 013 221  -013 234 2.92
27955664 1 | 004 035 000 003 039 003 113 -0.04 116 1.55
2.869 5.664 -1 | 0.05 0.3 0.00 005 007 0.05 08 000 082 0.97
3.1575.021 -1 [0.02 0.05 000 014 007 014 142  -0.03 146 1.57
3.546 3.861 -1 |-0.04 0.2 -0.18 0.70 0.08 051 320 -0.19 3.39 3.79

able parameters: Bo_get = 0.965A7, Blansen = 1.24A71, Siinsen = 200000cm !4
and 8jansen = 0.15A. The set of parameters, fo—def; BJansens OJansen and 8Jansen
will be called “Model # 1” when the whole set is to be referred to. These pa-
rameters were chosen to match the model potential to the ab-initio points, the sum
y(model) %ansen + Vo—dety + Vo—dete + Vad correlating with the sum AESCF L AE®),
Although the AE®) term is seen to be of similar magnitude to the AE(® term this was
not included in the values fitted to. This approach was used since the model used covers
only effects taken into account in the sum AESCF 4+ AE(?),'with the same justifications
supporting the use of fi_yansen as applied to Af;;. The value of Bg_ger is slightly larger
than that which was obtained from an analysis of the ab-initio multipole field for Ary,
and appears to underestimate the induced quadrupole (see earlier table) by about 25%.
It should be noted, however, that the value of 0.965A ! was obtained by ﬁtting the effect

of the overlap induced field to a model quadrupole and therefore implicitly averages the

effects of higher order moments which were neglected in the model.

The model parameters were chosen by manual variation to giire an approximate fit.
Clearly the model is sensibly describing the features of the ab-initio data, but leaves

noticeable gaps (see tables 20 and 21). It was quite easy to fit either the set of points
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with cosd = 1 or the set with fixed R, but much harder to fit to the complete set;
this is probably related to a deficiency in the 8 dependence of ﬁ]ansen. The breakdown
of the sum which was matched with the ab-initio data shows components with sensible
magnitudes. In addition, the dispersion coefficient quoted from the literature earlier, and
used for Vgqq and Vppp, appears to be giving energies too small by a factor of about
two, when compared with the ab-initio results (table 19). This is surprising, especially
since the Arz dispersion was so closely modeled, and surely cannot imply that only 50%
of the three-body dispersion effect is due to the triple-dipole (this certainly was not the
finding for Arg). Contour plots of the model three-body potential with parameters based

on matching with ab-initio points are given in appendix B.

Table 19. Model three-body dispersion (in cm™!) with 1,3 = 5.4155 x 10° cm“lAg, com-

pared with ab-initio, for various triangular configurations (¢ = 0°, cos x = 0).

R/A p/A cos8| Vaaa Vopp Efi?:;;).

3.640 3.175 1 |5.722 6.278]12.23
3.605 3.332 1 |5.008 5.494]10.64
3.472 3.861 1 |3.289 3.610| 6.72
3.200 4.458 1 |2.095 2.310| 3.97
3.083 5.021 1 |1.346 1.498| 2.34
2.795 5.664 1 |0.736 0.843] 1.16

2.869 5.664 -1 [0.708 0.806| 0.82
3.157 5.021 -1 |1.254 1.393| 1.46
3.546 3.861 -1 [2.981 3.271| 3.39
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Table 20. Model and ab-initio energies (in cm™!) for varied HCI orientation (R = 3.5094,
p = 3.8614, ¢ = 0°, cosx = 0).

0/°| Viansen Vo—detu Vo—deto Vaa X9 Viga Vopp | AESCF AE®) AESCF 4 AE®) EE{:
10|-0.482 1.876 3.248 1.687 6.329 3.165 3.456] 3.04 1.76 4.80 6.
201-0.470 1.790 2.727 1.124 5.171 3.165 3.405{ 1.66 1.60 3.26 5.
30|-0.451 1.649 1.929 0.468 3.595 3.165 3.327| 0.04 1.43 1.47 4.
40|-0.428 1.459 0.950 -0.048 1.933 3.165 3.232| -1.32 1.32 0.00 4.
50]-0.401 1.224 -0.092 -0.314 0.417 3.165 3.130{ -2.28 1.34 -0.94 3.4

Table 21. Model three-body potentials (in cm™!), compared with ab-initio, for various

triangular configurations (¢ = 0°, cos x = 0).

R/A  p/A cos8| Viensen Vo—dety Vo—dete Via E(m04)| AESCF AE(2) AESCF L AE(?)
3.640 3.175 1 |-4.872 10.514 18.209 3.847 27.697 | 21.01 7.82 28.83
3.605 3.332 1 |[-2.692 7.454 13.034 3.294 21.090| 14.31 5.73 20.04
3.472 3.861 1 |[-0.538 1.969 3.574 1.996 7.000 | 3.57 1.82 5.39
3.290 4.458 1 [-0.261 0.322 0.617 1.150 1.828 | 0.99 0.45 1.44
3.083 5.021 1 |-0.155 0.044 0.090 0.672 0.651 | 0.58 0.13 0.71
2.795 5.664 1 [-0.058 0.003 0.008 0.342 0.295 | 0.39 0.03 0.42
2.869 5.664 -1 [-0.019 -0.003 0.007 0.020 0.004 | 0.07 0.05 0.12
3.157 5.021 -1 [-0.033 -0.040 0.080 0.019 0.026 [ 0.07 0.14 0.21
3.546 3.861 -1 [-0.181 -1.809 3.217 0.022 1.248. 0.08 0.51 0.59
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7: Calculation of T and & - Results.

In the chapters on the theory and method used for Arg and Ar; HX complexes,the use
of basis functions T (p) and ®,(cos x), eigenfunctions of an adiabatic one-dimensional
potential, was described. The purpose of this chapter is to summarise the variation in
T and ¢ between the different trimers considered, to justify the method used in their

determination, and to set out some operational details.

The functions T,,(p) and ®,(cos x) which are used are constructed as an expansion
in harmonic oscillator functions. This allows the evaluation of kinetic energy terms by
analytic methods in the final calculations, while the potential function is integrated using
a pointwise representation. It is found that 16 harmonic oscillator functions are required
to model YT and ® adequately. The computational effort in the full 5-dimensional calcula-
tion is but little influenced by this size. As a consequence of the use of harmonic oscillator
functions, there are three variational parameters: two for the basis-set for T and one for
®. These parameters are identical to those described for the Jacobi Method I (Ar;). In
this context, however, the effect of minimising a sum of some of the lowest eigenva.lueé
in the automatic numerical determination of the variational parameters, rather than just

the ground state, is explored.

Although the variational principle strictly applies only to the ground state, it is
empirically observed that all of the eigenstates which are well described by that basis lower
in energy as the quality of the wavefunction is improved. To test this quantitatively, sets
of calculations were performed where the variational parameters were selected on the basis
of automatic (numerical) minimisation of the energy of each of the lowest four eigenvalues
of Ar; and of sums of these energies. The difference between the lowest eigenvalue of a
given index n, and those generated by the other minimisation sums is presented in figure

12.

From these results is is seen that finding the basis-set parameters by minimising
the ground state energy only, while clearly the best for the ground state, giveg poor

results for the n = 2 and n = 3 levels. By minimising a sum of energies it is possible
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Fig. 12. Energy Level Errors for Ar; for Various Methods of Determining the Variational

Parameters in T and &.

to bring successively higher levels down in energy without deteriorating the ground state
unacceptably. On the basis of this observation, the basis-set parameters for T and &

were determined by minimising the sum of the lowest four eigenvalues.

From the plots of the lowest energy T (figure 13), it is apparent that the presence
of a third body significantly, but not greatly, affects the shape of the Ar, stretching
wavefunction in a progressive manner: Arp<Ar3<Ar;HCl<Ar,HF. For the & functions
there is seen to be very little difference between the Ar; and ArpHF functions: whereas
the Ar, HCI functions are more localised. This must be due to variation in the Ar-third-
body repulsion which will vary with x as a function of the equilibrium values of R and p

and the third body size.

It is interesting to note the variation in the energy level spacing: i.e. the anharmonic-
ity of the potential cuts. The spacings are depicted graphically (figures 14 and 15) and
essentially show that all of the systems considered behave similarly. The trimeric systems
show a weaker anharmonicity in the stretching potential than Ar, itself, primarily due to
a deepening of the potential well by the presence of the third body such that the disso-
ciative tail is much higher than the energy of the fifth calculated level. The discontinuity

in the Ar, curve arises from a poor description of a near-dissociative eigenstate by the
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basis-set used. In contrast to the stretching potential, where the real potential gets wider
than an harmonic approximation for increasing energy, the Ar, bending potential is seen
to get narrower. This is probably over-emphasised in these ca.lcula;tions since R is frozen
and cannot, therefore, increase as bending occurs. Some degree of coupling along these

lines is expected in the real systems.

7: Calculation of T and ® - Results.



74

25+

(By4i - Ew)/cm-1

20

154

10

Fig. 14. Anharmonicity of the Functions T,,.

50
45
40 T

35+ - aemmT

(Eyyy - Ey)/em™!
\
\
\\
Y

25+

204

15

Fig. 15. Anhé,rmonicity of the Functions ®,,.

It is necessary to justify the recipe for determining the value of R.,;. A graphical
representation of the frequencies of a fully dynamical calculation (figures 16 and 17)
shows that the recipe for determining the value of R.,., discussed in chapter 3, is close

to optimal. Table 22 lists expectation values of p and R for all the systems considered;
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these are the relevant points on the graphs at which to assess the recipe. To perform
calculations for atom-atom-diatom trimers similar to those presented for Arg would be

rather expensive and I am content to extend the results to the more complex systems.

Table 22. Expectation values of R and p in A from one-dimensional calculations.

potential{ Leitner HFD-C HFD-B2 HFD-C/H6(4,3,0) HFD-C/H6(4,3,0) HFD-C/H6(4,3,2)I
Arsg Ar,HCI Ar,DCl Ar, HF
(R)o/A | 338 330 3.30 3.50 3.50 2.97
(R)y1/A | 349 340 3.39 3.55 3.58 3.08
(R)2/A | 361 351 350 3.64 - 3.20
(p)o/A | 3.86 3.718  3.78 3.76 3.75 3.69
(p)1/A | 400 392 3.91 3.87 3.86 3.79
(p)2/A | 417 4.06  4.06 3.99 3.98 3.90
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Triatom Calculations — Ar;.

The Arjy system is a suitable prototype trimer as it is one step below Ar,HX on the

conceptual and computational ladder.

The first half of this chapter applies three different methods of calculating triatomic
eigenstates, which were detailed in chapter 3, to Arz. Two of these methods use a Jacobi
coordinate system and so treat the system in less than its full symmetry, which is Dgy
since it has an equilateral triangle equilibrium geometry, which is used in a normal mode
treatment. The results of these three methods are compared among themselves and to

calculations using hyperspherical coordinates [48].

The second half of the chapter describes calculations on a variety of two- and three-
body potentials; there are other calculations using different methods, in hyperspherical
coordinates, which use a variety of two-body potentials [50][49][48]. Estimates of transi-
tion dipole moments for Arj are also made. Finally, the symmetries of overtone states

are briefly derived.

The HFD-C Ar-Ar potential, described in chapter 5, is used unless stated otherwise.
From plots of the trimer potential, which may be found in appendix A, it is apparent
that there is only quite a low barrier to either of two inversion modes. One involves the
passage of an atom through the centre of the other pair and the other the rotation of a
pair of atoms through 180°. The profiles of these two modes are illustrated (figure 18)
with the conjugate coordinates adjusted to the minimum on the plane defined by the

given coordinate; i.e. these are plots along the inversion path.

These inversion plots allow information on the absolute classical limits on any coor-
dinate for an eigenvalue of given energy, and with conventional contour :plots are useful
for détermining whether the molecule is stiﬁf or ﬂoppy in a particular coordinate, and
for estimating limits of the DGB 1n R in two of the methods The 1nversxon energy of

~ —=20lcm™! flags an energy regxon Where care needs to be taken since inversion cannot
be propetly described using J acobi or norma.l coordmates It is not true that this is a

rigorous limit. Vlbratxonal modes w1th excxtatxon a.long the inversion coordinate will have

8 Tnatom Ca.Icu]atlons - Ar3
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Fig. 18. Potential Plots for Ar; Inversion Modes.
tails extending out to the saddle point for energies below this due to tunneling; whereas
a highly excited breathing mode, for example, may have an energy greatly above —-201

cm™! and is model-limited only by the dissociation limit.

Convergence — Normal Coordinate Method

Using the method described in chapter 3, the scale factors for masses expressed in

atomic mass units for the three normal modes were found to be:
—1 _1
y1 =1.20387%, y; =3 =0.850A7 7. (150)

Finding these parameters by solving a one dimensional problem with only one function
is believed to lead to these parameters being near to optimal, and is in keeping with the
general ethos of the method. The calculations themselves are now very straightforward,
the only parameters being the size of the H.O. basis in each mode. Since there is no
justification for having different numbers of functions from each mode, they are é.lwa.ys
equally sized.

It is quite apparent, from table 23, that the eigenvalues are Eonverging slowly, but
are providing reasonable approximate values for the basié sizes used. A product basis-set
with 9 functions in each normal mode is used. |
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Table 23. Convergence of Normal Mode calculations for energy levels n = 0 to n = 15.

Basis Size in Each Mode
3 4 5 6 7 8
-254.11528 -254.48177 —-254.63728 ~254.67461 -254.69132 -254.69743
-229.27296 -231.37773 —-231.72231 -232.08737 —-232.14840 -232.2115
~229.01888 —230.95004 -231.70860 -231.98155 —232.12822 -232.1857
-217.90869 -220.22680 -222.30179 -223.21426 -223.73604 -223.9425
-203.79093 -208.25331 -209.42315 -210.59803 -211.10382 -211.4189
-203.18782 -204.80113 -209.07085 -209.80673 -210.83860 -211.21481
-202.63980 -204.62073 -207.99799 -209.33263 -210.25037 -210.81540§
~188.49978 ~196.83492 -199.48259 —-202.31336 -203.17596 —204.12367]
—-188.30676 -196.40403 -199.38294 -201.92188 -203.15663 —203.87677
-177.24309 -182.59306 —186.80149 —-189.43085 —-192.87313 -194.1524
~-176.94646 -179.99536 —186.37184 -188.68541 -189.80730 -191.6880
-162.86673 -179.39439 -185.63645 —187.53352 -189.53077 -190.38825
-155.51764 -179.37544 -180.47569 —-187.11960 -187.92662 -189.62861
-155.32564 -176.53614 —-180.26306 —184.57296 —186.79901 -188.54958
-151.77950 -171.77645 -175.89716 -181.13377 —-182.87546 -184.69395
~-148.12973 -165.64011 -174.92801 -177.60571 —181.98838 -183.25858

=]
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8.2 Convergence — Jacobi Coordinate Method I.

In some ways the the two-stage nature of the Jacobi méthod makes the determination
of convergence somewhat easier, since with the lower-dimension basis-set of the first stage
calculation it is possible to pefform calculations for basis-set sizes quite a bit larger than
those that will actually be used in the final calculation, where the matrix size is a limiting
factor. In this way, the distance from convergence for the basis-size which is actually used
may be quite accurately determined, bearing in mind that the inclusion of an extra degree
of freedom will slightly modify the optimal basis. The determination of the H.O. scale
factors is, however, found to be quite a difficult process for basis-sets with many functions,
both Eecahsevof the dimension of the matrix to be sf»lvéd and as a result of the rather

gentle relief on the ground state energy surface (of the two dimensional calculation) as a
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function of these parameters. The minimisation was performed both with py fixed at the

values given by the minimum of the potential surface, and with this parameter a variable

of the minimisation. °

Table 24. Log;, eigenvalue differences in cm™!, relative to N,, N, = 14 for the 2D calcu-

lation.
N, N, AE(0) AE(1) AE(2) AE(3) AE(4)
3 5 -0.924307 -0.676913 0.321358 0.673623 0.647986
-0.924307 -0.792797 0.321377 0.673623 0.643590
-0.924563 -0.788026 0.321076 0.662165 0.643575
-0.924563 —0.794741 0.321068 0.662165 0.643276
-0.924563 --0.794741 0.321062 0.661570 0.643272
-2.319664 -0.002684 —0.125994 0.534446 0.539950
-2.488117 —0.061455 -0.200908 0.494096 0.453401
-2.593460 -0.131891 ~-0.202435 0.469054 0.384154
~2.856985 —0.380031 -0.205421 -0.076652 0.230221
-2.879426 —0.397994 -0.205840 —-0.180469 0.222251
—-2.889410 -0.408057 —0.205637 —0.265344 0.217781
-2.903090 -0.430228 -0.205331 -0.907701 0.206300
-2.903090 -0.432139 -0.205449 -1.133063 0.205161
-3.657577 -1.296881 -1.316413 -0.094166 —0.762708
—-2.390406 -1.776764 —0.130364 0.299734 0.528687
-3.657577 —2.809668 —1.316323 -0.094139 -0.880843
-3.795880 -2.903090 -1.503901 -0.203211 -1.028539
-3.795880 —3.008774 -2.081445 -0.448611 -1.424235
-4.045757 —-3.086186 —2.551294 —1.076186 —-1.948076
13 —4.096910 -3.107905 —2.987163 —1.626169 -2.337242
6 6 -2.677781 -2.008774 -0.300726 0.220981 0.447577
10 10 —4.096910 —-3.677781 -2.107349 -0.448648 -1.450506

© 00 J O ot W W W w

ju—t
o
DO OO D Ot W W W W W W W W W 00 O~

Although the computational expense greatly increases each time a variable is added, the
difference in the eigenvalues obtained was significant enough to justify it. The effect of

optimising po is, as would be expected, much greater for less complete basis sets, just as
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the selection of the scale factors'is more critical in these cases. Since we pursue a minimal

basis-set, it is necessary to use an incomplete basis and hence to use an optimised. p,.
o

The convergence is seen to be incomplete (table 24), but is nevertheless better than
if a DGB of the same size is used; the inherent flexibility of the DGB would not be
exploited here, since potential cuts in p have minima which are only weakly dependent

1

on the other coordinates. Considering that the inversion barrier is about —201 ¢cm™! and

that the Ar-Ar zero point energy is about 15 cm™?, it is estimated that an eigenvalue
from the two coordinate calculation may not support a good vibrational manifold in R if
it is above about —216 cm™!. It is found that E(3) ~ —216.6 cm™! and E(4) ~ —216.1
cm™!: therefore it seems of low priority to attempt to use a basis set which converges
these eigenvalues since they are estimated to lead to final eigenvalues very close to the
inversion energy. The degree to which inversion behaviour is a problem depends upon

the vibrational mode, however.

The rather extensive set of results presented above for the two-coordinate calculation
demonstrates that the convergence with respect to the size of basis in each coordinate
is not strongly dependent on the basis-set size for the other. From this table I select 10
H.O. functions in p and 6 in cosxy to provide an acceptable level of accuracy without

producing an excessive basis size.

So far all the results presented have not restricted the number of quanta in the
harmonic oscillators to less than the sum of the highest function quantum numbers. If
the quantum-number sum is restricted, the product functions composed of highly excited
motions in both coordinates can be reinoved; this allows a.more s‘iée-éﬁiéier‘ft basis-set to
be used.

On the basis of the results listed in table 15, it is apparent that the error introduced
by restricting the number of quanta in the H.O. product basis is rather small, and re-
stricting it to 9 is not ihg;ppropri;iﬁc if one is prepared to accept the N, = 10,N, =6
basis. The chariges in the thi‘eé,pai’aipetefé are_,:»smalli, also indicating tl‘iﬂék slight decrease

in quality of the basis.
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Table 25. The effect of limiting the product basis-set for N, = 10, N, = 6.

No. of Eigenvalues in cm™1

Quanta| E(0)  E(1)  E@Q)  ER)  E@4) |1/A7 5 /A7t po/A
9 -269.25415 —-241.68779 —241.32240 -216.63907 —216.06953 { 18.7117 125.1376 3.8588
10 -269.25415 -241.68827 —241.32261 -216.64256 —216.08594| 18.71097 125.1486 3.8588
11 -269.25416 —241.68829 —241.32264 ~216.64432 -216.08800] 18.71135 125.1359 3.8587]
12 -269.25416 —-241.68830 —241.32266 —216.64474 —216.08931] 18.71448 125.1456 3.8587
13 -269.25416 —241.68830 —241.32266 —216.64498 —216.08933| 18.66843 125.1333 3.8590]}
14 -269.25416 —-241.68830 —241.32266 —216.64481 -216.08932| 18.61280 125.1469 3.8603

Having established a basis-set and parameters for the p and x motions, the full
calculations may be carried out. As well as the size of the DGB, it is necessary to select
a range for the distribution. The problem encountered with this is that the quality of
a solution is dependent on the spacing of the Gaussians, so that the size and range are
intimately linked in their effect on the eigenvalues. Additionally it is not justifiable to
choose the parameters by minimising the ground state energy alone, so the convergence
of a number of eigenvalues must be examined. Inspection of the classical turning points
for various energies suggests that runs should be carried out for a DGB evenly spread
from a minimum of from 1.6A to 2.04 to a maximum of between 4.8A and 5.5A. These
trials suggested a range of (1.9A, 5.0A) is appropriate.

Given this choice of range, a systematic analysis of the change in eigenvalues with
DGB size was carried out, and is illustrated in figure 19.

Although there are a few eigenstates which have quite erratic eigenvalues, it is ap-
parent that the majority converge in an orderly fashion. Despite being unable to continue
the trials for the chosen size of H.O. basis due to memory limits, it is felt that the graphs
demonstrate that calculations with 25 Gaussians will provide results of adequate accuracy
for the majority of eigenstates with energies below the barrier to inversion.

On the basis of previous calculations, the Gaussian parameter ¢ was initially chosen
to be 0.7. Some trial variation of this parameter about this value indicated that it seemed

to be appropriate.
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Fig. 19. DGB Size Convergence for Jacobi I Method.

8.3 Convergence — Jacobi Coordinate Method II.

If a basis-set is to be made as small as possible, it is important to ensure that the
basis functions are not optimised for one vibrational state yet poor for other states of
interest. This ethos is followed in the Jacobi Method II; the DGB is good in this respect
and T and ® are designed to be good also. The basis functions in p and cos x generated
in this method are compromise functions; they are designed on a potential cut which is
not biased to the ground state. Thus the error in description of excited states is reduced
at the expense of the error in the ground state. The effect of including symmetry, albeit
only in a subgroup of the full molecular symmetry group, added to the optimisation of
T and P leads to a much smaller basis, than the other methods, for acceptable results.
Details of the calculation of the p and cos x one-dimensional functions are given in a

devoted chapter.

This is a one-step calculation, given ® and T functions, for which convergence results
are expressed graphically in figures 20-22. Trial calculations similar to those described in

the previous section were used to determine a DGB range.
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On the basis of the convergence calculations the basis-set used was:

3 12

Tn) = > ) cla, (151)

v=0 w=0 i=1
6
with a DGB range of 2.60A to 4.20A and ¢ = 0.7. gax Was g for n = 0 (A') calculations

and % for n =1 (A") calculations. This basis-set gives 144 functions for both symmetry

type calculations.

\)Ol \’ct
em™! cm™’
22.8- 31.07
22.754
30.9-
22.7
22.654 30.8
22.6
30.7
22.554
22.5
30.6
22.454
224 T T T T 1 305 T T T T !
3 4 5 6 7 g8 3 4 5 6 7 .8
Size Size

Fig. 20. Convergence of Frequencies with Respect to cos x Basis Set Size for Jacobi II.

cos x basis-set convergence was carried out for 4 functions in p by varying gmax.
p basis-set convergence was carried out for 7 functions in cos x with gna.x = 6.

It is quite apparent that in addition to a much smaller basis-set in p and cos x the
DGB basis is also much smaller, compared to Jacobi I. Some of the reduction in DGB
size is attributable to a smaller range of distribution. This may be attributed in part to a
different criterion for assessing convergence and in part to basis functions with different
spread in the other two coordinates. In particular the improved shape of the T, (p) of
the Jacobi method II relative to the harmonic oscillator functions of Method I will have

reduced the DGB range required; it is clear from the potential energy surface that R and
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Fig. 22. Convergence of Frequencies with Respect to DGB Size for Jacobi II.

p motions will couple. Whether this change has caused deterioration of the results is an

important question, which is answerable from the results.
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8.4 Comparison of the Results from the Different Methods.

The bases as described in the preceding sections give matrix problems of dimension
729 for normal mode, 1125 for Jacobi I and 144 for Jacobi II, although the normal mode
basis could have been reduced by up to almost 50% by imposing a maximum quantum
sum without much loss of accuracy. Clearly if results from Jacobi II are at least as good
as the other methods it is much more efficient, particularly bearing in mind that solving
matrix problems for all eigenvalues scales as N in time, and for a single eigenvalue
roughly as N2. The results from the different methods are given in tables 26 and 27,

where hyperspherical calculations, by the authors of [48]are denoted “HHCC?”.

Table 26. Comparison of results of A; symmetry (A' in S;) for different methods for Ar;

(HFD-C potential).

Jacobi I Jacobi II Normal mode HHCC
n E/cm™! E/cm™! E/em™! - E/cm™!
0 -254.735 —254.736 -254.700 —254.733
2 -224.114 -224.187 -224.075  -224.215
4 -211.364 -211.518 -211.625  -211.846
6 —195.842 -196.350 -195.721  -198.282
7 -191.277 -191.667 -191.941  -193.523

Table 27. Comparison of results of £ symmetry (A' @ A" in S;) for different methods for
Arz (HFD-C potential).

Jacobi I : Jacobi I1 Normal mode HHCC
A'in § A"in S, lower upper
n E/cm™! E/cm™! E/cm™! E/cm™! E/cm™! E/cm™!
1 -232.223 -232.216 -232.234 -232.235 -232.224 -232.216 -232.231
3 -211.318 -210.637 -211.385 -211.573 -211.494 -211.192 -211.741
5 —-204.466 —204.461 -204.566 -205.096 -204.378 -204.327 -204.948

On the whole, the Jacobi method I seems to produce only approximate eigenvalues,

compared to the hyperspherical method, which should be more accurate. The deficiencies
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of the former are illustrated by the failure of the E symmetry degenerate pairs of states to
be degenerate, whereas this degeneracy is embodied in the hyperspherical model. There
does indeed seem to have been little advantage in using the Jacobi I method over the
normal mode method when a range of eigenvalues are compared. This seems to suggest
that at least some of its problems stem from the inappropriate use of H.O.’s, particularly

in the p coordinate.

In contrast the Jacobi II method is seen to perform rather well, certainly given the
small basis-set used. There is still a lack of degeneracy for £ symmetry pairs since
these now arise from two different calculations of differing symmetry in S, (see chapter
3 for a discussion of symmetrisation). There is no doubt that the Jacobi Method II
provides a means of modelling the lower states efficiently enough for application to the

five-dimensional problems Ar,HX, for which Ar; is a good part-model.

Jacobi Method II — Further Calculations, Results and Discussion.

It is instructive to examine the forms of the wavefunctions: illustrations of the square
of these appear in appendix D. The form of the dynamics is simply seen when individ-
ual modes are excited singly or multiply, but becomes hard to see when combination
excitation is present. Single quantum excitations display the forms of triatomic normal
modes: an antisymmetric stretching mode (n = la), rocking mode (n = 15) and sym-
metric stretch (n = 2). Due to the reduced symmetry used in the calculation states
n = 3b and n = 4 arose from one calculation. The closeness of these eigenvalues has
probably caused considerable mixing, evidenced by the stretching character introduced
into the n = 4 level. Of particular interest is n = 5a, where there appears to be in phase
motion of p and cosx, n = 5b where a breathing mode seems to have been transformed
to almost entirely p stretch by the presence of cos x excitation (compare to n = 2), and
the state at ~190.0cn™! where, despite the vibration being close to an inversion path
and the energy being above the saddle point, the vibrational mode imposes a dynamical
barrier to inversion such that the wavefunction does not extend to near the saddle point

nor suffer a great increase in its energy.
Although the Ar; molecule has no permanent dipole, a quadrupole produced by the
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overlap of two atoms will induce a dipole at the third centre such that for molecular con-
figurations other than equilateral triangular the molecule will possess a multipole moment
[98]. Given an expression for this distortion dipole it is possible to evaluate transition
dipole moments. A model for the overlap induced quadrupole has been discussed in the
chapter on three-body forces, where a table containing overlap induced quadrupole mo-
ments may also be found. Table 28 contains values for the Ars cluster instantaneous

dipole for various frozen configurations along vibrational coordinates.

Table 28. Some values of the instantaneous dipole for configurations along vibrational

paths (B = 0.936A_1).

R p cosxy p/D py/D
Antisymmetric Stretch (n = la)

3.75 3.30 0.0 0.0 1.6x1073
3.50 3.40 0.0 0.0 9.1x10™*
3.30 3.80 0.0 0.0 4.7x1078
3.15 4.10 0.0 0.0 1.7x1073

2.80 4.30 0.0 0.0 9.7x10~*
Ar; Rocking (n = 1b)

3.40 3.80 0.00 0.0 6.8x10°5
3.40 3.80 0.08 4.9x10~% -2.9x10°%
3.40 3.80 0.12 6.6x10~% -1.5%x10*

3.40 3.80 0.28 -1.3x107% -1.2x1073
Symmetric Stretch (n = 2)

3.00 3.40 0.0 0.0 -2.8x107°
3.20 3.75 0.0 0.0 ~-1.8x107%
3.40 3.95 0.0 0.0 -8.6x107°
3.50 4.10 0.0 0.0 -1.5x107°
3.75 435 0.0 0.0 -2.7x107¢

Using the expressions of Guillot et al. [98], transition dipole moments were evaluated

for the basis-set given above, using the Jacobi II method.

The calculated dipole moment of Arg is believed to be too small to be observed using

current far infra-red spectroscopic methods. Since the pair quadrupole, and hence the
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induced dipole, is dependent on the degree of overlap of atomic orbitals, it will in general
be small except for configurations close to the inner turning-points of the vibrational
wavefunctions. In general, the quality of the wavefunction at points where one coordinate
is extreme will be much more poorly converged than the energy; such points will have
the largest trimer-dipole. This explains why only transition dipole moments between
the ground state and the lowest three excited states are found to be converged. The
distinction between symmetry allowed and symmetry forbidden states is also reduced
by mixing; states n = 3b and n = 4 show this, the intensity of the symmetry-allowed
transition decreasing while the supposed-forbidden state gains intensity. The three results
given in table 29 do, however, give a reasonable value of the transition dipole moment
for one allowed (between A; and E) transition and show an acceptable approximation
to zero for a forbidden (A4, to A4,) transition. The transition dipole is resolved along a
unit vector parallel to R, p), and along a unit vector perpendicular to this and in the

molecular plane, denoted p .

Table 29. Transition dipole moments for Ars.

n (0luln)/D (Oluyin)/D|
1a 0.0 7.2x1075
1b -6.9x107° 0.0

2 0.0 -1.2x10""7

8.5. 1 An Assessment of a Minimal Basis Set.

A basis-set,

Un) =D > D c¥a (152)

v=0 w=0 i=1

reduced in size in p and cosx functions was investigated, with gnax = 4 and keeping
the same DGB. Such a reduced-size basis-set is probably the smallest that might be

admissible for AroHX calculations.

The single-quantum states (see table 30) are much better represented than the rest,
the largest change in frequency being 0.17cm™! from the ground state to the symmetric

stretch. The mode corresponding to Ar; rocking is seen to be the best converged at the
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Table 30. Comparison of good and reduced (r) basis-sets by the Jacobi II method.

8.6

&“requencies (Vne—o/cm™?)

n | Jacobi Il  Jacobi II(r) Visual form of ¥
la | 22.5022 22.6194 antisymmetric stretch
1b| 22.6102 22.6010 Ar, rock
2 | 30.5489 30.7210 symmetric stretch

4 | 43.2180 43.7836 2 quanta Ar, rock (+some stretch)
3a | 43.2693 44.2008 antisymmetric stretch+Ar, rock (a)
3b | 43.3515 45.7407 antisymmetric stretch+Ar; rock (b)
S5a | 50.1117 51.0775 complex

5b | 50.1706 52.3770 Ar, stretch+Ar; rock

‘reduced’ basis-set level, presumably due to a smaller fractional change in the ®, basis-
set size. The order of the error in frequencies introduced by truncating the basis-set in
the manner above will be relevant to assessing the error in calculations to be performed
on AryHX systems; if calculations get to about 0.2cm™! from experiment, we cannot be
sure whether the error is due to basis-set incompleteness, Hamiltonain approximations,

or potential surface errors.

A Comparison of Frequencies for Different Potentials.

Using the Jacobi II method with the basis-set given in section 8.3, which is of size 144,
results were obtained for two similar pair-wise-additive potentials and for the inclusion
of some trial three-body components. The pairwise-only potentials have the & and T
tailored to the potential in question. The three-body calculations use the & and T
tailored for the appropriate pairwise potential. The pairwise potentials are described in
the section on two-body potentials. The three-body terms V3qq and Va4 are as previously
described and use the Bell and Zucker values for parameters, while the Vja,4en term uses
the parameters Sjapsen = 430000.0Acm ™! and B = 1.234-1,

From the results of the two- and three-body calculations vin table 31, it can be
seen that the changes in frequencies due to inclusion of three-body energy components

are sufficiently larger than spectroscopic errors to affect an experimental spectrum. In
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Table 31. Frequencies (Vp.—g/cm™!) for trial three-body potentials compared to the two-

body only.

Potential Vurp-B2 Virp-c Vurp-c + Vadd Varp-c + Vaaa + Vaaq Varp-c + Viansen
n Excitation energies (E, — Ep)/cm™?
la 22.494  22.502 22.163 22.136 22.764
1b 22.503 22.501 22.160 22.130 22.759
2 30.556  30.549 30.242 30.222 30.647
4 43.202 43.218 42.620 42.573 43.501
3a 42.108 43.163 42.545 42.499 43.570
3b 43.345 43.351 42.734 42.686 43.761
S5a 49.654  49.640 49.058 49.002 49.957
5b 50.167 50.171 49.581 49.538 50.493
6 58.400 58.386 57.804 57.764 58.602
7 63.077 63.069 62.302 62.246 63.468
8 64.727 64.843 64.160 64.106 65.230

Ground-state rotational constants

A/MHz 1754 1754 1749 1749 1761

B/MHz 1752 1753 1748 1748 1761

C/MHz 872 872 871 871 874

addition it is clear that the changes in frequencies that arise from using an alternative
two-body potential are greater than one order of magnitude smaller. Knowing that the
differences between two-body potentials are so much smaller is essential if spectroscopy
is to be used to probe non-additive potentials through calculations. Three three-body
terms were tested. The triple-dipole is clearly the most important term, measured by
the change in frequencies, as expected. In contrast, the next-higher dispersion term, the
dipole-dipole-quadrupole, is seen to have roughly 10% as much effect. The Viapsen term
is apparently almost as important as the triple-dipole in some states, and should not be

neglected without good reason in any description of three-body forces in Ars.

For a Lennard-Jones (Leitner [50]) potential, Vij, there are three sets of results

available, see tables 32 and 33.
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Table 32. Comparison of 4; eigenvalues (in cm™!) from different workers for V4.

n Leitner et al. [50] Horn et al. [49] HHCC (Amax = 84) Jacobi II
0 37.35 37.24 37.369 37.367
2 63.07 64.90 62.751 62.778
4 73.28 74.96 73.123 73.503
6 84.15 90.00 84.037 87.003
7 88.42 - 88.195 -

Table 33. Comparison of E eigenvalues (in cm™!) from different workers for 1.

n Leitner et al. [50] Horn et al. [49] HHCC Jacobi II

n lower upper lower upper Amax =78 A'in S; A" in S,
1 51.38 56.37 56.35 56.58 56.185 56.190 56.197
3 72.52 73.52 74.16 74.30 73.104 73.453 73.292
5 77.44 85.30 82.46 82.70 78.785  79.173 78.622

It is worth comparing the eigenvalues, referred to zero energy at the potential mini-
mum. The Horn results agree qualitatively with those which I calculate, but show distinct
quantitative discrepancies. In particular it is noted that pairs of states which should be
degenerate are quite close by my method, taking into consideration that the symmetry
used was not the full symmetry of the system, while there are much larger differences
between physically degenerate states in the Horn calculations. Horn et al. claimed a con-
vergence of +0.01cm™?!, but the differences between physically degenerate states show
that their calculations have not achieved this. Hyperspherical calculations using the pro-
gram of Hutson and Jain, referred to earlier and denoted HHCC here, support my values
by close agreement of eigenvalues, and the normal mode and Jacobi I calculations agree
with the Jacobi II. It is also unexpected that the ground state of Horn et al. is about 0.1
cm™?! lower than all of the other calculations; their method should be variational. The
anomalous ground state and large discrepancy in the energies of physically degenerate

states in the Horn et al. calculations suggests a programming error of some nature.

The results of Leitner et al. are qualitatively different to the others; there is correla-

tion between A; states, but there seems to be no sensible correlation between E states,
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with apparently spurious eigenvalues present. The appearance of spurious eigenvalues in
the Leitner et al. calculations seems to imply a programming error of some kind. It is
worth noting that, since my calculations are performed in S, one of the E pair at 73.45
cm™! is an eigenvalue of the same matrix as that at 73.50 cm™?. The 73.50 cm™?! state is
assigned as being of A; on inspection of the wavefunctions. Although the wavefunctions
show mixing between these two states, the overlap integral between them is smaller than
expected and equal to 0.002.

Horn [49]has also performed calculations on the HFD-B2 pairwise additive potential.
It is useful to compare their results with the HHCC (method [48]) and Jacobi II results,
see tables 34 and 35. Such a comparison does not change the conclusions from the V1
results on the reliability of the four different methods; the HHCC calculations appear
to be the best, with the Jacobi II performing comparably for the lower states, while the

results of both Leitner and Horn appear to be unreliable on the basis of some serious

€ITOrS.

Table 34. Comparison of A; eigenvalues (in cm™?) from different workers for Vigrp_g2.

n Horn et al. HHCC (Anax = 84) Jacobi II
0 43.72 43.816 43.813
2 76.64 74.349 74.370
4  88.90 86.700 87.025
6 106.49 100.329 102.240
7 108.56 105.065 - -

Table 35. Comparison of E eigenvalues (in cm™!) from different workers for Vigrp_pg2.

n Horn et el HHCC Jacobi II
lower upper Apax =78 A'in S A" in S
1 66.49 66.76 66.311 66.306 66.316
3 87.21 87.76 86.820 87.170 86.921
5 97.61 97.66 93.615 93.988 93.467

It is also interesting to determine to what extent the change in frequencies due to a

change in potential depends on the basis-set. This might be a valuable way of reducing
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computing times in an analysis of the effect of three-body forces. Calculations were
performed with the Jacobi II method, with the two basis-sets detailed above, for the
HFD-C potential with and without a trial three-body dispersion term, the exact nature

of which is not relevant to this discussion.

Table 36. v, ¢(2body) — vp.o(3body) for Ary good and reduced basis-sets.

n Jacobi II(r) Jacobi II
la 0.351 0.367
1b 0.361 0.367
2 0.292 0.327
4 1.334 0.645
3a 0.657 0.712
3b 3.179 0.666
52 0.590 0.669
5b 2.966 0.633

From the results given in table 36, it is clear that for the single quantum modes (n =
la,1b and n = 2), the quantity v,.o(2 body) — vn—o(3 body) differs between the good
and reduced basis-sets by an order of magnitude less than the changein v,. (2 body) on
reducing the basis-set; the change in v, ¢(2 body) on reducing the basis-set is less than
0.2cm™!. It is also very clear that for n > 2 there will be very great errors in predicting
the effects of a realistic three-body effect from a reduced basis-set. Hence I conclude that
the perturbation in frequency due to a small change in potential converges much faster
than the frequency, and hence reduced basis-set calculations can be used with caution to

estimate the effect of perturbative three-body terms. .

Accurate rotational constants can be calculated by performing ro-vibrational Hamil-
tonian calculations for J > 0. However, as mentioned earlier, the Jacobi II calculation
is purely vibrational. To obtain good estimates of the rotationai constants, the inertia
tensor may be inverted and expectation values of the leading diagonal calculated. This

gives the equations:
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"\ Iap,sin®x  2uR?tan’y

i :<2u132> (183)

1
¢ ‘<2uR2 T2l > '

The result of applying these equations to the lowest few states of Ar; is given in
table 37. The rotational constants show the correct symmetry for a, states as well as

illustrating the larger average size of Ar; in a symmetric stretch.

Table 37. Rotational constants for the lowest few levels of Arg, calculated for Vigrp—c.

A/MHz B/MHz C/MHz
Ground state 1754 1753 872
First bend (A4') 1746 1693 844
First bend (A") 1740 1700 848
Symmetric stretch 1697 1695 842

In conclusion, it seems clear that the Jacobi II calculations are good and justify
the use of Method II in the calculations of one- and two-quantum states, although the
HHCC method is better for higher energies. I am confident that discrepancies between
the results of both Horn and Leitner aﬁd my calculations do not cast doubt upon the
validity of Method II, or its results, since there appear to be serious physical deficiencies
in the Horn and Leitner results.

A basis-set of a size suitable for calculations on Ar;HCl was compared against the

chosen Jacobi II basis-set, and found to be adequate.
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Calculations on Ar,HX Systems.

9.1

This chapter begins with an explanation of the significance of the expectation values
that have been calculated. An account of some convergence tests is then followed by
a key to the acronyms used in discussing and tabulating the results. The discussion is
divided into three main sections: calculations on AryH/DCI using pairwise potentials,
calculations on Ar, HCl including trial three-body terms, and preliminary calculations on

Ar,HF. Comparisons with experiment are made where this is possible

Calculated Parameters and Spectroscopic Observables.

Once a calculation has yielded an eigenvalue and eigenvector a host of expectation
values can be calculated. Of particular interest are the trimer rotational constants and
parameters that indicate the type of motion the HX molecule executes. In the latter

category I choose to calculate expectation values of two parameters:

Py(cos ) :%(3 cos? 6 — 1)

(154)
A(8, ¢) =sin® 8 cos 2¢.

These are chosen since they correlate with the nuclear quadrupole coupling constants

resolved along the principal inertial axes, xxx,Xyy and x... In particular:

Xxx =XHX (P2(Cos o))
(155)

3
.(XY.‘/ - XH) =XHX E(A(0,¢))’
where ygx is the quadrupole coupling constant of the uncomplexed hydrogen halide.

The values of these two expectation values can also be used in guiding the assignment

of eigenstates to vibrational modes and in judging the degree of freedom of HX motion:
o (Py(cosb)) is
‘1 if HX is fixed at § = 0° or 180°,
—% if fixed at 8 = 90° and
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0 in the free rotor limit.

o (A(6,4)) is
1 if HX is fixed at § = 90°,¢ = 0°(co-planar Ar, and HX),

—1 if 8 = 90°,¢ = 90° (crossed Ar, and HX) and

0 in the free rotor limit.

Large amplitude motion will result in expectation values with a wide variation between
the rigid limits; a rigid analysis cannot be applied to the expectation values. In addi-
tion, expectation values of close to zero should not be regarded as highly numerically
significant; a small change in the dynamics can cause large fractional changes, or even a
change of sign. The same caution applies to the experimental quantities with which these
expectation values correlate; the hyperfine splittings used in their calculation are very
much smaller than the vibrational or rotational energy intervals. More specifically, it is
those states which have quadrupole coupling constants close to that of the ground state
which are worst defined: the spectra are in the ground-to-excited vibrational transition
energy region. The best determined experimental values of (P;(cos 8)) and (A(6,4)) are

probably accurate to about 1 part in 100.

The evaluation of rotational constants is more difficult; a priort, one might expect to
perform a series of calculations for various J, K and calculate the rotational constants from
the eigenvalue differences. However, this means a lot of computing and it is impractical to
compute A, B and C in this way. There are also theoretical problems in the total-internal

angular momentum coupling, which was noted in the chapter discussing the theory.

Alternatively, the inertia tensor may be inverted and expectation values of the leading
diagonal calculated. The expressions obtained by such an inversion are prohibitively long

and some approximation is appropriate. Neglect of terms in HX inertia, Iyx, gives the
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rigid limit rotational constants:

B, ~ < - l - >
‘ Ipg,sin®xy  2pR2tan?y
B, ~ -————1
v ¥\ 2uR? | (156)

1
B, ~({ ———————
F <2”R2 + 2IA1‘2 >,

where the rotational constants have been labelled with cartesian, rather than principal

inertial, axis labels to avoid confusion in the case of axis switching.

In a free-rotor limit, treating the HX as structureless in this way is valid. For
real systems, however, there needs to be a correction applied to the above terms to take
account of neglecting Iyx. For Ar, HCI corrections of —6 MHz to B, and —1.5 MHz to B ,
have been estimated [21]; Inc) is a factor of about 200 less than the other inertial terms.
Non-rigidity of the complex, accounted for in the above corrections, causes the HCI to be
perturbed in its bending coordinate as the complex rotates (Coriolis perturbation) and
further reduces the contribution from Iyc) by a factor of about 0.65. The greater rigidity

of Ar,DCI will to increase the error introduced by assuming that the HX is free-rotor.

In practice, the expectation values of the functions given above were calculated using
Gaussian quadrature in all coordinates except R, where a trapezium-rule integration was
used. The orthogonality of basis functions was used where the argument of the integral

depended on only a subset of the five coordinates.

9.2 Convergence of Ar,H/DCI Basis Set.
For Ar,HCI, various convergence tests were performed and the following basis-set
chosen: |
e A product of T, (p) basis functions, with 0 < w < 2, and ®,(cos x), with 0 <
v < 4, was used with a maximum of 4 quanta in the product (gmax = 4).
e 16 equally spaced Gaussians distributed on (2.5004, 4.6004), ‘c’ parameter = 0.7.
° jHCI<6.k>1forj=5andk=4forj=4arenotused.

The Y and ® basis-set size is the same as the ‘reduced’ basis in the Arg calculations,

from which it was found that the worst error in frequency was less than 0.2 cm™!; in
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particular the changes in frequency for Arg were: 0.12 cm™! (antisymmetric stretch),
0.009 cm~* (Ar, rock) and 0.17 cm™! (symmetric stretch). The results from Ary are taken
as adequate indicators of the level of convergence of these modes in Ar,HCl, although
8-x coupling will probably exaggerate the Ar; fock (x bend) convergence error slightly.
T and & basis-set error is by far the largest cpntri‘bu@or to basis-set error, and has‘ most
effect on the experimentally undetecta.-ble?stat'es. Co'nv’efges'nce tests for Jmax (table 38)
and NDGB (table 39) were performed with gmax = 0, and results for the ground state, ¥
bend and R stretch (no excitation possible in p) examined as being representative of the

system dynamics.
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Table 38. Convergence (for Ar,HCl) with respect to jmax. Emax = Jmax, €Xcept {, where

kmax = 3 and only k = 0,1 for j = 5 are used. gmax = 0 was used, with other

parameters as given at the start of this section.

Jmax

Ground state

Energy/cm™!

¥, bend

Energy/cm™! (P,(cos 8))

(A(4,4))

5t

-315.54452
-315.56424
-315.57401
-315.57785
-315.57835

-272.97236
—-272.98983
-272.99233
—-272.99419
-272.99586

0.289626
0.290525
0.290318

0.290378
0.290382

0.047440
0.047420
0.047402
0.047404
0.047404

—

Table 39. Convergence (for Ar,HCl) with respect to NpGB. gmax = 0 was used, with other

parameters as given at the start of this section.

Npgs

Ground state

Energy/cm™?

Stretch

Energy/cm™' B,/MHz

B,/MHz

12
14
16
18
20

-315.55701
-315.56394
-315.56424
-315.56432
-315.56431

—280.09491
-280.16382
-280.17974
~280.18036
-280.18037

1605.793
1608.975
1609.697
1609.717
1609.571

843.216
844.131
844.319
844.330
844.293

The presented tables (38 and 39) show that the basis-set is well converged, with

errors in (P;(cos #)) and (A(6, #)) appearing in the fourth significant figure, errors in the

rotational constants B, and B, of the order of 0.1 MHz, and ground state convergence of

better than 0.02 cm™!. These errors are two orders of magnitude smaller than the effects

of hypothesised three-body forces. It was remarked above that the basis-set errors arising

from the small T and ® basis-set size are by far the largest. Practical computational

restrictions preclude the inclusion of more T, ®, functions without reducing the other

basis-function sizes.

The HX bending modes have the largest transition dipoles and are the only states,

apart from the ground state, which a

EQI

(7%

&
N @(g

servable using current experimental techniques.
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In consequence, it is believed to be important to ensure that the bending modes were well
represented, hence to coricentrate on the¥;; and ¥; basis-set size. An upshot of the small
basis-set size in T is likely to be large errors in B,, for all modes, and a contributi'oﬁ to
the frequency errors of the order of 0.02 cm™! for the bending states; HX bending states

have p motion which is very similar to the ground state.

Table 40. Convergence (for Ar,DCI) with respect t0 jmax- Fmax = Jmax, €Xcept , where

9.3

kmax = 3 and only k = 0,1 for j = 5 are used. gmax = 0 was used, with other

parameters as given at the start of this section.

Jmax | Ground state ¥ bend

Energy/cm™" | Energy/cm™ (Py(cos8)) (A(9,))
4 -324.88844 -279.46143  0.253153 0.101277
1 5t | -325.00325 -279.57735  0.254973 0.102032
5 | -325.02608 -279.58202  0.254676 0.102604
6 | —325.04680 -279.59314  0.254628 0.102782
7 | -325.04969 -279.59722  0.254725 0.102776

The calculations for Ar,DCI do not take account of the centre-of-mass shift in the
Ar-DCI potential evaluations. This shift is approximately 0.03 A, which will lead to
an under-estimate in By of approximately 30 MHz. The convergence test (table 40)
indicates that the jmax = 51 basis set is'suitable; the ground state is converged to about
0.05 cm™!. DCI has a smaller rotational constant than HEI, therefore Ar,DCI is ‘rm'ore
rigid, hence the poorer icgnverigen‘c‘elfdr Ar,DCI. The isotopic substitution does not affect
the suitability of _t”h,e DGB pr‘qp’}o,é_ed for ;Arzﬂ,Clr, and :tiie ba_s_i:sase"t‘Sﬁ in p and cosx were

det:ei-'min’edctaikiti‘g? the substitutib_il mto vaccd:"unta

Key to the Results.
In the tiiﬁlés;df;*r.e;slilfo:‘.}dnd=»d’i';{é%sion _s_,i‘n;gflié??;letj»g:’_r:s:@re used to refer to a calcula-

tion with a given basis-set and ‘potential and a. short abbréviation is-ised to refer to

experimental andpre\nousresults ,
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3. 1 Experimental and Previous Results on Ar, HCI.
Expt. Experiments of Gutowsky [19](grouhd state) and Saykally [20]groups on Ar,HCI.

HHB. Results of Hutson et al.[21]using the H6(3) potential for clamped Ar,. The Ar-Ar

energy is taken as zero at the clamped geometry (p = 3.82 A, cos x = 0).

3. 2 Calculations on Ar,H/DCIl with Two-body Potentials.
TWOO Calculation using the H6(4,3,0) and HFD-C potentials for Ar,HCI [HCI » = 0].
Basis used:

e p and cos x basis functions are eigenstates of an effective potential in one dimen-

sion. This is defined as an adiabatic cut on the potential energy surface.

e A product of three basis functions in p and five in cos x was used with a maximum

of 4 quanta in the product.
e 16 equally spaced Gaussians distributed on (2.500A, 4.600A), ‘¢’ parameter = 0.7.
® Juc1 <6. k>1forj=>5andk=4for j =4 are not used.
TWO1 Calculation using the H6(4,3,0) and HFD-C poténtia.ls for Ar,HCl [HCl v = 1].
The basis used is identical to TWOO.
"WODO Calculation using the H6(4,3,0) and HFD-C potentials for Ar,DCI [DC] v = 0].

The basis uses the same method as TWQO, but in this case the adiabatic cut is on the

Ar;DCI potential surface. No diatom centre-of-mass shift was applied.
*WO(3) Calculation using H6(3)+HFD-C potentials for Ar,HCI.

The basis used is identical to TWOO.

3. 3 Three-body Calculations on Ar,HCIL

In all cases the H6(4,3,0)+HFD-C two-body potentials were used, as was the same
basis-set as the two-body calculation TWOO.

Idd Three-body induction term (up to hexadecapole on HCl), using the multipole

strengths and polarisabilities given by Bulanin et al..
AT Three-body Axilrod-Teller term with 133 = 1060420cm—A°.
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DDD

DDD{

JAN

iQdq

MOD1

MOD2

Three-body anisotropic dispersion term with vy33 = 1060420cm~*4° and using the
polarisabilities given by Bulanin et al..

Three-Body anisotropic dispersion term with v,3 = 1061042()cm_1A'9 and using the
polarisabilities given by Bulanin et al., damped with a p;oduct of D functions with
B(Ar — Ar) = 4.348A7" and A(HCI - Ar) = 3.577A7.

Three-body Jansen term, Wifth'-ﬂJunsen = 1.2"4A-1, Stansen = 2 X 10°%cm™1A @d
Sansen = 0.154. |

Three-body HCI dipole—overlap induced quadrupole energy, with So_det = 0.96547"

and the dipole strength given by Bulanin et al..

Three-body (HCl dipole + quadrupole)-overlap induced quadrupole energy, with

Bo—det = 0.9654 " and the multipole strengths given by Bulanin et al..
Three-body terms from calculations Idd, DDD%, JAN and iQdq summed (i.e.
Model # 1).

Model # 2 three-body potential: induction as for Idd, dispersion as DDDY, oth-
erwise Bo_det = 1.000A71, Bransen = 1.31471, Siangen = 7.5 x 10°cm~'A and

8Jansen = 0.154.

9.3. 4 Notes Appearing in the Results.

Note 1. Afg separation fixed at value based on Gutowsky result B; = 1733.86MHz.

Note 2. For the fixed Ar, calculation there is only one stretch, of the R coordinate. These

results are entered under the ‘Breathing Stretch’ heading.

Note 3. This was the ﬁrstrrexll)erimenta.lly observed transition and is used as the stan-

dardisation for each set of results independently of theio'thers.

9.4 Ar,H/DCl Two-body Results and Arnalysisr.'

Atom-atom-diatom tririlers, with ‘T’ equilibrium geometry, such as Ar,HCI/HF,

have six vibrational modes. Three modes éorrespond with the triatomic modes which -

Ar; was seen to have in the previous chapter, and show the same correspondence to a

- normal mode description of the vibrations. I refer to these three modes as ‘triatom-like

~ 9: Calculations on Ar, HX Systems.



105

modes’; they are represented in figure 23. The other three modes correspond with HX vib-
rotor states. Plots of the square of some cuts of the wavefunction for Ar,HCl and Ar,DCI
are given in appendix E. All of the wavefunctions show the kind of large amplitude motion
expected for a van der Waals cluster; the HCI bending states are notable in this >respect,
showing considerable wavefunction density at the 8 = 90° geometry for the in-plane and
out-of-plane bends, and at the secondary potential minimum (# = 180° and 57.5 cm™!

above the primary minimum) for the parallel bend.

bo
O ’O-o—- O\_é

e o O

Breathing stretch Wagging stretch x bend

Fig. 23. Pictorial representation of Ar,HCI triatom-like modes.

A comparison of the energy of the HCI free-rotor states with the bending states of

the ArHCl and Ar,HCI systems is shown in figure 24.

A progressive increase in energy of the HCl motion going from free HCl to ArHCl
to Ar;HCI is observed, correlating with increasing localisation of the wavefunction (i.e.
increasing rigidity). The three single-quantum rotational states of HCl are degenerate,
but the states with which they correlate in the molecular complexes are split in energy
due to both the dynamical and potential effects of the other bodies. In the presence
of a single Ar atom the HCl rotation with no angular momentum along the Ar-HCI
axis (k = 0) is shifted up in energy less than the two rotations which do have angular
momentum along the Ar-HCI axis (k = £1) since there is less infera.ction for k = 0 due
to a secondary potential minimum at the Ar-ClH geometry. The ArHCI state which

correlates with k = 0 has axial symmetry and is termed the X, or parallel, bend; the
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Out-of-plane

‘ Peratel
In—plane

Pi pair

Pardlel ——

Fig. 24. HCI free-rotor and bending state energy diagrams.

other two states have wavefunction nodes containing the intermolecular axis and so are
referred to as II bend states. The dynamical effects of Coriolis coupling causes a small
splitting of the II states in addition to the II-X splitting due to the potential. In Ar, HCI,
IT state splitting is much larger and is due to quite different potential shapes for the
1n—plane and out-of-plane bends. The II pair stxll have a centre which is higher in energy
than the parallel bend, but because the Ar atoms are oﬁ"—a)ns the pnmary minimum is
broader m—plane and the in-plane bénd is of lowest energy Symmetry labels in the group
Cay(M), with character table given in the chapter on theory, can-be given to thé’ bendmg

states: A, for the ¥ bend, B2 for the in-plane: bend a.nd B: for the out- of-plane bend

The tnatom-hke modes no longer show the degenerate states wh.lch exlst for tnatomxc

,systems smce the 'the pot" 'txa.l does not have Ca,, symmetry There are sxmxla.ntles
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Fig. 25. Energy level diagram for some Ar;Y systems.
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like modes are totally symmetric (A4, ), except for the x bend(B;). A; symmetry states

only exist for multiple-quantum modes, such as an out-of-plane + x bend combination.

From the energy level diagram, which is derived from tables 42 and 43, the frequency

shift between HCl v = 0 and v = 1 states can be seen. As expected, excitation of the

HCI vibrational motion causes a much smaller shift of the triatom-like modes than of
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the HCl bending modes. The observation that the x bend is shifted the most, out of
the triatom-like modes, is evidence of coupling between HCl bending and Ar, rocking
motions. There is a red-shift of 2.83 cm™! between v = 0 and v = 1, and calculations are

listed in table 43; experimental data is not available, although feasible.

The effect of H /D isotopic substitution is élsp,worthy of note. The greater rot—at_ior_xal
constant of DCI leads to a great increase in theixi'i_gidity of the DCI motion, whxch éan
be seen from the plots of ¥2 given in appendix E. The effect of this greater rigidity is to
reduce the II state energies and to increase the ¥ bend energy. The II bends decrease
in energy because the wavefunction concentrates in the region of the principal potential
minimum, while the ¥ bend increases in energy because wavefunction density is reduced
in the region of the secondary potential minimum (see appendix E). The parallel bend
state corresponds with the first overtone of the II states in.the rigid limit; clearly this
limit is not being closely approached for Ary DCI, even though the trend is apparent. An
upshot of the energy shifts is an increase in the energy separation of the parallel bend
and breathing state. This reduces the mixing of these two states, as can be seen from
the absence of R excitation in plots of the Ar,DCI parallel bend, while some excitation
is seen for Ar,HCl. More evidence for the mixing in Ar,HCl is seen from an analysis of

potential perturbations, and is discussed in a following section.

Table 41. Ar,DCI Out-of-plane (II.) bend results.

Experiment TWODOI
Viwo/cm™? 36.046 37.712
(P;(cos 8)) 0.189 0.1983
(A(6,4))  -0.226  -0.2449
B./MHz  1788.14 1754.49
B,/MHz  1662.76 1695.75
B,/MHz  849.02 . 855.04

Additional information on the Ar;HCI potential and dynamics can be deduced from
experimeﬁts on Ar;DCI; the data can help to understand mixing phenomena, which will

be different for the two systems, as well as providing more information to fit calculations
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to. To-date only the out-of-plane bend has been characterised [103], see table 41; both

the experiment and spectrum assignment are difficult.

The theoretical results for Ar,DCI are, by comparison with experiment for the only
characterised state, of suitable quality to aid in the assignment of further states; a full
set of one-quantum states is given in tables 42 and 43. Recalling that the neglect of
the centre-of-mass shift leads to an under-estimate in B, of approximately 30 MHz, this
quantity is seen to be about 60 MHz higher than experiment. Coriolis mixing is discussed
below in more detail, but here I note that the out-of-plane bend has neglected mixing
with the breathing stretch, which has B, = 1600 MHz; the effect of mixing will be to
decrease the aforementioned 60 MHz discrepancy to a more reasonable value. There are
clear discrepancies between experiment and theory, however, with origins in both basis-
set and potential error. This problem is addressed more fully below, with reference to

Ar,HCI and plausible three-body forces.

For Ar,HCI, experimental results exist for the Ground State [19]and the HC] bending
modes [20], while previous calculations [21], denoted HHB, were performed with the Ar,
clamped with cos x = 0 and p = 3.82A, based on the A rotational constant for the ground
state. Clamping the Ar; reduces the number of modes; there is only a centre of mass
stretch, rather than both Wagging and Breathing, and no x Bend. The centre-of-mass

stretch appears to be more like the Breathing mode in my calculations.

In comparing the experimental to theoretical results care must be taken since the
property name does not always represent the same quantity. To be specific, the clamped
Ar, (HHB) calculations were performed with Wh;f’('] (J 4+ 1) — 2K?) on the Hamiltonian
matrix diagonal. In the HHB calculation J = 0 was always programmed, but for the
II bends K = 1 was used so that the energy —2B, is added to all diagonal elements,
hence to the eigenvalues. Taking the va.l.ues of By calculated, there should be 0.115 cm™!
added to the in-plane bend and 0.116 cm~! added to the out-of-plane bend energies to
bring the predicted frequencies into line with the experimental parameter v;,_y, which is
a vibrational transition frequency. My calculations use a vibratién-only Hamiltonian so
the frequencies are directly comparable with experiment. Both the earlier calculations

and my own use the same expressions for evaluating the rotational constants, and as
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Table 42. Collected two-body results for Ar,H/DCI - spectroscopically observed states.

Expt HHB TWO(3) TWO0 TWOl1 TWODO|TWO(3)-TWO0 Expt-TWC
Name Ground State [e = 0,7 = 0] (4;)
Energy/cm™? - -253.753 -323.324 -317.931 -320.756 -327.665
(Py(cos§)) | 0.4165 0.4540  0.4472  0.4429  0.4520  0.5922 0.0043 -0.0264
(A(6,9)) |0.0313 0.0218 0.0222  0.0255 0.0252  0.0227 -0.0033 0.0058
B./MHz |1733.86 -™°!¢1 1757.19 1756.99 1757.51 1760.83 0.20 -23.13
B,/MHz |1667.92 1702.4 1671.10 1668.24 1650.54 1662.99 2.86 -0.32
B,/MHz | 844.45 8576  849.53 848.73  844.23  848.34 0.81 -4.28
Name In-plane (II;) Bend [¢e = 0, = 1] (B;)
Energy/cm™? - -213.438 -283.737 -278.741 -280.778 -295.694
vieo/em™! | 37.196 40.315 39.587  39.190  39.978  31.971 0.397 -1.994
(Py(cos 8)) | -0.001 -0.0330 -0.0191 -0.0031 0.0170  0.2551 -0.0160 0.002
(A6, ¢)) 0.340  0.3673  0.3531  0.3441  0.3319  0.2375 0.0090 -0.004
B./MHz |1683.61 -™Vote! 174423 1744.98 1746.24 1757.05 -0.75 -61.37
B,/MHz |1682.42 1730.8 1694.27 1686.04 1668.90 1641.48 8.23 -3.62
B,/MHz | 826.70 864.6  851.25 849.22 844.64  839.83 2.04 -22.52
Intensity;—o >3 - 5.329 5.350  5.650  14.447 )
Name Parallel (£) Bend [e = 0,7 = 0] (4,)
Energy/em™| - -211.164 -282.590 -276.606 -278.721 -~283.557
Vieofcm™! | 30.555 42.589  40.734  41.325 42.035  44.108 ~0.591 -1.770
(Py(cos)) | 0.291 0.2943 0.2772 0.2752 0.2796  0.2622 0.0019 0.016
(A(6,¢)) 0.062  0.0430 0.0474 0.0591  0.0564  0.1165 -0.0117 0.003
B./MHz |[1730.70 -%eotel 175323 1753.72 1754.43 1752.57 -0.48 -23.02
B,/MHz |1720.89 1793.4 1758.94 1766.59 1759.34¢ 1792.39 ~7.65 -45.70
B./MHz | 883.04 879.2  868.55 870.47 868.49 877.12 -1.93 12.57
Intensity;.—o 1.0 See Note 3.
Name Out-of-plane (I.) Bend [e = 1,17 = 1] (B1)
Energy/cm™! - -206.517 -276.638 -271.389 -273.344 -289.953
Vieo/em™' | 45.203 47.236 46.686  46.542  47.412  37.712 0.144 -1.339
(Py(cos@)) | ~0.025 -0.0030 -0.0140 -0.0224 -0.0209 0.1983 0.0084 -0.003
(A(6,4)) |-0.295 -0.3098 -0:3146 -0.3197 -0.3181 -0.2449 0.0051 0.025
B, /MHz 1774, -Netel  1750.15 1749.94 1750.05 1754.49 0.21 24.5
B,/MHz | 1752. 1740.8 1706.72 1705.52 1698.29 1695.75 1.19 46.5
B./MHz | 854.6 861.7 856.59 856.21 854.40  855.04 0.38 -1.6
| Intensity;._q >3 - 4972 4.942  5.397  16.282
O Lalchiations ol an o Sostenme. o
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explained above these expressions can overestimate By by about 6 MHz and B, by about
1.5 MHz. These corrections are not applied; the numbers quoted are the expectation

values of the previously quoted equations.

Both the HHB and my own calculations do not include Coriolis coupling, which
may significantly affect the physical states. Calculations of this effect would be useful.
A preliminary investigation of Coriolis mixing has been undertaken by Elrod [104], who
tried to deperturb his experimental data. Elrod’s calculations show that the degree of
mixing between the parallel and in-plane bends cannot be determined from his data; he
calculates deperturbed values for B, of 843.8 MHz for the in-plane bend and 865.8 MHz
for the parallel bend, based on an estimate of Coriolis mixing extended from the known

effect for ArHCI.

Evidence of mixing is also found for the out-of-plane bend from the large residuals
found when fitting the various spectroscopic parameters to the spectrum; Elrod reports
that there seemed to be a crossing with a dark state at about J = 7. Candidates
for states interacting with the out-of-plane bend are states with two quanta in the x
bend and wagging stretch pair. These states have symmetry A; (two quanta in a single
mode) or B, (one quantum in each mode), hence can only interact through dynamical
(Coriolis) coupling. However, because the basis-set used in p and cosx is forced to be
so small by computational restrictions, the calculation of these two excited states to
the same accuracy as the out-of-plane bend is not possible. The accurate calculation of
these states, together with a proper treatment of the Coriolis coupling, will be needed
to quantify the mixing effect and further understand the spectrum. For now I note that
discrepancies between theory and experiment for the out-of-plane bend will have large
contributions from neglected dynamical effects, especially in the rotational constants, in

addition to possible three-body effects.

For the suggested Coriolis coupling to the out-of-plane bend, symmetry can be ap-
plied to find which rotational constants may be perturbed. If two states of symmetry I,
and I'g are to interact through a component of the total angular momentum operator, the
latter must have symmetry I'y ® I'g since the direct product must be totally symmetric.

Thus for the out-of-plane bend (B;) to interact with a two-quanta x bend or wagging
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stretch (both A;), the perturbation must have symmetry B, hence is the jy operator
and B, will be mixed. On the other hand mixing with the x bend + wagging stretch
state (B;) occurs through Jz (symmetry A,) since B; ® Bs — A;. We can expect the
state with two quanta in the wagging mode to have quite a large B, and I suggest that
this is a candidate for Coriolis mixing with the out-of-plane bend since it will bring the
predicted value closer to experiment. Reliable estimates of the rotational constants of

mixing states are required to address this problem more fully.

In summary, Coriolis mixing is likely to affect B, in the in-plane and parallel bends

and both B, and B, in the out-of-plane bend, while the others should not be affected

and provide useful probes of proposed three-body effects.

A clamped Ar; calculation determines the more easily experimentally observable
HX bending states, and so is potentially useful. The x bend, and what is effectively the
wagging stretch, are not part of the clamped model and so possible coupling of these
modes to bending states cannot be assessed. The results presented in tables 42 and 43
allow a quantitative assessment of the errors arising in a clamped Ar, calculation. The
calculation TWO(3) was performed using the same potential as the HHB results. From
a_comparison of these results is is clear that the clamped Ar, calculation is better than
might, at first, be estimated; the 8, ¢ expectation values are generally good estimates.
As expected, from noting the R-p coupling in the potential surface, there is more effect
on the B, rotational constant (which is a measure of R excitation) when vibrations in p
are allowed. This coupling is evident in the wavefunction plots presented in appendix E.
More importantly, the extra two degrees of freedom in TWO(3) cause a drop of almost 2
cm™! in v;,_¢ for the parallel bend, indicating rather more effect than might be deduced
from purely the expectation values. A clamped calculation is clearly only suitable for
broad characterisation of the dynamics, and is inappropriate for an analysis of the two-
and three-body potential energy surface.

Only recently [66]the ArHCI potential was improved in the light of fitting calculations
to spectroscopic states which had not been obsefved at the time the H6(3) potential was
derived. Significant improvements were possible since the Legendre series used could be

determined to more terms. Calculations were performed with the older, H6(3), potential
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Table 43. Collected two-body results for Ar,H/DCI - spectroscopically unobserved states.

HHB TWO(3) TWO0 TWO1 TWODO TWO(3)—TW(%I
Name Wagging Stretch [e = 0,7 = 0] (4;)
Energy/cm™!| —Neote2 _998 349 —292.983 -295.825 -302.354
Vicofem™} | _Note2 94975 24948 24.931 25.310 0.027
(Py(cos@)) | -Nete2  (0.4334 0.4297 0.4367 0.5821 0.0036
(A(6,0)) | -Net*2  0.0253 0.0280 0.0281  0.0247 -0.0027
B,/MHz | -Netez  1679.05 1679.19 1680.30 1685.12 -0.14
By,/MHz | -Nete2  1703.12 1700.11 1682.15 1693.07 3.01
B,/MHz | -Nete2  g3140 830.68 826.58  830.62 0.72
Intensity;.o - 0.014  0.014  0.016 0.016
Name X Bend [e = 0,7 = 1] (B3)
Energy/cm™! - -296.819 -291.655 -294.924 -302.323
Vieo/cm™? - 26.505 26.276  25.832  25.342 0.228
(Py(cos 8)) ~ 0.4278  0.4230 0.4264 0.5164 0.0048
(A(8, 9)) - 0.0296 0.0342 0.0388  0.0755 -0.0046
B./MHz - 1788.68 1788.23 1787.92 1784.94 0.45
B,/MHz ~ 1613.33 1613.25 1602.79 1635.40 0.08
B./MHz - 834.67 834.55 831.75  840.82 0.12
Intensity;.o - 0.175  0.237  0.432 4.883
Name Breathing Stretch [e = 0,7 = 0] (4;)
Energy/cm™1(-217.784 -287.095 -281.724 -284.648 -290.678
Vieo/cm™! | 35.969 36.229  36.207 36.108  36.987 0.021
(P2(cos@)) | 0.3891 0.3967 0.3985 0.4004 0.5670 -0.0017
(A(8,¢)) 0.0266  0.0275  0.0302 0.0292  0.0247 -0.0027
B./MHz | -Netel 174277 1742.90 1741.85 1748.88 -0.13
B,/MHz 1670.6 ~1636.08 1628.88 1617.72 1606.64 7.20
B,./MHz 846.7  834.35 83242 829.42 827.86 1.93
Intensity;.o ~ 0.120  0.091  0.123 0.030

(TWO(3)) and the more recent, H6(4,3,0) potential (TWOO) in order to quantify the
effect of the two-body potential surface improvements on the dynainics, as well as allowing
comparison with the HHB calculations. Most fundamentally, as shown in table 44,

the H6(4,3,0) potential has deeper primary and secondary potential wells and higher
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Table 44. Comparison of H6(3) and H6(4, 3 ,0) ArHCl potential surfaces

H6(3) H6(4,3 0)| |
primary well depth/cm™! | 174.7  176.0
secondary well depth/cm™!|139.5  148.3
barrier height/cm™! 67.1 71.0

rotational barrier height, as well as a more anisotropic repulsive wall.

The overall effect of the deeper, steeper-sided, potential wells is to push up the
energy levels; the ¥ bend rises 6.0 cm™!, and the ground state by 5.4 cm™!. The more
precise description of the angular ArHCI potential is seen to affect the bending states
most, including the x bend, causing changes in frequencies of from 10% to 30% of the
discrepancy from experiment. This underlines the importance of having a reliable two-
body potential. The H6(4,3,0) potential is fitted to so many observables that I believe
that, for bound-state geometries, its errors are less than 20% of the H6(3) errors; the
H6(4,3,0) is reliable. Of the expectation values, the rotational constant estimates are
mostly negligibly affected, although the higher rotational barrier and greater anisotropy
shift B, by up to 8 MHz in both directions. On the other hand some of the angular
expectation values are rather more affected, although these tend to be those with smaller

magnitudes and little information can be deduced from the changes.

The need for a reliable two-body potential in a model with full vibrational freedom
has been argued for, above. These criteria are met by calculation TWOO such that dis-
crepancies between the theoretical and experimental results for Ar,HCl may be ascribed
to one of:

1. basis-set incompleteness,
2. dynamical approximations in the form of neglected angular momentum coupling
terms, or
3. the presence of a physically _sig‘niﬁga.nt-;thrge,-quy potential. -
Ba‘si"s set iﬁcomplet‘éhess wa;s:a‘,d'dres’séd'in :th‘e se"ctidn' on cbnvéi'geﬁce, where it-was noted
that errorsin: B are hkely to be large, d,nd states exclted in p w111 be Worst converged. The
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effect of some neglected angular momentum terms in the Hamiltonian has been qualita-
tively discussed in the preceding paragraphs dealing with Coriolis mixing; a quantitative
theoretical treatment remains to be developed. The magnitude and form of three-body
effects has been addressed in a previous chapter, while the effect of these effects on the

dynamics is addressed in the following section.

The difference between experiment and calculation TWOO is tabulated, in this
section, in order to assess the effect of items (1) to (3), above. Having a qualitative
assessment of the effects of (1) and (2), it is possible to deduce the effect of (3). In all
cases, the differences in the frequencies between a two-body potential calculation and
experiment are greater by two orders of magnitude than the inferred basis-set derived
errors. Coriolis coupling is likely to have a similarly small effect on the frequencies, hence
the experimental frequencies provide a good test of proposed three-body effects, and
indicate that these forces are highly significant by the magnitude of the discrepancies
(greater than 1.3 cm™!). Basis-set errors in expectation values of P, and A are also
much smaller than the observed discrepancies, although the inferred three-body effects
on these values are less significant than on the frequencies, particularly in the light of the
neglect of some jyx terms in the Hamiltonian. In the cases where the theoretical values
are not close to zero, and the experimental values are not very close to the ground state,
expectation values of P, and A provide an important test of the angular dependence of
proposed three-body effects. The rotational constant By is also converged to well within
the observed deviations, although B., and to a lesser extent B,, are less well converged
due to basis-set unconvergence. Perhaps more importantly, the rotational constants are
perturbed by Coriolis mixing; an estimated deperturbation of the ¥ and in-plane bends
changes B, from 827 MHz to 844 MHz for the in-plane bend, and from 883 MHz to 866
MHz for the ¥ bend. In both cases this effect drastically reduces the inferred three-body

effect on B,.
9.5 Ar,HCI Three-body Results and Analysis.

. 1 Analysis and Results for Trial Dispersion Forces.
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Table 45. Three-body Dispersion Calculations ~ HCl Bending Modes.

AT DDD DDDt  TWOO
Name In-plane (II,) Bend [e = 0,7 = 1] (B,)
Energy/em™ | -272.102 -272.197 -272.203  ~278.741
vieo/cm™! | 39.226 38.859  38.859 39.190
(Py(cos8)) | -0.0036 -0.0071 -0.0071  -0.0031
(A(8,¢)) | 03452 0.3469  0.3469 0.3441
B./MHz | 1734.76 1734.76 1734.77  1744.98
B,/MHz | 1679.82 1680.14 1680.16  1686.04
B,/MHz | 845.03 845.13  845.14 849.22
Intensity;.o | 5.189  5.080  5.080 5.350
Name Parallel (¥) Bend [e = 0,7 = 0] (4;)
Energy/cm™! [ -269.129 -268.950 —268.960  -276.606
Vieg/cm™1 | 42,199 42,105 42.103 41.325
(Py(cos@)) | 0.2506 0.2468  0.2468 0.2752
(A(6,4)) | 0.0596 0.0616  0.0616 0.0591
B./MHz | 1741.97 1741.80 1741.84  1753.72
B,/MHz | 1761.81 1759.71 1759.75  1766.59
B,/MHz | 866.28 865.68 865.70 870.47
Intensity;.o 7 1.0 See Note 3.

Name Out-of-plane (II.) Bend [e = 1,7 = 1] (B,)
Energy/em™! | -264.512 —264.444 -264.451  -271.389
vieofcm™! | 46.816 46.612  46.611 46.542
(Py(cos8)) | -0.0227 -0.0250 -0.0250.  -0.0224

(A(9,¢)) | -0.3201 -0.3201 -0.3201 -0.3197
B,/MHz | 1740.01 1739.83 1739.84  1749.94
B,/MHz | 1697.36 1697.40 1697.43  1705.52
B,/MHz | 851,57 851.54 851.55 856.21
Intensity;o | 4.733 4615  4.615 4.942

From the results in tables 45 and 46, it is clear that the use of an Axilrod-Teller
triple-dipole term (AT) is generally not a good approximation to the real triple-dipole
term which takes into account the anisotropic polarisability of the HCl (DDD). To be

more precise, there is a division of suitability of such an approximation between HCI
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Table 46. Three-body Dispersion Calculations — Triatom-like Modes.

AT DDD DDD{ TWOO0

Name

Ground State [e = 0,7 = 0] (4,)

Energy/cm™!

-311.328 -311.0566

-311.062 -317.931
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(Py(cos@)) | 0.4443 0.4412 0.4412  0.4429
(A6, 9)) 0.0252  0.0260 0.0261  0.0255
B,/MHz | 1747.88 174743 174744 1756.99
B,/MHz 1662.02 1661.96 1661.98 1668.24
B,/MHz 844.83  844.70  844.71  848.73

Name Wagging Stretch [e = 0,7 = 0] (4,)

Energy/cm™! |-286.919 -286.673 -286.679 -292.983

Vio/cm™! 24.409 24.383 24.383  24.948
(Py(cos@)) | 0.4311 0.4281 0.4281  0.4297

(A(6,4)) 0.0278  0.0287 0.0287  0.0280
B_/MHz 1674.19 1674.03 1674.03 1679.19
B,/MHz 1692.69 1692.54 1692.56  1700.11
B,/MHz 827.48 827.39  827.40 830.68
Intensity;p [ 0.011  0.011  0.011 0.014
Name X Bend [e = 0,7 = 1] (B2)

Energy/cm™! |-285.530 -285.298 -285.303 -291.655

Vieo/cm™! | 25798 25.758  25.759  26.276
(Py(cos 8)) | 0.4263 0.4229  0.4229  0.4230
(A(6, ¢)) 0.0315  0.0327  0.0327  0.0342
B, /MHz 1780.52 1780.13 1780.14 1788.23
B, /MHz 1604.24 1604.38 1604.40 1613.25
B./MHz 830.16  830.10 830.11  834.55
Intensity;o | 0.174  0.178  0.178 0.237
Name Breathing Stretch [e = 0,7 = 0] (A4;)
Energy/cm™ ! | -275.461 -275.238 -275.245 -281.724
Vi—o/cm™! | 35867 35.818 35.818  36.207
(P2(cos8)) | 0.4091 0.4048 0.4048  0.3985
(A6, ¢)) 0.0273  0.0287  0.0287  0.0302
B./MHz 1736.81 1736.35 1736.36 1742.90
B, /MHz 1612.65 1613.39 1613.43 1628.88
B,/MHz 826.49 826.59 826.60  832.42
Intensity;—o | 0.045  0.049  0.049 0.091
Y: Calculations on

Ar, HX Systems.



118

bending modes and the triatom-like modes and also between (Pa(cos@)), (A(8,¢)) and

the other observable quantities.

In all cases the values of (P;(cosf)) and (A(6,¢)) in AT are poor indicators of
effect: the error, compared to DDD, is of the same order as the anisotropic triple-dipole
effect. This is to be expected since it is precisely the 8§ dependence which is lacking in the
Axilrod-Teller term. It is significant to note that even without any @ dependence in the
Axilrod-Teller potential, some modes in calculation AT display changes in (P;(cos#8))
and (A(6, ¢)), relative to the two-body calculation, of larger magnitude than calculation
DDD. This must be due to the repulsive nature of the potential causing a slightly different

part of the two-body surface to be sampled.

The reliability of the other observable quantities depends on the mode in question. In
calculation AT the ground state and the triatom-like modes (modes where the structure
of the HCl is not dynamically significant) are much closer to DDD than the modes which
have HCI] bending character. This is to be expected since the bending modes will sample
much more of the anisotropy of the potential. It is found that the triatom-like modes
have values of ;¢ in error by an order of magnitude less than the effect, while the error
is the same order as the effect in the HC] bending modes; the anisotropic triple-dipole
should be used in predicting frequencies. The rotational constant predictions show much
less sensitivity to the anisotropy of the triple-dipole term; they are principally affected by
the overall repulsive nature of the potential and display introduced errors of only a few

percent upon using the Axilrod-Teller approximation, and show less distinction between

mode types.

In conclusion, the Axilrod-Teller term is not good enough as an approximation to
the anisotropic triple-dipole dispersion; only the rotational constants are adequa.tely pre-
dicted. As the order of the multipole moments of the dispersion interaction increases, the
form of the anisotropic term becomes very complicated and such terms would have to be
very important to merit the full form. Higher-order dispersion terms could probably be
usefuily modelled using atomic forms. The smaller magnitude, and th;: more complicated
angular dependence, of effects of higher-order than the tﬁple-dipolb both support use of

isotropic terms; a complicated angular dependence is likely to have a near-isotropic effect,
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when averaged over vibrations. Currently, it is not thought worthwhile to calculate the

effect of such terms at all since so little is known about the three-body potential.

The effect of my trial damping term may be evaluated by comparing the results of
calculations DDD and DDD{. These results show that this damping term is of negligible
effect. Certainly, the effect of this damping term is much less than the convergence of
the calculation and mostly smaller than the accuracy of experiment. I do not believe
that the term I used for damping is more than an order of magnitude inadequate and so

conclude that damping of three-body dispersion is not important.

The comment, made above, on the shifts in (P;(cos 8)) and (A(8, ¢)) following addi-
tion of the Axilrod-Teller potential (no (8, ¢) dependence) suggests further analysis of the
effect. If the (6,¢) dependence of the anisotropic triple-dipole term is examined, there
is seen to be less repulsion for geometries with § = n/2 and also for ¢ = 0,7. From
this, one would naively expect (Pz(cos 8)) to be more negative and (A(6, ¢)) to be more
positive upon inclusion of the anisotropic dispersion. If the results of calculation DDD
are examined, this is seen to be largely the case, but prominent discrepancies can be seen
in the x bend, the breathing stretch and the out-of-plane bend. The perturbations in the
angular expectation values in calculations AT and DDD are shown in table 47. If the
results of calculation AT are now examined and the shifts in these angular expectation
values taken to be the second-order effect of the purely repulsive nature of the triple-
dipole, acting through the radial-angular coupling in the two-body potential, we may
assume first-order perturbation theory and subtract this effect from the perturbations
due to the anisotropic dispersion in order to obtain the effect of the angular dependence
in the anisotropic dispersion. From table 47 it is seen that the result of this subtraction is
changes in (P,) and (A) as predicted from the angular form of the anisotropic potential
and remarkably constant across the different modes; the out-of-plane bend is an exception
since the fractional change in V(¢) is smaller than for the other modes, over the range
of the wavefunction.

The separation of the effect on (Pz(cos8)) and (A(8,¢)) dué to isotropic repulsion

and angular shape was quite successful, and suggests a general method of analysis. How-

ever, a similar analysis of the results presented below for different three-body potential
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Table 47. Perturbationsin the Angular Expectation Values due to Inclusion of an Axilrod-

Teller (isotropic) and Anisotropic Triple Dipole terms, and the Difference in the

Perturbations.

Isotropic Anisotropic Difference

Ground State
(Pz (Cos 0)) 0.0014 -0.0017 -0.0031
(A(G, 45)) -0.0003 0.0006 0.0009

Wagging Stretch
(Py(cos8)) | 0.0013  -0.0017  -0.0030
(A(8,9)) | -0.0002 0.0007 0.0009
x Bend
(Pa(cos 6)) | 0.0034 0.0000 -0.0033
(A(8,4)) | -0.0027  -0.0016 0.0011
Breathing Stretch
(Py(cosd))| 0.0107  0.0064  -0.0043
(A(8,9)) | -0.0029  -0.0015 0.0014
' In-plane (II;) Bend
(P2(cos 8)) | -0.0005  —0.0040 -0.0035
(A(8,4)) | 0.0011 0.0028 0.0017
Parallel (¥) Bend
(Py(cos ) | -0.0247  -0.0285  -0.0038
(A(8,4)) | 0.0004 0.0024 0.0020
Out-of-plane (II.) Bend
(Py(cos 6)) | ~0.0003  -0.0026  -0.0023
(A(6,4)) | -0.0004 -0.0004  0.0000

terms fails. I suggest that this is due to the existence of a mixture of attractive and
repulsive zones as 6 varies, resulting in a failure of an isotropic average to be an accurate
predictor of the effect; even using the rotational constants to indicate the isotropic aver-
age, and thus to guide predictions in shift due to radial-angular coupling in the two-body

potential, fails.

9.5. 2 Analysis and Results for the Model # 1 Three-body Pot‘ential.
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The changes in the various calculated quantities on the addition of various three-body
potentials are given in tables 48 and 49, denoted P;, where the subscript t represents
a calculation code-name. X P is the result of summing the four perturbations due to
calculations Idd (the interaction of dipoles induced on the argon atoms), DDDt (the
damped anisotropic triple-dipole), JAN (the exchange-overlap equations of Jansen) and
iQdq (the overlap-quadrupole interacting with HCl multipoles). The tables of perturba-
tions show the relative importance of the various model contributions to the three-body

potential quite clearly; comparison with spectroscopic data is made later.

Table 48. Three-body Perturbations - HCl Bending Modes.

Pyaa Poopt Pian  Piqaq Pvopbi| XP
In-plane (II;) Bend [e = 0,7 = 1] (B)
Vi—o/cm™!| -0.636 -0.331 0.047 -3.114 -3.785 | —4.033
(Pa(cos 8)) |-0.0045 -0.0040 —0.0012 -0.0316 —0.0318 [-0.0414
(A(6,4)) | 0.0016 0.0028 -0.0001 0.0132 0.0135 | 0.0175
B,/MHz | -0.27 -10.21 229 -1.58 -9.74 | -9.77
B,/MHz | -0.35 -588 0.93 283 -3.87 | -247
B,/MHz | -0.14 -4.08 0.77 042 -3.40 | -3.02
Parallel (X) Bend [e = 0,77 = 0] (4;)
Vieo/cm™!| -0.504 0.777 0.015 -2.660 -2.414 | -2.372
(P2(cos 8)) | 0.0056 -0.0284 -0.0010 0.0525 0.0167 | 0.0288
(A(8,¢)) |-0.0024 0.0024 -0.0011 -0.0106 —0.0026 [-0.0117
B;/MHz | -0.06 -11.87 276 -4.10 -10.65 | -13.27
B,/MHz | -428 -6.85 1.04 -60.25 -48.39 | -70.33
B,/MHz | -119 -477 095 -17.10 -15.63 2211
‘Out-of-plane (II.) Bend [e = 1,7 = 1] (B1)
Vieo/cm™'| -0.418 0.069 -0.001 -2.370 -2.574 | -2.720
(P2(cos 8)) |-0.0044 -0.0026 -0.0005 -0.0273 -0.0301 |-0.0349
(A(8,4)) |-0.0011 -0.0004 —0.0007 -0.0053 -0.0048 |-0.0076
B./MHz | -0.56 -10.10 2.32 -5.18 -13.50 | -13.51
B,/MHz | -0.09 -8.00 145 184 -4.98 | —4.90
B,/MHz | -0.17 -4.67 094 -0.85 -4.77 | -4.75

It is clear that the larger effects are observed for addition of either the dispersion
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Table 49. Three-body Perturbations — Triatom-like Modes.

Ground State Energy | ~317.222 —311.062 -318.559 —314.484 -307.713| ~317.931
Pga  Poopt Pian  PFqQaq Pvopr | XP
Ground State [e = 0,7 = 0] (4;)

(Py(cos ) ~0.0066 -0.0017 0.0000 -0.0303 -0.0375 | ~0.0387
(A(6,4)) 0.0011 0.0006 -0.0008 0.0055 0.0085 | 0.0064
B./MHz -1.35 -8.55 2.00 -16.30 -24.84 | -25.20
By/MHz -0.16 -6.26 1.42 2.64 -2.35 -2.36
B,/MHz -0.38 —4.01 0.84 -3.33 -6.80 —-6.88

Wagging Stretch [e = 0,7 = 0] (4,)

l/,'._c./cnl_1 -0.083 -0.565 0.055 -0.567 -1.086 | -1.150

(Pz(cos 0)) ~-0.0068 -0.0017 -0.0003 -0.0249 -0.0314 | -0.0336
(A(e, ¢)) 0.0011 0.0007 -0.0006 0.0041 0.0069 | 0.0054
B./MHz -0.68 -5.16 1.04 -8.04 -1149 | -12.83
By/MHz -0.30 ~7.55 1.58 -0.29 -7.04 —-6.56
B,/MHz -0.27 -3.28 0.65 -2.25 —4.89 -5.15

x Bend [e = 0,7 = 1] (B,) »

u,-._o/cm_l -0.087 -0.517 -0.004 -0.437 -1.100 | -1.047

(Py(cos ) ~0.0073 0.0000 -0.0008 -0.0337 -0.0412 | -0.0419
(A(B, ¢)) 0.0014 -0.0016 -0.0006 0.0084 0.0115 | 0.0076
B./MHz -1.24 -8.09 1.90 -14.29 -21.17 | -21.72
By/MHz 0.13 -8.85 1.94 3.24 -2.18 -3.54
B,./MHz -0.26 -4.43 0.96 -2.51 -5.73 -6.26

|  Breathing Stretch [e =-0,7 = 0] (4,)

Viep/cm™? ~0.152 -0.390 0.002 -1.370 -1.527 |--1.909

(Py(cos 6)) ~0.0120 0.0064 -0.0011 -0.0964 —0.0806 | -0.1032
(A(a, (ﬁ)) 6.0013 -0.0015 -0.0016 0.0220 0.0190 | 0.0202
Bz/MHz -1.21 -6.55 1.85 -6.43 -14.84 | -12.34
B,/MHz 420 -1545 172  58.94 2832 | 49.40
B./MHz "0.86 -5.82 0.90 14.43 4.20 10.36

term (DDD1) or the overlap-induced quadrupole term (1Qdq). In all cases the greater
8, ¢ dependence of the overlap-induced quadrupole interacting with the HCl dipole and

quadrupole causes the greatest effect on (P,(cos8)) and (A(8, 4)) to arise in calculation
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iQdq. In general there appears to be slightly more effect on the rotational constants in
calculation DDD4, indicating a largely repulsive effect in both calculations DDDt and
iQdq. It is noticeable that for the HCl bending modes a greater perturbation of B, is
seen in calculation DDDt: but iQdq for the other modes. Since B, is controlled by
the moment of inertia of the Ar, fragment, the results of iQdq should be interpreted
as showing that it is the exponential dependence of the overlap-induced quadrupole on
Ar-Ar separation which is in control, rather than the R™™ multipole interaction; the
smaller effect of the overlap-quadrupole in the bending modes arises since the bending

samples attractive as well as repulsive regions.

The large change in By for the parallel bend is noteworthy; this is presumably due

the the secondary potential minimum being at smaller R.

An assessment of the degree to which first-order perturbation theory holds for the
expectation values, where the perturbation is a given model three-body component, can
be made by comparing ¥P and Pyop;. If the first-order régime was applicable then
¥ P = Puvop; failure will be due either to the potential perturbation being too large (i.
e. large enough to change the character of the wavefunction) or to interaction of states.
In practice first-order perturbation theory is seen to provide quite a good description,
although insufficient for giving precise results. The inadequacy of first-order perturbation
theory is probably largely attributable to the potential terms being too large; frequencies
are changing by ~ 10%. For the breathing stretch and the parallel bend I believe there to
be breakdown due to coupling of these two states, since X P— Pyjop; is substantially larger
for these two states. Addition of ¥ P — Pyop: for the two states for each expectation
value gives a result close to zero, consistent with an interaction of these states (which are
only 5 cm™! apart). After taking mixing into account, the remaining discrepancies are

well within the range of differences for the non-interacting states.

Comparison of Experiment and Three-body Calculations.

Calculations (MOD1) were performed using the Model # 1 potential, which has
parameters chosen to match the model to ab-initio results, as described in the Chapter on

three-body potentials. These results are compared (table 50) to the two-body calculation,
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experiment, and an alternative three-body model (Model # 2), which is discussed below.

It is apparent that the Model # 1 potential changes the frequencies in the correct
direction, but over-corrects the discrepancy between two-body calculations and experi-
ment. The frequencies are probably the most important single test of a model, but the
expectation values provide important additional information. In particular, all of the
expectation values for the ground state agree quite well with experiment, although the
effect of three-body forces is more significant on the rotational constants: but is rather

indeterminate on the P, and A expectation values.

For the in-plane bend, while the value of (P,) is rather too small to draw many
conclusions, the value of (A) should be well defined both experimentally and theoretically.
The effect of the three-body potential on (A) is in the wrong direction, however, and an
inspection of the perturbations due to the independent contributions does not suggest
that there is under-representation of any term causing this discrepancy; the angular
dependence of one or more terms in the three-body model must be deficient, although
not seriously. The B, rotational constant is seen to be a great deal different to experiment.
As explained in the section on convergence, the basis-set in p is rather small, and tailored
to a two-body potential, so that perturbations to a ground-state character p-motion are
poorly modelled. In addition, neglected ja:jux terms might be important, acting through
the tan® y term in the expression for B,. I do not consider B, to be a good indicator
of the accuracy of three-body forces, therefore. By, on the other hand, is quite close
to experiment with a two-body potential, and changes little on addition of three-body
components. The Coriolis mixing of the in-plane and parallel bend, through the J,
operator, has already been discussed; this has the effect of mixing the B, so that the sum
of the perturbation for both modes should be compared with the sum of the deviations
of the two-body calculation from experiment. Such a comparison shows an over-estimate
of three-body effect.

The parallel bend shows rather good agreement between calculation MOD1 and
experiment, excepting B, as before, although here the effect is probably less, due to

smaller ja,jux coupling terms.

The out-of-plane bend suffers from Coriolis mixing such that B; and B, are unre-
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4.625

Expt MOD1 MOD2 |MOD1—TWO0 MOD2-TWOO0 Expt—TWOO‘
Name ' Ground State [e = 0,7 = 0] (4;)
Energy/cm™! - -307.713 -308.976
(Py(cos8)) | 0.4165 0.4054 0.4170 -0.0375 -0.0259 ~0.0264
(A(8,4)) |0.0313 0.0340 0.0314 0.0085 0.0059 0.0058
B./MHz 1733.86 1732.15 1737.62 -24.84 -19.37 -23.13
By/MHz 1667.92 1665.89 1665.26 -2.35 -2.98 -0.32
BZ/MHZ 844.45 84193 843.12 -6.80 -5.61 —4.28
Name In-plane (II;) Bend [e = 0,7 = 1] (B2)
Energy/cm™! - -272.309 -272.471
u,-._o/cm"1 37.196 35.405 36.505 -3.785 —-2.685 -1.994
(Py (cos 0)) -0.001 -0.0348 -0.0256 -0.0318 -0.0225 0.002
(A(8,¢)) | 0340 03576 0.3540 0.0135 0.0099 -0.004
B,/MHz 1683.61 1735.24 1735.92 -9.74 —9.06 -61.37
B, /MHz 1682.42 1682.17 1681.92 -3.87 —4.12 ~-3.62
B,/MHz 826.70 845.82  845.90 -3.40 -3.32 -22.52
Intensity;. ¢ >3 5.178 4.904
Name Parallel (¥) Bend [e = 0,77 = 0] (4;)
Energy/cm™! - -268.803 -269.152
u,-‘_o/cm_1 39.555 38.911  39.824 -2.414 -1.501 -1.770
(Py(cos@)) | 0.291 0.2919 0.2717 0.0167 -0.0036 0.016
(A(8,9)) 0.062  0.0565 0.0594 -0.0026 0.0002 0.003
B./MHz 1730.70 1743.07 1745.03 -10.65 -8.68 —23.02
By/MHz 1720.89 1718.20 1739.02 —48.39 —-27.58 -45.70
B,/MHz 883.04 854.84 860.89 -15.63 -9.59 12.57
Intensity;.¢ 1.0 See Note 3.
Name Out-of-plane (II.) Bend [e = 1,7 = 1] (B;)
Energy/cm™! - -263.745 -264.161
1/.-.__0/cm_1 45.203 43.968 44.814 -2.574 ~-1.728 -1.339
(P (cos 6)) | -0.025 -0.0525 -0.0431 -0.0301 -0.0207 -0.003
(A(O, qS)) -0.295 -0.3245 -0.3231 —-0.0048 -0.0033 0.025
B,/MHz 1774. 1736.44 1738.40 -13.50 -11.54 24.5
By/MHz 17562. 1700.54 1700.20 -4.98 -5.32 46.5
B,/MHz 864.6 851.44  851.85 -4.77 -4.36 -1.6
Intensity;. ¢ >3 4,394
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liable indicators. Again (P) is rather too small to draw many conclusions and, like the

in-plane-bend, (A) shifts the wrong way by a small degree.

In conclusion, it is clear that the Model # 1 three-body potential is an over-estimate
of three-body effects (manifested through the frequency errors) as well as containing
some imprecision of angular form (manifested through contrary shifts of the expectation
values). An examination of the pertﬁrbations due to individual components of the Model
# 1 three-body potential suggests that reducing the overlap-quadrupole will reduce the
experiment-theory discrepancies. Since V_]ansen, Vo—defu, Vo—deto and V4 were summed
and then matched to the ab-initio data, it is not sensible to tamper with one component
alone. Instead I choose to generate an alternative model (Model # 2) by retaining
the match with the ab-initio data as far as possible by keeping Vphpp and Vg4 the same,
choosing the Arz parameters for 1735,,8,,, (Arg and Ar,HCI are isoelectronic) and adjusting
the value of Bo_g4er to fit the potential, concentrating on the region of the potential
minimum.

The Model # 2 potential is identical to the Model # 1 potential advanced in the
chapter on the physics of three-body forces, except: PBeo—_def = 1.000A‘1, Biansen =
1.31A7Y, Stansen = 7.5 X 105cm ™A and 6japsen = 0.15A. As before, the sum Vyangen +
Vo —detp+ Vo—aeto + Vuq correlates with the sum AESCF  AE(), It is found that at close
range Model #2 significantly under-estimates the ab-initio data; the breakdown of Model
#2 appears in table 51, with a comparison with the unpublished results of Chalasinski
et al. [79]. The close-range breakdown is not very surprising; the SCF results presented
in the chapter on three-body potentials show that the skimpl,e induced-quadrupole model
is poor at short range. This is not a problem in the: calculations éf single-quantum
modes which I present here, since the: poorly modelled region is hardiy sampled by the
wavefunctions. '

Having advanced an alternative model for the ArZHCl three-body potentxa.l it can
be tested a.ga.mst experxment by exarmmng the results of ca.lcula.tlon MOD2 Applying
the same analysis as was used forr‘the MOD1 results it can be seen that the Model
#2 performs much better on the comparison of frequencies; and generally better for the

expecfation va.lﬁes,; only the value of B, for the pérallel bend gets worse. In view of
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Table 51. Breakdown of Non-dispersive Contributions to the Revised Model Three-body
Potential for Ar,HCI (cos x =0, ¢ = 0).

R/A p/A  cos8 |Viansen Vo-dety Vo—deto Vaa X(mede)] AESCF L AE(?)
3.640 3.175 1.0 ~-7.224 7414 12.840 3.847 16.877 28.83
3.605 3.332 1.0 -3.696 5.079 8.882 3.2904 13.658 20.04
3.472 3.861 1.0 -0.543 1.179 2.140 1996 4.771 5.39
3.290 4.458 1.0 -0.260 0.163 0.312 1.150 1.364 1.44
3.083 5.021 1.0 -0.154 0.019 0.038 0.672 0.575 0.711
2,795 b5.664 1.0 -0.057 0.001 0.003 0.342 0.289 0.42
2.869 b5.664 -1.0 -0.016 -0.001 0.002 0.020 0.006 0.12
3.157 5.021 -1.0 -0.026 -0.017 0.034 0.019 0.009 0.21
3.546 3.861 -1.0 -0.169 -1.083 1.926 0.022 0.695 0.59
3.5009 3.861 0.984808 ( —-0.479 1.123 1.945 1.687 4.275 4.80
3.5009 3.861 0.939693 | -0.466 1.071 1.633 1.124 3.361 3.26
3.5009 3.861 0.866025{ —0.446 0.987 1.155 0.468 2.164 1.47
3.5009 3.861 0.766044 | -0.420 0.873 0.569 -0.048 0.974 0.00
3.5009 3.861 0.642788| -0.392 0.733 -0.055 -0.314 -0.027 -0.94

the greater difference between the value of Bg_ger derived from SCF calculations of the
overlap-quadrupole and the Model # 2 value, and of the obvious importance of this term
in the three-body interactions, it is likely that a more refined description of the overlap
field is required, possibly combined with a consideration of the HCl multipoles up to

hexadecapole.

Calculations on the currently unobserved triplet of triatom-like modes are listed
for reference in table 52; the x bend is probably experimentally observable and would
probably assist in understanding possible Coriolis mixing of double quantum states with
the out-of-plane bend. Inclusion of either the Model # 1 or # 2 three-body terms gives
a large increase in the predicted intensity of the breathing mode; this does not reflect a
reduction in the intensity of the parallel bend, which it is measured relative to, since the
x bend and wagging stretch are little changed. The increase in bx;eathing mode intensity
is most likely due to increased mixing between it and the parallel bend, which was noted

in a previous section; the energy difference of these two states, after mixing, decreases
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Table 52. Ar,HCl Model Three-body Results-for Which No Experimental Data Exists.

MOD1 MOD2 | MODI-TWOO MOD2-Twoﬂ
Name Wagging Stretch [e = 0,7 = 0] (4;)
‘Energy/cm~! |-283.851 -284.941 |
Vieo/cm™! | 23.862  24.035 -1.086 -0.913
(Py(cos@)) | 0.3983  0.4083 -0.0314 -0.0215
(A(8,4)) | 0.0349  0.0327 0.0069 0.0047
B./MHz | 1667.70 1669.96 ~11.49 -9.23
B,/MHz | 1693.07 1693.65 ~7.04 -6.45
B,/MHz | 825.79  826.53 -4.89 -4.15
Intensity;o | 0.008  0.008
Name x Bend [e = 0,7 = 1] (B3)
Energy/cm™! |[-282.537 -283.623
Vieo/cm™! | 25176  25.353 -1.100 -0.923
(Py(cos8)) | 0.3818  0.3957 -0.0412 -0.0273
(A(8,4)) | 0.0458  0.0411 0.0115 0.0069
B./MHz | 1767.06 1771.72 -21.17 -16.51
B,/MHz | 1611.07 1609.62 -2.18 -3.62
B./MHz | 828.82 829.51 -5.73 -5.04
Intensity;o | 0.315  0.251
Name Breathing Stretch [e = 0,1 = 0] (4,)
Energy/cm™! | -273.033 —273.818]
Vieofem™ | 34.681 35157 | -1.527 -1.050
(Py(cos@)) | 0.3178  0.3530 -0.0806 -0.0455
(A(6,¢)) | 0.0492 0.0404 |  0.0190 | 0:0102
7 B,/MHz |172806 173023 | -14:84 -12.68
B,/MHz |1657.20 1637.497  28.32 8.62
| B./MHz | 83661 83175 | 420 -0.67
|intensityso o | 0578 0103 |

upon addition of eithier three‘body model.
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9.6 Preliminary calculations on ArHF.

Using the same method as for Arp HCI, calculations were performed on Ar,HF with
the HF in v = 0 (denoted TWOFO) and v = 1 (denoted TWOF1).

The basis set was generated using the same procedure as for calculation TWOO,
using the H6(4,3,2) and HFD-C potentials for Ar,HF for the determination of T and
® as well as in the Hamiltonian. No convergence testing was performed, so these are
preliminary calculations. The only differences between the basis specification for TWOO0
and TWOFO, or TWOF1, are that the potential used to generate T and ® was the
v = 0 surface and the DGB centres were evenly spaced on the range (2.200A,4.200A).

The DGB range was chosen on the basis of an inspection of the potential.

The results appear in tables 53 and 54, with a selection of wavefunction plots provided
in appendix F. Despite the larger rotational constant of HF, compared with HCI, the
potential energy is more anisotropic in 8. This results in rather similar amplitude of 8
motion. The smaller size of the HF is apparent from a noticeably larger amplitude in
cos x motion. Plots of the x bend on a cos8 vs. cosx cut, to be found in appendices E
and F illustrate these two points. The similarity of the anisotropy/rotational constant
ratio between the HF and HCI cases is apparent in the spread of wavefunctions in ¢ also;
a similar pattern in the expectation values (P,) and (A) is also seen in both Ar,HCl and
Ar,HF. The greater anisotropy of potential energy with 8 is, perhaps also, the reason for

the much greater observed couping of x and 8 motions in the in-plane bend.

Table 53. Preliminary results for Ar,HF for v = 0,1 - ground state and HF bending states.

TWOF0 TWOF1 TWOF0 TWOF0 TWOF1
Name Ground State In-plane (II;) Bend | Out-of-plane (II;) Bend
Energy/cm ™| -284.592 —298.809 -220.498 ~199.373  —206.206
Vieo/cm™? 64.093 85.218 92.603
(Pz(cos 0)) 0.3771 0.4078 -0.0253 —0.0955 -0.0764
(A(8,4)) | 0.05620 0.0556 0.3530 -0.3379 -0.3271
B,/MHz 1786.25 1790.75 1761.25 1770.80 1771.77
By/MHz 3575.17 3574.52 3604.67 . | 3525.65 3526.66
B,/MHz 1172.65 1174.99 1161.41 1158.44 11569.32
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Table 54. Preliminary results for Ar,HF for v = 0,1 - triatom-like modes.

TWOF0 TWOF1 TWOF0 TWOFO

Name Breathing Stretch | Wagging Stretch| x Bend
Energy/cm™!| ~242.830 ~255.693 -256.666 —253.690‘

Vieo/ecm™! | 41.761 43.116 27.926 30.902
(P2(cos8)) | 0.3451 0.3769 0.3654 0.3507
(A(8,8)) | 0.0524 0.0561 0.0555 0.0563

B, /MHz 1806.71 1811.35 1738.99 1852.17
B,/MHz 3336.10 3340.58 3637.33 3328.68
B,/MHz 1139.51 1141.99 1148.87 1145.75

Some experimental data for Ar,HF is already available, and some spectra for v = 1
have been obtained, but not assigned. Microwave spectroscopy was used by the Gutowsky
group [22]to characterise the ground state. The values they obtained values for the
rotational constants, 4 = B, = 3576.51 MHz, B = B, = 1739.14 MHz and C = B, =
1161.05 MHz, support the theoretical values; the errors are similar to the AroHCl two-

body case.

The HF vibrational red-shift in Ar,HCl has also been studied [26]For Ar,HF they
observe a red-shift of 14.827 cm™!, which compares favourably with the theoretical value

of 14.22 cm™!

The calculated values given here, despite their preliminary nature, provide a base
upon which assignment of spectra can be approached. The parallel bend for HF in v = 0
and v = 1 is very close to at least one other state of the same symmetry, and is believed
to lie at about —216 cm™! for v = 1. Computational difficulties, arising from a method
of finding eigensolutions based on iterations from an initial energy guess, have hindered
calculations on both the parallel and ip-plane bends. The large energies of the HF bending
states, compared to Ar,HCI, is likely to cause greater unaccounted-for mixing due to a

greater density of states.
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10: Conclusions.

An account of an efficient method for calculating the lower bound states of van der
Waals trimers, with up to five degrees of freedom, has been described in the preceding
chapters. This method has been successfully applied to Arg and Ar,HCI in a study
of some two- and three-body potential functions and some new information has been
produced. The main conclusions were:

o The most important three-body effects in atom-atom-diatom systems can be cast in

four physically-based mathematical forms. The four terms described arose from:
1. dispersion effects consisting of triple-dipole and higher order terms,

2. the interaction between dipoles induced on the argon atoms by HX permanent
multipoles,

3. orbital deformation due to exchange and overlap repulsion,

and
4. the interaction of HX permanent multipoles with the electrostatic field which

results from the overlap effects of the two argon atoms.

¢ A damped sum of triple-dipole and dipole-dipole-quadrupole dispersion terms, using
established coefficients, reproduced ab-initio calculations of three-body dispersion in
Ar;. The model proposed for the three-body exchange and overlap effects (Jansen)
in Ars adequately reproduced ab-initio calculations, although exhibited some differ-
ences, especially for non-equilateral geometries. The coefficients used were somewhat
different to those previously suggested, however. |

o The calculated far infrared dipole of Ars, approximately 7 x 103D, is believed to be
too small to be observed using current far infra-red spectroscopic methods.

e Two realistic argon pair potentials were examined, the HFD-C and HFD-B2 poten-
tials. The changes in frequencies in Arg between using these -two potentials were an
order of magnitude smaller than obtained on inclusion of the examined three-body

terms. A Lennard-Jones pair potential gave very different results to both the HFD-C
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and HFD-B2 calculations, as expected from its unrealistic shape.

e Three completely independent methods were used in the present work on Arj, all of

which mutually agreed. Discrepancies with previous calculations were found:

1. The results of Horn et al. agree qualitatively with my calculations, but show
physically degenerate states with energy differences of up to 400 times their claimed
convergence. Their ground state is also about 0.1 ém“l‘ lower than all of the other
calculations, which should not occur for a variational calculation. The anomalous
ground state energy and large discrepancy in the energies of physically degenerate

states suggests a programming error of some nature.

2. The results of Leitner et al. are qualitatively different to the others; there
is agreement between their results and mine for A; states, but there seems to be
no agreement between E states, with apparently spurious eigenvalues present, also
implying a programming error of some kind.

e In Arjs, the triple-dipole dispersion energy is the most important three-body term,
measured by the change in frequencies, as expected. In contrast, the next-higher
dispersion term, the dipole-dipole-quadrupole term, has roughly 10% as much effect.
The exchange and overlap (Jansen) term is almost as important as the triple-dipole
term in some states, and should not be neglected without good reason in any de-

scription of three-body forces in Ars.

o For Ar,HCI, variation of model parameters gave an approximate fit to ab-initio data,
but left noticeable discrepancies, although the literature value for the triple-dipole
dispersion coefficient was half the size required to reproduce the ab-initio dispei'éion
effects.

s Calculations were performed with the older, H6(3), ArHCI potential and the more
recent H6(4,3,0) potential. The refinements incorporated in the H6(4,3,0) were found
to have significant effects on the bound states.

o The diﬁ'erencé between expériment and theory, using a Ra.irWise—additive Ar,HCl
potential indicated three-body effects on thevvibrati(m'a.l transition energies of about

1 : - -

1.5 cm” .
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The Axilrod-Teller triple-dipole term is a poor approximation to the Ar,HX triple-

dipole term, which takes into account the anisotropic polarisability of the HX molec-
ule.

Damping of three-body dispersion is not important in the states calculated.

The dominant three-body effects are the triple-dipole term or the overlap-induced
quadrupole term; which is the most important differs between vibrational states.
The importance of the effects arising from the overlap-induced quadrupole marks
this part of the model for refinement; the overlap-induced field was rather crudely
modelled and improvements in the HCl multipole arrangement are possible.
Perturbation calculations suggest a coupling between the breathing stretch and the
parallel bend in Ar,HCl, which was increased by the model three-body potentials
used, but almost absent in Ar,DCI.

A three-body potential matched to ab-initio calculations for Ar,HCl (Model # 1)
showed changes in the frequencies in the correct direction, but over-estimated the
discrepancy between two-body calculations and experiment.

A modified three-body potential (Model # 2), which also matches the ab-initio data
to a large extent, was found to give broad agreement between experiment and theory.
The remaining discrepancies are believed to be due to inadequacies in the model used,
rather than serious physical flaws. A theoretical consideration of Coriolis mixing was
found to be necessary for a more precise analysis of the intermolecular potential.

A red-shift of 2.83 cm™? between v = 0 and v = 1- is predicted fqr Ar,HCl. The
experimental determination of this parameter is feasible.

A red-shift of 14.827 cm™! between v = 0 and v = 1 is observed for Ar,HF, which

compares favourably with the theoretical value of 14.22 cm™2.

10: Conclusions.
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Fig. 1 HFD-C Pairwise Additive Cut on R = 3.2554A.
Fig. 2 HFD-C Pairwise Additive Cut on p = 3.759A.

.2 Fig. 3 HFD-C Pairwise Additive Cut on cos y = 0.
Fig. 4 Angular Features of Triple Dipole Surface for p = 3.759A

(v123 = 3.786 x 105A9cm‘1).

Fig. 5 Triple Dipole Surface for R = 3.2554
(V123 = 3.786 x 10°A°cm~1).
Fig. 6 Triple Dipole Surface for p = 3.7594
(V123 = 3.786 x 1054°cm™1).

Fig. 7 Triple Dipole Surface for cosxy =0
(v123 = 3.786 x 105A9cm‘1).

Fig. 8 Angular Features of Dipole-dipole-quadrupole Surface for p = 3.7594

(28, = 1.352 x 1054 1em™).

Fig. 9 Dipole-dipole-quadrupole Surface for R = 3.255A
(Z$3) = 1.352 x 10°A"1em ™).

Fig. 10 Dipole-dipole-quadrupole Surface for p = 3.7594

(253 = 1.352 x 1054 Lem ™).

Fig. 11 Dipole-dipole-quadrupole Surface for cos y = 0
(253, = 1.352 x 10°A " Lem™).

Fig. 12 Angular Features of Jansen Term for p = 3.7594
(Syansen = 4.3 x 10Aem ™, 8 = 1.2384 7).

Fig. 13 Jansen Term for R = 3.255A
(Syansen = 4.3 x 1054cm™ ", 8 = 1.2384 7).

Fig. 14 Jansen Term for p = 3.759A
(Stansen = 4.3 x 105Acm ™, 8 = 1.23471).

Fig. 15 Jansen Term for cosx =0
(Stansen = 4.3 x 10%Acm™, 8 = 1.23471).
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Appendix B— Ar,HCI Potential Plots.

All cuts have fixed parameters according to R = 3.45A, p = 3.824, cosx = 0, cos§ = 1 and
¢ =0.

p. 1 Fig. 1. H6(4,3,0) v = 0 Potential for ArHC] Dimer.

p. 1 Fig. 2. HFD-C + H6(4,3,0) v = 0 Pairwise Additive Cut for R vs. p.

p. 2 Fig. 3. HFD-C + H6(4,3,0) v = 0 Pairwise Additive Cut for R vs. cosé.
p. 2 Fig. 4. HFD-C + H6(4,3,0) v = 0 Pairwise Additive Cut for p vs. cos .
p. 3 Fig. 5. HFD-C + H6(4,3,0) v = 0 Pairwise Additive Cut for R vs. cosx.
p. 3 Fig. 6. HFD-C + H6(4,3,0) v = 0 Pairwise Additive Cut for cos 8 vs. ¢.
p- 4 Fig. 7. Angular Features of Triple Dipole Surface for R vs. p

(v123 = 5.4155 x 10°A°cm™—1).

p- 4 Fig. 8. Triple Dipole Surface for R vs. cos§
(vi23 = 5.4155 x 105A°cm™1).

p. 5 Fig. 9. Axilrod-Teller Surface for R vs. p
(vi23 = 5.4155 x 1054°cm™1).

p- 5 Fig. 10. Triple Dipole Surface for R vs. p
(v125 = 5.4155 x 1054 °cm™1).

p.- 6 Fig. 11. Axilrod-Teller Surface for p vs. cos x
(vi2s = 5.4155 x 1054°cm™1).

p. 6 Fig. 12. Triple Dipole Surface for p vs. cosx
(123 = 5.4155 x 1054 cm1).

p. 7 Fig. 13. Triple Dipole Surface for cos 8 vs. ¢
(V123 = 5.4155 x 105A9CII1—1).

p. 7 Fig. 14. Angular Features of Jansen Term for R vs. p
(Siansen = 2.0 X 105Acm ™, 8 = 1.24A 7", 61ansen = 0.154).

p. 8 Fig. 15. Jansen Term for R vs. p
(SJangen = 2-0 X 105Acm—1,ﬂ = 1-24A—1,6Ja.nsen = 0.15A)-

p- 8 Flg 16. Jansen Term for R vs. cos 8
(Stansen = 2.0 X 1058cm ™", 8 = 1.248 77, 63ansen = 0.154).

p. 9 Fig. 17. Jansen Term for p vs. cosx
(Sansen = 2.0 x 105Acm ™", 8 = 1.244 7, 63ancen = 0.154).

p. 9 Fig. 18. Jansen Term for cos§ vs. ¢
(Sansen = 2.0 X 105Acm ™", 8 = 1.24A 7", §7aneen = 0.154).

p. 10 Fig. 19. Induced Dipole Interaction for R vs. p
(up to hexadecapole on HCl inducing dipoles on Ar).
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Fig. 20. Induced Dipole Interaction for R vs. p
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Fig. 21. Induced Dipole Interaction for R vs. cos 8
(up to hexadecapole on HCI inducing dipoles on Ar).

Fig. 22. Induced Dipole Interaction for R vs. cos 8
(only HCI dipole inducing dipoles on Ar).

Fig. 23. Induced Dipole Interaction for p vs. cosy
(up to hexadecapole on HCI inducing dipoles on Ar).

Fig. 24. Induced Dipole Interaction for p vs. cos x
(only HCI dipole inducing dipoles on Ar).

Fig. 25. Induced Dipole Interaction for cos8 vs. ¢
(up to hexadecapole on HCI inducing dipoles on Ar).

Fig. 26. Induced Dipole Interaction for cos8 vs. ¢
(only HCI dipole inducing dipoles on Ar).

Fig. 27. Overlap Induced Quadrupole — HX Dipole for R vs. p
-1
(Bo-def = 0.9654 ).

Fig. 28. Overlap Induced Quadrupole - HX Quadrupole for R vs. p
(Bo—det = 0.965A_1).

Fig. 29. Overlap Induced Quadrupole - HX Dipole for R vs. cos8
-1
(Bo—-det = 0.96547 ).

Fig. 30. Overlap Induced Quadrupole — HX Quadpole for R vs. cos§
(Bo—det = 0.965A—1).

Fig. 31. Overlap Induced Quadrupole - HX Dipole for p vs. cos x
(Bo—det = 0.9658 7).

Fig. 32. Overlap Induced Quadrupole - HX Quadrupole for p vs. cos x
-1
(Bo—det = 0.96547 ).

Fig. 33. Overlap Induced Quadrupole - HX Dlpole for cos @ vs. ¢
(Bo—get = 0. 9658 ).

Fig. 34. Overlap Induced Quadrupole - HX Quadpole for cos§ vs. ¢
(Bo—det = 0.965871).

Fig. 35. Sum of Three Bbdy Terms Above for R vs. p.

Fig. 36. Sum of Three Body Terms Above for R vs. cosé.
Fig. 37. Sum of Three Body Terms Above for p vs. cos x.
Fig. 38. Sum of Three Body Terms Above for cos 8 vs. ¢.
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Fig. 14. Angular Features of Jansen Term for R vs. p
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Fig. 19. Induced Dipole Interaction for R vs. p

(up to hexadecapole on HCI inducing dipoles on Ar).
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Fig. 20. Induced Dipole Interaction for R vs. P
(only HCI dipole inducing dipoles on Ar).
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Fig. 22. Induced Dipole Interaction for R vs. cos#é
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Fig. 28. Overlap Induced Quadrupole - HX Quadrupole for R vs. p
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Appendix C— A_rzEIF Potential Plots.

All cuts have fixed parameters according to R = 3.944, p = 3.684, cosx = 0, cos§ = 1 and
¢ =0.

p. 1 Fig. 1. H6(4,3,2) v = 0 Potential for ArHF Dimer.

p. 1 Fig. 2. HFD-C + H6(4,3,2) v = 0 Pairwise Additive Cut for R vs. p.

p. 2 Fig. 3. HFD-C + H6(4,3,2) v = 0 Pairwise Additive Cut for R vs. cos¥.
p- 2 Fig. 4. HFD-C + H6(4,3,2) v = 0 Pairwise Additive Cut for p vs. cosx.
p. 3 Fig. 5. HFD-C + H6(4,3,2) v = 0 Pairwise Additive Cut for R vs. cosy.
p. 3 Fig. 6. HFD-C + H6(4,3,2) v = 0 Pairwise Additive Cut for cos 8 vs. ¢.
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Appendix D—- Ar; Wavefunction Plots.

. ¥2_,. for cosx = 0.0.
w2_ . for R = 3.4A.

Fig.
Fig.
Fig. ¥2_, for cosx = 0.0.
w2 _,, for cosy = 0.1.
w2_,, for R = 3.3A.

Fig.
Fig.
¥2_,, for cosx = 0.0.
w2_,, for R =3.3A.

Fig.
Fig.
w2_, for cos x = 0.0.
w2_, for R = 3.54.

. ¥2_. for R=3.14A.

Fig.

S T L

Fig.

[y
o

Fig.

[y
[y

. W2 _.. for cosy = 0.12.
. 02 for R = 3.4A.

n=>5a

Fig.

Pk
[ 8]

Fig.

jd
(2]

. ¥2_., for cosx = 0.1.
. ¥2_,, for R =3.35A.

Fig.

Pk
1Y

Fig.

-
W

. W2_. for cosx = 0.14.
. ¥2_ for R = 3.4A.

Fig.

pd
(=]

Fig.

Pk
-q

. W2_. for cos x = 0.0.
. ¥2_. for R = 3.2A.

n=6

. The Excited State at —190.9cm™?! for cosx = 0.0.

Fig.

TP P YT P VDD DT VDOV VT VT
W G 00 3 I O O Ot Ot b oA W W N N e

Ne]
=
o
et
[#:4]

p. 10 Fig.

oy
©

Appendix D- Arg Wavefunction Plots.




p/A
3.0 3.5 4.0 4.5 5.0
4.5111111|1|ln|«||l|n|14.5
4.0 - 4.0
] B <
N 3.5 —3.5
oz — |
3.0 -3.0
2.5—-II]I]IIII|IIII|IIII—2.5
3.0 3.5 4.0 4.5 5.0
p/A
Fig. 1. ¥2_,  for cosy = 0.0.
Cos(x)
—-0.25 0.0 0.25
5.0 R N A N DO N N I M [ I 5.0
] -
4_5_—_ j4'5
g _
— ~C
-~ - .
}_4'0_: B 4.0 }.
3.5.: :-3.5
__{ —
30+ T 1T T T T T 7 3.0
—-0.25 0.0 0.25
Cos(x)

Fig. 2. ¥2_, for R = 3.4A.

Appendix D- Ar; Wavefunction Plots.

D1



D2

p/A

3.5 4.0 4.5 5.0

3.0

4.0 4.5 5.0

3.5

3.0

p/A

o for cosx = 0.0.

Fig. 3. ¥2

p/A

3.5 4.0 4.5 5.0
[ 11y

[ O

3.0

4.5

r—-

1 1

1

1

\n
4

®)

4

T T T T T TrTT T T T

un

M

Y/Y

3.5

3.0

= 0.1.

3o for cosx

2
n=

Fig. 4. ¥

Appendix D- Ars Wavefunction Plots.



Cos(x)

0.0 0.25

-0.25

1)
4
_

Y/

Q
4

n
3 .

IS I

Q
3

Q
1o

T T T T

)
4

Q

4
v/d

I

T
\
M

T

l

Q
3

0.0 0.25

Cos(x)

—-0.25

—3q for R = 3.34.

2
n

Fig. 5. ¥

p/A

3.0

4.5
P

3.5 4.0

3.0

Y/

10
3

Q
3

]|

|

T

T

i
4

T T T T T T T T T T T T 76T 171

Q
4

1
3

Y/¥

Q
M

n
o

3.0

3.5 4.0 4.5

3.0

Fig. 6. ¥2_,, for cosx = 0.0.

Appendix D— Ars Wavefunction Plots.



4

Cos(x)
—-0.25 0.0 - 0.25

5.0 by e b b 5.0
4.5- L 4.5

i :

X .

. 4.0 —4.0 °

- — Q
3.5- 3.5
3.0 | T T T T T T [ T T T T ] 71 a 3.0

—-0.25 0.0 0.25
Fig. 7. ¥2_,, for R = 3.3A.
p/A

3.0 3.5 4.0 4.5 5.0
4.5 I O I N T T I A Y O O B B R A A 4.5

. -
4.0

. 3.54]

3.0
2.5~IIII]IIII]FII‘I|IIII-2.5

3.0 3.5 4.0 4.5 3.0

Fig. 8. ¥2_, for cosx = 0.0.

n=4

Appendix D- Ars Wavefunction Plots.




Cos(x)

v/d

o 0 o n o

un <+ <t M M

I I I O I I R O NS R O A B B

To lim -

N - L

o | |

=g -

S L

-] -

u |

n 4 -
N _

O —
_l -
___~4—_ﬂﬂ~__47_____

o 10 o 10 o
n < < M M
Y/d

0.0 0.25

—-0.25

Fig. 9. ¥2_, for R = 3.5A.

Cos(x)

0.25

0.0

-0.25

Y/d
Q 0 o N Q
Tg) < < M ™M
AN EEE RN NN
- -
y B
- =
i i
] i
] -
— -
] -
TT T T T T T T T T T T T T T 71
o 0 o 10 o
To < N M M

Y/

0.0 0.25

Cos(x)

—-0.25

5o for R = 3.1A.

2
n

Fig. 10. ¥

Appendix D- Ary Wavefunction Plots.



p/A

D6

Y/d
To) Q n Q )
N To} ~ < M
Ly o I S I R B A I R A A
.II5 —
N ol
o N
| O _
4
- -
- ~
"o < 7 2.
|4p o ©
. O ]
= o _
” S .
|0 [ Tog
B = N
- 8 o
] [
» 4
- o XS -1
B I e M _m L N I O B
o To) e \n o F Q ) O 1
< M M o~ > n < < M
Y/¥ s Y/d
8P
<]

5q for R = 3.4A.

2
n

Fig. 12. ¢



p/A

5.0

4.5

4.0

3.5

3.0

40 45 50

p/A

|
3.5

3.0

Fig. 13. ¥2_,, for cosx = 0.1.

Cos(x)

Fig. 14. ¥2_,, for R = 3.35A.

Appendix D- Ar; Wavefunction Plots.



D8

p/A
3.0 3.5 4.0 4.5 2.0
4.5 [ R A A 4.5
4.0
N 3.5-
3.0-
2.5 |1|||11|||11|1||1r1—2.5
3.0 3.5 4.0 4.5 5.0
p/A
Fig. 15. ¥2_, for cos x = 0.14.
Cos(x)
—-0.25 0.0 0.25
5.0 cr b by 5.0
’ ,
4.5 4.5
4.0 —4.0 N
3.5- 3.5
3.0—|l||||||llll|l|3-o
-0.25 0.0 0.25
Cos(x)

Fig. 16. ¥2_, for R = 3.4A.

Appendix D- Ar; Wavefunction Plots.




D9

p/A
3.0 3.5 4.0 4.5 2.0
45 1lll|lllllllLlJlll4‘5
4.0-
< _ -
\3.5j
]
3.0t
2.5—|I|I|ﬁrl|—FIIITIIII_2.5
3.0 3.5 4.0 4.5 5.0
p/A
Fig. 17. ¥2_, for cosx = 0.0.
Cos(x)
-0.25 0.0 0.25
5.0 I I N |l|4||l|15.0
4.5- 4.5
< ] e N ~
| / — ~N
é4.0~ ( L4O 3
i . B
3.5- -3.5
N N
3.0+ 1T+ T+ 3.0
—0.25 0.0 0.25
Cos(x)

Fig. 18. ¥2_, for R = 3.2A.

Appendix D- Ar; Wavefunction Plots.



D10

p/A

45

-4.25

325 35 375 4.0 425 45 4,75 5.0
N A A S A

CEDESTE TS SN UVEN SN GRS ST Y I B S U AN T I

30

T T T rryr—r-rr

LENLAE B S sun sun aun g

425-4

3.7%4

2734

4.0 423 43 473

/A

A7%

Fig. 19. The Excited State at —190.9cm™! for cos x = 0.0.

Appendix D- Ar; Wavefunction Plots.



Appendix E- Ar,H/DCl Wavefunction Cuts.

All plots in this appendix are of the square of the wavefunction, without any R? volume
element weighting, and are generated using the H6(4,3,0) and HFD-C potential surfaces. All
of the cuts are made for fixed coordinates of R = 3.5A, p= 3.824, cosx = 0, cos§ =1 and
¢ = 0, unless the excitation is out of plane, when ¢ = 7/2.
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Appendix F- Ar.HF Wavefunction Cuts.

All plots in this appendix are of the square of the wavefunction, without any R? volume
element weighting, with HF in its v = 0 state, and are generated using the H6(4,3,2) and
HFD-C potential surfaces. All of the cuts are made for fixed coordinates of R = 3.04,
p=3.70A, cosx =0, cosf =1 and ¢ = 0.
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