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Ph.D Abstract 

Deposition of Zinc Oxide by Spray Pyrolysis 

A.J .C. Fiddes 

1993 

The objective of this work was to grow doped ZnO by spray pyrolysis at low 

temperature. This was achieved via the initial objective of growing ZnO in undoped 

form over a wide range of conditions, in order to understand the growth behaviour of 

ZnO from Zn(acac)2.H20 and to establish the optimum growth procedure at high and 

low temperature. Various techniques were employed to characterize the films and thus 

determine the optimum growth conditions (i.e measurement of film thickness, resistivity, 

Hall coefficient, X-ray diffraction and reflection electron diffraction to name but a few). 

With the growth of undoped films it was found that the film properties varied with 

temperature and moisture content and that the optimum conditions for low temperature 

growth in a dry ambient were at 200°C and for high temperature growth in a wet 

ambient at 300°C. 

An analysis of the growth behaviour of ZnO was carried out and it was suggested 

that there were at least four mechanisms leading to the decomposition of the precursor 

used (Zn(acac)2.H20). They were decomposition by intramolecular, intermolecular, 

thermolysis and hydrothermolysis processes. 

A kinetic analysis demonstrated that evaporation was the dominant process which 

reduced the efficiency of utilization of Zn(acac)2.H20. 

The growth of doped ZnO nn glass and plastic at low temperature using InCh 

as a dopant yielded conducting films. The results also showed that films obtained 

using solutions with low concentrations of Zn(acac)2.H20 and high concentrations of 

InCl3 were even more conducting ( p ~ w-5nm). The morphology of film growth was 

dominated by the presence of dopant. 

High temperature growth of doped ZnO in a wet ambient using InCl3 also yielded 

conducting films and these were compared with indium, aluminium and gallium doped 



films where alternative dopant materials such as ln(acac)J, Al(OPri)J, AlCh and 

Ga(acac)3 at a variety of different solution concentrations had been used. This was 

undertaken to discover whether these materials functioned as well as InCla in produc

ing low resistivity ZnO. Doped films were characterised using the same techniques as 

before. Elemental analysis, photoluminescence and optical measurements were also 

carried out on these films. 

The main conclusions were that : 

(I) The growth rate ofZnO from Zn(acac)2.H20 is heavily influenced by the growth 

temperature and other conditions. 

(2) The film resistivity was influenced by growth temperature. A minimum in the 

film resistivity was observed when a growth temperature of 300°C was used. 

(3) Undoped ZnO films grown below 200°C had a different preferred order to those 

grown above 200°C. 

( 4) The best high temperature conditions for the deposition of undoped conducting 

adherent ZnO lay in the region of 276 - 306 °C. 

(5) The best low temperature conditions for the growth of undoped conducting 

ZnO were in the region of 200°C. 

(6) The low temperature growth (175-200°C) of doped ZnO produced films with 

resistivities of the order of l-5x w-5nm and a visible transmittance of 80%. This 

compares favourably with ZnO:Al and Sn02 which have also been grown at low tem

perature. 
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Chapter One 

Introduction 

It has been known for some time that ZnO can be prepared as a transparent con

ducting film and consequently it has attracted interest in applications to photovolta.ic 

cells a.nd passive solar heating. ICI have sponsored this and earlier work to find a cheap 

and efficient method of depositing thin films of ZnO by spray pyrolysis. The earlier 

work carried out in Durham had used zinc acetate as the precursor and glass as the 

substrate. The work reported here has concentrated on attempts to grow transpar

ent conducting films on plastic. This required a lower substrate temperature to avoid 

the decomposition of the plastic. The approach adopted was to investigate a range of 

precursors prepared in the Department of Chemistry. Most success was achieved with 

Zn(acac)2.H20. 

The work reported in this thesis sets out to answer three questions : 

(a) Can ZnO be formed by spray pyrolysis below:::::: 300°C (the decomposition temper

ature of zinc acetate) ? 

(b) Can it be grown in a thin film form which is both transparent a.nd conducting ? 

(c) What is the lowest temperature at which the transparent conducting form can be 

grown? 

This thesis consists of ten chapters. Chapter two presents a review of the properties, 

and applications of ZnO. 

Chapter three presents a review of spray pyrolysis and the physical and chemical 

factors influencing the resulting film properties. The chapter ends with a review of 

earlier work on the spray pyrolysis of zinc oxide. 

Chapter four presents a description of the experimental spray pyrolysis kit and 

and its method of use. The characterisation techniques employed on the films are also 

22 



described. 

Chapter five (the first results chapter) presents the growth conditions of undoped 

ZnO films and the results of their characterisation. 

Chapter six contains an interpretation of the growth behaviour of ZnO in terms of 

the decomposition of Zn(acac)2.H2 0 via different routes, and a kinetic analysis of the 

physical parameters affecting deposition efficiency. 

Chapters seven and eight present the description of the conditions for the low 

temperature and high temperature growth of indium doped ZnO and the results of the 

characterisation of these films. 

Chapter nine contains the description of the conditions for the growth of alu

minium, gallium and indium doped ZnO at high temperature. 

The last chapter (chapter ten) presents the conclusions, a discussion, some final 

comments and suggestions for further work. 

Zinc oxide is used in a variety of technical applications including porcelain enamels, 

heat resisting glass, as an activator in vulcanisation, an additive in rubber and plas

tics, pigments in paints with UV protective and fungicidal properties, as a spacecraft 

protective coating, as a constituent in cigarette filters and healing ointments, in semi

conductors (electro - optic, acousto - optic, acousto - electric), waveguides, and as a 

transparent conductor. It has also been used as an industrial catalyst and a gas sensor. 

The broad variability in the applications of zinc oxide is due to the basic properties of 

zinc oxide in thin film form which depend on the method of preparation. This topic 

forms the subject matter of this thesis. 

This project was funded by ICI PLC and started in October 1988 as a continuation 

of postdoctoral research by Dr Sener Oktik which began in 1986. The three years were 

punctuated by meetings at 3 monthly intervals during which progress was reported. 

Meetings took place at ICI Wilton or Durham University with the staff of ICI Films 

(Wilton, Teesside) and ICI Paints (Slough) present. 
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Chapter Two 

Review of the Properties of Zinc Oxide Thin Films 

2.1 Introduction 

This chapter concerns thin films of zinc oxide and their properties. It includes 

a description of the structure of zinc oxide together with its electronic and optical 

properties. Applications of zinc oxide are discussed towards the end of the chapter, and 

in conclusion the material is discussed as a transparent conducting oxide or alternatively 

as an n - type window layer for a solar cell. 

2.2 Structure of Zinc Oxide 

Zinc oxide crystallises in the hexagonal wurtzite structure. The mean lattice con

stants are a= 3.250 A and c = 5.206 A . The structure of the unit cell is shown in figure 

2.1. The zinc ~xygen bond length is 1.992 A parallel to the c - axis and 1.973 A in 

the other three directions of the tetrahedral arrangement of nearest neighbours! 1•2 ). 

Figure 2.1 (a) shows the basic unit cell structure and illustrates the tetrahedral 

arrangement, whereas figure 2.1 (b) is an extended structure showing the c -axis and 

this structure is used for determining lattice planes in the hexagonal wurtzite system. 

For the sake of later work presented in the following chapters it is useful to go over the 

labelling technique for crystal planes for the hexagonal system. 

The notation used to describe the hexagonal wurtzite system is based on Miller 

indices. Their use helps to specify faces and planes within a crystal or space lattice. 

They specify the orientation of crystal planes relative to the crystal axes without giving 

the position of the plane in space with respect to the origin. 

These indices are based on the intercepts of a plane with three crystal axes, each 

intercept with an axis being measured in terms of the unit cell dimensions a,b and c 

along that axis. To determine the Miller indices of a plane the following procedure is 

used: 

1/. Find the numerical intercepts on the three axes. 

2/. Take the reciprocal values of these numerical values. 
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(a) 

o, Zinc 
o,Oxygen 

(b) 

Oxygen 

0 Zinc 

Figure 2.1 Structure of hexagonal wurtzite zinc oxide : (a) unit cell. (b) extended unit cell structure. 
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3/. Reduce these numerical representations of the intercepts to the smallest inte

gers having the same ratio. 

4/. Enclose in parenthesis (hkl). 

In order to describe zinc oxide, hexagonal indices can be used based on a four 

coordinate system with indices (hkil) or a1, a2, ClG and c. This is more suitable for 

zinc oxide than the three coordinate system because of the source of possible confusion 

in assigning planes when equivalent planes do not have the same indices. Possible 

confusion is avoided' using the four coordinate system as equivalent planes are indicated 

by permutations of the first three indices. 

For example the three main reflections from the XRD spectrum of a polycrystalline 

powder sample ofzinc oxide using the three coordinate system (hkl) are the (100), (101), 

and the (002) planes. Under the four coordinate system the labels are the (1010), the 

(lOll), and the (0002). Note that (110) is not equivalent to (101) in the hexagonal 

structure and this is explicit in the 4 coordinate system where these planes become 

(ll20) and (lOll) respectively. 

The ASTM card for zinc oxide uses the three indices system. To convert from three 

to four indices the following formula is used : i = - (h + k) (J). Table 2.1 shows the 

ASTM (American Society For Testing And Materials) index for random polycrystalline 

zinc oxide along with the interplanar spacings, ( dhkl) and the reflected intensities from 

the different planes. Both three and four coordinate labelling systems for zinc oxide 

planes are included. 

Thin film zinc oxide consists of columnar grains and crystallites up to 1J.£m in 

average diameter and such films can have a preferred orientation or fibre texture where 

all crystallites have one particular set of crystallographic planes parallel to the film 

plane. 

2.3 Nonstoichiometry and Defect Structure 

When zinc oxide is prepared it is usually as a rather n- type conducting material. 

The n- type conductivity is caused by an excess of zinc which acts to yield an electron 
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Crystal plane d~t.~cdA Peak intensity % 

(100) 2.816 71 

(lOiO) 

(002} 2.602 56 

(0002} 

(101) 2.476 100 

(lOil} 

(102} 1.911 29 

(1012} 

(110} 1.626 40 

(1120) 

(103) 1.477 35 

(10l3) 

(112) 1.379 28 

(1122) 

Table 2.1.ASTM index for random polycrystalline zinc oxide 
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which is free to move as a carrier in the conduction band. The excess zinc results in 

a non - stoichiometric material Zn1+50 and a degree of structural disorder because 

of the markedly different ionic radii of zinc and oxygen. Large octahedral interstitial 

positions exist in zinc oxide into which zinc ions can diffuse. The diffusion rate of zinc 

in zinc oxide has been found to be higher than that ofoxygeri. If an absolutely pure 

stoichiometric single crystal were considered, i.e with no point defects, no impurities, 

no dislocations, and no grain boundaries, zinc oxide would be an insulator rather than 

a semiconductor at room temperature. The concentration of the free electrons would 

be 1014 m-3 <4 > compared to 1014 - 1025 m-3 in semiconductors and up to 8x1028 m-3 

in metals. Figure 2.2 shows the energy band diagram of zinc oxide (2•4>. 

Also marked on the figure are the energy levels for the excess zinc interstitials 

(Ezn(i)), zinc vacancies (Evczn)), and oxygen vacancies (Ev(O)), and their ionization 

energies. These are examples of native defects and the corresponding native defect 

energy levels since both are produced by the basic material. The zinc excess can be 

present in the form of zinc interstitials (Zni) or oxygen vacancies (V 0 ) in the zinc oxide 

lattice while zinc vacancies (V zn) imply zinc deficiency. These defects can be singly 

ionized or doubly ionized and have energies of the order of (Ec- 0.05) eV and (Ec- 0.2) 

eV if the defect is interstitial zinc , (Ec - 0.5) eV and (Ec - 2.0) eV if the defect is an 

oxygen vacancy , and (Ev + 0.7) eV and (Ev + 2.8) eV if the defect is a zinc vacancy 

where Ec is the energy of the bottom of the conduction band and Ev is the energy of 

the top of the valence band <5 •6>. Oxygen vacancies and zinc interstitials act as donors 

whereas zinc vacancies act as acceptors in thin film zinc oxide. These can be generated 

thermally by varying the partial pressures of zinc and oxygen and the temperature, 

according to equations (2.1) and (2.2) : 

(2.1) 

(2.2) 
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E Zn· I ~-
0 

Figure 2.2. Energy band diagram of zinc oxide. Ec = conduction band. Ev = valence band. Eznj = energy 
level for interstitial zinc. Ev

0 
= energy level for oxygen vacancy. Ev = energy level for zinc vacancy. • = 

singly ionized defect :ee = doubly ionized defect. Zn 

1/) 
1/) 
QJ 
c:: 
~ 
u 

...r= 
I-

E 
L.L. 

P'J Stoichiometric ZnO 

0 Bulk oxygen deficient zn, ,o 
t+X 

F~gure 2.3. Thi~kness effect. ZuO films have an oxygen rich surface layer which iw:reases resistivity. Films 
With a smaller tluckness are more susceptible. 
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As native levels are located near the conduction band they can be therq~ally ionized 

at room temperature. This process can be described by : 

(2.3) 

where ec is the electronic charge. This represents the concentration of electrons 

in the conduction band. A concentration of 1 ppm of fully ionized defects generates 

around 1022 electrons per m3 giving rise to the possibility of changing the electronic 

properties in a controlled manner. 

2.4 Doped Zinc Oxide 

Impurities such as trivalent metal cations (M3+) or monovalent halide anions (X-) 

can be substitutionally incorporated by a proper doping process 12 >. These lead to the 

formation of impurity point defects and the release of electrons which can contribute 

to conduction 17> • For example in the case of M = aluminium, gallium or indium, the 

following equations have been formulated : 

(2.4) 

(2.5) 

for stoichiometric zinc oxide, and 

(2.6) 

(2.7) 

in the case of n - type conducting samples. These reactions lead to an increase 

in the film conductivity. The solvation energies of some of these processes have been 

calculated and in the case of aluminium and equations 2.4 and 2.5 the energies were 0.9 

and 1 electron volt respectively. For gallium in equation 2.5 the calculated solvation 
I 
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energy was 1.3 electron volts and for indium in equation 2.5 the energy was 2.3 electron 

volts !Sl. These results suggest that it is energetically more favourable for aluminium 

to be incorporated onto a zinc site than either gallium or indium. 

With halide doping there is also an increase in film conductivity, 

ZnCl2 ---+ Znzn + 2Cl~ + V~n + e (2.8) 

ZnCl2 + Zni ---+ 2Znzn + 2Cl~ + e (2.9) 

and also, 

ZnCl2 + V~ ---+ Znzn + 2Cl~ + e (2.10) 

The alternative energy levels produced by the addition of these materials are donor 

impurity levels and are also marked in figure 2.2. Both native and donor impurity levels 

lie 0.025 - 0.5 eV below the conduction band. 

2.5 Parameters Affecting the Resistivity of Zinc Oxide 

This section presents some of the film properties that control the resistivity of zinc 

oxide. The electrical properties of the films are changed by variations in the grain size, 

the grain boundary barrier height, the doping level and the overall thickness of the 

films. 

2.5.1 Thickness Effect 

It has been reported that proportionately thinner films are more resistive <9 l. It 

has also been stated that because of their random structure films 100 nm thick allow a 

greater proportion of oxygen to be chemisorbed into the film bulk along grain bound

aries. It has been suggested that this leads to the formation of traps which deplete the 

concentration of conduction band electrons. 

The possible result of this would be that in thin film form zinc oxide is more 

stoichiometric and therefore more insulating because oxygen would be able to diffuse 

through the whole film (see figure 2.3). 
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However as the film thickness increases this stoichiometric layer becomes confined 

to the surface since oxygen can no longer diffuse through the entire film. The influence 

of doping with trivalent metal ions is to reduce the importance of this surface stoichio

metric layer as the trap density is much reduced by the free carriers produced according 

to equations 2.4 to 2. 7. It is therefore possible for films to have their electrical prop

erties more or less influenced by the surface properties depending on the conditions of 

preparation (presence or absence of oxygen) and whether M3+ is present or not. 

2.5.2 Grain Size and Grain Boundary Barrier Height Effects 

In thin films conduction occurs through the grains and is limited by the grain 

boundary barrier height. The theory of Petritz <10) quotes the film resistivity as being 

given by: 

P = Pg + Ps (2.11) 

where p9 and Ps refer to the grain boundary resistivity and the resistivity of single 

crystal- like grains. The grain boundaries are important in several ways. They generally 

contain fairly high densities of interface states which trap free carriers from the bulk 

of the grains, scatter free carriers by virtue of the inherent disorder and the presence 

of trapped charge and may also act as sinks for the segregation of dopant atoms (i.e 

Al,Ga or In) <
11 ·12 l. Interface states may be either intrinsic (related to native ZnO) 

or extrinsic (related to impurities such as group III metals or group VIII halides)or 

may result from the adsorption of gases such as oxygen. The density of traps (nt) (per 

unit area) determines the maximum amount of charge which can be trapped. Interface 

charge gives rise to band bending in the bulk of the grain and is the cause of interface 

barriers. The energy required for a free carrier to cross the barrier is <I>B (which is the 

grain boundary barrier height). Figure 2.4 illustrates the energy band diagram of a 

granular n - type semiconductor. In the absence of scattering within a single crystal 

- like grain an electron with energy greater tha.n 4> B may cross several grains before 

colliding with a phonon (lattice vibration). A phonon is an oscillation of the zinc oxide 
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(A), GRAIN BOUNDARY 

(B),OEPLETION REGION. 

([),GRAIN BULK. 

~b· Grain Boundary 
Potential Barrier Height 

l, Grain Size. 

Figure 2.4. The energy ba.uJ dia.~ram in a.u n - type ~ranular semiconductor. 
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Figure 2.5. The three possible scenarios for a n- type granular semiconductor : (a) N :$ nt, (b) N :::::: nt, 
(c) N ~ nt. 
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lattice which acts to scatter the electron from its predetermined path (IJ). 

Electrons with energies less than if>B are confined within the potential wells which 

occur between grain boundaries and are unable to take part in current transport. 

If the trap density is high or the bulk doping level low, grains may be completely 

depleted of free carriers, leading to high filin resistivity with a large thermal activation 

energy. 

Three scenarios are possible. The first is a low doping regime in which the doping 

level is smaller than the trap density and is shown in figure 2.5 (a). In this case the 

grains are totally depleted resulting in nearly flat conduction and valence bands towards 

the extremities of the grains. The mobility is not activated and the carrier concentration 

is dependent on temperature. 

In the second case the bulk doping level is comparable with the trap density. This 

results in the bending of energy bands in the grains causing a depletion layer potential 

barrier (if> B) at the grain boundaries, which increases with increasing doping level. The 

mobility is temperature dependent. The carrier concentration is also activated. This 

scheme is shown in figure 2.5 (b). 

The third condition occurs when the dopant level exceeds a critical doping mini-

mum given by : 

N _ nt 
c- l (2.12) 

where 1 is the grain size (radius), nt is the trap density and Nc is the critical doping 

level (9 l. As a result the depletion region is limited to a region near the edges of the 

grains. The mobility is still temperature dependent while the carrier concentration is 

independent of temperature (figure 2.5 (c)). The depletion (or grain boundary) barrier 

height decreases in this highly doped stage. 

The conduction mechanisms in microcrystalline zinc oxide involve thermionic emis-

sion (i.e. the thermal emission of carriers over the grain boundary potential barrier) and 

thermal field emission (or tunneling of carriers through the grain boundary potential 



barrier in heavily doped samples). 

2.6 Optical Properties 

The high optical transparency of zinc oxide in the visible and near m regions of 

the solar spectrum is a direct consequence of it having a wide bandgap in the range 3.2 

- 3.4 eV (1.2.14l. 

This puts the fundamental absorption edge in the ultraviolet. The bandgap can be 

varied slightly depending on the conditions of preparation and any added impurities. 

The valence bands are p - like (i.e with p - orbital like electron density and parity) 

in character while the conduction band is s - like. 

With undoped zinc oxide the transmission remains high into the infrared region 

out to long wavelengths (i.e 10 J.Lm). That is the reflectance and absorbance are low 

and it is only at a wavelength of 20 - 25J.Lm that any features are observed. This is the 

restrahlen band of the fundamental lattice absorption <2 l. 

When zinc oxide is doped with donors such as aluminium, gallium or indium the free 

electrons produced when present in high enough concentrations give rise to processes 

of free carrier absorption and reflect~on. In the near IR region free carrier absorption 

becomes important. The optical behaviour can be explained by the Drude Theory 

(related to the study of conduction in metals) and is essentially governed by free carrier 

effects. Thus the transmittance decreases while the absorption increases with increasing 

wavelength beyond the absorption edge. 

The maximum in the absorption is called the plasma resonance (..\p)· For wave

lengths longer than this the material becomes reflecting. The value of ..\p determines the 

range over which the ZnO is reflecting. This is due to the presence of free carriers and 

the resulting ionized impurity scattering which dampens the free carriers and causes 

the impinging photons to be reflected <15•16 l. 

Two mechanisms operate to influence the absorption edge or bandgap with heavy 

doping. One is the Moss - Burstein effect which leads to bandgap widening. This is 

due to the filling of the low lying states in the conduction band with electrons excited 
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from shallow levels. 

The alternative effect is bandgap narrowing which occurs when the impurity donor 

band merges with the conduction band at a critical doping level. This level may be 

estimated from the Mott critical density (equation (2.12)). Above this level there is a 

downward shift of the conduction band along with an upward shift of the valence band. 

This is due to electron - electron impurity interactions (15-17>. 

2.7 Applications of Zinc Oxide 

A large number of applications have been suggested for thin film ZnO. For example 

it can be used in surface acoustic wave (SAW) devices and other piezoelectric devices 

due to its high electromechanical and piezoelectric and optical coupling constants. For 

optimum performance the properties of the thin film must simulate those of a single 

crystal. The thin microcrystalline film properties must be carefully controlled with the 

c - axis either parallel to ((0002) preferred order) or perpendicular ((lOIO) preferred 

order) to the substrate. The coupling is stronger when the c - axis is perpendicular to 

the substrate plane and for thin film zinc oxide is only marginally lower than that for 

single crystals < 18 l. 

The surface conductivity of zinc oxide is sensitive to the presence of gases such 

as NH3, nitrogen oxides (NOx), other polyatomic gases (oxygen, hydrogen, carbon 

monoxide), alcohols and hydrocarbons so that films can be used in gas detection. In 

some cases zinc oxide is used as a catalyst. 

2.7.1 Sensors 

Zinc oxide surfaces possess dangling bonds which allow adsorption, physisorption 

and chemisorption of gaseous species to occur. The change in conductivity can be either 

due to direct transfer of electrons from the adsorbed gas to the oxide semiconductor 

or due to a reaction of the adsorbed gas with previously chemisorbed surface oxygen 

<19·20>. Thus a weak to strong interaction is set up between the zinc oxide film surface 

and any small molecule on the surface. This allows the transport of electronic charge to 

or from the zinc oxide surface and may lead to accumulation or depletion of carriers at 
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the surface. This results in a change in the surface conductivity which can be detected 

by electrical measurements. 

Thus it is the property of the surface in its ability to form bonds with small 

molecules together with the associated electrical effect which makes zinc oxide an at

tractive thin film sensor (21 l. It is also important to realise that there is reversibility 

and that when the surface molecules are removed the conductivity returns to its initial 

value. The response time of the device is dependent on the growth conditions of zinc 

oxide (22 1. 

2. 7. 2 Heat Mirror 

An interesting application as a heat mirror lies in the property that heavily doped 

films are reflecting beyond a certain wavelength ().p) due to a high concentration offree 

carriers. Hence heat mirrors allow the temperature of closed spaces to be controlled. 

They can also act to retain heat in a confined space for use in cold climates (14 •23•241. 

Heat mirror coatings a.re useful on the glass envelopes of lamps so that the thermal 

part of the radiation can be reflected back to the filament while the visible part is 

transmitted. 

2. 7.3 n - Type Window Layer for Solar Cells 

The major interest in the work reported in this thesis lies in controlling the elec

trically conducting properties of ZnO. One potential application is as a window layer 

in certain heterojunction thin film solar cells. The first requirement for an n - type 

window layer is that it should be reasonably transmitting so that the solar radiation 

passes through the layer and impinges on the p - type absorber layer. To satisfy this 

requirement the transparency of the n - type window layer must be high and therefore 

the material should if possible have a large bandgap. This requirement is fulfilled in 

the case of zinc oxide. 

A typical p - type absorber such as CdTe has a bandgap of 1.5 eV while that 

of zinc oxide is ~ 3 e V and therefore light will pass through ZnO to CdTe at all 

energies up to 3 eV and at the same time provide a heterojunction for the separation 
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of electron - hole pairs. Conductivity and conductivity type are also requirements of 

n-type window layers where the majority charge carriers are electrons. The absorber 

material is always p - type in n - type window solar cells and the principle of operation 

of a solar cell demands that the window material be of opposite majority charge carrier 

type (so that when light impinges on the p - n junction electron hole pairs are created 

and are separated by the built-in electric field). 

2.7.4 Resistively Heated Coatings 

ZnO can be used as a resistively heated coating on a substrate. Then if enough 

current is passed through, the whole substrate is heated through the dissipation of 

electrical energy. ZnO possesses good electrical conductivity as well as good chemical 

stability. Several patents have been issued for an electric resistance device (25 - 27> based 

on an electroconductive coating. Doping with indium and gallium was carried out in 

this work. 

One application is on windscreens for the purpose of de - icing (cars, aeroplanes 

etc.) and as heater elements for bread toasters and room heaters. 

Since ZnO films can be made highly conductive while remaining transparent they 

can be used as coatings on glass to provide the electrodes for liquid crystal and elec

troluminescent cells, or for smart windows. Our particular interest has been to try to 

grow conducting films on plastic sheet to avoid problems created by static electricity. 

This requires a deposition temperature low enough to avoid the thermal decomposition 

of the plastic. 

2.8 Zinc Oxide as a Transparent Conducting Coating 

In recent times ZnO films have been deposited by sputtering or CVD techniques. 

Undoped sputtered films exhibit a strong (0002) preferred orientation, and have a grain 

size in the range 5 - 30 nm. Films grown by CVD or spray pyrolysis also exhibit a 

(0002) preferred orientation. 

Films grown by R.F magnetron sputtering have had resistivities as low as w-OOm 

and mobilities as high as 120 cm2 v-1 s-1 (28 >. Film transmittance was of the order 
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of 85%. Growth using the CVD technique resulted in films having resistivities in the 

range IQ-2 - w-4Qm <29>. Spray pyrolysis using zinc acetate has produced undoped 

films with resistivities as low as w-5om. The film transmittance was in the range 80% 

to 90% (29-31). 

In attempts to improve the conductivity and stability of the films zinc oxide has 

been doped with indium, aluminium, boron, silicon or tin <32- 35 >. The growth tech

niques used were spray pyrolysis and sputtering. The resulting films were microcrys

talline with grain sizes of the order 10 - 80 nm. Preferred orientation tended to be 

absent when an impurity such as indium or aluminium was added. 

With spray pyrolysis using zinc acetate, films have been doped with indium or 

aluminium. ZnO:In always gave superior results. Typically aluminium doped films 

have resistivities of the order of w-2 - w-3om, while indium doped zinc oxide in the 

as - deposited form has a film resistivity of the order w-50m. Annealing aluminium 

doped films yields an improvement, while for indium doped films little improvement was 

observed (24 >. Film transparency is of the order 85% in the visible region. Bandgap 

narrowing and widening effects are also observed. In sputtered ZnO:Al the bandgap 

increases from 3.4 eV to 3.9 eV. 

-2.9 Other Transparent Conducting Oxide Films 

A number of other oxide materials have been investigated or used as conducting 

coatings, mostly on glass. These include indium oxide, ln203, which has a bandgap 

between 3.55 and 3. 75e V <36·37> and has a resistivity of 2 x 10-60m with a mobility 

of 74 cm2 v-1 s- 1 and a transparency of 90% <38>. Unfortunately, films of In203 

are not particularly stable. The most well known and extensively used transparent 

conducting oxide is indium tin oxide <39- 49 >. Sn02 itself is an n-type semiconductor 

where the conductivity is caused by oxygen vacancies or chlorine contamination from 

the starting materials. At best Sn02 has carrier concentrations of 1025 -1026 m-3 with 

mobilities in the range 5-30 cm2 v-1 s-1 leading to resistivities 10-4 - w-5om. In 

recent years films of indium tin oxide have become commercially available with the 
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lowest resistivities yet achieved for a transparent thin film. Carrier concentrations are 

of the order 1027 m -J with mobilities in the range 15-40 cm2 v-1 s-1 • This leads to 

film resistivities between 7 x w-7 Om and 5 x 10-60m. Other transparent conducting 

coatings which have attracted considerable attention have been antimony and fluorine 

doped tin oxide and cadmium stannate: At best all of their resistivities lie in the range 

w-4 - w-5nm, but none, as far as is known, offer the possibility of deposition by spray 

pyrolysis on to substrates below 200°C. 

All these oxides in their undoped state can be produced in a conducting and trans

parent thin film form. The properties of transparent conducting oxides are summarised 

in table 2.2. It is also clear that oxygen deficiency or accidental doping results in the 

release of free electrons to the conduction band resulting in a n - type semiconductor. 

Most of the films undergo an ageing effect when oxygen diffusion along grain bound

aries restores the stoichiometry and the conductivity decreases, accordingly. Doping the 

films (with donors) has the effect of maximising and stabilizing the film conductivity 

through the presence of a high concentration of impurity donors rather then relying on 

oxygen vacancies. However ZnO is very cheap and has many attractive properties. 

40 



Summary of the properties of transparent conducting oxides 

Iu203 ln203:Sn Sn02 Su02:Sb Sn02:F ZnO ZnO:In ZnO:A 

Preferred (1010) (1010) (2020) (0002) (1010) 

order (1121) (1121) 

Grain size 10 40 - GO 20- 30 60 40 5- 30 10- 80 10- 40 

/(nm) 

Resistivity 2x10-6 7x 10-7 w-4_ 5x10-6 5x10-6 10-5 10-6 w-6 
/(f!m) - 5x10-6 w-s - 10-6 

Mobility 

/(cm2 10 -75 15- 40 5- 30 15- 30 38- 120 20 22 

v-1 

s-1) 

Carrier 

concentration 1025 - 1027 1025_ 1026 1025 - 1026 1026_ 1026 

/(m-3) 1026 1026 1026 1027 - 1027 

Bandgap 3.55- 3.75 3.75- -1.4 3.87 - 4.3 4 - 4.5 3.75- 4.3 3.31 3.31 - 3.43 3.4 -

/(cV) 3.9 

Average 

transmittance 90 80- 92 80- 90 80- 90 80- 90 85 80- 90 85 

/(%) 

Table 2.2.Summary of the properties of common transparent conducting oxides. 
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3.1 Introduction 

Chapter Three 

Review of Spray Pyrolysis 

This chapter describes the history and development of spray pyrolysis and the 

equipment involved {i.e. the basic process and the equipment). 

In section 3.2 the applicability of spray pyrolysis for the deposition of a variety of 

materials is discussed in terms of the chemical nature of the precursor. 

In sections 3.3 and 3.4 the physical aspects and chemical aspects of spray pyrolysis 

are discussed (i.e the influence of deposition parameters and precursor type). 

3.2 Spray Pyrolytic Process 

A few reviews have been published in this field (l-S) which concentrate on various 

aspects of spray pyrolysis but which do not form a complete picture of the field. Spray 

pyrolysis is a process in which a thin film of a technologically or scientifically interesting 

material is deposited by spraying a solution of a suitable precursor or several precursors 

in a solvent onto a heated substrate where pyrolysis and solvent vaporisation occur to 

give the desired material. The chemical reactants are selected such that the products 

other than the desired compound are volatile at the growth temperature. 

The equipment used is outlined in figure 3.1. The spray pyrolysis system consists 

of a temperature controlled heated deposition platform and a solution atomiser. In 

some cases one or the other is designed so that a scanning motion is achieved which 

allows the source of atomized liquid to be spread evenly across the substrate surface. 

The solution is fed from a source such as a bottle through pipes to the spray 

atomiser (see section 4.1 for a full description of the Durham spray kit). The system 

contains solution and gas lines which connect to the spray atomiser. These lines contain 

in - line flow and pressure meters and valves (manual or automatic) for the purpose of 

process control. 

In order to carry out spray pyrolysis there is a need for a heated substrate on which 

to spray along with a temperature controller and a thermocouple probe for temperature 
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measurement. 

There are at least four types of spray guns available. 

They are the pneumatic, the airless, the pneumatic airless, and the ultrasonic. 

In the pneumatic system atomisation of the solution takes place by the action of 

compressed air on a fine jet of the spray solution. This jet is broken. up by the flow 

of high pressure gas as shown in figure 3.2, which forces the liquid out of the atomiser 

through a narrow orifice. 

The second type of spray atomiser is the airless or centrifugal type, where atom

isation is achieved by forcing the solution directly through a specially designed orifice 

under high pressure. Using this method the droplets on leaving the atomiser have 

sufficient velocity to be transported to the substrate without the need for a carrier 

gas<6l. 

The third type of spray atomiser is commonly known as the pneumatic - airless 

and is a combination of (1) and (2). This has the effect of producing a more uniform 

droplet size< 7 l. 

The fourth type of atomiser is the ultrasonic variety in which a solution is shaken 

violently as a result of which mists are produced which have a very narrow droplet size 

distribution, the mean size of which is determined by the following equation : 

d = 0.34~;~ {3.1) 

where 'Y is the surface tension of the solution, f is the frequency of the ultrasonic 

transducer and p is the density of the solution (S). 

3.2.1 Types of Processes Occurring in Spray Pyrolysis 

There are at least four main processes that have been described in previous work 

<9> Figure 3.3 outlines these processes which are related to the differences in droplet 

size in the spray as it approaches the substrate. The larger the droplet the greater 

the likelihood that the solvent will not have evaporated before reaching the substrate. 

Then the precursor material approaches the substrate as a solute in solvent {i.e as it left 
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the nozzle) in which case the droplet splashes onto the substrate. Precursor pyrolysis 

occurs before, during and after the final impingement of the droplet on the solvent. 

If the droplet sizes are smaller, then a larger proportion of the solvent is vaporised 

before impinging on the surface, so that the precursor lands as a dry precipitate where 

decomposition occurs. 

For even smaller droplet sizes not only does the solvent vaporise but also the 

precursor or precursors and these species diffuse to the substrate surface as vapours 

before undergoing reaction. 

Finally for very small droplet sizes all three processes, solvent evaporation, pre

cursor volatilisation and precursor pyrolysis all occur soon after the spray leaves the 

gun. 

Which process predominates also depends on the volatility of the precursors, the 

solvent, the heating power, and the substrate to spray gun distance and the size of 

droplet produced. Varying any one of these parameters while holding the rest constant 

should produce shifts in the relative proportion of these processes. 

3.3 The Application of Spray Pyrolysis to the Deposition of Different Classes 

of Material 

Spray pyrolysis is one of a number of ways of depositing thin films of a range of 

materials, including metals, oxides, sulphides and compounds of more than one anion 

and/or cation. Where the material is an oxide the stoichiometry can be controlled by 

controlling the composition of the ambient (i.e oxygen and water content). 

The film materials which have been produced from various precursors are sum

marised in Appendix 1 which gives details of the precursors, solvents and growth tem

peratures used and comprehensive references are included. 

3.3.1 Metallic Films 

The deposition of palladium, ruthenium and platinum has been carried out from 

the acetylacetonate complexes in butanol. The growth temperatures ranges were 300 -

350°C (Pd), 380- 400°C (Ru), and 340- 380°C (Pt). The noble metals are more stable 
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than their oxides which may explain why the decomposition of the acetylacetonates 

yields the metal and not the metal oxide. 

3.3.2 Metal Oxides 

Metal oxide films are the most commonly produced materials to be deposited by 

spray pyrolysis from their chlorides and include Sn02, ln203, In203:Sn and undoped 

and doped ZnO. 

3.3.2.1 Tin Oxide 

The most commonly used precursors for tin oxide are summarised in appendix 1 

along with their typical solvents. For the most part these are all moisture sensitive 

liquids and include tin tetrachloride, tin dichloride, ammonium hexachlorostannate, tin 

dichloro - diacetate, tetrabutyltin, tin difluoride and tin tetrabromide. The solvents 

used have been mixtures of water and alcohol, water and HCl, butyl acetate and pure 

alcohol. The addition of alcohol to aqueous solutions tends to decrease the surface ten

sion and so increase their volatility. This results in smaller droplet sizes and a. reduction 

in the thermal shock as droplets impinge on the substrate (lOl. The decomposition of 

SnC14 also gives off HCl which is poisonous although additions of HCl have been shown 

to improve the structural quality of the films. 

Typical dopants used to increase the conductivity of Sn02 have been NH4 F to 

produce Sn02:F films, and SbCl3 for Sn02:Sb as reported on in chapter 2. The range 

of deposition temperatures used varied from 220°C to 600°C. 

3.3.2.2 Indium Oxide and Indium Tin Oxide 

In the past there have been only a small number of indium precursors available. 

InC13 is the most commonly used source for the growth by spray pyrolysis of ln203. 

In(acac)J has also been used. The solvents are water - alcohol mixtures or the pure 

alcohols (methanol, ethanol, propanol and butanol) or butyl acetate. In(acac)J has been 

used in acetylacetonate. Water mixtures are safer than pure alcohol mixtures but are 

also less volatile, unless alcohols of a high molecular weight are used. Acetylacetonate 

and butanol are the most involatile, and methanol and butyl acetate the most volatile. 
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Typical growth temperatures have been in the range 480°C - 500°C for pure In20 3 

and 450- 500°C for ITO. Both In(acac)J and InCl3 are more thermodynamically stable 

than the corresponding tin compounds and this has restricted the lower temperature 

limit for successful precursor decomposition and film formation of indium containing 

materials. The optical and electrical properties are dependent on the Sn/In ratio in 

ITO. 

The deposition of In203 would seem to be energetically less favourable compared 

to the deposition of Sn02. A discussion of the deposition ofZnO by spray pyrolysis is 

deferred until the end of the chapter. 

3.3.2.3 Other Materials 

Other materials which have been deposited by spray pyrolysis are listed in the 

appendix. They include the oxides of some of the elements of groups III and IV and 

the technologically important chalcogenides such as PbS, ZnS and the ternary alloys. 

Chalcopyrite films such as CuinSe2 have been produced for solar cells. Photoconductive 

films of PbS and superconducting films of Yttrium Barium Copper Oxide have also been 

put down by the spray pyrolytic method. 

Studies of the spray pyrolysis of a few materials (i.e ITO, Sn02, CdS) have been 

carried out for the most part with metal chlorides, nitrates, acetates and acetylaceto

nates. The chlorides of most metals can be decomposed to form metal films or oxides 

at growth temperatures between 200 and 600°C. The addition of a sulphur, selenium 

or tellurium precursor to a solution of the appropriate metal chloride gives rise to the 

sulphide, selenide or telluride as long as growth occurs in an oxygen -free ambient. 

There are three types of system available i.e. water based, solvent based and mixed 

solvent - water based. 

Most nitrates and acetates dissolve in water while some chlorides can be dissolved 

in all three systems. Deposition from water based systems is limited by the boiling 

point but is safer than solvent based systems. The acetylacetonates are restricted to 

non aqueous systems and offer the possibility of being deposited at lower temperatures. 



However these solvents may be toxic and flammable although the precursors are safer 

to handle. Chlorides are generally more available than acetylacetonates and are also 

cheaper. The chlorides are more likely to undergo hydrolysis (many are moisture sen

sitive and hygroscopic) especially if water is present, whereas the acetylacetonates are 

more likely to either thermolyse or hydrolyse. 

Various types of materials have been used, the most common being the chlorides, 

usually in water. The growth temperatures are high (300°C - 600°C) but in some cases 

growth at temperatures as low as 175°C has been achieved. Chlorides of copper and 

cadmium have been shown to give better results than the corresponding acetates, but 

the acetate of zinc gives better results than the chloride. 

This shows the anomaly among the precursor materials as to which precursor type 

will yield the better film. It is not the chemical make up which matters but the physico 

- chemical properties and these must be evaluated in each individual case using analyt

ical techniques such as thermogravimetry, mass spectroscopy and differential scanning 

calorimetry. These techniques applied to precursors help to establish the vapour pres

sure, boiling point, melting point and decomposition temperature and possibly the 

decomposition pathway. 

The choice of the source material must satisfy a number of essential conditions 

in that it should be stable at room temperature and not be susceptible to long term 

decomposition. It should not oxidise in air. It should have a decomposition temperature 

as low as possible but still higher than the boiling and melting temperature. However 

the growth temperatures should be sufficient to fulfil the energetics of film growth. 

The growth of sulphur containing materials is easier to achieve than their selenium 

or tellurium analogues due to decreasing instability, which is a disincentive to working 

with these materials. 

At the heart of spray pyrolysis is the atomisation process. Its principal effect is 

to produce a high ratio of surface to mass in the liquid phase, resulting in a high 

evaporation rate leading to the production of a finely divided product with unique 
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properties of particle size and density. 

3.4 Physical Aspects of Spray Pyrolysis 

Droplet size, velocity and the overall geometry and dynamics of the spray are 

determined by the flow rates of the bulk solution as it enters the atomiser (nozzle) or 

the flow rate of the carrier gas in the case of pneumatic atomisation. 

Lampkin (ll) concluded from the results of his work that the droplet size and 

velocity should be minimal for the growth of uniform films. 

Difficulties to achieving this are (a) an off centre nozzle, (b) blocked nozzle, (c) 

mechanical wear ofthe nozzle, and (d) bubbles in the flow line. These are overcome by 

careful design (air tight fittings, joints) of the spray system and constant re-adjustment, 

repair, and if necessary replacement. It is also better if the entire system is built from 

corrosion-free materials such as stainless steel or teflon. 

It will be appreciated that the droplet size and velocity and the droplet temperature 

will influence which of the four processes can occur as outlined in section 3.2.1. Attempts 

have been made to produce uniform momentum by applying an electric field between 

the substrate and atomiser in order to produce better films and the application of 

an electric field has been shown to have some beneficial effects ( 11 >. The use of a 

corona discharge in which the aerosol droplets are transported in an electric field to the 

substrate has been demonstrated by Siefert ( 121 and deposition efficiencies as high as 

80% were reported. Conducting ITO and Sn02 were produced in this way. 

Ultrasonic atomisation has been adopted in preference to pneumatic atomisation 

since it produces a smaller, more uniform droplet size (3 - 5 p,m as opposed to 5 -

50p,m) and the variation in the droplet size is smaller (see section 3.1). The narrower 

distribution helps to reduce growth variations resulting from droplet size effects while 

smaller droplets aid the efficiency of solvent evaporation. This releases more energy 

for precursor decomposition and film formation. Effective gas entrainment of the spray 

also aids the growth uniformity as does a high carrier gas fiow rate which serves to 

control the geometry of the spray between atomiser and substrate. This has the effect 
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of causing the spray droplets to approach the substrate in a reproducible way. 

At very high flow rates however, lateral turbulence at the substrate surface can 

sweep away droplets, resulting in a reduced growth rate and thinner films. The amount 

of solution sprayed will define the overall thickness of the film. 

When film growth is temperature activated there is a maximum precursor delivery 

rate to the substrate above which the growth rate will no longer increase (e.g for Sn02 

from SnC4). 

When the precursor delivery rate is excessive there is the possibility that imping

ing droplets may interfere with the film growth. Film surfaces will be rougher and 

transparency and film conductivity will also be decreased. The number of nucleation 

sites will be higher and this may lead to increased film disorder, misorientation and 

defects. Adatom mobility is also affected adversely by the spray. With the growth 

for example of CulnSe2 from a solution containing the relevant precursors at a rate of 

7 cm3 min-1 , films consisted of the chalcopyrite phase while a higher flow rate of 11 

cm3 min- 1 yielded films consisting of the sphalerite phase. Clearly the flow rates of 

materials of mixtures of precursors leading to the formation of ternary materials can 

determine which phase is obtained. High flow rates in the deposition of this material 

result in sulphur deficiency. 

However spray pyrolysis has the disadvantage that it has a low efficiency of depo

sition (a few percent). The reasons for this are that blowing the aerosol stream towards 

the substrate gives rise to a ram point which deflects the gas flow sideways. Therefore 

a large fraction of the droplets will he carried out of the coating region. The convection 

forces coming off the substrate also tend to keep the aerosol away from the substrate. 

The film growth rate has also been boosted through the use of a corona discharge (12.13 >. 

Albin and Risbud <14> proposed a nucleation growth model for CdS deposition. It 

was stated that initially a droplet impinges on the substrate and begins to spread and 

flattens out to form a ring. As the droplet is spreading, the solvent evaporates leaving 

behind a CdC12 - thiourea precipitate which then undergoes pyrolysis to form CdS. 
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This process repeats itself many times and droplets containing precursor overlap 

resulting in a pinhole free film 114>. 

3.5 The Effect of Growth Conditions on Spray Pyrolysed Films 

The following sections present a review of the different variables that are operative 

during the growth of films by spray pyrolysis. It is not exhaustive and reflects the past 

understanding of the process. 

3.5.1 The Effect of Growth Temperature on Growth Rate and Film Propel'

ties 

The choice of substrate temperature influences film adhesion, visible transmittance, 

film morphology, structure and the electrical properties. The study of the spray pyrol

ysis of different materials has led to the identification of the general growth behaviour 

and other influences that affect growth. The growth behaviour is largely determined 

by the chemicals and solvents used. With Sn02, growth from SnC4 for a constant 

amount of precursor sprayed led to an exponential increase in the growth rate as the 

temperature increased (l-5 l. Thus the growth of Sn02 is temperature activated at 

low temperatures (the growth rate is temperature limited) while at higher tempera

tures the growth becomes diffusion limited (governed by the rate of precursor arrival). 

The growth rate of ITO using InCl3 and SnCl4 was found to increase linearly with 

temperature I I-s l. 

In contrast, growth of ZnO from zinc acetate and CdS from CdCl2 both shqw 

higher rates of deposition at lower temperatures. This would suggest that the deposi

tion is controlled by evaporation and convection (i.e mass transport to the substrate 

diminishing as the growth temperature increases). 

It has been suggested that growth rates at low temperatures are erroneously high 

due to the incorporation of impurities. This has been put down to low precursor 

decomposition rates and low byproduct diffusion rates away from the substrate, but no 

firm evidence has been presented to support this. At higher temperatures these two 

processes a.re rapid and thinner films result. 
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Film adhesion breaks down when low growth temperatures are used possibly due 

to a lack of energy available for strong intra-film and film-substrate bonding. Solvent 

from the process may also lead to the film cracking. 

Film morphology is affected by temperature and film surfaces are usually smoother 

at intermediate temperatures, above and below which the surfaces become rough. Film 

roughness has also been found to increase with increasing film thickness 112·15). The 

choice of growth temperature also determines whether the resulting film is amorphous 

or crystalline. For example deposition of Sn02 from SnC4 has yielded amorphous films 

between 200°C and 350°C. Above this temperature the deposits were crystalline. 

For CulnS2 growth substrate temperatures below 250°C produced amorphous de

posits. As the growth temperature was increased the crystallinity improved gradually. 

The growth temperature can also affect the preferred orientation of the films. In the 

deposition of CdS films at substrate temperatures ranging from 285 - 450°C the XRD 

intensity of the (0002) increased as the growth temperature increased. At a temperature 

of 450°C the (0002) plane had become dominant 116>. 

In a more recent X -ray diffraction study of CdS films grown by spray pyrolysis, 

the degree of preferred order of the (0002) plane was found to vary with growth temper

ature. An increase in this orientation takes place between 375°C and 460°C. Therefore 

preferred order develops and changes with growth temperature <14 l. 

There are other examples of a change in the preferred orientation with growth 

temperature. Tin oxide films grown at 350°C possessed a (2020) preferred order. How

ever as the growth temperature was increased the preferred order changed to (1120). 

Increasing the temperature yielded films having a random orientation of crystallites. 

A change in the growth temperature can affect the lattice type of a material. 

For CdS growth a variation in the crystal structure was observed with changes in the 

growth temperature. Both the cubic zincblende and the hexagonal wurtzite structure 

were found in sprayed CdS films. The relative proportion of each type of structure is 

a function of the growth temperature and between 375°C and 460°C the hexagonality 
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increases to 90% (see references to CdS in appendix 1). 

Grain size and grain growth were also affected by growth temperature. As the 

growth temperature was raised from 240°C to 450°C the grain size increased markedly 

(see references to CdS in appendix 1). 

When very low growth temperatures are used, and when the precursors a.re thermo

dynamically stable with respect to decomposition to the related oxide, contamination 

by anionic species such a.s chloride may result. The latter has been detected in concen

trations as high as 40% in the CdS films grown from CdCh <17). 

Auger analysis of sprayed CdS and ZnO films showed a higher surface concentration 

of chloride compared to the bulk as a result of spray cooling effects < 
18 •19). Chloride is a. 

recrystallisation flux and films deposited using chlorine containing precursors at lower 

temperature may have larger grain sizes !20 ). 

3.5.2 Growth Ambient 

The atmosphere in which spray pyrolysis takes place has an influence on the prop

erties of the sprayed film. Spraying non - oxide films in air may give rise to oxidation of 

the film material. Oxygen can be incorporated in the film itself or can be absorbed at 

grain boundaries. This may affect the electrical properties of the films as oxygen often 

gives rise to surface trapping states !21 >. 

In order to minimize the oxygen content in non - oxide films, oxygen free nitrogen 

was used in the growth of ternary chalcopyrites. This approach does not work for CdS 

<22 •23>. Correspondingly the use of an N2 ambient in the growth of oxide films has the 

effect of producing an oxygen deficiency. 

3.5.3 Substrate Effects 

When spray pyrolysis of a material is undertaken on a crystalline substrate it has 

been shown that the overlayer can be crystalline as well. This can occur for CdS growth 

on several substrates (i.e CdTe , Ah03 and SiOa). The CdS was (0002) oriented <17>. 

On the other hand on amorphous substrates it is likely that initially the film growth will 

also be amorphous but that with increasing film thickness the films become crystalline. 
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Growth rates of the same material may in addition differ when different substrates 

a.re used. This wa.s found to be the ca.se for CdS and CuinS2 growth <24 >. This is due 

to the different sticking coefficients of the coalescing material on the different substrate 

orientation. 

The sticking coefficient is a. measure of the probability that clusters of material 

remain on the substrate a.nd contribute to the overall film thickness rather than evap

orating and leaving the substrate. 

3.6 Chemical Aspects 

3.6.1 Main Source Precursors 

As already outlined in section 3.2 the types of materials used are inorganic salts 

such a.s chlorides, nitrates, and acetates and the a.cetylacetona.tes and the alkoxides. 

The requirements for a suitable precursor have already been outlined and they rule out 

pyrophoric materials such as Zn(Eth, In(Me)J, and Al(Pt)J which are too reactive. 

The precursor used affects the film quality and the right precursor can be found only 

by trial and error (e.g the example of cadmium chloride and acetate) by spraying over 

a range of different growth temperatures and under different conditions. 

3.6.2 Dopants 

The addition of a. dopant precursor to the main precursor is made to enhance 

the resultant film properties in a beneficial way through the incorporation of impurity 

species into the film. The addition of indium to ZnO films for example improves the 

film conductivity 125 >, and in small quantities (0.5 atomic percent) improves the film 

transparency, but in larger quantities reduces it (4 atomic percent) ' 26 ). The addition 

of dopant can also result in a shift in the bandgap a.t high doping levels when the 

semiconductor becomes degenerate. 

Dopant impurities can also act a.s a flux for grain growth. Indium and chlorine act 

in such a. way in CdS, a.s does Sb in Sn02. Dopant impurities can also influence the 

preferred order and crystallinity of deposited films. 

Dopants can also confer chemical resistance to a. film. Additions of AlCl3 to solu-
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tions of CdCh and thiourea mixtures achieve this through the segregation of Ah03 at 

grain boundaries in CdS (1,20,271. 

3.6.3 Cation : Anion Ratio 

Variations in the cation to anion ratio in the spray solution can have an influence 

on the stoichiometry, preferred orientation, crystallinity and the microstructure of the 

films. 

In the growth of CdS it has been observed that excess sulphur increases the con

ductivity. Improvements in optical transmission have also been observed (28>. 

In the growth of stoichiometric CulnSe2 excess selenium is required, and the rel

ative atomic ratios in the solution are 1:1:2.3, indicating that the rate of selenium 

evaporation is higher <29 1. Adjustment of the cation to anion ratio may be necessary 

when attempting the growth of films of the same stoichiometry at different tempera

tures. For example the spray pyrolysis of ZnCdS at 450°C yields cadmium rich films, 

whereas at 200°C the films are approximately stoichiometric <301. It has also been re

ported that the Cd:S ratio in the spray solution affects the preferred order in the films 

obtained <31 1. 

3.6.4 Precursor Strength 

There are also trends to be observed when solutions of different concentrations are 

used to spray a specific film material. The use of weaker solutions obviously means that 

film growth takes longer, but the advantages are that the film surfaces are smoother, and 

the films are more transparent. Grain size is usually larger when weaker solutions are 

used, compared with concentrated solutions, since there are fewer individual clusters 

nucleating on the surface, and it is also possible for individual clusters to grow out. 

However an excess of solvent may affect the film structure detrimentally. 

3.6.5 Solvents 

The function of the solvent is to dissolve a precursor or precursors, and enable 

them to be transported to the substrate. It must then evaporate off leaving the precur

sor(s) to decompose. The use of zinc acetate in different solvents resulted in different 
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growth rates of ZnO. The use of different solvents also changed the film resistivity and 

transmission<32>. 

Zinc acetate sprayed in methanol gave the least resistive films (p ~ 5 x 10-50m) 

overall. The use of zinc acetate in water gave films having resistivities of 0.018 Om <32 >. 

Oxygen containing solvents can work to oxidise films during film growth and where 

polar solvents are involved ionization and/or decomposition of precursors may occur. 

Non- polar solvents such as toluene will not interact strongly with the precursors, and 

consequently the behaviour of precursors in such solvents will be more predictable than 

that in polar solvents. 

3.7 Review of the Spray Pyrolysis of ZnO 

Zinc oxide has been grown by spray pyrolysis for many years. One of the first 

investigations was by Nobbs and Gillespie who used zinc acetate as a precursor at a 

substrate temperature of 550°C 133 >. They measured the spectral transmission, film 

thickness and film conductivity. The films were undoped and highly resistive. Nuikura 

used Zn(N03 )2 as a precursor, again the films were undoped and highly resistive f34l. 

Aranovich et al. (JSJ also grew ZnO using ZnCb and Zn(acetate)2 at temperatures 

between 300°C and 400°C. The optical quality of the films grown using zinc acetate 

118•36 > was better. The substrates used were either Corning glass or alkali glass. In the 

seventies there were relatively few attempts to grow zinc oxide using spray pyrolysis. 

In the eighties a much larger number of attempts were made to grow ZnO in a more 

controlled way. The dark resistivity in the as-deposited state was around 0.1 Om 

while annealing in hydrogen reduced the film resistivity to w-4 om. More recently 

zinc nitrate was used to make ZnO films for photoelectrochemical cells. The films had 

a transmission of 90% to 95% in the visible region and a bandgap of 3.2 eV. Their 

resistivity decreased to w-3nm after annealing <37>. ZnO has also been grown in an 

undoped form on InP by Eberspacher. After annealing the resistivity va.ried from 6-

8 X w-5nm with a transmission of approximately 85% (aS). In the field of doped ZnO 

attempts have been made to produce ZnO:Al and ZnO:In by adding InCh or AlCla to 
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the spray solution. The resulting film resistivities were of the order of w-4nm - w-5nm 

for ZnO:In and w-2nm for ZnO:Al with an average transmittance of 85% <24•25). The 

carrier concentrations for ZnO:In films were typically 1025 m-3 while for ZnO:Al films 

the typical concentrations were 1023 m - 3 • Spray pyrolysis of ZnO generally produces 

films that in the as-deposited state are slightly inferior to sputtered layers. However 

spray pyrolysis is cheaper, easier to use, and safer and faster than sputtering when an 

atmospheric pressure based system is used. The different methods of producing zinc 

oxide are compared in section 3.8. 

ZnO has also been deposited on p-type substrates to produce solar cells. ZnO /CdTe 

junctions are one example and have been prepared by Aranovich et al. <35 1. The cell 

efficiency was typically 8.8%. The CdTe was single crystal and the precursors used 

were zinc acetate and zinc chloride. Optimum results were obtained at 460°C. The as

deposited resistivity was w-1nm for undoped films and w-3 - w-5nm for annealed 

undoped and indium doped films. 

Tomar and Garcia 139 l produced an all sprayed Zn0/CulnSe2 solar cell using zinc 

chloride and zinc acetate. The optimum substrate temperature was 375°C. The zinc 

oxide layer which was undoped had a resistivity of w-3nm. The efficiency was only 

2% however. 

A more serious attempt to use ZnO as ann-type layer for a solar cell was made at 

Stanford, where ZnO/InP solar cells were made with efficiencies of 14%. The InP was 

single crystal I 401. 

Work in Durham on the spray pyrolysis has been sponsored by ICI Plc and had 

been in progress since 1986. The first investigations used zinc acetate and zinc chloride 

at a growth temperature of 400°C. 

The as-deposited films had resistivities of 0.5 MOm which after annealing fell to 

w-4 nm. The film transparency was 90%. 

Later work concentrated on zinc acetate and indium chloride. Typically the films 

had resistivities of the order 1.3 x w-5nm with carrier concentrations of 1026 m -a and 
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mobilities of 19 cm2 y-t s-1 (41J. 

This programme has continued with the use of zinc acetylacetonate (Zn(acac)2 

or Zn(acac)2.H20) since this offered the prospect of growth at a lower temperature 

where the nitrate, acetate, and chloride required higher growth temperatures to promote 

pyrolysis. 

In parallel with the present study, work was carried out by P.D. Coates and AJ. 

Banister (Department of Chemistry) to synthesise, characterize, and purify new low 

temperature precursors for the deposition of zinc oxide films in conjunction with the 

Applied Physics Group in a three year programme. They successfully synthesised the 

derivatives Zn(acac)2.H20 and Zn(acac)2.2,6 Lutidine which were found to be of higher 

purity than the forms commercially available. These were used for the deposition of 

ZnO in the Applied Physics Group. Zn(formate)2 was also prepared and used by the 

Department of Chemistry to produce ZnO. This latter material has the advantage in 

that it can be sprayed in water whereas Zn(acac)2 is used in alcohol. 

3.8 Other Methods of Depositing Films 

There are of course various other methods of depositing thin films of zinc ox

ide. These include CVD and MOCVD which involve the transport of highly volatile 

organometallic materials in a suitable gas. The zinc containing material is frequently 

dimethyl or diethyl zinc and the carrier gas hydrogen. The reactants are transported 

into a heated chamber where thermolysis of the zinc -carbon bond occurs, typically at 

substrate temperatures in the range 200- 500°C. 

The substrates are often sapphire, and the growth is epitaxial and single crystal. 

Typical additions to promote the reaction are H20, N20, or C02. 

Another important technique is sputtering which has been used extensively. The 

film material to be deposited is formed as a target. Bombardment of this target from 

an appropriate plasma results in the ejection of atoms which travel through the plasma 

and condense onto the substrate to form a thin film. 

Sputtering involves the formation of high energy clusters of a critical size diffusing 
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across the surface and coalescing. The particles carry enough energy to aid recrystalli

sation of the film material , thus increasing the orderliness of the film. Lateral mobility 

of condensing particles is known to enhance film properties (42l. The high energy par

ticles have a strong influence on the substrate surface causing roughness, penetration, 

and imperfections. 
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4.1 Introduction 

Chapter Four 

Experimental Details 

This chapter contains the experimental details of the deposition of undoped and 

doped zinc oxide and includes a description of the apparatus used and the deposition 

procedures. 

The choice and preparation of substrates and precursor solutions are then de

scribed. Finally the techniques used to characterize ZnO thin films and the underlying 

principles are outlined together with a description of the equipment used and the prac

tical aspects of applying the technique to ZnO. 

4.2 Spray Apparatus 

The first films were grown using a manually operated spray system. This was later 

modernised into an automated system driven by a control unit when the conditions for 

successful film growth of undoped films had been established. Doped ZnO was grown 

using the automated system. 

The manual and the semi-automatic spray systems used in this project were based 

on a pneumatic piston pump and spray gun that were made and marketed by Wagner 

Spray systems (Germany). The atomisation ofthe spray was a combination of centrifu

gal and pneumatic methods. The rest of the system was manufactured in the University 

workshops. 

The pump was supplied and driven by high pressure oxygen-free nitrogen gas at 

the start of the project but later with compressed air after the installation of an air 

compressor. The gun was supplied with three lines. They were: 

(1) A connection from the pump to the gun for the supply of pressurised solution 

to the gun and resulting in the centrifugal/pneumatic atomisation of the solution into 

a fine spray. 

(2) A N2 gas line for the gas shroud for the entrainment and pneumatic atomisation 

of the spray. 
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(3) A gas supply to operate a pneumatic valve on the spray gun to switch the 

solution flow on and off. 

The main component besides the spray pump and gun was the substrate table 

which included motors that allowed it to move in a trochoidal motion (simultaneous 

translational / rotational motion) under the spray to aid thickness uniformity. The 

substrate heating (4x450W) was supplemented by separate heating lamps (in- flight 

heating) hung above and on either side of the substrate table. These were initially each 

powered by 750W tungsten lamps. The power output to the lamps was controlled (and 

therefore the temperature) by a Eurotherm 818 temperature controller which monitored 

the temperature on the substrate by means of aPt - Rh thermocouple probe which was 

placed in close proximity to the substrates. The probe was calibrated using boiling 

water. 

The substrates in the majority of cases were 5 3xl inch alkali glass slides. The 

other components were the feed bottles that contained the precursor solution together 

with an in - line filter to sieve out undissolved material in the precursor solution large 

enough to cause blockages in the spray gun. The spray gun was fitted with a 0.007 in 

swirl type centrifugal pressure nozzle. 

Figure 4.1 shows a schematic diagram of the manual spray system. The substrate 

top, spray gun and optical in-flight heating were all enclosed in a spray cabinet made 

of stainless steel while the pump and gas and flow control system (including the pump 

and the feed bottles) were in a separate enclosure. Access to both was through hinged 

doors (initially glass but changed to stainless steel afterwards). There were air intakes 

in the sides of the spray cabinet and twin exhaust outlets to extract the byproducts 

through carbon filters out of the spray area. Gas flow was switched on and off and 

the flow directed using Whitey manual valves marked by circles on the figure. The 

exact flow rate was controlled by pressure regulators and measured by ftowmeters. The 

nitrogen gas could in this way be made to pass through a water bubbler or a drying 

column or straight from the bottle so that film growth could be carried out in one of 
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three ambients (i.e water saturated, dry, or variable moisture content/ as - supplied). 

Solution flow was controlled by varying the gas pressure to the pneumatic piston pump 

using in - line flowmeters. Solutions were taken up by the pump from the feed bottles 

during deposition of ZnO through t in PVC piping. 

In March 1990 the spray kit was modernised. This involved the addition of two 

major components. They were the controller system (University) and a bank of remotely 

controlled pneumatic valves (Valeader Pneumatics). The kit also included air actuated 

bellows valves (Nupro - Teesside Valve) for the control of the flow of liquids and gases 

and for the activation and deactivation of the spray gun. In this work, solution and 

gas flows through the spray system were controlled by the controller system through 

direct electrical connections to a bank of solenoid actuators that in turn operated air 

actuated valves as shown in figure 4.2. In particular the flow of nitrogen shroud gas 

could be controlled automatically and remotely so that it could be made to pass through 

a water bubbler, a drying column or pass through as a gas of variable moisture content 

straight from the gas bottle. Therefore film growth could be carried out in the presence 

of a saturated gas shroud or a dry gas shroud or as an as-supplied gas shroud. The 

controller was designed so that the path of the solution and gas could be chosen by 

switches. Switches on the logic controller allowed the choice of gas shroud to be made. 

When a switch was changed the circuitry inside the controller translated into several 

electrical pulses which were sent to the bank of solenoid actuators. These actuators, 

when triggered by an electrical pulse, either opened or closed one or more air actuated 

valves and allowed a high pressure gas supply to trigger the air actuated bellows valves. 

The spray system was also fitted with safety interlocks which were linked from 

various key parts of the apparatus to the controller. 

The circuitry in the logic controller was designed so that there were three possible 

conditions. The first condition was that spraying would not be permitted with heating 

on unless both sets of doors to the spray enclosure were closed and the extract was 

switched on. 
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The second condition was that spraying was not permitted with the doors open 

unless the heating was off. 

The third condition was that heating with the doors open was not permitted unless 

the spray was switched off. 

Other safety features included the flooding of the substrate heating lamps with 

nitrogen to prevent overheating and oxidation of the lamp contacts, which would result 

in the burn out of the lamps and a reduction in the possible working life. This was also 

a precaution against the build up of flammable alcohol vapours and their mixing with 

oxygen. 

All gas and solution flows were monitored using in -line flowmeters and i in PVC 

and stainless steel tubing. 

The controller also incorporated the Eurotherm temperature controller and the 

control for the lateral and rotational movement for the deposition /substrate platform. 

4.3 Operating Conditions - Manual System 

The nitrogen supply to the manual kit was split to supply the pump for the pressuri

sation of precursor solution and the nitrogen gas shroud for the pneumatic atomisation 

and entrainment of the spray. The pressures used were 2 bar in both cases while the 

pressure to the spray gun trigger was 10 bar. The gas and the solution flows were 140 1 

min- 1 for the nitrogen shroud and 40- 50 cm3 min- 1 for the precursor flow. The flows 

of gas and precursor solution are shown in table 4.1. 

This system was used for the growth of undoped zinc oxide. The choice of whether 

to use a wet or dry gas shroud was made manually. When a wet ambient was used the 

water bubbler was filled with approximately 120 g of water. 

The operational steps were as follows : 

(1) The first step was to switch on the nitrogen gas shroud to the spray kit from 

the gas bottle having cleaned out the pipelines using pure alcohol. 

{2) The shroud gas was passed either through the water bubbler or the drying 

column. Where the water bubbler was used approximately 120 g of water was employed. 
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OPERATING CONDITIONS- MANUAL SPRAY KIT 

Location in spray syst~>m Pressure/ (bar) Flow/(cm3 min- 1 ) Fluid 

N 2 pressure to 

ga:; shroud intake 2 140,000 N2 

of spray gun 

Air pressure to 2 static N2 

pneumatic pump 

Air pressure to 10 static Nz 

spray gun trigger 

Solution pressure t.o 

precursor intake of - 40- 50 a! coho 

spray gun 

Table 4.1 Summary of the operating conditions for the manual spray kit. 
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The required volume of precursor in a special bottle was attached to the feed line into 

the pneumatic pump. A bottle of pure solvent was also fitted on - line to the pump 

through an alternative route. 

(3) Once the integrity of the system had been demonstrated the substrates were 

loaded on the substrate/deposition platform and the thermocouple placed alongside. 

In most cases five 3 x 1 in glass slides were used as shown in figure 4.3. 

( 4) The substrate heater was then switched on and the temperature controller 

allowed to automatically raise the substrate temperature to a setpoint value (± 2°C) 

by controlling the tungsten lamps via feedback from the thermocouple. The N2 supply 

to the substrate heaters was switched on. 

(5) At this point the gas flow to the gas shroud was also switched on and the 

spraying of pure solvent was initiated. This had the effect of lowering the substrate 

temperature initially (by approximately 70°C) and it was necessary to wait while the 

temperature controller restored equilibrium. 

(6) After the system had stabilized at the desired temperature, the pure solvent was 

switched off and replaced by the precursor containing solution. The motors producing 

the lateral and rotational motion of the deposition platform were switched on. 

(7) During the deposition of the thin film, checks were made on the gas and pre

cursor solution pressures and flow where necessary. A stopwatch was normally used 

to measure the duration of the film growth. The thermocouple temperature was also 

monitored. The substrate temperature fluctuated by ± 10°C. 

(8) When the appropriate volume of precursor had been sprayed the spray gun was 

switched off as were the temperature controller and the heating system. The motors 

for producing lateral and rotational growth were also switched off. 

(9) The deposited films were removed from the spray cabinet and were allowed to 

cool down in a closed container under a flow of nitrogen. 

(10) The substrate holder was cooled down using the nitrogen gas shroud. 

(11) If the gas shroud to the spray gun passed through the water bubbler to produce 
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Figure 4.3 Diagram showing the substrate arrangement .. 

OPERATING CONDITIONS- AUTOMATIC SPRAY KIT 

Loca.t.ion iu spray system Pressurc/(bar) Flow/(cm3 miu- 1 ) Fluid 

N2 pressure to 

gas shroud intake 2 85.000 - 90.000 N~ 

of spray gun 

Air pressure to 5.G static illr 

pneHilliLt.ic pump 

Air pressure to G.O static il.lf 

spray gun trigger 

Solution pressure 

precursor intake of 15- 18 50 alcoho 

spray guu 

N2 g<L'l supply $0.5 ~o N~ 

to suhstra.t'• heater 

Table 4.2 Summary of tlw operating conditions for the automatic spray kit. 
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a film deposited in a wet ambient then the water left over was weighed out so that the 

ratio of Zn(acac)2.H20 to H20 could be estimated. 

4.3.1 Operating Conditions - Automated System 

The operating procedures used with the automated kit are shown in table 4.2. 

Extra nitrogen supplies were needed for the pneumatic valves and for the flooding of 

the substrate heaters . Typical N2 pressure to the whole system was about 6 bar. The 

gas source was split up to supply the following : 

(a) The gas shroud for the pneumatic atomisation and entrainment of the spray 

from the spray gun. 

(b) The gas supply to the pneumatic pump for the pressurisation of precursor on 

its route to the spray gun. 

(c) The bank of pneumatic valves for the control of the air actuated valves. 

(d) The flooding of the substrate heater to cool lamps and to flush out oxygen. 

The 2 bar pressure of gas to the pump resulted in the precursor solution being 

pressurised to surplus of 15 - 18 psi. The resulting precursor solution flow was always 

in the region 40- 50 cm3 min- 1 . This is high in spray pyrolysis where 2- 20 cm3 min- 1 

is more normal. 

The choice of a high flow rate system was made due to difficulties with spray tips. 

The tip used (0.007 in diameter swirl-type tip) in all experiments was chosen for its 

block-free reliability and its relatively low flow rate compared with industrial paint 

spray systems. 

The sequence of operations for depositing a film was essentially similar to that in 

the manual system. The differences were that the films were taken out immediately 

after deposition and cooled externally in a flow of oxygen free nitrogen. In the automatic 

system pure solvent was sprayed directly onto the films at full heat. After precursor 

flush out the spray was switched off remotely from the controller. The substrate heating 

was kept on along with the gas shroud to purge the systems of alcohol vapour. This 

was carried out for 2 - 3 minutes. After this the substrate heating was turned off and 

74 



the films were allowed to cool under a flow of dry nitrogen whether the original growth 

had been carried out in dry or wet nitrogen. When the temperature reading from the 

thermocouple on the substrate platform was 50°C or lower the films were removed from 

the substrate, labelled and stored in plastic coplin jars. A higher turnover of runs was 

achieved after automation of the kit. 

4.4 Substrates and Materials 

In most runs the substrates used were microscope slides. They contained alkali 

ions (mostly sodium) as the ESCA spectrum in figure 4.4 shows. Diffusion of these ions 

into the film could be detrimental to film conductivity. However diffusion between film 

and substrate is only significant at temperatures above 420°C (1). 

The glass slides were cleaned rigorously in the following sequence. The steps are 

outlined as follows together with the action of treatment on the substrates. 

(a) Agitation in HN03 (aq) for 30 minutes. This leaches alkali ions from the sub

strate surface. 

(b) Reflux in trichloroethane. This acts to remove dirt and grease from the sub

strate surface. 

(c) Agitation in caustic alkali for 30 minutes. This acts to chemically degrade any 

persistent organic residues attached to the substrate surface. 

{d) Agitation in propan-2-ol for 30 minutes. This acts to remove residues of all 

previous materials and also leaves the substrate surface stain free and uniformly clear 

and smooth. 

(e) Reflux in propan-2-ol for 24 hours. This is a higher temperature version of the 

cleaning process in (d). 

This procedure was found to give uniformly clean, clear and smooth substrates. As 

stated earlier one of the major objectives of the work was to deposit films on plastic. 

That most commonly used was Upilex provided by ICI Plc, the monomer structure of 

which is shown in figure 4.5. 

This type of material is called a polyimide and decomposes at temperatures above 
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Figure 4.4 ESCA spectrum of the substrate material (glass slides). 

Figure 4.5 Chemical structure of Upilex polyimide. 
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600°C. It is also insoluble in organic solvents and resistant to virtually all chemicals. 

The surface roughness of the Upilex is less than 3 nm. No cleaning treatments were 

carried out prior to its use as a substrate material as attempts to do so did not improve 

the film quality. 

4.5 Choice of Precursors 

In previous work on the growth of zinc oxide by spray pyrolysis in Durham the pre

cursors used were ZnCh (melting point 237°C) and zinc acetate (melting point 283°C), 

and of these two materials the acetate gave the superior results. However the stabil

ity and volatility of both these materials meant that growth temperatures below 270 

- 300°C did not give ZnO films with acceptable film properties. Since the aim was to 

produce conducting zinc oxide at low temperature a variety of other precursors was 

investigated in cooperation with the Chemistry Department. Of them Zn(acac)2 was 

chosen because of its lower stability (decomposition temperature 191 °C) and higher 

volatility (melting point 125°C). However the work of Coates and Banister <2l showed 

that Zn(acach polymerizes to form a complex material which is insoluble in solvents. 

Banister and Coates demonstrated that a monohydrate adduct of Zn(acac)2 was sta

ble as a monomer and readily soluble in organic solvents. Therefore Zn(acac)2.H20 

(molecular weight 281 g) prepared in Chemistry was adopted. The solvent used was 

propan-2-ol in AnalaR or reagent grade. Precursor solutions were thoroughly filtered 

before use. 

4.6 Characterisation Techniques 

4.6.1 Adhesion of Films to Substrate 

This was a simple qualitative test introduced to see whether ZnO films were ad

herent to their substrate. Sellotape was applied to the ZnO film surface, then pulled 

away firmly and quickly in one stroke. Examination of the tape and the film surface 

was required to see if any film material had come away with the tape and if significant 

damage had been caused in the film. This test was found to be reliable and was used 

on both undoped and doped ZnO films. 
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4.6.2 Visual Appearance of ZnO Films 

All films were examined by eye for their transparency, colour, smoothness and 

the uniformity of these qualities. The optical transmission of a number of films was 

measured as a function of wavelength using a Perkin Elmer Spectrophotometer. The 

transmission spectrum was analysed as described in appendix 2 to obtain values of 

refractive index, extinction and absorption coefficients. 

4.6.3 Film Thickness 

The thickness of the films was measured using a profilometer. This required the 

formation of a step across which the stylus of the profilometer could be drawn. The 

step was produced by etching in dilute HCL 

The measurement of the step was made using a Tencor alphastep 200 stylus pro

filometer. The principle of the instrument relies on a stylus traversing the step and 

recording the change in height. The principle of operation of the machine is shown in 

figure 4.6. Any number of measurements were made ranging from 5 up to 12 depending 

on the sample. From these measurements an average can be calculated together with 

an estimate of the error. 

Each of the five substrate slides was labelled and divided in 1 in2 sections as shown 

in figure 4.3. The variation in thickness across the substrate was assessed by comparing. 

the thicknesses of areas 7, 8 and 9 and of areas 6, 8 and 10. Thicknesses from the 

central area, 8, were used to generate ln(thickness) vs. 1/T plots. 

The surface morphology of the films was examined in a Cambridge Instruments 

S600 scanning electron microscope in the secondary emission mode <3). 

4.6.4 Surface Roughness 

A surface roughness measurement was made on some samples using the Tencor 

alphastep 200 stylus profilometer. 

The instrument takes readings as it moves along the surface and calculates an 

average value. 

Consider for example a journey from point A to D (figure 4.7) on a theoretical 
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Figure 4.6 Principle of operation of an alphastep profilometer. 

THEORETICAL SURFACE PROFILE 

Figure 4. 7 Theoretical profile of a film surface. 

'\ 
I Yl. CENTERLINE 

Figure 4.8 Representation of the alphastep measurement as the stylus traverses the film surface. 
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rough film surface. The stylus traverses from A to B recording a decrease in the height 

and continues to do so until C when for a short distance the film surface is effectively 

flat. However the film surface rises again and for each successive reading through the 

stylus a relative increase is recorded individually. A, B C, and D are called profile 

heights. Together they form a surface- profile. 

In order to calculate surface roughness the alphastep 200 software/hardware com-

bination measures the profile heights without any reference in one case. The sum of 

those profile heights is taken and divided by their number. The result is labelled IYI. 

This is called the centreline on the cross section through the rough film surface and 

represents an average. The software also measures the profile heights relative to the 

first point on the screen which acts as zero. Y 1 toY n are the values of the subtraction 

product of profile heights measured using the first measured point of the scan as the 

reference and IYI as the centreline. The profile of the points is summed together and 

divided by n, giving the surface roughness, Ra, 

Ra = Yt + Y2 + Ya + ··· · + Yn 
n 

( 4.1) 

where Yt to y n are the absolute values of Y 1 to Y.n. The measurement is shown in 

figure 4.8. 

Yt - Yn = profileheight- IYI (4.2) 

4.6.5 Crystal Structure 

The crystal structure of the films was assessed by reflection high energy electron 

diffraction (RHEED) and X-Ray diffraction (XRD). A comprehensive review of these 

techniques is available <4 - 6>. RHEED studies were carried out in a JEM 120 trans-

mission electron microscope (TEM). The technique was used to assess the crystallinity 

and the degree of preferred orientation of crystallites. This technique samples the first 

few monolayers. The technique is non-destructive and characterisation ta.kes only a few 

minutes. 
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Figure 4.9(a) is the form of a diffraction pattern observed for a polycrystalline sam

ple of ZnO !4 •7> with no preferred orientation. The pattern consists of a set of continuous 

concentric semi-circles. The next example of a pattern (Figure 4.9(b)) demonstrates 

the existence of preferred order as determined by the build up of intensity in short arcs 

rather than complete semicircles. Figure 4.9(c) is an idealised pattern taken from a ma

terial with a highly preferred order. Crystallinity was assessed by the examination and 

comparison of one spectrum with another to identify relative changes in the structure. 

XRD studies were carried out using a Philips diffractometer with a Ni source and 

radiation with A = 1. 7902A. The technique was used to identify the material deposited, 

assess the degree of preferred order and to calculate grain sizes. The radiation pene

trates films microns thick and any information obtained is an average of the entire film 

material. Only those planes parallel to the substrate surface contribute to diffraction 

intensities. 

The diffractometer recordings were used to confirm the presence or absence of zinc 

oxide by comparison of peak positions with the ASTM (American Society for Testing 

and Materials) index for a pure polycrystalline ZnO sample. 

The comparison between the intensities of the peaks in the ASTM index for poly

crystalline ZnO and that of thin film zinc oxide yields a measure of the preferred 

orientation of crystallites as an average of the entire film thickness. This is done by 

calculating the relative intensities for reflection from planes with identifiable Miller in

dices assigning a relative intensity of 100% to the most intense peak in the spectrum. 

Any relative difference in peak intensity or change in the order of peak intensity from 

reflection by ZnO planes when compared to the ASTM index for ZnO indicates a rela

tive deviation from being totally polycrystalline. The grain size can also be measured 

by comparing the full-width half maximum of the main peak in the XRD spectrum of a 

ZnO film with that measured from several XRD spectra of single crystal GaAs recorded 

at different detector sensitivities (4•6>. 

The line width of the GaAs peak is taken as being representative of the instru-
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Figure 4.9 Idealised RHEED patterns for a randomly oriented sample (a), a sample with some preferred 
order superimposed on a background of randomly oriented crystallites (b), and a sample with a high degree 
of preferred order (c). 
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mentation broadening, on the assumption that GaAs is a near perfect crystal (infinitely 

thin line - in practice GaAs line widths are of a finite width). 

The measurement of grain size using this method assumes that line broadening due 

to lattice strain is absent. The formulae are as follows : 

(4.3) 

and 

A 
£=--

{3cos9 
(4.4) 

where {3 is the broadening factor, b is the full width half maximum of the peak 

in the single crystal GaAs, B is the full width half maximum of the main peak in the 

spectra of ZnO films. These are all measured in radians. A is the wavelength of the 

x-ray radiation, 8 is the angle between the beam and the sample and £ is the grain size. 

4.6.6 Electrical Measurements - Four Point Probe van der Pauw Technique 

The resistivity of ZnO films was generally measured using the van der Pauw tech-

nique !Sl and for the more conducting samples the Hall coefficient, carrier concentration 

and mobility were also measured. 

Van der Pauw showed that the resistivity and Hall coefficent of a thin layer of a 

known thickness but arbitrary shape can be measured by applying four ohmic contacts 

(labelled A, B, C, D) of negligible size anywhere on the outermost edges of the sample. 

It is preferable that the contacts are equally spaced and of equal size and that the film 

is uniform in thickness and composition and free of pinholes as shown in figure 4.10. 

To obtain the resistivity four resistances must be measured, namely RAB.C D, 

RBc,DA. RcD.AB• RDA,BC· The first pair of subscripts refer to the current termi-

nals and the second pair to the voltage terminals. In all cases as the current is passed 

through one pair of terminals the voltage is measured across the opposite pair of ter-

minals. 

The formula for the resistivity measurement is given by : 
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Figure 4.10. Diagram showing the ideal sample for four point probe van der Pauw resistivity and Hall 
measurements. 
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Figure 4.11. Diagram showing the outline of the Hall and resistivity measurement apparatus. 
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P = 1rd RAB,CD + Rsc.DA I (RAB,CD) 
ln2 2 Rsc,DA 

(4.5) 

where d is the film thickness, RAB,C D and Rsc.DA are the adjacent resistances, f 

is a function of the ratio of the two adjacent resistances and is equal to 1 if RAB.CD = 

Rsc,DA. Function f satisfies the relation 

RAB.CD- Rsc.DA I expl!!:1 
-::::------:::---'-- = - arcos h 1 
RAB,CD + Rsc.DA ln2 2 

(4.6) 

Replacing RAB,CD with RcD,BA and Rsc,DA with RDA,BC gives a second value 

of p ( 4. 7). The mean of the two is the best value. 

P = 1rd RcD.BA + RDA,BC I (RcD,BA) 
ln2 2 RDA,BC 

(4.7) 

The Hall coefficient is determined from the change in resistances RAB,CD or Rsc.DA 

with a change in the magnetic field perpendicular to the plane of the sample !::..B. 

(4.8) 

In fact the system used to measure the electrical properties was automated. The 

components in the system were an Archimedes computer, a constant current source, 

an overall controller, and a magnet and a power supply and is shown schematically in 

figure 4.11. The microcomputer controlled a constant current source, the magnet power 

supply and a bank of reed relays designed to configure the system for each of the required 

measurements. There were four resistivity and two Hall configurations. Voltages were 

measured using a Keithley digital multimeter and communicated to the computer over 

an IEEE bus. The system was capable of providing programmed constant currents in 

the range 10-1 - w-5 A (subject to sample resistance) and variable magnetic fields up 

to 0.189 T. 

The sample was placed in a cryostat which could be evacuated down to 10-4 mm 

Hg and cooled to liquid nitrogen temperatures. Manual measurements were also made 
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independently of computer control. 

4.6. 7 Optical Transmittance Measurements 

Measurements of optical transmittance were made using a Perkin - Elmer Lambda 

19 VIS/NIR Spectrophotometer. This is a computer driven system capable of measuring 

transmittance in the wavelength range 175 nm to 3.2J.Lm. The spectrophotometer is a 

double beam double monochromator type with a tungsten source for producing visible 

and near infrared radiation. 

The beam is split into two beams, one is directed to the ZnO sample while the other 

passes through a blank control (a piece of the substrate material i.e a blank slide). The 

path lengths over which the split beams travel are equal. The detector then compares 

the intensity of the two beams and calculates a transmittance for the film with respect 

to the substrate. Since the comparison between the sample and reference beams is 

made simultaneously, the instrument compensates for beam fluctuations. 

The calculation of the optical constants, n and k, and the absorption coefficient 

from an experimental transmission curve is described in appendix 2. 

The absorption coefficient a (v) for a direct gap semiconductor is given by 

(4.9) 

where Eg is the bandgap value, h is Planck's constant, and v is the frequency of 

the incident light and A • (the Richardson constant) is given by 

( 4.10) 

Thus the bandgap of ZnO may be obtained from the extrapolated intercept on the 

horizontal axis of a plot of a versus ..;'hV <9 l. 

4.6.8 ESCA - X-Ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy was carried out at ICI Wilton by the Surface 

Analysis Group using a V.G Scientific instrument. XPS is a technique whereby a spec-

imen is irradiated in ultra high vacuum by monochromatic X-rays (lO). This gives rise 
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to the emission of photoelectrons from the surface of the specimen which are analysed 

by an energy dispersive technique to provide a spectrum of electron intensity versus 

electron binding energy. Peaks observed in the spectrum are due to electrons which 

have been ejected from core levels of atoms and have characteristic energies allowing el

emental analysis of the material under study. The technique is sensitive to all elements 

except hydrogen and analyses to a depth of 1-5 nm. The ejected electrons are detected 

and counted using a multi channel analyser. 

The typical detection limit of any element was 0.2-0.5 atomic percent. The radia

tion used was Al Kal2 which has an energy of 1487 eV. 

4.6.9 Photoluminescence 

Photoluminescence emission spectroscopy was carried out in the Department of 

Applied Physics, Hull University. A schematic diagram of the experimental apparatus 

is shown in figure 4.12. Photoluminescence provides a non-destructive technique for 

the analysis of semiconductors, and gives information on free and bound excitons. It 

is normally applied to single crystal specimens and is suitable to identify centres re

sponsible for the shallow donor and acceptor species by which the electrical properties 

are usually controlled. Measurements at low temperatures (2K) are required to obtain 

good resolution. 

The excitation was provided by a 5W Spectra. Physics argon ion laser which was 

focussed on to the sample with lens L1 • The emission was then passed through a me

chanical chopper and focussed with lens L2 onto the entrance slit of a SPEX monochro

mator. This ha.d a focal length of 1m and a 1J.Lm blazed grating with 1800 linesjmm. 

The monochromator was controlled using a SPEX compudrive system linked to a Vic

tor computer and could be scanned using speeds from 0.002 A/s to 160 A/s. The light 

dispersed through the monochromator was detected using an S20 Hamamatsu photo

multiplier. The output from the photomultiplier was fed through a Brookdeal amplifier 

and a phase sensitive amplifier (PSD) which was referenced to the chopper and then dis

played on the Victor computer system. The wavelength accuracy of the SPEX system 
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Figure 4.12. Outline of the photoluminescence apparatus used a.t Hull University. 
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was less than lA, verified by passing the laser line through the monochromator. 
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5.1 Introduction 

Chapter Five 

Deposition and Characterisation of 

U ndoped Zinc Oxide Films 

The initial plan of the research described in this thesis was to study the preparation 

of undoped films of ZnO deposited by spray pyrolysis using Zn(acac)2.H20 dissolved 

in isopropyl alcohol. A water soluble precursor would have been preferable but despite 

extensive work in the Chemistry Department no such precursor was found. The main 

objective of this first part of this work was to establish the experimental conditions 

for the preparation of uniform undoped transparent films with as low a resistivity as 

possible. This involved a study of the ways in which adhesion, film thickness, crystal

lographic texture and resistivity varied with the preparative conditions. These aspects 

are described in the present chapter and form the basis for a discussion of the mecha

nism by which a layer grows as the droplets of spray impinge on the substrate. This 

discussion forms the subject matter of the following chapter. 

5.2 Film Deposition 

This part of the research involved the growth of undoped zinc oxide in twenty

four growth experiments which were carried out in order to investigate the influence of 

deposition conditions on the film properties. In the majority of cases Zn(acac)2.H20 was 

the precursor used. The conditions of ZnO deposition are described below. The facility 

to introduce water vapour into the spray via the nitrogen gas shroud on the spray 

head was provided because the notion that hydrolysis can occur in spray pyrolysis 

is discussed in the literature, see for example ( ll. An indication that hydrolysis is 

important in Zn(acac)2.H20 spray pyrolysis is given by the work of Kamata (2).(J). 

The system was also equipped with a substrate heater and a pair of tungsten 

lamps positioned above the substrate. This secondary or in-flight heating provided 

auxiliary power allowing substrate temperatures as high as 400°C to be achieved (4 ). 

The maximum temperature achievable in the absence of in-flight heating was 336°C. 
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It was also speculated that in-flight heating might influence the quality of deposits by 

assisting solvent evaporation while the droplets are in transit. 

ZnO films were grown under four different sets of conditions, namely with and 

without in-flight heating, and in wet or dry ambients. 

All combinations of heating and wet/dry conditions were investigated by spraying 

700 cm3 of O.lM Zn(acac)2.H20 in isopropyl alcohol at temperatures between 96°C 

and 396°C. The experiments performed in this sequence are listed in table 5.1 and the 

assessment of the films is presented in section 5.3. Measurements of the resistivity of 

these films are also described and since as-deposited films tended to be fairiy insulating, 

a series of annealing trials in a reducing atmosphere were carried out. An additional set 

of experiments was performed to investigate the effect of spraying different volumes of 

precursor solution at the same rate. 100 cm3 , 200 cm3 , 400 cm3 and 700 cm3 of O.lM 

solution were used in standardized spray conditions i.e in a wet ambient with in-flight 

heating at 306°C. The results are presented in section 5.4. 

Finally a series of depositions was performed using the alternative precursor Zn( acac h .2,6 

lutidine. This precursor was used to assess the importance of coordinated water in the 

pyrolysis process and the results of this work are presented in section 5.5. 

Films were grown on a group of five glass slides as described in section 4.3.5. 

5.3 Study of Film Properties as Influenced by Heating Mode and Water 

Vapour 

5.3.1 Introduction 

In this section the results· of the study of the influence of substrate tempera

ture, heating mode, and water vapour on the properties of ZnO films deposited using 

Zn(acac)2.H20 are presented. 

5.3.2 Film Adhesion 

All films grown below 200°C in a dry ambient were non-adherent to the substrate, 

the entire layer peeling away during a sellotape test. These films were grainy in appear

ance but were transparent. The films grown at 216°C and above in a dry ambient were 
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Table 5.1 Summary of film deposition conditions investigated using Zn(acac)2.H20. 
(a) Deposition in a dry ambient. 

Growth temperature Heating 

/(oC) arrangement 

96 Substrate/In-flight 

126 Substrate/In-flight 

126 Substrate 

156 Substrate/In-flight 

156 Substrate 

216 Substrate/In-flight 

216 Substrate 

276 Substrate/In-flight 

276 Substrate 

336 Substrate/In-flight 

336 Substrate 

396 Substrate /In-flight 

(b) Deposition in a wet ambient. 

Growth temperature Heating 

/(OC) arrangement 

126 Substrate/In-flight 

126 Substrate 

156 Substrate/In-flight 

156 Substrate 

216 Substrate/In-flight 

216 Substrate/In-flight 

276 Substrate/In-flight 

306 Substrate/In-flight 

336 Substrate/In-flight 

336 Substrate/In-flight 



completely adherent to the substrate and were clear and transparent, being colourless 

or light pink to the eye. The inclusion of in-flight heating or water vapour had no 

obvious effect on these film properties except that deposition at higher temperatures in 

a wet ambient led to a brownish tinge. 

5 .3.3 Film Thickness 

It was necessary to exercise some caution in using film thickness measurements to 

calculate deposition rates since in the manually operated kit variations in the flow rate 

of the precursor were observed. This was caused by blocking of an in-line filter in the 

precursor flow line which was avoided to some extent by cleaning the filter after each 

run. After this procedure was adopted the average run time was 16 ±3 minutes. This 

variation meant that the interpretation of the thickness data in terms of deposition rate 

was somewhat uncertain. However as the same amount of precursor was used in all the 

experiments the film thickness gives an indication of reactant utilization. This assumes 

that the rate of arrival of precursor at the substrate does not significantly influence 

the percentage utilization of reactants. This assumption is acceptable where growth 

occurs in a dry ambient if the delivery rate does not become excessive. However where 

growth occurs in a wet ambient it has to be remembered that the water was delivered 

via the gas shroud. As a result, for experiments of different durations the ratio of 

Zn(acac)2.H20 to H20 will have varied, but since the molar ratio for an average run 

was 1:10 it is probable that water was always in excess. 

Film thicknesses were measured as a function of substrate temperature and Ar

rhenius plots for log(thickness) vs 1/T(K), figures 5.1 and 5.2, were used to determine 

whether thermally activated processes were involved during growth. For films grown in 

a dry ambient the film thickness was found to be independent of the heating mode and 

decreased steeply from l.OJ.t.m to 0.3J.t.m with increasing substrate temperature in the 

range 126°C-216°C but at higher temperatures remained invariant at approximately 

0.3p.m up to to the maximum temperature used. 

The variation in the thickness with changing substrate temperature suggests that 
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there are two regimes. The first, between 126°C and 216°C where the thickness is 

changing, and the second from 216°C to 396°C where the thickness is invariant. The 

point at 276°C in figure 5.1 represents an unusually high reactant utilisation. Each 

point in the graph is the average of 10 step height measurements and the error bars 

represent the spread of the values. The point at 276°C is therefore genuinely anomalous 

and was ignored in interpreting the data. 

For films grown in a wet ambient the film thickness was again found to be in

dependent of the heating mode used. As with films grown under dry conditions, the 

film thickness decreased with increasing temperature (from about 5j.Lm to 0.6j.Lm) in the 

temperature range 126°C to 216°C. Above 216°C the film thickness did not vary greatly 

as a function of substrate temperature. All of the films deposited between 216°C and 

336°C had thicknesses in the range 0.6j.Lm -l.Oj.Lm and there was a slight maximum at 

306°C. 

Overall, the films deposited in a wet ambient were 40 to 90% thicker than their dry 

counterparts, indicating the degree to which water enhances the decomposition of the 

precursor. The influence of water was more marked at the lower temperature. The main 

discussion of the dependence of film thickness on growth temperature will be reached in 

the next chapter when the mechanistic aspects of the decomposition of Zn(acac)2.H20 

to ZnO have been described. 

5.3.4 Surface Morphology 

The surface morphology of zinc oxide films was assessed by scanning electron mi

croscopy. Films grown at the lower deposition temperatures (i.e less than 200°C) were 

often but not always cracked as shown in Figure 5.3 which is a micrograph of a film 

grown at 156°C under wet conditions. However the appearance of cracking was inde

pendent of the presence of water and of the heating mode used. Since the occurrence 

of this feature depended on the deposition temperature the likely cause of the cracking 

must be due to the effect of excess solvent. 

Other important features of figure 5.3 are spherical artefacts approximately 0.5-
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Figure 5.3. Secomlary emission micro~raph of the surface of a ;,inc oxide film grown at 15G°C in a w~t 

a.mbient with in-flight heating. 

Figuure 5.4" Secondary emission micrograph of the surface of a zinc oxide film grown at 156°C in a dry 
ambient with in-flight heatin~. 
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'igure 5.5. Secondary emlss1ou lllicrogra.ph of the surface of a ~i n c oxidP. film grown at 216°C m a dry 
mbieut with in-tli~ht heatiuJ<. 
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3J.Lm in diameter which appear bright under secondary imaging conditions. EDAX 

analysis showed that the composition of the spherical features was the same as that 

of the ZnO film i.e only zinc could be detected. The spherical features were observed 

in approximately equal densities on films deposited under dry and wet conditions re

gardless of heating mode. For example figure 5.3 of a film grown under wet conditions 

(156°C) shows a density of 8 x 1011 spheres per m2 while figure 5.4 of a film grown 

under dry conditions (156°C) shows a density of 2.6 x 1011 spheres per m2 . Some 93% 

of the spheres in figure 5.4 were 0.3-3J.Lm in diameter with the balance having diameters 

in the range 4-6J.Lm. Cracking was not observed in this film. Films grown at higher 

temperatures had a rather smaller density of spheres with somewhat smaller diameters. 

There was a slight suggestion that the spheres were larger when dry conditions were 

used. Another type of feature observed, shown in figure 5.3, was disc like marks 10-

20J.Lm in diameter in the plane of the film. These features have been observed by other 

workers <5 >·< 6 > and have been attributed to large solvent containing droplets bursting 

on the substrate. Such features were rarely observed. 

At high magnification it was possible to observe the background morphology of 

the films themselves, as opposed to that of the spray artefacts. It was common to 

observe sub-micron roughness as shown for example in figure 5.5 for films deposited 

at 216°C. For films deposited at temperatures below 200°C there was no particularly 

strong dependence of surface roughness on temperature although slightly smoother 

morphologies were obtained at higher deposition temperatures. 

5.3.5 Thickness Uniformity 

5.3.5 (a) Thickness Uniformity in the Central Portion 

Uniformity within a defined region refers to the flatness of the film surface at that 

particular level of magnification or scale. Eight to ten values of the film thickness were 

taken on each film. The results of the percentage variation of the thickness of the films 

from the average value from the central 1 inch2 section of the substrate (section 4.6.3) 

as a function of deposition conditions are plotted in figures 5.6 and 5. 7. 
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Figure 5.6 shows that for films grown in a dry ambient the uniformity of the films 

varies from 10% to 33% over the temperature range investigated. In-flight heating had 

a marginally beneficial effect at the higher temperatures. 

The variation of uniformity with deposition conditions when water was present was 

markedly different as shown in figure 5.7. At substrate temperatures below 200°C the 

variation in the thickness was of the order 120% - 200%. From substrate temperatures 

of 200°C up to 336°C the film uniformity was invariant at about 10%. 

The most uniform films were grown at high temperatures whether dry or wet 

conditions were employed. A typical minimum variation in the thickness was 16% for 

a film grown in a dry ambient at 336°C with in-flight heating and 9% for a film grown 

in a wet ambient with in-flight heating at the same temperature. The breakdown in 

the film uniformity below 200°C when water is present in the spray correlates with the 

breakdown in film adhesion and onset of translucency and is associated with the onset 

of the low temperature reaction regime outlined in section 5.3.2. 

5.3.5 (b) Thickness Uniformity from Edge to Centre of ZnO Film 

The areas of film under study from which measurements were taken are outlined 

in section 4.6.3. 

With a dry ambient the variation iri the thickness uniformity from the edge to 

the centre of the substrate decreased from 40% to 16% as the deposition temperature 

was raised from 126°C to 400°C. The absence of in-flight heating generally acted to 

degrade uniformity especially at low temperatures where its use appeared to improve 

uniformity by a factor of two. However at high temperatures (336°C) films grown with 

and without in-flight heating were equally uniform. 

For films grown in a wet ambient the percentage variation in the thickness varied 

from 24% when a growth temperature of 216°C was used to 15% when growth was 

carried out at 336°C. Measurements on films grown below 200°C were not possible due 

to their lack of adhesion to the substrate. There was no systematic difference between 

films grown with and without in-flight heating. 
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5.3.6 Microscopic Surface Roughness 

Microscopic surface roughness was measured in the central 1 inch2 section of the 

substrate using the alphastep profilometer. This is a different measurement from that 

of thickness uniformity (5.3.5(a)) since it is measured on a different scale. The results 
. . 

of surface roughness measurements carried out on undoped zinc oxide grown in dry and 

wet conditions are plotted in figures 5.8 and 5.9. The results point to a difference in the 

influence of varying the substrate temperature depending on whether in-flight heating 

was present or not. 

With in-flight heating in a dry ambient, surfaces became smooth as the substrate 

temperature was raised. The surface roughness number decreased from 440 nm to 110 

nm as the growth temperature was raised from 126°C to 396°C. However where in-

flight heating was omitted surfaces became steadily smoother with a reduction in the 

substrate temperature. For example a roughness of 305 nm for a film grown at 336°C 

was reduced to 120 nm for one grown at 126°C. 

Films grown in a wet ambient where in-flight heating was excluded were smoother 

at lower substrate temperatures. Films grown at 336°C had a surface roughness of 

365 nm whereas a film grown at 156°C had a roughness of 160 nm. Thus the trend of 

ZnO films to become increasingly rough as the growth temperature was increased in 

the absence of in-flight heating was common to growth behaviour whether water was 

present or not. 

In contrast ZnO films grown in a wet ambient with in-flight heating were compar-

atively very smooth when deposition took place above 200°C. The roughness ranged 

from 85 to 160 nm which is slightly better than the films deposited in dry conditions 

using in-flight heating at 336°C. Measurement of surface roughness for films grown 

below 200°C temperature were difficult to make due to the nonadherence of the ZnO 

material to the substrate although a film grown at 156°C had a roughness of 450 nm. 

This indicates a major increase in film roughness below 200°C and this is consistent 

with other findings in the chapter. 
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5.3.7 Discussion of Morphology, Uniformity and Roughness Phenomena 

(a) Surface Morphology 

The high density of spherical artefacts observed in figures 5.3 and 5.4 for films 

grown at low temperature is probably caused by the drying and pyrolysis of spray 

droplets in the spray cloud prior to impinging on the film surface. This effect leads 

to the formation of dried ZnO powder. Several papers report deliberate attempts to 

produce ZnO powders using a suitable zinc compound such as zinc acetate or zinc 

acetylacetonate. These experiments gave spherical particles having diameters of 150 

nm when zinc acetate was used and 21-35 nm when Zn(acac)2.H20 was used. The 

particles were produced through the evaporation and pyrolysis of larger particles of 

the precursor which decreased in size as a result of these processes (T).(B). Convection 

caused by hot gases rising off the substrate would tend to carry spray droplets away 

from the substrate area. The use of high substrate temperature implies that there is 

heating at the substrate and in the spray. This would lead to the evaporation of the 

Zn(acac)2.H2 0 or freshly formed ZnO from the substrate area. Under these conditions 

spheres would decompose. 

Cracking in the film was only observed in films grown below 200°C and was due to 

the effect of excess solvent on the film during and after growth. The cracking occurs in 

cases where the film has shrunk after deposition. This is due to the effect of desolvation 

from the film. Therefore it is certain that in some circumstances the film grows in a 

solvent medium. 

It is probable that large droplets impinging on the film surface caused the spl~h 

marks observed in the low temperature film in figure 5.4 but that at increasingly higher 

temperatures these vaporise more completely along with the smaller ones. These marks 

on the surface of ZnO films have been observed before with the explanation that they 

originate from large droplets impinging on the substrate surface before desolvation 

occurs (S),(6 ). 

Smoother morphologies were obtained with increasing temperature. Smoother 
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morphology in the high temperature films could be due to the fact that the diameters 

of the spray droplets were smaller when higher deposition temperatures were used. The 

incorporation of smaller decomposed precursor particles would lead to more uniform 

increase in the film thickness. 

The improvement in the morphology could also be caused by a. chemical effect of 

better precursor pyrolysis and film growth. 

SEM studies show that below 200°C the film quality breaks down at microscopic 

and macroscopic levels. Low temperature films are discontinuous to the eye as well as 

by SEM and nonadherent to the substrate. These facts point to a lower temperature 

limit to the process yielding usable films. However above 200°C films are relatively 

smooth, continuous, transparent, and adherent. 

(b) Thickness Uniformity in Central Region 

The results point to the maintenance of good thickness uniformity in the central re

gion of zinc oxide films when the growth temperature fell below 216°C as long a.s dry con

ditions were used. This can be attributed to the volatility of the zinc acetylacetonate

propa.n-2-ol precursor-solvent system across the whole temperature range, and the con

vective and evaporative effects. This lt~ads to the effects of parameters controlling the 

temperature dependence of thickness uniformity being constant down to the lowest 

growth temperatures used. Thus over a large temperature range the same relative 

distribution of film material occurs across the substrate. 

At high temperatures (336°C) generally in-flight heating contributed a significant 

fraction of its output to the substrate and helped maintain a steady constant temper

ature on the surface. It also preheated the spray to some extent and decreased the 

cooling influence of the spray on the substrate. It is also possible that in-flight heating 

enhanced the mobility of species on the film surface hence increasing re-evaporation. 

Where films have been grown in a wet ambient below 200°C the inclusion of water 

produced extremely rough surfaces on this scale. It has already been stated that water 

decomposes Zn(acac)2.H20 at low temperature <2•3> and that in spray pyrolysis thicker 
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films are obtained when water is included in the growth conditions. Rapid reaction at 

the surface increases the variation in thickness over the central 5 em 2 • The presence 

of water would also decrease evaporation and convection effects thus leading to an 

increased amount of material staying on the substrate surface. 

(c) Thickness Uniformity from the Edge to the Centre of the Substrate 

It is likely that the cause of the improved uniformity at high growth temperatures 

(336°C) was due to the influences of convection and evaporation from the heated sub

strate and a more uniform temperature distribution across the substrate leading to a 

more even distribution of material. Convection and evaporation at the substrate limit 

the amount of material building up in one place. At substrate temperatures below 

300°C films grown with in-flight heating were more uniform than those grown in its 

absence. Therefore in-flight heating must in some way impart enough energy to the 

substrate to produce enough convection to fan the spray cloud out over a wider area 

and improve the uniformity of the temperature profile across the substrate. 

At substrate temperatures above 300°C the overall effect of the energy present in 

the spray leads to comparable results whether in-flight heating is present or not. This 

suggests that the overall temperature generated on the substrate surface produces a 

uniform temperature profile across the substrate whether in-flight heating was present 

or not. 

(d) Surface Roughness 

The importance of the influence of water and in-flight heating on surface roughness 

is illustrated in. figures 5.8 and 5.9. In-flight heating at high substrate temperatures 

(336°C) preheats the spray and film surface. Thus considerable desolvation of the spray 

droplets occurs when it is included with the result that the droplets are smaller and 

hotter on their approach to the substrate. This will reduce the thermal shock caused by 

cool liquid droplets impinging on the substrate. Some of the precursor will vapourise. 

In-flight heating increases the degree of re-evaporation from the film and increases the 

mobility of species on the surface. This would art to even out any inhomogeneities on 
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the film surface since evaporation from high points such as hills and spikes is greater 

than that from relatively smoother surfaces. The rate of evaporation is dependent on 

the radius of curvature of a section of the film. The roughness of films grown under 

these conditions increases at lower substrate temperatures {216°C). This increase is due 

to precursor particles landing on the film surface and remaining there without further 

movement due to a reduction in the rate of surface diffusion and re-evaporation. In

flight heating effectively removes the majority of the solvent before the precursor reaches 

the substrate but does not supply enough energy at low temperature to the substrate 

to produce smooth surfaces through the processes of diffusion and re-evaporation. 

If in-flight heating is not used at high substrate temperatures {336°C) less pre

heating occurs and larger cooler droplets approach the substrate and cause disorder 

at the film surface through the cooling influence of unheated liquid landing on the 

film surface and through lower surface mobility. Less desolvation occurs compared to 

deposition with in-flight heating. The result is inhomogeneous film growth. Surface 

mobility and other processes which act to smooth out local inhomogeneities are sup

pressed. The shift towards lower temperatures sees a steady decrease in film roughness 

for films grown without in-flight heating. It is likely that spray droplets contain more 

solvent when they impinge on the film so that the dissolved zinc precursor they contain 

spreads out over a wide area of the substrate. This leads to films having a smoother 

morphology. Thus the relationship between surface roughness and thickness of films 

grown without in-flight heating under dry conditions is opposite to that observed for 

films grown with in-flight heating and expected from previous work (9 l. 

At high substrate temperatures the influence of in-flight heating is to provide extra 

heat energy which drives off the solvent and then quite possibly causes the the vapouri

sation of the zinc chemical precursor. However at low temperatures it is likely that the 

drying of the majority of large spray droplets gets no further than the formation of a 

dried particle which is more difficult to incorporate in to the film in a non disruptive 

way. 
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5.3.8 Structural Characterisation 

In this section the results of the structural characterisation of undoped ZnO by Re

flection High Energy Electron Diffraction (RHEED) and by X-ray-Diffraction (XRD) 

are presented and discussed. RHEED is a surface sensitive technique whereas XRD 

takes an average of the entire film structure. Where a.ppropri~te ihe results are com

pared with the ASTM index card for zinc oxide (Table 2.1) which gives the intensities 

from planes for a. random polycrystalline sample. A description of the zinc oxide lattice 

is given in chapter 2. 

5.3.8.1 Surface Structure by RHEED 

RHEED provide!! information on the crystal orientation, perfection and the degree 

of preferred orientation of crystallites at the surface of a thin film. 

The results of the preferred orientation determination for films grown under the 

different sets of conditions are shown in table 5.2. Films grown at temperatures below 

200°C were too rough to allow RHEED analysis (except for one film grown at 96°C) 

The electron diffraction patterns taken from the surfaces of zinc oxide films grown at 

336°C and 396°C in a dry ambient are shown in figures 5.10 to 5.12. 

Films grown in a dry ambient above 200°C have a preferred orientation of crystal

lites. However this appears to have degraded at 400°C. Figure 5.11 has been indexed 

with reference to the reflections due to the main preferred orientation. Preferred orien

tation is determined by finding the indices of the most intense peak perpendicular to 

the shadow of the substrate surface as shown on figure 5.11. 

Most of the films including that in figure 5.12 showed a (1122) preferred orientation 

with varying degrees of background randomness indicating that at least on the surface 

this is the dominant plane. This effect on the diffraction pattern is very pronounced 

since in a random polycrystalline sample of ZnO (1122) is one of the least intense lines 

according to the ASTM card for ZnO. 

The pattern obtained for the film grown at 96°C in a dry ambient with in-flight 

heating consists of continuous rings which indicates that the film had a totally random 
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Zinc oxide films grown in a dry ambient 

Growth temperature;oc Heating arrangement Surface preferred orientation 

96 Substrate/In-flight None; random polycrystalline 

336 Substrate only (1122} strong pref. order 

336 Substrate/In-Bight ( 1122} strong pref. order 

396 Substrate /In-Hight (1122) pref. order 

Zinc oxide films grown in a wet ambient 

Growth temperature;oc Heating arrangement Surface preferred orientation 

216 Substrate/In-Bight ( 0002) pref. order/ random polycrystalline 

276 Substrate/In-Bight (1122) pref. order 

306 Substrate/In-Bight (1122)/(lOll) pref. order 

336 Substrate/In-flight ( 1122) pre£. order 

ble 5.2. Summary of the surface preferred orientations of zinc oxide films grown under different conditions 
sing Zn(acach.H20. 
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Figure 5.10. RHEED pattern irom a. zinc oxide film grown at 336°C in a dry ambient . 

.. 

Figure 5 .11. RHEED pattern a.s shown in tigurc 5.10 identifying reflections t;om aystal planes by their j 
~t i iiN · £3 ravais iudicf's . 
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Figure 5.12. RHEED pattern from a zinc oxide film grown at 396°C in a dry ambient. 
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orientation of crystallites. 

Films grown at 336°C using both heating modes possessed the highest degree of 

preferred orientation. The pattern from a film grown with in-flight heating is shown in 

figure 5.10 and is indexed in figure 5.11. It consists of arcs with one arc of particularly 

high intensity along a line perpendicular to the shadow of the substrate edge. This 

arc corresponds to the (1122) plane. The other arcs in the pattern line up around 

the axis of the main arc at definite angles, as mentioned earlier in the section. These 

correspond to other planes within the crystallites at angles to the main preferred plane. 

Where there is sufficient preferred orientation and film order it is possible to measure 

the angle between the central arc and the subsidiary arcs. These measured angles can 

be compared with the angles between planes in the unit cell of ZnO which are calculated 

using the following formula : 

h1h2 + k1k2 + ~(h1k1 + h2kd + t~l1l2 cos¢=-,==================================== 
(hi+ kf + hlkl + ~~li)(h~ + k~ + h2k2t~l~) 

The letters h,k, and l together with their numerical subscripts represent the Miller 

indices of the two sets of planes. The planes of ZnO can either be represented by a three 

index (hkl) or a four index (hkil) notation as outlined in section 2.2.1. The four index 

system is generated from the three index system and is used to distinguish between 

non-identical planes with the same hkl values ( 10 l. Cos¢ represents the angle between 

the two planes in question. Agreement between the angles calculated from the above 

formula and the angles measured from the pattern shown in figure 5.11 was found. 

For example the angle between the (0002) and the (1122) planes calculated from the 

above formula was 65° while the measured angle from the pattern between the same 

two planes was the same notwithstanding experimental error. The angle between the 

(1010) and the (1122) calculated from the above formula was 42° and the measured 

value from the pattern was 45°. 

In this way it was possible to confirm that the reflections in figure 5.11 were due to 

the films being (1122) oriented. Films grown at 396°C in a dry ambient with in-flight 
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heating had a (1122) orientation with the pattern containing only arcs consistent with 

this. This was superimposed on rings indicating that a proportion of the crystallites 

are lying at all angles. The pattern from the film is shown in figure 5.12. The arcs 

themselves are unbroken and of an even intensity indicating that the grain size is small. 

RHEED patterns from films grown in a wet ambient with in-flight heating indicate 

that the films become ordered at growth temperatures in the region of 200°C and that 

the degree of ordering increases with increasing growth temperature up to about 276°C 

but that any further substantial increase in the temperature results in a loss of the 

order. 

It is also clear that a change in the identity of the preferred orientation occurs on 

increasing the substrate temperature from 200°C to 300°C. The preferred order changes 

from (0002) to a mixture of (1122) and (lOll) to {1122) as the substrate temperature 

increases. 

Generally films grown with water in the gas shroud had a weaker degree of pre

ferred orientation than ones grown in dry conditions and were more likely to contain 

crystallites with their axes pointing in random directions indicating greater disorder. 

In addition to RHEED studies on the as-grown film surfaces, a series of diffraction 

patterns were taken from a ZnO film that was successively etched in dilute aqueous 

HCl to investigate how the structure of the film varied with depth. The depth profiling 

was calibrated using an alphastep surface profilometer. 

The ZnO film chosen was grown in a dry atmosphere with in-flight heating at 336°C 

and was approximately 300 nm thick. The pattern from the unetched surface showed 

the expected (1122) preferred orientation. The surface structure after the removal 

of 50 nm of material showed that the arcs were similar but slightly broader. The 

preferred order was still (1122) after removing a total of 100 nm. The pattern was no 

different from that after 50 nm had been removed. However 150 nm below the original 

surface some randomisation of the crystallites had occurred but the (1122) preferred 

orientation was still strong. The pattern obtained approximately 300 nm below the 
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surface indicated that further randomisation had occurred but that (1122) was still the 

preferred orientation. 

These results suggest that the ZnO film is nucleated both randomly and with some 

degree of (1122) order. As the film thickened the preferred orientation strengthened at 

the expense of the randomly oriented crystallites. The XRD results presented in the 

next section were interpreted with this in mind. 

5.3.8.2 Bulk Averaged Film Structure 

X-ray diffraction was used to investigate the composition and crystallographic tex

ture of the films. All of the peaks observed were attributed to ZnO and indexed by 

comparison with the ASTM index data card for that material. No additional peaks due 

to impurities, reaction intermediates or unreacted precursor material were observed for 

films grown under wet or dry conditions even at temperatures as low as 96°C. 

Table 5.3 summarises the intensity data obtained for the ZnO films compared 

with the ASTM intensity data for a random polycrystalline sample of ZnO. Table 

5.4 compares the surface orientations of films as obtained by RHEED with the bulk 

averaged orientations of the films as obtained by XRD. The films characterised were 

those grown with in-flight heating. Figure 5.13 shows a typical X-ray diffractogram 

obtained from a ZnO film grown at 336°C under dry conditions. The structure of 

the films was found to depend on the growth temperature. A film grown at 96°C in 

a dry ambient had a completely random orientation of crystallites. Films grown at 

126°C and 156°C possessed a strong {0002) preferred orientation that decreased as the 

temperature of the substrate was progressively raised. The prominence of the (lOll) 

plane also increased in this temperature range. At a growth temperature of 216°C it 

was found that films grown in a dry ambient showed a {lOll) preferred orientation 

when in-flight heating was excluded from the growth conditions and a (0002) preferred 

orientation when in-flight heating was included. Thus the presence of in-flight heating 

caused a change in the preferred order. When growth was carried out at 336°C the 

(lOll) plane was still the preferred plane while at the highest growth temperature 
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Table 5.3. Summary of the results from X-ray diffraction. The intensity data from a polycrystalline ZoO 
sample (a) are compared with the intensity data from ZnO films grown under various conditions using 
Zn(acac}2.H20 (b)-(e). 

(a) Intensity data for polycrystalline zinc oxide · 

Crystal plane (1010) (0002) (lOll) (1012) (1120) (1013) (1122) Preferred Order 

dhkz/A 2.816 2.602 2.476 1.911 1.626 1.477 1.379 None; random 

Peak intensities/% 71 56 100 29 40 35 28 polycrystalline 

(b) Intensity data for zinc oxide films grown in a 

Growth temperaturerc dry ambient with in-flight heating 

96 100 100 88 20 None; random 

126 11 100 13 9 13 (0002) 

156 12 100 23 12 (0002) 

216 26 100 50 9 (0002) 

336 40 100 18 27 (101 1) 

396 20 80 100 23 (lOll)/ (0002) 

(c) Intensity data for zinc oxide films grown in a 

dry ambient with substrate heating only 

216 16 14 100 12 8 7.5 (lOll) 

(d) Intensity data. for zinc oxide films grown in a 

wet ambient with in-flight heating 

126 12 100 24 8.5 (0002) 

156 20 100 45 23 (0002) 

216 40 24 100 10 (lOll) 

306 15 35 100 (lOll) 

336 24 17 100 7 (lOll) 

(e) Intensity data for zinc oxide films grown in a 

wet ambient with substrate heating only 

216 21.4 13 100 10 8 6 27 (lOll) 
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.. 

Zinc oxide films grown in a dry ambient 

Growth temperaturerc Surface preferred orientation Bulk averaged preferred orientation 

96 Random polycrystalline Random polycrystalline 

336 (1122) (lOll) 

396 (1122) ( lOi 1) I ( 0002) 

Zinc oxide films grown in a wet ambient 

Growth temperaturerc Surface preferred orientation Bulk averaged orientation 

216 (0002) (lOll) 

306 ( 1122) (lOll)/(0002) 

336 (1122) (lOll) 

Table 5.4. Summary and comparison of surface and bulk averaged preferred orientations in zinc oxide films 
produced under various conditions. 
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Figure 5.13. X-ray diffractogram showing principal peaks of zinc oxide from a film grown at 336°C in a 
dry ambient with in-flight heating. 
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of 396°C the proportion of (lOll) was relatively lower, the (0002) orientation having 

become strong once more. However, the most profound change in the preferred order 

occurred at about 216°C. 

For films grown in a wet ambient at 126°C and 156°C the (0002) orientation was 

preferred with the dominance of the (0002) plane being greater at the lower temperature. 

There was also a profusion of peaks corresponding to minor orientations. The most 

commonly observed planes were the (1012), (1013), (1122), and the (1120). Films grown 

in a wet ambient at 216°C and above all had (lOll) preferred orientation regardless of 

heating mode, indicating a change in the most favourable crystal orientation. 

At growth temperatures above 216°C all films showed a (lOll) preferred orienta

tion. The highest degree of preferred orientation was observed in the ZnO films grown at 

336°C, where available data suggests films grown in a wet ambient possessed a slightly 

higher degree of orientation than their counterparts grown in a dry ambient. 

The effect of the addition of water is to randomise the orientation of crystallites at 

126°C and 156°C. Otherwise the most profound influence on the preferred orientation 

is substrate temperature. 

For films grown in a dry ambient annealing improved the preferred order. This 

effect was accentuated in films grown below the annealing temperature. Annealing the 

films grown in a wet ambient led to a slight increase in the preferred order. 

5.3.8.3 Grain Size Studies on Zinc Oxide 

Grain sizes were calculated from X-ray diffraction peak widths using the method 

outlined in section 4.6.5. In all cases the peak used for this measurement corresponded 

to the preferred orientation for that film. The results are plotted against substrate 

temperature in figures 5.14 and 5.15 for growth in dry and wet ambients. The results 

show that grain sizes in zinc oxide films grown at 156°C and below in a dry ambient 

with in-flight heating were in the range 11-23 nm. At temperatures of 216°C and above 

the grain size was fairly constant 35 nm. The observation that an increase in the grain 

size occurs over a narrow temperature range indicates a temperature activated process 
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Figure 5.14. Variation of the zinc oxide grain size with growth temperature when carried out in . a dry 
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F'igure 5.15. Variation of the zinc oxide grain size with growth temperature when carried out in a wet 
a:mbient. Symbols: • = growth with substrate and in-flight heating; 0 = growth with substrate heating. 
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the full effects of which are reaped within a 50°C increase in temperature. 

When film growth was carried out in a wet ambient with in-flight heating the grain 

size increased from 13 nm at a growth temperature of 216°C to values within the range 

35- 45 nm at growth temperatures of 306°C and above. The effect of annealing had no 
. . . 

influence on the grain size in films grown at 336°C and above but increased it in films 

grown at 216°C. The same trend was observed in films grown in a wet ambient. 

To summarise, the grain size of ZnO films grown under wet and dry conditions 

increases rapidly with growth temperature to a plateau at 200°C - 400°C with some 

slight indication of smaller grains being associated with the highest temperature used. 

5.3.8.4 Discussion of Structural Studies and Crystallographic Texture 

(a) Preferred Orientation 

An important point to draw out of the work is the commonality of the surface 

preferred orientation of (1122) in high temperature films as determined by RHEED. 

This extends to a depth of approximately 300 nm below the film surface in one case 

and is therefore not a surface effect and shows that films have approximately the same 

structure regardless of the type of heating used. Where water is included in the growth 

conditions the (lOll) intensity is nearly as strong as the (1122). Another important 

point to draw out of the work is the increase in the preferred order in the deposited films 

as the growth temperature was increased from 96°C up to higher temperatures. The 

presence of water also acts to increase the randomness of the orientation of crystallites 

of minor planes and is probably a consequence of the relatively higher deposition rate 

of ZnO in the presence of water, so that when the film is growing more rapidly the 

orderliness of the growth of crystallites breaks down. However the intensity of the main 

preferred orientation is only slightly affected. The change in preferred orientation from 

(0002) to (1122) and (lOll) as the growth temperature was raised from 216°C to 276°C 

is likely to be due to a change in the kinetics and thermodynamics of the growth process. 

The (0002) preferred orientation is a common one in ZnO films, which have been grown 

by a whole host of workers (S,ll-lT) using the techniques of sputtering, CVD, spray 
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pyrolysis, and MOCVD at temperatures ranging from 150°C to 400°C. 

The main differences between the films grown in wet and dry conditions at 216°C 

are the relative randomness of crystallites in the film where water is included in the 

growth conditions when both essentially possess a (0002) preferred orientation. This 

again is due to a higher deposition rate which in this case favours the growth of ZnO 

at all angles with respect to the main preferred orientation. 

X-ray diffraction results indicate that the way the film is deposited changes below 

200°C. This is shown by the changes in the preferred order and grain size. The difference 

in the film quality was especially apparent when films were grown with water present. 

The results also indicate that in many films the preferred order in the bulk of the film 

is different from that on the surface as demonstrated by comparing the results from 

RHEED and XRD. The electron diffraction patterns taken from a ZnO film that was 

etched down successively showed that the (1122) surface orientation persisted down to 

at least 150 nm below the film surface for a film grown at 336°C in a dry ambient. 

The XRD technique averages the whole film structure and gave an averaged orientation 

of this particular film of (lOll). This is different from the orientation as determined 

by RHEED. It can be concluded therefore that a gradual change occurred in the way 

the film grew. At first the ZnO was being deposited on glass but after some time the 

coverage of ZnO on the glass was complete and ZnO then began to grow on itself. Thus 

the conditions of the film growth changed. The surface of the glass slide is amorphous 

and so any initial deposit is likely to be relatively disordered. 

However as the coverage of the surface increased and the film thickened, the ZnO 

adopted a more ordered structure. This led to the fastest growing planes dominating 

the growth and becoming the preferred orientation. This dominant plane was found 

to be (1122) using RHEED. Although the RHEED results are self consistent the XRD 

data obtained from the same films indicate that the dominant bulk averaged preferred 

orientation at higher temperature was not (1122) but (lOll). This was unexpected since 

the RHEED - step etching experiments showed that there was no evidence of a change 
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from one preferred orientation to another at the surface. In almost every case XRD 

showed film growth occurred initially with the (lOll) plane as the preferred choice. 

Thus this plane must have had some affinity with the glass substrate surface. Growth 

could be envisaged as occurring along vertical and horizontal planes. Vertical growth 

occurred along the (iOil) plane with Si-0-Zn bonds ensuring good adhesion. When 

there was insufficient energy to activate the glass surface for bonding then adhesion 

broke down. Lateral growth occurred along the (0001) and the (OOOi). However as the 

film thickened the preferred growth parallel to the substrate surface became the (1122). 

An alternative to the explanation of the temperature dependence of preferred ori

entation would be based on a deposition mechanism in which platelets of ZnO are 

generated above the substrate and become incorporated into the film. If these platelets 

were hexagonal in shape with their c-axes perpendicular to their major faces then these 

would cover a surface to give a (0002) oriented film. This would occur below 200°C. 

Above 200°C this theory requires that the shapes of crystallites formed should change 

i.e that the crystallites formed should adopt different habit planes. 

{b) Grain Size 

The main point to come out of the grain size calculations is the comparatively small 

grain size obtained at growth temperatures below 200°C. At low temperatures not only 

is there not enough energy for adhesion between film and substrate and cohesion within 

the film itself, but additionally there is insufficient energy for appreciable grain growth. 

Overall a typical value of grain size in films grown above 200°C in this work was 40 nm. 

This compares with a quoted range of 20-90 nm for films grown by the spray pyrolysis 

of zinc acetate at 400°C-450°C 16 l·l 16 l.(l8l and with the sizes of ZnO powder particles 

obtained using Zn(acac)2.H2 0 as a precursor i.e 21-35 nm (8). Owing to the larger 

amounts of material deposited at lower temperatures, film growth is more rapid and as a 

result relatively little energy is available for grain growth since relatively larger amounts 

of precursor are being decomposed and solvent driven off. At higher temperatures the 

grain size is larger because there is no shortage of energy in the growing film. This 
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difference in the grain size between films grown above and below 200°C coincides with a 

change in crystal habit and agrees with the results from preferred orientation. From the 

results of the laser Doppler measurements it was found that the mean average droplet 

radius in the spray was 3J.Lm. This corresponds to a mass of9xl0- 15kg or 1.6x10-18m3 

of ZnO. Since the mass of an average grain was 2 x w- 19kg, or w-23m3 it is apparent 

that around 5 x 104 grains were formed from each Zn( acac h .H2 0 containing droplet. It 

can be envisaged therefore that as desolvation and precursor pyrolysis occur the ZnO 

forms into a very large number of spherical particles that are built into the film to 

become crystallites and grains. The fact that the grains are small in size relative to 

the volume of ZnO contained in one droplet suggests that crystal habit is masked more 

readily at low temperature. 

(c) Thickness Effects 

A number of films were grown at 306°C from different volumes of O.lM precur

sor solution {100 cm3 , 200 cm3 , 400 cm3 , and 700 cm3 ) in order to investigate how 

their properties varied with thickness. The substrate temperature of 306°C was chosen 

because the earlier work had shown that the quality of films grown was very good. 

Measured film thicknesses as a function of volume of precursor sprayed are plotted 

m figure 5.16. The results show that there is a direct proportionality between the 

thickness of film material deposited and volume of precursor solution sprayed under 

these growth conditions. 

The surface roughness (Ra) also increased with film thickness. It varied from 40 

nm for a film 0.091J.Lm thick to 590 nm for a. film 0.941J.Lm thick. 

XRD spectra of films grown at 306°C in wet conditions with in-flight heating from 

different volumes of O.lM precursor solution were also recorded. Generally speaking, 

the degree of preferred orientation increased with increasing film thickness. The film 

with the highest degree of order was grown from 400 cm3 of solution, the second largest 

volume used. The film grown from the 700 cm3 had a relatively lower degree of preferred 

order. Most films exhibited the (lOll) preferred orientation. 
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Figure 5.16. Variation of zinc oxide film thickness with volume of precursor solution sprayed under constant 
deposition conditions. Symbol: II = growth at 306°C in a wet ambient with in-flight heating. 
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Grain sizes were calculated from X-ray diffraction peak widths for these films taken 

from the peak representing the preferred orientation. The grain sizes increased from 

approximately 27 nm to 42 nm as the spray volume increased from 100 cm3 to 700 

cm3 • The film thickness increased from 0.09lJLm to 0.941JLm in the same range. These 

results indicated that grains grew in the timescale of the experiments (0-15 minutes) 

even though fresh precursor and solvent were arriving at the film surface. 

From the thickness measurements it is apparent that the effects of desorption 

of established film material from the substrate surface with spray time, and possible 

densification of film material do not alter the proportionality which exists between the 

amount of precursor sprayed and the film thickness. Therefore it is possible to say that 

once material has been incorporated into the film it is not lost due to re-evaporation. 

The results might also suggest that the density of atomic packing in the film does not 

change with spray time i.e no voids are incorporated in the film. 

The fact that surface roughness is relatively low for thin films and much higher 

for thicker films indicates that either the amount of surface disorder or the degree of 

facetting increased with thickness. 

A relationship between the overall film thickness and the surface roughness has 

been developed which is based on statistical analysis <91. If it is assumed that the zinc 

precursor decomposes and sticks where it lands on the substrate without subsequent 

surface diffusion on the substrate, then statistical fluctuations in the local film thickness 

will result. The average deviation in the film thickness od from the average thickness t 

is given by the Poisson probability distribution of a random variable. The relationship 

between 6 d and t is given by 

od = c..fi 

Thus this equation predicts that the surface roughness of a film increases with the 

square root of the film thickness. However this equation and the thinking behind it 

cannot account for the extreme roughness of these films. The thickest film, for example, 

was of 0.941jLm and had a roughness of 590 nm. If the square root relationship were 
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obeyed then the roughness would be less than 100 nm. The thinnest film of 0.091JJ.m 

had a roughness of 40 nm and according to the square root relationship a roughness 

approximately 10 nm would be expected. Therefore the film surfaces are rougher than 

expected. This could be explained by the reactivity of the precursor in the presence of 

water and a lack of diffusion at the surface. Differences in growth rates between grains 

having the preferred orientation and other grains with different orientations, would 

also affect the roughness. If there was a constant difference in growth rates then the 

roughness would increase linearly with thickness. The experimental data support this 

mechanism. 

5.4 Films Grown Using Zn(acac)2.2,6 Lutidine 

Two zinc oxide films were grown from this precursor. The first film grown at 216°C 

in a dry ambient with no in-flight heating was clear and transparent with no surface 

speckle. The second film grown at 336°C in a wet ambient with in-flight heating had a 

dark brown tint. Both films were adherent to their substrates. 

The properties of films deposited from Zn(acac)2.2,6 lutidine were not very dif

ferent from those of films deposited using Zn(acac)2.H2 0. The film grown from the 

monohydrate adduct under identical preparation conditions at 216°C had a (lOll) bulk 

averaged preferred orientation whereas the film grown from the lutidine adduct had a 

(0002) preferred order. Films grown at 336°C under identical deposition conditions 

from the monohydrate and lutidine adducts both had the {lOll) preferred orientation. 

Grain size measurements indicated that similar results were obtained from both pre

cursors when film growth was carried out under identical conditions of a dry ambient 

and no in-flight heating. This indicates that grain growth is not significantly limited by 

the presence of byproducts related to 2,6 lutidine which might have acted to cause dis

continuities between planes. Therefore 2,6lutidine must break off the Zn(acac)2 parent 

molecule and volatilize away without appreciable decomposition or incorporation into 

the film. 
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5.5 Resistivity of Zinc Oxide Films 

Film resistivity has been measured for both as-deposited and annealed ZnO films. 

Films were annealed at 375°C for 30 minutes in a reducing atmosphere of600cm3 min-1 . 

The composition of the reducing gas was 20% hydrogen with oxygen free nitrogen. The 

effect ~f annealing the zinc oxide films was to drive off oxygen, leading to a zinc excess 

in the films which promoted n-type conductivity. 

5.5.1 Resistivity of As-Deposited Films 

The results of the resistivity measurements for as-deposited films grown in dry and 

wet ambients are plotted as the logarithm of the resistivity against growth temperature 

in figure 5.17. The resistivity of films grown in a dry ambient with in-flight heating 

was dependent on the growth temperature. Resistivities of films grown at the lowest 

temperatures used were very high ( 9x 1030m at 156°C ) but decreased sharply until 

about 200°C. Above 200°C the resistivity varied only slowly with temperature reaching 

a shallow minimum of 1 Om at 336°C. The increase at higher temperatures was only 

slight (i.e 1.13 Om at 396°C). A similar trend for the variation of film resistivity with 

growth temperature was observed for films grown in a dry ambient without in-flight 

heating. 

When growth was carried out in a wet ambient the resistivities of films grown at 

126°C and 156°C with and without in-flight heating were too high to measure by any 

available technique. These films had resistivities in excess of 104 Qm. However when 

growth was carried out at temperatures above 216°C with in-flight heating the resulting 

resistivities fell to values from 1.0 to 2.5x10-20m. 

In summary, films grown in a dry ambient below 200°C were more conductive than 

those grown in a wet ambient. At high temperature, films grown in a wet ambient 

were twenty times more conducting than those grown in a dry ambient. Films grown 

at 216°C in both wet and dry ambients were comparable in resistivity. 

5.5.2 Resistivity of Annealed Films 

Annealing films in a reducing atmosphere led m general to a reduction in the 
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resistivity by about 2 orders of magnitude. 

Measurements of films grown in a dry ambient with in-flight heating are presented 

in figure 5.18. The resistivities of annealed films were roughly independent of the growth 

temperature and were about 3 x w-3nm. With dry ambients and no in-flight heating 

annealed resistivities were slightly lower at 1.5 X IQ-2flm. 

Annealing films grown under wet conditions using substrate and in-flight heating 

produced resistivities close to w-3nm regardless of the growth temperature. Sur

prisingly however, when substrate heating only was used the lowest resistivities were 

achieved after annealing films grown at temperatures of 276 and 336°C (see figure 5.18). 

5.5.3 Discussion 

The main points to draw out of these results are that the resistivity is very large 

when growth occurs below 200°C and relatively low when growth occurs above 200°C. 

The lowest resistivities are achieved under wet conditions. 

Clearly there is a relation between growth conditions and electrical properties. 

Such a relation has been observed before by workers using spray pyrolysis, MOCVD, 

and CVD to deposit zinc oxide (.5).(1l).(12).(19l. 

The low temperature films are relatively disordered and discontinuous, consisting 

of small grains. These features would inhibit the current flow. For example, potential 

barriers associated with intergra.in boundaries reduce the mobility of charge carriers 

while carrier depletion in the bulk of the grains may also limit the conductivity. 

Another factor relates to the geometry of grain packing, that is the relationship 

between crystallites and grains in the films and the presence or absence of intergranular 

phases. This type of inhomogeneity relates especially to powders which are similar to 

thin films in their electrical behaviour. In this case current is constrained to flow in 

non-uniform patterns and irregular routes and pathways for geometric reasons because 

the grains are not in intimate contact. Normally, in a thin film the grains are in intimate 

contact. However it is probable that the low temperature films contained intergranular 

regions comprising highly disordered and highly resistive zinc oxide. This may in part 
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be due to the small growth rate of the grains leading to a proportion of the zinc oxide 

accumulating outside the grains. Thus the potential barrier to charge transfer from 

grain to grain will be high. The effective resistances of these grains will be governed by 

the resistance of the grain to grain contact resistances. 

In the low temperature films it is also possible that there were areas where grain 

to grain contact was not total. Thus not all intergranular regions will allow conduction 

from grain to grain and this will result in complex and resistive preferred pathways for 

current flow. Of course, for conduction to occur a complete chain of these conducting 

pathways is necessary. The conduction mechanisms in ZnO powders and polycrystalline 

films have been reviewed by Orton and Powell l 20 ). 

At high substrate temperatures the grain size increased and the films were cohesive 

and crystalline. There was probably little or no intergranular phase since the grains 

were in intimate contact. At temperatures above 200°C the growth rate of grains was 

higher increasing the possibility of most of the zinc oxide being incorporated into the 

grains leading to the elimination of intergrain phases. Thus there is the likelihood 

that the grain boundaries will consist of a narrow region where there is discontinuity 

between planes but otherwise good intimate contact, and the barrier between the grains 

to current transport will be lower and carrier transport will be less inhibited. Hence 

the film conductivity will be close to that of the conductivity of the grains. Due to 

the continuity of the films there would also be a larger number of complete conducting 

links through the film which would be more conductive as a result. It is probable 

that a high degree· ·Of preferred order in a film leads to an increase in the number of 

conducting pathways from one side of the film to the other. At growth temperatures in 

the region of 276°C-336°C the benefits of the growth conditions on the structural and 

electrical properties of the ZnO films were fully realised. Both grain size and preferred 

orientation were optimized. Another strong possibility is that the films contained an 

excess of zinc in the form of either oxygen vacancies and for zinc interstitials (i.e were 

partially reduced in the as- grown condition}. 
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Experiments on films of different thicknesses show that the top surface of the zinc 

oxide film was often of a different stoichiometry from the bulk and contained more 

oxygen. This surface layer can be up to 100 nm thick and was more resistive than the 

bulk (20 l. In films where the entire film thickness is not much more than the thickness 

· of the surface layer the resistivity will be higher than for a thicker film grown under the 

same conditions. This is due to either a lower carrier concentration or higher potential 

barriers at grain boundary interfaces since an increased amount of oxygen reduces the 

number of carriers. This explanation could account for the lower resistivities of films 

grown in wet ambients above 200°C since they are appreciably thicker. This thickness 

effect evidently outweighs the effect of preferred order which favours the thinner films. 

The deposition of undoped zinc oxide using other techniques has yielded films 

possessing both higher and lower resistivities compared to this work. Spray pyrolysis of 

solutions of zinc acetate !5 ·6 ·21.221 at 360°C produced as-deposited films with resistivities 

in the range 1-100 Om which after hydrogen annealing fell to values in the range w-2 

- w-4 Om. 

ZnO films produced by activated reactive evaporation had resistivities of the order 

8x10-60m (231. 

ZnO films produced by sputtering had very low resistivities in the range 10-5 -

w-6 Om !ll·24 l. CVD !25 1, MOCVD and photo-MOCVD (14 1 have produced layers 

with resistivities of 2x 10-40m, w-1om and w-2om. The influence of UV radiation 

on the growing film surface led to an improvement in the film conductivity by an order 

of magnitude. 

The lowest resistivity obtained in the present work was 2.5 x 10-20m for an un

doped as-deposited film grown at 336°C in a wet ambient with in-flight heating present. 

After an annealing treatment the resistivity fell to 2 x w-4om. Thus the results of the 

present work compare favourably with previous work. 
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Chapter Six 

Kinetics and Mechanism of the Deposition 

of ZnO from Zn(acac)2.Ha0 

6.1 Introduction 

One of the first objectives of the work was to try to ·understand the processes 

which affect the variation of ZnO film thickness with growth temperature. This chapter 

therefore is concerned with the interpretation of the deposition behaviour of ZnO from 

Zn(acac)a.H2 0 as a function of growth temperature and moisture content in the spray. 

The kinetic and mechanistic aspects of the decomposition of Zn(acac)a.H2 0 to ZnO 

film are discussed in section 6.3 and this culminates in some detailed modelling of the 

spray process in section 6.4. The modelling highlights the most important physical 

features of the spray pyrolysis process. 

6.2 Undoped ZnO Film Thickness Measurements 

The results of thickness measurements on zinc oxide films grown in dry and wet 

ambients were described in chapter 5 and were shown in figures 5.1 and 5.2 as plots of 

ln(film thickness) versus reciprocal growth temperature. 

To summarise, the film thickness increased progressively as the growth temperature 

decreased below 200°C in a dry ambient. Above 200°C the film thickness was virtually 

constant. 

In a wet ambient the growth behaviour below 200°C was similar to that in dry 

conditions, except that the rate of change of growth rate with temperature and the 

resultant film thicknesses were larger. Above 200°C, the decrease in film thickness with 

increasing temperature was arrested and the film thickness went through a maximum 

at 306°C and then began to decrease with increasing growth temperature thereafter. 

Overall films grown with a wet ambient were thicker than those grown in a dry ambient. 
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6.2.1 Dependence ofZnO Film Thickness on Growth Temperature and Mois-

ture 

The variation of ZnO film thickness with growth temperature under both wet and 

dry conditions is produced by the physical properties of the spray droplets and their 
. . 

evaporation from the substrate area and the kinetics and mechanism of the decompcr · 

sition of Zn(acac)2.H20. The growth behaviour observed here at temperatures below 

200°C (i.e film thickness decreasing with increasing growth temperature) is consistent 

with previously reported experience in the spray pyrolysis of other materials (l),( 2). 

However the change in the temperature dependence of growth above 200°C suggests 

that there is more than one mechanism for conversion of Zn(acac)2.H20 to ZnO. In 

figure 6.1 the results of film thickness in a dry ambient versus reciprocal temperature 

are replotted. 

The equation of the thirk continuous line for growth between 100°C and 200°C is 

( 6.1) 

with t 0 = 1.8 x w-9 m and E = -21 KJ mol- 1 . This represents the low temperature 

route for the decomposition of Zn( acac )2 .H20 to ZnO (curve ( 1)). This line was ext rap-

· olated above 200°C and values obtained were then subtracted from the experimentally 

determined film thicknesses. This gave rise to another set of points connected with the 

broken line in figure 6.1 (curve 3) corresponding to the high temperature route for the 

decomposition of Zn(acac)2.H20 to ZnO. Thus the spray pyrolysis of Zn(acac)2.H20 

involves two different growth mechanisms which operate over different but overlapping 

temperature ranges. The activation energy ass_ociated with the low temperature process 

was -21 KJ mol-1 , whereas that of the high temperature portion was +24 KJ mol-1 . 

These two values represent overall process energies that include the different chemical 

(i.e precursor decomposition) and physical (solvent evaporation) effects occurring dur-

ing spray pyrolysis. The processes occurring at high temperature have a net positive 

activation energy showing that whatever processes are taking place are temperature 
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activated. In this respect spray pyrolysis resembles CVD where the growth rate is also 

temperature activated. This type of behaviour has been reported for the growth of 

ZnO from Zn(Et)2 (J),( 4 ) where film growth rate is either diffusion limited or, at higher 

temperatures, kinetically limited. The low temperature growth however is temperature 

deactivated (negative activation energy) and resembles the spray pyrolysis of CdS from 

CdC12 (S) and ZnO from Zn(acetateh <6l. 

Growth in a wet ambient is rather similar. Thickness measurements are replotted 

in figure 6.2. The extrapolation and subtraction procedure emphasises the change in 

growth behaviour at 200°C. The net effects of the higher temperature processes are 

also CVD-like as shown on curve 7 (which is the yield from the high temperature 

thermohydrolysis ), and the low temperature growth mechanisms are again temperature 

deactivated. Below 200°C the characteristic is well described by equation 6.1 with 

slope and intercept values of E = -30 KJ mol-1 and t 0 = 3.4x10-10 m (curve (4) 

figure 6.2). By subtracting the line for dry growth from that for wet growth below 

200°C it was possible to assess the effects of a hydrolysis mechanism. This led to line 

6 in figure 6.2 the constants of which are E = -36 KJ mol- 1 and t 0 = 3.36xlQ-ll. If 

the effects of low temperature dry decomposition, low temperature hydrolysis and high 

temperature dry decomposition are subtracted from the high temperature wet thickness 

line a considerable yield of ZnO is' left unaccounted for where the film thickness increases 

with growth temperature before flattening off at 300°C. Therefore there must be a 

fourth mechanism, or a variant of a previously mentioned mechanism or mechanisms 

(hydrothermolysis) which are more efficient because water is present. 

6.3 Decomposition Mechanisms of Zn(acac)2.H20 

The structure of Zn(acac)2.H20 is shown in figure 6.3 below. The zinc atom is 

coordinated to three different molecules through five bonds. Two of the molecules are 

acetylacetonate C5H70 2 groups while the third is water. All bonding is between zinc 

and oxygen. The molecule has a square pyramidal shape. The Zn-OH2 bond is the 

weakest. 
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Figure 6.3. Chemical structure of the zinc acetylacetonate monohydrate molecule. 

The molecule should consist of formal single and double bonds but due to electronic 

delocalisation, the bonds between Zn, C2.a,4, and 0 1 .2 atoms are approximately equall 5 l. 

The relative strengths of the interatomic bonds are listed in table 6.1. 

Table 6.1. Summary of the bond energies between carbon, oxygen, hydrogen and zinc 

Bond Energies 

Bond C-C C-0 C-H Zn-0 0-H C=C C=O 

KJ mol- 1 345 357 411 276 460 602 798 

Thus the thermodynamic ordering of the breaking of single bonds is Zn-0 then C-

C, C-0, C-H, 0-H, and the order for the breaking of double bonds is C=C then C=O. 

However this does not take into account the possible steric and kinetic effects that 

might outweigh thermodynamic considerations. Consequently, certain decomposition 

pathways involving a series of bond-breaking and bond- forming events that represent 

the lowest energy route in theory might not be the pathways to decomposition actually 

observed. 

It is also useful to know the electronegativities of individual atoms as this deter-

mines which atoms have either positive or negative charges in any particular molecule. 

The electronegativity gives a measure of the electron withdrawing power of an atom and 

in a molecule helps to establish the relative distribution of electon density and therefore 

the partial charges on atoms. When atoms of low electronegativity are bonded to atoms 

of high electronegativity, electron density is shifted to atoms of higher electronegativity 

(higher electron withdrawing power) from adjoining atoms. As a result atoms with a 

high electron density have a partial negativP rharge while adjoining atoms will have 
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partial positive charges. In some mechanistic steps decomposition takes place when 

-an atom in a molecule with a partial charge of one sign attacks an atom in another 

molecule with a partial charge of opp~site sign. This is called nucleophilic attack if 

the atom being attacked has a partial positive charge. The electronegativities of atoms 

involved in the decomposition mechanisms of Zn(acac)2.H20 to ZnO are shown in table 

6.2. 

Table 6.2. Summary of the electronegativities of elements 

Atom Electronegativities 

Atom c H 0 Zn 

Electronegativity 2.5 2.2 3.44 1.65 

These figures imply that oxygen has the highest electron withdrawing power and 

zinc the lowest. The order of preference for nucleophilic attack on the basis of these 

figures alone would be Zn, H, C, and 0. 

6.3.1 Films Grown in a Dry Ambient 

Mechanistic work on Zn(acac)2.H20 using DSC, TG, and DTA has shown that it 

can decompose in at least three different ways in the spray process. Firstly the molecule 

may suffer pyrolysis, the bulk decomposition temperature of which is 191 oc< 6 l. Sec

ondly, Coates and Banister(7l have shown that decomposition can occur at temperatures 

below 191 oc via an intramolecular hydrolysis due to the presence of coordinated wa

ter in the monohydrate. Finally, Kamata has shown that the mixing of water with 

Zn( acac )2 .H20 yields zinc oxide <8 l, suggesting an intermolecular hydrolysis. 

(a) Intramolecular Mechanism 

It is probable that for growth below 200°C the route to ZnO is the intramolecular 

one although this has been estimated to be only 3-4% efficient (T). 

From figure 6.1 (deposition in a dry ambient) it is evident that a rapid decrease 

occurs on increasing the growth temperature from 100°C to 200°C, and as the extrapola-
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tion of the low temperature curve shows, the yield from the intramolecular route alone 

has become negligibly small (0.08J.Lm) by a substrate temperature of 396°C. Larger 

thicknesses were obtained between 100°C and 200°C than at higher temperatures due 

to physical effects (evaporation and convection). The preferential loss of precursor from 

the substrate before decomposition will be discussed in section 6.3. 

In the intramolecular route to decomposition it is probable that the oxygen atom 

(with partial negative charge) in coordinated water attacks the Zn(acac)2.H20 at the 

carbonyl carbon C2 in a nucleophilic process (i.e at atoms with partial positive charge). 

H H 
\/ 
0-~ ~CH3 I .-o~c-. 

{acac)Zn·( _ )H 
-0----C· 

"1:H3 

Figure 6.4. First step in the intramolecular route to the decomposition of Zn(acac)2.H20 

to ZnO 

Figure 6.4 corresponds to nucleophilic attack at the carbonyl atom which would 

have a partial positive charge, by the oxygen atom of the water molecule. This attack 

results in the cleavage of the carbon-oxygen adjacent bond to the zinc central atom, the 

formation of a bond between c2 and the oxygen atom of the coordinated water molecule, 

and the formation of carbon - carbon and carbon oxygen double bonds. This leaves a 

Zn(acac)O- coordinated to a C5H702 molecule which from an electronic standpoint is 

self-sufficient. This is an exothermic step the heat of reaction being --700 KJ mol-1 . 

. Cleavage of the bond joining this electronically self-sufficient molecule to the Zn( acac )2 

molecule is shown in figure 6.5. This step is nominally endothermic since it involves 

the breaking of a Zn-0 bond. However it is probable that the energy change is smaller 

than the full Zn-0 bond energy, due to the electronic stability of the C5H702 molecule. 
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Figure 6.5 Second step in the intramolecular route to the decomposition ofZn(acac)2.H20 

to ZnO. 

{acac)ZnO + 

For the decomposition of Zn( acac )O- it is probable that the following steps take 

place as shown in figure 6.6(a) : 

(I) the cleavage of a zinc-oxygen bond, (II) the breaking of a carbon-hydrogen bond, 

(Ill) the breaking of a carbon-oxygen bond, (IV) the formation of an oxygen-hydrogen 

bond, (V) the formation of a carbon-carbon double bond. 

This is an endothermic step with a heat of reaction of approximately +330 KJ 

Figure 6.6(a). Third step in the intramolecular route to the decomposition ofZn(acac)2.H20 

to ZnO. 

(b). Fourth step in the intramolecular route to the decomposition of Zn(acac)2.H20 

to ZnO. 

0 
II , 

-OZniOH) + CH -C-CH=CH"""l"( H 
3 2 

Figure 6.6(b) shows the decomposition of -ozn(OH)OC(CH3CHCCH2). The 

Zn(OH)O- species formed on the surface of the film are presumably able to migrate to 

a site on the film where incorporation could occur. 

The byproduct CsH60 probably remains on the substrate for a relatively short 

time before volatilizing away. The heat of reaction is again likely to be endothermic 
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but less than the zinc oxygen bond energy (-+276 KJ mol-1). 

The reaction could either occur in the spray itself or at the substrate. If the reaction 

occurred in the spray then the resulting film would have a powdery surface due to the 

fallout of the ZnO formed in the spray. Spray artefacts on film surfaces were observed 

and might indicate that someprereaction does occur (section5.3.4 and 5.3.7). 

(b) Thermolysis Mechanism 

As the growth temperature is raised beyond 200°C the thermolysis process is likely 

to occur more readily and the intramolecular route is less likely to contribute to the 

overall yield of ZnO. 

From the work of Ohrbach, MacDonald and Politycki <9J,(lOJ,(ll) it appears that 

the thermolysis of Zn(acac)2.H20 involves the stepwise removal of both acetylaceto

nate groups. It is possible to make suggestions as to the likely type and sequence of 

fragmentation and the identity of the fragments from the published works. However 

the decomposition mechanism of Zn(acac)2.H20 in a solvent environment such as in 

spray pyrolysis might not exactly parallel the mechanism as determined by the study 

of reaction products (in the vapour phase) by mass spectroscopy. 

It is assumed that since the H20 ligand is relatively weakly coordinated to the zinc 

atom, the H20 is rapidly detached at high temperatures and does not necessarily lead 

to the break-up of the entire molecule. 

There are three possible routes to the loss of the first acetylacetonate group: 

The first route involves the loss of the complete ligand as shown below. 

Zn(acac)t = Zn(acac)+ + (acac)· (6.2) 

Bond energy calculations suggest that this is an endot-hermic process with two Zn 

- 0 bonds being broken, the heat of reaction being -+552 KJ mol-l. 

The second possible route to the loss of the first acetylacetonate group involves: 

the breaking of a Zn-0 bond at (I) in figure 6. 7, the cleavage of a carbon-carbon bond 

at (III), the formation of a carbon oxygen double bond at (II), 
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This route is endothermic, the heat of reaction being -+180 KJ mol-1 . 

CH 
/3 

(acac)ZnO-C 
.'\_ 

0'\C)H 

+ 

+ 
+ (~ 

Figure 6.7. First step in the second and third fragmentation routes leading to the loss 

of the first acetylacetonate group. 

However, to accomplish the loss of the rest of the first acetylacetonate group a 

further step occurs. This involves a rearrangement of the remainder of the first acety-

lacetonate fragment as shown in figure 6.8. requiring the cleavage of a Zn-0 bond at (I), 

and the formation of a carbon oxygen double bond at (II), the transfer of an electron 

pair from bond (III) to bond (IV). 

This step is exothermic with a heat of reaction of "'-165 KJ mol- 1 . 

Figure 6.8. Final step in the second fragmentation route leading to loss of the first 

acetylacetonate group. 

CH,
3 

(acac)Z n..!.!!....o.!.!!!.. C 
/" 
~Ill 

CH 
o-~/ri'vl 

0 H 

+ ll l 
--- (al!ac)Zn + CH-C-c=c=o 

3 

The third route begins with the fragmentation of the Zn(acac)2.H20 molecule 

according to the step outlined in figure 6.7. This is followed by a rearrangement in 

which a carbon-oxygen double bond is formed at (I) and an electron pair is transferred 

from bond (II) to bond (III) as shown in figure 6.9(a). This step is exothermic with a 

heat of reaction of -440 KJ mol-1 . This is followed by the loss of two CH2CO molecules 

in consecutive steps as outlined in figures 6.9(b) and 6.9(c). 
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Figure 6.9(a). Second step in the third fragmentation route leading to the loss of 

the first acetylacetonate group. 

(b). Third step in the third fragmentation route leading to the loss of the first acety-

lacetonate group. 

+ 
(acac)Zn-O=C=CH

2 + CH{=( 0 

(c). Final step in the third fragmentation route leading to the loss of the first 

acetylacetonate group. 

(acac)Zn-Q=C=CH
2 

+ 
Zr.(acac) + CH

2 
C 0 

Initially (figure 6.9(b)), the molecules ofZn(C4H402) break up to form Zn(C2H30) 

and CH2CO molecules. This is an endothermic step (heat of reaction -+88KJ mol- 1 ) 

involving the cleavage of the carbon-carbon single bond at (1), a hydride transfer from 

C1 to C3 and the formation of a carbon-carbon double bond at (II). 

The final step towards the loss of the first acetylacetonate group involves the further 

loss of CH2CO molecules with the subsequent release of the Zn(acac)+ molecules as 

shown in figure 6.9(c). A zinc oxygen bond is severed in this step. However the 

coordinated molecule is electronically stable and therefore the heat of reaction is less 

than the zinc oxygen bond energy. 

It is possible to envisage the remaining Zn(acac)+ group becoming coordinated to 

th ZnO film surface as 0-Zn-0-Zn( acac )+. 

The fragmentation of the remaining acetylacetonate ligand can go by two separate 

routes as shown in figure 6.10. 
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Figure 6.10. Only step in the first fragmentation route leading to the loss of the 

second acetylacetonate group. 

H~m 

0-c~Hz 
/ 1111 ~ Zn '\. 

II~ /CH 
o=c 

"' CH 3 

. 
Zn!OH) + 

0 
II 

CH 2 =c=cH-c-cH
3 

The first route involves the cleavage of the zinc oxygen bond at (I), the cleavage 

of the C-0 bond at (II), the cleavage of the C-H bond at (III), the transfer of the free 

hydrogen atom to the oxygen at (I), and the formation of a carbon-carbon bond at 

(N), leading to the formation of a Zn(OH)+ and a CH2CCHCOCH3 byproduct. This 

step is endothermic ("'+330 KJ mol- 1 ). The Zn(OH)+ species gives an approximate 

idea of the identity of the product of this reaction. Such a species may not be stable or 

long-lived. Zn(OH)+ would probably decompose rapidly to ZnO. 

The second possible breakdown mechanism for the loss of the second acetylaceto-

nate group is shown in figure 6.11 and equation 6.3. Initially it involves: the cleavage of 

a carbon-carbon single bond at (I) and the cleavage of a carbon-hydrogen bond at (II) 

followed by the formation of a carbon-hydrogen bond at (III), to yield ZnOCCH2 CH3 

and CH2CO. This step is endothermic ( -+350 KJ mol- 1 ). 

Figure 6.11. First step in the second fragmentation route to the loss of the second 

acetylacetonate group 

/CH 3 /0-, 
Zn CH 

O=C;Y ',!AJ) 
\cfi:m 

2 

Zn-0-C-CH + 

II J 

CHz 

(6.3) 

The second step in the final fragmentation of the second acetylacetonate ligand in-

volves: the breaking of a carbon-oxygen bond at (I), the breaking of a carbon-hydrogen 

bond at (II), the formation of an oxygen-hydrogen bond at (III), the formation of a 
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carbon-carbon single bond at (IV), as shown in Figure 6.12. This step is exothermic 

Figure 6.12. Final step in the second fragmentation route leading to the loss of the 

second acetylacetonate group 

/H 
1 :1!~/ jtm 

Zn---O~iTIVJCH2 
CH2 

The overall equation is : 

(6.4) 

Again the final zinc containing product could be described only generally by the 

Zn(OH)+ species. It probably decomposes to ZnO or reacts with another hydroxyl 

group to form Zn(OH)2. The nature of the byproducts ensures that they volatilize 

away since they are hydrocarbon species of low molecular weight. 

6.3.2 Films Grown in a Wet Ambient 

The presence of water in the spray means that hydrolysis identical to that reported 

by Kamata Ill) can occur. (This has been shown to occur at temperatures as low as 

25°C). There are then two decomposition mechanisms which can lead to the formation of 

ZnO. The intramolecular mechanism, involving water coordinated within the hydrated 

molecule, and conventional hydrolysis resulting from the addition of water to the spray. 

Thus the deposition efficiency is in principle enhanced in the presence of H20. It was 

observed that the intramolecular mechanism depended on the presence of water to 

detach the acetylacetonate groups. The results suggest that the additional hydrolysis 

decomposition mechanism is more efficient in yielding ZnO from Zn(acac)2.H20 than 

the intramolecular mechanism up to 200°C. At higher growth temperatures the spray 

process becomes significantly more efficient than would be expected from the three 

known mechanisms. 

Two possible pathways for the intermolecular hydrolysis of Zn(acac)2.H20 are 

outlined in figures 6.13 to 6.14. The water molecules could attack Zn(acac)2.H20 at 



carbon (C2) (fig.6.13) or at zinc (fig.6.14). The step in figure 6.13(a) shows that the 

action of nucleophilic attack by water at carbon (C2 ) results in the cleavage of a carbon-

oxygen bond at (I) and a hydride transfer from water to C2. The step is exothermic 

.· . 

Figure 6.13(a) First step in the first route to the intermolecular hydrolysis ofZn(acac)2.H20 

(b) Second step in the first route to the intermolecular hydrolysis of Zn(acac)2.H20 

2-
(acac)ZnO + C H 0(0Hl 

2 5 7 

Figure 6.13(b) shows the cleavage of a carbon-oxygen bond at (I) leading to the 

removal of the first acetylacetonate ligand. The steps in figures 6.13(a) and (b) are 

repeated for the removal of the second acetylacetonate ligand. This leads to the for-

mation of Zn04Hn where n = 1 - 4. The second route to decomposition via attack at 

zinc by oxygen in H20 is shown in figure 6.14. The steps of this second route are : the 

cleavage of a zinc-oxygen bond at (I), the formation of a carbon-oxygen bond at (II) and 

the formation of a carbon-carbon double bond at (III). This process may be repeated 

until the first acetylacetonate group is removed. The second step to the removal of the 

first group is shown in figure 6.14(b) and involves the cleavage of a zinc-oxygen bond 

at (IV). 

The loss of the second acetylacetonate group occurs through a repeat of the steps 

shown in figures 6.14(a) and (b). 
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Figure 6.14(a) Initial step of the second route to the intermolecular hydrolysis of 

(b) Second step of the second route to the intermolecular hydrolysis of Zn(acac)2.H20 
H . 
\ /H 

H\i:H O 
01 /CH3 

o--c 
(acac)Zn··1lvJ '-

I 
CH 

o=c/ 
""-cH 

OH 3 

The steps have a heat of reaction of "'-650 KJ mol- 1 . The resulting species formed 

is Zn(OH2)(0H);+. It is possible that the solvent plays a role in the decomposition of 

Zn(acac)2.H20. This could occur as a consequence of the stabilization of ionic species 

through the delocalisation of charge over a cloud of solvent molecules surrounding the 

decomposing precursor. It is also possible that solvent molecules coordinate to frag-

ments of Zn(acac)2.H20. 

The rate of the intramolecular mechanism is significant at low temperatures and 

when water is present the hydrolysis mechanism is further enhanced. At high tern-

peratures the thermolysis becomes more important as more energy is available and as 

both the coordinated and the externally added water are driven off more rapidly by 

evaporation. If it may be assumed that the intramolecular and thermolytic processes 

are independent of added water, then the net contribution of hydrolysis to the de-

composition of Zn(acac)2.H20 is determined from the difference between wet and dry 

characteristics (figure 6.2). 

The resulting line falls steeply as growth temperature increases indicating that this 

decomposition is very temperature sensitive. In fact this mechanism could serve to en-
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hance the intramolecular mechanism at low temperatures (100°C), but at temperatures 

higher than 200°C the results indicate that it is beneficial to have weakly bound water 

coordinated directly to the precursor. This does not account for the large thicknesses 

obtained at high growth temperatures. This is likely to be due to an enhanced variant 

of thermolysis (hydrothermolysis). 

The heats of reaction indicate that the low temperature processes are exothermic 

(intramolecular -94 to -370 KJ mol-1 , hydrolysis -1000 KJ mol-1 ) and that the high 

temperature processes are endothermic +291 to 900 KJ mol- 1 • The activation energies 

indicate that the low temperature processes are qeactivated by an increase in temper

ature which would tend to agree with the interpretation of the values of the heats of 

reaction (exothermic), which suggest that exothermic reactions are suppressed by in

creasing reaction temperature. The pre-exponential factors are very small in magnitude 

for processes occurring at low temperature (for processes that are exothermic with neg

ative activation energies) and considerably larger for high temperature processes. This 

might indicate that the collision frequency ofZn(acac)2.H20 with other molecules of the 

same formula or with solvent molecules increases as the growth temperature increases. 

Such collisions can lead to the decomposition of Zn(acac)2.H20 through the concentra

tion of energy in particular bonds or the activation of the entire molecule. This can 

be called the transition state. From it the molecule can either lose energy again to 

surrounding molecules without breaking up, or can be decomposed to the products. In 

the spray it is likely that molecules of Zn( acac )2 .H20 undergo many collisions before 

decomposition, perhaps in order to gain enough energy to decompose, since individual 

steps are endothermic. 

The intramolecular route is a 3 step process, the thermolysis a 2 - 8 step process 

and intermolecular hydrolysis a 4 step process. The thermolysis is the most complex 

and yet offers more pathways than the others. As for the hydrothermolysis-thermolysis 

occurring at high temperatures it can only be presumed that water acts in some way 

to increase the rate of individual steps and perhaps lower the overall heat of reaction. 
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It is probable that the decomposition through the thermolysis mechanism involves 

the activation of zinc precursor molecules through multiple collisions, whereas mech

anisms involving water molecules need only collide with one to undergo hydrolysis or 

not at all if the coordinated water is responsible for decomposition. In conclusion the 

decomposition of Zn(acac)2.H20 is complicated and requires further work, but it is 

apparent that the decomposition mechanism does affect the film structure indirectly 

(through the increased reaction efficiency at lower temperatures) and possibly directly 

through surface reactions and a change in the mechanism for films grown in a dry 

ambient. 

To summarise: 

(1) Zinc oxide film growth is governed by three main decomposition routes: the 

intramolecular hydrolysis route, the thermolytic route and the intermolecular hydrolytic 

route. 

(2) The intramolecular route leads to the decomposition of Zn(acac)2.H20 between 

growth temperatures of 100°C and approximately 276°C, the thermolysis mechanism 

between 191 °C and higher temperatures and the hydrolysis mechanism at growth tem

peratures between 100°C and 200°C. There are one or more possible pathways for these 

decomposition routes but it is not known which are favoured. 

6.4 Spray Modelling 

This section outlines the physical aspects (i.e the processes of desorption and evap

oration) of spt:ay pyrolysis using kinetic modelling. 

The aim of the modelling is to elucidate the main factors affecting the process 

and to make a comparison between theory and the experimental data. Two models 

have been considered. The first assumes that the Zn(acac)2.H20 (or simply Zn(acac)2) 

arrives above the growing film surface and that some of the precursor is converted to 

ZnO and some is vented off. It is therefore possible to define two rate constants at 

which these processes occur and write an equation for the rate of change of precursor 
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concentration on the substrate·. In the second model, the precursor is assumed to form a 

reactive intermediate (which could be for example Zn(0Hh12 Zno~- or Zn04Hn where 

n = 1- 4 which then decomposes to form the ZnO. 

6.4.1. First Model 

If R(mol s-1 ) is the rate of arrival of precursor at the substrate and kzno is the rate 

of decomposition of Zn(acac)2, kevap is the rate at which precursor leaves the substrate 

without decomposing and [Zn( acac )2] is the concentration of the precursor in the spray, 

then the following equation can be written for the rate of change of [Zn(acac)2] under 

the assumptions of model 1 

d[Zn(acac)2] 
dt . = R- kzno[Zn(acac)2] - kevap[Zn(acac)2] (6.5) 

The rate of formation of ZnO is 

d[ZnO] 
dt = kzno[Zn(acac)2] (6.6) 

where [ZnO] is the concentration of ZnO on the substrate. The exact value of 

kzno will depend on the temperature and the presence of water and which of the 

intramolecular or thermolytic or hydrolytic mechanisms are operating as indicated by 

the experimental data presented in section 6.3.2. The magnitude of ket,ap will also be 

influenced by the substrate temperature and should increase as the growth temperature 

mcreases. 

Under steady state conditions the surface concentration of the zinc precursor re-

mains constant and 

and 

d(Zn(acac)2) = 
0 

dt 

R- kzno(Zn(acac)2]- kp•·ap[Zn(acac)2] = 0 
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Defining a mean rate constant kave by the following expression 

kave = kznO + kevap 

then equation 6.8 can be rewritten as 

R 
[Zn(acac)2] = -k-

ave 

(6.9) 

{6.10) 

which can be used to obtain information about the spray process. The relative 

magnitudes of kzno and kevap can vary in three different ways, kzno > , = , < kevap· 

Inserting kzno = kevap in equations 6.9 and 6.10 gives 

R 
[Zn(acac)2] = ~2k~-Zn0 

(6.11) 

Combining equations 6.6 and 6.11 gives the following expression for the formation 

ofZnO 

and integrating leads to 

d[ZnO] = O.SR 
dt 

[ZnO] = 0.5Rt 

(6.12) 

(6.13) 

giving the amount of ZnO deposited after a spray time t. It indicates that when 

the rate of evaporation equals the rate of decomposition of precursor to ZnO then half 

of the material is deposited. When kzno ~ kevap equation 6.10 can be written as 

R 
[Zn(acac)2] ~ -k

ZnO 

Substitution into equation 6.6 gives 

d[ZnO) "'R 
dt -
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indicating that the rate of conversion to ZnO is nearly equal to the rate of arrival 

of Zn(acac)2.H20 and therefore, 

[ZnO] ~ Rt (6.16) 

indicating that the process is efficient and that most of the precursor is converted 

to ZnO on the substrate. 

The third condition sets the rate of evaporation of the precursor as greater than the 

rate of decomposition of precursor to ZnO, which is more similar to our experimental 

situation than the other two cases. Then, 

and 

kevap ~ kave 

R 
[Zn(acac)2] ~ -k-

evap 

and the rate of change. of concentration of ZnO is given by 

or on integrating 

d[ZnO] Rkzno 
.......:........,.....--...:. "' --::------'-

dt - kevap 

[ZnO] ~ Rtkzno 
kevap 

(6.17) 

{6.18) 

(6.19) 

(6.20) 

Therefore the amount of zinc oxide deposited in this case will depend on the ratio 

of the rate of decomposition of precursor to ZnO to the rate of evaporation of precursor 

from the substrate but will always be less than half the arrival rate. 

' Rate constants are Arrhenius type expressions of the form 

k = A a exp ( ~~a) (6.21) 
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where A is a constant and Ea is the activation energy. The pre-exponential factor 

is the number of collisions between reactant molecules per unit time and the Ea is the 

energy required to initiate a reaction. This means that the expressions for the rates of 

formation of ZnO and evaporation from the substrate can be written in the following 

way 

(
-Ezno) kzno = Aznoexp RT (6.22) 

k A ( 
-Eevap) evap = evapezp . RT (6.23) 

The ratio of kzno to kevap is then given by 

kzno Azno ( Eevap- Ezno) --=--exp 
kevap Aevap RT 

(6.24) 

Equations 6.20 and 6.24 can be combined to give 

[ZnO] ~ RtAzno exp (Eevap- Ezno) 
Aevap RT 

(6.25) 

Taking the logarithm of this expression gives 

ln[ZnO] ~ ln (RtAznO) + (Eevap- Ezno) 
Acvap RT 

(6.26) 

A plot ofln(thickness) versus reciprocal growth temperature then has a slope equal 

to 

( Eevap ~ Ezno) 

This expression applies when the rate constant for the evaporation of precursor from the 

substrate kevap is greater than the magnitude of the rate constant for the decomposition 

of Zn(acac)2.H20. 

Thus if Eevap is greater than Ezno then the slope will be positive and if Eevap 

is less than Ezno then the slope of the curve will be negative. These two regimes 
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are drawn out in figure 6.1 and are similar to those marked {1) and {3). However the 

interaction of chemical processes makes separate effects difficult to disentangle. 

6.4.2 Second Model 

The second model envisages a process in which some of the precursor at the sub

strate ca~ be- converted to an intermediate that decomposes to ZnO and some-- can 

evaporate directly from the substrate unchanged. 

Therefore there are three processes at work with three rate constants : (kevap), the 

rate of decomposition of Zn(acac)2.H20 to the intermediate (kzn(O..,H
11
)), and the rate 

of conversion of the intermediate to ZnO (kzno ). 

The rate of change of the precursor concentration is 

d[Zn(acac)2] 1 1 

dt = R- kzn(O,H)Zn(acac)2]- kevap[Zn(acac)2] {6.27) 

In the steady state 

(6.28) 

where 

I I I 

kave ~ kzn(O.,Hy) + kcvap (6.29) 

In the steady state the rates of change of concentration of Zn(O:~:Hy) and ZnO are 

(6.30) 

and 

d[ZnO] 1 

dt ~ kz11o[Zn(O:~:Hy)] = 0 (6.31) 

so that 

d(ZnOJ , 
dt ~ kzn(O.,Hul[Zn(acac)2] (6.32) 
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From equation 6.29 

or 

which is the same as 

Therefore, 

Integrating this expression gives 

with the condition 

then equation 6.28 becomes 

R 
[Zn(acac)2] ~ r 

ave 

' ' 
kevap > kzn(O.,H11 ) 

and substitution into equation 6.37 leads to 

If 

I I 

kzn(O.H ' ~ kP.t•ap 
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(6.34) 

(6.35) 

(6.36) 

(6.37) 

(6.38) 

(6.39) 

(6.40) 



then 

(k~n(O H )[Zn(acac)2]t) 
[ZnO](t) ~ "' 

11 
k' 

ave 
{6.41a) 

· ( k~:ap[Zn(acac)2Jt) 
[ZnO] ~ k' 

ave 
(6.41b) 

Substituting for the rate constants with expressions in terms of the activation 

energies and pre-exponential constants gives the expression 

(6.42) 

A plot of ln(thickness) versus reciprocal temperature if these conditions applied 

would have a slope of 

( -Eevap) 

6.5 Discussion 

In the spray pyrolysis process the solvent has to be driven off before the spray 

reaches the substrate for the deposition of films of an acceptable quality. Above 200°C 

for O.lM solutions of Zn(acac)2.H20 the large majority of solvent aerosol is driven off 

before it reaches the substrate surface. However in films grown below 200°C solvent 

impinges on the film surface. This has been shown in sections 5.2.4 and 5.2.7 to destroy 

and degrade film cohesion and surface morphology. If there is enough energy for the 

solvent to evaporate then the Zn(acac)2.H20 will also evaporate to some extent and the 

rate of evaporation of both solvent and precursor increase as the growth temperatur~ 

increases. In addition to this there then follows the decomposition of the precursor by 

one of the three routes described in section 6.3. Therefore the deposition character-

istic depends not only on the efficiency and temperature range of the decomposition 

mechanisms themselves but also on the evaporation characteristics of the solvent and 

precursor. At growth temperatures below 200°C these reactions may to a certain extent 

occur in the liquid phase and the kinetic energy of the molecules will be low. 
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Above 200°C it is more likely that the reactions take place in the gas phase and 

at the film surface. 

The maximum possible yield of the ZnO film thickness if all the precursor used were 

converted to ZnO would be lOOJ.tm. In fact the experimentally d~termined thickness was . 

in the range 0.3-lOJ.tm. This means that the majority of the zinc precursor evaporates 

or is deflected through hydrodynamic effects. Thus the spray process fits the condition 

of kevap greater than kzno and spray pyrolysis is dominated by precursor effects. Thus 

from 100°C to 400°C there is a general trend of decreasing film thickness with increasing 

growth temperature and the rate of evaporation increases with respect to the rate of 

decomposition. However the rate of decomposition varies with temperature as the 

mechanism changes with temperature, and the presence or absence of water. Thus 

the rate of decomposition of the precursor under dry conditions should be larger at 

high temperature since the intramolecular mechanism, as determined by Coates and 

Banister< 7 l is only 3-4 %efficient. At high temperature the decomposition through the 

thermolysis mechanism is expected to be more efficient because the mechanism does not 

rely on the presence of H20. However the evaporation rate is still significant and the 

result is an overall decrease in ZnO film thickness with substrate temperature. From 

the theoretical interpretation of the spray pyrolysis process it is clear that the changes 

in slope as the temperature increases indicate a change in the sum (Eevap- Ezno). The 

slope of the experimental plot of ln(thickness) versus reciprocal temperature plot for 

films grown in a dry ambient indicates that Ezno is always greater than Eevap but the 

change in the slope between the temperature ranges 100°C- 200°C and 200°C- 400°C 

implies that a change occurs in the mechanism of decomposition of ZnO at about 200°C. 

This coincides with the change from the intramolecular to the thermolysis mechanism. 

This change in the dominant mechanism is reflected in the changes which were observed 

in the structural properties (i.e the bulk preferred orientation changes from (0002) to 

(lOll) and the electrical and optical properties. The slope of the plot above 200°C is 

approximately zero indicating that here Eevap - Ezno ~ 0. 
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When water is present the effect is to introduce an additional mechanism to increase 

the rate of decomposition relative to the rate of evaporation. The presence of water not 

only increases the yield of ZnO but also changes the slope of the ln(thickness) versus 

reciprocal temperature plot for films grown in a wet ambient. This indicates a change 

in the sign of the actiVa.tion energy, with the activation energy for evaporation being 

greater than that for process of decomposition . The presence of the water leads to 

the decomposition of the precursor along a lower energy route compared to straight 

thermolysis where the need for the breaking of bonds through collision and activation 

is replaced by the benefit of water catalysed hydrolysis. 

6.6 Summary and Conclusions 

Decomposition of ZnO from Zn(acac)2.H20 occurs by four different routes. These 

are: 1/ intramolecular mechanism, a low temperature route where the coordinated water 

is responsible for the hydrolysis of Zn(acac)2.H20. The mechanism is exothermic. 

2/the thermolysis mechanism, a high temperature route where the only means of the 

decomposition of the zinc precursor are by the cleavage of bonds through the concentra

tion of energy. This is likely to be aided by a high collision frequency among molecules. 

This is an endothermic mechanism. 

3/ intermolecular mechanism, a low temperature mechanism where the hydrolysing 

agent is external. The mechanism is exothermic. 

4/ an unknown mechanism, dependent on the onset of thermolysis and therefore a 

high temperature mechanism. It probably involves portions of the thermolysis aided by 

the water hydrolysis, lessening the reliance on purely thermal activation. The overall 

controlling factor is re-evaporation from the substrate across the temperature range 

studied. 
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Chapter Seven 

Deposition and Characterisation of Doped Zinc Oxide Grown 

at Low Temperature 

7.1 Introduction 
- . . . . . . 

Since one of the prime objectives of the project was to deposit transparent con-

ducting coatings on plastic our approach had been first to determine whether good 

quality films could be put down by spray pyrolysis in the range 150°C - 200°C. As it 

has been demonstrated, as described in chapter five, that this could be best done under 

dry conditions with substrate heating only, the next requirement was to improve the 

conductivity of such films by doping with a suitable donor impurity. InCl3 was chosen 

for this because earlier work I 1•2> had shown it to be the most effective. The growth 

of In doped ZnO films at low temperature forms the subject of this chapter. Other 

dopants have been investigated but proved less efficient. Experiments on these will be 

described later in chapter 9. 

7.2 Growth of Doped Films 

Growth of indium doped zinc oxide was initially carried out at 200°C. Three dif-

ferent concentrations of zinc precursor were used. They were O.lM, 0.05M, and 0.02M 

solutions of Zn(acac)z.HzO in propan-2-ol. Solutions were doped with either 3 atomic 

percent (at.%) or 6 atomic percent of InC13.3H2 0 and in all cases 700 cm3 of solution 

was sprayed, on the glass substrate. 

After these trials proved successful further experiments were standardised and all 

spray runs were carried out using 0.02M Zn(acac)z.HzO doped with 6 atomic percent 

of InC13.3H20. Deposition was then carried out in the range 100°C-200°C on glass and 

on UpilexR plastic supplied by ICI Plc. Upilex is a polyimide material_and is described-

in detail in section 4.4. The spray times varied from 15 to 19 minutes. Thicker zinc 

oxide was also grown from a larger volume of solution (2.1 litres) when spray times 

varied from 41 minutes to 50 minutes. 
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7.3 Physical Properties of Fihns Grown at Low Temperature 

7 .3.1 Visual Appearance and Adherence of Films to Their Substrate 

All films grown at low temperature in a dry ambient were adherent to the substrate, 

and those grown at 200°C from lower concentrations (0.02M) of Zn(acac)2.H20 were 

smooth, clear, and speckle-free. The films grown from the highest concentrations (0.1M) 

of zinc precursor possessed a speckled surface but were otherwise clear and transparent. 

The combined use of the highest zinc precursor concentration and highest dopant 

concentration led to films with the least transparency and highest roughness. 

7 .3.2 ZnO Film Thickness 

The thicknesses of films grown solely from 700 ml of0.02M solutions ofZn(acac)2.H20 

containing InCh were roughly independent of dopant concentration at 200 nm. Thick-

nesses did vary with growth temperature (see figure 7.1) and with zinc precursor con-

centration, figure 7.2. Results are plotted in figure 7.1 for growth between 150°C and 

200°C from 700 cm3 of precursor solution. The film thicknesses varied from 0.4~m to 

0.165J.tm over the temperature range 150°C to 200°C. The thicknesses of films grown 

usin~ 2.1 litres of precursor solution are also plotted against growth temperature in 

figure 7.1 and are not appreciably dependent on temperature. The thicknesses of films 

deposited on UpilexR plastic varied· from 0.360J.tm to 0.550J.tm in the temperature range 

175°C and 200°C. Clearly the nature of the substrate had little effect on the thickness 

of films grown at 200°C. 

The relative insensitivity of the film thickness to dopant concentrations and tern-

perature at these low temperatures is somewhat surprising. It suggests that the In:Ch 

was in fact influencing the deposition of Zn(acac)2.H20 by controlling the availability 

!, of nucleation sites and-opposing evaporative effects during the growth ofZnO. Tne net 

effect is that the growth rate is influenced by the decomposition of InCla which sets in 

by 200°C (see section 7.4). 

The results from the preliminary doping trials are plotted a.s 'film thickness against 
,_ 

the concentration ofZn(acac)2.H20 in figure 7.2 for films grown at 200°C from solutions 
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doped with 3 and 6 atomic percent InCh. The thickness of ZnO deposited increased as 

the Zn(acac)2.H20 concentration was increased from 0.02M to 0.1M. The film thickness 

also varied with the dopant concentration, i.e since doubling the InCla concentration 

increased film thickness by a factor of 1.4 at a precursor concentration of 0.02M and by 

nearly a factor of 2 at 0.1M. 

7.4 Indium Concentration in Zinc Oxide Films 

The concentration of indium present in ZnO films was determined using ESCA, and 

spectra for films grown at 150°C and 200°C are shown in figures 7.3 and 7.4. They show 

the lines due to the various electronic energy levels of zinc, oxygen, indium and chlorine 

and carbon .identified by their binding energies. The indium and chlorine contents are 

detectable by the lines due to the In3d and Chp electronic shells. The main difference 

between the two spectra is the presence of the Chp in the film grown at 150°C. 

The measured concentrations of indium and chlorine in the films are plotted as a 

function of growth temperature in figure 7.5 for an original solution doping concentra

tion of 6 atomic percent of InC13 .3H20. The indium concentration in the films did not 

vary significantly with growth temperature. The chlorine concentration in contrast de

creased from approximately 3 atomic percent to below 0.5 atomic percent as the growth 

temperature was increased. The results obtained from films grown at 150°C and 175°C 

would suggest that the InCh is not decomposed since the atomic ratio of indium to 

chlorine is 1 : 3 in this range. However by 200°C the amount of chlorine present is 

insignificant confirming that InCh is decomposing and tlie chlorine is evaporating. 

Depth profiling using ion beam thinning of one film grown at 200°C under otherwise 

identical conditions showed that the concentration of indium varied between 0.9 to 1.2 

atomic percent from the ·SUrface down to a ·depth of-0.21ij.£m. The concentration of 

chlorine in the film was always below 0.5 atomic percent. Figure 7.6 shows a plot 

of the concentrations in the film of a selection of elements found in both ZnO and 

alkali glass. The figure shows how the concentration of czinc and indium increased 

on going from the surface to the bulk, whereas the anioU:nt of carbon and oxygen 
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decreased. The concentration of silicon was low until the substrate was reached. At 

the substrate the zinc concentration fell to zero and the concentration of silicon and 

oxygen increased suddenly. The results suggest that the films contain an excess of 

zinc (in the form of zinc interstitials or oxygen vacancies) but that they are more 

stoichiometric at the surface. The total film depth was approximately 0.25JLm as shown 

by the analysis technique indicating approximately zero indium concentration after the 

removal of 0.3JLm of film material. This result demonstrates the uniformity of the 

doping process. The penetration depth of XPS is 1-5 nm and the quoted sensitivity is 

0.2-0.5 atomic percent. 

7.5 Structural Characterisation of Doped Films 

Films grown at 200°C from the lower concentrations of zinc precursor had better 

morphology due to a lower growth rate. 

Increasing the dopant concentration also increased the roughness and disorder in 

the films at grain boundary interfaces. Films grown at lower temperatures had godd 

morphology in the range 175°C to 200°C, but at 150°C the morphology became severely 

degraded suggesting that film order breaks down abruptly. This might have been caused 

by a change in the rate of evaporation from the substrate (section 7.3), a change in the 

mechanism of film formation, or due to undecomposed InCIJ. 

7.5.1 Surface Structure by RHEED 

The surface structure of most films has been examined in RHEED. Diffraction pat

terns could not be obtained from very thin films suggesting that they were amorphous 

and that a minimum thickness was required for a crystalline structure to be established 

on glass (amorphous) substrates. 

The observed surface preferred orientations of low temperature doped films are 

summarised in table 7.1. The results show that most films exhibited some degree of 

orientation, but on three different planes depending on the .conditions of deposition and 

with substrate temperatures of 175°C arid higher. 

Figure 7.7 is a pattern taken from a film grown in a dry ambient doped with 3 
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Doped ZnO grown at. 200°C in a dry ambient 

Zn( acac )2 .H20 InCh Surface preferred 

concentration / mol dm -l concentration / (At. %) orientation 

0.02 M 3 (lOll) 

0.02 M 6 (0002) 

Doped ZnO grown at 20Q°C in a wet ambient 

0.02 M 3 (1122) 

0.02 M 6 random 

Doped ZuO grown at 200°C in a dry ambient 

0.05 M 3 (lOll) 

0.05 M 6 (0002) 

0.1 M 3 (0002) 

0.1 M 6 (lOll) 

Table 7.1. Summary of the surface preferred order of doped ZoO films grown at 200°C. 

(a) Iut~l)si ty data for polycrystalline Zinc Oxide 

Crystal plane (·10l0) (0002) (lOll) (10l2) ( 1120) (10l3) (1122) Preferred Order' 

dh~odA 2.816 2.602 2.476 1.911 1.626 1.477 1.379 None : random 

Peak intensities/% 71 56 100 29 40 35 28 polycrystalline 

Dopant concentration/ (b) Intensity data for films grown from 0.02M Zn(acach.H20 

(atomic percent) in a dry ambient 

3 20 20' -100 26 16 1·8 (lOll) 

(c) lntem~ity data for films grown from 0.02M Zn(acac),.H20 

in a wet ambient 

3 87 25 100 25 (10il)/(10l0) 

(d) Intensity data for films grown from 0.05M Zn(acach.H20 

in a dry ambient 

3 12 41 100 -23 13 tlOll) 

6 48 100 53 36 (l0ll)/(10l2) 

(e) lnt~nsity data{Qr films gr9Wn fJ"QJJl Q.lM ~~(aca..c)2.JI20 _ -

in a dry ambient 

3 15 60 100 25 25 20 ( lOl_l)/(0002) 

6 25 100 30 10 6 14 (0002)/random 

Table 1.2. Summary of the XRD intensity data for doped Z~O grown at 200°C. 
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Figure 7. 7. RHEED pattern from a film grown at 200°C in a dry ambient from 700 cm3 of 0.02M 
Zn(acac)2 .H20 doped with 3 atomic percent of InCh . 

Figure 7.8. RHEED pattern from a film grown at 200°C in a dry ambient from 700 cm3 of 0.02M 
Zn(acac)2.H20 doped with 6 atomic percent of lnC13 • 

169 



atomic percent of InCl3.3H20. It consists of one central arc corresponding to a (!Oil) 

preferred orientation with a set of arcs of varying angular length lying off the central 

arc at specific angles. The pattern suggests that the film has a preferred orientation 

superimposed on an almost totally random array of crystallites oriented at different 

angles to the substrate plane. 

In contrast figure 7.8 is a pattern ta.ken from a film grown in a dry ambient doped 

with 6 atomic percent of InCb.3H20. The pattern consists of continuous rings (cor

responding to reflections from planes that are oriented over 180°) indicating that this 

film has a (0002) preferred orientation but a more random background. Figures 7.7 

and 7.8 taken together indicate that increasing the dopant concentration leads to the 

randomisation of the film structure and a decrease in the degree of preferred order. 

A similar but more pronounced effect was observed with films grown in a wet 

ambient. Figure 7.9 and figure 7.10 are patterns taken from films grown in a wet 

ambient doped with 3 and 6 atomic percent of InCl3.JH20. In figure 7.9 (1122) is 

the preferred orientation and figure 7.10 shows clearly that here the crystallites were 

randomly oriented. 

7.5.2 Bulk Averaged Structure by XRD 

X-ray diffraction was used to investigate the crystallographic texture of doped 

films. All peaks observed were attributed to zinc oxide by comparison with the ASTM 

card for a random polycrystalline powder sample of ZnO and were indexed accordingly. 

Table 7.2 summarises the intensity data obtained for doped ZnO iilms grown at low 

temperature and makes a comparison with the intensity data for a random polycrys

talline sample. Table 7.3 compares the surface orientations as obtained from RHEED 

with the bulk averaged orientations as obtained by XRD. Examination of table 7.3 

shows that the surface bulk preferred orientation was the same in some films but not in 

others. No explanation for this could be found. However with growth of thicker films 

at temperatures of 175°C and above, the surface orientation was (1122) as against the 

bulk preferred order of (lOll). Figure 7.11 shows the pattern obtained from a film de-
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Figure 7.9. RHEED pattern from a. film grown a.t 200°C in wet ambient from 700 cm3 of0.02M Zn(a.ca.c)2 .H20 
doped with 3 atomic percent of InC13 . 

Figure 7.10. RHEED pattern from a. film grown at 200°C in a. wet ambient from 700 cm3 of a. 0.02M 
solution of Zn(a.ca.c)2.H20 doped with 6 atomic percent of InCh. 
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Doped ZnO grown at temperatures between 150°C and 200°C 

Growth temperaturerc Surface preferred orientation Bulk preferred orientation 

150 (glass substrate) random (lOll) 

17 5 (glass substrate) (1122) (lOll) 

175 (plastic substrate) (0002) 

200 (glass substrate) (1122) (lOll) 

200 (plastic substrate) (1122) (0002 ) 

Table 7.3. Comparison of the surface and bulk averaged preferred order in films grown between 150°C and 
200°C. 

;ure 7.11. RHEED pattern from a film grown at 200°C using 2.1 1 of 0.02M Zn(acach .H20 doped with 
atomic percent of InCh on a plastic substrate. 
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posited on plastic at 200°C. This film had a (1122) preferred orientation as can be seen 

by the intense centralised reflection from this plane. The rest of the pattern consists 

of fewer arcs of narrower width and dimension which in some cases are composed of 

spots. This would suggest that the crystallites are large and irregularly shaped and 

are aligned in clusters around well defined axes with little misorientation. Structurally 

films deposited on plastic are not very different therefore from those deposited on glass. 

7.6 Grain Size Studies 

Grain sizes were measured from the full width half maximum of the preferred 

orientation reflection as determined by XRD. Grain sizes were small and varied from 

20 nm to 50 nm over all the concentrations studied. The addition of too much InC13 (6 

at.%) tended to decrease the grain size, whereas a higher zinc precursor concentration 

had the opposite effect. 

The points plotted in figure 7.12 show the grain sizes in films deposited on glass 

and plastic. It is apparent that grain size increased as the growth temperature was 

increased for both types of film, but that the grain size was larger when plastic was 

used. For growth on glass the grain size reached its maximum at 175°C while on plastic 

the grain size rose with increasing temperature. This suggests that grain growth on 

plastic is temperature activated, while that for films grown on glass at temperatures 

higher than 175°C may be restricted by evaporation, or a high rate of nucleation leading 

to the formation of smaller grains. The results suggest that larger nuclei are formed on 

the substrate surface when plastic is used. This may be due to a better lattice match 

and chemical bonding between the film and the substrate when the substrate is plastic 

since the latter has a crystalline surface. This will improve order on the growing layer 

and encourage larger grains. 
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7. 7 Discussion of Structural Studies and Crystallographic Texture 

Trends revealed by the structural study can be summarised as follows. The use 

of weaker solutions resulted in the randomisation of film structure. The influence of 

water in the gas shroud was to increase the randomness of crystallite orientation, and 

increasing dopant concentration removed the necessary conditions for preferred order. 

The influence of dopant in increasing the film thickness was described in section 7.4. 

The increase in growth rate probably creates sufficient disorder at the grain boundaries 

so as to degrade film quality. 

The preferred orientation was found to be variable, suggesting that the dominance 

of a particular preferred orientation was sensitive to small effects when film preparation 

conditions were changed slightly. In most films the surface preferred order was either 

(!Oil) or (0002). Some agreement was found between the results of preferred orientation 

as determined by RHEED and XRD for films grown at 200°C. This indicates that the 

preferred plane does not change during growth and that the thermodynamic and kinetic 

factors affecting which preferred plane is the fastest growing and has the lowest surface 

energy do not change. Therefore the argument that the surface does not correspond 

to the true preferred order does not need to be invoked. The only comparable work 

to produce zinc oxide films at low temperatures involved MOCVD which yielded films 

having a (0002) preferred orientation (JJ. 

When a larger volume of precursor (2.11) was sprayed the surfaces were all (1122) 

preferred orientation while the bulk was either (!Oil) or (0002). The use of lower 

precursor concentrations and the presence of dopant. resulted in the altering of the 

preferred plane so that the (lOll) was sometimes observed. This could be due to a shift 

in the utilisation of energy available at the substrate from precursor decomposition to 

film formation, since there is less precursor to decompose per unit time. This results 

in slower film growth and allows the thermodynamic and kinetic effects of growth to 

decide which is the preferred orientation rather than mass effects. There are similarities 

between these results and those presented in in section 5.3. It will be remembered that 
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when an undoped film was successively etched, RHEED patterns taken at each stage 

indicated that the (1122) preferred orientation was preserved. This was put down to 

different etch rates along different planes leading to a false picture of the true structure 

of the film. However this did not explain why the untouched surface orientation was 

different from the bulk. That the bulk preferred order is retained down to temperatures 

as low as 150°C in some films, indicated that even if the surface is relatively degraded as 

a result of a decrease in temperature, the bulk still retains order. The constant growth 

rate over the temperature range 150°C to 200°C would also act to support the idea 

that the films are growing to the same degree of perfection whether the preferred plane 

is the same or not. This indicates that the employment of lower concentration solutions 

results in the lowering of the temperature limit ofZnO films possessing crystalline order. 

Finally it is worth noting that these low temperature films are crystalline in contrast 

to those of Sn02 which are amorphous when grown using spray pyrolysis at 220°C (4 ). 

7.8 Electrical Properties 

Comprehensive electrical measurements were carried out on films grown from so

lutions doped with 3, 4.5 and 6 atomic percent in a sequence grown at 200°C in a dry 

ambient using 0.02M Zn(acac)2.H20. The variation of resistivity with solution dopant 

concentration is shown in figure 7.13 indicating that saturation occurs beyond a solution 

doping level of 4.5 atomic percent. Film resistivity varied from 1 x 10-2 to ~ 5 x 10-4 nm 

with increasing concentration of InCia.3H20. The corresponding carrier concentrations 

obtained from Hall measurements were of the order 1025 - 1026 m -a. 

The resistivities for films grown at 200°C using different concentrations ofZn(acac)2.H20 

and InCl3 .JH20 are plotted in figure 7.14. The resistivity of doped ZnO films increased 

from 10-3nm to 0.01 Om as the concentration of zinc precursor was increased from 

0.02M to 0.1M when the solution dopant concentration was 6 atomic percent, indicat-

ing that a larger proportion of the dopant material is electrically active in the film when 

the growth rate is reduced. This is of course achieved at lower precursor concentrations 

and at higher solution dopant concentration. 
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The resistivities of doped films grown between 150°C and 200°C using 700 cm3 of 

0.02M Zn(acac)2.H20 doped with InCh decreased dramatically with substrate temper

ature. At 150°C the resistivity of the layers could not be measured, but when growth 

was carried out between 175°C to 200°C the resulting film resistivities fell to between 

2.6-3.4 X w-3om and 0.5-1.0 X Io-3nm. 

A similar pattern was observed with thicker doped films grown from a larger volume 

of precursor, except that resistivities were lower. In the range 175°C- 200°C resistivities 

were of the order w-4nm. In some samples resistivities as low as w-5nm were obtained 

on glass and 5xlo-50m on plastic. Below a substrate temperature of 175°C the film 

resistivity increased and with films grown at 150°C was 6 x w-2nm. This is attributed 

to the reduced decomposition of InCiJ.3H20 and incorporation of the indium in an 

electrically inactive form into the lattice as confirmed by the ESCA measurements 

reported in section 7 .4. 

Between growth temperatures of 175°C and 200°C evaporation would prevent any 

excess of dopant from being incorporated into the film while there is still enough energy 

available for the formation of electrically active species derived from indium and chlo

rine. These conclusions are backed up by the results of elemental analysis and thickness 

data discussed above (section 7.3.2, 7.4.). The structural data suggest that the smaller 

grain size (30 nm) in films grown at 150°C compared with 60 - 80 nm in films grown 

at 175°C and 200°C influences the film conductivity much more than any changes in 

preferred order which are relatively slight. Mobilities and carrier concentrations of the 

doped films varied from 6 cm2 v- 1 s- 1 to 20 cm2 v-1 s-1 and from 5x 1024 m-3 to 

3x1026 m-3 • 

Whereas the lowest resistivity of one film grown at 200°C was of the order w-5nm, 

comparable resistivities of ZnO:Al and Sn02 films deposited onto polyester foil using 

the sputtering technique were of the order 5 - 6 x w-6nm and 5 x w-5nm respectively 

<5>·< 6>, while sputtered In20 3 :Sn grown at ~ 150°C had a resistivity of 2 x w-6nm <7>. 

The growth of amorphous Sn02 at 220°C using spray pyrolysis yielded films with a 

178 



resistivity of 10-4nm (4). 

7.9 Optical Properties 

Since our prime interest in this project was to grow conducting transparent films of 

ZnO, the next objective after determining how to grow conducting layers was to measure 

their transmission, and this was done on films grown at 175°C and 200°C from 2.1litres 

of 0.02M Zn(acac)2.H20 containing 6 atomic percent of InCh. Plots of transmittance 

versus wavelength are shown in figures 7.15 and 7.16. They demonstrate that the film 

transmittance is of the order 80 % to 95 % in the visible and near infrared regions ( 550 

nm to 1000 nm ), but in both samples the transmittance falls off at wavelengths beyond 

1000 nm decreasing from 80 % to between 10 and 20% at 3000 nm when free carrier 

absorption becomes significant. The transmission spectra are analysed and discussed in 

more detail in the following chapter. Earlier films grown from different concentrations 

of zinc precursor were also transmitting, typically by about 70% to 85 % in the visible 

region ( 400 nm - 900 nm). The transmittances of comparable transparent conducting 

oxides such as ZnO:Al and Sn02 are of the order 83 % and 76 % respectively (SJ.( 6 ) in 

the visible. Low temperature sputtered In20 3 has an average transmittance of 78% (7). 

Spray pyrolysed indium doped zinc oxide grown at high temperature can have average 

transmittances of 85% (l) or 92 % (2). Low temperature zinc oxide again compares 

favourably with previous work. 

Photoluminescence measurements at 2K undertaken at Hull were made on three 

films grown from Zn(acac)2.H20 solutions doped with 6 atomic percent of InCIJ.3H20. 

the films were grown on glass at 175°C and 200°C and on plastic at 200°C 

All these films gave broad bands indicative of deep centre emission, a typical ex

ample of which is shown in figure 7.17. The intensity of emitted radiation was greatest 

for both films grown at 200°C which both gave comparable intensities, indicating that 

the quality of the films on plastic was as good as that of the films grown on glass. The 

spectra consisted of a broad band centred at 550 nm which is associated with substan

tial impurity related deep centre emission. The bands for each sample displayed rather 
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diffuse structure with secondary peaks at 506 and 568 nm. but better crystallinity 

would be necessary for any detail to be observed. The green blue emission in ZnO at 

510 nm has long been known, but the origin is uncertain. It is usually found when zinc 

is present in excess. 

7.10 Discussion of Electrical and Optical Properties 

The characterisation of doped films using these techniques gave the following im

portant results. Firstly the film resistivity is lower when using low concentrations of 

zinc precursor and high concentrations of dopant. The growth of ZnO from weak so

lutions using high doping levels has the effect of increasing the incorporation efficiency 

of InCh.3H20. Under normal circumstances the thicker films with the higher degree 

of preferred orientation might be expected to be more conducting. However this was 

not found to be the case and the thinner films with the random structure were more 

conductive. What matters is the degree to which the dopant lnCh.3H20 is incorpo

rated into the film in an electrically active form. The use of stronger zinc precursor 

solutions seems to prevent this. Therefore the two elements appear to be in competition 

to become incorporated into the film. 

The results of resistivity measurements on films grown between 150°C and 200°C 

using 700 cm3 and 2.1 litres of precursor show that the effect of decreasing growth 

temperature is to increase film resistivity. The thicker films grown from the larger 

volume of solution are more conductive. The efficiency of the doping process is constant 

between 175°C and 200°C in that the resistivity is fairly constant as are the structure 

and In concentration in the films. Below 150°C the concentrations of indium and 

chlorine have built up to higher levels and the resistivity is considerably higher. From 

ESCA it is clear that InC13 does not decompose efficiently at these growth temperatures. 

The change in electrical properties could be related to the result of the compositional 

analysis in that towards lower temperatures one would expect to see a decrease in 

evaporation and also in decomposition oflnCl3.3H20. Bulk structural properties are not 

significantly degraded at the lowest temperatures and cannot therefore be responsible 
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but the degradation of film surfaces might contribute to the observed changes. 

The optical transmission of films grown at 175°C and 200°C was similar, with 

a high transmittance in the visible region of the electromagnetic spectrum and a low 

transmittance in the IR region. This changeover is gradual. A high transmittance in 

th~ visible region (500 nm - 800 nm) is what would be expected at longer wavelengths 

than the bandgap since only radiation having energies higher than the bandgap value 

would lead to absorption. 

The optical behaviour in the near IR and theIR could be due to either free carrier 

absorption or reflection processes due to high carrier concentrations (1024 - 1026 m-3 ). 

7.11 Summary 

All films grown at temperatures as low as 150°C were adherent to their substrate 

even weeks after their initial growth. Most were highly transmitting in the visible and 

near infrared region. The low temperature growth of doped zinc oxide produces films 

with resistivities of the order w-5nm and visible transmittances of 90% at growth tem

peratures of l75°C to 200°C. This compares favourably with ZnO:Al and Sn02 which 

have also been grown at temperatures to which plastics and foils are resistant.(ITO 

cannot be deposited at such low temperatures). 

The use of low concentrations of Zn(acac)2.H20 and high !nCb dopant concentra

tions made this possible as these produce the conditions necessary for the formation of 

a conducting film at low growth temperatures. 

Relatively large grain sizes and a high degree of preferred order were also observed 

in the most conducting films but were not a necessary requirement for a conducting 

film, suggesting that a high doping level was the dominant factor. 

Thinner films were less conductive than thicker films and have a random structure. 

Thicker films were more ordered due to the survival of the fastest growing planes and 

therefore the development of a. stronger preferred order. 

Doped ZnO can also be grown on a plastic substrate resulting in a film slightly 

less conductive ( 5 x w-5nm) than a film deposited on glass under identical conditions. 
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Films grown on plastic had a different structure and significantly larger grain size. This 

is attributed to substrate effects, in that the plastic used had a crystalline oriented 

surface while the glass did not. Clearly conducting zinc oxide can be grown on a wide 

range of substrates and materials that cannot withstand high temperatures. 

Growth of doped ZnO below 175°C led to the formation of films that were not suited 

to the application of a transparent conducting oxide. They had higher resistivities and 

lower transmittances. However they were very adherent to their substrates and might 

be used as hard antistatic coatings. 
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Chapter Eight 

Deposition of Doped Zinc Oxide at High Temperature 

Using InCh as a Dopant Precursor 

8.1 Introduction 

Having established the conditions for the successful growth of transparent conduct

ing films on plastic, which required substrate temperatures of 200°C or less, the next 

objective was to prepare the best films on glass where the restriction on the substrate 

temperature was removed. In this InC13 was again used as the source of donor dopant. 

Accordingly films were grown with in-flight heating in a wet ambient, since preliminary 

investigations, coupled with the work reported in the preceding chapter, showed that 

thicker and crystallographically better films were deposited under these conditions. 

8.2 Appearance and Thickness of Films 

All the films were continuous, transparent and· free from surface speckle. For 

deposition at 276°C the lightly doped films were light green and with increasing InCh 

dopant concentration the films became dark brown and slightly opaque. However the 

tints of films grown at 306°C varied from light green to green and to dark brown. The 

adhesion of all films with one exception was very good. 

The thickness of the films grown at 276°C and 306°C as a function of the atomic 

percent of dopant in the spray solution is shown in figure 8.1. Clearly the addition 

of InCb to the spray solution reduced the thickness of the films compared with un

doped ones grown at these temperatures (0.91 J.Lm, 276°C; 0.94 J.Lm, 306°C). Films 

grown at 276°C were generally thinner than those grown at 306C!C. The thickness of 

the films grown at the higher temperature varied from 0.35 J.Lm for growth from solu

tions containing 0.5 atomic percent to 0.78 J.Lm for growth from solutions containing 

6 atomic percent. The suppression of thickness varied from 20% to 63% compared to 

an undoped film. The presence of small amounts of InCl3 .3H20 reduced the growth 

rate significantly. However the thicknesses of films grown from the most concentrated 

solutions were comparable with those of undoped films. 
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A number of films were analysed for indium a.nd chlorine content using ESCA at 

ICI Wilton. The films tested were those grown at 306°C from solutions containing 3 

and 6 atomic percent of lnCh.3H20 and at 276°C from a solution containing 6 atomic 

percent. Figure 8.2 shows the ESCA spectrum from 0 to 700 eV for the layer grown 
. . . -

at 306°C from a solution containing ~ 3 atomic percent of indium. The In3d peak can 

be seen at 480 eV and it was estimated that some 1 atomic percent of indium had 

been incorporated in the film. Chlorine is also present in this film as shown by the 

Cl2p peak at 200 e V. The estimated atomic concentrations of the various species in the 

different films are listed in table 8.1. Rather more indium was incorporated at the lower 

tern perature. 

This is in contradiction to previous work on doped zinc oxide (l) where the incor-

poration of indium was found to increase with increasing growth temperature. 

The elemental analysis indicates that both indium and chlorine were incorporated 

into films grown at 306°C, and that saturation occurred when solution concentrations 

above 3 atomic percent were used. 

This compares with a higher level of indium and no chlorine at all found in the 

film grown at 276°C from a 6 atomic percent lnCl3 doped solution. The incorporation 

efficiency of InCb was of the order 30% to 60%. This ca.n be compared with the depo-

sition efficiency of Zn(acac)2 .H20 which varies from 0.35% to 1%. InCb is very much 

less volatile than Zn(acac)2.H20. The saturation observed at a growth temperature of 

306°C was not a solubility limit however since the incorporation efficiency of indium 

increased as the growth temperature decreased. This indicated that the incorporation 

is controlled by evaporation and is not a temperature activated process. 

8.3 Structural Characterisation 

This section outlines the results from the structural characterisation by X-ray 

diffraction and RHEED of films grown at 276°C and 306°C from solutions doped with 

InC13.3H20. Most films showed some degree of preferred orientation and table 8.2 is a 

summary of these preferred orientations as obtained from the examination of the film 
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Composition of InCl3 doped ZnO films (at.%) 

Film compo11ition (a) at the surface 

(b) after slight etching 

Growth temperature lnCl3:;oln Zinc Oxygen Indium Carbon Chlorine 

276°C 6 40 a 42 a 1.6 a 17 a < 0.5 a 

37 b 41 b 1.4 b 20 b < 0.5 b 

306°C 3 38 a 40 a 0.9 a 21 a < 0.5 a 

33 b 42 b l.lb 22 b 1.4 b 

306°C 6 37 a 43 a l.la 19 a ::;; 0.5 a 

32 b 43 b l.lb 22 b < 1.4 b 

Table 8.1. Summary of the elemental composition of In-doped ZnO grown at high temperature. 
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Comparison of the surface and bulk averaged preferred order 

(a) Doped ZnO grown at 306°C in a wet ambient with in-flight heating 

Dopant concentration Surface preferred orientation Bulk averaged preferred orientatio 

0 (1122) (lOll) 

0.5 (1122) (lOil)/(1122) 

1.5 (1120) ( 10il) 

3.0 (1122)/(lOll) tlOil) 

6.0 . 11122)/(1120) {lOIOl/( 11201 

( b l Doped ZnO grown at 276°C in a wet ambient with in~ flight he~ting 

Dopant concentration Surface preferred orientation Bulk averaged preferred orientatiot 

0 (1122) (lOll) 

1.5 (lOlll/(1122) (lOll) 

3.0 (10lll/(10l0) (lOil) 

6.0 ( 1122!/( 1120) (lOll) 

Table 8.2. Summary: and comparison of the surface and bulk averaged preferred orientations for In-do 
ZnO films grown at high temperature. 

ped 

(a) Intensity data. for polycrystalline zinc oxide 

Crystal plane ( lOlO) (0002) (lOll) (10l2) ( 1120) (1013) (1122) Preferred Orientation 

<lh.kL/A 2.816 2.602 2.476 1.911 1.626 1.379 1.379 None : random 

Peak intensities/(%) 71 56 100 29 -10 35 28 polycrystalline 

I (b) Intensity data. for doped films grown at 306°C 

in a wet ambient with in-tiight heating 

Dopant concentration/ (at.%) 

I 0 12 35 100 (lOll) 

0.5 15 5 100 10 24 (lOil)/(1122) 

l.:i 21 42 100 15 9 10 (lOll) 

3.0 20 100 11 (lOll) 

6.0 100 8 44 21 (lOl0)/(1120) 

(c) Intensity data for doped films grown at 276°C 

i 
in a wet ambient with in-flight heating 

1.5 32 100 6 (lOil) 

3.0 7 6 100 7 (lOll) 

6.0 36 100 5 (lOil) 

Table 8.3. Summary of the XRD intensities from In-doped ZnO grown at high temperature. 
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surface by RHEED and the bulk by XRD. A summary of the reflected peak intensities 

from XRD spectra is included in table 8.3. 

Electron diffraction patterns were taken from a series of films grown at 306°C from 

solutions containing 0.5, 1.5, 3 and 6 atomic percent of lnCl3.3H20. The pattern from 

an undoped film grown under identical conditions had a random structure as shown by 

long and diffuse arcs. When a small amount of dopant was added to growth solutions 

(0.5 atomic percent) the lengths of the arcs decreased considerably and they became 

less diffuse as seen by examination of the edges of the arcs (figure 8.3). This pattern 

closely resembled one obtained from an undoped film grown at 336°C in a dry ambient 

(section 5.3.8, figure 5.10). 

Thus the film became more ordered with this addition. The sharpness of the arcs 

suggests that the grains were in more intimate contact and that there was not very 

much intergranular material present. 

With 1.5 atomic percent of InC13.3H2 0 the film structure became more randomised 

(though not to the same extent as the undoped film) since the arcs lengthened and were 

more diffuse compared to those shown in figure 8.3 for the film grown from a 0.5 atomic 

percent doped solution. Thus the crystallites were not so well aligned with respect to 

the main preferred orientation. This may possibly be due to an increase in the grain 

boundary volume and an increase in disorder between grains. 

Films grown from solutions containing 3 atomic percent of InC13.3H20 gave pat

terns where the arcs were now more or less spread out over 180° and are better described 

as rings suggesting that the crystallites were randomly oriented at all possible angles 

and over most orientations. However there was still a maximum in intensity along the 

90° line of the pattern indicating that certain orientations were still preferred. The 

rings were broken and consisted of areas of sharpness and diffusivity among the general 

intensity of the background ring. Such a pattern is indicative of irregularly shaped 

grains. 

Films grown from solutions containing 6 atomic percent of InCIJ.3H20 showed 
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Figure 8.3. RHEED pattern from a film grown at 306°C from a 0.5 atomic percent !nCb doped solution . 
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increased randomness of crystallites and the presence of more planes indicated by the 

spread of lines in the X-ray spectrum, visible out to high 28 values measured along 

the 90° direction from the central beam spot. A preferred orientation still occurred in 

this material superimposed on a totally random background. The pattern consisted of 

broken rings consisting of particles again indicative of large irregularly shaped grains. 

The surface structure of films grown at 276°C from solutions doped with 1.5, 3, 

and 6 atomic percent was very similar to that of films grown at 306°C. Once again a low 

concentration of InCl3 led to a preferred orientation which became more diffuse as the 

dopant concentration was increased. However at this lower temperature the evidence 

was that the crystallites were smaller in size and their shape less affected by increasing 

the doping than. at 306°C. 

As table 8.2 shows, most of films grown at 306°C had a (1122) preferred surface 

orientation except for the film grown from a solution containing 0.5 atomic percent. 

Increasing the dopant level to 1.5 atomic percent led to films having a (1120) preferred 

orientation. Films grown from 3 and 6 atomic percent InC13 doped solutions also had 

some additional slight (lOll) and (1120) order. Films grown at 276°C had a (1122) 

preferred order when no dopant was present and a mixture of (lOll) and (1122) major 

orientations when the growth solution contained 1.5 atomic percent. The preferred 

order changed to (lOll) and (1010) as the solution doping level was raised to 3 atomic 

percent. At the highest doping level used (6 atomic percent) the preferred order was a 

mixture of {1122) and {1120). These two particular planes do not normally give high 

intensity reflections in fully random polycrystalline samples (i.e. they are low i11tensity 

reflections in the ASTM index), so that the influence of an increasing level of dopant is 

to increase the number of major orientations. The (1120) and (1010) orientations were 

not previously observed in undoped films and occurred solely as a result of the presence 

of InCla. 

It must be remembered that the surface structure extends some way below the 

surface as demonstrated from results presented in chapter 5. Thus electron diffraction of 
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these films gives an indication of how the films grew once they have became established 

on the film surface. 

The preferred orientations of these films as determined by XRD are summarised in 

table 8.2 and compared with those obtained using RHEED. The majority of the films 

had a (lOll) preferred orientation (showing that these films possessed approximately 

the same structure as undoped films). The most heavily doped film had a (lOIO) 

preferred order. Again this orientation occurred purely as a result of the presence of 

the dopant. 

The films grown at 276°C all had (lOll) orientations thus indicating that the 

dopant was present throughout the film. 

8.3.1 Grain Size Measurements 

The grain sizes of films grown from doped solutions at 276°C and 306°C are plotted 

in figure 8.4 as a function of dopant concentration. The grain size was not very different 

and varied from 32 nm up to 45 nm when the growth temperature of 306°C was used 

and from 35 to 55 nm when the growth temperature was 276°C. 

The general trend was of an initial reduction in the grain size when 0.5 atomic 

percent of InCla was used in spray solutions followed by a gradual increase as the 

dopant concentration was increased from 0.5 to 3.0 atomic percent. 

8.3.2 TEM Studies on Doped Zinc Oxide 

TEM was carried out on two samples from films grown on cleaved rocksalt sub

strates at 276°C from a 3 atomic percent InCh doped solution and at 306°C from 

a 0.5 atomic percent InCh doped solution. (The NaCl substrates were subsequently 

dissolved away in water). TEM showed similar polycrystalline diffraction patterns at 

both temperatures and that for growth at 306°C is shown in figure 8.5. Micrographs 

of individual grains were also taken and for the 306°C film is shown in figure 8.6. The 

micrographs demonstrate that the crystallites are randomly oriented in all directions 

but a higher proportion are oriented along the (lOIO) and (lOll) growth axes. 

This can be compared with the result from growth on glass as shown in table 
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Comparison of the preferred orientation of doped ZnO grown at 306°C 

Dopant concentration/ (at.%) Growth tt>mperature RHEED XRD TEM 

0.5 306°C ( 1122) (lOlll/(1122) ( 1010)/( lOll) 

3.0 276°C (10Il)/(10l0) (lOll) (10l0)/(10ll) 

Table 8.4. Summary of the preferred orientation in In-doped ZnO films by RHEED. XRD and TEM. 
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Figure 8.5. TEM diffraction pattern obtained from a film grown at 306°C from a 0.5 atomic percent doped 
solution. 

Figure 8.6. TEM micrograph obtained from a film grown at 306°C from a 0.5 atomic percent doped 

solution . 
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8.4. For the film grown at 306°C the preferred order was (1122) from RHEED, and 

a mixture of (lOll) and (1122) from XRD. Thus there is some agreement and overlap 

between the different techniques used for the film grown at higher temperature. For 

the film grown at 276°C, the preferred orientation was (lOll) by all three techniques 

with some (1010) about the film normal, as is expected for a film having a preferred 

orientation. The film put down on rocksalt had the largest crystallites. 

8.4 Discussion of Crystallinity, Preferred Orientation and Grain Size 

The observed trend was that initially surface crystallinity was improved by the 

addition of small amounts of lnCl3 to the spray solution. However the further addition 

of dopant led to a degradation in the crystallite ordering in the films and to a randomi

sation of the structure when compared to an undoped control. This can be explained in 

terms of the growth suppression observed when small additions of dopant were added. 

This suppression (due to competition of the dopant species with the zinc species) causes 

the films to grow in a more ordered way, since in the initial stages of film growth the 

nuclei take longer to grow and therefore thermodynamic requirements rather than mass 

requirements control film growth. This can occur without any detrimental influence on 

the structure since the original dopant solution concentration is so low. In this situation 

the grain boundaries are more ordered and the order within grains and crystallites is 

good. However as the dopant concentration increases the disorder increases and this is 

probably due to a build up of dopant in the grains (manifesting themselves as defects at 

interstitials and substitutional positions) and at the intergranular boundaries. A build 

up of dopant atoms will destroy the relationship between grains and the crystalline 

perfection within grains. This has the effect of causing grains to be more randomly 

oriented. At the higher growth temperature of 306°C this is accentuated since the 

grains are irregularly shaped. At high dopant levels the relationship between grains is 

randomised, apparently at all stages of film growth, and again this probably occurs as 

a result of nuclei in the initial stages of growth grains being disordered relative to one 

another. This has the effect of changing the dominant driving force from one preferred 
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plane to several. 

The XRD study on doped films grown at 276°C and 306°C indicates that the 

presence of the dopant did not interfere with the bulk film growth even though more 

indium was present in these lower temperature films. Therefore the presence of indium 

does not alter the factors that affect the development of preferred order in the film as it 

grows. In all films the bulk orientation was unchanged from that in the undoped layer 

i.e {lOll). Most of the film surfaces had some (1122) preferred order and therefore 

shared much with the undoped films also grown at high temperature. Some also had 

some (lOll) surface preferred order indicating again that sometimes the bulk structure 

is not independent of the surface structure. However other planes which did not occur 

in undoped film growth were present and most have been solely due to the effect of 

InCh ( i.e (1120) and (1010)). These occurred at the higher solution doping levels. 

The influence of dopant would be to change the growth rate of different planes due 

to its effect on the probability of adsorption of precursor material. In addition a dopant 

atom would also change the interfacial energy of the plane and introduce distortion if 

it was either too large or too small for the site it was occupying. For indium the ion is 

slightly larger than the zinc ion, and if indium replaced zinc a lattice distortion would 

occur. The fact that indium dopant does change the preferred orientation in some 

circumstances points to such an influence being present. In previous work the preferred 

order of InCh doped zinc oxide films grown at high temperature (400°C) was (lOll), 

as opposed to (0002) for an undoped film, with the (1122) and the (1120) orientations 

apparent in some of the films. This compares with the (lOll) and {1122) preferred 

orientations seen in high temperature undoped films, and the same orientations obtained 

in lightly doped films, and in addition the (1010) and (1120) orientations obtained with 

doped films (l). The (1120) preferred order can also be obtained in undoped films when 

oriented substrates are used <2J. 

The grain sizes of these films varied from 32 nm to 55 nm at both growth tempera

tures, with larger sizes being obtained at the lower temperature by some 10 nm. When 
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a small addition of dopant was made to the spray solution a reduction in the grain size 

was immediately obvious. This occurred together with a suppression in the film growth 

rate and an improvement in the crystallinity. It is logical to assume that if the overall 

film growth rate is suppressed then the grain and crystallite growth rates will also be 

suppressed and the crystallinity will be improved. 

8.5 Electrical Properties of InC13 Doped Zinc Oxide 

Plots of film resistivity (at room temperature) versus dopant concentration for 

growth at 276°C and 306°C are shown in figure 8.7 where an undoped film grown at 

306°C is shown as having a resistivity of 10 Om. 

The room temperature resistivities of the doped films varied from 10Om to 10-4 nm 

as the solution doping level was increased from zero to 6 atomic percent. The addition 

of 1.5 atomic percent of InCl3 to the growth solution reduced the film resistivity by 

four orders of magnitude for a film grown at 276°C and by 5 orders of magnitude for a 

film grown at 306°C. These results suggest that although less indium is present in films 

grown at 306°C, more of it is present in an electrically active form. 

A plot of the carrier concentration as a function of InC13 content in the precursor 

solution is shown in figure 8.8 for films grown at 306°C. The carrier concentration de

creased slightly from 1026 m - 3 at 1.5 atomic percent InCh to 7.5 x 1025 m -J at 6 atomic 

percent InCh. The resistivity of films grown from 0.5 atomic percent was too high to 

allow Hall measurements to be made. The maximum electrically active concentration 

of indium was incorporated when 1.5 atomic percent was used and this produced films 

with the lowest resistivity, 10-4om. The corresponding electron mobility was 5.8 cm2 

v-1 s- 1 , very much less than the electron mobility in single crystal zinc oxide which 

is approximately 180 cm2 v-1 s- 1 <3>. In polycrystalline films grain boundaries reduce 

the mobility of free carriers. 

The carrier concentrations in films grown at 276°C showed greater scatter but were 

generally of the order of 1025 m - 3 corresponding to resistivities ~ w-3om and mobil

ities similar to those in films grown at 306°C. The Hall measurements clearly demon-
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strate that more electrically active indium is incorporated in films grown at 306°C. 

Temperature dependent measurements in figures 8.9 to 8.12 showed that the carrier 

concentration (figure 8.11) increased from 1024 m - 3 to 7 x 1025 m - 3 while resistivity 

was almost constant (figure 8.9) and electron mobility decreased from 5x1o-3 m2 v- 1 

s-1 to 3x 10-4 m2 v-1 s-1 (figure 8.12) with increasing temperature from lOOK to 

313K. The resistivity measurements indicate that the material is degenerate (i.e. that 

the Fermi level has entered the conduction band). The high carrier concentration also 

suggests that the material is degenerate. The mobility is proportional to reciprocal tern-

perature suggesting metallic-like behaviour (at the highest temperatures Rn became 

too small to measure, as shown clearly in figure 8.10; these points were therefore not 

included in the curve fitting in figure 8.12) which is also consistent with a degenerate 

material. If we regard the carrier mobility as limited by scattering at oscillating atoms 

where Q is the scattering cross-section of an atom for an electron with the Fermi energy 

giving a mean free path of AF, then 

(8.1) 

where N =no. of atoms per unit volume. Therefore, 

(8.2) 

But Q is proportional to (x2 ) where xis the amplitude of vibration. The potential 

energy of oscillation is given by 

(8.3) 

Therefore, 

(8.4) 
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and since v F (the velocity of electron at the Fermi surface) is independent of T it 

follows that 

where m is the effective mass of a free carrier and 

where (j is the conductivity. 

1 
(j = neJ.L oc -

T 

(8.5) 

(8.6) 

For a metallic material n is independent ofT but here n decreases with decreasing 

temperature, which is semiconductor-like behaviour, where freeze out of carriers occurs. 

However plots of log(nT-314 ) did not really show the straight line behaviour expected 

suggesting that the temperature dependence of carrier concentration was not soley 

related to carrier freeze out effects. 

8.6 Optical Properties 

The optical transmittance was measured for films grown at 276°C and 306° C from 

approximately 300 nm to 2500 nm and is plotted in figures 8.13 to 8.15. All films had 

negligible transmission at wavelengths of 300 nm and less. From 300 nm to 500 nm 

the transmittance increased sharply from 16 % to 92 % for doped films grown at 276°C 

(figure 8.13). The spectra are marked by interference fringes where the transmittance 

varied in a periodic way. Higher transmittances were recorded between 300 and 1000 

nm but fell towards 2500 nm (2.5 J.Lm). Generally film transmittance also decreased 

with increasing solution dopant concentration but this does not take into account the 

effect of film thickness, which also varied with dopant concentration. To summarise the 

films were highly transmitting between 300 nm and 1500 nm, but became increasingly 

absorbing or reflecting between 1500 nm and 2500 nm due to free carrier absorption. 

Of all the doped films the most lightly doped film had the highest overall transmittance 

(0- 85 % near to the bandgap; and between 61 - 91 %at the minima and maxima of 

the interference fringes). This is to be compared with the undoped film grown at 306°C 
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(figure 8.14) which had a transmission of between 0 to 96 % near to bandgap and 78 -

92% away from the bandgap with no free carrier absorption. 

Doped films grown at 306°C (figure 8.15) were similar and had transmissions be

tween 55 % and 96 % away from bandgap. Generally speaking, doped films grown 

at 306°C were more transmitting (lower extinctions) than those grown at 276°C but 

were not as good as the undoped film. These results demonstrate the effect of growth 

temperature and dopant concentration on transmittance. At the slightly higher tem

perature the effect of dopant was marginal and the transmission was relatively uniform, 

whereas at 276°C the presence of dopant had a stronger influence on the film properties 

in reducing the transmittance especially at longer wavelengths. 

The determination of the bandgap of an undoped film using the procedure described 

in appendix 2 led to a value of 3.27 eV. This was obtained from the intercept of the 

plot of a 2 versus photon energy shown in figure 8.16. The bandgap of an indium doped 

film calculated in a similar way from the plot of a 2 versus photon energy was 3.28 

eV (see figure 8.17). The addition of the dopant did not change the optical bandgap 

significantly. 

Plots of the refractive indices of the two films as a function of wavelength are shown 

in figures 8.18 and 8.19. The refractive index of both films increased with wavelength 

beyond 600 nm. 

The analytical procedure for the optical transmission measurements also provided 

an estimate for the thickness of the ZnO layers. Comparison with the direct measure

ment using the a-step instrument generally gave values 8-14% less than those provided 

by the optical measurements. It is not clear why the discrepancy arose, but it is worth 

noting that the a-step measurements were made by etching a step in the film and 

this may have underestimated the thickness. The optical measurements are an average 

over the relatively large area of the beam (a few nm2 ) and may be influenced by small 

undulations. 
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8. 7 Discussion of Electrical and Optical Properties 

Doping ZnO with indium and chlorine results in the substitution of zinc atoms 

by indium atoms and oxygen atoms by chlorine atoms to form donors. Ionization of 

electrons from these donors leads to the formation of free carriers. When a proper 

doping process is employed indium exists in 1the lattice nominally as In2+ below the 

freeze out temperature, but on heating the loosely bound third valence electron is 

donated to the conduction band and the indium ion relaxes to the In3+. Similarly 

chlorine will exist as Cl2- at low temperature and as Cl- at high temperature. Only a 

small thermal energy is necessary to excite electrons to the conduction band (l). This 

is readily provided at room temperature. The result of growing doped films at 276°C 

and 306°C was to decrease the resistivity from approximately 10 Om to w-4om and to 

increase the carrier concentration, which in some films saturated {1026 m-3) when using 

the maximum doping levels. This situation was reached for both growth temperatures 

but with less dopant at the slightly higher temperature of 306°C. Therefore there was 

no difference in the degree to which the resistivity could be lowered in the range of 

dopant concentration studied, but only in the ease and efficiency per dopant molecule 

included in the spray solution. However the results of doping at 276°C suggested 

that the resistivity could be lowered by further additions, whereas at 306°C the limit 

on the resistivity appeared to be reached with a doping concentration of 1.5 atomic 

percent. Indeed the resistivity increased and the carrier concentration decreased with 

further addition perhaps indicating that the indium and chlorine were simply sitting in 

a nonactive form possibly as ln203 and/or InCl3 at the grain boundaries. 

The results from elemental analysis (ESCA) show that more dopant was present 

in the film grown at 276°C, but from the electrical results it is clear that this is not in 

an active form. The gradual addition of dopant when growth was carried out at 276°C 

resulted in a gradual decrease in film resistivity, which speaks of incomplete pyrolysis 

of the dopant precursor with an increasing proportion contributing free carriers to the 

zinc oxide lattice (the inactive fraction might still be responsible for the enhancement 
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of grain size and effect on structural properties however). 

At 306°C a concentration of 1.5 atomic percent In doping leads to the maximum 

concentration of free electrons. Therefore dopant precursor utilisation at 306°C out

weighs that at 276°C in terms of conversion to an electrically active form in the lattice, 

even though the evaporation effects are also stronger. Structurally the two most con

ducting films were quite different. The first grown at 276°C had a grain size of 55 nm, 

a small degree of ordering, (lOll) bulk and (1122)/(1120) surface orientation, but was 

otherwise random. The more lightly doped film grown at 306°C had a grain size of 32 

nm and. the same preferred orientations, but with generally better crystallite ordering. 

Overall these results suggest that a combination of large grain size and a high density 

of donors benefit film conductivity. 

For comparison with other work it is worth reporting that high temperature spray 

pyrolysed InC13 doped zinc oxide grown using zinc acetate had resistivities of the order 

w-4 - w-5nm without any heat treatment, whereas spray pyrolysis has yielded films 

with resistivities of the order 5x10-6 0m to 7x10-70m for ITO, w-5nm for indium 

oxide, w-5 - w-4nm for undoped tin oxide, w-5nm for antimony doped tin oxide, 

and 5x10-60m for fluorine doped tin oxide up to 1983 <4 >. Also of interest is the 

sputtering of indium doped zinc oxide which had a resistivity of 8 x w-6nm (S). More 

recently spray pyrolysed ITO has yielded resistivities of 3xl0-60m <
6> and fluorine 

doped In20 3 :Sn grown by sputtering, 6xlo-6nm <
7>. Recent attempts to grow tin 

oxide by reactive sputtering have yielded films having resistivities of 9 x w-5nm (S). 

The results of optical calculations compares with the work of Major et al. (l) and 

Jin et al. <9 ) where the refractive index varied from 1.9 to 2.3 between bandgap and 1 

J.tm. 

8.8 Photoluminescence Measurements 

The photoluminescence spectra of two films were measured, both grown at 306°C 

from 0.5 and 1.5 atomic percent InCl3 doped solutions. Spectra were also taken from 

undoped films grown at 306°C under identical conditions, and at 276°C using the spray 
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kit before its modernisation. All the emission spectra were fairly broad and relatively 

featureless, extending throughout the visible from 410 to 700 nm. Maxima in the 

emission were detectable in the undoped film grown at 306°C where peaks occurred at 

about 480, 520 and 580 nm. The green (520 nm) and yellow (580 nm) bands have been 
. . . . . . 

observed previously by numerous investigators ( 10~ 14 >. Films doped with InCh had a 

rather similar, but weaker photoluminescence, with suggestions of maxima near 480, 

520, and 560 nm. There was no clear cut indication of any direct influence of In or Cl. 
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Chapter Nine 

Growth of Doped Zinc Oxide at High Temperature Using 

Alternative Aluminium, Indium and Gallium Precursors 

9.1 Introduction 

The experimental work described in the two preceding chapters was concerned with 

the use of InCl3 as the dopant precursor. This was because that compound had proved 

to be the most effective in reducing the resistivity of the grown film while retaining 

a high degree of transparency. In the course of the work however, a variety of other 

dopant precursors were investigated, and the experiments carried out with these are 

described in this chapter. The properties of undoped films grown at 306°C in a wet 

ambient with in-flight heating were used as a control, since these were the best high 

temperature conditions for the growth of ZnO. They were also the conditions used in 

the majority of growth experiments to be described here. Comparison of the properties 

of the undoped film with doped films allowed the effectiveness of the doping procedure 

and the influence of the presence of dopant in the films to be determined. 

9.2 Dopant Precursors 

The dopant precursors examined are listed in table 9.1. In(acach has been used 

before as an indium source for the growth of In20 3 and ITO using the CVD technique 

( l) but only recently in spray pyrolysis 12 ) for applications in the electronics industry. 

For our work In( acac h was prepared in the Chemistry Department. 

The two indium precursors were chosen to test whether the presence of chloride had 

any influence on film conductivity or film structure. It was initially not clear whether 

the effects of adding InCl3 were due to the indium or chlorine. Consequently a second 

Cl-free dopant was used to try to determine the role, if any, of the Cl. 

A1Cl3 was used because it has been used as a dopant precursor to grow ZnO:Al 

and to deposit insulating films of Al203, (3) and Al(OPrih was tried because it has 

been used in CVD processes to make films of Ah03 for use in VLSI (4•5•6> and other 

device structures as insulating barrier layers (1). Both aluminium compounds were 
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!Dopant precursor used in high temperature growth 

Indium based Aluminium based Galli urn based 

InCh.3H20 AlCh Ga(acach 

ln(acacb Al(OPr;h 

Table 9.1. Summary of precursors used iri doped ZuO film growth. 

Melting points of dopant precursors compared with 

Zn(acacb.H2 0/( °C) 

Zn(acac):z.HzO InCh In(acac)J Al(OPr;h A1Cl3 Ga(acacl3 

138 586 ::::::300 119 100 195 

Table 9.2. Summary of melting points of dopant precursors 
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investigated to make a comparison between an already established aluminium dopant 

for spray pyrolysis with a possible alternative. 

Ga( acac )3 is the least well established dopant material and is more stable than 

GaCl3 which has been more commonly used. 

The melting points of the compounds are set out in table 9.2. They show that 

AlCh is the most volatile material. In order of increasing volatility AlCh ;::: Al(OPri)J 

~ Ga(acac)J ~ In(acac)J ~ InCh. 

9.3 Growth of Films with In(acac)J as the Dopant 

Films were grown at 306°C using concentrations up to 3 atomic percent of indium 

tris-acetylacetonate as the dopant and O.lM Zn(acac)2.H20 as the zinc precursor. 

All In(acac)J doped films were adherent to the substrate and varied from being 

colourless to clear green in transmission and were smooth with no surface speckle. 

Figure 9.1 shows a plot of the film thickness versus the dopant concentration in the 

growth solution. The film thickness for the undoped film was 940 nm and the thickness 

fell to 250 nm with the addition of 0.5 atomic percent of In(acac)J, increased again to 

590 nm when a dopant concentration of 1.5 atomic percent was used and fell again to 

370 nm when the maximum of 3 atomic percent was used. This is evidence that growth 

suppression occurred during film growth when this dopant was used. 

At the lowest concentration of In(acac)J used (0.5 atomic percent) the suppression 

was the greatest suggesting that the exact concentration is not important. This sup

pression occurs through the blocking of active sites (open surface, kinks, ledges, holes) 

by a species with a stronger binding energy than the zinc. The effects of the blocking 

of these active sites result in the inhibition or suppression of growth (lateral or vertical) 

through deactivation by the dopant. It still might be possible for dopant related species 

to become activated after a time delay having occupied a native active site ; or it may 

be that the dopant related species may re - evaporate. In( acac h is not very volatile and 

is a bulky molecule that would remain on the zinc oxide surface and influence growth. 

The steric influence of the ln(acac)J molecule might be expected to prevent zinc from 
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becoming attached at suitable growth sites while the higher coordination number of the 

indium could lead to bonding by the indium through the oxygen. These effects would 

lead to a reduction in the ZnO growth rate observed. 

9.3.1 Indium Concentration in In(acac)J Doped Zinc Oxide Films 

The indium content as estimated by ESCA carried out at ICI Wilton for the 

three In(acac)J films is presented in table 9.3 and figure 9.2. The plot shows that 

the incorporation of indium in the film rises linearly with the concentration of indium 

in the starting solution, with an incorporation efficiency of 20% - 30%. The carbon 

concentration varied from 17% to 25% in these films which was not significantly different 

from the concentration of carbon in InCl3 doped films. Its presence could be put down 

to the residual carbon in the ESCA instrumentation and the incomplete pyrolysis of 

the precursors. 

9.3.2 Structural Characterisation 

The films were characterised in the same way as before by RHEED and XRD and 

the orientations compared with the ASTM card for a random sample of polycrystalline 

ZnO powder. Table 9.4 lists the surface preferred orientations compared with the bulk 

preferred orientations. 

The electron diffraction pattern in figure 9.3 is of a film with the addition of 0.5 

atomic percent of In(acac)J to the growth solution. As well as reducing the growth 

rate, the indium changes the film structure markedly increasing the crystallite order 

due to the presence of the 0.1 - 0.2 atomic percent that becomes incorporated into the 

film. Indeed the pattern suggests that there is strong clustering of localised groups of 

crystals in this film along planes other than the preferred orientation. This film was 

only 250 nm thick and therefore the dopant must have exerted a strong influence. 

For films grown from 1.5 atomic percent containing solutions the electron diffrac

tion pattern reveals that crystallites grew along fewer planes and that there was more 

misorientation (i.e the arcs are longer), and so the main preferred orientation was rel

atively more dominant. 
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ESC A Analysis of In( acac h doped 

ZnO films grown at 306°C 

ln(acacb solution Film composition (1) at the surface 

(2) after slight etching/ (at.%) 

/(at.%) Zinc Indium Oxygen Carbon Chlorine 

0.5 ( 1) 35 . 0.1 44 20 0.9 

(2) 31 0.2 45 25 < 0.5 

1.5 (1) 42 0.4 40 17 1.0 

(2) 38 0.4 44.5 17 < 0.5 

(1) 38 0.9 40 21 < 0.5 

3.0 (2) 35 0.7 40 24.5 0.7 

Table 9.3. Elemental composition of ln(acach doped ZuO. 

Comparison of the surface and bulk preferred order in 

doped ZnO films grown from ln(acach containing solutions 

Dopant concentration/ (at.%) Surface preferred order Bulk averaged preferred order 

0 (1122) (lOll) 

0.5 ( 1122) (lOll)/(1120) 

1.5 (1120) ( 1120)/( lOlO) 

3.0 (1120) ( 1010) I (lOll) 

Table 9.4. Summary and comparison of surface and preferred orientations for doped ZnO films grown from 
ln(acacb doped solutions. 
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Figure 9.3. RHEED pattern taken from a doped ZnO film grown from a 0.5 atomic percent In(acac)J 
doped solution. 
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The film grown from a 3 atomic percent solution gave a pattern which consisted 

of longer arcs while still retaining a main preferred order, indicating that the effect 

of increasing the dopant concentration was to degrade the crystallite ordering. Small 

additions improved the crystallinity and degree of preferred orientation, but the effect 

of increasing the dopant concentration was to randomise crystallite ordering. 

The preferred orientations of ZnO films doped with In(acac)J, as determined by 

RHEED and XRD, are compared in table 9.4, while the XRD intensity data are sum

marised in table 9.5. 

The bulk preferred order was (lOll) with some (1120) when the dopant concen

tration was 0.5 atomic percent and this changed to (1120) and some slight (1010) (1.5 

atomic percent) and eventually to predominantly (1010) at the highest concentration 

used (3 atomic percent). This indicates that the adddition of small quantities of dopant 

changed the film growth and continued to do so with larger additions. 

9.3.2.1 Grain Size 

The grain sizes of films grown at 306°C from In(acac)J containing solutions were 

calculated using the full width half maximum of peaks corresponding to preferred ori

entations observed in XRD spectra, and are plotted in figure 9.4. They show that 

compared to an undoped film, the grain size fell from 42 nm to 30 nm for a film grown 

from a 0.5 atomic percent containing solution. As the solution dopant concentration 

was raised the grain size remained unchanged until with the highest dopant concentra

tion used (3 atomic percent) a further decrease was recorded. Additions of In(acac)J 

dopant clearly led to an overall reduction in the grain siz~. This contrasts with the 

enhancement of grain growth which was found using InC13 thus promoting the role of 

chlorine in demonstrating diffusion. 

9.3.3 Discussion of Structural Studies 

The results obtained from the study of the electron diffraction patterns for In(acac)J 

doped films indicate that the lightly doped films initially became more ordered and with 

increased doping became more randomised. This would suggest that the indium was 
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(a) Intensity data for polycrystalline zinc oxide 

Crystal plane (lOlO) (0002) (lOll) ( 1012) ( 1120) (10i3) (1122) Preferred order 

Dhkl/A 2.816 2.602 2.476 1.911 1.626 1.477 1.379 None: random 

Peak intensities/(%) 71 56 100 29 40 35 28 polycrystalline 

(b) Intensity data for films doped with In(acach 

Dopant concentration/(at.%) and grown at 306°C 

0 12 35 100 (lOll) 

0.5 17 100 26 9 18 (10lll/(1120) 

1.5 100 8 34 66 (1120)/(lOiO) 

3.0 95 17 100 26 (10l0)/(10ll) 

Table 9.5. Summary of the XRD intensity data for doped ZnO films grown from In{acacb doped solutions. 
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occupying sites in the film that a.ffect film order. The initial improvement (0.5 atomic 

percent In(a.ca.c)3 in solution was associated with a. slower growth rate and as a. result 

the energetics of film growth were biased toward film order rather than film thickness 

(i.e crystallite misorientation was restricted), with growth along several axes indicating 

that the film was in the initial stages of the development of a. preferred order. However 

the addition of a.n increased amount of In(a.ca.c)a led to the formation of a. film which 

had a. dominant preferred orientation axis with hardly any growth off this main axis. 

Such films were more than twice as thick as the more lightly doped film and therefore 

there is reason to believe that the preferred orientation developed a.s the film with the 

lowest Gibbs free energy became dominant. The film grown from 0.5 atomic percent 

of In(acac)J possessed the best structure of the three. The main arc wa.s spread out 

and therefore there was some slight misorientation. The film had better order than 

the undoped film and therefore the presence of dopant at these concentrations had a 

beneficial influence on film structure. 

The most heavily doped film was thinner again and contained the most indium. The 

degree of order was undeveloped and the action of the dopant was to introduce disorder 

in and between crystallites and grains which would tend to destroy the relationship 

between them and prevent them growing along the same axis. Therefore indium is 

likely to sit on zinc sites and on interstitial positions in channels in the ZnO lattice 

causing distortion of equilibrium bond lengths and altering the potential energy. In 

addition it is possible that precipitation of indium occurred at grain boundaries or in 

more substantial intergranular phases. In the most extreme case, regions of the film 

could consist of amorphous ZnO where the difference in order within the grains was not 

substantially better than that of the intergranula.r phases. However the film structure 

was not appreciably worse than in the undoped film. 

As stated previously the addition of 0.5 atomic percent of In(a.ca.c)3 to the growth 

solution altered slightly the way the ZnO films grew, in that lightly doped films had the 

same surface preferred order as the undoped (1122), and a similar bulk preferred order 
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(lOll) changing to (lOll) with some slight (1120) with the addition ofin(acac)a derived 

indium. Therefore the presence of indium in these quantities did not significantly change 

either the thermodynamics (Gibbs free or interfacial energy at grain boundaries) or the 

kinetics affecting the choice of crystal habit. 

However with increasing In(acac)a derived indium the similarities with the undoped 

film ceased. The surface preferred order became (1120) and the bulk preferred order a 

mixture of (1010) and (1120), pointing to similar film structure in the bulk and at the 

surface. Film structure overall is heavily influenced by the dopant. Therefore at these 

concentrations of indium the order of preference as to which is the fastest growing 

and energetically more favourable growth axis changes. At the highest dopant level 

the surface is still (1129) oriented but the bulk shows some (!Oil) order pointing to 

a possible return to undoped growth mechanisms. In all samples the growth appears 

to be modified as the ZnO grows on ZnO instead of on the substrate. The substrate 

surface is amorphous silica so the initial deposit will be random although a preferred 

order quickly develops as the film thickens and subsequent monolayers become better 

ordered and more crystalline. These results confirm that the ( 1120) and the ( 1010) 

orientations are related to the presence of indium. 

The grain size data show that the grain size was depressed by the influence and 

presence of In(acac)a derived indium. This depression was constant up to 1.5 atomic 

percent above which a smaller fall was recorded. This points to a restriction on the 

growth rate of the grains that was not linked with the overall film growth rate or its 

mechanism. The decomposing precursor could be segregating out at grain boundaries 

and preventing the movement of grain boundaries (i.e the diffusion of interstitial zinc or 

oxygen vacancies). Thus these films are fine grained and consequently have more grain 

boundary area than films possessing larger grains. A small grain size also indicates that 

film growth is more vertical than horizontal. 
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9.3.4 Electrical Properties 

The resistivities and transport properties of the In( acac )3 doped films were mea

sured at room temperature. Film resistivity varied from 10 Om to 1.3 x w-3 nm as the 

solution dopant concentration was increased from 0 to 3 atomic percent (0 to 0.8 atomic 

percent in the film) as shown in figure 9.5. 

Initially with the addition of the smallest amount of In( acac )J the resistivity fell 

100-fold. Further additions resulted in less dramatic lowering of film resistivity suggest

ing saturation in the doping efficiency. Clearly In{ acac )3 can act as a dopant precursor 

but lower resistivities were achieved using InCh indicating that chlorine had also been 

incorporated. 

The mobility and the concentration of free carriers in In(acac)J doped films were 

measured as a function of dopant concentration and the results are shown in figures 

9.6 and 9.7. The mobilities varied from 5.8 cm2 v-1 s-1 for the film grown from a 0.5 

atomic percent doped solution, to 0.6 cm2 v- 1 s- 1 from a 1.5 atomic percent doped 

solution, then up to 4 cm2 v-1 s-1 from a 3 atomic percent doped solution. The 

mobility did not vary linearly with dopant concentration, but was higher when the film 

thickness was smaller (see figures 9.1 and 9.6 ), suggesting that mobility was inversely 

proportional to film thickness and that it was not influenced by dopant concentration. 

The carrier concentration rose from 1023 m - 3 to 6 x 1024 m - 3 as the solution doping 

level was increased from 0.5 atomic to 3 atomic percent. Saturation occurred at between 

1.5 and 3 atomic percent. The electrical properties of doped ZnO films as represented 

by the the resistivity and carrier con(;entration show that In(acac)J as a dopant is less 

effective than InCl3. 

9.3.5 Optical Properties 

The results of the determination of optical transmission in the wavelength range 

300 nm to 2500 nm for In(acac)J doped films are outlined in table 9.6. Absorption 

coefficients (absorbance) were calculated from optical transmission. The typical trans

mittance and absorbance of an undoped film are also included. The undoped film had 

225 



I -E I 

c 

>. 
:= 
.::: .... 
. !!! 
VI 
QJ 

0:::_ 

10 

E 
u.. 

\ . 
\ 
\ 

..... . ..... 

• 

• 
.... • 

.... ..... 
..... ..... ..... 

. ..... 
.... • ..... 

• 

1 0- .. ·+--------r----r----~-----
2 3 

ln(acac)
3 

Concentration !At%) 

Figure 9.5. Variation of the ZnO film resistivity with ln(acacb solution concentration. 

-I 

> 
"" E 

u 

1 0' 

• 
\ . 

\ 
\ 

\ 

\ 
\ 

\ 
\ . \ . / 

/ ' 

lO 

"' . ..... __ __./ 

• 

2·0 
In (acac)

3 

I 
/ 

/ 

/ 
I 

• I 
I 

,• 
I 

/ . 
/ 

3·0 
Concentration (At.%) 

Figure 9.6. Variation of the carrier mobility in doped ZnO with In(acach solution concentration. 

226 



m 
I 

E 

c 
0 

--ro 
c... --c 
QJ 
u 
c 
0 

u 

10 
25 I 

I 

c... 
QJ 

c... 
'-ro • u 

,~ 

1 o·· 

igure 9.7. Variation of the carril'r conceurratiou in doped ZnO with In( acacj 3 solution concentration. 

Transmission and absorbance of ln(acacb doped ZnO films grown at 306°C 

Wavelength ranges (urn) 300 -500 500 -1000 1000- 1500 1500 - 2000 2000 -2500 

In( acac b Dopant concentration (1) Transmittance%; (2) Absorbance /106 m- 1 

0 (1)0-86 78- 95 82- 91 80- 92 81- 92 
(2) > 0.16 0.05- 0.26 0.1 - 0.2 0.09- 0.24 0.09- 0.22 

0.5 (1)0-99 81- 99 89-97 87- 89 88-90 
(2) > 0.04 0.04- 0.84 0.12- 0.46 0.47- 0.56 0.42- 0.51 

1.5 (1)0-80 82- 96 82- 86 86- 89 84- 85 
(2) > 0.38 0.07- 0.34 0.26- 0.36 0.2- 0.26 0.3- 0.28 

3.0 (1) 0 - 97 84- 99 94-97 86- 91 85- 86 
(2) > O.OB 0.03- 0.47 0.08- 0.17 0.25- 0.4 0.41-0.44 

Table 9.6. Summary of the transmittance and absorbance in In-doped ZnO films grown from In(acach 
doped solutions. 
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an average transmittance of 86% and an absorbance of 0.16x 106 m - 1 ( a range of 0.05 

- 0.26) across all wavelengths. For In( acac )3 doped films the transmittance varied from 

80% to 99% away from the absorption edge and the absorbance from 0.03 to 0.84x106 

m - 1 . Overall the most transmitting films were also the most lightly and the heavily 

doped with an average transmittance of 90% and absorbances of 0.47x106 m-1 and 

0.28x 106 m-1 away from the bandedge. The film with lowest average absorbance was 

grown from the intermediate solution, when the average transmittance was only 86%. 

The absorbance measurement takes the film thickness into account so that the films can 

be compared. Therefore even though the two thinnest films were more transmitting it 

was the film grown from a solution of an intermediate concentration that was the least 

absorbing per unit thickness indicating that the density of optically active centres was 

lower. The density of centres ought to have been at a maximum in the most heavily 

doped film and indeed the absorbance was higher at some wavelengths than in the other 

films. 

Overall these films are extremely transmissive suggesting that processes such as 

absorption and reflection are very small. 

9.3.6 Photoluminescence Measurements 

Photoluminescence spectra for a film grown from a 1.5 atomic percent In(acac)3 

containing solution are shown in figures 9.8 and 9.9 (expanded). They show that there 

is a broad emission band at 577 nm (2.15 eV) with suggestions of other bands at 500 and 

610 nm. Some of the peaks between 417 nm and 591 nm were approximately equally 

spaced (HiS meV to 174 meV) and were located on either side of the principal peak 

maximum. In addition there was a group of peaks centred between 460 nm and 477 

nm separated by 31 - 32 meV apart : at 476.6 nm (2.6 eV), 470.7 nm (2.633 eV), 465.2 

nm (2.664 eV) and 459.8 nm (2.695 eV). 

9.3. 7 Conclusions 

Incorporation of indium into the film using In( acac )3 as a source was successful 

and therefore this dopant must be involatile enough and reactive enough to decompose 
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on the film surface. Bonding between the film and substrate and intra- film bonding 

was good. There was no evidence of pinholes, cracking, or voids. The films were clear, 

transparent and free from grain. Growth suppression occurred during film growth when 

using In(acac)J, possibly due to binding between In(acach fragments and the surface, 

thus preventing binding by Zn(acac)2.H20. Increasing additions of indium into the 

lattice resulted in an initial improvement and then a randomisation of the crystallite 

ordering. The preferred orientation was initially unchanged at the surface and slightly 

modified in the bulk, but was transformed with further additions of indium to (1120) at 

the surface and a mixture of (1120) and (1010) in the bulk. Therefore the incorporation 

of indium was different from that of indium from InCh in that the growth rate of certain 

zinc oxide planes was affected. The effect ofln(acac)J was to reduce grain size relative to 

undoped zinc oxide, pointing to the importance of chlorine in grain growth enhancement 

when InCl3 was used. Doping zinc oxide with In(acac)J reduced the film resistivity to 

1.3 x 10-30m when the precursor solution doping level was 3 atomic percent. The small 

grain size may have limited the conductivity through carrier depletion by traps (section 

2.5.2). 

9.4 Growth of Al(OPri)3, AICh and Ga(acac)3 Doped ZnO 

The results of experiments on the growth of aluminium doped ZnO and gallium 

doped ZnO using Al(OPri)J, AlCl3 and Ga(acac)J as dopants and 0.1M solutions of 

Zn(acac)2.H20 are described in the following sections. The concentrations of Al(OPri)J 

used were 0.5, 1.5 and 3 atomic percent. This dopant has been used as a precursor for 

Ah03 in VSLI fabrication and has a melting point of 194 °C. Aluminium doping was 

tried as an alternative to indium doping because of the lower cost and possibly lower 

toxicity. In addition two films were grown using A1Cl3 (m.pt. :::::: 100°C) doped solutions 

containing 0.5 atomic percent and 3 atomic percent. 

Two other films were grown using Ga(acac)J at concentrations of0.5 and 1.5 atomic 

percent. Ga(acac)J (m.pt. :::::: 194°C) has not been cited in the literature as having 

been used as a dopant precursor for zinc oxide. All films were grown at 306°C in a wet 
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ambient with in-flight heating for 14-15 minutes. 

All Al(OPri)3, AlCl3 and Ga(acac)J doped films were adherent to their substrates. 

Al(OPri)J doped films grown from 0.5 atomic percent doped solutions were dark grey 

tinted, while those grown from the 1.5 atomic percent doped solution were pink or red 

in transmission. At the highest doping level (3 atomic percent) the films were again 

darkly tinted. AlCl3 doped films were either green (the lightly doped film) or light 

brown (the more heavily doped film). The Ga(acac)J doped films were green to violet 

(the lightly doped film) and green (the heavily doped film). All films were smooth, 

transparent and free from visible grain. 

The curves in figure 9.10 show the variation of the thicknesses of Al(OPri)J, AlCl3 

and Ga(acac)J doped films. The thicknesses of all the films were reduced when the 

dopants were used, although ESCA measurements failed to reveal the presence of any 

aluminium or gallium. 

9.4.1 Structural Characterisation 

The results of the surface preferred orientation as determined by RHEED are com

pared with the results of the bulk averaged preferred orientation as determined by XRD 

in tables 9.7, 9.8 and 9.9. 

Comparison of the RHEED patterns showed that the smallest addition of Al(OPrih 

led to a big improvement in the degree of preferred order, and to a reduction in the grain 

size, as indicated by the reduction in the arc length and width and the disappearance 

of spots in the diffraction rings. As well as the main preferred orientation representing 

the axis about which the majority of crystallites were oriented there were also other 

but less favoured orientations representing planes in the unit cell of ZnO lying off at 

certain angles. 

As the solution doping level was increased the film structure became more random 

as the arcs became longer and wider, pointing to an increase in crystallite disorder. 

Increasing the dopant concentration to 3 atomic percent led to films having a completely 

random structure. 
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Comparison of the surface and bulk preferred order in 

doped ZnO films grown at 306°C from Al(OPrih containing solutions 

Dopant concentration/(at.%) Surface preferred order Bulk averaged preferred order 

0 (1122) (lOll) 

0.5 (1122) (lOll) 

1.5 (1122) (lOll) 

3.0 weak (1120) (1120)/(lOll)/(lOlO) 

~able 9. 7. Summary and comparison of the surface and bulk averaged preferred orientation in doped ZnO 
films grown from Al(OPr'h doped solutions. 

Comparison of the surface and bulk preferred order 

in doped ZnO filml! grown at 306°C from AlCh containing solutions 

Dopant concentration/(at.%) Surface preferred order Bulk averaged preferred order 

0 ( 1122) (!Oil) 

0.5 (1122) ( 1011)/( 1122) 

3.0 ( 1122) (lOil)/(1122) 

Table 9.8. Summary and comparison of the surface and bulk averaged preferred orientation in doped ZnO 
films grown from AlC13 doped solutions. 

Comparison of the surface and bulk averaged preferred order 

in doped ZnO films grown at 306°C from Ga(acach containing solutions 

Dopant concentration/ (at. •pt,) Surface preferred order Bulk preferred order 

0 (1122) (!Oil) 

0.5. (1122) (lOll) 

1.5 weak (1122) (lOll) 

Table 9.9. Summary and comparison of the surface and bulk averaged preferred orientation in doped ZnO 
films grown from Ga(acac)3 doped solutions. 
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The preferred orientations at the surface and in the bulk for Al(OPri)J doped ZnO 

are shown in table 9.7. For films grown from 0.5 and 1.5 atomic percent containing 

solutions the surface and bulk preferred orders were (1122) and (lOll) respectively, and 

were therefore no different from the undoped film. However use of the highest doping 

level led to the formation of films having a (1120) plane at the surface and a (1120) 

and (lOll) preferred orientation in the bulk. Therefore Al(OPri)J as a dopant does 

not affect the film structure appreciably except when high concentrations are present 

in the spray solution. 

The preferred order of the AlCh doped films was virtually unchanged but did have 

some (1122) orientation present in the bulk structure. The surface preferred order was 

(1122) while the bulk average was (lOll). The use of AlCh did affect film structure and 

there is a suggestion that there is some continuity between surface and bulk structure 

and the growth mechanism. The surface and bulk structure of Ga(acac h doped films 

was no different from that of an undoped layer. This dopant therefore does not affect 

the film structure at all. 

The grain sizes for Al(OPrih doped films are set out in figure 9.11 as a function 

of the dopant concentration. Once again the grain size fell steadily from from 42 nm 

to 29 nm as the solution doping level was increased from 0 to 3 and 6 atomic percent. 

With AlCh the grain size was not much affected by the dopant concentration 

whereas with Ga(acac)J the more usual decrease in grain size was observed. 

9.4.2 Discussion of Crystallographic Texture, Preferred Orientation and 

Grain Size Studies 

The crystallinity and degree of preferred orientation improved (relative to undoped 

films) when dopant concentrations of 0.5 and 1.5 atomic percent of Al(OPri)J were 

used, while higher dopant concentrations resulted in the randomisation of the films. 

The same was true for AlCh and Ga( acac )3 • As with indium doping, the initial im

provement points to more ordered film growth which may be due to the depression of 

film growth rate (suggesting higher evaporation and diffusion rates) allowing the fastest 
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growing planes to dominate. This may occur through the differential growth rates asso

ciated with particular planes leading to differing degrees of growth suppression (i.e. the 

dopant has more effect on the slower growing planes perhaps). On faster growing planes 

Zn(acac)2.H20 will be able to compete more effectively, leading to a resolving of the 

growth rates of different planes when there is a smaller percentage of energy being taken 

up in the decomposition of Zn(acac)2.H20 when the mass of zinc oxide being deposited 

is reduced. However as higher concentrations of dopant were used, film order was lost 

as a result of the influence of disorder within and between the grains. However since no 

aluminium or gallium was detected within the films the observed effects may have been 

due to the presence of dopants on the film surface during growth. The binding energy 

of aluminium to oxygen is 500 KJ mol-1 and therefore AI - 0 containing species will 

be more tightly bound than Zn - 0 species (bonding energy 276 KJ mol-1 ). However 

Ga- 0 species perhaps will be the most weakly bound since this binding energy is 250 

KJ mol- 1 . 

The use of high concentrations of AlCl3 led to the formation of larger grains sug

gesting the chlorine enhanced the grain growth as with InC13. 

The preferred orientation of Al(OPr')J doped films was unchanged from that of 

the undoped case with one exception. This suggests that the interaction of this dopant 

with the lattice was limited to the crystallinity and did not go as far as to change which 

plane was the fastest growing. The exception was the most heavily doped film where 

the surface orientation was (1120) and the bulk averaged a mixture of (1120), (1010), 

and (lOll) pointing to a increase in the growth rate of the (1120) and the (1010) planes. 

Such an influence was also observed when ln(acac)J was used. Therefore the action of 

aluminium on the growth rates of the planes of zinc oxide is similar (i.e. it enhances, 

relatively speaking, the growth rate and thermodynamic preference for nucleation along 

the (1120) axis with respect to the other planes). This occurs at the highest doping level 

suggesting that groups of aluminium containing species are responsible. The ion size of 

Al3+ is of the order 40- 50 pm and therefore much smaller than zinc (74 pm) whereas 
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the size of Gal+ is 60 pm. It is likely that large groups of smaller sized ions are needed 

to influence the growth rate of different planes. The slight correspondence between the 

surface and the bulk preferred order of the most heavily doped film indicates that the 

overall structure is not dissimilar to the surface structure. 

The films grown using AlC13 and Ga( acac h indicate that these compounds and 

any group III metal ion derived from them did not exert any influence on the ther

modynamics and kinetics of growth along ZnO planes (even though film growth rate 

suppression had occurred releasing energy for other processes). 

Grain size measurements show that Al(OPri)J doping does not result in grain 

growth enhancement as with AlCb. Nor was any grain growth enhancement observed 

for Ga(acac)J doping. In all cases grain growth is supressed initially as is the film growth 

rate. This is likely to be due to the involatility of M(III) - 0 species with respect to 

M(III) - Cl species suggesting that the chloro species diffuse and evaporate more easily 

than the oxo species. The MIIIIJ - Cl species are more weakly attached and evaporate 

more easily. With larger additions of dopant the difference is more obvious and while 

grain growth is enhanced (film growth rate approximately constant for AlC13 doping) 

the grain growth remains suppressed by a constant factor. 

The volatility and reactivity of AlCb(.xH20) (decomposition and melting point 

100°C) outweigh those of either Al(OPri )J (melting point ll9°C) or Ga(acac)J (melting 

point 194°C). The AI- 0 and Al- Cl bond strengths are approximately equal (500 KJ 

mol-1 ) and greater than the Ga- 0 bond strength (250 KJ mol- 1 ). 

9.5 Electrical Properties of Doped Zinc Oxide 

The resistivities of films doped with Al{OPri)J, AlCb and Ga(acac)J and plots 

of film resistivity are shown in figure 9.12. All dopants reduced the resistivity but 

Al(OPri)J was more effective than AlCl3. However the lowest value achieved with 

Al{OPri)J was 10-2nm with a correspondingly low carrier concentration for the heavily 

doped film of 5 x 1023 m -J. The resistivities of films grown from 0.5 and 3 atomic percent 

AlCh doped solutions varied from 4 x 10-10m to 4 x 10-2nm. Ga( acac )3 doped films 
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had resistivities of the order of 1.3 - 3 x 10-2S1m. Both A1Cl3 and Ga(acac)3 might 

be able to reduce the resistivity further if higher levels were used. Clearly all three 

precursors reduced the resistivity even though their concentrations incorporated in the 

film were less than 0.5 atomic percent. Clearly the problem was to grow the group III 

element into the film. None of these precursors led to films with resistivities lower than 

10-2nm. 

9.6 Optical Properties of Al(OPri)3, AlCh and Ga(acac)3 Doped Zinc Oxide 

The results of the measurement of optical transmittance for Al(OPri)3 doped films 

are shown in table 9.10 and compared with that of an undoped film. The transmittance 

varied from 82% to 99% (the fluctuations being due to interference fringes) and the 

absorbances from 0.02 x 106 m - 1 to 0.46 x 106 m - 1 . These films are highly transmitting 

from the bandedge to the infrared. The film grown with the lowest dopant concentration 

(0.5 at.%) had the highest average transmittance, 92% and the lowest overall extinction 

(0.14xl06 m-1 ). Films grown using A1Cl3 and Ga(acac)3 had similar transmissions. 

The photoluminescence spectra. taken from films grown using Al(OPrih (1.5 at.%), 

AlCh (3 at.%), and Ga.(aca.c)3 (1.5 at.%) as dopants a.re shown in figures 9.13, 9.14 and 

9.15. The emission of the film grown using Al(OPrih shows one principal peak at 466 

nm (2.450 eV) with a. suspicion of a second band at 554 nm (2.156 eV) (figure 9.13). 

The emission spectrum from a film grown using AlCb as a dopant is shown in 

figure 9.14. Here there is a main peak 570 nm (2.18 eV) with a smaller peak at 496 

nm (2.5 eV). T.he most intense emission occurs at a. different wavelength when the 

aluminium precursor is changed from Al(OPrih to AlC13 suggesting that chlorine plays 

a significant role in the 570 nm luminescence. The spectrum of a. film grown from 

Ga(a.cac)J containing solution (figure 9.15) also had two peaks of low intensity at 507 

nm (2.44 eV) and 575 nm (2.15 eV). 

9. 7 Discussion of Electrical and Optical Properties 

The electrical measurements demonstrate that the dopants discussed in this chapter 

were not as efficient as InCl3 as figure 9.16 shows, which summarises the resistivities 
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Transmission and absorbance of ZuO films grown at 306°C using Al(OPrib as a dopant 

Wavelength ranges (nm) 300- 500 500- 1000 1000- 1500 1500 - 2000 2000- 2500 

Al( OPri h Dopant concentration/ (at.%) ( 1) Transmittance / % (2) Absorbance / 106 m -l 

0 ( 1) 0- 86 78- 95 82- 91 ~0- 92 81- 92 

(2) ~ 0.16 0.05- 0.26 0.1 - 0.2 0.1 - 0.24 0.1 - 0.22 

0.5 (1) 0- 80 85-99 85- 96 89- 92 92- 94 

(2) ~ 0.35 0.02- 0.26 0.06- 0.25 0.13 - 0.18 0.10- 0.14 

1.5 ( 1) 0- 94 85- 97 97- 99 89-92 87- 88 

(2) ~ 0.18 0.09- 0.46 0.03- 0.09 0.23- 0.33 0.37- 0.4 

3.0 (1) 0- 89 84-96 82- 85 89-92 88- 89 

(2) ~ 0.18 0.07- 0.28 0.26- 0.31 0.13- 0.19 0.19- 0.2 

Table 9.10. Summary of the transmittance and absorbance of doped ZnO films grown from Al(OPrih 
doped solutions. 
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of all the films grown at high temperature. The ESCA studies found less than 0.5 

atomic percent of aluminium or gallium in the films, although structural disorder was 

still observed, indicating that dopant was present in the lattice and/ or or at grain 

boundaries. The reduced resistivities of doped samples confirm that dopants were 

incorporated at concentrations below the detectivity of ESCA. Saturation of the film 

resistivity occurred when using Al(OPri)J at levels above 0.5- 1.5 atomic percent which 

was not observed with either AlCl3 or Ga(acac)J over the ranges studied and might 

indicate that the use of higher concentrations of AlCl3 and Ga( acac h would give lower 

resistivities. Gallium is an oxygen getter (i.e it catalytically removes oxygen), which 

indium and aluminium are not, so that it might produce zinc excess and subsequently 

free carriers in gallium doped films. Overall Ga( acac )3 was more efficient than the 

aluminium precursors and gave film resistivities at a 1.5 atomic percent level that were 

superior to film resistivities that were obtained using Al(OPrih or AlCl3 at doping 

levels of up to 3 atomic percent. 

The well known green emission band (507 nm) characteristic of zinc oxide (due to 

either zinc or oxygen vacancies) was found in the Ga(acac)J doped film only, while emis

sion peaks at slightly shorter wavelengths (i.e 466 nm and 496 nm ) were found in the 

aluminium doped films which might suggest that these are associated with aluminium 

related defects (Alzn)· 

Peaks near the yellow band (which normally occurs at 590 nm) were also observed 

with a possible shift to shorter wavelengths as the dopant was changed from Ga( acac )3 

to AlCh, then to Al(OPri)J. This therefore might possibly be related to a defect 

influenced by a group III metal ion. This suggests that Al(OPri)J has the greatest 

effect on the electro - optical properties of the film. 

9.8 Conclusions 

Growth suppression was observed with the additions of (1) Al(OPri)J, (2) AlCl3 

and {3) Ga(acac)J to Zn(acac)2.H20 even though the incorporation efficiency of these 

dopants was below 0.5 atomic percent possibly due to evaporation or volatility ({1),(2)) 
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or high thermal stability {3). 

The structure of the films was initially improved with small additions of dopant 

but randomised again when higher levels were used. The preferred orientation was only 

affected for a film heavily doped with Al(OPri)a, indicating that this group of dopants 

did not interact with the growing film planes to a significant degree. 

Grain sizes were suppressed on adding dopant except with A1Cl3 doped films where 

the presence of chlorine counteracted the effects of the aluminium due to a diffusion 

process involving chlorine. 

Film resistivity was lowered with all three dopants. Al{OPrih was more efficient 

than AlCh over the range studied, but at higher doping levels AlC13 would give better 

results. Overall, Ga(acac)3 gave the most promising results with a steeper decline in 

the film resistivity as the doping level was increased. However none of these dopant 

precursors was as efficient as InCh or In(acac)J. The optical transmission was good 

and broad featureless photoluminescence bands were observed in the green and yellow . 

.. 
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Chapter Ten 

Summary and Conclusions 

The original objective of this project was to produce transparent conducting films 

of ZnO by spray pyrolysis at a temperature low enough ($ 200°C) to permit successful 

deposition on plastic. Earlier work in this project had concentrated on the use of· 

zinc acetate as a precursor. For this, substrate temperatures in excess of 250°C were 

required, so that clearly a different precursor was necessary if conducting films were to 

be prepared on plastic. In a cooperative programme with P. Coates and A.J. Banister in 

the Chemistry Department, University of Durham, a range of precursors were prepared 

and tested. Zn(acac)2.H20 turned out to be the best. In the early part of the work 

effort was concentrated on an extensive investigation of the growth and properties of 

undoped films grown from Zn(acac)2.H20 under a wide range of conditions. The effects 

of adding a variety of donor impurities were then examined and InCh proved to be the 

most effective donor precursor. The lowest resistivity films grown at low temperatures 

were those where a dry ambient and substrate heating only were used. In contrast, 

the lowest resistivities in films grown at higher temperatures required the use of wet 

ambient and in-flight heating. 

10.1 The Growth of Undoped Layers 

For undoped film growth of ZnO from Zn(acac)2.H20 the growth rate was heavily 

influenced by the growth temperature and other conditions. There was an important 

discontinuity in· the film properties at a growth temperature of 200°C. From 96°C 

- 200°C the thickness of the films decreased with increasing substrate temperature, 

but above 200°C the thicknesses were relatively constant. Below 200°C crystallinity, 

adhesion, and optical properties were poor. The film resistivity was very high at low 

temperature but a minimum was observed when a growth temperature of 300°C was 

used. Undoped films grown below 200°C (when O.lM solutions of Zn(acac)2.H20 were 

used) had a different preferred order from those grown above 200°C. Films grown below 

100°C were random polycrystalline. In many cases the preferred orientation of the 
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undoped films improved during growth and only the early stages were more random. 

The grain size in undoped films was temperature activated and increased with 

increasing growth temperature. The inclusion of water during growth increased (i) the 

polycrystallinity, and (ii) the film resistivity markedly when growth was carried out 

below 200°C but decreased it when growth was carried out above 200°C. The best 

high temperature conditions for the deposition of undoped conducting adherent ZnO 

were in the region 276 - 336°C in a wet ambient with in-flight heating. The best low 

temperature conditions for the deposition of undoped conducting adherent ZnO were 

in the region of 216°C in a dry ambient with no in-flight heating. The lowest resistivity 

for undoped films was 3x 10-2f2m for growth at 300°C in a wet ambient. This was 

reduced to 2 x 10-4 f2m after annealing at 375°C in a reducing mixture of hydrogen and 

nitrogen. 

A study of the decomposition of Zn(acac)2.H20 to ZnO indicated that this can 

occur by at least four different routes. These were : (a) the intramolecular route, a 

low temperature route where the coordinated water is responsible for the hydrolysis 

of Zn(acac )2 .H20 ; the mechanism is exothermic ; (b) the thermolysis mechanism, a 

high temperature route where the only means of decomposition are by the cleavage 

of bonds through the concentration of energy ; this is likely to be aided by a high 

collision frequency among precursor molecules ; (c) the intermolecular mechanism, a 

low temperature mechanism where the hydrolysing agent is external ; (d) an unknown 

mechanism or mechanisms dependent on the onset of thermolysis and therefore aided by 

the water hydrolysis lessening the reliance on thermal activation. The overall controlling 

factor was re-evaporation from the substrate across the temperature range studied. 

Mixing of the characteristics of all the decomposition mechanisms with the evaporation 

characteristics for the zinc precursor and solvent results in the original curves shown 

in figures 1 and 2 of section 5.3. In the low temperature (in a dry ambient) growth 

of undoped ZnO the intramolecular mechanism operates, whereas at high temperature 

the intermolecular and the thermolysis mechanisms operate. When water is present 
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inter- and intra-molecular mechanisms operate when low temperatures are used to grow 

undoped ZnO , but at high temperatures these, the thermolysis, and other mechanisms 

including the a hydro-thermolysis mechanisms operate as well. 

10.2 Doping at Low Temperatures 

The use of InCh as a dopant precursor led to better quality films especially those 

grown at low temperature from lower concentrations of precursor. Most of the films 

were highly transmitting in the visible and near infrared region. The low temperature 

growth ( 175-200°C) of doped ZnO produced films with resistivities of the order w-5 nm 

and visible transmittances of 80%. These values compare favourably with those for 

ZnO:Al and Sn02. Relatively large grain sizes (60-80 nm) and a relatively high degree 

of preferred order were also obtained in the most conducting films, but were not a 

necessary requirement for good conduction. The doping level is the dominant factor. 

Thinner films were only slightly less conductive and had a random structure , 

whereas thicker films were more ordered due to the survival of the fastest growing 

planes. 

The deposition behaviour between l75°C and 200°C was invariant and led to films 

having similar and ideal properties for a transparent conducting oxide. Doped ZnO was 

also grown on a plastic substrate resulting in a film which was slightly less conductive 

( 5 x 10-5 0m) than on glass and had a different structure and significantly larger grain 

size. This is attributed to substrate effects in that the plastic used had a crystalline 

oriented surface while the glass did not. Our primary objective of growing on a substrate 

that can withstand high temperatures was therefore achieved. 

Growth below 175°C resulted in the formation of inferior ZnO films. These had 

higher resistivities and lower transmittances than required for transparent conducting 

coating but were still however adherent to their substrate and might find a use as 

antistatic coatings. 

10.3 Doping at High Temperatures 

A number of films were grown at higher temperatures using InCh, In(acac)3, 
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Al(OPri)J, AlCh and Ga(acac)J as dopant precursors. The growth rate was reduced 

when InCl3 was used. The crystallinity of the films was improved by small additions 

of InCl3 but randomised by further additions up to 6 atomic percent. When light 

InCl3 doping was employed, the preferred growth axis was unchanged from that of the 

corresponding undoped ZiiO film on the surface and in the bulk. The grain size was. 

initially reduced when the doping was light but increased when heavy doping and higher 

temperatures were used. The resistivity was reduced by the addition of lnC13 and the 

lowest value obtained was w-4 nm. The films were all luminescent with broad green 

and yellow emission bands. The spectra of undoped films contained a greater diversity 

of emission peaks. 

For films grown from different sprayed volumes doped with InCl3 the degree of 

preferred orientation improved as the films thickened. 

Growth suppression also occurred when using In(acac)J, possibly due to bind

ing between In( acac h fragments and the surface preventing binding to the surface by 

Zn(acac)2.H20. Incorporation of indium in the film using In(acac)J was successful as 

evidenced by ESCA and demonstrates that this dopant must be involatile and reac

tive enough to decompose on the film surface. Increasing additions of indium into the 

lattice resulted in an initial improvement and then a randomisation of the crystallite 

ordering. The preferred orientation was initially unchanged at the surface and slightly 

modified in the bulk but was transformed with further additions of indium to (1120) 

at the surface and a mixture of (1120) and (1010) in the bulk. The incorporation of 

indium from In(acac)J was different from that of indium from InC13 in that the growth 

rates of various ZnO planes were affected. The effect of In(acac)J was to reduce the 

grain size relative to that in undoped ZnO, pointing to the importance of chlorine in 

grain growth enhancement when InCl3 was used. The lowest resistivity for films grown 

using In(acac)J was 1.3x1o-3nm which was higher than that when InCh was used, 

which suggests that both~the In and the Cl formed shallow donors. 

The growth rate was also reduced when (1) Al(OPri)J, (2) AlCh and (3) Ga(acac)J 
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were used as donor precursors. 

The incorporation efficiency of these dopants was below 0.5 atomic percent due 

to evaporation or volatility or high thermal stability. The structure of the doped ZnO 

films was initially improved with small additions of dopant but randomised again with 

high dopant levels. In only one film was the preferred orientation altered from that 

expected for undoped films indicating that this group of dopants do not interact with 

the growing film planes to any significant degree. Grain sizes were reduced on adding 

dopant except with A1Cl3 where the grain size was approximately constant. This was 

probably due to the opposite effect of a diffusion process involving chlorine. Film 

resistivities were lowered by the use of all three dopants. Al(OPri)J was more efficient 

than AlCla over the range studied. Overall, Ga(acac)J gave the most promising results 

with a steeper decline in the film resistivity as the dopant concentration was increased 

(~ w-2nm). In most films the optical bandgap was unchanged and, where measured, 

the film transmittance was high ( 80% - 99%). 

10.4 Summary and Suggestion for Further Work 

This work has demonstrated the existence of the common features of the growth of 

undoped and doped ZnO by spray pyrolysis. Particularly novel are the dopant effects 

which are the growth rate suppression, the effect of dopant on the grain growth, and 

the conversion efficiency of the dopant precursor (a function of the physico-chemical 

properties of the precursor, its volatility, decomposition temperatures and reaction 

pathways and ionic radius, bond strengths, surface bonding and dopant solvation and 

atomic diffusion rates) into an electrically active form in the lattice. The presence of 

different dopants during film growth leads to different types of growth behaviour with 

different resultant properties of the films (i.e the chloro-dopants showed a lower degree 

of film growth rate suppression on average than the acetyacetonato dopants, and the 

rate of grain growth was larger with chloro-dopants). 

In industrial - academic liaisons of this kind it is vital that an understanding of the 

basic processes is established while working in parallel to develop a product through 
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the arm of scientific research that is attractive to industry so that neither aspect is 

neglected. This project did yield some insight and understanding and the data to go 

with it. The present work has illustrated some of the uncertainties and unknowns in 

the growth of undoped and doped ZnO films and it is hoped that future work will be 

carried out in this and the following areas : 

(1) The use of Zn(acac)2.H20 in a CVD or some other semiconductor deposition 

system (MOMBE) for the production of zinc containing materials in the form of single 

crystal or highly ordered microcrystalline thin films on a small pilot scale. 

(2) The use of Zn(acac)2.H20 as a precursor in spray pyrolysis in the production 

of ZnO films (and the recycling of ZnO powder for use in the ceramic powder industry) 

in conjunction with an electrostatic control and ultrasonic rather than pneumatic or 

centrifugal atomisation on a small pilot scale. 

(3) The search for novel aluminium or other dopants that are as efficient as indium 

dopants for the production of conducting transparent doped ZnO. 

(4) The comparison of ITO, Sn02 , and ZnO grown using a standard deposition 

system on a pilot scale along with other less well known transparent conducting oxides. 

(5) The search for new precursors, native and dopant, designed for the produc

tion of chemically pure, highly oriented ZnO microcrystalline films in order to replace 

established precursors that are involatile and thermally stable and which do not lend 

themselves to low temperature growth of thin films. 
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Film material 

Pd 

Ru 

Pt 

vc 

Sn02 

SnOz 

Sn02 

Sn02 

Appendix 1 
Summary of the Materials Grown in Thin Film 

Form by Spray Pyrolysis 

Precursor Solvent Growth temperature/(°C) 

pailadium 

acetylacetonate butanol 300- 350 

ruthenium 

acetylacetonate butanol 380- 400 

platinum 

acetylacetonate butanol 340- 380 

vanadium 1000 

dichloride 

tin water-

tetrachloride hydrochl-

oric acid 

tin water 

tetrachloride hydrochl- 500 

oric acid 

tin water 

t.etrabromide hydrobro-

mic acid 

:.. 

ammonium hexa- water 

chlorostannate 
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Reference 

(1,2) 

(1,2) 

(1,2) 

(3) 

(4) 

(5) 

(3) 

(6) 



Film material Precursor Solvent Growth temperature/(0 C) Reference 

Sn02 tin diacetate- ethyl- (6) 

dichloride acetate 

Sn02 tin dichloride ethanol (7) 

Sn02 tin alcohol 

tetrachloride 

Sn02:Sb (a) tin ethanol- 380 (8) 

tetrachloride water 

(b) antimony 

trichloride 

Sn02 (a) tin alcohol 220 - 520 (9) 

tetrachloride 

Sn02:Sb (a) tin 

dichloride 

(b) tin 

tetrachloride alcohol 340- 450 (10) 

(c) antimony 

trichloride 

Sn02:Sb (a) tin butyl 300- 540 (11) 

tetrachloride acetate 

(b) antimony 

trichloride 
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Film material Precursor Solvent Growth temperature/( 0 C) Reference 

Sn02 tin dibutyl butanol 400- 600 (12) 

diacetate 

Sn02:F (a) tin alcohol 400- 450 (13) 

tetrachloride 

(b) ammonium 

fluoride 

Sn02:F (a) tin 

tetrachloride ethanol- 380 (8) 

(b) ammonium water 

fluoride 

Sn02:F (a) tin 

tetrachloride water 300- 600 (14) 

(b) ammonium alcohol 

fluoride 

Su02:F (a) tin ethanol- 400 (15) 

tetrachloride water 

(b) ammonium 

fluoride 

Sn02 tin alcohol 450 ( 16) 

dichloride 

lu203 indium alcohol 500 ( 17) 

trichloride -water 

lu203 indium butyl 

trichloride acetate/ ( 17) 

butanol 
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Film material Precursor Solvent Growth temperature/( 0 C) Reference 

In203 indium acetyl-. 480 (1) 

acetylacetonate acetone 

In203 indium ethanol- (18) 

trichloride water 

methanol 

water 

ITO (a) indium butyl 300- 450 (11) 

trichloride acetate 

(b) tin 

tetrachloride 

ITO (a) indium 500 (19) 

trichloride butyl-

(b) tin acetate 

tetrachloride 

ITO (;~) indium 

trichloride hydrochl- (20) 

(b) tin oric acid 

tetrachloridP +water 

ITO (a) indium 

trichloride ethanol- 450 - 510 

(b) tin water-

tetrachloride hydrochl-

oric acid 
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Film material Precursor Solvent Growth temperature/(0 C) Reference 

ITO (a) indium 

trichloride butyl 580 (21) 

(b) tin acetate 

chloride 

ZnO zinc acetate water 500 (22) 

ZnO zinc chloride water 360- 460 (23) 

ZnO zinc nitrate water 380- 480 (24) 

ZnO zinc acetate water 360- 460 (25,26,27) 

ZnO:In zinc acetate water 250- 500 -

(+indium 

trichloride) 

ZnO:In zinc chloride water/ ·375 - 525 (28) 

(+indium ethanol 

trichloride) 

ZnO:Al zinc chloride water/ 375- 525 (28) 

( + aluminium ethanol 

trichloride) 

ZnO:Al zinc aeetate water/ 300- 500 (29) 

(+aluminium propanol 

trichloride) 

PbO lead dichloride water - (7) 
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Film material Precursor Solvent Growth temperature/(°C) Reference 

B203 boron water (7) 

trichloride 

Ah03 aluminium (7) 

trichloride . 

CdO cadmium 500 (7) 

dichloride 

Cr203 chromium butanol 520- 560 ( 1.2) 

acetylacetonate 

Fe203 Iron butanol 400- 550 ( 1.2) 

acetylacetonate 

V203 vanadium butanol 450 - 510 (1.2) 

acetylacetonate 

vo2 vanadium butanol 360 (1.2) 

acetylacetouatc 

Al203 aluminium butanol 480 ( 1.2) 

acetylacetouatc 

Al203 alumuuium butanol 420- 650 (1,2) 

isopropoxide 

' 
Y203 yttrium butanol 300- 360 ( 1.2) 

acetylacetonate 
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Film material Precursor Solvent Growth temperature rc) Reference 

Ti203 butyl butanol 400 (1,2) 

ortbotitanate acetyla-

cetonate 

Zr02 butyl 

ortbozircona.te butanol 450 ( 1,2) 

Cu2S (a) copper water (31) 

acetate 

(b) thiourea 

CdS (a) cadmium 300- 510 (32) 

dichloride 

(b) thiourea 

CdS (a) cadmium 

dichloride (33) 

(b) ammonium 

thiocyanate 

(c) urea 

CdS (a) cadmium 

dichloride 380 (34) 

(b) cadmium 

acetate 

(c) thiourea 

CdS (a) cadmium 

dichloride 450 (35) 

(b) thiourea 
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Film material Precursor Solvent Growth temperature/( 0 C) Reference 

CdS (a) cadmium 

dichloride 340 (36) 

(b) thiourea 

CdS (a) cadmium 440 (36) 

dichloride 

(b) thiourea 

CdS (a) cadmium 230- 400 (37) 

dichloride 

(b) thiourea 

CdS (a) cadmium 300- 500 (14) 

dichloride 

(b) N,N Dimethyl 

thiourea 

(c) thiourea 

CdS:Cu (a) cadmium 320- 380 (38) 

dichloride 

(b) t.hioun!a 

CdS:Al/Cu (a) cadmium 

dichloride 250 (39) 

(b) thiourea 

CdS:lu (a) cadmium 

dichloride 320 (40) 

(b) thiourea 
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Film material Precursor Solvent Growth temperature/(°C) Reference 

ZnS/ZnSe (a) zinc acetate 450 (41) 

(b) zinc chloride 

(c) thiourea 

(d) N,N dimethyl 

selenourea 

CdSe (a) cadmium 

dichloride (42) 

(b) N,N dimethyl 

selenourea 

CdSe (a) cadmium 

dichloride 250- 280 (33) 

(b) ammonium 

selenate 

(c) N.N dimethyl 

selenourca 

CdSe (a) cadmium 

dichloride 235 ( 43) 

(b) N.N dimethyl 

selenourea 

CdSe (a) cadmium 

dichloride (14) 

(b) selenourea 

260 



Film material Precursor Solvent Growth temperature/(0 C) Reference 

CdTe (a) cadmium 

dichloride 

(b) ammonium (33) 

tell urocyanate 

PbS (a) lead acetate 

(b) lead 100- 400 (44) 

dichloride 

(c) lead nitrate 

(d) thiourea 

CulnS2 (a) copper (I) 

chloride 350 (45) 

(b) N,N dimethyl 

thiourea 

(c) indium 

trichloride 

CulnS2 (a) copper (I) 

chloride 180- 350 ( 46) 

(b) N,N dimethyl 

thiourea 

(c) indium 

trichloride 

CulnS2 (a) copper (II) 

acetate 200- 500 (47.48) 

(b) thiourea 

(c) indium 

trichloride 
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Film material Precursor Solvent Growth temperature/( 0 C) Reference 

CulnS2 (a) copper (I) 

chloride 300 (47,48} 

(b) thiourea 

(c) indium 

trichloride 

CulnSe2 (a) copper (I) 

chloride 200- 600 (45) 

(b) N,N, dimethy 

selenourea 

(c) indium 

trichloride 

CulnSe2 (a) copper (I) 

chloride 175- 275 (49) 

(b) N ,N dimethyl 

selenourea 

(c) indium 

trichloride 

CulnSe2 (a) copper (l) 

chloride 260 (50.51) 

(b) N.N dimethyl 

selenoun!a 

(c) indium 

trichloride 
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Film material Precursor Solvent Growth temperature/(0 C) Reference 

CuGaS2 (a) copper (I), 

(II) chlorides 

(b) gallium (52) 

trichloride 

(c) N,N dimethyl 

thiourea 

CuGaSe2 (a) copper (I), 

(II) chlorides 

(b) N,N dimethyl (53,54) 

selenourea 

Culu(St-z- (a) copper (I) 

Se.,h chloride 

(b) indium 

trichloride water 280 (55) 

(c) N,N dimethyl 

thiourea 

(d) N ,N dimethyl 

selcuourea 

Culn(St-z- (a) copper (I) 

Se.,h chloride 

(b) indium 

trichloride water 330 (56) 

(c) N ,N dimethyl 

thiourea 

(d) N,N dimethyl 

selcnourea 
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Film material Precursor Solvent Growth temperature/(°C) Reference 

CdSz- (a) cadmium 

Sel-z dichloride 450 (57) 

(b) thiourea 

(c) N,N dimethyl 

CdSz- (a) cadmium 

Se1-z dichloride (14) 

(b) N,N dimethyl 

thiourea 

(c) N,N dimethyl 

selenourea 

Cd1-z- (a) cadmium 

ZnzS dichloride 400 (57) 

(b) zinc 

dichloride 

Cd1_.,- (a) cadmium 

Zn.,S dichloride 250 - 400 (58) 

(b) zinc nitrate 

(c) thiourea 

Cd1-z- (a) cadmium 

Zn..,S dichloride 300- 500 (59) 

(b) zinc 

dichloride 

(c) thiourea 
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Film material Precursor Solvent Growth temperature/( 0 C} Reference 

Cd1-z- (a) cadmium 

ZnzS dichloride 

(b) zinc 400 (60) 

dichloride 

(c) thiourea 

Cd1-z- (a) cadmium 

ZnzS:In dichloride 

(b) zinc 350 (61) 

dichloride 

(c) thiourea 

Bi2Cd- (a) bismuth 

s4 nitrate 250- 300 (62) 

(b) cadmium 

dichloride 

CdSn03 (a) cadmium 

Cd2- dichloride (63) 

Sn04 (b) tin 

tetrachloride 

YBa2- (a) yttrium water. 

Cu3- nitrate water- 300 (64) 

07-z (b) barium glycerol 

nitrate 

(c) copper 

nitrate 
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Appendix 2 

Determination of Optical Constants 

This section describes the method for determining the optical constants of zinc 

oxide films, which in turn are used in the measurement of optical bandgap. The tech-

nique, based on the work of Swanepoel (II, relies on the enveiopes of the maxima and· 

minima of the interference fringes in the transmission spectrum of a thin film. 

The transmittance T of a thin film of thickness d on a thick transparent substrate 

of refractive index s is a function of several variables (A, s, n, d, a) where n and a 

are the refractive index and absorption coefficient of the layer. In the non-absorbing 

(transparent) part of the transmission spectrum where a ---+ 0 the transmittance T 

can be expressed as: 

where 

T= Ax 
B - Cxcos¢ + Dx2 

x = exp(ad) 

A= 16n2 s 

<P = 47rndf A 
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The minima (T m) and maxima (T M) in the transmission spectrum occur when 

cos¢ = ± 1 giving 

TM= Ax 
B-Cx+Dx2 

(A2.8) 

Tm = Ax 
B+Cx+Dx2 

(A2.9) 

Equations (A2.8) and (A2.9) effectively describe the envelope functions of the max-

ima and minima and may be combined to eliminate the unknown x giving a single 

expression for the refractive index : 

(A2.10) 

where 

(A2.11) 

However, T m and T M are strictly only defined at extrema in the transmission 

spectrum and thus (A2.10) may only be evaluated at these wavelengths. 

Therefore measurements ofT M and T.m at each extremum may be used to calculate 

a value of the refractive index (n(.\)). The conditions for a maximum or minimum in 

the transmission spectrum are given simply by : 

2nd= m,\ (A2.12) 

where m is the fringe order (integer for a maximum, half integer for a minimum). 

In the transmission spectrum m is unknown, but may be determined from a simple 

graphical procedure, as follows. If the order of a given fringe extremum is mi, then the 

order of its neighbouring extrema will be mi ± 1/2, the next nearest mi ± 1 and so on. 

Thus selecting the longest wavelength fringe extremum in the spectrum as the starting 

point, (i.e mi) equation (A2.12) may be written as : 
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2nd= (mi- (l/2))>.. (A2.13) 

l n 
2 = mi- 2d('X) (A2.14) 

which is a straight line with slope equal to twice the layer thickness and an intercept 

corresponding to the fringe order of the initial fringe. A typical example of this is shown 

in figure A2.1. Since m2 must be an integer or half integer the intercept may be forced 

to the nearest integer/half integer value and equation (A2.1) used to correct the values 

of n obtained from (A2.10) which will be subject to error. Importantly this procedure 

provides a reliable estimate for the average film thickness, d. Once n and d are known 

then a may be determined from ( 1 l 

The extinction coefficient k is related to a by : 

k =a>.. 
411' 

(A2.15) 

(A2.16) 

The above procedure provides values of n and k for the transparent region of the 

films spectrum only. Accurate values of a in the bandedge region cannot be obtained 

from transmission alone unless n is known. However extrapolated values of n in the 

bandedge region may be obtained by realising that the dispersion of n is well described 

by the Cauchy relation : 

(A2.17) 

The constants a and b may be determined from fitting equation (A2.17) to n in the 

transparent region. A straightline relationship is obtained by simply re-writing (A2.17) 

as: 
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Figure A2.1 Variation of (1/2) versus (n/ >.) for the determination of fringe order and film thickness. 
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Figure A2.2 Variation of n>.2 versus >.2. 
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(A2.18) 

A typical example of this is given in figure A2.2. Once a and b have been determined 

equation (A2.17) is used to extrapolate values of n in the bandedge region. These, in 

turn, are used in equation (A2.15) to obtain values of a. Finally a plot of a 2 versus 

photon energy in the bandedge region will yield an estimate for the optical bandgap 

from the extrapolated intercept on the energy axis. 
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