
Durham E-Theses

The e�ect of hyperthermia on the phosphoinositide

signalling system of tumour cells

Kwong, Wing Yee

How to cite:

Kwong, Wing Yee (1994) The e�ect of hyperthermia on the phosphoinositide signalling system of

tumour cells, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/6114/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6114/
 http://etheses.dur.ac.uk/6114/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


The effect of hyperthermia on the phosphoinositide 
signalling system of tumour cells 

The copyright of this thesis rests with the author. 

No quotation from it should be published without 

his prior written consent and information derived 

from it should be acknowledged. 

by 

Wing Yee Kwong 
(B.Sc. London) 

A thesis submitted in candidature for the degree 
of Doctor of Philosophy 

Department of Biological Sciences 
The University of Durham 

(Graduate Society) 
1994 

~ 
- 1 MAY 1995 



Copyright © 1994 by Wing Y ee Kwong 

The copyright of this thesis rests with the author. No quotation from it should be 

published without Wing Yee Kwong prior written consent and information derived 

from it should be acknowledged. 





Abstract 

The effect of heat on the phosphoinositide signalling pathway was investigated in 

CHO-K I cells and WRK-1 cells. Heat caused a decrease in 1 ,2-diacylglycerol (1 ,2-

DAG) levels but did not have any effect on monoacylglycerol (MAG) levels in both cell 

types. On the other hand, an increase in triacylglycerol (TAG) level was observed in both 

cell lines. This heat-induced decrease in 1,2-DAG level in WRK-1 cells was not due to 

an increase in turnover rate of 1,2-DAG to phosphatidic acid (PA) since the decrease in 

1 ,2-DAG was not affected when cells were heated in the presence of the DAG kinase 

inhibitor, dioctanoylethylene glycol (diCgEG). The increase in TAG level may be due to 

a rapid, heat-induced increase in TAG synthesis from I ,2-DAG, thus leading to 

decreased levels of 1,2-DAG. Heat also led to an increase in inositol bisphosphate 

(lnsP2) and inositol trisphosphate (lnsP3) but not inositol monophosphate (lnsP1) or 

higher inositol phosphate (lnsP41516) levels in WRK-1 cells. The increase in InsP2 and 

InsP3 was both temperature and heating time-dependent. A transient increase in InsP3 

was observed at II min, and did not require extracellular calcium nor did it depend on 

the heat-induced increase in cytosolic free calcium ([Ca2+]j). The magnitude of the heat

induced increase in InsP3 was comparable to that obtained upon incubation in AIF4-. 

Stimulation of WRK-1 cells with vasopressin at 45°C distorted the pattern of inositol 

phosphate metabolism. However, the vasopressin-sensitive phosphoinositide signalling 

pathway remained intact after a severe heat shock, sufficient to lead to the death of 

greater than 95% of the cells. Heat also led to an increase in [Ca2+]i in WRK-1 cells 

which came primarily (solely?) from calcium influx from the extracellular medium. This 

influx was unlikely to occur through voltage-gated calcium channels because calcium 

channel blockers, such as La3+ and nifedipine, did not inhibit the heat-induced elevation 

in [Ca2+]i. This heat-induced increase in [Ca2+]i may have a protective role in 

hyperthermic cell death. 
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Chapter 1 

General Introduction 

Hyperthermic treabllent of mammalian cells is defined as an increase in the 

environmental temperature greater than 37°C, often in the range 40-45°C, by external 

means. The use of elevated temperature to treat cancer dates back at least 5000 years -

the Edwin Smith papyrus showed a fire-drill used by surgeons to cauterise carcinoma of 

the breast. Later, it was discovered that prolonged fevers due to a variety of infections 

may lead to regression of tumours. However, the use of hyperthermia in cancer therapy 

was not widely employed until recently as a result of the development of modem 

technology such as microcomputer-controlled, microwave generators and new forms of 

thermometry. With the present technique, hyperthermia used alone can cause complete 

clinical regression in I 0-15% of tumours, but relapse occurs in the majority of cases. 

The greatest potential for use of hyperthermia in tumour therapy at the present time 

appears to be in combination with chemotherapy or radiation in order to give an 

enhanced effect. It has been shown that heat enhances the effectiveness of many 

chemotherapeutic drugs such as nitrosoureas, cisplatin and bleomycin (Hahn, 1979). The 

increased effect seen by combining cytotoxic agents with hyperthermia is complex, but it 

has been suggested to be due to altered drug pharmacokinetics such as increased 

solubility, altered plasma membrane protein binding and activation of enzymatic 

processes (Vernon, 1992). Cells at different stages of the cell cycle respond differently to 

hyperthermia, with the most sensitive part being in the late S phase, which is generally 

the most radioresistant, again suggesting that hyperthermia might be both additive and 

complementary to radiation therapy (Westra and Dewey, 1971). 

Some workers have suggested that tumour cells show differential thermal 



sensitivity compared to their normal counterparts, but this is controversial. Early studies 

suggested that tumour cells are more sensitive to elevated temperature than normal tissue 

cells (Cavaliere et al., 1967; Levine and Robbins, 1970; Giovanella et al., 1976). In 

contrast, comparison of the effect of heat on normal liver cells and hepatoma cells did 

not show any difference in response to high temperature (Harisiadis et al., 1975). 

Similarly, the heat sensitivity of 7 x-ray transformed C3HlOT1/2 cells was comparable 

to normal C3H10T1/2 cells (Raaphorst et al., 1985). Nowadays, it is believed that the 

differential thermal sensitivity of tumour and normal tissue in vivo is due to the 

difference in vascular supplies between tumour and normal tissue. Blood supply in 

tumour tissue is more disorganised and more sluggish than in the normal tissues, which 

gives rise to poorer cooling mechanisms (Field, 1987). The deprivation of blood supply 

also results in an inadequate supply of oxygen and nutrients as well as the failure to 

remove the by-products of metabolism, leading to accumulation of lactic acid (low pH) 

which also sensitises the cells to heat (Field, 1987; Vernon, 1992). 

Studies with mammalian cells cultured in vitro, such as CHL V79 cells (Raaphorst 

et al., 1979), EMT6 cells (Leith et al., 1977), CHO cells (Gerweck, 1977; Westra and 

Dewey, 1971) and HeLa cells (Gerner et al., 1976; Bhuyan et al., 1977), appear to show 

different heat sensitivities. For example, LD90 values of CHO cells heated at 43°C were 

reported to be 94 min (Bhuyan et al., 1977) and 83 min (Gerweck, 1977). The L090 

values of HeLa cells upon 43°C treatment were 150 min (Gerner et al., 1976) and 86 

min (Bhuyan et al., 1977). However, even the same cell lines studied in different 

laboratories seem to have different heat responses. In order to investigate if the 

difference in thermal sensitivity is due to different inherent cellular properties or 

different culture conditions used in different laboratories, the thermal sensitivities of 7 

established cell lines that were derived either from different species or from the same 

type of tissue within the same species, were grown and heated under the same conditions 

(Raaphorst et a/., 1979). A variation in thermal sensitivity was observed between 
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different cell lines, and it was concluded that it was impossible to predict the heat 

sensitivity of a specific cell line based on its origin. Furthermore, the thermal sensitivity 

of cells is also affected by the nutrient conditions such as the amount of glucose and 

availability of oxygen, the pH of the medium and stage of the cell cycle (Hahn, 1982). 

It was shown that cells heated under hypoxic conditions were more sensitive to 

hyperthermia than cells heated under normal conditions (Hahn, 1982). Enhancement in 

thermal sensitivity was also observed in CHO cells chronically deprived of serum (Hahn, 

197 4 ). The effect of extracellular pH on thermal sensitivity has been investigated in at 

least 10 different cell lines, including rat (Dickson and Oswald, 1976), mouse 

(Overgaard, 1976b), Chinese hamster (Gerweck, 1977) and human cells (Gerweck and 

Richards, 1981 ). All of these cells showed an increase in thermal sensitivity when the pH 

of the medium was reduced. For example, when CHO cells were exposed to 42°C for 4 

h, it was found that thermal sensitivity was not significantly affected when cells were 

heated in medium at pH values of 7.1-7 .6, but thermal sensitivity increased as the pH of 

the medium decreased below 7.1 (Gerweck, 1977). However, the relationship between 

extracellular pH and thermal sensitivity was not fully understood at that time. Later it 

was reported by Chu and Dewey ( 1988) that the relationship between thermal sensitivity 

and pH upon heat treatment of CHO cells at 43.5°C for 55 min (a heat dose that killed 

90% of cells) was most strongly correlated with intracellular pH (pHi) rather than 

extracellular pH, especially when extracellular pH (pHe) was below 7 .1. In contrast, no 

correlation between pHi and cell death was observed in human epidermoid A-431 cells 

(Kiang eta/., 1990). Exposure of A-431 cells to 45°C for 10 min, the pHi decreased 

from 7.42 to 7.22 but no cell death was observed as assayed by trypan blue exclusion. 

The discrepancy between these 2 observations could be due to the difference in heat dose 

as well as the method chosen for pHi measurement. In CHO cells, pHi was determined 

by the distribution of [2-14C]5,5-dimethyl-2,4-oxazolidinedione within the cells whereas 

the pHi of A-431 cells were monitored in 2',7'-bis(carboxyethyl) carboxyfluorescein-
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loaded cells by spectrofluorimetry (Kiang et al., 1990). 

One of the principal motives that rekindled interest in hyperthermia as an adjuvant 

cancer treatment modality was the observation that the stage of the cell cycle responding 

to maximum thetmal sensitivity was complementary to that of radiation sensitivity 

(Westra and Dewey, 1971; Read et al., 1984). The thermal sensitivity at different stages 

of the cell cycle was demonstrated in CHO cells (Westra and Dewey, 1971). Taking the 

advantage of the reduced ability of the rounded mitotic cells to adhere to their growth 

surface, the mitotic cells were dislodged by vigorous shaking. The collected mitotic cells 

were then cooled at 4°C to arrest the forward passage in the cell cycle. Once the cells 

were returned to 37°C, the progression of the cell cycle initiated again. At specified 

times after returning to 37°C, cells were exposed to 45.5°C for various periods. It was 

found that the most heat-resistant cells appeared to be those in early G1 and the most 

sensitive were mitotic and late S phase cells. Since S phase is generally the most 

radioresistant phase, this suggests that hyperthermia might be both additive and 

complementary to radiotherapy in tumour treatment. The dependency of the thermal 

sensitivity on cell cycle stage was also observed in synchronised CHO cells (Bhuyan et 

al., 1977), Ll210 cells (Bhuyan et al., 1977) and EMT6 cells (Leith et al., 1977). 

The most commonly accepted end point of hyperthermic cell death is the loss of 

reproductive ability of the cells. Hence, the clonogenic assay is the most commonly used 

method for the determination of cell death (Puck et al., 1955), in which a known, 

constant number of cells (e.g. 600 cells) is seeded into a number of flasks and the cells 

are then heated. About 7-10 days after heating, the number of colonies is counted and the 

percentage of cell death can be calculated. Each colony is believed to arise from 

replication of a single surviving cell. When the percentage of survival is plotted against 

duration of heating at a fixed temperature, using a log-linear scale, a survival curve is 

obtained (Figure 1.1 ). The curve is generally characterised by a shoulder region followed 
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by a log-linear region for longer exposure time. This type of survival curve has been 

observed in almost all cell lines except for HeLa cells in which a shoulder was absent 

(Gerner et al., 1976). The existence of the shoulder region has been suggested as a 

measure of the ability of the cells to sustain sublethal damage (Hahn, 1982). 

When CHO cells were heated at temperatures below 43°C, a slightly different 

pattern of the survival curve was observed (Hahn, 1982). The initial portion of the 

survival curve was similar to the one described above, i.e. a shoulder region followed by 

a log-linear region. However, at longer heating times, the survival curve becomes 

concave upward and forms a third phase which has a much shallower slope. This 

phenomenon was suggested to be due to either a difference in thermal sensitivity within 

a mixture of populations (e.g. cells at different stage of the cell cycle) or, more likely, 

some cells were able to induce thermal resistance during longer exposure to heat. This 

phenomenon is termed 'thermotolerance', and is the development of a transient thermal 

resistance in cells or tissues. Thermotolerance can be induced by 2 ways, depending 

upon temperature and heating duration. When cells are heated at temperatures below 

43°C, thermotolerance is developed during continuous heating whereas, when cells are 

heated above 43°C, thermotolerance usually develops after the first heat exposure and 

cells or tissues become resistant to subsequent heat treatment (Bauer and Henle, 1979; 

Spiro eta/., 1982). Although extensive studies have been performed on cultured cells in 

order to find out the mechanism(s) underlying the induction of thermotolerance, this 

mechanism is still unclear. It has been found that appearance of thermotolerance is 

usually associated with the induction of a set of proteins, known as heat shock proteins 

(HSP), but the importance of HSPs in thermotolerance is controversial. It has been 

shown that microinjection of purified human HSP70 into CHO cells led to an increase in 

thermal resistance (Li eta/., 1991). By using heat-resistant mutants, it was demonstrated 

that these mutants expressed an elevated level of HSPs (Laszlo and Li, 1985). However, 

Smith and Yaffe (1991) showed that HSP induction is not required for thermotolerance 
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acquisition in yeast. It is worth mentioning that the role of HSPs is not only confined to 

protecting cells from heat shock but they are also involved in many other cellular 

functions. For example, the HSP70 family act in the cytosol to keep proteins destined for 

mitochondrial import in an unfolded, translocationally-competent state and act inside the 

mitochondria to accept the unfolded proteins as they are being transported (Dice et al., 

1991). The HSP70 family also helps to target specific proteins to Iysosomes for 

degradation (Dice et al., 1991). HSP60 facilitates the proper folding and assembly of the 

newly-transported proteins in mitochondria (Horwich eta/., 1991). HSP47 appears to be 

involved in collagen assembly (Hightower, 1991). HSP82 is required for steroid 

hormone receptors to achieve an activation-competent state and may help to tether some 

receptors such as the glucocorticoid receptor to the cytoskeleton (Lindquist and Craig, 

1988). 

Although extensive searching for the exact target(s) for hyperthermic cell death 

has been carried out at single cell level by using tissue culture, the critical target(s) 

(primary lesion site) and the molecular mechanism(s) of heat-induced cell killing remain 

unclear. This is due to the all-pervasive effect of heat. The identification of the primary 

lesion site of cell death is further complicated by the fact that the observed damage may 

not result from a direct effect of heat, but rather it may result from secondary and 

perhaps tertiary damage resulting from the 'knock-on' effects of primary damage 

(Bowler, 1987). In fact, at one time or another, it has been suggested that all the major 

cellular structures have been implicated as having a significant role in heat injury (Roti 

Roti and Laszlo, 1988). 

Models for cellular heat injury have been proposed by Jung (1986) and Bowler 

(1987). Jung's model proposes that cell killing is a 2 step processes. Non-lethal damage 

occurs initially, which is then converted into lethal damage during continuous heating 

and results in cell death. The conversion of non-lethal to lethal lesions are proposed to be 
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random events and depend only on temperature. The model proposed by Bowler (1987) 

resembles the model proposed by Jung (1986), but it differs in that the primary lesion, 

which may or may not be irreversible, causes a cascade of secondary, and perhaps 

tertiary, damage with time (Figure 1.2). 

Alterations in organelles such as lysosomes and mitochondria during heating have 

been reported by several groups and these organelles have been suggested as possible 

targets in heat-induced cell death (Hahn, 1982). Lysosomes are organelles which contain 

many different types of hydrolytic enzymes including proteases, nucleases, 

phospholipases, phosphatases and sulfatases and are responsible for intracellular 

digestion of macromolecules. Exposure of HeLa cells to 43°C for 2 h resulted in a 

decrease in the number of lysosomes (Heine et al., 1971). An increase in lysosomal 

enzyme activity was found in heated mouse mammary tumours (Overgaard and 

Overgaard, 1972) and the destruction of lysosomes was observed in solid mouse 

mammary tumours heated in vivo at 42.5°C for 30 min (Overgaard, 1976a), indicating 

that heat-induced structural alterations may lead to functional alteration. However agents 

such as trypan blue, which is known to enhance the susceptibility of lysosomal 

membrane to damage, did not affect thermal sensitivity (Hofer et al., 1979). Thus the 

involvement of lysosomes in heat-induced cell death is unclear. Since lysosomes are 

involved in the destruction of dead cells, the changes in lysosomal activity may well be a 

consequence rather than a cause of heat damage. 

A number of structural changes occurring within the mitochondria were observed 

when rat fibroblasts were exposed to 42°C for 3 hours. They appeared swollen, the 

cristae were more prominent and the intracisternal spaces appeared enlarged (Welch and 

Suhan, 1985). Similar changes were observed when exposing monolayer CHO cells to 

41.5°C (Coss et al., 1979). It has been suggested that the morphological changes of 

mitochondria may be related to the inhibition of glycolysis and respiration in heated 
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cells. In a detailed study on mitochondria from mouse brain, liver and Ehrlich ascites 

tumour cells, Christiansen and Kvamme ( 1969) found that heat treatment at 45°C for 10 

min resulted in the loss of respiratory control and uncoupling of phosphorylation from 

electron transport, as a consequence of damage to mitochondrial membranes. Glycolysis 

and respiration are rapidly inhibited in severely heated cells (Dickson and Calderwood, 

1983), and it has been suggested that a lethal lack of energy may be the primary event in 

hyperthermic cell killing (Haveman and Hahn, 1981) 

A strong correlation between cell thermal sensitivity and cellular A TP levels was 

obtained in CHO cells by Laval and Michel (1982), who showed that a decrease in A TP 

level by treatment with inhibitors resulted in an increase in heat sensitivity. Similar 

results were obtained by Gerweck eta/. (1984) who showed that reducing the cellular 

A TP level of CHO cells (by varying glucose concentration of the medium) resulted in an 

increase in thermal sensitivity. However, when the relationship between heat killing and 

energy status was investigated in CHO cells, the role of energy status in the cellular 

response to heat seemed unlikely (Calderwood et a/., 1985; Calderwood, 1987). 

Determination of the adenylate energy charge (an indicator of the degree of 

phosphorylation of the A TP-ADP-AMP system) and phosphorylation potential (the mass 

action constant for ADP phosphorylation) showed that more than 99% of thermal cell 

death occurred before the fall in these parameters of energy status occurred (Calderwood 

et a/., 1985). However, it is clear that further studies are necessary to clarify the 

correlation between energy status of cells and cell killing in other cell types and/or in 

vivo. 

The structure and function of cellular proteins are known to be severely affected 

by heat and this may be an important component of heat cell death. For example, the 

activation energy for cell killing is similar to that observed for denaturation of protein 

(Johnson, 1974; Bauer and Henle, 1979). A variety of experimental data are consistent 
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with the view that one or more cellular proteins are critical elements at elevated 

temperatures. For example, when Chinese hamster V 79 cells were heated in the presence 

of sulfhydryl-rich compounds, which destabilise proteins, cells became very heat 

sensitive (Kapp and Hahn, 1979). CHO HA-l cells were protected against heat cell death 

by the substitution, during heating, of D20 for H20 in the medium (Hahn et al., 1978; 

Fisher et a/., 1982). This protective role of D20 against heat-induced cell killing has 

been ascribed to the strengthening of hydrogen bonding, thus stabilising macromolecules 

whose higher order structure depends primarily upon weak bonding (Fisher et al., 1982). 

As with D20, glycerol has a protective role against thermal cell killing (Back et al., 

1979). When CHO cells or HeLa cells were exposed to 45°C in the presence of 1 M 

glycerol, hyperthermic cell death was decreased (Henle and Warters, 1982). Thermal 

protection by glycerol was also observed in HeLa S3 cells (Kampinga et al., 1989). The 

thermal protection was suggested to be due to the stabilisation of either protein or 

membranes by glycerol (Back et al., 1979; Lin et al., 1984). By employing a differential 

scanning calorimeter, it was clearly shown that glycerol protects cellular protein from 

denaturation in CHL V79 cells (Lepock et al., 1990). Furthermore, changes in one or 

two amino acids by mutations can alter the temperature-dependent stability of proteins 

by as much as 1 0°C (Brock, 1985). Other examples of disruption of protein structures by 

heat include breakdown of the mitotic spindle (Coss et al., 1982), depolymerisation of 

microtubules (Coss et al., 1982) and damage to the cytoskeleton (Glass et al., 1985). 

However, as far as inhibition of protein synthesis and thermal cell killing is concerned, it 

was found that protein synthesis was completely inhibited when cells were heated at 

45°C for l 0 min, but this process resumes over the period 4-8 h after heating, suggesting 

that inhibition of protein synthesis is temporary, and is unlikely to be a cause of cell 

killing (Henle and Leeper, 1979). 

The nucleus contains the major portion of the cell's genetic information encoded in 

DNA. However, it seems unlikely that DNA is implicated in hyperthermic cell death 
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since the melting temperature of DNA in vitro is 87°C. It has been shown that the 

synthesis of DNA in CHO cells was depressed immediately upon 45°C heat treatment, 

but the synthesis reverts to normal once cells were returned to 37°C (Henle and Leeper, 

1979). On the other hand, heat has been reported to inhibit the repair of x-ray induced 

DNA damage due to the denaturation of the replicative enzymes by heat, suggesting that 

heat and radiotherapy can give an enhanced effect. On exposure to various heat 

treatments, it was found that the DNA isolated from heated CHO cells (Tomasovic eta/., 

1978) or from Hela cells (Roti Roti and Winward, 1978) was associated with nonhistone 

protein and the amount of bound protein was a function of heat dose. In other words, an 

increase in temperature resulted in an increase in the protein/DNA ratio of the nuclei 

isolated from cells. The increase in protein/DNA ratio is time and temperature-dependent 

and there is a good correlation between its increase and heat-induced cell killing (Roti 

Roti and Laszlo, 1988). This heat-induced increase in the protein/DNA ratio is probably 

due to an increase in protein mass, since no significant loss of DNA has been found in 

CHO cells and HeLa cells exposed to hyperthermia (Warters and Henle, 1982). The 

presence of excess nuclear proteins may be involved in the inhibition of DNA replication 

(Laszlo, 1992). Furthermore, it has been suggested that chromosome aberrations are 

involved in heat cell death because there was a log-linear relationship between cell 

survival and the number of chromosome aberrations when S-phase CHO cells were 

heated at 45°C. It was found that the heat dose that reduced survival by 1/e (i.e 37% of 

the initial value) produced one chromosome aberration per cell (Dewey eta/., 1971). 

The cytoskeleton of eukaryotic cells is a complex network of protein filaments and 

tubules ramifying throughout the cytoplasm. Cytoskeletal organisation is involved in 

maintaining cell shape, cell movement, the movement of chromosomes during mitosis 

and meiosis and intracellular transport of vesicles and organelles. The main structural 

elements of the cytoskeleton are microtubules, microfilaments and intermediate 

filaments. All these elements have been reported to be altered by heat and the severity 
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and type of alterations depend on the temperature, heating duration and on the cell type 

examined. 

The microtubules play a role in the orderly segregation of the genetic material at 

cell division by forming the mitotic spindle and the disruption of the mitotic apparatus 

could lead to cell death of the heat sensitive mitotic cells. Exposure of mitotic CHO cells 

to 45.5°C for about 15 minutes led to complete disassembly of the mitotic spindle and no 

reformation of this spindle was observed (Cosset al., 1982). This implies that the ability 

of centrosomes to nucleate microtubule assembly was impaired, since centrosomes are 

associated with the in vivo control of assembly of microtubules. 

Formation of stress fibres is necessary for the attachment of cultured cells to the 

substrate and the formation of stress fibres appears to require transmembrane linkages. 

An increase in the number of stress filaments after heat shock was observed in HeLa 

cells and gerbil fibroma cells (Thomas et al., 1982). On the other hand, treatment of 

Reuber H35 hepatoma cells and neuroblastoma N2 cells at 43°C for 30 min resulted in 

the destruction of stress fibres (Van Bergen en Henegouwen et al., 1985). Furthermore, 

the effect of heat on stress fibres is reversible. When interphase CHO cells were exposed 

to 45°C, disruption of stress fibres was observed within 5 min, but intact stress fibres 

were observed by 24 h after treatment (Glass et al., 1985). Since hyperthemia has a 

pleiotropic effect on the plasma membrane, the loss of stress fibres might be a 

consequence of the effect of heat on this membrane. 

Intermediate filaments are tough and durable protein fibres found in the cytoplasm 

of most eukaryotic cells. They form a basket around the nucleus and extend out in gently 

curving arrays to the cell periphery. They can be categorised into 4 groups: keratin, 

vimentin, neurofilaments and nuclear lamins (Goldman eta/., 1986). In some cell lines, 

such as HeLa cells (Van Bergen en Henegouwen eta/., 1985), rat fibroblasts (Welch and 
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Suhan, 1985) and mouse neuroblastoma cells (Van Bergen en Henegouwen and 

Linnemans, 1987) heat-induced collapse of vimentin-containing intennediate filaments 

have been observed. 

A system linked with the organisation of the cytoskeleton is the calcium

calmodulin complex. Many of the components involved in cytoskeleton organisation are 

controlled by this complex (Means et al., 1982). It was found that the presence of 

calmodulin antagonists such as W7, trifluoperazine or calmidazolium during heating 

resulted in the potentiation of hyperthennic cell killing of neuroblastoma N2A cells 

(Wiegant et al., 1985), hepatoma H35 cells (Wiegant et al., 1985) and mouse tumour 

clone C cells (Evans and Tomasovic, 1989). An inverse relationship between cell killing 

and cytoskeletal alteration was observed (Wiegant et al., 1985). The potentiation of heat 

cell death by calmodulin antagonists has been proposed by Weigant et al. (1985) to 

involve: (a) A heat-induced increase in cytosolic free calcium ([Ca2+]i) which binds to 

calmodulin to form a calcium-calmodulin complex, resulting in the activation of 

calmodulin. (b) This complex then binds to microtubule-associated protein and causes 

depolymerisation of microtubules. The presence of calmodulin antagonists prevents the 

alteration of cytoskeletal organisation upon heating. However, the role of cytoskeletal 

alteration in causing cell death remains to be clarified. Since the cytoskeleton is assumed 

to be an important structural linkage between the nucleus and the plasma membrane, it is 

tempting to postulate that hyperthermic-induced disruption of the cytoskeleton will result 

in its collapse towards the nucleus and this may possibly be linked to the heat-induced 

increase in nuclear protein content. 

The plasma membrane is the cell boundary which is in immediate contact with the 

extracellular environment, and it has been suggested that this membrane plays a major, if 

not primary role in hyperthermic cell killing. In fact, the plasma membrane has received 

extensive consideration as a target for hyperthermic cell killing (Hahn, 1982; Bowler, 
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1987; Konings, 1988). Direct evidence for the effect of heat on the plasma membrane 

comes from morphological studies of CHO cells. Upon heating at 43°C or higher, 

blebbing was observed. The percentage of cells covered with blebs was dependent on the 

temperature and duration of heating (Kapiszewska and Hopwood, 1986). In addition, a 

correlation between hyperthermia-induced blebbing and survival in synchronous G1 

CHO cells (in suspension) was found (Borrelli et al., 1986). However, this correlation 

between membrane blebbing and cell survival holds only for cells heated in the G1 phase 

of the cell cycle. 

Before the effect of heat on the plasma membrane function is described, it is 

necessary to consider the physical properties of biological membranes, which is best 

described by the fluid mosaic model (Singer and Nicholson, 1972). The phospholipid 

molecules are arranged in such a way that the hydrophilic polar head group are oriented 

to the outer surface whereas the hydrophobic tails point towards the interior, forming a 

hydrophobic core. Hence the plasma membrane acts as a barrier to prevent the free 

diffusion of ions and solutes across the membrane. Membrane proteins play an extremely 

important role in facilitating the flow of information between cells and their environment 

and regulating the molecular and ionic composition of the intracellular medium. 

Two types of membrane proteins have been identified, which are known as 

integral and peripheral proteins, depending on their locations (Singer and Nicholson, 

1972). Integral proteins penetrate the hydrophobic interior of the membrane to a greater 

or lesser extent, whereas peripheral proteins are believed to be associated with the polar 

head groups in the outer faces of the lipid matrix. Investigation of the properties of 

membranes employing pure phospholipids suggest that a membrane exists in two states 

-gel and liquid-crystalline states. At low temperature, the movement of lipid molecules 

is very slow and this state is known as the gel state of the membrane. As temperature 

increases, the rotational and lateral movement of lipids in the plane of the membrane, as 
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well as flexing of the hydrocarbon chains, increase. As temperature continues to rise, a 

transition temperature is achieved at which the movement of hydrocarbon chains 

increases abruptly, giving rise to the liquid-crystalline state (Lee and Chapman, 1987). In 

other words, low temperature increases the order of the lipid matrix (decreases fluidity), 

while higher temperature causes decreased order (increased fluidity) of the lipid matrix. 

The situation in natural membranes is far more complicated since the order of the lipid 

matrix is not only affected by temperature, but also by levels of cholesterol, proteins and 

the degree of unsaturation of the fatty acyl chains of membrane phospholipids. 

Therefore, a sharp transition temperature is not observed, and the order of the membrane 

lipid matrix decreases gradually as ambient temperature increases. 

In concert with the changes in membrane fluidity, the functions of membrane 

proteins are also affected. As suggested by Cossins et al. (1981), the hydrophobic core of 

a biological membrane, in which the proteins are floating, is ordered and is anisotropic. 

The tertiary structure of these proteins must be relatively loose so as to allow the 

molecular flexibility necessary to fulfil their roles, such as catalysis. As temperature 

increases, the order of lipid matrix decreases. Under these conditions, membrane protein 

may adopt conformations that are inactivating (Cossins et al., 1981; Stubbs, 1983). To 

compensate for the effect of temperature on membrane fluidity and protein functions, 

microorganisms (Sinensky, 1974) and poikilothermic animals (Cossins and Raynard, 

1987) have the ability to modify the degree of saturation of their membrane lipids. This 

adaptive response is known as 'homeoviscous adaptation' (Sinensky, 1974). 

To investigate the correlation between hyperthermia and membrane fluidity, 

membrane fluidising agents such as aliphatic alcohols and local anaesthetics have been 

used. Exposure of CHO cells to hyperthermia in the presence of alcohol increased 

cytotoxicity (Li and Hahn, 1978; Henle, 1981). Similarly, an increase in cytotoxicity was 

observed when E. coli. cells were heated in the presence of procaine, a local anaesthetic 
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(Yatvin, 1977). Potentiation of heat cell death was observed when AKR leukaemia cells 

were heated in the presence of lidocaine (Robins et al., 1984) and when CHO cells were 

heated in the presence of procaine (Dynlacht and Fox, 1992a). Alcohols and local 

anaesthetics are thought to interact with the plasma membrane, resulting in an increase in 

membrane fluidity, bringing about the additive cytotoxic effect of heat and these agents 

(Hahn and Li, 1982). Further evidence to support the role of the plasma membrane as a 

target of heat was obtained by using amphotericin B, an antibiotic that binds specifically 

to cholesterol. When Chinese hamster cells and EMT6 mammary sarcoma cells were 

exposed to different concentrations of amphotericin B, substantial cell killing was 

observed upon exposure to 43°C but no significant effect was observed when cells were 

incubated at 37°C (Hahn and Li, 1982). The increase in effectiveness at 43°C may be 

due to an increase in the availability of cholesterol binding sites or an increase in lateral 

mobility of cholesterol-amphotericin B complexes to form the necessary aggregates for 

transmembrane channel formation. The cells die when too many 'holes' are formed in the 

membrane (Hahn, 1982). 

Another way to manipulate the membrane lipid fluidity of cells is by altering the 

amount of polyunsaturated fatty acid in the extracellular medium during cell culture or 

by feeding an animal with a diet high in polyunsaturated fatty acid. This results in 

incorporation of polyunsaturated fatty acids into membrane phospholipid, thus altering 

the membrane composition experimentally in culture or in vivo. When E. coli. cells were 

supplemented either with oleic acid (18:1) or linolenic acid (18:3), it was found that the 

18:3 supplemented cells were more heat sensitive than 18:1 supplemented cells 

(Yatvin,l977). Similarly, an increase in thermal sensitivity was obtained in L1210 

murine leukaemia cells grown in 22:6-supplemented media compared with cells grown 

in 18: }-supplemented media (Guffy et a/., 1982), and in mouse fibroblast LM cells 

grown in 20:4-supplemented media compared with cells grown in medium supplemented 

with saturated fatty acid (Konings and Ruifrok, 1985). When murine P388 cells were 

15 



grown in animals fed a diet high in polyunsaturated fatty acids, such as safflower oil 

which is enriched in 18:2, the cells were more thermosensitive than those cells grown in 

animals fed a diet high in saturated fatty acid, such as beeftallow (Mulcahy et al., 1981) 

Using Hepatoma Tissue Culture (HTC) cells, Ladha eta/. (1993) demonstrated 

that when these cells were grown in medium supplemented with arachidonic acid (20:4), 

an increase in thermal sensitivity was observed. This was associated with incorporation 

of the arachidonic acid into membrane phospholipid and a consequent increase in 

membrane fluidity, determined by fluorescence polarisation. Furthermore, alteration in 

membrane fluidity by arachidonic acid resulted in an increase in heat sensitivity of 

alkaline phosphodiesterase I, a membrane bound protein. 

Cholesterol is another determinant of membrane fluidity and acts as a buffer to 

decrease the membrane fluidity at temperatures above the phase transition and increase 

membrane fluidity below that temperature (Stubbs, 1983). The closer packing of lipid 

molecules in the presence of cholesterol reduces membrane permeability (Demel et al., 

1972) and reduces the activity of Ca2+-ATPase of sarcoplasmic reticulum in a manner 

dependent upon the cholesterol content (Madden et al., 1974). Sabine (1983) has 

proposed that cells have an optimal level of membrane cholesterol for function, and 

levels above or below that value will result in impaired membrane function. In general, 

the higher the cholesterol level, the lower the fluidity of the membrane. In an 

investigation of cholesterol content and thermal sensitivity in 5 different cell types, an 

inverse correlation was observed between the cholesterol/protein ratio of the cell 

membrane and heat sensitivity, consistent with the stabilizing role for cholesterol in 

membranes (Cress and Gerner, 1980). Using 7 cell lines, a positive correlation was 

found between thermal sensitivity and weight ratios of cholesterol : protein and 

phospholipid : protein content (Cress et al., 1982). However, other workers failed to 
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confirm this observation (Konings and Ruifrok, 1985; Raaphorst eta/., 1985) 

Effects of heat on membrane fluidity have also been determined by fluorescence 

polarisation spectroscopy. Using this technique, Dynlacht and Fox (1992b) showed that 

hyperthermia caused persistent changes in the membrane fluidity of CHO cells but these 

changes were not directly correlated with cell survival. By using different cell lines, 

including AG 1522 human foreskin fibroblasts, CHO cells, radiation-induced mouse 

fibrosarcoma and Crandall feline kidney cells, Dynlacht and Fox (1992a) found that the 

higher the ability of cells to resist changes in plasma membrane fluidity, the more 

resistant those cells were to heat cell death. Based on these observations, it has been 

suggested that the initial level of membrane fluidity may be less important, compared 

with the extent of changes in plasma membrane fluidity during hyperthermia. 

The lipid fluidity per se is probably of little importance for the cell, but it becomes 

important for the stabilisation of membrane protein conformation. Changes in membrane 

fluidity may lead to changes in protein-lipid binding and thus alter membrane transport 

and cell communication events. A large number of observations imply that an alteration 

in the structure and/or function of membrane proteins occur as a consequence of 

hyperthermia. For example, the effect of heat on membrane proteins has been 

investigated in Chinese hamster V79 cells (Lepock et a/., 1983). Measurement of 

intrinsic protein fluorescence and of the energy transfer from protein fluorophore to 

trans-paranaric acid demonstrated the existence of an irreversible transition in membrane 

protein structure above 40°C, both in mitochondria and in the plasma membrane 

(Lepock eta/., 1983). These authors further proposed that the alteration in the structure 

of membrane protein above 40°C could cause many of the observed changes in the 

plasma membrane and may be involved in hyperthermic cell killing. 

The plasma membrane acts to establish gradients of low molecular weight solutes 
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and ions between the celJ and its environment. This is achieved by passive diffusion as 

well as the action of ionic pumps and specific transport systems (Wilson, 1978). Many 

reports have suggested that those transport functions were impaired after hyperthermia. 

Exposure of rat thymocytes to temperatures ranging from 39-43°C resulted in a striking 

inhibition of Na+-dependent amino acid transport (Lin eta/., 1978). Conversely, glucose 

transport into CHO cells upon 45°C treatment was stimulated by heat (Vidair and 

Dewey, 1993 ). The uptake of thymidine (Slusser et al., 1982) and the DNA specific dye 

Hoechst 33342 (Rice et al., 1985) were inhibited in CHO cells exposed to 45°C. 

Hyperthermia also alters the permeability of the plasma membrane to several other 

compounds such as adriamycin (Hahn and Strande, 1976) and polyamines (Gerner et al., 

1980). 

The effects of hyperthermia on ion fluxes (both influx and efflux) are equivocal. 

For example, an increase in total cellular K+ concentration ([K+]) was observed within 

15 min when CHO HA-l cells were heated at 42°C. This increase in [K+] was reversible 

when cells were returned to 37°C (Stevenson et al., 1983). On the other hand, a decrease 

in [K+] was observed when mouse LM fibroblasts were heated at 44°C (Ruifrok et al., 

1985). In constrast, when plateau phase CHO cells were heated at 45°C for up to 30 min, 

no significant effect on total Na+, K+, and Mg2+ levels was observed in the following 22 

h post-treatment (Vidair and Dewey, 1986). 

Several observations suggest that hyperthermia causes changes in the affinity of 

agonist-receptor interaction and/or receptor number during signal tranduction at the 

plasma membrane. For example, the affinity of epidermal growth factor (EGF) 

membrane-bound receptor for its agonist in Rat-1 fibroblasts decreased as temperature 

increased, and the binding was fully inhibited when the cells were exposed to 45°C for 

30 minutes (Magun and Fennie, 1981 ). It was also found that, on exposure of CHO HA

l cells to 43-45°C for some time, the binding of insulin to its membrane receptor was 
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inhibited due to a reduction in receptor number, rather than a decrease in receptor 

affinity (Calderwood and Hahn, 1983). Similarly, the binding of monoclonal antibodies 

to the histocompatibility antigens on the surface of murine lymphoma cells in suspension 

culture was inhibited after hyperthermia (43-45°C), as a result of reduction of receptor 

number (Mehdi eta/., 1984). 

Ca2+ is an important regulator for a variety of cellular processes, either through its 

own action or by forming a calcium-calmodulin complex. Disruption of Ca2+ 

homeostasis has been shown to be a cause of several kinds of cell death (Trump et al., 

1980; Orrenius et al., 1989). It was found that, following hyperthermia, the total calcium 

content increased in EAT cells (Anghileri et al., 1985a,b) and CHO cells (Vidair and 

Dewey, 1986). Heating Reuber H35 hepatoma cells in elevated extracellular calcium 

concentration (7.5 mM) resulted in an increase in thermal cell killing (Wiegant et al., 

1984 ). Alternatively, when Morris hepatoma cells were incubated in low extracellular 

calcium concentration (achieved by addition of EGT A), cells were protected against 

heat-induced cell killing (Lamarche et al., 1985). It is known that the intracellular 

concentration of free calcium ([Ca2+]i) is responsible for modulation of several cellular 

functions, so the determination of [Ca2+]i upon heating is more relevant in investigating 

the role of [Ca2+]i in hyperthermic cell death. Analysis of [Ca2+]i by flow cytometry, 

spectrofluorimetry and digitised fluorescent microscopy in heated cells has shown 

conflicting results. A heat-induced increase in [Ca2+]i was observed in CHO HA-l cells 

(Calderwood et al., 1988), Drosophila salivary gland (Drummond eta/., 1988), human 

colon HT-29 cells (Mikkelsen et al., 1991a), mouse mammary FM3A cells (Kondo et 

a/., 1993), human epidermoid A-431 cells (Kiang et al., 1992) and NIH3T3 fibroblasts 

(Stege et al., 1993b). On the other hand, no change in mean [Ca2+]i was observed in 

mouse mammary MMT060562 cells analysed from 100 cells by fluorescent microscopic 

technique (Furukawa et al., 1992), in [Ca2+]i analysed in HeLaS3 cells in suspension 

(Stege eta/., 1993a), L5178Y-S (Stege et al., 1993b) and L5178Y-R cells (Stege et al., 
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1993b) during heat treatment. This differential effect of heat on [Ca2+]i could be due to 

a difference in experimental conditions, including heat dose. To investigate the 

relationship of the heat-induced increase in [Ca2+]i to hyperthermic cell death, 6 

different cell lines were employed (Wierenga et al., 1994). It was found that only mouse 

fibroblast 3T3 cells showed an increase in [Ca2+]i upon 44°C treatment for up to 60 min, 

a heat dose that killed more than 90% in all 6 cell types. These results imply that there is 

no correlation between hyperthermic cell death and heat-induced increase in [Ca2+]i, and 

that the heat-induced increase in [Ca2+]i is solely cell type dependent. A similar result 

was observed in C3H10Tl/2 cells and NIH3T3 cells when changes in [Ca2+]i upon 

heating were measured in indo-1loaded cells by flow cytometry (Vidair et al., 1990). By 

varying the extracellular calcium concentration, [Ca2+]i was altered. When NIH3T3 cells 

were heated at 45°C for 30 min in medium containing 0.03 mM extracellular calcium 

concentration (achieved by addition of EGTA), [Ca2+]i achieved 200 nM, which was 

comparable to those cells incubated at 37°C in medium containing 2 mM extracellular 

calcium and is lower than those incubated in 5 mM extracellular calcium medium at 

37°C, which gave rise to 300 nM [Ca2+]i. On the other hand, when cells were heated in 

the presence of 15 mM extracellular calcium at 45°C for 30 min, [Ca2+]i increased up to 

1000 nM. No alteration of cell killing under these conditions was found. However, it 

must be noted that, in the method employed in this study, the measurement of [Ca2+]i in 

single cells was performed at room temperature after cells were heated, so that [Ca2+]i 

was not measured during the heating period. Similarly, no correlation between [Ca2+]i 

and cell killing was found in fura-2 loaded HT -29 cells determined by digitised 

fluorescent microscopy during heating at 44 °C for 1 h, because more than 80% of the 

cells showed a [Ca2+]i greater than 200 nM but greater than 40% remained viable 

following heating, as determined by clonogenic assay (Mikkelsen et al., 1991 a). 

However, a linear relationship was found between cells having [Ca2+]i > 200 nM at 4-6 

h post-heating and cell killing (Mikkelsen et al., 1991a). The heat-induced increase in 

[Ca2+]i can trigger a variety of cellular responses such as activation of Ca2+-dependent 
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enzymes or alteration of the cytoskeleton, which would be expected to be permissive to 

heat killing. 

The source of heat-induced [Ca2+]i elevation has been suggested to be either Ca2+ 

influx from the extracellular medium (Kiang and McClain, 1993), Ca2+ release from 

internal Ca2+ stores mediated by inositoll,4,5-trisphosphate (lns(l,4,5)P3) (Stevenson et 

a/., 1986; Drummond et al., 1988) or both influx and Ca2+ release. Ins(l ,4,5)P3 is 

generated upon hydrolysis of a small class of membrane phospholipid, 

phosphatidylinositol 4,5-bisphosphate (Ptdlns(4,5)P2), and is responsible for releasing 

Ca2+ from internal stores (Berridge, 1984; Berridge, 1993). The relationship of changes 

in inositol trisphosphate (lnsP3) and [Ca2+]i during heating has been investigated in 

CHO HA-l cells, but the identity of the InsP3 isomer that accumulated upon heating was 

not resolved (Stevenson et al., 1986). In CHO HA-l cells it was found that heating at 

45°C caused a 70% increase in InsP3 level, which was observed as early as 1 min heating 

and remained at the same level for up to 5 min heating. This heat-induced increase in 

InsP3 preceded the increase in [Ca2+]i, implying that [Ca2+]i elevation may be mediated 

by the heat-induced changes in InsP3, though the possibility that heat perturbed the 

intracellular calcium store by a mechanism that is unrelated to InsP3 was not ruled out by 

these authors (Stevenson et a/., 1986). On the other hand, Kiang and McClain (1993) 

suggested that the increase in [Ca2+]i in A-431 cells resulted from Ca2+ influx through a 

reverse mode of the Na+/Ca2+ exchanger induced by heat. The increase in [Ca2+]i was 

proposed to activate a calcium-dependent phosphoinositide-specific phospholipase C 

(PI-PLC) which hydrolysed Ptdlns(4,5)P2 and formed InsP3, leading to a further 

increase in [Ca2+]i. 

In a recent study, Calderwood and Stevenson ( 1993) found that heat led to an 

increase in lnsP3 formation, probably via the activation of PI-PLC. A heat-induced 

increase in InsP3 was observed in many different cell lines including CHO HA-l cells, 
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NIH3T3 cells, Balb C 3T3 cells and PC 12 cells upon 45°C heat treatment. For example, 

when HeLa cells were heated at 45°C for 30 min, the InsP3 level increased to 70% of 

unheated level. Exposure of CHO HA-l cells to 45°C for 15 min resulted in a 400% 

increase of InsP3 level compared with unheated cells. A rapid, heat-induced increase in 

diacylglycerol level was also observed (about 2-3 min) upon 45°C treatment of CHO 

HA-l cells, though the elevation was transient and declined rapidly to the unheated level 

by 4 min (Calderwood et al., 1987). Using permeabilised CHO HA-l cells, it was found 

that the heat-induced lnsP3 formation (presumably resulting from PLC activation) is 

guanyl nucleotide dependent, thus suggesting that a G protein may be affected by heat 

(Calderwood et al., 1993). The participation of a G protein in the activation of PLC is a 

common pathway associated with receptor-mediated PI-PLC activation (Berridge, 1984; 

Exton, 1994). The implication of this finding is that the action of hyperthermia may 

resemble that of an agonist, suggesting that physical stress such as hyperthermia may be 

converted to a chemical message in the cell. 

Given the importance of the phosphoinositide signalling pathway in controlling a 

variety cell functions· through the action of either the InsP3/Ca2+ pathway or the 1,2-

diacylglycerol/protein kinase C pathway, disruption of this signalling pathway might in 

tum lead to the loss of cellular homeostasis and produce chaotic changes in cell function. 

As mentioned earlier, the mechanism and the primary lesion site that leads to 

hyperthermic cell death is obscure, but the identification of possible factors involved in 

hyperthermic cell death could be useful in optimising use of hyperthermia in cancer 

therapy. For example, if heat-induced cell death is due to the disruption of calcium 

homeostasis, agents such as local anaethetics that have been shown to perturb the 

calcium homestasis and increase in calcium influx could be used in collaboration with 

hyperthermia to potentiate the effect. The main aim of this study is to clarify further the 

effect of heat on the phosphoinositide signalling pathway in tumour cells using rat 
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mammary tumour WRK-1 cells and Chinese hamster ovary CHO-K1 cells as the model 

systems. Levels of 1 ,2-diacylglycerol (and other neutral lipids), inositol phosphates and 

[Ca2+]i were measured during and after hyperthermic treatment of the cells. 
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Chapter 2 

Characteristics of the Culture System for CHO-Kl and WRK-1 Cells 

2.1 Introduction 

The effect of hyperthermia on biological systems can be studied using both cell 

cultures and experimental animals. Cell culture may be used in the first instance to study 

the response of a single cell type to heating in vitro, followed by investigation of the 

cellular and functional responses of tissues in experimental animals to hyperthermia. 

The first successful experiment in maintaining tissue in vitro was done by Roux 

and his co-workers in 1885 using chick embryo. They found that it was possible to keep 

this fragment alive for several days when it was incubated in warm saline. In 1910, 

Burrow introduced the plasma clot culture method that allowed the tissue to be grown in 

vitro and laid the foundation for subsequent development of the technique. Later, Eagle 

( 1955) made the first systematic investigation of the nutritional requirements of cells in 

culture and found that animal cells could propagate in a defined mixture of small 

molecules supplemented with a small proportion of serum proteins. Since then several 

well-defined media have been manufactured and, at present, the commonly used media 

are easily available from the manufacturers. The choice of culture medium is usually 

determined by the cell line being employed. 

Serum-free media with the composition mimicking that of blood serum have been 

used successfully for the growth of HeLa cells (Blaker et al., 1971), human fibroblasts 

(Hammond eta/ .. 1984) and Iymphoblasts (lscove and Melchers, 1978). However, it 

seems that serum is still required for maximal cell growth since it contains many 
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biomolecules with different growth-promoting and growth-inhibiting activities. Apart 

from providing growth factors (Gospodarowicz and Moran, 1974) and hormones (Fredin 

eta/., 1979; McLean eta/., 1986), it also provides attachment and spreading factors for 

cells (Fisher et al., 1958), binding proteins (Guilbert and Iscove, 1976; Iscove and 

Melchers, 1978; Barnes and Sato, 1980) and lipids and minerals (Ham and McKeehan, 

1978). Serum proteins also contribute viscosity, which is important in protecting cells 

from mechanical damage during resuspension of trypsinized cells, and anti-protease 

which is necessary for arresting proteolysis after trypsinization . 

Depending on the cell types, cells can be grown as monolayer or suspension 

cultures. In both cases, the cell growth is largely affected by nutrients, pH, temperature 

and growth area. In order to make sure that there is no deprivation of growth factors in 

the medium, it is a good practice to change the medium every two or three days. 

Animal cell growth is optimal in the pH range 7.2-7 .4. In order to operate in an 

effective buffering system, sodiurri bicarbonate is usually included in the growth 

medium in conjunction with a gas phase of air/C02 (95:5, v/v) to give rise to an 

effective COrbuffering system (Eagle, 1973). 

The optimal temperature for mammalian cell growth is about 37°C. Although cells 

can tolerate a rapid and considerable drop in temperature (during cryopreservation), 

they will die if the temperature is maintained slightly higher than the normal growth 

temperature. Hence the temperature at different parts of the incubator must be kept very 

constant. This is achieved by circulating the air by a fan to give an even temperature. 

Apart from having an effect on cell growth, temperature also influences the pH of the 

medium due to the increased solubility of C02 at lower temperatures. 

The growth area is another factor that affects the cell growth. Depending on the 
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cell number required, flasks and plates with different surface area are used. In this study, 

the most commonly used plasticware were 25 cm2 flasks and 6-well plates (9.6 cm2 per 

well). Nowadays, flasks with a folded surface are available which provides a greater 

surface area for cell growth but keeps the occupying space to a minimum. 

Although aseptic techniques are used, contamination is still a problem in cell

culture. Bacterial and fungal contamination can be suppressed by adding antibiotics such 

as penicillin and streptomycin (Von Hoff et al., 1986) and anti-fungal agents such as 

nystatin and amphotericin B (Pearlman, 1979) to the medium. Mycoplasma infection is a 

very serious problem in cell culture and can alter the metabolism of cultured cells but 

allows the cells to grow satisfactorily and appear normal under the light microscope 

(Stanbridge et al., 1975; States et al., 1978). Hence either tylosin (Friend et al., 1966) or 

ciprofloxacin (Schmitt et al., 1988) is often included in the medium as an anti

mycoplasma agent. 

To prevent cell loss from contamination, incubator failure and to avoid genetic 

instability as the cell population ages, it is a common practice to freeze healthy cells at an 

early passage as "seed stock". The problems concerned with cell freezing include the 

formation of intracellular ice crystals (Meryman, 1974) and osmotic effects (Lovelock, 

1953; Meryman, 1974). These problems can be overcome by adding a cryoprotective 

agent such as DMSO or glycerol. Although DMSO can penetrate cells more rapidly and 

give a greater protective effect, several reports suggested that DMSO leads to gene 

activation and differentiation in a variety of cellular systems and it is advisable to use 

glycerol as cryoprotectant (Rudland eta/., 1982; Higgins eta/., 1983). 

Once the cells reach confluence (in monolayer), a subcultivation involving 

harvesting the cells then reseeding them at lower density in fresh medium is necessary. 

Whether harvesting is done by a mechanical method (using rubber policeman) or 
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enzymatically (trypsin-EDT A), some degree of trauma to the cell is expected. The most 

effective way to reduce cell loss during harvesting is by washing the cell monolayer ftrst 

with warm Ca2+_ and Mg2+-free phosphate-buffered saline, followed by treatment with 

EDT A-trypsin solution. The cells detach from the culture vessel and are then pelleted by 

centrifugation, resuspended in pre-warmed growth medium, plated out at a lower cell 

density and allowed to grow for several days before reaching confluence again. 

Following subcultivation and re-seeding mammalian cells, 3 stages of cell growth 

can be observed. An initial lag period of about 24 h is detected which is the recovery 

period for cells after trypsinization. During this period the cells attach to the substrate 

and spread, and enzymes such as DNA polymerases increase in activity, followed by the 

synthesis of new DNA and proteins. This lag period is followed by an exponential 

growth period, "the log phase", during which the cell numbers increase rapidly until they 

approach confluence. At the end of the log phase the growth rate is reduced, and growth 

ceases in most cell types as soon as cells reach confluence, whereas in other cases the 

cells tend to grow on top of the first layer and form a multilayer culture. The length of 

the log phase depends on the seeding density, the growth rate of the cells and the 

nutritional conditions. If the cell growth is followed for several days, the doubling time 

and the maximum cell density for a particular surface area can be determined. 

Several factors need to be considered before commencing research with a 

particular cell line. These factors include the suitability of the cell line for the proposed 

work, type of culture required (monolayer or suspension culture), cell number required 

as well as the facilities that are available. 

The effect of hyperthermia on signal transduction pathways has been studied in 

CHO HA-l cells (Stevenson et a/., 1986), Balb C 3T3 fibroblasts (Calderwood et al., 

1987), HeLa cells, PC 12 rat pheochromocytoma cells (Calderwood et al., 1988) and 
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human epidermoid A-431 cells (Kiang and McClain, 1993). In the present study, 2 cell 

lines were used : the Chinese hamster ovary (CHO-Kl) cells and rat mammary tumour 

(WRK-1) cells. 

CHO-Kl cells are fast growing cells with a doubling time about 15 hand a high 

split ratio ( 1 :20); hence a large number of cells can be produced in a rather short period. 

Different clones of this cell line have been employed by other workers in the study of 

hyperthermic effects such as the correlation of cell blebbing and cell death following 

heat shock (Borrelli et a/., 1986; Kapiszewska and Hopwood, 1988), alteration in 

membrane fluidity (Gonzalez-Mendez eta/., 1982; Dynlacht and Fox, 1992a,b), DNA 

damage (W arters et a/., 1985), thermotolerance and heat shock protein induction (Li et 

a/., 1982; Li and Hahn, 1987; Lee et a/., 1992), the effect of heat on calcium 

homeostasis (Stevenson et al., 1987) and the phosphoinositide signalling system 

(Calderwood and Stevenson, 1993) and thermal sensitivity of growth factor receptors 

(Calderwood and Hahn, 1983). All these factors stimulated the use of this cell line as one 

of our models for hyperthermic study. 

WRK-1 cells were chosen as another suitable model for this study. Although the 

effect of hyperthermia on this cell line has not been investigated before, the well

characterised phosphoinositide signalling system in WRK-1 cells (Monaco and Lippman, 

1982; Guillon et al., 1986a,b; Monaco, 1987a; Monaco, 1987b; Barker eta/., 1992; 

Wong et al., 1992) provides a valuable tool for investigating the hyperthermic effect on 

this second messenger system. The doubling time of this cell line is about 20 h, hence 

making this system a suitable cell line to use. However, it has one drawback as rat serum 

is an essential component for cell growth. 

The purpose of this chapter is to characterise the growth behaviour of both cell 
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lines, in order to establish fundamental properties of the cells (doubling time, plating 

efficiency etc) which were vital in planning further experiments. 

2.2 Materials and Methods 

2.2.1 Cell Types 

(i) CHO-K l cells 

CHO-K I is a clone of Chinese hamster ovary cells that was first isolated by Puck 

and others ( 1958). Later a defined medium was developed by Ham ( 1962) to support the 

growth of different clones of CHO cells. CHO-K1 has a modal chromosome number of 

21 and it has been demonstrated that proline is indispensable for its growth (Kao and 

Puck, 1967). 

(ii) WRK-1 cells 

WRK-1 is a cloned cell line from long-term tissue culture originally derived from 

7, 12-dimethylbenz(a)anthracene-induced rat mammary tumour of a 50-day-old Sprague

Dawley rat (Kidwell et al., 1978). The cells grow in monolayer culture and appear to 

possess of many of the ultrastructural characteristics of mammary secretory epithelium. 

They do not have receptors for oestrogens, androgens, progesterone and prolactin. 

Although they do not form tumours when injected into nude mice, they appear to be 

transformed because they have a modal chromosome number of 80 and "pile up" in 

culture (Kidwell et al., 1978). 
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2.2.2 Culture Techniques 

(i) Growth media and conditions 

In this study, CHO-K1 was purchased from Flow Laboratories (Rickmansworth, 

Hertfordshire) at passage 24 and WRK-1 cells were a gift from Dr. C.J. Barker 

(University of Birmingham) at passage number between 15 to 24. Both cell types were 

grown as monolayers either in flasks or in plates depending on the nature of the 

experimental work. WRK-1 cells were also grown on coverslips when they were used for 

calcium measurements. 

CHO-K1 cells were grown in Ham's F12 medium (purchased from Flow 

Laboratories) supplemented with 10% (v/v) foetal bovine serum (FBS), 2 mM L

glutamine, penicillin (100 i.u./ml), streptomycin (100 Jlg/ml) and tylosin (10 Jlg/ml). 

Cells were maintained at 37°C in an air/C02 (19:1, v/v) atmosphere. 

WRK-1 cells were grown in Eagles Mimimum Essential Medium with Earle's salts 

(purchased from Flow Lab as lOX medium w/o L-glutamine and sodium bicarbonate) 

supplemented with FBS (5%, v/v), heat inactivated rat serum (2%, v/v), 2 mM L

glutamine, penicillin (100 i.u/ml), streptomycin (100 Jlg/ml), tylosin (10 Jlg/ml) and non

essential amino acids (1%, v/v) and the medium was buffered to pH 7.4 with 24 mM 

sodium bicarbonate. Cells were maintained at 37°C in an air/C02 (19: 1, v/v) 

atmosphere. 

All the cell culture supplements were purchased from Flow Laboratories apart 

from FBS. FBS had been batch-tested to give the best cell growth, and was purchased 

from Sera Labs. The rat serum was prepared from mature, non-pregnant female rats, 
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with most preparations consisting of sera pooled from 10-50 rats. The serum was heat 

inactivated by treatment at 56°C for 30 min, filter-sterilised and stored frozen at -20°C. 

(ii) Cell harvesting and subcultivation 

Both CHO-K1 and WRK-1 cells were grown in 25 cm2 flasks. As cells reached 

confluence, a subcultivation was found necessary. Cells were subcultivated no more than 

10 times from the passage number of receipt to avoid alteration of growth characteristics 

as cells aged. 

The growth medium in the flask was decanted and the monolayer was washed 

twice with 5 ml Ca2+_ and Mg2+-free phosphate buffered saline (PBS), added to the side 

of the flask opposite the cells. The PBS was discarded and the monolayer was detached 

by addition of 1 ml trypsin-EDTA solution which contained 0.25% (w/v) trypsin and 

0.2% (w/v) EDTA in PBS followed by an incubation at 37°C for 3-5 min until the cells 

rounded up and detached from the flask surface. Then 10 ml of growth medium was 

added to terminate the action of trypsin. The cell suspension was then transferred to a 

sterile plastic universal vial and centrifuged at 80 g (rav = 11 em) at 20°C for 3 min, to 

sediment WRK-1 cells or at 120 g for 5 min to sediment CHO-K1 cells. The supernatant 

was discarded and the pellet was resuspended in a known volume of growth medium 

(usually 1-3 ml). The cells were disaggregated by sucking them up and down a syringe, 

fitted with a no. 25 gauge hypodermic needle, two to three times. Cells were counted 

using either a haemocytometer or Coulter Counter and then seeded into fresh growth 

medium. The medium was changed the following day and every 2 to 3 days thereafter. 

(iii) Cryopreservation of cells 

Subconfluent cells from a 175 cm2 flask were harvested as described. The pellet 
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was then resuspended in 10 ml of freezing medium consisting of FBS/glycerol (92:8, 

v/v), and disaggregated. A 1 ml aliquot of the suspension (approximately 3 x 106 cells) 

was transferred into a plastic bio-freeze vial and the vials were then placed in a specially 

designed container (Nalgene cryo 1 °C freezing container) to provide a better control on 

the freezing rate ( -1 oc per minute) when placed in a freezer set at -80°C. After 4-15 h, 

the vials were transferred to a liquid nitrogen container where they could be stored for 

several years. 

(iv) Recovery of frozen stock 

Frozen cells were thawed rapidly by placing the vial in a 37°C water bath. The 

cells were then transferred to a 25 cm2 culture flask containing 9 ml of pre-warmed 

growth medium and the flask was then incubated in an incubator at 37°C in an air/C02 

(19: 1, v /v) atmosphere. The medium was changed after 24 h and every 2 to 3 days 

thereafter. The cells were not used for experiments until they had been subcultured once. 

2.2.3 Determination of cell number, cell viability and cell size 

(i) Estimation of cell number and viability via haemocytometer 

The most commonly used method for determining cell viability or total cell 

number in a cell suspension is the dye exclusion method. 

After harvesting and resuspending the cell pellet in a known volume of growth 

medium and disaggregating the cells, a small aliquot of cell suspension ( 100 J..Ll) was 

mixed with 100 J..Ll trypan blue solution (0.6% w/v trypan blue in PBS) such that 

approximately 50-100 cells were observed over each of the 9 large squares of the 

haemocytometer chamber. The number of viable (unstained) cells and total cells (stained 
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and unstained cells) in the large centre square and the four large comer squares was 

counted. Then the total cell number and the percentage viability of a particular cell line 

could be determined. 

The large squares in the haemocytometer have an area of 1 mm2. When the coverslip is 

passed over the grid, the depth of the chamber is 0.1 mm 

Thus the total volume over each large square = 1 x 1 x 0.1 

=0.1 mm3 

= 1x1o-4ml 

Cells were counted from Slarge squares and the mean cell number (n) was calculated. 

Since the cell suspension was mixed with same volume of trypan blue, i.e. diluted by 2-

fold 

:. the no. of cells per ml in the suspension= n x 104 x 2 

From the cell number obtained from the haemocytometer the cell viability can be 

calculated: 

m . b.
1
. viable cell number 

100 70 VIa I tty = X 
total cell number 

(ii) Determination of cell number by Model D Coulter Counter 

Although the haemocytometer can provide information such as viability and cell 

number, it is a time-consuming method and limited the number of samples that could be 

handled in a day. Nowadays, automatic cell counting equipment is available, and the 

Coulter Counter is one of the most commonly used machines. The determination of cell 

number is based on the generation of voltage pulses as the particles (cells) are forced to 

pass through a small aperture having an immersed electrode on either side. As a particle 
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passes through the aperture, it changes the resistance between the electrodes. This 

produces a voltage pulse of short duration having a magnitude proportional to the 

particle size. The series of pulses were then electronically scaled and counted. 

The volume of the particle size (V ) = t.I.A 

Where t = threshold, I = Aperture current, A = Attenuation 

and the particle diameter in ~m = k3-.J V 

Where k = calibration constant for the machine 

After harvesting and resuspending in growth medium, a small aliquot of cell 

suspension was suitably diluted with Isoton ll solution (Coulter Electronics, Luton). The 

blank was also counted using Isoton II solution. Optimum settings for each cell type 

were established and they were A= 2, I= 0.017 and t = 20 for CHO-Kl cells and A= 4, 

I= 0.017 and t = 20 for WRK.-1 cells. 

(iii) Determination of cell size distribution using micrometer 

Cells from a 25 cm2 flask were harvested and the cell pellet was respended in 

medium. A small aliquot was diluted with medium (5000 cell per ml) and the cell 

diameters were measured using a Watson-Barnet micrometer with a calibrated eye piece 

on a Zeiss light microsope. 

(iv) Determination of cell size distribution by Coulter Counter 

Cell sizing was done by harvesting exponentially growing cells using trypsin

EDT A and resuspending the cells in 10 ml growth medium. Then an aliquot of cell 
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suspension was added to 200 ml Isoton II such that the cell count was less than 10,000 

when the lowest settings (A=1, 1=0.0033, t=10) were used. The cell size distribution was 

obtained by determining the cell counts at a number of different aperture (A), threshold 

(t), and current settings (I) as recommended in the Coulter manual. A background count 

was performed using Isoton II and counted at different settings. In order to obtain 

statistical accuracy for each size level, the following rule as recommended in the Coulter 

manual was followed: 

6 counts for number less than 100 

4 counts for number between 100 to 1000 

2 counts for number more than 1000 

2.2.4 Determination of growth characteristics of CHO-Kl and WRK-1 cells 

(i) Growth curve 

Exponentially growing cells were harvested from a 75 cm2 flask and the cell 

number was determined by Coulter Counter as described. Different numbers of cells 

(5x104-5xi05 of CHO-K1 cells or 2.1xi04-5xlOS WRK-1 cells)were then seeded into a 

number of 6-well plates with each well containing 3 ml growth medium. The medium 

was changed every day. Every 24 h, a plate of different seeding density was harvested 

and the total number of cells per well was determined by Coulter Counter. 

The doubling time during exponential growth can be calculated as follows: 

D bl
. . t2-t1 

ou mg ttme = --------
3.32(logNt2 -logNtt) 

t2 = time at point 2, 

N12 =cell number at t2 
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(ii) Determination of the time taken for the cells to attach to substratum 

Exponentially growing cells were harvested from a 25 cm2 flask and the cell 

number was determined. The cell suspension was then suitably diluted to give a density 

of 200,000 cells/mi. An aliquot of the diluted cell suspension ( 1 ml) was added to several 

25 cm2 flasks with each contained 9 ml of growth medium and the cells were incubated 

at 37°C in an incubator. Every half an hour, the medium was discarded from 2 flasks 

and cells attached to these flasks were harvested and counted. Hence the number of cells 

that attached to the bottom could be determined. 

(iii) Plating efficiency 

Different nmnbers (100-600 cells) of CHO-Kl cells were seeded in several 25 cm2 

flasks. The medium was changed the following day and every 2-3 days thereafter. On 

day 9, cells were fixed and stained with trypan blue and the number of colonies were 

counted. Each colony is assumed to derive by clonal growth from a single cell, so the 

number of cells that attached after seeding is equivalent to the total colony number. 

Th I . ff' . (m ) no. of colonies form. ed 100 en p atmg e tctency 7o = x 
no. of seeded cells 

The method for WRK-1 cells was slightly different because these cells tend to 

migrate together, hence the clonogenic assay was not suitable for determining plating 

efficiency. 

Instead, different numbers of WRK-1 cells were seeded into a number of 25 cm2 

flasks with a grid at the bottom. After 24 h, the medium was discarded, and the cells 

were fixed and stained as described in section 2.2.4 (iv). The number of cells remaining 

attached were counted under an inverted microscope. Since the cell number does not 
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change in the first 24 h, the cell number remaining was directly related to the plating 

efficiency. 

(iv) Cell fixing and staining 

Growth medium was discarded and cells were fixed with 10 ml PBS/methanol 

(92:8, v/v) for 15 min. The fixative was then discarded and the cells were stained with 

0.6% (w/v) trypan blue in PBS for 10-15 min. Stain was then discarded and the cells 

were washed once with PBS to remove the trypan blue residue. Cells or colonies were 

counted using an inverted microscope. 
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2.3 Results 

Initially, the average cell size was determined using a light microscope fitted with 

a micrometer gauge, and by using the Coulter Counter. 

The cell size distribution curve of CHO-K1 cells obtained from micrometer 

readings gave a mean cell diameter of 12.50 jlm and a standard deviation of 1.56 jlm 

(Figure 2.la). The mean cell diameter obtained via Coulter Counter was 13.40 JJm and a 

standard deviation of 3.99 jlm (Figure 2.2a) which was comparable to that obtained from 

the micrometer. It was important to establish that the Coulter Counter readings gave a 

true reflection of the cell number in the suspension. Hence a direct comparison between 

cell number obtained from the haemocytometer and Coulter Counter was performed 

(Table 2.1 a). The result suggested that the settings for counting particles of diameter of 

8.60 jlm or above correlated with the result obtained from the haemocytometer. These 

settings corresponded to A = 2, I = 0.017 and t = 20. Thus by using these settings, the 

Coulter Counter could be used confidently to determine cell number in future 

experiments. 

The cell size distribution curve for WRK-1 cells obtained from micrometer 

readings gave a mean cell diameter of 18.80 jlm and a standard deviation of 2.83 jlm 

(Figure 2.1 b). The result obtained from the Coulter Counter was comparable to that 

obtained from the micrometer, with a mean diameter of20.10 jlm and standard deviation 

of 5.52 J.lm (Figure 2.2b). A direct comparison of cell counts from the haemocytometer 

and Coulter Counter suggested that settings of A = 4, I = 0.017 and t = 20, which 

counted particle diameters of 10.90 f.!m or above (Table 2.lb), were the best settings to 

use in future experiments. 

The growth curve for a particular cell line is important in order to predict the cell 
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number and the growth period required to achieve a particular cell density. Since most of 

the future experiments were to be performed in 6-well plates, these plates were used for 

the determination of the growth characteristics of both cell lines. 

The growth curve of CHO-K1 cells showed that all three different seeding 

densities had a lag period of 24 h (Figure 2.3a). When cells were seeded at low densities 

i.e. 5 x I ()4, the cell number was reduced by 60% after 24 h, whereas if seeded at high 

densities this was not observed. This suggested that the seeding efficiency was affected 

by the seeding density. The cells then entered the log phase within 48 h. The doubling 

time of different densities at log phase were very similar with an average doubling time 

of 15.40 h. When the cell number in each well reached about 2 million, the growth rate 

slowed down and finally reached plateau with a density of 7 million per well. 

The growth curve of WRK -1 cells suggested that when cells were seeded at low 

densities 21 x 103, 43 x 103, the cell number decreased by 15.9% and 35.8%, 

respectively during a lag period of 24 h (Figure 2.3b). If the cells were seeded at higher 

densities i.e. 87 x 103, 175 x 103 and 500 x 1 Q3, the cell number remained similar to the 

seeded number, again suggesting that the seeding efficiency was affected by the seeding 

density. The cells entered the log phase within 48 h irrespective of the seeding density. 

During the log phase, the average doubling time was 21.60 h, and different seeding 

densities gave a similar result. When the cell density reached 1 x 106 per well, the 

growth rate slowed down and finally reached confluence with a maximal density not 

exceeding 2 million cells in a well. 

Prior to assessing the effect of temperature on hyperthermic cell death, plating 

efficiency was determined. For CHO-K 1 cells, it was determined by counting the 

number of colonies formed from a low inoculum of cells ( 100-600 cells/flask) after 9 

days. For WRK-1 cells, it was determined by inoculating low number of cells (100-500 
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cells/flask) and the number of cells remaining attached was counted on the following 

day. The plating efficiency of CHO-Kl cells at different seeding density gave similar 

results with an average plating efficiency of 94.2% (Table 2.2a). In the case of WRK-1 

cells, the average plating efficiency was 63.8% (Table 2.2b). 

During heating, cells tend to detach from substrate and it is important to allow 

sufficient time for the viable cells to re-attach before the medium is changed. Hence the 

time taken for cells to re-attach to the substrate was determined (Figures 2.4a and 2.4b). 

From the graphs, it could be concluded that at least 3 h was required for most of the cells 

to re-attach. Longer times only improved the percentage of adhered cells slightly. 
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Tables 2.1a. Comparison of CHO-Kl cells count via Coulter Counter and 

haemocytometer 

CHO-K1 cells were harvested from 25 cm2 flask. The pellet was then resuspended 

in 3 ml of medium. The number of cells in the suspension was then counted via Coulter 

Counter or haemocytometer. 

Cell count from haemocytometer = 4.48 x 1 ()6 cells/ml 

Count from Coulter Counter 

Minimum diameter (~m) (x1Q6 cells/ml) 

5.6 4.93 

8.6 4.48 

10.9 3.60 

12.4 1.77 

13.7 0.73 
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Tables 2.1 b. Comparison of WRK-1 cells count via Coulter Counter and 

haemocytometer 

WRK -1 cells were harvested from 25 cm2 flask. The pellet was then resuspended 

in 3 ml of medium. The number of cells in the suspension was then counted via Coulter 

Counter or haemocytometer. 

Cell count from haemocytometer = 57 6 x 1 ()3 cells/ml 

Count from Coulter Counter 

Minimum diameter (J.lm) (x1Q3 cells/ml) 

8.6 631 

10.9 575 

13.7 548 

17.1 273 

19.5 86 

21.5 42 
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Table 2.2a. Plating efficiency of CHO-Kl cells 

Cells were harvested and seeded as described. Medium was changed after 24 hours 

and on day 4 and 7. On day 9 the cells were fixed, stained and the number of colonies 

were counted. 

No. of cells inoculated No. of colonies Average plating efficiency 
(cells/flask) (%) 

100 104±7.75 103 

200 186±13.4 93 

300 294±8.8 98 

400 370±16.7 92 

500 443±13.9 89 

600 540±9.09 90 

Average plating efficiency= 94.2% 

For CHO-K1 cells, results were obtained from 4 determinations per seeding 

density. 
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Table 2.2b. Plating efficiency of WRK-1 cells 

Cells were seeded at different densities into 10 ml growth medium in a number of 

25 cm2 flasks with grid at the bottom. After 24 h in culture, the medium was decanted 

and the cells were fixed with PBS/methanol (1:3, v/v) for 15 min. The fixative was then 

discarded and the cells were stained with trypan blue for 10 min. Cells were then washed 

with PBS once and the cells remaining were then counted on an inverted microscope. 

No. of cells inoculated Average cell number % of plating efficiency 
(cells/flask) 

100 73 73 

200 115 58 

300 186 62 

400 257 64 

500 309 62 

Average plating efficiency= 63.8% 

For WRK-1 cells, results were obtained from a single experiment with duplicate 

flasks per density 
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2.4 Discussion 

Before using a particular cell line for experimental work, it is important to 

optimise methods to quantify cell number, and the kinetics of cell growth must be 

determined. The first part of this chapter describes the method used to establish correct 

Coulter Counter settings. Then the growth characteristics of the cells, such as doubling 

time and plating efficiency, were determined. 

The Coulter Counter provides a quick method to count cells. Since a large number 

of cells are counted at one time, it also provides a greater accuracy for determination of 

cell number. However there are some drawbacks in using this machine: 1) It cannot 

discriminate between live and dead cells. 2) It counts cells which exceed a certain 

diameter but cannot discriminate single cells from clumps of cells. 3) It may count cell 

debris as particles (cells) if the particle size is set too low. The first disadvantage was not 

a problem if the machine was only used for determining cell number in a cell suspension 

as cells remained viable after harvesting, but, it would be a problem if the machine was 

used for determination of cell viability after cytotoxic treatments e.g drug treatment. The 

second disadvantage was resolved by efficient disaggregation of cells before 

measurement. In view of these drawbacks, the correct setting of the Coulter Counter 

was crucial to give a true reflection of the cell number. In order to find out the best 

settings for both cell types, a comparison of counts from the haemocytometer and 

Coulter Counter was performed. This suggested that for CHO-Kl cells the best settings 

were A= 2, 1 = 0.017 and t = 20, whereas for WRK-1 cells, settings of A= 4, I =0.017 

and t = 20 were optimum. 

The growth curves for both cell types suggested that the seeding efficiencies were 

reduced at low seeding densities. This could be explained if cells required some cell

derived diffusible signals or conditioning factors which might be absent or too dilute at 
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low cell densities, thus affecting the seeding efficiency. It was observed that the growth of 

WRK-1 cells increased noticeably on the day following a medium change, but on the 

second day after a medium change the growth rate slowed down (result not shown). In 

order to obtain a uniform cell growth, the medium was changed every day when 

determining the cell growth for both cell types. The time taken for cells to reach stationary 

phase depended upon the seeding densities, the growth area and the nutritional conditions. 

The doubling time for CHO-K1 cells in this study was 15.40 h which was rather 

longer than the 10 h reported by Kao and Puck (1967). For WRK-1 cells the doubling 

time had not been reported before, and in this study it was found that the doubling time 

was 21.60 h during log phase. 

Although the doubling time of WRK-1 cells had not been reported before, it had 

been reported that rat serum was indispensable for its growth (Kidwell et al., 1978). In 

the absence of rat serum the growth rate declined and cells finally died after 5-7 days. 

Fatty acid analysis of the rat serum suggested that it had 19-fold higher linoleic acid 

content than FBS. Addition of pure linoleic acid to PBS-containing medium improved 

the growth rate by four times compared with growth in PBS-containing medium. 

However linoleic acid was not totally capable of replacing rat serum suggesting that 

some component(s), such as hormone(s), in the rat serum was necessary for maximum 

cell growth (Kidwell et al., 1978). 

The plating efficiency of CHO-Kl cells had been reported to be largely affected by 

the concentration of proline in the medium (Kao and Puck, 1967). A constant plating 

efficiency (78%) was obtained when proline concentration was between 3 x 10-5 to 1 x 

10-2 M. Proline concentrations above 0.1 M or below 1 x 10-5 M would give a 0% 

plating efficiency. The plating efficiency obtained in this study was 94.2% and different 

inoculated numbers gave similar results. The variation in the plating efficiency could be 
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due to the different concentration of serum being used (2% in the previous study and 

10% in this study). Plating efficiency was also affected by the stage of cell growth and 

the method of harvesting. 

As mentioned previously, WRK-1 cells migrated together, so the method for 

determining plating efficiency had to be modified. The average plating efficiency for 

this cell type was found to be 63.8%. 

Different cell types have different affmities for the culture substrate and would 

attach to substrate at different rates. From the curves of cell attachment (Figures 4a and 

4b ), it was determined that at least 3 h was required for both cell types to re-attach to the 

substrate. Hence 4 h was chosen as the time to be allowed routinely for maximum 

attachmenL before proceeding with any further experimental manipulations. 

In summary, this phase of the work established the culturing techniques, growth 

conditions and growth characteristics for both CHO-Kl and WRK-1 cells. 
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Chapter 3 

Effect of heat on monoacylglycerol, 1 ,2-diacylglycerol 

and triacy lglycerollevels 

3.1 Introduction 

The rationale for the use of hyperthermia in cancer treatment is the putative 

differential heat sensitivity of tumours as a consequence of poorly developed blood flow, 

relative nutrient deprivation and the accumulation of metabolic waste products (Field, 

1987). Furthermore, the complementary or additive effect with radiotherapy and additive 

effect with chemotherapy all render hyperthermia an attractive modality for cancer 

treatment (Ross and Watrnough, 1986). 

Temperature has an all pervasive influence on cellular structures and this makes it 

difficult to identify the primary sites of lesion as well as the mechanistic relationship 

between events that lead from thermal damage to cell death. Indeed, at one time or 

another, all the major cellular structures have been implicated as having a significant role 

in heat injury (Roti Roti, 1982). 

The plasma membrane forms the boundary of the cell and is in direct contact with 

the environment, and it has been suggested that this membrane plays an important, if not 

a primary role, in hyperthermic cell death (Yatvin, 1977; Hahn, 1982; Bowler, 1987; 

Laszlo, 1992). Evidence for this notion comes from the synergistic effect of heat with 

other membrane-active agents such as aliphatic alcohols and local anaesthetics (Yatvin, 

1977; Hahn, 1982; Kim, 1988). 
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Many of the specific functions associated with the plasma membrane are carried 

out by proteins that are embedded in the membrane. Several reports suggest that heat 

affects the biological activities of a number of membrane proteins including membrane

bound A TPase enzymes, nutrient transporters and cell signalling molecules. For example 

it has been reported that the Ca2+ ion transport function of purifed Ca2+ -A TPase from 

sarcoplasmic reticulum reconstituted into an artificial membrane was inactivated at 

hyperthermic temperature (Cheng et al., 1987). It has also been reported that glucose 

transport into CHO cells is impaired above 45°C (LeCavalier and Mackillop, 1985) and 

uridine uptake is inhibited at temperatures above 45°C in several mammalian cell types 

(Magun, 1981 ). Investigation of both mitochondrial and plasma membrane protein 

transition in Chinese hamster V79 cells (CHL V79 cells) by measuring both intrinsic 

protein fluorescence and energy transfer from membrane protein to lipid soluble 

fluorescent probe ( trans-paranaric acid) suggested that irreversible protein transitions 

occur in membranes at 40°C to 41 °C (Lepock et a/., 1983). This membrane protein 

transition correlated well with hyperthermic cell death of CHL V79 cells, so it was 

suggested that protein-associated functions of membranes would be impaired at elevated 

temperature, and hyperthermic cell killing may be associated with the effects of heat on 

the protein components of the plasma membrane. 

A great deal of interest has been shown in the possibility of cell signalling 

mechanisms being modified by hyperthermia. The binding of insulin to its receptors in 

CHO HA-l cells was inhibited when cells were exposed to 43°C to 45°C and the 

inhibition was found to be due to a reduction in receptor number and not receptor 

affinity (Calderwood and Hahn, 1983). On the other hand, EGF binding to its 

membrane-bound receptors in Rat-1 fibroblasts was inhibited after cells were exposed to 

45°C for 30 min, and this inhibition was due to a decreased affinity of the receptors for 

the ligand (Magun and Fennie, 1981). The effect of heat on modifying the 

phosphoinositide signalling pathway has been suggested and it is further postulated that 
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prolonged heating ( 45°C for longer than 15 min) would result in the depletion of 

polyphosphoinositides, which might be associated with cell killing, either as a result of 

disruption of membrane integrity or calcium homeostasis which could result from the 

accumulation of inositol trisphosphate (Calderwood et al., 1987). The aim of this study 

is to investigate the effect of heat on the phosphoinositide signalling pathway by 

measuring the changes in the levels of inositol phosphates, 1 ,2-diacylglycerol and 

cytosolic free calcium concentration. In order to understand the effect of heat on 

phosphoinositide signalling pathway, it is necessary to consider the general phenomenon 

of this pathway. 

The first indication that inositol phospholipids may play a role in intracellular 

signal transduction was described by Hokin and Hokin (1953). They found that 

stimulation of pancreatic acinar cells with acetylcholine led to the incorporation of 32pi 

into the phospholipid fraction. It was then realised that this rapid, agonist-induced 

phosphorylation of lipid is essentially confmed to phosphatidylinositol (Ptdlns) and 

phosphatidic acid (PA). The increase in PA was the consequence of phosphorylation by 

DAG kinase of I ,2-diacylglycerol (1 ,2-DAG) that was generated from hydrolysis of 

inositol lipids. PA was then recycled for Ptdlns synthesis. However, the linkage between 

Ptdins hydrolysis and the cellular events was unclear until 1975, when Michell proposed 

that Ptdins turnover may be one of the earliest event of the signal cascade, preceding and 

perhaps causing calcium mobilisation. This hypothesis was supported by the result 

obtained by Berridge and Fain ( 1979) who showed that the ability of 5-

hydroxytryptamine (5-HT) to stimulate Ca2+ movement across the plasma membrane of 

the blowfly salivary gland was lost upon prolonged stimulation, and that this response 

can be reinstated if the desensitised glands are incubated in a medium containing 

inositol. This result suggested that an inositol-related substance is essential for receptor

controlled mobilisation of Ca2+. Similar results were observed by other groups using 

different cell types (Abdel-Latif et a/., 1977; Michell et a/., 1981). The subsequent 
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acceleration of the pace of phosphoinostide signalling research was provoked by 3 

discoveries, ( l) the lipid hydrolysed in response to receptor activation is 

phosphatidylinositol 4,5-bisphosphate (Ptdlns(4,5)P~ (Michell et al., 1981); (2) 1,2-

diacylglycerol (1,2-DAG) formed from hydrolysis of Ptdlns(4,5)P2 activates protein 

kinase C (PKC) (Takai et al., 1979); (3) the released inositol 1,4,5-trisphosphate 

((lns(l ,4,5)P3) from the head group of Ptdlns(4,5)P2 causes release of Ca2+ from an 

intracellular store (Streb et al., 1983) (Figure 3.1). 

The mechanism of agonist-stimulated Ptdlns(4,5)P2 hydrolysis involves a receptor, 

a G protein (in case of growth factor receptors a G protein is not necessary), and an 

effector protein, phosphoinositide-specific PLC (PI-PLC). Binding of agonist to its 

receptor induces a conformational change of the receptor. This conformational change 

then transmits the signal to a heterotrimeric G-protein which is composed of a, 13 and y 

subunits, allowing the tightly bound GOP on the a-subunit to exchange with GTP. 

Binding of GTP to the G protein leads to dissociation of the a-subunit from j3y-dimer. 

The dissociated a-subunit then activates PI-PLC, causing the breakdown of 

Ptdlns(4,5)P2. The bound GTP is then hydrolysed to GOP by the GTPase enzyme 

activity intrinsic to the a-subunit. Upon GTP hydrolysis, the a-subunit undergoes a 

conformational change, regains its high affmity for the j3y complex, and the a-subumit 

dissociates from the PI-PLC, inactivating this enzyme (Taylor, 1990; Cockcroft and 

Thomas, 1992). 

Orginally, it was thought that the a-subunit of a G protein was solely responsible 

for the activation of an effector protein, whereas the j3y-subunit complex acted solely as 

a regulatory component for the a-subunit by stabilising the GOP-bound form of a, 

presenting the a-subunit to the receptor and serving as a membrane anchor for the 

oligomer. However, growing evidence supports the idea that the j3y complex can itself 

interact functionally with effector protein. For example, an undefmed form of PLC in 
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HL-60 granulocytes is markedly activated by ~(Camps et al., 1992). The ~complex 

also plays a role in regulating the action of adenylyl cyclase in peripheral tissues and 

PLA2 in rod outer segments (Exton, 1994). Thus, the dissociation of a G protein can 

generate parallel and/or interactive signals via both a.- and IYY-subunits. 

To date, at least 21 distinct G protein a.-subunits, 4 ~-subunits and 6 "(-subunits 

have been identified (Hepler and Gilman, 1992). These G-proteins can be further divided 

into 2 groups depending on whether they are pertussis toxin-sensitive (PIX-sensitive) or 

not (Berridge, 1993). Members of the Gq family, comprising at least of Gq, G11 , G14, 

G15 and G16, are PTX-insensitive G proteins whereas members of G0 and Gi families are 

PIX-sensitive (Cockcroft and Thomas, 1992). 

The phosphoinositide signalling pathway is further complicated by the 

identification of isoforms of PI-PLC. Three families of PI-PLC have been identified, 

known as 13, 'Y and 0 and the existence of at least 2 more families (a. and £) has been 

suggested. Each family has subtypes as well, and at least 9 isoforms of PI-PLC have 

been characterised so far (Rhee eta/., 1989~ Rhee and Choi, 1992a). PI-PLC~ is coupled 

to a specific class of G protein, Gq, which is PTX-insensitive (Rhee et al., 1989). PI

PLCyl is activated upon the phosphorylation of 3 tyrosine residues at 771, 783 and 1254 

by receptor tyrosine kinases and phosphorylation of tyr 783 was shown to be essential 

for its activation (Rhee and Choi, 1992b). Phosphorylation of tyr 753 and 759 is 

responsible for the activation of PI-PLCy2 (Rhee and Choi, 1992b). The mode of 

activation of PI-PLCO is unknown. The identification of PI-PLCa. was based on the use 

of an antibody against a purified PI-PLCa. from uterus to screen the RBL I library 

(Bennett and Crooke, 1987). The lack of sequence homology of the putative PI-PLCa, 

compared with other PI-PLC isoforms, suggests that it is a distantly-related species and, 

in fact, it shows more similarity to a thiol-protein disulphide oxidoreductase (Cockcroft 

and Thomas, 1992). PI-PLCE has been found to be under the control of an unidentified 
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G protein (Martinet al., 1991). 

There is common agreement that the a-subunit of the PTX-insensitive Gq family 

stimulates PI-PLC~ isoenzymes, with PI-PLC~2 being less responsive and PI-PLC~1 

and PI-PLC~3 more responsive to aq. On the other hand, Ga16 stimulates PI-PLCf32 

only. Apart from regulation by PTX-insensitive G proteins, it is also known that the PI

PLC(} isoenzyme can be regulated by a PTX-sensitive G protein (Exton, 1994). 

However, efforts to identify the PTX-sensitive a-subunit that activates PI-PLC 

isoezymes have generally been unsuccessful, and it is now thought that activation of PI

PLC by PTX-sensitive G proteins involves the JYy complexes. Although the G proteins 

that release ~'Y subunits as a result of receptor activation are not absolutely identified, 

there is direct evidence that they are subtypes of Gi and G0 (Exton, 1994). The 

complexity and the numbers of G proteins, the diversity of the a and J3'Y interactions with 

effectors and the multiple isoforms of PI-PLC endows cells and organisms with 

extraordinary capacity for fine tuning both the magnitude and the nature of their 

responses to agonists. Furthermore, different PLC enzymes may be involved in different 

functions due to their substrate specificity and different mode of activation (Exton, 

1994). 

Hydrolysis of Ptdlns(4,5)P2 via PI-PLC upon agonist-stimulation will give rise to 

Ins(1,4,5,)P3 and 1,2-DAG (Berridge, 1984; Berridge, 1987; Can et al., 1991; Exton, 

1994). lns(l ,4,5)P3 is released into the cytosol and causes calcium mobilisation from 

internal stores such as ER (Berridge and Irvine, 1984; Berridge, 1993) or calciosomes 

(Volpe et a/., 1988). The action of Ins(l ,4,5)P3 is terminated by metabolism to 

Ins(1,3,4,5)P4 or Ins(1,4)P2. These 2 compounds may be dephosphorylated sequentially 

to give rise to free inositol, which is then recycled to replenish the inositol lipid pool. 

The Ins(l ,4,5)P3 metabolism is very complex and some of the metabolites may have a 

functional role (see Chapter 4). 
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I ,2-DAG remains in the membrane where it binds to and activates a serine, 

threonine-directed protein kinase (PKC) in the presence of phosphatidylserine (PtdSer) 

and Ca2+ (Nishizuka, 1984; see below). In unstimulated cells, 1,2-DAG is almost absent 

from membranes, but is transiently produced in response to extracellular signals. Unlike 

the other known messengers such as cAMP and lns(1,4,5)P3, which are H20-soluble and 

can be released into the cytosol to interact with their targets directly, the only way for 

1 ,2-DAG to move from one region of the plasma membrane to another or to the 

cytoplasmic space is by forming a complex with a lipid transfer protein. Thus the 

movement of I ,2-DAG is far more restricted than cAMP and lns(l ,4,5)P3. It has been 

suggested that 1 ,2-DAG is responsible for conveying information (by action of PKC) 

that is responsible for long-term responses such as proliferation and differentiation 

whereas Ins( 1 ,4,5)P3 is responsible for rapid cellular changes such as alteration in 

[Ca2+h as well as the activation of calcium-dependent enzymes (Liscovitch, 1992). 

To date, 12 subspecies of PKC have been identified in mammalian tissues, which 

are a, j31, j311, "f, B, E, ~. 11. 9, 1, A and J.l (Dekker and Parker, 1994). These subspecies are 

categorised into 3 different groups according to the sequence homology (Stabel and 

Parker, 1991; Nishizuka, 1992). They are group A (also known as cPKC), group B 

(nPKC) and group C (aPKC). Group A PKC includes a, j3I, j3II and 'Y which are 

activated by Ca2+, 1 ,2-DAG and PtdSer. The activation is also enhanced by cis 

unsaturated fatty acid and /ysophosphatidylcholine (lysoPC). Group B consists of o, £, 11 

and 9 subtypes. The lack of a Ca2+ -binding site on this group eliminates the requirement 

of Ca2+ for their activation. This group of PKCs has been found to be integrated into the 

signalling cascade that is initiated by growth factor receptors, eventually leading to the 

regulation of a nuclear event such as cell cycle control (Rossomando et al., 1992). The~ 

subtype is classified as group C, and the activation is dependent on PtdSer but is not 

affected by 1 ,2-DAG and Ca2+. The signal to activate this group of PKC and the 
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mechanisms of activation of this PKC family remains unknown. No sequence data are 

available for 1, A. and J.1 subtypes. However it has been disclosed that PKC-Jl is a member 

of the group B superfamily whilst PKC-t and A. are related to PKC-~ (group C). 

A small amount of 1,2-DAG is sufficient to activate PKC at physiological calcium 

concentrations as long as it contains at least one unsaturated fatty acid (irrespective of 

the chain length of the other fatty acyl moiety) and has a 1 ,2-sn configuration. On the 

other hand, 1 ,3-diacylglycerol ( 1 ,3-DAG), triacylglycerol (TAG) and monoacylglycerol 

(MAG) do not have any effect on PKC (Ganong et al., 1986). In the absence of agonist, 

most of the PKC is located in the cytoplasm and the pseudosubstrate site of PKC is 

bound to the substrate binding site (Figure 3.2). Upon agonist stimulation, an increase in 

[Ca2+]i results from Ins(l ,4,5)P3 fonnation and subsequent release of Ca2+ from 

intracellular stores, causing PKC to interact with membranes (due to its Ca2+-dependent 

phospholipid binding domain) where it remains in an inactive, but confonnationally 

distinct membrane associated state. Association of PKC with membrane phospholipids is 

not sufficient to elicit activation of the enzyme (Huang, 1989) and activation occurs only 

when an activator such as 1 ,2-DAG becomes accessible to the membrane-bound enzyme 

at the intracellular membrane surface. These activator molecules appear to exert their 

effect by promoting the insertion of the inactive membrane-associated PKC into the 

membrane. During this insertion, PKC undergoes an additional confonnational change 

such that the pseudosubstrate site is unmasked from the substrate site, thus rendering the 

enzyme active and capable of phosphorylating cellular substrate (Huang, 1989; Burns 

and Bell, 1992). Group B PKC lack the Ca2+-binding domain, so the association with 

the membrane is not dependent upon [Ca2+]i. Mter membrane attachment, activation of 

these family members occurs in a manner identical to their Ca2+ -dependent counterparts 

(Burns and Bell, 1992). This model, however, does not adequately address the activation 

of PKC family members by effectors such as arachidonic acid and other fatty acid which 

appear to exert their effects in the absence of membranes. In 1982, Castagna and co-
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workers reported that PKC can also be activated by 'tumour promoters' such as 12-o

tetradecanoyl-13-acetylphorbol by mimicking the effect of 1 ,2-DAG. This fmding also 

suggests that some of the pleiotropic actions of tumour-promoting phorbol esters may be 

mediated through the action of PKC. 

Since the members of the PKC family respond differently to various combinations 

of Ca2+, PtdSer, 1,2-DAG and other phospholipid degradation products (cis unsaturated 

fatty acid and lysoPC), the pattern of activation of enzymes may vary in duration. 

Furthermore it has been suggested that the intracellular localisation of the PKC isoforms 

may vary as well, though the spatiotemporal distribution of these enzymes within cells is 

poorly understood. 

PKC can control a wide range of cellular responses as a result of the 

phosphorylation of proteins. For example it has been postulated that PKC plays a role in 

maintaining calcium homeostasis. The greatest decrease in calcium following an agonist

stimulated [Ca2+h elevation was observed when cells were pre-treated with phorbol ester 

(Drummond, 1985). On the other hand, it has been proposed that PKC may play a role in 

enhancing calcium entry because microinjection of PKC or phorbol esters into cells 

enhanced the voltage-sensitive calcium current (DeRiemer et al., 1985). A possible role 

of PKC in activating Na+/1(+-ATPase in peripheral nerve has also been proposed 

(Greene and Lattimer, 1986). 

PKC has also been shown to exert a negative feedback effect on the Ptdlns(4,5)P2 

signalling system. The inhibition is due to the phosphorylation of PI-PLC by PKC since 

it has been found that treatment of intact cells with phorbol esters decreases the agonist

induced Ptdlns(4,5)P2 hydrolysis and Ca2+ mobilisation (Labarca et al., 1984; Portilla 

et a/., 1988). Ryu and co-workers (1990) have shown that PI-PLC~ in PC 12 and 

NIH3T3 cells is phosphorylated by PKC at ser 887, thus modulating its interaction with 
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Gq. Park et at. ( 1992) also reported that phosphorylation of PLCy1 at ser 1248 in Jurkat 

cells by PKC prevented receptor-induced tyr phosphorylation of PLCy1, as well as 

Ptdlns(4,5)P2 hydrolysis. On the other hand, PKC seems to participate in a positive 

feedback loop responsible for the activation of PLD and PLA2 (Liscovitch, 1992, Figure 

3.3). Hence it has been hypothesised that PKC acts to switch activation of receptor 

coupling from Pl-PLC at early stages of agonist stimulation to PLD and PLA2 later in 

the response. 

The 1 ,2-DAG formed from hydrolysis of phospholipids in the plasma membrane is 

removed by the actions of DAG kinase and DAG lipase. Monoacylglycerol (MAG), 

formed via DAG lipase action, is further hydrolysed to yield fatty acid (FA) and 

glycerol. On the other hand, 1,2-DAG can be phosphorylated to PA via the action of 

DAG kinase, and PA may then be used for the resynthesis of phosphatidylinositol 

(Ptdlns). 

Ptdlns(4,5)P2 is not the only source for 1,2-DAG production. It was observed that 

the agonist-stimulated formation of 1,2-DAG is biphasic and consists of an early peak, 

which is rapid and transient (parallels the increase in Ins(l ,4,5)P3 and Ca2+), followed 

by a late phase which is sustained over many minutes (Exton, 1990). Analysis of the 

fatty acyl chain composition of 1 ,2-DAG from these 2 phases suggested that the 1 ,2-

DAG from the early phase has a fatty acyl composition similar to that obtained from 

Ptdlns(4,5)P2 whereas the fatty acyl composition of 1,2-DAG from the second phase 

showed a similar composition to phosphatidylcholine (PtdCho) (Bocckino et al., 1987). 

Thus, it is proposed that Ptdlns(4,5)P2 hydrolysis is rapidly desensitised and may play a 

minor role in certain physiological events such as mitogenesis whereas I ,2-DAG from 

hydrolysis of PtdCho is the likely candidate to be involved in controlling such events. 

PtdCho is a substrate not only for PLC but is also for PLD and PLA2, so the action of 

different phospholipases on PtdCho will give rise to multiple lipid messenger molecules 

67 



such as arachidonic acid, lysoPC, PA and 1 ,2-DAG (Exton et al., 1991). 

The 1,2-DAG generation from PtdCho can result from (1) action of PtdCho

specific PLC (PC-PLC), (2) PLD action followed by action of phosphatidate 

phosphohydrolase. Two experimental approaches have been employed for investigating 

the involvement of these enzymes in the formation of 1,2-DAG upon agonist stimulation. 

The first approach is to prelabel the cells with lyso[32P]phosphatidy1choline, which is 

then converted to PtdCho by acylation. The production of 32P-phosphocholine would 

require a PLC activity whereas production of radioactive PA would require a PLD 

activity (Billah and Anthes, 1990). When hepatocytes were labelled with this 

radioisotope followed by vasopressin stimulation, formation of both radioactive 

phosphocholine and PA was observed (Augert et al., 1989). The second approach is 

based on the properties of PLD which, in addition to lipid hydrolysis, also catalyzes 

transphosphatidylation. In the presence of a suitable acceptor alcohol, this enzyme 

transfers the phosphatidyl group from PtdCho to the alcohol. In most cases ethanol was 

used since it is non-toxic to cells. Formation of phosphatidylethanol in stimulated cells in 

the presence of up to 1% ethanol is taken as evidence of PLD activation. It was found 

that in several cell types such as hepatocytes and HL 60 cells, phosphatidylethanol is 

formed upon agonist stimulation (Billah and Anthes, 1990). So far, no signalling role has 

been proposed for choline or phosphocholine released by PtdCho cleavage. 

The effect of heat on the phosphoinositide signalling pathway has been 

investigated in several cell lines (Calderwood et al., 1989; Calderwood and Stevenson, 

1993; Kiang and McClain, 1993). The level of DAG (unspecified isomer) in heated cells 

has been determined in CHO HA-l cells (Calderwood et al., 1989). Following a 2 h 

labelling of CHO HA-l cells with 3H-arachidonic acid in growth medium, followed by 

washing to eliminate excess radioactive isotope, cells were subjected to 45°C treatment. 

Lipids were then extracted from both heated and unheated cells and separated by TLC. 
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The radioactivity in 3H-DAG was then determined. It was found that heat induced a 

60% increase in 3H-DAG (unspecified isomer) in the first 2-3 min at 45°C and the level 

then returned to the control level by 4 min and was maintained at the same level for up to 

15 min heating. On the other hand, a sustained increase in DAG was observed when cells 

were heated at 45°C for 10 min followed by a 2 h recovery at 37°C, with DAG levels 

achieving 160% of the unheated control by 2 h. It was not clear from the experiment 

performed by Calderwood and co-workers whether the DAG isomers were separated or 

not. Since 1,2-DAG, but not 1,3-DAG is an activator of PKC, it is necessary to 

determine the effect of heat on this particular isomer. In addition, alteration in 1,2-DAG 

levels may lead to alteration in activity of PKC. 

Investigation of the effect of heat on PKC activity has been performed in P388 

lymphoid leukaemia cells (Bagi and Hidvegi, 1990). After the cells were heated at 40-

450C for 1 h, the activity of the enzyme was assayed by its ability to phosphorylate H1 

histone. A significant decrease in activity of this enzyme was observed following 

heating. Although the activity of PKC reduced after heating, it was found that the 

phosphorylation of proteins having molecular weights of 33, 25, and 14 kD increased. 

The significance of increased phosphorylation of these proteins is uncertain and the 

authors postulated that the changes in protein phosphorylation may alter the regulation of 

cell metabolism which might lead to cell death. 

More direct evidence for the role of PKC in hyperthermic cell death was obtained 

by using tamoxifen and H7, both of which are PKC inhibitors (Mikkelsen et al., 1991b). 

By employing human colon cancer HT-29 cells, Chinese hamster lung V79 fibroblasts 

and human mammary carcinoma MCF-7 cells, it was found that the presence of either 

inhibitor potentiated hyperthermic cell death at 44.5°C for up to 6 h. On the other hand, 

when using HA I 004, a less potent inhibitor of PKC, hyperthermic cell death was similar 

to that in cells heated in the absence of this inhibitor. These results suggested an 
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important role of PKC activity in the response of cells to hyperthermic treatment. 

Using CHO HA-l cells, Balb C 3T3 cells, HeLa cells and PC 12 cells prelabelled 

with myo[2-3H]inositol, Calderwood and Stevenson (1993) found that heat treatment at 

41 °C or higher resulted in an increase in 3H-inositol trisphosphate levels. This increase 

in inositol trisphosphate could be transient or sustained depending on cell type and 

heating duration. Since the separation of inositol phosphates was achieved by simple 

anion exchange chromatography, the isomers were not resolved. Increases in inositol 

monophosphate and inositol bisphosphate were also observed, which could be the 

metabolites of inositol trisphosphate. Increases in inositol monophosphate, bisphosphate 

and trisphosphate were also observed in A-431 cells during heating at 45°C (Kiang and 

McClain, 1993). The effect of heat on inositol phosphate levels of WRK-1 cells is 

reported in Chapter 4. 

A heat-induced elevation in cytosolic free calcium ([Ca2+]i) has also been detected 

in several cell types such as CHO HA-l cells (Stevenson et al., 1986), human colon HT-

29 cells (Mikkelsen et al., 199la) and NIH3T3 fibroblasts (Stege et al., 1993a,b). Being 

an important cofactor for various key enzymes in regulating a variety of metabolic 

pathways and cell proliferation, the disruption of calcium homeostasis may result in the 

abnormal activation of intracellular proteases and lipases, which may ultimately lead to 

cell death (Schanne eta/., 1979; Trumpet a/., 1980; Farber, 1981). The effect of heat on 

[Ca2+]i in WRK-1 cells is reported in Chapter 5. 

Given the importance of 1 ,2-DAG/PKC and Ins(l ,4,5)P3/Ca2+ pathways in the 

regulation of a variety of cellular responses, it seems reasonable to suggest that 

disruption of phosphoinositide signalling pathway may affect the level of the second 

messengers generated in this signalling pathway, resulting in alteration in activities of a 

variety of enzymes, including Ca2+ -dependent enzymes and PKC, which perhaps leading 
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to hyperthemic cell death. 

In this part of the study, the effect of heat on 1 ,2-DAG levels during and after 

heating was investigated in both CHO-K1 and WRK-1 cells. Furthermore, the effect of 

heat on other neutral lipid classes was also investigated in both cell types. 
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3. 2 Materials and Methods 

3.2.1 Methods for determination of cell survival 

Hyperthermic cell death may be determined by a clonogenic or a colorimetric 

assay depending upon the cell type (Kingston et al., 1989). In the case of CHO-K1 cells, 

the clonogenic assay was used to determine thermal sensitivity. However, the tendency 

ofWRK-1 cells to aggregate prevented the use of the clonogenic assay for determination 

of thermal sensitivity of this cell type. Instead, a method which depends on the the ability 

of metabolically viable cells to reduce yellow 3-[4,5-dimethyl thiazol-2-yl]2,5-diphenyl 

tetrazolium bromide (MTI) to blue formazan product was used (MTI assay) (Slater et 

al., 1963). Before the MTI assay is used for cell viability measurement, optimal 

conditions such as the length of incubation with MTI solution, the concentration of the 

MTI solution to be used and the relationship between absorbance value and cell number 

have to be determined (Mosmann, 1983; Denizot and Lang, 1986). 

(i) Determination of the optimal incubation time 

WRK-1 cells were harvested and centrifuged at 80 g (rav = 11 em) at 20°C for 3 

min to sediment the cells. The pellet was suitably diluted with growth medium to give 

100,000 cells/mi. Then 1 ml of the diluted cell suspension was added to a number of 24-

well plates and plates were returned to culture at 37°C. Mter 24 h, the medium was 

removed and plates were blot dried. Then 200 pl of 1 mglml MTI solution (see section 

3.2.1(iv)) was added to each well and incubated for 0-5 hat 37°C in an air/C02 (19:1, 

v/v) atmosphere. Then the formazan crystals were dissolved by 1 ml of DMSO added 

directly to the well at various times. Duplicate samples (2 x100 pl) from each well were 

transferred into 96-well flat-bottomed microtiter plates by mean of a multichannel 

pipettor. The absorbance was determined on a Titertek Multiscan MCC/340 plate reader 
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using a test wavelength of 540 nm and a reference wavelength of 690 nm. 

(ii) Determination of optimal MTI concentration 

WRK-1 cells were harvested from a 175 cm2 flask and counted. The pellet was 

then resuspended in an appropriate amount of growth medium to give 100,000 cells/mi. 

Then 1 ml of cell suspension was added to each well in a number of 24-well plates and 

plates were returned to culture at 37°C. After 24 h, the medium was removed and the 

wells were blot dried. Then 200 pl of MTT solution at different concentrations (0-4 

mg/ml) (see section 3.2.1 (iv)) was added to each well and plates were returned to 

culture at 37°C. After 4 h, l ml of DMSO was added directly to the well to dissolve the 

formazan product. Duplicate samples (2 x 100 pl) from each well were transferred into 

96-well flat-bottomed microliter plates by mean of a multichannel pipettor. The 

absorbance was determined on a Titertek Multiscan MCC/340 plate reader using a test 

wavelength of 540 nm and a reference wavelength of 690 nm. 

(iii) Relationship between absorbance and cell number 

WRK-1 cells were harvested and counted. Cells were then suitably diluted to give 

1,000,000 cells/mi. Different numbers (4 x 1Q3 - 600 x 1Q3) of cells were seeded into a 

number of 24-well plates which were returned to culture at 37°C. After 12 h, the 

medium was removed and the wells were blot dried, then 200 pl of I mg/ml MTT 

solution (see section 3.2.1 (iv)) was added to each well and the plates were returned to 

culture at 37°C for 4 h. Following this incubation DMSO ( 1 ml) was added directly to 

the well to dissolve the fonnazan product, and duplicate samples (2 x 100 pi) from each 

well were transferred into 96-well flat-bottomed microtiter plates by mean of a 

multichannel pipettor. The absorbance was then determined on a Titertek Multiscan 
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MCC/340 plate reader using a test wavelength of 540 run and a reference wavelength of 

690nm. 

(iv) Preparation of MIT solution 

Stock MTT solution was prepared at 2 mg/ml in 20 mM Hepes, pH 7 .4. The stock 

solution was then filter-sterilised through a 0.22 pm filter (Sartorius) and was stored in 

the dark at 4°C until used. By storing at 4°C and in the dark, the MTT stock solution was 

stable for 2 weeks. Prior to use, stock solution was diluted by mixing with an equal 

volume of double strength phenol-red free, serum-free EMEM medium containing 48 

mM sodium bicarbonate, pH 7 .4. The solution was filter-sterilised and 200 pl of the 

MTT solution was then added to each well. When different MTT concentrations were 

needed, 10 mg/ml MTT stock was prepared and the stock was suitably diluted with 

phenol-red free, serum-free EMEM medium to give the required concentration. 

3.2.2 Determination of hyperthermic cell death at elevated temperatures 

(i) The clonogenic assay of cell survival of CHO-Kl cells after hyperthermic 

treatment 

CHO-K 1 cells were harvested from a 25 cm2 flask on day 0. Cells were then 

sedimented by centrifugation at 120 g (rav = 11 em) for 5 min at room temperature. The 

pellet was then resuspended in growth medium and counted via a haemocytometer. The 

cell suspension was further diluted to give 200 cells/mi. Then 1 ml of the cell suspension 

was added to a number of 25 cm2 flasks, each containing 9 ml of growth medium and 20 

mM Hepes, pH 7.4 (heating medium). The flasks were then returned to culture at 37°C 

to allow the cells to attach to the substrate. After 4 h, flasks were sealed with nescofilm 

and thermoequilibrated by submersion in a 37°C water bath for 15 min. Flasks were then 
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transferred rapidly to a 47°C (± 0.1 °C) water bath for 2 min before submersion in a 45°C 

water bath. By doing so, the lag period for thermoequilibration was reduced to 3 min. 

The temperature of the growth medium was monitored continuously inside the flask by a 

thermocouple inserted into a 'dummy flask' containing heating medium only, which was 

heated under the same conditions as the experimental flasks. Flasks removed from the 

water bath at various times were cleaned with 70% (v/v) alcohol, unsealed and returned 

to culture at 37°C. The medium was replaced with fresh growth medium on days 1, 4 

and 7. On day 9, the medium was removed, then cells were fixed and stained as 

described in section 2.2.4 (iv). Colonies having 50 cells or more were counted. The 

percentage of cell survival was calculated as follow: 

m f 
11 

. al no. of colonies formed 100 70 0 ce SUrVlV = X 
no. of cells plated 

(ii) The colorimetric assay of cell survival of WRK-1 cells after hyperthermic 

treatment 

WRK-1 cells were harvested from a 25 cm2 flask and sedimented by 

centrifugation at 80 g (rav= 11 em) for 3 min at room temperature. The cell pellet was 

resuspended in growth medium and counted via a haemocytometer. The cell suspension 

was suitably diluted with growth medium to give 70,000 cells/mi. Then 0.1 m1 of the cell 

suspension was added to a number of 24-well plates with each well containing 0.9 m1 of 

growth medium. Plates were then returned to culture at 37°C (day 0) and medium was 

changed on day 1. On day 3, the medium was replaced by 1 ml of growth medium 

containing 20 mM Hepes, pH 7.4 (heating medium). The plates were then returned to 

37°C incubator in an air/C02 (19:1, v/v) atmosphere and gassed for 20 min. Plates were 

then sealed and thermoequilibrated by submersion in a 37°C water bath for 15 min. 

Plates were then transferred rapidly to a water bath set at 1.5°C higher than the desired 

temperature for 4.5 min before transfer and rapid submersion in the water bath at the 

78 



desired temperature, in order to reduce the lag period. Plates were removed from the 

water bath at various times, cleaned with 70% ( v /v) alcohol and unsealed, then returned 

to culture at 37°C. The medium was changed on day 4. The MTT assay was performed 

on day 6, as described in section 3.2.1 (iii). The percentage of cell survival was 

calculated as follows: 

m f 
11 

. al absorbance from heated cells 
100 -to 0 Ce SUrVlV = X 

absorbance from control cells 

3.2.3 Effect of heat on monoacylglycerol, 1 ,2-diacylglycerol and triacylglycerol 

levels 

In this study, 2 radioisotopes were used. WRK-1 cells were labelled by growth in 

[2-3H]glycerol and the abundant labelling of glycerolipids shows that these cells contain 

glycerokinase, allowing formation of sn[2-3H]glycerol 3-phosphate which is a major 

precursor for lipid synthesis. In contrast, CHO-Kl cells did not produce labelled lipid 

when grown in [2-3H]glycerol suggesting that these cells do not contain glycerokinase. 

Therefore, CHO-K1 cells were grown in [5,6,8,11,12,14,15-3H]arachidonic acid, thus 

labelling the acyl moiety of glycerolipids. 

(i) Long term labelling of the lipid pool of CHO-Kl cells 

CHO-Kl cells were harvested from a 25 cm2 flask and sedimented by 

centrifugation. The cell pellet was resuspended in growth medium and cell number was 

determined via a haemocytometer. The cell suspension was suitably diluted with growth 

medium to give 100,000 cells/mi. Then 1 ml of the diluted cell suspension was added to 

2 ml of growth medium in each well of a number of 6-well plates (day 0). The medium 

was changed the following day and on day 3. On day 4, the medium was replaced with 

1.5 ml of growth medium containing [3H]arachidonic acid (0.75 pCi) and cells were 

79 



returned to culture at 37°C. After 24 h, the radioactive medium was removed and cells 

were washed 3 times with 3 ml of non-radioactive growth medium prewarmed at 37°C. 

Then 3 ml of growth medium containing 20 mM He pes, pH 7.4 (heating medium) was 

added to each well and plates were sealed and thermoequilibrated by submersion in a 

37°C water bath for 15 min before rapid transfer and submersion in a 47°C water bath. 

A plate with the same volume of heating medium in the well was taken through the 

whole procedure and was used for monitoring the temperature with a thermocouple. 

When the medium in the well reached 44°C, 1.2 l of water from the water bath was 

exchanged with 1.2 l of water at 9°C. By doing so, the lag period for equilibration to 

45°C was reduced to 2.5 min. Reactions were terminated by addition of 3 ml of ice-cold 

absolute methanol. Lipids were then extracted and neutral lipid classes were separated by 

TLC as described in section 3.2.3 (v). 

(ii) Long term labelling of WRK-1 cells 

WRK-1 cells were harvested from two 25 cm2 flasks and cells were sedimented by 

centrifugation. The cell pellet was resuspended in growth medium and cell number was 

determined via haemocytometer. The cell suspension was suitably diluted with growth 

medium to give 100,000 cells/ml, then 1 ml of the diluted cell suspension was added to 2 

ml of growth medium in each well in a number of 6-well plates on day 0. On days 1 and 

3 the medium was replaced with 3 ml of growth medium containing [2-3H]glycerol ( 10 

pCi). On day 5, the medium was replaced with 3 ml of non-radioactive medium and the 

plates were returned to culture for 2 h. The medium was then replaced with 3 ml of 

heating medium, plates were sealed and thermoequilibrated by submersion in a 37°C 

water bath for 15 min before heating as described in section 3.2.3 (i). Reactions were 

terminated by addition of 3 ml of ice-cold absolute methanol, then lipids were extracted 

and neutral lipid classes were separated by TLC as described in section 3.2.3 (v). 
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(iii) Short term labelling of CHO-Kl cells 

Cells were harvested and seeded on day 0 as described in section 3.2.3 (i). The 

medium was changed on day 1 and on day 3. On day 5, the medium was replaced by 1 

ml of radioactive medium containing [3H]arachidonic acid (0.5 pCi). Cells were then 

returned to culture at 37°C for 2 h. After 2 h the cells were washed 3 times with non

radioactive heating medium prewarmed at 37°C. Then 3 ml of heating medium was 

added to the well, plates were sealed and thermoequilibrated by submersion in a 37°C 

water bath for 15 min before heating as described in section 3.2.3 (i). Reactions were 

terminated by addition of 3 ml of ice-cold absolute methanol. Lipids were then extracted 

and neutral lipid classes were separated by TLC as described in section 3.2.3 (v). 

(iv) Short term labelling of WRK-1 cells 

Cells were harvested and seeded on day 0 as described in section 3.2.3 (ii). The 

medium was changed on day 1 and on day 3. On day 5, the medium was replaced by 1 

ml of radioactive medium containing [2-3H]glycerol (5 pCi). Cells were then returned to 

culture at 37°C for 2 h. After 2 h the cells were washed 3 times with non-radioactive 

heating medium prewarmed at 37°C. Then 3 ml of heating medium was added to the 

well, plates were sealed and thermoequilibrated by submersion in a 37°C water bath for 

15 min and heated as described in section 3.2.3 (i). Reactions were terminated by 

addition of 3 ml of ice-cold absolute methanol. Lipids were then extracted and neutral 

lipid classes were separated by TLC as described in section 3.2.3 (v). 

(v) Lipid extraction 

The method described by Bligh and Dyer (1959) was used for the extraction of 

lipids. After reactions were terminated by 3 ml of ice-cold absolute methanol, cells were 
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scraped off from the well and transferred to a pyrex glass tube. Then another 0.75 ml of 

ice-cold absolute methanol was added to the well and the remaining cells scraped from 

the well. The 2 extracts were combined together. To the extract, was added 7.5 ml of 

chloroform: methanol (1:1, v/v) containing 0.05% (w/v) butylated hydroxytoluene 

(BHT) and 30 J.ll of a mixture of the neutral lipid standards. This lipid standards mixture 

consisted of 600 J.ll of 10 mg/ml of MAG, 1,3-DAG and TAG mixture, 200 J.ll of 10 

mg/ml 1,2-DAG and 200 J.ll of 10 mg/ml cholesterol. The extract was mixed for 30 s 

followed by addition of 3.75 ml of chloroform and the mixture was mixed on a vortex 

mixer for 30 s. Then 3.75 ml of water was added to each sample and it was mixed again 

on a vortex mixer for 30 s. The samples were then centrifuged at 1000 g (rav = 22.3 em) 

for 10 min at room temperature. The bottom phase was transferred to a test tube and was 

washed twice with 'synthetic top phase' (see below) with centrifugation at 1000 g (rav = 

22.3 em) for 10 min at room temperature after each wash to facilitate phase separation. 

The bottom phase was dried under Orfree N2. The dried lipid was then redissolved in 1 

ml of chloroform containing 0.05% (w/v) BHT, mixed for 30 s, and 2 x 50 Jll aliquots of 

the lipid solution were transferred to glass scintillation vials by using a 50 J.ll glass 

syringe. The lipid solutions in the scintillation vials were dried under 0 2-free N2 and 5 

ml of Ecoscint A scintillation fluid was added to each vial and mixed for 30 s. 

Radioactivity was measured by liquid scintillation counting in a Packard scintillation 

counter (model no. 300). 

The remaining 0.9 mllipid solution was dried under Orfree N2 and redissolved in 

70 J.ll chloroform. The neutral lipid classes were separated by TLC using 20 em x 20 em 

silica gel 60 plates (Merck) in a solvent system consisting of toluene: diethyl ether: ethyl 

acetate: acetic acid (80:10:10:0.2, by volume). Lipids were located with iodine vapour 

and their identity was verified by comparison with authentic standards. Mter removal of 

iodine, spots were scraped off from the plates, 5 ml Ecoscint A scintillation fluid was 
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added and mixed for 30 s. Radioactivity was measured by liquid scintillation counting as 

described above. 

(vi) Preparation of synthetic top and bottom phases 

To a large separating funnel, appropriate amount of chloroform, methanol and 

water were mixed in a ratio of 2:2:1.8 (by volume). The mixture was left overnight to 

allow equilibration. The 2 phases were separated and 5 mM non-radioactive glycerol as 

carrier was added to the top phase which was stored in a brown bottle at room 

temperature. 
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3.3 Results 

The thennal sensitivity of different cell lines vary, so it is necessary to determine 

the relationship between heat dose and the thermosensitivity of each cell type. The 

commonly accepted end point of hyperthermic cell death is the loss of reproductive 

ability of cells. In this study, clonogenic and colorimetric assays were employed for 

assessing the cell viability of CHO-Kl cells and WRK-1 cells, respectively. The 

clonogenic assay is the most commonly used assay for reproductive ability following 

heat damage in which a known number of cells (about 100-500 cells) were seeded into a 

25 cm2 tlask and the number of colonies appearing after 7-10 days was assessed. The 

survival fraction is then calculated as the number of colonies formed divided by the 

number of cells plated. This method was used for the determination of cell viability of 

CHO-Kl cell at 9 days following heating in this study. 

However, due to the tendency of WRK-1 cells to aggregate, the clonogenic assay 

could not be used for these cells. Instead, the colorimetric assay (MTT assay) was used 

which relies on the ability of metabolically viable cells to reduce yellow 3-[4,5-dimethyl 

thiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) to blue formazan product by 

succinate dehydrogenase via coupling at 2 points along the cytochrome oxidase system 

(Siateretal .. 1963). 

Before the colorimetric assay was used in the determination of cell survival, it was 

necessary to determine the optimal assay conditions such as the MTI concentration, the 

incubation time with MTI solution and the relationship between cell number and 

absorbance value. 

It has been reported previously that the presence of phenol red or serum in the 

assay solution would give high background values in the MTI assay (Denizot and Lang, 
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1986). Thus, phenol red-free and serum-free EMEM medium was used in the MTf 

assay for WRK-1 cells. Furthermore, it has been reported that the pH of the solution 

affects the absorbance and it was found that as pH decreased below pH 6.5 the 

absorbance reduced dramatically, whereas the optimal absorbance value was obtained 

when the pH of the medium was around 7.2 (Jabbar et al., 1989). Thus, 20 mM Hepes, 

pH 7 .4, was included in the MIT stock solution and 24 mM sodium bicarbonate was 

also included in the phenol red-free and serum-free EMEM medium. 

It has been pointed out that the the optimal MIT assay condition varies between 

cell type, thus the optimal assay condition for WRK.-1 cells had to be elucidated before 

the assay was employed for cell survival measurement (Carmichael et a/., 1987; Plumb 

et al., 1989). 

In order to determine the optimal incubation time for the maximal conversion of 

MTT to formazan, 100,000 cells were exposed to MIT solution (1 mg/ml) for various 

times for up to 5 h and the absorbance was then determined. A gradual increase in 

formazan production was observed and the absorbance value reached a plateau after 3 h 

incubation (Figure 3.4). Although 5 h incubation showed a slightly higher level of 

formazan production, the increase was small compared with the absorbance obtained 

after 3-4 h incubation (Figure 3.4). Thus, a 4 h incubation time was chosen before 

formazan product was solubilized with DMSO. 

The optimal concentration of MTT solution was then determined. When 1 x 105 

cells were incubated with MIT solution with concentrations ranging from 0-4 mg/ml, it 

was found that the amount of formazan produced increased rapidly from 0-0.5 mg/ml 

and reached a plateau at concentrations between 0.5 mg/ml and 3 mg/ml (Figure 3.5). A 

decreased absorbance value was observed when 4 mg/ml was used. Taking into account 

the cost of the MTT agent and also the optimal absorbance achieved at concentrations 
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between 0.5-3 mg/ml, it was decided to use concentration of 1 mg/ml MTT solution in 

the subsequent study of cell viability of WRK -1 cells. 

It was known that, in future experiments, when cell survival of WRK-1 cells 

would be assessed by the colorimetric assay, the cells would be seeded for 3 days before 

heating and then grown for another 3 days before carrying out the colorimetric assay. 

Consequently, it was necessary to ensure that the relationship between cell number and 

absorbance remained linear by the time of the colorimetric assay such that the cell 

survival would not be overestimated. In order to determine the optimal cell number for 

which a linear relationship was maintained, cells were seeded into a number of 24-well 

plates and the MIT assay was performed at 12-14 h after seeding such that sufficient 

time was allowed for cells to settle but not enough time for them to overcome the lag 

period and to divide. The data points were fitted with regression line and it was found 

that the best correlation was found for density up to 3 x 1Q5 cells/well (seeded cell 

number) or 2.5 x 1Q5 (actual cell number) in a 24-well plate (Figure 3.6). Hence in future 

experiments, 7 x 103 cells/well in a 24-well plate were seeded on day 0, such that by the 

time of measurement (day 6) the relationship of absorbance reading and cell number 

remained linear for control cells, and there were sufficient viable cells in the heat-treated 

plates to be detected by the MTT assay. Once the optimal condition of MTT assay had 

been established, the effect of heat on CHO-K1 cells and WRK-1 cells was determined 

by the clonogenic and the MTT colorimetric assay, respectively. 

When log percentage of cell survival is plotted against time of heating, the thermal 

survival curve for many cell lines is curvilinear (Figure 3.7). The curve is characterised 

by a shoulder region at low heat dose, then the curve becomes linear at longer exposure 

time to elevated temperature. The curve can be described by survival parameters, Dq, Do 

and the LD90 value (Figure 3.7). Dq measures the width of the shoulder region and is 

obtained from back-extrapolation of the log-linear part of the curve to the 100% survival 
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point. The reason(s) for the existence of the shoulder region is unknown but it has been 

pointed out by Hahn (1982) and Jung (1986) that the shoulder region may determine the 

ability of the cells to sustain sub-lethal damage or to repair the thermal damage. 

Therefore, the higher the Dq value, the higher the ability of the cells to repair the 

damage. Do is the reciprocal of the slope of the linear portion of the curve, and is the 

time required to reduce the cell survival on the exponential part of the curve to 1/e times 

its initial value. Hence, the higher the Do value, the higher the thermal resistance of a 

particular cell type. In contrast to Dq and Do the time taken to kill 90% of the cells 

(LD90) at a certain temperature reflects the effect of both the shoulder region (Dq) and 

the slope of the curve (Do) (Bhuyan, 1979) 

Thermal survival curves for CHO-Kl cells and WRK-1 cells are shown in Figure 

3.8 and Figure 3.9, respectively, and the Dq and Do values were calculated as described 

in Figure 3.7. The Dq, D0 and LD90 values for CHO-K1 cells heated at 45°C were 5.52 

min, 14.5 min and 20.1 min, respectively. When WRK-1 cells were heated at 43.5°C to 

45°C, it was found that both the Dq and Do values decreased as temperature increased. 

The D4 values were 68.3 min, 53.8 min and 21.4 min at 43.5°C, 44°C and 45°C, 

respectively. The Do values were 42.4 min, 38.4 min and 14.5 min at 43.5°C, 44°C and 

45°C, respectively. LD90 values were 110.6 min, 89.2 min and 35.9 min at 43.5°C, 44°C 

and 45°C, respectively. 

Having characterised the hyperthermic cell death of CHO-K1 cells and WRK-1 

cells, the effect of heat on 1,2-DAG, MAG and TAG levels in both cell types was 

investigated. Several methods are available for determination of the changes in DAG 

level. Initally, 1 ,2-DAG may be separated from other lipids by TLC and/or HPLC, then 

the mass of I ,2-DAG can then be analysed by elution and charring (Kabara and Chen, 

1976), charring and densitometry directly on TLC plates (Takuwa et al., 1986), 

absorbance of the HPLC effluent (Bocckino et al., 1985) or acetylation of the free 3-
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hydroxyl group of 1 ,2-DAG with labelled acetic anhydride and purification followed by 

radioactivity counting for the resulting labelled derivative (Banochback et al., 1974). In 

the densitometric and acetic anhydride methods, relatively high blanks are encountered, 

and there is poor sensitivity and precision of these assays, particularly in biological 

samples which may have hydroxylated substances that are not fully separated from 1,2-

DAG by chromatographic methods. Better purification of 1 ,2-DAG results after HPLC 

and 2-dimensional TLC but these are expensive and time-consuming methods. 

Alternatively, the use of DAG kinase to phosphorylate 1,2-DAG to PA provides a quick 

and precise method since it only measures sn-1 ,2-DAG but not the 1,3 isomer which is 

incapable of activating PKC (Preiss et al., 1986). In this method, purified DAG kinase 

from bacterial sources (available commercially) is incubated with [y-32P]ATP together 

with detergents and extracted lipids from samples of interest. Incorporation of 32p into 

1 ,2-DAG results in the formation of 32P-PA, which can be extracted into organic 

solvents and readily purified by one-dimensional TLC. The level of radioactivity in PA 

serves as an accurate index of 1 ,2-DAG content of the sample, and by comparison to 

32P-PA formed from known amounts of 1,2-DAG standard (e.g. diolein), the mass of 

1 ,2-DAG of the sample can be determined. However, although the DAG kinase method 

allows the direct measurement of 1 ,2-DAG mass, this method cannot distinguish ether

linked analogues from 1 ,2-DAG. 

Another method for measuring changes in 1 ,2-DAG is the use of radioactive 

isotopes in which the lipid fraction is labelled by a precursor and the changes of 

radioactivity in I ,2-DAG upon treatment are followed. The commonly used isotopes for 

labelling I ,2-DAG include [3H]glycerol and [3H]fatty acid. Although [3H]glycerol 

labelling is not specific, as it labels all the glycerolipids, if [3H]glycerol is labelled in the 

2-position, it will reflect 1 ,2-DAG levels rather than ether lipid analogues which are 

synthesized exclusively from dihydroxyacetone phosphate (Farese and Cooper, 1990). 
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The degree of incorporation of [2_3H]glycerol into lipid depends upon the 

intracellular activity of glycerokinase which phosphorylates 3H-glycerol, thus labelling 

the sn-glycerol-3-phosphate precursor pool. 3H-glycerol-3-phosphate is then converted 

via the action of acyltransferase to phosphatidic acid, which is the precursor of 

phospholipids. Therefore, if cells lack glycerokinase, it is not possible to use [2-

3H]glycerol to label the lipid pool. Alternatively, lipids can be labelled using [3H]fatty 

acid. In particular, [3H]arachidonic acid is commonly used since this fatty acid is very 

rapidly incorporated into phospholipids such as PtdCho and Ptdlns by transacylation 

processes, rather than by de novo phosphatidate synthesis, and since hydrolysis of these 

phospholipids may be responsible for the increase in arachidonate-rich diacylglycerol 

and phosphatidic acid observed upon agonist stimulation. 

In this study, [3H]arachidonic acid was used for labelling the lipid fraction of 

CHO-K I cells due to the lack of glycerokinase in this cell type, whereas [2-3H]glycerol 

was used for labelling the lipid fraction of WRK -1 cells. 

In order to determine the effect of heat on 1 ,2-DAG as well as other neutral lipids 

such as triacylglycerol (TAG) and monoacylglycerol (MAG), a method that is able to 

separate different classes of neutral lipids, but 1 ,2-DAG from 1 ,3-DAG, is necessary 

since only the former isomer is the activator of protein kinase C. It was found that 

neutral lipid classes, including 1,2-DAG and 1,3-DAG, were well separated on 20x20 

em plates coated with silica gel 60 (0.25 mm thick, Merck) following }-dimensional 

development in a solvent system of toluene: diethyl ether: ethyl acetate: acetic acid 

(80:10:10:0.2, by vol.) (Figure 3.10). Thus this solvent system was used in this study. 

Once the method for separation of l ,2-DAG and other neutral lipid classes had 

been established, the effect of heat on 1 ,2-DAG was investigated in CHO-K 1 cells and 

WRK-1 cells. In this study, CHO-Kl cells were labelled with [3H]arachidonic acid for 
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either 2 h or 24 h, while WRK-1 cells were labelled with [2-3H]glycerol for either 2 h or 

4 days (Farese and Cooper, 1990). The long term labelling protocol allows sufficient 

time for the precursor pools and relevant lipids to attain constant specific radioactivity. 

On the other hand, short term labelling enables the turnover of small, metabolically 

active lipid pools to be detected (Farese and Cooper, 1990). 

When CHO-K 1 cells were labelled with [3H]arachidonic acid for 24 h then heated 

at 45°C for up to 10 min (a heat dose that killed 50% cells), the levels of 3H-MAG in 

heated and unheated cells were similar throughout the heating time employed (Figure 

3.11 a). A decrease in mean 3H-1 ,2-DAG level was observed in heated cells, especially at 

5 min and 8 min heating time (Figure 3.llb). A small decrease in mean 3H-TAG level 

was found in heated cells at 1-3 min (Figure 3.llc). 

When WRK-1 cells prelabelled with [2-3H]glycerol for 4 days were heated at 45°C 

for up to 12.5 min (a heat dose that would kill 20% of WRK-1 cells), no difference in 

the mean level of 3H-MAG was found between heated and control cells (Figure 3.12a). 

Conversely, a consistent decrease in the mean level of 3H-1 ,2-DAG in heated cells was 

observed (Figure 3.12b). On the other hand, a consistent increase in 3H-TAG level was 

observed for heating time longer than 3.5 min (Figure 3.12c). 

The results in Figures 3.11 and 3.12 suggested that acute exposure of both cell 

types to 45°C for 10-12.5 min resulted in a decrease in 3H-1,2-DAG whereas an increase 

in 3H-TAG level was observed in WRK-1 cells only. In order to investigate the effect of 

prolonged heating on 3H-1,2-DAG levels, long term labelled cells were exposed to 45°C 

for up to 45 min, a heat dose that led to more than 95% cell death in both cell types. 

When CHO-K 1 cells, prelabelled for 24 h with [3H]arachidonic acid, were heated 

at 45°C for 45 min, no difference in 3H-MAG levels between unheated and heated cells 
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was observed (Figure 3.13a) whereas a decrease in 3H-1 ,2-DAG level was observed 

throughout 45 min heating except at 30 min (Figure 3.13b). There was an increase in 

3H-TAG level in heated cells especially at heating time longer than 20 min (Figure 

3.13c). In heated WRK-1 cells, prelabelled with [2-3H]glycerol for 4 days, an increase in 

3H-MAG level was observed at 45 min heating (Figure 3.14a). On the other hand, a 

decrease in 3H-1,2-DAG level was observed for up to 30 min at 45°C heating, whereas 

at 45 min the 3H-l ,2-DAG levels of heated and unheated cells were similar (Figure 

3.14b). An increase in 3H-TAG level was observed in heated cells and the level returned 

gradually to control level by 45 min (Figure 3.14c). 

The results suggested that heat led to a decrease in 3H-1,2-DAG level and an 

increase in 3H-TAG level in long-term labelled CHO-Kl cells and WRK.-1 cells. As 

mentioned earlier, long term labelling of lipids with radioisotopes enables glycerolipids 

to achieve equilibrium labelling. However, it may be possible that a small, metabolically 

active pool with a high turnover rate is involved in heat-induced changes in 1 ,2-DAG 

and the existence of such metabolically active lipid pools has been reported in many cells 

types including C3H fibroblasts (Holmsen et al., 1989), GH3 cells (Cubitt et al., 1990) 

and WRK-1 cells (Monaco and Woods, 1983; Koreh and Monaco, 1986; Monaco and 

Gershengorn, 1992). In such case, experiments using cellular lipids labelled to near to 

isotopic equilibrium may not detect small changes in metabolically active pools (Farese 

and Cooper, 1990). To address this problem, both CHO-K1 cells and WRK.-1 cells were 

labelled for 2 h with [3H]arachidonic acid and [2_3H]glycerol, respectively, then washed 

with non-radioactive growth media and subjected to hyperthermia. 

In CHO-K 1 cells, prelabelled with [3H]arachidonic acid for 2 h, it was found that 

the 3H-MAG levels obtained from heated and unheated cells were similar (Figure 3.15a). 

A decrease in 3H-1 ,2-DAG level was observed when CHO-K1 cells were heated at 45°C 

for longer than lO min (Figure 3.15b). An increase in 3H-TAG level was observed when 
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these cells were heated at 45°C apart from 20 min heating in which the level of 3H-TAG 

in unheated cells was higher than heated cells (Figure 3.15c). The 3H-TAG level 

returned to the control level by 45 min. Similar results were obtained from WRK-1 cells 

when these cells were heated at 45°C. In WRK-1 cells, no difference in 3H-MAG level 

was observed between heated and unheated cells (Figure 3.16a) whereas a decrease in 

3H-1,2-DAG level was detected in heated cells except at 32.5 min (Figure 3.16b). An 

increase in 3H-TAG level was observed for heating time longer than 12.5 min (Figure 

3.16c). 

In summary, results obtained from long term and short term labelled CHO-Kl cells 

and WRK-l cells following acute or chronic exposure to 45°C suggested that heat led to 

a decrease in 3 H -1 ,2-DAG and an increase in 3H-TAG levels in most cases. 

The experiments described so far employed serum-containing medium. However, 

serum contains several hormones and growth factors, so the addition of fresh serum

containing medium prior to heat treatment could trigger the hydrolysis of some of the 

inositol lipids and may disturb the heat-induced changes in the phosphoinositide 

signalling system to be detected. To eliminate this possibility, long term labelled CHO

Kl cells and WRK-1 cells were heated in serum-free medium together with 20 mM 

Hepes, pH 7.4. 

On heating of long-term labelled CHO-Kl cells in serum-free medium at 45°C for 

up to 45 min, no difference in 3H-MAG level was found in heated cells (Figure 3.17a). 

On the other hand, a consistent decrease in 3H-1 ,2-DAG level was observed throughout 

45 min heating (Figure 3.17b). No difference in 3H-TAG level was found between 

heated and control cells (Figure 3.l7c). Similarly, when long term labelled WRK-1 cells 

were heated in serum-free medium for up to 47.5 min, no difference in 3H-MAG level 

was found (Figure 3 .18a). A small decrease in 3H-1 ,2-DAG was observed in heated cells 
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(Figure 3.18b). An increase in 3H-TAG level was found in heated cells at 12.5 min and 

32.5 min (Figure 3.18c). 

Being a second messenger, 1 ,2-DAG must undergo rapid turnover in order to 

terminate the cellular responses. Following introduction of different radioactive, 

naturally occurring 1 ,2-DAG analogues (bearing different fatty acyl compositions) into 

NIH3T3 fibroblasts using the liposome fusion technique, 3 routes for 1,2-DAG 

metabolism have been suggested (Florin-Christensen eta/., 1992; Florin-Christensen et 

al., 1993). They are (1) transferase-catalyzed conversion to PtdCho and TAG, (2) 

lipolytic breakdown of 1,2-DAG to MAG and fatty acid, (3) phosphorylation of 1,2-

DAG to PA by DAG kinase and PA is then recycled for replenishing the inositol lipid 

pool (assuming that DAG formation comes from inositol lipid pool). The fate of the 1,2-

DAG is totally dependent upon the fatty acyl composition of the 1 ,2-DAG analogues 

(Florin-Christensen et al., 1992; Florin-Christensen et al., 1993). 

It seems unlikely that the decrease in 3H-1 ,2-DAG level in heated cells could be 

explained by the rapid degradation of 1 ,2-DAG to MAG through lipolysis since the 

MAG level in both heated and unheated cells was similar for acute or chronic exposure 

to 45°C. However, it is possible that the observed reduction in 3H-1 ,2-DAG in heated 

cells may result from a rapid conversion of 1 ,2-DAG to PA in heated cells as a result of 

increased activity of DAG kinase at elevated temperature (as a result of increase in 

kinetic energy). Under this circumstance, any heat-induced accumulation of 1,2-DAG 

may not be detected. In order to address this possibility, cells were heated in serum-free 

medium containing the DAG kinase inhibitor, dioctanoylethylene glycol (diCgEG). 

Following 4-day labelling of WRK.-1 cells with [2-3H]glycerol and washing to eliminate 

the radioactive medium, WRK.-1 cells were then incubated at 37°C for 10 min in either 

(1) serum-free EMEM medium containing 0.01% (v/v) DMSO, or (2) serum-free 

EMEM medium containing 100 pM diC8EG and 0.01% (v/v) DMSO. After plates were 
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sealed and thermoequilibrated for 15 min at 37°C, they were heated at 45°C for up to 

12.5 min. It was found that the 3H-MAG level in cells heated with or without diCgEG 

was similar to the control level in cells at 37°C in either medium (Figure 3.19a). A 

decrease in 3H-l ,2-DAG level was found in heated cells after 12.5 min heat treatment, in 

the presence or absence of diC8EG, but not at other heating times (Figure 3.19b). When 

cells were heated in the absence of diC8EG, an increase in 3H-TAG was observed at 4.5 

min, 6.5 min and 12.5 min heating compared with cells at 37°C in the absence of 

diC8EG (Figure 3.19c) whereas those heated in the presence of diC8EG showed an 

increase in 3H-TAG level at 6.5 min and 12.5 min compared with diC8EG-treated cells 

(Figure 3.19c). 

In order to investigate the effect of chronic heating ofWRK-1 cells in the presence 

of 100 ).!M diC8EG, the experiment was repeated again as described above but this time 

cells were heated up to 45 min. No difference in 3H-MAG level was observed between 

heated and unheated cells either in the presence or absence of diC8EG (Figure 3.20a). 

On the other hand, a decrease in 3H-l ,2-DAG level was observed in heated cells, in the 

presence or absence of diC8EG, compared to unheated cells incubated in the presence or 

absence of diC8EG, respectively (Figure 3.20b). The levels of 3H-1 ,2-DAG obtained 

from heated cells in the presence or absence of diC8EG was similar. On the other hand, 

when cells were heated in the presence of diCgEG, an increase in 3H-TAG was observed 

at 20 min and 45 min compared to cells heated in the absence of the inhibitor or cells 

maintained at 37°C in the presence or absence of inhibitor (Figure 3.20c). When cells 

were heated in the absence of diC8EG, an increase in 3H-TAG level was observed at 30 

min and 45 min heating compared with levels of 3H-TAG in diC8EG-untreated, 

unheated cells (Figure 3.20c). 

In summary, none of the heating conditions employed in this study showed an 

increase in 3H-1 ,2-DAG levels in heated cells. On the other hand, a decrease in 3H-1,2-
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DAG level was observed in most cases. It has been reported previously that a transient 

increase in 3H-1 ,2-DAG level was observed in CHO HA-l cells after 2-3 min exposure 

to 45°C, and this level returned rapidly to the control level by 4 min (Calderwood eta/., 

1987). Furthermore, a sustained elevation in 3H-DAG level was observed in CHO HA-l 

cells during the 2 h recovery period following a 10 min heating at 45°C (Stevenson et 

a/., 1986). In order to investigate the effect of heat on MAG, 1,2-DAG and TAG levels 

during the 2 h post-heating period, both cell types were heated at 45°C for 10 min and 

then cells were returned to the 37°C water bath. 

Monolayer CHO-Kl cells were labelled for 24 h with [3H]arachidonic acid, heated 

in serum-containing medium at 45°C for 10 min and returned to 37°C for up to 2 h. The 

MAG, 1,2-DAG and TAG levels were measured during this 2 h period. No difference in 

3H-MAG level was observed between heated and unheated cells except at 2 h post

heating (Figure 3.21a). A decrease in 3H-1,2-DAG level was detected immediately after 

10 min heat treatment. As incubation at 37°C proceeded, the 3H-l ,2-DAG level in heated 

cells gradually returned to control levels, and by 2 h the 3H-1,2-DAG levels in heated 

and unheated cells was similar (Figure 3.21b). An increase in 3H-TAG level was 

observed in heated cells when measured immediately after I 0 min heating. During the 

recovery period, there was an increase in 3H-TAG levels in heated cells at 40 min and 

130 min (i.e. 30 min and 120 min post-heating) whereas 3H-TAG levels in both heated 

and unheated cells were similar at other time points (Figure 3.2lc). 

WRK-1 cells were labelled for 4 days with [2_3H]glycerol, heated at 45°C for 10 

min in serum-containing medium and returned to 37°C. The levels of 3H-MAG, 3H-1,2-

DAG and 3H-TAG was monitored during the 2 h recovery period. An increase in 3H

MAG level were observed between heated and unheated cells at 30 to 60 min post

heating (Figure 3.22a). On the other hand, a decrease in 3H-1,2-DAG level was observed 

in heated cells after 10 min at 45°C, but it became similar to control levels after 15 min 
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at 37°C. After 2 h at 37°C, the level of 3H-1,2-DAG in cells pre-heated at 45°C was 

lower than the level in unheated cells (Figure 3.22b). In contrast, an increase in 3H-TAG 

level immediately after 10 min heating was observed and the 3H-TAG level in heated 

cells remained higher than the unheated control even after 2 h incubation at 37°C (Figure 

3.22c). 

In summary, it was found that (1) exposure of CHO-Kl cells to 45°C for 10 min 

resulted in a decrease in mean 3H-1,2-DAG levels and a small decrease in 3H-TAG 

levels at 1-3 min. Heating WRK-1 cells at 45°C for 12.5 min resulted in a decrease in 

3H-1,2-DAG which was accompanied by an increase in 3H-TAG level throughout the 

heating period. (2) Heating CHO-Kl cells for up to 45 min at 45°C resulted in a 

decrease in the 3H-1,2-DAG level and an increase in 3H-TAG level. Similar fmdings 

were observed in WRK-1 cells in which a decrease in 3H-1,2-DAG and an increase in 

3H-TAG levels were observed. (3) A decrease in 3H-1,2-DAG level was observed in 

cells heated at 45°C for 12.5 min in the presence or absence of 100 J.IM diC8EG 

compared with that obtained from cells maintained at 37°C in the presence or absence of 

diC8EG, respectively. The levels of 3H-1,2-DAG in cells heated either with or without 

diC8EG was similar. Heating in the presence of 100 J.IM diC8EG for up to 12.5 min at 

45°C resulted in an increase in 3H-TAG level at 6.5 min and 12.5 min compared with 

cells incubated at 37°C in the presence of diC8EG. Similarly, when cells were heated in 

the absence of diC8EG, an increase in 3H-TAG was observed at 4.5 min, 6.5 min and 

12.5 min compared with cells incubated at 37°C in the absence of diC8EG. (4) Heating 

WRK-1 cells in the presence of 100 J.IM diC8EG at 45°C for up to 45 min resulted in a 

decrease in 3H-l ,2-DAG level throughout the 45 min exposure compared with the level 

in unheated cells incubated in the presence of diCgEG. Similarly, a decrease in 3H-1,2-

DAG level was observed in cells heated in the absence of diC8EG compared with 

diC8EG-untreated cells maintained at 37°C. However, the levels of 3H-1,2-DAG in cells 

heated in the presence or absence of diC8EG was similar. On the other hand, an increase 
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in 3H-TAG level was observed at 20 min and 45 min when heated in the presence of 

diC8EG compared with the level obtained from diCgEG-treated, unheated cells. When 

cells were heated in the absence of diC8EG, an increase in 3H-TAG level was observed 

after 20 min heating compared with the level obtained from unheated cells without 

diC8EG treatment. (5) After pretreatment of CHO-K1 cells and WRK-1 cells at 45°C for 

10 min, followed by a recovery period up to 2 hat 37°C, it was found that 3H-1,2-DAG 

levels in heated CHO-K1 cells returned gradually to the control level and after 2 h the 

levels between heated and unheated cells were similar, whereas an increase in 3H-TAG 

level was observed in heated cells after 2 h at 37°C. In the case of WRK-1 cells, a 

decrease in :IH-1,2-DAG level was observed after 2 hat 37°C, though after the 30 min 

post-heating period the levels in heated and unheated cells were similar. In addition, an 

increase in :IH-TAG level was observed in heated WRK-1 cells and the level remained 

higher than that in unheated cells even after 2 h post-heating. 
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Table 3.1. Cell survival parameters calculated from Figure 3.8 and Figure 

3.9 

The survival parameters of CHO-Kl cells were calculated from the linear part of the 

killing curve from Figure 3.8. Values represent estimate± SEM from linear portion part 

of the survival curve. 

survival parameter At 45°C (min) 

Dq 5.52±1.11 

Do 14.5±0.69 

LDso 10.0±0.39 

LD9o 20.1±0.48 

The survival parameters of WRK.-1 cells were calculated from the linear part of the 

killing curve from Figure 3.9. Values represent estimate± SEM from linear portion part 

of the survival curve. 

survival parameter At 43.5°C (min) At 44 °C (min) At 45°C (min) 

Dq 68.3±1.44 53.8±2.38 21.4±0.45 

Do 42.4±0.65 38.4±2.20 14.5±0.22 

LDso 81.8±1.61 60.0±2.42 21.0±0.47 

LD90 110.6±1.48 89.2±2.39 35.9±0.46 
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Figure 3.12a. Effect of heat on MAO level 
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Figure 3.15a. Effect of heat on MAG level 
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Figure 3.18a. Effect of heat on MAG level 
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Figure 3.18a. Effect of heat on MAG level 
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3.4 Discussion 

Studies on the mechanism(s) underlying heat-induced cell death have been carried 

out extensively at the single cell level in cell culture. Despite the uncertainty of the 

primary target of heat-induced cell damage, the plasma membrane has long been 

suggested to be a likely candidate. Agents such as local anaesthetics and aliphatic 

alcohols, that are known to act specifically at the membrane, all act synergistically with 

heat. More supportive evidence for the plasma membrane being affected by heat come 

from morphological alterations upon heat treatment (bleb formation) (Borrelli et a/., 

1986; Kapiszewska and Hopwood, 1988). Experimental alterations of membrane 

composition in vivo or in vitro, has also been shown to alter the thermosensitivity. For 

example, P388 ascites cells derived from animals fed a diet high in polyunsaturated fatty 

acids were found to be more heat sensitive than cells grown in animals fed a diet high in 

saturated fatty acids (Mulcahy eta/., 1981). Similarly, L1210 murine leukaemia cells 

and LM mouse fibroblasts became more thermosensitive if grown in medium 

supplemented with highly polyunsaturated fatty acid and more thermoresistant if grown 

in medium supplemented with highly saturated fatty acid (Guffy et al., 1982). However, 

using different probes to measure membrane fluidity, it was found that the change in 

fluidity was observed at 2 different temperature which are soc and a border transition 

between 23°C and 36°C, centred at about 30°C (Lepock, 1982). In another study, using 

mouse lymphoma cells, the diffusion coefficient of the lipid probe, DII, indicated that no 

perturbation of lipid fluidity occurred at 41-45°C (Mehdi eta/., 1984). There was no 

evidence for lipid phase transition at temperatures associated with the onset of cell 

killing e.g at 41.5°C or higher, though the possibility that heterogeneous alteration may 

occur in microregions in the plasma membrane cannot be excluded. Thus some workers 

have suggested that it is unlikely that effects on the lipid components of the plasma 

membrane are responsible for heat-induced cell killing. This is in contrast to the proposal 

that dramatic changes in membrane fluidity may be a primary cause of heat-induced cell 
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death (Y a tv in, 1977). On the other hand, an irreversible protein transition was observed 

in membrane at 40-41 °C when alteration of membrane proteins were investigated in 

CHL V79 cells by measuring intrinsic protein fluorescence and energy transfer from 

membrane proteins to trans-paranaric acid. Similar results were obtained using ESR spin 

label probe 2Nl4 (Lepock e1 a/., 1983). 

Alterations in membrane proteins are associated with alteration in plasma 

membrane function and may be related to hyperthermic cell death. In fact, it was found 

that membrane permeability to K+, Na+ and Ca2+ alter during or after hyperthermia 

(Anghileri eta/., 1985a; Ruifrok et al., 1985; Calderwood eta/., 1988). Furthermore, it 

was also found that the components of signalling systems were affected by heat. For 

example, exposure of Rat-1 fibroblasts to 45°C for 30 min resulted in inhibition of 

binding of EGF to its receptor as a result of a decrease in affinity of receptor (Magun 

and Fennie, 1981 ). On exposure of CHO HA-l cells to 43-45°C for various lengths of 

time, it was found that binding of insulin to its receptor decreased as temperature and/or 

heating time increased. This decrease in binding was due to a reduction in receptor 

number (Calderwood and Hahn, 1983). Heat also caused an accumulation of inositol 

phosphates and an increase in [Ca2+]i in several cell lines, ranging from rat, mouse and 

human, possibly as a result of activation of the components (G proteins and/or PI-PLC) 

of the phosphoinositide signalling pathway (Stevenson et al., 1986; Calderwood et a/., 

1987; Calderwood and Stevenson, 1993; Kiang and McClain, 1993). Given the 

importance of this signalling pathway in the regulation of a variety of cellular responses, 

it has been postulated that disruption of the phosphoinositide signalling system may play 

a role in regulation of the stress response of cells. Furthermore, Caldwerwood and co

workers (1987) found that heating CHO HA-l cells at 45°C for longer than 15 min 

resulted in the reduction of the cellular content of Ptdlns(4)P and Ptdlns(4,5)P2. Since it 

has been reported that Ptdlns(4,5)P2 is responsible for anchoring microtubules to the cell 

surface (Lassing and Lindberg, 1985), it was suggested that depletion in 
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polyphosphoinositide levels in prolonged heating may be related to cell damage 

(Calderwood eta/., 1987). 

In the present study, the effect of heat on the phosphoinositide signalling pathway 

was investigated in two tumour cell lines- CHO-Kl cells and WRK-1 cells. Before the 

effect of heat on the phosphoinositide signalling pathway was investigated in these cell 

lines, it was important to determine the effect of temperature on cell survival for the two 

cell types, since the thermal sensitivity of particular cell types can vary enormously. This 

information would also aid in the selection of a suitable temperature at which to perform 

future studies. A common method for determining hyperthermic cell survival is the 

clonogenic assay which relies on the ability of viable cells to divide and form colonies. 

This method has been established since 1955 (Puck et a/., 1955) and has been used in 

determining hyperthermic cell survival of many cell types, including CHO HA-l cells 

(Calderwood eta/., 1987), HTC cells (Kingston et al., 1989), murine L1210 leukaemia 

cells (Guffy eta/., 1982) and NIH3T3 fibroblasts (Stege et al., 1993a). This method was 

used in this study to determine the hyperthermic cell survival of CHO-Kl cells. The 

tendency of WRK-1 cells to aggregate eliminated the use of this method in determination 

of cell survival of this cell line, and a colorimetric assay (MTT assay), based on the 

ability of a metabolically viable cell to reduce yellow 3-[4,5-dimethyl thiazol-2-yl]-2,5-

diphenyl tetrazolium bromide (MTT) to a blue fonnazan product, was used for 

determining survival of WRK-1 cells. Since MTT is taken up by cells and reduced to 

blue fonnazan by succinate dehydrogenase, this assay monitors metabolic viability, 

rather than reproductive potential, of any surviving cells. 

The MTT assay was developed by Mosmann (1983) and modified by Denizot and 

Lang ( 1986) to improve the performance. The final method adopted was the same as 

described by Kingston et a/. (1989). It has been pointed out that optimal MTT assay 

conditions vary with cell type and the optimal condition for a particular cell type has to 
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be evaluated (Carmichael eta/., 1987; Plumb et al., 1989). In the present study, it was 

found that MTT concentrations ranging from 0.5-3 mg/ml and 3-5 h incubation gave a 

near maximal absorbance value, hence 1 mg/ml MTT concentration and 4 h incubation 

was chosen as standard assay condition for WRK-1 cells in the subsequent assay. 

When hyperthermic cell death of WRK-1 cells was determined, the cells were 

seeded for 3 days before heating was performed and cells were grown for another 3 days 

to allow any cell death (and, thus, loss of succinate dehydrogenase activity) to occur. 

Initially, it was necessary to define the relationship between absorbance reading and cell 

number, and to ensure that the cell number on the day of the MTT assay lay on the linear 

portion of this curve. If the cells in control conditions were allowed to reach stationary 

phase, whereas the heat-treated cells continued to grow in log phase because of their 

depleted number, the cell survival (which is calculated by dividing absorbance obtained 

from heated cells by absorbance from control) would be overestimated. It was found that 

the relationship between cell number and absorbance value remained linear for cell 

densities up to 3 x 1 os cells/well in a 24-well plate by the time of assay. This cell density 

range is similar to those found in ESH-5L cells (Green et al., 1984), L929 cells (Green et 

al., 1984) and HTC cells (Ladha, 1990). Since cells would be grown for 6 days before 

the MTT assay was performed, 7 x 103 cells per well in a 24-well plate was chosen as 

the seeding density, as this would produce approximately 2 x 1 os cells after 6 days 

growth. Once optimal conditions for MTT assay had been established, hyperthermic cell 

death of WRK -I cells was determined. On the other hand, the clonogenic assay was used 

for determination of hyperthermic death of CHO-Kl cells. 

The thermal survival curves obtained from both cell types show a characteristic 

shoulder region followed by a linear portion. The reason(s) for the shoulder region is/are 

unclear but it has been suggested that it determines the ability of the cell to sustain 

sublethal damage (Hahn, 1982). From the survival curve, survival parameters Dq and Do 
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can be calculated. D4 measures the width of the shoulder region and was obtained from 

back-extrapolation of the linear portion of the curve to 100% survival. In other words, 

the higher the D4 value, the higher the ability of the cell to sustain sublethal cell damage. 

The exponential part of the curve can be described by the Do value, which determines 

the time required to reduce the cell survival to 1/e times its initial value. Hence the 

higher the D0 value, the higher the thermal resistance of a particular cell line. On the 

other hand, the time taken to kill 90% of cells (LOgo) reflects both shoulder region and 

linear pa11 of the thermal survival curve (Bhuyan, 1979). 

The D4, Do and LOgo values obtained from CHO-K1 cells heated at 45°C were 

5.52 min, 14.5 min and 20.1 min, respectively. The Do and LDgo values reported 

previously for CHO cells at 45°C were 2.3 min and 13.3 min, respectively (Westra and 

Dewey, 1971). The Dq values obtained in WRK-1 cells at 43.5°C, 44°C and 45°C were 

68.3 min, 53.8 min and 21.4 min, respectively. Do values for WRK-1 cells obtained at 

43.5°C, 44°C and 45°C were 42.4 min, 38.4 min and 14.5 min, respectively. It was 

observed that the Do value decreases as the temperature increases. Previous work has 

shown that an increase of one degree Celsius in temperature is associated with a 50% 

decrease in the Do value (Hahn, 1982). LD90 values for WRK-1 cells were 110.6 min, 

89.2 min and 35.9 min at 43.5°C, 44°C and 45°C, respectively. However, it should be 

noted that the clonogenic and colorimetric assays produced different kinetics of cell 

death in response to heat in HTC cells. The clonogenic assay was characterised by a 

higher D4 value and lower Do value compared to the colorimetric assay, when the HTC 

cells were heated at 45°C (Kingston eta/., 1989). 

Once the hyperthermic cell death had been characterised in CHO-Kl cells and 

WRK-1 cells, the effect of heat on the phosphoinositide signalling pathway was 

investigated. Hydrolysis of inositol lipids during agonist-stimulation will give rise to 2 

second messengers which are sn-1 ,2-diacylglycerol (1 ,2-DAG) and inositol I ,4,5-
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trisphosphate (Ins( 1 ,4,5)P3) (Berridge, 1984; Downes, 1989; Majerus, 1992; Exton, 

1994). l ,2-DAG remains in the lipid matrix of the membrane and activates protein 

kinase C whereas Ins( 1 ,4,5)P3 releases to the cytosol and mobilises Ca2+ from internal 

stores such as from ER and calciosomes. In order to clarify the effect of heat on the 

phosphoinositide signalling pathway, it is necessary to measure the changes in 1 ,2-DAG 

and Ins(l ,4,5)P3 and its metabolites and also the change in cytosolic free calcium 

([Ca2+Ji) resulting from the mobilisation of calcium from internal stores and/or Ca2+ 

influx. This chapter reports the effect of heat on 1 ,2-DAG and other neutral lipid classes 

in CHO-K l and WRK-1 cells. The effect of heat on inositol phosphates and heat

induced changes in [Ca2+Ji are reported in Chapter 4 and Chapter 5, respectively. 

Investigation of the effect of heat on CHO-K1 cells prelabelled for 24 h with 

[3H]arachidonic acid suggested that heating at 45°C for 10 min resulted in a transient 

decrease in the 3H-l ,2-DAG level at 5 min and 8 min heating time, but this returned to 

the unheated control level by 10 min. On longer heating time (for up to 45 min), a 

decrease in 3H-l,2-DAG level was observed except at 30 min at 45°C. Levels of 3H

TAG in heated CHO-K1 cells were similar to control levels for up to 10 min heating at 

45°C. However, on prolonged heating (up to 45 min) at this temperature, an increase in 

3H-TAG level was observed at 30 and 40 min heating. Exposure of WRK-1 cells, 

prelabelled with [2-3H]glycerol for 4 days, to 45°C for 12.5 min resulted in a consistent 

decrease in 3H-1 ,2-DAG levels throughout the heating period (apart from 6.5 min). On 

prolonged heating at this temperature, a decrease in 3H-1 ,2-DAG was observed in heated 

WRK-1 cells, but the level of 3H-1 ,2-DAG returned to control levels by 45 min at 45°C. 

An increase in 3H-TAG level was observed during the 10 min heating period at 45°C. 

On proloned heating an increase in 3H-TAG level was observed for up to 30 min 

heating, which then returned to control levels by 45 min heating time. 

Long term labelling methods, employed in the initial experiments, increase the 
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chance of isotopic equilibrium labelling of the lipid pool, so that changes in radioactivity 

of 3H-l ,2-DAG represent the changes in 1,2-DAG mass. However, this method may 

eliminate the detection of the turnover of small, metabolically active pools that have been 

reported to be present in WRK-1 cells (Monaco, 1982; Kmih and Monaco, 1986). To 

investigate if heat exerted an effect on such lipid pools, a short term labelling protocol 

was used, in which cells were labelled with [3H]arachidonic acid (in case of CHO-K1 

cells ) or with [2-3H]glycerol (in case of WRK-1 cells) for only 2 h. Upon 45°C heat 

treatment of CHO-Kl cells, a decrease in 3H-1,2-DAG level was observed for heating 

times equal to or longer than 20 min. On the other hand, an increase in 3H-TAG level 

was observed in heated cells at 4 min, 10 min and 30 min heating time whereas the level 

of 3H-TAG was same as the control level at 45 min. Exposure of short-term labelled 

WRK-1 cells to 45°C for 42.5 min resulted in a decrease in 3H-1,2-DAG levels (apart 

from 32.5 min). This decrease in 3H-1 ,2-DAG was accompanied by an increase in 3H

TAG level. The 3H-TAG became higher than the control level by 22.5 min at 45°C and 

remained higher for up to 42.5 min heating. None of the conditions employed showed a 

difference in 3H-MAG level between unheated and heated cells of either cell type. Thus, 

the short-term labelling method, which labels metabolically active pools (Farese and 

Cooper, 1990), resulted in a decrease in 3H-l ,2-DAG levels accompanied by an increase 

in 3H-TAG levels in heated cells, a result similar to that observed in long-term labelled 

cells. This suggests that the effect of heat on any small, metabolically active pools that 

may exist is essentially similar to the effect of heat on the bulk of 1 ,2-DAG in these 

cells. 

The possibility that addition of fresh serum-containing medium prior to heat 

treatment could result in the hydrolysis of inositol lipid, thus disturbing the heat-induced 

effect on the phosphoinositide signalling system was excluded by heating long-term 

labelled CHO-K 1 cells or WRK-1 cells in serum-free medium. This resulted in a 
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decrease in 3H-l ,2-DAG and increase in 3H-TAG levels in heated cells, similar to those 

observed upon heat treatment in serum-containing medium. 

In summary, when long term or short term labelled CHO-K1 cells and WRK-1 

cells were heated at 45°C for up to 10-12.5 min, a heat dose that resulted in about 50% 

cell death and 20% cell death respectively, a decrease in 3H-1 ,2-DAG and an increase in 

3H-TAG levels were observed. Chronic exposure to 45°C for up to 45 min, a heat dose 

that killed greater than 95% of both cell types, also resulted in a decrease in 3H-1,2-DAG 

level and an increase in 3H-TAG levels in both cell types, thus arguing against the 

possibility of 1 ,2-DAG accumulation as a result of activation of the phosphoinositide 

signalling pathway by heat. 

However, it is possible that the decrease in 1,2-DAG levels, which was observed 

consistently in these experiments, may be related to the experimental protocol. In the 

long-term labelling experiments, care was taken to ensure that the 1,2-DAG pool was 

labelled to a steady state by growth of WRK-1 cells in [2_3H]glycerol for 4 days and 

growth of CHO-Kl cells in [3H]arachidonic acid for 24 h. In both cases, however, the 

radioactive medium was replaced by nonradioactive medium before the cells were 

heated, giving a 'cold-chase' period of 2 h in WRK-1 cells and 15 min in CHO-K1 cells. 

It is therefore conceivable that a rapidly turning-over pool (e.g. hormone-sensitive pool) 

of radioactive lipid could be diluted by production of nonradioactive lipid before and 

during the heating period in these experiments, so that the increased level of radioactive 

1 ,2-DAG reported by other workers could have been missed. Furthermore, if lipid 

turnover increased during heating, the radioactive 1 ,2-DAG may be diluted (by 

nonradioactive lipid) to a greater extent in heated compared to control cells, giving an 

apparent decrease in levels of 3H-l ,2-DAG in heated cells. 
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The results obtained in this study are in contrast to those reported previously by 

other workers (Stevenson et al., 1986; Calderwood et a/., 1987). The effect of heat on 

the level of diacylglycerol has been investigated in CHO HA-l cells (Calderwood et a/., 

1987), a different subclone of CHO cells compared to the one used in this study. 

Following a 2 h label with [3H]arachidonic acid and subsequent washes to remove the 

unincorporated [3H]arachidonic acid, cells were subjected to hyperthermic treatment at 

45°C for up to 15 min, a heat dose that only slightly decreased the cell survival of CHO 

HA-t cells when measured by the clonogenic assay (Calderwood et a/., 1987). A 

transient increase in diacylglycerol was observed which reached a peak at 2-3 min at 

45°C and returned rapidly to unheated control values by 4 min. However, it was not clear 

whether the isomers of DAG were separated or not. Given that only 1 ,2-DAG is the 

activator of PKC, it is important to determine the effect of heat on this particular isomer. 

Furthermore a very short (2 h) labelling time was employed by these authors, so it is 

likely that lipids were not labelled to isotopic equilibrium and that the observed transient 

increase in 1,2-DAG levels may not reflect changes in the mass of 1 ,2-DAG. 

In the present study, the possibility that heat induced an increase in 1,2-DAG 

which was followed by rapid phosphorylation of 1,2-DAG to PA (in order to replenish 

the phosphoinositide lipid pools), thus decreasing 1 ,2-DAG levels was excluded as well. 

When WRK-1 cells were heated in the presence of the diacylglycerol kinase inhibitor, 

dioctanoylethylene glycol (diCgEG), a decrease in 3H-1,2-DAG level was observed at 

12.5 min heating and this persisted for up to 45 min at 45°C. This decrease in 3H-1 ,2-

DAG was accompanied by an increase in 3H-TAG level at 12.5 min or longer heat 

treatment. On the other hand, no difference in 3H-MAG level was found between heated 

and unheated cells in the presence or absence of 100 pM diCgEG. This concentration has 

been shown to be sufficient to block the conversion of 1,2-DAG to PAin blood platelets 

(Bishop eta/., 1986). In the experiment performed by Bishop and co-workers (1986), it 

was found that preincubation of platelets with 100 pM diC8EG for 30 min at 37°C 
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inhibited the conversion of DAG to PA by 70-100% upon thrombin addition. However 

the possibility that a higher diC8EG concentration is necessary to inhibit DAG kinase in 

WRK-1 cells cannot be excluded. Thus it would be interesting to determine the effect of 

different concentrations of DAG kinase inhibitor in WRK -1 cells upon heat cell death, as 

well as 1 ,2-DAG and PA levels in these cells. 

On the other hand, the results obtained in this study were consistent with the study 

reported by Bagi and Hidvegi ( 1990) concerning with the activity of PKC following 

heating. Immediately after heating P388 lymphoid tumour cells to 41-45°C for 1 h, PKC 

activities in particulate and cytosol fractions from both heated and control cells were 

determined by their ability to phosphorylate H1 histone. It was found that the protein 

kinase C activities in both fractions decreased progressively as cells were heated at 42-

450C. Furthermore, it was found that the subcellular distribution of PKC altered after 

heating at 45°C for 1 h. Following heating, PKC activity was evenly distributed between 

cytosol and particulate fraction whereas the PKC activity in cytosol and particulate 

fractions was 58% and 42%, respectively, in extracts from unheated cells, though the 

statistical significance of these differences was not tested. Although a reduction in PKC 

activity was observed after J h heat treatment at various temperatures, PKC activity was 

not measured at shorter periods of hyperthermia. The 1 ,2-DAG exerts its effect by 

promoting the insertion of inactive membrane-associated PKC into the membrane, so 

dislodging the pseudosubstrate site from the active site and leading to activation of PKC. 

Thus, it would be expected that reduction in 1 ,2-DAG levels could result in a decrease in 

PKC activity (Ganong eta/., 1986; Bums and Bell, 1992), and the heat-induced decrease 

in 1 ,2-DAG levels reported in the present study is consistent with the decrease in PKC 

activity caused by heat in P388 lymphoid tumour cells (Bagi and Hidvegi, 1990). In 

addition, Bagi and Hidvegi (1990) reported that a translocation of PKC to plasma 

membrane occurred in heated cells but a reduction in PKC activity was detected, which 

could possibly be due to a decrease in 1,2-DAG level, as observed in the present study. It 
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is clear that further studies are required in order to clarify this possibility. However, 

although heat caused a reduction in PKC activity, Bagi and Hidvegi (1990) also found 

that PKC selectively phosphorylated 3 cytosol proteins having molecular weights of 14, 

25 and 33 kD in heated P388 lymphoid tumour cells. 

A role of PKC in the response of cells to hyperthermia has been suggested 

(Mikkelsen eta/., 1991b). When human colon cancer HT-29 cells, human carcinoma 

MCF-7 cells and Chinese hamster V79 lung fibroblasts were heated in the presence of 

the PKC inhibitors, tamoxifen or H7, hyperthermic cell death of these cells was 

potentiated. On the other hand, when cells were heated in the presence of a low affinity 

PKC inhibitor, HA 1004, cells death was similar to cells heated in the absence of this 

inhibitor. Thus it would be interesting to investigate the relationship between heat cell 

death and PKC activity in response to heat in the presence and absence of protein kinase 

activators (e.g. phorbol esters and bryostatin), as well as the phosphorylation of other 

proteins such as HSP that might be involved in the response of a cell to heat treatment. 

The effect of heat on MAG, 1,2-DAG and TAG levels was also investigated after 

cells were returned to 37°C (the post-heating period) in both cell types. Long-term 

labelled CHO-Kl cells and WRK-1 cells were subjected to heat (45°C for 10 min) 

followed by a 2 h recovery period. It was found that the 3H-1,2-DAG level in heat

treated CHO-K l cells was similar to unheated cells after 2 h incubation in 37°C, thus 

suggesting that the heat-induced decrease in 1,2-DAG is transient and recovers on 

subsequent incubation at 37°C. In WRK-1 cells, it was found that 3H-1,2-DAG level in 

heated cells returned to control level after 30 min incubation in 37°C, again suggesting 

that the heat-induced decrease in 1 ,2-DAG is transient and recoverable. In both cell 

types, increases in 3H-TAG levels in heated cells were observed even after 2 h 

incubation at 37°C. 
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The level of diacylglycerol in heated cells during subsequent incubation at 37°C 

has been investigated in CHO HA-l cells (Stevenson et al., 1986). Following a 2 h 

labelling with [3H]arachidonic acid, cells were subjected to 45°C treatment for 10 min 

and then incubated at 37°C for up to 2 h. The 3H-DAG level increased to 160% of 

control level after the 2 h post-heating period, and this was accompanied by an increase 

in 3H-PA level, which has been suggested as a Ca2+ ionophore. The increase in 3H-PA 

level correlated with 45Ca2+ influx (Stevenson et al., 1986; Calderwood et al., 1988). 

In summary, the result obtained in this study is in contrast to results reported in 

CHO HA-l cells during acute heating (Calderwood et al., 1987) and in the 2 h recovery 

period following 10 min heat treatment (Stevenson et al., 1986). On the other hand, the 

increase in 3H-TAG levels following heating in the present study may reflect increased 

TAG synthesis, possibly coupled with decreased phospholipid synthesis, from the 1,2-

DAG precursor, causing 1 ,2-DAG levels to fall. Given that inositol lipid is not the only 

source for l ,2-DAG, it would be interesting to investigate if other phospholipids, 

especially PtdCho is/are affected by heat. Furthermore, a decrease in 1 ,2-DAG in heated 

cells might only be confined to 1 ,2-DAG with certain fatty acyl chain composition 

(derived from particular phospholipids). Since 1,2-DAG is an activator of certain 

isoforms of PKC and the response of these isoenzymes to 1 ,2-DAG as well as the spatial 

distribution of these enzymes are different, it might be possible that these isoenzymes 

respond to hyperthermia differently, together with alterations in phosphorylation of 

certain cellular proteins, and these changes may contribute to hyperthermic cell death. 
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Chapter4 

Effect of hyperthermia on inositol phosphate levels 

4.1 Introduction 

The hydrolysis of phosphatidylinositol 4,5-bisphosphate (Ptdlns( 4,5)P2) generates 

two second messengers - 1,2-DAG and Ins(1,4,5)P3 (Berridge, 1984). 1,2-DAG 

remains in the lipid matrix and activates PKC (Chapter 3) whereas lns(1,4,5)P3 is 

released into the cytosol and mobilises calcium from ER or calciosome stores (Berridge, 

1993). The lns(l ,4,5)P3 formed by agonist-stimulated breakdown of inositol 

phospholipids is recycled to free inositol by a series of inositol phosphomonoesterases. 

The current picture of inositol phosphate metabolism is extremely complex. However, it 

seems to fulfil three purposes: (1) rapid turnover of lns(1,4,5)P3 thereby controlling 

lns(l ,4,5)P3 level and other cellular responses that are dependent upon calcium; (2) 

recycling of inositol through the metabolism of inositol phosphates; (3) synthesis of 

specific inositol phosphates such as InsPs and InsP6 which may have distinct functional 

roles (Downes, 1989; Shears, 1992). 

So far up to 37 distinct inositol phosphate species have been identified. However, 

the routes of inositol phosphate metabolism represents an assemblage of information 

from a variety of tissues and there is no single cell type in which all of the reactions have 

been demonstrated to occur (Downes and MacPhee, 1990). 

In order to understand the implications of the role of inositol phosphates as 

intracellular messengers, the metabolism of these inositol phosphates must be considered 

(Figure 4.1). 
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Once Ins( l ,4,5)P3 is formed, it can either be dephosphorylated to Ins(l ,4)P2 via 

the action of lns(l,4,5)P3 5-phosphomonoesterase or phosphorylated to Ins(l,3,4,5)P4 

via the action of Ins(l ,4,5)P3 3-kinase (Irvine et al., 1986). Ins(l ,3,4,5)P 4 is then 

dephosphorylated to Ins(l ,3,4)P3 by the same 5-phosphomonoesterase that 

dephosphorylates Ins(l ,4,5)P3 to Ins(l ,4)P2 (Irvine et al., 1986). Ins(l ,3,4)P3 is either 

dephosphorylated to Ins(3,4)P2 by a !-phosphatase or to Ins(1,3)P2 via the action of a 4-

phosphatase. Hence it has been demonstrated that both Ins( I ,3)P2 and Ins(3,4)P2 levels 

are elevated upon agonist stimulation (Barker et al., 1992). 

Ins(l,4)Pz, Ins(l,3)P2 and Ins(3,4)P2 are dephosphorylated to Ins(4)P1, lns(l)P1 

and Ins(3 )P 1, respectively (Shears, 1992). All of the metabolites are then converted to 

free inositol by the action of a single monophosphatase. The free inositol can be recycled 

for Ptdlns synthesis. 

Due to the rapid turnover of lns(l ,4,5)P3 and Ins(l ,3,4,5)P 4 to replenish the 

inositol lipid pool, it is virtually impossible to prevent Ins(l ,4,5)P3 and Ins(l ,3,4,5)P 4 

being completely dephosphorylated to inositol. In some experiments, Li+ is included in 

order to block the dephosphorylation of lns(1,3,4)P3 and Ins(l,4)P2 to free inositol 

through the inhibition of Ins(l ,4)P2/Ins(1,3,4)P3 !-phosphatase and the inositol 

monophosphatase. However, the presence of Li+ may distort the pathway of inositol 

fluxes due to the so called "inositol-depletion hypothesis" (Berridge et al., 1989). Li+ is 

an uncompetitive inhibitor and binds preferentially to the enzyme-substrate complex, 

thus preventing the recycling of inositol in stimulated cells (Nahorski et al., 1991). 

Hence the presence of Li+ will lower the inositol level, and as a result the synthesis of 

inositol lipids will slow down. Furthermore, u+ can activate the Ins(l ,4,5)P3 5-

phosphatase, thus perturbing the fluxes to other metabolites. 

Inositol polyphosphates such as lnsP 4• InsP5 and InsP6 have been found in animal 
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cells but the origins of some of these highly phosphorylated inositols are unclear. As far 

as InsP 4 is concerned, at least 3 isomers have been identified in mammalian cells. They 

are Ins(l,3,4,5)P4, Ins(l,3,4,6)P4 and Ins(3,4,5,6)P4 (Balla et al., 1987; Stephens et al., 

1988; Barker et al., 1988; Wong eta/., 1992). Formation of Ins(1,3,4,6)P4 has been 

demonstrated in Xenopus oocytes (lvorra eta/., 1991) and SH-SY5Y cells (Gawler et 

al., 1991) to occur via the rephosphorylation oflns(1,3,4)P3. This isomer has been found 

to be the precursor of lnsP5 (Hunyady et al., 1988). Synthesis of Ins(1,3,4,6)P4 in avian 

erythrocytes has been shown to occur via the phosphorylation of Ins(l ,4,6)P3, though the 

significance of this route in other cell types is unclear (Stephens and Downes, 1990). On 

the other hand, it has been shown that Ins(l ,3,4,5)P 4 is not further phosphorylated to 

InsP5 and lnsP6 (Irvine et al., 1986). Although the elevation of Ins(3,4,5,6)P4 was 

associated with a receptor-mediated rise in lns(1,4,5)P3, evidence suggested that 

Ins(3,4,5,6)P4 accumulation is an event that occurs in parallel but independent of PLC 

activation (Barker et al., 1992; Shears, 1992). [3H]inositol is incorporated rapidly into 

Ins(1,4,5)P3, Ins(l,3,4,5)P4 and Ins(1,3,4)P3 whereas several days are required to label 

Ins(l,3,4,5,6)P5 and Ins(3,4,5,6)P4 to equilibrium (Menniti eta/., 1990). Using short

term, long-term and pulse-chase labelling, it was revealed that Ins(3,4,5,6)P4 and 

Ins(l ,3,4,5,6)P5 always had similar specific activities (Menniti et al., 1990). It was also 

found that receptor-activated increase in lns(3,4,5,6)P 4 was directly proportional to the 

level of Ins( 1 ,3,4,5,6)P5. When WRK.-1 cells were labelled to isotopic equilibrium with 

[14C]inositol followed by brief labelling with [3H]inositol, it showed that [3H] appeared 

quickly in Ins(l ,3,4,5)P 4 and Ins(l ,3,4,6)P 4 but not in Ins(3,4,5,6)P 4, suggesting the 

synthesis of Ins(3,4,5,6)P4 involves a different pathway whereas a common precursor 

was used for the synthesis of both Ins(l ,3,4,5)P 4 and Ins(l ,3,4,6)P 4 (Kirk eta/., 1990a). 

By using a non-equilibrium [32p] labelling protocol, 2 routes for Ins(l ,3,4,5,6)P5 

synthesis in avian erythrocytes have been suggested. It can either be synthesized by 

Ins(3,4,6)P3 ~ Ins(3,4,5,6)P 4 ~ Ins(l ,3,4,5,6)Ps (Stephens and Downes, 1990) or 

alternatively Ins( I ,3,4,6)P 4 ~ Ins(l ,3,4,5,6)P5 H lns(3,4,5,6)P 4 (Hunyady et al., 1988; 
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Downes and MacPhee, 1990). In animal cells, the major InsP5 isomer is Ins(1,3,4,5,6)P5 

although other isomers including Ins(l ,2,4,5,6)Ps and Ins(l ,2,3,4,5)P5 have been found 

in HL60 cells (Pittet et al., 1989) and NG 115 cells (Stephens et al., 1991). This InsP5 is 

further metabolised to 3 compounds: InsP6, lns(3,4,5,6)P4 or lns(1,4,5,6)P4 (Downes 

and MacPhee, 1990, Menniti eta/., 1993b ). 

The amount of InsP5 and InsP6 that are present in cells are much higher than the 

other inositol phosphates (Shears, 1992). Given the ubiquitous occurrence of these 

compounds in eukaryotic cells and the complex pathways concerning their synthesis and 

degradation, it is likely that these compounds are functionally significant but their 

cellular roles remain obscure at present. Ins(l ,3,4,5,6)P5 is involved in regulating the 

affinity of avian haemoglobin for Oz (Isaacks and Harkness, 1980) and InsP6 has been 

proposed to function as a phosphorus and/or inositol reserve in plant seeds (Downes and 

MacPhee, 1990). Both InsP5 and InsP6 have been proposed to be extracellular agonists 

that stimulate neuronal excitability and reduce blood pressure (Vallejo eta/., 1987). 

When separating inositol phosphates using HPLC, 2 peaks were eluted after InsP6 

(more polar than InsP6) and were identified as inositol pyrophosphates (lnsP5P and 

InsP6P). The presence of inositol pyrophosphate was first observed in slime-mould 

(Stephens and Irvine, 1990) and they were also found in mammalian cells such as AR4-

2J (Stephens et a/., 1993). These 2 compounds are formed by ATP-dependent 

phosphorylation of inositol phosphates and are rapidly dephosphorylated back to their 

precursors (Menniti eta/., 1993a). The turnover of these compounds is very rapid, so it 

is very difficult for them to be detected. Recently, it was found that F- is an inhibitor of 

pyrophosphatase, so it can be used to facilitate the analysis of pyrophosphates (Mennitti 

et a/., 1993a). When cells were incubated in 1-10 mM F-, the levels of InsP5P and 

InsP6P increased dramatically, at the expense of lns(1,3,4,5,6)P5 and InsP6. In AR4-2J 

cells, it was demonstrated that approximately 50% of the Ins(l ,3,4,5,6)Ps pool and 20% 
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of the InsP6 pool is cycled through pyrophosphates every hour (Oliver et al., 1992). 

Given the relatively large cellular pool of InsP5 and InsP6, the energy required for the 

synthesis of pyrophosphates and the fast turnover rate of these compounds suggests that 

they may have an important role in cell physiology. In fact, Stephens et al. (1993) 

suggested that these compounds may be a new form of high-energy phosphate. 

In stimulated WRK-1 cells, 3 cyclic inositol phosphates have been identified. They 

are Ins(l :2cyc,4,5)P3 together with its breakdown products Ins(l :2cyc)P1 and 

Ins(1:2cyc,4)P2 which is itself a minor product of PLC attack upon Ptdlns(4,5)P2 

(Wong eta/., 1988). All of the cyclic inositol phosphates are acid-labile, thus the acid

quench technique usually employed to study inositol phosphates metabolism will convert 

the cyclic compounds to their corresponding non-cyclic 1-phosphate and 2-phosphate 

counterparts, leading to the appearance of lns(2)P, Ins(2,4)P2 and Ins(2,4,5)P3. Thus the 

neutral-quench extraction is employed if the turnover of cyclic inositol phosphates are 

studied. These compounds are metabolised very slowly and accumulate following a 

prolonged stimulation. Ins(l :2cyc,4,5)P3 is not a substrate of Ins(l ,4,5)P3 3-kinase and 

the only metabolic route is via 5-phosphatase action (Connolly et al., 1987). Thus the 

metabolism of this compound is much simpler than the Ins(l ,4,5)P3. Furthermore, this 

compound does not seem to play a messenger role because it is at least 10 times less 

potent in promoting calcium mobilisation (Lee and Hokin, 1989). The Ins(l :2cyc,4,5)P3 

is dephosphorylated to lns(l :2cyc,4)P2 which is dephosphorylated sequentially to 

Ins(l)P1 and free inositol as follows (Dawson and Clarke, 1972; Connolly et al., 1986): 

Ins(l :2cyc,4,5)P3--+ Ins(1:2cyc,4)P2--+ lns(1:2cyc)P1 --+ Ins(l)Pl--+ Ins 

It is worth mentioning that the phosphohydrolase that converts Ins(l :2cyc)P1 to 

Ins( I )P1 can also use glycerophosphoinositol (GroPins) as substrate, so as to form 

glycerol and Ins(l)P1 (Ross and Majerus, 1991). The affinity of this enzyme towards 

GroPins increases in transformed cells, resulting in the accumulation of Ins(l :2cyc )P 1• 
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Overexpression of this enzyme in NIH3T3 cells (by transfection) results in a lower 

Ins(l:2cyc)P 1 level and lower cell density (Ross and Majerus, 1991). Hence it has been 

proposed that the relative amount of Ins(l :2cyc)Pl and GroPins are important in the 

control of cell growth (Ross and Majerus, 1991 ). 

The complex metabolism of inositol phosphates in intact mammalian cells has 

prompted the speculation that some of these metabolites may function as intracellular 

signals. Ins( I ,4,5)P3 is responsible for the hormone-stimulated release of calcium from 

intracellular stores. The role of Ins(l ,3,4,5)P 4 has been shown to act synergistically with 

Ins(l ,4,5)P3 to control calcium influx (Irvine and Moore, 1987; Irvine, 1992; Irvine and 

Cullen, 1993) and Ins(1,4)P2 can activate the low-affmity form of DNA polymerase a 

(Sylvia et a/., 1988). There is lack of evidence that the other metabolites may have 

functional roles other than being intermediates in the recovery of inositol. 

The action of Ins(l ,4,5)P3 on calcium mobilisation was tested by adding 

Ins( 1 ,4,5)P3 to permeabilised cells or by injecting lns(l ,4,5)P3 into cells (Berridge and 

Irvine, 1984; Berridge and Irvine, 1989). Both conditions led to calcium release from 

non-mitochondrial stores presumed to be a part of ER. The increase in [Ca2+]i was 

transient if cells were stimulated with agonist in calcium-free medium. In the presence of 

calcium, a prolonged [Ca2+]i elevation was observed which varied in magnitude 

depending on the receptor being stimulated (Putney, 1986). A possible role for 

Ins(l,3,4,5)P4 in regulating calcium-influx was first suggested following experiments in 

which the putative signal molecule was injected into sea urchin oocytes (Irvine and 

Moore, 1987). It has been shown that egg activation appeared to depend upon 

extracellular calcium. Egg activation occurred in response to co-injection of 

Ins(l ,3,4,5)P 4 and Ins(2,4,5)P3 (this latter compound is able to mimic the calcium

releasing activity of Ins(l ,4,5)P3 without being an effective substrate for the 3-kinase). 

Injection of either substance alone was ineffective. Thus it was suggested that 
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Ins(l ,3,4,5 )P 4 acts in conjunction with Ins( 1 ,4,5)P3 to sustain the agonist-stimulated 

calcium signal, presumably by opening Ca2+ channels in the plasma membrane. 

However this proposal was challenged by the results obtained by microinjection of 

Ins(2,4,5)P3 to liver (Burgess et al., 1991) or to acinar celis (Bird et al., 1991) in which 

it was shown that lns(2,4,5)P3 on its own was sufficient to cause calcium entry. When 

the role of lnsP 4 in calcium entry was investigated in acinar lacrimal cells by three 

different groups, one group reported that lns(2,4,5)P3 or Ins(l ,4,5)P3 readily caused 

calcium entry on its own (Bird et al., 1991) whereas this never occurred in experiments 

performed by Morris et al. (1987) and Changya et al. (1989). This contradictory result 

was resolved later by Smith ( 1992) who found that a sufficiently high dose of InsP3 was 

able to cause calcium entry on its own, although InsP 4 still gave a profound additional 

effect on this process. It has been pointed out by Irvine ( 1992) that it is possible that a 

high level of lnsP3 (resulting from using supraphysiological agonist doses) alone is 

sufficient to cause calcium entry in intact cells, but in vivo with physiological agonist 

doses, InsP 4 is essential, otherwise evolution would have removed it and its receptor 

years ago. 

The effect of hyperthermia on inositol phosphates has been investigated in several 

mammalian cell lines. When HeLa cells were heated at 41 °C or at higher temperatures, 

an elevation in lnsP1, InsP2 and InsP3 levels were observed and the levels of these 

inositol phosphates increased progressively with temperature (Calderwood and 

Stevenson, 1993). InsP1 and InsP2 liberation reached a maximal level at 42°C and 

declined slightly when heated at temperatures higher than 42°C. InsP3 accumulation was 

observed at 43°C and 45°C, and the level of InsP3 began to level off after 10 min heating 

at 43°C whereas for those cells heated at 45°C, the InsP3 level continued to increase 

throughout 30 min heating. When CHO HA-l cells were heated at 42°C, a gradual 

increase in InsP3 was observed with levels increasing to 5- to 6-fold of the zero control 

value by 120 min (Calderwood and Stevenson, 1993). When these cells were heated at 
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45°C, the InsP~ level reached maximum values after 15 min heating and resulted in a 6-

fold increase compared with the control value. A heat-induced increase in InsP3 was also 

detected in NIH3T3 cells. When these cells were heated at 45°C, InsP3 concentration 

increased 9-fold, reaching maximal levels after 5 min heating and then declined to a level 

2-3-fold higher than the control by 10-15 min (Calderwood et al., 1987). The InsP4 level 

in heated and unheated cells was similar in all these cell types. The effect of heat on the 

phosphoinositide signalling pathway was also investigated in human epidermoid A-431 

cells (Kiang and McClain, 1993). A significant increase in InsP1 and InsP3 were 

observed after heating at 42°C for 20 min whereas increase in InsP2 level was not 

observed unless cells were heated at 45°C for 20 min. Exposure of these cells to higher 

temperature (45°C and 48°C) resulted in a further increase in both InsPI> InsP2 and 

InsP3 levels. When cells were heated at 45°C, increases in InsP1, InsP2 and InsP3 levels 

reached maximum after 20 min and the levels then returned to basal level by 30 min. In 

most of these studies, the inositol phosphate classes were separated by simple ion 

exchange chromatography, so it was not possible to measure changes in individual 

isomers of InsP3 or other inositol phosphates (Calderwood et al., 1987; Calderwood and 

Stevenson, 1993). However, using HPLC to separate inositol phosphate isomers 

extracted from control and A-431 cells heated at 45°C for 20 min, Kiang and McClain 

( 1993) observed a slight increase in Ins( 1 ,3 ,4 )P3, a 2.4-fold increase in Ins( 1 ,4,5)P3 and 

a 3.6-fold reduction in lns(1,3,4,5)P4 levels. Although most studies have suggested that 

heat causes an elevation of InsP3, Liu and Carpenter (1992) showed that heat did not 

have any effect on inositol phosphate (lnsP1, InsP2 and InsP3) formation in A-431 cells 

when these cells were heated at 46°C for 30 min. However, these authors only 

investigated the changes in InsP1, InsP2 and InsP3 levels at a single time point. Given 

that the change in inositol phosphate levels upon heating is both temperature- and 

heating time-dependent, this may explain the discrepancy between the results reported by 

Liu and Carpenter (1992) and those reported by Calderwood and Stevenson (1993) and 

Kiang and McClain (1993). 

137 



The magnitude of PLC stimulation by heat and growth factors have been 

investigated in CHO HA-l cells and NIH3T3 cells (Calderwood et al., 1987; 

Calderwood and Stevenson, 1993). The rise in InsP3 during heat treatment at 45°C for 3 

min or during stimulation with serum alone for 3 min at 37°C was similar in magnitude. 

Combination of both agents showed an additive effect on InsP3 formation in both CHO 

HA-l (Calderwood et al., 1987; Calderwood and Stevenson, 1993) and Balb C 3T3 cells 

(Calderwood et al., 1987). InsP3 formation was additive when CHO HA-l cells were 

treated with heat shock and thrombin (Calderwood and Stevenson, 1993). The results 

imply that heat shock may be converted to chemical messengers by a route similar to 

those employed by hormones or growth factors. 

The exact mechanism of heat-induced increase in InsP3 level is uncertain. When 

[3H]inositollabelled CHO HA-l cells were permeabilised by digitonin and were heated 

in the presence or absence of non-hydrolysable GTP analogues (GTPyS), it was found 

that the level of InsP3 and other inositol phosphates increased upon 45°C treatment 

provided that greater than 1 Q-8 M GTPyS was present, suggesting the involvement of a G 

protein in this heat-induced InsP3 formation (Calderwood et al., 1993). To further 

investigate the type of G protein that is involved in this response, CHO HA-l cells or 

NIH3T3 cells were incubated with pertussis toxin (PTX) for 3 h before being heated at 

45°C for 20 min or challenged by thrombin at 37°C for the same length of time. Inositol 

phosphates were then extracted from these cells and were separated by anion exchange 

chromatography. It was found that PTX significantly inhibited the release of inositol 

phosphates (lnsP1, InsP2 and InsP3) from thrombin-stimulated cells whilst the level of 

inositol phosphates released from heated cells were similar to those obtained from cells 

without pre-treatment by PTX. Thus the authors suggested that a PTX-insensitive G

protein such as Gq is involved in the response of cells to heat treatment. The mechanism 

of heat-induced InsP3 formation has been postulated as follows: heat may provide the 

activation energy required to stimulate GTP-GDP exchange by a G-protein. Upon 
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binding to GTP, the G protein subunits dissociate and the a-subunit then activates a 

PLC, most likely PLC~l, which causes the hydrolysis of Ptdlns(4,5)P2. Since 

Ins(l ,4,5)P3 is responsible for calcium mobilisation, the accumulation of Ins(l ,4,5)P3 

during heating may in turn lead to an abrupt inl-Tease in [Ca2+k The elevation of [Ca2+]i 

may be associated with some toxic effects and may contribute to cell death. The role of 

[Ca2+]i in hyperthermic cell death will be discussed in more detail in Chapter 5. 

In this study, the effect of heat on inositol phosphate levels and the response of 

WRK-1 cells to agonist during and following heating was investigated. 
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4. 2 Materials and Methods 

4.2.1 Effect of inositol concentration on cell growth 

WRK-1 cells were harvested from a 75 cm2 flask and sedimented by 

centrifugation at 80 g Crav = 11 em) at 20°C for 3 min. The pellet was then resuspended 

in low inositol medium (containing I !JM inositol) together with 2% (v/v) dialysed rat 

serum and 5% (v/v) dialysed FBS. Cells were then disaggregated and counted by 

haemocytometer and diluted to give 1 x 106 cells/mi. Then 0.1 ml of the diluted 

suspension was seeded into a number of 6-well plates with each well containing 1.5 ml 

of either I !JM inositol (with dialysed sera) or 11 pM inositol medium (with dialysed 

sera). The medium was changed the following day and every two days thereafter. Every 

24 h, cells grown under both conditions were harvested and counted via haemocytometer 

to determine the number of live and dead cells. 

4.2.2 Separation of inositol phosphate standards 

(i) Separation of inositol phosphates standards by BioRad anion exchange 

column chromatography 

The column was constructed by inserting a bolus of plastic wool into a plastic 

pipette. Column was packed with 2 em (0.6 em i.d.) of AG 1-X8, 200-400 mesh, formate 

form resin (BioRad Lab, Herts) which was then linked to a 10 ml reservoir (a plastic 

syringe barrel). The resin was then washed with 20 ml of water. The mixture of 3H

inositol phosphate standards, which contained 0.01 !JCi each of [3H]Ins(l )P1, 

[3H]Ins(l ,4 )P2, [3H]Ins(1,4,5)P3, [3H]Ins(l ,3,4,5)P 4 and [3H]InsP6, was loaded onto the 

column. The column was washed with 20 ml of H20 to elute any free inositol. Then 

different classes of inositol phosphates were eluted sequentially as described by 

141 



Maccallum et al. (1989): 

20 ml 60 mM ammonium fonnate/5 mM sodium tetraborate (GroPins) 

20 ml 150 mM ammonium fonnate/5 mM sodium tetraborate (lnsP1) 

20 ml 0.4 M ammonium fonnate/0.1 M formic acid (lnsP2) 

20 ml 0.8 M ammonium fonnate/0.1 M formic acid (lnsP3) 

20 ml 1.05 M ammonium fonnate/0.1 M formic acid (lnsP 4) 

20 ml 2M ammonium formate/0.1 M formic acid (lnsP5 and InsP6) 

0.5 ml fractions were collected into Pico hang-in vials and 3 rnl of Ultima-flo AF 

scintillation fluid (Packard, Berks) was added to each vial. The vials were then wiped 

with methanol to prevent static problems and remove salts that formed on the surface of 

the vials during fraction collection. Radioactivity was then determined by Packard 

Scintillation Counter (model no. 300). [3H]Ins(l )P 1, [3H]Ins(l ,4 )P2 and 

[3H]Ins( I ,4,5 )P3 were purchased from Tocris Neuramin, whereas [3H]Ins(l ,3,4,5)P 4 and 

[3H]InsP6 were purchased from NEN. 

(ii) Separation of inositol phosphate standards by HPLC 

Separation of inositol phosphate standards was perfonned on a 25 em x 4.6 mm 

Partisphere 5-SAX column (Whatman, Kent) fitted with a pellicular anion exchange 

guard column (Whatman, Kent). The column was flushed with water at least for 45 min 

at a flow rate of 1 ml/min before use. Then a mixture of labelled inositol phosphate 

standards, containing 0.05 pCi each of [3H]Ins(l)P1, [3H]Ins(1,4)P2, [3H]Ins(1,4,5)P3, 

[3H]Ins(l,3,4,5)P4 and [3H]InsP6 and 0.025 pCi of [3H]Ins(1,3,4)P3, was made up to 2 

ml with filter-sterilised H20, applied to the HPLC column, and separated using the 

gradient profile described by French et al. (1991) with slight modification. The gradient 

was built up using a BioRad HPLC system (gradient module no. 800), fitted with 2 
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pumps, with pump A delivering H20 and pump B delivering 0.1 M or 1 M diammonium 

hydrogen phosphate ((NH4)zHP04 (pH adjusted to 3.8 with phosphoric acid). At 65 

min, 0.1 M (NH4)zHP04 was changed to 1 M (NH4)zHP04. Buffers and H20 were 

filtered through a 0.45 J.lm filter (Millipore, Herts) and degassed under vacuum before 

applying to the system. 

The gradient used was as follow: 

Time (min) Pump A(%) PumpB (%) 

0 100 0 

2 100 0 

35 70 30 

35.1 0 100 

65 0 100 

65.1 55 45 

95 55 45 

95.1 30 70 

110 30 70 

110.1 20 80 

120 20 80 

120.1 0 100 

145 0 100 

145.1 100 0 

The flow rate was 1 ml/min and 0.5 min fractions were collected into Pico hang-in 

vials by Gilson fraction collector (Model no. 202). To each vial, 3 ml of Uniscint BD 

scintillation fluid (National Diagnostics) was added and mixed well. The vials were then 
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wiped with methanol and radioactivity was then determined by scintillation counting. 

[3H]lns( I ,3,4)P3 was purchased from NEN. 

(iii) Separation of InsP3 isomers by HPLC 

Separation of [3H]inositol trisphosphate standards was performed on a 12.5 em x 

4.6 mm Partisphere WAX column (Whatman, Kent) equipped with a pellicular anion 

exchange guard column. The column was equilibrated with H20 at least for 45 min at a 

flow rate of 1 ml/min before a mixture of the standards which contained 0.1 JICi of 

[3H]lns(l ,3,4 )P3 and 0.05 JICi of [3H]Ins(l ,4,5)P3 was applied. The gradient profile 

described by Wong et al. (1992) was used. The gradient was built up by a 2-pump 

system with pump A delivering H20 and pump B delivering 0.5 M (NH4hHP04, (pH 

adjusted to 3.2 with phosphoric acid). Buffer and H20 were filtered through a 0.45 Jim 

filter and degassed by vacuum before applying to the system. 

The gradient used was as follow: 

Time (min) Pump A(%) PumpB (%) 

0 100 0 

5 100 0 

15 88 12 

70 88 12 

90 0 100 

110 0 100 

The flow rate was I mUmin and 0.5 min fractions were collected into Pico hang-in 

vials by a Gilson fraction collector. To each vial, 3 ml of Uniscint BD scintillation fluid 
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was added, mixed well and the radioactivity was determined by a Packard Scintillation 

Counter. 

4.2.3 Equilibrium labelling of inositol lipids 

(i) Labelling ofWRK-1 cells 

WRK -1 cells were harvested from two 25 cm2 flasks and the cell number was 

determined via haemocytometer. The cell suspension was further diluted to give 1 x lOS 

cells/ml in growth medium. Then 1 ml of the diluted cell suspension was added to 2 m1 

of growth medium in a number of 6-well plates (day 0). Mter 24 h (day 1), the growth 

medium in 3 wells from each plate was replaced by 1.5 m1 of radioactive medium 

containing 2 !JCi/ml myo-[2-3H]-inositol (16-20 Ci/mmol) in growth medium and this 

medium was replaced every 2 days thereafter. For the other 3 wells, the growth medium 

was replaced by 1.5 ml of non-radioactive growth medium after 24 h (day 1) and every 2 

days thereafter. Every day a plate was used either for lipid extraction (for those wells 

that contained labelled cells) or for cell number determination (for unlabelled cells). 

(ii) Lipid extraction 

Lipids were extracted from the radioactively-labelled cells by the method described 

by Creba et al. ( 1983). The medium in the well was discarded and the cells were killed 

by adding 0.5 ml of ice-cold 5% (w/v) TCA. Plates were left on ice for 10 min. Cells 

were then scraped off from the well using a rubber policeman. The TCA cell suspension 

was then transferred to a pyrex tube. The well was washed with 0.5 ml of ice-cold 1% 

(w/v) TCA and these two TCA suspensions were combined and centrifuged at 2000 g 

(rav= 22.3 em) at 4°C for 10 min. The supernatant was discarded and the precipitate was 

washed with 1 ml of ice-cold 1% (w/v) TCA containing 1 mM EDTA and then 
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centrifuged as before. The supernatant was discarded and the pellet was washed with 1 

ml of acidified H20 (pH 4.5-5 using HCl) and was centrifuged as before. The 

supernatant was discarded and lipids were extracted from the pellet by adding 1.5 ml of 

chloroform: methanol: cone HCI (100:100:1, by volume). The mixture was mixed with a 

vortex mixer for 30 sec and left at room temperature for 10 min. It was then centrifuged 

at 2000 g (rav= 22.3 em) at room temperature for 10 min. This extraction was repeated 

once and the supernatants from the two extractions were combined. The pellet was 

further extracted by 1 ml of chloroform: methanol: cone HCl (200:100:1, by volume), 

mixed well and centrifuged as before. The three lipid extracts were combined and to this 

extract was added 1.5 ml chloroform and 1.1 ml 0.1 M HCl. The mixture was mixed for 

30 sec and centrifuged as before. The upper (aqueous) phase was discarded and the 

lower phase was then washed with 2.1 ml of 'synthetic upper phase' (see later), mixed for 

30 sec and centrifuged as before. The lower phase was transferred to a clean tube and the 

remaining upper phase was washed once with 'synthetic lower phase' (see later) and 

centrifuged as before. The two bottom phases were then combined and dried down under 

a stream of OTfree N2. 

(iii) Deacylation of extracted lipids 

Deacylation of the dried lipids was done as described by Creba et al. (1983). To 

the dried lipid, 1 ml of chloroform was added to redissolve the lipid and duplicate 

samples (50 110 were transferred to 20 ml glass scintillation vials using a syringe. The 

lipid in the scintillation vials was then dried down under 02-free N2 and 5 ml of 

Ecoscint A scintillation fluid (National Diagnostic) was added and the radioactivity was 

determined. To the remaining 0.9 mllipid solution, 100 pl of CHCl3 was added followed 

by the addition of 0.2 ml methanol and 0.4 ml of 0.5 M NaOH (in methanol/water, 19:1, 

v/v). The mixture was vortex mixed for 30 sec and was left at room temperature for 20 

min. After 20 min, I ml of chloroform, 0.6 ml methanol and 0.6 ml distilled water were 
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added to it and mixed with a vortex mixer for 30 sec. The suspension was then 

centrifuged at 2000 g (rav= 22.3 em) for 10 min at room temperature. Of the upper 

phase, I ml was removed and was neutralised with 600 ).II of 0.1 M boric acid. This 

sample was then diluted with distilled water to 5 ml, together with the addition of 0.1 M 

sodium tetraborate so as to give a final concentration of 5 mM sodium tetraborate. The 

deacylated lipids were then separated by BioRad anion exchanger. 

(iv) Separation of deacylated lipids on anion exchanger 

BioRad anion exchange resin (AG 1-X8, 200-400 mesh, formate form) was 

packed into a plastic pipette (2 em x 0.6 em i.d.) containing a small plug of plastic wool. 

The column was washed with 20 ml of H20. The deacylated lipids were then applied to 

the column. After complete drainage of the sample through the column, the deacylated 

lipids were eluted as described by Creba et al. (1983): 

20 ml 0.18 M ammonium formate/5 mM sodium tetraborate 

(elute glycerophosphoinositol (GroPins) from deacylation of Ptdlns) 

10 ml 0.35 M ammonium formate/0.1 M formic acid 

(elute glycerophosphoinositol4-phosphate (GroPins4P) from 

deacylation of PtdlnsP) 

I 0 ml 0.8 M ammonium formate/0.1 M formic acid 

(elute glycerophosphoinositol4,5-bisphosphate (GroPins 4,5-P2> from 

deacylation of Ptdlns( 4,5)P2) 

The eluates were collected and duplicate 1.5 m1 samples were transferred to 20 rnl 

plastic scintillation vials. To the sample 1.5 ml of methanoVwater (1 :1, v/v) and 15 ml of 

Ecoscint A were added for radioactivity determination. 
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(v) Preparation of synthetic lower and upper phases 

To a large separating funnel, chloroform, methanol and 0.1 M HCl were mixed in a 

10:5:3 proportion (by volume). Mixtures were mixed well and left overnight to allow 

equilibration. The 2 phases were then separated and stored in brown bottles at room 

temperature. 

4.2.4 Effect of heat on inositol phosphate levels 

(i) Labelling of WRK-1 cells 

Cells were harvested from two 25 cm2 flasks, resuspended in a modified growth 

medium, comprising EMEM (containing 11 pM inositol), 5% (v/v) dialysed FBS and 

2% (v/v) dialysed rat serum, 2 mM L-glutamine, penicillin (100 i.u/ml), streptomycin 

(100 J.lg/ml), tylosin (10 J.lg/ml) and non-essential amino acids (1 %, v/v) and the medium 

was buffered to pH 7.4 with 24 mM sodium bicarbonate (designated as inositol-depleted 

medium) at a density of 1 x 1 ()5 cells/mi. Then 1 ml of the diluted suspension was added 

to each well of a number of 6-well plates containing 2 ml of inositol-depleted medium 

(day 0). After 24 h (day 1), medium was replaced by 1.5 ml of inositol-depleted medium 

supplemented with myo[2-3H]inositol at 2 pCi/ml (when samples were going to be 

analysed by HPLC, I 0 pCi/ml of myo[2-3H]inositol was used instead). The cells were 

grown in radioactive medium for 4 days (until day 5) with one medium change on day 3. 

One extra plate was set up and cells were grown in non-radioactive inositol-depleted 

medium, which would be used for cell number determination on the day of the 

experiment. 

(ii) Effect of temperature on inositol phosphate levels 

WRK -1 cells were harvested, seeded and labelled as described in section 4.2.4 (i). 
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On day 5, radioactive medium was removed and cells were washed 3 times with inositol

depleted medium containing 20 mM Hepes, pH 7.4 and 1 ml of the same medium was 

added to each well. Plates were returned to the 37°C incubator for 1 h. After 1 h, the 

cells were washed once with EMEM + 10 mM LiCl + 20 mM Hepes, pH 7.4 (designated 

as medium A) and then 1 ml of medium A was added to each well. Plates were incubated 

at 37°C for l 0 min. Medium A was then replaced with 1 ml of normal growth medium + 

10 mM LiCl + 20 mM Hepes, pH 7.4 (designated as medium B) before sealing plate and 

plates were then submerged in a water bath at 37°C water bath for 5 min before rapid 

transfer and submersion in water baths at various temperatures. Reactions were 

terminated after 30 min (including 1.5 min lag) by addition of 1 ml of ice-cold 10% 

(v/v) perchloric acid (PCA). Inositol phosphates were extracted as described in section 

4.2.5(i) and were separated by BioRad anion exchanger as described in section 4.2.2 (i). 

(iii) Effect of heating duration on inositol phosphate levels 

Experiments were performed either in presence or absence of serum. Cells were 

seeded and labelled as described in section 4.2.4 (i). On the day of the experiment (day 

5) cells were washed as described in section 4.2.4 (ii). Following 1 h incubation at 37°C, 

medium was removed and cells were washed once with medium A and 1 ml of medium 

A was added to each well. Plates were then returned to 37°C incubator for 10 min. 

Medium was then replaced by 1 ml of medium A or medium B (serum-containing 

medium). Plates were sealed and equilibrated under the surface of a 37°C water bath for 

5 min before rapid transfer and submersion in a 47°C bath for 40 sec. A control plate 

containing the same volume of medium and fitted with thermocouple was used in order 

to monitor the temperature and when the medium reached 44°C, the temperature of the 

water bath was rapidly adjusted to 45°C by replacing 1.2 1 of water at 47°C by 1.2 1 of 

water at 9°C. By doing so, the lag period required to achieve 45°C reduced to about 1.5 

min. Some plates were maintained at 37°C as parallel controls. At various times, 
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reactions were terminated by addition of 1 ml of ice-cold 10% (v/v) PCA and inositol 

phosphates were extracted as described in section 4.2.5 (i). Different classes of inositol 

phosphate were separated by BioRad anion exchanger as described in section 4.2.2 (i). 

(iv) Effect of heat shock inducers and serum on inositol phosphate levels 

Cells were seeded and labelled as described in section 4.2.4 (i). On the day of the 

experiment (day 5) cells were washed as described in section 4.2.4 (ii). Following 1 h 

incubation at 37°C, cells were washed once with medium A and 1 ml of medium A was 

added to each well. Plates were then returned to 37°C incubator for 10 min, then the 

medium was replaced by 1 ml of one of the following media: (1) medium A (section 

4.2.4(ii)), (2) 50 J.!M sodium orthovanadate (made up in medium A), (3) 5 mM NaF and 

10 JJM AICJ 3 (made up in medium A), (4) 5% (v/v) ethanol (made up in medium A) (5) 

5% (v/v) non-dialysed FBS and 2% (v/v) non-dialysed rat serum in medium A (medium 

B). 

All of the media were ftlter-sterilised through a 0.22 pm filter (Sartorius) before 

applying to the cells. The plates were then returned to 37°C incubator and reactions were 

terminated by addition of 1 ml of ice-cold 10% (v/v) PCA after 30 min. For the plate to 

be heated at 45°C, 1 ml of medium A or medium B was added to the well, and it was 

equilibrated by submersion in a 37°C bath for 5 min and then heated as described in 

section 4.2.4 (iii). Reactions were terminated after 30 min by addition of 1 ml of ice-cold 

10% (v/v) PCA. Inositol phosphates were extracted as described in section 4.2.5(i) and 

were separated by BioRad anion exchanger as described in section 4.2.2 (i). 

(v) Effect of calcium on inositol phosphate levels 

Cells were seeded and labelled as described in section 4.2.4 (i). On the day of the 
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experiment (day 5) the cells were washed as described in section 4.2.4(ii). Plates were 

returned to 37°C incubator for 1 h. After 1 h, the medium was removed and cells were 

washed once with either medium A (section 4.2.4(ii)) or calcium-free buffer (138 mM 

NaCI, 2.7 mM KCI, 0.5 mM MgCI2, 0.5 mM EGTA, 5.5 mM glucose, 10 mM LiCI and 

20 mM He pes, pH 7.4) and 1 ml of the appropriate medium was added to each well. 

Plates were then returned to 37°C for 10 min. The medium was then replaced by 1 ml of 

either medium A or calcium-free buffer. Plates were sealed and equilibrated under the 

surface of a water bath at 37°C for 5 min and then heated as described in section 

4.2.4(iii). Reactions were terminated at various times by addition of 1 ml of ice-cold 

10% (v/v) PCA. Inositol phosphates were extracted as described in section 4.2.5(i) and 

were then separated by BioRad anion exchanger as described in 4.2.2(i). 

(vi) Response of cells to vasopressin at elevated temperature 

Cells were seeded and labelled as described in 4.2.4(i). On the day of the 

experiment (day 5), cells were washed as described in section 4.2.4(ii) and returned to 

culture. After I h, cells were washed once with medium A and 1 ml of medium A was 

added to each well. Plates were returned to 37°C incubator for 10 min. The medium was 

then replaced by 0.5 ml of medium A and plates were sealed. Plates were submerged in a 

water bath at 37°C for 5 min before submersion in a water bath at 45°C. After 2 min 

incubation at 45°C water bath (including 1.5 min lag period), 1 ml of 600 nM 

vasopressin (made up in medium A) at 45°C was injected into the well whilst keeping 

the plate submerged at 45°C. Control cells were taken through an identical procedure, 

except that all treatments were performed at 37°C. Reactions were terminated at various 

times by addition of 0.5 ml ice-cold 20% (v/v) PCA. Inositol phosphates were extracted 

as described in section 4.2.5(i) and were separated by BioRad anion exchanger as 

described in section 4.2.2(i). 
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(vii) Response of cells to vasopressin post-heating 

Cells were seeded and labelled as described in section 4.2.4(i). On the day of the 

experiment (day 5), cells were washed as described in 4.2.4(ii) and returned to culture. 

After 1 h, cells were washed once with medium A and 1 ml of medium A was added to 

each well. Plates were returned to the 37°C incubator for 10 min, then medium was 

replaced by 0.5 ml of medium A. Plates were sealed and thermoequilibrated by 

submerging in a water bath at 37°C for 5 min before rapid transfer and submersion in a 

water bath at 45°C. After heating for various times the plates were returned to the 37°C 

water bath. After 2 min at 37°C I ml of 600 nM vasopressin (made up in medium A) at 

37°C was injected into the well while keeping the plates submerged at 37°C. Reactions 

were terminated after 30 sec by addition of 0.5 ml of 20% (v/v) ice-cold PCA. Inositol 

phosphates were extracted as described in section 4.2.5(i) and were separated by BioRad 

anion exchanger as described in 4.2.2(i). 

(vii) Dialysing sera 

Sera were dialysed against 70 volumes of 154 mM NaCl and 5 mM Hepes, pH 7.4 

using a dialysis tubing with molecular weight cut-off at 3500 (Medicell, London) at 4°C 

for 48 h with continuous stirring. Dialysed sera were filter-sterilised by passing through 

a 0.22 J.Im filter (Millipore, Herts) and were kept at -20°C until used. 

4.2.5 Extraction and analysis of inositol phosphates 

(i) Quenching and extraction of inositol phosphates 

After addition of PCA to terminate the reaction, phytic acid hydrolysate 

(equivalent to 25 J.Ig of phosphorus), phytic acid solution (equivalent to 1 mg) and 2 mg 
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of BSA (fraction 5) (BSA was added only when cells were heated in serum-free 

medium) were added to each well. Plates were left on ice for 10 min and the cells were 

scraped off from the well with a rubber policeman. The PCA extract was transferred to a 

polystyrene centrifuge tube (Sarstedt, Leicester). Wells were washed once with 1 ml of 

ice-cold I% (v/v) PCA. The two PCA extracts were combined and then left on ice for 10 

min. The protein was pelleted by centrifugation at 3000 g (rav= 9 em) at 4°C for 10 min. 

The supernatant was then transferred to another polystyrene tube and was neutralised 

with a solution containing 1.5 M KOH, 75 mM Hepes and 60 mM EDTA in the 

presence of I 0 !Jl of universal indicator. The potassium perchlorate was left to 

precipitate at 4°C for 2 h, followed by centrifugation at 3000 g (rav= 9 em) at 4°C for 10 

min. The supernatant was then transferred to a siliconised pyrex tube and was diluted to 

20 ml with 5 mM sodium tetraborate-0.5 mM EDT A. The extracts were stored at -20°C 

before separation by BioRad anion exchange column. 

(ii) Preparation of samples for HPLC analysis 

Cells were seeded as described in section 4.2.3(i). After 24 h, medium was 

replaced by 1.5 ml of inositol-depleted medium (section 4.2.4(i)) supplemented with 

myo[2_3H]inositol at 10 JJCi/ml. The cells were grown in radioactive medium for 4 days 

(until day 5) with one medium change on day 3. On day 5, cells were washed 3 times 

with inositol-depleted medium containing 20 mM Hepes, pH 7 .4. Then 1 ml of the same 

medium was added to each well and cells were returned to culture. Mter 1 h cells were 

washed once with medium A and 1 ml of medium A was added to each well. Plates were 

then returned to 37°C incubator for 10 min. Medium A was then replaced with 1 ml of 

medium B, plates were sealed and thermoequilibrated at 37°C for 10 min (by 

submerging in a 37°C water bath) before rapid transfer and submersion in a 45°C water 

bath. Reactions were terminated after 30 min (including 1.5 min lag period) by addition 

of 0.2 ml of ice-cold 30% (w/v) trichloroacetic acid (TCA). Plates were left on ice for 10 
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min, then the cells were scraped off by a rubber policeman. The suspension was 

transferred to a polystyrene tube. The well was washed with 0.5 ml of ice-cold 1% (w/v) 

TCA and the remaining cells were scraped off. The 2 TCA extracts were combined and 

left on ice for 10 min. The protein was precipitated by centrifugation at 3000 g (r av= 9 

em) at 4°C for 10 min. The supernatant was extracted 5 times with 2 volumes of H20-

saturated diethyl ether. The pH of the extract was checked with pH paper to ensure that 

it was neutralised. To the extract 0.1 ml of 180 mM EDTA was added, the samples were 

kept at -20°C until used. The whole extract was used for HPLC analysis as described in 

section 4.2.2(ii). 

(iii) Preparation of inositol trisphosphate isomers for HPLC analysis 

Cells were seeded and labelled as described in section 4.2.5(ii). On day 5, cells 

were treated exactly as described in section 4.2.4(iii). Inositol phosphates were extracted 

as described in section 4.2.5(i). An aliquot (2 m1 out of the 20 ml extract) of inositol 

phosphate extract obtained as described in section 4.2.5(i) was separated by BioRad 

anion exchange column chromatography as described in section 4.2.2(i). Samples that 

showed a marked change in lnsP3 level were then used for HPLC analysis. Firstly, the 

remaining 18 ml extracts were separated by BioRad anion exchanger and the InsP3 

fraction was collected and passed through a 10 m1 wet Dowex column (50W-X8, 20-50 

mesh, H+ form). After the sample drained through the column, 2 x 20 ml of H20 was 

added to the column to wash off the remaining InsP3. The eluant was collected in a 

siliconised pear-shaped flask and was then freeze-dried. To redissolve the freeze-dried 

sample, flasks were washed sequentially with 3 x 0.7 ml H20, the solutions were 

combined and lnsP3 isomers were separated by HPLC using the Partisphere WAX 

column as described in section 4.2.2(iii). 
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(iv) Preparation of phytic acid hydrolysate (Wreggrett et al., 1987) 

Sodium phytate (1 g) was dissolved in 10 ml of 0.1 M sodium acetate/acetic acid 

buffer (pH 4) in a stoppered flask and incubated in a boiling water bath for 8 h. It was 

then cooled and passed down an Amberlite lR-120 column (BDH) in the H+ form to 

conven the mixed inositol phosphates to free acids. The effluent was then freeze-dried 

and redissolved in l ml of H20 and its phosphorus content was determined (Rouser et 

al., 1970). Then, the inositol phosphate composition of the hydrolysate was determined 

on a portion containing 25 J.lg phosphorus. Phytic acid hydrolysate was separated by 

anion exchange chromatography using buffers as described in section 4.2.2(i). The 

eluants were then freeze-dried and the phosphorus content was determined as described 

in Rouser et al. (1970). It was found that phytic acid hydrolysate contained 3.94% InsP1, 

4.7% InsP2- 9.4% InsP3, 25.5% InsP4 and 56.7% InsPs/6 (assuming no cross over of 

InsP5 to InsP 4 fraction). 
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4.3 Results 

Before investigating effects of heat on inositol phosphate levels in WRK-1 cells, it 

was important to carry out preliminary experiments in order to optimise the labelling and 

separation of the inositiol phosphates. Ideally, it would be an advantage to grow cells in 

the presence of a low concentration of inositol, in order to maximise specific 

radioactivity of inositol phosphates when cells were labelled with myo[2-3H]inositol. 

Thus, in a preliminary experiment, WRK-1 cells were grown in the presence of 1 pM or 

11 pM inositol, in growth medium supplemented with 5% (v/v) dialysed FBS and 2% 

(v/v) dialysed rat serum, such that the growth characteristics of WRK-1 cells in low 

inositol medium could be investigated (Figure 4.2). There was a 24 h lag period before 

the cells started to multiply. Cells grown in low-inositol medium (containing 1 pM 

inositol) started to die after 3 days, despite changing the medium 24 h after seeding and 

every 2 days thereafter. For those grown in growth medium containing 11 pM inositol, 

the cells reached confluence after 3 to 4 days with a density of about 8 x 105 cells/well. 

Since cells could not survive in low inositol medium for longer than 2-3 days, this 

medium was not suitable for longer term (4-5 days) labelling which was necessary to 

achieve isotopic equilibrium labelling of inositol lipids. Thus, subsequent experiments 

used growth medium containing I J pM inositol together with 7% (v/v) dialysed sera for 

cell labelling in order to ensure that sufficient time was available for the inositol lipid 

pool to reach equilibrium labelling in cells that were in a healthy state at the time of the 

analysis. 

In order to investigate the effect of heat and agonist on inositol phosphate levels, it 

was necessary to develop a protocol that can separate different classes of inositol 

phosphates. Ion-exchange chromatography which separates inositol phosphates 

according to their degree of phosphorylation, provided a quick and easy method. Several 

separation protocols are available (Dean and Beaven, 1989) and the method described by 
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Maccallum et al. (1989), enabling the separation of inositol phosphates up to lnsP6, was 

adopted. It is known that batch variation in the ion exchange resin exists, so it was 

important to evaluate the elution profiles with inositol phosphate standards for each new 

batch of resin. A typical separation of standards is shown in Figure 4.3 and it was found 

that this elution profile resulted in > 90% recovery of the appropriate standard in the 

appropriate eluant. 

Simple anion-exchange chromatography only separates individual classes of 

inositol phosphate, but it provides a quick way to analyse a large number of samples. 

However, in order to resolve the isomers within a class, HPLC is required. The method 

described by French et al. (1991) using a Partisil SAX column was able to separate 

InsP2 isomers and InsP5 isomers as well as partially separating lnsP3 isomers. However, 

it was found that InsP3 and InsP 4 standards coeluted using the gradient profile described 

by French et al. (1991). When the gradient profile for eluting lnsP3 was changed from 

30% to 45% of 1 M (NH4hHP04 between 65.1 to 95 min, the coelution problem was 

solved and this modified gradient profile was used in this study. A typical separation of 

inositol phosphate standards with a modification of the gradient profile described by 

French et al. (1991) is shown in Figure 4.4. Using this gradient profile, the recovery of 

any particular inositol phosphate standard was about 95%. 

Upon agonist stimulation, Ins( 1 ,4,5)P3 is generated from hydrolysis of 

Ptdlns(4,5)P2. Due to the rapid turnover of lns(1,4,5)P3, the increase in Ins(1,4,5)P3 is 

transient and accompanied by an increase in lns(l ,4,5)P3 metabolites such as Ins(1,4 )P2 

and Ins(l ,3,4,5)P4. Three InsP3 isomers have been identified in WRK-1 cells (Wong et 

a/., 1992) and in many other cell types (Shears, 1992). Since only the Ins(l ,4,5)P3 plays 

a messenger role, a method enabling the separation of these isomers was sought. The 

method described by Wong eta/. (1992) using a Partisphere WAX column was found to 

separate 3 InsP3 isomers extracted from WRK-1 cells upon vasopressin stimulation. The 
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lack of Ins(3,4,5)P3 standard did not allow the determination of the retention time of this 

isomer in this study. Nevertheless, Ins(l ,3,4)P3 and Ins(l ,4,5)P3 standards were 

successfully separated by the gradient profile described by Wong et al. (1992) (Figure 

4.5). 

Following the establishment of the methods for inositol phosphate separation, it 

was necessary to determine the time required for inositol lipids to achieve equilibrium 

labelling for WRK-1 cells growing in the presence of myo[2-3H]inositol. This is 

important to ensure that the changes in radioactivity in [3H]inositol phosphates, formed 

from inositol lipid hydrolysis upon agonist stimulation or heat treatment, are a true 

reflection of the mass of the inositol phosphates. 

There are at least three types of inositol lipids present in the membrane, including 

phosphatidylinositol (Ptdlns), phosphatidylinositol 4-phosphate (Ptdlns4P) and 

phosphatidylinositol 4,5-bisphosphate (Ptdlns(4,5)P2). Once the [3H]inositol enters the 

cells, it can be incorporated into these three inositol lipids via the following route: 

Myo-[2-3H]-inosito7" "\ [3H]Ptdlns ~ [3H]Ptdlns4P ~ [3H]Ptdlns(4,5)P2 

CDP-DAG CMP 

In order to determine the kinetics of labelling of these inositol lipid pools, WRK-1 

cells were exposed to myo[2-3H]inositol for up to 6 days and the incorporation of 3H 

into total inositol lipids and individual classes of inositol lipids was determined 

everyday. Various methods have been established for extracting polyphosphoinositides 

from tissues and cells, but only acidified solvents achieve a substantial extraction of 

Ptdlns(4,5)P2 (Creba et al., 1983). Thus the method described by these authors was used 

for phospholipid extraction from the WRK-1 cells, previously labelled with myo[2-

3H]inositol. The phosphoinositides could have been separated directly by affinity 
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chromatography on neomycin beads (Kirk et al., 1990b), thin-layer chromatography 

(Simpson et a/., 1992) or HPLC. However, an alternative separation method which 

involved the conversion of these lipids to the water soluble glycerophosphoinositol 

derivatives, followed by the separation of these derivatives on anion exchange columns 

(Creba et a/., 1983; Simpson et a/., 1992) was adopted in this study. Following 

deacylation: 

Ptdlns gives rise to glycerophosphoinositol (GroPins) 

Ptdlns(4)P gives rise to glycerophosphoinositol4-phosphate (GroPins4P) 

Ptdlns(4,5)P2 gives rise to glycerophosphoinositol4,5-bisphosphate (GroPins 4,5-P2) 

The time-course of incorporation of myo[23H]inositol into total inositol lipids of 

WRK-1 cells is shown in Figure 4.6a. A biphasic incorporation was observed, with an 

initial plateau at 3-5 days, followed by a large increase when cells were labelled for 6 

days. This large increase in radioactivity could be due to an expansion in cell volume 

(C.J. Barker, personal communication) as the cells reached confluence (deduced from 

the growth curve on the same Figure). Thus it can be concluded that at least 3 days 

labelling is required for the cells to reach equilibrium labelling as far as total inositol 

lipid was concerned. 

As mentioned earlier, at least 3 different inositol lipids are present, and the rate of 

incorporation of [3H]inositol may vary in different classes. For example it would be 

expected that Ptdlns precursor would be more rapidly labelled than the 

polyphosphoinositide products derived from it. Thus it was necessary to analyse time

dependent changes in labelling of the individual inositol lipid classes (Figure 4.6b-4.6d). 

A biphasic incorporation was observed in all 3 different classes. For [3H]inositol 

incorporation into Ptdlns and Ptdlns(4)P, an initial plateau was observed at 3-5 days 

followed by a larger increase when cells were labelled for 6 days. A biphasic 

159 



incorporation into Ptdlns(4,5)P2 was observed and gave a maximal incorporation after 3 

days and slight decrease in radioactivity after 4 and 5 days labelling. The level of 

radioactivity started to increase again after 6 days. Thus at least 3 days labelling is 

required for all 3 classes of inositol lipid to reach the initial phase of equilibrium 

labelling. It must be pointed out here that the equilibrium labelling experiment was done 

in growth medium containing 11 pM inositol (EMEM medium) but with non-dialysed 

sera. Thus the results obtained from this experiment was only a guideline for the time 

required for cells to achieve equilibrium labelling with myo[2-3H]inositol. Since the 

inositol content was depleted in dialysed serum, inositol-depleted medium, containing 

dialysed serum, was employed during labelling in order to maximise the incorporation of 

myo[2-3H]inositol into inositol lipids. 

Since cells in each well would be processed separately during future experiments, 

it was important to ensure that there was sufficient radioactive material to enable the 

analysis of inositol phosphates in each sample. Therefore 4 days labelling was chosen as 

an optimum labelling period for future work. At this time, cells were approaching 

confluence and had achieved the initial phase of equilibrium labelling. 

Several methods are available for the extraction of inositol phosphates from cells. 

However one point worth mentioning here is that loss of InsP 4 has been observed during 

extraction owing to the binding of this compound to the plastic tubes frequently used in 

this work (Wreggett et al., 1987). The loss of this inositol phosphate may distort the 

picture of inositol phosphate fluxes and lead to misinterpretation of the effect of heat

induced changes in inositol phosphate formation. It has been reported that this loss of 

InsP 4 can be overcome by increasing the mass of this metabolite, by addition of phytic 

acid hydrolysate, in thymocytes during extraction (Wreggett et a/., 1987). Thus in this 

study, phytic acid hydrolysate (equivalent to 25 pg of phosphorus) and phytic acid 

solution (equivalent to 1 mg of phytic acid) were included in the samples to prevent the 
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loss of InsP 4 during extraction. 

Once the methods for labelling, extraction and separation of inositol phosphates 

had been established, the effect of heat on the phosphoinositide signalling pathway of 

WRK-1 cells was investigated. 

Due to the rapid turnover of Ins( 1 ,4,5)P3 to replenish the inositol pool, it is 

virtually impossible to prevent the Ins(l ,4,5)P3 being completely dephosphorylated to 

inositol. Thus, in all the heating experiments 10 mM LiCl was included in the heating 

medium, in order to avoid total dephosphorylation oflns(1,3,4)P3 and Ins(1,4)P2 to free 

inositol through the inhibition of Ins(l,3,4)P:VIns(1,4)P2 !-phosphatase and inositol 

monophosphatase (Berridge eta/., 1989). Heating WRK-1 cells at various temperatures 

for 30 min resulted in a statistically significant increase (p< 0.05) in InsP1 level in cells 

heated at 39°C but no difference was observed for temperatures above 39°C (Figure 

4.7a). Conversely, an increase in InsP2 level became significance at or above 42°C (p< 

0.05) compared with 37°C control (Figure 4.7b). On the other hand, a significant 

increase (p< 0.05) in InsP3 was only observed in cells heated at 45°C for 30 min (Figure 

4.7c). Separation of InsP4 and InsPs/6 on anion exchange columns with buffers 

described in section 4.2.2(i) resulted in a relatively high radioactivity count in the InsP 4 

fraction (data not shown). Since it has been reported that InsP5 accounts for a relatively 

large proportion of the inositol phosphates in many cell types, including WRK-1 cells 

(Barker et a/., 1992), this led to the suspicion that InsP5 may have contaminated the 

InsP 4 fraction. However, the lack of an InsPs standard made it difficult to identify the 

position of InsP5 elution. Due to this reason, InsP 4, InsP5 and InsP6 fractions were 

pooled together for analysis. A fluctuation in the lnsP 41516 fraction was observed as 

temperature changed, but no significant difference in InsP 4/5/6 was detected for cells 

heated at various temperatures when compared with cells incubated at 37°C (Figure 

4.7d). 
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In order to detennine the effect of heat on inositol phosphate isomers in WRK-1 

cells, the 3H-Iabelled inositol phosphates were extracted from cells heated at 45°C for 30 

min then the isomers were separated by HPLC. WRK-1 cells were labelled to high 

specific activity by growing the cells in 10 pCi/ml of myo[2-3H]inositol in inositol

depleted medium for 4 days, followed by heating at 45°C for 30 min in normal growth 

medium containing 10 mM LiCl, 20 mM Hepes, pH 7 .4. A typical HPLC separation of 

inositol phosphates and some of the isomers from these cells is shown in Figure 4.8. The 

radioactivity present in individual peaks was added together (Table 4.1). Statistical 

analysis of individual inositol phosphate fractions by Student's t-test suggested that only 

Ins(l ,3)P2 and Ins(?)P2 fractions showed a significant increase in heated cells (p<0.05) 

compared with unheated control levels. Although the HPLC method allowed separation 

of InsP 4, InsP5 and InsP6, this was a time-consuming method and was not suitable for 

multiple routine analyses. Thus, simple anion exchange chromatography was used for 

future routine analyses but, since this sometimes resulted in coelution of InsP 4 and 

InsP5, the InsP 41516 fractions were pooled together and treated as a single fraction. 

To investigate the effect of heating time on inositol phosphate levels, myo[2-

3H]inositol labelled WRK-1 cells were heated in the presence of serum at 45°C for 

various times (up to 45 min). No significant difference was found in levels of 3H-InsP1 

(Figure 4.9a), 3H-InsP3 (Figure 4.9c) and 3H-InsP4/5/6 levels (Figure 4.9d) between 

heated and unheated cells. On the other hand, a significant increase in 3H-InsP2 was 

found in heated cells at 5 min onwards (p<0.05) (Figure 4.9b). 

Heating in the presence of sera can mimic the physiological environment, but 

addition of serum-containing medium just before heating may trigger the hydrolysis of 

inositol lipids and may alter the response of the phosphoinositide signalling system to 

heat. In addition, using serum-free medium enabled investigation of the response of cells 

to vasopressin during or following heating without the complications of serum-triggered 
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turnover of inositol lipids. Thus, the rest of the experiments described below were 

performed in serum-free conditions unless specified. 

Heating myo[2-3H]inositol labelled WRK-1 cells at 45°C in serum-free medium 

for up to 20 min resulted in an elevation in 3H-InsP2 which was observed after heating 

for 8 min and the level remained significantly elevated for up to 20 min (p<0.05) (Figure 

4.10b). On the other hand, a transient but significant increase (p<0.05) in InsP3 was 

observed at II min heating (Figure 4.10c). Heat did not produce any significant changes 

in InsP1 and InsP 4/5/6 levels (Figure 4.10a & 4.10d). 

However, anion exchange chromatography can only separate different classes of 

inositol phosphate and is unable to resolve the isomers. In WRK-1 cells, 3 InsP3 isomers 

have been identified upon vasopressin-stimulation (Barker et al., 1992; Wong et al., 

1992). Hence it is necessary to separate the isomers in order to determine which InsP3 

isomer(s) are affected by heat. 

The experiment was performed by labelling WRK-1 cells to higher specific 

activity by using 10 J.1Ci/ml myo[2-3H]inositol. The previous experiment (Figure 4.10c) 

demonstrated an increase in lnsP3 after approximately 11 min at 45°C but other similar 

experiments showed that this optimum time varied slightly (results not shown). In order 

to determine the time at which the biggest increase in InsP3 occurred, cells were heated 

at 45°C for various periods from 8 min to 12.5 min. An aliquot from the PCA extract 

was then separated on anion exchange columns. It was found that cells heated for 11 min 

at 45°C gave the biggest and most significant elevation (p<0.05) in InsP3 level, resulting 

in a 33% increase in InsP3 level compared with unheated control level (Figure 4.1lc). 

Thus the remaining extract corresponding to this heating time was separated on a simple 

anion exchange column, and the eluant corresponding to the InsP3 fraction was desalted, 

freeze-dried and separated on HPLC. A typical separation of InsP3 isomers is shown in 
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Figure 4.12. The identification of different InsP3 isomers was based on the separation of 

Ins(l ,4,5)P3 and Ins(l ,3,4)P3 standards, but the lack of Ins(3,4,5)P3 standard did not 

allow the determination of the retention time of this isomer, and its identification was 

based on the chromatogram shown in Wong et al. (1992). Although there was an 

increase in mean dpm count in heated cells in all 3 isomers, the difference in levels of 

these isomers was statistically insignificant when analysed by Student's t-test analysis 

(Table 4.2). 

It has been reported that the activation of PLC required an elevated level of 

cytosolic free calcium (Rhodes et a/., 1983; Gallo-Payet and Payet, 1989). The 

dependency of the activation of PLC on calcium upon heating has been investigated in 

A-431 cells (Kiang and McClain, 1993). It was reported that heat caused an elevation of 

[Ca2+Ji and this increase in [Ca2+]i preceded the increase in InsP3 levels. Furthermore, 

the increase in InsP3 upon heating was not detected when cells were heated in calcium

free buffer. This result led to the proposal that a heat-induced increase in [Ca2+]i 

activates a calcium-dependent PLC, which then hydrolyses Ptdlns(4,5)P2, to increase 

InsP3 (Kiang and McClain, 1993). Similarly, Calderwood and Stevenson (1993) found 

that incubation of CHO HA-l cells in calcium-free (EGTA containing) buffer for 1-3 h 

before heating at 43°C for 30 min abolished the heat-induced increase in InsPI> InsP2 

and InsP3 levels in these cells. In order to investigate the effect of calcium on the heat

induced increase in InsP3 in WRK-1 cells, these cells were heated at 45°C in either 

calcium-free buffer (together with 0.5 mM EGTA) or EMEM medium. At the same 

time, some plates with cells incubated in either buffer were kept in a 37°C water bath as 

parallel controls. It was found that the magnitude of the increase in the 3H-InsP3 level 

was similar for cells heated in either calcium-free buffer or EMEM medium, though the 

InsP3 reached maximal levels at a different time (Figure 4.13c). An InsP3 peak occurred 

at 11 min when cells were heated in EMEM medium, whereas for cells heated in 

calcium-free buffer the lnsP3 reached a maximum after 9.5 min, both heating conditions 
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resulting in a 50% increase compared with the parallel unheated control. 3H-InsP3 levels 

then declined to control levels after 12.5 min heating (Figure 4.13c). When levels of 

other inositol phosphates were determined, a 20% increase in InsP2 levels was observed 

in cells heated in EMEM medium compared with the parallel control at 8 and 9.5 min 

heating whereas only 5% increase in InsP2 level was found in cells heated in calcium

free buffer compared with the parallel control at those time points (Figure 4.13b). The 

magnitude of the increase in InsP1 levels was similar in cells heated in either condition 

compared with the parallel controls, except at 9.5 min when the increase in InsP1 was 

higher in cells heated in EMEM compared with cells heated in calcium-free buffer 

(Figure 4.13a). On the other hand, InsP 4/5/6 levels declined slightly in cells heated in 

EMEM or calcium-free buffer compared with parallel controls throughout the 12.5 min 

heating period (Figure 4.13d). Thus extracellular calcium was unnecessary for the heat

induced changes in inositol phosphates, at least within the 8 to 12.5 min heating period 

at 45°C. 

In order to investigate the effect of a variety of agents, including heat, ethanol, 

sodium orthovanadate, AIF4- and sera, on the phosphoinositide signalling pathway, 

[3H]inositol-labelled WRK -1 cells were incubated at 37°C in an air/C02 (19: 1, v/v) 

atmosphere with the appropriate substance for 30 min (Table 4.3). No significant 

difference was found in InsP1, InsP2 and InsP 41516 fractions when cells were incubated 

in ethanol, sodium orthovanadate, AIF4- and sera or when heated at 45°C when 

compared with levels obtained from cells incubated at 37°C with EMEM for the same 

period. A statistically significant increase in 3H-InsP3 level was found in cells heated in 

EMEM at 45°C for 30 min or cells incubated in AlF 4- at 37°C for 30 min when 

compared with unheated control (incubated in serum-free EMEM medium at 37°C for 

30 min) (p<0.05). On the other hand, the difference in 3H-InsP3 level was insignificant 

in cells incubated in 5% (v/v) ethanol or sodium orthovanadate at 37°C for 30 min 

compared to control cells. When cells were incubated in the presence of 7% (v/v) sera in 
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EMEM + I 0 mM LiCl at 37°C for 30 min, an increase in the mean dpm values of 3H

InsP3 was observed compared to cells incubated at 37°C in EMEM only, but this 

difference was insignificant. However, 3H-InsP3 levels in cells heated at 45°C for 30 

min in serum-containing medium were significantly higher (p<0.05) than in cells 

incubated in serum-free EMEM medium at 37°C for the same period, but were not 

significantly different from the 3H-InsP3 level in cells incubated at 37°C for 30 min in 

serum-containing medium (Table 4.3 ). 

In order to determine the influence of heat on a hormone-stimulated signalling 

system, the response of WRK-1 cells to vasopressin under hyperthermic conditions (at 

45°C) was investigated. Cells were incubated at either 37°C or 45°C for 2 min 

(including 1.5 min lag period), then vasopressin, in EMEM medium (containing 10 mM 

LiCI and 20 mM Hepes, pH 7.4 ), at either 37°C or 45°C was injected into the well 

quickly to give a final concentration of vasopressin of 400 nM. For unchallenged cells, 1 

ml of the same medium without vasopressin at either 37°C or 45°C was added to the 

well as parallel control. By using this protocol the medium in the well after vasopressin 

addition remained at the desired temperature. Accumulation of InsP1 and InsP2 were 

observed about 10 s after addition of vasopressin to unheated cells, whereas 

accumulation of lnsP1 was not detected in heated cells throughout the 2 min vasopressin 

stimulation period (Figure 4.14a). Accumulation of InsP2 in heated cells was more 

gradual compared to unheated cells throughout the 2 min vasopressin stimulation (Figure 

4.14b). On the other hand, a 5-6 fold increase in InsP3 was observed in heated cells 

whereas only a 2-fold increase in InsP3 was observed in unheated cells during 2 min 

vasopressin stimulation (Figure 4.14c). An increase of approximately 4-fold was 

observed in the InsP 41516 fraction following vasopressin stimulation of heated cells, 

whereas no change occurred in the InsP 41516 level in control cells exposed to vasopressin 

(Figure 4.14d). 
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It has been suggested that heat may alter the response of cells to growth factors and 

hormones (Mikkelsen et al., 1991a). To address this possibility, WRK-1 cells were 

heated at 45°C for up to 40 min and then returned to 37°C for 2 min to allow the 

equilibration of the medium back to 37°C. The cells were then stimulated with 

vasopressin for 30 sec at 37°C, while the serum-free EMEM vehicle was added to 

control wells. In the absence of vasopressin, the levels of InsP1 in both heated and 

unheated cells were similar (Figure 4.15a). Upon vasopressin stimulation, the mean dpm 

in InsP1 levels in both unheated and heated cells were higher than those without 

stimulation but the difference was statistically insignificant. Heat alone led to a 

significant increase (p<0.05) in InsP2 level at 30 min and 40 min compared with 

unheated cells (Figure 4.15b). Upon vasopressin stimulation, a significant increase (p< 

0.05) in InsP2 levels in both heated and unheated cells compared with unchallenged cells 

was observed. However, the levels of lnsPz in heated, vasopressin-stimulated cells was 

insignificantly different from those obtained in unheated, vasopressin-stimulated cells 

(Figure 4.15b). Similarly, the level of InsP3 in cells heated at 45°C was higher than 

unheated cells, but a significant difference (p<0.05) was observed at 30 min heating only 

(Figure 4.15c). The InsP3 levels in heated or unheated cells upon vasopressin stimulation 

were significantly higher than unchallenged cells (p<0.05), even after cells were heated 

for 40 min before challenging. However, the difference between heated and unheated, 

stimulated cells was insignificant. On the other hand, no difference was observed in 

InsP 41516 levels in vasopressin-stimulated and unchallenged cells or heated and unheated 

cells (Figure 4.15d). The results found in this study showed that generally there was an 

increases in lnsP 1, InsP2 and InsP3 fractions in cells challenged with vasopressin at 37°C 

compared to unchallenged cells, but upon vasopressin stimulation, both heated and 

unheated cells gave a similar InsP1o InsPz, InsP3 and InsP41516 levels (Figure 4.15a-d). 

These results imply that the vasopressin receptor-mediated signalling system remained 

intact following treatment at 45°C for up to 40 min, a treatment that would eventually 

kill more than 95% of WRK-1 cells, determined by the MTT assay (Figure 3.8). 
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Figure 4. 7. Effect of different temperatures on inositol phosphate levels 

Cells were harvested and seeded in a no. of 6-well plates at a density of 100,000 

cells with each well containing 3 ml of inositol--depleted medium. On the following day 

(day 1 ), cells were labelled with radioactive medium (2 pCi/ml of myo[2-3H]inositql 

made up in inositol-depleted medium and 1.5 ml per well was used) and the medium was 

changed on day 3. On the day of the experiment (day 5) radioactive medium was 

removed ahd cells were washed 3 times with non-radioactive inositol-depleted mediutin 

containing 20 mM Hepes, pH 7.4 and 1 ml of this medium was added to each well, 

plates were then returned to culture. After 1 h, medium was removed and cells were 

washed with I ml of EMEM medium + 10 mM LiCl + 20 mM Hepes, pH 7.4 (medium 

A) and then l ml of medium A was added to each well. The plates were incubated at 

37°C for 10 min then medium was replaced with 1 ml of growth medium+ 10 mMLiCl 

+ 20 mM Hepes, pH 7.4 (medium B) before sealing plates. Plates were then equilibrated 

by submersion in a 37°C water bath for 5 min before rapid transfer and submersion in a 

water bath at varying temperatures. The reactions were terminated after 30 mi[n 

(including 1.5 min lag period) by addition of 1 ml ice-cold 10% (v/v) PCA. Inositol 

phosphates were then extracted and separated by BioRad anion exchange columns. 

Values represent mean ±SEM from three independent measurements (n=3). 
1 

The 1.5 min lag period was included in the heating time reported. 

*found to be significantly different (p<0.05) from control value (37°C) by ':!Sing 

Student's t-test analysis. 
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Figure 4.8. HPLC separation of inositol phosphates from heat-treated 

WRK-1 cells 

WRK-1 cells were seeded into a no. of 6-well plates at a density of 100,000 eel~ 

with each well containing 3 ml of inositol-depleted medium. After 24 h, cells were 

labelled with radioactive medium (1 0 pCi/ml of myo[2-3H]inositol made up in inositol

depleted medium and 1.5 ml of the medium was used per well) and the medium was 

changed on day 3. On the day of the experiment (day 5) radioactive medium was 

removed and cells were washed 3 times with non-radioactive inositol-depleted medium 

and 1 ml of this m~dium was then added to each well. The plates were ~eturned to the 

37°C incubator for 1 h. After 1 h, medium was removed and cells were washed once 

with 1 ml of EMEM medium + 10 mM LiCl + 20 mM Hepes, pH 7.4 (medium A) and 

then 1 ml of medium A was added to each well. The plates were incubated at 37°C for 

10 min then the medium was replaced with 1 ml of normal growth medium + 10 mN1 

LiCl + 20 mM Hepes, pH 7.4 (medium B) before sealing. Plates were then equilibrated 

by submersion in a 37°C water bath for 5 min before rapid transfer and submersion in Ia 

water bath at 45°C for 30 min ( 1.5 min lag period was included). The reactions were 

terminated by addition of 0.5 ml ice-cold 1% (v/v) TCA. Inositol phosphates were then 

extracted and the whole extract was separated on HPLC using a Partisphere SAK 

column together with a pellicular guard column. The gradient profile used was described 

in section 4.2.2(ii). 

Diagram represents a typical HPLC separation of inositol phosphates of a sample. 
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compound unheated heated %of control 

lns(l)Pt 66833±2302 67174±2951 101 

lns(?)Pt 3452±285 4512±1566 131 

lns(1,3)P, 15033±266 18910±810* 126 

lns(1,4)P, 13155±875 13369±797 102 

lns(?)P, 10639±437 11132±531 105 

lns(?)P, 9857±536 13146±213* 133 

lns(1,3,4)P1 8153±372 8004±161 98.2 

lns(1,4,5/3,4,5)P1 23308±305 30957±2195 133 

InsP4 55225±1722 49862±2710 90.3 

lns(1,3,4,5,6)P" 720702±49552 692350±87021 96.1 

lns(2,3,4,5,6)P" 14207±735 12513±335 88.1 

InsPt~ 156646±3692 117879±8485 75.4 

totallnsP1 70283±1753 71686±2442 102 

totallnsP1 48684±1660 56557±1849 117 

totallnsP1 31461±541 38961±1918 123 

totallnsP _s_ 734909±40723 704863±71253 95.9 



Figure 4. 9. Effect of heating duration on inositol phosphate levels 1n 

serum-containing medium 

Cells were harvested and seeded in a no. of 6-well plates at a density of lOQ,OOO 

cells with each well containing 3 ml of inositol-depleted medium. On the following. day 

(day 1), cells were labelled with radioactive medium (2 J.!Ci/ml of myo[2_3H]inositol 

made up in inositol-depleted medium and 1.5 ml per well was used) and the medium was 

changed on day 3. On the day of the experiment (day 5) radioactiv~ medium .was 

removed and cells were washed 3 times with non-radioactive inositol-depleted medium 

containing 20 mM Hepes, pH 7.4 and 1 ml of this medium was added to each well, 

plates were then returned to culture. After 1 h, medium was removed and cells were 

washed with I ml of EMEM medium + I 0 mM LiCl + 20 mM Hepes, pH 7.4 (medium 

A) prewarmed at 37°C and then I ml of medium A was added to each well. The plates 

were incubated at 37°C for 10 min and medium was replaced with 1 ml of normatl 

growth medium + 10 mM LiCl + 20 mM Hepes, pH 7.4 (medium B) before sealin!g 

plates. Plates were then equilibrated by submersion in a 37°C water bath for 5· min 

before rapid transfer and submersion in a 45°C water bath. The reactions were 

terminated at various times by addition of 1 ml ice-cold 10% (v/v) PCA. Ino~itml 

phosphates were then extracted and separated by BioRad anion exchange columns. 

Values represent mean ±SEM from three independent measurements (n=3). 

The 1.5 min lag period was included in the heating time reported. 

176 



, -
CD 
u 

D 
0 ..... -E 
a. 
"D 

2000 

1800 

1600 

1400 

1200 

Figure 4.9a. Inositol monophosphate formation 
during heating 

10 0 0 --r-~---.; -----,---,-----,--------c--------,--.-----.---------,-----1 

0 

14 

13 
, -
CD 12 u 

CD 
0 11 ..... -C') 

0 10 ..... 
>< 
E 
a. 

"D 9 

8 

7 

0 

10 20 30 40 

Time (min) 

Figure 4.9b. Inositol bisphosphate formation 
during heating 

T 
! 

10 20 30 40 

Time (min) 

50 

50 



Figure 4.9c. Inositol trisphosphate formation during 
heating 
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Figure 4.10a. Inositol monophosphate formation 
during heating in serum-free medium 
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Table 4.2. Separation of inositol trisphosphate isomers using HPLC 

The values represent the total radioactivity in each inositol trisphosphate peak and 

correspond to the mean dpm count± SEM from three independent measurements (n=3). 

Values were then analysed by Student's t-test. 

isomer unheated heated %of control 

Ins(l ,3,4)P1 1359±156 1554±149 114 

Ins( 1 ,4,5)P~ 13521±1195 15112±2410 112 

Ins(3,4,5)P1 3869±235 4038±189 104 

total InsP3 18749±718 20704±2100 110 

No significant difference was found between corresponding isomers from heated and 

unheated cells when analysed by Student's t-test. 
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Figure 4.13a. Effect of extracellular calcium 
on inositol monophosphate level at 45°C 
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Figure 4.13c. Effect of extracellular calcium 
on inositol trisphosphate level at 45°C 
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Treatment InsP1 lnsP2 InsP1_ InsP41516 

EMEM (37°C) 1017±25.0 7621±131 8213±498 163128±5137 

Ethanol (5%) 873±125 8362±524 9933±937 160339±1188 
(37°C) 
sodium 
orthovanadate 821±52.0 7657±312 8952±477 162791±1386 
(50 liM) (37°C) 

AIF4- (5 mM NaF. 741±38.8 8203±389 9907±442* 159243±1166 
10 liM A1Ch)(37 °C) 

EMEM(45°C) 939±52.6 8729±684 9912±385* 163747±5418 

EMEM+ 7%sera 1301±51.9 8014±789 10398±1622 173029±7844 
(37°C) 

EMEM+ 7%sera 1114±14.2t 7154±81.7 17044±236* 180489±7088 
(45°C) 
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Figure 4.14b. Formation of inositol bisphosphate 
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Figure 4.14c. Formation of Inositol trisphosphate 
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Figure 4.14d. Formation of lnsP 41618 
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Figure 4.15a. Inositol monophosphate formation in 
heated WRKD1 cells upon vasopressin stimulation 
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4.4 Discussion 

The effect of heat on the phosphoinositide signalling pathway can be determined 

by measuring inositol lipids levels or by measuring the levels of its products such as 

inositol phosphates generated from hydrolysis of inositol lipids. In this study the effect 

of heat on this signalling pathway was investigated by measuring the levels of inositol 

phosphates generated from myo[2-3H]inositol-labelled WRK-1 cells in both heated and 

unheated cells. The relatively small amount of inositol lipids that are present in 

membranes and the rapid turnover of inositol trisphosphate and its metabolites means 

that methods that can efficiently detect the changes are necessary. Radioactive isotopes 

such as [3H]inositol and [32P]orthophosphate have proved to be valuable tools for the 

study of this signalling pathway. In this way, the degradation of inositol lipids and the 

formation of inositol phosphates in the cell pre-labelled with the radioactive precursor 

can be followed. As long as the inositol lipid pools have been labelled to equilibrium, the 

changes in radioactivity reflect the changes in mass. 

In order to maximise the incorporation of myo[2-3H]inositol precursor into the 

inositol lipids, inositol-depleted medium should be used during labelling. Many cell 

types have been labelled in inositol-depleted medium. For example, labelling of WRK-1 

cells was performed in medium containing 1 pM inositol, together with dialysed sera 

(Wong eta/., 1988), while CHO HA-l cells were labelled in medium containing 5 pM 

inositol and 0.2% FBS (instead of 10% FBS in growth medium) (Calderwood and 

Stevenson, 1993). HL-60 cells were labelled with medium containing inositol (5 pM) 

and dialysed serum (French et al., 1991). In the preliminary experiment of this study, the 

growth characteristics of WRK -1 cells in growth medium containing dialysed sera (made 

up in inositol-free EMEM medium), supplemented with 1 pM or 11 pM inositol were 

investigated. When cells were grown in medium containing 1 pM inositol, the cell 

number decreased after 3 days, whilst for cells grown in medium containing 11 pM 
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inositol, the cell density reached a plateau (at 8 x lOS cells) after 3 days and was 

maintained at about 8 -9 x 1 os cells/well for up to 6 days. It has been shown previously 

that WRK-1 cells grown in low inositol medium (less than 0.7 pM inositol) resulted in 

ill-health after 3 days, even when the medium was changed on day 3 (Maccallum eta/., 

1989). By using [U-3H]-glucose, Maccallum and co-workers (1989) further 

demonstrated that at least 95% of the inositol used for lipid synthesis in these cells was 

obtained from exogenous sources. Since it was important to maintain cell growth during 

labelling procedures, it was decided that, in subsequent experiments, cells should be 

labelled with myo[2-3H]inositol in the presence of 11 pM inositol and dialysed sera. 

This inositol concentration was sufficient to allow healthy cell growth, coupled with 

substantial labelling of inositol lipids and the related inositol phosphates, during a 4 day 

period of labelling. 

The effect of heat on the phosphoinositide signalling pathway was investigated in 

WRK-1 cells. Due to the rapid turnover of Ins(1,4,5)P3 and its metabolites, any newly 

formed inositol is uncounted for in such flux analysis. Thus 10 mM LiCl was added to 

all of the samples in this study to prevent complete dephosphorylation of inositol 

phosphates through the inhibition of Ins(1,4)P21'1ns(l,3,4)P3 }-phosphatase and inositol 

monophosphatase by u+ (Berridge et al., 1989). When WRK-1 cells were heated at 

various temperatures (39°C-45°C) for 30 min in serum-containing medium, increases in 

the levels of 3H-InsP2 and 3H-InsP3 were observed. Furthermore, the magnitude of the 

increase in 3H-InsP2 and and 3H-InsP3 was temperature-dependent. Elevation in 3H

InsP2 was observed at 42°C and increased as temperature increased, to 124% of parallel 

control (30 min at 37°C) after 30 min at 45°C. On the other hand, the elevation in 3H

InsP3 was observed only in cells heated at 45°C, resulting in 141% of parallel control 

values (30 min at 37°C). No significant difference was observed in 3H-InsP1 and 3H

InsP 41516 fractions in cells heated at various temperatures compared with the 37°C 

control. When cells were heated at 45°C for up to 45 min in serum-containing medium, 
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an increase m 3H-InsP2 level was observed at 5 min and the level increased as the 

heating duration increased, whereas no significant changes in any other inositol 

phosphate levels were observed. This could be due to a rapid turnover of inositol 

trisphosphate to its metabolites. This finding was consistent with the HPLC separation of 

inositol phosphates extracted from cells heated at 45°C for 30 min in serum-containing 

medium, in which a significant increase in lns(l ,3)P2 and Ins(?)P2 were observed (p< 

0.05). The increase in the Ins(l ,3)P2 fraction could be explained as heat-induced 

increase in Ins(l ,4,5)P3, which was then phosphorylated to Ins(l ,3,4,5)P 4 by 3-kinase, 

then dephosphorylated to Ins(l ,3,4)P3 followed by further dephosphorylation to 

Ins(l ,3)P2 and Ins(3,4)P2. It is likely that the presence of 10 mM Li+, being an inhibitor 

of the Ins (I ,3 ,4 )P3 !-phosphatase, potentiated the accumulation of Ins(l ,3)P2 but 

suppressed the level of Ins(3,4)P2, thus resulting in an increase in Ins(1,3)P2. It has been 

shown in WRK-1 cells that the presence of 10 mM Li+ led to an accumulation of 

Ins(l ,3)P2 accompanied by a suppression of lns(3,4)P2 levels upon 10 min vasopressin 

stimulation, compared with Ins(l ,3)P2 and lns(3,4)P2 levels obtained from cells 

challenged with vasopressin in the absence of Li+. When 30 mM u+ was used, the level 

of Ins( I ,3)P2 increased further together with a further suppression in Ins(3,4)P2 (Barker 

eta/., 1992). The results obtained from HPLC analysis also suggested that there was 

indeed a cross-over of InsP5 into the InsP4 fraction when analysed on simple anion 

exchange columns, as a relatively high dpm count was obtained in the 1.05 M 

ammonium formate/0.1 M formic acid eluate from these columns. Furthermore, HPLC 

analysis and results reported previously (Wong et al., 1992) also suggested that InsP5 

accounted for the highest inositol phosphate level in WRK-1 cells. No significant 

differences were observed in other inositol phosphate isomers when analysed by HPLC. 

It is possible that the addition of serum-containing medium prior to heating may 

trigger the hydrolysis of inositol lipids, which may perturb the fluxes of inositol 

phosphates during heating as well as distort the effect of heat on this signalling system. 
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To eliminate this possibility, labelled cells were heated in serum-free medium. By using 

serum-free medium, the response of these cells to vasopressin during and following heat 

treatment can be investigated without the effect of other agonists, present in serum, on 

the hydrolysis of inositol lipids prior to heat treatment. 

When myo[2-3H]inositol labelled WRK-1 cells were heated at 45°C in serum-free 

medium for up to 20 min, a transient increase in 3H-InsP3 was observed at 11 min with a 

level of 132% of control values, and this returned to the control level by 14 min. An 

increase in 3H-InsP2 level was observed after 8 min, with a peak at 11 min (at 133% of 

control level), then the level declined to 117% of control level and remained at this level 

for up to 20 min heating. On the other hand, 3H-InsP1 and 3H-InsP 41516 levels were 

similar in heated and unheated cells throughout 20 min heating. 

In summary, the heat-induced increases in InsP2 and InsP3 were temperature

dependent. Heating at 45°C for 30 min in serum-containing medium resulted in a 

significant increase in 3H-Ins(l ,3)P2 and 3H-Ins(?)P2, but insignificant differences in 

other fractions were found. Heating at 45°C in serum-free medium resulted in a 30% 

transient increase in 3H-InsP3 at 11 min, whereas a sustained increase in 3H-InsP2 was 

observed over the 20 min heating period. The magnitude of the heat-induced increases in 

3H-InsP1, 3H-lnsP2 and 3H-InsP3 in the present study were lower than those reported 

previously in human epidermoid A-431 cells (Kiang and McClain, 1993) and in CHO 

HA-l cells, HeLa cells, NIH3T3 cells, Balb C 3T3 cells and PC 12 cells (Calderwood et 

a/., 1987; Calderwood and Stevenson, 1993). 

The effect of heat on the phosphoinositide signalling pathway has been 

investigated in human epidermoid A-431 cells by Kiang and McClain (1993). A 

significant increase in levels of 3H-InsP1 and 3H-InsP3 were observed after heating at 

42°C for 20 min, and higher temperatures induced further increases in InsP1 and resulted 
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in 160% of control level after heating for 20 min at 45°C. An increase in InsP2 was not 

detected unless cells were heated at 45°C for 20 min. Both lnsP2 and InsP3 reached 

maximal levels after heating at 45°C for 20 min, resulting in 300% and 180% of control 

levels, respectively. The increase in InsP1, InsP2 and InsP3 levels also depended upon the 

duration of heating. When A-431 cells were heated at 45°C for various times up to 30 

min, an increase in InsP1, InsP2 and InsP3 levels were observed after 10 min which 

reached maximal levels, i.e. 160%, 300% and 180% of control levels respectively, after 

20 min heating. Then the levels of InsP1, InsP2 and InsP3 declined and resulted in levels 

similar to the control at 30 min. On the other hand, a 3.6-fold decrease in Ins(l ,3,4,5)P 4 

level was detected in these cells after 20 min at 45°C (Kiang and McClain, 1993). 

The effect of heat on the phosphoinositide signalling pathway has also been 

investigated in CHO HA-l cells, HeLa cells, NIH3T3 cells, Balb C 3T3 cells and PC 12 

cells (Calderwood eta/., 1987; Calderwood and Stevenson, 1993). Upon heat treatment 

of CHO HA-l cells at 42°C, a gradual increase in InsP3 was observed, and the level 

increased to 5-fold the control value after 120 min heating, whilst heating at 45°C for 15 

min resulted in a 6-fold increase in InsP3. In HeLa cells, no alteration in InsP1, InsP2 and 

InsP3 levels were observed when cells were heated below 41°C. When HeLa cells were 

heated at 45°C, a 40% increase in InsP1 level was detected after 10 min heating and the 

level declined slightly on heating for longer periods, to levels about 30% greater than 

control values after 30 min. InsP2 and InsP3 levels increased as heating proceeded, 

reaching about 40% and 80% greater than control levels, respectively, after 30 min at 

45°C. On the other hand, a transient increase in InsP3 was detected in NIH3T3 cells 

upon heat treatment at 45°C, with a 9-fold increase in the InsP3 level after 5 min, and the 

level returned rapidly to 2 to 3-fold of the control level by 10-15 min (Calderwood and 

Stevenson, 1993). A transient increase in InsP3 level was also detected in Balb C 3T3 

cells (Calderwood et a/., 1987; Calderwood and Stevenson, 1993). The InsP3 level of 

these cells reached 160% of the control level after 5 min heating at 45°C and decreased 
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slightly at 10 min, resulting in 140% of control level. Increases in InsP1 and InsP2 Ievels 

were also observed, which were 105% and 120%, respectively, of control levels. When 

PC 12 cells were heated at 45°C for 5 min, increases in InsP1, InsP2 and InsP3 were 

observed, resulting in 120%, 180% and 140% of control values, respectively 

(Calderwood and Stevenson, 1989; Calderwood and Stevenson, 1993). None of the cell 

lines mentioned above showed an increase in InsP4 level (Calderwood et al., 1987; 

Calderwood and Stevenson, 1993). 

A possible correlation between the heat-induced increase in InsP3 and an increase 

in cytosolic free calcium ([Ca2+]j) has been suggested by Stevenson et al. (1986). When 

[Ca2+]i was monitored in quin2-loaded CHO HA-l cells during 45°C heat treatment, it 

was found that an increase in InsP3 preceded the increase in [Ca2+]i and was observed as 

early as l min heating. The source of the heat-induced increase in [Ca2+]i was suggested 

to come from internal stores since heating in medium containing less than I pM 

extracellular calcium did not abolish this effect (Stevenson et al., 1986). This result led 

to the proposal that heat induced an increase in InsP3 (from Ptdlns(4,5)P2 hydrolysis) 

which then mobilised Ca2+ from an InsP3-sensitive store, though the possibility that heat 

may perturb other intracellular stores was not ruled out (Stevenson et al., 1986). 

Disruption of calcium homeostasis has been found to be the cause of cell injury during 

ischaemia and toxin treament (Farber, 1981) and the putative role of a heat-induced 

increase in [Ca2+]i in hyperthermic cell death has drawn a lot of attention (Stevenson et 

al., 1987; Vidair eta/., 1990; Mikkelsen et al., 1991a; Stege et al., 1993a,b). In order to 

investigate the effect of heat on the [Ca2+]i level and its relation to hyperthermic cell 

death, the effect of heat on [Ca2+]i in WRK-1 cells was investigated and the results are 

reported in Chapter 5. 

The results reported by Calderwood and co-workers (Calderwood et al., 1987; 

Calderwood et a/., 1988; Calderwood and Stevenson, 1993) (described above) did not 
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address the effect of heat on particular isomers of inositol phosphates. Given the 

complexity of the inositol phosphate fluxes, and the fact that only the Ins(1,4,5)P3 

isomer has significant calcium mobilising ability, the link between InsP3 elevation and 

increases in [Ca2+]i observed in heated cells will remain obscure unless the InsP3 

isomers are separated. 

Consequently, the effect of heat on InsP3 isomers was investigated in WRK-1 

cells. InsP~ levels were maximum in WRK-1 cells heated at 45°C for 11 min in serum

free medium, so total InsP3 was isolated from these cells by simple anion exchange 

chromatography then separated into isomers by HPLC. Results suggested that in both 

heated and unheated cells, Ins(l ,3,4)P3 acounts for the smallest fraction in InsP3. On the 

other hand, Ins( l ,4,5)P3 is the major isomer in both heated and unheated cells. The levels 

of Ins (I ,3,4 )P3 and Ins(l ,4,5 )P3 obtained in unheated cells in the present study was 

comparable to those reported previously in the same cell line (Wong et al., 1988). 

Although the mean dpm in heated cells in all three isomers showed a higher level 

compared with unheated cells, the difference in the levels of any of the inositol 

trisphosphate isomers was insignificant when analyed by Student's t-test. More dramatic 

changes in InsP3 isomers were observed in A-431 cells after 20 min heating at 45°C, in 

which a slight increase in lns(l ,3 ,4 )P3, a 2.4-fold increase in Ins(l ,4,5)P3 and a 3.6-fold 

reduction in Ins( l ,3,4,5)P4 were observed (Kiang and McClain, 1993). 

In summary, the effect of heat on the phosphoinositide signalling pathway in 

WRK-1 cells was less dramatic than effects observed in several other mammalian cell 

lines (Calderwood et al., 1987; Calderwood and Stevenson, 1993; Kiang and McClain, 

1993). This differential effect of heat on this signalling pathway may possibly be related 

to the differential thermal sensitivity of different cell types since it was found that in 

CHO HA-l cells, 15 min heating at 45°C did not result in any clonogenic cell death 

(Calderwood et a/., 1987). Similarly, cell death of A-431 cells was not observed until 
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cells were heated at 45°C for l 0 min and by 30 min heating viability only decreased by 

5-l 0% (examined by trypan blue exclusion or ethidium bromide-acridine orange 

staining) (Kiang et al., 1990). In the case of WRK-1 cells, 20 min heating already 

resulted in 50% cell death (Figure 3.8). 

The possible requirement for calcium in the production of InsP3 from 

Ptdlns( 4,5)P2 by activation of PLC is equivocal. For example, when hepatocytes were 

incubated in calcium-depleted buffer (together with EGT A) the vasopressin-induced 

inositol lipid hydrolysis was inhibited (Rhodes et al., 1983). In rat glomerulosa cells, 

activation of corticortropin receptor activates adenylyl cyclase and stimulates calcium 

influx via L-type calcium channels. Simultaneously an accumulation of inositol 

phosphates was also observed in these cells. This observation led to the proposal that 

PLC was activated as a result of calcium influx since the activation of PLC was blocked 

by CoC12 (a calcium channel blocker) (Gallo-Payet and Payet, 1989). Alternatively, 

other workers found that a minimum level of [Ca2+]i is necessary for hormone action 

and when [Ca2+]i was reduced to that below the physiological resting level, the inositol 

lipid turnover is reduced (Creba et al., 1983). On the other hand, results obtained by 

Renard et a/. ( 1987) showed that when hepatocytes were treated with ionomycin, the 

[Ca2+]i increased from 0.2 to 1 pM, but the PLC activity was unaffected. In WRK-1 

cells, it has been shown that vasopressin-stimulated InsP3 formation was unaltered in 

either calcium-containing or calcium-free conditions (Mouillac eta/., 1990). 

In the present study, heat treatment (45°C) of WRK-1 cells either in the presence 

(EMEM medium) or absence of extracellular calcium (calcium free buffer together with 

0.5 mM EGT A), resulted in a 50% increase in InsP3 in both conditions, though the 

maximal lnsP1 level was achieved at different times i.e. at 9.5 min and 11 min in 

calcium-free and EMEM medium, respectively. The results imply that the heat-induced 

increase in lnsP3 in WRK-1 cells was independent of extracellular calcium, at least 
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within 12.5 min heat treatment at 45°C. This result is in contrast to those reported 

previously, in which it was found that heat-induced InsP3 formation was inhibited when 

A-431 cells (Kiang and McClain, 1993) were heated in the absence of extracellular 

calcium. It has been proposed that lnsP3 accumulation in WRK-1 cells upon 

vasopressin-stimulation results from 2 mechanisms, a direct vasopressin-stimulated PLC 

activation which is independent of extracellular calcium followed by a calcium-mediated 

PLC activation which is related to InsP3-induced intracellular calcium mobilisation 

(Mouillac et a/., 1990). Thus it may be possible that heat mimics the calcium

independent PLC activation observed in vasopressin-stimulated WRK-1 cells, producing 

a transient heat-induced increase in InsP3 formation (within the 12.5 min heating time). 

However it is clear that further study is necessary to clarify this possibility. 

The effect of agents such as ethanol, sodium orthovanadate and AIF4-, that have 

been shown to affect the components such as G proteins or PI-PLC of the 

phosphoinositide signalling pathway, was investigated in WRK-1 cells. Ethanol has been 

reported as a heat sensitiser, possibly by fluidising the plasma membrane (Li and Hahn, 

1978). Ethanol has been shown to lead to activation of Pl-PLC in hepatocytes, possibly 

due to the disordering effect of ethanol on the membrane, thus affecting the interaction 

of PLC with plasma membrane or by altering the intramembrane receptor-PLC coupling 

mechanism (Hoek et al., 1987). Sodium orthovanadate has been shown to lead to lnsP3 

formation in Chinese hamster lung fibroblast (CCL 39) cells (Paris and Pouyssegur, 

1987). AlF 4 · has been demonstrated to induce InsP3 formation in hepatocytes 

(Blackmore et a/., 1985), parotid cells (Taylor et al., 1986), CCL 39 cells (Paris and 

Pouyssegur, 1987) and WRK-1 cell membranes (Guillon et al., 1986a) and this effect of 

AIF 4- has been proposed to result from activation of G proteins by this agent. 

No significant difference in any of the inositol phosphate levels were found when 

cells were incubated in ethanol or sodium orthovanadate at 37°C for 30 min compared 
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with cells incubated in EMEM for the same time period. On the other hand, a significant 

increase in lnsP3 level was observed in cells heated at 45°C for 30 min or when cells 

were incubated in AlF4- at 37°C for 30 min compared with InsP3 level in cells incubated 

in EMEM at 37°C for 30 min. The increase in InsP3 in both conditions were similar in 

magnitude ( 121% of unheated control). However whether heating and AIF4- stimulation 

share a common mechanism or whether they exert their effect on different components 

of the signalling system remains unclear. It is clear that further investigation is necessary 

before any conclusions concerning the mechanisms of heat-induced inositol phosphate 

formation are drawn. 

The precise role of the activation of the phosphoinositide signalling pathway 

during heating remains unclear. However, the transient increase in InsP3 observed in 

WRK-1 cells may have a protective role in heat-induced cell death, possibly through the 

action of InsP3-induced increase in [Ca2+]i leading to induction of heat shock protein 

(HSP) production. The induction of heat-shock protein synthesis has been shown to play 

a role in protecting cells from thermal injury and it was shown that an increase in [Ca2+]i 

is required for the binding of heat shock factor to heat shock element in the promoter 

region, and causes the expression of heat shock genes (Price and Calderwood, 1991). 

Evidence supporting the view that HSP synthesis has a protective role in hyperthermic 

cell death comes from study using thermoresistant variants of CHL cells (CL6 cells) 

which were found to have an elevated HSP28level (Landry et al., 1988). By transfection 

of human HSP70 to rat cells, it was found that the intermediate filament remained intact 

even after 30 min heating at 45°C and cells were more resistant to heat (Li et al., 1991). 

Furthermore, it was found that the expression of HSP70 in A-431 cells required InsP3-

induced [Ca2+Ji elevation since the expression of this protein is attenuated by treatment 

with U-73122 (an inhibitor of InsP3 production) (Kiang and McClain, 1992). To further 

probe the role of [Ca2+]i in hyperthermic cell death, heat-induced changes in [Ca2+]i in 

WRK-1 cells were analysed at single cell level by a fluorescent microscopic technique 
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and this work is reported in Chapter 5. 

Many altered plasma membrane functions, induced by hyperthermia, are those 

which are presumably mediated in part, if not entirely, by the protein components of the 

membrane. For example it has been shown that binding of EGF to its receptor in Rat-1 

fibroblasts was inhibited by heat, as a result of the reduction in the affinity of the 

receptor ( Magun and Fennie, 1981 ). Hyperthermia also inhibits the binding of 

monoclonal antibody to histocompatibility antigens on the surface of murine lymphoma 

cells in suspension culture (Mehdi et al., 1984). Insulin binding was decreased when 

CHO HA-l cells were heated at 43-45°C, owing to the decrease in the number of cell

surface insulin receptors (Calderwood and Hahn, 1983). Thus, the effect of 

hyperthermia on membrane proteins may depend upon the cell types and the membrane 

protein in question. In order to investigate the possibility that heat may exert an effect on 

the receptor proteins, thus altering the response of the cells to the agonist, the response of 

WRK-1 cells to vasopressin at 45°C and response to vasopressin of cells pre-heated at 

45°C for various times were investigated. Heat alone did not show any changes in 

inositol phosphate levels throughout 2 min compared with control levels (37°C without 

vasopressin). ·when cells were challenged with vasopressin for up to 2 min at 45°C, the 

magnitude of increase in InsP1 and InsP2 were much lower than those challenged at 

37°C. On the other hand, higher InsP3 and InsP 4/5/6 levels were observed in cells 

stimulated with vasopressin at 45°C. Although the exact mechanism that lead to a heat

induced increase in InsP3 and InsP 41516 levels during vasopressin stimulation at 45°C is 

unclear, several possibilities exist. (1) Provided that the heat dose is not sufficient to 

denature enzymes, the elevated temperature will increase the kinetic energy of reacting 

molecules, thus increasing enzyme activity. Thus, if PI-PLC is active under these 

conditions, heat will cause an increase in lns(l ,4,5)P3 production. The metabolism of 

this compound is very complex and the level of a particular inositol phosphate metabolite 

will depend on the balance of competing metabolic pathways. Thus if the heat-
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stimulated activity of the kinase for a particular isomer is higher than the activity of 

phosphatase for the same isomer, it is obvious that a higher level of the phosphorylated 

form of the isomer will be produced and this would explain why elevated InsP 41516 levels 

were observed on heating. (2) It could be possible that heat (together with vasopressin) 

has a more pronounced stimulation on the formation of Ins(3,4,5,6)P4. It has been 

reported that stimulation of WRK-1 cells with vasopressin resulted in the formation of 3 

InsP 4 isomers, which were Ins(3,4,5,6)P 4• lns(l ,3,4,5)P 4 and Ins(l ,3,4,6)P 4 (Barker et 

al., 1988; Barker et al., 1992). It is known that lns(1,3,4,5)P4 is formed by the 

phosphorylation of Ins(l,4,5)P3 whereas it has been suggested that Ins(1,3,4,6)P4 is a 

phosphorylated product of Ins(1,3,4)P3 which is generated by dephosphorylation of 

Ins(l ,3,4,5)P 4. On the other hand, the origin of the Ins(3,4,5,6)P 4 isomer is obscure, but 

it is the most abundant InsP 4 isomer in unstimulated WRK-1 cells and its level increase 

on vasopressin stimulation (Barker et al., 1992), so it is possible that it becomes 

particularly abundant on heating in the presence of vasopressin. Since the isomers were 

not separated in this study, this possibility needs to be clarified. (3) Vasopressin can 

induce approximately 5 to 10-fold increase in [Ca2+]i in WRK-1 cells (see Chapter 5) 

and heat also led to an increase in [Ca2+]i, possibly due to the thermal inactivation of 

some of the components that are involved in regulation of calcium homeostasis. Thus, it 

is possible that vasopressin stimulation at elevated temperature leads to an accumulation 

of cytosolic free Ca2+ which in turn activates Ins(l,4,5)P3 3-kinase through the action of 

the calcium calmodulin complex (CaCaM), leading to elevated levels of lns(1,3,4,5)P 4. 

Since the lnsP 4 isomers were not separated in the present study, the above possibilities 

remain to be clarified. 

When WRK -1 cells were heated at 45°C for up to 40 min, a heat dose that killed 

more than 95% of the cells measured by MTI assay, then challenged with vasopressin at 

37°C, the formation of InsP3 in heated cells was comparable to that in vasopressin

challenged control cells (maintained at 37°C throughout experiment). This result 
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suggests that the vasopressin-sensitive phosphoinositide signalling pathway remained 

intact following extreme heat treatment. 

The exact mechanism of heat-induced inositol phosphate formation is unclear. In a 

recent study, it was found that a G protein may participate in the heat-induced increase 

in inositol phosphates (Calderwood and Stevenson, 1989; Calderwood et al., 1993). 

When digitonin-permeabilised CHO HA-l cells were heated at 45°C for 20 min in the 

absence of a non-hydrolysable GTP analog (GTPyS), the levels of InsP3 were similar 

between heated and control cells. When cells were heated in the presence of w-7 to to-6 

M GTPyS, about 50% increase in InsP3 was observed in heated cells but not in cells 

incubated at 37°C. As the concentration of GTPyS was increased to w-s M, the lnsP3 

level reached maximal values at both 37°C and 45°C, resulting in a 3-fold increase in the 

InsP3 level obtained in the absence of GTPyS. (Calderwood and Stevenson, 1989; 

Calderwood et al., 1993). These results suggested that the heat-induced increase in lnsP3 

is guanyl nucleotide-dependent. Since G proteins can be classified as pertussis toxin 

(PTX)-sensitive or PTX-insensitive, the type of G protein that was involved in the heat

induced increase in inositol phosphates was studied in CHO HA-l cells and NIH3T3 

cells (Calderwood and Stevenson, 1989; Calderwood eta/., 1993). When either cell type 

was incubated in 200 ng of PTX for 3 h before cells were heated at 45°C for 20 min or 

challenged by thrombin for the same length of time, it was found that the presence of 

PTX significantly inhibited the release of inositol phosphates (lnsP1, InsP2 and lnsP3) in 

thrombin-stimulated cells whilst the levels of inositol phosphates in heated cells were 

similar to those obtained from cells without pre-treatment with PTX. Thus the authors 

suggested that a PTX-insensitive G-protein (possibly Gq) is involved in the response of 

cells to heat treatment. However, in contrast to the results reported by Calderwood and 

Stevenson (1993), Kiang and McClain (1993) found that a PTX-sensitive G protein was 

involved in heat-induced formation of InsP3 in A-431 cells. When A-431 cells were 

treated with 30 ng/ml of PTX for 24 h at 37°C, the basal level of InsP3 increased, but the 
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level of InsP3 did not increase any further after heating at 45°C for 10 min (Kiang and 

McClain, 1993). 

On the basis of their observations, Calderwood and co-workers have suggested a 

possible mechanism of heat-induced changes in inositol phosphates and [Ca2+]i 

(Stevenson eta/., 1986; Calderwood eta/., 1987; Calderwood eta/., 1988; Calderwood 

and Stevenson, 1993; Calderwood eta/., 1993). They suggest that heat may provide the 

activation energy required to stimulate GTP-GDP exchange of a G protein. Upon GTP 

binding, subunits of the G protein dissociate and the a-subunit then binds to and 

activates a PLC, likely to be PLC~1 as this enzyme has been shown to be activated by 

Gq, and hydrolyses Ptdlns(4,5)P2, resulting in the formation of InsP3 (Calderwood and 

Stevenson, 1993). Heat-induced elevation in InsP3 may then release calcium from 

internal stores, leading to an elevation in [Ca2+]i, though the possibility that heat 

disturbed other mechanism that resulted in the release of calcium from internal store was 

not excluded by Calderwood and co-workers (Stevenson et al., 1986; Calderwood et al., 

1988) 

In summary, the present study showed that heat led to a transient increase in the 

InsP3 level and a sustained increase in InsP2 levels. This heat-induced increase in InsP3 

was comparable to those obtained when cells were incubated in AIF4-, an agent that is 

known to exert an effect on the G-protein component of the phosphoinositide signalling 

system. However, whether heat and AIF4- acted on the same component in 

phosphinositide signalling pathway is unknown and requires further investigation. 

Finally, the magnitude of the vasopressin-stimulated increase in InsP3 in cells heated at 

45°C for up to 40 min (a heat dose that killed more than 95% of the cells determined by 

MTT assay), was comparable to that in unheated cells, suggesting that the 

phosphoinositide signalling pathway (at least the one employed by vasopressin) 

remained intact. However it cannot be deduced from these experiments whether (1) the 
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action was confined to a discrete pool of phosphoinositides such as a hormone sensitive 

pool; (2) a G-protein is involved and, if so, whether it is pertussis-toxin sensitive or not; 

(3) single or multiple isoform(s) of PLC are involved and finally (4) the transient 

increase in lnsP3 is significant in terms of hyperthermic cell death. 
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Chapter 5 

Changes in cytosolic free calcium during hyperthermia 

5.1 Introduction 

Elucidation of the role of Ca2+ as an intracellular messenger began over 100 years 

ago with the observation by Ringer (1883) that the contraction of cardiac muscle 

required the presence of extracellular calcium. It is now known that a change in 

cytoplasmic free calcium concentration ([Ca2+]i) is involved in the regulation of a 

variety of cellular processes such as DNA replication and transcription, phospholipid 

turnover, regulation of cytoskeletal structure and modulation of the activities of some 

enzymes such as protein kinases, phospholipases and calcium-dependent proteases 

(Trumpet a/., 1980; Orrenius eta/., 1989). In order to fulfil these roles, [Ca2+]i must be 

tightly controlled. 

In an animal cell, the value of [Ca2+]i is about 0.1 pM whereas the concentration 

of free Ca2+ in the interstitial fluid is greater than 1 mM, so a large Ca2+ gradient exists 

between the extracellular fluid and the cytoplasmic space. There are at least 2 reasons for 

maintaining [Ca2+]i at such a low value. Firstly, by keeping the [Ca2+]i low, only a few 

ions are sufficient to produce a significant fluctuation in [Ca2+]i. Secondly, as 

phosphorylated compounds are continuously degraded to liberate energy, and 

resynthesized to store it, a significant concentration of inorganic phosphate is always 

present in the cell. If [Ca2+]i is high, phosphate and Ca2+ will combine to form a 

precipitate of calcium phosphate. By keeping the [Ca2+]i low, the cell is able to make use 

of phosphate-containing compounds, such as A TP, as metabolic fuels. 
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Cells have a network of channels and transporter proteins in membranes in order to 

maintain [Ca2+]i and keep a constant concentration of free Ca2+ in intracellular stores 

(Nicholls, 1986; Carafoli, 1987) (Figure 5.1). The mechanisms work mainly by 

controlling the movement of Ca2+ across 3 membranes: (a) the plasma membrane, which 

surrounds the cell, (b) the inner membrane of mitochondria, and (c) the membranes of 

compartment(s) that contain reserves of Ca2+ ions, such as SR in muscle and ER (or 

calciosomes) in non-muscle cells. In the resting cell, the maintenance of the 

concentration gradient depends on 2 features of the plasma membrane: its low 

permeability to Ca2+ and the presence of membrane-bound pumps that drive Ca2+ out of 

the cell against the concentration gradient. Basal calcium inflow through the plasma 

membrane can occur via non-specific leaks or by facilitated diffusion, which is thought 

to occur via a specific calcium channel protein and the rate of Ca2+ influx is similar to 

the rate of Ca2+ being pumped out. 

When a cell is stimulated by certain extracellular signals, channels in the plasma 

membrane open and allow Ca2+ (but no other ions) to flow into the cell cytosol. In 

addition, Ca2+ can be released from the ER upon Ins(l ,4,5)P3 binding to its receptor 

which is present in the ER membrane. Ca2+ influx across the plasma membrane is 

facilitated by voltage-gated calcium channels or by receptor-operated calcium channels. 

Using the patch clamp technique, 4 different types of voltage-gated calcium 

channels, namely L-type, T-type, N-type and P-type, have been identified based on the 

changes in membrane potential required to induce opening of the channel, the rate of 

inactivation of the channel, and the sensitivity of channels to dihydropyridines and ro

conotoxin (Meldolesi and Pozzan, 1987). L-type channel are opened by strong 

depolarisation, and are inhibited by dihydropyridines such as nifedipine or activated by 

dihydropyridines such as Bay K 8644. This type of channel is the predominant voltage

gated calcium channel present in cardiac and skeletal muscle cells (McCleskey et a/., 

201 



1987). T-type channels are activated by weak depolarisation and are relatively 

insensitive to dihydropyridines. They are found in GH3 cells, heart, skeletal and smooth 

muscle and chick dorsal root ganglion neurons (Carbone and Lux, 1984; Suzuki and 

Yishioka, 1987). N-type channels are activated by relatively strong depolarisation. They 

are inhibited by ro-conotoxin but are insensitive to dihydropyridines. They are found in 

chick dorsal root ganglion neurons and in rat sympathetic neurons (Tsien, 1990). P-type 

channels are activated by medium depolarisation. They are inhibited by funnel web 

spider toxin and are insensitive to both dihydropyridines and ro-conotoxin (Llinas et al., 

1989). The movement of Ca2+ through voltage-gated Ca2+ channels is also inhibited by 

La3+ and divalent metal ions (Hallet eta/., 1990). 

Receptor-operated calcium channels can be classified into 2 types depending on 

their nature of activation. In the first type, called ionotropic receptors, the calcium 

channel is an integral part of the receptor protein itself. This channel is opened by the 

binding of agonist to the receptor which is followed by a conformational change of the 

receptor protein, which opens the channel and allows Ca2+ influx. An example of this 

type is the nicotine acetylcholine receptor. Although this receptor is responsible for Na+ 

influx, it is also considerably calcium permeable. The second type of channel is called a 

metabotropic receptor and is activated by a second messenger generated within the cells 

such as calcium and inositol 1 ,3,4,5-tetrak.isphosphate (lns(l ,3,4,5)P 4). This type of 

channel is also known a second-messenger operated calcium channel (Meldolesi and 

Pozzan, 1987). 

Restoration of the [Ca2+]i to its resting level following stimulation is achieved by 

Ca2+ extrusion out of the cell or Ca2+ uptake by intracellular organelles. In the plasma 

membrane, Ca2+ extrusion is carried out by the Ca2+ -A TPase and the Na+/Ca2+ 

exchanger. The ER also has a Ca2+-ATPase system which is responsible for Ca2+ 

reuptake after agonist-stimulated Ca2+ release. In the resting state, Ca2+-ATPase present 

202 



in the ER and in the plasma membrane are both responsible for the maintenance of 

[Ca2+]i at the basal level of 0.1 J.lM, as both systems have a Km value for Ca2+ at about 

0.2J.1M. 

The Ca2+ -ATPase in the plasma membrane catalyses the exchange of 1 Ca2+ (out) 

for 2 H+ ions. The energy required to move Ca2+ out against the concentration gradient 

is derived from ATP hydrolysis with Mg2+ as cofactor. Ca2+-ATPase is found in all cell 

types and is activated by the calcium-calmodulin complex. This A TP-driven calcium

pump is a high affinity, low capacity calcium pumping system which responds to a 

minute increase in intracellular calcium and is responsible for maintaining the [Ca2+]i at 

rest. 

The Na+/Ca2+ exchanger is found particularly in excitable plasma membranes 

such as those in nerve and heart cells (Carafoli, 1987). It is also found in non-excitable 

tissues such as endocrine tissues (Herchuelz et al., 1980) and epithelial cells (Lee et al., 

1980). In this system, each Ca2+ ion moves out of the cell in exchange for the entry of 3 

Na+ ions. The energy for pumping Ca2+ to the exterior is derived from the inwardly 

directed concentration gradient of Na+ which is established by the action of Na+ -K+

ATPase. 

For a long time, mitochondria have been regarded as important organelles in the 

storage and mobilisation of Ca2+, but it is likely that the importance of mitochondria as a 

cytosolic Ca2+ buffer system has been overestimated under physiological conditions 

(Irvine, 1986; Carafoli, 1987). The reason for this conclusion is based on the following 

observations. Firstly, it has been shown that when hepatocytes are incubated in elevated 

levels of extracellular Ca2+, mitochondria continue to absorb this ion and become the 

major Ca2+ store. However, when the experiment was conducted in physiological 

calcium ·concentration, it was shown that the ER contained most of the stored Ca2+ 
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(Somylo eta/., 1985). Secondly, when Ca2+ uptake was monitored in permeabilised cells 

so that [Ca2+]i could be altered, it was found that ER was the key organelle responsible 

for intracellular Ca2+ buffering (Burgess et al., 1983). Thirdly, the affinity of 

mitochondrial Ca2+-ATPase is much too low (in micromolar range) to be consistent with 

a role for them in buffering [Ca2+]i, except perhaps during agonist stimulation when 

[Ca2+Ji has risen to the micromolar range (Crompton et al., 1976). Instead its role is 

mainly concerned with the modulation of calcium concentration in the mitochrondrial 

matrix which regulates the activity of intra-mitochondrial enzymes such as pyruvate 

dehydrogenase, NAD-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase 

(Irvine, 1986; Carafoli, 1987). Due to its ability to combine with phosphate and 

precipitate as crystalline hydroxyapatite deposits in the matrix, mitochondria have an 

insatiable appetite for Ca2+ and this is likely to act as a safety device to handle the 

dramatic increase in [Ca2+]i during pathological events (Schanne et al., 1979). 

Calcium can directly affect the activity of some enzymes such as calcium

dependent proteases that are involved in cytoskeleton organisation or it can exert its 

effect on a number of enzymes such as PLA2, adenylyl cyclase and Ca2+-ATPase by 

acting through a calcium-calmodulin complex (CaCaM). Calmodulin is an abundant 

protein of ubiquitous distribution and requires calcium for its action by forming CaCaM 

(Cheung, 1980; Means et al., 1982). It is a high affinity binding protein and is a major, 

if not a principal, mediator of calcium action. By forming CaCaM it can interact with a 

large number of cellular enzymes, thus altering their activities. The enzymes that are 

regulated by CaCaM are listed in Table 5.1. As far as calcium homeostasis is concerned, 

CaCaM can activate Ca2+ -A TPase in the plasma membrane that is responsible for Ca2+ 

extrusion. Thus Ca2+, through the formation of CaCaM constitutes a self-regulation 

device for maintaining a low steady-state level of [Ca2+]i (Bolander, 1989; Reeves, 

1990). 
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The importance of Ca2+ in the regulation of many cellular processes suggests that 

[Ca2+]i must be tightly controlled and failure in calcium homeostasis results in calcium 

accumulation, disruption of cellular processes and may lead to cell death. In fact, failure 

in calcium homeostasis has been reported as the cause of cell death in ischaemia (Siesjo, 

1989) and cell death induced by some toxins (Schanne et a/., 1979; Farber, 1981; 

Orrenius et al., 1988). The exact mechanism of calcium-induced cell death is uncertain, 

but it can be due to the disruption of a variety of cellular processes such as cytoskeletal 

organisation, sustained activation of phospholipases which lead to disruption of 

phospholipid turnover and activation of calcium-dependent proteases which result in the 

activation of some enzymes by limited proteolysis (Figure 5.2). 

Nonnal cytoskeletal organisation is essential for cellular processes such as cell 

division, intracellular transport, receptor turnover and control of cell mobility and cell 

shape. Disruption of this organisation results in the appearance of surface protrusions 

known as blebs, which will disrupt the membrane integrity and possibly lead to cell 

death. Bleb formation is a phenomenon associated with toxic, hyperthermic and 

ischaemic cell death (Schanne eta/., 1979; Farber, 1981; Kapiszewska and Hopwood, 

1988; Orrenius eta/., 1988; Siesjo, 1989). The involvement of Ca2+ in bleb formation 

has been observed when cells were treated with cyanide (Nicotera et al., 1989) and 

HgC12 (Smith et al., 1991). Phospholipase A2 (PLA2) is activated by the calcium

calmodulin complex, resulting in the formation of /ysophospholipid and fatty acid. Since 

/ysophospholipid has been found to be a toxic substance, its level must be tightly 

controlled (Siesjo and Wieloch, 1985). Sustained PLA2 activation will result in 

accumulation of this toxic product. Furthermore, sustained PLA2 activation can also 

alter membrane integrity by affecting the phospholipid turnover and perhaps lead to cell 

damage. Evidence of PLA2 activation in cell death came from a study using a PLA2 

inhibitors. It was found that in the presence of a PLA2 inhibitor, ischaemic cell death in 

liver and heart were prevented (Trump et al., 1980). Ca2+ can also activate calcium-
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dependent proteases that are responsible for cytoskeletal and cell membrane remodelling, 

proteolytic activation of PKC and regulation of cell mitosis. Evidence for calcium

dependent proteases being involved in cell injury was obtained by using an inhibitor of 

calcium-activated proteases, which prevented the onset of bleb formation and 

cytotoxicity induced by cystamine (associated with an increase in [Ca2+]i) (Nicotera et 

a/., 1986). Although the substrates for proteases are unidentified, these authors suggested 

that cytoskeletal proteins are likely to be a major target for calcium-activated proteases 

when treated by toxins. 

Use of 45Ca2+ enables calcium fluxes and total calcium content to be measured 

during or after heating. However, it has been known for a long time that [Ca2+]i rather 

than the total cell calcium is responsible for cellular signalling and metabolic control, so 

direct measurement of [Ca2+]i is important to resolve the relationship of hyperthermic 

cell death and [Ca2+]i. 

Measurement of [Ca2+]i is complicated by several factors, including the small 

volume of the cytoplasmic space, the large proportion of calcium bound to proteins and 

membranes, and the heterogeneous distribution of the bound and free calcium within the 

cell. Three different approaches have been used successfully in [Ca2+]i measurement, 

namely calcium-specific microelectrodes, calcium-sensitive photoproteins and 

fluorescent indicators. 

Calcium-specific microelectrodes are free of artifacts associated with incomplete 

diffusion of a Ca2+ -indicator molecule and can measure a very wide range of [Ca2+]i, 

but the technique requires cell impalement by the electrode and, therefore, is limited to 

individual giant cells. Also, some of the unidentified constituents of the cytoplasm may 

derange the electrode (Tsien and Rink, 1980). 
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Ca2+ -sensitive photoproteins such as aequorin emit 1ight upon binding to calcium. 

However, the application of this technique to [Ca2+]i measurement is limited by the fact 

that microinjection or cell fusion is required to introduce the photoproteins into the cell. 

The potential problem concerning with the use of aequorin is that it reacts with Ca2+ and 

the reaction is irreversible. As the composition of many kinds of glass includes Ca2+, 

any leakage of Ca2+ from the glass will result in the inactivation of this photoprotein. 

Hence experiments must be done in Ca2+ -free EGT A solution. Furthermore, 

photoproteins are destroyed rapidly at temperatures above 30°C (Cobbold and Rink, 

1987). 

The development of fluorescent indicators, together with their membrane 

permeable analogues, has revolutionised the study of [Ca2+]i in small mammalian cells 

(Grynkiewicz et a/., 1985). The availability of the ester form (acetoxy methylesters) of 

the dye permits dye loading without any disruption of the plasma membrane. Since the 

ester groups are uncharged and hydrophobic, the ester form of the dye can cross the 

membrane readily. Once in the cytosol, the esters are cleaved by endogenous esterases, 

giving rise to dye in its free acid form which cannot permeate the membrane and is 

trapped in the cytosol. When the extracellular dye has been removed, the alteration of 

cytosolic free calcium can be monitored by changes in fluorescence signals. By using 

this method, the problems concerning calcium leakage from damaged membranes are 

eliminated (Grynkiewicz et a/., 1985). Nowadays, several fluorescent indicators are 

commercially available and the most commonly used dyes are quin2, fura-2 and indo-1 

(Tsien, 1989) 

Quin2, has been used for several years and has revealed vital information about 

[Ca2+]i levels in cells under stimulation, but it has some disadvantages (Tsien and 

Pozzan, 1989). For example, it has a short excitation wavelength (339 nm), so it excites 

significant autofluorescence from cells. The low extinction coefficient and fluorescence 
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quantum yield means that high concentrations of the indicator is required to overcome 

the autofluorescence, but high concentrations can partially buffer [Ca2+]i transients. 

Furthermore, upon binding to calcium, there is no shift in both the excitation and 

emission wavelengths, so ratio imaging is not feasible. Therefore, both dye concentration 

and cell thickness contribute to the fluorescence intensity. Furthermore, quin2 saturates 

at about 1-2 J.IM Ca2+ so is not suitable for measuring [Ca2+]i above I0-6 M. Quin2 also 

binds Mg2+ with Kd of 1-2 mM, so it is not absolutely specific for Ca2+-binding. 

Although Mg/quin2 complexes do not fluorescence, Mg2+ does have an effect on the 

calcium and quin2 binding affinity. Thus, in the absence of Mg2+ the Kd of Ca/quin2 is 

60 nM, whereas in the presence of Mg2+ the~ value is 150 nM. Finally, heavy metals 

quench the quin2 fluorescence, so if the cells contains a high level of heavy metals, it 

will give a false low [Ca2+]i reading (Tsien and Pozzan, 1989). 

Most of the drawbacks of quin2 have been overcome by fura-2 and indo-1 

(Grynkiewicz et a/., 1985). The Kd of both dyes are not affected by Mg2+ since the ~ 

for Mg2+ is about 6-10 mM, hence giving a better Ca/Mg discrimination compared to 

quin2. Upon binding to Ca2+, fura-2 exhibits a shift in the excitation wavelength (about 

30 nm towards shorter wavelength). On the other hand, indo-1 shows a shift in the 

emission wavelength upon binding to Ca2+. Hence both dyes are suitable for ratio 

imaging measurements, so the effect of dye concentration and cell thickness on the 

fluorescent signal can be eliminated. Since fura-2 requires dual excitation wavelengths, 

it is more useful in microscopic techniques. In the case of indo-1, a single excitation 

wavelength is adequate, making it more useful for spectrofluorimeter and flow 

cytometry techniques. With the development of modem technology, a change in [Ca2+]i 

upon stimulation can be determined not only at the single cell level but the spatial 

distribution of the calcium concentration within a single cell can be obtained from 

digitised imaging microscopy techniques (Grynkiewicz eta/., 1985; Tsien, 1989). 
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Although the fluorescent dyes provide a valuable tool for studying [Ca2+]i, they 

are not without limitations (Roe eta/., 1990). Cellular compartmentalisation of the dye 

has been reported as a problem, when the sequestered dye is not sensitive to the change 

in [Ca2+]i in cytosol (Steinberg et a/., 1987). In addition, photodamaging effects can 

give rise to molecular species that are non-calcium sensitive or only sensitive to mM 

rather than nM calcium concentration (Becker and Fay, 1987). Furthermore, dye loss 

from loaded cells during measurement has been reported, and this is a serious problem at 

high temperatures (Malgaroli eta/., 1987). The fluorescence signal is quenched by heavy 

metals present in cells (Arlsan et a/., 1985). Finally, the Kd of the dye depends on 

viscosity, ionic strength and temperature of the environment, so these parameters are 

important when comparing and evaluating results (Tsien, 1989). 

The problem of dye sequestration can be overcome by loading at lower 

temperatures, since endocytosis and sequestration can often be significantly slowed 

down by reduction in temperature e.g. from 37°C to 32°C (Tsien and Pozzan, 1989; Di 

Virgilio eta/., 1990). Due to the hydrophobicity of the esterified form of the dye, it must 

be dissolved initially in DMSO before diluting the stock solution in an aqueous medium. 

By doing so, microcrystals can form, which may be endocytosed by the cells. Addition 

of amphiphilic agents such as albumin, serum or Pluronic F127 in the medium reduces 

the formation of microcrystals. This is particularly important with cell monolayers, 

where there is a tendency for precipitates to settle on cells and become endocytosed 

(Hallett eta/., 1990). Photobleaching can be diminished by employing the lowest level of 

excitation intensity and shortest duration of exposure (Roe et al., 1990). The light 

intensity can be reduced by passing the light through a neutral density filter. 

Furthennore, between each measurement the light can be blocked by closing the shutter. 

Dye leakage can be passive (from damaged cells) or active (by anion transport system) 

(Di Virgilio et al., 1990). The latter case of leakage is temperature-dependent (Malgaroli 

et al., 1987). This problem can be prevented by an anion transport inhibitor such as 
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probenecid or sulfinpyrazone, as well as performing the measurement at lower 

temperatures (Di Virgilio eta/., 1990). The presence of heavy metals can quench fura-2 

fluorescence, but this can be prevented by treating cells with N ,N ,N' ,N'-tetrakis(2-

pyridylmethyl)ethylenediamine (TPEN), a chelator of heavy metals (Arslan et al., 1985). 

Finally, the effects of ionic strength, viscosity and temperature can be eliminated by 

correcting the Kd of EGTA and Ca2+ as well as the Kd for fura-2 and Ca2+ to the 

corresponding temperature and pH before constructing the calibration curve. 

The role of calcium in hyperthermic cell death is controversial. In order to explore 

its role, the effect of altering the extracellular calcium concentration upon heat-induced 

cell death was determined. When human colon cancer HT -29 cells were heated at 

different extracellular calcium concentrations, ranging from 0 to 15 mM for up to 2 hat 

44°C, cell death was neither potentiated in high extracellular calcium concentration nor 

protected in low extracellular calcium concentration (Mikkelsen et al., 1991a). Similarly, 

cell death of CHO cells was neither sensitised nor protected when cells were heated at 

45°C for 30 min in 0.2 mM or 10 mM extracellular calcium, a condition that resulted in 

at least a 5-fold difference in total 45Ca2+ content between cells heated under these 2 

conditions (Vidair and Dewey, 1986). On the other hand, Reuber H35 rat hepatoma cell 

death at 44 oc was enhanced by 7.5 mM extracellular calcium concentration and 

protected when cells were heated in 0.03 mM extracellular calcium concentration 

(Wiegant eta/., 1984). A similar observation was reported by Landry eta/. (1988), who 

found that MH-7777 cells were protected from heat cell death by pre-incubation in low 

extracellular calcium (achieved by addition of EGTA to the medium) for 90 min before 

heating at 43°C in the same medium. 

Using 45Ca2+ to study the calcium fluxes and total calcium content during heating, 

it was found that exposure of Ehrlich ascites cells to 45°C resulted in an increase in total 

calcium content (Anghileri et a/., 1985a,b). When 45Ca2+ influx and Ca2+-ATPase 
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activity were measured in heated cells (at 45°C), a 2 stages of 45Ca2+ uptake were 

detected. The initial uptake was observed at early heating times (about 5 min), which 

then declined to control level by 20 min. A second phase of 45Ca2+ uptake was observed 

after 45 min heating. This late increase in 45Ca2+ uptake was related to a decrease in 

Ca2+-ATPase activity (Anghileri et al., 1984). Vidair and Dewey (1986) also found that 

total cell calcium content in CHO cells increased and remained elevated at 23 h after 

heating at 45°C for 15-35 min. This increase in Ca2+ content was found to result from a 

decrease in both influx and efflux rates, by determination of 45Ca2+ efflux in cells 

prelabelled with 45Ca2+ for 48 h, and by monitoring 45Ca2+ influx when cells were 

incubated in medium containing 45Ca2+. The relationship between calcium influx and 

heat cell death was investigated in hepatocytes (Malhotra et a/., 1986) and Chinese 

hamster lung CHL V79 cells (Malhotra eta/., 1987). It was found that 45Ca2+ influx was 

related to cell death when hepatocytes or CHL V79 cells were heated in 15 mM, but not 

when they were heated in buffer at 4 mM extracellular calcium concentration. Hence, 

these authors suggested that cell death is promoted at higher extracellular calcium but the 

entry of calcium is not the primary mechanism of heat-induced cell death at normal 

calcium concentration. An increase in 45Ca2+ influx due to the alteration of membrane 

permeability in CHO HA-l cells during heating has been reported by Stevenson et al. 

( 1987). Although the increase in 45Ca2+ influx did not directly cause cell death, maximal 

permeability was observed in the shoulder region of the killing curve. Thus, Stevenson 

and co-workers ( 1987) suggested that calcium can play a role such as triggering calcium

dependent events that contribute to cell death. 

A heat dose-dependent increase in [Ca2+]i was observed in CHO HA-l cells. 

When [Ca2+]j was monitored in quin2 loaded cells by spectrofluorimetry, an increase in 

[Ca2+]i was observed at 42°C and the level reached a plateau at 45°C, resulting in 450-

1100 nM [Ca2+]i (Calderwood eta/., 1988). A similar temperature-dependent increase in 

[Ca2+]i was found in NIH3T3 mouse fibroblasts (Dynlacht et al., 1993). Following 
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loading with indo-1, these cells were heated and [Ca2+]i was monitored by flow 

cytometry. An increase in [Ca2+]i was observed as soon as the temperature started to 

increase and reached a plateau at 42°C, achieving [Ca2+]i of 300 nM. This [Ca2+]i level 

was maintained up to 45.5°C (Dynlacht et al., 1993). When [Ca2+]i was measured in 

fura-2 loaded A-431 cells by spectrofluorimetry upon heat treatment, an increase in 

[Ca2+Ji was observed after 5 min exposure to 40°C or 45°C and reached maximum after 

20 min (Kiang et a/., 1992). On the other hand, when cells were heated at 50°C, an 

increase in [Ca2+]i was observed at 1 min and reached maximum after 20 min heating. 

For those cells heated at 45°C and 50°C, [Ca2+]i remained elevated for up to 30 min 

whereas for cells heated at 40°C [Ca2+]i declined to the control value after 30 min 

(Kiang eta/., 1992). 

As mentioned earlier, Ca2+ can either come from external sources or be released 

from intracellular stores, so some studies have attempted to clarify the source of the heat

induced rise in [Ca2+]i. The elevation in [Ca2+]i in CHO HA-l cells (Stevenson et a/., 

1986) and Drosophila salivary gland (Drummond et al., 1988) was thought to derive 

from internal stores because the increase in [Ca2+]i in both cell types was observed when 

they were heated in medium containing less than 0.1 mM extracellular calcium. 

However, calcium influx was thought to be the source of the heat-induced rise in [Ca2+]i 

in mouse mammary tumour cells (Furukawa et a/., 1992) and human epidermoid 

carcinoma A-431 cells (Kiang et a/., 1992), as the heat-induced rise in [Ca2+]i was 

abolished when both cell types were heated in low extracellular calcium concentration. 

Furthermore, using 45Ca2+ to measure calcium influx in A-431 cells upon heating, Kiang 

and co-workers ( 1992) demonstrated that this increase in [Ca2+]i correlated well with the 

time course of 45Ca2+ influx. 

The effect of heat on [Ca2+]i has also been analysed at the single cell level by 

using fura-2 together with digitised fluorescence microscopy. When [Ca2+]i was 
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measured in fura-2 loaded human colon HT-29 cells, an increase in [Ca2+]i was 

observed in more than 80% of these cells after heating at 44°C for 1 h (Mikkelsen et al., 

199la). Similarly, by using the same technique, an increase in [Ca2+]i was observed in 

mouse mammary carcinoma FM3A cells after heating at 44°C for 1 h (Kondo et a/. 

1993). In contrast, when heating mouse mammary carcinoma MMT060562 cells at 44°C 

for 20 min an increase in [Ca2+]i in some of these cells was found, but the mean [Ca2+]i 

in heated and control cells was not significantly different (Furukawa et al., 1992). The 

discrepancies in these studies are likely to be due to different heating times and cell types 

employed. 

The relationship between the heat-induced increase in [Ca2+]i and heat cell death 

could be largely dependent on the cell type used. When [Ca2+]i was monitored in fura-2 

loaded Ehrlich ascites tumour cells (EAT), HeLaS3 cells, mouse fibroblast 3T3 cells, 

and murine lymphoma cell lines (L5178Y -S and L5178Y -R) by spectrofluorimetry, no 

significant difference in [Ca2+]i between control and heated cells were observed in EAT, 

HeLaS3, L5178Y -S or L5178Y -R cells at a heat dose that killed more than 90% of these 

cells (Stege et al., 1993a,b). On the other hand, a significant increase in [Ca2+]i was 

observed in 3T3 fibroblasts. Therefore, these results implied that hyperthermic cell death 

could occur without any changes in [Ca2+]i. 

The determination of [Ca2+]i post-heating has also given conflicting results. 

Mikkelsen eta/. (1991a), using human colon HT-29 cells, demonstrated that those cells 

heated at 44°C for 1 h which failed to return their [Ca2+]i to resting level at 4-6 h post

heating were the clonogenically dead cells. However, it was found that calcium 

homeostasis remained intact in NIH3T3 cells after heating at 45°C for 40 min, a heat 

dose that resulted in greater that 95% cell death (Wang et al., 1991). Immediately after 

heat treatment (45°C for 40 min) in buffers containing 1.8 mM extracellular calcium, 

cells were switched to buffers containing either 0.017 mM or 15 mM extracellular 
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calcium, and incubated at 37°C for another 2 h before [Ca2+]i was measured in indo-1 

loaded cells by tlow cytometry in either buffer. It was found that lowering the 

extracellular calcium concentration during the 2 h incubation (and during measurement) 

lowered the [Ca2+]i, while raising the extracellular calcium level resulted in a higher 

[Ca2+]i. However, in both conditions [Ca2+]i levels were insignificantly different from 

those in unheated cells that underwent the same treatment. When the experiment was 

repeated again but cells were switched to buffers containing different extracellular 

calcium concentrations at 18 h after heating, it was found that [Ca2+]i between heated 

and unheated cells that underwent the same treatment were similar (Wang et al., 1991). 

The role of calcium in cell death has been further investigated by means of calcium 

ionophores, local anaesthetics and calcium channel blockers. 

Calcium ionophores such as ionomycin and A23187 have been demonstrated to 

form a pore in the plasma membrane, allowing the movement of calcium down its 

concentration gradient into the cell (Truter, 1976). When hepatocytes (Malhotra et al., 

1986) were heated at 43°C in the presence of A23187 and external calcium (either 4 mM 

or 15 mM), hyperthermic cell death was potentiated. However, it was found that Ca2+ 

influx did not correlate well with loss of viability (determined by trypan blue exclusion) 

for hepatocytes heated in 4 mM extracellular calcium since Ca2+ influx was not observed 

until heat doses that reduced cell viability to less than 1% were achieved. On the other 

hand, Ca2+ influx in 15 mM extracellular calcium preceded loss of viability so, under 

these conditions, the increase in membrane permeability of the plasma membrane to 

Ca2+ may contribute to loss of viability. The results imply that Ca2+ influx, caused by 

high extracellular calcium or A23187, increases cellular damage caused by supraoptimal 

temperatures. The effect of heat and ionomycin on [Ca2+]i and cell death was further 

investigated in EAT cells and HeLaS3 cells (Stege et al., 1993a,b). The results obtained 

by these workers suggested that a threshold [Ca2+]i must be exceeded before the 
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synergistic effect of ionomycin and [Ca2+]i on cell death was observed. In HeLaS3 cells, 

[Ca2+]i must exceed 700 nM, whereas in EAT cells [Ca2+]i must exceed 300 nM in order 

to observe cytotoxic effects of ionomycin. 

Local anaesthetics are heat sensitisers, possibly by increasing membrane fluidity 

(Yatvin, 1977), inducing calcium release from intracellular stores (Chen, 1974), 

displacing membrane-bound calcium (Kwant and Seeman, 1969) or affecting Ca2+ 

fluxes by interfering with the Na+JCa2+ exchanger (Garcia-Martin et al., 1990). It has 

been shown that the presence of lidocaine, procaine or tetracaine sensitised NIH3T3 cells 

to 45.5°C treatment. The effects of these drugs on [Ca2+]i during heating were 

investigated in indo-1 loaded NIH3T3 fibroblasts by flow cytometry (Dynlacht et al., 

1993). Heating at 45.5°C for 25 min in the presence of procaine or lidocaine resulted in 

[Ca2+]i levels similar to cells heated in the absence of these drugs. On the other hand, an 

increase in [Ca2+]i was observed in cells heated in the presence of tetracaine compared 

with cells heated in the absence of this drug. The heat-induced increase in [Ca2+]i in the 

presence of tetracaine was suggested to be due to substantial membrane damage in the 

presence of this drug at elevated temperature, since cells were unable to exclude trypan 

blue, whereas this was not the case in the presence of lidocaine and procaine. Hence, the 

authors concluded that increase in [Ca2+]i was not involved in potentiation of 

hyperthenn ic cell death by local anaesthetics. 

Calcium channel blockers such as nifedipine, diltiazem and verapamil have been 

used to block calcium entry via voltage-gated channels. Using concentrations of 

verapamil (50-75 J.IM) and diltiazem (100-250 J.IM) that did not block calcium influx, 

cell death of CHO IOB4 cells was potentiated when they were heated at 44°C for up to 

80 min (Cosset a/., 1989). On the other hand, Mikkelsen eta/. (1991a) did not observe 

any effect on cell death when HT-29 cells were heated at 44°C for up to 2 h in the 

presence of verapmnil at concentrations ranging from 0-25 pM. However [Ca2+]i was 
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not determined in either case. In a recent study, the heat-induced increase in [Ca2+]i in 

the presence of verapamil or diltiazem was determined in fura-2 loaded mouse mammary 

carcinoma FM3A cells by digitised fluorescent micoscopy (Kondo eta/., 1994). It was 

found that cells heated at 44°C for 1 h in the presence of either 100 J.lM verapamil or 

diltiazem displayed a higher [Ca2+]i compared with those heated in the absence of the 

Ca2+ channel blocker. This increase in [Ca2+]i was due to Ca2+ influx, as determined by 

measurement of 45Ca2+ flux. In addition, heating in the presence of these drugs delayed 

cell growth induced by hyperthermia (Kondo et al., 1994). La3+ was also shown to 

potentiate cell death of EAT cells heated at 43°C for 3 h. This sensitisation was found to 

be due to enhancement of calcium influx under hyperthermic conditions, associated with 

alteration of membrane fluidity by La3+ (Anghileri et al., 1983). 

Although the exact role of changes in [Ca2+]i in hyperthermic cell death is still 

uncertain, it may play a secondary role leading to cell death. For example, the increase in 

[Ca2+Ji following heating can lead to disruption of cytoskeletal organisation or it can 

activate calcium-dependent enzymes, leading to uncontrolled cellular processes as 

suggested by Orrenius eta/. ( 1988) (Figure 5.2). 

Calcium ions have been shown to play a role in the modulation of cytoskeletal 

structure and function either alone or, more often, associated with the formation of 

CaCaM complex (Table 5.2). Through their ability to regulate the activities of 

cytoskeletal binding proteins, calcium ions can control the assembly of actin and tubulin. 

Alternatively, changes in cytoskeletal structure may be mediated by catabolic enzymes 

such as cytosol neutral proteases (Trump and Berezesky, 1992). 

Disruption of cytoskeletal organisation is associated with surface bleb formation. 

Bleb formation has been observed in CHO cells when heated above 43°C (Basset a/., 

1982; Borrelli et al., 1986). Both groups reported that there was a correlation between 
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cells covered with blebs and cell survival. By measuring the bleb size, Borrelli et al. 

( 1986) reported that cells having blebs greater than 50% of the cell diameter (measured 

immediately after heating) were those that could not form colonies. However, this 

correlation only held at G1 phase. Some evidence supports the suggestion that calcium 

plays a role in bleb formation. For example, treating hepatocytes with A23187 caused a 

sustained increase in [Ca2+]j, and bleb formation was observed (Kapiszewska and 

Hopwood, 1988). On the other hand, pretreatment of hepatocytes with an inhibitor of 

calcium-regulated cytosolic proteases, such as leupeptin, can prevent bleb formation 

(Nicotera eta/., 1986). When rabbit proximal tubule epithelium was treated with HgC12 

at a concentration of 10-50 J.IM, a massive increase in [Ca2+]i was observed, which was 

followed by bleb formation. By digitised imaging microscopy, it was shown that [Ca2+]i 

in the bleb region was at a much higher level (Smith et al., 1991). Such a massive 

increase in [Ca2+]j in the bleb region could activate calcium-dependent proteases that 

cleave actin-binding proteins, thus eliminating the plasma membrane anchor to the 

cytoskeleton. Disruption of cytoskeleton causes a weakening of the cell surface and leads 

to membrane blebbing (Kapiszewska and Hopwood, 1988). 

The effect of heat on CaM function has been investigated by employing CaM 

inhibitors (Wiegant et al., 1985; Landry et al., 1988; Evans and Tomasovic, 1989). The 

presence of CaM inhibitors, such as trifluoperazine, compound 48/80 and 

calmidazolium, potentiated heat cell death of neuroblastoma N2A cells and hepatoma 

H35 cells upon heating at 43°C for 30 min or longer (Wiegant et al., 1985). The exact 

role of CaM inhibitors in sensitisation to heat cell death remains unclear, but it is 

possible that cytoskeletal reorganisation during heating is inhibited. Using the anti-CaM 

drug W13 and its non-functional analogue W12, Landry and co-workers (1988) reported 

that the presence of W13 potentiated hyperthermic cell death of Chinese hamster lung 

023 cells upon heating at 43°C whereas W12 had little influence. As W12 possesses 5 to 

10-fold less binding affinity for calmodulin than W13 but only has a 10-15% reduction 

217 



in hydrophobic index, the authors suggested that the sensitisation to hyperthermic cell 

death by these agents was not due to their effects on membranes, but was related to 

inhibition of calmodulin. Potentiation of hyperthermic cell death by CaM inhibitors was 

also observed in mouse tumour clone C cells (MTC cells) (Evans and Tomasovic, 1989). 

When MTC cells were incubated in W7 or the less active analogue, W5, for 30 min 

before heating for up to 3 h, it was found that cell death was enhanced when cells were 

heated at 43°C in the presence of W7 but slightly protected if heated (and pre-incubated) 

in W5 compared to those heated in the absence of drug. However, the potentiation of cell 

death by W7 was not observed when cells were heated at 42°C i.e. the cell death at 42°C 

was similar between cells heated in the absence or in the presence of either W7 or W5. 

Based on these observations, Evans and Tomasovic ( 1989) proposed that it could be 

possible that the target of heat damage between 42°C and 43°C treatment was different. 

For example, it could be possible that a W7 -sensitive target was involved in cell death at 

43°C but not at 42°C. It could also be possible that the uptake and distribution of W7 

was temperature-dependent. Although there is no unambiguous evidence that 

mechanisms of heat cell death may arise predominantly through perturbation of Ca2+ or 

CaM-regulated processes, these results imply that perturbation of these systems may 

contribute to hyperthermic cell killing. 

[Ca2+]i regulates the activities of phospholipases such as PLA2 or PLC (Lapetina, 

1990). PLA2 is responsible for the cleavage of the fatty acyl chain in the sn-2 position of 

phospholipid, giving rise to /ysophospholipid and free fatty acid. So far only the PLA2 

responsible for cleaving the arachidonic acid moiety has been characterised. It was found 

that heat shock (42-45°C) led to arachidonic acid accumulation in CHO HA-l 

fibroblasts, HeLa cells, Balb C 3T3 fibroblasts and PC 12 rat pheochromocytoma cells 

(Calderwood et a/., 1989). These investigators proposed that this was due to an 

activation of PLA2 at elevated temperature because accumulation of lysoPC and lysoPI 

were observed at the same time. Accumulation of arachidonic acid in heated CHO HA-l 
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cells and HeLa cells were both temperature and heating-time dependent and was 

accompanied by an increase in eicosanoid products. Although the activation of PLA2 in 

CHO HA-l cells at elevated temperature was not mediated by an increase in [Ca2+]i, the 

dependency of PLA2 activity on Ca2+ levels in other cell types upon heating remains to 

be evaluated. It has been reported that /ysophospholipid itself is toxic, so the level of this 

substance must be tightly controlled (Siesjo and Wieloch, 1985). Sustained PLA2 

activation can lead to the accumulation of this toxic substance, disruption of 

phospholipids turnover and to the disruption of membrane integrity. 

As indicated in Chapter 3, phosphatidylinositol-specific phospholipase C (PI-PLC) 

is involved in the phosphoinositide signalling pathway. Upon stimulation, it hydrolyses 

phosphatidylinositol 4,5-bisphosphate (Ptdlns(4,5)P2) giving rise to two second 

messengers, 1 ,2-diacylglycerol (1 ,2-DAG) and inositol 1 ,4,5-trisphosphate 

(Ins( 1 ,4,5)P3) (Berridge, 1984 ). 1 ,2-DAG together with calcium and phosphatidylserine 

(PtdSer) activates protein kinase C (Nishizuka, 1984; Chapter 3) while Ins(l ,4,5)P3 is 

responsible for calcium mobilisation from intracellular stores such as ER (Berridge, 

1993; Chapter 4). It has been suggested that heat shock leads to an increase in hydrolysis 

of polyphosphoinositides (PPI), giving rise to inositol trisphosphate and its metabolites 

in several cell lines such as CHO HA-l cells (Calderwood et al., 1987; Calderwood and 

Stevenson, 1993), Balb C 3T3 cells (Calderwood et al., 1987; Calderwood and 

Stevenson, 1993) and A-431 cells (Kiang and McClain, 1993). Furthermore it has been 

shown that heating at 45°C for longer than 15 min causes a depletion in PPI 

(Calderwood eta/., 1987). Since PPI are involved in microfilament anchoring to the cell 

surface (Lassing and Lindberg, 1985), depletion of PPI could disrupt the cytoskeletal 

organisation and may be an important component in the pathway leading to heat cell 

death. 

In this study, heat-induced changes in [Ca2+]i were investigated under different 
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conditions in fura-2 loaded WRK-1 cells, using fluorescence microscopy. Fura-2 was 

chosen as a Ca2+ -indicator in this study for the following reasons: (1) The availability of 

the dual wavelength equipment. (2) The overlapping of wavelengths of indo-1 emission 

with cellular autofluorescence from pyridine nucleotides is more severe than that of fura-

2. Hence the autofluorescence in fura-2 loaded cells is negligible (Aubin, 1979). (3) The 

rate of photobleaching of fura-2 is several fold slower than indo- I. This is important in 

this type of study since experiments were performed at elevated tem'perature, which 

increases the photobleaching rate (Tsien and Pozzan, 1989). 
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Table 5. I. Calcium-calmodulin regulated enzymes 

Enzymes that are regulated by calcium-calmodulin complex (CaCaM) are: 

Cyclic nucleotide phosphodiesterase 

Adenylyl cyclase 

Guanylyl cyclase 

cGMP protein kinase 

Myosin light-chain kinase (MLCK) 

Ca2+-Mg2+-ATPase in the plasma membrane 

Phosphorylase kinase· 

Glycogen synthase kinase 

NAD+ kinase 

Phosphoprotein phosphatase 

Phospholipase A2 

Succinate dehydrogenase 
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Table 5.2. Effect of CaCaM on cytoskeletal organisation 

MLCK: 

Presence of CaCaM activates this enzyme and promotes the phosphorylation of the light 

chain myosin molecule, allowing a conformational change in the myosin that allows actin 

binding and stimulates the A TPase activity. The hydrolysis of A TP provides energy 

necessary for tension development and contractility 

Actomyosin: 

Actomyosin may be a calmodulin regulated component of the mitotic apparatus. In 

interphase phase of nonmuscle cells, actomycin provides the chemical and mechanical 

basis for contractility 

Microtubule-associated proteins (MAP): 

CaCaM affects the assembly of microtubules. Upon addition of 11 pM Ca2+ the 

microtubule polymerisation is inhibited through the action of CaCaM, possibly through 

the action on MAP, although the actual mechanism is unclear 
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5.2 Materials and Methods 

5.2.1 Determination of cytosolic free calcium using a fluorescent microscopy 

technique 

(i) Equipment (Figure 5.2) 

The system consists of the following accessories: 

1. Microscope and objective 

A Nikon inverted microscope (Diaphot-TMD) with a Nikon CF Fluor x40 objective 

were used. 

2. Illumination source 

A xenon lamp (75W) which gave a more uniform spectral output than a mercury lamp 

was used in the study. 

3. Excitation wavelength selector 

This was achieved by filters assembled into a wheel, which was situated between the 

light source and the microscope. The wheel alternated between 350 and 380 nm filters 

and the rate of alternation was controlled by a personal computer. The light intensity was 

attenuated by a 15.2% neutral density filter to prevent photobleaching and photodamage. 

Between measurements the light was blocked by either closing the shutter or by putting a 

mirror between the light source and the microscope. 

The time required for one complete cycle measurement i.e the time taken to move to each 

filter and the photon counting time= 2 x (filter change time+ photon count time) 

The filter change time in this system was 300 ms and the photon count time was 200 ms, 

so I s was required for one complete cycle. 

4. Dichroic mirror 

A dichroic mirror was used to reflect the excitation light into the objective, but to pass 

longer wavelength emission light (in the uv region) to the eye-piece or detector. 
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5. Emission filter 

The emitted 1luorescence, before feeding into the photomultipliers, was filtered through 

a 520 nm cut-off filter. 

6. Photomultiplier tube (PMT) 

The photomultiplier converted photons emitted from the dye to electrons. These 

electrons were then accelerated and amplified by the pulse amplifier box. The output was 

then fed into the computer, then analysed and displayed on the screen. 

7. Program 

Photon counting system count 4 (Newcastle Photometric Systems) 

The program enabled the control of the filter changing time, graphic output, data storage 

and analysis. The average light intensities obtained over the excitation period (total of 8 

s) at each of the two wavelengths were used by the computer to calculate the 350/380 nm 

ratio after background subtraction. 

(ii) Temperature controller 

A system able to control the temperature at either 37 or 45°C was necessary, and 

this was achieved by a PDMI-2 open perfusion micro-incubator system together with a 

TC-202 temperature controller (Medical System Corp, Greenwale, NY). Perfusion was 

achieved by a peristaltic pump at a flow rate of 1.5 ml/min. As the medium was perfused 

through the unit, it was warmed up to ±0.2°C of the set temperature. 

Continuous perfusion during measurements allowed (1) simple addition of drug or 

agonist; (2) better temperature control and fast temperature changes; (3) maintenance of 

a constant volume of medium (no loss through evaporation); (4) removal of any leaked 

dye during measurement. 

However an inevitable temperature gradient existed within the chamber, the 
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magnitude of which depended on the depth of the medium, position within the chamber, 

flow rate and the ambient temperature. Consequently, a thermocouple was inserted into 

the chamber to monitor the temperature of the medium during measurement. In all of the 

measurements, the cells close to the thermocouple were used. 

The focus and the position of the specimen (cell) will alter as temperature changes. 

Thus, it must be ensured that the specimen is in focus during measurement. 

(iii) Cell incubation chamber 

The base of the incubation chamber must be made of material that allows the 

transmission of the required wavelength and gives a good quality image. This was easily 

done by cutting a hole at the bottom of a plastic petri dish (35 mm dish from Coming) 

and fixing a glass coverslip to it. In order to reduce heat loss, a polystyrene lid with a 

small window in the middle (made by cutting the middle of the lid off and attaching 

small pieces of glass to either side of the lid) was used. By this means, the adjustment of 

the focus could be carried out without removing the lid. 

(iv) Calibration 

In vitro calibration was done by using 10 pM fura-2 free acid (Cambridge Bio

science) and the calcium calibration buffer kit which contained 11 calcium buffers at 

different concentrations of free calcium (Cambridge Bio-science). Fura-2 free acid (2 pi) 

was added to 198 pl of calibration buffer in a glass bottom cuvette, created by removing 

the bottom of a plastic cuvette and mounting a glass coverslip on it. The cuvette was 

fitted with a polystyrene lid, then the calibration buffer was maintained at 37°C or 45°C 

by placing the cuvette in a micro-perfusion chamber containing water at the appropriate 

temperature. The temperature of the buffer was monitored throughout the measurement 
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by a thermocouple. Background fluorescence was measured using calibration buffer 

before the addition of the dye. The background intensities were then subtracted from the 

fluorescence intensities at 350 and 380 nm and the fluorescence ratio at 350/380 nm, 

corresponding to a particular concentration of free calcium, was calculated. However, as 

the binding affinity of EGTA and calcium varies with temperature, pH and ionic 

strength, it is necessary to correct the dissociation constant of calcium and EGTA to the 

relevant conditions. 

The dissociation constant(~) for EGTA and calcium is defined as: 

[Free Ca2+] [All forms of EGTA not bound to calcium] 

[Ca·EGTA complex] 

At pH> 4, three forms of metal-free EGTA are present. They are 

[EGTA]4-, [EGTAH]3-, [EGTA·H2]2-, 

where [EGTA·H]3- = [EGTA]4- x 1Q(pKl-pH) 

[EGT A H2]2- = [EGT A ]4-x 1Q(pK2-pH) 

(1) 

Substitution of the above expression into equation (1) and then simplication gives the 

following equation (Tsien and Pozzan, 1989): 

l + lO(pK,- pH)+ lO(pK2 + pK,- 2pH) 
Kd=------------------------

Kca 

(2) 

Where Kca = [C;·EGTA]2 ~ , and K1 and K2 are the association constants for EGTA 
[Ca +][EGTA] -

andH+ 
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Since both K 1, K2 and Kca are affected by temperature, ionic strength and pH, they must 

be converted to the correct value before applying to equation (2) 

The conversion is according to those described by Harrison and Bers ( 1989) 

The conection of association constants for temperature is given by : 

1 1 
~H(---) 

logK' = logK + T T' 
2.303R 

(3) 

Where K = association constant at 20°C 

K' = new association constant after temperature correction 

T = 20°C (293K) 

T' =temperature of the experimental condition (in Kelvin) 

~H forK 1 and K2 = -5.8 Kcal/mol 

~H for Kca = -8.1 Kcal/mol 

At 20°C, 0.1 M ionic strength, 

pK1 = 9.58, pK2 = 8.96, Kca = 1Ql0.97, R = 1.9872 KcalK-lmoi-1 

Substituting all the values into equation (3 ), the corrected K 1, K2 and Kca1 values at 

37°C and 45°C are as follows: 

PKt pK, Kr~ 

37°C 9.34 8.72 1Q10.64 

45°C 9.24 8.62 1Q10.5 

Since pH is altered as temperature changes, the pH of the calibration buffer was 

determined by a Unicam combustion pH electrode which gave a reading up to 3 decimal 

places. 
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Substituting both pH (Table 5.3) and the corrected pKl> pK2 and pKca values into 

equation (2) to calculate the dissociation constants for calcium and EGTA at both 37 and 

45°C, the corrected Kd for Ca-EGTA at 0.1 M ionic strength is given by: 

Temperature (°C) Corrected Kct (nM) 

37 126 

45 203 

N f I . . . h b ffi K [Ca·EGTA] ow, ree ca cmm concentration m l e u er = d · .;;...__ ___ ~ 
[EGTA] 

(4) 

The [Ca-EGTA] and [EGTA] were g1ven by the manufacturer, so the free calcium 

concentration at a particular temperature and pH could be calculated by using equation 

(4). 

The corrected free calcium concentrations together with the fluorescence ratios obtained 

at 350 and 380 nm were then fitted using a least squares program in order to determine 

the K 112. This K l/2 value was then used to calculate the Kd of fura-2 for calcium 

(Groden eta/., 1991) as follows: 

K - Kt 12 
d- Sf2 

Sb2 

where K 112=[Ca2+]i for which R = (Rmin + Rmax)/2 

(5) 

Sb2= fluorescence intensity obtained at 380 nm at zero calcium concentration 

Sf2= fluorescence intensity obtained at 380 nrn at saturating calcium 

concentration 

The Kd of fura-2 and calcium were then used to convert the ratio obtained from the 

experiments to the free [Ca2+]i according to the following equation (Grynkiewicz et al., 

1985): 
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where R = Ratio obtained at 350/380 run 

Rmax = Ratio obtained at saturating calcium 

Rmin = Ratio obtained at zero calcium 

5.2.2 Determination of cytosolic free calcium during heating 

(i) Culture conditions 

(6) 

WRK-1 cells from a 25 cm2 flask were harvested, resuspended in growth medium 

and counted. The suspension was further diluted by growth medium to give 80000 

cells/mi. The diluted cell suspension (0.1 ml) was then added to a number of wells in 6-

well plates with a 1 0-mm diameter coverslip in each well. Cells were maintained at 37°C 

in an air/C02 ( 19:1, v/v) atmosphere. Cells were used between 18-24 h later. 

(ii) Stock solutions of calcium indicators 

On receipt of fura-2/AM or the free acid, the powder was dissolved in DMSO, 

then mixed for I 0 min at room temperature, to give a stock solution of 1 mM. Dye 

solution (20 J.ll) was then dispensed into microfuge tubes together with 10 pi of 10 % 

(w/v) pluronic acid in DMSO, which is included to give a better dye loading. Tubes were 

stored at -20°C for up to 3 months and were thawed only once before use. 

(iii) Dye loading 

Fura-2/ AM stock solution was thawed in an enclosed warm-up box containing dry 

silica gel to prevent condensation. The thawed dye (30 pi) was then mixed with 1.97 ml 
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of serum-free, phenol-red free EMEM containing 20 mM Hepes, pH 7.4 (medium A) to 

give a 10 !JM fura-2/AM dye solution. The diluted dye solution was then mixed on a 

vortex mixer for l 0 min. The coverslip with attached cells was transferred to a well of a 

24-well plate and 200 pl of the dye solution was added to it. The plate was then 

incubated in a 30°C incubator for 1.5 h. 

(iv) Cytosolic free calcium measurements during heating 

Following the loading of cells with fura-2/AM, the coverslip was washed three 

times with medium A or the appropriate solution that would be used in the measurement. 

Then it was transferred to the microscope perfusion chamber containing 1 ml of medium 

A or calcium-containing buffer (138 mM NaCl, 2.7 mM KCl, 0.5 mM MgCI2, 1.8 mM 

CaCI2, 5.5 mM glucose and 20 mM Hepes, pH 7.4) or calcium-free buffer (138 mM 

NaCl, 2.7 mM KCl, 0.5 mM MgCl2, 0.5 mM EGTA, 5.5 mM glucose and 20 mM 

Hepes, pH 7.4) at 37°C. A background reading was taken in the same field as the cell 

that would be used. Then a cell was focused and the ratio was taken at 37°C. The 

temperature was then increased to 45°C using a combination of the temperature 

controller and by perfusing hot medium (50°C) through the system. Using this 

technique, it took about 2-3 min to reach 45°C. Measurements were taken intermittently 

for 8 s in every 200 s interval, because continous monitoring was found to accelerate the 

rate of photobleaching. 

5.2.3 Determination of cell survival 

The effect of calcium on hyperthermic cell death was studied by heating the cells 

in EMEM, calcium-containing buffer (1.8 mM Ca2+) or calcium-free buffer. 

Furthermore, the effect of a calcium channel blocker on cell death was studied. 
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(i) Effect of extracellular calcium concentration on hyperthermic cell death 

WRK-1 cells were harvested and incubated as described in section 3.2.2(ii). On 

the day of heating (day 3), the medium was replaced either by 1 ml of EMEM, calcium

containing buffer or calcium-free buffer, together with 24 mM sodium bicarbonate and 

20 mM Hepes, pH 7.4. The plates were then returned to the 37°C incubator, containing 

an atmosphere of air/C02 (19:1, v/v), for 20 min. After 20 min, plates were sealed then 

equilibrated under the surface of a water bath for 15 min at 37°C. The plates were then 

transferred and submerged in a 46.5°C water bath for 4 min before moving to a 45°C 

bath. Plates were removed from this latter water bath every 7 min (including the 4 min 

lag period) for up to 42 min. Plates were cleaned with 70% (v/v) alcohol and unsealed. 

Then 10 fJI of 181.8 mM calcium chloride was added to the wells containing calcium

free buffer. Sera were added to all of the wells to give a final concentration of 2% (v/v) 

rat serum and 5% (v/v) FBS. Plates were then returned to culture in the 37°C incubator 

and, after 4 h the medium was replaced by fresh growth medium and with one medium 

change on day 5. Cell viability was assessed by the MTI assay on day 6. 

(ii) Effect of calcium channel blocker on hyperthermic cell death 

Cells were harvested and seeded as described in section 3.2.2(ii). On day 3, the 

medium was replaced by either EMEM medium or EMEM containing 50 pM nifedipine. 

In both cases, 24 mM sodium bicarbonate and 20 mM Hepes, pH 7.4 were included. 

Plates were returned to the incubator at 37°C, containing an atmosphere of air/C02 

(19: 1, v/v), for 20 min. Plates were then sealed and then equilibrated at 37°C in a water 

bath for 15 min and heated as described in section 5.2.3(i). Plates were then cleaned with 

70% (v/v) alcohol and unsealed. Sera were added to all of the wells to give a final 

concentration of 2% (v/v) rat serum and 5% (v/v) FBS. Furthermore, 1 fJl of 50 mM 

nifedipine was added to the wells containing EMEM alone, to give a final concentration 
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of 50 J.IM. Plates were then returned to culture at 37°C and the medium was replaced 

with growth medium after 4 hand with one medium change on day 5. Cell viability was 

assessed by the MTT assay on day 6. 
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5.3 Results 

The effect of heat on the cytosolic free calcium concentration ([Ca2+]i) was 

determined by an epifluorescent microscopic technique (sections 5.2.2(iv)). This system 

enabled the determination of [Ca2+]i at the single cell level and allowed continuous 

perfusion of appropriate buffers, so the artifacts due to dye leakage out u1 the cells into 

the medium were avoided. 

In order to correlate free calcium concentration with the ratio obtained from the 

fluorescent signal following excitation at wavelengths 350 and 380 nm, calibration is 

necessary./n vitro calibration was performed using fura-2 free acid together with buffers 

containing different concentrations of free calcium (in nM to JlM range). This required a 

high buffering chelator and EGTA suits this purpose. However, as the dissociation 

constant of EGT A and calcium is affected by pH, ionic strength and temperature, failure 

to consider these factors will result in incorrect estimation of free calcium concentration 

in the buffer. The Ca-EGTA dissociation constant has been determined experimentally 

(Bers, 1982). AI tematively, the dissociation constant can be calculated by using 

individual stoichiometric association constants of EGT A for protons and Ca2+ (Harrison 

and Bers, 1989). Since the association constants of EGTA for protons and Ca2+ are 

modified by changes in temperature, pH and ionic strength, these constants must be 

adjusted for conditions similar to those used experimentally prior to the determination of 

the dissociation constant of Ca-EGTA (Kdca-EGTA>· It was found that increasing the 

temperature from 37°C to 45°C resulted in a decrease in pH value (Table 5.3). The Kdca

EGT A was then calculated by using the converted association constants of EGT A for 

protons and Ca2+. It was found that, as the temperature increased from 37 to 45°C, the 

dissociation constant of Ca-EGTA increased by about 61% (Figure 5.4). 

After the Kd values of Ca-EGT A were corrected for temperature, they were then 
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used for calculating the free calcium concentrations. The ratios obtained at 350/380 nm 

excitation wavelength were plotted against free calcium concentrations (in log scale) and 

the data points were analysed by a least squares analysis program to give the best fit 

curves at 37 and 45°C (Figure 5.5). The Hill coefficients of these curves were I at both 

temperatures, suggesting that fura-2 and calcium had a binding stoichiometry of I: I. The 

K 112 value obtained from the curve was 623.8 nM at 37°C and 1238.8 nM at 45°C. 

These K 112 values were then used to calculate the dissociation constant of the fura-

2/Ca2+ complex by substituting these values into equation (5) as described in section 

5.2.l(iv). The calculated dissociation constants of fura-2/Ca2+ complex were I5I nM 

and 209 nM at 37 and 45°C, respectively. 

Fura-2/AM, the hydrophobic acetoxy methylester form of the dye, can cross the 

cell membrane very easily. Once inside the cells, the acetoxymethyl groups are cleaved 

by esterases to give a highly charged fura-2, so it is trapped in the cytosol. If the 

cytosolic esterase activity is low, such that the ester bonds are not cleaved rapidly, the 

fura-2/AM can cross the membranes of intracellular organelles. Also, the dye can enter 

into the organelles via endocytosis and pinocytsis. The fura-2 so sequestered is 

insensitive to changes in [Ca2+Ji in the cytosol (Steinberg eta/., 1987). The problem of 

dye sequestration can be eliminated by reducing the temperature of dye loading. For 

example endocytosis and compartmentalization can be slowed down by a reduction in 

the loading temperature e.g. from 37°C to 32°C (Poenie et a/., I986) or at I5°C 

(Malgaroli et a/., 1987). However, dye loading at low temperature followed by 

transferring of WRK-1 cells to 45°C meant that a larger temperature jump would be 

experienced by the cells, and this might produce artefacts in hyperthermic studies on the 

cells. Thus a loading temperature close to the normal growth temperature was sought. It 

was found that loading at 30°C for I.5 h achieved an even distribution of the dye, i.e. 

prevented dye sequestration, as well as providing a high enough fluorescent signal to be 

detected. Thus this loading condition was used. The dispersing agent pluronic acid was 

237 



also included in the dye solution to prevent the incorporation of the dye into endocytic 

vesicles (Tsien, 1989). 

Phenol red, which is present in most growth media, has been reported to give a 

highly fluorescent signal (Moore et al., 1990). Thus in this study, phenol red-free 

EMEM medium was used instead. Serum was also omitted from the dye solution and the 

experimental medium to prevent the possibility of calcium mobilisation triggered by 

hormones or growth factors that are present in serum. 

Once the appropriate loading condition was established and a suitable dye-loading 

medium had been chosen, determination of [Ca2+]i was performed. To ensure that this 

loading system can detect rapid changes in [Ca2+]i, 1 J.lM vasopressin was added to the 

cells by perfusion. Vasopressin at 1 J.lM concentration has been reported to release Ca2+ 

from intracellular stores of WRK-1 cells (Mouillac eta/., 1989). Upon addition of this 

hormone (through perfusion) the ratio increased from 0.8 to about 4 i.e. [Ca2+]i 

increased from 54±4.8 nM to 506±56.5 nM (8 determinations). Typical examples of the 

increase in [Ca2+Ji (under 1.6 mM extracellular calcium concentration or in calcium-free 

condition) upon vasopressin stimulation are shown in Figure 5.6. An increase in [Ca2+]i 

was detected within lO sec from the point when perfusion started and returned to basal 

level after about I 00 sec. This increase in [Ca2+]i was detected in either EMEM (Figure 

5.6a) or in calcium-free buffer (Figure 5.6b). Results imply that rapid changes in [Ca2+]i 

can be detected readily by this fluorescence system. 

The effect of hyperthermia on [Ca2+]j was then investigated in WRK-1 cells. 

Heating was performed in EMEM ( 1.6 mM extracellular calcium), calcium-containing 

buffer ( 1.8 mM extracellular calcium), calcium-free buffer (including 0.5 mM EGTA) 

and EMEM medium containing calcium channel blockers (nifedipine or La3+). 
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When WRK-1 cells were heated at 45°C in EMEM medium, an increase in [Ca2+]i 

was observed in most of the cells measured, and typical examples of the heat-induced 

increase in [Ca2+]i are shown in Figure 5.7. Out of 50 cells analysed, 76% showed an 

elevated [Ca2+]i within the heating period used (up to 30 min). No change in [Ca2+]i was 

observed in control cells incubated at 37°C for up to 30 min (data not shown). However, 

when heating to 45°C was carried out in a simple calcium-containing buffer (containing 

1.8 mM CaCI2), only 25% of the cells showed an increase in [Ca2+]i level, out of 24 

cells analysed (Figure 5.8). To determine [Ca2+]i under these heating conditions, 

fluorescent ratios obtained from these cells were converted to free calcium concentration 

using equation (6) described in section 5.2.l(iv). The mean [Ca2+]i and standard error of 

the mean were plotted against duration of heating at 45°C (Figure 5.9). In both cases, the 

increase in [Ca2+]i was dependent upon duration of heating. For cells heated in calcium

containing buffer, the mean [Ca2+Ji reached 250 nM after 1000 sec. Similarly, cells 

heated in EMEM medium resulted in an increase in mean [Ca2+Ji to the same level after 

1000 sec and [Ca2+]i continue to increase as the heating time increased, achieving a 

mean [Ca2+]i of 800 nM after 1600 sec. On the other hand, there was insufficient data to 

determine [Ca2+]i for heating times longer than 1000 sec in calcium-containing buffer. 

Whether [Ca2+]i increased continuously until the intracellular and extracellular calcium 

concentration reached equilibrium, as a result of an increase in membrane permeability 

as suggested by Stevenson et a/. ( 1987), is unknown since the fluorescence intensity of 

the cells became very low on prolonged heating. As shown in Figure 5.7 and 5.8, the lag 

time before an elevation in [Ca2+]i was observed varied from one cell to another. The lag 

time required for cells to show an increase in [Ca2+]i is shown in Figure 5.10. It was 

observed that [Ca2+]i in some cells started to rise as early as 50 sec at 45°C, whereas 

some did not show any changes until very late in the measurement. 

In order to compare the rate of increase in [Ca2+Ji upon heating in EMEM and 

calcium-containing buffer, the time at which an increase in [Ca2+]i was observed was 
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nonnalised to 0 sec and [Ca2+]j obtained under both conditions was compared at every 

200 sec thereafter (Figure 5.11). It can be deduced from the graph that the initial rate of 

increase in [Ca2+]i in both conditions was similar, whereas the rate of increase in [Ca2+]i 

started to slow down after 600 sec in cells heated in calcium-containing buffer. 

The results so far suggest that an increase in [Ca2+]i was observed in many cases 

when cells were heated in calcium-containing media, although this occurred more 

frequently in EMEM than in calcium-containing buffer. In order to determine whether 

this increase was due to calcium released from internal stores or to calcium influx from 

the extracellular medium, experiments were performed in calcium-free buffer (Figure 

5.12). The heat-induced increase in [Ca2+]i was completely abolished under calcium-free 

conditions ( 19 determinations). 

Hence the data suggest that (1) elevation of [Ca2+]i upon heating was due 

primarily to calcium influx from the extracellular medium, (2) EMEM had a more 

profound effect in promoting a heat-induced increase in [Ca2+]i, so it was employed in 

the rest of this study to investigate the possible pathway for calcium entry. 

Calcium influx through voltage-gated calcium channels has been successfully 

blocked by inorganic channel blockers such as Co2+, La3+ and Cd2+ as well as by 

organic channel blockers such as nifedipine, verapamil and diltiazem (Hallett et al., 

1990). In this study, the effects of La3+ and nifedipine on the heat-induced increase in 

[Ca2+]i were studied (Figure 5.13). It was found that the restiqg [Ca2+]i value was not 

affected by the presence of 50 pM La3+ (Figure 5.13a) or 50 pM nifedipine (Figure 

5.13b), nor did they abolish the heat-induced increase in [Ca2+]i (Figure 5.14). Since the 

lag period before an increase in [Ca2+]i was observed varied in different cells, the time at 

which the increase in [Ca2+]i began was normalised to 0 sec and [Ca2+]i in heated cells 

was compared every 200 sec thereafter (Figure 5.15). It was found that the rate of 
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increase in [Ca2+]i in the presence of either channel blocker was insignificantly different 

from those heated in EMEM (control). These results suggested that the heat-induced 

increase in [Ca2+]i was not due to an influx of calcium through the voltage-gated 

calcium channel. This conclusion was further supported by exposure of cells to a high 

concentration (50 mM) of K+ (Figure 5.16). Medium containing this concentration of K+ 

causes depolarisation of the cell membrane and opens voltage-gated calcium channels to 

allow calcium influx (Ozawa and Sand, 1986), but this treatment did not show any 

change in [Ca2+]i, suggesting that voltage-gated calcium channels were absent in these 

cells. 

The Na+/Ca2+ exchanger is present in both excitable and non-excitable cells, and it 

has been suggested to play a role in controlling calcium homeostasis (Carafoli, 1987). 

The action of this exchanger can be reversed depending on the magnitude and direction 

of the Na+ electrochemical gradient, resulting in net movement of Ca2+ into or out of the 

cells (Carafoli, 1987; Reeves, 1990). The effect of heat on the Na+jCa2+ exchanger has 

been investigated in A-431 cells upon heating at 45°C (Kiang et a/., 1992). These 

authors suggested that the heat-induced increase in [Ca2+]i was due to a reversal of the 

normal operation of this exchanger during heating, thus causing Ca2+ influx. Evidence 

leading to this conclusion included: (1) The increase in [Ca2+]i during heating was 

dependent upon the extracellular calcium concentration, higher levels of extracellular 

calcium concentrations resulting in a higher level of heat-induced [Ca2+]i. This increase 

in [Ca2+]i was correlated with an increase in Ca2+ influx when assayed by 45Ca2+. (2) 

The heat-induced rise in [Ca2+]i was dependent on extracellular sodium concentration 

and a higher level of heat-induced [Ca2+]i rise was observed as the extracellular Na+ 

concentration increased. Removal of the sodium gradient by loading the cells with Na+, 

by employing a Na+-K+-ATPase blocker such as ouabain, caused an increase in resting 

[Ca2+]i, but heating under these conditions only caused a slight increase in [Ca2+]i, 

suggesting that the heat-induced increase in [Ca2+]i was related to the Na+ gradient 
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across the plasma membrane. (3) The heat-induced increase in [Ca2+]i was blocked by 5 

J.IM amiloride or 1 J.IM 5'(N,N'-dimethyl)amiloride (an amiloride analogue which is a 

slightly more potent inhibitor of Na+/Ca2+exchanger), which were presumably acting by 

exerting their effects on the Na+/Ca2+exchanger, though the effect of these inhibitors on 

other Na+ channels and the Na+/H+ exchanger were not excluded. 

When WRK-1 cells were heated in the presence of 5 J.IM amiloride (in EMEM), 

the heat-induced increase in [Ca2+]i was not abolished, though it occurred in a smaller 

proportion of heated cells, and the increase in [Ca2+] required a longer heating time 

(Figure 5.17). At present, there is insufficient data to make a precise decision on the role 

of the Na+/Ca2+ exchanger in the heat-induced increase in [Ca2+Ji. It could be possible 

that 5 J.IM amiloride is insufficient to inhibit the Na+/Ca2+ exchanger as it has been 

found that I mM amiloride is required to inhibit this exchanger in epithelial cells 

(Kaczorowski et al., 1985). Furthermore, it has been reported that although amiloride is 

an inhibitor of the Na+/Ca2+ exchanger, it is a more potent inhibitor of voltage-gated 

calcium channels and the Na+/H+ exchanger (Kleyman and Cragoe, 1988). Thus when 

using amiloride in investigating the effect of heat on Na+/Ca2+ exchanger, the effect of 

this inhibitor on other systems must be taken into account. It is clear that further studies 

such as using different concentrations of amiloride and/or using more potent and 

selective inhibitors (such as amiloride analogues bearing substituents on the 5-amino and 

terminal guanidino nitrogen atoms) of Na+/Ca2+ exchanger must be carried out to clarify 

the role of Na+/Ca2+ exchanger in heat-induced [Ca2+]i elevation. 

To test whether the heat-induced increase in [Ca2+]i played a role in hyperthermic 

cell death, the [Ca2+]i during heating was modulated by using different media. For 

example when heating was performed in EMEM, 76% of the cells had an elevated 

[Ca2+]i level. By heating in 1.8 mM calcium-containing buffer, only 25% showed a rise 
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m [Ca2+]j. Furthermore, using calcium-free buffer, the [Ca2+]i remained unchanged 

(maintained at about 40-50 nM). 

The killing curves obtained from these conditions are shown in Figure 5.18. The 

data points on the second phase (linear portion) of the curves were fitted with regression 

lines. The survival parameters, Dq• Do. LDso and LD90 were calculated from the 

regression lines of the curves and are shown in Table 5.4. Dq measures the width of the 

shoulder region and Jung ( 1986) has pointed out that it may be the time-dependency of 

the conversion from non-lethal to lethal damage. Do measures the time required to 

reduce the survival on the exponential part of the curve to 37% of an initial value. The 

survival parameters of cells heated in EMEM or in calcium-containing buffer were 

insignificantly different from each other. On the other hand, both Dq and Do values were 

reduced when cells were heated in calcium-free buffer compared with cells heated in 

EMEM, showing an increase in heat sensitisation under this condition. 

The effect of nifedipine on the survival of WRK-1 cells following exposure to 

hyperthermia was also investigated. The experiment was complicated by the fact that 

cells often detach from wells during heating and must be left for 4 h to reattach before 

the medium can be changed. Thus, nifedipine cannot be removed immediately after 

heating, and must remain in contact with the cells for a further 4 h. To correct for this, 

one group of cells was exposed to nifedipine during heating and throughout the 4 h post

heating (reattachment) period, while a second group was exposed to nifedipine only 

during the 4 h post-heating period. Survival parameters Do. Dqo LDso and LD90 in these 

two groups were compared with a third group of cells, heated in EMEM only (Figure 

5.18b and Table 5.4). The survival parameters in the two nifedipine-treated groups were 

similar. except for the Do value, which was significantly higher (p<0.05) when 

nifedipine was added post-heating. This implies that the presence of nifedipine during 

and after heating was more effective in killing cells than its presence during the post-
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heating period only. However, the presence of nifedipine in both cases resulted in a 

significant difference (p<0.05) in survival parameters D0, Dq and LD50 compared with 

cells heated in EMEM alone (Table 5.4). Thus, the presence of nifedipine (either during 

heating and the post-heating period or during the 4 h post-heating period only) increased 

cell death compared with cells heated in EMEM only. 
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Table 5.3. Effect of temperature on the pH of calcium-EGTA buffers 

Since the pH of the buffers was affected by the temperature, the pH of the buffer 

at 37 and 45°C was determined using an Unicam combustion pH electrode which gave a 

reading up to three decimal places. Measurements were repeated three times. 

Temperature (°C) pH of buffer 

37 7 .166±0.002 

45 7.032±0.015 

Values represent mean ± SEM from three determinations. 
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Figure 5.6a. Changes in [Ca2+Ji upon vasopressin stimulation in EMEM 
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Figure 5.6b. Changes in [Ca2+]i upon vasopressin stimulation in calcium

free buffer 
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Figure 5.10a. The lag time at 45°C before an increase in [Ca2+] 1 was observed when heated in EMEM medium 
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Fjgure 5.13a. Effect of heat on [Ca2+]i in the presence of 50·J.1M La3+ 
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Figure 5.13b. Effect of heat on [Ca2+Ji in the presence of 50 J.1M nifedipine 
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Figure 5.18a. Effect of extracellular calcium 
concentration on hyperthermic cell death 
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Table 5.4. Comparison of the survival parameters calculated from Figure 

5.18 

The survival parameters were calculated from the linear part of the killing curve 

from Figure 5.18. 

Parameters EMEM w/o EMEM Nifedipine Calcium Calcium 
(min) serum with added post containing free buffer 

nifediQine heatin__g_ buffer 

Dq, 14.1±0.69 6.46±1.16* 4.56±1.20* 13.6±0.90 9.99±1.14* 

Do 13.6±0.29 17.5±0.32* 20.0±0.35*t 13.9±0.35 8.79±0.32* 

LDso 18.6±0.65 11.8±1.17* 10.7±1.20* 17.9±0.90 12.7±1.15* 

LOgo 28.0±0.63 24.0±1.12 24.5±1.15 27.6±0.89 18.8±1.11 * 

Data in the table represent the estimate±SEM calculated from the regression lines (the 4 

min lag period was included in the data shown) 

* found to be significantly different (p<0.05) from the control value (EMEM was chosen 

as the control condition) by using Student's t-test analysis. 

t found to be significantly different (p<0.05) when the survival parameters in the 

presence of nifedipine during heating and when it was added post-heating were 

compared by Student's t-test. 
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5.4 Discussion 

Disruption of calcium homeostasis has been suggested to play an important role in 

several types of cell death (Schanne et al., 1979; Trump et al., 1980; Orrenius et al., 

1989). However, its role in hyperthermic cell death is controversial. Some workers found 

that heat cell death was neither sensitised nor protected when HT -29 cells were heated in 

extracellular calcium concentration between 0-15 mM at 44°C for up to 2 h (Mikkelsen 

eta/., 199la). On the other hand, when Reuber H35 rat hepatoma cells were heated at 

44°C, heat cell death was decreased in the presence of 0.03 mM extracellular calcium, 

but enhanced in the presence of 7.5 mM calcium, compared with cells heated in the 

presence of 1.5 mM extracellular calcium (Wiegant et al., 1984). However, the 

relationship between [Ca2+]i and hyperthermic cell death was obscure since [Ca2+]i was 

not determined in these studies. In addition, the [Ca2+]i within a cell population may 

vary from one cell to the other, so it is important to determine [Ca2+]i at the single cell 

level. In the present study, [Ca2+]i was determined at the single cell level by fluorescence 

microscopy. By employing different extracellular calcium concentrations and calcium 

channel blockers, the [Ca2+]i during heating was manipulated, and the relationship 

between [Ca2+]j and hyperthermic cell death was explored. 

In the present study, changes in [Ca2+]i were monitored in fura-2 loaded WRK-1 

cells by using fluorescence microscopy. Sequestration of calcium-binding dyes into 

different organelles has been observed in several cell lines, and this can produce errors in 

estimation of [Ca2+]i (Almers and Neher, 1985). For example, sequestered fura-2 has 

been found in endocytic vesicles of Balb C 3T3 cells (Di Virgilio et al., 1990), in 

lysosomes of human skin fibroblasts (Malgaroli et al., 1987), in mitochondria of 

endothelial cells (Steinberg et a/., 1987) and in the secretory granules of mast cells 

(Almers and Neher, 1985). Thus, an appropriate loading condition was determined to 

prevent this dye sequestration problem. It was found that loading at 30°C for 1.5 h gave 
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an even distribution of fura-2, so this loading procedure was adopted in the present 

study. 

Calibration was performed at 37 and 45°C using fura-2 free acid and calibration 

buffers containing different concentrations of free calcium. Prior to the construction of 

the calibration curves, the dissociation constants of calcium-EGTA were corrected for 

temperature and pH. These values were then used to determine the free calcium 

concentrations. The Kd values for the Ca2+Jfura-2 complex obtained from the calibration 

curve were 151 nM and 210 nM at 37 and 45°C respectively. These values lie in the 

range of the Kd values reported by Grynkiewicz et al. (1985) and were comparable to 

those reported by Kantengwa et al. (1990) which were 191 nM and 234 nM at 37 and 

45°C respectively. 

In order to investigate the effectiveness of WRK-1 cells to buffer the elevated 

[Ca2+]i upon agonist stimulation, cells were exposed to vasopressin, which is known to 

mobilise calcium from intracellular stores in these cells (Mouillac et al., 1989). Upon 

stimulation, the [Ca2+]i increased from 54±4.8 nM to 506±56.5 nM within 10 sec (8 

determinations). A lag period was expected since vasopressin was added to the cells 

through superfusion. The elevation was transient since the [Ca2+]i value returned to the 

basal level after I 00 sec. A similar vasopressin-induced increase in [Ca2+]i has been 

observed previously in WRK-1 cells, when [Ca2+]i increased from 172±7 nM up to 1180 

±52 nM and returned to basal level after 30 sec (Mouillac et al., 1989). The result 

suggested that WRK-1 cells have effective systems for agonist-induced elevation of 

[Ca2+]i and subsequent removal of the excess cytosolic free calcium, at least under 

hormonal challenge. 

The effect of hypenhermia on [Ca2+]i has been investigated in several cell lines by 

using fluorescent indicators such as indo-1, fura-2 and quin2. Three different techniques 
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have been used together with the dyes. They are flow cytometry, spectrofluorimetry and 

fluorescent microscopy. By using a flow cytometry technique to measure the [Ca2+]i in 

indo-1 loaded mouse NIH3T3 cells and C3Hlm'l/2 cells upon heating, Vidair et al. 

( 1990) found that heat caused an increase in [Ca2+]i in both cell types. However, it must 

be noted that the measurement was done at room temperature immediately following 

heating, so the increase in [Ca2+]i may not be fully representative of the heat-induced 

increase in [Ca2+]j. Using spectrofluorimetry to determine [Ca2+]i upon heating, an 

increase in [Ca2+]i was observed in human epidermoid A-431 cells (Kiang et al., 1992), 

CHO HA-l cells (Stevenson et a/., 1986), mouse fibroblast 3T3 cells (Stege et 

a/.,1993a) and Drosophila salivary gland (Drummond eta/., 1988); but not in HeLa cells 

(Stege et al., I993b), Ehrlich ascites tumour cells (EAT) (Stege et al., 1993b), murine 

lymphoma cells (Stege et al., 1993b) or human monocytic U-937 cells (Kantengwa et 

al., 1990). The discrepancy in these studies may reflect intrinsic differences in the cell 

types employed. For example, using 6 different cell types including EAT cells, HeLaS3 

cells and 3T3 fibroblasts, Wierenga et al. (1994) found that only 3T3 fibroblasts showed 

an increase in [Ca2+]i upon heating for 1 h at 44°C, although this heat dose killed more 

than 95%. of all 6 cell types. Another possible explanation for heat-induced increase in 

[Ca2+]i in some cases but not others may be involved dye leakage out of the cells 

(Malgaroli et al., 1987). This problem becomes significant at higher temperature 

(Wierenga and Konings, 1989). The artifact due to dye leakage is more pronounced 

when spectrofluorimetry is used, since the leaked dye will be maintained in the 

fluorimeter cuvette. If the extracellular medium contains a high concentration of 

calcium, the leaked dye will contribute some fluorescence signal and will result in an 

increase in fluorescence ratio. This increase in ratio will be interpreted as an increase in 

[Ca2+]i upon heating which may not be the case. When dye leakage was prevented by 

using an anion transport inhibitor, probenecid, it was found that heat did not cause any 

alteration in [Ca2+]i level in EAT cells (Stege et al., 1993b), HeLa cells (Stege et al., 

1993b) and human monocytic U-937 cells (Kantengwa et al., 1990). 
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By using fluorescence miscroscopy, the signal contributed by the secreted dye as 

described for spectrofluorimetry is eliminated because of continuous superfusion during 

measurement. In addition, the fluorescence microscopy technique enables [Ca2+]i to be 

determined at the single cell level. This is another advantage over spectrofluorimetry, 

which only measures the average [Ca2+]i in a cell population since this average value 

could reflect (a) a uniform change in all cells or (b) the sum of different changes in 

[Ca2+]i in different cells. Fluorescence microscopy techniques have been used to 

measure [Ca2+]i upon heating human colon HT-29 cells (Mikkelsen et al., 1991a), 

mouse mammary tumour MMT060562 cells (Furukawa et al., 1992) and mouse 

mammary carcinoma FM3A cells (Kondo et al., 1993). It was found that heat caused an 

elevation in [Ca2+]i in HT-29 (Mikkelsen et al., 1991a) and FM3A cells (Kondo et al., 

1993) when they were heated at 44°C for 1 h, but did not cause a significant increase 

[Ca2+]i when MMT060562 cells were heated at 44°C for 20 min (Furukawa et al., 

1992). 

In the present study, the effect of heat on [Ca2+]i in WRK-1 cells was investigated 

using fluorescence miscroscopy. When heated in EMEM, 76% of the cells showed an 

increase in [Ca2+]i within 30 min heating at 45°C. The increase was observed as early as 

50 sec at 45°C in some cells but some did not show any changes until 700 sec at 45°C, a 

heat dose which killed more than 50% of these cells. For those cells that showed a heat

induced increase in [Ca2+]i, the increase was found to occur in 2 phases. The first phase 

was a gradual increase in [Ca2+]i, which could proceed for several hundred seconds. The 

second phase was a rapid increase in [Ca2+]i and occurred once the [Ca2+]i achieved 

approximately 110 nM. This 2-phase increase in [Ca2+h during heating could be 

explained if, once [Ca2+]i of a cell reached a threshold value (about 100 nM), heated 

cells were no longer able to control the [Ca2+]i elevation. An increase in [Ca2+]i was 

observed within 2 min when CHO HA-l cells were heated at 45°C (Stevenson et al., 

1986), and in Drosophila salivary gland as soon as the temperature reached 35°C 
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(Drummond et al., 1988). On the other hand, an increase in [Ca2+]i was not observed 

until HT-29 cells were heated for more than 30 min at 44°C (Mikkelsen et al., 1991a). In 

the present study, the varying time course of the heat-induced increase in [Ca2+]i 

observed in different WRK-1 cells may be due to cells at different stages of the cell cycle 

were measured (as asynchronous cell populations were used). Since the thermosensitivity 

of the cell varies at different stages of the cell cycle (Hahn, 1982), the effect of heat on 

[Ca2+]i may vary as well. 

When cells were heated in calcium-containing buffer, only 25% of the cells 

showed a rise in [Ca2+]i. The discrepancy obtained between cells heated in EMEM or 

calcium-containing buffer could be due to effects exerted by some of the constituents 

present in EMEM, but this possibility was not investigated further. 

So far, the results suggested that heat caused an elevation in [Ca2+]i in some cases. 

This increase in [Ca2+]i could be due to (1) calcium influx, (2) calcium release from 

intracellular pool, or (3) both influx and intracellular calcium redistribution. In order to 

investigate the possible mechanism(s) of [Ca2+]i elevation upon heating, calcium-free 

buffer was used as the extracellular medium. Heat-induced elevation of [Ca2+]i was 

abolished in calcium-free buffer, which suggested that calcium influx was the primary 

cause of the rise in [Ca2+]i. This result was in accordance with the findings in human 

epidermoid A-431 cells (Kiang et al., 1992) and mouse mammary carcinoma cells 

(Furukawa et al., 1992), whereas redistribution of the intracellular calcium during 

heating was reported as an initial event of the heat-induced increase in [Ca2+]i in CHO 

HA-l cells (Stevenson eta/., 1986), Drosophila salivary gland (Drummond et al., 1988) 

and mouse mammary carcinoma FM3A cells (Kondo et al., 1993). 

In order to investigate the role of voltage-gated calcium channels in the heat

induced rise in [Ca2+]i, the voltage-gated channel blockers nifedipine and La3+ were 
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used. When WRK-1 cells were heated in the presence of La3+, 75% of the cells (out of 8 

determinations) showed a heat-induced increase in [Ca2+]i· When cells were heated in 

the presence of nifedipine, 35% (out of 14 determinations) showed an elevated [Ca2+]i 

level. Although the lag time before an increase in [Ca2+]i was observed under these 

conditions varied from one cell to another, the average [Ca2+]i value and its rate of 

change from these 2 conditions were insignificantly different compared with [Ca2+]i 

values obtained from cells heated in EMEM. These results imply that the voltage-gated 

calcium channel was not involved in the heat-induced rise in [Ca2+Ji. This conclusion 

was further supported by using 50 mM K+ in extracellular medium. High extracellular 

K+ concentration has been shown to depolarise the plasma membrane potential, opening 

voltage-gated calcium channels and allowing calcium influx (Ozawa and Sand, 1986). 

Perfusing 50 mM K+-containing buffer through the chamber did not alter the [Ca2+]i, 

suggesting that voltage-gated calcium channels were absent in these cells. 

The Na+/Ca2+ exchanger could be involved in the heat-induced rise in [Ca2+]i. It is 

an antiport and its action is reversible depending on the extracellular sodium 

concentration. In its normal state, it is responsible for pumping calcium out and allowing 

sodium to enter the cell. The energy for this exchanger is derived from the sodium 

concentration gradient which is established by the action of Na+-K+-ATPase and the 

Na+fH+ antiporter. This exchanger may be inhibited upon heating (resulting from the 

thermal denaturation of the protein) or reversed in action, such that it allows an increase 

in [Ca2+]i. Previously, it has been reported that the heat-induced increase in [Ca2+]i in 

A-431 cells was due to the reverse action of this exchanger (Kiang et al., 1992). 

Evidence for this conclusion included: ( 1) the heat-induced increase in [Ca2+Ji depended 

upon extracellular calcium concentration, and was inhibited when cells were heated in 

calcium-free medium. Using 45Ca2+ to measure Ca2+ fluxes, it was found that 45Ca2+ 

influx correlated well with the heat-induced rise in [Ca2+]i. (2) the heat-induced increase 

in [Ca2+]j depended upon the extracellular sodium concentration. When the sodium 
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gradient across the plasma membrane was removed by overloading the cells with Na+, 

through ouabain inhibition of Na+-K+-ATPase, the basal [Ca2+]i value was higher than 

in untreated cells and the heat-induced increase in [Ca2+Ji was inhibited. This result 

suggested that the heat-induced rise in [Ca2+Ji was related to the Na+ gradient across the 

plasma membrane. Since sodium channels also play a role in intracellular sodium 

homeostasis, the authors used a sodium channel agonist and antagonist to test out the 

contribution of these channels in the heat-induced [Ca2+]i elevation. It was found that 

blocking these channels with tetrodotoxin (Na+ channel antagonist) abolished the heat

induced increase in [Ca2+Ji· On the other hand, treatment with veratridine (Na+ channel 

agonist) resulted in a higher [Ca2+Ji upon heating compared with those cells heated in 

the absence of this agonist. These results suggested that Na+ influx through tetrodotoxin

sensitive Na+ channels plays a crucial role in the heat-induced [Ca2+]i elevation. (3) It 

was found that the heat-induced rise in [Ca2+]i was blocked by 5 pM amiloride or 1 pM 

5'-(N,N-dimethyl)amiloride, presumably through the inhibition of the Na+JCa2+ 

exchanger, though the possibility that amiloride exerted its effect on other Na+ channels 

such as the Na+fH+ exchanger cannot be excluded (Kiang eta/., 1992). 

In this study, it was found that the heat-induced increase in [Ca2+]i in WRK-1 

cells was not blocked by 5 pM amiloride, suggesting that reversal of the Na+JCa2+ 

exchanger was unlikely to be responsible for the change in [Ca2+]i. However, further 

studies are needed before final conclusions on the role of the Na+JCa2+ exchanger in 

heat-induced [Ca2+]i elevation are drawn. This is due to several reasons: (1) It is possible 

that the concentration of amiloride used in this study was not sufficient to inhibit the 

Na+/Ca2+ exchanger in WRK-1 cells (if this cell type possesses this exchanger). It has 

been reported that a high concentration of amiloride (mM range) is required to inhibit 

the Na+/Ca2+ exchanger in epithelial cells (Kaczorowski et al., 1985). (2) Amiloride is 

not a potent inhibitor of the Na+/Ca2+ exchanger, instead, it is a more potent inhibitor of 

the Na+jH+ exchanger and other types of Na+-channel and voltage-gated calcium 
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channels (Besterman eta/., 1985; Kleyman and Cragoe, 1988). (3) Having an excitation 

spectrum similar to fura-2, amiloride may affect the fluorescence signal of fura-2 

(Kleyman and Cragoe, 1990). Thus a comprehensive investigation of the effect of heat 

on Na+jCa2+ exchnager requires the use of different concentrations of amiloride as well 

as its analogues, such as those bearing a substituent on the 5-amino and terminal 

guanidino nitrogen atoms, which have been shown to be specific inhibitors of the 

Na+/Ca2+ exchanger. 

In summary, the results suggested that the heat-induced increase in [Ca2+]i was 

due to calcium influx from the extracellular medium by a mechanism that did not involve 

voltage-gated calcium channels. However, the study only characterised the initial rise in 

[Ca2+]i upon heating, and the subsequent increase in [Ca2+]i during prolonged heating 

may result from calcium-induced calcium release, InsPrdependent calcium release (as a 

secondary event following the [Ca2+]i rise) and/or reduction in calcium efflux. In 

addition, accumulation of [Ca2+]i upon heat treatment in EMEM or calcium-containing 

buffer could result from several mechanisms, including an increase in membrane 

permeability (Stevenson et a/., 1987), reduced calcium efflux (Vidair et al., 1990), 

inhibition of calcium uptake into calcisomes or ER (Mikkelsen and Stedman, 1990) 

and/or inhibition of Ca2+-ATPase resulting from thermal denaturation (Anghileri et al., 

1984 ). Further studies involving utilisation of 45Ca2+ to measure the calcium fluxes, 

employing inhibitors such as TMB-8 and heparin to block intracellular calcium 

mobilisation must be carried out before any further conclusions are drawn. Whether 

[Ca2+]i continues to rise in heated cells until intracellular and extracellular calcium 

concentration achieve equilibrium is unknown. 

Several investigators have reported changes in [Ca2+]i in the recovery period 

following heating. When [Ca2+]i was monitored in A-431 cells after pretreatment at 

45°C for 20 min, it was found that the calcium level returned to the unheated value by 70 
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min post-heating (Kiang et al., 1992). When [Ca2+]i was determined in C3H10T1/2 cells' 

at 3.5 h after heating at 45°C for up to 54 min, it was found that the [Ca2+]i value in . 

cells heated for 32 or 46 min was similar to unheated cells, whereas the value in cells 

heated for 54 min was 60% higher than the unheated control. When [Ca2+]i was 

measured in these cells at 24 h post-heating, it was found that the value was similar to 

unheated cells, irrespective of the heating duration (Vidair et al., 1990). Furthermore, 

Wang et a/. (1991) found that the only factor that affected the [Ca2+]i value, in both 

heated and unheated NIH3T3 cells, was the extracellular calcium concentration in which 

the cells were suspended during measurement and post-heating, suggesting that calcium 

homeostasis remained intact following heating at 45°C for 40 min, a heat dose that killed 

more than 95% of these cells. On the other hand, Mikkelsen et al. (1991a) found a 

correlation between [Ca2+]i and hyperthermic cell death of HT-29 cells. Those cells 

having a [Ca2+]i value greater than 200 nM at 4-6 h after heating at 44°C for 1 h were 

the clonogenically dead cells. However, the observed high [Ca2+]i in this study may 

simply be a post-mortem effect. 

Changes in [Ca2+]i during and after heating have been investigated by several 

laboratories. By varying the extracellular calcium concentration, [Ca2+]i during and after 

heating can be manipulated. For example, on heating C3H10Tl/2 cells at 45°C for 30 

min in buffer containing 0.03 mM extracellular calcium concentration, the [Ca2+]i value 

was 200 nM which was lower than that in cells incubated at 37°C in medium containing 

2 mM extracellular calcium. When cells were heated at 45°C for 30 min in medium 

containing 15 mM extracellular calcium, the [Ca2+]i value achieved 1000 nM (Vidair et 

a/., 1990). In both conditions, cells were neither sensitised nor protected from heat cell 

death. A similar finding was observed in CHL V79 cells heated in different extracellular 

calcium concentrations (Malhotra et al., 1987). 

In the present study, it was found that when WRK-1 cells were heated in EMEM, 
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76% of the cells showed an elevated [Ca2+]i, whereas only 25% of the cells showed a 

rise in [Ca2+L when heated in the simple calcium-containing buffer. When comparing 

the survival parameters, Dq and Do values obtained from both heating conditions, it was 

found that they were insignificantly different. On the other hand, the Dqo 0 0, LD50 and 

LD90 values obtained from cells heated in calcium-free medium were significantly lower 

than the values obtained from cells heated in EMEM or calcium-containing buffer, 

suggesting that hyperthermic cell death was sensitised in calcium-free conditions. Given 

that the [Ca2+]i level remained at about 40-50 nM during heating in calcium-free 

conditions, it is possible that an increase in [Ca2+]i may have a protective role in heat 

cell death. The sensitisation of cell death was likely to occur during the heating period 

rather than in the 4 h recovery period, as sera and calcium were added back to the 

solution immediately after heating. A similar finding was observed in hepatocytes 

(Malhotra et a/., 1986). The protective effect of calcium on cell death might be due to: 

(1) decreased membrane fluidity upon heating as a result of the increase in [Ca2+]i. 

Several laboratories agree that increasing fluidity enhances cell death (Yatvin, 1977; 

Lepock, 1982) and an increase in [Ca2+]i could perhaps decrease membrane fluidity 

upon heating. Ca2+ decreases the membrane fluidity through 2 distinct mechanisms. It 

can be due to the binding of Ca2+ to the phospholipid headgroups (Jacobson and 

Papahadjopoulos, 1975). This mechanism only accounts for a minor pathway in which 

Ca2+ exerts its effect on membrane fluidity and is reversible by addition of EGTA 

(Jacobson and Papahadjopoulos, 1975). On the other hand, a decrease in membrane 

fluidity can be due to a metabolic alteration of the lipid composition owing to the action 

of calcium-dependent enzymes and this is an irreversible mechanism (Rasmussen et al., 

1979). When the mechanism of Ca2+ in the alteration of membrane lipid fluidity was 

investigated in plasma membranes isolated from hepatocytes, it was found that addition 

of Ca2+ decreased the arachidonic acid content and reduced the double bond index of the 

fatty acids (Storch and Schachter, 1985). The authors found that this change in lipid 

composition resulted in the reduction in lipid fluidity and was likely due to the action of 
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calcium-dependent PLA2. Activation of this enzyme would cleave the fatty acyl chain in 

the sn-2 position, especially arachidonic acid, and thus reduce the double bond index. 

Thus, it is possible that the heat-induced increase in [Ca2+]i would reduce the membrane 

fluidity via one of the 2 mechanisms mentioned above, thus protecting the cells from 

hyperthermic cell death. 

(2) Inhibition by Ca2+ (Cheng, 1989) of the thennal inactivation of Ca2+-ATPase in the 

sarcoplasmic reticulum (Cheng eta/., 1987). The heat-induced increase in [Ca2+]i level 

may protect Ca2+ -pumping A TPase proteins from thennal damage, so the Ca2+ -A TPase 

can act to reduce the elevated [Ca2+]i back to the basal level. Hence this feedback 

mechanism of calcium may play an important role in the responses of cells during or 

after hyperthermic treatment by protecting proteins that may be important in calcium 

homeostasis from thermal denaturation. It is clear that further studies are necessary to 

clarify the role of calcium on other cellular proteins upon heating. 

In this study, the presence of nifedipine, at a concentration which did not block the 

heat-induced rise in [Ca2+]i, resulted in a lower Dq value compared with the Dq value 

obtained from cells heated in EMEM. On the other hand, the presence of nifedipine 

resulted in a higher Do value compared with those cells heated in EMEM. In addition, 

when cells were heated in the presence of nifedipine ( + 4 h post-heating) or when 

nifedipine was present during the 4 h post-heating period only, a significantly lower (p< 

0.05) LD50 value was observed compared with cells heated in EMEM only. Thus, when 

cells were heated in the presence of nifedipine or when it was included during the 4 h 

post-heating period, an increase in cytotoxicity was found. However, the mechanism of 

nifedipine in the increase in cytotoxicity of WRK.-1 cells is unknown. It is possible that 

the presence of nifedipine alters the distribution of cytosolic free Ca2+ (Church and 

Zsorer, 1980) and alters the activities of calcium-dependent enzymes in particular 

organelles. The effect of calcium channel blockers on hyperthermic cell death has been 

investigated in HT-29 cells (Mikkelsen eta/., 1991a) and CHO 10B4 cells (Cosset a/., 
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1989). Mikkelsen and co-workers (1991 a) found that using verapamil at a concentration 

ranging from 0-20 J.!M or nifedipine at 25 J.!M, hyperthermic cell death of HT29 cells 

upon heating at 44°C for up to 2 h was neither sensitised nor protected. However, when 

CHO IOB4 cells were heated at 44°C for up to 80 min in the presence of 50-75 pM 

verapamil or I 00-250 J.!M diltiazem, cell death was enhanced compared with heat alone, 

whereas no effect of verapamil or diltiazem was observed when cells were incubated at 

37°C (Coss et a/., 1989). Similarly, heating mouse mammary carcinoma FM3A cells in 

the presence of I 00 JJM verapamil or diltiazem at 44°C for 1 h delayed cell growth 

induced by heat (Kondo et al., 1994). The discrepancies in the literature could be due to 

the difference in thermosensitivity of different cells and the concentration of the calcium 

channel blockers used. However, out of three studies described above, only Kondo and 

co-workers ( 1994) measured [Ca2+]i upon heating in the presence of either verapamil or 

diltiazem. Surprisingly, heating in the presence of either agent caused a further increase 

in [Ca2+]i compared with heat treatment alone. Hence, this result implied that the 

potentiation of cell death by these agents was unrelated to their antagonistic effect on 

calcium influx through voltage-gated calcium channels in the plasma membrane (its 

normal action), rather it exerted its effect via a mechanism that may be related to the 

disruption of other aspects of calcium homeostasis. As pointed out by these workers, 

verapamil has been reported to bind to calmodulin, thus affecting calmodulin-activated 

processes and perhaps reducing the ability of ER or mitochondria to control the heat

induced increase in [Ca2+]i (Kondo eta/., 1994). 

In summary, the results suggest that the heat-induced elevation in [Ca2+]i did not 

play a critical role in enhancing hyperthermic cell death. Instead, it may have a 

protective role in heat cell death. The [Ca2+]i determined in this study was the average of 

a single cell. Given the complex spatiotemporal distribution of cytosolic free Ca2+ and 

the presence of calcium-dependent enzymes in different organelles, further study by 

using digitised imaging microscopy to measure calcium changes at different subcellular 
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reg10ns, as well as the redistribution of this cation within a particular organelle, is 

necessary before the relationship of the heat-induced increase in [Ca2+]i to hyperthermic 

cell death is clarified. 
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Chapter 6 

General Discussion 

The major rationale for exploring the use of hyperthermia in cancer treatment is 

that treatment of cancer by other techniques such as chemotherapy and radiotherapy 

often produces only remission rather than a cure in the majority of patients. Relapse 

occurs either due to failure of control of local disease or because of metastases and any 

new method which could increase either local or systemic control would be of interest. 

Both local and systemic hyperthennia have now been clearly demonstrated to produce 

regressions in patients in which conventional methods have failed. 

The suggestion that there may be differential thermal sensitivity between tumour 

and normal tissues has also stimulated interest in hyperthermia as a cancer treatment. 

Early studies by Cavaliere and co-workers (1967) suggested that tumour cells were 

intrinsically more sensitive to elevated temperature than normal cells. However, more 

recent experimental data indicate that there is very little inherent difference in intrinsic 

heat sensitivity between transformed cells and their normal cell counterpart (Symonds et 

al., 1981 ). Instead, the differential thermal sensitivity between tumour and normal cells 

in vivo appears to be due to inadequate vascular supply in tumours, leading to a 

reduction in cooling ability during hyperthermia (Field, 1987). Furthermore, the 

impaired blood supply in tumour tissue causes deprivation of nutrients and oxygen, 

leading to anaerobic respiration and a consequent decrease in pH in the tumour. This 

decrease in tumour tissue pH is believed to enhance sensitivity of tumour cells to 

hyperthermia (Hahn, 1982; Field, 1987). Other results indicate that heat could be used to 

complement radiotherapy since cells in the S-phase of the cell cycle are resistant to x

rays but more sensitive to heat (Westra and Dewey, 1971). In addition, an inefficient 
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microcirculation leads to areas of hypoxia, which are more resistant to radiation and are 

thought to be the cause of some radiation therapy failures, but this can be overcome by 

hyperthermic treatment. Heat also increases the cellular sensitivities to some 

chemotherapeutic agents including nitrosoureas and cisplatin (Hahn, 1979). 

The current interest in the use of hyperthermia as a potential modality for cancer 

treatment has led to studies of the heat response of cells because detailed knowledge of 

the dynamics of heat-induced reproductive cell death could lead to the development of 

methods to increase the effectiveness of hyperthermia in the clinical treatment of cancer. 

Although extensive studies of the mechanism(s) of hyperthermic cell death have 

been performed in tissue culture, the identification of the primary cellular target(s) of 

heat damage has proved to be very difficult. This is mainly due to the all-pervasive effect 

of heat, making it difficult to distinguish between primary, secondary and tertiary targets 

(Jung, 1986; Bowler, 1987). However, despite the uncertainty of the target(s) of 

hyperthermic cell death, biological membranes have been suspected for a long time to be 

an imp011ant, and perhaps primary site of hyperthermic cell damage (Bowler et al., 

1979; Hahn, 1982; Bowler, 1987; Konings, 1988). Evidence supporting the view that the 

plasma membrane is a target of heat damage has been described in Chapter 1 and can be 

grouped into 4 categories: ( 1) heat affects the morphology of the membrane, causing 

bleb formation; (2) some compounds, such as local anaesthestics or alcohols which 

interact with the plasma membrane and decrease membrane order, act synergistically 

with heat to increase cell killing. On the other hand, agents such as D20 and glycerol 

that are known to stabilise either proteins or membranes, protect cells from heat cell 

death; (3) alteration of fatty acyl composition of membrane lipids (e.g. by dietary 

supplementation with unsaturated fatty acid) alters the thermal sensitivities of the cells; 

(4) heat impairs plasma membrane functions. 
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Many plasma membrane functions are found to be affected by heat. For example, 

Na+ -dependent amino acid transport in rat thymocytes was inhibited when cells were 

exposed to 37-43°C (Lin et al., 1978). On the other hand, glucose uptake was stimulated 

when CHO cells were exposed to 45°C (Vidair and Dewey, 1993). Heat has also been 

found to affect ion fluxes, though the results are equivocal. For example, when LM 

fibroblasts were heated at 44°C, the intracellular K+ content decreased in a time

dependent manner, but this effect was reversed by 16 h (Ruifrok eta/., 1985). However, 

no effect on intracellular levels of K+, Na+ and Mg2+ was found when CHO cells were 

exposed to 45°C for 30 min (Vidair and Dewey, 1986). 

Many altered plasma membrane functions induced by hyperthermia are 

presumably mediated in part, if not entirely, by proteins embedded in the plasma 

membrane. An earlier model of heat-induced cell lethality, based upon Eyring's 

Transition State Theory, suggested heat-induced protein denaturation as a critical lethal 

process in cells exposed to elevated temperature (Westra and Dewey, 1971). 

Furthermore, Lepock et al. ( 1983) have shown that hyperthermic cell death of CHL V79 

cells correlated with the transition in membrane proteins rather than membrane lipid 

transition. By measuring both intrinsic protein fluorescence and energy transfer from a 

protein fluorophore to trans-paranaric acid, in order to probe the changes in protein 

structure, it was found that both mitochondrial and plasma membrane proteins 

underwent irreversible transitions above 40°C. The results led the authors to propose that 

the alteration in the structure of the proteins above 40°C could cause many of the 

observed changes in the plasma membrane and the irreversible protein transition may be 

involved in hyperthermic cell killing (Lepock et al., 1983). 

However, the fluorescent intensity measured by these authors was an average of all 

of the membrane proteins and it is likely that different proteins in the same membrane 

have differential sensitivity to heat. In fact, this differential heat sensitivity of membrane 

277 



proteins has been observed in CHO HA-l cells (Stevenson et al., 1983) and HTC cells 

(Ladha, 1990). When CHO HA-l cells were exposed to 45°C, the binding of insulin to 

its receptor was inhibited in a time- and temperature-dependent manner. On the other 

hand, the concanavalin A binding glycoproteins of CHO HA-l cells are heat resistant, 

even at 50°C (Stevenson et a/., 1983). When the activities of 4 different enzymes in 

plasma membranes isolated from HTC cells were determined, it was found that adenylyl 

cyclase, Na+-K+-ATPase and Mg2+-ATPase were not substantially affected by heating 

the membranes at 43-45°C, but alkaline phosphodiesterase I was activated by the same 

treatment (Ladha, 1990). The results obtained by Ladha (1990) show that heat does not 

necessary lead to enzyme inactivation but can also result in enzyme activation in some 

instances. 

Thermal activation of membrane proteins, in particular of enzymes such as 

adenylyl cyclase and phosphoinositide-specific phospholipase C (PI-PLC) which are 

involved in second messenger production, could have catastrophic effects on cell 

metabolism. The phosphoinositide signalling pathway is composed of 3 different 

components, including a hormone receptor, a G protein and an effector protein (PI

PLC). In contrast, growth factor signalling involves a receptor that is directly coupled to 

PI-PLC and activation of PI-PLC requires phosphorylation of tyrosine residues by the 

intrinsic tyrosine kinase activity of the receptor. Any heat-induced change in the 

activities of any of these components could lead to an impairment of cell metabolism, 

which might lead to a profound cellular injury. 

Several lines of evidence suggest that receptor-linked signal transduction pathways 

are affected by heat. These include ( 1) binding of EGF to its receptor in Rat-1 fibroblasts 

was inhibited when these cells were exposed to 45°C for 30 min, as a result of a 

reduction of binding affinity (Magun and Pennie, 1981); (2) binding of insulin to its 

receptor in CHO HA-l cells was inhibited by exposing these cells to 43-45°C due to a 
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decrease in receptor number (Calderwood and Hahn, 1983); (3) a transient increase in 

diacylglycerol level (DAG) was observed in heated CHO HA-l cells (Calderwood et al., 

1987) whereas a sustained increase in diacylglycerol level was observed during the 2 h 

post-heating period (at 37°C) following 10 min heating at 45°C (Stevenson et al., 1986); 

(4) increases in inositol monophosphate (lnsP1), inositol bisphosphate (lnsP2) and 

inositol trisphosphate (lnsP3) were observed in several mammalian cell lines upon heat 

treatment (Calderwood et al., 1987; Calderwood and Stevenson, 1993; Kiang and 

McClain, 1993 ); (5) heat also leads to an increase in cytosolic free calcium ([Ca2+]i) and 

the increase in [Ca2+]i may be correlated with an increase in lnsP3 levels in CHO HA-l 

cells (Stevenson et al., 1986); (6) heat altered the distribution of protein kinase C (PKC) 

between cytosolic and particulate fractions in P388 ascites cells. In addition, a decrease 

in PKC activity in heated P388 cells was found. However, phosphorylation of 3 proteins 

having molecular weight of 14, 25 and 33 kD increased in P388 cells following heating 

at 45°C for l h (Bagi and Hidvegi, 1990); (7) using several cultured cells such as Swiss 

3T3 cells, chicken embryo fibroblasts and neuroblastoma N2A cells, it was found that 

protein tyrosine phosphorylation increased in heated cells (Maher and Pasquale, 1989). 

Although the exact mechanisms of heat shock stimulation of protein tyrosine 

phosphorylation is unknown, it is likely that heat may activate tyrosine kinases by 

altering the conformation of the growth factor receptor or may alter the structure of the 

carboxyl terminus of the tyrosine kinases, leading to an increase in tyrosine kinase 

activity (Maher and Pasquale, 1989). (8) heat has also been shown to activate S6 protein 

kinase (Jurivich eta/., 1991) which is a serine/threonine kinase and activation of this 

enzyme is the primary response to mitogenic stimuli (Chen and Blenis, 1990). 

Ca2+ is somewhat of a paradoxical second messenger to employ for cell signalling 

because, whilst it is clear that Ca2+ is capable of stimulating a variety of cellular 

processes, it is also toxic (Schanne eta/., 1979; Trump et al., 1980; Farber, 1981; 

Orrenius eta/., 1989; Trump and Berezesky, 1992). Due to this reason, Ca2+ carries out 
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its signalling role by elevation of [Ca2+]i in very short bursts. Deleterious effects of 

prolonged Ca2+ elevation are known to be related to cell death (Trump et al., 1980; 

Farber, 1981; Orrenius et al., 1988; Trump and Berezesky, 1992). Elevation of [Ca2+]i 

may directly affect activities of Ca2+-dependent enzymes or may act indirectly, by 

activation of calmodulin (CaM), thus activating CaM-dependent enzymes. Cells have 

access to 2 major sources of Ca2+, an infinite external supply and much more finite 

internal sources. Ca2+ entry from the external medium is controlled by voltage-gated 

Ca2+ channels, receptor-operated Ca2+ channels or second messenger-operated Ca2+ 

channels, whilst release of Ca2+ from internal stores, principally the endoplasmic 

reticulum (ER) is controlled by the second messenger Ins(l ,4,5)P3 (Berridge and Irvine, 

1984 ). Ins( I ,4,5)P3 is generated along with 1,2-DAG from the hydrolysis of a relatively 

minor plasma membrane phospholipid, phosphatidylinositol 4,5-bisphosphate 

(Ptdlns(4,5)P2), by the action of PI-PLC (Berridge, 1984; Berridge, 1987). 1,2-DAG 

remains in the membrane lipid matrix and activates PKC, which in tum phosphorylates 

specific protein substrates (Nishizuka, 1984; Ryu et al., 1990; Liscovitch, 1992; 

Nishizuka, 1992). On the other hand, Ins(l ,4,5)P3 can be dephosphorylated sequentially 

to free inositol which is then used for the synthesis of inositol lipids or it is 

phosphorylated to Ins( 1,3,4,5)P 4 by Ins( 1 ,4,5)P3 3-kinase, whose activity is regulated by 

Ca2+/CaM-dependent kinase (Irvine et al., 1986). lns(1,3,4,5)P4 then dephosphorylates 

to free inositol sequentially and is used for the synthesis of inositol lipids. Ins(1,3,4,5)P 4 

has also been suggested to play a role in controlling Ca2+ influx (Berridge and Irvine, 

1984; Boynton et al., 1990; Irvine, 1990). 

In order to make a comparison of the effect of heat on intracellular signalling, 

especially the phosphoinositide pathway, it is first worth mentioning 2 proposed 

mechanisms of heat-induced activation of the phosphoinositide signalling system based 

on results observed in CHO HA-l cells (Stevenson eta/., 1986; Calderwood et al., 1987; 

Stevenson et al., 1987; Calderwood and Stevenson, 1989; Calderwood et al., 1987; 
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Calderwood and Stevenson, 1993; Calderwood et a/., 1993) and in human epidermoid 

A-431 cells (Kiang et al., 1991; Kiang eta/., 1992; Kiang and McClain, 1993). 

In CHO HA-l cells, heat caused an increase in InsP1, InsP2 and InsP3 but not 

InsP4 levels above 40°C (Calderwood et al., 1988; Calderwood and Stevenson, 1993), 

and the magnitude of the increase depended on temperature and duration of heating. The 

changes in lnsP3 depended on the [Ca2+]i value, since the heat-induced increase in InsP3 

was amplified by heating in the presence of ionomycin, but abolished by pretreatment of 

cells in calcium-free (EGTA-containing) buffer for 1 to 3 h before heating at 43°C 

(Calderwood and Stevenson, 1993). Furthermore, heat-induced InsP3 formation in 

digitonin-petmeabilised CHO HA-l cells was stimulated by GTPyS (a non-hydrolysable 

analogue of GTP), but not by guanosine-5'-o-(2-thiodiphosphate) {Calderwood et al., 

1993). This effect of GTPyS was concentration-dependent and occurred at lower 

concentrations in heated, permeabilised cells (>lQ-7 M GTPyS) compared to unheated, 

permeabilised cells (> lQ-6 M GTPyS). Pretreatment of intact CHO HA-l cells with 

pertussis toxin (PTX) for 3 h did not abolish the heat-induced increase in InsP3, 

although it eliminated thrombin stimulation of InsP3 levels. These observations led 

Calderwood eta/. (1993) to suggest that heat may activate a PTX-insensitive G protein 

(perhaps G4) which could activate PI-PLC. 

A heat-induced increase in [Ca2+]i was also observed in CHO HA-l cells heated at 

45°C, and this increase was rapid (within 2 min) and occurred in very low extracellular 

free calcium concentration (less than 1 pM), suggesting that heat led to calcium release 

from internal stores (Stevenson eta/., 1986). The formation of InsP3 preceded the heat

induced increase in [Ca2+]i, suggesting that there may be a correlation between these two 

events (Stevenson et al., 1986). However, whether the increase in [Ca2+]i was caused by 

InsPrinduced calcium release from InsP3 sensitive stores or by other mechanisms was 

not clear (Stevenson et al., 1986). On the other hand, Ca2+ influx, as analysed by 45Ca2+ 
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fluxes, was not detected until cells were heated at 45°C for 30 min (Calderwood et al., 

1988). 

Activation of PI-PLC~1 enzyme, and hydrolysis of inositol lipids can also lead to 

the formation of I ,2-DAG (Berridge, 1984 ). Heating [3H]arachidonic acid-labelled CHO 

HA-l cells at 45°C resulted in a transient increase in 3H-DAG level (unspecified 

isomer), reaching maximum levels (40% increase) at about 2 min (Calderwood et al., 

1987). However, a more pronounced increase in 3H-DAG level was observed during the 

2 h recovery period at 37°C following treatment at 45°C for 10 min, and this increase in 

3H-DAG was accompanied by an increase in 3H-PA level (Stevenson et al., 1986). 

Formation of PA has been found to be correlated with the increase in 45Ca2+ influx in 

CHO HA-l cells and may contribute to the increase in [Ca2+]i on prolonged heating 

(Stevenson eta/., 1986; Calderwood eta/., 1988). Although an increase in [Ca2+]i was 

observed upon heating, no correlation was found between the heat-induced increase in 

[Ca2+Ji and hyperthermic killing of CHO HA-l cells (Stevenson et a/., 1987). Instead, 

Calderwood and co-workers found that rapid exponential cell killing commences when 

plasma membrane permeability to Ca2+ reaches a maximum (Stevenson eta/., 1987). 

The above observations have led Calderwood and coworkers to propose a model 

for the heat-induced increase in InsP3 and [Ca2+]i and this model is shown in Figure 6.1. 

Briefly, they suggest that heat may provide the activation energy required to stimulate 

the exchange of GDP with GTP on the Gq subclass of G proteins. As a consequence, 

structural changes occur in Gw and the heterotrimer dissociates, giving rise to the a

subunit and ~-y-complex. The a.-subunit then activates PI-PLC~1 and causes the 

hydrolysis of inositol lipids (Calderwood et al., 1993) to release InsP3 and 1 ,2-DAG. 

The effect of heat on the phosphoinositide signalling pathway has also been 

investigated in A-431 cells (Kiang and McClain, 1993). A heat-induced increase in 
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[Ca2+]i was found and this was dependent upon the temperature and the duration of 

heating. This heat-induced increase in [Ca2+]i was suggested to be due to calcium influx 

from the extracellular medium as a result of the reversed mode of action of Na+Jca2+ 

exchanger or calcium influx through verapamil-sensitive calcium channel (as a result of 

a heat-induced increase in cAMP level). Supportive evidence for the involvement of the 

Na+/Ca2+ exchanger in the heat-induced increase in [Ca2+]i came from the studies using: 

(1) amiloride, an inhibitor of the Na+JH+ exchanger and (to some extent) the Na+JCa2+ 

exchanger, which inhibited the heat-induced increase in [Ca2+]i in a concentration

dependent manner, (2) a sodium channel antagonist (tetradotoxin) and a sodium channel 

agonist (veratridine), which resulted in the abolition of the heat-induced increase in 

[Ca2+]i. (3) heat in the presence and absence of extracellular calcium, which showed that 

the presence of extracellular calcium was necessary for the heat-induced increase in 

[Ca2+]i (Kiang et al., 1992). 

Heating A-431 cells also led to an increase in cAMP levels which was proposed to 

lead to calcium influx through verapamil-sensitive calcium channels, possibly through 

the phosphorylation of the calcium channel by PKA, thus contributing to the heat

induced increase in [Ca2+]i. Supportive evidence for this proposed role of cAMP in Ca2+ 

influx was obtained from observations that: (1) Incubation 8-BrcAMP increased [Ca2+]i 

compared with resting [Ca2+]i in untreated cells. (2) The increase in [Ca2+]i induced by 

8-BrcAMP was inhibited if 1 mM La3+ or verapamil was also present during the 

incubation. 

Heat caused an increase in InsP3 levels in A-431 cells above 40°C, and the 

magnitude of the increase was temperature and heating time-dependent (Kiang and 

McClain, 1993). Cells heated for 20 min at 45°C showed a slight increase in 

Ins(l ,3,4 )P3, a 2.4-fold increase in Ins(l ,4,5)P3 and a 3.6-fold decrease in Ins(l ,3,4,5)P 4 

isomers when the inositol phosphate extract was analysed by HPLC (Kiang and 
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McClain, 1993). The heat-induced increase in [Ca2+]i (due to calcium influx) was a 

prerequisite for the increase in lnsP3 since heating in the absence of extracellular 

calcium completely abolished this phenomenon. In addition, when A-431 cells were 

heated at 45°C in calcium-containing growth medium in the presence of 1 mM amiloride 

(a concentration that was shown to completely block the heat-induced increase in 

[Ca2+]i, possibly by inhibiting the Na+/Ca2+ exchanger), no change in lnsP1, lnsP2 and 

InsP3 levels was observed. Furthermore, these workers suggested that the heat-induced 

increase in InsP3 level required a G protein, likely to be a P'I'X-sensitive one. This view 

was supported by 3 observations: ( 1) Heating A-431 cell homogenate in the presence of 

10 )1M Gpp(NH)p at 45°C for 20 min resulted in an increase in InsP3 level which was 

comparable to the InsP3 levels obtained in intact cells heated for the same length of time. 

(2) Pretreatment of cells with PTX before heating did not lead to an increase in InsP3 

upon heating at 45°C. (3) When cells were treated with 0.1-1 )1M U-73122 at 37°C for 

20 min (a compound that inhibits GTPyS-stimulated InsP3 formation in GH3 cells), the 

heat-induced increase in InsP3 was inhibited when cells were heated in the presence of 

U -7 3122, and the magnitude of inhibition was concentration-dependent, complete 

inhibition occurring at 10 pM U -73122. Collectively, these observations suggest that a 

PTX-sensitive G protein and a PLC mediated process are involved in the heat-induced 

increase in InsP3 in A-431 cells (Kiang and McClain, 1993). 

Heat caused an influx in calcium which preceded and was indispensable for the 

heat-induced increase in the Ins( 1 ,4,5)P3 level in A-431 cells. This increase in 

Ins( 1 ,4,5)P1 did not seem to play a major role in mobilising Ca2+ from internal stores 

upon heating, since blocking the heat-induced increase in lns(l ,4,5)P3 (by pretreatment 

of A-431 cells with PTX) only slightly affected the heat-induced increase in [Ca2+]i 

(Kiang eta/., 1992) However, experiments suggested that Ca2+ released from internal 

stores during heating did contribute to the heat-induced increase in [Ca2+]i. When cells 

were heated at 45°C for 20 min in the presence of 100 pM TMB-8, a known blocker of 
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calcium mobilisation from internal stores, the magnitude of increase in [Ca2+]i was only 

half of that obtained from cells heated in the absence of TMB-8 (Kiang et al., 1992). 

Furthermore, TMB-8 did not change the heat-induced increase in 45Ca2+ influx. The 

above observations led to the proposal of a model for the events leading to the heat

induced increase in [Ca2+]i and Ins(l ,4,5)P3 in A-431 cells (Kiang and McClain, 1993), 

and this is shown in Figure 6.2. Briefly, it was postulated that heat causes an influx of 

Ca2+ from the extracellular medium, partly by reversal of the Na+jCa2+ exchanger and 

partly by cAMP-dependent activation of calcium channels. This increase in [Ca2+]i then 

activates calcium-dependent PI-PLC, leading to the hydrolysis of inositol lipids and the 

formation of Ins( 1 ,4,5)P3 leading to release of Ca2+ from internal stores. The 

significance of the heat-induced increase in [Ca2+]i in hyperthermic cell death remained 

unclear. These authors postulated that the heat-induced increase in InsP3 level in A-431 

cells may be one of the reconstructive mechanism that allows cells to recover from heat

induced dysfunction (Kiang and McClain, 1993). 

The major differences between the mechanism proposed by Calderwood and co

workers and those proposed by Kiang and co-workers are (1) Calderwood and co

workers found that the heat-induced increase in InsP3 in CHO HA-l cells preceded the 

increase in [Ca2+]i whereas Kiang and co-workers found that heat induced an increase in 

[Ca2+Ji before the formation of lnsP3 was observed. (2) The heat-induced influx in 

extracellular Ca2+ in the model proposed by Calderwood et al. was proposed to be due to 

accumulation in the membrane of PA (a metabolite of DAG) which is likely to act as 

calcium ionophore, and was a late event. On the other hand, Ca2+ influx in A-431 cells 

was observed as early as 2 min at 45°C and was proposed to occur via the reversed 

action of Na+/Ca2+ exchanger as well as verapan1il-sensitive calcium channels. (3) In 

both models, a G protein was proposed to be involved in the heat-induced increase in 

InsP3 formation. However, Calderwood and co-workers suggested that the G protein was 

PTX-insensitive, whereas Kiang and co-workers suggested that it was PTX-sensitive. 
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The aim of the present study was to investigate the effect of hyperthermia on the 

phosphoinositide signalling system, with particular emphasis on heat-induced changes in 

(1) 1,2-DAG levels in both CHO-Kl cells and WRK-1 cells during acute and chronic 

exposure to 45°C; (2) 1 ,2-DAG levels (and other neutral lipids) in the post-heating 

period in both cell types; (3) InsP1, InsP2, InsP3 and InsP4/5/6 levels in WRK-1 cells. In 

addition, HPLC was employed to investigate which InsP3 isomer(s) was/were affected. 

(4) the response of WRK-1 cells to vasopressin during and after hyperthermia. (5) 

[Ca2+]i, determined at the single cell level in WRK-1 cells in the presence and absence of 

extracellular calcium. Furthermore, the effect of voltage-gated Ca2+ channel blockers on 

the heat-induced increase in [Ca2+]i was investigated. Finally, the role of [Ca2+]i in 

hyperthermic cell death was investigated. 

Before these investigations took place, it was necessary to determine the growth 

rate of Chinese hamster ovary Kl cells (CHO-K1 cells) and rat mammary tumour WRK-

1 cells so as to facilitate the planning of future experiments. In Chapter 2, cell sizing, 

doubling time and plating efficiency of these cells are reported. It was found that the 

doubling time for CHO-K1 cells and WRK-1 cells were 15.7 hand 21.6 h, respectively. 

The plating efficiency for CHO-K 1 cells and WRK-1 cells were 94% and 63%, 

respectively. Different inoculated cell numbers resulted in similar percentage of plating 

efficiency. 

In the preliminary study it was found that WRK-1 cells tend to migrate together so 

the clonogenic assay, which is the most commonly used method in the determination of 

thermal cell survival, could not be used. Alternatively, the MTI colorimetric assay, 

which relies on the ability of the metabolically viable cells to reduce yellow 3-[4,5-

dimethyl thiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTI) to blue formazan 

product was used (Mosmann, 1983; Denizot and Lang, 1986; Kingston et al., 1989). 

Thus, the thermal sensitivity of WRK -1 cells was determined by the MTT assay, 
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whereas the clonogenic assay was used for the determination of the thermal sensitivity of 

CHO-K I cells. By using clonogenic or MTT assays, a relationship between heating 

duration and cell death could be determined. 

Having determined the thermal sensitivities of these cell types, the effect of heat on 

monoacylglycerol (MAG), 1 ,2-DAG and triacylglycerol (TAG) was investigated in 

CHO-K 1 cells and WRK-1 cells. In the present studies, [2-3H]glycerol or 

[3H]arachidonic acid were used to label the lipids pool of WRK-1 cells and CHO-Kl 

cells, respectively. However, it must be noted that radioactive labelling methods may not 

reflect the changes in 1 ,2-DAG mass, especially during short-term labelling (Farese et 

al., 1988). To minimise this problem, long-term label1ing methods were employed in 

both cell types, whereas a short term labelling method was only used when the effect of 

heat on small, metabolically-active lipid pools was investigated. Several workers have 

determined the mass of 1 ,2-DAG directly by using the DAG kinase method, which 

depends on the conversion of 1,2-DAG (from sample of interest) to 32P-PA when 

incubated in buffer containing DAG kinase (from bacterial sources) and [y-32P]ATP 

(Preiss eta/., 1986). The 32P-PA thus formed can be separated by one-dimensional TLC 

and the original 1,2-DAG mass is calculated by comparing the 32P-PA formed from 

known amounts of 1,2-DAG standard (e.g. diolein) (Preiss et al., 1986). However, the 

drawback of the DAG kinase method is that it cannot distinguish between 1 ,2-DAG and 

the ether-linked analogue of 1 ,2-DAG. On the other hand, the method employing [2-

3H]glycerol as a precursor enabled I ,2-DAG to be distinguished from its ether-linked 

analogue, as the latter is not labelled with [2-3H]glycerol (Farese and Cooper, 1990). It 

also enabled the determination of levels of MAG and TAG which might be metabolites 

of 1 ,2-DAG. Provided that the labelling is long enough for the lipid pool to reach 

isotopic equilibrium labelling, changes in radioactivity of 1,2-DAG reflect changes in 

1,2-DAG mass (Farese eta/., 1988). 

287 



Following establishment of the techniques for labelling cells and the separation of 

neutral lipid classes, the effect of heat on 1 ,2-DAG, MAG and TAG levels was then 

investigated in CHO-K1 cells and WRK-1 cells. CHO-K1 cells were labelled for 24 h 

with [3H]arachidonic acid and were then heated at 45°C for up to 10 min, a heat dose 

that killed about 50% of these cells. This treatment resulted in a decrease in 3H-1 ,2-DAG 

levels, whereas no effect was observed in 3H-TAG or in 3H-MAG levels. When CHO

Kl cells were exposed to 45°C for up to 45 min, a chronic heat dose that killed greater 

than 99% of these cells, an increase in 3H-TAG levels was observed at 30 min and 45 

min, and a decrease in 3H-1 ,2-DAG level was observed throughout the 45 min heating 

period (except at 30 min). Exposure of WRK-1 cells that had been labelled for 4 days 

with [2-3H]glycerol to 45°C for 12.5 min (a heat dose that resulted in 20 % of 

metabolically dead cells) resulted in a decrease in 3H-1 ,2-DAG level after 3.5 min and 

this remained lower than control level for up to 12.5 min. On the other hand, an increase 

in 3H-TAG level was observed in WRK-1 cells from 4.5 min to 12.5 min at 45°C. On 

prolonged heating (for up to 45 min) a decrease in 3H-1 ,2-DAG level was observed for 

up to 30 min heating. However at 45 min, 3H-1 ,2-DAG levels in both heated and 

unheated cells were similar. An increase in 3H-TAG levels was observed in these cells 

for up to 30 min at 45°C, but levels then declined to the control levels by 45 min heating. 

Neither acute nor chronic heating at 45°C showed a difference in 3H-MAG levels in both 

cell types compared with unheated cells. 

Results obtained in the present study from both cell types are in contrast to the 

results reported by Calderwood et al. (1987). These workers found that exposure of 

CHO HA-l cells to 45°C led to a transient increase in DAG levels, reaching a maximum 

by 2-3 min ( 140% of control level) which returned rapidly to the control level by 4 min 

at 45°C. However, it was not mentioned in their study whether 1,2-DAG or 1,3-DAG 

were analysed separately or were combined together for analysis. Since only DAG 

bearing the sn-1 ,2 configuration is an activator of PKC, the measurement of 1 ,2-DAG, 
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in particular, is important. Fmthermore, these authors only studied the effect of heat on 

DAG levels for up to 15 min at 45°C, a heat dose that did not result in any clonogenic 

cell death in CHO HA-l cells (Stevenson et al., 1986; Calderwoood et al., 1987). The 

present study provides a more detailed investigation, by monitoring changes in levels of 

1,2-DAG, MAG and TAG levels following both chronic and acute exposure to 45°C in 2 

tumour cell lines. 

In the present study, results from experiments using the DAG kinase inhibitor 

dioctanoylethylene glycol (diC8EG) excluded the possibility that the heat-induced 

decrease in the 1,2-DAG level observed in CHO-Kl cells and WRK-1 cells was due to a 

higher turnover rate of 1 ,2-DAG to PA as a result of a heat-induced increase in DAG 

kinase activity. Long-term [2-3H]glycerol labelled WRK-1 cells were incubated in 

EMEM medium in the presence of 100 pM diC8EG at 37°C for 30 min before heating at 

45°C in the same medium. This diC8EG concentration and incubation period has been 

shown to block 70-100% conversion of 1 ,2-DAG to PA in platelets upon thrombin 

stimulation (Bishop et al., 1986). When WRK-1 cells were heated at 45°C, a heat

induced decrease in 3H-1 ,2-DAG levels was observed after 12.5 min heating, compared 

to cells at 37°C, and this was not affected by pretreatment of the cells with diC8EG. 

Similarly, WRK-1 cells heated at 45°C for up to 45 min showed a decrease in 3H-1,2-

DAG levels, compared to unheated controls, and the magnitude of this effect was not 

altered by the presence of diC8EG. In contrast, 3H-TAG levels were elevated in WRK-1 

cells at 37°C, and the presence of diC8EG tended to increase this heat-induced elevation 

in TAG under these conditions, possibly by preserving more 1 ,2-DAG precursor to 

TAG. 

Provided that cells are labelled with radioactive precursor for long enough to allow 

the lipid pool to label to near isotopic equilibrium, changes in radioactivity may reflect 

changes in I ,2-DAG mass (Farese eta/., 1988). However, if only a small, metabolically 
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active pool responds to heat treatment, then long tenn labelling studies may prevent the 

changes in I ,2-DAG being detected against a high background of the 3H-DAG content 

(Farese and Cooper, 1990). To probe this possibility further, the experiment was 

repeated but this time both cell types were labelled for 2 h only with radioactive 

precursors, in order to label the metabolically active pools. On exposure of short tenn 

labelled CHO-K 1 cells to 45°C for up to 45 min, a decrease in 3H-1 ,2-DAG was 

observed for heating times longer than 10 min, whereas an increase in 3H-TAG was 

observed at 4 min and 30 min heating. Similarly, exposure of short-tenn labelled WRK-1 

cells to 45°C for up to 42.5 min resulted in a decrease in 3H-1 ,2-DAG level throughout 

the heating period, except at 32.5 min. On the other hand, an increase in 3H-TAG was 

observed in heated cells throughout the 42.5 min heating period, except at 12.5 min. 

Thus, the possibility that heat stimulated turnover of a rapidly-labelled metabolically 

active pool of 1 ,2-DAG was excluded. 

Exposure of long tenn labelled CHO-Kl cells (24 h labelling with [3H]arachidonic 

acid) or WRK -1 cells ( 4-days labelling with [2-3H]glycerol) to 45°C for 10 min, 

followed by 2 h recovery at 37°C resulted in a heat-induced decrease in 3H-1 ,2-DAG 

levels during the recovery period, whereas an increase in the levels of 3H-TAG was 

observed in both cell types. The results obtained in this study are in contrast to those 

observed in CHO HA-l cells (Stevenson eta/., 1986). Following a 2 h labelling with 

[3H]arachidonic acid, CHO HA-l cells were exposed to 45°C for 10 min, then the 3H

DAG level (unspecified isomer) was detennined during 2 h recovery period at 37°C. It 

was found that 3H-DAG continued to increase during the 2 h post-heating period, 

reaching 160% of the control level. These authors also found that the time course of the 

increase in 3H-DAG levels paralleled an increase in 3H-PA level which is likely to be a 

metabolite of 3H-DAG (Stevenson et al., 1986). 

The increase in 3H-TAG and decrease in 3H-1,2-DAG levels observed in heated 
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cells of both cell types in this study may reflect either (1) an enhanced de novo synthesis 

of TAG via 1 ,2-DAG or (2) hydrolysis of pre-labelled phospholipid followed by rapid 

translocation to ER of 1,2-DAG, and conversion to TAG in heated cells. The reported 

decrease in labelled 1,2-DAG could have been accentuated by the 'cold-chase' effect 

discussed in Chapter 3. Evidence for the translocation to the ER of 1,2-DAG, which is 

then metabolised to TAG, comes from studies using radioactive 1 ,2-DAG analogues 

(Florin-Christensen et a/., 1993). By introduction of radiolabelled 1,2-DAG species into 

the plasma membrane of NIH 3T3 fibroblast by a liposome fusion technique, it was 

found that I ,2-DAG was converted to a mixture of PtdCho and TAG. Since the enzymes 

catalysing the conversion of 1 ,2-DAG to TAG and PtdCho are known to reside in the 

ER, these results suggest that there is a transport process conveying 1,2-DAG from the 

plasma membrane to the ER where it was then metabolised. It is known that 1 ,2-DAG 

can derive from: (1) de novo synthesis of PA and conversion to 1,2-DAG, which is an 

intermediate for the de novo synthesis of phosphatidylcholine and 

phosphatidylethanolamine in mammalian tissues (Farese eta/., 1987); (2) hydrolysis of 

phospholipids such as Ptdlns and PtdCho (Exton, 1990). It would be interesting to test 

whether these two pathways are differentially affected by heat. An extension to this 

would be to analyse the fatty acyl composition of the 1,2-DAG subtractions following 

heating, to determine the phospholipid source of the 1,2-DAG. 

The decrease in 3H-1 ,2-DAG levels observed in this study in both cell types upon 

heat treatment was in good agreement with the decrease in PKC activity found in P388 

cells following 45°C heating for 1 h (Bagi and Hidvegi, 1990). Since PKC is involved in 

many cellular functions such as cell growth, a heat-induced decrease in the 1 ,2-DAG 

level may decrease PKC activity, and this could perhaps be related to hyperthermic cell 

death. Supportive evidence that decrease in PKC activity may be involved in 

hyperthermic cell death came from a study using PKC inhibitors (Mikkelsen et a/., 

1991b). It was found that presence of the PKC inhibitors, tamoxifen and H7, enhanced 
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hyperthermic cell death of HT -29 cells, CHL V79 cells and MCF-7 cells heated at 

44.5°C. On the other hand, when these cells were heated in the presence of HA1004, a 

structural analogue of H7 with much lower affinity for PKC than H7, the hyperthenilic 

cell death was not potentiated even when the concentration ofHA1004 was 5-fold higher 

than H7 (Mikkelsen et al., 199lb). Thus it would be interesting to relate the 1,2-DAG 

level, PKC isoenzyme activities (together with protein phosphorylation) and 

hyperthermic cell death in one cell type. However, it has been found that the activity of 

the group C PKC isoenzymes are unaffected by 1 ,2-DAG and Ca2+ levels, so it is 

possible that heat affects the activity of PKC through a mechanism that is unrelated to 

the 1 ,2-DAG content. 

Analysis of the 1,2-DAG level upon heating is complicated by the fact that it can 

derive from (1) hydrolysis of phospholipids such as PtdCho or Ptdlns(4,5)P2, or (2) 

dephosphorylation of PA, produced by synthesis de novo. A more precise method to 

determine the effect of heat on the phosphoinositide signalling pathway is to label 

inositol lipids only, so that changes in inositol lipid levels or inositol phosphates that are 

generated by hydrolysis of inositol lipids can be determined. Consequently, myo[2-

3H]inositol was used to label inositol lipids, and levels of inositol phosphates in both 

heated and unheated cells were determined following separation by anion exchange 

chromatography or by HPLC, and the results were summarised in Chapter 4. Due to the 

lack of time, the effect of heat on inositol phosphates was only investigated in WRK-1 

cells. 

WRK-1 cells were labelled with myo[2-3H]inositol for 4 days then heated at 

different temperatures. A temperature-dependent increase in 3H-InsP2 and 3H-InsP3 

levels was observed when cells were heated at 39-45°C for 30 min in the presence of 

serum. The increase in 3H-InsP2 levels was detected at 42°C or higher temperatures, 

whereas the increase in 3H-InsP3 levels was not observed unless the cells were heated at 
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45°C. The InsP1 and lnsP 41516 levels were similar between heated and unheated cells. A 

temperature-dependent increase in InsP3 levels has been observed previously in several 

cell lines including A-431 cells, CHO HA-l and HeLa cells. Exposure of A-431 cells to 

45°C showed an increase in InsP1, InsP2 and InsP3 levels during the first 20 min, 

achieving a maximal level ( 190% of control level) by 20 min. The levels of InsP1, InsP2 

and InsP3 then declined to those of control level by 30 min heating (Kiang and McClain, 

1993). On the other hand, exposing cells to 45°C for 30 min resulted in a 40% increase 

in the InsP3 level in CHO HA-l cells and a 70% increase in InsP3 level in HeLa cells 

(Calderwood and Stevenson, 1993). In the present study, a maximum increase of 40% in 

InsP3 level was observed in WRK-1 cells on heating at 45°C for 30 min. Thus the effect 

of heat on phosphoinositide signalling pathway may depend on cell types, and may be 

related to the thermal sensitivity of a particular cell line. In order to investigate if any 

particular isomer(s) is/are affected by heat, and to separate InsP 4• InsPs and InsP6, cells 

were labelled to high specific radioactivity and heated at 45°C for 30 min (in the 

presence of serum). Inositol phosphate extracts were then separated by HPLC. Fractions 

corresponding to 3H-Ins(1,3)P2 and 3H-Ins(?)P2 showed a significant increase compared 

with unheated cells (p<0.05). The route that could lead to the accumulation of these 2 

fractions has already been suggested in Chapter 4. In brief, formation of Ins(l ,3)P2 and 

Ins(?)P2 could result from heat-induced hydrolysis of polyphosphoinositide, generating 

Ins(l,4,5)P3. This isomer may then be phosphorylated to Ins(l,3,4,5)P4, via the action of 

Ins(l ,4,5)P3 3-kinase. Ins(l ,3,4,5)P 4 can then be dephosphorylated to Ins(l ,3,4)P3, 

which is then further dephosphorylated to Ins(1,3)P2 or Ins(3,4)P2, but the presence of 

10 mM Li+ would favour the formation of Ins(l ,3)P2 since Li+ is an uncompetitive 

inhibitor of Ins( 1 ,4 )P2ilns( 1 ,3,4 )P3 !-phosphatase (Barker et al., 1992). 

When WRK -1 cells were heated in serum-free EMEM medium at 45°C for up to 

20 min, a transient increase in 3H-InsP3 was observed at approximately 11 min and this 

returned to the control level by 14 min. However, a sustained elevation of total 3H-InsP2 
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in WRK-1 cells was observed for up to 20 min at 45°C. Analysis of the individual InsP3 

isomers by HPLC suggested that there was an increase in the mean dpm count in all 3 

isomers, compared to values in control cells, but the difference was statistically 

insignificant. The discrepancy of a significant difference found in the total 3H-InsP3 

fraction of heated versus control cells, eluted from the ion exchange column, but an 

insignificant difference found in any single InsP3 isomers or the total InsP3 dpm count 

after HPLC separation could be explained by sample loss during recovery of the sample 

after freeze-drying. It is clear that further study is necessary to clarify the effect of heat 

on individual lnsP3 isomers as well as other inositol phosphate isomers. The dependency 

of InsP3 levels on heating duration has been observed by other workers in A-431 cells, 

CHO HA-l cells and HeLa cells. For example, heating A-431 cells at 45°C caused an 

increase in lnsP3, reaching a maximum level after 20 min (70% increase) while further 

heating caused a decline in InsP3 level (Kiang and McClain, 1993). On the other hand, 

the InsP3 levels in both CHO HA-l cells and HeLa cells continued to increase during 

heating at 45°C for up to 30 min (Calderwood and Stevenson, 1993). 

The transient increase in total 3H-InsP3 observed (at approximate 11 min) in 

WRK-1 cells heated at 45°C did not require extracellular Ca2+, since both the resting 

3H-InsP3 level and the magnitude of the increase in the InsP3 levels in cells heated in 

either EMEM (containing 1.8 mM extracellular calcium) or in calcium-free buffer was 

similar. This observation is in contrast to the proposed mechanism (Figure 6.2) of the 

heat-induced increase in InsP3 levels proposed in A-431 cells (Kiang and McClain, 

1993 ), in which extracellular Ca2+ is suggested to be indispensible for InsP3 formation. 

The existence of a calcium-independent PI-PLC has been observed in WRK-1 cells, and 

calcium-independent PI-PLC activation has been suggested as one of the routes of 

vasopressin-stimulated InsP3 fonnation (Mouillac eta/., 1990). Thus it is possible that 

this enzyme is stimulated by heat, releasing InsP3 from phosphoinositides in Ca2+-
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independent manner. It is clear that further investigation is necessary to clarify this 

possibility. 

The possibility that heat led to a disruption of the phosphoinositide signalling 

system, such that cells could not respond to hormones following heating was tested. 

When WRK -I cells were incubated at 37°C or heated at 45°C for 2 min before cells 

were challenged with vasopressin for up to 2 min at either 37°C or 45°C, respectively, 

the metabolism of inositol phosphates during vasopressin-stimulation at 45°C was 

altered. Increases in InsP3 and InsP 41s16 levels accompanied by a decrease in lnsP1 and 

InsP2 levels were observed in heated cells stimulated with vasopressin at 45°C for up to 

2 min, compared with unheated cells treated with vasopressin. When cells were heated at 

45°C for up to 40 min and then returned to 37°C for 2 min (to allow the medium to 

equilibrate at 37°C) before cells were challenged with vasopressin for 30 sec, it was 

found that levels of 3H-InsP1, 3H-InsP2, 3H-InsP3 and 3H-InsP 41516 in heated cells were 

similar to those in unheated cells following vasopressin stimulation. The experimental 

data show that the response of WRK -1 cells to vasopressin was unaffected by a heat 

dose sufficient to kill (ultimately) greater than 95% of these cells (determined by the 

MTT colorimetric assay). Other workers found that vasopressin and bradykinin access a 

common phosphoinositide pool, but there is a small fraction of hormone-sensitive lipid 

which responds only to bradykinin in WRK-1 cells (Monaco et al., 1990). Thus, it is 

possible that WRK-1 cells respond differently to different hormones or growth factors 

following heating. The effect of heat on the InsP3 level (and its metabolites) upon 

agonist stimulation has been investigated in A-431 cells and CHO HA-l cells. When A-

431 cells were incubated at 37°C or 46°C for 30 min, then EGF added for the last 5 min 

of incubation, the EGF-treatment caused an increase in InsP1, InsP2 and InsP3 levels, 

giving 35% and 45% in the InsP3 level at 37°C and 46°C, respectively (Liu and 

Carpenter, 1992). On the other hand, an additive increase in InsP 1, InsP2 and lnsP3 

levels was found in CHO HA-l cells when they were stimulated with thrombin at 43°C 
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(0.5-30 min) compared with thrombin stimulation at 37°C (Calderwood and Stevenson, 

1993). It is clear that further investigation is necessary to determine the significance of 

the distortion of inositol phosphate metabolism in relation to heat cell death. 

Effects of agents that have been shown to affect either G proteins or the PI-PLC of 

the phosphoinositide signalling pathway were also investigated. No significant 

difference in the totaJ3H-InsP3 levels were found between WRK-1 cells incubated in 5% 

(v/v) ethanol or 50 J.IM sodium orthovanadate compared with cells incubated in serum

free EMEM medium at 37°C for 30 min. However, a significant increase in total 3H

InsP3 levels was observed when cells were incubated either with AIF4- (5 mM NaF and 

10 J.IM AICl ~) at 37°C for 30 min or heated at 45°C for 30 min in EMEM medium alone, 

compared with cells incubated in EMEM for 30 min at 37°C. Incubation in the presence 

of serum at 37°C for 30 min also resulted in an increase in total 3H-InsP3 level, which 

was further increased by heating at 45°C for 30 min, compared with cells incubated in 

serum-free EMEM medium at 37°C for 30 min. However, the present study did not have 

sufficient data to make a precise decision on whether heat and AlF 4- exerted effects on 

the same or different components of the phosphoinositide signalling pathway. 

Experiments using PLC inhibitors (e.g. neomycin), non-hydrolysable GTP analogues or 

a combination of AIF4- and heat treatment, to find out if they give a synergistic effect on 

inositol phosphate levels, may clarify this uncertainty. 

The role of the increase in [Ca2+]i in hyperthermic cell death remains equivocal. It 

is known that heat induces an increase in [Ca2+]i in cell lines such as CHO HA-l cells 

(Calderwood et al., 1988), Drosophila salivary gland (Drummond et al., 1988), human 

colon HT-29 cells (Mikkelsen eta/., 1991a), human epidermoid A-431 cells (Kiang et 

a/., 1992), mouse mammary FM3A cells (Kondo et a/., 1993) and NIH3T3 fibroblasts 

(Stege et a/., l993b). However, no heat-induced increase in [Ca2+]i was observed in 

HeLa S3 cells (Stege eta/., 1993a), L5178Y-S cells (Stege et al., 1993b), L5178Y-R 
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cells (Stege et al., 1993b) and mouse mammary MMT060562 cells (Furukawa et al., 

1992). These discrepancies may be due to differences in the temperature or duration of 

heating of the cell lines. For example, in HT -29 cells were heated for 1 h at 44°C 

(Mikkelsen eta/., 1991a) whereas mouse mammary MMT060562 cells were heated at 

44°C for 30 min only (Furukawa et al., 1992). Alternatively, Stege and co-workers 

(l993a,b) suggested that the heat -induced increase in [ Ca2+ li was solely cell type

dependent. Furthermore, the lCa2+]i reported in most of the above studies was measured 

by spectrofl uorimetry, a technique that measures the changes in a cell population rather 

than at the single cell level, and it has been reported that dye leakage from cells can 

present a more serious problem at higher temperature when using this technique 

(Wierenga and Konings, 1989). Clearly, if dye leakage into a calcium-containing 

medium occurs during spectrofluorimetry, an increase in 350 nm/380 nm ratio would be 

recorded, and this could be incorrectly interpreted as an increase in [Ca2+]i. However, by 

using fluorescence microscopy, the dye leakage problem can be eliminated. In the study 

performed by Mikkelsen and co-workers (1991a), the level of [Ca2+]i upon heating was 

measured at single cell level in fura-2 loaded HT-29 cells by fluorescence microscopy. 

No linear correlation was found between cells having an increase in [Ca2+]i during 

heating and cell death. It was found that 80% of cells showed an increase in [Ca2+]i 

following heat treatment at 44°C for 1 h but more than 40% of cells survived this 

treatment. Instead, a correlation between elevated [Ca2+]i and cell death was observed 

during the post-heating period. These authors found that those cells with a heat-induced 

elevation in [Ca2+]i > 200 nM that persisted for 4-6 h following heating correlated with 

the number of dead cells (Mikkelsen et al., 1991a). Similarly, no correlation between the 

heat-induced increase in [Ca2+]i and cell death was observed in 6 different cell lines by 

Wierenge eta/. ( 1994). It was found that a heat treatment (44°C for 1 h) that killed more 

than 90% of cells did not lead to changes in [Ca2+]i in at least 4 cell lines. 

To further address the relationship between [Ca2+]i and hyperthermic cell death, 
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heat-induced changes in [Ca2+]i were measured in fura-2 loaded WRK-1 cells at the 

single cell level by fluorescence microscopy. The results are presented in Chapter 5. It is 

clear from these results that heat led to an increase in [Ca2+]i when calcium was present 

in the extracellular medium. However the proportion of the cell population that showed 

an increase in [Ca2+]i depended on the medium used. The most pronounced effect on the 

increase in [Ca2+]i was observed when cells were heated at 45°C in EMEM, when 76% 

of cells showed an increase in [Ca2+]i compared with cells heated in calcium-containing 

buffer, in which 25% showed an increase in [Ca2+]i. The increase in [Ca2+]i upon 

heating did not result from Ca2+ influx through voltage-gated calcium channels, as the 

effect was not blocked by voltage-gated calcium channel blockers (La3+ or nifedipine). 

In addition, perfusing 50 mM K+-containing buffer (which is sufficient to cause 

membrane depolarisation and Ca2+ influx via any voltage-gated channels) did not show 

any alteration in [Ca2+]i, implying that voltage-gated calcium channels are absent in 

WRK-1 cells. Furthermore, the [Ca2+]i value was not elevated when cells were heated in 

calcium-free buffer, suggesting that extracellular calcium is the major (sole?) source of 

the heat-induced elevation in [Ca2+]i. This result is comparable to that reported by Kiang 

et al. (1992) who found that the heat-induced increase in [Ca2+]i in A-431 cells was due 

to Ca2+ influx from the extracellular medium. 

A significant increase in [Ca2+]i was observed upon heat treatment of WRK-1 

cells in EMEM medium at 45°C for ~ 600 sec, compared to unheated cells. This increase 

in [Ca2+]i displayed a time course similar to that of the heat-induced elevation of total 

3H-InsP3 level, which appeared to be Ca2+-independent event in WRK-1 cells. Thus, it 

is possible that heat induced an increase in InsP3 levels which then mobilised Ca2+ from 

an internal store. However, if this were true, it would be expected that the heat-induced 

increase in [Ca2+]i would be observed even in the absence of extracellular free Ca2+ and 

this was not the case, as WRK-1 cells heated at 45°C for up to 30 min in calcium-free 

buffer did not show a heat-induced increase in [Ca2+]i. In essence, therefore, the results 
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show that heat induced an elevation in [Ca2+]i, which derived mainly (solely?) from 

extracellular sources, as well as an elevation in InsP3 levels, which occurred by a Ca2+

independent mechanism. This is consistent with the report of a Ca2+ -independent PI

PLC activity in WRK-1 cells (Mouillac et al., 1990), so heat-induced activation of this 

enzyme (perhaps via activation of a G protein) could elevate lnsP3 levels, even in the 

absence of changes in [Ca2+]i. 

The heat-induced increase in [Ca2+]i in WRK-1 cells may play a protective role 

against hyperthermic cell death. When heated in calcium-free buffer, to prevent elevation 

of [Ca2+]i, hyperthermic cell death of WRK-1 cells was enhanced compared with cells 

heated in EMEM medium or in calcium-containing buffer (1.8 mM CaCl2). This result 

was compatible with that observed in hepatocytes in which it was found that cell death 

was potentiated in calcium-free buffer (Malhotra et al., 1986). This effect may be due to 

the induction of heat shock protein (HSP) as a result of a heat-induced increase in 

[Ca2+]i (Price and Calderwood, 1991; Kiang and McClain, 1992; Kiang et al., 1994). 

Induction of HSP synthesis may play a protective role against cell death (Landry et al., 

1988; Li et al., 1991 ). In addition, the heat-induced increase in [Ca2+]i may protect 

Ca2+ -ATPase from thermal denaturation (Cheng, 1989), thus maintaining Ca2+ 

homeostasis in the cells. Furthermore, it is possible that Ca2+ exerts an effect on 

cytoskeletal organisation through the action of CaM-dependent enzymes and this may 

protect against cell death. Supportive evidence for this notion comes from a study using 

a CaM antagonist. Heating H35 cells at 43°C for 1 h in the presence of the CaM 

antagonist, trifluoperazine (TFP), prevented the destruction of stress fibres and rounding 

up of these cells (Wiegant et al., 1985). On the other hand, when N2A cells were heated 

in the presence ofTFP, the heat-induced aggregation of vimentin around the nucleus and 

loss of microtubular networks was prevented. However, cell death was enhanced in both 

cell types when heated in the presence of TFP, so it was suggested that there was a 

relationship between heat cell death and the alteration of cytoskeletal organisation 
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(Wiegant et a/., 1985). A similar result was observed in mouse tumour clone C MTC 

cells (Evans and Tomasovic, 1989). Furthermore, in the present study, cell death was 

enhanced when cells were heated in the presence of nifedipine or when nifedipine was 

added during the 4 h post-heating period. The mechanism of the cytotoxic effect of this 

nifedipine treatment is not clear but certainly it was not due to different [Ca2+]i values in 

cells heated in this condition compared with cells heated in EMEM. However, it is 

possible that nifedipine increased Ca2+ efflux during subsequent incubation at 37°C for 

4 h (Church and Zsoter, 1980). 

The decrease in 1,2-DAG levels (rather than increase) in heat-treated WRK-1 cells 

may be due to thermal activation of DAG acyltransferase, causing accumulation of TAG. 

The results obtained from 2 tumour cell lines- CHO-K1 cells and WRK-1 cells 

in this study suggest that physical stress such as heat can be converted to chemical 

messengers through the phosphoinositide signalling pathway. The exact role of such 

changes in relation to hyperthermic cell death remains to be clarified, as the effects are 

potentially antagonistic. For example, it is possible that the decrease in 1 ,2-DAG level 

(and perhaps decrease in PKC activity) in heated cells may have a role in hyperthermic 

cell death because it has been shown that antagonism of PKC by inhibitors sensitises 

cells to heat (Mikkelsen et al., 1991 b). However, the transient increase in InsP3 and the 

sustained increase in [Ca2+]i may play a protective role, possibly via the induction of 

HSP synthesis, against cell death (Landry et al., 1988; Price and Calderwood, 1991; 

Kiang and McClain, 1992). 
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