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ABSTRACT 

The Synthesis and Redox Properties of 

New 1,3-Dithiole Systems· 

by 

Malcolm Andrew Coffin, B.Sc. 

A thesis submitted for the degree of Doctor of Philosophy at the 

University of Durham 

(October 1992) 

The theory of conductivity in organic metals and a review of organic 1t-electron 

donors is introduced in Chapter One, outlining some of the many variations that have 

been made to the tetrathiafulvalene (fTF) molecule, the donor component in the first true 

organic metal. 

A range of new· alkylseleno-substituted ethanediylidene-2,2'-bis(1,3-dithiole) donors 

have been efficiently synthesised. These compounds form semi-conducting charge

transfer complexes with 7,7,8,8-tetracyano-p-quinodimethane (TCNQ). The synthesis, 

electrochemistry, X-ray crystal structure and magnetic properties are presented (Chapter 

Two). 

Various 1,3-dithiolium cations and 1,3-ditliiole anions have been used in the 

synthesis of compounds targeted as high-spin systems (Chapter Three). The theory of 

organic ferromagnetism is discussed, and various compounds with interesting magnetic 

and redox properties have been prepared. 

Chapter Four deals with the synthesis of a series of conjugated, multi-1,3-dithiole, 

multi-chalcogen, 1t-electron donors. These compounds are members of the dendralene 

family of hydrocarbons and the crystal structure of a tricyclic [3]-dendralene is 

presented. The formation of semi-conducting charge-transfer salts is also discussed. 

Multistage redox behaviour of a new anthraquinodimethane derivative of TTF has 

been observed (Chapter Five), and cyclic voltammetic data and X -ray crystal structures 

of such systems are presented. 
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CHAPTER ONE 

INTRODUCTION 



1.1 ORGANIC METALS 

The majority of organic materials are electrical insulators (room temperature 

conductivity, an= lQ-9-IQ-14 Sem-I ) and one of the most exciting and challenging 

areas of research for today's organic chemist is the development of new organic 

materials that have interesting electrical, magnetic and/or optical properties. The 

possibility that organic solids might exhibit the characteristics of a metal was suggested 

over seventy-five years agol,2, and research in the last two decades in particular has 

given rise to three classes of 'organic metals'. Of these three, which are charge-transfer 

(C-T) salts and ion-radical salts, organometallic species3 and conjugated polymers4, it is 

in the area of charge~transfer salts that this thesis will concentrate. 

1.2 IDSTORICAL PERSPECTIVE 

In 1954 the fiist conducting organic compound was discovered. This was an 

unstable perylene- bromine saltS reported by Japanese workers to have an= 1 Scm-1. 

However, it was not until after the synthesis by workers at DuPont of a new powerful 

electron accepter, tetracyanoquinodimethane (TCNQ) (1)6, that the early 1960's 

produced a flow of semi-conducting charge-transfer salts?. Complexes ofTCNQ with a 

wide range of 7t-electron donors and closed-shell cations produced C-T salts with 

conductivities in the range an= 1o-2- lQ-5 Scm-1, and quinolinium TCNQ was the best 

of the bunch at that time with an= 100 Scm-1. 

NC~CN 

NC~CN 
(1)-TCNQ (2)- TTF 

It was almost a decade later, however, before the first true 'organic metal' was 

synthesised This compound was a stable, crystalline, 1: 1 C-T complex8 formed from 

the donor tetrathiafulvalene (TTF) (2)9 and the acceptor TCNQ (1). The room 

2 



temperature conductivity of an= 500 Scm-1 rises to a maximum of a= lx104 Scm·l at 

59K, and it was the revelation of these metallic properties that was the founding stone 

for the growing science of organic conductors. To put these values of conductivity into 

context, the best insulators such as PTFE have room temperature conductivities in the 

range IQ-16_ IQ-20 Scm·l, whereas semiconductors such as silicon have conductivities 

of about IQ-2_ IQ-8 Scm· I, and metals such as copper and silver have conductivities that 

approach 106 Scm-1. 

1.3 PHYSICAL CONCEPTS 1o 

1.3.1 Charie-Transfer Complexes 

Such complexes have been studied in detail since the beginning of the centuryll. A 

stable charge-transfer complex is usually the result of the transfer of an electron from a 

donor to an acceptor molecule forming an ionic crystal where the donor and acceptor 

molecules stack alternately face to face within the crystal lattice of the complex. In such 

complexes that contain mixed donor-acceptor stacks there will always be filled HOMO's 

(highest occupied molecular orbitals) and empty LUMO's (lowest unoccupied molecular 

orbitals), regardless of charge transfer, resulting in an insulating C-T salt. Conducting 

C-T salts require the presence of highly ordered arrays of donor and acceptor molecules 

forming segregated stacks, with the transfer of electrons from the donor to the acceptor 

stack. In the case of a 1: 1 donor-acceptor complex there must be partial charge transfer 

from donor to acceptor, and in the case of non-stochiometric complexes complete charge 

transfer may also result in an organic metal (e.g. D+(TCNQ)2··). Both cases (Figure 

1.1) result in a partially filled HOMO and require the presence of thermodynamically 

stable radical ions. There is considerable 1t-electron overlap and delocalisation along 

these one-dimensional stacks and, consequently, the conductivity is anisotropic. Many 

organic metals are, therefore, termed 'one-dimensional' metals. The key to 

understanding why certain organic materials behave like metals lies in the basic concepts 

of band theory. 

3 
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Neutral 

A 

D 
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D 

Insulator 

Ionic 

A 

n+ 
A 

n+ 

Insulator 

A 

A 

A 

A 

Segregated stack 

1:2 D-A complex 

Metallic/Conductor 

Segregated stack 

1:1 D-A complex 

Metallic/Conductor 

Figtire 1.1 - Classification of C-T Complexes 

1.3.2 Band Theozy 22 

When a large number of atoms or molecules are brought together in a crystalline 

solid, the electronic states (the atomic and molecular orbitals) can mix so as to form 

bands (a continuum of energy states). A simple model of this behaviour is the formation 

of electronic bands from a stack ·of ethylene molecules (Figure 1 .2). On bringing 

together the two atomic p-orbitals of the adjacent carbon atoms a 7t-bonding and a 7t*

anti-bonding set of molecular orbitals are formed, the lower energy 7t-bonding level 

containing (and filled by) the two electrons from the two p-orbitals. The higher energy 

7t* level is empty. On bringing together two of these ethylene molecules in a stack, the 

energy levels are split once more, resulting in two 7t-bonding levels (molecular orbitals) 

and two 7t*-anti-bonding levels (molecular orbitals) of higher energy. Since there are 
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two electrons per bonding 1t orbital both of the new 1t levels are filled and the 1t* levels 

remain empty. 

n (ethylene) 

LUMO 
band 

HOMO 
band 

Figure 1.2 - Formation of electronic bands from a stack of ethylene molecules. 

The band width is given by the value 2Y and is approximately twice the value 

of the dimer splitting, Y. 

This stacking of molecules can be continued until we have n molecules stacked in a 

crystal, the 1t•bonding levels continually splitting into n levels (with infinitesimally 

different energies) and creating one band (the HOMO band), with the 1t*-anti-bonding 

levels also splitting into n levels creating another band (the LUMO band) of higher 

energy. The lower HOMO band is completely filled with 2n electrons and the higher 

LUMO band is empty. The width of the bands is determined by the extent to which the 

molecular orbitals overlap. However, the extensive interaction of molecular orbitals is 

not the only requirement to produce metallic properties. It is the occupancy of these 

energy bands that dictates the physical characteristics. The energy states that are near in 

energy to the highest occupied state within a band are readily accessible and can, 

therefore, influence the physical properties. They are termed the Fermi Level. 
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When the energy gap, E8, between the highest occupied band (the valence band, 

derived from the HOMO's of the molecules) and the lowest unoccupied band (the 

conduction band, derived from the LUMO's of the molecules) is large, electrons cannot 

be promoted from the valence band to the conduction band and the material is an 

insulator. As this gap decreases, thermal excitation of the electrons from the valence 

band to the conduction band becomes possible and the material is now an intrinsic 

semiconductor (Figure 1.3). 

E 

Eg 

(a) (b) (c) 

D 

• 

conductance 
band (empty) 

valence 
band (full) 

Er= Fermi Energy Level 

Eg =Energy gap between HOMO 
band and LUMO band 

Figure 1.3- Band structures of (a) a metal, (b) a semi-conductor, 

and (c) an insulator. 

When the gap between the bands becomes vanishingly small, the material behaves as a 

metal. In this case there is a partially fllled band in which it is possible for a large 

number of electrons to move easily into the infinitesimally higher energy states within 

the whole band. In charge-transfer complexes these states (at the Fermi Level) are 

derived from the HOMO's of the donor species and the LUMO's of the acceptor 

species. In semi-conductors the conductivity decreases as the temperature is lowered, 
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because there is less energy to promote electrons across the band gap Eg. In metals this 

energy gap, Eg, is unimportant because we already have partially filled bands. Here the 

temperature dependance of conductivity is governed by the mobility of the charge 

carriers and is thus dominated by the scattering of the conducting electrons by 

interactions with vibrations of the atomic lattice (phonons). As the temperature is 

lowered the lattice vibrations are of a lower amplitude and decreased frequency, no 

longer hindering the mobility of the electrons to such an extent and, therefore, the 

conductivity increases. 

From this description it is obvious that to form either a semi-metal or metal we need 

incompletely filled bands, which gives us the requirement for stable organic radicals. 

1.3.3 Conductivity in One-Dimensional Meta}s and the Peierls Distortion 

The band theory described above holds for organic and inorganic metals, and 

explains the conductivity of both three-dimensional metals and one-dimensional metals. 

However, the physics of a one-dimensional system can be dramatically different from 

that of a three-dimensional system. The behaviour of such organic systems was 

considered in the mid-1950's by Frohlich12 and Peier1sl3 who argued that at low 

temperature a quasi one-dimensional metal (e.g. TTF-TCNQ) could not sustain long 

range order but would be unstable with respect to lattice distortions (analogous to the 

well-known Jahn-Teller distortion). 

The degree of instability is determined by the nature of the partially filled bands. A 

half-filled band provides the simplest example (Figure 1.4). In this case each molecule 

in the stack is a radical ion and these unpaired spins provide an electronic driving force 

for spin pairing. When molecules dimerise in this way the half-filled conduction band is 

split into a fully occupied band of lower energy and an empty band of higher energy, 

with the concomitant creation of an energy gap between these bonding and anti-bonding 

levels. The size of this energy gap results in a transition from a metallic into a semi

conducting or insulating ground state. 
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Band 
gap, <Eg) 

Figure 1.4 - Band splitting: The effect of Peierls distortion on energy levels 

This is known as the Peierls distortion and it leads to a localisation of the previously 

conducting electrons and the formation of an associated charge-density wave (CDW) 

between the areas of high charge density and low charge density. Conductivity resulting 

from translation of the CDW is prevented by the potential energy gap Eg. Lattice defects 

and impurities can also lead to random electrostatic potentials that will tend to pin the 

CDW to the underlying lattice and favour the Peierls distortion. If a mechanism can be 

provided to free the CDW to act as a charge carrier then high conductivity and even 

superconductivity is possible. 

A far more detailed and comprehensive discussion of the theory of conductivity in 

organic metals can be found in various review articles14. 

1.4 TTF - TCNQ 

TIF-TCNQ was the forerunner of many hundreds of similar organic metals and it 

remains one of the most extensively studied. Both the donor and the acceptor molecules 

are planar molecules (of D2h symmetry), of similar size and with a conjugated x-

system. 

non-aromatic 

-e 

+e 

-e 
[!:H~P s s)J +e 

67t 77t 67t 67t 
aromatic non-aromatic aromatic aromatic 

Figure 1.5 - The redox behaviour of TIF 
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The radical species must be thermodynamically stable and/or kinetically stable. In the 

case of TTF-TCNQ this is achieved by much of the spin-density residing on 

heteroatoms. In the TIF molecules, oxidation to the radical cation produces a resonance 

stabilised 6x-electron structure, and further oxidation 'to the dication produces two 

linked 6x-electron moieties (Figure 1.5). TCNQ also has resonance stabilised radical 

anion and dianion states. In the TTF radical cation more than 50% of the spin resides on 

the sulphur atoms, and in the TCNQ radical anion approximately 25% of the spin 

resides on nitrogen atoms (Figure 1.6). 

N / 0·000 / 0·044 

/ 'c 0·061 ~CN 

NC~CN 
0·174 0·270 0·022 

Figure 1.6 - Spin distribution of TIF and TCNQ radicals 

The crystal structure of TIF-TCNQ15 consists of TIF and TCNQ molecules 

uniformally spaced along the b.-axis (the stacking axis) in interlocking, segregated 

stacks. The planes within which the molecules lie are tilted with respect to the stacking 

axis, the tilt of the donor molecules being in an opposite direction to the tilt of the 

acceptor molecules. This gives rise to the so-called 'herringbone structure' (Figure 

1.7)151. Within these segregated donor and acceptor columns, the molecules do not lie 

directly on top of one another. There is a lateral displacement so that the exocyclic 

carbon-carbon double bond of one molecule lies over the ring of the molecule adjacent to 

it in the stack: so-called 'ring over bond' overlap (Figure 1.8). 

This structure results in strong intra-stack interaction and electron delocalisation; and 

only weak inter-stack interactions. Thus, conductivity along the stacking axis is over 

500 times greater than that along the crystallographic Q. or Q. axes. The conductivity of 

TIF-TCNQ rises twenty-fold from 500 Scm-1 at 293K to >104 Scm-1 at 59K but on 

further cooling three successive phase transitions occur at 53, 47 and 38K (Figure 1.9) 
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leading eventually to an insulating state with three-dimensional order. This is due to 

Peierls distortions. 

Figure 1.7 - "Herringbone" stacking in crystals of TfF-TCNQ 

s s 
(>=<) s s 

NC~CN 

NCf\.d\CN 

Figure 1.8 - Ring-over-bond overlap in crystals of 1TF-TCNQ 
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Figure 1.9 - Conductivity of TTF-TCNQ as a function of temperature; 

. Inset: phase transitions obseiVed between 60 and 30K 

Infra-red spectroscopyl6 and diffuse X -ray scattering techniquesl7 have ascenained 

the degree of charge-transfer (p) from TTF to TCNQ to be 0.59 electrons per molecule. 

So, with both bands partially filled, both stacks contribute to the metallic conductivity. 
0 1\.-•, G\ ~·f (J t.>-1 .. 

The actual mechanism of conductivity is ~ cohjecture. Possible mechanisms 

involve a sliding charge density wavel8, or single particle conductivityl9, or perhaps a 

combination of both mechanisms20. 

The partial transfer of electrons is crucially imponant for this system to be an organic 

metal. Where p = 1 (e.g. TTF-Br21), <Jrt < lxlQ·ll Scm·l compared to TfF-Bro.71 (p = 

0.71), where CTrt = 200 Scm·l. The partial charge transfer in TTF-TCNQ results from 

the delicate balance of the ionisation potential of TTF with the electron affinity of the 

TCNQ. 
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1.5 THE DESIGN OF NEW CONDUCTING C-T COMPLEXES 

What makes TTF-TCNQ stand out over traditional complexes of donors and 

acceptors? The key features have been mentioned above and ;~important. In 1982 

Cowan and Kini published a set of design constraints for the preparation of good 

organic conductors22: 

1) Stable open-shell (free radical) species in order to form a partially filled band. 

2) Planar molecules with delocalised 7t-molecular orbitals so that effective overlap of 

HOMO and/or LUMO can occur. 

3) lnhomogenous charge and spin distribution to reduce the intramolecular 

Coulombic repulsion when like charged molecules are stacked. 

4) Segregated stacks of radical species- regardless of charge transfer, a mixed stack 

will always have a completely filled band. 

5) No periodic distortion which opens a gap at the Fermi level (uniform stacks). 

6) Little or no disorder (symmetrical radicals and/or radical anions and cations) -

disorder tends to produce a potential which localises the wave function. 

7) Molecular components of similar size (though this has since been demonstrated to 

be not always the case). 

8) Fractional charge (mixed-valence); by adjusting the charge, it is possible to 

minimise the on-site Coulombic repulsion, which should be small compared to the 

band width. 

9) Relatively strong interchain coupling to suppress phase transitions. 

1 0) Cation and/or anion nominally divalent ; unless the molecular components can 

support doubly charged species, only a correlated type of conductivity is possible. 

11) Polarisable species. 

It is really beyond our ability to induce molecules to pack within a crystal lattice in 

the desired manner, so it becomes a matter of tuning certain factors (i.e. those specified 

above) until a particular combination of structural modifications gives the desired 

properties of an organic metal. Considerable research effort has been expended in 
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synthesising new donors and acceptors, following these guidelines, and the last few 

years have resulted in a large increase in the number of organic compounds with high 

conductivity. Major advances are the stabilisation of the metallic state down to lower 

temperatures and the attainment of organic superconductivity. 

1.6 NEW ELECTRON DONORS 

A host of new TTF analogues exist, various synthetic routes to which are regularly 

updated23, and a brief overview will be given here. Synthetic chemists have given much 

attention to new donors containing the 1,3-dithiole ring system of TTF. The first 

modifications of the TTF molecule involved extending the a-bond framework, .for 

example tetramethyl-TTF (TMTTF)24 (3) and hexamethylene-TTF (HMTfF)25 (4), and 

extending the 1t-orbital system, e.g. di-benzo TTF (DBTTF)26 (5). 

(3) R=Me 
(4) R-R = (CH2h 
(5) R-R = (CH=CHh 

The effect of alkyl substituting the TfF was to lower the oxidation potential of the 

donor, relative to that of unsubstituted TTF. The TCNQ salt conductivities of (3) and (4). 

at room temperature are of the same order of magnitude as for TTF-TCNQ. However, 

the metal-insulator transition temperature <TM-I) is raised somewhat, due to a slight 

reduction of (already small) inter-stack interactions, increasing the one dimensionality. 

The 1t-extended system (DBTTF) shows an increased oxidation potential, as do TfF's 

bearing electron withdrawing groups, such as -CN and -CF323a. TCNQ salts of these 

donors tend to have conductivities several orders of magnitude less than TfF-TCNQ. 

Because it is known that an increase in dimensionality will help to suppress the 

Peierls distortion, work was directed towards extending the dimensionality. This can be 

encouraged in two ways; 
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1) by the use of additional polarisable heteroatoms in and around the donor 

framework. This can lead to an increase in intra-stack 7t-interactions and induce 

inter-stack interactions. 

2) by screening various inorganic counter ions for subsequent C-T salt formation. 

Thus, the sulphur atoms in TTF were replaced by selenium to produce 

tetraselenafulvalene (TSeF)27 (6), tetramethyl-TSeF (TMTSeF)28 (7), hexamethylene

TSeF (HMTSeF)29 (8) and dibenzo-TSeF (DBTSeF)30 (9). [For the synthesis of 

organic conductors containing selenium and tellurium see ref.22] 

(6) R =H 
(7) R =Me 
(8) R-R = (CH2h 
(9) R-R = (CH=CHh 

In general, the TCNQ complexes of the tetraselenafulvalenes do have an increased 

stabilisation of the metallic state relative to TIF-TCNQ. The d-orbitals of the selenium 

atoms increase the conductivity along the donor stacks compared to the acceptor stacks 

due to increased intra-stack interactions. For example, TSeF-TCNQ has a room 

temperature conductivity of an= 800 Scm-1 and the metallic state is stabilised down to 

40K31. In the case of HMTSeF-TCNQ32 an = 1500 Scm·l, and although the 

conductivity reaches a maximum on cooling down to 45-70K, the complex remains 

metallic down to lK. This demonstrates the beneficial effect of increasing the 

dimensionality, and the crystal structure reveals strong Se· · N contacts between donor 

and acceptor stacks. It should also be noted here that inorganic salts of TMTSeF 

provided the frrst generation of organic superconductors33 and these will briefly be 

mentioned later (Chapter 1.7.1). 

Tetratellurafulvalenes are significantly harder to synthesise. The first to be 

synthesised, in 1982, were hexamethylene-TTeF (HMTTeF)34 ( 10) and dibenzo-TTeF 

(DBTTeF)35 (11), and it was not untill987 that the parent TTeF (12) was reported in 

the literarure36. 
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(10) R-R = (CH2h 
(11) R-R = (CH=CHh 
(12) R = H 

The 1:1 TCNQ salt conductivities show an increase in the room temperature 

conductivities and a stabilisation of the metallic state due to significantly increased 

dimensionality [Table 1.1]. 

COMPLEX Ort (Scm· I) p TM-1 (K) 

ITF-TCNQ 500 0.59 59 

TSeF-TCNQ 800 0.63 40 

TTeF-TCNQ ca.2000 0.71 -

Table 1.1- Data for tetraheterofulvalene-TCNQ complexes. 

In TTeF-TCNQ there is no Peierls distortion and the conductivity increases down to 

2K37. The X-ray crystal structure shows the donor molecules to be in layers (cf. TTF

TCNQ and TSeF-TCNQ) with close inter- and intra-stack interactions. TTeF-TCNQ 

can, therefore, be considered to be a two dimensional metal. 

1.7 ORGANIC SUPERCONDUCTIVITY 

1.7.1 Bech&aard Salts <TMTSeF>2X 

An amazing discovery in 1980, reported by Bechgaard, Jerome and workers, was 

that a cooled and pressurised sample of (TMTSeF)2PF6 [0.9K, 12kbar]33a completely 

lost its electrical resistance. This frrst superconducting organic material stimulated 

research into the synthesis of many similar salts with various inorganic counter-anions. 

These are the so called Bechgaard Salts. For the salts where X = PF6-. AsF6-, SbF6-

and Re04- 38, there appears to be an insulating ground state. When single crystals of 

these salts are subjected to a certain external pressure this insulating state is suppressed 
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and the salt becomes metallic, and eventually superconducting on cooling. The salt 

where X= Cl04·39 is the only ambient pressure superconductor in the TMTSeF series. 

It should be noted that isostructural (TMTIF)2X salts are not superconducting. X-Ray 

crystallography shows the essentially planar TMTSeF molecules stacking in a 'ring

over-bond' fashion fonning a one-dimensional chain, this being the direction of highest 

conductivity. The Se··Se interactions are similar for both inter- and intra-stack distances, 

resulting in a two-dimensional network, with the supporting anions separating adjacent 

sheets and preventing three-dimensionality (Figure 1.1 0). 

~ ;::a:::a. ~ 

I~~ ~2·3.9aa~ 
02•3.58 d5 •3.916 

~J d6•~3.~H=7~~~~~ 
o, =3.59 I :..4.d·~,:3.8'59 

~ 
~ ~3.9~ 

d4•4.093 

~~ 

~ ~~ 

~~ 

Figure 1.10 - Crystal structure of (TMTSeF)2Br04, looking down the stacks along 

the Q. axis (left) and perpendicular to the same stacks (right). The Se .. Se contact 

distances (d's) are indicated. 

The anions play little, if any, part in the conduction process, this being dominated by 

the selenium-selenium interactions. However, the position of the anions in the lattice is 
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all-imponant. At room temperature they are fairly disordered and provide a means for 

electron scattering. On cooling they order, and this fact in conjunction with the external 

pressure squeezing the selenium atoms closer together,. leads to the onset of 

superconductivity. 

For inorganic materials theory states that the charge carriers for superconductivity 

are pairs of electrons (Cooper Pairs)40, as distinct from single electrons in metallic 

conductivity. This electron pairing can be driven by phonons below a certain critical 

temperature (T c), if a strict set of structural and electronic energy conditions are fulfilled. 

The electron pairs are dissociated by thermal energy above T c and superconductivity is 

lost. Whether or not this theory is adequate for organic materials is a matter of some 

conjecture41. 

More recently; many salts of sulphur based TIF systems have been shown to 

exhibit superconductivity. The most important family are inorganic salts of 

bis( ethylenedithiolato )-TIF (BEDT-TTF). 

1.7.2 <BEDT-1Tf)2X Salts and CDMED2X Salts 

As an alternative to replacing the sulphur atoms in the core of the TIF structure with 

other chalcogen atoms, another possibility is to add more chalcogens to the periphery of 

the TTF molecule. This led to the formation of BEDT-TIF (a.k.a. 'ET') (13)42, 

synthesised ·in 1978, which has contributed to more than half of today's ambient 

pressure superconductors14a. 

(13) 

While the properties of the complex of TCNQ and ET are quite unremarkable, 

crystals of inorganic cation-radical salts of ET grown electrochemically are 

superconducting. (ET)2Re04 was the first to exhibit pressure induced superconductivity 
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(Tc = 1.5K, 7kbar)43. If the anions are 13-, Cu(SCNh- or Cu[N(CN)2]CI-, ambient 

pressure superconductivity is observed. 

In the crystal structures the cations are non-planar, with the peripheral ethylene 

bridges twisted. This prevents close 7t-overlap face to face and inhibits columnar 

stacking. Shon S··S 'inter-stack' interactions lead to an increase in dimensionality. 

Some of these salts can crystallise in up to four crystallographically unique phases. For 

example, (ET)2I3 has an a-phase (TM-1 =135K)44 and three superconducting phases~. 

8 and K45 (Figure 1.11). Salts with the highest Tc values are kappa phase structures. 

Here there are no stacks or sheets but instead there are interacting dimers which are 

positioned orthogonally to each other forming a conducting two-dimensional S··S 

network. The anions form insulating V -shaped polymeric chains. The T c for ET salts 

increases as the linear length of the anion increases46. 

alpha beta 

theta kappa 

Figure 1.11 · Packing schemes of ET molecules, viewed along the 

long molecular axis, in a, ~. 8 and K phases of (ET)2I31so. 
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Presently the highest Tc organic superconductor is x:-ET2Cu[N(CN)z]Br47 with 

T c = 11.6K at ambient pressure. Superconductivity has not been found in (BEDSe-

TTF)zX salts or (BEDSe-TSeF)zX salts. 

Of the many mixed S,Se donors that have been synthesised48, only dimethyl 

( ethylenedithio )-diselenadithiafulvalene (DMET)49 ( 14) has formed superconducting 

salts. 

c:x:>=<::r: 
(14) 

This asymmetrical molecule is a hybrid of TMTSeF and ET and the (DMET)2AuBr2 

salt has the highest Tc of 1.9K at ambient pressure50. Again, different crystal phases are 

exhibited, and in all cases there are close intermolecular S··S contacts, giving rise to a 

high degree of dimensionality. 

1.7.3 Metal (dmitl2 Acce,ptors 

Superconductivity has also been exhibited by complexes of M(dmit)zn- (where M = 

Ni, Pd, Pt and dmit = 4,5-d.imercapto-1,3-dithiole-2-thione) (15). These are the-only 

examples of superconductivity in 7t-acceptor compounds, for example; 

1) TTF[Ni(dmithh Tc = 1.6K, 7kbar51. 

2) a'-TTF[Pd(dmit)2]2 Tc = 6K, 19kbar52, 

The M(dmith system is essentially planar and, again, there is a high degree of 

dimensionality with many short s .. s contacts. 
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1. 7.4 Oxygen Containing Systems 

Replacement of the four central sulphur atoms of the TTF molecule by oxygen has 

not been accomplished, but attaching oxygen atoms to the periphery of TIF has been 

achieved. Bis(ethylenedioxalato)-TIF (BEDO-TIF), (BO) (16) was reported in 198953. 

The effect on the redox properties is shown in Table 1.2. 

c:x>=<x:) 
(16) 

DONOR Etlll (mv)* E2l/2 (mv)* E2-E1 (mv) 

TIF (2) 367 748 381 

ET (~3) 567 829 262 

BO (16) 435 699 264 

Table 1.253- Redox properties ofTIF donors *Ag/AgCl ref. electrode. 

The reasoning behind this substitution by oxygen was that in superconductivity 

theory Tc varies inversely with the square root of the mass of the ions in the lattice, i.e. 

Tc for BEDO-TTF salts should be higher than for ET. One superconducting salt of 

BEDO-TTF has been discovered This is (BEDO-TIF)3Cu2(NCS)3 (Tc = 1.06K)54. 

1.8 ADAPTATIONS TO BEDT-TIF 

Due to the fact that it has formed so many superconducting salts, ET has attracted 

considerable attention. Thus, various modifications have been made to the ET structure 

to investigate the effect of these changes. Examples include: 

1) Modifying the peripheral bridging groups whilst keeping the C6Ss core intact. In 

ET salts the anions reside in cavities formed by the buckled ethylene bridges, 
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(weakly hydrogen-bonding to the -CH2- groups) and this relative orientation of the 

anions to the donor molecules plays an important pan in the properties of the 

complex. Therefore, the outer ring has been modified to form -CH2- cavities of 

various size and shape [compounds (16)-(23)]. 

(16) m=n=155, (20) m=1, n=258 

(17) m=n=242, (21) m=1, n=359 

(18) m=n=356, (22) m=2, n=360 

(19) m=n=457 

Electrocrystallisation experiments61 have shown that these relatively small 

structural modifications of the ET molecule lead, in some cases, to new structure 

types, rather than simple expansions or contractions of the (ET)2X structure, 

where X is a linear triatomic anion. 

sXs>=<sXs s s s s 
(23)57 

In order to increase the planarity ofthe ET structure donor (24)62 was synthesised 

having vinylene units in place of the ethylene bridges. The cyclic voltammetry of 

this donor reveals one, two-electron, irreversible oxidation (El/2 = 0.83V vs 

S.C.E.). However, no crystal structure or conductivity measurements of TCNQ

salt have been reponed. 

(x:>=<:x) 
(24) 

2) Replacing the outer sulphur atoms in ET with larger selenium and 
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tellurium atoms (this has proved relatively nivial to achieve by reacting lithiated 

TTF with elemental Se or Te) and/or enlarging the periphery ofET by adding yet 

more chalcogen atoms. 

(25) n = 1 
(26) n = 2 
(27) n = 3 

(28) R =Me 
(29) R = Et 

Compounds (25)-(27), analogous to compounds (16)-(18), have been synthesised 

with selenium atoms in the peripheral chalcogen positions63. [BEDSe

TTF(26)]2ffir2 is isostructural to p(ET)21C12 yet it is semiconducting (on= 3.5 x 

1Q-3 Scm-1)63d, not superconducting. Similarly the tellurium compounds (28) and 

(29) have also been made64,65. Compound (28) forms a 1:1 complex with TCNQ 

with a conductivity of on = 1 x 1 o-2 Scm -1 66. The effect on redox potentials on 

going from S to Se to Te substituents on the TTF moiety is to slightly lower both 

E 1112 and E2112 values. 

The all-selenium equivalent of ET (BEDSe-TSeF) (30)67 has been found to have a 

crystal stnicture isostructural to the neutral ET structure. However, (BEDSe

TSeF)2AuBr2 is only semiconducting68, not superconducting like its sulphur 

analogue. 

C::l::r<:r:) 
(30) 

It is possible to increase the number of chalcogen atoms in ET by further extending 

the periphery of the molecule, for example donors (31) and (32) have been 

synthesised by Japanese workers69. As for donor (24), both these donors show a 
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single irreversible oxidation to the dication. £1/2 = 0.83V for (31) and Ell:!= 

0.86V for (32). (Both values vs S.C.E.- E2l/2 for ET = 0.82V). 

MeXXsXs>=<sXsXXMe 
MeX S S S S XMe 

(31) X= S 
(32) X= Se 

3) Enlarging the internal core in ET whilst retaining the external features. Attempts to 

synthesise a compound such as compound (33) have so far been unsuccessful. 

(33) 

1.9 EXTENDED zt-SYSIEMS 

As an alternative to placing different substituents around the periphery of the TTF 

unit-, it is also possible to synthesise -new donors by changing the basic skeletal 

structure. Thus, a whole range of new 1,3-dithiole-2-ylidene electron donors have been 

prepared, in the hope of discovering properties either different or superior to those 

previously obtained. Extending the conjugation between the 1 ,3-dithiole rings should 

achieve the following: 

1) Stabilised dication states due to reduced intra-molecular Coulombic repulsion. 

2) The radical cation should also be stabilised by extended conjugation and greater 

delocalisation. 

3) Due to rotation about the units linking the dithiole rings, these new derivatives may 

no longer be planar. This may induce novel inter- and intra-stack interactions but 

major distortions may well be a hindrance to such interactions. 
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The initial research in this area concerned the insertion of aromatic spacer units, such 

that the neutral donors are in a quinoid form [compounds (34)-(36)], with the oxidised 

radical cation and dication species affording aromatisation on the system. This obviously 

stabilises the oxidised states, resulting in lower oxidation potentials, in some cases low 

enough to air-oxidise the donor (Table 1.3). In fact many donors of this form only show 

one single two-electron oxidation directly yielding the dication. Donors of the type (36) 

will be discussed in Chapter 5. 

r( 
s 

DONOR 

(34)71 

(35)71 

(36)72 

(37)70 

R 

Etl/2 (V)* E21/2 (V)* 

-0.11 -0.04 

0.00 -
0.4oa -
0.04 0.31 

(34) R = R1 = H 
(35) R = H, R1-R1 = (CH=CHh 
(36) R-R = Rt-RI = (CH=CHh 

.1E(V) D:TCNQ Ort(Scm-1 )b 

0.07 3:4 5.3x10-4 

0.00 2:3 2.9x10-2 

- 1:4 4x1Q-3 

0.27 1:2 80 

Table 1.3 - Redox properties of extended donors 

*vs S.C.E., aAg!AgO ref. electrode, bcompressed pellet. 

In order to increase inter-stack interactions another sulphur atom can be introduced 

by using thiophene as the aromatic spacer unit (37)70. 

(37) 
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In this case two, well-defined, one-electron, reversible oxidations are observed, i.e. 

the radical cation and the dication species both exist. The dication state is again stabilised 

as indicated by the small difference between the two oxidation potentials CE2-E1 = 

0.27V) compared to that value for 1TF CE2-E 1 = 0.36V). 

Another group of extended donors is that with a polyene spacer unit between the 

dithiole rings. Yoshida's group in particular has contributed a large number of donors to 

this family (38-43). 

(38) R =H 
(39)R=Me 
(40) R-R = (CH=CHh 

(41) R = H 
(42)R=Me 
(43) R-R = (CH=CHh 

The simplest case is to have one extra carbon-carbon bond separating the end units 

(38-40)73. The effect of this conjugation on the oxidation potentials (Table 1.4) of these 

DONOR E1 1/l (V)* E21/l (V)* .1E(V) D:TCNQ crn(Scm-1 )a 

(38) 0.20 0.36 0.16 1:1 0.79 
-

(39) 0.19 0.34 0.15 1:1 3.7x1Q-8 

(40) 0.47 0.64 0.15 1:1 -578 

(41) 0.22 - 0.00 not isolated -

(42) 0.21 - 0.00 1:1 not reported 

(43) 0.47 - 0.00 1:1 not reported 

(44) 0.26 0.40 0.14 2:3 0.07 

(45) 0.33 0.47 0.14 2:3 0.24 

TIF 0.34 0.71 0.37 1:1 2.5 

Table 1.4- Redox properties and conductivity data for extended donors (38)-(45) 

*Ag/AgCl ref. electrode, &compressed pellet 
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vinylogues is to lower Et (compared to TTF) and to decrease the separation of the two 

oxidation potentials (i.e. smaller E2-E1, compared to TIF). 

If the conjugation is further increased by an extra carbon-carbon double bond 

[compounds (41)-(43)74] the separation between Et and E2 is eliminated and a single 

two-electron oxidation is observed. The effect of chalcogen substituents on the 

periphery of these vinylogues will be discussed in detail in Chapter 2. 

(45) 

Derivatives of vinylogues of TTF substituted with two or four selenium atoms in 

place of the central sulphur atoms have also been prepared [compounds ( 44) and 

(45)751. Redox behavior and conductivities of complexes for donors (38)-(45) are 

summarised in Table 1.476, sequential selenium incorporation [(38), (44) and (45)] 

increasing the redox potentials. 

Attempts to synthesise donors with allene spacer units between the dithiole rings 

was thwarted by the molecules' extreme instabilities, and the neutral compounds (46) 

and (47) were not isolated, being characterised as their dication salts77. 

s s 
( >=<·=l.==() 

s s 
(46) n = 1 
(47) n = 3 

Another example of a stretched TTF system (48)79 is that synthesised by Gorgues et 

al. Unfortunately, this compound is easily air-oxidised (Et = 0.12, E2 = 0.47 vs. 

S.C.E.), is fairly insoluble and no TCNQ salt data is given. 
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In the last five years in particular, interest has been focussed on radialene-type 

structures148 that exhibit a high degree of symmetry, and compounds such as (49)80 and 

(50)81 have been synthesised by Japanese workers. Molecules of this type with D3h 

symmetry had previously been predicted by theory to be possible sources of organic 

ferromagnetism and this topic will be discussed further in Chapter 3. 

(49) (50) 
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CHAPTER TWO 

NEW VINYLOGOUS TETRA THIAFUL V ALENE 1t

ELECTRON DONORS WITH PERIPHERAL 
ALKYLSELENO SUBSTITUTION 
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2.1 BACKGROUND 

An exciting new class of stretched-TIF derivatives, first reponed in 1983, included 

the parent TIF-'vinylogue', ethanediylidene-2,2'-bis(1,3-dithiole) (38)76.82. This 

molecule was designed on the basis that the dication species (formed on oxidation of the 

donor) should be significantly stabilised due to the increased separation of the 1,3-

dithiole rings, reducing the intramolecular Coulombic repulsion between positive 

charges. 

Much research has centred on the synthesis of new multichalcogen 7t-electron donors 

based on 'I"ff83 and, following this theme, three research groups (including our own) 

have independently synthesised the ET vinylogue (51)84-86 that had previously been 

identified as a desirable target by Japanese workers87. 

Rxs~ ~sxR· 
R s' \==( I 

S R' 

(38) R = R' = H 
(51) R-R = R'-R' = SCH2CH2S 
(52) R-R = SCH2CH2S, R' = Me 
(53) R = R' = SMe 

The solution redox behaviour of the extended donors (38) and (51) has been 

observed by cyclic voltammetry and this shows that they both undergo two, reversible, 

single-electron oxidations (similar to TTF and ET). Two important consequences of 

'stretching' the 1,3-dithiole rings apan from one another by the introduction of two sp2 

carbon atoms can be noted: 

1) Both the first and second oxidation potentials of (51) are substantially lowered 

compared to the parent system, ET, i.e. molecule (51) is a stronger donor than ET [and 

similarly molecule (38) is a stronger donor than 1TF], and E2112 (the radical cation

dication redox wave) for (51) is seen at a very similar potential to that value for TTF 

(Figure 2.1 )85 . 

2) The difference between the two redox waves, ,dEl/2, is also significantly reduced 

in the vinylogous materials relative to the 'parent' materials, reflecting the reduced 

intramolecular Coulombic repulsion in the dication states. 
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Figure 2.1- Cyclic voltammettic data for ITF (2), ET (13) and vinylogous ET 

derivative (51) (Pt electrode vs. Ag!AgCl; electrolyte EtN4+pp6- in CH2Ci2) 

Due to this different redox behaviour, and the altered solid-state structure, salts of 

extended donors may show electronic and magnetic propenies that are quite different 

from salts of TfF or ET. Thus, a series of symmettical and unsymmenical vinylogues 

has been synthesised in our laboratory88 and X -ray crystal structures of two of these 

neutral compounds, donors (52) and (53), have been solved. 

Molecule (52) is almost completely planar, in contrast to the neutral ET molecule 

which has a marked deviation from planarity (Figure 2.2), though the planarity, in this 

case, does not lead to any shon ( < 4.0 A), non-bonded sulphur-sulphur contacts. In the 

case of donor (53) the central CsS4 core is also planar with the peripheral SMe groups 

bent out of the plane (Figure 2.3). The TCNQ salts of these sulphur substituted 

vinylogues have room temperature powder conductivity values in the range On= 5xi0-4 

- 6x I0-8 Scm· I, which is a significant decrease from the value for the TCNQ salt of 

unsubstituted vinylogue (38). A crystal structure of the TCNQ complex of donor (53), 

obtained in our work, reveals a mixed stack structure (Figure 2.4)89. Such a structure 

does not fulfill the criteria for high conductivity, which explains the poor conductivity 
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values of the TCNQ salts of these donors. Why mixed stacks should form with these 

stretched donors is not easily explained. 

s s s 

Figure 2.2- Molecular structures of the neutral donors ET (above) and compound (52) 

(below), as determined by single crystal X-ray analysis: viewed along the best plane 

formed by the sulphur atoms. 

Figure 2.3 - Packing diagram for neutral donor (53) 

Figure 2.4- X-Ray crystal structure of a 1:1 complex of donor (53) with TCNQ 
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Work in the mid-1970's established that the substitution of the sulphur atoms of TrF 

with selenium generally had beneficial effects on the properties of the TCNQ salt. The 

room temperanrre conductivity is increased and the metal-insulator transition temperature 

is lowered. Also, the more diffuse p- and d- orbitals of Se lead to the transpon properties 

being dominated by the donor stack27-32. However, in comparison with the number of 

sulphur containing systems known, there has been comparatively little research on 

selenium containing systems. Reasons for this are that they are invariably harder to 

synthesise22, are insoluble, and the oxidation potential is raised by sequential selenium 

incorporation90. Not withstanding this, Yoshida's group have synthesised the donors 

with both two and four selenium atoms incorporated into the structure, compounds ( 44) 

and (45)75. Redox potentials and TCNQ salt conductivities of some of these vinylogous 

donors are given in Table 2.1. 

DONOR Etli2(V)a E21!2(V)a dEl!l(V) D:TCNQ crn(Scm-1 )b . 

(38) 0.20 0.36 0.16 1:1 0.79 

(51) 0.48 0.71 0.23 1:1 3 X }Q-5 

(52) 0.36 0.62 0.26 1:1 2 X }Q-3 

(53) 0.43 0.59 0.16 1:1 7 X }Q-8 

(44) 0.26 0.40 0.14 2:3 0.072 

(45) 0.33 0.47 0.14 2:3 0.24 

TIF(2) 0.34 0.71 0.37 1:1 2.5 

Table 2.1 - Redox properties for vinylogous TIF's and conductivity data for their 

TCNQ salts. a vs. Ag/AgCl ref. electrode, b compressed pellet 
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2.2 SYNTHESIS. X-RAY CRYSTAL STRUCTURE AND REDOX 

BEHAVIOUR OF NEW ALKYLSELENO SUBSTITUTED 

VINYLOGUES 

This chapter is concerned with the synthesis and solution redox behaviour of new 

vinylogues, (54)-(58), which are the first derivatives of system (38) that have selenium 

atoms attached to the periphery of the framework. The formation of semiconducting 

TCNQ complexes of these donors will also be discussed. 

MeSe s X>=. .s R 
MeSe s' ~X 

(54) R = SMe 
(55) R = SeMe 

S R 

(·xs>=-- .sXR 
Se s' ~ I 

S R 

(56) R=Me 
(57) R = SeMe 

Csexs}=. ~s Se 

Se s·-~x J 
S Se 

(58) 

2.2.1 Sxnthesis 

The syntheses are presented in Schemes 2.1 and 2.2. The key step in assembling the 

vinylogous TTF skeleton is Wittig-Homer reaction of a vinylogous aldehyde (66) with a 

phosphonate anion (68) (Scheme 2.2), as described previously for other 

vinylogues82,84-86. Staning materials were thiones (60). Thiones (60b)-(60d) were 

synthesised using the appropriate literature procedures24,9I-93. Thione (60a) has been 

mentioned previously94 but neither synthetic details nor characterisation data were given. 

Details for (60a) are, therefore, presented here (Scheme 2.1). 1,3-Dithiole-2-thione (59) 

was lithiated at the 4,5-positions and reacted with elemental selenium in THF. The ·"' 

addition of methyl iodide to the resulting diselenate at o·c yielded the required thione 

(60a) [40% yield from (59)]. 
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s 

(SFs _2_BuL_i.~ 
2 (i-Pr)2NH, 
THF 

(59) 

1/4 ses useXs . 
- .. ~ I Fs 

LiSe S 

Scheme 2.1 

S-Methylation of (60), using neat dimethyl sulphate, yielded the dithiolium cation 

which was isolated as the crystalline tetrafluoroborate salt (61) in high yield. [An 

analytically pure sample of thione (60) was essential for clean conversion into salt (61)]. 

Cation salt (61) was redJiced by sodium borohydride to yield thioether (62) as a red oil 

which could be purified by column chromatography. Conversion of compound (62) into 

dithiolium cation (63) was achieved by treatment with acetic anhydride followed by 

addition of tetrafluoroboric acid. The overall yield for the three step sequence 

(60) ~(63) is typically> 65%. Salts (63a) and (63b) are both white solids which are 

notably more air- and moisture-sensitive than the analogous bis(methylthio)-88 and 

ethylenedithio- analogues8Sb. 

Cation salt (63), on reaction with triphenylphosphine, yielded phosphonium salt (64) 

which was not isolated; deprotonation with triethylamine in situ gave the transient ylid 

(65) which was intercepted with glyoxal to afford the desired vinylogous aldehyde (66) 

(59-80% yield). Alternatively, cation salt (63) reacted with trimethylphosphite to yield 

phosphonate ester (67) in high yield. Compound (67) could be stored for several weeks 

under vacuum at 200C, but rapidly decomposed on exposure to air. 

The generation of carbanion (68) from ester (67) was achieved by treatment of the 

latter compound with n-butyllithium at -780C; subsequent addition of the appropriate 

aldehyde (66) gave new vinylogous 1TF derivatives (54)-(58) in 60-80% yields. 
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R S 

X>=s (i) 
R + 
X\-sMe (ii) RXsXsMe .. .. 

R S R S 
(61) BF4-

R S H 

(60) 

(v) [ :x:>=PPh3] 4 

(65) 

~(vii) 
(54)-(58) 

For (59) to (68): 
a)R=SeMe 
b) R-R = SeCH2CH2Se 

(62) 

~(iii) 

RXs H (iv) 
R s+ 
x~H I X+ ... 

R S PPh3 R S BF4-

(64) (63) 

~(vii) 

[ :x:~~(OMeh] 
(68) 

Additionally for fonnulae (60)-(63), 
(67) and (68): 
c)R=Me 
d)R=SMe 

Scheme 2.2 

Scheme 2.2 - Reagents and Conditions 

(i) Dimethylsulphate, 700C, then HBF4, 2QOC, (ii) sodium borohydride, acetonitrile, 

2QOC, (iii) acetic anhydride, HBF4, ether, OOC, (iv) triphenylphosphine, acetonitrile, 

2QOC, (v) glyoxal, triethylamine, acetonitrile, 200C, (vi) trimethylphosphite, sodium 

iodide, acetonitrile, 2ooc, (vii) n-butyllithium, compound (67), THF, -780C ~ 

2ooc. 
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Compound (58) has very low solubility in common organic solvents, although 

solutions can be obtained in carbon disulphide and boiling 1, 1,2-trichloroethane. 

Vinylogues (54)-(57) are soluble in many organic solvents, e.g. dichloromethane. 

2.2.2 X-Ray Czystal Structure of Compound (54) 

The molecular structure of compound (54), determined by single crystal X-ray 

analysis, is shown in Figure 2.5. 

511'1 

512'1 

Figure 2.5 - Molecular structure of compound (54) 

This compound, which is isostructural with molecule (53), is disordered over a 

centre of symmetry, so that the terminal methylseleno and methylthio groups are 

indistinguishable; these heteroatoms were refined as 50% S and 50% Se. 

Figure 2.6 - Parallel projection along the lz..axis showing the packing of the molecules 

of (54). Intennolecular s .. s contacts< 4.0 A are a) 3.963 A [S(l) .. S(3')], b) 3.688 A 
[S(l) .. S(4')], c) 3.805 A [S(2) .. S(4')], d) 3.918 A [S(3) .. S(3')] and e) 3.812 A 
[S(3) .. S( 4')]. 
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The ethanediylidene-2,2'-bis(1,3-dithiole) framework in compound (54) is planar. 

This is in marked contrast to the non-planar tetrathiafulvalene framework of analogous 

tetra(alkylchalcogeno)TIF systems95, where planarity of the C6Ss core is achieved only 

by attachment of long chains95 or medium sized rings57 at the periphery of the molecule. 

The molecules of compound (54) stack uniformly with several intermolecular 

S··S(Se) contacts close to the sum of the Van der Waals radii (Figure 2.6). [The 

accepted literature value for S··S Vander Waals distance is 3.7 A]. 

2.2.3 Redox Behaviour of Donors <54)-(58) 

The solution redox properties of donors (54)-(58) ha~e been studied by cyclic 

voltammetry in dichloromethane solutions and the results are collated in Table 2.2. 

DONOR Etli2(V)a E2112(V)8 &;112(V) D:TCNQb Ort(Scm·l )C 

. 
(54) 0.394 0.571 0.177 1:1 w-s 
(55) 0.392 0.593 0.201 1:1 w-2 
(56) 0.286 0.544 0.258 1:1 w-s 
(57) 0.346 0.562 0.216 1:2 lQ-6 

(58) 0.407d 0.631d 0.224d 1:1 w-2 
TIF (2) 0.340 0.710 0.370 1:1 2.5 

Table 2.2 - Redox properties and conductivity data for vinylogous TIFs 

a Experimental conditions: donor (ca. 1x1Q·5 mol dm-3), electrolyte E14N+PF6- (ca. 

1x10-1 mol dm-3) in dry dichloromethane under nitrogen, 200C, vs. Ag/AgCl, Pt 

electrode, scan rate 100 mV s·l using a BAS Electrochemical Analyser. 

b CHN analyses were all within acceptable limits (See Chapter Six - Experimental). 

c Two-probe compressed pellet measurement. 

d Data for oxidative scan, see text for discussion. 

All the compounds undergo two, separate, one-electron oxidations (i.e. sequential 

formation of the radical cation and the dication species). The redox waves are reversible 
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for all the compounds except donor (58) for which the reductive scan shows a single 

two-electron reduction (dication ~neutral species) at El/2 = +0.34 V. This behaviour 

for donor (58) is reproducible on repeated recycling of the solution between 0.0 and 

1.0V. Previous work has established that 'stretching' the TTF or ET systems by 

insertion of a vinyl group [viz. molecules (38)76,82 and (51)85,86] lowers the potential of 

both the frrst and second redox waves, E1112 and E2112, respectively, as well as 

significantly reducing the difference between them, aE112. Similar behaviour is observed 

for the new systems described herein. Compound (56) is the best donor in the series 

(lowest value of E 1112): this is because two methyl substituents are in place of the 

alkylthio or alkylseleno groups of the other donors (54)-(58). 

Donors (54)-(58) all form charge-transfer complexes with TCNQ with 

stoichiometries (donor: acceptor) of 1:1 [for donors (54)-(56), and (58)] or 1:2 [for 

donor (57)]. The highest room temperature conductivity values (two probe, compressed 

pellet data) are an= 10-2 Scm-1 for the 1:1 complexes of the symmetrical donors (55) 

and (58) (Table 2.2'). This clearly implies that there is segregated stacking and partial 

charge-transfer from donor to acceptor in these complexes. The infra-red stretching 

frequency of the nitrile group of TCNQ is often used to estimate the degree of charge 

carried by the acceptor molecule in a complexl6; however this method is not reliable for 

the complexes in Table 2.2 For example, for complex (56):(TCNQ), Vmax =2150 cm-1, 

which is well outside the usual range_ of anionic TCNQ. 

2.2.4 Magnetic Susce.ptibility Data for the Complex (58>:CTCNQ) 

For the TCNQ complex of donor (58), variable temperature magnetic susceptibility 

data (XM) have been obtained. For a paramagnetic material susceptibilities depend 

inversely on temperature and often follow, or closely approximate, the behaviour 

required by the simple equation (The Curie Law), 

x~=crr 

where T = absolute temperature, C = a constant known as the Curie Constant 

X~ = Molar Susceptibility corrected for diamagnetic contributions 
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and any temperature independent paramagnetism (TIP). 

Thus a plot of 1/XMcorr vs. T should be a straight line through the origin. In fact many 

substances show a plot that cuts the T-axis at a temperature, e. other than 0 K. In this 

case the Curie Law can be modified to become the Curie-Wiess Law, explained by the 

equation, 

X~=C/(T-6) 

where e =Weiss Constant. 
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Figure 2. 7 - Variable temperature magnetic susceptibility 

data for the TCNQ complex of donor (58) 

300 

For the TCNQ complex of donor (58) a plot of 1/XMcorr vs. T (Figure 2.7) shows a 

straight line (above 80 K) that, when extrapolated, cuts the T-axis ate = -222.6 K. 

Below 80 K a marked deviation from Curie-Weiss behaviour is observed. This is 

illustrated better on a plot of XMcorr (T-6) vs. T (Figure 2.8) which should be a straight J)< 

line of zero gradient in the region of the graph where the Curie-Weiss Law is obeyed. 
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Figure 2.8- Plot ofXMcorr (T-8) vs. T for the TCNQ complex of donor (58) 

The upward deviation observed at ca. 80 K is indicative of ferromagnetic inter

ionic interactions which have magnitudes comparable to the thermal energy at this 

temperatme (80 K) and which become progressively greater as the temperature is further 

lowered. The moments of the separate ions are aligning themselves parallel to one 

another, thus reinforcing one another. Above 80 K, thermal energies randomise these 

orientations; below 80 K, the tendency to alignment becomes controlling and the 

susceptibility increases much more rapidly with decreasing temperature than it would if 

the ion moments behaved independently of one another. 
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CHAPTER THREE 

NEW REACTIONS OF 1,3-DITHIOLIUM 
CATIONS AND 1,3-DITHIOLE ANIONS 

DIRECTED TOWARDS HIGH-SPIN SYSTEMS 
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3.1 INTRODUCTION 

As pan of a continuing program of research in our laboratory on the synthesis of 

new electron donors related to TfFlOc, the present work involves the preparation and 

reactions of the aromatic cations (61) and the 81t (formally anti-aromatic) anions (68). 

The syntheses of these systems are well established9a. 72, 96 and various reactions have 

been studied previously in our laboratory (see Chapter 2). 

R s o u+ X )-P(OMe), 
R S (68) 

(61) & (68): a) R =SeMe, b) R-R = SeCH2CH2Se, 
c) R =Me, d) R = SMe, e) R = H, 
f) R-R = SCH2CH2S 

n-Pr S f 

X}--sMe 
n-Pr S 

(69) 

The dipropyl analogue (69), however, was unknown at the outset of the present 

work. Two separate themes have engaged our attention: 

(1) Nucleophiles are known to react at the C(2) carbon atom on the 1,3-dithiolium 

cation. We aimed to exploit this characteristic reaction in the synthesis of novel 

multisulphur-heterocyclic systems~ for example trinietllylenemethane (tMM) 

derivatives. 

Jl * = +,-,• 

* * 
1MM 

(2) The unknown propyl system (69) was of interest from the viewpoint that the 

propyl substituents should increase the solubility of a range of 1,3-dithiole 

systems, e.g. (70), the study of which had previously been hampered by 

extreme insolubility 97,137. 
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s s 
)=( 

R R 
(70) R = n-propyl 

3.2 ORGANIC FERROMAGNETISM 

A major contemporary challenge facing the organic chemist is the synthesis of high

spin systems exhibiting ferromagnetism. This very interesting physical property 

(achieved by spin alignment throughout the bulk of a particular material) has only rarely 

been achieved in organic materials. Various theoretical models for obtaining 

ferromagnetically interacting spins in organic solids have been proposed by 

MCConneU98, Breslow99, Wudltoo, and TorrancelOt (Figure 3.1)100. 

The basic premise behind MCConnell's idea [Figures 3.1(a) and 3.l(b)] is to prepare 

ionic charge-transfer salts D+A- in which the D+A- pair, through back charge-transfer 

excitation to a ll~Ytral triplet state, would_also be a triplet, due to_mixing_of the charge .. 

transfer state with the ground state. If this mixing of a high-spin arrangement is present 

between adjacent donors and acceptors in a multidimensional array in a solid, 

macroscopic parallel alignment, and thus ferromagnetic behaviour of the solid, are 

possible. Candidates for this model include hexaaminobenzene dication salts102 and 

cyclopentadienyl cationst03, both of these being antiaromatic ions. 

The Breslow approach to organic ferromagnets [3.1(c)] relies on a careful match of 

the redox potentials of the donor-derived monocation and the acceptor-derived 

monoanion. Further charge-transfer (if the cation is a strong enough donor) can mix the 

diionic states of the molecules. If the dication is a ground state triplet then this charge 

transfer interaction should promote a ferromagnetic alignment of the two unpaired spins 
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=+ + liiil .. ++ (a) MCConnell 

n+• A-• n·· A 

+ tt+ ~ II== #- ++ (b) MCConnell 

n+• A-• D A •• 

tt+ + 4 ... ++ #- (c) Breslow 

n+• A-• o2+ A2-

+++- 4 ... +-++ (d) Wudl 

n·· o+· o+• o·· 
\ y 

I \ y 
I 

A- A-

+tt+tt 4 ... ++ #-#- (e) Torrance 

o+• o+• o2+ D 
\ y I \ y I 

2A- 2A-

Figure 3.1 - Theoretical models to explain organic ferromagnetism involving 

charge transfer mixing. 

on the donor and the acceptor. Breslow and LePage have thus concentrated on the 

synthesis of donors that can support stable antiaromatic triplet dications, for example 

compound (71)99d. However, C-T salts with acceptors of the desired electron affinity 

have yielded only antiferromagnetic materials. 

Figure 3.l(d) indicates a ferromagnetic organic material consisting of donors with 

ground-state triplets and radical cations derived from the same donors, plus closed-shell 

counteranions (A·) at a nearby site in the lattice. A further variation by Torrance proposes 

a disproportionation of two radical cations resulting in a o2+fDO pair, the dication 

existing as a triplet diradical (this species being the lowest excited state). Admixing of 

this excited triplet state with the triplet ground state (no mixing, of course, being possible 
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between the excited triplet state and the singlet ground state), will stabilise the triplet 

ground state relative to the singlet ground state. This would remove the triplet-singlet 

degeneracy, leaving the total spin state for the pair of molecules as a triplet. Based on 

this model Torrance reacted triaminobenzene with iodine, and claimed an organic 

ferromagnetic polymerlOl. These results are, however, extremely irreproducible99d.10l. 

For further variations on these models see references 104-107. 

The chemical system that we are concerned with is trimethylenemethane (TMM). 

Derivatives of TMM are of considerable interestlOS-114 because a TMM dication on 

complexation with a dianionic donor has the possibility to form a cr complex containing 

a neutral TMM with a ground state triplet (following MCConnell's hypothesis). Thus, 

reactions of compound (~ 1) and· ( 69) have been directed toward such derivatives. 

3.3 TRIPLET TRIMETHYLENEMETHANES 

Trimethylenemethanes are notoriously unstable 4x-electron 'Y -anti-aromatic' 

systems (for the background to Y-aromaticity see references 115 and 116). Fortunately, 

however, the judicious use of certain substituents can lend a degree of stability to such 

systems. Theoretical calculations (INDO-CI and MNDO-CI)117 have shown that a planar 

trimethylenemethane species is more stable as a triplet than as a singlet state (Table 

3.1)113. Unfortunately, in an isolated parent TMM, the singlet methylenecyclopropane, 

formed on ring-closure of the diradical species, is even more thermodynamically stable. 
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We thus need to design a molecule in which the triplet character of the parent TMM is 

preserved and ring closure to methylenecyclopropane is prevented. 

SINGLET SINGLET TRIPLET 

39.6 .! ~ 88.6 53.3 

72.0 ""J.;·· ~~~ 92.3 63.3 
Nit, ~ 

55.5 .. ~m HS~SH 89.0 57.0 
SH SH 

~A~ 
~N Nit, 

104.7 ~NhNH, 175.0 151.3 H,N ~ 

H,N Nit, H,N Nit, 

X 
HS SH 

83.0 
HShSH 

127.5 98.1 
HS SH 

HS SH HS SH 

Table 3.1 - Heats of formation of TMM's and methylenecyclopropanes (MNDO/CI), 

Hr (kca1/mol) 

It is known that the thermal stability of TMM is enhanced by its incorporation into a 

five-membered ring (i.e. a 2-alkylidene-1,3-cyclopentadiyl derivative)I08,109, and 

further calculations show that alkylthio- and dialkylamino- substituents stabilise triplet 

TMM relative to both the singlet TMM and the singlet methylenecyclopropanelll. For a 

comparison of the thermal stability of various TMM's and methylenecyclopropanes see 

Table 3.1. The presence of sulphur atoms in the molecular framework will also 

maximise inter-molecular and inter-stack interactions, consequently leading to the 

possibility of a three dimensional inter-connected solid, a pre-requisite for observing 

bulk ferromagnetism. This knowledge suggested to us that heterocycle (72) would be an 

interesting compound to synthesise. Here the TMM framework is both incorporated into 
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a five-membered ring and is tetrathio-substituted. Gompper et al. have previously 

prepared the TMM dication (73)113, cyclic voltammetry of which shows reversible redox 

behaviour, indicating the formation of a TMM rather than a methylenecyclopropane. 

(74) 

ESR data on the dication (73) have been reported by Sugimoto et a[.118. A frozen 

acetonitrile solution of (73, X = CF3S03-), when electrochemically reduced, showed the 

characteristics of randomly orientated triplet species, with some delocalisation of the two 

unpaired electrons over the sulphurs. The temperature dependence of the signal intensity 

established the ground state triplet. Upon reduction of the related dication (74) the ESR 

spectrum of the diradical could not be detected because of its high reactivity, ring-closing 

to the methylenecyclopropane. 

3,3.1 Synthesis and Qystal Strucmre of a Tetrathiotrimethylenemethane Derivative 

Compound (72) has been prepared (58 % yield) from thionation of the diketone (75) 

with phosphorus pentasulphide (Scheme 3.1), a reaction that also yielded the 

monothione product (76). Diketone (75) was the product of the reaction of 4,5-d.imethyl-

2-methylthio-1,3-dithiolium iodide72a (61c) and the anion of 1,3-cyclopentaned.ione, 

under conditions described previously for analogous reactions119. 

Compound (72) is, in some ways, strucmrally related to compound (77), which has 

recently been synthesised using a completely different methodology by Wudl and co

workerslt2. However, there are striking differences in the reactivity of (72) and (77). 
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~ 
0 

Me + 

+ '1!8
}-sMe 

Me~S 1· 

(61c) 

s 

oo·Na+ 

EtOH 

!\_jJ(Me + 

~s Me 
0 (76) 

Scheme 3.1 

The X-ray crystal structure of (72) establishes that the molecule is best represented as 

a hybrid of dithione- structure (72) and the heteroaromatic, 1 OTt-electron 1 ,2-dithiolo-1 ,2-

dithiole_structure (72'). Wudl's compound (77) exhibits more pronounced 107t-electron 

delocalisation (77'). 

Me 

r---\ 

~ s s 

s-s s-s 

(72') (77) (77') 

Intramolecular bond distances and angles for (72) are shown in Figure 3.2. Notable 

features are as follows: 

(I) While there is considerable shortening of both the C1-C5 and C4-C5 bonds, 

they are significantly longer than the C5-C6 bond; 
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(ll) The C=S bond lengths are longer (by ca. 0.07 A) than the accepted literawre 

values; 

(ill) The S··S distances (Sl-53 and S2-S4) are considerably shoner (by ca. 0.7 A) 

than the sum of the Vander Waals radii of two sulphur atoms; 

(IV) The C7-C9 bond length of 1.328 A is normal for a C=C double bond, which 

implies that the two 1t electrons of this bond are not involved to any extent in 

the delocalised system in (72'). 

Molecule (72) is essentially planar but with a small amount of puckering at the 

ethylene bridge of the dithione ring. A packing diagram reveals that molecule (72) forms 

overlapping dimers in the solid state within which there are two relatively shon 

intermolecular S··S contacts (viz. S3-S4'=3.912 A and Sl-54'=3.960 A) (Figure 3.2 

right). 

C8 C10 

~1.,. ..... ·..um -

. 

Ill.... J ........ . , ...... 
.. ~ltltAJl /\ . ~ . 

' 1DI't•oj IIUIII ', 

: . ,,..... ,,._,., . ·. 
~:, ......... ,. .... .., .... 7, IU.IIII 

, .... , 
1011111 \; .-... 

Figure 3.2 - Structure of (72) with bond lengths (left) and angles (middle). 

Right: Unit cell of (72) viewed along the 12 axis. 

Wudl et al. observed that compound (77) did not react with methyl iodide, either neat 

at room temperature, or in refluxing acetonell2. In marked contrast to this, both thioxo 

sulphur atoms of compound (72) are readily methylated by methyl iodide in 

dichloromethane at 2o·c to· yield the air-stable dication salt (78). This observation is 

entirely consistent with the X -ray data which imply that compound (72) is less aromatic 

than compound (77). An advantage of our compound (72) over compound (77) is that it 
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does not contain a weak S-S bond that is liable to fracture and destroy any diradical that 

could be formed upon methylation to a dication and then reduction. 

Cyclic voltammetry of dication (78) revealed two reversible, one electon reductions 

at E1112 = +0.34 V and E2l/2 = +0.61 V vs. Ag/AgCl. These data clearly point to the 

formation in solution of the tetrathiotrimethylenemethane diradical (79), for which 

delocalised structures comprising a 1,3-dithiolyl radical can be drawn. Attempts to detect 

diradical (79) by ESR spectroscopy have been unsuccessful, however. The strong ESR 

signal obtained in a frozen dichloromethane solution following electrochemical reduction 

of dication (78) is assigned to the radical cation (78+·). The spectra at 293K and 153K 

show no fine structure and the g value of 2.0059 is consistent with spins partially 

localised at the sulphur atoms. Although the cyclic voltammogram of compound (78) 

was promising, attempts to chemically form the diradical by reduction with Zn/Cu 

couple, Ph3Sb and Li+ TCN~· proved unsuccessful. 

Me Me Me Me 

}=={ }=={ 
s s 21- s s 

MeS-6-SMe 
(78) (79) 

Other derivatives of this system that we have synthesised are compounds (80)-(84). 

In the case of (82), however, methylation stops at the mono-methylated product, this 

probably being the result of extreme insolubility. Compound (82), and also the 
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monothione product (81 ), were obtained from diketone (80) in a manner similar to (72) 

and (76). Diketones (83) and (84) could not be thionated due to insufficient solubility 

and the polarity of the carbonyl groups. Compound (84) had been synthesised from 

compound (85) in a reaction previously described by Nakayama et aJ120. 

(84) 

(80)X= Y= 0, 
(81) X= S, Y = 0, 
(82)X =Y = S 

(83) 

3.4 THE SYNTHESIS OF 1.3-DITHIOLIUM CATION SALT (69) 

We turned our attention to dithiole reagents carrying solubilising propyl side chains, for 

example compound (69). The sequence of reactions involved in the preparation of the 

iodide salt of compound (69) is based on a route described previously for the synthesis 

of tetra-n-pentyl-TfF121, and is outlined m Scheme 3.2. 4-Hydroxyoctan-5-one was 

prepared in good yield from butyraldehyde, following the literature procedure in a 

thiazolium catalysed reaction122. Originally, an acyloin condensation using molten 

sodium in xylene had been used123 but a severe problem had been caused by repeated 

polymerisation of the reaction mixture. The alcohol functionality was chlorinated by 

thionyl chloride yielding 5-chloro-octan-4-one124 which was then reacted with 

potassium piperidinodithiocarbamate to obtain compound (86). This could be cyclised to 

dithiolium cation salt (87) in concentrated sulphuric acid, which was converted into the 

thione (88) with sodium thiole. Subsequent methylation with methyl iodide provided the 

required 4,5-di-n-propyl-1,3-dithiole-2-thiomethyl iodide (69) in 11 % overall yield 

from butyraldehyde. 
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(i) 

(iii) 

Scheme3.2 

Scbeme 3.2 - Reagents and conditions: 

(i) 3-Benzyl-5-(2-hydroxyethyl)-4-methyl-1,3-thiazolium chloride, triethylamine, 

ethanol, reflux, (ii) pyridine, thionyl chloride, dichloromethane, 2o·c, (iii) N

piperidinodithiocarbamate, hexamethylphosphoric acid triamide, go·c, (iv) 

concentrated sulphuric acid, hexafluorophosphoric acid, so·c, (v) sodium thiol 

hydrate, 2o·c, (vi) methyl iodide, nitromethane, 40·c, (vii) sodium borohydride, 

ethanol, s·c, (viii) acetic anhydride, tetrafluoroboric acid, diethyl ether, o·c. (ix) 

triethylamine, dichloromethane, 2o·c. 
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The hexafluorophosphate salt (87) can be reduced by sodium borohydride to afford 

the 2H-1,3-dithiole derivative (89), which was converted into the dithiolium cation salt 

(90) by treatment with acetic anhydride and tetrafluoroboric acid. Reaction of this 

tetrafluoroborate salt with triethylamine yielded the unknown tetra-n-propyl-TfF (91) in 

62 % yield. The cyclic voltammogram of donor (91) showed two reversible, one

electron oxidations (Etl/2 = 0.29 V and E2l/2 = 0.69 V vs. Ag/AgCl) and a 1:1 C-T 

complex (room temperature compressed pellet conductivity <Jrt = 4 x lQ-5 Sem-I) was 

formed on mixing boiling dichloromethane solutions of (91) and TCNQ. 

3.5 DONORS DERNED FROM INDANE-1.3-DIONE 

3.5.1 Syothesis of Donors (92)-(99) and X-Ray Crystal Structure of Compound (99) 

Further TMM derivatives [compounds (97), (98) and (99)] similar to compound (72) 

(Chapter 3.3.1) can be obtained from the reaction of the anion of indane-1 ,3-dione with 

cation salts (61c), (61d) and (69) [yielding diketones (92)-(94)], followed by thionation 

with phosphorus pentasulphide. 

(92) X = Y = 0, R =Me 
(93) X = Y = 0, R = SMe 
(94) X= Y = 0, R =n-Pr 
(95) X = S, Y = 0, R = SMe 

X 

y 

(96) X = S, Y = 0, R = PI 
(97)X = Y = S, R=Me 
(98) X = Y = S, R = SMe 
(99) X = Y = S, R =n-Pr 

The thionation reactions also yielded the monotbiones (95) and (96). Dithione (99) 

formed X -ray quality crystals from a dichloromethane I acetonitrile solution and the 

structure revealed intramolecular dimensions very similar to those of compound (72), 

e.g. S(2)··S(4) = 3.043 A, C(7)-S(1) = 1.636 A (Figure 3.3) [cf. S(2)··S(4) = 3.020 
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A, C(l)-S(l) = 1.643 A for compound (72)]. The propyl chains which could, 

conceivably, prevent any close intermolecular interactions, did not force the dimers apan 

compared to (72) as indicated by the intermolecular distance S(4):·S(4') = 3.822 A [cf. 

S(3)··S(4') = 3.912 A for compound (72)]. 

C2 

C3 

C15 

B 0 

Figure 3.3- X-Ray crystal structure of compound (99). 

Molecular structure (above) and unit cell (below) 

Unfortunately, attempted methylation of compounds (97)-(99) with methyl iodide 

only resulted in the formation of a multi-component mixture from which nothing could 

be isolated in pure form and characterised. [Compounds (92) and (97) had been prepared 

previously in our laboratory and shown to form highly crystalline complexes with 

TCNQ139]. 
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3.5.2 Synthesis of Neutral Donors (lQQ}-003) and their C-T Complexes 

Diketones (92)-(94) obviously have the possibility of undergoing Wittig-Horner 

reactions and we were thus interested in synthesising the multi-1,3-dithiole compounds 

(100) and (101) and investigating the solid-state properties of their C-T complexes. 

Wittig-Horner reactions on diketones (92) and (93) with the appropriate phosphonate 

esters (68c) and (68d) did, indeed, yield the required products. 

(100) R=Me 
(101) R =SMe 

R 

s~·( 
s 

X 

(102) R = Me, X = 0 
(103) R =Me, X = S 

Oxidised species of donors (100) and (101), although ostensibly TMM's, would be 

unsuitable for a stable triplet diradical (100a) because the thermodynamically more stable 

dication (100b) would preferentially form on oxidation of the radical cation. 

R R 

~R 
s ~s 

~R 
s ~s 

+ + 

sxR sxR I ~ I 
S R _r R 

+ s ....._s 

s~R sy(R 
R R 

(lQQa) (lQQb) 
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l'Ionetheless, in terms of forming conducting charge-transfer salts these donors were 

considered to be promising target molecules. Donor (100) did form a complex with 

TC~Q (lOOc) (1:2 stoichiometry), the resulting powder having a room temperature 

compressed pellet conductivity of an= 5 x 1()-6 Scm-1. Donor (101), though, did not 

form a complex on mixing with TCNQ. Compound (102) was formed by the reaction of 

compound (100) with only one equivalent of Wittig-Harner reagent (68c), and 

subsequent thionation with phosphorous pentasulpbide yielded the donor (103). This 

compound also formed a complex with TCNQ (103a) (analysis indicating a 1:1.3 

complex) having a com~ssed pellet powder conductivity of an= 5 x lQ-5 Scm-1. 

3 .5. 3 Ma~roetic S uscwtibility Data for Complex Cl OOc > 

Variable temperature magnetic susceptibility data have been obtained for the TCNQ 

complex of donor (100) [compound (100c)] and a plot of X(T-8) vs. T shows Curie-

Weiss behaviour above 80K (Figure 3.4). The upward deviation at ca. 80K is similar to 

that obtained with the TCNQ complex of donor (58) (Chapter 2.2.4), and is again 

indicative of significant fenomagnetic ordering below this temperatUre. 

y = ·1.28E·4x 1 +0.480. var:3.25E·5. max dev:0.0103 

MC107T 
2.0 

iii' 1.5 Cii 
£ 
I 

t:. . 
:E 

1.0 (.) 

a~------~~----_.--------~------~----~ 
0 50 100 150 200 

Temperature (K) 

Figure 3.4- Variable temperature magnetic susceptibility data for complex (100c) 
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3.6 OTHER REACTIONS OF CATION SALT (69): 

3.6.1 2.4.6-Iris(4.5-di-n-prmzyl-1.3-dithiole-2-vlidene)-1.3.5-cyclohexaoetrione (70): 

Syntbesjs. X-Ray Czystal Srructure and Amphoteric Redox PrOperties of a Higblv

Delocalised Heterocyclic zt-System 

Organic molecules which possess multi-stage, amphoteric redox properties (i.e. the 

ability to undergo both anodic oxidation and cathodic reduction) within a relatively small 

range of potentials are rarel25. Notable examples, all of which contain a highly 

delocalised zt-electron framework, include cyclobuta[b]quinoxaline-1,2-dionet26, 9,9'

bianthryl-10,10'-dicarbonitrile127 and extended quinones128,129. In these molecules 

both the zt-donor and zt-acceptor ability are enhanced by aromatic stabilisation of the 

charged species and by judicious choice of functional groups attached to the molecule. 

An extended quinone is claimed to exhibit the smallest value of Esum, viz 0.75 yt28 

(ESUDl =£OX+ (-£red)). 

We were attracted by system (70), for which heteroaromatic, 61t, 1,3-dithiolium 

cations and phenoxy anions could participate in stabilising oxidised and reduced states, 

respectively. Furthermore, hexasubstituted benzene derivatives that have three-fold 

symmetry and can be readily oxidised, are prime candidates for achieving ferromagnetic 

interactions in organic materials, as the dication may be a ground state triplet due to 

orbital degeneracy99<1.102.130-t35. (Other workers have pointed out that an appropriately 

substituted dianion can, theoretically, also lead to a triplet species133). 

The reaction of 1,3,5-trihydroxybenzene (phloroglucinol dihydrate) with 2-

methylthio-4,5-di-n-propyl-1,3-dithiolium. iodide in acetonitrile with pyridine as base, 

afforded the target compound (70) in 30% yield (Scheme 3.3). The carbonyl absorption 

frequency of compound (70) occurs at 1530 cm-1; this low value indicating strong s .. o 
interactions in the strucrure136. [The unsubstituted derivative of this system (R = H)137 

and the hexamethyl analogue (R = Me) are intractable solids which could not be 

recrystallised. We, therefore, prepared the hexa-n-propyl analogue, described herein, to 

increase the solubility]. 
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s s 

OH 

A+ 
HO~OH 

R + 

Xs~SMe _c_H_3_c_N_.,.. 
R S pyridme 

( 

(69) R = n-propyl )==\ 
R R 

(70) 
Scheme 3.3 

Orange crystals of compound (70), grown from toluene solution, were suitable for 

X-ray analysis. The crystal structure of (70) is shown in Figure 3.5. The molecule is 

almost planar (with the exception of the propyl chains) with a slight deviation from D3h 

symmetry. Analysis of the bond lengths (Appendix 1.3) reveals a fascinating electron 

distribution in the neutral molecule, which is best represented by the highly-delocalised 

structure (70b). Contributing canonical structures include (70a) and (70c), and other 

structures with positive charge placed on the sulphur atoms can be drawn. The central 

ring, which has pronounced benzenoid character, can be considered to be covalently 

embedded within a 24 1t-electron milieu. All the C-C bonds that radiate from the 

'benzene' ring are intermediate in length between single and double bonds, while the C

O distances are close to the accepted value for a carbon-oxygen double bond. The 

intramolecular s .. o separations are all in the range 2.57-2.60 A, which is considerably 

shorter than the sum of their Vander Waals radii (3.25 A), indicating significant s .. o .. s 

bonding interactions in the structure. The peripheral C-C distances within the 1,3-

dithiole rings, e.g. C(8)-C(9), are all consistent with a normal carbon-carbon double 

bond, which implies that these 1t-electrons are not delocalised to any extent. 
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ct33J 

Figure 3.5 - Molecular structure of compound (70) viewed along the nollilal to the 

central C6 ring (above) and viewed along the plane of the molecule (below). 
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s s 
)=( 

R R 
(70a) 

R = n-propyl 

(70d) 

The electrochemical behaviour of compound (70) has been studied by cyclic 

voltammetry [vs. Ag/AgCl, Pt electrode. The values ofEtox, E2°x and Etred quoted are 

calculated by averaging the anodic and cathodic potentials {i.e. E = (Epa + EpC)/2). For 

E3°x, where the reduction process is not observed on the return sweep, the value quoted 

is for Ep0 x ]. These experiments required rigorous exclusion of oxygen, water and other 

protic impurities. A variety of solvents were investigated and the best quality data were 

obtained in propionitrile solution at low temperatures ( < QOC), where four-stage 

amphoteric behaviour is observed (Figure 3.6). Compound (70) can be oxidised in 

three, successive, one-electron transfer steps: E1ox (i.e. the formation of the radical 

cation) and E2°x (i.e. the formation of the dication) occur at+ 0.65 V and+ 0.80 V, 

respectively, and both are reversible-processes within the scan range 0.0 to + 1.1 V. If a -r~ 

higher potential range is scanned, a third irreversible oxidation is seen at + 1.25 V and 
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E 2ox now becomes irreversible. The oxidised redox stages will, presumably, be 

stabilised by the involvement of 61t dithiolium cations, e.g. canonical strucrure (70d)+·. 

The 7t electrons of the peripheral C=C double bonds would be delocalised in this 

structure, which contrasts with their localisation in the neutral system (X -ray data 

discussed above). The difference,~. between Et0 x and E2°x (0.15 V) is significantly 

less than that between E2ox and E3°x (0.45 V); this is a reflection of increased 

Coulombic repulsion in the trication. 

-c • ... ... 
:I 
u 

1·5 1·0 0·5 0 -0·5 -1·0 

E/V 

Figure 3.6 - Cyclic voltammograms of compound (70) 

One reductive wave was observed for compound (70) at Efed = -0.51 V, which 

corresponds to the formation of the radical anion (70t·. Controlled potential coulometry 

confirmed this to be a single electron process. This is a reversible wave, but further 

reduction could not be clearly identified, even upon sweeping to -2.5 V. The negative 

charge in reduced states of (70), will, presumably, be localised predominantly on the 

oxygen atoms and it seems that their close proximity inhibits dianion formation. The 

oxidation of compound (70) is reminiscent of 2,4,6-( 4,5-dimethyl-1 ,3-dithiole-2-

ylidene)-1,3,5-trithiane, which also forms a trication in electrochemical experiments97, 

and hexalds-(1,3-dithiole-2-ylidene)-cyclohexane derivatives which display three 

oxidation waves leading to a tetracationl3B: however, neither of these systems undergoes 

eleCtrOchemical reduction. U nfonunately, due probably to a combination of steric 
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hindrance and the fact that canonical form (70c) contributes significantly to the structure 

of (70), experiments to thionate the ketone functionality with phoshorus pentasulphide or 

hydrogen sulphide were unsuccessful. We were also unable to chemically generate 

TCNQ salts of this system. 

In conclusion, compound (70) has been shown by X -ray analysis to comprise a 

highly-delocalised 7t-electron system, and four-stage, amphoteric, redox behaviour has 

been observed. The value ofEtsum (viz. 1.16 V) is low by comparison with most other 

closed-shell organic compounds. 

3.6.2 Synthesis of 4.5-Ethylenedithio-4'.5'-di-n-propyl-2.2'-ethanediylidene-bisC1.3-

dithiole) 006) 

Compound (69) can be taken through the series of reactions outlined in Scheme 3.4 

(see also Chapter 2) to obtain the phosphonate ester· (105). 

n-Prxs + n-Prxs H (i) AI;OAc n-PrxS+ 
I }-sMe -~-t0-:-4·__,.~ I X (ii)HBF4.... I }-H 

n-Pr S I- n-Pr S SMe n-Pr S BF
4

-

(69) (104) (90) 

(MeO)JP. I Nal, 

CH:JCN ' 

s s 0 

n-Prxs,- .t==<S:(g) .. (i)n-BuLi,THF n-Prxsx~(OMe), 
n-Pr S)=/ • (u) CSXs~-Pr S H 

oo6) I - (105) 
s s (66f) -o 

Scheme 3.4 

If treated with butyl lithium this Wittig-Bomer reagent can then be reacted with an 
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aldehyde such as compound (66f) to synthesise another vinylogous TIF derivative, 

compound (106). This was attempted in order to obtain a crystalline vinylogue for X-ray 

analysis. Although crystallinity was not the case here, a crystalline derivative was 

obtained with compound (54) (Chapter Two). 
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CHAPTER FOUR 

THE SYNTHESIS AND PROPERTIES OF MULTI-
1,3-DITHIOLE DENDRALENE SYSTEMS 
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4.1 INTRODUCTION 

In the continued quest for multi-dimensional organic metals with high electrical 

conductivity many structural variations on the TIF framework have been made. Chapter 

Two dealt with the separation of the two 1,3-dithiole rings by a carbon-carbon (both sp2 

hybridised) spacer unit and the attachment of peripheral chalcogen atoms. Chapter Three 

involved the synthesis of some novel tris-(1,3-dithiole) systems, and here we are 

concerned with the synthesis of a series of conjugated, multi-1 ,3-dithiole, multi

chalcogen, 1t -electron donors, (109)-(112), (119) and (120). These compounds are 

tricyclic and tetracyclic derivatives of the dendralene family of hydrocarbons. 

(Dendralenes are acyclic and cyclic cross-conjugated polyolefins derived from 3-

methylene-1 ,4-pentadiene, relatively little being known about such substituted or 

unsubstituted derivatives of this system. For a comprehensive review of dendralenes see 

reference 147). The tetrakis-(1,3-dithiole) derivatives (119) and (120) presented here are 

effectively dimers (minus two hydrogen atoms) of the vinylogues synthesised in Chapter 

Two. 

S R' 

R.Jt SXR' 
I - S R" 

R S 

SXR" 
(109) R =Me 
(110) R ·= R' = Me, R"-R" = SCH2CH2S 
(111) R = Me, R'-R' = R"-R" = SCH2CH2S 
(112) R = R' = R" = SMe 
(113) R = R' = R" = C02Me 
(114) R-R = R'-R' = R"-R" = (CH=CHh 
(115) R = R' = R" = H 

S R' 

SXR' 
S R' -x S R' 

(119) R =Me, R'-R' = SCH2CH2S 
(120) R = R' = SMe 

Yoshida et a[.I40 have attempted the synthesis of 1,3-dithiole-[3]-radialene and 1,3-

dithiole-[4]-radialene, for which purpose they synthesised the derivatives (113)-(115). 

However, these derivatives contained substituents (-C(hMe, -benzo and -H) which are 
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relatively unimportant in terms of being able to induce significant inter-molecular 

interactions. The synthesis of compounds (113)-(115) used the appropriately substituted 

vinylogues as starting materials (themselves involving lengthy and tricky syntheses), and 

no formation of charge-transfer salts with acceptors such as TCNQ was reported. We 

have now used a simplified and higher yielding synthesis to take us directly to the tris

(1,3-dithiole) systems (109)-(112), and have introduced peripheral chalcogen atoms in 

the hope of obtaining crystalline materials with appreciable inter-molecular interactions. 

4.2 SYNTHESIS OF MULTI-1.3-DITHIOLE DENDRALENES 

Our starting materials for the preparation of these multi-(1,3-dithiole) systems were 

the methylene-malonaldehydes (107) and (108) (Scheme 4.1). These were readily 

obtained by reacting the sodium salt of malonaldehyde with the 2-methylthio-1,3-

dithiolium salts (61c) and (61d) in acetonitrile (following the literature procedure outlined 

by Gompper et a/113). Wittig-Homer reactions with the appropriate phosphonate esters 

(67) yielded the tris-(1,3-dithiole) derivatives (109), (111) and (112) in high yield 

(Scheme 4.1). 

RXS I -
R S 

S R' -X S · R' 

(121) R = R' = Me 
(122) R = R' = SMe 

MeXs 
I -

Me S 

(110) 

Reactions of dialdehydes (107) and (108) with only one equivalent of Wittig-Homer 

reagent [during the reactions to make (109) and (112)] yielded the formyl-substituted 

vinylogues (121) and (122) in 28% and 30% yields, respectively. This allowed the 

synthesis of tris-(1,3-dithiole) derivatives containing dithiole rings with differing 

functionality, for example donor (110) which was obtained from (121) in 65% yield. 
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To introduce a formyl group to compounds (109), (111) and (112) we adopted 

Yoshida's method140 of using a Vilsmeyer reaction. This involves formation of the 

R -+ 

Xs}-sMe + ~ONa• 
R. s x· o 

(61c) R =Me, X= I 
(61d) R = SMe, X= BF4 

_M_eCN_~RxS >=(
0 

R S O 

(107) R =Me 
(108) R = SMe 

(67), n-BuLi , 

S R' (i) (COClh I DMF 

SXR' R"IIS 

R...Jl_S 

(116) R = R' =Me 
(117) R = Me, R'-R'-= SCH2CH2S 
(118) R = R' = SMe 

[ M~~CHCI ] R I'( S 

(ii) NaOH (aq) R ~ S S R' -x S R' 

(109) R = R' = Me 
(111) R = Me, R'-R' = SCH2CH2S 
(112) R = R' = SMe 

S R' -x 
S- R' 

(119) R =Me, R'-R' = SCH2CH2S 
(120) R = R' = SMe 

R"IIS 

R...Jl_s S R' 

SXR' R"IIS 

R...Jl_S 

Scheme 4.1 

very reactive electrophile Me2NCHCl+ by reacting oxalyl chloride with dimethyl 

formamide (DMF). Attack of this electrophile on one of the electron rich, exocyclic, 

carbon-carbon double bonds of the tris-(dithiole), followed by basic hydrolysis, affords 

the required aldehydes (116)-(118) in ca. SO% yield (Scheme 4.1). 
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A funher Wittig-Homer reaction on the aldehydes (117) and (118) afforded the [4]

dendralene derivatives ( 119) and ( 120) in ca. 60% yield. In the case of aldehyde ( 116) 

the expected tetrakis-(1,3-dithiole) derivative was not obtaine4. Instead product (123), 

arising from attack of butyl lithium on the carbonyl group of (116), was isolated. The 

coupling constant of the protons of the double bond of the pendant chain (JHH =15Hz) 

are indicative of a trans configuration. (With hindsight it is obvious that the use of LDA 

as a base would have prevented this). 

MeXs 
I -Me S 

n-Pr 
(123) 

SXMe . I 
S Me 

4.3 X-RAY CRYSTAL STRUCIVRE OF DONOR 009) 

The hexamethyl-substituted tris-(1,3-dithiole) derivative (109) formed X-ray quality 

crystals on vacuum sublimation at 22o·c. 

Figure 4.1- X-Ray crystal strUcture of compound (109) 
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It is interesting to note that two of the dithiole rings of (109) are coplanar [cf. 

vinylogue (52)], with the third dithiole ring adopting an orientation almost perpendicular 

(78.2") to the plane of the other two rings (Figure 4.1 ). Unfortunately, this non-planar 

structure inhibits any significant intermolecular interactions and prevents the formation of 

ordered stacks in the crystal lattice. 

4.4 REDOX BEHAVIOUR AND C-T SALT FORMATION OF 

DONORS C1 09)-012). 019)-{120). 029) AND 030 

Cyclic voltammograms of tris-1,3-dithiole compounds (109)- (112) were obtained 

to observe their redox behaviour (Table 4.1 ). All exhibited three pairs of reversible 

waves, each of which corresponds to a one-electron transfer. Tetrakis-1,3-dithiole 

compounds (119) and (120) also exhibited three pairs of reversible waves, but for these 

compounds the first two waves each corresponded to one-electron transfer whilst the 

third wave corresp<Ulded to two-electron transfer (Table 4.1 ). 

OONOR Etll2mva E2112mva E3112mva VCN/cm·1 c:Jrtb/Scm·l 

(109) 84 327 1246 2180 < I0-8 

(110) 168 411 1221 2180 < lQ-8 

(111) 245 470 1244 no complex -
(112) 360 490 1195 no complex -

(119) 227 393 807 2180 2 X lQ-6 

(120) 258 366 687 no complex -

(129) 350 510 1207 2185 1 X lQ-7 

(131) 306 506 1180 - -

Table 4.1- Redox behaviour for multi-1,3-dithiole systems and IR and 

conductivity data of their TCNQ salts. 

a vs AgiAgCI, Pt electrode, b compressed pellet 
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The donors (109), (110) and (119) all formed C-T salts when boiling solutions of 

donor and TCNQ in dry acetonitrile were mixed together, as was indicated by the 

immediate formation of a dark green/blue solution. Furthermore, upon evaporation of the 

solution to a resulting black solid, charge transfer from donor to TCNQ was confmned 

by the characteristic IR absorption (in nujol mull) of the TCNQ radical anion at 2180 

cm-1. However, these amorphous black powders were of irreproducible elemental 

analysis and recrystallisation did not enhance the purity. This suggests the possibility 

that a number of different complexes of varying stoichiometry formed simultaneously, as 

is known to occur in a number of other donor-acceptor systems141. 

The frrst donor we synthesised in this series was compound (109) and the CV 

showed that the first oxidation occurred at + 0.08V. This very low value for Etl/2 

indicates that compound (109) is an exceptionally good donor. The consequence of this 

low oxidation potential is that in the complex obtained with TCNQ there is complete 

charge-transfer from donor to acceptor (VCN = 2180 cm-1) and an insulating material is 

obtained. (Partial charge-transfer is required for an organic conductor - see Chapter 

One). We, thus, aimed to reduce the donating ability of these materials which was 

achieved by the replacement of methyl groups by methylthio and ethylenedithio groups 

on the dithiole rings (these act as electron-withdrawing groups, destabilising the radical

cation formed on oxidation). The frrst and second oxidation potentials of (110), (111) 

and (112) were raised, relative to (109), but, unfortunately, a complex of donor (110) 

with TCNQ was again an insulating salt with complete charge-transfer, and donors (111) 

and (112) did not form a complex at all! 

With donor (119) the two 4,5-dimethyl substituted dithiole rings again underwent 

oxidation very easily (as shown by the low oxidation potentials E 11/2 and E21/2) 

resulting in a charge transfer complex with near complete charge transfer and low 

conductivity. Donor (120) was thus synthesised and the frrst oxidation potential was 

raised by 42 mV. Again, however, no complex was formed with TCNQ. It seems, 

therefore, that subtle steric effects in the dithiole system determine whether or not 

complexes are formed with TCNQ. 
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Aldehydes (116)-(118), (121) and (122) are potentially interesting reagents for 

MCMurray-type coupling reactions leading to multi-1,3-dithiole systems such as (124). 

MeS--rS 

Mes.-Jl.s 

MeSXS I -
MeS S 

SXSMe - I 
S SMe 

(124) 

A MCMurray reaction on compound (122) was tried using TiCl3(monoglyme)1.5 I 

Zn-Cu142 and no coupled product was observed. The only isolated product was the 
. 

alcohol resulting from reduction of the aldehyde. The use of different MCMurray 

reagents is a possibility for future work. 

4.5 THE SYNTHESIS OF TELLURIUM SUBSTITUTED 1.3-

DITHIOLE SYSTEMS 

The presence of tellurium atoms in the donor framework is generally advantageous 

for the formation of inter- and intra- stack molecular interactions (see Chapter One). The 

synthesis of tetra(methyltelluro)-TI'F was reported in 1985, involving tetralithiation of 

TI'F followed by the insertion of elemental tellurium and then reaction with methyl 

iodidel43. 

Following this same procedure, using vinylene trithiocarbonate (59) instead ofTI'F, 

we succeeded in synthesising 4,5-bis(methyltelluro)-1,3-dithiole-2-thione (126), albeit 

in poor yield (ca. 10%) (Scheme 4.2). We were unable to form the 4,5-ethyleneditelluro-

1,3-dithiole-2-thione species on addition of dibromomethane to the ditellurate anion 

(125), isolating only black, intractable prOducts. Methylation of thione (126) with 

71 



dimethyl sulphate at 70"C yielded salt (127) as a black oil which was reacted, without 

isolation, with the sodium salt of malonaldehyde affording the dialdehyde (128) in 22% 

yield. This in turn underwent a double Wittig-Horner reaction (as for previous 

compounds, Scheme 4.1) to form the mixed tellurium I sulphur-substituted tris-1,3-

dithiole derivative (129) (49% yield). 

s 2BuLi LiXs 
I }=s ... I }=s 
I[S 2 (i-Pr),NH Li S 

2 Te • LiTexs}=s 

LiTe S 
(59) (125) 

2.5eq.Mel I 
MeTexs;_sMe ~-<_i>_n_MS ___ MeTeXs>=s 

S (ii) Et20, HBF 4 S 
MeTe BF - MeTe 

(127) 
4 

(126) 

(68d). MeTeXs 
-THF-.---78-°C-~ I -

MeTe S 

(128) (129) 

Scheme 4.2 

A second tellurium containing tris(l,3-dithiole) derivative (131) was formed from 

Wittig-Horner reactions on dialdehyde (130). Compound (130) had itself been isolated 

in low yield during the preparation of dialdehyde (128), presumably due to the batch of 

thione (126) being contaminated with the mono-telluromethyl substituted thione. The 

cyclic voltammograms of donors (129) and (131) are similar to the other tris(1,3- -~ 

dithioles), exhibiting three reversible one-electron oxidations (Table 4.1). 
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(130) (131) 

Although these two interesting new tellurium containing donors (129) and (131) 

were synthesised, the very poor yields precluded any further reactions to make [ 4]

dendralene derivatives. The complex of donor (129) with TCNQ has a room temperature 

compressed pellet conductivity of CJn = 1Q-7 Sem-I. 

In conclusion, a series of [3]- and [4]-dendralenes with a variety of substituents in 

the 4,5-positions have successfully been synthesised, continuing the use of Wittig

Bomer methodology from Chapters Two and Three. The crystal structure of the tricyclic 

[3]-dendralene (109) h~s been solved, showing a twisted structure, and compounds 

(119) and (129) were found to form semi-conducting charge-transfer complexes with 

TCNQ. 
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CHAPTER FIVE 

ANTHRAQUINODIMETHANE DERIVATIVES OF 
TETRATHD\FULVALENE 
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5.1 INTRODUCTION 

Tetrathiafulvalene derivatives that consist of two heterocyclic rings that are separated 

by, and conjugated through, quinodimethane groups72,90a.144 are currently of interest 

because of their novel redox chemistry which is relevant to the development of new 

organic metals and organic superconductors81. Such extended conjugation has the effect 

of considerably reducing the intra-molecular Coulombic repulsion between cations 

localised in the two dithiole rings, hence stabilising the dication state in a similar manner 

to the bis(1,3-dithiole) vinylogues discussed in Chapter Two. Donors must have this 

ability to support a stable dication, otherwise "only a correlated type of conductivity is 

possible"22 in a charge-transfer complex of that donor. Such TTF analogues that are 

capable of sustaining higher oxidation states (over and above the dication state of TTF 

itself) have been identified as promising targets81 and a few examples of this are 

knownl40,145. 

R R 

)=( 
s. s 

R' 

R' 

s s 
}=={ 

R R 

(132) R = Me, R' = H 
(133) R = SMe, R' = H 
(134) R =Me, R'= n-pentyl 

0 

n-CsHtl 

Me Me 

(135) 

The anthraquinodimethane derivative (132) has been studied previously in our 

laboratory72 and that of Yamashita et az144b. The single-crystal X-ray structure of donor 

(132) shows that the neutral molecule is butterfly shaped with the central quinonoid ring 

severely distorted into a boat form. According to Cowan and Kini's design constraints 
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for the preparation of good organic conductors22, planarity is a prerequisite. This is 

obviously not the case with donor (132), but nonetheless a highly conductive 1 :4 

complex is formed with TCNQ. The dications of ( 132) present in the complex show an 

extreme deviation from planarity, with the dithiole rings almost perpendicular to the 

plane of the anthracene group146. Such interesting behaviour lead us to synthesise the 

related donors (133) and (134). 

5.2 SYNTHESIS OF COMPOUNDS 033) AND 034) 

Both anthraquinodimethane derivatives (133) and (134) were synthesised in one step 

(38% and 28% yields, respectively) from the appropriately substituted anthraquinone 

and the required phosphonate ester (67d) or (67c) in a double Wittig-Romer reaction 

(Scheme 5.1). Alongside compound (134), anthrone derivative (135) (24% yield) was 

isolated, as the result of one Wittig-Romer reaction on the anthraquinone derivative. 

RXs R 
I X + 

R S ~(OMeh 

0 

(67c)R=Me 
(67d) R= SMe 

0 

R' 

R' 

0 

R R 

)=( 
s s 

(i) .. 
s s 
)=( 

R R 

R' 

Reagents and conditions: (i) n- BuLi, 1.1 eq., 
1HF, -78°C 

(133) R = SMe, R' = R 
(134) R =Me, R'= n-pentyl 

Scheme 5.1 
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5.3 X-RAY CRYSTAL STRUCfURES OF COMPOUNDS 033) 

AND 034) 

Compound (133) furnished X -ray quality crystals from an acetonitrile I 

dichloromethane solution and the crystal structure of this neutral molecule exhibits a very 

similar conformation to compound (132), adopting the back-to-back boat orientation 

(Figure 5.1). 

Figure 5.1- Molecular structure of compound (133) solved by X-ray analysis 

The distortion of the central quinonoid ring is clearly visible in Figure 5.1. The angle 

formed by planes 1 and 2 is 30.6. and by planes 2 and 3 is 3o.s·, where plane 1 

contains C(9}, C(9a) and C(8a), plane 2 contains C(8a), C(lOa), C(9a) and C(4a) and 

plane 3 contains C(lO), C(lOa) and C(4a). In the crystal structure the methyl groups 

have a 50 % probability of being in either of the two positions indicated in Figure 5.1. 

The X-ray crystal structure of compound (134) has also been determined and there 

are two different molecules (A and B) in the unit cell, one of which has a partially 
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disordered sidechain. The strucwre of compound (134) (molecule A) is shown in Figure 

5.2. Once again the ring system is butterfly-shaped with the central quinonoid ring 

severely distoned into a boat form [to a slightly greater extent than in compound (133)]. 

The angle formed by planes 1 and 2 is 34.9. and by planes 2 and 3 is 35.o·, where plane 

1 contains C(l2), C(13) and C(19), plane 2 contains C(12), C(7), C(29) and C(19) and 

plane 3 contains C(7), C(6) and C(29). The corresponding values for molecule B are 

32.8• and 32.1•. 

C10 

Figure 5.2- Molecular structure of compound (134) solved by X-ray analysis 

5.4 REDOX BEHAVIOUR OF COMPOUNDS (133) AND C134l 

The neutral donors (132) and (133) both undergo a single, two-electron oxidation 

directly forming the dication. The cyclic voltammogram of (133) shows a reversible two-

electron oxidation at +0.45 V, being slightly harder to oxidise than donor (132), which 

loses its two electrons at +0.42 V. The extreme insolubility of the dication salts of (132) 
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produced either electroehemically72.144b or chemically72.146, however, prevents any 

further examination of this interesting redox system, hence our synthesis of donor ( 134 ). 

Due to the two pentyl sidechains, the solubility of compound (134) is markedly 

increased compared to compounds (132) and (133) and this allows us to observe, for the 

frrst time, the +3 and +4 oxidation states in a quinodimethane derivative of ITF. 

Compound (134) is structurally quite distinct from other ITF analogues which afford 

high(> +2) oxidation states (e.g. those considered in Chapter 4) because they consist of 

multiple 1,3-dithiole rings which are themselves the sites of oxidation. For compound 

(134) the first two oxidations involve the two dithiole rings whilst the third and fourth 

oxidations involve the linking group. 

0·800 

O·,OO 

-0·400 

I 
I , 

.:-, : I 

\'j ,' ·,. ' , ' , \ I 
\ I 
\, 

t = -70°C 
t = -20°C 
t = +20°C 

-0·,00 0·000 0·400 0·800 1·200 1·600 2·000 2·,00 
E/V 

Figure 5.3- Cyclic voltammograms of neutral donor (134) at various 

temperatures, Pt electrode vs. Ag/AgO in CH202, electrolyte B\14NPF6 

The oxidation of compound (134) has been studied by cyclic voltammetty in three 

different solvents (dichloromethane, acetonitrile and propylene carbonate) under 
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rigorously anhydrous conditions. Dichloromethane solutions provided the most 

informative results, and the greatly increased solubility of compound (134) over 

compounds (132) and (133) has allowed data to be obtained at low temperatures. At 

-70"C three distinct oxidation steps are clearly observed (Figure 5.3). The first redox 

wave (Eox = + 0.28 V) is a quasi-reversible, two-electron transfer to yield the dication 

species (134)2+ and is directly analogous to that described previously for donor (132) at 

20"C72,144b. Subsequently, there are two further, sequential, one-electron oxidations of 

the anthracene system of (134)2+ which were not observed for (132)2+. These afford the 

novel trication and tetracation species of (134). The ftrst anthracene oxidation (E3l/2 = + 

1.64 V) is cleanly reversible, whereas the second anthracene oxidation (E4l/2 = ca.+2.2 

V) is at the limit of the solvent "window" and is thus irreversible. 

R R 

)=( 
s s 

R' 

R' 

s s 
)==( 

R R 

(132) R = Me, R' = H 
(133) R = SMe, R' = H 
(134) R =Me, R'= n-pentyl 

- 2e ,..,. 
+2e 

R R 

)=( 
S .. +,S 

ow 

..... 
s·+'"S 

)==\ 
R R 

R' 

R' 

(132)2+ R =Me, R' = H 

(133)2+ R = SMe, R' = H 

(134)2
+ R = Me, R'= n-pentyl 

The first two-electron step for system ( 134) has been examined under various 

conditions in an attempt to determine experimentally the interaction energy between the 

radical cation and dication states. However, even at -80"C and different scan rates 

ranging from 20 m V - 50 m V sec-1, there is still only one single oxidation peak. 

Simulation of the cyclic voltammogram obtained at -80"C and 100 mVsec-1 provides an 

interaction energy for E 1 and E2 of < 50 m V. The potential of the first oxidation peak is 
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temperature independent; however, the reduction peak of dication (134)2+ ~ neurral 

(134) in the back sweep is shifted progressively to more negative potentials with 

decreasing temperature (Figure 5.3). This is undoubtedly a reflection of the aromaticity 

of the newly-formed anthracene system, together with the additional stabilisation within 

the 61t, 1 ,3-dithiolium rings, at the dication redox stage (134 )2+. The marked 

conformational change that must occur on reduction [planar anthracene ( 134 )2+ ~ 

buckled anthraquinodimethane (134)] accounts for the temperature dependance and the 

irreversibility of this step. 

5.5 CHARGE-TRANSFER COMPLEX FORMATION OF DONORS 

033) AND 034) 

Unfortunately, when a boiling solution of compound (133) (in either 

dichloromethane or acetonitrile) was mixed with a boiling solution of TCNQ no 

formation of a cha.Pge-transfer complex was observed. Donor (134), similarly to donor 

(132), was found to form a 1:4 complex with TCNQ. This was isolated as a black 

powder from acetonitrile solution, and a two-probe, compressed-pellet conductivity 

measurement showed this complex to be a semi-conductor, Ort = 1 x 1Q-4 Scm·l, 

containing anionic TCNQ (Vmax = 2180 cm·l). 

In conclusion, multistage redox behaviour, leading to a tetracation species, albeit at 

high potential, has been observed in the new TTF-derived donor (134), the X-ray 

structure of which has been determined. In contrast to previously studied systems, 

oxidation occurs at the dithiole rings and at the central linking group. These results open 

the way for the synthesis of new systems with novel redox chemistry, for example 

bianthrone analogues which may exhibit six oxidations to yield the hexacation species. 
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CHAPTER SIX 

EXPERIMENTAL 
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6.1 GENERAL METHODS 

Melting points were recorded on a Kofler hot-stage microscope and are uncorrected. 

Infra-red spectra were recorded on Perkin-Elmer 377 and 577 spectrophotometers; 

samples were either embedded in KBr discs, nujol mulls or neat (if liquid). 

Proton NMR and carbon-13 NMR were recorded on a Broker AC 250 instrument, 

operating at 250.133 MHz for protons and 62.896 MHz for the carbon nucleus. 

Chemical shifts, given in ppm, are relative to tetramethylsilane (TMS) as an internal 

standard. 

Mass spectra were obtained on a VG 7070E spectrometer operating at 70 eV, with 

ionisation modes as indicated. All selenium-containing mass peaks are reponed for the 

BOse isotope and all telurium-containing mass peaks are reponed for the 128Te isotope. 

Elemental analyses were performed on either a Carlo-Erba Strumentazione (C, H, N) 

or a Perkin-Elmer HGA 500 (S) instrument. 

TLC data were·obtained using Merck pre-coated alumina (0.2 mm) or Merck pre

coated silica (0.2 mm) aluminium backed sheets. For column chromatography, Merck 

alumina (activity II to III, 70-230 mesh) or Merck silica gel (70-230 mesh) were 

employed as indicated. Neutral alumina refers to alumina pre-soaked in ethyl acetate 

overnight. All solvents were distilled prior to use in chromatography. 

Solvents were dried from the-following agents under-a nitrogen atmosphere: diethyl 

ether, THF, and toluene (sodium metal); chlorocarbons (P205); acetonitrile (CaH2); 

methanol (magnesium methoxide) and ethanol (magnesium ethoxide). All other reagents 

were reagent grade and used as supplied, unless otherwise stated. 

Cyclic voltammetry (CV) experiments were performed in a one-companment cell 

with platinum working and counter electrodes and a silver I silver chloride reference 

electrode. Measurements were made with a BAS 100 electrochemical analyser and were 

i.r. compensated. The cell contained a solution of donor (ca. 1 x I0-5 M) with oven dried 

(120.C) tetrabutylammonium hexafluorophosphate (0.01 M) as the supporting 

electrolyte in either dry dichloromethane or dry acetonitrile (ca. 10 ml); all solutions were 
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purged with argon and retained under an inen atmosphere while the CV data were 

recorded. 

Conductivity measurements on powdered samples were obtained using the two

probe technique; samples were manually compressed between two steel probes and the 

sample resistance measured with a Fluka 8000A Digital Multimeter. 

Bulk magnetic susceptibility data were obtained using a Faraday balance. 

All solid compounds prepared were recrystallised from dichloromethane/hexane 

mixtures unless otherwise stated. 

6.2 EXPERIMENTAL TO CHAPTER TWO 

6.2.1 Materials 

General details are the same as those reponed recently 82a,84-86. 

4,5-(Ethylenediseleno )-1,3-dithiole-2-thione ( 60b) was prepared according 

to the literature procedure91 from vinylene trithiocarbonate (1,3-dithiole-2-thione), 

selenium and dibromoethane (55 % yield). Mpt. 155-156·c (lit.91 156-157.C). 

2-Dimethoxyphosphoryl-4,5-dimethyl-1,3-ditbiole (67c) was prepared in 

four steps from 4,5-dimethyl-1,3-dithiole-2-thione (60c)24 following the literature 

procedure (ca.10% yield)85c,57, 

2-Dimethoxyphosphoryl-4,5-bis(methylthio)-1,3-dithiole (67d) was 

prepared in four steps from 4,5-bis(methylthio)-1,3-dithiole-2-thione (60d)92 following 

the literature procedure (ca.15% yield)88, 

6.2.2.1 4,5-Bis(methylseleno )-1,3-dithiole-2-thione ( 60a) 

This material has been mentioned previously but neither synthetic details nor 

characterisation data were given94. Details for (60a) are, therefore, presented here. 

1,3-Dithiole-2-thione (vinylene trithiocarbonate) (2.0 g, 15 mmol) was lithiated and 

reacted with elemental selenium in THF as described previously94, To the resulting 

diselenate at o·c was added methyl iodide (6.0 g, 45 mmol) and the solution was 

allowed to warm to 2o·c with stirring which was maintained for 12 h. The mixture was 
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diluted with water and extracted into dichloromethane. The organic layer was separated, 

dried (MgS04) and evaporated to yield a red oil. Purification on a silica column [eluent 

hexane/dichloromethane (3:1 v/v)] yielded compound (60a) which after 

recrystallisation from dichloromethane/hexane was obtained as orange needles ( 1.44 g, 

30%). M.Pt.: 100-101·c; MS: rn/e (EI) 322 (M+), (CI) 323 (M++1); OH(CDCIJ) = 

2.41(s) ppm.; Anal.: Calcd. for CsH6S3Se2: C, 18.7; H, 1.89; S, 30.0 %. Found: 

C, 18.6; H, 1.80; S, 30.1 %. 

6.2.2.2 2-Methylthio-4,5-bis(methylseleno )-1,3-dithiole ( 62a) 

A suspension of compound (60a) (1.0 g; 3.1 mmol) in dimethyl sulphate (5 ml) was 

heated at 7o·c under nitrogen until dissolution was complete (ca. 1 h). The mixture was 

cooled to 200C and tetrafluoroboric acid (0.6 mL, 3.3 mmol) was added dropwise, 

followed by dry ether (100 ml). The resulting yellow precipitate was collected, washed 

with dry ether and dried. Salt (61a) (1.21 g, 96%) thus obtained was identified by 

NMR spectroscopy [OH(CDClJ) = 3.24 (3H, s), 2.68 (6H, s) ppm.] and then used 

directly in the next step. To a solution of salt (6la) (1.21 g, 2.9 mmol) in a mixture of 

acetonitrile (30 ml) and ethanol (30 ml) was added sodium borohydride (0.15 g, 3.9 

mmol) turning the solution from yellow to colourless. After stirring for 1 h at 2o·c. the 

solvent was evaporated and the residue extracted into dichloromethane, which was 

washed with water and dried (MgS04). Evaporation of the organic phase yielded an oil 

which was purified by chromatography on a silica column (eluent: 

hexane/dichloromethane, 2:1 v/v) to yield thioether (62a) as a red oil (0.75 g, 78%). 

MS: rn/e (EI) 338 (M+), (CI) 339 (M++1); OH(CDC}J) = 5.90 (lH, s), 2.29 (6H, s) and 

2.21 (3H, s) ppm. 

6.2.2.3 2-Methylthio-5,6-dihydro-1,3-dithiolo[ 4,5-b] [1,4 ]diselenin 

(62b) 

This was prepared from compound (60b) (1.0 g, 3.1 mmol) following the procedure 

described for compound (62a) (Chapter 6.2.2.2) and isolated by column 

chromatography on silica gel (eluent hexane: dichloromethane 1:1 v/v) as a red oil (0.80 
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g, 83%). MS: m/e (EI) 336 (M+), (CI) 337 (M++l); OH(CDCl3) = 5.86 (lH, s), 3.30 

(4H, m) and 2.22 (3H, s) ppm. 

6.2.2.4 2-Formylmethylene-4,5-bis(methylseleno)-1,3-dithiole (66a) 

Diethyl ether-tetrafluoroboric acid (0.4 ml, 2.78 mmol) was added dropwise over 15 

min to a stirred solution of compound (62a) (0.75 g, 2.23 mmol) in a mixture of acetic 

anhydride (5 mL) and ether (20 ml) at o·c under nitrogen. After stirring for a further 15 

min, ether (100 ml) was added and the white solid which had precipitated was removed 

by filtration, washed with ether and dried. The air- and moisture- sensitive salt (63a) 

(0.75 g, 89%) thus obtained was used directly in the next step. 

Dithiolium salt (63a) (0.75 g, 2.00 mmol) was dissolved in dry acetonitrile (50 ml) 

under nitrogen, to-which was added triphenylphosphine (0.53 g, 2.02 mmol). After 0.5 

hat 20"C, excess glyoxal (10 ml, 40% solution in water) was added, followed by excess 

triethylamine (ca. 5 ml) and stirring was then continued at 2o·c for 3 h. The solvent was 

then removed in vacuo and the residue extracted into dichloromethane, which was then 

washed with water. The organic layer was dried (MgS04) and evaporated to yield a 

viscous oil which was purified by chromatography on a silica column (eluent initially 

hexane/dichloromethane, 1:1 v/v, followed by neat dichloromethane) to afford 

compound (66a) as a viscous yellow oil (0.47 g, 71 %). MS: m/e (EI) 332 (M+), 

(CI) 333 (M++ 1); OH(CDC}J) = 9.27 (lH, d, J = 1.8 Hz), 6.59 (lH, d, J = 1.8 Hz), 

2.44 (3H, s), 2.38 (3H, s) ppm. 

6.2.2.5 2-Formylmethylene-5,6-dihydro-1,3-dithiolo[ 4,5- b 1 [ 1,4 1· 

diselenin (66b) 

This was prepared analogously to compound (66a) (Chapter 6.2.2.4) from 

compound (62b) (0.80 g) and isolated as a yellow solid (0.55 g, 78%). M.Pt: 102-

104·c; MS: m/e (EI) 330 (M+), (CI) 331 (M++l); 0H(CDC13) = 9.36 (lH, d, J = 1.5 

Hz), 6.68 (lH, d, J = 1.5 Hz), 3.40 (4H, s) ppm.; Anal.: Calcd. for C1H60S2Se2: C, 

25.6; H, 1.84 %. Found: C, 25.5; H, 1.90 %. 
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6.2.2.6 2-Dimethoxyphosphoryl-4,5-bis(methylseleno )·1 ,3-di th iole 

(67a) 

A mixture of dithiolium salt (63a) (0.45 g, 1.20 mmol), nimethylphosphite (0.15 g, 

1.21 mmol) and sodium iodide (0.18 g, 1.2 mmol) in dry acetoninile (50 ml) was stirred 

at 20"C overnight under dry nitrogen. The solvent was evaporated and the residue 

extracted into dichloromethane which was washed with water, the organic layer was then 

dried (MgS04) and the solvent removed. The resulting oil was passed down a neutral 

alumina column eluting with hexane:dichloromethane (1:1 v/v) to yield compound 

(67a) as a red oil (0.38 g, 80%). 5H(CDCI)) = 4.81 (IH, d, J = 4.4 Hz), 3.88 (6H, d, 

J = 11.0 Hz), 2.34 (6H, s) ppm. 

6.2.2. 7 2-Dimetboxypbospboryl-5,6-dibydro-1,3-dithiolo[ 4,5- b] [1,4]-

diselenin (67b) 

This was prepared analogously to compound (67a) (Chapter 6.2.2.6) from salt (63b) 

(0.50 g). Recrystallisation from dichloromethane/hexane gave compound (67b) as a 

white solid, which rapidly turned black on exposure to air (0.31 g, 59%). M.Pt 100-

102"C; MS: m/e (EI) 398 (M+), (CI) 399 (M++l); 5H(CDC13) = 4.83 (IH, d, J = 6.2 

Hz), 3.86 (6H, d, J = 10.6 Hz), 3.30 (4H, m) ppm.; Anal.: Calcd. for C7Hu03PS2 

Se2: C, 21.2; H, 2.80 %. Found: C, 21.8; H, 2.83 %. 

6.2.2.8 Vinylogous TTF Derivatives (54)·(58) General Procedure 

A solution of phosphonate ester (67) (1.0 mmol) in dry tetrahydrofuran (THF) (30 

mL) was cooled to -78"C under nitrogen and treated with n-butyllithium (1.6 M, 1.1 

mmol) causing an immediate colour change from red to yellow. After 0.5 h, a solution of 

aldehyde (66) (0.9 mmol) in THF (10 ml) was added by syringe into the reaction 

mixture which was allowed to warm to 20"C over 16 h. The solvent was then 

evaporated, and the residue dissolved in dichloromethane (50 ml) which was washed 

with water, dried (MgS04) and evaporated to yield the crude product which was purified 

by elution through an alumina column (eluent hexane-dichloromethane ca. 2:1 v/v). The 

product was recrystallised from hexane-dichloromethane. 
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6.2.2.9 4,5aBis(methylseleno )-4 1 ,5 1-bis(methylthio )·2,2 1 -ethane-

diylidenebis(1,3-dithiole) (54) 

This was obtained from ester (67d)88 and aldehyde (66a) and isolated as large orange 

plates in 76% yield. M.Pt: 120-122"C; MS: m/e 510 (M+); SH(CDCl3) = 5.76 (2H, s), 

2.40 (3H, s), 2.39 (3H, s), 2.31 (3H, s), 2.30 (3H, s) ppm.; Anal.: Calcd. for 

Ct2H14S6Se2: C, 28.3; H, 2.77 %. Found: C, 28.4; H, 2.78 %. 

6.2.2.10 4,4 1 ,5,5 1-Tetrakis(methylseleno)-2,2 1-ethanediylidenebis(1,3-

dithole) (55) 

This was obtained from ester (67a) and aldehyde (66a) and isolated as a orange solid in 

58% yield. M.Pt: 132-134"C; MS: m/e 605 (M+); SH(CDC}J) = 5.78 (2H, s), 2.32 

(12H, m) ppm.; Anal.: Calcd. for C12H14S4Se4: C, 23.9; H, 2.34 %. Found: C, 

23.8; H, 2.40 %. 

6.2.2.11 4,5-Ethylenediseleno-4' ,5 1 -dimethyl-2,2 1 -et hanediylidene-

bis(1,3-dithiole) (56) 

This was obtained from ester (67c)95 and aldehyde (66b) and isolated as a yellow solid 

in 62% yield. M.Pt: 198-20CtC; MS: m/e (EI) 444, (CI) 445 (M++ 1); SH(CDCl3) = 

5.80 (2H, dd), 3.33 (4H, s), 1.90 (3H,. s), 1.89 (3H, s) ppm.; Anal.: Calcd. for 

C12H12S4Se2: C, 32.6; H, 2.73 %. Found: C, 32.8; H, 2.75 %. 

6.2.2.12 4,5-Ethylenediseleno-4 1 ,5' • bis(methylseleno )-2,2 1 -ethane-

diylidenebis(1,3-dithiole) (57) 

This was obtained from ester (67a) and aldehyde (66b) and isolated as an orange 

solid in 65% yield. M.Pt: 123-125"C; MS: m/e 604 (M+); SH(CDC}J) = 5.81 (2H, s), 

3.33 (4H, s), 2.31 (3H, s), 2.30 (3H, s); Anal.: Calc. for Ct2H12S4Se4: C, 24.0; H, 

2.01 %. Found: C, 23.8; H, 1.94 %. 
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6.2.2.13 4,5-Ethylenediseleno-4 ',5' -ethylenediseleno-2,2' -ethane-

diylidenebis(1,3-dithiole) (58) 

This was obtained from ester (67b) and aldehyde (66b) and isolated as a yellow solid 

in 55% yield. M.Pt: > 340"C after recrystallisation from carbon disulphide I methanol; 

OH(CS2) = 5.71 (2H, s) and 3.31 (8H, s) ppm.; Anal.: Calcd. for C12H10S4Se4: C, 

24.1; H, 1.68; S, 21.4 %. Found: C, 23.9; H, 1.65; S, 21.3 %. The compound 

was too involatile to give a mass spectrum (EI, CI or DCI modes). 

Complex Formula Anal: Found Anal: Required crn I Scm·l 

(54):(TCNQ)t CWi tsN4S6Sez c. 40.5 c, 40.5 lQ-5 

H, 2.49 H, 2.55 

N, 7.87 N, 7.86 

(55):(TCNQ)t C2~1sN4S4Se4 c, 36.4 c. 35.7 lQ-2 
-

H, 2.28 H, 2.25 

N, 7.45 N, 6.95 

(56):(TCNQ)t C24H1~4S4Se2 c. 44.4 C, 44.6 lQ-5 

H, 2.30 H, 2.49 

N, 9.48 N, 8.67 

(57):(TCNQ)z C36lf2oNsS4Se4 c. 43.1 c. 42.9 lQ-6 

H, 2.04 H, 2.00 

N, 11.01 N, 11.11 

(58):(TCNQ)t C24H14N4S4Se4 c. 35.6 c. 35.9 lQ-2 

H, 1.77 H, 1.76 

N, 6.75 N, 6.98 

Table 6.1 - Analytical and Conductivity Dataa for Complexes of Donors (54)-(58) with 

TCNQ. a Two probe, compressed pellet measurement. 
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6.2.2.14 Complexes of donors (54)-(58) with 7,7 ,8,8-tetracyano-p

quinodimethane (TCNQ) 

Donors (54)-(57) were dissolved in boiling dichloromethane·[1,1,2-trichloroethane 

for donor (58)] and added to an equimolar dichloromethane solution of TCNQ. The 

resultant dark green/black solutions were refluxed for 15 min and then allowed to cool to 

room temperature. The precipitated complexes (30-50% yield) were removed by 

filtration. Data for the complexes are collated in Table 6.1. 

6.3 EXPERIMENTAL TO CHAPTER THREE 

6.3.1 Materials 

4,5-Dimethyl-2-methylthio-1,3-dithiolium iodide (61c) was prepared in 

one step from 4,5-dimethyl-1,3-dithiole-2-thione (60c)24 following the literature 

procedure (ca. 85% yield)9a. 

4,5.;Dihydro-2-methylthio-1,3-dithiolium iodide (61e) was prepared in 

one step from vinylene trithiocarbonate following the literature procedure (ca. 80 % 

yield)l49. 

2-Formylmethylene-4,5-ethylenedithio-1,3-dithiole (66f) was prepared 

in five steps from 4,5-(ethylenedithio)-1,3-dithiole-2-thione42 following the literature 

procedure (ca.70% yield)88. 

4-Hydroxyoctan-5-one was prepared according to the literature procedure 122 

from butryaldehyde in ca. 70% yield. B.Pt: 80-85 ·c. at ca. 12 mm Hg (lit. 90-92 ·c. 
at 13-14 nun Hg). 

4-Chloro-octan-5-one. This known compound was prepared in a manner 

different from that in the literaturel24. A mixture of 4-hydroxyoctan-5-one (8.8 g, 60 

mmol) and pyridine (2 ml) dissolved in dichloromethane (50 ml) was added dropwise at 
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woe over a period of 1 h to a stirred solution of thionyl chloride (4.4 ml, 70 mmol) and 

pyridine (2 ml}, dissolved in dichloromethane (250 ml). The mixture was-thenstirred at 

room temperature overnight and quenched with ice-water (100 ml). The organic layer 

was separated, washed with water (4 x 100 ml), dried (MgS04) and evaporated to leave 

a red oil (9.0 g, 90 %) which was used directly in the next step without funher 

purification. MS: rn/e 163, 165 (EI) (M+); OH(CDCl3) = 4.21 (lH, dd, J = 5.7 and 5.2 

Hz), 2.59 (2H, t, J = 7.3 Hz), 1.8-0.8 (12H, m) ppm.; Vc=o(neat) = 1720 cm-1 

2-(4,5-Dimethyl-1,3-dithiole-2-ylidene)-1,3-indanedione (92) was 

prepared in one step from 4,5-d.imethyl-1,3-dithiole-2-thione ( 60c )24, 1,3-indanedione 

and sodium ethoxide following the literature procedurel40. 

6.3.2.1 4,5-Dimethyl-2-(1,3-cyclopentanedione-2-ylidene)-1,3-dithiole 

(75) 

Cyclopentanedione (1.0 g, 10 mmol) was added to a solution of sodium ethoxide 

(Na, 0.23 g, 10 mmoinn dry ethanol (100 ml) and stirred at room temperature under 

nitrogen. After 15 min the iodide salt of cation (61d) (4.65 g, 15 mmol) was added and 

the resulting mixture refluxed for 3 h under nitrogen. The solvent was then evaporated in 

vacuo and water (50 ml) added to the residue. The mixture was extracted into 

dichloromethane (3 x 25 ml), dried (MgS04), filtered and evaporated to yield a red solid. 

Purification by chromatography on a silica column (eluent: dichloromethane) afforded 

compound (75) as a yellow solid (1.1 g, 48 %). M.Pt: 216-218°C; OH(CDCh) = 

2.65 (4H, s), 2.31 (6H, s) ppm.; MS: rn/e (EI) 226 (M+); Vmax(nujol) = 1620, 1290, 

1270 cm-1; Anal.: Calc. for C10H1002S2: C, 53.1; H, 4.45 %. Found: C, 53.0; H, 

4.31 %. 
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6.3.2.2 4,5-Dimethyl-2·( 1,3-cyclopentanedithione-2- yli dene )·1,3-

dithiole (72) 

Diketone (75) (0.60 g, 2.7 mmol) was dissolved in dry toluene (50 ml) and to this 

solution was added an excess of phoshorus pentasulphide (0.75 g, 1.8 mrnol). Stirring 

was continued for 2 h at 50"C under a nitrogen annosphere. The solvent was then 

carefully decanted off and the remaining mixture was further extracted into hot toluene (3 

x 50 ml). The combined extracts were washed sequentially with 5M sodium hydroxide 

solution (3 x 50 ml), sodium chloride solution (2 x 50 ml), distilled water (2 x 50 ml), 

and then dried (MgS04), flltered and evaporated in vacuo to yield a red oil. This was 

chromatographed on a silica column (eluent: dichloromethane/hexane 1:1v/v) to yield 

compound (72) (0.55 g, 58%) as a dark red cystalline solid. X-Ray quality crystals 

were grown from a chloroform/methanol (1:1 v/v) solution. M.Pt: > 340"C; MS: (EI) 

358 (M+); BH(CDC}J) = 3.31 (4H, s), 2.49 (6H,-s) ppm.; Sc(CDCl3) = 205.0, 171.7, 

143.2, 131.4, 47.8, 13.3 ppm.; Amax (CH2Cl2) = 262, 370, 464 nm; Anal.: Calc. for 

CtoH10S4: C, 46:5; H, 3.88 %. Found: C, 46.3; H, 3.80 %. Continued elution of 

the column with dichloromethane yielded the mono-thionated product, compound (76) 

(0.19 g, 30 %) as an orange/red solid. M.Pt: 212-215"C; MS: (EI) 242 (M+); 

SH(CDCl3) = 3.16 (2H, m), 2.81 (2H, m), 2.46 (3H, s), 2.43 (3H, s) ppm.; Vmax 

(nujol) = 1660 cm·l; Anal.: Calc. for C10H100S3: C, 49.6; H, 4.10 %. Found: C, 

49.5; H, 4.13 %. 

6.3.2.3 4,5-Dimethyl-2-[cyclopentane-1,3-bis(methylthio)-2-ylidene]-

1,3-dithiole diiodide salt (78) 

Compound (72) (0.2 g, 0.78 mmol) was dissolved in dichloromethane (10 ml) and 

excess methyl iodide (5 ml) was added to this deep red solution. After stirring at room 

temperature under nitrogen for 3 h dry ether (150 ml) was added to the resulting black 

solution, and the precipitated black solid was stirred in ether overnight. This solid was 

filtered and washed with ether (2 x 50 ml) to yield the diiodide salt (78) (0.38 g, 

90%) as a black solid. M.Pt: 119~125"C (decomp.); MS: 288 (EI) (M+); Amax 
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(CH2Cl2) = 295, 461 run; Anal.: Calc. for Ct2H16l2S4: C, 26.6; H, 2.97 %. Found: 

C, 27 .0; H, 2.85 %. 

6.3.2.4 4,5-Dihydro-2-(1,3-cyclopentanedione-2-ylidene)-1,3-dithiole 

(80) 

Following the procedure for compound (75) the iodide salt (61e) (1.0 g, 3.6 mmol) 

was added to an ethanol solution (100 ml) of cyclopentanedione (0.35 g, 3.6 mmol) and 

sodium ethoxide (3.6 mmol). After refluxing for 2 h the resulting insoluble precipitate 

was flltered and washed with ethanol (3 x 50 ml) and dichloromethane (2 x 50 ml) to 

yield compound (80) as a light brown solid (0.56 g, 79 % ). MS: rn/e (EI) 198 (M+), 

(CI) 199 (M++1); Anal.: Calc. for CsH602S2: C, 48.5; H, 3.05 %. Found: C, 48.8; 

H, 3.20 %. 

6.3.2.5 4,5-Dihy_dro-2-(1,3-cyclopentanedithione-2-ylidene)-1,3-dithiole 

(82) and 4,5-dihydro-2-(3-thiocyclopentane-1-one-2-ylidene)-1,3-

dithiole (81) 

Following the procedure outlined for compound (72) (Chapter 6.3.2.2), a 

suspension of diketone (80) (0.2 g, lmmol) in toluene (50 ml) was reacted with 

phosphorus pentasulphide (0.31 g, 0.7 mmol) to yield a red solid. Purification on a 

silica column (eluent: dichloromethane) produced compound (82) as a deep red solid 

after recrystallisation from dichloromethane/hexane (0.09 g, 39 % ). M.Pt: 195-196oC; 

MS: rn/e 230 (EO (M+); BH(CDC}J) = 7.71 (2H, s), 3.35 (4H, s) ppm.; Anal.: Calc. 

for CsH6S4: C, 41.7; H, 2.61. Found: C, 41.6; H, 2.54 %. Continued elution of the 

column with dichloromethane yielded compound (81) as a red solid after 

recystallisation from dichloromethane/hexane (0.06 g, 28 %). M.Pt: 209-210oC; MS: 

rn/e 214 (EI) (M+); Anal.: Calc. for CsH60S3: C, 44.9; H, 2.80 %. Found: C, 45.2; 

H, 2.89 %. 
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6.3.2.6 2-(1,3-Cyclopentanedione-2-ylidene)-1,3-dithiolan (83) 

2-Methylthio-1,3-dithiolanylium iodidell9 (1.6 g, 6.7 mmol) was added to a 

solution of cyclopentanedione (0.46 g, 4.7 mmol) and sodium ethoxide (5 mmol) in 

ethanol (50 ml). After 2 h at 60"C and cooling to room temperature an insoluble solid 

was filtered off and washed sequentially with ethanol (2 x 50 ml) and dichloromethane 

(2 x 50 ml) to yield compound (83) as a white/cream solid (0.82 g, 87 %). MS: m/e 

200 (EI) (M+), 201(CI) (M++1); l>H(d6·DMSO) = 3.88 (4H, s), 2.78 (4H, s) ppm.; 

Vmax (nujol) = 1660 cm-1; Anal.: Calc. for CsHsChS2: C, 48.0; H, 4.00 %. Found: 

C, 47.3; H, 4.27 %. 

6.3.2. 7 2,2' -Bis( 4,5-dimethyl-1,3-dithiole-2-yl)·4-cyclopentene-1,3-

dione (85) 

This was prepared analogously to the bis(4,5-dihydro-1,3-dithiole-2-yl) derivative 

synthesised by Nakayama et afl20. 4,5-Dimethyl-1,3-dithiole-2-ylium tetrafluoroborate 

(63c) (2.38 g, 11 mmol) was added to a solution of cyclopentanedione (0.52 g, 5 mmol) 

in ethanol (50 ml) and stirred at room temperature for 3 h. The resultant red precipitate 

was filtered off and washed with ethanol (2 x 50 ml) to yield compound (85) as a red 

solid (1.35 g, 71 %). M.Pt: 163-165"C; MS: m/e 356 (EI) (M+); SH(CDCl3) = 7.48 

(2H, s), 5.31 (2H, s), 1.74 (12H, s) ppm.; Vc=o(nujol) = 1695 cm·l; Anal.: Calc. for· 

CtsHt602S4: C, 50.5; H, 4.49 %. Found: C, 50.7; H, 4.10 %. 

6.3.2.8 4,5-Dimethyl-2-(1,3-cyclopentenedione-2-ylidene)-1,3-dithiole 

(84) 

This also was prepared analogously to the 4,5-dihydro-1 ,3-dithiole-2-ylidene 

derivative synthesised by Nakayama eta/ 120. To DDQ (2,3-dichloro-5,6-dicyano-1,4-

benzoquinone) (0.7 g, 3.1 mmol) dissolved in dioxane (50 ml) was added compound 

(85) (1.0 g, 2.8 mmol), turning the yellow solution black. This solution was stirred at 

room temperature for 3 hand then the solvent was evaporated in vaclUJ. The resultant 

black solid was extracted into dichloromethane (100 ml), washed with water (3 x 50 ml), 

dried (MgS04), evaporated and columned on a silica column (eluent: chloroform) to 
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yield compound (84) as a red solid (0.45 g, 72 %). Crystals could be grown from 

dichloromethane/methanol. M.Pt: 192-195oC (sub.); MS: m/e 224 (EI) (M+), 225 (CI) 

(M++1); OH(CDCl3) = 6.88 (2H, s), 2.27 (6H, s) ppm.; Vc=o(nujol) = 1650 cm-1; 

Anal.: Calc. for C10Hs02S2: C, 53.5; H, 3.59 %. Found: C, 53.0; H, 3.62 %. 

6.3.2.9 4-(Piperidinoditbiocarbamoyl)octan-5-one (86) 

To a solution of potassium piperidinodithiocarbamate (2.83 g, 14 mmol) in 

hexamethylphoshoric triamide (HMPA) (20 ml) was added crude 4-chloro-octan-5-one 

(Chapter 6.3.1) (1.51 g, 9.3 mmol) over a period of 5 min, and the mixture was heated 

at 90oC overnight Aqueous work-up and extraction with toluene (4 x 20 ml) afforded a 

red oil, a hexane solution of which was eluted through a silica column (eluent hexane) to 

yield compound (86) as a yellow oil (1.05 g, 40 %). MS: m/e 288 (CI) (M++1); 

OH(CDC}J) = 4.94 (lH, t, J = 6.8Hz), 4.5-4.1 (4H, broad m), 2.7-2.5 (2H, m), 1.7-

0.8 (18H, m) ppm.; Vmax (neat)= 1710, 1428, 1240, 1230, 850 cm-1. 

6.3.2.10 2-Piperidino-4,5-di-n-propyl-1,3-ditbiolium bexafluoro

phosphate salt (87) 

A mixture of compound (86) (1.0 g, 3.5 mmol) and concentrated sulphuric acid (10 

ml) was heated at 80oC for 2 h with vigorous stirring. After dilution with cold water, 

bexafluorophosphoric acid was added dropwise in excess. The mixture was extracted 

into dichloromethane, dried (MgS04) and evaporated to yield compound (87) as a 

brown oil (1.3 g, 90 %). MS: m/e 270 (EI) (M+); OH(CDCIJ) = 3.79 (4H, broad, s), 

2.63 (4H, t, J = 5.7Hz), 1.8-1.5 (10 H, m), 0.89 (68, t, J =7Hz) ppm.; Vmax (neat)= 

1610, 1540, 1445, 1000, 850, 730 cm-1. 

6.3.2.11 4,5-Di-n-propyl-1,3-ditbiole-2-tbione (88) 

Sodium thiol hydrate (1.43 g, 25 mmol) was added to a stirred solution of 

compound (87) (5.3 g, 12 mmol) in a mixture of ethanol and acetic acid (3:1 v/v, 100 

ml), and stirred at room temperature overnight. Aqueous work-up and extraction into 

dichloromethane, followed by sequential washing with aqueous potassium carbonate (50 
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ml) and sodium hydroxide (50 ml), and drying with MgS04 yielded compound (88) as 

a yellow oil (1.8 g, 65%) which was used directly in the next step without further 

purification. MS: m/e 219 (CI) (M++1); BH(CDCl3) = 2.47 (4H, t, J = 7.4Hz), 1.54 

(4H, sextet, J = 7.5Hz), 0.90 (6H, t, J = 7.3Hz) ppm. 

6.3.2.12 4,5-Di-n-propyl-1,3-dithiole-2-thiomethyl iodide (69) 

Thione (88) (1.0 g, 4.8 mmol) was stirred under nitrogen with methyl iodide (2 g, 

13 mmol) and nitromethane (15 ml) at 40°C overnight. Ether (100 ml) was added and the 

yellow precipitate was filtered off and recrystallised from ethanol to yield compound 

(69) as a yellow solid (1.32 g, 81 %). BH(CDCh) = 3.34 (3H, s), 3.02 (4H, t, J = 7.6 

Hz), 1.82 (4H, sextet), 1.07 (6H, t, J = 7.2 Hz) ppm.; Anal.: Calc. for CwH17IS3: C, 

33.3; H, 4.75 %. Found: C, 32.9; H, 4.63 %. 

6.3.2.13 2-Piperidino-4,5-di-n-propyi-2H-1,3-dithiole (89) 

Sodium borohydride (0.35 g, 9.2 mmol) was added over a period of 5 min to a 

stirred solution of compound (87) (2.27 g, 6.15 mmol) in methanol (100 ml) at 5°C. 

After stirring for 1 h, the solvent was evaporated in vacuo and the residue extracted into 

dichloromethane and washed with water (2 x 100 ml). Drying (MgS04) and purification 

on a silica column (eluent: dichloromethane/hexane 1:1 v/v) afforded compound (89) 

as a pale yellow oil (1.4 g, 84 %). MS: m/e 271 (EI) (M+); BH(CDCl3) = 5.79 (1H, s), 

2.40 (4H, m), 2.20 (4H, m), 1.5-1.4 (10 H, m), 0.83 (6H, t, J = 3.8 Hz) ppm.; Vmax 

(neat)= 1610, 1450, 1380, 1310, 1090, 990 cm-1. 

6.3.2.14 4,5-Di-n-propyl-1,3-dithiolium tetrafluoroborate (90) 

Compound (92) (1.0 g, 4.2 mmol) was stirred in acetic anhydride (10 ml) under 

nitrogen for 15 min. Fluoroboric acid (diethyl ether complex, 2.0 ml) was then added 

dropwise and stirring continued at room temperature for a further 30 min. Upon addition 

of dry diethyl ether (100 ml) an oil separated. The ether was decanted off and the oil was 

twice washed with more ether, adding, stirring and decanting both times. The oil was 

dissolved in dichloromethane (100 ml), dried (MgS04) and evaporated to yield 
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compound (90) as a red oil (960 mg, 82 % ). BH(CDCl3) = 11.04 ( 1 H, s ), 3.14 ( 4H, 

t, J = 7.8 Hz), 1.85 (4H, sextet), 1.07 (6H, t, J = 7.1 Hz). 

6.3.2.15 4,5-Tetra-n-propyl-tetrathiafulvalene (91) 

To a solution of salt (90) in toluene (10 ml) was added triethylamine (0.5 ml) and 

this solution was stirred at room temperature overnight under nitrogen. The whole 

reaction niixture was directly purified on a silica column (eluent: toluene). The orange oil 

thus obtained was crystallised by dissolving in pentane and evaporating rapidly on a 

vacuum line to afford compound (91) as an orange solid (84 mg, 62 % ). MPt: 38oC; 

MS: m/e 372 (EI) (M+); BH(CDC}J) = 2.27 (2H, m), 1.53 (2H, sextet), 0.93 (3H, t, J 

= 7.2 Hz); Anal.: Calcd. for C1sH2sS4: C, 58.0; H, 7.57 %. Found: C, 57.5; H, 

7.11%. 

6.3.2.16 4,5-Tetra-n-propyl-tetrathiafulvalene - 7, 7 ,8,8-tetracyano-p

quinodimethane complex (91a) 

A boiling solution of compound (91) (50 mg, 0.13 mmol) in dry dichloromethane 

(10 ml) was added to a solution of TCNQ (1) (30 mg, 0.15 mmol) in dry 

dichloromethane (10 ml) and the resultant dark green solution was refluxed for 15 min. 

After cooling to room temperature the precipitated solid was collected by filtration and 

washed with ice-cold dichloromethane (2 x 10 ml) to yield complex (91a) as a black 

solid (28 mg, 38 % ). Anal.: Calc. for C3oH32N4S4 (1: 1 complex): C, 62.4; H, 5.6; 

N, 9.5 %. Found: C, 61.7; H, 5.1; N, 9.6 %; Compressed pellet powder conductivity: 

Grt = 4 x I0-5 Scm-1. 

6.3.2.17 2-[ 4,5-Bis(methylthio )-1,3-dithiole-2-ylidene] -1,3-indanedione 

(93) 

Diketone (93) was prepared analogously to diketone (92) (Chapter 6.3.1). 

Compound (61d) (3.0 g, 9.1 mmol) was added to a stirred solution of 1,3-indanedione 

(1.2 g, 8.2 mmol) and sodium ethoxide (8.4 mmol) in ethanol (100 ml). After refluxing 

for 4 h, work-up and purification on a silica column (eluent: dichloromethane/hexane 1:1 
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v/v), followed by recrystallisation from dichloromethane/hexane, yielded compound 

(93) as a yellow solid (1.8 g, 65 %). M.Pt: 183-185oC; MS: m/e 338 (EI) (M+), 339 

(CI) (M++1); BH(CDCl3) = 7.8-7.6 (4H, m), 2.58 (6H, s) ppm.; Anal.: Calc. for 

C14H1002S4: C, 49.7; H, 2.98 %. Found: C, 49.8; H, 2.94 %. 

6.3.2.18 2-(4,5-Di-n-propyl-1,3-dithiole-2-ylidene)-1,3-indanedione 

(94) 

Diketone (94) was prepared analogously to diketone (92) (Chapter 6.3.1). 

Compound (69) (0.6 g, 1.7 mmol) was added to a stirred solution of 1,3-indanedione 

(0.24 g, 1.6 mmol) and sodium ethoxide (1.6 mmol) in ethanol. This mixture was 

refluxed for 3h under nitrogen and then the solvent was evaporated in vacuo to leave a 

green oily solid which was extracted into dichloromethane (50 ml) and washed with 

water (2 x 50 ml). The dichloromethane solution was dried (MgS04) and evaporated to 

yield a green solid which was purified on a silica column (eluent: 

cyclohexane/dichloromethane 1:1 v/v) to obtain compound (94) as a yellow solid 

recrystallised from ethanol (0.41 g, 76 %). M.Pt: 102-104.C; MS: m/e 330 (EI) (M+); 

Vmax (nujol) = 1655, 1595 cm-1; Anal.: Calc. for C1sH1s02S2: C, 65.4; H, 5.49; S, 

19.4 %. Found: C, 65.2; H, 5.20; S, 18.9 %. 

6.3.2.19 2-[ 4,5-Bis(methylthio )-1,3-dithiole-2-ylidene ]-indan -1-one-3-

thione (95) and 2-[4,5-bis(methylthio)-1,3-dithiole-2-ylidene]-indan-1,3-

dithione (98) 

These mono-thionated and di-thionated compounds were prepared analogously to 

compounds (76) and (72) (Chapter 6.3.2.2). Diketone (93) (0.45 g, 1.33 mmol) was 

reacted with phosphorus pentasulphide (0.6 g, 1.34 mmol) in toluene (100 ml) to 

provide, after work-up and silica column chromatography (eluent: dichloromethane I 

hexane 1:1 v/v), compounds (95) and (98). The first fraction eluted from the column 

yielded compound (98) as a green/black solid, recrystallised from 

dichloromethane/hexane (0.14 g, 28 %). M.Pt: 207-21o·c; MS: m/e 370 (EI) (M+), 

371 (CI) (M++1); BH(CDC}J) = 7.68 (2H, m), 7.49 (2H, m), 2.62 (6H, s) ppm.; 
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Anal.: Calc. for Ct4H 10S6: C, 45.4; H, 2.72 %. Found: C, 45.5; H, 2.67 %. 

Continued elution with dichloromethane yielded compound (95) as a red solid which 

was recrystallised from dichloromethane/hexane (0.19 g, 41 %). M.Pt: 175-176°C; 

MS: rn/e 354 (EI) (M+), 355 (CI) (M++1); SH(CDCl3) = 7.9-7.5 (4H, m), 2.63 (3H, 

s), 2.58 (3H, s) ppm.; Anal.: Calc. for Ct4Hw0Ss: C, 47.4; H, 2.84 %. Found: C, 

47.1; H, 2.74 %. 

6.3.2.20 2-(4,5-Di-n-propyl-1,3-dithiole-2-ylidene)-indan-1-one-3-

thione (96) and 2-(4,5-di-n-propyl-1,3-dithiole-2-ylidene)-1,3-indan

dithione (99) 

These mono-thionated and di-thionated compounds were prepared analogously to 

compounds (76) and (72) (Chapter 6.3.2.2). Diketone (94) (0.22 g, 0.67 mmol) and 

phosphorus pentasulphide (0.2 g, 0.45 mmol) were refluxed in toluene for 3 h to yield 

compound (99) and then compound (96) after column chromatography on silica (eluent: 

cyclohexane/dichloromethane, 1:1 v/v). Compound (96), red solid (0.09 g, 39 %), 

recrystallised from dichloromethane/methanol. M.Pt: 95-98oC; MS: rn/e 347 (CI) 

(M++t); BH(CDC}J) = 7.86-7.5 (4H, m), 2.72 (4H, m), 1.73 (4H, m), 1.02 (6H, t, J 

= 7.3 Hz) ppm.; Anal.: Calc. for CtsHtsOS3: C, 62.4; H, 5.24 %. Found: C, 62.2; 

H, 5.21 %. Compound (99), red solid (0.15 g, 63 %), X-ray quality crystals of 

which were grown from dichloromethane/acetonitrile solution. M.Pt: 134oC; MS: rn/e 

362 (EI) (M+); BH(CDC}J) = 7.62 (2H, m), 7.45 (2H, m), 2.66 (4H, t, J = 7.5 Hz), 

1.70 (4H, sextet), 1.00 (6H, t, J = 7.1 Hz) ppm.; Anal.: Calc. for CtsHtsS4: C, 59.6; 

H, 5.00; S, 35.4 %. Found: C, 59.5; H, 4.95; S, 35.5 %. 

6.3.2.21 1,2,3-( 4,5-Di methyl-1,3-dithiole-2-ylidene )-1,3-dihydro-1,3-

indanedione (100) and 1,2-(4,5-dimethyl-1,3-dithiole-2-ylidene)-1-

dihydro-1,3-indanedione (102) 

Phosphonate ester (67c) (0.56 g, 2.3 mmol) was dissolved in anhydrous THF (100 

ml) and the Wittig-Homer reagent (68c) was formed by the addition of n-BuLi (1.4 ml, 

2.3 mmol) at -78oC under nitrogen. Mter stirring for 30 min a solution of compound 
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(92) (0.3 g, 1.1 mmol) in THF (20 ml) was added. The temperature was maintained at -

78"C for 2 hand then allowed to warm to room temperature overnight. The solvent was 

evaporated in vacuo to yield a red solid. This was extracted into dichloromethane (1 00 

ml), washed with water (2 x 50 ml), dried (MgS04), evaporated and then 

chromatographed on a neutral alumina column (eluent: hexane/dichloromethane 2:1 v/v) 

to yield compound (100) as a yellow solid (0.11 g, 20 %) that slowly darkens on 

exposure to air. M.Pt: >230"C; MS: m/e 502 (EI) (M+), 503 (CI) (M++1); BH(CDC}J) 

= 7.38 (2H, m), 7.19 (2H, m), 2.06 (12H, s), 2.04 (6H, s) ppm.; Anal.: Calc. for 

C24H22S6: C, 57.3; H, 4.41 %. Found: C, 56.9; H, 4.25 %. Continued elution with 

hexane/dichloromethane (1:1 v/v) yielded compound (102) as a red solid (0.3 g, 71 

%). M.Pt: >230oC; MS: m/e 388 (EI) (M+), 389 (CI) (M++1); BH(CDCh) = 7.71-

7.18 (4H, m), 2.25 (3H, s), 2.18 (3H, s), 2.12 (3H, s), 2.10 (3H, s) ppm.; Anal.: 

Calc. for Ct9Ht60S4: C, 58.7; H, 4.15. Found: C, 58.9; H, 4.10 %. 

6.3.2.22 1,2,3-(4,5-Dimetbyl-1,3-ditbiole;.2-ylidene)-1,3-dibydro-1,3-

indanedione - 7,7,8,8-tetracyano-p-quinodimetbane complex (100c) 

A boiling solution of compound (100) (20 mg, 0.04 mmol) in diy dichloromethane 

(10 ml) was added to a solution of TCNQ (1) (10 mg, 0.05 mmol) in dry 

dichloromethane (10 ml) and the resultant dark green solution was refluxed for 15 min. 

Mter cooling to room te~perature the precipitated solid was collected by filtration and 

washed with ice-cold dichloromethane (2 x 10 ml) to yield complex (100c) as a black 

solid (11 mg, 47 %). Anal.: Calc. for C4gH3oNsS6 (1:2 complex): C, 63.3; H, 3.32; 

N, 12.3 %. Found: C, 62.4; H, 3.34; N, 12.6 %; VcN(nujol) = 2175 cm-1; 

Compressed pellet conductivity: o11 = 5 x 10-6 Scm· I. 

6.3.2.23 1,2,3-[ 4,5-Bis(metbylthio )-1,3-dithiole-2-ylidene ]-1,3-

dihydro-1,3-indanedione (101) 

This compound was prepared analogously to compound (100) (Chapter 6.3.2.21). 

Phosphonate ester (67d) (0.56 g, 1.8 mmol), n-BuLi (1.6M, 1.25 ml, 2 mmol) and 

compound (93) (0.25 g. 0.74 mmol) yielded compound (101) as a yellow solid (0.44 
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g, 85 %) that was purified on a neutral alumina column (eluent: hexane/dichloromethane 

2:1 v/v) and recrystallised from dichloromethane/hexane. M.Pt: 140-142oC; MS: rn/e 

695 (Cn (M++l); oa(CDCl3) = 7.38-7.24 (4H, m), 2.48 (6H, s), 2.46 (12H, s) ppm.; 

Anal.: Calc. for C24H22S12: C, 41.5; H, 3.19 %. Found: C, 41.4; H, 3.20 %. 

6.3.2.24 1,2-(4,5-Dimetbyla1,3-ditbiole·2·ylidene)-1-dibydro-1,3-

indanedithione (103) 

Compound (102) (50 mg, 0.13 mmol) and phosphorus pentasulphide (30 mg, 0.067 

mmol) were refluxed in toluene (100 ml) under nitrogen for 3 h. The solid was then 

filtered off and extracted with toluene (2 x 50 ml). The resulting black solution was 

washed sequentially with 2M sodium hydroxide solution (2 x 100 ml), water (2 x 100 

ml), dried (MgS04) and evaporated to yield a black solid that was purified by column 

chromatography on silica (eluent: dichloromethane/hexane 1:1 v/v) to obtain compound 

(103) as a dark green/black solid (45 mg, 87 %). M.Pt: 229-231°C; MS: rn/e 405 (CI) 

(M++1); oa(CDCl3) = 7.97-7.18 (4H, m), 2.31 (6H, s), 2.11 (6H, s) ppm.; Anal.: 

Calc. for C19H16Ss: C, 56.4; H, 3.99 %. Found: C, 55.8; H, 4.12 %. 

6.3.2.25 1,2-[ 4,5-Bis(methylthio )-1,3-dithiole-2a ylidene]-1-dibydro-

1,3-indan-dithione - 7, 7 ,8,8-tetracyano-p-quinodimetbane complex 

(103a) 

This was prepared analogously to complex (100c) (Chapter 6.3.2.22) from 

compound (103) (15 mg, 0.037 mmol) and TCNQ (1) (8 mg, 0.039 mmol) in 

dichloromethane (20 ml) and isolated as a black solid (8 mg, 35 %). Anal.: Calc. for 

C31H2oN4S5 (1:1 complex): C, 61.2; H, 3.31; N, 9.20 %. Found: C, 60.8; H, 3.12; 

N, 10.7. Anal.: Calc. for 1:1.3 complex: C, 62.0; H, 3.19; N, 10.9% suggesting that 

the initial product is either a slightly impure 1:1 complex or a non-stoichiometric 

complex]. VcN(nujol) = 2175 cm·l (no neutral TCNQ-2220 cm·l); Compressed pellet 

conductivity: <lrt = 5 x 10·5 Scm· I. 
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6.3.2.26 2,4,6-Tris(4,5-di-n-propyl-l,3-dithiol-2-ylidene)-1,3,5-

cyclohexanetrione (70) 

Pyridine (0.35 ml) was added to a solution of trihydroxybenzene (phloroglucinol 

dihydrate) (0.1 g, 0.6 mmol) in dry acetonitrile (20 ml) and stirred at room temperature 

under nitrogen for 15 min. Compound (69) (0.65 g, 1.8 mmol) was then added and the 

mixture heated at reflux for 3 h. Work-up and silica gel column chromatography (eluent: 

dichloromethane/cyclohexane 1:1 v/v) yielded compound (70) as a yellow solid that 

was recrystallised from ethanol (0.11 g, 26 %). Crystals suitable for X-ray 

crystallography were grown from toluene. MPt: 312-31s·c (sub.); MS: m/e 678 (EI) 

(M+); OH(CDCl3) = 2.61 (2H, t, J = 7.4 Hz), 1.65 (2H, m), 0.90 (3H, t, J = 7.2 Hz) 

ppm.; Ve--o(nujol) = 1530 cm·l; Anal.: Calc. for C33H4203S6: C, 58.4; H, 6.23; S, 

28.3 %. Found: C, 58.0; H, 6.12; S, 27.5 %. 

6.3.2.27 2-Methylthio-4,5-di-n-propyl-1,3-dithiole (104) 

To a solution of salt (69) (2.5 g, 7 mmol) in ethanol (75 ml) was added sodium 

borohydride (6.25 g, 14 mmol) and the mixture was stirred at room temperature 

overnight The solvent was then evaporated in vacuo, water added (100 ml), the product 

extracted into dichloromethane (3 x 50 ml) and then dried (MgS04). Evaporation of the 

organic phase gave a red oil, which was purified by chromatography on a silica column 

(eluent: cyclohexane/dichloromethane 1:1 v/v) to yield thioether (104) as a red oil. 

OH(CDCI)) = 5.75 (lH, s), 2.27 (4H, m), 2.21 (3H, s), 1.51 (4H, sextet), 0.91 (6H, 

d. oft, J = 7.3 Hz) ppm. 

6.3.2.28 2-Dimethoxyphosphoryl-4,5-di-n-propyl-1,3-dithiole (105) 

To a solution of salt (90) (500 mg, 2 mmo1) in dry acetonitrile (30 ml) was added 

trimethylphoshite (0.21 ml, 2 mmol) and sodium iodide (0.3 g, 0.2 mmol). The 

resulting mixture was stirred at room temperature overnight before evaporation of the 

solvent, extraction into dichloromethane, washing with water, drying (MgS04), and 

evaporating the organic phase afforded an orange oil. This was purified on a neutral 

alumina column (eluent: cyclohexane/chloroform 1:1 v/v) to yield phosphonate ester 
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(105) as an orange oil (450 mg, 84 %). BH(CDCl3) = 4.61 {IH, d, J = 4.0Hz), 3.77 

(3H, s), 3.73 (3H, s), 2.09 (4H, m), 1.37 (4H, sextet), 0.81 (6H, t, J = 7.3 Hz) ppm. 

6.3.2.29 4,5-Ethylenedithio-4 1,51 -di-n-propyl-2,2 1 -ethanediyli den e-

bis(1,3-dithiole) (106) 

This was prepared following the general procedure outlined in Chapter 6.2.2.8 from 

compound (105) (400 mg, 1.3 mmol), n-BuLi (1.6M, 0.9 ml, 1.35 mmol) and 

compound (66f) (332 mg, 1.35 mmol) in dry THF. Purification was achieved through a 

silica column (eluent: hexane/dichloromethane 3:1 v/v) to obtain compound (106) as a 

yellow solid (370 mg, 68 %). MPt: 98-99·c; MS: m/e 404 (EI) (M+), 405 (CI) 

(M++l); BH(CDCh) = 5.78 (2H, d of d, J =12Hz), 3.28 (4H, s), 2.28 (4H, m), 1.50 

(4H, m), 0.93 (6H, t, J = 7.3 Hz) ppm.; Anal.: Calc. for C161i2oS6: C, 47.5; H, 4.98 

%. Found: C, 47 .4; H, 5.03 %. 

6.4 EXPERIMENTAL TO CHAPTER FOUR 

6.4.1 Materials 

1,3-Propanedial-2-[ 4,5-bis(metbylthio )-1,3-ditbiole-2-ylidene] (108) 

was prepared following the literature procedurell3 from the sodium salt of 

malonaldehyde and 4,5-biS(methylthio)-1,3-d.ithiole-2-thiomethyl tetrafluoroborate (61d) 

in 51 %yield. MPt: 172•c (Lit. 166-167.C)ll3; BH(CDCI)) = 9.76 (2H, s), 2.62 (6H, 

s). 

2-Dimethoxypbosphoryl-4,5-ethylenedithio-1,3-dithiole ( 67f) was 

prepared in four steps from 4,5-ethylenedithio-1,3-dithiole-2-thione42 following the 

literature procedure (ca.10% yield)88. 

6.4.2.1 1,3-Propanedial-2-(4,5-dimethyl-1,3-dithiole-2-ylidene) (107) 

This was prepared following the literature procedure described for compound 

(108)113. 4,5-Dimethyl-1,3-d.ithiole-2-thio-methyl iodide (61c) (0.9 g, 3 mmol) was 
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added to a suspension of the sodium salt of malonaldehyde (0.3 g, 3.2 mmol) in 

acetonitrile (100 ml) and stirred at room temperature overnight. The solvent was 

evaporated in vacuo, dichloromethane added (100 ml), the solution was washed with 

water (2 x 50 ml), dried (MgS04) and evaporated to afford a yellow solid that was 

purified on a neutral alumina column (eluent dichloromethane/hexane 1:1 v /v) yielding 

dialdehyde (107) as a pale yellow solid (0.20 g, 34 %). MPt: 150"C (sub.); MS: m/e 

200 (EI) (M+), 201 (CI) (M++t); BH(CDCl3) = 9.74 (2H, s), 2.42 (6H, s) ppm.; 

Vc=<>(nujol) = 1620 cm·l; Anal.: Calc. for CsHs02S2: C,48.0; H, 4.03 %. Found: C, 

47.7; H, 3.90 %. 

6.4.2.2 Propane-1,2,3-tris(4,5-dimetbyl-1,3-dithiole-2-ylidene) (109) 

and propane-1,2-bis{4,5-dimethyl-1,3-dithiole-2-ylidene)-3-al (121) 

To a solution of2-dimethoxyphosphoryl-4,5-dimethyl-1,3-dithiole (67c) (0.36g, 1.5 

mmol) in THF (50 ml) at -78·c under nitrogen was added n-BuLi (1.6M, 1 ml, 1.6 

mmol). Mter 1 h compound (107) (0.15 g, 0.75 mmol) in THF (10 ml) was added and 

the solution was stirred at -78·c for 2 h. The solution was then allowed to warm to room 

temperature overnight at which point the solvent was evaporated and the residue 

extracted into dichloromethane (100 ml), which was washed with water (2 x 100 ml) and 

dried (MgS04). Evaporation of the organic phase yielded an orange solid which was 

purified on a neutral alumina column (eluent: hexane/dichloromethane 2:1 v/v) to yield 

compound (109) as a yellow solid (0.20 g, 62 %). MPt: >230 ·c; MS: rn/e 428 (EI) 

(M+), 429 (CI) (M++t); BH(CDC}J) = 5.72 (2H, s), 1.92 (6H, s), 1.89 (12H, s) ppm.; 

Anal.: Calc. for CtsH2oS6: C, 50.4; H, 4.70 %. Found: C, 50.6; H, 5.01 %. 

Continued elution with hexane/dichloro-methane (1:1 v/v) afforded compound (121) 

as an orange solid (65 mg, 28 %). MPt: 211-214 ·c; MS: m/e 314 (EI) (M+), 315 (CI) 

(M++1); BH(CDCl3) = 9.43 (1H, s), 5.94 (lH, s), 2.17 (3H, s), 2.16 (3H, s), 1.92 

(3H, s), 1.88 (3H, s) ppm.; Vc=<>(nujol) = 1610 cm·l; Anal.: Calc. for C13Ht40S4: C, 

49.6; H, 4.49 %. Found: C, 49.6; H, 4.70 %. 
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6.4.2.3 Propane-1,2-bis( 4,Sadimethy 1-1,3adithiole-2-ylidene )-3-( 4,5-

etbylenedithio-1,3-dithiole-2-ylidene) (110) 

To a solution of 2-dimethoxyphosphoryl-4,5-ethylenedithio-1,3-dithiole (67£) (64 

mg, 0.21 mmol) in THF (50 ml) at -78oC under nitrogen was added n-BuLi (0.14 ml 

1.6M, 0.22 mmol). After 1 hr aldehyde (121) (55 mg. 0.18 mmol) was added and the 

solution was stirred at -7s·c for 2 h. The solution was then allowed to warm to room 

temperature overnight before work-up (as above, 6.4.2.2) and purification down an 

alumina column (eluent: hexane/dichloromethane 1:1 v/v} yielded compound (110) as 

a yellow solid (55 mg, 65 %). MPt: 225-226 ·c; MS: m/e 491 (DCI) (M++1); 

SH(CDCl3) = 5.84 (lH, s), 5.67 (1H, s), 3.27 (4H, s), 1.93 (6H, s), 1.90 (6H, s) 

ppm.; Anal.: Calc. for CtsHtsSs: C, 44.1; H, 3.70 %. Found: C, 44.2; H, 3.56 %. 

6.4.2.4 Propane-1,3-bis( 4,5-ethylenedithio-1,3-dithiole-2-ylidene )-2-

(4,5-dimethyl-1,3-dithiole-2-ylidene) (111) 

This was prepared following the procedure outlined for propane-1,2,3-tris(4,5-

dimethyl-1,3-dithiole-2-ylidene) (109) (Chapter 6.4.2.2) from phosphonate ester (67£) 

(180 mg, 0.6 mmol) and 1,3-propanedial-2-(4,5-d.imethyl-1,3-dithiole-2-ylidene) (107) 

(60 mg, 0.3 mmol) in THF (50 ml). Purification was achieved on a silica column 

(eluent: dichloromethane/hexane 1:1 v/v) to yield compound (111) as a yellow solid 

(135 mg, 82 %). MPt: 232 ·c; MS: m/e 552 (DEI) (M+); SH(CDCI]) = 5.80 (2H, s), 

3.28 (8H, s), 1.93 (6H, s) ppm.; Anal.: Calc. for CtsHt6SlO: C, 39.1; H, 2.92 %. 

Found: C, 38.8; H, 2.77 %. 

6.4.2.5 Propane-1,2,3-tris[ 4,5- bis(methylthio )·1,3-dithiole-2-ylidene] 

(112) and propane-1,2-bis[ 4,5-bis(methylthio)-1,3-dithiole-2-ylidene]-3-

al (122) 

These compounds were prepared following the procedure outlined for compound 

(109) (Chapter 6.4.2.2) from phosphonate ester (67d) (0.70 g, 2.3 mmol) and 

compound (108) (0.30 g, 1.1 mmol) in THF (50 ml). Purification was achieved on a 

neutral alumina column (eluent: dichloromethane/hexane 1:2 v/v) to yield compound 
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(112) as a yellow oil (0.47 g, 67 %). MS: m/e 621 (DCI) (M++l); 0H(CDCl3) = 5.65 

(2H, s), 2.35 (6H, s), 2.34 (6H, s), 2.33 {6H, s) ppm.; Anal.: Calc. for C1sH2oS 12: 

C, 34.8; H, 3.25 %. Found: C, 34.4; H, 3.57 %. Continued elution with hexane/ 

dichloro-methane (1:1 v/v) afforded compound (122) as a red solid (0.15 g, 30 %). 

MPt: 126-127 ·c; MS: m/e 443 (DCI) (M++I); 0H(CDCl3) = 9.42 (lH, s), 5.98 (lH, 

s), 2.54 (3H, s), 2.49 (3H, s), 2.43 (3H, s), 2.37 (3H, s) ppm.; Anal.: Calc. for 

C13Ht40Ss: C, 35.3; H, 3.19 %. Found: C, 35.2; H, 3.22 %. 

6.4.2.6 Butane-1,2,3-tris( 4,5-dimethyl-1,3-dithiole-2-ylidene )-4-al 

(116) 

Oxalyl chloride (0.1 ml) was added to anhydrous dimethylformamide (DMF) (5 ml) 

at -5·c and the mixture stirred at room temperature for 0.5 h under nitrogen. A solution 

of compound (109) (0.20 g, 0.47 mmol) in anhydrous DMF (2 ml) was then added and 

after 3 h the solution was hydrolysed with 5M N aOH (2 ml), slowly turning the colour 

from brown to red. Dichloromethane (50 ml) was added and the organic phase was 

washed with water (3 x 100 ml), dried (MgS04) and evaporated. The resulting red solid 

was purified on a neutral alumina column (eluent: hexane/dichloromethane 1:1 v/v) to 

yield compound (116) as a red solid (0.14 g, 65 %). MPt: 208-210 ·c; MS: m/e 

457 (DCI) (M++1); 0H(CDCl3) = 9.06 (lH, s), 5.92 (lH, s), 2.i8 (3H, s), 2.14 (3H, 

s), 1.95 (3H, s), 1.85 (3H, s), 1.82 (3H, s), 1.77 (3H, s) ppm.; Anal.: Calc. for 

Ct9H200S6: C, 50.0; H, 4.41 %. Found: C, 50.0; H, 4.44 %. 

6.4.2. 7 Butane-1,3-bis( 4,5-ethylenedithio-1,3-dithiole-2-ylidene )·2-

( 4,5-dimethyl-1,3-ditbiole-2-ylidene )-4-al (117) 

This was prepared analogously to compound (116) (Chapter 6.4.2.6) by the addition 

of compound (111) (50 mg. 0.1 mmol) in anhydrous dichloromethane (1 0 ml) to oxalyl 

chloride (0.1 ml) in anhydrous DMF (10 ml), followed by hydrolysis with 5M NaOH. 

Purification on a neutral alumina column (eluent: hexane/dichloromethane 1:1 v/v) 

yielded aldehyde (117) as a red solid (29 mg, 55%). MPt: 204-207 ·c; MS: m/e 

581 (DCI) (M++1); OH(CS2) = 8.89 (lH, s), 5.78 (lH, s), 3.35 (4H, s), 3.20 (4H, s), 
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1.96 (3H, s), 1.89 (3H, s) ppm.; Anal.: Calc. for C19HI60S10: C, 39.3; H, 2.78 %. 

Found: C, 38.8; H, 2.85 %. 

6.4.2.8 B utane-1,2,3-tris[ 4,5-bis(thiomethylthio )-l,3adithiole-2-

ylidene]-4aal (118) 

This was prepared analogously to compound (116) (Chapter 6.4.2.6) by the addition 

of compound (112) (200 mg, 0.32 mmol) in anhydrous DMF (5 ml) to oxalyl chloride 

(0.1 ml) in anhydrous DMF (10 ml), followed by hydrolysis with 5M NaOH. 

Purification on a neutral alumina column (eluent: hexane/dichloromethane 2:1 v/v) 

yielded aldehyde (118) as a red solid (110 mg, 53%). MPt: 172-174 ·c; MS: m/e 

649 (DCO (M++1); 8a(CDCl3) = 9.08 (1H, s), 5.90 (1H, s), 2.55 (3H, s), 2.48 (3H, 

s), 2.43 (3H, s), 2.36 (3H, s), 2.34 (3H, s), 2.27 (3H, s) ppm.; Anal.: Calc. for 

C19H2o0S10: C, 35.2; H, 3.11 %. Found: C, 35.3; H, 3.23 %. 

6.4.2.9 B utane-1,3-bis( 4,5-ethylenedithio-1,3-dithiole-2-yli dene )-2,4-

bis(4,5-dimethyl-1,3-dithiole-2-ylidene) (119) 

To a solution of phoshonate ester (67c) (80 mg, 0.33 mmol) in dry THF (50 ml) 

under nitrogen at -78 ·c was added n-BuLi (1.6M, 0.22 ml, 0.35 mmol). After 1 h a 

solution of compound (117) (160 mg, 0.28 mmol) in dry THF ( 10 ml) was added and 

the mixture stirred at -78 ·c for 1 h before being allowed to warm to room temperature 

overnight. The solvent was then evaporated, water added (100 ml) and the product 

extracted into dichloromethane (3 x 50 ml). Drying (MgS04), evaporation and column 

chromatography on neutral alumina (eluent: cyclohexane/dichloromethane 3:1 v/v) 

yielded compound (119) as a yellow solid (120 mg. 63 %). MPt: 192-195 ·c; MS: 

m/e (M++1) not observed (DCO; 8a(CS2) = 5.55 (1H, s), 5.43 (lH, s), 3.24 (4H, s), 

3.21 (4H, s), 1.95 (3H, s), 1.90 (3H, s), 1.85 (6H, s) ppm.; Anal.: Calc. for 

C24H22S12: C, 41.5; H, 3.19 %. Found: C, 42.0; H, 2.56 %. 
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6.4.2.10 Butane-1,2,3,4-tetrakis[4,5-bis(methylthio)-1,3-dithiole-2-

ylidene] (120) 

This was prepared following the procedure described for compound (119) (Chapter 

6.4.2.9) from phosphonate ester (67d) (150 mg, 0.5 mmol) and compound (118) (260 

mg, 0.4 mmol). Purification on a neutral alumina column (eluent: hexane/dichloro

methane 2:1 v/v) yielded compound (120) as a yellow solid (190 mg, 57%). MPt: 

87-92 oc ; MS: m/e 827 (DCI) (M+ + 1); ~H(CDCh) = 5.68 (lH, s), 3.47 (3H, s), 3.45 

(3H, s), 3.43 (3H, s), 3.40 (3H, s) ppm.; Anal.: Calc. for C24H26S 16: C, 34.8; H, 

3.17 %. Found: C, 34.9; H, 3.23 %. 

6.4.2.11 Octan-1,2,3-tris( 4,5-dimethyl-1,3-dithiole-2-yli dene )-4-ene 

(123) 

This was prepared following the procedure described for compound (119) (Chapter 

6.4.2.9) from phosphonate ester (67c) (300 mg, 1.25 mmol), 1.6M n-BuLi (1.4 ml, 2.2 

mmol) and compound (116) (160 mg, 0.4 mmol). Purification on a neutral alumina 

column (eluent: hexane/dichloromethane 3:1 v/v) yielded compound (123) as a yellow 

solid (50 mg, 30 %). MPt: 210-212 oc; MS: m/e 496 (EI) (M+), 497 (DCI) (M++l); 

~H(CDCl3) = 5.60 (1H, d, J = 15Hz), 5.54 (lH, s), 5.14 (1H, m), 2.02 (2H, m), 1.93 

(3H, s), 1.89 (6H, s), 1.82 (6H, s), 1.79 (3H, s), 1.35 (2H, sextet), 0.87 (3H, s) 

ppm.; Anal.: Calc. for C23H28S6: C, 55.6; H, 5.69 %. Found: C, 55.2; H, 5.61 %. 

6.4.2.12 4,5-Bis(methyltelluro)-1,3-dithiole-2-thione (126) 

To a solution of lithium diisopropylamine (55 mmol) in anhydrous THF (50 ml) at 

-78 oc was added vinylene trithiocarbonate (59) (3.56 g, 26 mmol). After 2 h powdered 

elemental tellurium (6.85 g, 54 mmol) was added and the mixture allowed to warm to 

room temperature overnight. The resulting deep purple solution of the ditellurate anion 

(125) was then cooled to -40 oc and methyl iodide (8.2 g, 58 mmol) added. After 

warming to room temperature unreacted tellurium was filtered off, water (200 ml) was 

added and the residue was extracted into dichloromethane (3 x 100 ml), dried (MgS04) 

and evaporated to yield an orange solid. Purification was achieved by chromatography 
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on a silica column (eluent: hexane/dichloromethane 3:1 v/v) and recrystallisation from 

hexane/dichloromethane, affording thione (126) as a yellow crystalline solid (0.95 g, 

9 %). MPt: 120-123 ·c; MS: m/e 418 (EI) (M+), 419 (CI) (M+1+); 8H(CDC13) = 2.29 

(6H, s) ppm.; Anal.: Calc. for CsH6S3Te2: C, 14.4; H, 1.45; S, 23.0 %. Found: C, 

14.7; H. 1.41; s, 23.5 %. 

6.4.2.13 1,3-Propanedial-2-[4,5-bis(methyltelluro)-1,3-dithiole-2-

ylidene] (128) and 1,3-propanedial-2-( 4-methyltelluro-5-hydro-1,3-

dithiole-2-ylidene) (130) 

A suspension of thione (126) (210 mg, 0.5 mmol) in dimethyl sulphate (OMS) (10 

ml) was heated under nitrogen at 70 ·c for 2 h until the solid went into solution. Upon 

cooling to 0 ·c tetrafluoroboric acid (excess) was added dropwise, followed by dry ether 

(200 ml) which separated out a black oil. The ether was decanted off and the oil was 

washed with dry ether (3 x 50 ml). The addition of acetonitrile to the oil (127) produced 

a red solution to which was added the sodium salt of malonaldehyde (0.10 g, 1.1 mmol) 

and the mixture was stirred at room temperature overnighL The yellow solution was 

evaporated, extracted into dichloromethane (50 ml), washed with water (2 x 100 ml), 

dried (MgS04), evaporated and chromatographed (neutral alumina column, eluent: 

cyclohexane/dichloromethane 1:1 v/v) to yield compound (128) as a yellow solid (50 

mg, 22 %). MPt: 160-162 ·c; MS: m/e 313 (EI) (M+-MeTe); 8u(CD03) = 9.74 (2H, 

s), 2.52 (6H, s) ppm.; Anal.: Calc. for CsHs02S2Te2: C, 21.1; H. 1.77 %. Found: 

C, 21.5; H. 1.72 %. Continued elution with cyclohexane/dichloromethane (1:1 v/v) 

afforded compound (130) as a yellow solid (35 mg). MPt: 120-124 ·c; MS: m/e 314 

(EI) (M+), 315 (CI) (M++1); 8H(CDCl3) = 9.79 (lH, s), 9.74 (1H, s), 7.69 (1H, s), 

2.36 (3H, s) ppm.; Anal.: Calc. for C7H602S2Te: C, 26.8; H, 1.93 %. Found: C, 

26.2; H, 1.79 %. 
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6.4.2.14 Propane-193-bis[ 4,5-bis(methylthio )· 1,3-dithiolea2a ylidene] -2. 

[ 4,5-bis(methyltelluro )-1,3-dithiole-2-ylidene] (129) 

This was prepared following the procedure outlined for compound (109) (Chapter 

6.4.2.2) from phosphonate ester (67d) (120 mg, 0.4 mmol), n-BuLi (1.6M, 0.3 ml, 0.5 

mmol) and compound (128) (80 mg, 0.18 mmol) in THF (50 ml). Purification was 

achieved on a silica column (eluent: dichloromethane/hexane 1:3 v/v) to yield 

compound (129) as a yellow oil (68 mg. 49 %). MS: m/e M+ not observed (DEI); 

oa(CDCh) = 5.71 (2H, s), 2.41 {6H, s), 2.40 (6H, s), 2.33 (6H, s) ppm.; Anal.: 

Calc. for CtsH2oS10Te2: C. 26.6; H, 2.48 %. Found: C, 25.9; H, 2.87 %. 

6.4.2.15 Propane-1,3-bis( 4,5-etbylenedi tb io-1,3-di thiole-2-y li den e)· 2-

(4-methyltelluro-5-bydro-1,3-dithiole-2-ylidene) (131) 

This was prepared following the procedure outlined for compound { 109) (Chapter 

6.4.2.2) from phosphonate ester {67f) {55 mg, 0.18 mmol), n-BuLi (1.6M, 0.12 mi. 

0.19 mmol) and compound {124) {28 mg, 0.09 mmol) in 1HF {50 ml). Purification was 

achieved on a silica column {eluent: dichloromethane/hexane 1:1 v/v) to yield 

compound (131) as an orange solid (26 mg, 43 %). MPt: 96-1oo·c; MS: m/e M+ 

not observed {DEI); oa{CDCl3) = 6.48 (1H, s), 5.60 {1H, s), 5.57 (lH, s), 3.28 (8H, 

s), 2.21 (3H, s) ppm.; Anal.: Calc. for C17H14StoTe: C, 30.6; H, 2.12 %. Found: c. 

30.9; H, 2.26 %. 

6.5 EXPERIMENTAL TO CHAPTER FIVE 

6.5.1 Materials . 

6.5.2.1 9,10-Bis[4,5-bis(methylthio)-1,3-dithiole-2-ylidene]-9,10-di-

bydroanthracene (133) 

To a solution of phosphonate ester {67d) {0.9 g. 3 mmol) in anhydrous THF (20 ml) 

at -78•c under nitrogen was added n-BuLi {1.6M, 2 ml, 3.2 mmol). After 30 min at 

-78·c a solution of anthraquinone {0.3 g. 1.4 mmol) in dry 1HF (10 ml) was added and 

the mixture stirred at -78·c for 1 h before warming to room temperature overnight. The 
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solvent was then evaporated in vacuo, dichloromethane (100 ml) added, the organic 

phase washed with water (2 x 100 ml), dried (MgS04) and evaporated to afford a yellow 

solid. This solid was purified on a silica column (eluent: hexane/dichloromethane 2:1 

v/v) to yield compound (133) as a yellow solid (0.31 g, 38 %). X-Ray quality 

crystals were grown from an acetonitrile/dichloromethane solution. MPt: >23o·c; MS: 

m/e 564 (EI) (M+); OH(CDCl)) = 7.57 (4H, m), 7.32 (4H, m), 2.40 (12H, s) ppm.; 

Anal.: Calc. for C24li2oSs: C, 51.0; H, 3.57 %. Found: C, 50.9; H, 3.54 %. 

6.5.2.2 2,3-Di pentyl-9,10-bis( 4,5-di methyl-1,3-di thiole-2-yliden e)-

9,10-dihydroanthracene (134) and 2,3-dipentyl-9-oxo-10-(4,5-dimethyl-

1,3-dithiole-2-ylidene)-9,10-dihydroanthracene (135) 

These compounds were prepared follwing the procedure detailed for compound 

(133) (Chapter 6.5.2.1) from phosphonate ester (67c) (1 g, 4 mmol), n-BuLi 2.5M (1.8 

ml, 4.5 mmol) and 2,3-dipentylanthraquinone (0.78 g, 2.2 mmol) [kindly supplied by 

Prof. K.Miillen (Mainz)] in anhydrous 1liF (50 ml). Work-up followed by column 

chromatography on silica (eluent: toluene/cyclohexane 1:3 v/v) yielded compound 

(134) as a yellow solid (0.36 g, 28 %). MPt: 199-2o2·c; MS: m/e 576 (EI) (M+), 577 

(CI) (M++1); OH(CDCl3) = 7.52 (2H, m), 7.30 (2H, s), 7.15 (2H, m), 2.56 (4H, m), 

1.80 (12H, s), 1.55 (4H, m), 1.31 (8H, m), 0.84 (6H, t, J = 6.7 Hz) ppm.; Anal.: 

Calc. for CW4oS4: C. 70.8; H, 6.99 %. Found: C, 71.0; H, 7.24 %. Continued 

elution with dichloromethane yielded unreacted anthraquinone and compound (135) 

as a red solid (0.25 g, 24 %). MPt: 80-83.C; MS: m/e 462 (EI) (M+); OH(CDCl3) = 

8.19-7.17 (6H, m), 2.64 (4H, m), 1.87 (6H, s), 1.62 (4H, m), 1.31 (8H, m), 0.85 

(6H, m) ppm. 

6.5.2.3 2,3-Di pentyl-9,10-bis( 4,5-dimethyl-1,3-dithiole-2-ylidene )-9, 

1 O·dihydroanthracene-7, 7 ,8,8-tetracyano-p-quinodimethane complex 

(134a) 

A boiling solution of donor (134) (50 mg, 0.09 mmol) in dry acetonitrile (15 ml) 

was added to a boiling solution ofTCNQ (36 mg, 0.18 mmol) in dry acetonitrile (15 
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ml). After cooling and evaporation to 5 ml the resultant dark green precipitate was 

recrystallised from dichloromethane to afford a green/black solid, complex ( 134a} ( 18 

mg, 30 %). Anal.: Calc. for Cs2Hs~t6S4 (i.e. a 1:4 complex): C, 70.7; H, 4.05; N, 

16.1 %. Found: C, 70.6; H, 3.88; N, 16.5 %. 
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A.l.l Crystal Data for 4,5-Bis(methylseleno)-4' ,S'-bis(methylthio)-

2,2 '-ethanediylidenebis(l,3-dithiole) (54) 

512'1 

' 
Figure A.l- Molecular structure of compound (54) showing atom labelling. 

CRYSTAL DATA · 

Empirical Formula: 

Colour, size: 

Crystal System: 

Space Group: 

Unit Cell Dimensions: 

Z: 

Formula Weight: 

Density (calc): 

F(OOO): 

DATA COILECflON 
Radiation: 

Temperature: 

Reflections Collected: 

Unique Reflections: 

Observed Reflections: 

CtoHt4S6SC2 
Orange, 0.48 x 0.26 x 0.04 mm 

Triclinic 

P1bar 

a= 5.152(1) A. b = 8.110(2) A, c = 11.285(3) A 
a = 90.0, ~ = 96.53(3r. 'Y = 90.0" 

1 

508.5 

1.886 gjcm3 

250 

CuKa (A.= 1.54184 A) 
240K 

2981 

1355 
1351 [F > 4a (F)] 

SOLUTION AND REFINEMENT 

System Used: 

Solution: 

Refinement Methods: 

Number of Parameters Refined: 

R Indices (full data): 

Siemens SHELXTL 

Direct Methods 

Blocked-cascade least-squares 

92 

R = 5.30 %,wR = 3.04 % 
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The molecule is disordered over a centre of symmetry, so that the terminal SMe and 

SeMe groups are indistinguishable; these heteroatoms were refined as 50% S and 50% 

Se. 

BOND LENGTHS (A) 

Se(l)-C(l) 1.881(7) Se(l)-C(3) 1.840(5) 

Se(2)-C(2) 1.869(8) Se(2)-C(4) 1.828(6) 

S(3)-C(3) 1.743(6) S(3)-C(5) 1.747(5) 

S(4)-C(4) 1.749(5) S(4)-C(5) 1.763(5) 

C(3)-C(4) 1.381(7) C(5)-C(6) 1.350(8) 

C(6)-C(6') 1.445(11) 

SELECfED IN1ERMOLECULAR NON-BONDED DISTANCES (A) 

S(l)-S(3') 3.963 S(2)-S(4') 3.805 

S(l)-S(4') 

S(2)-S(3') 

3.688 

4.040 

BOND ANGLES C) 

C(l )-Se(l )-C(3) 96.9(2) 

C(3)-S(3)-C(5) 96.6(3) 

Se(l)-C(3)-S(3) . 117.5(3) 

S(3)-C(3)-C(4) 117.6(4) 

Se(2)-C(4)-C(3) 127.6(4) 

S(3)-C(5)-S(4) 113.3(3) 

S(4)-C(5)-C(6) 122.1(4) 

S(3)-S(3') 3.918 

S(3)-S(4') 3.812 

C(2)-Se(2)-C(4) 97.2(3) 

C(4)-S(4)-C(5) 97.2(2) 

Se(l)-C(3)-C(4) 124.9(4) 

Se(2)-C( 4)-S(4) 117.2(3) 

S(4)-C(4)-C(3) 115.2(4) 

S(3)-C(5)-C(6) 124ji(4) 

C(5)-C(6)-C(6') 123.3(6) 

A.1.2 Crystal Data for 4,5-Dimethyl-2-(1,3-cyclopentanedithione-2-

ylidene)-1,3-dithiole (72) 

CRYSTAL DATA 

Empirical Formula: 

Crystal System: 

Space Group: 

Unit Cell Dimensions: 

Z: 

Cufi10S4 

Monoclinic 

P21/n 

a= 7.634(3) A, b = 14.018(3) A, c = 10.561(3) A 
a = 90.0, ~ = 96.53(3Y. 'Y = 90.0" 

4 
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Formula Weight: 

Density (calc): 

F(OOO): 

DATA COlLECTION 
Radiation: 

Temperature: 

Reflections Collected: 

Unique Reflections: 
Observed Reflections: 

258.45 

1.53 glcm3 

536 

MoKa (/... = 0.71069 A) 
293 K 

5401 

3665 
2156 [F > 4a (F)] 

SOLUTION AND REFINEMENT 

System Used: 

Solution: 

Refinement Methods: 

Number of Parameters Refined: 

R Indices (full data): 

Siemens SHELXTL 

Direct Methods 

Full-matrix least-squares 
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R = 5.6 %,wR = 4.8 % 

Figure A.2- Molecular structure of compound (72) showing atom labelling. 
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BOND LENGTHS (A) 

C(l)-S(l) 1.643(7) C(2)-C(l) 1.497(7) 

C(5)-C(1) 1.440(7) C(3)-C(2) 1.535(9) 

C(4)-C(3) 1.527(8) S(2)-C(4) 1.626(7) 

C(5)-C(4) 1.431(7) C(6)-C(5) 1.415(6) 

S(3)-C(6) 1.708(7) S(4)-C(6) 1.734(6) 

C(7)-S(3) 1.740(6) C(8)-C(7) 1.505(9) 

C(9)-C(7) 1.328(7) C(l0)-C(9) 1.486(6) 

S(4)-C(9) 1.762(7) 

SELECTED INTRAMOLECULAR NON-BONDED DISTANCES (A) 

S(4)-S(2) 3.020 S(3)-S(l) 2.998 

SELECTED IN1ERMOLECULAR NON-BONDED DISTANCES (A) 

S(3)-S(2b) 3.760 S(4)-S(3a) 3.912 

S(4)-S(1b) 3.960 S(2)-S(lc) 3.710 

S(3)-S(3a) 3. 958 

Key to symmetry operations relating designated atoms to reference atoms at (x, y, z) 
a) 1.0-x, 2.0-y, -z 

b) -x, 2.0-y, -z 

c) 0.5-x, -0.5+y, -0.5-z 

BOND ANGLES r> 

C(2)-C(l)-S(l) 123.5(4) C(5)-C(l )-S(l) 127.8(5) 

C(5)-C(l )-C(2) 108.7(5) C(3)-C(2)-C(l) 105.3(5) 

C(4)-C(3)-C(2) 106.2(5) S(2)-C(4)-C(3) 122.9(5) 

C(5)-C( 4)-C(3) 107.2(5) C(5)-C(4)-S(2) 129.9(5) 

C( 4 )-C(5)-C(l) 111.4(5) C( 6)-C(5)-C(l) 124.4(5) 

C(6)-C(5)-C(4) 124.1(5) S(3)-C(6)-C(5) 123.7(4) 

S(4)-C(6)-C(5) 123.3(5) S(4)-C(6)-S(3) 113.0(3) 

C(7)-S(3)-C( 6) 97.9(3) C(8)-C(7)-S(3) 115.7(5) 

C(9)-C(7)-S(3) 116.4(5) C(9)-C(7)-C(8) 127.9(5) 

C( 1 0)-C(9)-C(7) 129.2(6) S( 4)-C(9)-C(7) 115.8(4) 

S(4)-C(9)-C(l0) 115.0(5) C(9)-S(4)-C(6) 96.8(3) 
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A.l.J Crystal Data for 2,4,6-Tris(4,5-di-n-propyl-1,3-dithiole-2-

ylidene)·l,3,5-cyclohexanetrione (70): 

CRYSTAL DATA 

Empirical Formula: C33l42S603 
Colour; Habit; Size: 

Crystal System: 

Orange-red crystal, 0.14 x 0.18 x 0.44 mm 

Triclinic 

Space Group: P1bar 

Unit Cell Dimensions: a= 8.878(2) A, b = 12.914(2) A, c = 15.175(2) A 
a= 82.96(1)", ~ = 86.70(lr. 'Y = 87 .20(1)" 

Z: 

Formula Weight: 

Density (calc): 

F(OOO): 

DATA COLLECTION 

Diffractometer Used: 

2 

679.1 

1.309 g/cm3 

720 

Stoe-Siemens 

Radiation: 

Temperature: 

CuKa (A.= 1.54184 A) 
295K 

Unique Reflections: 5097 
Observed Reflections: 3554 [F > 4a (F)] 

SOLUTION AND REFINEMENT 

System Used: Siemens SHELXTL 

Solution: Direct Methods 

Refinement Methods: Blocked-cascade least-squares 

Number of Parameters Refined: 390 

R Indices (full data): R = 6.07 %,wR = 7.57% 

Goodness-of-Fit: 1.04 

BOND LENGTHS (A) 

S(l)-C(7) 1.718(5) S(l)-C(8) 

S(2)-C(7) 1.718(5) S(2)-C(9) 

S(3)-C(10) 1.718(5) S(3)-C(11) 

S(4)-C(10) 1.717(4) S(4)-C(12) 

S(5)-C(13) 1.726(5) S(5)-C(14) 

S(6)-C(13) 1.729(5) S(6)-C(15) 

0(1)-C(2) 1.240(6) 0(2)-C(4) 
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1.744(5) 

1.746(5) 

1.753(5) 

1,738(5) 

1.756(5) 

1.748(5) 

1.257(5) 
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0(3)-C(6) 1.257(6) C(l)-C(2) 1.442(6) 

C(1)-C(6) 1.445(6) C(l)-C(7) 1.399(6) 

C(2)-C(3) 1.456(6) C(3)-C(4) 1.439(6) 

C(3)-C(10) 1.397(6) C(4)-C(5) 1.452(6) 

C(5)-C(6) 1.444(6) C(5)-C(13) 1.389(6) 

C(8)-C(9) 1.321(7) C(8)-C(16) 1.504(8) 

C(9)-C(19) 1.511(7) C(11)-C(12) 1.335(7) 

C(11)-C(22) 1.501(9) C(12)-C(25) 1.503(7) 

C(14)-C(15) 1.324(7) C(14)-C(28) 1.518(8) 

C(l 5)-C(31) 1.508(8) C(16)-C(17) 1.336(12) 

C(17)-C(18) 1.525(15) C(19)-C(20) 1.467(8) 

C(20)-C(21) 1.519(8) C(22)-C(23) 1.360(13) 

C(23)-C(24) 1.483(12) C(25)-C(26) 1.489(12) 

C(26)-C(27) 1.254(20) C(28)-C(29) 1.496(15) 

C(29)-C(30x) 1.372(27) C(29)-C(30y) 1.347(23) 

C(31 )-C(32) 1.526(11) C(32)-C(33) 1.447(14) 

Cl30y) 

Figure A.3 - Molecular structure of compound (70) showing atom labelling. 
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BOND ANGLES (") 

C(7)-S(l)-C(8) 96.5(2) C(7)-S(2)-C(9) 96.9(2) 

C(10)-S(3)-C(11) 96.6(2) C(10)-S(4)-C(12) 97.4(2) 

C(13)-S(5)-C(14) 96.6(2) C(13)-S(6)-C(15) 96.7(2) 

C(2)-C(l )-C( 6) 121.6(4) C(2)-C(l )-C(7) 119.3(4) 

C( 6)-C(l )-C(7) 119.1(4) 0(1)-C(2)-C(l) 121.1(4) 

0(1 )-C(2)-C(3) 120.4(4) C(l)-C(2)-C(3) 118.5(4) 

C(2)-C(3)-C( 4) 121.0(4) C(2)-C(3)-C(l0) 119.7(4) 

C(4)-C(3)-C(l0) 119.2(4) 0(2)-C(4)-C(3) 120.8(4) 

0(2)-C( 4 )-C(5) 120.1(4) C(3)-C(4)-C(5) 119.2(4) 

C(4)-C(5)-C(6) 120.9(4) C(4)-C(5)-C(l3) 119.3(4) 

C( 6)-C(5)-C(13) 119.8(4) 0(3)-C(6)-C(1) 121.0(4) 

0(3)-C(6)-C(5) 120.3(4) C(1)-C(6)-C(5) 118.8(4) 

S(l)-C(7)-S(2) 113.7(2) S(l )-C(7)-C(l) 123.1(3) 

S(2)-C(7)-C(l) 123.2(3) S( 1 )-C(8)-C(9) 116.9(4) 

S(l)-C(8)-C(l6) 116.3(4) C(9)-C(8)-C(l6) 126.8(4) 

S(2)-C(9)-C(8) 116.0(3) S(2)-C(9)-C(l9) 118.7(4) 

C(8)-C(9)-C(l9) 125.3(4) S(3)-C(10)-S(4) 113.7(3) 

S(3)-C(10)-C(3) . 123.0(3) S(4)-C(l0)-C(3) 123.3(3) 

S(3)-C(l1)-C(l2) 116.4(4) S(3)-C(l1)-C(22) 116.9(4) 

C(12)-C(l1)-C(22) 126.6(5) S(4)-C(12)-C(l1) 115.9(4) 

S(4)-C(12)-C(25) 115.5(4) C(11)-C(12)-C(25) 128.5(5) 

S(5)-C(l3)-S(6) 113.6(3) S(5)-C(13)-C(5) 123.2(4) 

S(6)-C(l3)-C(5) 123.2(3) S(5)-C(l4)-C(l5) 116.5(4) 

S(5)-C(14)-C(28) 114.8(4) C(15)-C(14)-C(28) 128.7(5) 

S(6)-C(l5)-C(14) 116.6(4) S(6)-C(15)-C(31) 114.6(4) 

C(14)-C(15)-C(31) 128.8(5) C(8)-C( 16)-C( 17) 118.8(7) 

C(16)-C(l7)-C( 18) 117.7(9) C(9)-C( 19)-C(20) 117.4(4) 

C( 19)-C(20)-C(21) 112.9(5) C(11)-C(22)-C(23) 122.3(7) 

C(22)-C(23 )-C(24) 120.7(9) C( 12-C(25)-C(26) 114.1(5) 

C(25)-C(26)-C(27) 127.9(10) C(14 )-C(28)-C(29) 117 .1(6) 

C(28)-C(29)-C(30x) 117.0(11) C(28)-C(29)-C(30y) 116.8(15) 

C( 15)-C(31 )-C(32) 113.4(5) C(31 )-C(32)-C(33) 115.1(8) 
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A.1.4 Crystal Data for 2o(4,5-Di-n-propyl-1,3-dithiole-2-ylidene)-1,3-

indanedithione (99) 

CRYSTAL DATA 

Empirical Formula: 

Crystal System: 

Space Group: 

Unit Cell Dimensions: 

Z:. 

Formula Weight: 
Density (calc): 

F(OOO): 

C2 

C3 

C1sHtsS4 
Monoclinic 

P21/a 

a= 7.532(1) A, b = 24.658(3) A, c = 9.445(1) A 
a= 90·, p = 93.43(1r. 'Y= 90° 

4 

362.61 
1.38 gjcm3 

760 

C18 

ClS 

Figure A.4 - Molecular structure of compound (99) showing atom labelling. 

DATA COlLECTION 
Radiation: 

TemperatUre: 

Reflections Collected: 

Unique Reflections: 
Observed Reflections: 

MoKa (A. = 0. 710693 A) 
293K 

7971 

2979 
1337 [F > 3CJ (F)] 

SOLUilON AND REFINEMENT 

System Used: 

Solution: 

Siemens SHELXTL 

Direct Methods 
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Refinement Methods: Full-Matrix Least-Squares 

Number of Parameters Refined: 224 

R Indices (full data): R = 4.2 %,wR = 4.2% 

BOND LENGTHS (A) 

C(l)-C(2) 1.382(11) C(6)-C(l) 1.361(10) 

C(2)-C(3) 1.354(13) C(4)-C(3) 1.383(12) 

C(4)-C(5) 1.373(10) C(6)-C(5) 1.392(9) 

C(5)-C(7) 1.463(9) C(9)-C(6) 1.492(9) 

S(l)-C(7) 1.636(8) C(8)-C(7) 1.444(8) 

C(8)-C(9) 1.421(8) C(l0)-C(8) 1.415(8) 

S(2)-C(9) 1.647(8) S(3)-C(10) 1.704(8) 

S(4)-C(10) 1.723(7) C(ll)-S(3) 1.744(7) 

C(11)-C(12) 1.338(8) C(13)-C(11) 1.504(9) 

S(4)-C(12) 1.724(8) C(16)-C(12) 1.509(8) 

C(13)-C(14) 1.505(9) C(l5)-C(14) 1.508(10) 

C(16)-C(17) 1.522(9) C(18)-C(17) 1.510(9) 

SELECTED IN1RAMOLECULAR NON-BONDED DISTANCES (A) 

S(2)-S(4) 3.043 S(l)-S(3) 3.048 

SELECTED INTERMOLECULAR NON-BONDED DISTANCES (A) 

S(3)-S(1a) 4.061 S(4)-S(3a) 4.059 

S(1)-S(lb) 3.973 S(4)-S(4b) 3.822 

Key to symmetry operations relating designated atoms to reference atoms at (x, y, z) 

a) 0.5+x, 1.5-y, z 

b) -0.5+x, 1.5-y, z 

BOND ANGLES C) 

C(6)-C(1)-C(2) 118.1(8) C(3)-C(2)-C(l) 121.0(9) 

C(4)-C(3)-C(2) 121.3(8) C(5)-C( 4 )-C(3) 118.4(8) 

C( 6)-C(5)-C( 4) 119.7(8) C(7)-C(5)-C( 4) 130.6(7) 

C(7)-C(5)-C( 6) 109.7(7) C(5)-C( 6)-C(l) 121.5(7) 

C(9)-C( 6)-C(l) 130.5(6) C(9)-C(6)-C(5) 108.0(7) 

S(l)-C(7)-C(5) 124.3(6) C(8)-C(7)-C(5) 106.0(6) 

C(8)-C(7)-S(l) 129.7(6) C(9)-C(8)-C(7) 110.0(6) 

C(l 0)-C(8)-C(7) 124.6(6) C(l 0)-C(8)-C(9) 125.4(6) 
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C(8)-C(9)-C(6) 106.3(6) S(2)-C(9)-C( 6) 123.8(6) 

S(2)-C(9)-C(8) 129.9(5) S(3)-C(10)-C(8) 123.7(5) 

S(4)-C(10)-C(8) 122.6(5) S(4)-C(10)-S(3) 113.7(4) 

C( 11 )-S(3 )-C( 10) 97.2(4) C(12)-C(11)-S(3) 115.4(6) 

C(13)-C(11)-S(3) 118.0(5) C(13)-C(11)-C(12) 126.6(6) 

S(4)-C(12)-C(11) 117.0(5) C(16)-C(12)-C(11) 125.2(6) 

C(16)-C(12)-S(4) 117.8(5) C(12)-S(4)-C(10) 96.7(4) 

C(14)-C(13)-C(11) 116.6(6) C(15)-C(14 )-C(13) 113.4(6) 

C(17)-C(16)-C(12) 112.1(5) C(18)-C(17)-C(16) 111.6(6) 

A.l.S Crystal Data for Propane-1,2,3-tris(4,5-dimethyl-1,3-dithiole-2-

ylidene) (109) 

CRYSTAL DATA 

Empirical Formula: 

Colour; Habit; Size: 

Crystal System: 

Space Group: 

Unit Cell Dimensions: 

Z: 

Formula Weight: 

Density (calc): 

F(OOO): 

DATA COU.ECTION 

Diffractometer Used: 

Radiation: 

Temperature: 

Monochromator: 

Reflections Collected: 

Independent Reflections: 

Observed Reflections: 

C1sH20S6 
Yellow Plate, 0.13 x 0.32 x 0.50 mm 

Triclinic 

P1bar 

a = 9.968(3) A, b = 10.636(5) A, c = 12.085(5) A 
a= 65.89(3)", ~ = 67.07(3)-, y = 67.52(4)" 

2 

428.7 

1.371 g/cm3 

448 

Siemens R3m/v 
MoKa (A.= 0.71073 A) 
293 K 

Highly oriented graphite crystal 

2899 

2710 (Rint = 2.20 %) 

1977 [F > 4.0o (F)] 

SOLUTION AND REFINEMENT 

System Used: 

Solution: 

Refinement Methods: 

Siemens SHELXTL PLUS (VMS) 

Direct Methods 

Full-Matrix Least-Squares 
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Number of Parameters Refined: 217 

R Indices (full data): R = 8.32 %,wR = 7.38% 

Goodness-of-Fit: 2.02 

BOND LENGTiiS (A) 

S(l)-C(2) 1.772(10) -S(l)-C(3) 1.744(5) 

S(2)-C(2) 1.714(6) S(2)-C(4) 1.751(9) 

S(3)-C(8) 1.731(6) S(3)-C(9) 1.758(10) 

S(4)-C(8) 1.755(9) S(4)-C(10) 1.759(6) 

S(5)-C(14) 1.739(8) S(5)-C(15) 1.741(6) 

S(6)-C(14) 1.750(5) S(6)-C(16) 1.753(9) 

C(l)-C(2) 1.365(10) C(1)-C(7) 1.409(18) 

C(3)-C(4) 1.311(12) C(3)-C(5) 1.508(13) 

C(4)-C(6) 1.486(9) C(7)-C(8) 1.381(10) 

C(7)-C(13) 1.499(12) C(9)-C(10) 1.319(12) 

C(9)-C(11) 1.490(8) C(10)-C(l2) 1.513(15) 

C(13)-C(14) 1.334(10) C(l5)-C(16) 1.328(11) 

C(15)-C(17) ~.485(14) C(16)-C(18) 1.502(9) 

SELECI'ED INTERMOLECULAR NON-BONDED DISTANCES (A) 

S(3)-S(5') 4.00 S(l)-S(l') 3.96 

Figure A.S - Molecular sttUcture of compound ( 1 09) showing atom labelling. 
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BOND ANGLES (") 

C(2)-S(l)-C(3) 95.3(4) C(2)-S(2)-C(4) 97 .4(4} 

C(8 )-S (3 )-C(9) 97.0(4) C(8)-S(4)-C(l0) 95.7(4) 

C(14)-S(5)-C(15) 96.9(4) C(14)-S(6)-C(16) 95.9(4) 

C(2)-C(l )-C(7) 128.5(9) S(l)-C(2)-S(2) 112.9(4) 

S(l)-C(2)-C(l) 126.3(6) S(2)-C(2)-C( 1) 120.8(7) 

S(l )-C(3)-C( 4) 118.4(6) S(l)-C(3)-C(5) 115.1(5) 

C(4)-C{3)-C(5) 126.5(5) S(2)-C( 4 )-C(3) 115.9(5) 

S(2)-C(4)-C(6) 117.2(8) C(3 )-C( 4 )-C( 6) 126.8(9) 

C(l )-C(7)-C(8) 122.2(8) C(l )-C(7)-C(13) 119.8(7) 

C(8)-C(7)-C(13) 117.9(5) S(3)-C(8)-S(4) 113.3(4) 

S(3)-C(8)-C(7) 121.7(6) S(4)-C(8)-C(7) 124.9(5) 

S(3)-C(9)-C(10) 116.1(5) S(3)-C(9)-C(ll) 116.6(7) 

C(10)-C(9)-C(11) 127.3(9) S(4)-C(10)-C(9) 117.7(7) 

S(4)-C(10)-C(12) 115.4(6) C(9)-C( 1 0)-C(12) 126.8(6) 

C(7)-C(13)-C(14) 122.6(5) S(5)-C(14)-S(6) 113.2(4) 

S(5)-C(14)-C(13) 123.4(5) S(6)-C(14)-C(13) 123.4(6) 

S(5)-C(15)-C(16) 116.7(7) S(5)-C(15)-C(17) 115.9(6) 

C(16)-C(l5)-C(17)" 127.4(6) S( 6)-C(16)-C(15) 117 .3(5) 

S(6)-C(16)-C(18) 115.3(7) C(15)-C(16)-C(18) 127 .5(8) 

A.l.6 Crystal Data for 9,10-Bis[4,5-bis(methylthio)-1,3-dithiole-2-

ylidene]-9,10-dihydroanthracene (133) 

CRYSTAL DATA 

Empirical Fonnula: 

Crystal System: 

Space Group: 

Unit Cell Dimensions: 

Z: 

Formula Weight: 

DATA COlLECTION 

Diffractometer Used: 

Radiation: 

Temperature: 

CWi2oSs 
Triclinic 

P1bar 

a= 8.771(1) A, b = 9.993(1) A, c = 15.375(1) A 
a= 86.93(1)", ~ = 78.69(1)", 'Y = 75.24(1)" 

2 

564.90 

Rigalcu AFC6S 
MoKa (IJ. = 7.1 cm-1) 

293K 

136 



Monochromator: 

Unique Reflections: 

Observed Reflections: 

Highly oriented graphite crystal 

4966 

3056 [I> 2o (I)] 

SOLUTION AND REFINEMENT 

System Used: Siemens SHELX PLUS 

Solution: Direct Methods 

Refinement Methods: Full-Matrix Least-Squares 

Number of Parameters Refined: 301 

R Indices (full data): R = 4.0 o/o,wR = 4.7 % 

Figure A.6- Molecular structure of compound (133) showing atom labelling. 

BOND LENGTHS (A) 

S(l)-C(11) 1.769(3) S(1)-C(12) 1.758(5) 

S(2)-C(11) 1.770(4) S(2)-C(13) 1.766(4) 

S(3)-C(12) 1.757(4) S(3)-C(14) 1.774(6) 

S(4)-C(13) 1.750(5) S(4)-C(15A) 1.763(33) 

S(4)-C(15B) 1.784(29) S(5)-C(l6) 1.766(3) 

S(5)-C(17) 1.758(4) S(6)-C(16) 1.763(4) 
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S(6)-C(18) 1.754(4) S(7)-C(17) 1.760(4) 

S(7)-C(19) 1.799(6) S(8)-C(18) 1.755(4) 

S(8)-C(20) 1.800(5) C(l)-C(2) 1.388(6) 

C(l)-C(9A) 1.410(6) C(2)-C(3) 1.380(6) 

C(3)-C(4) 1.381(6) C(4)-C(4A) 1.399(5) 

C(4A)-C(9A) 1.409(5) C( 4A)-C(l 0) 1.474(5) 

C(5)-C(6) 1.374(5) C(5)-C(10A) 1.405(5) 

C(6)-C(7) 1.403(6) C(7)-C(8) 1.384(5) 

C(8)-C(8A) 1.404(5) C(8A)-C(9) 1.486(5) 

C(8A)-C( 1 OA) 1.407(5) C(9)-C(9A) 1.484(5) 

C(9)-C(11) 1.352(5) C(10)-C(10A) 1.476(4) 

C(l0)-C(16) 1.367(5) C(12)-C(13) 1.335(6) 

C(17)-C(18) 1.332(5) 

BOND ANGLES (") 

C(11)-S(l)-C(12) 96.1(2) C(ll)-S(2)-C(13) 96.1(2) 

C(12)-S(3)-C(14) 101.1(2) C(13)-S(4)-C(15A) 103.3(12) 

C(13)-S(4)-C(15B) 102.1(10) C(16)-S(5)-C(17) 96.7(2) 

C(16)-S(6)-C(18) · 96.9(2) C(17)-S(7)-C(19) 101.0(2) 

C(18 )-S(8)-C(20) 101.2(2) C(2)-C(1)-C(9A) 120.4(4) 

C(l )-C(2)-C(3) 120.1(4) C(2)-C(3)-C(4) 120.4(4) 

C(3)-C(4)-C(4A). 120.9(4) C(4)-C(4A)-C(9A) 119.1(3) 

C(4)-C(4A)-C(10) 123.5(3) C(9A)-C(4A)-C(10) 117.3(3) 

C( 6)-C(5)-C( 1 OA) 121.6(4) C(5)-C(6)-C(7) 119.6(3) 

C( 6)-C(7)-C(8) 120.0(3) C(7)-C(8)-C(8A) 120.5(4) 

C(8)-C(8A)-C(9) 122.6(3) C(8)-C(8A)-C(10A) 119.7(3) 

C(9)-C(8A)-C( lOA) 117.7(3) C(8A)-C(9)-C(9A) 113.5(3) 

C(8A)-C(9)-C( 11) 123.0(4) C(9A)-C(9)-C(11) 123.1(3) 

C(l)-C(9A)-C(4A) 119.1(4) C( 1 )-C(9A)-C(9) 122.5(3) 

C(4A)-C(9A)-C(9) 118.5(3) C( 4A)-C(l 0)-C( lOA) 114.7(3) 

C(4A)-C(10)-C(16) 123.5(3) C(lOA)-C(l O)-C(16) 121.7(3) 

C(5)-C(10A)-C(8A) 118.6(3) C(5)-C(l OA)-C(l 0) 123.3(3) 

C(8A)-C(10A)-C(10) 118.0(3) S(l)-C(11)-S(2) 111.5(2) 

S(l)-C(11)-C(9) 124.3(3) S(2)-C(11)-C(9) 124.1(3) 

S(1)-C(12)-S(3) 116.9(3) S(l)-C(12)-C(13) 117.3(3) 

S(3)-C(12)-C(13) 125.8(4) S(2)-C(13)-S(4) 116.6(2) 

S(2)-C(13)-C(12) 116.3(4) S(4)-C(13)-C(12) 126.9(3) 

S(5)-C(16)-S(6) 111.9(2) S(5)-C(16)-C(l 0) 125.5(3) 

S( 6)-C(16)-C(l 0) 122.4(3) S(5)-C(17)-S(7) 116.6(2) 
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S(5)-C(17)-C(18) 

S(6)-C(18)-S(8) 

S(8)-C(l8)-C(17) 

116.9(3) 

117.3(2) 

125.6(3) 

S(7)-C( 17)-C( 18) 

S(6)-C(18)-C(17) 

126.4(3) 

117.0(3) 

A.1.7 Crystal Data for 2,3-Dipentyl-9,10-bis(4,5-dimethyl-1,3-dithiole-

2-ylidene)-9,10-dihydroanthracene (134) 

CRYSTAL DATA 

Empirical Formula: 

Crystal System: 

Space Group: 

CWi2oS4 

Triclinic 

P1bar 

Unit Cell Dimensions: a= 14.659(4) A, b = 15.174(8) A, c = 15.171(4) A 
a= 69.77(1)". ~ = 84.81(1)". 'Y = 82.82(1)" 

Z: 1 

Formula Weight: 556.77 

DATA COlLECTION 

Diffractometer Used: 

Radiation: 

Enraf-Nonius FAST TV area detector 

MoKa (A.= 0.71069 A) 
Temperature: 293K 

Monochromator: 

Reflections Collected: 

Highly oriented graphite crystal 

11768 

Unique Reflections: 4865 

Observed Reflections: 3504 [F > 5a (F)] 

SOLUTION AND REFINEMENT 

System Used: Siemens SHELX-S 86 

Solution: Direct Methods 

Refinement Methods: Full-Matrix Least-Squares 

Number of Parameters Refined: 698 

R Indices (full data): R = 6.40 %,wR = 6.47% 

BOND LENGTHS (A) 

C(l)-S(l) 1.897(21) C(5)-S(1) 

C(14)-S(2) 1.694(18) C(17)-S(2) 

C(14)-S(3) 1.698(21) C(15)-S(3) 

C(3)-S(4) 1.790(19) C(5)-S(4) 
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1.615(18) 

1.768(24) 

1.785(23) 

1.823(20) 



C(2)-C(l) 

C(4)-C(3) 

C(7)-C(6) 

1.472(26) 

1.616(27) 

1.488(25) 

C(3)-C(l) 1.295(28) 

C(6)-C(5) 1.436(22) 

Figure A.7- Molecular structure of compound (134) showing atom labelling. 

BOND ANGLES c-) 

C(5)-S(l)-C(l) 101.1(9) C(l7)-S(2)-C(14) 102.9(10) 

C(l5)-S(3)-C(l4) 98.5(11) C(5)-S( 4)-C(3) 107.1(9) 

C(2)-C(1 )-S(l) 123.0(14) C(3)-C(6)-S(l) 120.2(15) 

C(3)-C(1)-C(2) 116.7(18) C(1)-C(3)-S(4) 105.3(15) 

C(4)-C(3)-S(4) 124.6(14) C( 4)-C(3)-C(l) 130.1(16) 

S( 4)-C(S)-S(l) 104.7(9) C( 6)-C(S)-C(l) 121.3(14) 

C(6)-C(S)-S(4) 134.0(12) C(7)-C(6)-C(5) 131.8(14) 
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r 
The Board of Studies in Chemistry requires that each postgraduate research thesis 

contain an appendix listing: 

1) All research colloquia. research seminars and lectures arranged by the Department 

of Chemistry and the Chemical Society during the period of residence as a 

postgraduate student. 

2) All research conferences attended, and papers/posters presented by the authors, 

during the period when the research for the thesis was carried out 

A.2.1 RESEARCH COLLOQUIA, RESEARCH SEMINARS 

AND LECTURES 

October 17 

October 25 

November 1 

November 9 

November 10 

November 13 

November 16 

1989 - 1990 August 1 - July 31 

Dr. F.Palmer, Nottingham University 

Thunder and lightning 

Prof. C.Floriani, University of Lausanne, Switzerland 

Molecular aggregates - a bridge between homogenous and 

heterogenous systems 

Dr. J.P.S.Badyal, Durham University 

Breakthroughs in heterogenous catalysis 

Prof. N.N.Greenwood, University of Leeds 

Novel cluster geometries in metalloborane chemistry 

Prof. J .E.Bercaw, California Institute of Technology 

Synthetic and mechanistic approaches to Ziegler-Natta 

polymerisation of olefms 

Dr. J.Becher, Odense University ..J 

Synthesis of new macrocyclic systems using heterocyclic building 

blocks-

Dr. D.Parker, Durham University 

Macrocycles, drugs and rock'n'roll 
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November 29 Prof. D.G.Cole-Hamilton, St. Andrews University 

New polymers from homogenous catalysis 

November 30 Dr. M.N.Hughes, King's College London 

· A bug's eye view of the periodic table 

December 4 Dr. D.Graham, B.P.Research Centre 

How proteins absorb to interfaces 

December 6 Dr. R.L.Powell, ICI 

The development of CFC replacements 

December 7 Dr. A.Butler, St. Andrews University 

The discovery of penicillin - facts and fancies 

December 13 Dr. J.Klinowski, Cambridge University 

Solid state nmr studies of zeolite catalysts 

December 15 Prof. R.Huisgen, University of Munich . 
Recent mechanistic studies of [2+2] additions 

l22Q 

January 24 Dr. R.N.Perutz, York University 

Plotting the course of C-H activations with organometallics 

January 31 Dr. U.Dyer, Glaxo 

Synthesis and conformation of c-glycosides 

February 1 Prof. J.H.Holloway, University of Leicester 

Noble gas chemistry 

February 7 Dr. D.P.Thompson, Newcastle 

The role of nitrogen in extending silicate crystal chemistry 

February 8 Rev. R.Lancaster, Kimbolton Fireworks 

Fireworks - principles and practice 
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February 12 Prof. L.Lunazzi, University of Bologne 

Applications of dynamic nmr to the study of conformational 

enantiomerism 

February 14 Prof. D.Sutton, Simon Fraser University- Vancouver B.C 

Synthesis and applications of dinitrogen and diazo compounds of 

rhenium and iridium 

February 15 Prof. L.Crombie, Nottingham University 

The chemistry of cannabis and khat 

February 21 Dr. C.Bleasedale, Newcastle University 

The mode of action of some anti-tumour agents 

February 22 Prof. D.T.Clark, ICI Wilton ~ 
Spatially resolved chemistry (using Nature's paradigm in the 

advanced material arena) 

February 28 Dr. R.K.Thomas, Oxford University 

Neutron reflectrometry from surfaces 

March 1 Dr. J.F.Stoddart, Sheffield University 

Molecular lego 

March 8 Dr. A.K.Cheetham, Oxford University 

Chemistry of zeolite cages 

March 21 Dr. I.Powis, Nottingham University 

Spinning off in a huff- photodiscossiation of methyl iodide 

March 23 Prof. J.M.Bowman 

Fitting experiment with theory in Ar-OH 

July 9 Prof. I.N.Rozhkov, USSR Academy of Sciences - Moscow 

Reactivity of perfluoroalkyl bromides 

July 9 Prof. V.E.Platonov, USSR Academy of Sciences- Novosibirsk 

Polyfluoroindanes - synthesis and transformation 
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July 9 

!22Q 

October 11 

October 24 

October 26 

October 31 

November 1 

November 6 

November 7 

November 8 

November 14 

November 21 

Prof. L.S.Gennan, USSR Academy of Sciences - Moscow 

New syntheses in fluoroaliphatic chemistry - recent advances in 

the chemistry of fluorinated oxiranes 

122Q- 1221 Augyst 1 - Jul~ 31 

Dr. W.A.MacDonald, ICI Wilton 

Materials for the space age 

Dr. M.Bochmann*, University of East Anglia 

Synthesis, reactions and catalytic activity of cationic titanium 

alkyls 

Prof. R.Soulen*, South Western University, Texas 

Preparation and reactions of bicycloalkenes 

Dr. R.Jackson*, Newcastle University 

· New synthetic methods - a-amino acids and small rings 

Dr. N.Logan, Nottingham University 

Rocket propellants 

Dr. P.Kocovosky*, Uppsala University 

Stereo-controlled reactions mediated by transition and non

transition metals 

Dr. D.Gerrard*, British Petroleum 

Raman spectroscopy for industrial analysis 

Dr. S.K.Scott, Leeds University 

Clocks, oscillations and chaos 

Prof. T.Bell*, SUNY, Stoney Brook, U.S.A 

Functional molecular architecture and molecular recognition 

Prof.J.Pritchard, Queen Mary and Westfield College, London 

Copper surfaces and catalysts 
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November 28 Dr. B.J.Whitaker*, Leeds University 

Tw~dimensional velocity imaging of state-selected reaction 

products 

November 29 Prof. D.Crout, Warwick University 

Enzymes in organic synthesis 

December 5 Dr. P.G.Pringle*, Bristol University 

Metal complexes with functionalised phosphines 

December 13 Prof. A.H.Cowley, University of Texas 

New organometallic routes to electronic materials 

1991 

January 15 Dr. B.J.Alder, Lawrence Livermore Labs., California 

Hydrogen in all its glory 

January 17 ?r· P.Sarre, Nottingham University 

Comet chemistry 

January 24 Dr. P.J.Sadler, Birkbeck College, London ...} 

Design of inorganic drugs - precious metals, hypenension and 

mv 

January 30 Prof. E.Sinn*, Hull University 

Coupling of little electrons in big molecules. Implications for the 

active sites of (metalloproteins and other) macromolecules 

January 31 Dr. D.Lacey, Hull University 

Liquid crystals 

February 6 Dr. R.Bushby*, Leeds University 

Biradicals and organic magnets 

February 14 Dr. M.C.Petty, Durham University 

Molecular electronics 

February 20 Prof. B.L.Shaw*, Leeds University 

Synthesis with coordinated, unsaturated phosphine ligands 
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February 28 

March 6 

March 7 

April 24 

April 25 

June 20 

July 29 

October 17 

October 31 

November 6 

November 7 

Dr. J.Brown, Oxford University 

Can chemistry provide catalysts superior to enzymes 

Dr. C.M.Dobson*, Oxford University 

NMR studies of dynamics in molecular crystals 

Dr. J.Markam, ICI Pharmaceuticals 

DNA fingerprinting 

Prof. R.R.Schrock, Massachusetts Institute of Technology 

Metal-ligand multiple bonds and metathesis initiators 

Prof. T.Hudlicky, Virginia Polytechnic Institute 

Biocatalysis and symmetry based approaches to the efficient 

synthesis of complex natural products 

Prof. M.S.Brookhart, University of North Carolina ~ 
Olefin polymerisations, oligomerisations and dimerisations using 

electrophilic late transition metal catalysts 

Dr. M.A.Brimble, Massey University, New Zealand 

Synthetic studies towards the antibiotic Griseusin-A 

1991 - 1992 AuiDJst 1 -July 31 

Dr. J.A Salthouse, University of Manchester 

Son et Lumiere - a demonstration lecture 

Dr. R.Keeley, Metropolitan Police Forensic Science 

Modern Forensic Science 

Prof. B.F.G.Johnson*, Edinburgh University 

Cluster-surface analogies 

Dr. A.R.Butler, St Andrews University 

~ 

Traditional Chinese herbal drugs - a different way of treating ~~-

disease 
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November 13 Prof. D.Gani*, St. Andrews University 

The chemistry of PLP-dependent enzymes 

November 20 Dr. R.More O'Ferrall*, University College Dublin 

Some acid-catalysed rearrangements in organic chemistry 

November 28 Prof. I.M.Ward, IRC in Polymer Science, University of Leeds ~ 

The SCI lecture: the science and technology of orientated polymers 

December 4 Prof. R.Grigg*, Leeds University 

Palladium-catalysed cyclisation and ion-capture processes 

December 5 Prof. A.L.Smith, ex Unilever 

Soap, detergents and black puddings 

December 11 Dr. W.D.Cooper*, Shell Research 

Colloid science: theory and practice 

1222. 

~ 

January 22 Dr. K.D.M.Harris*, St. Andrews University 

Understanding the properties of solid inclusion compounds 

January 29 Dr. A.Holmes*, Cambridge University 

Cycloaddition reactions in the service of the synthesis of 

piperidine and indolizidine natural products 

January 30 Dr. M.Anderson, Sittingbourne Research Centre, Shell Research 

Recent advances in the safe and selective chemical control of insect 

pests ~ 

February 12 Prof. D.E.Fenton*, Sheffield University ~ 
Polynuclear complexes of molecular clefts as models for copper 

biosites 

February 13 Dr. J.Saunders, Glaxo Group Research Limited 

Molecular modelling in drug research 

February 19 Prof. E.J.Thomas*, Manchester University 

Applications of organostannanes to organic synthesis 
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February 20 Prof. E. Vogel, University of Cologne 

The Musgrave Lecture : Porphyrins - molecules of inter-

disciplinary interest 

February 25 ·Prof. J.F.Nixon, University of Sussex ...; 

The Tilden Lecture : Phosphaalkynes - new building blocks in 

inorganic and organometallic chemistry 

February 26 Prof. M.L.Hitchman"', Strathclyde University 

Chemical vapour deposition 

March 5 Dr. N.C.Billingham, University of Sussex 

Degradable plastics - myth or magic? 

March 11 Dr. S.E.Thomas•, Imperial College 

Recent advances in organoiron chemistry 

March 12 Dr. R.A.Hann, ICI Imagedata 

Electronic photography - an image of the future 

March 18 Dr. H.Maskill"', Newcastle University 

Concerted or stepwise fragmentation in a deamination-type 

reaction 

April 7 Prof. D.M.Knight, Philosophy Department, University of 

Durham 

Interpreting experiments - the beginning of electrochemistry 

May 13 Dr. J-C.Gehret, Ciba Geigy, Basel 

Some aspects of industrial agrochemical research 

• Invited specially for the postgraduate training programme . 

...; Those colloquia attended by the author. 
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A.2.2 RESEARCH CONFERENCES ATTENDED BY THE 
AUTHOR DURING THE PERIOD OCTOBER 1989 -

SEPTEMBER 1992 

1) The R.S.C. 150 th Aniversary Annual Chemical Congress, Imperial College 

London, 8-11 April1991. 

2) Autumn Meeting ofR.S.C., University of York, 24-26 September 1991. A poster 

was presented entitled "Synthesis, Redox Properties and X -Ray Crystal Structures 

of New Multi-Sulphur Heterocycles". 

3) Workshop on the Design and Synthesis of New Materials with Unconventional 

Electronic, Optical and Magnetic Properties, University of Durham, 12-15 April 

1992. 

4) 15th International Symposium on the Organic Chemistry of Sulphur, Caen, 

France, 28 June-3 July 1992. A poster was presented entitled "New Vinylogous 

1TF and BEDT-1TF Derivatives". 
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Some of the work presented in this thesis has been published in the following 

journals: 

1) "A Tetrathiotrimethylenemethane Derivative" M.R.Bryce, M.A.Coffin, 
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2) "Synthesis, X-Ray Crystal Structure and Multistage Redox Properties of a Severely 

Distorted Tetrathiafulvalene Donor". M.R.Bryce, M.A.Coffin, M.B.Hursthouse, 

A.Karaulov, K.Miillen and H.Scheich, Tet. Lett., 42, 6029, (1991). 
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Synthesis, X-Ray Crystal Structure and Amphoteric Redox Properties of a Highly 

Delocalised Heterocyclic 7t-System". M.A.Coffm, M.R.Bryce and W.Clegg, J. 

Chem. Soc. Chem. Comm., 5_, 401, (1992). 
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