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Abstract 

In the Pindos ophiolite complex of northwestern Greece, mantle sequence peridotites 

comprise more than 90% of the exposed lithologies. At central Pindos, the complex is divided 

into two parts, northern and southern. Harzburgites, with little or no free clinopyroxene, are 

dominant in the latter, while clinopyroxene-bearing harzburgites are present in the former. 

The Moho is exposed in the southeast part of the southern block where cumulate rocks are in 

contact with mantle peridotite. The Moho has a transitional character and is characterized by 

increased abundance of discordant dunites, extensive emplacement of dykes of variable 

mineralogy, and the pervasive impregnation of the depleted harzburgite by basaltic melt. The 

cumulate rocks near this transition are dominated by dunite with subordinate troctolite and 

gabbro and minor wehrlite. There is no evidence of a well-developed magma chamber, with 

cumulates mostly appearing as sill-like bodies in a series of intrusions. Away from the Moho, 

cumulate olivine and two-pyroxene gabbros become abundant. 

Serpentinization has variably affected the peridotites but has not changed their major­

element composition appreciably except for the addition of H20. A small depletion in the MgO 

wt.% content of the rocks is observed with increasing alteration, as well as mobilization of 

sulphur and re-distribution of sulphides. 

The complex has experienced two stages of re-equilibration at low pressures ( <1 0 

kb), the first between 850-950°C, recorded by mineral equilibria with high-blocking 

temperatures, and the second at -750°C, recorded by olivine-spinel pairs. The harzburgites 

show slightly elevated oxygen fugacities between QFM and QFM+ 1.5 (log units). 

The chemistry of the Pindos peridotites is quite variable. Comparison with peridotites 

from various geotectonic settings shows that the northern part of the complex has fairly 

uniform composition and experienced smaller degrees of partial melting in a mid-ocean ridge 

environment. The southern part is more depleted and resembles peridotites dredged from 

present-day intra-oceanic subduction zones. This is also supported by modelling of residues 

of partial melting of spinel lherzolite using temperature- and pressure-dependent major­

element distribution coefficients, showing degrees of melt extraction of the order of -12-15% 

and -20%-40% for the northern and southern part respectively. 

The PGE content of the harzburgites is fairly uniform and similar to that of mantle­

derived rocks world-wide. The abundance of the PGE is controlled by residual sulphides, 

while a small depletion in Pd is consistent with the presence of residual alloys. Chromitites 

have more variable PGE abundances and show both positive and gentle negative patterns. 

Oxygen fugacity and sulphide saturation are the controlling parameters of the abundances 

and patterns of the PGE. 
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FRONTISPIECE. 

The Pindos mountains viewed from the southwest at an altitude of 10,000 feet. The south 

slopes of Mt. Avgo and the southwest slopes of Mt. Mavrovouni are visible. 
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Chapter 1 Field relations 

Chapter .L Field relations 

1.1. Introduction 

The term "ophiolite" is derived from the Greek words "aphis" (=snake) and "lithos" (= 

rock) and was used by early workers to describe the shiny green rocks now termed 

serpentinites (Brogniart, 1813, cited in Nicolas, 1989b). The frequent association of these 

serpentinites with pillow basalt and radiolarite was noticed in the E¥lrly 20th century 

(Steinman, 1927) and the term ophiolite was extended to indicate this particular rock 

association. The link between ophiolites and the oceanic environment was thus made. 

Since the prevalent geological concept at the time was that of the geosyncline, 

ophiolites were interpreted as part of the eugeosynclinal development (Steinman, op. cit.; 

Brunn, 1960, 1961; Aubouin, 1965). In the Sixties, however, sea-floor spreading was 

recognized as an ongoing process of sea-floor generation and refined models of a dynamic 

regenerative oceanic cr~st were developed (e.g. Cann 1970, 1974). 

Meanwhile work on ophiolites (mainly the Troodos massif) (Gass and Masson Smith, 

1963; Gass, 1968; Moores, 1969; Moores and Vine, 1971) led to the realization that they 

represent fragments of oceanic lithosphere, thus opening a vast array of opportunities to 

study at close range otherwise inaccessible magmatic processes. 

In 1972 the term "ophiolite" was redefined by the participants of the Penrose 

Conference of the Geological Society of America (Coleman, 1977): 

"Ophiolite refers to a distinctive assemblage of mafic to ultramafic rocks. It should 

not be used as a rock name or as a lith..,~logic unit in mapping. In a completely developed 

ophiolite the rock types occur in the following sequence, starting from the bottom and working 

up: 

(i) an ultramafic complex, consisting of variable proportions of harzburgite, 

lherzolite and dunite, usually with a metamorphic tectonic fabric (more or less 

serpentinized). 
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(ii) a gabbroic complex, ordinarily with cumulus textures commonly containing 

peridotites and pyroxenites and usually less deformed than the ultramafic 

complex. 

(iii) a mafic sheeted dyke complex. 

(iv) a mafic volcanic complex, commonly pillowed. 

Associated rock types include: 

(1) an overlying sedimentary section typically including ribbon cherts, thin shale 
' 

interbeds, and minor limestones; 

(2) pediform bodies of chromite generally associated with dunite; 

(3) sodic felsic intrusive and extrusive rocks. 

Faulted contacts between mappable units are common. Whole sections may be 

missing. An ophiolite may he incomplete, dismembered, or metamorphosed. Although 

ophiolite generally is interpreted to be oceanic crust and upper mantle, the use of the terms 

should be independent of its supposed origin." 

Participants of the G. S. A. Penrose Conference. 

A new debate about whether ophiolites are truly representative of oceanic crust and mantle 

was prompted by Miyashiro (1973). Based on geochemical evidence from major and trace 

elements in basalts, he claimed that the Troodos complex, the show case of ongoing research in 

ophiolites, was formed in an island arc and not in a mid-ocean ridge environment. This was also 

confirmed by Pearce and Cann (1973). At the same time the development of discriminant diagrams 

for lavas based on minor and trace elements (e.g. Pearce and Cann, 1973; Pearce and Norry, 

1977) pointed to distinct differences between many ophiolites from mid-ocean ridge basalts and 

those with affinities with supra-subduction zone (SSZ) magmas. Since then an increasing number of 

ophiolites has been ascribed (at least partly) an SSZ origin (e.g. Vourinos, Noire! et al., 1981; 

Oman, Pearce et al., 1984; Josephine, Harper, 1984; Pindos, Kostopoulos, 1988). 

1.2. Ophiolitic mantle sequences 

The tectonite peridotites form a floor to the crustal magma chamber in which the 

overlying peridotites and gabbros are formed. The chemical and textural similarities between 
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the ophiolitic tectonites and the Alpine-type ultramafic bodies was early noted (Thayer, 1960} 

and are assumed of similar origin. Some investigators suggested a cumulative formation of 

the peridotites by crystal settling from a basaltic magma during formation of the oceanic crust 

(e.g. Thayer, 1964, 1967; McTaggart, 1971 }. This hypothesis, however, was incompatible 

with some characteristics of the tectonites, namely, the high proportion of peridotite to 

overlying cumulates and the lack of mineralogical or chemical cryptic variation within the 

peridotites. In addition, experimental melting studies showed that the co-precipitation of 

olivine and orthopyroxene, which constitute 85-99% of the peridotites, is prevented at low 

pressures by the reaction relationship between olivine and orthopyroxene (Kushiro et al., 

1968). The suggestions for a cumulative origin have been superseded by chemical, structural, 

and experimental studies of the peridotites, which prove that they represent residual mantle 

after almost complete melt extraction after partial fusion of primary mantle (e.g. Hess, 1964; 

Green and Ringwood, 1967; Menzies and Allen, 1974; Dick, 1977; Nicolas et al., 1980; 

Jaques and Green, 1981; Falloon and Green, 1987, 1988}. In addition, the continuing 

discovery of serpentinites and gabbros at oceanic fracture zones (e.g. Miyashiro et al., 1969; 

Aumento and Lubat, 1971; Sinton, 1978; Hamlyn and Bonatti, 1980; Dick, 1989} further 

strengthens the links to the oceanic environment. 

The origin of dunite patches and veins that, almost invariably, are found in 

association with the tectonite peridotites is somewhat controversial. Some workers (e.g. 

Moores and Vine, 1971; Cassard et al., 1981; Nicolas et al., 1980; Nicolas and Prinzhofer, 

1983} group these dunites with the harzburgites as residues of melting from a pristine mantle, 

while others propose a magmatic origin as crystal fractionates from ascending liquids during 

the mantle convective ascent (e.g. O'Hara, 1968; Malpas, 1978; Furnas et al., 1988}. The 

controversy is not yet resolved, but it is unlikely that a universal process can explain the origin 

of all dunites types (see Nicolas, 1989b, for a review}. It will be noted that the proponents of 

the residual theory rely mostly on structural arguments and that geochemical criteria for a 

residual origin are not easy to meet, since extreme degrees of melting are required to remove 

orthopyroxene from the residue (Kostopoulos, 1991}. 
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Figure (1.1) General geology of Pindos. The box marked "MAP AREA" delineates the 

area mapped in Figure 1.2. Inset shows the location of the Pindos complex in Greece. 

From Rassios (1989). 

1.3. Regional setting 

The Pindos ophiolite occupies an area of ca. 700 km2 in NW Greece between the 

villages of Samarina, Vovousa, Krania and Metsovo (Figure 1.1 ). It is situated within the 

Pindos mountain range, which is a part of the Dinaro-Hellenides chain. The ophiolite is part of 

a NW-SE trending zone that includes the Koziakas and Othris ophiolites to the southeast and 

Vourinos to the east. The complex rests on the flysch of the Pindos zone to the west and is 

partially covered by the molassic sediments of the Mesohellenic trough to the east. The 

ophiolite is separated in two parts by the Aoos valley, trending ENE-WSW, which exposes the 
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underlying flysch near the village of Vovousa. The study area is confined to the north part of 

the southern block, between the villages Milia and Perivoli and Mt. Avgo, and to the 

southernmost part of the northern block, north of the village of Vovousa (Figure 1.1 ). Field 

mapping and sample collection were carried out during two field seasons in the summers of 

1987 and 1988. The study area was mapped on a scale of 1:20,000. A 1:50,000 version of 

the map is shown in Figure 1.2, including a part of the Aspropotamos complex that was 

mapped by Kostopoulos (1988). 

1.4. Previous work 

The regional geology of Pindos was examined by Brunn (1956), Parrot (1967), Terry 

(1971, 1972, 1973, 1975), Kemp and McKaig (1984) and Jones (1990). Sideris (1968), 

Sideris and Baltatzis (1979), Montigny et al (1973), Paraskevopoulos (1975), Terry (1974, 

1979), Capedri et al (1978, 1980, 1981, 1982), Bebien et al (1980), Dupuy et al (1984) and 

Kostopoulos (1988) have examined the petrography and geochemistry of magmatic rocks. 

Studies on mineralisation (e.g. sulphides, oxides) include those of Melidonis and Dimou 

(1978), Skounakis et al. (1984), Lorand and Pinet (1984), Kantza (in prep.) and Valsami 

(1991). In addition there is an ongoing research program on the exploration for chromite 

deposits by the Institute of Geological and Mineral Research of Greece. As yet no economic­

scale chromite deposits are known in Pindos. 

1.5. Sedimentary and metamorphic rocks 

A variety of sedimentary and metamorphic rocks are exposed around the study area. 

These lie structurally beneath the ophiolite, with the exception of the molasse. The lithologies 

and field relations have been described by Kostopoulos (1988) and Jones (1990) and only a 

brief description will be given here. 

1.5.1. Metamorphic rocks 

The metamorphic sole of the ophiolite (Loumnitsa unit of Jones, 1990) is found in 

contact with ultramafic rocks and in detached blocks in the melange (Jones, 1990). 

Lithologies include amphibolites, epidote-amphibolites, garnet-mica schists, marble inliers, 
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calc-phyllites and (sheared) metabasites usually in this order from the peridotite downward 

(Kostopoulos, 1988). The rocks display an inverted metamorphic grade and are similar in this 

respect to the metamorphic sole found underneath most ophiolites. The protoliths of the 

metamorphic rocks are usually basalts, although they have been found to grade downward to 

sediments in the melange (Jones, 1990). 40Ar-39Ar radiometric dating of hornblende crystals 

from amphibolites have given an age of 165.3 Ma (Spray et al., 1984), suggesting that 

obduction occurred during the uppermost mid-Jurassic. However the ophiolite itself is thrust 
~ 

onto Eocene turbidites implying that emplacement was completed only after 120 Ma from the 

time of initial detachment (Kostopoulos, 1988). 

1 .5.2.The tectonjc and sedimentary melange. 

This unit outcrops extensively near the Avdela and Perivoli villages. It consists of a 

mosaic of lithologies of variable age, type and chemistry that have been brought together by 

tectonic processes. Its field appearance is a chaotic mixture of centimetre to >100-metre 

sized clasts set in a deformed mudstone-siltstone matrix. Kostopoulos (1988) identified clasts 

of Triassic carbonates, chert, pillow lavas, ophiolite fragments, and debris flows consisting of 

ophiolite derived clasts. He further divided the lavas, based on their field appearance and 

chemistry, into Triassic alkalic within-plate basalts (Avdela Unit), transitional mid-ocean 

ridge basalts (Aspri Petra Unit) and normal mid-ocean ridge tholeiites of Triassic age 

(Strangopetra Unit). The melange was probably formed by accretionary processes over a 

subducting oceanic plate. 

1 .5.3.The Djo oendra group 

Jones (1990) described this unit of pelagic and turbiditic sediments and distinguished 

four formations of Late Jurassic to Late Cretaceous age. These are, in order of decreasing 

age, the Karamoula, Agios Nicolaos, Krevati, and Zygourogreko formations. The Dio Dendra 

group occurs as discontinuous but extensive thrust sheets that do not contain complete 

successions of these formations and it lies structurally between the melange and the Pindos 

flysch. In Figure 1.2 it is included in the melange. 
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1 .5.4. The Pindos flysch 

The Pindos ophiolite and attached rocks are thrust on the Late Cretaceous-Eocene 

flysch of the Pindos zone (Aubouin et al., 1970). The flysch is composed of quartzo­

feldspathic, medium- to fine-grained turbidites with common redeposited carbonates (Jones, 

1990). 

1 .5.5. The molasse 

The ophiolite is overlain by the Eocene to Miocene molassic sediments of the Meso­

Hellenic trough (Brunn, 1956, Soliman and Zygoyiannis, 1979). Where the molasse directly 

overlies the ophiolite, it consists of a basal conglomerate mainly composed of ophiolitic 

clasts, which may reach several metres in size near the contact and grades upwards via fine 

conglomerates and coarse sands to shales and marls. The strata near the contact are tilted to 

near vertical and thrusts have been developed in the molasse due to backthrusting of the 

ophiolite. 

1 .G. Ophiolitic rocks 

The Pindos ophiolite is characterized by the overwhelming abundance of mantle 

over crustal rocks. The mantle sequence consists of tectonized harzburgite with subordinate 

dunite and a variety of dykes. Crustal rocks are exposed in the southeastern part of the study 

area in contact with mantle rocks (Figure 1.2). The ophiolite forms a large thrust sheet up to 

-700 m thick, structurally overlying all the previously described units except the molasse. 

Internal thrusting and faulting have displaced, and possibly rotated, large blocks of the 

ophiolite and their original relation is not ~?sily recognized due to the lithologic monotony of 

the rocks. 
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Chapter 1 Field relations 

1 .6.1. The mantle sequence 

The mantle sequence is composed of harzburgite with variable amounts of 

subordinate dunite. The harzburgite is composed of olivine and pyroxene in approximately 

4:1 ratio and displays a compositional layering defined by orthopyroxene poor and rich layers 

(Plate 1.2). Minor clinopyroxene (2-4%), as green chrome diopside grains, occurs only in the 

Vovousa peridotite. Chromite is a constant accessory mineral at 1-2% of the mode. 

In the field the harzburgite weathers to an orange-brown colour against which the 
\ 

black chromite grains stand out. The weathering rind usually persists for a couple of 

centimetres and fresh harzburgite surfaces have a green colour. Orthopyroxene has a larger 

resistance to weathering than olivine and this gives harzburgites a rough surface that 

contrasts with the smooth surfaces of adjacent dunites. A foliation is developed by the 

clustering of orthopyroxene grains in clots 2-5 em long (Plates 1.2 and 1.3). The deformation 

of the orthopyroxene is apparent in hand specimen by the bent surfaces of the grains. 

Dunite forms between 1 and 1 0% of the exposure and occurs either as layers, mostly 

parallel or sub-parallel to the foliation of the enveloping harzburgite (concordant dunite), or 

as pods, the boundaries of which transect the foliation of the tectonite host. Dunite usually 

consists of olivine and variable amounts of chrome spinel (2-5%) dispersed throughout the 

rock. Occasionally chromite grains cluster together to form stringers, 2-Smm thick and a few 

tens of centimetres long. If the dunite is of the concordant type, so that its thickness and 

relation to the tectonite foliation can be determined, these stringers are usually found near 

the centre of the layer and are parallel to the dunite walls and the foliation of the enclosing 

harzburgite. The amount and type of dunite is not uniform throughout the mantle sequence, 

as dunite becomes more abundant towards the Moho and discordant dunite becomes the 

only type present. 

Another feature of the harzburgite that signifies approach to the Moho is the 

occurrence of veins and dykes. These are mostly gabbro pegmatite dykes of variable 

thickness (5-50 em) and orientation that are invariably rodingitized. Troctolite and dolerite 

dykes are less abundant, but pyroxenites dominate in some areas (notably Dramala, Figure 
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1.2). These occur as 1 o em to 3 m thick dykes or boudins and consist almost solely of large 

(up to 8 em) tabular crystals of pyroxenes, with small amounts of chromite and scarce olivine. 

The harzburgite has been deformed in the plastic and brittle deformation fields 

(Rassios, 1989) and there is evidence of isoclinal folding (Plate 1.1). Rassios (pers. comm.) 

noted that the harzburgite fabric can be classified with respect to the intensity of deformation 

using a fabric "scale" based on the elongation of the orthopyroxene. The dMsions of this 

scale are as follows: 

#0: The peridotite has no discernible foliation (Plate 1.2). 

#1 : Weak foliation of blocky orthopyroxene. 

#2: Strong foliation of almond-shaped to elongated orthopyroxene. 

#3: Plastic deformation of orthopyroxenes into augen shapes or elongation up to 5:1 

(Plate 1.3) 

#4: Orthopyroxene elongated in excess to 5:1. Grades to fine-grained mylonites. 

Rassios and Grivas (1988) and Rassios (1989) have mapped the peridotite 

deformation using this scale in the Dramala area (Figure 1.3). Rassios (1989) found that 

petrofabric evaluations show correlation between fabric types and deformation mechanism. In 

brief, weakly foliated fabrics represent high temperature peridotite structures (1200°C, 

Nicolas, 1989a), while elongated orthopyroxene fabrics tend to signify lower temperature 

deformation. Rassios (1989) suggested that the former correspond to diapiric and near-ridge 

fabrics (Nicolas et al., 1980; Ross et al., 1980) while the latter correspond to mylonite 

development at 800-900°C (Ross and Zimmerman, 1982). 

Together with peridotite fabrics ~assios (1989) also mapped the orthopyroxene 

foliations and lineations, the spinel foliations, and the contacts of dunites with surrounding 

harzburgite in the Dramala peridotite (Figures 1.4 and 1.5). She found that the orthopyroxene 

foliations show two maxima, one at -125°/50°-60°S and one at 040°/50°-60°S. The 

orthopyroxene lineations are show a uniform orientation at 020°/30°-30°8, probably the result 

of the intersection of the two orthopyroxene foliations. The orientations of the spinel foliation 

show essentially the same geometry as orthopyroxene foliations. 
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Plate (1 .1) Isoclinal folding in mantle sequence harzburgite. Note that the orthopyroxene 

foliation is sub-parallel to the axial plane of the fold. 
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, Plate (1.~) Pyroxene-rich and pyroxene-poor bands in mantle sequence harzburgite. The 

pen is 3.5 em long. 

Plate (1.3) Intensely tectonized harzburgite. Note elongation of orthopyroxene parallel to 

the pen. 
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Figure (1 .3) Areal distribution of peridotite fabric types in the Dramala area (Rassios, 

1989). 
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orthopyroxene foliation, 
n•467, 1% contours 

orthopyroxene lineation, 
n·112, 1% contours 

Figure (1.4) Orthopyroxene foliations and lineations in the Dramala peridotite (Rassios, 

1989). 

spinel foliation in harzburgite, 
n·168, 1o/o contours 

Figure (1.5) Spinel foliations 

1989). 
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Based on the relations of these two orientations with mylonites and brittle shears, 

Rassios (1989} ascribed an early high temperature origin to the 125°/S fabrics as opposed to 

a late, low temperature origin for the 040°/S structures. She also noted a correspondence of 

the 125°/S foliation with high-temperature peridotite fabrics (types #1 and #2, 120000) and of 

the 040/S foliation with granulation fabrics (types #3 and #4, 900°C), which supports her 

conclusion. 

Rassios (1989) proposed a model for the genesis and emplacement of the Dramala 

peridotite, where the old, high-temperature 125°/S corresponds to a mantle diapir at a near­

ridge environment, while the younger, low-temperature 0400/S represents the transition of the 

ophiolite from oceanic to abducting environment. 

1 .6.2. The transition from mantle to cymylate rgcka 

In the southeast part of the study area (Figure 1.2) the tectonized harzburgite comes 

in contact with cumulate rocks. This transition corresponds to the petrological Moho of 

ophiolites (Moores and Vine, 1971). In contrast to some ophiolites that have a quite sharp 

Moho (e.g. Vourinos, Harkins et al., 1980; Oman, Browning, 1984), with the transition of 

mantle to cumulate lithologies occurring within a few meters, in Pindos this transition Is in 

most places gradual, occurring over a distance of 50-300 m. Thus, a mixed zone is 

developed between mantle tectonite and cumulate rocks, that is characterized by a, 

sometimes chaotic, mixture of tectonite harzburgite, discordant dunite, cumulates and dykes. 

Similar gradual transitions from mantle to cumulate lithologies have been described in a 

variety of ophiolites (review in Coleman, 1977. Transition zone of Nicolas and Prinzoffer, 

1983). Common characteristics of these transition zones Qncluding Pindos) are the irregular 

geometry and the gradational nature in terms of mineralogy of their lower contact with the 

underlying harzburgite and their essentially dunitic nature. Their thickness varies widely 

between different complexes, but, with a few exceptions, is fairly constant within a given 

massif (Nicolas and Prinzoffer, 1983). 

East of tfie Kyra Kali ridge the transition zone is horizontal or gently inclined (Figure 

1.2), but west of the ridge the mixed zone (and overlying cumulates) has been deformed by a 
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NW-SE trending steep shear zone, that has rotated the mixed zone-cumulate contact to near 

vertical. As a result of this deformation the thickness of the mixed zone is highly attenuated in 

places and the mantle harzburgite comes in tectonic contact with cumulate rocks. 

The transition from mantle to cumulate lithologies is characterized by the increasingly 

abundant presence of dykes (plagioclase dunites, troctolites, pyroxenites, dolerites, but 

mostly gabbroic pegmatites, as described earlier), the decreasing proportion of harzburgite 

and its replacement by untectonized, almost solely discordant dunites, and the erratic but 

ubiquitous presence of plagioclase in the harzburgite. The latter has three modes of 

occurrence: 

a: it occasionally forms diffuse, 2-5 em thick, margin to Intrusive dykes (Plate 1.4) 

b: as 2 to 20 em thick layers of plagioclase harzburgite with sharp contacts with the 

surrounding ordinary harzburgite (Plate 1. 4) 

c: as irregular meter-sized patches of plagioclase harzburgite in otherwise normal 

harzburgite (Plate 1.5) 

The plagioclase invariably occurs as lobate grains surrounding oiMne crystals (Plate 

1.6). Sometimes the flattening and elongation of plagioclase laths define a foliation or 

lineation. Plagioclase-bearing harzburgites are texturally indistinguishable from plagioclase­

free tectonite harzburgites, preserving their foliation and compositional layering. In thin 

section the plagioclase is often associated with clinopyroxene, both occurring in drop-like 

inclusions surrounding oiMne grains, in a texture reminiscent of the cumulate polkilltic texture. 

In contrast to the olivine and orthopyroxene, the plagioclase and clinopyroxene do not show 

any evidence of strain (Plate 3.8). 
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Plate (1 .4) ransition-zone harzburgite cut by plagioclase-bearing dunitic dykes. The 

veinlet in the middle of the picture has created an impregnation zone, marked with wavy 

boundaries, around 15 em. thick. In the left part of the picture two almost horizontal 

plagioclase-bearing veins show a homogeneous distribution of plagioclase and have well 

defined boundaries against the harzburgite. 
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Plate (1 .5) Transition-zone harzburgite cut by a plagioclase-bearing dunitic dyke. In the 

lower part of the picture the harzburgite is free of impregnation. The upper part (shaded) is 

plagioclase-impegnated harzburgite. 
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plate 11 .6) Plagioclase impregnation in dunite. The plagioclase is located at olivine grain 

boundaries and is in extinction because it is replaced by hydrogrossular. Crossed nicols, field 

of view 13 mm. 
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A similar transition from tectonite harzburgite to plagioclase harzburgite to ultramafic 

cumulates has been described by Terry (1974). This occurs in the northern block of the 

ophiolite near the village of Smixi and probably represents the Moho in that part of the 

ophiolite. 

Plagioclase and clinopyroxene impregnation of dunites and harzburgites by 

percolating magma is now a well documented process in both ophiolites and abyssal 

peridotites (Dick, 1977; Nicolas et al., 1980; Nicolas and Prinzhofer, 1983; Dick, 1984, 1989; 
I. 

Evans, 1985; Miller and Mogk, 1987; Cannat et al., 1990). Although a magmatic origin for 

plagioclase peridotite massifs (e.g. Othrys, Menzies and Allen, 1974; western Alps, Bodinier 

et al., 1988) or peridotites slowly equilibrated in the plagioclase lherzolite stability fields 

(Evans and Girardeau, 1988) is undisputed, the field and textural evidence for the 

plagioclase peridotites in the Pindos transition zone is entirely consistent with an origin by 

melt impregnation. 

Plagioclase also occurs in dunites of the transition zone, but it is not easy to 

distinguish between plagioclase-impregnated mantle dunite and cumulate dunite. 

1.6.3. Cumulate rocks 

Cumulate magmatic rocks are exposed in an area of -15 km2 in the southeast of the 

study area (Figure 1.2). They are bounded to the west and north by mantle and transition 

zone peridotite, and are terminated against the molasse basal conglomerate to the east. 

They have been divided into dunitic and gabbroic cumulates according to the lithology that 

dominates the outcrop. 

1.6.3.1. Dunitic cumulates 

This unit is dominated by olivine-rich rocks. These include dunites, troctolites, 

wehrlites, and olivine gabbros. The dunites dominate near the transition zone but the amount 

of plagioclase present in the rocks increases with distance from the Moho. The dunites 

consist of olivine with minor amounts of chromite dispersed throughout the rock. Plagioclase 

is frequently present, occurring as lobate grains that surround olivine crystals. Clinopyroxene 

occurs as large (up to 5 em) oikocrysts enclosing olivine. Locally the amount of plagioclase 
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increases and dunite grades to troctolite. A weakly orientated cumulate layering is sometimes 

defined by segregations of plagioclase (1-5 em thick) that persist for up to -1 m. 

Dykes similar to those occurring in the transition zone persist within this unit. 

Pyroxenites are scarce, but troctolitic, doleritic and gabbro pegmatitic dykes are still 

abundant although their frequency is diminished with increasing distance from the Moho. 

A particular characteristic of this unit is the repetition of the sequence dunite-

troctolite-gabbro that occurs in series of sill-like bodies of variable thickness. Lithologies 

within these sills rarely show well defined boundaries and mostly grade into each other in an 

irregular manner. The relative proportions of the lithologies also shows wide variation. 

Smaller-sized sills frequently show fine-grained margins, mixing and flow-induced 

deformation structures. The repetition of these sills in an outcrop resembles cumulate 

layering but the irregularity of their occurrence precludes their origin in a single, well-

developed magma chamber. More likely they represent series of small scale intrusions 

injected between the cooling, but still plastically deformable, large dunite bodies. 

True rhythmic layering is displayed in a wehrlite body that outcrops south of the Kyra 

Kali ridge (Figure 1.2, Plate 1.7). The rocks consist of olivine and clinopyroxene with a small 

(<1 %) amount of spinel and virtually no plagioclase. The variation in the relative amounts of 

olivine and clinopyroxene define parallel layers of constant thickness (1-5 em) (Plate 1.8). 

The rocks are fractured by jointing, but the layers can be traced laterally for several meters. 

A maximum thickness for these wehrlites of -10 m can be observed before exposure is 

obscured. 

1.6.3.2. Gabbroic cumulates 

This unit is characterized by the predominance of plagioclase-rich rocks, i.e. 

troctolites and gabbros. The boundary between this and the previously described unit is 

somewhat arbitrary, since it is based on the relative proportions of the two lithologies on the 
,-

outcrop and should not be interpreted as sharp contact. Nevertheless, there is a real 

decrease of the amount of dunites and troctolites and an increase of gabbros with distance 

from the transition zone. 
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Plate (1.7) Wehrlite showing centimetre-scale cumulate layering of alternating olivine-rich 
and olivine-poor layers. The clinopyroxene-rich layers are more resistant to alteration and 
stand out. 

Plate (1 .8) A closer view of the preceding wehrlite showing the poikilitic texture of the 

clinopyroxene. 
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Olivine and two-pyroxene gabbros are abundant, the latter becoming dominant 

towards the contact with the molasse to the east. These become locally plagioclase-rich and 

may grade to anorthosites. The gabbros sometimes display cumulate lamination, marked by 

the weak orientation of pyroxene. The cumulate characteristics are better developed in this 

unit marked by the varying proportions of olivine, pyroxene and plagioclase in 5-30 em bands 

that define cumulate layering. The cumulate characteristics become less well developed 

towards the east where the gabbros are terminated against the basal conglomerate of the 

molasse. No higher level rocks were found in this part of the ophiolite. 

1.7. Summary 

The Pindos ophiolite is exposed in the Central Pindos mountain range, which Is a part 

of the Dlnaro-Hellenides chain. The ophiolite comprises a large thrust sheet of almost 

exclusively mantle-derived rocks over an area of ca 700 km2, and is divided in two parts, 

North and South, by the Aoos valley. Harzburgites, with little or no free clinopyroxene, 

dominate the south part of the ophiolite, while clinopyroxene-bearing harzburgites are present 

In the northern part. The Moho Is exposed In the southeast part of the south block, where 

cumulate rocks are in contact with mantle sequence lithologies. The Moho has a transitional 

character and Is characterized by the increased abundance of discordant dunites, extensive 

emplacement of dykes of variable mineralogy, and the pervasive impregnation of the depleted 

harzburgite by basaltic melt. The cumulate rocks near this transition are dominated by dunite 

with subordinate troctolite and gabbro and minor wehrlite. Away from the Moho, cumulate 

olivine and two-pyroxene gabbros become abundant 
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Chapter &. Serpentinization 

2. 1. Introduction 

The ultramafic rocks of this study, in common with similar rocks world-wide, have 

been affected, to a smaller or larger degree, by interaction with fluids. This process has 

destroyed the original textures, produced new minerals, and may have changed the chemical 

composition of the rocks. The purpose of this chapter is to examine the conditions of 

serpentinization and establish how this alteration affects the chemical composition of a rock, 

i.e. which elements are mobilized or not, and how the original rock composition can be 

reproduced. 

2.2. Field description 

Two main types of serpentine can be distinguished in the field by their physical 

appearance. 

I. Massive serpentinite: This is formed from dunite or harzburgite protolith and 

retains the petrographic texture of the original rock. In outcrop, dunites and harzburgites 

develop a weathering rind of yellowish-brown colour and thickness varying up to 2 em. 

Orthopyroxene weathers slower than oiMne and this gives harzburgites a rough surface 

compared to the smooth surface of the dunites. Freshly broken surfaces of both 

serpentinized harzburgites and dunites are dark green and have a conchoidal fracture. The 

colour of the freshly broken rock is a good Indicator of the degree of serpentinization, ranging 

from light gray-green for the unaltered rock and becoming progressively greenish-black for 

the completely serpentinized rock. 

11. Sheared serpentinite: This occurs In regions of massive serpentine and is 

associated with tectonic movements (faults, thrusts). The rock is usually fragmented and 

displays anastomosing cleavage and sllckenslide surfaces. Its colour varies from yellow­

green to olive-gray. The characteristic brown weathering rind of blocky serpentine is typically 

absent here. Asbestos slip-fibres are sometimes developed on the slickenslide surfaces of 

sheared serpentinites, with their orientation controlled by the direction of tectonic movement. 
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It will be noted that asbestos veins of appreciable size Q.e. larger than 2-3 mm width) 

have not been found anywhere in the Pindos ophiolite as yet, nor have any magnesite or 

calcite veins been observed. 

2.3. Microscopic features 

Olivine alteration Initiates along fractures and grain boundaries where it comes in 

contact with serpentinizing fluids. This process finally leads to the characteristic mesh and 

hourglass textures. The serpentinization of olivine produces a characteristic pseudomorphic 

texture; in thin section it appears as an irregular tesselation of polygonal cells each of which 

consists of a centre composed of serpentine or relict olivine, surrounded by an outer zone of 

apparently1 fibrous serpentine. The limits of this outer zone are defined by an original fracture 

or grain boundary. The apparent fibres of serpentine in the outer zone are aligned at 

approximately right angles to the trace of the original fracture. Wicks et al. (1977) termed this 

pseudomorphic texture a mesh texture, the centre of each cell a mesh centre, the outer zone 

a mesh rim and the original fracture the central parting of the mesh rim. Wicks et at. (op. cit.) 

presented an idealized model for this process, whereby olivine is represented by orthogonally 

stacked cubes and serpentinization starts with the growth of apparent serpentine fibres 

normal to the grain's surfaces. After this initial stage three possibilities exist: 

a) the serpentine apparent fibres continue to grow until olivine is completely 

replaced; 

b) the alteration stops before the olivine grain Is consumed; 

c) fibre growth Is arrested and olivine Is replaced by randomly orientated fine-

grained serpentine. 

Case (a) above will mainly produce hourglass textures. Case (b) will produce a mesh 

texture with olivine mesh centres, whereas case (c) will produce a mesh texture with isotropic 

mesh centres and minor hourglass textures. In reality, these textures are rarely repeated over 

1The term apparent is used in reference to the serpentine habit because, although 

serpentine may appear fibrous, It Is In fact a phyllosllicate mineral. Of the three polymorphs 

(antigorite, lizardite, chrysotile) only chrysotlle usually develops fibrous crystals. 
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a long range because of the irregularity of fracture spacing and pattern, but textures that 

resemble the ideal ones can usually be found. The reason that this type of serpentinization 

appears to be a two-stage process, may reflect two distinct reaction intervals or the change 

of the reaction from being interface controlled to being diffusion controlled (Wicks and 

Whittacker, 1977). 

Since the majority of the Pindos rocks are only partly serpentinized, the most 

commonly observed texture is serpentine mesh rims with olivine mesh centres (Plate 2.1), 
~ 

although the relative proportions of olivine and serpentine can vary a lot according to the 

degree of alteration. When olivine is completely replaced, the resulting texture in most cases 

is mesh rims with fine-grained serpentine mesh centres (Plate 2.2). Hourglass mesh centres 

are rather infrequent and appear to be restricted to the rocks of the transition zone, whereas 

pure hourglass textures (i.e. mesh hourglass textures without mesh rims) have not been 

observed at all. 

Pyroxene is altered in the same manner as olivine, with serpentine replacement 

progressing around the grain's rim and along fractures and cleavage planes (Plate 2.5). 

Serpentine pseudomorphs after pyroxene are termed bastites and the term has been applied 

to pseudomorphs after amphibole as well. Wicks and Whittacker (1977) found that when 

replacement of the original mineral was complete, talc, chlorite and phlogopite bastites were 

indistinguishable from those derived from chain silicates and proposed the inclusion of sheet 

silicates' pseudomorphs in the definition of bastite. In contrast to olivine, mesh textures are 

not observed in pyroxene bastites, and although the alteration may have started along a 

rectangular set of fractures, the serpentine apparent fibres are arranged parallel to the 

original cleavage of the mineral. 

Orthopyroxene bastites are far more common than clinopyroxene bastites, 

reflecting not only the relative frequency of occurrence of the two minerals but also the 

resistance of clinopyroxene to serpentinization. It is not unusual for clinopyroxene exsolution 

lamellae in orthopyroxene, to be preserved after complete replacement of their host by 

serpentine. 
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Spinel is the most resilient mineral during serpentinization of ultramafic rocks and is 

often preserved intact even after complete serpentinization of the original rock. It commonly 

develops a thin magnetite rim that is easily distinguished in translucent spinel grains because 

it is opaque (Plate 2.6). 

In addition to pseudomorphic textures, serpentine veins are present in most samples. 

Four types of these veins can be distinguished: 

veins of featureless serpentine (Plate 2. 7); 
\ 

ii banded veins, that resemble those of type (i) except for the existence of 

two symmetrical bands of serpentine parallel to the walls of the vein, while the centre 

is filled with serpentine that has opposite extinction to that of the walls; 

iii veins of cross-fibre serpentine (Plate 2.8), that may or may not have a 

centre of featureless serpentine; 

iv veins of interlocking serpentine (Plate 2.9). 

Veins of types (i) and (ii) may crosscut existing mesh textures or bastites but are 

usually parallel or branching with each other, whereas veins of type (iii) and (iv) crosscut 

existing pseudomorphic textures as well as veins of type (Q and (ii). 
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plate (2.11 Mesh texture with serpentine mesh rims and olivine mesh centres. Crossed 
nicols, field of view 1 .3 mm. 

plate (2.2\ Mesh texture with serpentine mesh rims and fine-grained serpentine mesh 

centres. Note migration of magnetite along the central parting. Plain polarized light, field of 

view 13 mm. 

I Mansolas 1991 28 



Chapter 2 Serpentinization 

plate (2.3\ The central parting of a bipartite. Crossed nicols, field of view 0.3 mm. 

Plate (2.4) Talc reaction rim with enstatite. Note replacement of talc by serpentine Qower 

right). Crossed nicols, field of view 1.3 mm. 
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plate (2.5\ A complex bastite after orthopyroxene. Note the different extinction of the 

central part. Crossed nicols, field of view 2.5 mm. 

Plate (2.6> Magnetite rim in spinel. Note expansion cracks in spinel filled with serpentine. 

Plain polarized light, field of view 1.3 mm. 
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plate (2.Zl Fracture filling vein of featureless serpentine. Crossed nicols, field of view 0.6 

mm. 

plate (2.§) Fracture filling vein with walls of cross-fibre serpentine and centre of 

featureless serpentine. Crossed nicols, field of view 0.6 mm. 
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plate (2.8) Fracture filling vein composed of interlocking serpentine. Crossed nicols, 

field of view 1.3 mm. 
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SAMPLE Rock Original min- Alteration Estimated ser- LOI 
eralogy ~roducts ~entine% 

GM4 D ol,cpx,pl 1-b 100 12.08 
AG882 D ol,chr 1-b 70 8.37 

DR1 D ol,chr 1-b 90 13.05 
DR16 D ol,chr I 95 13.51 

DR19D D ol,chr 1-b 6.05 
DR20 D ol,chr 1-cht-b 60 9.95 
DR35 D ol,chr 1-cht-b 11.59 
DR8 D ol,chr 1-cht 90 11.03 
Ll881 D ol,opx,chr 1-b 7.79 
Ll8810 D ol,chr 1-b 12.28 
Ll8815 D ol,chr 1-b 4.67 
Ll8816 D ol,opx,chr 1-b 45 6.74 
Ll8823 D ol,chr 1-b 10.82 
Ll8824 D ol,chr 1-b 65 8.30 

LI8827D D ol,chr I 7.18 
Ll883 D ol,chr 1-b 4.66 
Sl18 D ol,chr 1-cht-b 100 13.99 
Sl19 D ol,pl 1-b 100 14.40 

KK886 D ol,cpx,pl 1-cht-b 10.47 
KK887 D ol,cpx,pl 1-b 12.12 
Sl36 Gb cpx,ol,pl 1-br(?) 1.79 
AG2 Hz ol,opx,chr ta-1-cht(?) 40 1.57 
AG3 Hz ol,opx,chr ta-1-cht(?) 20 2.05 

AG883 Hz ol,opx,chr 1-b+Cht 80 7.08 
DR11 Hz ol,opx,chr 1-b(?) 50 6.83 
DR14 Hz ol,opx,chr 1-b 11.18 
DR18 Hz ol,opx,chr I 3.09 

DR19H Hz ol,opx,chr ta-l 3.08 
DR3 Hz ol,opx,chr 1-b 80 10.24 

DR32 Hz ol,opx,chr 1-b 6.23 
DR36 Hz ol,opx,chr 1-b 3.86 
DR9 Hz ol,opx,chr ta 1-b 90 10.53 

KK8820 Hz ol,opx,chr I 10.17 
Ll8811 Hz ol,opx,chr I 50 6.31 
Ll8812 Hz ol,opx,chr 1-b(?) 5.23 
Ll8813 Hz ol,opx,chr I 30 3.76 
Ll886 Hz ol,opx,chr I 3.03 
Sl13 Hz ol,opx,chr 1-b 75 9.69 
Sl16 Hz ol,opx,chr 1-cht 
Sl17 Hz ol,opx,chr 1-cht 95 12.15 
Sl21 Hz ol,opx,chr ta 85 12.01 
Sl27 Hz ol,opx,chr ta 55 6.41 
Sl31 Hz ol,opx,chr 1-cht-b 10.22 
Sl33 Hz ol,opx,chr 1-cht 95 12.23 
Sl43 Hz ol,opx,chr 1-b 80 10.17 
KK46 Tr ol,pl 1-(cht?) 8.65 
Sl6 Tr ol,pl,chr 1-b 80 8.35 

KK18 Lhr ol,opx,cpx,pl I 70 8.94 
KK33 Whr ol,cpx,pl 1-cht 7.62 
KK36 Whr ol,cpx,pl 1-- 9.67 
Sl41 Lhr ol, o~x. c~x. ~I I 90 9.63 

Table <2.1) The most common lithologies of the Pindos ultramafics and their alteration 
products. D=dunite, Hz=harzburgite, Tr=troctolite, Lhr=lherzolite, Whr=wehrlite, opx=orthopy-
roxene, cpx=clinopyroxene, chr=chromite, pl=plagioclase, l=lizardite, cht=chrysotile, ta=talc, 
b=brucite. LOI=Ioss on ignition. Serpentine in volume%. All samples include magnetite. 
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2.4. Mineralogy 

The alteration mineralogy of the serpentinized rocks of Pindos was studied by whole 

rock XRD and optical microscopy and is presented in Table 2.1. Serpentine, brucite, talc and 

magnetite have all been identified and are described below. 

The structural classification of serpentine (Mg3Si205(0H)~ was undertaken by Wicks 

and Whittaker (1975), who revised the existing classification at the time and dMded the 

serpentine polymorphs into two types: those of flat layered structure (llzardltea) and those of 

cylindrical structure (chrysotllea) (Table 2.2). The polymorphs identified in this study by XRD 

spectra are lizardite-1 T and chrysotile 2Mc1. Only in one sample was lizardlte-6H present in 

sufficient amount to be detected. It will be noted that, according to this classification, 

antigorite is not regarded as a serpentine polymorph because of its different structure. 

LIZARDITE - flat layered serpentines (1, 2, 
or multilayered) 
polytypes mineral name 
Group C - 1 T lizardite 
D - 2H 2-layer serpentine 
A - 3T 3-layer serpentine 
B - 6H 6-layer serpentine 
CHRYSOTJLE- cylindrical structures 
polytypes mineral r:tame 
2Mc1 clinochrysotile 

20rc1 orthochrysotile 

1Mc1 one-layer 
clinochrysotile 

Table C2.2l The revised classification of serpentine minerals after Wicks and Whittaker 

(1975). 

Uzardlte is present in all serpentinized studied samples, whereas chryaotlle was 

detected only in 25% of the samples (Table 2.1). Determining the relative proportions of these 

two polymorphs by X-ray techniques is unreliable because sample orientation may randomly 

amplify or suppress reflections. It is clear, however, that the amount of chrysotile never 

exceeds the amount of lizardite and that, in the majority of the samples, it constitutes only a 

small proportion of the total serpentine present. 
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Texture Optical 
Character 

PSEUDOMORPHIC TEXTURES 
mesh rim a 

y 
mesh centre a,y+iS 

hourglass a 
y 

orthopyroxene bastite a 
y 

clinopyroxene bastite a 
y 

amphibole bastite a 
y 

phlogopite bastite a 
y 

talc bastite a 
y 

chlorite bastite a 
y 

NON-PSEUDOMORPHIC TEXTURES 
interlocking a 

y 
interpenetrating a 

y 

serrate veins a 
y 

VEIN SERPENTINE 
asbestos cross-fibre a 

y 
asbestos slip-fibre a 

y 
non-asbestiform (fracture a 

filling) y 

is 
non-asbestiform (slip) a 

y 

is 

Mineralogy 

lizardite + brucite 
lizardite, antigorite or chrysotile 

commonly lizardite + brucite, rarely 
antigorite or chrysotile + brucite 

lizardite + brucite 
antigorite or chrysotile 

lizardite rarely with brucite 
lizardite rarely with brucite 

llzardite 
lizardite 

lizardite rarely with brucite 
lizardite rarely with brucite 

not found 
lizardite rarely with brucite 

not found 
lizardite rarely with brucite 

not found 
antigorite or lizardite 

lizardite 1T or multilayer polytype, possibly 
with some chrysotile 

chrysotile and/or lizardite or antigorite 
not found 

commonly antigorite, less commonly 
chrysotile and/or lizardite 

not found 
commonly chrysOtile, less commonly 

antigorite 

not found 
chrysotile 
not found 
chrysotlle 

lizardite 1T or multilayer polytypes 
chrysotile and/or lizardite or antigorite + 

brucite 
chrysotile and/or lizardite + brucite 

not found 
chrysotile and/or llzardite or antigorite + 

brucite 
chrysotile and/or llzardite + brucite 

Table 12.3) A guide to serpentine minerals according to their textures (from Wicks and 

Whittaker, 1977). is=isotropic. 
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Optically, the two polymorphs are virtually indistinguishable. Nevertheless, 

serpentine textures may be used to identify individual minerals. Wicks and Whittacker (1977) 

have proposed a "texture guide" to serpentine mineralogy which is reproduced here as Table 

2.3. It is apparent that pseudomorphic textures mainly indicate the presence of lizardite 1T, 

which explains the predominance of this polymorph in the Pindos rocks. 

It will be emphasized here that antigorite has not been identified in any X-ray trace 

studied. Thus, in the absence of any texture that can signify its presence, it can safely be 
~ 

suggested that it is unlikely that antigorite occurs in Pindos. This does not exclude the 

possibility that antigorite could have been formed during a previous stage of alteration and 

was subsequently replaced by lizardite or chrysotile. This, nonetheless, seems unlikely as 

thiS process would have produced peculiar textures and would have left relict antigorite 

grains (e.g. Coleman and Keith, 1971; Moody, 1976b), as in the case of talc replacement by 

serpentine (see below). 

Brucite (Mg(OH)2) has been identified by its 100 reflection in X-ray spectra and is 

present in 60% of the samples. When determining the abundance of brucite from the 

intensity of its major reflection, the same problem as with serpentine exists, but it is likely that 

brucite does not form in great quantities. Because brucite has a large structural water content 

(-30 wt.%) its presence in substantial amounts would be reflected in a high loss on ignition 

(L.O.J.) value. Instead, the maximum L.O.J. value, found in totally serpentinized samples, is 

14.4 wt.% (Table 2.1). Assuming a serpentine H20 content of 12.7 wt.% (ideal serpentine 

formula) the maximum amount of brucite required to supply the additional water to 14.4 wt.% 

is ca. 10%. 

Brucite is very difficult to distinguish from serpentine in thin section because both are 

found as fine-grained intergrowths (Wicks and Whittaker, 1977). When brucite appears in 

distinct grains, it is readily identifiable by its positive uniaxial character. With the aid of Table 

2.3, it may be suggested that brucite mostly occurs with lizardite in pseudomorphic textures 

but rarely, if ever, in bastites. 

Talc (Mg3Si40 10(0H)2) has been identified in only a few samples (4) by XRD or optical 

methods. It replaces orthopyroxene, typically as a reaction rim around the latter (Plate 2.4). 
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Talc itself is replaced by serpentine, although this replacement is not complete and perfect 

pseudomorphs of serpentine after talc (talc bastites) have not been observed. 

Magnetite (Fe30 4) is always present in serpentinized ultramafic rocks. Its mode of 

occurrence seems to be related to the intensity of the alteration. During the early stages of 

serpentinization, magnetite is usually found as submicroscopic grains uniformly dispersed 

throughout the rock. As serpentinization progresses magnetite grains tend to cluster or create 

stringers, usually along fractures (Plate 2.6). Magnetite can also be seen in rims around 

chromite grains, where it is formed at the expense of chromite (Plate 2.6}. 

The mineralogy of serpentine veins cannot be deduced with great certainty from 

Table 2.3. The serpentine of type (iii) veins (cross-fibre) is almost always chrysotile, but types 

(i) and (ii) (featureless or banded serpentine) and type (iv) (interlocking serpentine) can be 

either lizardite or chrysotile. It will be noted that, although most veins are filling fractures or 

replace pre-existing minerals randomly, not all veins signify transportation of material; veins 

of types (i) and (ii) can be seen some times to have a central parting, an indication that they 

were produced by a mechanism that was similar, if not the same, as that which created the 

mesh textures. In addition, a single thin section usually has a small number of veins (less 

than five) which contribute a very small percentage of the mass of a sample. Veins may 

become significant towards the fractured surfaces of the rock Ooints, slickenslides) but, as 

Wicks and Whittaker (1977} pointed out, these parts are either difficult to section or are 

usually discarded altogether. 

The occurrence of lizardite chiefly in pseudomorphic textures, and of chrysotile in 

late veins or replacing lizardite or antigorite (Wicks and Whittaker, op. cit.}, suggests that 

lizardite is the first serpentine mineral to form during serpentinization. Moody (1976a} 

observed that although both lizardite and chrysotile form during experiments, SEM 

photographs showed that lizardite forms first on olivine and was later replaced by chrysotile. 

In a petrographic study of ocean peridotites and ophiolites, Prichard (1979} showed that, in 

pseudomorphic textures, lizardite is always the first polymorph to be formed and only when 

very little olivine remains is chrysotile formed, mainly in cross-cutting veins. Figure 2.2 shows 

that chrysotile is present in partially, as well as completely, serpentinized samples. 
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Other minerals have been reported in studies of alteration of ultramafic rocks: 

chlorite and Cr-enriched spinel in high temperature hydrothermal alteration (Kimball, 

1988,1990), ferritchromite and antigorite in prograde metamorphosed rocks (Moody, 1976; 

Wicks and Whittaker, 1977) and carbonates {usually magnesite) but none have been de­

tected in the Pindos samples. 

2.5. Phase relations 

The system Si02-AI20 3-FeO-MgO-CaO-H20-C02 can be used to describe in detail the 

majority of ultramafic rocks in the presence of a fluid phase. Experimental work or 

thermodynamic modelling have been used to investigate phase relationships in this system or 

its sub-systems {e.g. Bowen and Tuttle, 1949; Johannes, 1969; Moody, 1976a; Hamley et 

al., 1977a,b; Jenkins, 1981; Trommsdorf and Conolly, 1990; Willet al., 1990). The restricted 

mineralogy of the alteration minerals allows the elimination of some components of this 

system when considering phase relationships in the rocks of this study. The fluid that was 

involved in the serpentinization of the Pindos ultramafics can be assumed with certainty to 

have been H20 with no, or very little, C02. This conclusion is drawn from the absence of 

C02-bearing minerals, such as magnesite. The reaction brucite + C02 = magnesite Is very 

sensitive to the presence of C02in the fluid phase, even when its partial pressure Is very low 

and brucite is unstable at Xco
2 

> 0.05 {e.g. Johannes, 1969). Since CaO and AJ20 3 have 

very low abundances and do not form Individual phases, It can be reasonably assumed that 

their effect on the equilibrium conditions is negligible. Consequently, the experimental work 

that is best suited to describe the Pindos ultramafics is experiments in the system Si02-MgO­

FeO-H20. 

The serpentinization assemblage serpentine+-brucite+magnetlte has been studied in 

terms of the P,T phase relations by a number of authors. The univarlant equilibrium curve for 

the reaction: 

serpentine + brucite = olivine + water {2.1) 
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was first studied in the system Mg0-Si02-H20 by Bowen and Tuttle (1949), who established 

what is effectively the hydration conditions for olivine. They found that serpentine+brucite 

forms from olivine in the presence of water vapour at pressures less than 1 Kb at 400°C and 

at pressures of 3 Kb at 450°C. Pistorius (1963) extended the experimental work to so Kb, 

where serpentine + brucite form at ca. 475°C. The work of Page (1967) showed that in an 

iron-bearing system these temperatures are somewhat lower: 300°C at pressures less than 1 

Kb and ca. 325°C at a pressure of 3 Kb. Johannes (1968) found that earlier experimental 

work on the reaction was in error and lowered the equilibrium temperatures by 60°C at the 

same H20 pressures. Later work by Hem ley et al. (1977) established the equilibrium for the 

same reaction at 370°C at 1 Kb (Figure 2.1). 

The presence of talc, even in small amounts, is significant because it defines a 

different regime of pressure and temperature. The stability field of talc in the system MgO-

Si02-H20 can be bounded by the work of Hemley et al. (1977a,b), who determined the 

thermal dehydration temperature at a water pressure of 1 kb for the assemblage talc-

forsterite-enstatite at 643°C and the assemblage chrysotile-forsterite-talc at 441 °C (Figure 

2.1). Although talc may decompose to a variety of minerals (e.g. anthophyllite, antigorite), 

the reactions mentioned are consistent with the observed assemblages. It will be noted that 

the serpentine polymorph in Figure 2.1 is chrysotile. This is because Hem ley et al. (1977a,b}, 

in common with many other studies (e.g. Johannes, 1969, Chernosky, 1973), used chrysotile 

as starting material for their experiments. Although this might pose a question about the 

applicability of these experiments to lizardite assemblages, it is generally considered that the 

thermodynamic properties of the two polymorphs are similar and that differences in 

equilibrium temperatures are not significant. 

It is clear from Figure 2.1 that talc is stable at much higher temperatures than 

serpentine and it cannot be in equilibrium with serpentine and enstatite. Talc is unstable at 

the conditions that serpentine formed, as is evident from the fact that it being replaced by 
,. 

serpentine (Plate 2.4}. Coleman and Keith (1971} interpreted a similar occurrence of talc 

reaction rims around enstatite in the Burro Mountain Dunite as a localised effect due to the 

high activity of silica near enstatite grains, and not as an indication that the ultramafic body 
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had experienced high temperatures at some stage during its history. If this was the case with 

Pindos, however, then serpentine and talc would not show the observed reaction relationship. 

Therefore, the presence of talc is interpreted as an indication that rock-fluid interaction started 

at high temperatures (>600°C). However, the scarcity of talc in the Pindos rocks suggests 

that this interaction was short-lived and the temperature fell quickly to levels where talc 

formation is arrested. 
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Figure (2.1) Experimental (talc) and calculated (chrysotile, forsterite, brucite, periclase) 

equilibria in the system Si02-MgO-H20. Dashed lines represent uncertainty bands. (from 

Hemley et al., 1977b). 

2.6. Chemical effects of serpentinization 

Serpentinization is a process that involves the destruction of existing magmatic 

minerals (olivine, pyroxene etc.) and the formation of new ones (serpentine, brucite etc.). The 

ability of the new minerals to accept various elements in their lattice is an important aspect of 

the study of the mobility or immobility of these elements. Wicks and Whittaker (1975), in their 

study of serpentine mineral structures, examined the effect of different elements substituting 
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in the lizardite and chrysotile structure. They showed that lizardite can accommodate 

substantial amounts of Al3+ and Fe3+ in its lattice and that Ni2+ can freely substitute for Mg2+. 

This is demonstrated by the occurrence of end-member composition minerals with the 

lizardlte structure, namely amesite, Mg~(SIA~05(0H)4, greenalite, Fe3Si20 5(0H)4, 

cronstendite, Fe2Fe~i205(0H)4, and nepouite, Ni3Si20 5(0H)4• In addition, Co3+, Mn3+ and 

Cr3+ can substitute for Mg2+ to a limited extent. The same elements can enter the chrysotile 

structure, although substitution is more restricted and only the Ni-serpentlne intermediate 

composition garnierite, (Mg,Ni)aSi20 5(0H)4, and end-member composition percoraite, 

Ni3Si20 5(0H)4, may coexist with the chrysotile structure. Table 2.4 shows the composition of 

an ideal serpentine with the same Mg# as Fo90 and En90• It can be seen that serpentine has 

MgO, FeOtot and Si02 contents intermediate between the olivine and enstatite values. It is 

possible for a forsterite-enstatite assemblage to produce serpentine without any loss of mass 

according to the reaction : 

Mg2Si04 + MgSi03 + 2H20 = Mg3Si20 5(0H)4 (2.2) 
olivine enstatite serpentine 

This however requires olivine and pyroxene to be present in equimolar proportions (or 

approximately 60% olivine 40% pyroxene by weight), a condition that Is met only in a few 

pyroxene-rich harzburgites. If olivine is present in larger amounts, the silica available in the 

rock is not enough to combine with all magnesium, which may enter the solution according to 

the reaction : 

2Mg2Si04 + 2H+ + H20 = Mg3Si20 5(0H)4 + Mg+ (2.3) 

olivine serpentine 

or precipitate as brucite according to the reaction : 

2Mg2Si04 + 3H20 = Mg3Si20 5(0H)4 + Mg(OH)2 (2.4) 
olivine serpentine brucite 
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It is apparent that the presence of enstatite reduces the amount of brucite by 

providing the silica to form serpentine. This has been observed by Coleman and Keith (1971) 

in the Burro Mountain dunite and the same can be seen in Table 2.1. This seems to support 

the notion that silica only goes into solution when there is insufficient MgO available to 

combine with it. It also means that, during serpentinization, the composition of the rock will 

remain unchanged with respect to Si02 and MgO until all pyroxene is consumed. Beyond this 

point, and in the case of dunites, magnesium will either enter the solution or precipitate as 

' 
brucite. 

The presence of iron in solid solution in olivine and pyroxene changes the reaction 

from simple hydration to a redox reaction. Formation of magnetite (Fe30.J requires the 

oxidation of ferrous iron in the silicates. Less obvious is the oxidation of iron that is present in 

serpentine, since most of this iron can be in the trivalent state (Table 2.5). It has been 

mentioned earlier that serpentine can accept substantial amounts of Fe3+ (Wicks and 

Whittaker, 1975), but this requires substitution of Si4+ by Al3+ to achieve charge balance. 

Since aluminium is present in the serpentine of Pindos rocks (Table 2.4), then at least part of 

the iron present must be in the trivalent state, but since this iron was derived from the 

primary ferromagnesian minerals, no distinction will be made between Fe2+ and Fe3+ in 

subsequent calculations and total iron will be calculated as FeO. A general reaction can be 

written as: 

Fa-olivine+ Fa-enstatite= Fa-serpentine+ Fa-brucite+ magnetite (2.5) 

The actual amount of magnetite f!lrmed depends not only on the available iron but, 

more crucially, on the amount of iron that serpentine and brucite can accommodate in their 

lattices. Coleman and Keith (1971) noted an inverse correlation between the amounts of 

magnetite and brucite which they attributed to the inclusion of iron in the brucite. The 

substitution of iron in brucite has been established by many authors (see Moody, 1976b for a 

review) who also showed that: a) brucite has more iron than co-existing lizardite; b) brucite 

usually has more iron than the parent olivine; c) lizardite may have more or less iron than the 

I Mansolas 1991 42 



Chapter 2 Serpentinization 

parent olivine, the amount being controlled by the co-existing brucite and/or magnetite. The 

experiments of Moody (1976a) on iron-bearing olivines suggest that magnetite formation is 

favoured over iron substitution in brucite by higher temperatures. Janecky and Seyfried 

(1986) noted that during seawater interaction with peridotite, magnetite formation was 

correlated with increase of the pH of the solution, whereas low pH favoured the 

accommodation of iron in the fluid phase and in the serpentine. 

Magnetite also forms from the alteration of chromite, although its distribution 

suggests that it formed by a different process in this case (Plate 2.6). Magnetite can be 

observed to replace chromite grains around the rim and along fractures, probably by the 

removal of Cr, AI and Mg from the spinel and not by the precipitation of magnetite from 

solution. 

The fluid that caused the serpentinization of the Pindos ophiolite cannot be 

characterized without isotopic evidence. However, it was noted that, during probing of 

serpentines, the Cl line was frequently detected and was very strong when a fluid inclusion 

was accidentally hit. Although this may suggest the trapping of high-chlorinity fluids derived 

from seawater, it should be noted that oxygen isotope studies of other ophiolites and in 

particular Vourinos (Wenner and Taylor, 1973; Magaritz and Taylor, 1974) have shown that 

meteoric water was involved in serpentinization. 
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CMT731 U8819 U8819 AG2 U8826 5123 Serpentine 

Si02 48.96 51.17 47.07 44.21 49.27 49.03 47.94 

Al203 0.14 0.76 0.26 0.15 0.26 0.35 
cr2o3 0.07 n.d. 0.10 0.04 0.11 0.04 

FeO* 6.04 3.06 5.04 8.51 5.82 6.34 8.58** 
MnO 0.11 0.03 n.d. 0.11 0.21 0.04 
MgO 43.27 44.45 47.08 46.02 44.09 43.48 43.48 
CaO 0.18 0.03 0.05 0.15 0.17 0.11 
NiO 0.55 0.29 0.15 0.31 0.00 0.21 

Total 75.22 82.91 80.67 79.52 79.74 81.94 87.4 

MQ# 0.928 0.963 0.944 0.906 0.931 0.925 0.90 
Fo 0.921 0.910 0.910 0.912 0.916 

Table C2.4l Electron probe analyses of serpentines. CMT731 and 5123 are analyses of 

lizardite pseudomorphs (mesh textures). The rest are analyses of featureless vein serpentine. 

Fo is the forsterite fraction of fresh oiMne. Last column is Ideal serpentine composition with 

Mg#=0.90. The low total!, result from burning of the grains during probing. All analyses 

Oncluding last column) are recalculated to 100%. "Total iron as FeO.**Calculated for an 

Mg#=0.90 

Uzardites Uzardite bastites Chrysotile Ideal composition 
Average of6 Average of 23 Averageof7 

Si02 41.58 41.46 42.02 41.9 

Al203 0.82 2.76 0.47 

Fe20 3 3.22 0.79 

FeO 0.08 3.74** 0.25 7.5** 
MgO 40.59 38.34 41.63 38.0 
H20+ 13.41 13.1 13.62 12.6 
Total 99.70 99.4 98.78 100.0 

Table (2.§) Compilation of serpentine analyses by Moody (1976b). Ideal composition is 

Mg3SI20 5(0H)4.*"Total iron as FeO calculated for an Mg#=0.90 
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2.6.1. The effect of serpentinjzatjon on the chemjstrv of the ultramafics 

It would be safe to assume that the original mineralogy of the Pindos ultramafics 

does not include any hydrous minerals. Although primary amphibole and phlogopite 

peridotites exist, there is no evidence to suggest that such peridotites exist in Pindos. It 

follows, then, that any structural water that appears in the analysis of a sample should be due 

to the presence of alteration minerals. Furthermore, the amount of water should correlate 

with the abundance of H20-bearing minerals. It has been shown so far \that the principal 

alteration mineral in Pindos is serpentine. Figure 2.2 shows a plot of the loss on ignition 

against the amount of serpentine, as was visually estimated under the microscope, for the 

ultramafic rocks of Table 2.1. The good positive correlation displayed further suggests that 

brucite and talc are not present in large amounts. This allows the use of the loss on ignition 

as an index of the degree of serpentinization, so that differences in sample composition can 

be related to the degree of alteration. 

In Figures 2.3a-h Si02, Al20 3, total iron as Fe20 3, MgO, CaO, Ni, and Cr are plotted 

against loss on ignition. Ti02 and MnO have very restricted compositional ranges (0.00-0.03 

wt.% and 0.1 0-0.13 wt.% respectively) and do not show any variation, while Na20, K20 and 

P20 5 are below the limit of detection. All oxides have been recalculated to anhydrous to 

cancel the diluting effect of water. Both harzburgites and dunites are included in the plots, but 

it will be noted that the latter are cumulates, representing varying degrees of fractionation, 

which adds some complexity to the interpretations. 

In order to quantitatively assess the variation of any element with alteration, least­

squares regressions were calculated sep~r.ately for harzburgites and dunites. Also shown in 

Figures 2.3a-h are the approximate positions of the main silicate minerals. i.e. olivine, 

orthopyroxene, and serpentine, the latter also recalculated as volatile-free. The range of 

compositions represents the observed variation in Pindos rocks. 
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Ejgure (2.2) Plot of the estimated percentage of serpentine against loss on ignition 

(LO.I.). Symbols denote the alteration minerals as determined by XRD. All samples include 

magnetite. Solid square: lizardite, diamond: lizardite and brucite, triangle: lizardite and 

chrysotile, star: lizardite, chrysotile and brucite, open square: talc and serpentine. 
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Figure 12.3\ Plots of Si02, Al20 3, total Fe20 3, MgO, and CaO wt.% (recalculated volatile­

free) and Nl and Cr In ppm against loss on ignition. Filled squares are harzburgites and open 

squares are dunites. 01, opx and serp are the approximate compositions of oiMne, 

orthopyroxene and serpentine respectively. The solid lines are the best-fit lines for the 

harzburgites and the dotted lines for the dunites. 
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The Si02 content of harzburgites shows a small increase (less than 1%) with 

increasing degree of serpentinization. This trend is expected, since serpentine is more Si02-

rich (on an anhydrous basis) than olivine. However, dunites show remarkably uniform Si02 

abundances with no apparent dependence on alteration. 

The Al20 3 content of harzburgites and dunites shows an almost horizontal trend, 

suggesting that serpentinization does not affect this element. 

The trend for Fe20 3(tot) is horizontal for harzburgites, but shows an addition trend for 
~ 

dunites. It will be shown later that this difference stems from the fact that dunites are 

cumulates of different degrees of fractionation and not the result of serpentinization. 

MgO shows a decrease with increasing serpentinization both in harzburgites and 

dunites, suggesting that MgO is mobilized and removed during serpentinization. The 

maximum MgO loss of totally serpentinized harzburgite is -6% relative and of dunites slightly 

less at -4% relative. 

The GaO abundance of harzburgites is very variable, due to the different modal 

proportions of ortho- and clinopyroxene in the rocks, but it does not show any obvious 

addition or depletion trend. Dunites show a much more restricted compositional range and a 

horizontal trend. 

The Mg# of the harzburgites shows a decreasing trend with increased 

serpentinization. This is the result of the observed MgO loss while Fe20 3(tot) remains 

constant. A decreasing trend is also shown by the dunites, but this has a steeper negative 

slope, since dunites show an addition trend for Fe20 3(tot) as well. 

The Ni and Cr contents of harzburgites show horizontal trends. In dunites, however, 

the overall trends suggest a removal of Ni and Cr with increasing serpentinization. These 

differences between dunites and harzburgites will be discussed next. 

Figure 2.4 is a plot of the Mg# olivine against the Mg# of the whole rock for some 

dunites. Since dunites consist almost solely of olivine, the close agreement between the 

whole rock and olivine Mg# strongly suggests that dunites are unaffected by serpentinization. 

This is also supported by Figure 2.5, which shows that the molecular ratio (Mg0+Fe0)/Si02 

of dunites is close to stoichiometric olivine. 
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Flgyre (2.4\ Plot of the Mg# of oiMne vs. the whole rock Mgl# in some dunites. The good 

agreement with the 1 :1 line suggests that the Mgl# of the whole rock has remained 

unchanged by serpentinization. 

It will be noted that the elements that show a different behaviour between 

harzburgites and dunites (Fe20 3(tot), Ni, Cr) are also those which are the most affected by 

fractionation. Since there is no reasonable explanation for these discrepancies, and in view of 

the evidence in Figures 2.4 and 2.5, it appears that the dunite trends in Figures 2.3c,f,g,h are 

actually fortuitous, with the more evolved dunites being also the most serpentinized. This 

assumption is consistent with the apparent behaviour of all elements. The harzburgites, 

however, show a more restricted compositional range and conclusions can be more 

confidently drawn. 

The only significant change of the harzburgite chemistry has been an increase of 

Si02 and a depletion of MgO that led to a concomitant decrease of the Mg#. The MgO 

depletion is the result of the hydration reaction of olivine to serpentine: 

2Mg2Si04 + 3H20 = Mg3Si20 5(0H)4 + Mg(OH)2 (2.6) 

olivine serpentine brucite 

suggesting that a fraction of the brucite formed was removed by the fluid. 
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The same reaction also explains the apparent increase of Si02 with serpentinization. 

If MgO is removed from the products of equilibrium 2.6 the system increases its Si02 content. 

Thus, Si02 shows an increasing trend with serpentinization not as a result of addition but 

because it remains immobile. 

The stability of Al20 3, Fe20 3, Cr, and Ni are in agreement with other studies of serpentinized 

ultramafics that concluded that the main change of the ultramafic chemistry has been the 

addition of water (Coleman and Keith, 1971 ). Engin and Hirst (1970) noted a AJ20 3 depletion 

and Ni addition in peridotites with H2o+ wt.% content higher than -10%, but this is not 

evident in Pindos peridotites. Although CaO is generally considered mobile (loughnan, 1969; 

Moody, 1976b), there is no evidence of its removal in the Pindos harzburgites. This 

discrepancy is probably caused by the fact that clinopyroxene, which is the major Ca-bearing 

phase of these rocks, is very resistant to serpentinization. 
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represents orthopyroxene. The star is ideal serpentine composition. The dunites plot close to 

the Olline, suggesting that their composition is unaffected by serpentinization. 
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2.7. The effect of serpentinization on sulphides. 

Nickel-iron sulphides and alloys have been observed In most of the harzburgites and 

cumulate dunites, but they have three modes of occurrence: 

ij Sulphides in clinopyroxene-bearing harzburgites from Vovousa, transition zone 

harzburgites, and cumulate dunites occur mainly interstitially to oiMne but also frequently in 

contact with spinel grains. They consist of pentlandite ± pyrrhotite and their alteration 

products (magnetite and an unidentified alloy, possibly awaruite). The amount of sulphides 

present is very small (typically less than 1% but more in some dunites) and their size shows a 

wide range from -0.5 mm to less than 0.1 mm. 

ii) In addition to these samples, virtually every rock bears minute (a few tens of 

microns but very variable) sulphides found in the network of serpentine veins produced during 

serpentinization. Note that the reference to serpentine veins here does not signify the 

morphologies described in the early part of this Chapter but rather the network of serpentine 

that develops even in the least altered rocks around the silicate minerals. This is also the 

location where magnetite formed during serpentinization is concentrated (see Plate 2.2) 

iiij Finally, sulphides are frequently found as inclusions in oiMne and orthopyroxene, 

and porphyroclasts of these minerals frequently have abundant fluid inclusions with which 

euhedral crystals of sulphides are associated. The size of these sulphides is the same as that 

of type ii. 

Eckstrand (1975) examined In detail;"ithe minor and trace opaque minerals that occur 

in serpentinized rocks. In this study he derived a general model for the occurrence of these 

minerals in terms of oxygen and sulphur fugacity as they are controlled by the large scale 

silicate reactions (fable 2.6, Figure 2.6). Eckstrand (op. cit.) described two modes of 

occurrence for the nickeliferous opaque minerals. The first is as disseminated intercumulous 

blebs with size of 1 mm and the second as smaller, finely disseminated grains dispersed 

throughout the serpentinized peridotite. His interpretation of the latter was that they 

represented nickel that was released after the breakdown of magmatic silicates. The general 
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equation that Eckstrand (1977) derived to describe the loss of sulphur during serpentinization 

is: 

8FeS + Fe4.5Ni4.5S8 + 802 = 2.22 Fe30 4 + Fe5.5Ni3.5S8 + 1/3 FeNi3 +4 S2 (2. 7) 
po pn mg pn aw 

which best approximated the observed proportions of the products. As mentioned earlier, 

serpentinization in Fa-bearing assemblages is a redox reaction. The oxidation of the iron in 

silicates to magnetite produces a reducing H2 front that controls the redox state of the small-

sized sulphide assemblages. It will be noted that his is the redox state of the fluid-rock 

system and is distinct from the magmatic redox state of the rock (Chapter 3, oxygen 

geobarometry). As the nature of the fluid changes (e.g. by introduction of C02 from country 

rocks) the sulphide-oxide assemblage changes to that stable at the new conditions. 

Zone Silicate assemblage 

1 serpentine + relict olivine 
(0-75%) 
[H20 front producing H2] 

2 serpentine 

3 talc + magnesite 
[C02 front producing 0~ 

Opaque 
assemblage 
mt+ pn+ aw 

a mt+ aw + hz 
b. mt + hz 
c. mt +-pn+-hz 
mt +pn+-hZ+-ml 

fo 
2 

fs 
2 

low low 

intermediate intermediate 

high high 

4 talc + magnesite mt +hz+-pn intermediate intermediate 
5 country rock po+sp+cp+-PY low low 

Table C2.6l The opaque mineral assemblages and their relation to the serpentinite host. 

(Eckstrand, 1975). mt=magnetite, aw=awaruite, pn=pentlandite, po=pyrrhotite, 

hz=heazlewoodite, ml=millerite, cp=chalcopyrite, py=pyrite 
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Ejgyre 12.6,) Log f02 - log ~S diagram 

showing the stability fields of Fe-Ni 

sulphides and oxides and associated silicate 

or carbonate rocks. The shaded regions 

represent partially serpentinized peridotite 

(SP), serpentinite ± brucite (SB), 

serpentinite-magnesite (SM), serpentinite­

magnesite-talc (STM, and tfllc-magnesite 
' 

(TM). From after Eckstrand (1975). 

The mode of occurrence of the sulphides in Pindos is consistent with this model. 

Type (i) sulphides are magmatic although of different origins. The sulphides in the 

clinopyroxene-bearing harzburgites are residual mantle sulphides after extraction of S-

saturated magma (see Chapter 4, sulphur in the mantle). The sulphides in the transition-zone 

harzburgites and dunites represent droplets of immiscible sulphide melt that impregnated the 

harzburgites or were trapped in the intercumulous melt fraction of settling olivine crystals. 

Type (ii) sulphides are the products of the alteration and redistribution of type 0) 

sulphides during interaction with the serpentinizing fluids. At. least some of the Ni and/or Fe of 

these sulphides was probably supplied by the breakdown of olivine. The silicate and sulphide 

assemblage correspond to Zones 1 and 2 of Table 2.6, suggesting low to moderate oxygen 

fugacities and low sulphur fugacities. 

The mode of occurrence of type Oii) sulphides suggests that they have a different 

history than that of types (i) and (iQ. They were probably included in the porphyroclasts during 

recrystallization of the peridotites (see Chapter 3, rock textures), but their origin is uncertain. 

Their association with fluid inclusions suggests that they were distributed by a fluid phase, but 

whether this phase just promoted the redistribution of residual sulphides or was itself a S-

rich fluid cannot be ascertained. 
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2.8. Summary 

The textural evidence and the scarcity of high-temperature hydrothermal minerals 

suggest an environment of rapidly decreasing temperature for the serpentinization of the 

Pindos ophiolite. Interaction with fluid may have started at a temperature as high as 6400C 

and seawater was probably involved at that stage. Serpentine formation may have started at 

300 to 3500C, depending on pressure, and continued until emplacement The most common 

alteration assemblage is serpentine + magnetite :t brucite. In common with most ophiolites 

the dominant serpentine polymorph is lizardite. The presence of sheared serpentine indicates 

that at least some of the serpentinization was syntectonic and, by analogy with other 

ophiolites, may have included meteoric water. 

For the majority of the rocks serpentinization was not complete and different minerals 

were variably affected, olivine being the most susceptible to alteration, followed in this respect 

by orthopyroxene, clinopyroxene and spinel. Except for the introduction of water and the 

removal of MgO the major element chemistry of the ultramafics has remained unchanged. In 

contrast to evidence of other studies, CaO loss was prevented by the resistance of 

clinopyroxene to alteration. 

The serpentinizing fluids have affected the original Fe-Ni sulphide assemblages 

present in some rocks. Sulphur loss and oxidization has produced sulphur-poor and oxide 

assemblages while redistribution of the Ni and Fe of the silicates was taking place. 
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Chapter~ Peridotite chemistry 

3.1. Mineral habit 

The predominant lithology of the Pindos mantle sequence is harzburgite. It consists 

mainly of forsterite olivine with variable amounts of enstatite pyroxene (see Table 3.1) and 

accessory but ubiquitous spinel (-1-2%). Clinopyroxene is sometimes present as distinct 

grains but the majority of the harzburgites lack free clinopyroxene except as exsolution in 
' 

orthopyroxene grains. Recrystallization and tectonic fabrics are the norm in the harzburgites 

but the majority of the rocks have suffered serpentinization, which has obliterated most of 

their primary characteristics. The mode of occurrence and characteristic of the minerals will 

be described below. The terminology follows that of Mercier and Nicolas (1975). 

3.1 .1. O!jyjoe 

Olivine forms the groundmass in harzburgite, constituting 72-94% of the peridotite 

mode (Table 3.1), and occurs as two types of grain: i) porphyroclasts and, ii) neoblasts. The 

former are large (2-4 mm) grains, irregularly shaped, with curved or serrated boundaries that 

are often elongated as a result of stresses (Plate 3.1). They exhibit undulose extinction, 

indicating that lattice strain has taken place. Subgrains or deformation lamellae parallel to 

(1 00) are often formed and they give the grains a patchy or striped appearance under cross 

polarised light. Neoblasts are small (<0.5 mm) grains that are developed during 

recrystallization. They have straight to curvilinear margins and definite triple points between 

grains with 120° grain boundaries. Subgrains and deformation lamellae do not form in 

neoblasts, which have normal extinction (Plate 3.2). Sometimes neoblasts form sub-parallel 

bands that traverse the thin section or define a network around olivine and pyroxene 

porphyroclasts (Plate 3.12). Both types are usually found in a single thin section at varying 

proportions. Complete recrystallization of olivine to neoblasts is not rare, but there are 

usually some relict olivine or orthopyroxene porphyroclasts. 
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Sample Olivine Orthopyroxene Clinopyroxene Spinel 

dr34 83.1% 11.3% 3.9% 1.7% 
kk8812* 91.2% 3.4% 3.7% 1.8% 
dr3* 89.7% 5.0% 3.6% 1.7% 
dr9* 92.1% 2.8% 3.3% 1.8% 
kk8820* 91.6% 4.2% 2.8% 1.3% 
si43 77.9% 17.9% 2.8% 1.4% 
dr23 91.1% 5.9% 1.7% 1.3% 
ag2 79.6% 19.4% 1.0% 
ag3 84.0% 14.6% 1.4% 
bak1 84.5% 13.9% 1.5~ 
bo13 72.2% 26.3% 1.5% 
dr42 89.6% 8.9% 1.5% 
li8811 94.1% 4.4% 1.5% 
li8816 66.7% 32.5% 0.8% 
li8821 93.5% 5.3% 1.2% 
li8826 89.7% 8.4% 2.0% 

Table (3.1) Modal compositions of selected Pindos ultramafics. The compositions were 

calculated by least-squares fitting (minimisation of residuals) of whole-rock and mineral 

analyses. Samples marked with asterisk are transition zone harzburgites that have probably 

been affected by melt impregnation. 

3.1 .2. Orthopyroxene 

All orthopyroxene in Pindos mantle rocks is enstatite and it constitutes 5-30% of the 

peridotite mode (Table 3.1}. In thin section it is colourless, with straight extinction, low 

interference colours and high relief, which gives it the appearance of "floating" in a 

groundmass of olivine. It exhibits a good cleavage parallel to (11 0} and a less well developed 

one at right angles (010}. It also frequently exhibits clinopyroxene exsolution lamellae parallel 

to (110} or, less frequently, exsolved clinopyroxene blebs. In common with olivine, 

orthopyroxene also occurs as porphyroclast~.or neoblasts. Orthopyroxene porphyroclasts are 

large (2-5 mm) grains that occur as isolated grains (Plate 3.3} or in clusters (Plate 3.4}. If a 

rock has a well defined foliation, this is evident in thin section by the rough alignment of the 

orthopyroxene in bands that traverse the thin section. 
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plate 13.1\ Olivine porphyroclast with deformation lamellae. Crossed nicols, field of view 

1.3mm. 

plate 13.~ Recrystallized olivine neoblasts, lacking evidence of strain, and interstitial 
chromite. Note remnant olivine porphyroclasts in the upper and lower parts of the picture. 
Crossed nicols, field of view 1.3 mm. 
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plate (3.3\ Retort-shaped orthopyroxene porphyroclast with kinked cleavage and 
clinopyroxene exsolution lamellae. The lower right part of the crystal has slid and enclosed 
part of an olivine porphyroclast. Crossed nicols, field of view 3 mm. 

Plate (3.4\ Part of a cluster of orthopyroxene porphyroclasts shown in Plate 3.7. Note 

clinopyroxene in exsolved blebs and recrystallized band. Crossed nicols, field of view 3 mm. 
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Plate (3.5) Clinopyroxene porphyroclast with orthopyroxene exsolution lamellae and 

round oiMne inclusions. Crossed nicols, field of view 3 mm. 

Plate (3.6\ Interstitial clinopyroxene (high relief) and plagioclase between olivine grains 

(now serpentinized) in dunite. Plain polarized light, field of view 3 mm. 

I Mansolas ·1 99·1 62 



Chapter 3 Peridotite chemistry 

plate Q.D Wide range of spinel shapes and sizes down to less than o. 1 mm. The central 

part of the picture is occupied by a cluster of orthopyroxene porphyroclasts (high relief). Plain 

polarized light, field of view 13 mm. 

Plate Q.Bl Alignment of spinels (blacl<) parallel to the foliation. Crossed nicols, length of 
view 13 mm. 
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plate (3.9\ Large spinel grain with lobate margins. Plain polarized light, field of view 3 

mm. 

Plate (3.10) Coarse porphyroclastic texture. Crossed nicols, field of view 13 mm. 
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. Plate (3.11\ Equigranular mosaic texture with relict olivine and orthopyroxene 

porphyroclasts. Crossed nicols, field of view 13 mm. 

Plate (3.12\ Tabular equigranular texture. Crossed nicols, field of view 13 mm. 
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The porphyroclasts can be tabular, irregular, retort shaped (Basu, 1977) or variably 

elongated, reflecting the amount of stress a rock has experienced. Lattice strain is evident in 

almost every sample, manifested in curved cleavage, undulose extinction, kink bands and the 

formation of subgrains. Clinopyroxene exsolution lamellae, when present, are always 

affected, indicating that exsolution was pre-deformation. Neoblasts are again smaller 

( <1 mm) than porphyroclasts with normal extinction and no clinopyroxene e~solution. They 

frequently form the margin of porphyroclasts. Unlike olivine, neoblasts of orthopyroxene are 

seldom the only type of grain present in a thin section since, even in the most tectonized 

rocks, some relict orthopyroxene porphyroclasts remain. 

3.1 .3. Clinopyroxene 

Clinopyroxene, as already mentioned, occurs chiefly as exsolution in orthopyroxene. 

Free clinopyroxene grains are present only in samples from Vovousa. In these rocks they 

form tabular, sub- to anhedral grains (up to 2 mm) that, sometimes, have exsolved 

orthopyroxene lamellae and evidence of strain (Plate 3.5). 

Clinopyroxene is also present in the rocks from the transition zone, but it has a 

distinctly different appearance. It occurs as irregular grains, interstitial to olivine and is 

frequently associated with plagioclase (Plate 3.6). It does not exhibit evidence of strain or 

exsolution and it bears a distinct resemblance to the cumulus poikilitic clinopyroxene. 

As mentioned earlier, (see Chapter 1, transition zone) this kind of clinopyroxene 

represents "frozen" droplets of a melt that impregnated and re-fertilized already depleted 

.. 
peridotite. Additional evidence is provided by the modal composition of the transition zone 

harzburgites (Table 3.1). The high olivine and low orthopyroxene modal contents of these 

samples suggest a depleted composition, which is at odds with the relatively high modal 

proportion of clinopyroxene, especially since harzburgites from other areas have lower olivine 

and higher orthopyroxene contents (i.e. more fertile), yet have no free clinopyroxene. 
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3.1.4. Spinel 

Spinel is found as small (<2 mm) grains in the Pindos harzburgite. It may be 

translucent, orange-brown to deep red-brown, or opaque. It mainly occurs as round sub- to 

anhedral grains, In a wide range of sizes (Plate 3. 7), and is mostly located at grain 

boundaries, not showing any preferred association with oiMne or orthopyroxene. Spinels tend 

to form stringers aligned parallel to the foliation of the rock (Plate 3.8). Large spinels tend to 

occur as single grains, often with very irregular boundaries (Plates 3.7, 3.9). Smaller spinels 

tend to occur in clusters of 2-3 grains and have better developed habits, suggesting that 

these may derive from the recrystallization of large grains. It will be noted that vermicular 

intergrowths (Mercier and Nicolas, 1975) of orthopyroxene and spinel have not yet been 

observed in Pindos and that the characteristic "holly leaf" shaped spinels (Mercier and 

Nicolas, op. cit.) are rather rare. 

Mercier and Nicolas (1975) 

Protogranular 

Porphyroclastic 

Equigranular 

Mantle tectonite classification 

Basu (1977) 

Coarse granular 

Porphyroclastic 

Equigranular or tabular 

mosaic 

Pike and Schwarzman 

(1971) 

Allotriomorphic 

Porphyroclastlc 

Equigranular mosaic 

Table (3.2) Correlation of peridotite textural type and classification between different 

studies. 

3.2. Rock textures 

There are various systems of nomenclature for mantle metamorphic rocks (Mercier 

and Nicolas, 1975; Basu, 1977; Pike and Schwarzman, 1977) based on studies of ultramafic 

upper mantle xenoliths. Table 3.2 lists the most common textures encountered In these 

xenoliths and how they correspond between different classifications. The different categories 

reflect the slightly different interpretations for the origin of the textures, it will be noted, 
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however, that the xenolith suites used in these studies are from different locations and may 

correspond to dissimilar processes in the upper mantle. 

The main textural elements of the Pindos harzburgites are: 

A small number of samples preserve coarse grains (of all minerals) with lobate and 

cuspate boundaries (Plate 3.9). These samples have been observed mostly in peridotites 

from Vovousa. This texture is attributed to resorption or dissolution-reprecipitation creep 

(Spry, 1969), which may be promoted by the presence of melt during deformation acting as 
\ 

an medium for dissolution at pressure points and for re-precipitation in areas of reduced 

stress (Dick, 1979). This texture is, therefore, interpreted as partial melting texture and 

corresponds to the protogranular texture of Mercier and Nicolas (1975). 

The majority of the samples (>90%) are characterized by deformation and 

recrystallization of the minerals. Coarse porphyroclastic textures are the first to be developed 

(Plate 3.10, Mercier and Nicolas, 1975). These are replaced by recrystallization with fine-

grained textures that, almost always, preserve remnants of porphyroclasts (Plate 3.11, 

equigranular mosaic texture of Mercier and Nicolas, 1975). Frequently such rocks show 

elongation and sub-parallel orientation of the minerals (tabular mosaic texture of Basu, 

1977). 

The textures described above correlate with the rock fabrics in the field (see Chapter 

1, Mantle sequence). Thus, peridotites with no or very weak foliation in the field have coarse-

grained, weakly strained textures that indicate high temperature flow (1200°C Mercier and 

Nicolas, 1975). As deformation increases in intensity, strongly foliated rocks with decreasing 

porphyroclast size are formed. At the end remains a completely recrystallized rock wholly 

composed of fine-grain neoblasts. 

3.3. Mineral chemistry 

The silicate minerals of the Pindos ultramafic rocks (olivine, orthopyroxene, 

clinopyroxene) are highly magnesian and depleted in magmaphile elements, they show, 

however, compositional variations that are significant to the melting history of the peridotite. 

Their characteristics will be described below and will be compared to those of other 

ultramafic rocks from known geotectonic settings. 
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3.3.1. Ol!ylne 

The forsterite content of olivine in the harzburgites varies from 89.4 to 91.6 with an 

average of 90.8. The dunites have a higher average of 91.3 and show a larger variation from 

89.8 to 92.9. In Table 3.3 this compositional range is compared with olivine from other Alpine 

peridotites. It can be seen that Pindos olivines are amongst the most magnesian, with 

Papuan olivines being the most refractory of all peridotites. It also displays a relatively wide 

range of compositions, compared to Lizard, Troodos, and Burro Mountain, as do olivines from 

Josephine, Oman, and Papua. The Bay of Islands ophiolite shows the most wide range of 

olivine compositions, because it includes fertile spinellherzolltes (Roberts, 1986). 

The Cr20 3 and MnO wt.% contents of olivine vary from below the detection limit to 

maxima of 0.22 wt.% and 0.31 wt.% respectively, while NiO varies from 0.15 to 0.55 wt.% 

and shows a systematic relation with the forsterite fraction of olivine. In Figure 3.1 the 

Mg/(Mg+Fe) ratio (Mg#) in olivine is plotted against its Ni ppm content The olivines from 

harzburgites show some scatter, which is probably due to analytical error, but show a 

relatively restricted range of Ni contents which consistent with a partial melting trend shown In 

the diagram. The Ni content of olivines from dunites shows a wider variation as well as much 

smaller values. Because of the high distribution coefficient of Ni in olivine (e.g. Hart and 

Davis, 1978) even a small amount of olivine crystallization will quickly deplete the melt in Ni. 

For example, Sato (1977) calculated that a primitive mantle-derived melt that crystallizes 10% 

olivine will reduce its Ni content by 50%. Thus the Ni content of dunites is consistent with their 

being cumulates of various degrees of fractionation precipitated from primitive melts. 
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Peridotite Location Forsterite range Source 

Uzard Cornwall 89.1-91.0 Kirb_y_{_197~ 

Burro Mountain California 91.1-91.4 Lo~ et al. 1_19711 
Troodos Cyprus 90.7-91.2 Greenbaum 1_1972_1 
Bav of Islands Newfoundland 87.8-92.2 Roberts (1986) 
Papua Papua, New 91.6-93.6 England and Davies (1973) 

Guinea 
Josephine Oregon 89.5-91.2 Dick (1977) 
Seman Oman 89.2-91.7 Brown _{_198~ 
Pindos NWGreece 89.4-91.6 This study 

Table (3.3\ Range of olivine compositions for some Alpine peridotites. 

5000 

0 
0 

4000 0 <>. <> Partial co melting 0 Harzburgites 
trend <> Dunites Ni 

C)K <> ppm 3000 
(o~ 

<> <> 
• Chromitltes 

)I( Mantle olivine 

2000 <> 
<> 

Olivine 

<> fractionation 
trend 

1000 

0.89 0.90 0.91 0.92 0.93 

Mgt# (oQ 

Elgyre (3.1\ Ni (ppm) vs. Mgt# in olivine. Mantle olivine composition from Sato (1977). 

3.3.2. Orthopyroxene 

Orthopyroxene in the Pindos harzburgite ranges In composition from 

Wo0.8En91 .3Fs-,_9 to Wo3.4En86.6Fs10.0 with an average of Wo2.2En89.1Fsa.7• It has slightly 

higher Mgt# than olivine, ranging from 0.897 to 0.922 with an average of 0.911. The Al20 3 and 

CaO contents are relatively low, ranging from 0.45 to 2.85 wt.% and 0.43 to 1.90 wt.% 
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respectively. Na20, ~0 and NiO are all below detection limits. Ti02 and MnO are frequently 

also below detection limit, but may reach 0.08 and 0.32 wt.% respectively. Cr20 3 varies 

between 0.13 and 0.78 wt.%. 

Figure 3.2 is a plot of enstatites from Pindos and other peridotites in the pyroxene 

quadrilateral and Figure 3.3 shows the relative positions of the different peridotite fields. 

Pindos enstatites plot at the Mg-rich, Ca-poor end of the abyssal peridotites field and show a 

large overlap with orthopyroxenes from the Oman ophiolite. Vourinos orthopyroxenes are 

' 
slightly more magnesian, whereas the Papuan enstatites represent the most refractory 

compositions and show very limited overlap with Pindos. 

Figure 3. 4 shows a good linear correlation of the Al20 3 wt.% content of 

orthopyroxene with that of the whole rock. Bonatti and Michael (1989) showed that the Al20 3 

abundance of peridotites is related to their geotectonic setting, decreasing from pre-oceanic 

rifts to mid-ocean ridges to subduction zones, suggesting an increase in the amount of partial 

melting. Figure 3.4 indicates that the decreasing Al20 3 wt.% content of the rock is reflected 

in the composition of the minerals (see also Figures 3.11 and 3.17). 

The Cr content of orthopyroxenes is shown in relation to the spinel Cr# in Figure 3.5. 

It can be seen that the most Cr-rich enstatite does not co-exist with the most Cr-rich 

chromite. The enstatite Cr content reaches a maximum for a spinel Cr# of around 0.5 and 

then decreases, producing a parabolic trend. Nagata et al. (1983) examined this trend in a 

large number of peridotites and showed that it is best explained in relation to exchange 

equilibria between orthopyroxene and spinel spinel end-member components. Nagata et al. 

(1983) also found that the same relation applies to clinopyroxene-spinel equilibria. Figure 3.5 

shows that, according to the conclusions of Nagata et al. (op.cit.), orthopyroxene and spinel 

in the Pindos peridotites are in thermal equilibrium with respect to Cr. 

Figure 3.6 shows that the Mg# of olivine and orthopyroxene vary in a linear fashion, 

suggesting that the Fe-Mg exchange with olivine controls the orthopyroxene chemistry. This 

variation also represents variation in whole-rock Mg#, since olivine and orthopyroxene make 

up 95-99% of the rock. Note that, although a wide range of compositions is shown, peridotites 

from the same area show a more restricted range, suggesting that they experienced broadly 

similar degrees of partial melting. 
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0 

Abyssal 
peridotites 

10 

Papua 

15 

New Guinea I 
I ,j ___ w,. /~. 
0 5 10 15 

Oman 

5 10 15 

Vourinos 

0 5 10 15 

Figure (3.2) Part of the pyroxene quadrilateral showing enstatite compositions from the 

Pindos harzburgite. Sources for the abyssal 

peridotites field are: Arai and Fujii (1978), Sinton (1978), Hamlyn and Bonatti (1980), Nicholls 

et al. (1981 ), Michael and Bonatti (1985), Dick (1989), Fujii (1990), Juteau et al. (1990) and 

Komor et al. (1990). Data from Oman: Brown (1982) and Roberts (1986); Vourinos: Mercier 

(1980); Papua, New Guinea: England and Davies (1971). 
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En 100 

Flgyre (3.3) Comparison of the range of enstatite compositions in the Pindos 

harzburgites with the Peridotites in Figure 3.2. Oman is omitted for clarity. 

Al203 
wt.% 
(opx) 

3 

2 

• 
• • •• 

I 

I • .... II 

• • 

• 
• 

Or---~---r--~----~--+---~---+--~~--+-~ 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Al203 wt.% (whole rock) 

Figure (3.4) Linear correlation of the Al20 3 wt.% content of orthopyroxene with Al20 3 

wt.% whole rock abundance. 
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• • 0.02 • • rl • ... . 
Opx • .. Cr ii 
M1 0.01 • • • 

•• 
0 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Cr# (sp) 

Figure (3.5) Plot of the Cr# of spinel vs. the Cr~x fraction. Note the change from an 

increasing to a decreasing trend at a Cr# around 0.5 that produces a parabolic pattern. 

0.92 

D Avgo 

0.91 
+ Livadi 

Mg# 6 Vovousa 

(opx) X Dramala 

0.9 >K Sub-Moho 

0.89 -1'-----+---+----+---+----+---1 

0.89 0.9 0.91 0.92 

Mg# (ol) 

Figure (3.6) Mg/(Mg+Fe) in olivine vs. Mg/(Mg+Fe) in orthopyroxene. Peridotites from 

different localities are indicated. Samples marked "Sub-Moho" are transition-zone 

harzburgites (Table 3.1 ). 
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5 
Trend for abyssal peridotites a 

4 
Ill 

Al203 3 • wt.% • (opx) • 2 ,_ ... • 1 • iii • • • • 0 
0.90 0.91 0.92 0.93 

Mg# (opx) 

3.00 b 

Trend for abyssal peridotites 

2.00 
CaO , wt.% .. (opx) 

1.00 • • • •• • liillil • • • II 

0.00 
0.90 0.91 0.92 0.93 

Mg# (opx) 

Figure (3.7) Enstatite Mg# vs. Al20 3 and CaO wt.%. CaO is more uniform than Al20 3 but 

still more variable than in abyssal peridotites. Abyssal peridotitet; field from Dick and Fisher 

(1984). 
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0.94 
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J.90 

0.89 
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Abyssal 
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AI203wl% 
enstatite 
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DAvgo 
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Figure (3.8) Enstatite Mg# vs. Al20 3 wt.%. Pindos follows the general enstat~e trend of 

decreasing A120 3 with increase in the Mg/(Mg+Fe) ratio. Sources for abyssal peridotites, see 

Figure 3.2. 

Figure 3.7a,b is a plot of Mg# against Al20 3 wt.% and GaO wt.% in orthopyroxene. 

Also shown are the trends for abyssal peridotites of Dick and Rsher (1984). These authors 

examined the process of melting beneath mid-ocean ridges and showed that the Al20 3 

content of orthopyroxene decreases steadily with partial melting. The GaO content of 

orthopyroxene from abyssal peridotites is fairly constant, suggesting a melting history where 

clinopyroxene was involved, buffering the GaO content of orthopyroxene. This contrasted the 

trends. shown by ophiolites where GaO in orthopyroxene decreases with partial melting (Dick 

and Fisher, op. cit.). The Al20 3 and GaO contents of Pindos enstat~es are both lower than 

those of abyssal peridotnes. Al20 3 has a decreasing trend that is subparallel to the trend of 

abyssal peridotites. The data for GaO are more scattered and show less variation than Al20 3, 

but there is a clear decrease for the most MgO-rich enstatites. It can be noted, however, that 

the GaO content of orthopyroxene also depends on temperature (see later, geothermometry) 

and comparisons are not always simple. 

The simpler behaviour of Al20 3 allows the uncomplicated comparison of peridotites 

from different settings. Figure 3.8 is a plot of Al20 3 wt.% against Mg# in for Pindos enstatites, 

showing fields for abyssal, Oman, and Papuan peridot~es. There is a general decreasing 
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trend of Al20 3 with increasing Mg#, which reflects the increasingly depleted nature of the 

peridotites considered. In this plot is also evident the difference in composition of peridotites 

from different areas. Peridotites from Vovousa, being the less depleted, plot in the field of 

abyssal peridotites. There is some overlap of the rest of the data with this field, but the good 

agreement with the fields for Oman and Papua suggest that they represent the fertile end of 

the spectrum for subduction zone-related peridotites rather than the depleted end of abyssal 

peridotites. Samples from or immediately below the Moho (marked Sub-Moho, Rgure 3.8) are 
\. 

very similar to Dramala peridotites. Field evidence suggested that the stratigraphic position of 

Dramala is near the Moho and the chemistry of the Dramala peridotite supports this 

conclusion. It will be noted, however, that sub-Moho peridotites inevitably include some 

depleted harzburgites that were re-fertilized by melt impregnation, although it is not easy to 

establish how severely this impregnation changed the original composition. These peridotites 

plot almost, entirely, within the field for Oman. Harzburgites from Livadi and Avgo, however, 

show more depleted compositions, but not as depleted as Papuan harzburgites. Viewed 

together, the variation of the composition of the peridotites from the southern part of Pindos 

show remarkable similarity, both in composition and compositional range, with peridotites 

dredged from the Mariana forearc. The peridotite from Vovousa has a distinct composition 

and is clearly less depleted than the rest of the complex. 

3.3.3. Clinopyroxene 

The clinopyroxene of the Pindos harzburgite is diopside, ranging from 

highest Mg/(Mg+Fe) ratios, ranging from·0.898 to 0.935 with an average of 0.928, but does 

not show a correlation with the Mg# of orthopyroxene (Figure 3.1 0). Its Al20 3 is higher than 

that of the orthopyroxene, ranging from 1.51 to 2.90 wt.%. Ti02, MnO, and Na20 reach 

maxima of 0.29, 0.14, and 0.61 wt.% respectively, whereas Cr20 3 varies from 0.55 to 1.15 

wt.%. 

Figure 3.9 shows a plot of clinopyroxenes and co-existing orthopyroxenes from 

Pindos peridotites in the pyroxene quadrilateral. The clinopyroxenes plot at the 

I Mansolas 1991 77 



I 

Chapter 3 Peridotite chemistry 

low_temperature end of the abyssal peridotites field and show a wider compositional range 

than the orthopyroxenes. This is mainly caused by the greater sensitivity of the Wo 

component of clinopyroxene to temperature compared to that of orthopyroxene. The wide 

range of compositions in Rgure 3.9 indicates that the peridotites were equilibrated in a 

relatively wide temperature interval. 

The variation of the Mg# of clinopyroxene with that of orthopyroxene is shown in 

Figure 3.10. In contrast to the same plot of olivine against orthopyroxene, the data do not 
\ 

show any apparent trend. This is probably the result of the more complex ortho-clinopyroxene 

equilibria imposed by the two-pyroxene solvus on mineral pairs, although the possibility that 

some compositions are not in equilibrium cannot be excluded. 

In contrast to FeO and MgO, the clinopyroxene Al20 3 wt.% abundance shows a good 

linear correlation with that of orthopyroxene (Rgure 3.11 ), suggesting that a state of 

equilibrium between the two minerals exists for this element. It will be noted that the trend of 

the Pindos peridotites in Figure (3.11) shows a clockwise rotation, compared to the trend that 

Johan and Auge (1986) suggest. These authors considered mineral compositions from a 

variety of peridotites, including a large number of data from fertile spinel lherzolite xenoliths. 

The observed angular relation of the Pindos pyroxene trend to that of Johan and Auge (1986) 

is consistent with the unmixing of aluminous orthopyroxene from clinopyroxene (Duncan and 

Green, 1987). 

Unlike A120 3, the Cr# of co-existing pyroxenes does not show a simple linear trend 

(Figure 3.12). As mentioned earlier, this is the result of the spinel exchange reactions with 

pyroxenes on the Cr intermineral partitioning. Still, a positive correlation is displayed in Figure 

3.12 and it is obvious that clinopyroxene is more Cr-rich than orthopyroxene. 
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Figure (3.9) Plot of orthopyroxene-clinopyroxene pairs in the pyroxene quadrilateral. Tie 

lines connect coexisting minerals. The triangles are represent two websterite samples (Table 

3.1 ). Sources for the field for abyssal peridotites as in Rgure 3.2. 
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Figure (3.10) Plot of the Mg# of orthopyroxene vs. that of clinopyroxene for Pindos 

peridotites, showing a lack of correlation. 
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0 2 3 4 
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Figure (3.11) Al20 3 wt.% in orthopyroxene vs. Al20 3 wt.% in clinopyroxene. A positive 

correlation is displayed. The line is using the equations that Johan and Auge (1986) derived 

for the Al20 3 distribution between orthopyroxene, clinopyroxene, and spinel in spinel 

lherzolites xenoliths and ophiolites. 
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Ejgure (3.12) Plot of the Cr# of orthopyroxene vs. the Cr# of clinopyroxene. A good 

correlation is displayed. 1:1 line shown for reference. 

3.3.4. Spjnel 

Spinel in harzburgites shows a wide variation of the Cr/(Cr +AI) ratio. (Cr#) from 0.220 

to 0.857 over a more limited range of Mg/(Mg+Fe) ratio (Mg#) from 0.421 to 0.694. Spinel in 

dunites shows more limited variation for both ratios with Cr# from 0.439 to 0.827 and Mg# in 

the lower range of 0.361 to 0.621. These ratios also vary to a limited extent in single grains. 

Figure 3.13 is a plot of Mg# against Cr# for core and rim spinel compositions in 6 samples 

that span almost the whole spinel compositional range. It can be seen that the Cr# of rims is 

always slightly lower than the core, the Mg#, however, does not show a consistent pattern. 

This type of Cr# zoning in spinel is well documented in virtually every study of peridotites and 

is the result of the re-equilibration of spinel (Henderson and Wood, 1981) and is referred to 

as normal zoning. Note that reverse zoning, which is the result of hydrothermal alteration of 

spinel (Kimball, 1988, 1990; see also Chapter 2, serpentinization}, is accompanied by very 

low Mg# of the rims, due to AI and Mg mobilization, and has not been encountered in Pindos. 
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Figure (3.13) Plot of Mg# vs Cr# in spinel for core-rim pairs. The points are average 

compositions for the thin section. Lines connect the rim (r) and core (c) compositions. Note 

that the Cr# of rims is always lower than the Cr# of the cores, while the Mg# does not show a 

consistent pattern. 
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Figure (3.14) Ti02 wt.% against Cr# in spinel. Field for abyssal plagioclase peridotites 

from Dick and Bullen (1984) 
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The Ti02 content of the spinels is usually below detection limit but is higher in some 

dunites and melt-impregnated harzburgites and may reach 0.51 wt.%. In Figure 3.14, Ti02 is 

plotted against Cr# in spinel. The samples with higher Ti02 plot very near the abyssal 

plagioclase peridotite field of Dick and Bullen (1984), suggesting that equilibration with a 

percolating melt has affected these spinels. 

In Figure 3.15 Mg/(Mg+Fe) is plotted against Cr/(Cr+AI) in spinel. The Pindos spinels 

fall largely outside the field for abyssal peridotites of Dick and Bullen (1984), although some 
~ 

overlap does occur. Dick and Bullen (op. cit.) classified peridotites according to the Cr# of 

their spinels: spinels from type I peridotites have spinels that plot within the abyssal peridotite 

field; spinels from type Ill peridotites plot outside the abyssal peridotite field, and spinels 

from type II peridotites the spinels span the full range of compositions in type I and Ill 

peridotites. Although Pindos would appear to belong to type II peridotites, samples with Cr# 

less than 0.45 come from Vovousa. It has already been mentioned that harzburgite from 

Vovousa contains free clinopyroxene and was generally more fertile than the rest of the 

complex. The observed variation in spinel composition is consistent with the variation of the 

co-existing phases and further supports a mid-ocean ridge-related environment for the north 

part of the complex. So, considered alone, the south part of the Pindos complex belongs to 

type Ill ophiolites (subduction-related, such as Vourinos, Samail, Troodos and New 

Caledonia (Dick and Bullen, 1984). 
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Figure (3.15) Negative correlation of the Mg/(Mg+Ee) vs. Cr/(Cr+AI) ratios in spinel. 

Field for abyssal peridotites is from Dick and Bullen (1984). 

It has been shown (Dick, 1977; Henry and Medaris, 1980, lehman, 1983) that spinel 

is affected by low temperature re-equilibration. In particular, the Ko of the reaction: 

MgSi0.50 2 

olivine 
+ Fe(Cr,AI)20 4 

spinel 
FeSi0.50 2 
olivine 

+. Mg(Cr,AI)20 4 
spinel 

varies with temperature and spinel composition (see next, olivine-spinel thermometry). 

Because the olivine-spinel Fe-Mg exchange continues to low temperatures (as low as 500°C) 

the spinel composition, and especially the Mg#, often deviates from the original magmatic 

composition. This is evident in Figure 3.15 by the great range of Mg# in dunite spinels. Dick 

(1977) showed that the Mg# of spinels from rocks with varying proportions of spinels 

decreases with increasing modal amount of olivine. Olivine acts as a sink for MgO while its 

own composition is buffered by its larger modal proportion. 

This change of spinel composition can be corrected using any of the thermometric 

expressions for olivine-spinel Fe-Mg exchange presented in the following section. By making 

simple assumptions about the original magmatic system conditions such an expression can 

be reversed and solved for the spinel composition using mass balance. The assumptions 
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used in the calculations were that the magmatic temperature of spinel crystallisation was 11500C 

(an arbitrary choice), at oxygen fugacity conditions controlled by the QFM buffer (see later, oxygen 

geobarometry) and a pressure of 5 kb (see geobarometry). The ferric iron fraction of spinel 't/ea. 

of 0.02 was used, being the average value of Pindos spinels. The spinel/olivine modal ratio was 

taken to be 0.015, which is appropriate for the harzburgites considered. 

The results of this calculation are presented in Figure 3.16. The thermometric 

expression used for the calculations is that of Engi (1983) (Equation 3.6). The Mg#-Cr# 
~ 

diagram (Figure 3.16) has been contoured with the Fo content of co-existing olivine. This was 

calculated with the same assumptions using Equation 3.35 of Ballhaus et al. {1990) that 

relates olivine and spinel compositions to temperature and oxygen fugacity. The result of the 

recalculation of the spinel composition is that the wide range of spinel Mg# shown in Figure 

3.15 is now much more restricted and is much closer to the theoretical magmatic trend. It will 

be noted that the predicted equilibrium olivines at 1 atmosphere pressure range from Fo89.5 

to Fo92.5, a very good agreement with the observed compositions. In addition, the more Cr-

rich spinels are in equilibrium with the more Fo-rich olivine, as is expected for a partial 

melting trend. In contrast, the equilibrium olivine at 10 kb is more forsteritic than any olivine 

analysed in this study. This is consistent with the suggested low pressures of formation for 

Pindos presented later (see geobarometry). 

Figure 3.17 shows that the Al20 3 wt.% content of spinel correlates linearly with that 

of orthopyroxene and it is in good agreement with the calculations of Johan and Auge {1986). 

The covariance of the aluminium abundance of orthopyroxene with that of clinopyroxene and 

spinel reflect the Al20 3 depletion of the whole rock with increasing degree of partial melting 

that was mentioned earlier. 

Despite the linear trend of Al20 3 between spinel and orthopyroxene, the parabolic 

trend of Cr partitioning between these minerals results in a poorer correlation of their Cr# 

(Figure 3.18). Still a positive correlation is displayed, with high spinel Cr# corresponding to 

high orthopyroxene Cr#. 
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Ejqure C3.1§l Plot of Mg/(Mg+AI) vs. Cr/(Cr+AI) for spinels recalculated at magmatic 

conditions. The contours were calculated using thermobarobetric equations tor the olivine­

spinel Mg-Fe exchange equilibrium (see text). Rhombs are observed compositions. Squares 

are recalculated. Numbers refer to the forsterite content of olivine in equilibrium with spinel. 

Underlined numbers refer to the contours for 10 kb pressure. Temperature is 1150°C and 

oxygen fugacity 1 log unit below the OFM buffer. 
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Ejgure (3.17) Al20 3 wt.% in spinel vs. Al20 3 wt.% in orthopyroxene. The line is from the 

empirical equation ofJohan and Auge (1986) (see also Figure 3.11). 
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Ejgure (3.18) Cr/(Cr+AI) in spinel vs. Cr/(Cr+AI) in orthopyroxene. A positive correlation 

is displayed. 
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Elgyre (3.19) Cr/(Cr+AI) in spinel vs. Al20 3 wt.% in orthopyroxene. A negative correlation 

is displayed in all peridotites considered. Sources of data in Rgure 3.2. 

The AJ20 3 wt.% content of orthopyroxene is plotted against the Cr# of spinel in 

Figure 3.19. Since both parameters are sensitive to partial melting they show a good linear 

correlation for all the peridotites considered. The field for abyssal peridotites is clearly 

separated from the fields of subduction-related peridotites. As in Rgure 3.8, the Vovousa 

peridotites plot entirely in the field for abyssal peridotites. In this plot there is some overlap 

with the field for Papuan harzburgites, and the rocks from Livadi and Avgo plot within this 

field. This is because the characteristic that separated the Papuan rocks from the rest is their 

MgO-rich nature, which cannot be represented in this plot. The relation of the sub-Moho and 

Dramala peridotites to the Oman field is the same as in Figure 3.8 (i.e. overlapping), but if all 

the localities are considered the peridotites that Pindos most resembles are the dredged 

samples from the Tongan forearc. 
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3.4. Geothermometry 

Knowledge of the pressure, temperature and oxygen fugacity conditions in which a 

rock was formed is obviously valuable in petrogenesis. Towards this end many researchers 

have studied exchange reactions of elements that are susceptible to changing conditions in 

ultramafic assemblages. Several thermobarometric expressions are available that can be 

applied to the minerals present in the Pindos ultramafic rocks (i.e. oiMne + spinel :t 

orthopyroxene :t clinopyroxene). It should be always borne in mind, however, that these 

expressions only give reliable results if the following of requirements are met: 

a) a state of equilibrium exists between the minerals involved; 

b) the minerals lie within the composltion@l r~ge for which the expression was 

formulated (or to which it can safely be extrapolated); 

c) the results will reflect the conditions in which the last equilibration occurred. 

Regarding the application of any thermometer to a mineral assemblage, there are two 

kinds of equilibria to be considered. One kind is rim-rim equilibrium, which may continue until 

the blocking temperature of the reaction is reached. Such equilibria are of litUe use because, 

apart from the difficulties in obtaining true rim compositions (microprobe beam problems, 

alteration), the calculated temperature should be the final blocking temperature of the 

exchange reaction, assuming that equilibrium·is always maintained. 

The second type of equilibrium is that which exists between mineral cores. Because 

of the sluggishness of some exchange reactions core-core equilibria may have preserved the 

compositions at a previous isothermal stage, if any. In the following sections temperature, 

pressure, and oxygen fugacities will be calculated from mineral core compositions. 

3.4.1. Ollylne-splnel Mg-Feh exchange 

The exchange of Fe2+ and Mg between oiMne and spinel was first suggested as a 

potential geothermometer by Irvine (1965). He established that the empirical distribution 

coefficient of reaction (3.1) varies mainly with temperature and spinel composition. The Ko of 

this reaction is defined in Equation 3.2. 
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(3.1} 
olivine spinel olivine spinel 

(3.2} 

~is the mole fraction of component i in phase a, for reaction (3.1). Ka varies mainly 

with temperature, but also with the mole fraction of trivalent cation i, yisp=6r+AI~Fe3+• in the 

octahedral site of the spinel structure, especially v~;. 

The first calibration of this thermometer was by Jackson (1969) and several more 

have been proposed since then. They are based on thermochemical data (Jackson, 1969, 

Roeder et al., 1979, Engi, 1983, Ono, 1983, O'Neill and Wall, 1987} or natural assemblages 

(Evans and Frost, 1975, Fabries, 1979) or a combination of the two (Fujii, 1977}. Four of 

these calibrations (Fabries, 1979, Engi, 1983, Ono, 1983, O'Neill and Wall, 1987) have been 

used in this study and are presented and compared below. 

3.4.1.1. F abries (1979) 

The calibration of Fabries (1979} was an improvement of the original calibration of 

Jackson (1969) using mineral data on igneous and metamorphic rocks of known formation or 

re-equilibration temperatures. He arrived at the widely used expression: 

T(OK) = o Cr 
lnK0+1.825Y5p+0.571 

Cr 
4250Y sp + 1343 

where InK~ is the constant of Equation 3.1 normalized to a ferric-free basis: 

o Fe3+ 

lnK0 = lnK0 - 2Y sp 

(3.3) 

(3.4} 

Cr Fe3+ 
The calibration range is 0.1<Y5p<0.7 and Y5P <0.12. Although no pressure 

correction was applied, the rocks used for calibration were taken from a wide variety of 

tectonic settings (extrusives, layered intrusions, lunar basalts, mantle and metamorphic 

rocks}, which implies that pressure has no significant effect on the olivine-spinel equilibrium. 
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3.4.1.2. Ono (1983) 

Ono (1983} conducted two sets of diffusion experiments between olivine and spinel 

in the AI-free and Cr-free systems. the former between 650°C, 2 kb and 1530°C, 10.5 kb and 

the latter between 650°C, 2 kb and 14830C, 10.5 kb. He arrived at the expression: 

T(OK)- (0.057+0.34)()104 
- lnK0 +0. 934-0.1 02 (3.5} 

where X=Cr/(Cr+AI} in spinel. Ono (op. cit.) states an uncertainty of 700C at 10.5 kb pressure, 

' 
for spinel of 0-6% Fe30 4 coexisting with olivine of Fo80 to Fo90• Although he makes no 

correction for ferric iron in spinel, he makes use of the Cr/(Cr+AI} ratio rather than the v;~ of 

Fabries (1979}. 

3.4.1.3. Engi (1983) 

Engi (1983} used a different approach by rigorously modelling reciprocal spinel 

reciprocal solution model. He derived thermodynamic data by conducting a set of 

experiments between 600°C and 900°C, at 300 to 1000 bars, which, in combination with data 

from the literature, he used to constrain his model. He arrived at the following thermometric 

expression: 

(3.6} 

where v;~=Cr/(Cr+AI} in spinel. The term Aii is a set of regression coefficients that depend on 

X~~k and rmodal·These parameters depend on the relative abundance of olivine and spinel. 

X~~k is the abundance weighted averag6!_. of X~~ and X~9 and r modal is the modal ratio of 

olivine/spinel. The introduction of these terms is an attempt to correct K0 for the effects of 

composition. Three sets of coefficients are given: 

AT, for Alpine-type peridotites with X~k = 0.88 and rmodal = 20 

Ll, for layered intrusion-type peridotites with X~k = 0.80 and rmodal = 15 

CO, for chromite-olivine cumulate-type peridotites with X~~k = 0.64 and r modal = 1 
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It will be noted that this is the only calibration to take into account the chemical and modal 

composition of the rock. 

Corrections in lnK0 for ferric iron in spinel and pressure can be applied to Equation 

3.6: 

where 

....-r.? Cr T +273. 15 Cr 2\ 
~plnK0=P(C11-+C3Y5p+C4(1- 1420 )(Y5P-0.35h 

Pressure P is in kb, temperature T in °C, 

and 

C1 =0.017904 

C2=-0.292880 
C3=0. 004668 
C4=0.018530 

(3.7) 

(3.8) 

(3.9) 

The useful range of the thermometer is considered to be 600°C s T s 1400°C and 

Fe3+ 
Y sp s0.15 (Engi, 1983). 

3.4.1.4.0'Neill and Wall (1987) 

O'Neill and Wall (1987) obtained a new calibration of the same olivine-spinel 

geothermometer as a by-product of their formulation of the olivine-orthopyroxene-spinel 

oxygen geobarometer using thermodynamic arguments. Their thermometric expression is: .. 
Mg Fe • Ti Mg Fe2• Cr Fe3• sp 

T(oK) 6530+(5000+10.8P)(Xol -Xol )-1960(1+~p)(~P -X5 p +18620~p+25150(~p +XTil) 
RlnK0+4. 705 

(3.10) 

where R=8.31441 (JK-1mol-1) and pressure Pin kb. 

This is the first formulation of the olivine-spinel geothermometer to specifically take 

the effect of Ti into account, although the very low Ti abundance in the rocks of this study 

means that its effect on calculated temperatures will be minimal. 
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3.4.1.5. Application 

In Fig 3.20 the results of the four olivine-spinel geothermometers are presented. All 

four thermometers give similar results that peak between 700°C and 800°C. One exception is 

the thermometer of Engi (1983) that has a small peak between 800°C and 900°C although all 

temperatures from 700°C to 900°C are reported with almost the same frequency. One 

possible explanation for this is that, because his model takes into account the modal 

composition of the rock, it may compensate to some extent for subsolidus re-equilibration and 

the temperatures reported may be closer to the true magmatic temperature of crystallization. 

ll±l O'Neil & Wall, m Engi, 1983 
1987 

600 700 

~ Ono, 1983 

800 

T, ·c 

0 Fabries, 1979 

900 1000 

Figure (3.20) Frequency diagram of temperature for the four olivine-spinel 

geothermometers. A total of 33 dunites and harzburgites are shown. 

3.4.2. Aluminium solubility jn orthopyroxene 

The thermodynamic calculations of Obata (1976) and experimental studies in the 

system Mg0-AI20 3-Si02 (Fujii, 1976, Dunckwerth and Newton, 1978) have shown that the 

solubility of AI in orthopyroxene coexisting with olivine and spinel is mainly a function of 

temperature with a negligible effect from pressure. The solubility of alumina in orthopyroxene 

is controlled by the reaction: 

(3.11) 
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spinel + enstatite - olivine .,.. Al-enstatite 

with a temperature dependent K0 defined as: 
2 M1 

(XMg)oi(XAI )opx 

Ko= M1 2 
(XMg)opx(XMg)sp(XAI)sp 

(3.12) 

where (X~) a is the cation fraction of element i in site m of phase a, and with olivine and spinel 

calculated on a 4-oxygen basis and orthopyroxene on a 6-oxygen basis. 

3.4.2.1. Sachtleben and Seck (1981} 

The first calibration of this geothermometer was attempted by Sachtleben and Seck 

(1981) on continental spinel lherzolites. They found that Cr had a considerable effect on AI 

partitioning and made an empirical correction. The expression they arrived at was: 

4.59+1nK0 -1.552y&cir 

T(OC) = 0.0025 (3.13) 

The authors did not state the compositional range within which their thermometer is 

accurate, but the rocks that were used for the calibration had Cr/(Cr+AI) ratios in spinel 

between 10 and 60 and were considered to have re-equilibrated at temperatures between 

950°C and 1150°C. 

3.4.2.2, WHt-Eickschen and Seck (1991) 

The thermometer of Sachtleben and Seck (1981) was re-calibrated by Witt-Eickschen 

and Seck (1991) using an extended data set of continental spinellherzolites. 

T(°C) = 2248.25 + 991.581nK0 + 153.321nK0
2 + 539.05 y&cir- 2005.74 y&62 (3.14) 

They also formulated another expression based on the same reaction (3.11 ): 

0 ~ ~ T( C)= 636.54 + 14527.32 (Xcr )opx + 2088.21 (XAI )opx (3.15) 

which is less susceptible to late chemical changes, as opposed to the Mg content of spinel, 

but, because of the non-ideal solution behaviour of orthopyroxene with spinel, is applicable 

only to orthopyroxenes with X~1 
in the range 0.05 to 0.11. The conditions of equilibration and 
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characteristics of spinel in this re-calibration are similar to those of Sachtleben and Seck 

(1981). 

3.4.2.3. Webb and Wood (1986) 

Webb and Wood (1986) also formulated a thermometric expression based on 

reaction (3.11 ), after performing experiments on synthetic mixtures of spinel (Mg(Cr,AI)20 4) 

and clinopyroxene (ureyite and jadeite) at 1 000°C and 11 00°C and 25 kb pressure. From 

these experiments they derived thermodynamic data that enabled them to formulate a 

simplified version of the thermometer of Gasparic and Newton (1984): 

[ 

sp • .sp • .sp l -Xcr(5400J~.cr+4500;~.Fe) 

T (°K) = 3857 K0 exp 1_987T + 716 + P (3.16) 

with K0 as in Equation 3.12 and (X~)a as previously defined. Temperature is calculated by 

iteration. 

3.4.2.4. Application 

Figure 3.21 is a frequency diagram of the temperatures reported by the three 

described geothermometers. As was expected, since the Sachtleben and Seck (1981) and 

the Witt-Eickschen and Seck (1991) versions are based on the same model, the) give similar 

temperatures for the same assemblages and this tends to create two artificial peaks in the 

diagram. The Webb and Wood (1986) version reports temperatures that are 150°C to 200°C 

lower than the two other versions. In view of the fact that the thermometers of Sachtleben 

and Seck (1981) and Witt-Eickschen and Seck (1991) are based on fertile spinellherzolites, 

the version of Webb and Wood (1986} is considered more appropriate for Pindos rocks. This 

is because the two first thermometers are calibrated only in the low-Cr limb of the parabolic 

trend in Figure 3.5. In contrast, Webb and Wood (1986) included spinel with high Cr/AI ratios, 

thus correcting for the non-ideality of orthopyroxene-spinel equilibria. This thermometer also 

shows a twin distribution of temperatures, a low-temperature peak at -800°C, that is the 
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same, within uncertainty, to the olivine-spinel thermometers, and a high-temperature peak at 

950-1 000°C. 

m Witt & Seck, 1988 

700 800 

~ Webb & Wood, 1986 0 Sachtleben & Seck, 
1981 

900 1000 

T, ·c 
1100 1200 1300 

Figure (3.21) Frequency diagram of temperature for the three geothermometers based 

on the Al-solubility in orthopyroxene. A total of 17 harzburgites is shown. 

3.4.3. Co-existing pyroxenes 

The potential of coexisting high-Ca and low-Ca pyroxenes to provide thermometric 

information has long been recognized. In particular, the expansion of the solvus in the 

pyroxene quadrilateral dictates that the Ca content of the high-Ca pyroxene increases with 

decreasing temperature, while that of the low-Ca phase decreases (e.g. Lindsley and 

Anderson, 1983). Numerous geothermometers based on this property have appeared in the 

literature. All methods involve an initial projection of natural compositions onto the simple Ca-

Mg-Fe pyroxene plane. After this projection, some models further project the quadrilateral 

compositions onto the En-Di (Fa-free) join and use a solution model (e.g. Wells, 1977), or use 

phase equilibria within the quadrilateral (e.g. Lindsley and Anderson, 1983), or a combination 

of phase equilibria and natural occurrences (e.g. Mercier, 1976) to determine temperatures. 
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The thermometers of Wells (1977), Davidson and Lindsley (1985), Sen and Jones 

(1989), and Brey and Kohler (1990) have been applied to pyroxene pairs from the Pindos 

harzburgites. 

3.4,3.1. Wells (1977) 

Wells (1977) applied a simple mixing model to the ortho- and clinopyroxene solid 

solution for compositions in the CMS system using an empirical correction for the effect of 

iron. His model is based on the well known reaction (17) between coexisting ortho- and 

clinopyroxene: 

Mg2Si20 6 
orthopyroxene 

Mg2Si20 6 
clinopyroxene 

The K0 of reaction (3.17) is defined as : 
cpx 

aMg2SI206 

Ko = opx 

aMg2SiPs 

(3.17) 

(3.18) 

Wells (1977} applied the ideal two-site solution model of Wood and Banno (1973} to 

calculate the activities of end-member pyroxenes, and used available experiments in the 

CMAS system to evaluate the temperature dependence of K0 . He then used experiments in 

Fa-bearing systems to apply an empirical correction for Fe and arrived at the simple 

expression: 

T(OK)- 7341 
opx 

3.355+2.44XFe -lnK0 

3.4.3.2. Davidson and Lindsley (1985) 

(3.19} 

Davidson and Lindsley (1985} developed a non-convergent site-disorder model for 

quadrilateral pyroxenes using experimentally determined equilibria to determine the solution 

parameters. Application of their model to natural assemblages requires the determination of 

pyroxene components (e.g. enstatite, acmite, jadeite etc.} in the minerals according to the 

method of Lindsley and Andersen (1983}. The model provides thermometric information by 
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estimating the best tie-lines of coexisting low-Ca and high-Ca pyroxenes in the pyroxene 

quadrilateral. This is achieved by sequential non-linear least-squares fitting between the 

calculated and natural equilibria and minimisation of the sum of the residuals. The 

calculations were performed using a computer program supplied by the authors. 

3.4.3.3. Sen and Jones (1989) 

Sen and Jones (1989) used the approach of Wells (1977) to the pyroxenes exchange 

reaction (Equation 3.17) and use the partitioning coefficients K01 and K02 to empirically 

formulate two thermometric expressions: 

T(°K) = 4900/(1.807-lnK01 ) (3.20) 

and 

T(°K) = 7045/(2.47-lnK02) (3.21) 

calculated using the method of Wood and Banno (1973). The estimated accuracy of this 

thermometer when applied to natural spinellherzolites is ±50°C. 

3.4.3.4. Brey and KOhler (1990) 

Brey and KOhler (1990) performed experiments on natural peridotitic systems at 

temperatures ranging from 900-1400°C and pressures from 2-60 kb. They used the results to 

formulate a semi-empirical pyroxene thermometer arrived at the pressure dependent 

expression (3.22): 

23664+(24.9+ 126.3X~x)P 
T(OK)- • 0 X 

13.38+(1nK0)2+ 11.59X~ 
(3.22) 

where 
. 

K0=( 1-Ca *)0PXJ( 1-Ca *)opx 

Ca*=CaM2/(1-NaM2) 

opx 
XFe =Fe/(Fe+Mg) 
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3.4.3.5. Application 

Figure 3.22 is a frequency diagram of temperature for the coexisting pyroxenes 

thermometers that were described previously. It can be seen that there is a broad peak 

between 850°C and 950°C although if every thermometer is examined separately, it is only 

the Wells (1977) version that peaks in the same interval. Two-pyroxene thermometers are 

considered very accurate although they have limitations. One such limitation is their 

sensitivity to components that have not been allowed for in the calibration. Interestingly, the 
·, 

more consistent results are obtained from a CMS system calibrated thermometer, that of 

Wells (1977). A possible explanation for the wide variation of results from the thermometers· 

is that orthopyroxene and clinopyroxene are not in equilibrium. This may be true for the 

peridotites that suffered melt impregnation. In view of this possibility, the thermometer that 

probably gives the most accurate results is that of Davidson and Lindsley (1985), because it 

calculates the temperature using only the clinopyroxene composition. This thermometer also 

shows two peaks, one at -850°C and a higher one at -950°C. The agreement between the 

Davidson and Lindsley (1985) and the Webb and Wood (1986) thermometers is reasonably 

good, considering the different types of equilibria used. 
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III KOhler & Brey, m Sen & Jones, ~ Davidson & 0 Wells, 1977 
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700 750 800 850 900 

T, ·c 
950 1000 1050 1100 

Figure (3.22) Frequency diagram of temperature for the coexisting pyroxenes 

thermometers. A total of 14 harzburgites is shown. 

3.5. Geobarometry 

Unfortunately, an accurate and easy to use geobarometer for spinel-facies peridotites 

is not available. The AI exchange between orthopyroxene and a co-existing Al-rich phase is 

pressure-dependent (MacGregor, 1974; Stroh, 1976), but the application to natural 

assemblages requires Al-saturation of the peridotite. In practice this restricts the application 

to garnet peridotites (Nickel and Green, 1985) and, possibly, to fertile spinel lherzolites. 

Pindos peridotites, however, in common with other ophiolite peridotites (e.g. Dick, 1977), are 

Al-undersaturated (see earlier, orthopyroxene chemistry) and application of the geobarometer 

is not meaningful. 

Mercier et al. (1984) formulated an empirical barometric relation based on the ratio 

Kt=[Ca*]0pxf(1-[Ca*]cpx) (3.23} 

where 

Ca*=Ca/(1-Na)0 px(1-Na)cpx (3.24} 
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Mercier et al. (op. cit.) used available experiments in the CMS and CMAS systems to 

calibrate two simple equations: 

P(Gpa) = 1.279/(i<t+0.006) - 2.29 (3.25) 

P(Gpa) = 1.073/(i<t+0.028) - 1.65 (3.26) 

Equation 3.25 was determined using all available data, while Equation 3.26 was 
~ 

determined using only experiments at pressures higher than 0.5 Gpa. 

Application of either of Equations 3.25 or 3.26 to Pindos peridotites yielded widely 

varying and geologically unreasonable pressures in the range of minus 20 to plus 40 kb. 

Although the reason for this may be that the minerals that were used were in disequilibrium, it 

seems more likely that there are inherent deficiencies to the model. Firstly, it was formulated 

using CMS and CMAS data with no attempt to correct for the effect of Fe or Cr. The latter 

has been shown to have a drastic effect on pyroxene equilibria (Wells, 1977; Sachtleben and 

Seck, 1981) and this is especially true for the Pindos ultramafics due to their refractory 

nature. Secondly, Mercier et al. (1984) assumed that Kt is not temperature dependent, hence 

no temperature correction was used in Equations 3.25 or 3.26. Brey and Kohler (1990), 

however, use an almost identical parameter to Kt (Equation 3.22) in their thermometer, thus 

invalidating the assumption of Mercier et al. (1984). Notably, Mercier et al. (op. cit.) tested 

their geobarometer on Al-rich lherzolites (Newfoundland and Tibet) for which they obtained 

reasonable results. 

Recently Kohler and Brey (1990) formulated a new geobarometer that is applicable 

to spinel and plagioclase lherzolites. This is based on the exchange of Ca in olivine 

coexisting with clinopyroxene according to reaction: 

(3.27) 

olivine clinopyroxene olivine clinopyroxene 

Although this barometer is considered very accurate (± 1. 7 kb) it requires the 

extremely accurate determination of Ca in olivine. Kohler and Brey (1990) used olivine 
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standards analysed by isotope dilution and analysed unknowns either with an ion probe or 

with a wavelength dispersive electron probe with three spectrometers simultaneously on Ca! 

Despite the absence of a suitable geobarometer, some constraints can be placed in 

the depth of formation of the mantle sequence. The presence of spinel in the mantle signifies 

that the pressure was less than 20 kb (spinel lherzolite stability field) and less than 5 kb near 

the Moho, where plagioclase is found in the transition zone (plagioclase lherzolite stability 

field). 

Additional information on the pressure of equilibration of the Pindos peridotites can 

be obtained from consideration of experimental melting studies on natural peridotites. The 

similarity in composition of the experimental charges with the natural assemblages permits a 

direct comparison of the two, whereas experiments in simple systems require rigorous 

thermodynamic modelling before they can be extended to complex systems. The 

experiments of Jaques (1980) on Hawaian pyrolite and Tinaquillo lherzolite have been 

selected for comparison, because they were performed in a wide range of temperatures and 

pressures. 

Figure 3.23 shows that the Al20 3 wt.% content of orthopyroxene is pressure- as well 

as temperature dependent. However, the aluminium abundance of natural orthopyroxenes 

cannot be directly compared with that of the experimental orthopyroxenes before the effects 

of temperature and partial melting are minimized. This can be done if the Al20 3 content of 

orthopyroxene is normalized against that of spinel, since they show sympathetic variation, 

independent of temperature (see Figure 3.17). The effect of Cr partitioning between 

orthopyroxene and spinel is taken into account by using the Cr/AI ratio of each mineral 

· (Cr/AI:;) 
instead of just their AI abundances. If then the ratio (Cr/AI)sp is plotted against Alopx• a good 

separation of the experiments at different pressures should result. In practice, instead of 

Alopx• the ratio (Caopx/AI~x) gives much clearer separation because, by including the Ca in 

orthopyroxene, the effects of coexisting clinopyroxene are taken into account. 

I Mansolas 1991 102 



Chapter 3 Peridotite chemistry 

(Cr/AI:x) 
Figure 3.25 is a plot of the ratio ~-:-:-::-- against (Ca0 px/A1:) for the Pindos (Cr/AI) 5 p 

peridotites. The fields for different pressures have been derived from the experiments of 

Jaques (1980) (Figure 3.23). This plot confirms the suggestion that Pindos harzburgites have 

equilibrated at relatively low pressures. The majority of the peridotites plot in the fielctof 5-10 

kb, while only one sample ploh in the 2 kb field. Notably, the peridotites from Vovousa 

(marked BO in Figure 3.25) plot at high pressures (10-15 kb). This is ~nsistent with the 

higher Al20 3 wt.% content of orthopyroxene in these samples, since the Al-solubility of 

orthopyroxene increases with pressure at constant temperature. 

A more rigorous parameterization of the experimental results that would yield 

quantitative results is possible, however, it is questionable whether equilibrium melting 

experiments can adequately reproduce the melting of natural peridotites and further 

refinement is unwarranted. 

Al203 
wt.% 

4.5 

4.0 
3.5 

3.0 
2.5 

• 
Tinaquillo lherzolite 

0 

• 0 

• 
(opx) 2.0 

0 
0 1.5 

1.o 11 
0.5 

D 

• 
D 

D • 
0.0 -+---+--·---1-'----+---+------i 

1200 1250 1300 1350 1400 1450 1500 

PC 

• 2 kbar 

D 5kbar 

+ 10 kbar 

0 15 kbar 

Ejgure (3.23l Variation of the Al20 3 wt.% content of orthopyroxene with pressure and 

temperature for the experiments of Jaques (1980) on the Tinaquillo lherzolite. 

I Mansolas 1991 103 



Chapter 3 Peridotite chemistry 

3 15 kb 
0 5 kb 2.5 10 kb 

2 • 
(Cr/AIM1 )opx 
--------------- 1.5 2 kb (Cr/AI)sp 

1 • • • 0.5 

0 
0 1 2 3 4 5 6 7 8 

Ca/AIM1 opx 

(Cr/A~opx opx._ 
Figure (3.24) Plot of (Cr/A~sp vs. (Caopx/AIM1 J for the experiments of Jaques (1980) on 

Hawaian pyrolite and linaquillo lherzolite. The plot achieves good separation of the 

experiments at the same pressure regardless of temperature or composition. Symbols as in 

Figure 3.23. 
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Figure 13.26) Estimated pressures of equilibration for the Pindos harzburgites. Pressure 

fields from Figure 24. 
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3.6. Oxygen fugacity 

Mineral equilibria invoMng phases of variable Fe2+fFeat ratios have the potential to 

provide information about the redox state of the system where they were formed. For 

example, the Fe2+fFeat ratio has been used to calculate the oxygen fugacity of mantle 

derived basalts (Haggerty, 1978). For solid assemblages, equilibria between oiMne-

orthopyroxene-ilmenite and spinel-ilmenite have been used (Eggler, 1983, Haggerty and 

Tompkins, 1983) to obtain estimates of the equilibrium oxygen fugacities In mantle derived 

xenoliths and megacrysts. The scarcity, however, of ilmenite in all but a small percentage of 

mantle-derived rocks limits the value of this method, In contrast, the assemblage oiMne-

orthopyroxene-spinel is present in a wide range of rock compositions and mantle conditions 

and can be used to extract information about the redox state of the mantle. At least three 

independent calibrations of oxygen geobarometers, that are based on the oiMne-

orthopyroxene-spinel assemblage, have appeared recently in the literature (O'Neill and Wall, 

1987, BaUhaus et al., 1990, Wood, 1990). The reaction that forms the basis of the oiMne-

orthopyroxene-spinel oxygen geobarometer is the quartz-fayalite-magnetite (QFM) 

equilibrium (Equation 3.28). Simple thermodynamics can be used to describe the state of the 

system at equilibrium (Equation 3.29). 

3 Fe2Si04 + 0 2 = 2 Fe30 4 + 3 Si02 (3.28) 
oiMne spinel quartz 

(3.29) 

The different versions of the geobarometer will be presented and compared below. 

3.6.1. O'Neill and Wall (1987) 

Since peridotites are Si02 undersaturated, O'Neill and Wall (1987) calculated the 

silica activity from reaction 3.30. 

(3.30) 

oiMne quartz enstatite 
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They used available thermodynamic data and adopted an ideal two site mixing model for 

orthopyroxene and a two-site regular model for olivine to calculate the activities of forsterite, 

fayalite and enstatite. O'Neill and Wall's (1987) expression for the activity of Si02 in the 

mantle assemblage is: 

350 0.020P opx ol 
log (aSiO ) = - T - T + log (aMg Si 0 ) - log (aMg SiO ) 

2 2 2 6 2 4 
(3.31) 

In order to calculate the activity of magnetite in spinel O'Neill and Wall (1987) used the 
~ 

complex model for multicomponent spinel of O'Neil and Navrotsky (1984) and calculated the 

oxygen fugacity from Equation 3.29. A by-product of their work was the formulation of the 

olivine-spinel thermometer that was presented earlier. The uncertainty of the thermodynamic 

data that O'Neill and Wall (1987) used results in an accumulated error for the calculated f0 2 

of -0.51og units (O'Neil and Wall, 1987). 

3.6.2. Wood (1990) 

Wood (1990) used equilibrium 3.32 to formulate his version of the olivine-

orthopyroxene-spinel oxygen geobarometer. This reaction is essentially identical to Equation 

3.28 but it leads to the use of a different set of components for the calculation of oxygen 

fugacity. 

6Fe2Si04 + 0 2 = 3Fe2Si20 6 + 2Fe30 4 (3.32) 

olivine orthopyroxene spinel 

Olivine and orthopyroxene activities were treated in the same way as in the O'Neill and 

Wall (1987) version, but magnetite activity in spinel was calculated by measuring the Fe30 4 

content of experimental spinels and using the spinel model of Nell and Wood (1989). He then 

used the Mattioli and Wood (1988) model for Equation 3.29 and arrived at Equation 3.33: 

where X~e and X~9 refer to mole fractions of Fe and Mg end-members in olivine, P is in 

bars, T is temperature in Kelvin, x~: X~ in orthopyroxene refer to atomic fractions of Fe in 

the two orthopyroxene sites. 

Th sp . . b e aFe 0 IS g1ven y: 
3 4 
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loga~304 =log [ (Fe
2
+) feat-)

2
] ++( 406(AI)2+653(Mg)(AQ+299(Cr)2+ 199(AQ (Cr)+346(Mg) (Cr)) 

(3.34) 

where the terms in parentheses (AQ, (Cr) etc. refer to total AI, Cr, Mg, Fe2+and Feat cations 

in the spinel structure on a four oxygen basis. 

3.6.3. Bal!bays et a!. (199Ql 

BaUhaus et al. (1990) used a semi-empirical approach in formulating their version of 

the oiMne-orthopyroxene-spinel oxygen barometer. They performed experiments on spinel 

lherzolites over a range of pressures from 1 to 2.5 GPa, temperatures from 1313 to 1573°1<, 

fo from iron-wustite to magnetite-haematite and mole fraction of Cr in spinel from 0.19 to 
2 

0.85. They determined the numerical parameters by multiple linear regression to arrive at an 

equation that gives the difference in oxygen fugacity relative to the QFM buffer (Equation 

3.35). 

2505-400P-3200(1-X~2+2630<X:f>2 
01 sp sp 

L\log(fo)=0.27- T -61og(XFJ+21og(XFe2+)+41og(XFe3+) 

(3.35) 

where Tis in °K, pressure Pin GPa, X~ and x;:2. are the Fe2+/(Mg+Fe2+) cation ratios in 

oiMne and spinel, and x;:3+ and x;: are the Fea../~Ra.. and AI/~Ra.. cation ratios In spinel. 

It will be noted that the orthopyroxene composition does not appears in this 

formulation. This is because since its composition can be calculated from the composition of 

the equilibrium olivine (e.g. Sack and Ghiorso, 1989) and is, thus, implicitly accommodated in 

the parameterization. An advantage of this formulation Is that it permits the calculation of 

oxygen fugacity in dunites, assuming that they are close to equilibrium with orthopyroxene. 

BaUhaus et al. (1990) suggested that the uncertainty of the calculated f0 is -0.5 log units. 
2 

3.8.4. Application and comparison 

In order to facilitate comparison, the oxygen fugacities have been calculated relative 

to the QFM buffer (O'Neil, 1987). The temperature used in the calculations is the average of 

the four oiMne-spinel geothermometers. The reason for this choice is that they are more 
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consistent than the olivine-orthopyroxene-spinel thermometers and can be applied to 

assemblages that lack clinopyroxene. Since oxygen fugacity is calculated at the same 

temperature for every version of the oxygen geobarometer, the low temperatures calculated 

using these thermometers do not affect the results. In Figures 3.26 to 3.28 61ogQFM, 

calculated with the three different calibrations presented above, is plotted against Cr/(Cr+AI) 

in spinel as reference. 

Comparison of Figures 3.26-3.28 shows that the f0 calculated using the method of 
2 ·, 

O'Neil and Wall (1987) is as low as 5 log units below QFM, considerably lower that the 

results from either the Wood (1990) (Figure 3.27) or BaUhaus et al. (1990) methods Figure 

3.28) . In fact, comparisons of this barometer with the newer calibrations (Wood, 1990; 

Ballhaus et al., 1990, 1991) has shown that it consistently reports lower f0 's by 0.5-1.5 log 
2 

units. In addition, Ballhaus et al. (1991) showed that the thermometric and barometric 

expression of O'Neil and Wall (1987) is dependent on spinel composition, particularly Cr#. 

This composition dependence, and the fact that the other two expressions agree whithin -0.5 

log units with each other, suggests that the barometer of O'Neil and Wall (1987) is not 

suitable for the Cr-rich Pindos peridotites and it will not be further considered. 

Figures 3.29 and 3.30 show the calculated t0 using the two more recent calibrations 
2 

in relation to other peridotites. There is a systematic tendency of the Wood (1990) expression 

to report f0 's slightly higher than the Ballhaus et. al. (1990) method. This has been noted in 
2 

other studies as well (Ballhaus et al., 1990, 1991), but this difference is within the uncertainty 

of either method and neither formulation will be favoured. Before discussing, however the 

fields shown in Figures 3.29 and 3.30, the validity of an important assumption in calculating 

f0 must be considered. 
2 
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Flayre l3.2§l AlogQFM vs. Crl# in spinel for Pindos harzburgites from various localities. 

Calculated with the oxygen geobarometer of O'Neil and Wall (1987). 
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Figure (3.2]) AlogQFM vs. Crl# in spinel for Pindos harzburgites from various localities. 

Calculated with the oxygen geobarometer of Wood (1990). 
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Figure (3.28) ~logQFM vs. Cr# in spinel, calculated with the oxygen geobarometer of 

Ballhaus et al. (1990). Symbols as in Figure 3.27. 
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Figure (3.29) ~logQFM vs. Cr# in spinel, calculated with the oxygen geobarometer of 
Wood (1990). Symbols as in Rgures 3.26 to 3.28. The fields for various peridotites were 
calculated from published analyses. Sources for abyssal peridotites, Vourinos, and Oman are 
listed in Rgure 3.2. Fracture zones: Dick (1989). Tonga forearc: Bloomer and Rsher (1987). 
lzu-Mariana-Ogasawara Forearc: Ishii et al. (in press). The positions of the nickel-nickel oxide 
and wOstite-magnetite buffers relative to QFM are calculated at 1200°C. 
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Figure (3.30) L\logQFM vs. Cr# in spinel, calculated with the oxygen geobarometer of 

Ballhaus et al. {1990). Symbols and fields as in Rgure 3.29. 

3.6.5. Determination of the magnetite fraction in spinel 

With the development of the olivine-orthopyroxene-spinel oxygen geobarometer 

the validity of determining the Fe3 + fraction of spinel by stoichiometry'- has been 

questioned {Wood and Virgo, 1989; Wood, 1991, pers. comm.). The argument presented 

by these authors is that, in calculating the Fe3+ fraction of spinel by stoichiometry, a very 

small quantity is determined by the difference of the sum of two large quantities (Cr+AI in 

spinel) from ideal site ocuppancy. It follows that even relatively small errors in the 

determination of AI and Cr, which would be acceptable for any other purpose, result in 

large errors for Fe3+. In addition, empirical correction factors for AI in microprobe 

correction procedures are poorly constrained (Wood and Virgo, 1989) and 

introduce additional system a tic errors. Wood and Virgo (op. cit.) presented a compelling 

21n stoichiometric spinels the ratio of the trivalent to divalent atoms is 2. This permits 

the determination of the Fe3+ fraction of spinel when this ratio deviates from the ideal. 
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argument, showing that in microprobe analyses of the same spinel at different laboratories 

using different correction procedures (ZAF, Bence & Albee, PAP) the magnetite fraction of 

spinel (XFe a) varied by a factor of up to 5. This variation of XFe a is equivalent to -3.5 log 
3 3 4 

units of fa or a variation from below QFM to iron-wustite, thus rendering any calibration of 
2 

the barometer useless. 

Wood and Virgo (1989) showed that, with careful calibration, microprobe analyses 

can be precise enough to be of use in detennining XFe a, but is very inaccurate, i.e. XFe a 
3 4 3 4 

calculated by stoichiometry has a low standard error and good reproducibility but this value is 

different from the XFe a as detennined by Mossbauer spectroscopy. In order to improve this 
3 4 

inaccuracy they suggested a procedure, whereby the XFe a of spinel as detennined by 
3 4 

stoichiometry is re-calculated using secondary spinel standards of known Fe2+Jl:Fe ratio. 

Despite the apparent superiority of Mossbauer spectroscopy as an analytical method 

of detennlnation of XFe a, BaUhaus et al. (1991) suggested that this is not necessarily true. 
3 4 

They noted that Mossbauer spectroscopy requires relatively large samples (-200 mg for 

typical mantle spinels) and single grains, later selected as secondary standards, may not be 

representative of the bulk Fe2+Jl:Fe ratio. They also pointed out that the interpretation of 

Mossbauer spectra for spinel is disputed and errors are potentially large (see also Dyar et al., 

1989; Canil et al, 1990). BaUhaus et al. (1991) suggested that continuous checking of the 

microprobe calibration against a well-defined spinel standard, that is not Included in the 

calibration, yields sufficiently accurate XFe a , as long as spinel is stoichiometric. The fact that 
3 4 

Ballhaus et al. (1990) calibrated their version of the oxygen geobarometer using this method 

strongly supports the conclusion of BaUhaus et al. (1991 ). 

Additional evidence in favour of the detennination of XFe a by stoichiometry comes 
3 4 

from the detennination of fa in abyssal peridotites (Figures 3.29 and 3.30). The range and 
2 

average of fa is indistinguishable from the fa as deduced from MOAB (Christie et al., 1986) 
2 2 

and as detennined directly from spinel separates (Bryndzia et al., 1989; Bryndzia and Wood, 

1990) using Mossbauer spectroscopy. Notably, Bryndzia and Wood (1990) report that they 

found no significant difference to the XFe a as detennlned by Mossbauer spectroscopy and 
3 4 

stoichiometry. 
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3.6.6. Oxygen fugacity calculated usjog secondary spinel standards 

In an attempt to ascertain whether determination of XFe 0 is accurate and verify the 
3 4 

results of this study, the method of Wood and Virgo (1989} was used to determine the 

Fe2+~Fe ratio of spinels in the Pindos peridotites. This method involves the empirical 

correction of the Fe2+~Fe ratio using spinels of known Fe2+~Fe ratio (determined by 

Mossbauer spectroscopy). The secondary spinel standards used were separates from 

continental spinellherzolites (KL88305, KL88311, KL88316, and MHP79-1, Wood and Virgo, 
I. 

1989} supplied by Professor Wood. 

After the usual calibration of the microprobe, the secondary spinel standards were ana-

lysed 10-15 times before and after analysis of the unknowns and a calibration curve of the 

type: 

Fe2+ Fe2+ 
~Fe Mossbauer - ~Fe calculated = A + 8 * Cr# (3.36) 

was constructed. The coefficients A and 8 change from day to day, depending on the 

analytical conditions and calibration of the microprobe, but this change was found to be small 

and, subsequently, an average correction curve was constructed and used to correct 

previously obtained analyses (Figure 3.31 ). 

0.1 Fe3/Fetot Moss-Fe3/Fetot Probe=0.115*Cr#-0.030 

0 
0.6 0.7 0.8 0.9 1 

Cr 

-0.1 
{sp) 

Cr+AI 

- - First -Second -Average 

Ejgure (3.31) Empirical correction of the Ee2+~Fe ratio of spinels using secondary 

spinel standards. 
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2 
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Ejgure (3.32) L\logOFM vs. Cr# in spinel for Pindos harzburgites. XFe 0 in spinel was 
3 4 

corrected using the method of Wood and Virgo (1989). L\logQFM was calculated with the 

oxygen geobarometer of Wood (1990). 
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Ejgure (3.33) ~logOFM vs. Cr# in spinel. XFe 0 in spinel was corrected using the 
3 4 

method of Wood and Virgo (1989). L\logQFM was calculated with the oxygen geobarometer 

of Ballhaus et al. (1990). 

The f0 values calculated with the calibrations of Wood (1990) and Ballhaus et al. 
2 

(1990) using the corrected spinel analyses are shown in Figures 3.32 and 3.33. It will be 

noted that, whereas in Figures 3.26 to 3.28 a range of f0 of almost 4 log units was displayed, 
2 
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the range of t0 calculated using the corrected spinel compositions is considerably smaller. 
2 

Furthermore, those peridotites that showed very reduced t0 (as much as 3 log units below 
2 

OFM) are now indistinguishable from the rest. 

As described earlier, the oxygen fugacities calculated with the Wood (1990) version 

of the oxygen geobarometer are slightly higher than those calculated with the Ballhaus et al. 

(1990) version. The average f0 for the Wood (1990) expression is 0.6 log units above the 
2 

OFM buffer and that the Ballhaus et al. (1990) formulation is 0.1 log units above the QFM 
~ 

buffer. It will be noted that the peridotites with the lowest Cr# (Vovousa samples) show 

essentially the same f0 as the other peridotites. Since a mid-ocean ridge origin was inferred 
2 

for these samples, the similarity of their redox state with the more depleted peridotites 

suggests that the whole complex equilibrated at the same f0 conditions. Assuming that the 
2 

elevated f0 of subduction-related peridotites results from the introduction of water from the 
2 

subducting slab, it appears that water was also introduced to the Vovousa peridotites. 

This change in the calculated oxygen fugacities has significant consequences 

regarding the redox conditions of the Pindos peridotites. Island-arc magmas are generally 

more oxidized than MORB (Arculus, 1985; Ballhaus et al., 1991) and, since the redox 

condition of a melt is imposed on it in its source region (Carmichael, 1991), MORB mantle is 

expected to be more reduced than SSZ-related peridotites. Figures 3.29 and 3.30, however, 

suggest that there is no difference between the oxidation state of abyssal and SSZ-related 

peridotites. Unfortunately the fields in these figures were calculated by stoichiometry using 

published analyses and then~ is no way to check the accuracy of these calculations. In view 

of the drastic effect of the Mossbauer correction on Pindos spinels, it must be concluded that 

the calculations are meaningless. 

Thus, the results from the corrected calculations for Pindos are in good agreement 

with the generally accepted suggestion that SSZ-related magmatism involves relatively 

oxidized source regions. It will be noted that in all the calculated f0 's presented in Figures 
2 

3.26 to 3.33, the sub-Moho peridotites show consistently higher f0 than the rest of the 
2 

samples. This suggests that the melt that impregnated these samples had a high oxidation 

state that reset the redox state of the spinels. 
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3. 7. Summary 

The Pindos peridotites have experienced extensive deformation and recrystallization, 

probably in two stages. A high temperature event (-10000C) recorded In the majority of the 

samples that resulted in porphyroclastic textures (Mercier and Nicolas, 1975). The lattice of 

minerals forming porphyroclasts is displaced and sub-grains or kink bands are formed. 

Pyroxenes have bent cleavage and exsolution lamellae. Spinels, originally as large grains, 

have been recrystallized and re-distributed as small grains interstitial to the silicates. Foliation 

is often developed by the alignment of porphyroclasts in preferred orientation. A low 

temperature event (?BOOOC) resulted in extensive recrystallization. Neoblasts are formed, in 

varying proportions to the porphyroclasts. The original coarse porphyroclastlc textures are 

replaced to varying degrees by fine-grained mosaic textures (Mercier and Nicolas, 1975), 

where relict porphyroclasts, usually of orthopyroxene, persist. 

The chemistry of the minerals shows a wide range of compositions that are 

interpreted as residua after partial melting of a fertile mantle, having experienced at least one 

episode of melt extraction. The peridotite mineral chemistry ranges from the relatively 

undepleted Vovousa peridotites to the refractory Avgo and Livadi harzburgites. Individual 

areas, however, show a more restricted range of compositions and more uniform degrees of 

partial melting. Comparison with peridotites from different geotectonic settings shows that 

there are systematic similarities. Thus, the Vovousa ultramafics show affinities to MOAB­

related peridotites, whereas the rest of the complex compares favourably with subduction­

related peridotites. Given the distinction between melting in dry conditions of the Vovousa 

mantle, as opposed to the wet melting probably experienced by the rest of the complex, the 

composition and compositional range of the south part of Pindos are strikingly similar to 

peridotites dredged from present-day subduction zones. The process that produced this 

heterogeneity was probably the introduction of fluids from the subducting slab to parts of the 

overlying mantle wedge that responded in different ways. Thus, the Vovousa mantle bears 

evidence of fluid interaction (relatively high redox state) but did not experience second-stage 

melting, being probably too cold or, more likely, too deep. In contrast, peridotites from Livadi 
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and Avgo experienced large amounts of melting, exceeded only by those experienced by the 

harzburgite of the Papua ophiolite. 

The Pindos ophiolite has experienced two stages of re-equilibration at low pressures 

(<10 kb). The first stage occurred over a relatively broad range of temperature, between 850-

950"C, recorded by mineral equilibria with high-blocking temperatures, and the second at 

-7SOOC, recorded by oiMne-spinel pairs. 

The oxygen fugacity of the peridotites, as recorded in the oiMne-orthopyroxene-

spinel equilibrium, is slightly oxidized, compared to mid-ocean ridge-related mantle, ranging 

from the QFM buffer to 1.5 log units above this buffer. Thus, the redox state of the Pindos 

mantle is appropriate for a source of subduction zone magmatism. 
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Chapter 4. Platinum-group elements (PGE) 

4.1. Properties of the PGE 

The PGE belong to group VII of the 5th and 6th transition periods of the periodic 

table. They exhibit strong siderophilic and chalcophilic affinities. The former is exemplified by 

their high concentration in iron meteorites, preferential partitioning in the Ni-Fe phase of 

chondrites and in the metallic phase in the presence of sulphides in irpn meteorites, the 

tendency to form alloys between themselves and other metals and the high proportion of 

metallic bonding characteristics of many platinum-group minerals (PGM). Their chalcophilic 

affinities are indicated by their preference for the sulphide over the silicate phase, their high 

concentration in Ni-Cu ores and the existence of many platinum-group mineral sulphides. 

Keays and Crocket (1970) found that, in the absence of chalcogens, Pt is strongly 

siderophilic followed in this respect by lr and Os. 

Table 4.1 shows some of the properties of the PGE. Their metallic properties suggest 

a classification in pairs (Ru-Os, Rh-lr, Pd-Pt), i.e. elements located on the same column of 

the periodic system (Westland, 1981). Os and Ru crystallize in an hexagonal close-packed 

lattice, as opposed to the cubic close-packed lattice of the rest of the PGEs. Thus Os and Ru 

form complete solid solutions between themselves but have restricted solubilities in the rest 

of the PGEs. Other elements with which PGEs form complete, temperature restricted or 

limited solid solution are As, Bi, Cu, Fe, Hg, In, Ni, Pb, Se, Sn and Te, although not all of the 

experimentally documented compounds exist in nature (see Berlincourt, 1981, for a 

compilation). 

Being transitional elements the PGE have a wide range of oxidation states, the 

highest possible, as well as the most characteristic of which, increase with atomic number 

and decrease along a row from left to right. Only a fraction of the number of possible 

oxidation states of the PGE are found under geologically reasonable conditions. Only the low 

sulphides of Pt, Pd and lr have been observed as minerals (see Table 4.2). 
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Naldrett et al. (1979) first used chondrite normalized spidergrams of the PGE in a 

manner analogous to chondrite normalized patterns of the REE. In contrast to the latter, the 

order of the PGE is not of increasing atomic number or atomic radius but of decreasing 

melting point, i.e. Os, lr, Ru, Rh, Pt, Pd. This demonstrates the limited control of silicate 

phases over the PGEs, but it has yet to be proven experimentally that the PGE partition Into 

any phase In that order (see later). Still, it is generally accepted that during partial melting and 

fractionation Os, lr and Ru behave compatibly, whereas Rh, Pt and Pd behave incompatibly 

(e.g. Barnes et al., 1985). The two groups are referred to as IPGE and PPGE respectively. 

Because of the overwhelming abundance of lr and Pd analyses in the literature, compared to 

those of the rest of the PGE (Cabri, 1981), they are often used as representative of their 

respective groups, and the Pd/lr ratio as indicator of the degree of their fractionation, in much 

the same way that the La/Lu ratio is used to characterize the REE. 

Ru Rh Pd Os lr Pt 
Atomic number 44 45 46 76 77 78 
Atomic weight+ 101.07 102.91 106.40 190.20 192.20 195.09 
Lattice structure+ h.c.p. f. c. c. f. c. c. h.c.p. f. c. c. f. c. c. 
Lattice constant,a , A * 2.7058 3.8031 3.8898 2.7341 3.8394 3.9231 
c/a ratio* 1.5825 1.5799 
Density at 20°C, 12.2 12.4 12.0 22.5 22.4 21.45 
kgtm-3X10~ 

Melting point, OC* 2334 1967 1555 3050 2454 1768.4 

Boiling point, OC* 3900 3727 3140 5027 4130 3827 
Atom radius, cm.a 1.336 1.342 1.373 1.350 1.355 1.385 
(12-fold coordination)* 
radius, cm.S. 1.241 1.247 1.278 1.255 1.260 1.290 
Possible oxidation states + 0,0),11, 0,1,11, 0,1,11, IV 0,(1),11, 0, (1),11,11 0,11,111, 

III,IV, III,IV,V, III,IV, I,IV, IV,VI 
M,VI VI,VII,V M,VI VI,VII,V 

Ill Ill 
Characteristic oxidation III,IV,VI Ill II VI,VII, III,VI II,IV 
states+ VII VIII VII 

Table (4.1\ Properties of the platinum-group metals. f.c.c. =face-centred cubic, h.c.p. = 

hexagonal close-packed. *Westland (1981), +Ginzburg et al. (1975) 
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Name 

Anduoite (RuAs?) 

Arsenopalladinite Pd(AsSb) 

Braggite (PdS) 

Cooperite (PtS) 

Erlichmanite (OsS?) 

Froodite (a-PdBi?) 

Hollingworthite (RhAsS) 

lrarsite (lrAsS) 

lridarsenite (lrAs?) 

Iridium (lr>BO at.%) 

lridosmine lr>Os 

lsoferroplatinum (Pt3Fe) 

Laurite (RuS?) 

Moncheite (PtTe?) 

Nigliite (PtSn) 

Omeiite (OsAs?) 

Osarsite (OsAsS) 

Osmiridium (Os>lr) 

Osmium (0s>80 at.%) 

Palladium (Pd) 

Platarsite (Pt(AsS)::>) 

Platinum (Pt>BO at.%) 

Prassoite (RhS) 

Rhodium (Rh>Pt) 

Ruthenium (Ru>BO at.%) 

Sperrylite (PtAs?) 

Stillwaterite (PdAAs~ 

Sudburyite (PdSb) 

Tetraferroplatinum (PtFe) 

Vysotskite (PdS) 

Composition 

(Ru,Os,lr)As? 

(Pd7 ru:~Cu0 01 ) (As? !>Sb0 !>) 

Pfo n.~ Pdo_?4 N io 1 ?S1_o1 

PfoAAPdomNio_mSoru:~ 

(Os, Ru,l r)S? 

(Pd,Pt)(Bi, Te):;> 

(Rh,Pt,Ru)AsS 

(lr,Ru,Rh,Pt)AsS 

(I r, Ru, Pt, Os)As? 

lr,Pt,Os, ... 

Osofi::~lro_41 Ruo_04Feo01 Pt<Oo1 Rh<oo1 

Pt?_9::~Fe 1 _01 Sb0_0::~Cu0_0?Ni001 

(Ru,Os,lr)S? 

Pt1_o1 (Te1 96Biom) 

Pt(Sn,Bi,Sb) 

(Os,Ru,lr)As? 

(Oso4ARuo46Nio.041roo?PdomPlooonRhooofi) 

As1 0!';509? 

I r o.n70So::~!>Pto o::~RUomRho01 Feo01 Cu"o 01 

Os, lr, Ru, Pt, Pd, Rh, Fe, Cu, Ni. .. 

Pd, Pb, Rh, Pt, Os, lr ... 

Pfo ::14Rho ::10Ruo ?AIr o o!>Oso01 As1_o::~So 99 

PfoAoFeo16Cuo_mPdoo1 

(Rh? ?nCUo::~nRuo ?6Nio_o9Pfo_o1 )::~54 

Rhon7Pfo4::~ 

·Ru,Pt,lr,Rh, ... 

Pt1_ooAs1 ru:~Sbo_o1 

Pd797AS::~m 

(Pdo 97Ni~'o::~HSboAfi Teo1oBioofi) 

(Pt1 mlr 001 )(Fe0 69Cu0 ?4Ni0 o::>Sb0 01 ) 

Pdo_A9Nio_o9Pto01 S1_o1 

Symmetry 

orthorhombic 

triclinic 

tetragonal 

tetragonal 

cubic 

monoclinic 

cubic 

cubic 

monoclinic 

cubic 

hexagonal 

cubic 

cubic 

hexagonal 

hexagonal 

orthorhombic 

monoclinic 

cubic 

hexagonal 

cubic 

cubic 

cubic 

cubic 

cubic 

·hexagonal 

cubic 

hexagonal 

hexagonal 

tetragonal 

tetragonal 

Table (4.2) Some platinum-group minerals. Where a specific composition is given it 

represents one for which crystallographic parameters have been measured, and it is not 

necessarily characteristic of the mineral. Cabri (1976, 1981) 
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4.2. PGE mineralogy 

Table 4.2 lists some of the minerals in which PGE are major elements. Most of the 

information about PGM comes from mineralogical studies of layered intrusions, Ni-Cu 

sulphides and alluvial deposits. This reflects both the bias of the research towards 

economically important areas as well as the elusive nature of the PGM due to their minute 

size. In the last 10 years, however, an increasing amount of information has accumulated 

about the distribution of PGM in ophiolites (Constandinides et al., 197@; Stockman and 

Hlava, 1984; Legendre and Auge, 1985; Auge, 1988; Burgath, 1988; Cocherie et al., 1989; 

Prichard et al., 1989; Bacuta et al., 1990; Corrivaux and Laflamme, 1990) and especially 

PGE-enriched chromitites. There is not much information about the distribution of PGM in 

the mantle. Keays et al. (1981) first detected Pt-Pd-bearing sulphides in spinel lherzolite 

xenoliths and Stone and Fleet (1991) reported a Pd-bearing Pt-Fe alloy in olivine megacrysts 

from kimberlite, but no IPGE bearing phases have been yet identified in mantle-derived 

rocks. 

The PGE also occur in solid solution in several sulphide, arsenide, telluride, selenide 

and sulpharsenide minerals. Of the base-metal sulphides, pentlandite and pyrrhotite have 

been reported to contain PGE (Chyi and Crocket, 1976; Cabri and Laflamme, 1981) and the 

latter has also been synthesized experimentally (Skinner et al., 1976). Ni and Co sulphides 

and alloys also can contain PGE (Cabri and Laflamme, 1981; Karup-M0IIer and Makovicky, 

1 986) and recently PGE-bearing awaruite (Ni3Fe) has been found in chromitites from 

Thetford Mines (Corrivaux and Laflamme, 1 990; Gauthier et al., 1 990). 

4.3. Pindos peridotites 

Table 4.3 shows the PGE compositions for ten Pindos mantle peridotites together 

with the analyses of other mantle derived peridotites. The chondrite-normalized patterns for 

these peridotites are shown in Figure 4.1 and are compared with other peridotites in Figure 

4.2. In common with the results of other studies, the peridotites have all relatively 

unfractionated PGE patterns, although some minor anomalies occur, e.g. a negative Pt 

anomaly for some of the Pindos samples, Troodos and Lewis Hill (but the opposite for 
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Thetford Mines) and a positive Rh anomaly for Pindos. These anomalies are difficult to 

explain, since there are many uncertainties about the behaviour of the PGE during partial 

melting. This, however, does not detract from the fact that the Pd/lr ratios are essentially 

chondritic. The data of Page and Talkington (1984} for lr and Au in Newfoundland peridotites 

are maximum values and they may have similar true values with the rest of the peridotites. 

8AK1 
AG1 
809 
DR42 
U8821 
DR6 
8013 
DR34 
AG3 
806 
DR20 
Harzburgite mean 
Standard deviation 
Range 

Troodos 
Lewis Hill 
Newfoundland 
Thetford Mines 
Spinel lherzolite xenoliths 1 
Spinel lherzolite xenoliths2 
Mantle estimate 
Average C1 chondrite 

RockType Os lr Au Rh Pt Pd 

Harzburgite 
Harzburgite 
Harzburgite 
Harzburgite 
Harzburgite 
Harzburgite 
Harzburgite 
Harzburgite 
Harzburgite 
Harzburgite 
Dunite* 

Harzburgite 
Harzburgite 
Harzburgite 
Harzburgite 

1.9 3.5 1.0 2.8 4.2 
2.3 5.0 1.5 3.9 3.8 
2.3 4.3 0.9 2.6 1.0 
2.4 4.2 1.1 3.3 4.9 
2.4 3.4 1.2 5.0 1.0 
2.5 5.0 2.0 18.0* 3.0 
2.6 6.0 1.8 5.2 3.4 
2.8 6.0 1.3 5.0 2.5 
2.9 6.2 1.2 7.0 2.6 
4.8 7.8 2.0 9.0 3.8 
2.2 4.5 1.2 1.2 0.6 
2.7 
0.8 

4.8-
1.9 

5.1 
1.4 

7.8-
3.4 

1.4 4.5 3.0 

4.0 3.0 6.5 
3.16 3.13 7.23 

<25 <100 
3.2 

3.4 3.7 
2.95 
5.2 7.7 

515 540 687 

0.4 2.3 1.3 
2.0- 18.0- 4.9-
0.9 2.6 1.0 
1.0 3.5 6.0 
1.84 5.19 3.87 
3.2 10.2 6.9 

10 3.8 
3.6 
4.1 

1.4 10.7 6.0 
196 1018 540 

Table (4.3) PGE abundances of 1 o harzburgites and one dunite from Pindos. Values are 

in ppb. Data from Troodos: Prichard and Lord (1990), Lewis Hill: Edwards (1990), Thetford 

Mines: Oshin and Crocket (1982), Newfoundland: Page and Talkington (1984), spinel 

lherzolites1: Morgan et al. (1981}, spinel lherzolites2: Mitchell and Keays (1981), mantle 

estimate: Barnes et al. (1988), C1 chondrite average: Naldrett (1981 b). *not included in mean 

and standard deviation calculation. 
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Figure 14.1) Chondrite-normallzed patterns for the Pindos harzburgites in Table 4.3. 

• Troodos 
A 
0 0 Lewis Hill 
c 
k + Thetford Mines 

I 
0 Pindos c 

h 
0 

0.01 *Xenoliths 

n f:s Xenoliths 
d 
r X Newfoundland 
I 
t - Range of Pindos 
e 

- peridotites 

Os lr Au Rh Pt Pd 

Eigyre 14.2) Chondrite-normallzed patterns for the peridotites in Table 4.3. 
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10.00 

• ... 
Pd/ • • lr 

1.00 • 
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0.91 0.92 0.93 0.94 

Mg# 

Fjgure (4.3) Plot of Pd/lr vs. Mg# for the harzburgites of Table 4.3. There is a slight 

decrease of the Pd/lr ratio with increasing Mg#. 

Figure 4.3 shows that the Pd/lr ratio varies with Mg#. There is a slight decrease of 

the Pd/lr ratio with high Mg# but the trend is almost horizontal until an Mg# value 0.947. It 

appears that in the first stages of melting the two elements have similar distribution 

coefficients, whereas later lr becomes more compatible than Pd. 

One of the striking aspects of the PGE contents of the rocks of Table 4.3 is that, 

although they encompass the spectrum from fertile spinel lherzolites to depleted SSZ related 

harzburgites, they have relatively uniform PGE contents, especially taking into account the 

variability introduced by the different methods of analysis. This would suggest that the bulk 

partition coefficient during melting for each of the PGE is near 1. 

4.4. Chromite-rich rocks 

Table 4.4 shows the composition of four chromite-rich rocks from Pindos; the same 

compositions appear in Figure 4.4 along 'With compositions of other chromite-rich rocks from 

Alpine peridotite complexes and layered intrusions. It is apparent that the chromite-rich rocks 

are enriched in PGE relative to the peridotites of Table 4.3. Many other studies have 

confirmed the association of a high level of PGE with chromite relative to the spatially 

associated silicate rocks (i.e. dunites and harzburgites). Figure 4.5 shows the chondrite 

normalized patterns for chromitites from various ophiolite complexes that have a negatively 

sloping pattern. This feature of ophiolitic chromitites reflects their association with laurite and 
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Os-lr alloys (Constandinides et al., 1979, Legendre and Auge, 1985, Stockman and Hlava, 

1984, Auge, 1988, Burgath, 1988, Cocherie et al., 1989). 

lr Ru Rh Pt Pd 

742 chromitite 8.2 15.17 14.35 19.7 49.2 
741 olivine chromitite 9.0 11.7 12.9 97.2 103.5 
732 olivine chromitite 46.5 37.2 10.23 61.8 20.0 
KK48 chromitiferous dunite 9.2 10.12 15.7 172 609 

Table (4.4\ PGE abundances of four chromite-rich rocks in Pindos. Values in ppb. 

This relationship was contrasted with the positive pattern of chromitites from layered 

intrusions (Figure 4.4). Although this is true for the Bushveld complex, Talkington and 

Watkinson (1985) showed that, when examined in more detail, the Stillwater chromitite 

seams had more complex patterns (Figure 4.4). They argued that the pattern of a chromitite 

is inherited by its PGE mineralogy, the main difference being the presence of sulphides and 

arsenides that carry the PPGE. The mineralogic studies quoted all stressed the mode of 

occurrence of laurite and Os-lr alloys, as primary euhedral inclusions in chromite and the 

association of PPGE-bearing minerals with the silicate matrix. They suggested that laurite 

and Os-lr alloys precipitate early and are trapped by the nucleating chromite. Sulphides 

occur at a later stage, if sulphur saturation is attained. This conclusion has been upheld in 

subsequent studies of ophiolitic chromitites with positive patterns, where a high proportion of 

PPGE-bearing minerals has been identified (Prichard et al., 1989, Corrivaux and Laflamme, 

1990). 

Figure 4.4 shows that, with the exception of sample 732 that has has flat to negative 

pattern, Pindos chromitites have pronounced positive patterns. In particular, they have simlar 

lr, Ru, and Rh abundances but varying Pt and Pd contents. Sample kk48 is particularly rich 

in Pd, reaching almost chondritic levels. This high Pd abundance is most likely due to the 

presence of a substantial fraction of Fe-Ni sulphides, constituting -15% of the mode. Fe-Ni 

sulphides and alloys were detected in all other samples as well, but in smaller. proportions, 

accounting for the different levels of Pt and Pd in these samples. In contrast, the lr, Ru, and 
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Rh contents of these samples are fairly uniform, suggesting that they are not controlled by 

the sulphide. 
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Ejgure (4.4) Chondrite-normalized patterns for chromitites from various ophiolites and 

layered intrusions. Data for Quebec: Gauthier et al. (1990), Zambales, Bacuta et al. (1990), 

Stillwater: Page et al. (1976), Unst, Shetlands: Prichard et al. (1985). 
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Figure (4.5) Chondrite normalized patterns for chromitites from various ophiolites. Data 

for Newfoundland: Page and Talkington (1984), Page et al. (1982a), Vourinos: Economou 

(1983), Josephine: Page et al. (1986), Troodos: Prichard and Lord (1990), Zambales, Bacuta 

et al. (1990), New Caledonia, Page et al. (1982b). 

4.5. Causes of PGE fractionation 

The two main petrogenetic processes that take place in an ophiolitic system are 

partial melting and crystal fractionation. The way that these affect the PGE content of any 

rock will depend on the phases that particiP.ate in these processes and the partitioning of the 

PGE in these phases. Mafic silicates, chromite and sulphides haveo>been suggested as 

possible causes of PGE fractionation and all are present in the Pindos ophiolite; their affects 

on PGE will be discussed below. 

4.5.1. Mafic si!jcates (Q!jyjne. pyroxenes) 

The association of olivine with elevated lr contents (e.g. Gijbels et al., 1976) has led 

to the suggestion that it may act as a sink for the IPGE in the absence of another collector 
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(Crocket, 1979). If this is true, then partial melting, where olivine is an increasingly dominant 

phase, should enrich the restite in IPGE over PPGE, producing an increasingly negative 

pattern. It has already been mentioned that the Pd/lr ratio increases with increasing Mg 

number in the Pindos harzburgites. The contribution of olivine, however, cannot be assessed, 

since other phases may play important roles. Mitchell and Keays (1981) analyzed mineral 

separates of spinel lherzolite:' xenoliths and found no enrichment of lr over Pd in the olivine 

separates. In contrast Oshin and Crocket (1982), who also analyzed olivine separated from a 
\ 

harzburgite, found that Pd was enriched relative to lr. Their analysis, however, reported a 

large value for Pt (7.8 ppb Pt compared to 0.75 ppb for Pd and 0.38 ppb for lr) which makes it 

suspect. A problem that complicates interpretations of analyses of mineral separates is the 

problem of contamination from a PGE enriched phase (e.g. sulphides). Mitchell and Keays 

(op. cit.) considered the effects of a possible contamination and suggested that a real 

crystallographic control exists for the PGE between phases; their argument, however, is 

based on the implicit assumption that a single contaminating phase contributes both Pd and 

lr. Although this is probably true for the spinel lherzolite xenoliths that they studied, the 

possibility exists that, whereas Pd is strongly partitioned in the sulphide, lr will be 

preferentially enriched in any metallic phase present. 

If, following the argument of Mitchell and Keays (op. cit.), the samples with the lowest 

PGE contents, being the least likely to be contaminated by a PGE-enriched phase, 

represent' the true PGE content in a silicate phase, then pure olivine in the spinel lherzolites 

examined would contain 0.07 ppb lr and 0.02 ppb Pd. This is identical to the estimated lr of 

pure olivine of Gijbels et al. (1976) ·for olivines of the Rhum complex. Since this value is too 

low compared to the PGE abundances of the harzburgites in Table 4.3, it follows that the 

PGEs in these rocks are contributed by another PGE enriched phase that conceals the 

contribution of olivine. One analysis of a garnet harzburgite xenolith from Morgan et al. (1981) 

has sufficiently low values of PGEs to allow the assumption that they are controlled solely by 

the silicate (0.059 ppb Os, 0.052 ppb lr and 0.09 ppb Pd). The Pd/lr ratio is 1. 7 which is only 

slightly higher than the chondritic ratio but clearly shows that lr is not enriched over Pd. 
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Mitchell and Keays (1981) also analysed ortho- and clinopyroxene separates from the 

spinel lherzolites. Although they did not find any systematic enrichment of lr over Pd, the 

absolute PGE levels were higher than in oiMne, with clinopyroxene commonly containing 

more PGE than orthopyroxene. This Is in conflict with the observation of Gijbels at al. (1976), 

that oiMne from the Rhum complex has higher PGE contents than clinopyroxene, but they 

attributed this to chromite inclusions in oiMne. Their estimation of the lr content of pure 

clinopyroxene was 0.075 ppb, which is almost identical to their 0.07 ppb estimate for oiMne. 

If oiMne can accept PGEs In solid solution then its contribution will only be 

significant in the absence of a PGE enriched phase and then it will not be capable of 

fractionating the PGE. 

4.5.2. Chrombe 

The strongly negative chondrite normalized PGE patterns of chromitites from 

ophiolitic complexes has led to the suggestion that chromite accepts IPGE over PPGE in its 

lattice and so it can fractionate the PGE (e.g. Agiorgltis and Wolf, 1978, Economou, 1983). 

Recent experimental studies have shown that Ru and Rh are compatible with respect to 

chromite (see Table 4.5), whereas Pd is incompatible, but that the behaviour of the PGE in 

natural systems may be more complicated. It has been argued that the chondrite normalized 

pattern of chromltltes reflects the PGE mineralogy of the rock, but that PGM are difficult to 

detect due to their minute size. Cocherie et al. (1989) examined the PGE and PGM in 

separated chromltites from the Vourinos complex; they confirmed that the PGE pattern of the 

chromites was due to inclusions of IPGE bearing minerals and did not observe any correlation 

of the chromite chemistry with its PGE content, as was reported by Economou (op. cit). 
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Figure C4.6l lr vs. Cr wt.% for chromitites from various Greek locations. The symbols 

represent different locations. From Agiorgitis and Wolf (1978). 
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Ejgure (4.71 lr vs. Cr wt.% for chromitites from the Josephine and Onion Mountain Alpine 

peridotite complexes, southwestern Oregon. From Stockman and Hlava (1984) 

The correlations between chromite chemistry and PGE content (Figure 4.6) reported 

by Agiorgitis and Wolf (1978) were based on samples from different ophiolites and it is 

tempting to dismiss them as fortuitous. Stockman and Hlava (1984) studied the PGE 

mineralogy of chromitites from two Oregon complexes (Josephine and Onion Mountain) that 

are probably genetically related. Although they did not support the suggestion that chromite 

accepts PGE in its lattice, 'they presented a plot of lr vs. Cr wt.%, which is reproduced in 

Figure 4.7, that shows a correlation and resembles that of Agiorgitis and Wolf (op. cit.). It will 
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be noted that the Cr wt.% varies by a factor of -2, whereas the lr content varies by a factor 

of 100. If we assume that the chromite precipitated from a melt by fractional crystallization, 

then we can calculate its composition using the equation of Shaw (1970): 

~-1) 
gr={1-F) D (4.1) 

where Cr is the composition of the phase being fractionated, Cl is the composition of 

the initial liquid, F is the degree of melting and D is the distribution coefficient. The ratio of 
\. 

compositions of the chromite at two different instances will be: 

1 
Cn 1-F1 t[)-1) 
Cr2 = (1-F2) 

(4.2) 

where f1>f2. Since the value of D is larger than 1, for compatible elements, the 

value of the exponent (~-1) is always negative. This means that the value of Cr1/Cr2 can 

never exceed the value of (1-F1)/(1-F2). Thus, a difference of three orders of magnitude in 

the lr content of two chromitite samples requires that chromite be fractionated until the last 

drops of melt crystallize, clearly an unrealistic proposition. It will be noted that the range of 

the chromite Cr abundances support a magmatic origin, with 2-4% fractional crystallization of 

chromite being adequate to reproduces the observed abundances. 

If the PGE content of cumulate chromite can be explained by the presence of PGM, 

studies of chromite separates from harzburgites have failed to reveal their presence 

(Cocherie et al., 1989). Figure 4.8 shows the PGE patterns for chromite separates from 

harzburgites from the Vourinos and Thetford Mines complexes, as well as spinel lherzolite 

xenoliths. The chromites from xenoliths and Vourinos have unfractionated patterns that 

mirror the patterns for whole rock PGE abundances, albeit at different absolute 

concentrations. 

I Mansolas 1991 131 



Chapter 4 Platinum-group elements (PGE) 

c 
s h 
p 0 
i n 
n d 
e r 
I 
I 

e 

1 
0 

' 

0.1 
I 0- • • • -[] 

I .- . - - ..:.....•-~ ~ - -·- .. -- - .... - tJ' ---· 
0.001 +-----+---___,f-------+------1 

Os lr Au Pt Pd 

• Average of spinel 
lherzolites 

0 Harzburgite, Thetford 
Mines 

+ Vourinos harzburgite 

<> Harzburgite, Thetford 
Mines, acid leached 

fim.IUL.{!.Jl Chondrite-normalized patterns of spinel separates from spinel lherzolites 

(Mitchell and Keays, 1981), Thetford Mines (Oshin and Crocket, 1982), and Cocherie et al. 

(1989) 

Since the Vourinos harzburgite has been subjected to a high degree of partial melting 

compared to the spinel lherzolite xenoliths, the higher PGE concentrations of the chromite 

suggest that the PGEs may partition in spinel. Even so, the distribution coefficients should be 

similar and still could not fradionate the PGE. The unleached separates from Thetford Mines 

are the most enriched in PGEs and show a Au negative anomaly that is absent In Vourlno8. 

The leached composition shows much reduced PGE levels (lr more so than Pt and Pd) and 

retains the Au anomaly. Oshin and Crocket (1982) suggested that chromite, in the high 

temperature conditions of the upper mantle, accepts PGEs in defed sites and vacancies and 

that these migrate towards grain boundaries during emplacement of the peridotite. However, 

the reason for the negative Ru anomaly is still not clear and it is In complete contrast to the 

Au enrichment of cumulate chromites. 

Capobianco et al. (1990a,b) have studied experimentally the partitioning of Ru, Rh, 

and Pd in spinel and arrived at spineVsilicate liquid distribution coefficients (Table 4.5). Their 

results show that Au and Rh are compatible whereas Pd is incompatible. However, the 

absolute distribution coefficient values in the Fa-bearing system are much higher than in the 

CMAS. In addition, the effed of Cr on partitioning remains unknown. These uncertainties 

make application of the distribution coefficients of Capobianco et al. (1990a,b) to natural 

systems questionable. Assuming that Os and lr will behave In a similar WrJ:i to Au, these 
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distribution coefficients are in agreement with observed PGE abundances from ophiolitic 

chromitites (Figure 4.5), even if Rh is never so abundant. If, however, their effect on the 

basaltic melt is considered, using Equation 4.2, it is obvious that even the smallest amount of 

chromite fractionation will totally deplete the melt of Ru and Rh. Figure 4.12 shows that 

oceanic basalts do not show such a drastic depletion, even though the PGE pattern has a 

positive slope. Furthermore, if these distribution coefficients were true, they would be of the 

same magnitude as those for sulphide/silicate melts. The chromite PGE levels should also 
\ 

be similar to sulphide globules from MORB, i.e. in the order of ten of thousands of ppb 

(Peach et al., 1990). 

4.5.3. Sulphides 

Sulphides are frequently associated with high PGE concentrations, e.g. in komatiitic 

Ni-Cu sulphides (Naldrett, 1981a), layered intrusions and sulphide globules from MORB 

(Peach et al., 1990). As mentioned earlier, sulphides are believed to be the main host of 

PGEs in the mantle (Keays et al., 1981; Mitchell and Keays, 1981; Garuti et al. 1984) and the 

very high distribution coefficients between sulphide melt and silicate melt for the PGE (Ross 

and Keays, 1979; Campbell and Barnes, 1984; Jones and Drake, 1986) makes imperative 

their consideration in any PGE melting model. Recently the distribution coefficients of lr, Pt 

and Pd have been experimentally determined (Peach et al., 1990; Stone et al., 1990; Table 

4.5). These studies confirmed the high estimates of sulphide/silicate melt distribution 

coefficients for the PGEs. The study of Peach et al. (1990) is based on I r, Pt, and Pd 

determinations of MORB glass and coexisting sulphide globules. The value for Pd is an 

estimate, since Pd in the glass was bel~ the detection limit. The value for Pt is not given by 

the above authors, because of the same problem as with Pd and the lack of any means of 

making an accurate guess, but it can be derived from the lr data using mass balance of the 

sulphide and glass. A further complication is the question of whether the sulphide was in 

equilibrium with the glass; this was considered by the authors and they suggested that the 

coefficients are an accurate estimate. The values of Stone et al. (1990) vary considerably but 

the lowest values are in good agreement with those of Peach et al. (1990), especially 

I Mansolas 1991 133 



Chapter 4 Platinum-group elements (PGE) 

considering that Pt and Pd values in the glass had to be deduced. The estimated value for 

the Pt distribution coefficient is in good agreement with that of Stone et al. (1990), suggesting 

that the one order of magnitude difference with those of lr and Pd is not an artefact of 

calculation. An important difference is the ratio of the coefficients of lr/Pd. Peach et al. (1990) 

suggest that Pd is more compatible than lr, but this is in contradiction of their observed 

behaviour during partial melting in the Pindos peridotites (Figure 4.2). The values of Stone et 

al. (1990) observe this relationship and are therefore preferred. 
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4.5.4. Alloys 

Because of their siderophilic nature, the PGEs will partition into a metallic phase if 

one is present. Fleet and Stone (1991) experimentally determined distribution coefficients for 

the PGEs in the Fe-Ni-S system between a Fe-alloy and sulphide melt (Table 4.5). They 

pointed out that the distribution coefficients are bound to vary with temperature and phase 

\ 
compositions. The results show that Os, lr, and Pt partition very strongly in the metallic 

phase, followed in this respect by Rh, whereas Pd is only slightly compatible. Although this 

shows that a metallic phase would be very effective in fractionating the PGEs, especially in 

fractionating Pd from the rest, the presence of a metallic phase in the evolution of the melt is 

questionable. A fractionating silicate melt is unlikely to reach the solubility limit of Fe or Ni 

and exsolve a metallic phase. This does not exclude the possibility of the presence of a 

metallic phase in an immiscible sulphide liquid, if one is formed, in which case the 

distribution coefficients will dictate the partitioning of the PGE in the sulphide-alloy phase. 

4.5.5. Oxygen fugacjty 

The effect of the oxygen fugacity (f0 ) on the solubility of lr and Pt in a basaltic melt 
2 

was recently investigated experimentally (Amosse et al., 1990}. Figure 4.9 shows the 

solubility of lr and Pt as a function of f0 . An increase of the f0 has a pronounced effect on 
. 2 2 

the solubility of lr, which decreases rapidly to sub-ppb levels. For the same change of f0 , Pt 
2 

solubility changes less abruptly and remains much greater in the experimental charges than 

the Pt content of natural magmas. Amos_~~ et al. (1990) conducted the experiments at a 

relatively high temperature (14300C) in order to achieve the low viscosities necessary to 

obtain equilibrium conditions of the melt. They pointed out that the solubilities of lr and Pt 

increase with increasing temperature, but maintained that the relative differences in their 

solubility would remain the same at lower temperatures. 

As Amosse et al. (1990} pointed out, the different behaviour of lr and Pt may explain 

the IPGE over PPGE enrichment that is observed in many Alpine chromitites. An increase in 
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the oxygen fugacity of a basaltic melt can result in chromite precipitation (Hill and Roeder, 

1974). This may bring the melt to saturation with respect to lr (and presumably Os and Au), 

thus precipitating IPGE alloys and/or sulphides. At the same time the background solubility of 

Pt (and Rh and Pt) may remain higher than their saturation level and PPGE will be 

continuously enriched in the melt until they are scavenged by sulphides. 
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0.1 
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logf02 

fialte . .(1,Jl Solubility of lr and Pt in basaltic melt as a function of oxygen fugacity. 

Amossit et al. (1990). 

4.6. Sulphur In the mantle 

In view of the significance of sulphides as PGE collectors, their behaviour during 

partial melting and melt evolution must be examined. The sulphur content of mantle derived 

rocks Is not an accurate indicator of the S content of the upper mantle (Lorand, 1987, 1990). 

Sun (1982) estimated the S abundance of the mantle to be in the range 350-1000 ppm, but . 

this value was probably too high. The more recent estimate of Morgan (1986) is lower at 200 
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ppm and is more widely acceptable. Assuming that sulphur resides in a sulphide phase 

containing -35 wt.% S, it constitutes 0.058% of the total mass of the primitive mantle. This 

sulphide phase is likely to be a Fe-Ni-Cu sulphide interstitial to the silicate minerals (Lorand, 

1987, 1989). Sulphides have low melting points; pyrrhotite starts to melt at 9880C, 1 bar 

(Craig and Scott, 1982) and this temperature is lowered in the presence of Cu (but not Ni, 

Naldrett, 1969). This ensures that sulphide is molten long before the onset of melting of the 

silicates, but it will not be able to segregate because it will be suspended in the "frozen" 
~ 

silicate matrix. Although the melt extraction mechanism is very efficient even for very low 

degrees of melting (McKenzie and Bickle, 1988), the presence of sulphides in·mantle derived 

rocks that have experienced partial melting (Mitchell and Keays, 1981, Garuti et al., 1984, 

Lorand, 1987, 1989, present study) indicates that they cannot be mechanically transported, 

possibly due to the combination of their high density and the low melt velocities in the 

melting region. The method of removal of sulphur from the mantle must be its dissolution in 

the silicate melt, and its solubility will determine the rate of its extraction. 

The increased solubility of sulphur with increasing FeO content of the silicate melt is 

well established (Maclean, 1969, Haughton et al., 1974, Mathez, 1976, Wendlandt, 1982). 

Recently, Poulson and Ohmoto (1990) compiled the available data on sulphur experiments in 

synthetic and natural systems and arrived at models for the speciation of sulphur in silicate 

melts and mathematic expressions for its solubility in these melts. They distinguished three 

melt categories according to FeO content: melts with less than 1 wt. o/o FeO, melt with FeO 

between 1 and 10 wt.%, and melts with FeO higher than 10 wt.o/o. The first category involves 

experiments with albititic melts that are not relevant in the initial stages of melting. For melts 
.. 

with FeO > 10 wt.% they found that sulphur is dissolved as an Fe3S02 (or 2FeO·FeS) 

species according to the reaction: 

1 1 28 (g) + 2Fe0(silicate melt) = Fe3S02(silicate melt) + '202(g) (4.3) 

1 1 log K =log X8 + 21og f02 - 31og XFeo- ~og f82 = -4.1 (at 1200 OC, 1 bar) (4.4) 
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For silicate melts with intermediate FeO content, they found that sulphur is dissolved 

as an FeS species: 

FeS(sulphide melt) = FeS(silicate melt) 

and determined the constant of the reaction: 

log K = log X8 = -1.05 - 3000!T (0 K) (850-1200 oc, 1 bar-2.2 kbar) 

(4.5) 

(4.6) 

According to Equation 4.6, the sulphur solubility in intermediate melts is temperature 

dependent. This is in apparent contradiction to the idea that sulphur solubility varies with the 

FeO content of the melt. Poulson and Ohmoto (1990) showed, however, that this is true only 

after a critical value of FeO in the melt is reached, which is also temperature dependant. 

Since primitive melts have FeO content of less than 10 wt.% (e.g. Shibata and Thompson, 

1986), Equation 4.6 can be used to calculate the sulphur solubility of the melt during partial 

melting. The accuracy of this expression can be evaluated by comparing the calculated 

values with those encountered in an experimental study. The sulphur solubility of Grande 

Ronde basalt in the experiments of Wendlandt (1982) is -0.15 wt.% Sat 1420°C and -0.9 

wt.% S at 13000C. The solubilities of sulphur calculated with Equation 4.6 at the same 

temperatures are 1500 and 1100 ppm respectively, a very good agreement. The ability to 

use a temperature-dependant expression for the sulphur solubility in silicate melts is of great 

advantage when modelling asthenospherically rising mantle, since the sulphide removal can 

be monitored very accurately without resorting to the use of a single solubility value 

throughout the melting episode. 

Sulphur solubility is believed to ipcrease with decreasing pressure (Helz, 1977; 

Wendlandt, 1982). Poulson and Ohmoto (1990) suggest that the constant of Equation 4.4 

shows a positive pressure dependence (+0.1/kbar), they base this conclusion, however, on 

the experiments of Caroll and Rutherford (1985) that involved natural hydrous dacite melts 

from 1.06 to 2.90 kbar. Although they acknowledged the discrepancy, they offered no 

explanation. A possible reason for this apparent contradiction may be the different 

compositions considered by each study, as well as the different conditions, i.e. the 
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experiments of Wendlandt (1982) were performed at the much higher pressures of 12.5 to 30 

kbar. In view of this contradiction, I favour the conclusion of Hetz (1977), which is based on 

observations of natural MOAB, that decompression enhances sulphur solubility. 

Maclean (1969) found that the effect of increasing oxygen fugacity is to decrease 

the sulphur solubility in the silicate melt He suggested that an increase in oxygen fugacity will 

deplete the ferrous iron content in the silicate melt by oxidizing it to ferric iron. Since sulphur 

is dissolved as FeS species (Equation 4.5) this will result in a decrease of the sulphur 

solubility in the melt. Haughton at al. (1974) also found that increasing fs and f0 has the 
2 2 

result of respectively increasing and decreasing sulphur solubility. In the experiments of 

Wendlandt (1982) the relative effects of f8 and f0 could not be evaluated and Wendlandt 
2 2 - -

(op. cit.) cites the study of Haughton at at. (op. cit.) but actually reverses his conclusion 

(Wendlandt, 1982, pp 881-882). That f~ and f02 should have the effects described by 

Maclean (1969) and Haughton at at. (197 4) is obvious when considering the 

products/reactants balance of Equation 4.3. If oxygen Is added to the left..,hand side of the 

equation (products) the Fe3S02 activity of the silicate melt must decrease to maintain the 

balance. Similarly, an increase in sulphur fugacity will increase the amount of sulphur 

dissolved in the melt. Although the balance is maintained by an increase In oxygen fugacity, 

in practice the phase that will be most affected will be one that is not buffered in any way. 

Maclean (1969) also showed that sulphur saturation can be attained by removal of 

ferrous iron from the silicate melt (e.g. oiMne or chromite crystallization), by an increase in 

the Si02 content of the melt (silicate fractionation), and by temperature drop. 
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Figure l4.10l Sulphur content of the mantle and melts during partial melting. The asterisk 

represents 15% melting of the 21% melting residue, i.e. a total of 36% melting 

The sulphur abundance of the mantle and melts generated by partial melting has 

been modelled using Equation 4.6. The melting model and calculations are presented in detail 

in Chapter 5. Briefly, a sequential equilibrium melting model with 1% intervals was used. 

Melts calculated at each interval are the instantaneous melt and their weighted average gives 

the accumulated (or pooled) melt of the melting interval. Figure 4.10 shows the sulphur 

compositions of residue, instantaneous and accumulated melts for two rising mantle diapirs 

with an initial temperature of 1280 and 1'4-50°C. These are typical temperatures of normal 

MOAB and hotspot related diapirs respectively (McKenzie and Bickle, 1988). The prediction 

for the disappearance of sulphide from the source at 24% melting, for the normal MOAB 

diapir, is in excellent agreement with the estimates of 25% (J. W. Morgan, cited in Barnes et 

al., 1985) and Peach et al. (1990). The disappearance of the sulphide in the hotspot diapir 

occurs at 14% melting, because of the higher melt temperature which results in higher 
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sulphur solubility. Since the effect of pressure has not been taken into account this value is a 

lower limit ofthe degree of melting required to remove the sulphide. 

In order to explain the high PGE values of low-Ti magnesian basalts relative to 

MOAB, Hamlyn et al. (1985) suggested that the former were generated by partial melting of a 

peridotite that had already experienced MOAB extraction and retained some residual 

sulphides that were consumed during the second melting episode. Their published sulphur 

data for the basalts they examined range from 20 to 1780 ppm S. They are however 

unreliable because sulphur is mobile during alteration. A more reliable indicator of the sulphur 

content is Se because it is not affected by alteration. The S/Se ratio of the mantle is 3509 

(Morgan, 1986) and will change only if the melt interacts with sulphides during_ its evolution 

(e.g. achieves sulphur saturation). This is unlikely to have happened to the basalts examined 

by Hamlyn et al. (1985). The sulphur values calculated from the Se content of the basalts 

ranges from 15 to 708 ppm S with an average of 185 ppm S, which is consistent with the 

origin suggested by Hamlyn et al. (op. cit.). Figure 4.10 shows the sulphur content of a melt 

that is derived by 15% melting of a residue that has already experienced 21% melting, a 

typical value for MOAB. The calculated value Is 193 ppm S, which is In very good agreement 

with the average of the low-Ti basalts and is consistent with Hamlyn et al. (op cit.) hypothesis. 

4.7. Modelling 

The availability of distribution coefficients for the PGE makes possible the modelling 

of the PGE during partial melting and melt evolution. It has been argued that the presence of 

sulphides is the most Important factor in controlling the PGE; their partitioning in chromite can 

also be examined, but there are no quantitative data on the partitioning of the PGE in 

silicates. In order to look at the behaviour of the PGE during partial melting, the three 

situations that were examined earlier with respect to sulphur in the mantle have been 

modelled using the partition coefficients of Stone et al. (1990). Since no partition coefficients 

for Au and Ah exist, an arbitrary value of 4X1 Q4 has been used. Figure 4.11 shows the 

results for the melts and residue. Note that the residue values are actually increased. This is 

because the very large distribution coefficients for the PGE make them behave compatibly, 
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however minute the sulphide fraction may be. Also, despite a difference of an order of 

magnitude of the distribution coefficients of Pd and Pt, the residue has a flat pattern. lhe 

effect of the different distribution coefficients is more obvious in the melt; it has Pd/1 r> 1, since 

lr is more compatible, and a positive Pt anomaly, due to its smaller distribution coefficient. 

These differences are eliminated in the 25% melt because the sulphide is no longer residual 

and the PGE enter the melt. lhe melt that comes from the subsequent melting of the restite 

that still retains some sulphides also does not show any anomalies and has a higher PGE 

content, since it represents a smaller (15%) degree of melting. 

Figure 4.12 shows the three calculated melts in comparison to MOAB and magnesian 

low-Ti basalts. All the MOAB compositions are from localities near hotspots, btrt the sample 

from the Bouvet Triple Junction has very low abundances and may represent a smaller 

degree of melting. There is good agreement between the calculated and observed values for 

Pd for all models but the Pdllr ratio is very high In all basalts, which suggests that lr has been 

depleted, probably due to IPGM crystallization during melt fractionation. 
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o.1 T 

R 
0 - Starting source 
c 0.01 
k 0 Source, 21% meHing 
I 
c +Accumulated meH, 
h 21%meHing 
0 

n 0 Accumulated meH, 25% 
d meHing 
r * 15% meHing of 21% i 0.001 
t residue 
e 

0.0001 
lr Au Rh Pt Pd 

Figure (4.11) Melt and residue compoSitions for partial melting. Initial mantle values from 

Table 4.3. Distribution coefficients, see text. Same parameters as in Figure 4.10. 
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A 
0 

c 
k 
I 
c 
h 
0 

n 
d 
r 

e 

0.1 

0.01 

0.001 

0.0001 

0.00001 

lr Au Rh Pt Pd 

•· Leg 115, Hole 706 

0 Leg 115, Holes 707, 713, 
715 

·+·Leg 37, Hole332B 

0 Leg 24, Site 238 

*All 60-2-18, MAR 22" N 

IJ. 80-1-5, Bouvet Triple 
Junction 

X Troodos, olivine basalt 

)I( Troodos, UPL 

-- Low-Ti basalts 

- 21% melting 

•· 25% melting 

0 15% melting of 21% 
residue 

flgy[ejg . .JZl Comparison of the predicted melt compositions with MOAB and magnesian 

low-Ti basalts. Data from Leg 115: Greenough and Fryer (1990), Leg 37: Crocket and Teruta, 

(1977), Leg 24, MAR, and Bouvet: Hertogen et al. (1980), low-Ti basalts: Hamlyn et al. 

(1985). 

4.8. Summary 

There are many uncertainties concerning the behaviour of PGE during partial melting 

and fractional crystallization, e.g. what is their host in the mantle, what fractionates Pd and lr 

or Pd and Pt, what is the role of chromite etc. Although general characteristics are 

recognized, e.g. enrichment of IPGE in chromites, these are not universal and any theories 

have yet to be conclusively proved. Here, a model for the PGE abundances of the Pindos 

rocks will be presented that is consistent with the characteristics of the Pindos. 

It has been argued that the silicate minerals cannot control the PGE abundances or 

patterns in mantle rocks. Instead, sulphides are the most likely candidate for this role. The 
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PGE absolute abundances in the Pindos harzburgites are consistent with the presence of 

residual sulphides. In addition, sulphides have been observed in most of the rocks, although 

they are usually badly affected by serpentinization and it is not clear whether they are 

primary or not. However, the decrease in the Pd/lr ratio observed with increasing amount of 

melting cannot be reproduced by modelling the sulphide fraction alone, as both experimental 

studies and observations on natural rocks suggest that Pd and lr are almost equally 

compatible in sulphides. An additional phase has to be present that is enriched preferentially 
~ 

in lr over Pd. Mitchell and Keays (1981) suggested lr-alloy as a possible candidate for the lr 

host in the mantle. Such a phase, by virtue of its high melting point, would be more refractory 

than the Pd-hosting sulphide and would effectively fractionate the two. This lr-alloy need not 

be present throughout the melting history of the mantle. The initial host of both lr and Pd may 

be mantle sulphides. As these sulphides become enriched in lr with increased melting they 

may exsolve an lr-rich phase. This is consistent with the observed variation of the Pd/lr ratio 

in the Pindos harzburgites, that is initially unchanged but starts to decrease with increased 

partial melting. 

It is, however, more difficult to equate the suggestion of Hamlyn et al. (1985), that 

second-stage melting removes the residual sulphide from the mantle, with the relatively high 

Pd abundances of the Pindos harzburgites. It has been shown that most of the Pindos 

complex has experienced second-stage melting in a supra-subduction zone environment that 

resulted in the depleted harzburgites of Avgo and Livadi. A process that would satisfy the 

observations of Hamlyn et al. (1985) on second-stage melts with the residues of these melts 

is the presence of residual sulphide that has not equilibrated with melt. This could be 

achieved by the re-distribution of sulphides after initial melt extraction and their entrapment 

in silicates. Entrapment of spinel in silicate phases is a well established process during 

deformation of peridotites (Mercier and Nicolas, 1975) and silicate-hosted sulphides have 

been observed in the Pindos harzburgites. With the onset of second-stage melting, any 

interstitial sulphide would enter the melt and be exhausted from the peridotite, but the 

silicate-hosted sulphides would not do so unless their host also melted. In addition, being 

isolated from the melt, they would not equilibrate with it and deplete it from its PGE content. 
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The chromitite PGE abundances are more easy to explain, since their PGE 

mineralogy Is better established. It was mentioned earlier that chromitites with positive 

chondrite-normalized patterns are associated with PGE sulphides, whereas those with 

negative patterns are associated with Os, lr, Au-minerals. It is significant that almost all 

processes that result in chromite precipitation (e.g. decreasing temperature, increased 

oxygen fugacity) also drive the melt to sulphide saturation. In addition, chromlte fractionation 

ltseH can drive a melt to sulphide saturation, because it removes FeO. If, however, the melt is 

undersaturated with respect to sulphide, then a considerable amount of fractionation is 

required ~efore .immiscible sulphide is formed. In this case PGE solubility in the melt may be 

a more important factor than sulphide saturation. An increase in ~e oxygen fllgacity will lower 

the solubility of lr, thus depleting It from the melt. It is noteworthy that the fractionation of 

ferromagnesian silicates from a basic melt increases its Fe20 3 content (and its oxygen 

fugacity, Carmichael, 1991) until ferric-iron. rich oxides precipitate. 

It is concluded that the role of platinum-group minerals is frequently undetected 

beCauSe other phases (sulphides) may be abundant and dominate the m~gmatic processes. 

When the role of sulphides is diminished, platinum-group minerals start to control these 

processes. 
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Chapter .5,. Modelling m major eletnents 

5.1. Introduction 

Basic magmas and their source regions are composed of the oxides of six major 

elements {SI, AI, Fe, Mg, Ca, Na) and several minor (Ti, Mn, K, P) and trace constituents. 

Major element oxide analyses have been extensively used to study the geometric path of 

partial melting processes in multicomponent systems (e.g., Bowen, 1914; O'Hara, 1968; 

Presnall, 1969). Systems with more than four components, however, are difficult to represent 

graphically. Consequently, petrologists have devised techniques to reduce the number of 

components by grouping them together into four sets; these sets can then be asslg_ned to tile 

four apices of a tetrahedron and projected onto a suitable plane (e.g. Yoder and lilley, 1962; 

O'Hara, 1968). Nevertheless, in the process of reducing the number of components of a 

system, some information is Inevitably lost. For example, by grouping FeO and MgO 

together, the effects of Fe-Mg partitioning between mafic minerals are not apparent. 

Signmcantly, the projectional algorithms that have been proposed so far by various workers 

(e.g., O'Hara, 1968; Walker et al., 1979; Elthon, 1983) involve methods of component 

reduction. The direct analysis of minerals and co-existing melt in partial melting or 

crystallization experiments allows a quantitative and detailed examination of melting and/or 

crystallization pathways, but the results are confined to the particular rock composition 

Investigated and cannot be extrapolated to other rock types. 

In contrast to the methods of studying Igneous processes using major elements, 

trace elements can easily be modelled on a quantitative basis by means of relatively simple 

mathematical expressions (Gast, 1968; Shaw, 1970; Hertogen and Gljbels, 1976; Prinzhofer 

and Alli!gre, 1985). This does not imply that major elements cannot be modelled on a 

theoretical basis as well (see, for example, Ito, 1973; Maal"e, 1976), but rather that this 

approach Is rarely followed, whereas there are hardly any trace element studies that are not 

accompanied by some sort of modelling. 
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The ba~ls of formulating trace-elem~nts models is the concept of the distribution (or 

partition)- coefficient (Kd). This is the ratio of the concentration of an element in a phase to the 

concentration of that element in the co-existing liquid, and is constant over a wide range of 

temperatures and compositions of the phases provided that Henry's law3 is obeyed. Although 

there is some controversy over the latter issue, Watson (1985) showed that most trace 

elements that are used in petrogenetic modelling do obey Henry's law at the concentrations 

observed in nature. 

Hanson and Langmuir (1978) suggested that major elements need not be considered 

separately from traces and that all elements form a continuum of chemical behaviour. One 

end of the spectrum is occupied by the trace elements, whose abundance is so low that there 

Is no stoichiometric constraint on their concentration In any phase. A trace element in an ideal 

solution will follow Henry's law, otherwise the actMty coefficients will covary systematically in 

the phases involved (e.g. REE). The other end of the spectrum is occupied by elements that 

are essential structural constituents (ESC, Hanson and Langmuir, op. cit.) of minerals, 

completely filling a site. In this case, the abundance of an ESC In a liquid will be buffered by 

the composition of the mineral that hosts this element. For limited solid solution ESCs will 

follow Raoult's law (e.g. Si02 in pyroxenes). Intermediate elements lie between these end 

members. For a given Kd, the concentration of the elements in any phase will vary within the 

limits Imposed by stoichiometry. Solid solutions may follow Raoulrs or Henry's law, or be 

Ideal or non-Ideal. There may be elements occurring in critical concentrations, such that they 

are not stoichiometrically constrained by the composition of their host minerals, yet they do 

not fulfil the solution criteria to be considered trace elements (e.g. Ni in oiMne). Hanson and 

31n an ideal solution there is no enthalpy of mixing and the actMty of a component 

mixing on one site is equal to its mole fraction in solution (Raoult's law). If the mixing 

components interact with one another, the activities will depart to a greater or lesser extent 

from the Ideal mixing curve. With increasing dilution, however, elements become so 

dispersed that, although they may interact strongly with the other components present, small 

changes in their concentration do not significantly affect their average environment. The 

actMty coefficient, therefore, remains constant and the activities of trace elements become 

proportional to their concentrations. This Is known as Henry's law (Wood and Fraser, 1976). 
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Langmuir (op. cit.) used Roeder and Emslie's (1970) Kd's for MgO and FeO in oiMne to 

model the compoSition of these elements In the liquid and co-existing residue during partial 

melting. Although Kd's for other minerals were not available, they overcame this problem 

through manipulation of the melting equations. 

As Kd's becam·e available (Nielsen and Drake, 1979; Nielsen, 1985; Weaver and 

Langmuir, 1990), the quantitative stydy of major elements was extended to more complex 

systems (Frenkel and Ariskin, 1985; Nielsen, op. cit.; Weaver and Langmuir, op. cit.). A 

different approach has been adopted by McKenzie and Bickle (1988) and Nlu and Batiza ~n 

press), who parameterized equilibrium melting experiments on peridotite compositions for 

which the extent of melting was known. Using this technique they were able to calcul~te the 

liquid compoSition at pressures, temperatures, and degrees of melting of interest. 

In the present study the composition of the shallow upper mantle, generated during 

sequer'Jtial partial melting will be modelled according to the method· outlined by Hanson and 

Langmuir (1978), using solid/liquid distribution coefficients for all major and minor element 

oxide9t\and for the most important dry mineral phases. 

5.2. Mathematical expressions 

Let us assume an assemblage of minerals in which element L has an initial 

concentiatlon C0 • When melting begins and a fraction of liquid (F) forms, mass balance 

dictates that: 

C0 = CS (1-F) + c' F (5.1) 

wher~ c~~ Is the concentration of element L in the liquid and cs is the concentration of the 
I 

ele!Tient In the residual solid. 

If we further assume that the initial solid consists of v phases it follows that: 

C0 = ~ c~xa (5.2) 

a v 
where C L Is the concentration of element L in phase a, xa is the proportion of phase a, and 

~X6 =1. 
v 
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The bulk distribution coefficient of element L between the residual solid and the melt 

. b d f' . . D cs IS, y e Jn1t1on, = Cl· (5.3) 

Substituting 5.3 in 5.1 gives: 

cl 1 
C

0 
= D+F(1-D) 

(Shaw, 1970) (5.4) 

when the melt fraction remains at all times in equilibrium with the solid, and: 

1 cl 1 <o-1) 
c=o(1-F) (Shaw, 1970) 

0 

(5.5) 

when the melt fraction is continuously separated from preceeding liquids. 

The two different melting modes described above are referred to as equilibrium (or 

batch) melting (Equation 5.4) and fractional melting (Equation 5.5). If the solid phases melt in 

proportions pa different than those that occur in the solid, i.e. pa ¢ xa, then it can be shown 

that: 

Dsolid/melt _ 0 _ 0a·PF 
- - 1-F (5.6) 

""' a a where P = _Lxa pa (7), 0 0 = .L.J xa KdL (8), and KdL is the distribution coefficient of 

v 
v 

element L between phase a and melt. 

The expression for equilibrium melting then becomes: 

cl 1 
C0 = D+F(1-P) 

(Shaw, 1970) (5.9) 

and that for fractional melting becomes: 

1 ·.' 

cl _1. ( _PF)tp-
1
) (Shaw, 1970) c-o 1 o 

0 

(5.10) 
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s.a~ Mj:ijor elernentsdlstrlbutlon co,ffl<:leots 

The derivation of the previously described mathematical expressions is based solely 

on mass balance considerations and their application is not restricted to trace elements, as 

long as the distribution coefficients (Kd's) between the minerals and melt are known. 

The Kd's of essential structural constituent (ESC) oxides of minerals are primarily 

temperature-dependent and can be expressed in the form of Arrhenius equations, that relate 

linearly the natural logarithm of the molar Kd with the Inverse of the absolute temperature. 

The reason for this temperature dependence lies in thermodynamic principles. The classical 

theory for Ideal solid solutions of Ionic salts gives (Bradley, 1962): 

(5.11) 

where x1 and x. are the mole fractions of a substance In liquid ancJ solid solution respectively, 

AH Is the molar heat of fusion of the substance at Its melting point T,. (OK), and ACP is the 

Increase In specific heat at constant pressure per mole of melting substance. 

For minerals that deviate from ideal solid solution models (e;g. spinels), additional 

thermodynamic parameters, such as mixing energies on different sites, must be introduced. 

In this case, Arrhenius equations are rather inadequate to describe accurately· oxide 

partitioning. This has led to the treatment of minerals as a mixture of components, rather than 

oxides, for which Arrhenius equations were defined (Nielsen and Drake, 1979; Weaver and 

Latlgmulr, 1990). 
I 

The rigorous approach to derive major-element distribution coefficients Is the 

th~rmodynamic analysis of solid solutions. This, however, Is a formidable task, beyond the 

scope of the present thesis. Moreover, values for certain thermodynamic variables are still 
~ ~~}:' 

highly controversial (e.g. Nell and Wood, 1989; Sack and Ghiorso, 1991) even for the best 

st~died minerals. For this reason, an empirical approach will be followed, using melting 

~J~~-e(iments on peridotites and crystallization experiments on basalts to calculate numerical 
'-:J • . , 
e~presslons for the Kd's. To this end a database was complied that contained most of the 

published dry experiments on natural compositions. Because distribution coefficients also 
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depend on the melt composition, only experiments related to basaltic ·Jiquids have been 

considered. The experimental conditions, initial compositions, phases analyzed and sources 

are presented in Table 5. 1. 

All melt and mineral compositions have been recalculated to mole fractions in order to 

facilitate comparison of the Kd's of oxides that occupy the same site in different minerals, e;g. 

Si In pyroxenes. It should be noted that these mole fractions are not based-on one cation per 

mole (e.g., AI01;5, Na00.5 etc.) but on the gram formula weights of the oxides, i.e. Al20 3, 

N~O etc. To assist the reader, all the source, mineral, and melt compositions derived from 

modelling have been recalculated to weight percentages. 

1 Manso'as 1991 153 



c. 
s:: f02 

. . . ~ 

Composition T (°C) p (kb) Olivine Opx Cpx Spinel" II> 
II> ~ ::;) Agee and Walker, 1990 Seinifex komatiite B-4, Zimbabwe 1960-1300 0.001-60 OFM 9 C/) (!) 

0 
..., 

ii> Barnes. 1986 Bushveld chilled margin 1151-1334 0.001 NNO-IW 42 41 C) 

C/) Bender et al., 1978 FAMOUS basalt 527-1-1 1208-1350 0.001-15 IW 18 1 5 3: 
Bickle et al., 1977 NG 157, NG 7621, NG 152, NG 7638 peridotitic 

0 
1470-1850 15-40 C-CO 5 3 c 

komatiites ~ 
Cawthorn and Davies, 1983 Rne grained feldspathic orthopyroxenite, 1350 3 Pt-Fe 1 

s 
1 cc 

Bushveld ca~sule 0 ..... 

Duncan and Green, 1987 Inferred Troodcj' Ueeer Pillow Lava 12arent 1120-1400 0.001-10 Fe-FeO 
.... 

3 -s: 
Elthon and Searle, 1984 Tortuga oghiolite, NT-23 basalt 1170-1500 10-30 C-CO 17 8 
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§;3.1. Ol!ylne 

5.3.1.1. Magnesium 

Figure 5.1 Is a plot of LnKd:iq against 1 OOOfTOC. The regression line is calculated 

for experiments at 1 bar at the quartz-fayalite-magnetite (QFM) buffer. The regression of 

Roeder and Emslie (1970) is also included, showing good agreement in the range 1430 to 

12000C. A small deviation is observed at lower temperatures, and becomes maximum at 

11 oooc, where a difference of 1.15 in the Kd:iq value is observed (20% relative). This 

deviation is the result of the different and much more extensive data set used In this study. 

In order to assess the effect of oxygen fugacity (fa ), the data of Bender et al. (1978) 
- 2 - - - -- -- - - -- -

at the lron-wOstlte (IW) buffer have been plotted in Figure 5.1. Roeder and Emslie (op. cit.) 

showed that the forsterite content of olivine Is increased with increasing fa at constant 
. 2 

temperature; from F<>n; at the IW buffer to Fo95 at the heamatite-magnetite (HM) buffer. This 

change, however, is very small from IW to QFM Oess than 6% relative, Roeder and Emslie, 

op. cit., their Figure 5.2b) and the data of Bender et al. (1978) at the IW show that Kd:iq is 

essentially the same with QFM. 

The effect of pressure on Kd:iq is more difficult to discern. Hanson and Langmuir 

(1978) argued that Kd:iq (and Kd~iq) must increase with pressure In order to be 

consistent with the solidus of pyrolite. They supported this suggestion with the experimental 

data ,,of Longhi et al. (1978) and Bickle et al. (1977) on lunar basaltic and komatiitlc 

compositions respectively. The data of Bickle et al. (op. cit.) at 15 and 30 kb pressure, as well 

as the 1 o kb data of Falloon and Green (1987) and Jaques (1980) are plotted in Figure 5.1. 

The 30 kb data show a slight increase of Kd:iq, but the 15 kb points are indistinguishable 

from the 1 bar experiments. The data of Falloon and Green (1987) at 1 o kb show a larger 

shift towards higher Kd:lq values, but are at odds with the data of Jaques (1980) at the 

~ine pressure4. Examination of the Falloon and Green (1987) data Kd~~ (this is the 

4The experiment, of Jaques (1980) on the linaqulllo lherzolite and Hawalan pyrollte 
were published by Jaqu~ and Green (1980), and do not Include olivine analyses (see Table 
5, 1). Because of Fe los& from the charge to the container, these authors calculated the 
equilibrium olivine composition using the formulation of Roeder and Emslie (1970). In 
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( 
(Fe/Mg)ol] _ 
(t=e/Mg)uq ratio between oiMne and melt) has an averag~ value of 0.34, instead of the 

expected o:30:t0.01 at 10 kb (Roeder and Emslie, 1970; Takahashi and Kushiro, 1983), 

suggesting that the oiMne compositions in these experiments are out of equilibrium with the 

co"existlng liquid. In view of the uncertainty, and the fact that Kd:iq varies little with 

pressure (Figure 5.1), no pressure correction was applied to Kd=liq. 

2 

1.8 

1.6 

1.4 
LnKd 
Mg 1.2 
ol 

1 

'0.8 

;0.6 

\Q.4 

LnKdMg oi=4822.073/T"C-2.58156 

0.5 0.6 0.7 0.8 0.9 

1000/T oc 

• 1 bar, QFM 

~ 1 bar, IW 

0 10 kttf11lloon & Green, 
1987 

0 1 o kb Jaques, 1980 

>K 15 kb Bickle et al., 1977 

X 30 kb Bickle et al., 1977 

- - Roeder and Emslie, 
1971 

- 1 barQFM 

Flq~re ;ta.Jl Plot of lnKd:iq vs. 1 O()()fTOC. Dashed line is the regression of Roeder and 

Emslie {19;?o). Solid line corresponds to the expression shown and was calculated for the 

1 bar OFM f~?<periments. 

Fig,;Jie 5.2 shows the effect of temperature on the partitioning of Fe between oiMne 

and liquid. i,~:will be noted that the distribution coefficient has been calculated using total Fe In 

addition, th~ melt composition of the charges was calculated from estimates of the degree of 
melting anc~mlneral compositions by mass balance. Falloon et al. {1987) duplicated Jaques' 
(1980) expc)~ments and showed that the calculated melt compositions of Jaques (1980), also 
published l~y Jaques and Green {1980), were In error. The oiMne analyses used here are 
from experi&'(lents on a Lau Basin basalt composition (see Table 1) for which oiMne and melt 
were direct~~ analysed by probe (Jaques, 1980). 

T\ 
1 
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the melt and not the fraction of ferrous Iron. This· has ·been done In order to establish how . -. - ·-·· ' ' . . . . - ' _-, .. . -= ... ,:·· 0 

varylngf
02 

oonditld"ris affect the Kd~liq. In th.eOrY as oxygen fugacity incr~ases so does the 

Fe3tJFe2+ ratio of the liquid; since probe analysis cannot distinguish ·between the different 

valency states of an element, as tl)e Fe3ttFe2+ ratio in the melt increases so Kd~~iq should 

decrease. This however is not apparent In Figure 5.2, as the data of B~nder et al. (1977) at 

the IW buffer are Indistinguishable from those at the QFM buffer. The reason for this-similarity 

in the Kd~lq is that the Fe3tJFe2+ ratio of the liquid·increases slowly between IW and QFM 

and rapidly from QFM to HM (Roeder and Emslie, 1970). This change Is sufficiently small 

(Figure 5.2) to be Ignored. Figure 5.2 also shows the regression line of Roeder and Emslie 

(:1970), Which is subparallel to the one calculated in this study, but Shifted to slightly higher 
-- -- :. ~- - -- - ~-- -- -- -

Kd~iq-valu~: Thi~-dtff~;enc~ between the two trends is ascribed to the use· by Roeder and 

Emslie (op. cit.) of tl)e -ferrous iron fraction of the melt to calcuiate Kd~lq. This ·leads to a 

15%~relative!tlfferenc:e in the calculated value of Kd~iq, which-is consistent with an average 

Fe3tfFe2+ ratio of the liquid of 0.15 at the conditions of the experiments (Roeder and Emslie, 

1970; KJIIilc et al., 1983). 

The 1 o kbar data of Falloon and Green (1987) and Jaques (1980), and the 15 and 30 

kb data of Bickle et al. (1977) are also Shown In Figure 5.2. Similarly to Kd:lq, no pressure 

correction was applied to Kd~iq. 
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LnKd 
Fe 

0.2 

0 

ol -0.2 

-0.4 

-0.6 

LnKdFe ol=5286, 158fl"'I!C-4.21862 

X 
X 

X 

-0.8 -+---+-+--+-t-----+--1---t----; 

0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 
5 5 5 5 

1000/T oc 

• 1 barQFM 

6 1 bar, IW 

D 1 0 kb F aloon & Green, 
1987 

0 1 0 kb Jaques, 1980 

)K 15 kb Bickle et al., 1977 

X 30 kb Bickle et al., 1977 

- - Roeder and Emslie, 
1971 

fi9lltejs .. ~ Plot of LnKd~liq vs. 1000{f°C. Iron is total iron in melt. Dashed line is the 

regression of Roeder and Emslie (1970). Solid line corresponds to the expression shown and 

was calculated for the experiments at 1 bar QFM. The high temperature experiments of Bickle 

et al. (1977) and Agee and Walker (1990) were omitted from the regression. 

5.3, 1 ,3. Silica 

Figure 5.3 is a plot of LnKd~VIiq against 1000{f°C. The data of Bender et al. (1977) 

are shown in comparison with experiments at QFM. Since the mole fraction of Si02 in olivine 

is constant (33.33%) it is not expected to vary with f0 . This is confirmed by the relative 
2 

position of the IW and QFM data. 

As with Kd~~iq and Kd~~iq, the effect of pressure on Kd~VIiq is difficult to assess. 

Figure 5.3 includes the 1 0 kb data of Falloon and Green (1987) which define a distinct trend, 

but are at odds with the data of Jaques (1980) and Elthon and Scarfe (1984) at the same 

pressure. The reason for this disagreement is not clear. Although the olivines of Falloon and 

Green (op. cit.) may have only partially equilibrated with the liquid, as mentioned earlier, this 

is only true for the Fe-Mg exchange and should not affect Si02 partitioning, since the mole 
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fraction of Si02 in olivine is constant. Still, in view of the good agreement between the high 

pressure data points of Jaques (1980) and Elthon and Scarfe (1984) with the 1 bar 

experiments, no pressure correction will be introduced tor Kd~l/liq. 

LnKdSi oi=-1189.26/PC+0.534404 
-0.38 X 

-0.4 1!!!!1 1 bar, QFM 

~ -0.42 6. 1 bar, IW 

~0 -0.44 D 10 kb Falloon & Green, 
LnKd D 1987 

Si -0.46 D ol <> 10 kb Jaques, 1980 
-0.48 

X E;lthon and Scarfe, 
-0.5 1984 

-0.52 

-0.54 

0.6 0.7 0.8 0.9 

1000/T oc 

Figyre C5.3l Plot of LnKd~il/liq vs. 1 OOO{TOC. 

5.3.1.4. Further comments on the pressure effects on olivine 

Klein and Langmuir (1987), in a global study of MORSs, suggested that the FeO and 

MgO content of basalts increases with increasing depth of melt generation, whereas at the 

same time their Si02 content decreases. They supported this suggestion with the 

experimental data of Jaques and Green (1980) and Takahashi (1986)5 , for which the extent 

of melting in the experimental charge was determined. Klein and Langmuir (1987) plotted the 

Si02 wt.% of experiments at 5, 10, 15, and 30 kb (calculated at 9 wt.% MgO) against the 

degree of melting. They observed that, for a given degree of melting, the Si02 content of the 

melt decreased with increasing pressure. They also observed that in a plot of MgO against 

5Takahashi (1986) does not report the extent of melting in the experimental charges, 

but Klein and Langmuir (1987) calculated it by mass balance from the mineral analyses. 
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FeO (cation mole%), isobaric experiments defined distinct fields of increasing FeO and MgO 

with increasing pressure. Although Klein and Langmuir (1987) did not explicitly refer to 

partition coefficients (but rather to general characteristics of the chemistry of basalts) the 

implications of their suggestion is that the partition coefficients in olivine of FeO and MgO 

should decrease and for Si02 should increase with pressure6 . However, as Figures 5.1, 5.2, 

and 5.3 show, Kd~l~liq, Kd~Yiiq, and Kd~l/liq either do not show any pressure dependence or 

change in exactly the opposite way than expected. An explanation for this discrepancy will be 
\ 

suggested here. In melting experiments the temperature and pressure are adjusted to 

roughly follow the solidus of the peridotite; this means that experiments conducted at high 

pressures are also at high temperatures. The Kd's variation that is consistent with Klein and 

Langmuir's (op. cit.) suggestions (i.e. Kd~liq and Kd~liq decrease and Kd~/liq increases 

with increasing pressure) is also consistent with the expected variation at increasing 

temperature. Normalizing the Si02 content to 9 wt.% MgO, as Klein and Langmuir (op. cit.) 

did, is not equivalent to comparing melts at the same temperature, so the effects of pressure 

and temperature cannot be distinguished in the diagrams that Klein and Langmuir (1987) 

used. The same argument applies to the natural basalts studied by Klein and Langmuir (op. 

cit.). Adiabatically rising mantle will cross its solidus at a depth that is determined by the 

peridotite potential temperature (McKenzie, 1984). Upwelling asthenosphere with a high 

potential temperature will start melting deeper and will, subsequently, experience higher 

degrees of melting and vice versa. 

As already mentioned, the available the experiments show that Kd~liq, Kd~liq, and 

Kd~l/liq either do not show any pressure dependence or they change in the opposite way 

than inferred by Klein and Langmuir's (1987) conclusions. The observed change is small 

compared to the change due to temperature variations and is likely to be masked by the 

6Aithough the contribution of olivine to the melt is small, compared to that of the 

· pyroxenes, it has a significant effect on the bulk distribution coefficients of Si02, MgO, and 

FeO because of its great abundance in mantle assemblages. In addition, the distribution 

coefficients of these elements in pyroxene are directly related to those of olivine, as will be 

shown later. 
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latter. Therefore, ignoring the pressure effect will not introduce a large error in the 

calculations. 

5.3.1.5. Ee-Mg exchange between olivine and mett 

Having calculated expressions for Kd~iq and Kd:iq, it is easy to calculate the 

partitioning of Fe and Mg between olivine and liquid: 

KdoVIiq 
ol/liq FeQoiJMgQOI Feool MgQiiq .. Fe 

KdFe-Mg = FeollqJMgoliq = Eeoliq Mgo61 = Kdol/liq ~ 
LnKd~:zuq = LnKd~iq - LnKd:iq = ~- 1.~7 (5.12) 

The expression of Roeder and Emslie (1970) for Kd~!1~ is: 

LogKdol/llq = 171 .. 0 63 (5.13) 
Fe-Mg TDK '· 

Equation 5.12 shows a larger temperature· dependence of Kd~~~ than Equation 

5.13, obviously due to the different slopes of the regression lines for Kd~iq and Kd:iq (see 

Figures 5.1 and 5.2), resutting from the wider temperature range of the experiments 

considered In this study. Weaver and langmuir (1990) also calculated expressions for Kd~ 

and Kd:iq from which Equation 5.14 Is derived. 

LogKd~~= ~~ -1.583 (14) 

Kd~~~ values, calculated from equations 5.12, 5.13, and 5.14 for the temperature 

range 11Q0-14000C, are shown in Table 5.2. The expression of Weaver and Langmuir {1990) 

shows the largest temperature variation, whereas that of Roeder and Emslie {1970) Is 

virtually Independent of temperature. Equation 5.12 was derived from the largest data set 

and, being Intermediate between the other two expressions, provides the best compromise. 
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-roc 

1100 
1200 
1300 
1400 

Roeder and Emslie 
(1970) 
0.312 
0.306 
0.301 
0.297 

KdoVJiq 
Fe-Mg 

Weaver and Langmuir 
(1990) 
0.331 
0.279 
0.240 
0.210 

Jable 15.2) Variation of Kd~: with temperature. 

5.3.1.6. Nickel. Tjtanjym. Chromium 

This work 

0.297 
0.286 
0.278 
0.271 

OIMne Is the major sink of nickel in the mantle (excluding sulphides) and its 

distribution coefficient has been the subject of many studies and some controversy (e.g. Hart 

and Davis, 1978, 1979; Elthon and Ridley, 1979; Mysen, 1979, 1981, 1982; Kinzler et al., 

1988). Kostopoulos (1988) derived temperature-dependent equations for the Kds of Ni, Ti, 

and Cr between mantle phases and liquids of basaltic composition, and his expressions, 

adjusted for mole fractions, have been used here. The expression used for Ni is: 

That for Cr is: 

and that for Ti is: 

5.3.1.7. Alymjnjym 

LnKd~Vliq=8208.386[fOC-4.22685 

LnKd~~iq=5255.96ffOC-4.17309 

LnKd~Vliq=5528.57ffOC-8. 51425 

The Al20 3 content of olivines is always very low and does not greatly affect the Al20 3 

abundence of the whole rock. This allows the use of an average Kd~Vliq value without 

introdufting significant error to the calculated melt and source compositions. In studies where 

oiMne vttas analyzed for Al20 3, the average value for LnKd~Vliq is -5 and this value will be 

~ed here for the modelling. 

p.3.1,8. Manganese 

Mn is geochemically similar to Fe and tephroite (Mn2Si0~ has similar 

thermodMnamic properties to fayalite (Krauskopf, 1977). This suggests that the Mn 

distribution coefficient for olivine should be similar to that of Fe. This is supported by Figure 

I Mansola',J 1991 163 



Chapter 5 Modelling of major elements 

5.4, where LnKd~iq is plotted against LnKd~~iq. Watson (1977) studied the partitioning of 

Mn In forsterite in the iron-free system Mg0-Ca0-N~O-AI203-Si02 (+0.2% Mn) at 

atmospheric pressure, over the temperature range 1250-1450°C. He found that the Mn 

partition coefficient depends on liquid composition as well as temperature; in particular 

Kd~lq Increases with increasing Si02 content of the coexisting melt and attains maximum 

values in rhyolitic melts. In this study, a temperature-dependent expression was formulated 

from the experiments of Watson (op. cit.) in which the liquid Si02 content was -49 wt.%, 

which is an appropriate value for basaltic melts. The derived equation for LnKd~iq is: 

LnKd~~iq = ~~ -3.385 

and it is compared with that for LnKd~iq in Figure 5.5. The result is in good agreement with 

Figure 5.4 supporting the conclusion of Watson (1977) that his work can be extended to iron-

bearing assemblages. 

The expression of Watson (1977) for Kd~iq will be used in the present modelling 

because of its better analytical accuracy. 

0 

-0.1 

-0.2 • • • 
-0.3 • • -0.4 •• LnKd • Mn -0.5 Ill 

ol 
-0.6 • 
-0.7 

-0.8 

-0.9 •••• • 
-1 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 

LnKd Feol 

Figure 15.4) Plot of LnKd~lq vs. LnKd~lq. 1 :1 line shown for reference. 
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0.6 

0.4 

0.2 

0 
Ln 

-0.2 
Kd 

-0.4 

-0.6 

-0.8 

-1 
0.65 0.7 0.75 0.8 0.85 0.9 

1000/T oc 

Figure (§.§) Dotted line is the temperature-dependent expression for LnKd~iq (Figure 

5.2) and solid line is the temperature-dependent expression for LnKd:iq, calculated from the 

data of Watson (1977). 

5,3.1 .9, Sodjum. Potassjym 

Na and K are very incompatible elements and their very low concentrations in olivine 

result in a lack of data in the experiments considered. Because of their low concentrations, 

and the fact that they are rapidly depleted from the residue during melting, their partition 

coefficit>nts can be approximated without introducing a large error in the calculations. For the 

purpose of the present modelling constant Kd values of 1 x1 o.a and 1 x1 o-4 will be used for 

N~O aild ~0 respectively. 

:: 
'I 

;5.3.1.10. Calcium 

Calcium Is a minor constituent of natural oiMnes and it is frequently omitted from 

microprobe analyses. Jurewicz and Watson (1988) studied the partitioning of Ca between 

oll~ne and melt In detail, and found that Kd~iq primarily depends on the CaO content of the 

melt and the relative iron actMty of olivine, as Indicated by its fayalite content. They found no 

direct effect from temperature or oxygen fugacity, and the effect of pressure was negligible 

below 2~, kb. For melts with less than about 8 to 15 wt.% CaO, they derived the following 

empiric&! relation for Kd~iq: 

Kd~iq = 0.01 *{(-0.08)*fo% + 9.5} 
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where fo is the forsterite % content of oiMne. Note that this is weight % and not molar 

oVIiq 
Ca • 

The above expression gives a value for Kd~iq of 0.024 for coexisting Fo89 olivine 

and 0.021 for coexisting Fo92 oiMne; since the CaO content of olivine is only a small fraction 

of the whole rock CaO abundance and the variation of Kd~iq is so small, the use of an 

average value of 0.022 is considered adequate. This can be converted to molar Kd~iq by 

dMding by 1.071 to give the Kd~iq value of 0.0205 used in the modelling . 

5.3.2. Orthopyroxene 

5.3.2.1. Magnesjym 

As has been shown in Chapter 3, the ratio of Mg# between oiMne and orthopyroxene 

is virtually constant; this suggests that the Fe-Mg partitioning between the two minerals is 

interdependent The linear correlation between LnKd~liq and LnKd:x/liq (Figure 5.6) 

demonstrates this point. The above approach is preferred over expressing LnKd:x/liq 

indepen~ently as a function of temperature, because it ensures that the calculated mineral 

compositions reflect those of the natural assemblages. 
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LnKdMg opx=1.019089*LnKdMg ol-0.38644 
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LnKd Mg ol 

1.3 1.4 1.5 1.6 

Flgyre (§.8) Plot of LnKd:iq vs. LnKd:xJiiq for all available experiments with 

coexisting oiMne and pyroxene. 

LnKdMg opx=4470.69{f °C-2.50286 
2 

1.8 

1.6 

1.4 

lnKd 1.2 

Mg 1 
opx 0.8 

0.6 

0.4 

0.2 

0 
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1000{f oc 

figure 16.D Dashed line corresponds to the equation and was calculated from all 

orthopyroxene data. Solid line is LnKd:x/liq calculated from LnKd:iq (see text and Figure 

5.6). 

The small deviation from linearity that inevitably occurs in calculating a temperature­

dependent expression for LnKd:x/liq using all the available experiments (Figure 5.7), is 
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rather due to melt composition effects than to lack of robust correlation in the Fe-Mg 

exchange between olivine and orthopyroxene. 

5.3.2.2. Iron 

Similarly to Kd:x/liq, Kd~x/liq has also been determined as a function of Kd~liq 

(Figure 5.8). The regression line so obtained has a shallower slope (0. 773) compared to the 

regression for MgO, which is 1.019 (see Figure 5.6). The result of this is that calculated 

orthopyroxene compositions will have always greater Mg# than coexisting olivines, which is 

consistent with observation of natural assemblages (see Chapter 3, orthopyroxene 

chemistry). 

lnKdFe opx=O. 773096*lnKdFe ol-0.36936 
0 • 

-0.1 • 
-0.2 

LnKd -0.3 

Fe = opx -0.4 

-0.5 

-0.6 

-0.7 

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 

LnKdFeol 

Elgyre cs.m Plot of lnKd~iq vs. LnKd:x/liq for the same experiments as in Figure 5.6. 

5.3.2.3. Silica 

LnKd~px/liq has been determined as a function of LnKd~V!iq (Figure 5.9). The 

correlation observed between these parameters is the result of using mole tractions for the 

mineral compositions. From the mineral formulae: 
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(Mg, Fe)2Si02 
oiMne 

(Mg,Fe,Ca)Si02 
pyroxene 

it follows that Si02 in oiMne is 33.33 mole% and in pyroxene 50 mole%. This gives a 

constant ratio of: opx/liq 
SiO opx SiO opx /SiO liq KdSI 

SII2~opxA~l<=> Si02 oi/SiO ~iq 1.5 <=> -~-d-oVI-iq- = 1.5 <=> 
81 2 2 

opx/liq ~VIiq 
Ln oVIiq = Ln(1.5) <=> LnKd81 - LnKd81 = Ln(1.5) <=> 

Kd.sllll. VI' 
Ln ~""'1q = nKd~ 1

q + 0.4055 

The equation calculated in Figure 5.9 differs slightly from the above expression probably 

because of the limited substitution of Si02 in orthopyroxene by Al20 3• This substitution 

results in Si02 molar contents of orthopyroxene being always less than the ideal 50%. 

0.1 
LnKdSi opx=0.936097"LnKdSi ol+0.355048 

0.05 

0 

LnKd .J Si -0.05 
opx 

-0.1 •• 
-0.15 

-0.2 +"""'-----+----+---i---+---+----+----1 
-0.6 ·0.55 -0.5 ·0.45 -0.4 -0.35 -0.3 ·0.25 

LnKdSI ol 

Figure (§.ll) Plot of LnKd~VIiq vs. LnKd:x/liq for the same experiments as in Figures 5.6 

and 5.8. 

5.3.2.4. Alumjnjum 

The AI content of orthopyroxene (and clinopyroxene) is both temperature and 

pressure dependent. Figure 5. 10 shows the plot of LnKd~x/liq vs. 1 OOOfTOC for the isobaric 

equilibrium melting experiments of Jaques (1980). Multiple linear regression shows that a 
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simple linear relation with pressure is sufficient to adequately reproduce the observed 

variation. 

Comparison, however, of the experiments of Jaques (1980) with those of Barnes 

(1986) at 1 bar and Falloon and Green (1987) at 1 o kb (Figure 5. 11) shows significantly 

higher Kd:x/llq values for the latter two data sets at any given temperature, while both the 

slope and relative position to pressure of the regression lines are almost the same with those 

of Jaques (op. cit.). Interlaboratory difference must be ruled out since the experiments of 

Falloon and Green (1987) were performed at the same laboratory as those of Jaques (op.cit.) 

(University of Tasmania) under the supervision of Professor D. H. Green; compositional 

dependence is also ruled out since the experiments were performed on similar compositions 

(see Table 5.1). The question of which experiments represent the true absolute Kd's Is 

resolved in considering the way Jaques (1980) calculated the melt composition, viz. using the 

modal percentages and compositions of solid phases in the experimental charge and 

calculating the equilibrium melt composition by mass balance. Although this approach 

corrects for any Fe loss or gain of the melt to the capsule, uncertainties in the determination 

of the modal proportions of the phases, and whether true equilibrium compositions were 

probed, may lead to errors in the calculated liquid composition. This was confirmed by 

Falloon et al. (1988), who performed sandwich melting experiments on the calculated 

equilibrium melts of Jaques (1980) and found that the equilibrium melts were poorer in AI and 

Ca than the calculated equilibrium melts. This is consistent with the difference that is 

observed in Figure 5.11 and, therefore, the experiments of Falloon and Green (1987) and 

Barnes (1986) are considered closer to the true values of Kd~px/liq and will be used to 

determine the expression used for the Kd. 
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f(m.lteJ!t,jQ) Plot of LnKd~px/liq vs. 1000(TOC for the polybarlc experiments of Jaques 

(1980). The dashed line Is extrapolation of the regression equation for 1 bar pressure. 
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Figure (5.11) Plot of LnKd~px/llq vs. 1000(TOC for the data of Falloon and Green (1987; 

open squares) and Barnes (1986; filled squares}, from which the regression equation was 

derived and the best fits (thick lines} at 1 bar and 1 0 kbar were calculated. The thin line is the 

extrapolated 1 bar line from the equation of Figure 5.10 and the dashed line Is the same for 

10 kbar. 
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5.3.2.5. Calqium 

The partitioning of Ca in orthopyroxene heavily depends on the presence of 

coexisting clinopyroxene. If both pyroxenes are in equilibrium, then the CaO content of 

orthopyroxene will be controlled by the position of the two-pyroxene solvus in the P-T space 

(e.g. Davidson and Lindsley, 1985). If orthopyroxene melts in the absence of clinopyroxene 

then LnKd~x/liq becomes strongly temperature and pressure dependent. 

This dependence is demonstrated in Figure 5. 12, which shows LnKd~x/liq vs. 

1 OOOfTOC for the isobaric equilibrium melting experiments of Jaques (1980). Multiple linear 

regression yields the expression: 

LnKd~x/liq = 7~~2 
+ 0.0662 * P kb - 8.0243 

that reproduces the observed values quite well. 

Figure 5.13 shows the experiments of Falloon and Green (1987) at 1 0 kb pressure 

and Barnes (1986) at atmospheric pressure. As was the case with Al20 3, the data of Falloon 

and Green (op. cit.) show higher Kd~x/liq values than those of Jaques (1980) at any given 

temperature, since the coexisting melts in the former study are poorer in CaO than the 

corresponding melts the latter. In contrast with Al20 3, however, the slopes of the best-fit lines 

for the three sets of experiments are different; the data of Barnes (1986) show a strong 

positive temperature dependence, the data of Jaques (1980) show a lees pronounced 

positive correlation with temperature, whereas the data of Falloon and Green (1987) show 

only a small positive temperature dependence. Considering that: ij the experiments of 

Barnes (op. cit.) did not crystallize any clinopyroxene at all; iij only 8 out of the 28 

experiments of Jaques (1980) contained clinopyroxene, and iiij 12 out of the 16 experiments 

of Falloon and Green (op. cit.) had coexisting ortho- and clinopyroxene, it seems that the 

presence of clinopyroxene minimizes the effects of temperature on the partitioning CaO 

between orthopyroxene and melt. 

This Is clearly shown in Figure 5. 14, where LnKd~x/liq Is plotted against 1 000/ T°C 

only for those experiments that contained coexisting pyroxenes. Although the data points are 

from 5 different experimental studies (and compositions, see Table 5. 1) they scatter around 

an average LnKd~x/liq values of --1.5 and define a slightly negatively sloping array with no 
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obvious pressure effects. This is consistent with the control exerted by the two-pyroxene 

solvus on the Wo component of orthopyroxene as shown by the graphical thermometer of 

Lindsley and Andersen (1983). As temperature decreases, orthopyroxene 

becomes Ca-poor (i.e. Kd becomes smaller) and the tight isotherms suggest that this 

compositional change is slow (reflected in the gently sloping regression line in Figure 5.14). 

Applying the pressure correction term suggested by Lindsley and Andersen (op. cit.), at the 

temperatures and compositions of interest the isotherms in Figure 5.15 shift by +3°C/kbar for 
~ 

clinopyroxene and + 1 0°C/kbar for orthopyroxene, consistent with the small change of 

KdopX/Iiq with pressure. 

LnKdCa opx=7384.2/PC+0.0662P(kb)-8.0243 

-1.1 

-1.3 

-1.5 

~~d -1.7 

opx -1.9 

-2.1 

-2.3 

0.6 0.65 0.7 0.75 0.8 

1000/T oc 
0.85 0.9 

II 2 kb 

D 5kb 

• 10kb 

0 15kb 

fl!;wte . .{5,j2) Plot of LnKd~X/Iiq vs. 1000fTOC for the isobaric equilibrium melting 

experiments of Jaques (1980). Dashed line is an extrapolation of the regression equation to 1 

bar. 

I Mansolas 1991 173 



Chapter 5 Modelling of major elements 

-0.5 

-1 

-1.5 

LnKd 
Ca -2 
opx 

-2.5 

-3 

(1) LnKdCa opx=2998.979/T°C+0.0662*P(kb)-3.91318 
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-3.5 +--------lf------1-----i----1------+---1 
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1000/T°C 

0.8 0.85 0.9 

Figure I~ Plot of LnKd~X/Iiq vs. 1 OOOfTOC for the data of Falloon and Green {1987; 

open squares) and Barnes (1986; filled squares). Equation (1) is the regression line for the 

former data set and equation (2) for the latter. Note that in the experiments of Barnes (op. 

cit.) orthopyroxene is not solvus constrained. Regression lines from Figure 5.12 are also 

shown for comparison. See text for the pressure term. 

-0.8 

-1 

lnKdCa opx=-11 0.05/T°C-1.48568 
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0 2kbar 
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0 10 kbar 
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X 25kbar 
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Flgyre 15.14). Plot of LnKd~X/Iiq vs. 1()()()/TOC for all available pairs of coexisting pyrox­

enes. Note the insignificant change in Kd with pressure. 
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5.3.2.6. Nickel. Titanium 

The distribution coefficients of Ti and Ni for orthopyroxene are taken from 

Kostopoulos (1988), corrected for mole fractions. The expression used forTi is: 

LnKd~ipx/liq=8912.29{fOC-9. 59445 

and for Ni: 

LnKd~px!liq=3937.24{f°C-1 .8828 

5.3.2.7. Manganese 

Figure 5.16 is a plot of LnKd~~x/liq vs. 1000{f°C for the data of Barnes (1986). The 

diagram shows considerable scatter, that is probably due to analytical uncertainty for both the 

mineral and melt compositions. Nevertheless, since Mn is only a minor element,· the 

regression equation obtained is considered adequate for the present modelling. 
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-1 
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1000/T oc 

Figure l5.1§l Plot of LnKd:x/liq vs. 1000{TOC. 

5.3.2.8. Chromjum 

The distribution coefficient of Cr between orthopyroxene and melt is strongly 

dependent on temperature and oxygen fugacity, as is clearly evident from Figure 5.17. A 

decrease in oxygen fugacity will increase the Cr2+/C~ ratio in the melt, thus decreasing the 

concentration of cr3+ in orthopyroxene. Since probe analyses of the melt do not discriminate 

between the two Cr species in the melt, Kd~~x/liq will appear to decrease with decreasing f
02

. 
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Figure {5.17) Plot of LnKd~~x/liq vs. 1 OOO{T°C for the 1 bar experiments of Barnes 

(1986). Regression line corresponds to the equation for the data at IW+2. The regression 

equation calculated for IW+2 is also given. 

5.3.2.9. Sodium 

Na is a very low-abundance element in orthopyroxene, therefore its analysis is 

subject to large analytical error, especially if the element has been determined by EDS. The 

simplest way to calculate Kd~x/liq is to express it as a function of Kd~x/liq. Figure 5.18 is a 

plot of LnKd~x/liq vs. Kd~x/liq tor the 7 pairs of coexisting pyroxenes that were both 

analyzed for Na. Since Na is rapidly exhausted in orthopyroxene, even a relatively large error 

in the estimation of the Kd will not greatly affect the calculated melt compositions. The 

available data cover a range of pressures from 1 0 to 30 kb, but no pressure dependence can 

be detected with confidence. The apparent lack of pressure dependence is ascribed to the 

similarity in the behaviour of Na in both ortho- and clinopyroxene. 
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LnKdNa opx=1.148042*lnKdNa cpx-0.91316 
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Figure l5.18l Plot of LnKd~x/llq vs. LnKd~x/liq. 

5.3.2.1 o. Potassium 

-1 -0.8 -0.6 -0.4 

Similarly to Na, the analytical error for K in orthopyroxene Is large. Unfortunately, 

there are no coexisting pyroxene pairs that were analyzed for K, so an average LnKd~px/liq 

value of -4.5, calculated from the data of Barnes (1986) will be used. 
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Figure 15.19) Plot of LnKd~pX/Iiq vs. 1 OOO{fOC for the data of Barnes (1986). Because 

there is no discernible temperature dependence, an average value of -4.5 is used in the 

modelling. 

5.3.3. Cllpopyroxene 

5.3.3.1. Silica 

Sl occupies the same site in both ortho- and clinopyroxene. As the pyroxene formula 

suggests, the Si02 molar content in both ortho- and clinopyroxene is 50%, and Kd:x/liq is 

expected to be the same as Kd~pX/Iiq. In practice, however, pyroxenes contain some Al20 3, 

which substitutes for 5102 In the tetrahedral site. Since clinopyroxene contains more Al20 3 

than orthopyroxene, the Si02 molar content of the former Is expected to be slightly less than 

that of the latter. This variation, however, is very small and probably smaller than analytical 

u~certainty, as a plot of LnKd~X/IIq against LnKd:x/llq testifies (Figure 5.20), therefore 

Kd:x/liq will be considered equal to Kd:xJiiq for the calculations. 
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0.1 

0.05 

0 

lnKd 
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cpx 

-0.1 
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-0.2 -0.15 -0.1 -0.05 

LnKd Si opx 

0 0.05 

Figure 15.20) Plot of LnKd:x/liq vs. LnKd:x/liq. 1:1 line shown for reference. 

5.3.3.2. Alym!njym 

0.1 

Because there Is a Jack of experimental data that provide clinopyroxene compositions 

over a sufficiently wide range of pressures and temperatures to assess the effect of pressure 

on AI in clinopyroxene, Kd~x/llq will also be expressed as a function of Kd~px/liq. Figure 

5.21 is a plot of LnKd~x/liq against LnKcl~px/liq showing a good positive correlation between 

the two parameters. This method of calculation also minimizes the effect of pressure, since 

pressure should have a similar effect on the Al20 3 content of both ortho- and clinopyroxene. 
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fl.gy[t! 1§.21) Plot of LnKd:x/liq vs. LnKd:x/llq for coexisting pyroxenes. 

5.3.3.3. Magnesjym 

Fi~ure 5.22 Is a plot of LnKd~)(/liq against 1 OOO(TOC. In contrast to the 1 bar 

experiments, that show a coherent trend, the high-pressure experiments show a more 

scattered behaviour. The reason for this may be that many of the published high-pressure 

clinopyroxene analyses have abnormally high MgO contents and frequently the MgO content 

exceeds theit of CaO (e.g. in the experiment T-2121 of Falloon and Green (1987) at 1230°C, 

10 kbar, the clinopyroxene contains 18.57 wt.% MgO and 16.44 wt.% CaO, whereas in the 

experiment 329 of Elthon and Scarfe (1984) at the same pressure and temperature, the 

clinopyroxene contains 16.4 wt.% MgO and 19.24 wt.% CaO). This is too large a variation to 

be. attriblit~d to the different starting materials used by the two groups of workers and the 

hlgh-Mg clinopyroxene in Falloon and Green's {1987) experiments probably represents an 

unequilib~ated core composition with an abnormally large enstatite fraction. Because of this 

problem, i<dee)(/llq cannot be described as a function of Kd:x/llq, since this will lead to a 

gross ove-restimation of the distribution coefficient and so it must be calculated from the 1 bar 

experime\us. 
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Figure 5.22 is a plot of LnKd~>Q'IIq against 1000/ TOC for experiments conducted at 

atmospheric pressure. Also shown in Figure 5.22 is the regression line of Weaver and 

Langmuir (1990) derived from the experimental data of Grove and Bryan (1983). The close 

agreement of the two regression lines is expected since they are both based on crystallization 

experiments of abyssal tholeiites. 

1.3 
LnKdMgcpx=6089.212/PC-4.43989 

1.2 • • 1 bar 

1.1 0 10 kb, Falloon & Green, 

1 1987 

LnKd 0.9 + 10 kb, Elthon and Scarfe, 
Mg 1984 
cpx 0.8 

0.7 Q] 0 10 kb, Jaques, 1980 

DO 
0.6 

ElJj 0 0.5 

0.4 

0.65 0.7 0.75 0.8 0.85 0.9 

1000{T oc 

fimlt•.l!L~ Plot of LnKd~>Q'Iiq vs. 1000[TOC. Filled squares are points at 1 bar 

pressure from which the regression line was calculated (see text). Also shown are three sets 

of experiments at 1 o kb pressure exhibiting considerable scatter despite the similarity in 

starting materials. The dashed line is the equation of Weaver and Langmuir (1990). 

p.j3.,3L4 • ..1r..o[l 

In contrast to Mg, plots of LnKd~>Q'Iiq vs. 1 ooorroc show considerable scatter, even 

for experiments at 1 bar for a single composition (Figure 5.23). The reason for this behaviour 

Is not known but it has been encountered by other authors as well. Weaver and Langmuir 

(1990) tried to circumvent this problem by expressing Kd~>Q'Iiq as a function of LnKd~iq. 

Their expression however is just an average value, since Kd~x/liq does not show any 

variation with Kd~lq. Possible explanations include the loss of Iron from the charge to the 

container during the experiment or the mistaking of quench clinopyroxene for liquidus 

crystals. In the present study Kd:X/Iiq was expressed as a function of Kd:x"1q. The 
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similarity in the FeO content of both pyroxenes suggests that any excess enstatite 

component In (partially equilibrated) clinopyroxene will not greatly increase its FeO content 

(Figure 5.24). 
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Figure cs.m Plot of LnKd~x/liq vs. 1 ooorroc demonstrating the absence of a coherent 

trend in the data set. 
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Figure (§.24) Plot of LnKd~x/liq vs. LnKd~x/liq for coexisting pyroxenes in the 1 o kbar 

experiments of Falloon and Green (1967). 

5.3.3.5. Calcjym 

Figure 5.25 is a plot of LnKd~x/llq vs. 1 OOO{TOC for the experiments at 1 bar and 

high pressure experiments that have coexisting orthopyroxene. The regression line has been 

calculated for the 1 bar experiments. The regression line has a positive slope, subparallel to 

the high pressure experiments, in contrast to the slightly negative slope of Kd~X/Iiq. This is 

consistent with the increase of the Wo component in clinopyroxene with falling temperature 

(positive slope) and the widely spaced isotherms (large slope) of the two pyroxene solvus In 

Figure 5.15. Although the 1 o kbar data of Falloon and Green (1987) are shifted to higher 

values, there Is considerable scatter in the high pressure points, and, in view of the 

uncertainty, no pressure correction will be Introduced. 
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Figure (§.2§)Piot of LnKd~x/liq vs. 1 OOOfTOC. Regression equation calculated from 1 

bar data {solid squares). 

5.3.3.6. Sodjym 

Na in clinopyroxene, as in orthopyroxene, has a large analytical error and is best 

expressed as a function of Ca. Figure 5.26 shows the LnKd:x/liq against LnKd~x/llq for 

experiments carried out at atmospheric pressure. There is considerable scatter in the data 

and It Is not clear if the slight negative correlation displayed is real. It will be noted, however, 

that, in a study of continental spinel lherzolites, Sachtleben and Seck {1981) observed a 

decreasing trend of the CaO atomic fraction in clinopyroxene with temperature of equilibration 

and a concomitant Increase in its Na20 atomic fraction, for which they provided no 

explanation. The observed behaviour of CaO and N~O in clinopyroxenes of spinellherzolites 

Is consistent with the variation of the distribution coefficients In Figure 5.26. A possible 

explanation for this behaviour Is suggested here. The Wo fraction of clinopyroxene (and, 

hence, Its CaO content) Is rigidly fixed by the two-pyroxene solws {Figure 5.15). Because 

CaO and N~O occupy the same clinopyroxene site, as the Wo fraction of clinopyroxene 

Increases with decreasing temperature It "squeezes• out N~O and vice versa. Since N~O is 
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only a minor clinopyroxene constituent it has no stoichiometric constraints on its behaviour 

and can vary more freely than CaO. 

-1.7 
lnKdNacpx=-0. 77994*1nKdCacpx-1.93888 
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Figure 15.26) Plot of LnKd:x/liq vs. LnKd~x/liq. 

5.3.3.7. Potassium 

There Is a scarcity of data forK In clinopyroxene, I.e. 9 analyses reported by Walker 

et al. (1979) and one by Takahashi (1980). Unfortunately, the analyses of Walker et al. (op. 

cit.) are on a small temperature range (1106-1185°C) to allow reliable extrapolation to higher 

temperatures, so the Kd~x/liq will expressed as a function of Ca by taking the average ratio 

of Kd~x/liq/Kd~x/llq from the data of Walker et al. (1979) which is 0.044, so: 

Kd~x/llq= 0.044*Kd~x/liq 

5,3,3.8. Chromium 

The Cr distribution coefficient for clinopyroxene will be expressed as a function of its 

Kd iin orthopyroxene. Using this method to calculate the Kd~x/liq makes unnecessary 

co~lderlng the effects of oxygen fugacity, since It will affect both pyroxenes in the same 

manner. 
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LnKdCr cpx=1.023043*LnKdCr opx+0.097977 
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Figure l5.27l Plot of LnKd~~x/liq vs. LnKd~x/liq for coexisting pyroxenes. Note that this 

is a regression and not a 1 :1 line. 

5.3.3.9. NicJsel. Tjtanjym 

The 1i and Ni distribution coefficients have been taken from Kostopoulos (1988) and 

adjusted for mole fractions. The expression used for II is: 

LnKd~x/liq=9098.25(T'OC-9.0545 

and for Ni: 

LnKd~x/liq=6548.87[TOC-4.4981 

5.3.3.1 o. Manganese 

The J<:d:x/llq in clinopyroxene does not show a discernible temperature dependence, 

but this may be due to analytical uncertainties. It displays, however, a sympathetic variation 

with Kd~x/lict, (Figure 5.28). Although there is still a considerable scatter the resulting 

equation is considered acceptable for the purposes of modelling. 
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Figure 16.28) Plot of LnKd~x/liq vs. LnKd~x/liq. 

&.3.4. Spinel 

The variation of partition coefficients for MgO, FeO, and Al20 3 in spinel are shown in 

Figure 5.29a-c. It is apparent from these plots (especially Al20~, that Arrhenius equations do 

not describe the partitioning of these elements in spinel very accurately. This happens 

because spinels are better described as mixtures of components (e.g. hercynite, chromite 

etc.) than simple oxides. Fortunately the MgO, FeO, and AJ20 3 systematics can be 

detennined using different approaches, based on studies of the exchange of these elements 

between spinel and co-existing mantle minerals. 
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~ure (§.29) a-c. Plots of Mg, Fe, and AI in spinel vs. 1 OOO{f. 
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5.3.4. 1. Magnesium 

The Fe-Mg exchange between olivine and spinel has been shown to be strongly 

dependent on temperature, the forsterite content of co-existing olivine, and the Cr/(Cr+AI) 

ratio in spinel (see Chapter 3, olivine-spinel thermometry). In Figure 5.30 the Kd:/liq has 

been normalized to the Fo (i.e. Mg/(Mg+Fe)) fraction in olivine and the natural logarithm of 

Kdsp/liq 1 OOO*Crsp 

F:~l is plotted against Toe # . The resulting line shows a minimurr of scatter since it 

is effectively a reversed thermometric expression. 

1.3 Ln(KdMgsp/Fo ol)=-1 084.31 *Cr#{f°C+ 1.275037 

1.25 

1.2 

1.15 

1.1 •• 
Ln 1.05 

(KdMgsp 
/Eo oQ 1 • • • •• 0.95 

0.9 

0.85 

0.8 

• ·~ . . ·~ 
·~ 

0.75 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 

1 OOO*Cr# sp{f oc 

{I' 1 OOO*Cr :p 
Ejgure (5.30\ Plot of Ln(Kd: 
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5.3.4.2. Iron 

As for Kd:/liq, the Kd~~/liq is normalized to the forsterite content of olivine and its 

1000*Crsp 
natural logarithm plotted against Toe # . The resulting line is shown in Figure 5.31. It has 

the opposite slope than that for Kd:/liq, since the two elements occupy the same spinel site. 
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Note that the total iron content of spinel is used in calculations. The Fe20 3 content of spinels 

depends on co-existing silicate composition, as well as oxygen fugacity (see Chapter 3, 

oxygen barometry), a simple expression for Kd~/~iq cannot be calculated. At the 
2 3 

experimental conditions, however, similar to mantle conditions, the Fe20 3 content of spinels 

is small and this omission is not likely to introduce large errors to calculated spinel 

compositions. 

Ln(KdFesp/Fo o0=1918.41*Cr#!PC+0.34624 
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5.3.4.3. Aluminium 

It is well established that there is a positive correlation between the Al20 3 content of 

orthopyroxene and co-existing spinel (e.g. Nagata et al., 1983; see also Chapter 3, mineral 

chemistry). The relation may be interpreted in terms of the reaction: 

Mg2Si20 6 
orthopyroxene 

I Mansolas 1991 

spinel orthopyroxene 

+ Mg2Si04 (Nagata et al., 1983) 

olivine 
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In view of the sympathetic variation of Al20 3 in orthopyroxene and spinel, it should 

be possible to express Kd!P/Iiq in terms of Kd~px/liq, which is very well constrained. In 

Figure 5.32 the LnKd!P/Iiq shows a simple linear relation between the two partition 

coefficients, but the data still show some scatter. This is because the Cr-AI exchange 

between orthopyroxene and spinel depends on temperature as well as the Cr# of spinel (See 

Chapter 3, olivine-orthopyroxene-spinel thermometry). Figure 5.33 shows a plot of LnKd!P/Iiq 
1000*Crsp 

against TOG # , which gives better results than Figure 5.32. Note that this expression is in 
~ 

effect the reversed thermometric expression of Sachtleben and Seck (1981 ). 
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..._ Jaques, 1980 

Ejgure (5.32l Plot of LnKd~px/liq vs. LnKd!f/liq. The dashed line was calculated from 

the data of Jaques (1980). The solid line was calculated from all points and corresponds to 

the equation shown. 
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Figure 16.33) Plot of lnKd~x/liq * Cr/(Cr+AI)sp * 1000(fOC vs. lnKd!f'liq. The 

regression line was calculated from all points. 

5.3.4.4. Chromjum 

Schreiber and Haskin (1976) and Schreiber (1977) first examined Cr partitioning in 

spinel and the effect of oxygen fugacity (f0 ). As with other elements (e.g. Fe, V, Eu) that 
2 ' 

have more than one possible valency state at the conditions of Interest, Kd~/liq is strongly 

dependent on f0 , and in particular Kdersp/liq increases with increasing f0 . The reasons for 
2 2 

this Increase were discussed in the Cr partitioning in orthopyroxene. In Figure 5.34 LnKd~~liq 

Is plotted against 1000fr0C at four different fugacity buffers: NNO, QFM, IW+2, and IW. The 

data plotted are from Fisc and Bence (1980), Barnes (1986), and Murck et al. (1986), since 

these experiments have well constrained f0 and do report spinel compositions. Kostopoulos 
2 

(1 ~88) also determined the Kd~liq using a slightly larger data set. The temperature-

dependent expressions he calculated at different buffers are in good agreement with this 

study, showing only a small deviation at very high temperatures. 
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flswte.(!j.,;J4) Plot of LnKd~liq vs. 1 OOO{fOC for experiments at different oxygen fugacity 

buffers. Note the increase of the partition coefficient with increasing oxygen fugacity. The 

regression equation has been calculated at the QFM buffer. Data from Fisk and Bence 

(1980), Barnes (1986), and Murck and Campbell (1986). 

In a recent study, Roeder and Reynolds (1991) also examined chromium solubility in 

basic magmas across a range of temperatures and oxygen fugacities. Unfortunately their 

work was published too late for their experiments to be included in the evaluation of partition 

coefficients in spinel. Their results, however, are in close agreement with the experiments 

already considered (Figure 5.35) and their effect on the equation for LnKd~liq would be 

minimal. 
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Flgyre (5.35) Plot of LnKd~liq vs. 1 OOO(TOC. Filled squares are the QFM data of 

Barnes (1986) at 1 bar pressure. Rhombs are data from Roeder and Reynolds (1991) at the 

same oxygen fugacity and pressure. 

5.3.4.5. Manganese 

As Figure 5.36 shows, Kd:'liq in spinel shows a wide range of values and no 

apparent temperature dependence. Since spinel is only a minor phase no accuracy is lost if 

an average value is used. The average Kd:/liq of all the available data is 1.95 and is the 

value used for the modelling. 
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Figure 1&.3§) Kd:'liq vs. 1 ooorroc. All experiments are at 1 bar pressure. 

5.3.4.6. Nickel. Titanium 

The expression for LnKd~/liq and LnKd:/liq Is taken from Kostopoulos (1988) after 

adjusting for mole fractions. For Ti the regression equation is: 

LnKd~/liq=5287.57{f°C-4.9519 

and for Nl: 

LnKd:'liq=7353.17fTOC-3.1315 

5.3.4.7. Silica. Calcium 

5102 and CaO partitioning In spinalis not of critical importance In the calculations, 

because of the very low abundance of these elements In spinel. The average wlues for 

LnKd:'llq and LnKd~llq for all the experiments are -5 and -3.4 respectively, and will be 

used instead of temperature-dependent expressions. 

5.3.4.8. Sodium. Potassium 

Although there are no data regarding the abundance of alkalies in spinel, it is 

reasonable to assume that they do not enter the spinel lattice. Therefore, perfect 

Incompatibility between the alkalies and spinalis assumed and the Kd's are taken as zero. 
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5.4. Conditions of mantle melting 

The variation of the major-element distribution coefficients with temperature, pressure 

and oxygen fugacity discussed above requires prior knowledge of these parameters for the 

construction of rigorous petrogenetic models. It was shown in Chapter 3 that the majority of 

the Pindos mantle sequence is composed of rocks more depleted than oceanic peridotites 

and their composition is similar to peridotites from ancient and present-day supra-subduction 

zone (SSZ) settings. A history of MOAB extraction at an accreting margin, followed by 

subsequent melting episodes is also supported by the presence of basalts with mid-ocean 

ridge, Island-arc tholeiitic, and boninitic compositions (Kostopoulos, 1988). The conditions of 

genesis of magmas at mid-ocean ridges and supra-subduction zones and the parameters of 

modelling will be briefly described below. 

5.4.1. Mid-ocean ridges. 

Melting of upwelling asthenosphere Is the result of adiabatic decompression above 

the peridotite solidus. McKenzie and Bickle (1988) showed that spreading ridges are passive 

features underlain by mantle of constant potential temperature of -1280°C (when not in the 

vicinity of a hotspot); beneath them melting will start at -50 km depth (15 kb), i.e. in the 

spinel-lherzolite field. Since MOAB compositions from Pindos do not show any evidence of 

garnet involvement in the source (Kostopoulos, 1988), only melting beneath such a 'normal' 

ridge will be considered. The pressure, temperature, and degree of melting during upwelling 

of MOAB mantle have been calculated, using the equations of Kostopoulos and James ~n 

press). According to their parameterization, isentropically upwelling asthenosphere of normal 
~.._., 

(12800C) potential temperature will experience 21% ~partial melting before being emplaced at 

the base of the oceanic crust (compare McKenzie and Bickle, 1988). 

Because Cr partitioning Is significantly affected by the oxygen fugacity conditions 

prevailing during partial melting, knowledge of these conditions is necessary to calculate 

accurately spinel compositions. The oxygen fugacity beneath mid-ocean ridges was 

discussed In Chapter 3. All evidence Increasingly points to fugacities between the lron-wustite 

and quartz-fayalite-magnetite buffers (see Chapter 3 for references) with an average value of 
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-1 log unit below QFM at normal ridges. The partition coefficients for Cr between mantle 

minerals and melt have been accordingly adjusted to such f0 conditions. 
2 

Regarding the source of MOAB, it is now generally accepted that a relatively 

undepleted spinel lherzolite (commonly referred to as MOAB pyrolite or Depleted MOAB 

Mantle) is the most appropriate candidate. Although many estimates of the composition of 

MOAB pyrolite exist (e.g. Carter, 1970; Ringwood, 1975; Jagoutz et al., 1979; Maal0e and 

Steel, 1980; Hart and Zindler, 1986), the major-element abundances do not vary appreciably. 

In the present study the starting composition of Kostopoulos and James ~n press) will be 

used and Is shown In Table 5.3. Modal proportions and mineral compositions for DMM were 

also taken from Kostopoulos and James (in press) and Kostopoulos (pers. comm.) 

5102 1102 Al203 Cr20 3 FeO MnO NiO MgO CaO Na2o ~0 

wt.% 44.5 0.19 4.06 0.38 8.52 0.13 0.25 38.29 3.28 0.34 0.03 
mol% 38.51 0.12 2.07 0.13 6.17 0.10 0.17 49.39 3.04 0.29 0;02 

Table l5.a) Composition of the MOAB pyrolite used for modelling. From Kostopoulos and 

James ~n press). 

5.4.2. Sypra-aybductlon zones 

Mantle melting in an SSZ environment may produce four different types of magmas: 

alkaline, calc-alkaline, tholeiitic (IAT), and boninltic (BSV). Of these only the last two are 

encountered In Pindos (Kostopoulos, 1988). A common feature of SSZ melting is the 

presence of water (as deduced from the associated magmas). In an intra-oceanic subduction 

zone (such as Pindos) water is probably introduced in the mantle wedge by dehydration of 

the subducted, hydrothermally altered oceanic lithosphere. The presence of water will 

promote melting in two ways: firstly, the presence of volatiles lowers the peridotite solidus, 

and, secondly, it reduces the peridotite density, triggering gravitational instability that causes 

diapiric upwelling of the peridotite. In addition water will introduce elements like LREE, 

alkalies etc., to the peridotite that will affect the melt composition; however, since these are 

mostly trace elements, they will not be considered here. A more significant effect of the water 

is that it changes the melt structure (Mysen, 1986) which, in turn, affects the distribution 
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coefficients between the residual minerals and coexisting melt. Unfortunately most of the 

hydrous experiments published are focused on the andesitic members of the calc-alkaline 

series and cannot be used here. Of the wet melting experiments on compositions of interest 

(Green, 1973, 1976; Nicholls, 1974; Mysen and Boettcher, 1975; Umino and Kushiro, 1989; 

VanderLaan, et al., 1989; Kelemen et al., 1990) very few were focused on the composition 

of phases coexisting with the melt, thus limiting severely their use in the derivation of Kd's. At 

the present time the affect of water on the distribution coefficients cannot be quantitatively 
\ 

assessed. Still, as will be shown later, the use of the distribution coefficients derived from dry 

experiments produces plausible results. 

Another feature of SSZ magmas is their elevated oxygen fugacity (f0 ) compared to 
2 

that of MORSs. The oxygen fugacity of the Pindos and other SSZ-related peridotites is 

discussed in Chapter 3. It is shown that, with the exception of Pindos which has an average 

value of f0 of -QFM+1, other SSZ-related peridotites have virtually the same f0 as mantle 
2 2 

beneath ocean ridges. The reasons for this difference, and whether it is real or not, are 

discussed in Chapter 3. For the purpose of the present modelling it will be assumed that the 

prevailing f0 is that of the QFM buffer. In practice, underestimation of the oxygen fugacity 
2 

by 1-2 log units will not appreciably affect the Cr20 3 content of calculated liquid or residual 

compositions, except for spinel, in which case the calculated Cr# will represent a minimum. 

The pressure and temperature conditions, and the source composition of SSZ 

magmas are not as well constrained as for MORB. In practice, the linear variation of the 

peridotite chemistry in Pindos may indicate a simple melting regime of repeated melting 

episodes of a progressively depleted source. This is consistent with the order of eruption of 

basalts, with MORB being the oldest and BSV the youngest (Kostopoulos, 1988). 

Kostopoulos (op. cit.) reviewed the petrogenetic models for island-arc tholeiite and boninite 

petrogenesis. His suggested solidus conditions for IAT genesis were -1250°C at -15 kb, and 

for boninites -1250°C at pressures of 5 kb or less. In the absence of mathematical 

formulation describing mantle upwelling at SSZ settings, for the purposes of the present 

modelling it will be assumed that, after MORB extraction, the average residual peridotite will 

melt at a nominal temperature of 1250°C and a pressure of 5 kb. 
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&.4.3. The melting regime 

The modal mineralogy of the source peridotite and the amount that each mineral 

contributes to the melt fraction (melting proportion) are of great importance in the calculations 

of both the liquid and the residual compositions. This makes necessary the use of a model 

that accurately depicts the mantle melting behaviour. The model that will be used here is that 

of Kostopoulos (1991) and will be briefly described below. 

Kostopoulos (op. cit.) examined quantitatively the melting behaviour of mantle 

minerals with the use of ternary diagrams and observations on natural peridotite 

assemblages. He showed that the mantle melting regime is not linear and can be essentially 

dMded into three domains: The first domain relates to the melting of a fertile spinel lherzolite 

(FSL) where diopside dominates the melt fraction. The second domain relates to the melting 

of depleted spinel lherzolites (DSL) and diopside-bearing harzburgites where enstatite starts 

contribUting significantly to the melt, and the third domain relates to the melting of diopside­

free harzburgltes where enstatite is the major melting phase. Table 5.4 shows the 

compositions and melting proportions of minerals for these domains. It will be noted that in 

this model diopside persists in the residue until about 35-40% melting, a much higher value 

than Is usually quoted in other melting models or observed in pyrolite melting experiments 

(e.g. Jaques, 1980). This difference is partly due to the inability of the isobaric, isothermal 

melting experiments to accurately approximate the supra-solidus Isentropic rise of 

asthenosphere, which is a polybaric, polythermal phenomenon. In addition, this model 

implicitly accommodates the melting of pigeonite, which appears In pyroxene phase relation 

diagrams, but is absent from natural peridotite assemblages. It will be noted that, as the 

presence of exsolved diopside in enstatite Indicates, Pindos harzburgites are saturated with 

respect to clinopyroxene. As will become apparent later, the persistence of clinopyroxene in 

the residue to large degrees of melting is consistent with the observed peridotite and basalt 

compositions in Pindos. 
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Modal abundances (wt.%) 

Degree of 01 Opx Cpx Sp 
melting 

0% 57.00 25.50 15.00 2.50 Fertile Spinel Lherzolite (FSL) 
13.4% 65.00 28.00 6.20 0.80 Depleted Spinel Lherzolite (DSL) 
42% 84.10 15.55 0.35 Depleted Spinel Harzburgite (DSH) 

Melting proportions (wt. %) 

1.21 8.06 76.37 14.36 FSL 
9.55 63.88 24.47 2.10 DSL 
12.73 85.17 2.10 DSH 

Tgble (5,4\ Modal abundances and melting proportions of the source peridotite used In 

the melting model. (From Kostopoulos, 1991) 

The last consideration is the right choice of type of melting, i.e. equilibrium versus 

fractional melting. McKenzie (1984) showed that buoyancy of the melt and deformation of the 

matrix quickly separates the former, and that the melt fraction is unlikely to exceed a few per 

cent anywhere In the mantle during melting. Although this rules out equilibrium melting, at 

least for large degrees of melting, fractional melting, where the melt fraction is 

instantaneously separated from the matrix, seems an equally unlikely proposition. A more 

realistic model Is one where a small melt fraction is generated In equilibrium with the residue 

and Is continuously separated from it, as employed In Kostopoulos (1988). For the purposes 

of modelling, the non-modal equilibrium melting equations (Equations 5.5 and 5.8) have been 

used for 1% melting intervals, recalculating the mode of the residue to 100% after each step. 

This procedure has the added advantage of permitting the change of distribution coefficients 

and melting proportions, where appropriate, without making necessary the use of complex 

equations (as those of Hertogen and Gijbels, 1976). In practice, the choice of model is 

relevant only to Incompatible elements. Figure 5.37a shows that the liquid (and whole-rock) 

compositions calculated with the sequential equilibrium melting model approach those for 

fractional melting. For the limited degrees of melting used in the calculations, the choice of 

melting model does not perceptibly Influence the concentrations of compatible elements 

(Figure 5.37b). 
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Figure l5.m Comparison of the theoretical variation of element concentrations during 

equilibrium (thick line), fractional (thin line), and sequential equilibrium (dotted line) melting for 

an incompatible (a) and a compatible (b) element. D is the bulk distribution coefficient. Cl is 

the liquid concentration and Co is the Initial source concentration. The same relations apply to 

the variation of the source composition Cs. 

In order to assess the success of the modelling the calculated whole rock, liquid, and 

mineral compositions are compared to those of natural rocks in the following sections. 

5.5. Whole rock composition 

Peridotites dredged from the ocean floor are believed to be the residues of melting 

that produced MORBs at oceanic spreading centres (e.g. Dick, 1984; Dick et al., 1984; 

Michael and Bonatti, 1985; Bonatti and Michael, 1989; Dick, 1989). The peridotites have a 

relatively 
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Elgyre (§.38l Binary diagrams of oxide wt.% plotted against MgO wt.%. Thin line is 

calculated from 83 oceanic peridotites (Maal0e and Aoki, 1977), except for Cr20 3 and ~0 

where the regression for 302 continental spinel lherzolites is used. Dashed line is calculated 

from 99 oceanic peridotites (Shibata and Thompson, 1986). Thick line is a regression of 40 

representative Pindos peridotites (this study); note that no best-fit line was calculated for 

N~O and ~0 since these elements are below the detection limit in the samples considered. 

The ends of the lines correspond to the minimum and maximum MgO wt.% abundances of 

the peridotites for which they were calculated. Solid triangles represent the first 21% of 

melting of isentropically upwelling asthenosphere underneath a mid-ocean ridge. Open 

squares represent a further 19% of melting at constant pressure and temperature after which 

clinopyroxene disappears from the residue (see text). Star is the starting source composition 

(fable 5.3). Every point represents 1% melting. Vertical lines mark the 10%, 20%, and 30% 

partial melting points. Calculated oxide values are recalculated to 1 00%. Full analyses can be 

found in Appendix B. 
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restricted range of major element compositions and MgO contents greater than 47 wt.% or 

less than 36 wt.% are rarely observed; they exhibit, nevertheless, distinctive chemical trends 

that are consistent with various degrees of melt extraction or accumulation (Maal"e and Aoki, 

1977; Maal"e and Steel, 1980; Shibata and Thompson, 1986). Maal"e and Aoki (op. cit.) 

studied the composition of sub-oceanic mantle in simple binary plots of MgO weight per cent 

against all other major- and minor-element oxides and calculated the corresponding 

regression lines. Shibata and Thompson (1986) used a slightly larger data base of peridotites 
\. 

and calculated regression lines for Si02, Ti02, Al20 3, FeO, MnO, MgO, CaO, N~O. ~o. 

and P20 5 in a similar manner. These regressions will be used to define the oceanic melting 

regime and compare it with the calculated compositions peridotite compositions. 

Peridotite depletion trends were also calculated for Pindos using a representative subset of 

40 selected samples. All best-fit lines are shown as Figures 5.38a-j together with the 

calculated peridotite compositions for the first 40% of melting. 

Three points are immediately apparent in these plots: 

a) There is a large overlap in the MgO wt.% contents between the abyssal and the 

Pindos peridotites, although the latter extend to more MgO-rich compositions. 

b) The slopes of the two regression lines computed for the abyssal peridotites differ 

slightly for all oxides but this difference is larger for Si02,Ca0, Na20, and ~0. 

c) The slope of the Pindos best-fit line is quite distinct from that calculated for the 

abyssal peridotites for all elements considered. 

With regard to point (a) above, it will be noted that samples containing less than 5% 

modal orthopyroxene were not included in the Pindos data base. These samples were 

excluded not only because their compositional range is very restricted (i.e. dunitic) and would 

probably bias the regressions, but also because their origin may have involved processes 

other than partial melting, namely, olivine accumulation, incongruent melting of enstatite, or 

mechanical mixing between dunite and harzburgite. 

The occurrence of compositions more fertile than the starting pyrolite composition 

(<38.29 wt% MgO) is due to the presence of variable amounts of trapped melt, a process 
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that has been established both for Pindos (see Chapter 1) and for abyssal peridotites (Dick, 

1984, 1989). 

With respect to point (b) above, the data. set from which the regression lines were 

derived must be examined. Shibata and Thompson (1986) used a data set of 99 samples 

compared to that of 83 samples of Maal"e and Aoki (1977). Maal"e and Aoki (op. cit.) used 

the PETROS library (Mutschler et al., 1976) and do not mention indMdual sources, so it is 

difficult to establish where the two data bases differ. Still, this difference of 16 samples 

represents one fifth of the data set and is sufficient to cause the discrepancy. Notably, the 

largest differences occur for Si02,Ca0, N~O, and 1<:207 which are mobile during sea-floor 

alteration (see Chapter 2) hence, are the most likely elements to behave erratically. 

Finally, with respect to point (c) made earlier, the difference in the calculated slopes 

between Pindos and the abyssal data set may reflect differences in their melting regimes. As 

discussed previously, melting beneath a mid-ocean ridge involves volatile-free melting of 

fertile peridotite with clinopyroxene dominating the melt fraction. Pindos has, however, 

experienced additional melting in the harzburgite field where H20 was probably important and 

orthopyroxene was the most significant melting phase. This difference in the melting regime 

is best reflected in the concentrations of Si02, AJ20 3, and CaO. In the case of CaO, Figure 

5.38d shows that the regressions for the abyssal peridotites completely miss the starting 

composition by 1 wt.%. Although this may result from the MOAB pyrolite composition used 

(fable 5.3) being too rich in CaO, a more likely explanation is that the abyssal peridotites 

have experienced CaO loss due to sea-floor alteration (see Chapter 2). 

FeO is the only element that displays an enrichment trend In successive residues at 

degrees of melting less than 21% and a depletion trend at degrees of melting greater than 

about 21%. This is because below -1300°C the behaviour of FeO changes from incompatible 

with oiMne to compatible during melting (Figure 5.2). Although the depletion trend is 

consistent with the Pindos data, it is inconsistent with the observed enrichment trend for the 

7Note that the regression line of Maal"e and Aokl (1977) for 1<:20 was calculated from 

continental splnellherzolites that are usually much less altered than abyssal peridotites. 
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abyssal peridotites. A possible explanation is that the data set from which the regression lines 

for FeO for the abyssal peridotites were calculated was dominated by rocks that had 

experienced melting at temperatures in excess of 13000C. However, since the calculated 

slopes for the abyssal peridotite trends are very shallow, this difference may not be 

statistically significant (the data also show a large scatter about the regression lines). An 

additional source of error, peculiar to FeO analyses, results from the combination of two 

practices. The first is that a sample may be analyzed for ferric and ferrous iron separately 
\ 

and then report total iron as ferric or ferrous. The second is that, because peridotites are 

usually altered, their analyses are recalculated on a volatile-free basis. This involves the way 

ignition losses are determined and, depending on the true amount of ferrous iron in the 

samples, they may have been underestimates, thus introducing an error to the recalculated 

volatile-free analyses. Although for most elements such error is negligible, for iron it may be 

amplified because the sum of the oxides changes depending on whether iron is reported as 

ferric or ferrous iron. 

The rapid depletion in Ti02, Na20, and ~0 in the residual peridotites (Figures 

38e,i,j) is the result of the incompatible nature of these elements. It will be noted, however, 

that, because of their low concentrations (subjected to large analytical uncertainties), there 

are large 2a-standard errors to the least-squares fits. In addition, Na20 and ~0 are mobile 

during sea-floor alteration and this may have affected the slopes of the regression lines. This 

is especially true for Na20, which Maal0e and Aoki (1977) found to be 0.1 wt.% higher in 

abyssal peridotites than in continental spinel-lherzolites. 

MnO shows an almost horizontal trend (Figure 38f), suggesting a bulk distribution 

coefficient of near unity, which is consistent with the lack of variation of MnO abundances 

that peridotites generally show. Although the calculated regression lines for the abyssal and 

Pindos peridotites have negative slopes, it should be borne in mind that the data show large 

scatter about the regression lines, which may have affected their slopes. This is supported by 

the fact that both the abyssal peridotite trends miss the starting MORB-pyrolite composition 

by 0.08 to 0.11 wt.% (Figure 5.381). 
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NiO clearly shows an enrichment trend with a slightly shallower slope than that of the 

calculated regression lines (Figure 5.38g). This suggests that the bulk distribution coefficient 

for Ni is slightly larger than the calculated one. It is suggested here that, because of the very 

large partition coefficient of Ni in sulphide (e.g. Naldrett, 1 981 a), the presence of even 

minute sulphides in the mantle (which were omitted in the model) will increase the bulk 

distribution coefficient of Ni and, consequently, increase the slope of the calculated trend. 

The calculated Cr20 3 increases with increasing melting, in contrast to the horizontal 
~ 

to slightly negative trends observed for the abyssal and Pindos peridotites (Figure 5.38h). 

The reason for this is not entirely clear. Liang and Elthon (1 990) noted the horizontal trend to 

be common to all the Alpine peridotites and peridotite xenoliths in alkali basalts that they 

examined. They ascribed this lack of variation to a bulk distribution coefficient for Cr near 1 

during mantle melting and suggested that all primary mantle melts are picritic to komatiitic in 

composition, containing high amounts of Cr20 3, equal to those in the peridotites with which 

they had equilibrated. The suggestion of Liang and Elthon (1 990) is very difficult to equate 

with. the presence of residual spinel and the behaviour of Cr during melting. Even at a 

temperature of 14000C and oxygen fugacity conditions as reducing as the iron-wustite buffer, 

the Kd~~/liq has a value of -110, implying that even a small fraction of residual spinel is 

sufficient to make the bulk distribution coefficient of Cr larger than unity. Moreover, it has 

been shown (see Chapter 3, oxygen geobarometry) that Pindos peridotites experienced 

melting at lower temperatures and higher oxygen fugacities than those above, which should 

increase Kd~~/liq to even higher values. Additional evidence against the proposition of Liang 

and Elthon (1 990) comes from the observed Pindos basalts. For example, there is no 

evidence for the existence of picritic liquids in Pindos; furthermore, the existence of different 

magmatic units becoming progressively enriched in Cr20 3 with increasingly younger ages 

requires variation in the Cr20 3 abundance of their source region. Although Cr is affected by 

re-equilibration at sub-solidus temperatures (see Chapter 3, geothermometry), this exchange 

has high blocking temperatures and should not affect the whole rock Cr20 3 abundance. Nor 

can alteration be responsible for the difference in the Cr20 3 content between calculated and 

observed peridotite compositions, since Cr20 3 is immobile during alteration (see Chapter 2, 
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serpentinization). At the present time the discrepancy is attributed to the distribution of Cr20 3 

in the rock. Unlike Ni, most of which occurs in solid solution in mantle minerals and its 

distribution Is relatively homogeneous, Cr20 3 is strongly concentrated in a minor phase 

(spinel). In addition, spinel grains tend to form clusters, that increase the inhomogeneity of 

the rock with respect to Cr20 3• This is not apparent in other spinel constituents because their 

contribution to the whole rock is very small. It is, therefore, suggested that the difficulty in 

obtaining and analyzing a representative rock sample Is the main reason for the contrasting 

Cr 20 3 pattern between the calculated and observed peridotite compositions. The above 

conclusion is supported by Figures 5.39 and 5.40. Figure 5.39 is a plot of MgO wt.% in the 

whole rock against Cr20 3 wt.% In the spinel for the Pindos peridotites. The data show a 

positive correlation In agreement with the model calculations. Figure 5.40 Is a plot of Cr20 3 

wt.% in the spinel against Cr in whole rock for the Pindos peridotites. Since spinel is the 

major Cr-bearing phase, a strong positive correlation is expected. However, such a 

correlation Is not observed. The scatter shown by the whole-rock Cr values suggests 

inhomogeneous distribution of modal spinel according to the discussion above, rather than to 

analytical error or peculiarities in the melting regime. 

70 

60 •••• • • 
50 

·~ 
• 

Cr203 ••• 
wt% 40 .·++:~ spinel 

30 ...... ..... 
~ 

20 .... Jj. 

10 
~~ 

38 40 42 44 46 48 50 52 

MgO wt%, whole rock 

Figure (§.31) Plot of MgO wt.% in the whole rock vs. Cr20 3 wt.% in the spinel for the 

Pindos peridotites (filled rhombs). Other symbols as in Figure 5.38. A positive correlation Is 

displayed. 
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Flgyre (5.4Q) Plot of Cr20 3 wt.% in spinel vs. Cr in whole rock for the Pindos peridotites, 

for which the regression line was calculated. Only a weak positive correlation is displayed. 

Symbols as in Figure 5.39. 

5.6. Uquld compositions 

Although the major-element partition coefficients were evaluated in the present thesis 

aiming at modelling the composition of melting residues, a by-product of the calculations is 

the composition of the liquid in equilibrium with the residual peridotite. Comparison of the 

calculated melts with natural basalts provides a measure of the validity of the modelling. 

In the melting model used, an equilibrium liquid composition is calculated for every 

melting step Onstantaneous melt). Natural basalts, however, are mainly the products of 

accumulation of instantaneous liquids in some reservoir (pooled melts; Klein and Langmuir, 

1987; McKenzie and Bickle, 1988; Kostopoulos and James, in press). For this reason, the 

calculated composition of the instantaneous melts have been •pooled• according to the 

method of Kostopoulos and James ~n press) over the chosen melting intervals and are 

shown in Tables 5.5 and 5.6. 

&.8.1. Melting beneaJh an ocean ridge 

The first 21 increments of melting were calculated for lsentropically upwelling mantle 

of normal {12800C, McKenzie and Bickle, 1988) potential temperature beneath a mid-ocean 
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ridge. Pooling of these melt fractions should produce a melt composition that corresponds to 

primary MOAB. and the calculated pooled melt is that of primary MOAB (Kostopoulos, in 

press). There is considerable debate, however, over what is the composition of primary 

MOAB. Several workers believe that magnesian MORBs (Mg0>9.5 wt.%) represent near­

primary basalts generated at moderate (5-11 kb) pressures (e.g. Bender et al., 1978; Hart 

and Davis, 1978; Takahashi and Kushiro, 1983; Fujii and Bougault, 1983; Presnall and 

Hoover, 1984; Shibata and Thompson, 1986; Klein and Langmuir, 1987; McKenzie and 

Bickle, 1988), whereas others believe that they derive from high-pressure (15-30 kb) picritic 

liquids (MgO> 16 wt. %) through extensive olivine fractionation (e.g. O'Hara, 1968; Jaques and 

Green, 1980; Stolper, 1980; Elthon and Scarfe, 1984; Duncan and Green, 1987; Falloon and 

Green, 1987, 1988; Falloon et al., 1988; Uang and Elthon, 1990). Arguments for each theory 

were recently reviewed in Kostopoulos Qn press), who was in favour of the first theory, and 

will not be reiterated here, except to say that the results of the present modelling strongly 

favour the former alternative. The composition of the pooled melt for the first 21 melting 

Increments is shown in Table 5.5, together with the calculated melt composition of McKenzie 

and Bickle (1988) and a range of observed primitive MORBs. McKenzie and Bickle (op. cit.) 

used parameterized melting experiments of pyrolite to calculate the Instantaneous and 

accumulated melts generated by isentropically upwelling lithosphere. The composition shown 

in Table 5.5 Is calculated for the same mantle conditions that were used In this study. The 

pooled melt calculated here shows good agreement, both with McKenzie and Bickle's (1988) 

melt, and with the natural basalts in Table 5.5, especially considering the variety of processes 

that were involved In the generation of the natural basalts (olivine fractionation or 

accumulation, magma mixing etc.). The calculated Ca0/AI20 3 ratio for the pooled melt is 

0.726 (Table 5.5) and compares favourably with that for 84 depth-averaged abyssal tholeiites 

from all mid-ocean ridges (Klein and Langmuir, 1987; 0.756:t0.057). The overall similarity 

between calculated and observed liquid and residual peridotite compositions may be regarded 

as a measure of the adequacy of the melting regime chosen and the derived expressions for 

the distribution coefficients. 

I Mansolas 1991 212 



Chapter 5 Modelling of major elements 

A B SD-7- DB RH 3-18 ARP74-
MG 10-6 

Si02 50.92 51.89 50.93 50.26 49.5 50.3 50.26 

Ti02 1.15 0.92 1.01 0.61 0.81 0.73 0.82 

Al203 14.75 14.57 17.27 14.21 15.7 16.6 15.05 

FeO 8.16 8.53 7.67 6.82 7.45 7.99 8.04 
MnO 0.11 N/A 0.20 0.10 0.15 0.12 0.14 
MgO 11.45 10.27 11.03 11.89 10.0 10.2 10.13 
CaO 10.71 11.01 11.36 13.46 13.0 13.2 12.09 
N~O 2.44 2.16 0.36 1.42 1.95 2.00 2.07 

~0 0.25 0.25 N/A 0.07 0.17 0.01 0.16 
Cr20 3 0.034 N/A N/A N/A N/A N/A N/A 
NiO 0.031 N/A N/A N/A N/A N/A N/A 

Mg# 0.715 0;683 0.720 0.757 0.706 0.695 0.692 

Table (5.§) A: the calculated pooled melt composition using the first 21 increments of 

melting. B: depth and point average melt composition of McKenzie and Bickle (1988) for 

partial melting of mantle of normal temperature (1280°C). SD-7-MG, DB, RH, 3-18, and 

ARP74-1Q-6 are primitive abyssal tholeiite glasses, ranging from plcrite to oiMne tholeiite, 

and were compiled by Shibata and Thompson (1986). N/A: not analyzed. 

5.6.2. Second-stage melting 

Second-stage melting in SSZ mantle involves a variety of source compositions and 

melting conditions. For the sake of modelling the peridotite at the top of the MOAB melting 

column ~.e. the peridotite that experienced 21% melt extraction) Is taken as the source of the 

SSZ magmas. In Table 5.6, melts c and D are calculated after 10% and 19%a melting 

respectively of the depleted source peridotite explained above. Also shown in Table 5.6 are a 

range of compositions for two Pindos bonlnite units (Kostopoulos, 1988). Once again, the 

cal.culated pooled melts show good agreement with the natural compositions, reflected in the 

high Si02, MgO, Cr 20 3, and Mg# and the low Ti02, N~O, and ~0 of the calculated liquids. 

B'fhis Is the maximum melting extent of the previously depleted peridotite after which 

clinopyroxene disappears from the residue. 
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N50E BSV 

c D 12 620 83 
Si02 57.30 59.20 54.87 56.25 56.77 

li02 0.11 0.09 0.21 0.20 0.21 
Al20 3 10.71 8.51 10.97 10.81 9.53 

FeO 8.83 9.04 8.22 8.54 8.69 
MnO 0.13 0.13 0.15 0.15 0.18 
MgO 14.00 14.67 14.26 13.90 14.09 
CaO 8.71 8.12 7.46 7.38 9.16 
Na20 0.04 0.04 2.83 1.58 1.28 

~0 0.05 0.05 0.12 0.27 0:02 
Cr2o3 0.094 0.109 0.156 0.116 0.152 

NiO 0.037 0.039 0.036 0.025 0.030 
Ca0/AI20 3 0.813 0.954 0.680 0.683 0.961 

Mg# 0.739 0.744 0.756 0.744 0.743 
Agla Sotira BSV 

118 309 302c 302r 
5102 56.33 58.20 57.33 54.84 

li02 0.25 0.33 0.32 0.33 

AJ203 10.36 13.22 12.95 10.58 

FeO 8.81 5.93 7.74 9.42 
MnO 0.18 0.16 0.14 0.21 
MgO 12.70 10.46 12.79 15.09 
CaO 9.61 6.63 4.91 6.56 
N~O 1.09 3.93 3.46 1.30 

~0 0.09 0.02 0.06 0.06 
Cr20 3 0.104 0.051 0.084 0.077 

NIO 0.021 0.016 0.027 0.013 
Ca0/A120 3 0.928 0.502 0.379 0.620 

Mg# 0.720 0.759 0.747 0.741 

Table (5;8) Columns labelled c and D are the calculated pooled melt compositions after 

1 0% and 19% respectively of a source peridotite that underwent 21% melt extraction beneath 

a mid-ocean ridge. Model melting conditions: T =1250°C, P=5kb. N50E and Agia Sotira are 

two boninite units from Pindos (Kostopoulos, 1988). 

An Interesting result of the modelling is the contrasting behaviour of CaO and AJ20 3. 

Melts c and D (Table 5.6), for example, have very similar CaO contents but the AJ20 3 content 

of melt D Is much lower than that of melt c. This suggests that the Ca0/AI20 3 ratio in these 

melts Increases with increasing degree of partial melting. The reason for this lies In the choice 
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of melting model, and particularly to the persistence of clinopyroxene in the source up to 

-40% melting. CaO is an essential structural constituent (ESC, see Introduction of this 

Chapter) of clinopyroxene and buffers the CaO content of the equilibrium liquids. In contrast, 

Al20 3 substitutes in both tetrahedral and octahedral clinopyroxene sites and is rapidly 

depleted, especially in the former, with progressive melting. The good agreement in the 

Ca0/A120 3 ratio and the CaO content between calculated melts and natural Pindos boninites 

suggests that the latter were in equilibrium with clinopyroxene in their source regions. This 

agrees with the suggestion, made by Kostopoulos (1988), that the Pindos boninites are of the 

eutectic type, i.e. their genesis did not involve incongruent melting of orthopyroxene. 

The good agreement between the calculated melts and the natural Pindos boninites 

is somewhat surprising, because the partition coefficients were calculated from dry 

experiments. This suggests that the effect of water on major-element partitioning is not large, 

therefore the change in 'wet' Kds can be accommodated within the uncertainty of the 'dry' 

partition coefficients. 

5.7. Model dependencies 

Having calculated the whole-rock and liquid compositions for the chosen melting 

"' model, a brief examination of how the initial assumptions affect these compositions will be 

made. Considerable effort was put in the choice of all the modelling variables, so that results 

were, as much as possible, free of uncertainty. Variables like the MOAB pyrolite composition, 

or the pressure and temperature path of isentropically upwelling asthenosphere are as best 

constrained as possible, and there is no point in considering alternatives. Perhaps the only 

controversial assumption is the choice ot melting model, and it is necessary to establish how 

much the results depend on this. 

The consequences of choosing equilibrium, fractional, or sequential equilibrium 

melting have already been discussed in the description of the melting regime. The chosen 

sequential equilibrium melting model will give the same results as the other models where 

compatible elements are concerned. Incompatible elements will be more rapidly depleted 

from the source, than if equilibrium melting had been chosen (Figure 5.37a). While this 
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variation is insignificant for elements like Tl, Na, or K, that are rapidly depleted to ppm 

concentrations, It Is substantial for elements like Si, AI, or Ca. It has been shown, however, 

(Figures 5.38a,b,d) that, far from being exhausted in the residues, the Si, AI, and Ca 

abundances of the residual peridotites match well the concentrations of these elements in the 

natural rocks. In addition, independent evidence In favour of a fractional melting model for the 

mantle Is presented In recent studies on REE geochemistry of oceanic peridotites and basalts 

(Johnson et al., 1989; McKenzie and O'Nions, 1991 ). The good results of the modelling so far 

indicate that the chosen model is a good approximation of the mode of mantle melting. 

Because the residue, liquid, and mineral compositions are all calculated from the 

Initial whole rock composition (Equations 5.2 and 5.8), for any given temperature, pressure, 

and oxygen fugacity, the only factor affecting these compositions is the non-modal bulk 

distribution coefficient, which depends on the mineralogy of the residual peridotite and the 

melting proportions of minerals. As remarked earlier, one of the unusual aspects of the 

melting model is the persistence of clinopyroxene in the residue for large (-40%) degrees of 

partial melting. The arguments for its justification have been presented elsewhere 

(Kostopoulos, 1991) and will not be reiterated here. It will, however, be noted that the 

persistence of clinopyroxene in the residue during isentropic upwelling of the mantle for larger 

degrees of melting than equilibrium melting experiments suggest, has been Independently 

suggested (Duncan and Green, 1987; Falloon and Green, 1988; MacKenzie and Bickle, 

1988). In practice, if the sum of the melting proportions and the sum of the modes of ortho­

and clinopyroxene are constant, the calculated liquid and residue compositions remain almost 

unaffected. This is due to the choice of 1% melting intervals that make the non-modal bulk 

distribution coefficient fairly Insensitive to the parameter P (Equation 5. 7). This means that 

the model is fairly robust to fluctuations of initial parameters and Is not critically dependent on 

any of them, although the results obviously depend on the particular set of conditions chosen. 

5.8. Residual mineral compositions 

Having calculated the equilibrium instantaneous melt composition for every melting 

step, It Is a simple matter to calculate the compositions of the residual minerals using their 
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partition coefficients. These calculations provide a measure of the accuracy of indMdual 

distribution coefficients for a given mineral. In addition, natural mineral compositions are free 

of the effects of serpentinization that is an added complication regarding whole-rock 

compositions. 

In the following sections some of the diagrams that were presented in Chapter 3 will 

be used to illustrate how the calculated and natural mineral compositions compare. 

6.8.1. Ee-Mq exchange between oiMne and orthopyroxene 

Figure 5.41 is a plot of Mg# of olivine against the Mg# of orthopyroxene. Data from 

Pindos peridotites show very good agreement with the calculated mineral compositions. The 

Fe-Mg ratio between oiMne and orthopyroxene has a semi-logarithmic relation with 

temperature. From the partition coefficient equations for Fe and Mg in oiMne and 

orthopyroxene (Figures 5.1, 5.2, 5.6, 5.8) the following temperature-dependent equation can 

be calculated: 

(Fe/Mg)opx -1291 
(Fe/Mg)ot = TOC + 1·00 

This relatively strong temperature dependence is the cause of the slight 

underestimation of orthopyroxene Mg# for residues of second stage melting (Figure 5.41). 

These would shift to lower values of orthopyroxene Mg# for higher temperatures and vice 

versa. The temperature that actually fits the data best Is rather low (11800C} and probably 

results from the low-temperature re-equilibration that has affected the peridotites. 
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Fjgure C5.41) Plot of Mg/(Mg+Fe) of olivine vs. Mg/(Mg+~e) of orthopyroxene. Filled 

rhombs are the first 21% of melting. Open squares represent an additional 19% of melting 

(see text). The rest of the symbols are compositions of mineral from Pindos peridotites. 

5.8.2. Ab~ content of orthopyroxene versus Mg#. 

Figure 5.42 is a plot of Mg/(Mg+Fe) in orthopyroxene against its Al20 3 content. As 

expected a negative correlation is displayed. The failure of the modelled compositions to 

match the natural ones at low degrees of melting is caused by clinopyroxene exsolution. In 

peridotites that have not experienced re-equilibration at temperatures as low as Pindos, more 

aluminous orthopyroxene is preserved (Figure 5.43). Note that the S-shaped trend of the 

model compositions resembles that of the whole rock Al20 3 content (Figure 5.38b) and is 

also exhibited by the abyssal peridotites. The underestimation of orthopyroxene Mg# towards 

higher degrees of melting, that was mentioned in the previous paragraph, is also responsible 

for the small shift of the calculated trend towards smaller Al20 3 contents. 
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Ejgure (5.43) Plot of Mg/(Mg+Fe) vs. Al20 3 wt.% content of orthopyroxene. Symbols as .. 
in Figure 5.41. Triangles are orthopyroxene compositions from ocean floor peridotites from 

fracture zones (Dick, 1989). 

5.8.3. AI~ content of co-exjstjog pyroxenes 

Figure 5.44 is a plot of the Al20 3 content of co-existing pyroxenes. The 

overestimation of the Al20 3 content of clinopyroxenes at any degree of melting suggests that 
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the calculated Kd:>f/liq may be overestimated. Examination of the relative Al20 3 wt.% 

abundance in coexisting pyroxenes shows that, for example, abyssal peridotites have an 

average Al20 3cpx/AI20 3opx ratio of 1.22±0.09, whereas the pyroxene pairs used to calculate 

Kd:x/liq (Figure 5.21) have an average ratio of 1.38±0.39. The lower Al20 3 wt.% content of 

natural clinopyroxenes, compared to experiments, is the result of the low temperature re-

equilibration that typically affects the former. Although this difference leads to apparently high 

AJ20 3 abundances of calculated clinopyroxenes, the calculated Kd:x/liq is appropriate for 

the calculation of liquid compositions. Note that the lowest value of Al20 3 in orthopyroxene is 

-1 wt.%, compared to less than 0.5 wt.% in Figure 5.42. The reason for this is not the 

complete absence of clinopyroxene from very depleted rocks, but its presence as increasingly 

thinner lamQIIae in orthopyroxene. Still, clinopyroxene grains large enough to be probed, 

persist until -30% melting. 
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Figure 15.44) Plot of Al20 3 wt.% content of orthopyroxene vs. that of clinopyroxene. 

Symbols as In Figure 5.41. 

5.8.4. Al;a,03 between orthopyroxene and co-existing spinel 

Figure 5.45 is a plot of AJ20 3 wt.% in orthopyroxene against Cr/(Cr+AI) in spinel. As 

mentioned earlier, at low degrees of melting the calculated orthopyroxenes have more Al20 3 

than the natural ones, due to the effects of clinopyroxene exsolution on the latter. At higher 

I Mansolas 1991 220 



Chapter 5 Modelling of major elements 

degrees of melting, however, the calculated trend shows excellent agreement with the 

natural compositions. 

8 

7 

6 

5 
Al203 
wt.% 4 
(opx) Cpx 

3 exsolution 

2 

0 +---r---~~--~---+--~---r--~~~~ 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Cr# (sp) 

.t!Avgo 

+ Livadi 

6 Vovousa 

~ Dramala 

>K Sub-Moho 

Figure (5.45) Plot of Al20 3 wt.% content of orthopyroxene vs. Cr/(Cr+AI) of spinel. 

Symbols as in Figure 5.41. 

5.8.5. Cr-A! exchange between orthopyroxene and co-existing spinel 

Figure 5.46 is a plot of Cr/(Cr+AI) between orthopyroxene and co-existing spinel. 

Despite the good agreement between modelled and natural compositions the Cr# of 

orthopyroxene (and, hence, its Cr20 3 content) is not predicted very accurately. For the first 

stage melting, the Cr# of orthopyroxene is underestimated, compared to the natural minerals; 

this is consistent with the earlier comments on Al20 3 in orthopyroxene, and its overstimation 

leads to the observed underestimation of the Cr#. With increasing degree of melting, 

however, the Cr# of orthopyroxene increases to values much higher than those 

observed in the minerals. Although orthopyroxenes with such high Cr# do exist (Jaques, 

1980), they are the products of extreme degrees of melting, and do not justify the 

observed model trend. The reason why natural peridotites do not have orthopyroxenes 

with such high Cr# is that the Cr 20 3 is controlled by the Cr# in co-existing spinel. Nagata 

et al. (1983) showed that the Cr fraction in the M1 site of orthopyroxene increases with 

increasing Cr# in spinel, until the latter is -0.40, when cr:; starts to decrease. In a plot of 
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cr:; against Cr# in spinel this creates a parabolic trend (see also Chapter 3, orthopyroxene 

chemistry). Nagata et al. (op. cit.) also found a similar effect in clinopyroxene. The 

expression for Cr partitioning in orthopyroxene does not show any dependence on the Cr# of 

co-existing spinel, so this characteristic of Cr-AI exchange between the two minerals is 

difficult to reproduce in modelling. 
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Ejgure (5.46) Plot of Cr/(Cr+AI} of orthopyroxene vs. Cr/(Cr+AI) of spinel. Symbols as in 

Figure 5.41. 

5.8.6. Spjne! jn the Ee-Mg-Cr-AI plane 

Figure 5.47 is a plot of Mg# against Cr# in spinel. As mentioned in Chapter 3, the 

Mg# in spinel is strongly affected by low-temperature re-equilibration; this results in the offset 

of the natural mineral compositions in Figure 5.47 to slightly lower Mg# than calculated, 

although there is good agreement for the Cr#. The spinel compositions have been calculated 

at two different oxygen fugacities to assess the effect of f0 on the Cr#. The very small 
2 

difference between the two trends shows that a difference of 1 log unit has a very small 

effect on spinel. Note that the calculated trends resemble the s-shaped trend calculated 

independently from a thermometric expression (see Chapter 3, olivine spinel thermometry). 
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Ejgure (5.47\ Plot of Mg/(Mg+Ee) vs. Cr/(Cr+AI) of spinel. Dashed line is the theoretical 

composition of spinel coexisting with olivine of Eo90 at 12000C and solid line the same at 

1300°C (see Chapter 3, olivine-spinel thermometry, for derivation). 

5.9. Summary 

Distribution coefficients between melt of basic composition and co-existing dry 

mantle minerals (olivine, orthopyroxene, clinopyroxene, spinel) were evaluated from dry 

melting experiments on natural rock compositions. This allowed the quantitative modelling of 

mantle melting using trace element approaches. The composition of peridotite, co-existing 

liquid, and residual minerals were calculated using an equilibrium partial melting model of 

1% intervals for two mantle melting scenarios: under a mid-ocean ridge, and in a supra-
. ' 

subduction zone-related environment. nie first setting involved mantle of MOAB pyrolite 

composition with a normal initial temperature (1280°C) that starts to melt at a depth of 15.3 

kb and experiences a total of 21% partial melting. Melting in a supra-subduction zone-related 

environment assumed that the residual peridotite after MOAB extraction experiences a 

further 19% partial melting in static conditions at a temperature of 1250°C and a depth of 5 

kb until the clinopyroxene disappears from the residue. Although this setting involves the 
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introduction of volatiles to the melting region, their effect on the major element partitioning 

was not evaluated, and the dry partition coefficients were used. 

The calculated residual peridotite compositions were compared with observed 

compositions of oceanic and Pindos peridotites in simple binary diagrams of MgO wt.% 

against oxides. The modelled compositions showed good agreement with the natural rocks 

for most elements. Uncertainties in the calculated partition coefficients (MnO) or rock 

analyses (~0), involvement of other phases (NiO), and sampling difficulties (Cr20a) 

accounted for most of the discrepancies. 

In order to compare the calculated liquid composition with natural rocks, the 

instantaneous melts of each melting interval were used to calculate the weighted average of 

the melting column. The resulting pooled melt showed good agreement with calculated 

primary MORB and primitive abyssal basalts. The relatively low MgO content (11.45 wt.%) 

and Mg# (71.5) of this melt lend support to the theory that magnesian MORB (Mg0>9.5 

wt.%) are near primary melts generated at moderate (5-11 kb) pressures. 

The calculated pooled melt produced by 10-20% partial melting of depleted peridotite 

compared very well with Pindos boninites, both in range of compositions and in general 

characteristics. It was also demonstrated that Si02, MgO, and Mg# in boninites increase with 

increasing extent of partial melting, whereas Al20 3 at the same time decreases. The CaO 

abundance depends on the presence of residual clinopyroxene, in which case it is almost 

constant, or its absence, in which case it behaves like Al20 3. 

The modelled compositions of residual minerals also showed good agreement with 

the chemistry of minerals in the Pindos peridotites. The latter, however, have been subjected 

to low-temperature re-equilibration, which resulted in some differences. These discrepancies 

ranged from small (AI20 3 in co-existing pyroxenes) to very large (Cr20 3 exchange between 

spinel and co-existing orthopyroxene). 

The results of the modelling support the conclusions of Chapter 3, where the Pindos 

peridotites were compared with mantle-derived rocks from a variety of settings, and allow 

quantitative comparisons to be made. Thus, the Vovousa peridotite, for which a mid-ocean ridge 

origin was inferred, has experienced -12-15% partial melting. The rest of the complex is 
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more depleted and shows a wider range of compositions. A supra-subduction zone evolution 

was suggested for this part, with heterogeneously distributed water-induced second-stage 

melting resulting In variable degrees of depletion of the peridotites. The total degree of partial 

melting ranges from -18% to -40%, although the less depleted peridotites were probably re­

fertillzed by melt impregnation. Whereas all peridotites underwent melting in a mid-ocean 

ridge environment, some experienced additional melting episodes and eventually produced 

boninites. 
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Appendix B Calculated peridotite compositions 

Appendjx .a.. Calculated peridotite compositions 

F 

0% 
1% 

44.51 0.190 
44.48 0.163 

2% 44.42 0.140 
3% 44.35 0.120 
4% 44.28 0.103 
5% 44.20 0.088 
6% 44.12 0.075 
7% 44.03 0.064 
8% 43.95 0.054 
9% 43.86 0.048 

10% 43.77 0.039 
11% 43.68 0.033 
12% 43.59 0.028 
13% 43.50 0.024 
14% 43.41 0.020 
15% 43.31 0.017 
16% 43.21 0.014 
17% 43.10 0.012 
18% 42.99 0.01 0 
19% 42.87 0.009 
20% 42.74 0.008 
21% 42.60 0.008 
22% 42.45 0.006 
23% 42.33 0.004 
24% 42.17 0.004 
25% 42.01 0.003 
26% 41.84 0.002 
27% 41.66 0.002 
28% 41.48 0.001 
29% 41.29 0.001 
30% 41.10 0.001 
31% 40.90 0;001 
32% 40.70 0.001 
33% 40.50 tr 
34% 40.29 
35% 40.07 
36% 39.86 
37% 39.63 
38% 39.41 
39% 39.18 
40% 38.95 

4.06 
3.99 
3.91 
3.82 
3.72 
3.62 
3.50 
3.39 
3.26 
3.12 
2.98 
2.83 
2.67 
2.50 
2.31 
2.13 
1.95 
1.76 
1.58 
1.40 
1.23 
1.06 
0.90 
0.73 
0.64 
0.56 
0.49 
0.43 
0.37 
0.32 
0.28 
0.24 
0.20 
0.17 
0.14 
0.12 
0.10 
0.08 
0.07 
0.06 
0.04 

FeO* MnO MgO 

8.52 0.130 38.30 
8.52 0.130 38.64 

CaO 

3.28 
3.19 

8.52 0.130 38.96 3.09 
8.52 0.130 39.28 2.99 
8.51 0.131 39.60 2.90 
8.51 0.131 39.92 2.80 
8.51 0.131 40.24 2.70 
8.51 0.131 40.56 2.60 
8.51 0.131 40.89 2.50 
8.51 0.131 41.22 2.40 
8.51 0.131 41.56 2.30 
8.51 0.131 41.90 2.20 
8.52 0.132 42.25 2.10 
8.52 0.132 42.61 1.99 
8.53 0.132 42.97 1.89 
8.54 0.132 43.34 1.79 
8.55 0.132 43.70 1.69 
8.56 0.132 44.07 1.60 
8.57 0.133 44.44 1.51 
8.59 0.133 44.81 1.43 
8.60 0.133 45.18 1.34 
8.61 0.133 46.55 1.26 
8.63 0.133 46.91 1.19 
8.63 0.133 46.27 1.11 
8.62 0.133 46.60 1.03 
8.61 0.133 46.92 0.95 
8.61 0.133 47.23 0.88 
8.60 0.133 47.54 0.81 
8.59 0.133 47.85 0.74 
8.58 0.132 48.16 0.68 
8.57 0.132 48.46 0.62 
8.55 0.132 48.76 0.56 
8.54 0.132 49.06 0.51 
8.53 0.131 49.35 0.46 
8.52 0.131 49.65 0.41 
8.50 0.131 49.94 0.36 
8.49 0.130 50.22 0.32 
8.47 0.130 50.51 0.28 
8.46 0.130 50.80 0.25 
8.44 0.129 51.08 0.21 
8.43 0.129 51.36 0.18 

0.340 0.030 0.250 
0.253 0.009 0.253 
0.186 0.003 0.255 
0.136 0.001 0.258 
0.098 tr 0.261 
0.070 0.263 
0.050 0.266 
0.035 0.269 
0.024 0.271 
0.017 0.274 
0.011 0.277 
0.007 0.280 
0.005 0.283 
0.003 0.286 
0.002 0.289 
0.001 0.292 
0.001 0.295 

tr 0.298 
0.301 
0.304 
0.307 
0.310 
0.313 
0.316 
0.319 
0.321 
0.324 
0.327 
0.330 
0.333 
0.335 
0.338 
0.341 
0.343 
0.346 
0.349 
0.351 
0.354 
0.357 
0.359 
0.362 

0.380 
0.385 
0.389 
0.393 
0.397 
0.402 
0.406 
0.410 
0.415 
0.419 
0.423 
0.428 
0.432 
0.436 
0.441 
0.445 
0.450 
0.454 
0.459 
0.463 
0.468 
0.472 
0.477 
0.481 
0.485 
0.489 
0.493 
0.496 
0.500 
0.504 
0.507 
0.511 
0.514 
0.518 
0.521 
0.524 
0.528 
0.531 
0.534 
0.537 
0.540 

Table 18.1\ Compositions of residual peridotite (whole rock wt.% recalculated to 100%) 

calculated using pressure- and temperature dependent equations for major elements 

distribution coefficients. See Chapter 5 for details. F is the degree of melting. tr = trace. 
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Appendix~ f.G.E. analyUcal method 

Because of their very low abundances in silicate rocks, determination of the PGE 

requires special analytical procedures. With the exception of instrumental or radiochemical 

neutron activation analysis, virtually all methods of PGE analysis Include a preconcentration 

stage (Beamish and Van Loon, 1977, Crocket and Cabri, 1981). Despite the disadvantage of 

introducing added complexity, a preconcentration step allows the use of a large sample size 

which, in addition to improving the limit of detection for the PGEs, reduces sampling errors, 

overcomes inhomogeneity and separates the PGE from a complex silicate or ore matrix 

concentrating them into a simpler one. The increased reactivity of the PGEs at elevated 

temperatures, their solubility In molten alkalies and their chalcophilic behaviour makes fusion 

in the presence of a collector ideal for PGE preconcentration. Although many different 

procedures have appeared In the literature, the choice of flux and collector have two things In 

common: to release the PGEs from their matrix and to concentrate them in the collector. 

A variety of metals that are closely associated with the PGE in natural assemblages 

have been used as collectors. These include PbO with Au or Ag, Ni (e.g. Hoffman et al., 

1978), Te (Shazali et al. 1988), and Sn (Crocket and Cabrl, 1981 ). The fusion with PbO and 

Au or Ag as collectors is one of the earliest and best established techniques (e.g. Page et al., 

1980, Crocket and Cabri, 1981) but presents several problems, notably that a skilled analyst 

is required for consistent results. In contrast, collection InNiS, as first examined by Ro~rt et 

al. (1971), offers the advantages of being much simpler and still quantitative for all PGE, Au 

and Ag. These advantages made it the optimum choice for analysis of the PGE by ICP-MS. 

The procedure described below In based on the literature as well as test fusions undertaken 

in the period 1989-1990. A list of the reagents used can be found in Table C.1. 

The samples are dried at 11 OOC for at least 1 hour. The sample, Ni, S and flux are 

weighed accurately on weighing paper, transferred into the clay crucible and thoroughly 

mixed with a teflon rod. For silicates the flux:sample ratio is 4:1 and the flux consists of 

N~C03 and U2B40 7 in a ratio of 1 :2 together with 5 g. of silica, irrespective of the sample 

mass. For chromitites the flux:sample ratio is increased to 10:1 and the flux consists of 

I Mansolas 1991 233 



Appendix C PGE analytical method 

N~C03, U2B40 7 and NaOH in a ratio 1 :2:1 to which 8 g. of silica are added. The mass of the 

collector is always 2.00 g. of Ni and 1.50 g. of S. The crucibles are placed in the furnace and 

kept for 1114 hrs at a temperature of 11500C after which they are removed and left to cool. 

After cooling to room temperature the crucibles are broken and the NiS buttons are 

retrieved. The buttons have a pyrite-yellow colour and are usually shiny on the side that was 

in contact with the melt. Exceptionally PGE-rich samples (e.g. Pt+) produced buttons with a 

reddish tint. Buttons from chromitite fusions were pitted where undissolved chromite grains 

were in contact with them. Sometimes the nickel sulphide buttons had a bluish iridescent 

surface, reminiscent of the alteration products of copper sulphides. However, no systematic 

link was found between such buttons and rock type, flux, and fusion conditions. These 

buttons did not present any dissolution problems. 

Some nickel sulphide beads were polished and examined microscopically in reflected 

light. The buttons took a very good polish and had very few melt inclusions (<1 %), even when 

silicate rocks were fused (compare Wilson et al., 1991). The buttons usually showed 

exsolution of an unidentified phase (Fa-sulphide?) that was distributed uniformly throughout 

the button surface. The shape of the exsolution spots was irregular with sizes varying from 1 

to 20 f'm. Wilson et al. (1991) observed eutectic intergrowths of aNi-Sand a Fe-Ni-5 liquid in 

buttons prepared in a similar way to that described here. Such intergrowths were not 

observed in this study at a magnification of up to X1 000. However, one of the early fusions 

produced a button with large (50-400 I'm) round to ovoid pools of an immiscible liquid (S­

poor?). This was probably caused by a deficiency of sulphur that promoted liquid 

immiscibility. 

After retrieval from the cooled crucibles, the buttons are placed in a 100 ml beaker 

with 50 ml cone. HCI, covered with a watch-glass and heated on a hotplate until all H~ is 

released and no effervescence is observed. Sometimes a residue of PGE is visible, but 

usually the solutions are clear. 

While the solutions are still warm 1 ml of a 1000 ppm Te solution is added, which is 

reduced by the addition of 5 ml of freshly prepared 12.5 wt.% SnCI2 solution. The solutions 
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are then left near the boiling point for at least 1/2 hr for the Te to coagulate, after which 5 ml 

of the SnCI2 solution are added again and the solutions are removed from the hotplate. 

The PGE and Te are then filtered under vacuum (cellulose nitrate or Whatman 542 

filters) and the filter is washed with -300 ml warm HCI 6M and an equal amount of H20. The 

filter is placed in the original beaker, 3 ml cone. HN03 and 1 ml HCI are added and the 

beaker is heated on the hotplate for at least 20 mins or until the filter and Te are dissolved. If 

paper filters are used, the solution is filtered again to remove the paper pulp before 

proceeding. The solution is transferred in the appropriate volumetric flask, the acidity is 

adjusted as necessary and internal standards are added. The final dilution depends on the 

expected PGE content of the solution. In order to keep memory effects, non-linear response 

and wash times to a minimum, the final dilution is adjusted so the concentration of the PGE in 

solution does not exceed that of the 50 ppb artificial standard. All solutions are spiked with 50 

ppb of Nb, In, Re and 11. 

Nickel 

Sulphur 

Silica 

Sodium carbonate 

Lithium tetraborate 

Sodium hydroxide 

cone. HCI 

cone. HN03 

Stannous chloride 

Te, Ni, Nb, In, Re, 11 

solutions 

carbonyl nickel powder, INCO type 123 

sublimed sulphur powder, BDH GPR 

precipitated Si02 powder, acid washed, BDH GPR 

Anhydrous, granular, BDH Analar 

di-lithium tetraborate, Johnson Matthey, Spectroflux 

sodium hydroxide pearl, BDH, Analar 

BDH, Analar 

BDH, Analar 

lin ~I) chloride 2-hydrate, BDH Analar 

1000 ppm Te standard solution, BDH Spectrosol 

Os, lr, Ru, Rh, Pt, 1000 ppm AA Specpure standard solutions, Johnson Matthey 

Pd, Au, Ag solutions 

Table (.C.ll Reagents used for the preconcentration and preparation of solutions. 

Artfficial standard solutions were prepared from an 1 ppm Os, lr, Ru, Rh, Pt, Pd, Au, 

Ag stock solution by dilution to 2, 5, 1 o, and 50 ppb and spiking with 50 ppb of Nb, In, Re and 

11. Acids were added to each solution to match the acidity of the unknowns. 
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The operating conditions of the ICP-MS for a typical run can be found in Table C.2. 

Samples were run in the following way: The four artificial standards were run first, in 

order of increasing concentration, to construct the calibration curve, then the acid and 

reagents blanks, five unknowns, 5ppb artificial standard as drift monitor, acid blank, five 

unknowns, etc. The data from each sample are transferred to an IBM compatible computer 

and processed using spreadsheet software. 

Collector 
External 
1 
2 
3 
4 
P.B. 
D.A. 
F.P. 
P.F. 

4.36 
0.60 
5.24 
4.50 
4.90 
3.28 
5.76 
1.54 
5.04 
4.06 

Argon gas flow: 
Coolant 
Auxiliary 
Nebulizer 
Incident power 
Reflected power 
Measurement mode 
Dwell time 
No. of sweeps 
Wash time 

13.51t/min 
0.51t/mln 
o. 768 It/min 
1320Watts 
3Watts 
Multichannel 
320ms 
250 
-3 mins. 

Table (C.2l Typical operating conditions of the ICP-MS during a run. 

The following modifications have been made to the fusion technique described by 

Robert et al. (1971). 

The size of the collector has been reduced to 2 g. of Ni in order to minimize 

dissolution times, the amount of acid used and to keep the PGE concentration levels of the 

reagent blank to a minimum. Aslf et al. (1988) showed that recovery of the PGE remains 

quantitative to 0.5 g. of Ni. It was found, however, that more than 1 g. of Ni was required to 

consistently produce a good NiS button. 

The amount of S used varies with each published method, but it is always more than 

that needed to produce stoichiometric NiS. The reason is that the lower melting point of S 

together with its volatile nature leads some losses before it reacts with Ni. Although a large 

excess of S is undesirable, because it leads to the production of NiS2 which does not dissolve 

in HCI, the results of more than 1 00 fusions indicates that, as long as the NVS molar ratio is 

0.7-0.9, any excess S is boiled away. This figure however depends on a number of things 

that cannot be easily controlled, such as crucible size, total mass in the crucible, furnace 

power, and it is bound to be different between laboratories. 
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N~B407 has been substituted with U2B4~. since the latter improves dissolution of 

chromite (Borthick and Naldrett, 1984). Massive chromitites however may still present 

dissolution problems, even with an increased flux:sample ratio of 10:1. Substitution of half of 

the U2B40 7 with NaOH, as reported by Parry et al. (1988), improved chromite dissolution, 

although very finely ground samples were still required for best results. 

The amount of silica was not critical in any way for a successful fusion, as far as NiS 

button production and recoveries are concerned, but its absence may lead to the rapid attack 

and decomposition of crucibles along pre-existing cracks, resulting in spillages and furnace 

corrosion. 

The NiS button was not crushed in order to avoid losses and contamination. Despite 

this, dissolution times are not excessive, due to the reduced button size of -2.5 g., and 

buttons are usually completely dissolved within 24 hrs. 

The taking into solution of the final PGE residue may present some problems. It is 

assumed that PGE are present in solid-solution or sub-micron scale exsolution in the NiS 

button. Wilson et al. (1991) investigated the homogeneity of nickel sulphide buttons with 

respect to PGE using accelerator mass spectrometry. At a spatial resolution of 100 14m they 

found that the button was homogeneous. Although this is consistent with the presumed mode 

of distribution of the PGE, a much smaller resolution is needed for conclusive results. It is 

further assumed that the PGE precipitate as sulphides during the dissolution of the NiS button 

in HCI. Because of the low pH and low Eh conditions of the HCI solution, the sulphides the 

PGE sulphides expected are (Burns et al., 1981, Westland, 1981), RuS2, OsS2, lr~3, Rh~3, 

PdS and PtS. The choice of acid is thus dictated by its ability to attack these PGE sulphides. 

According to Burns et al. (1981) all of the above sulphides (with the exception of PtS) are 

soluble in hot HN03. Aqua regia can dissolve Rh~3 and PdS, whereas hot cone. HCI can 

only dissolve PdS. Platinum sulphide is more insoluble. Although PtS2 is "readily dissolved in 

aqua regia", PtS is "insoluble in acids and basesa (Burns et al., 1981). Robert et al. (1971) 

and Date et al. (1987) used cone. HCI+H20 2 for the final dissolution, but both encountered 

incomplete attack. In test fusions, hot HN03 appeared to attack the PGE residue completely 

but presented two problems. Firstly, all of Os and much of Ru were lost due to their 
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conversion to volatile tetroxides, and, secondly, It was found that Pd, and possibly Pt, 

concentrations in the final solution decreased with time to less than 20% within a week. The 

probable cause of this decrease in concentration with time is that Pd and Pt exist as hydrated 

oxidized complexes in an HN03 medium that are apparently less stable than the 

corresponding chloride complexes. Aqua regia appears to be the best acid combination to 

dissolve the PGE residue, effectively attacking the PGE sulphides and providing Cl- ions to 

stabilize Pd and Pt in solution. The problem of the volatility of Os and Ru is not solved but 

can be overcome by the use of teflon screw-top beakers in the final dissolution stage. 

Although the PGE residue is washed with warm HCI, traces of Ni remain on the filter 

and carried in the final solution. Its presence can present problems in the determination of the 

PGE by ICP-MS, by signal suppression and Ni-Ar species overlaps on Ru101. Semi-

quantitative determination of Ni showed that its concentration is 1-2 ppm for a 50 ml final 

volume (cf. Jackson, 1990). Artificial standards without Ni and with matched Ni levels showed 

the same response for all PGE and internal standards, suggesting that at these levels Ni 

does not cause any suppression of signal. The overlap of Ni61.Ar on Ru101 that Jackson et al. 

(1990) reported was not observed, as the comparison of Ru isotope ratios In Table C.3 

shows. The explanation for the absence of this overlap may be the low concentration of Ni, 

compared with that of Jackson et al. (op. cit.), although the differences of the VG PQ1 

instrument compared to the SCIEX Elan model 250 of Jackson et al. (op. cit.) may play an 

important role in suppressing Ar species. 

n Ru100JRu99 Ru101JRu99 Ru102JRu99 Ru104JRu99 

Natural ratio 0.99 1.35 2.49 1.46 
Artificial standards 8 1.03 1.42 2.66 1.62 

1a error 0.03 0.06 0.06 0.05 
Unknowns 17 1.03 1.40 2.58 1.54 
1a error 0.07 0.09 0.18 0.12 

Table CC.3). The ratios of 5 Ru isotopes as determined in 8 artificial standards 

without Ni and in 17 unknowns with 1-2 ppm of Ni. The natural isotopic ratios are shown for 

comparison. 
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Appendix D. Whole-rock chemical analyses (XBfl 

XRF analysis was carried out on pressed powder pellets for trace elements and on 

fused discs for major elements. Loss on ignition was determined gravitometrically by heating 

-0.5 g. of pre-dried sample at 700°C for 3 hrs. 

Pressed powder pellets were made by mixing 8-10 g. of sample powder with up to 10 

drops of a PVA ('Mowiol') binder solution. This was pressed in a hydraulic press at a pressure 

of the order of1 000 kg/cm-2 for about 30 sec. to produce a flat disc. The pellets were dried at 

room temperature and stored in polyethelene bags. 

Fused discs were prepared using 0.4500 g. of dried (but not ignited) sample powder, 

weighed into platinum crucibles. Precisely 5 times as much lanthanum oxide-doped lithium 

tetraborate/lithium carbonate (Johnson Matthey Spectroflux 1 05) was added and the two 

were carefully mixed with a polyethene stirring rod. The dilution of the sample by the flux 

together with the presence of lanthanum oxide (which acts as a heavy absorber), produces 

discs of similar composition, thus minimizing matrix effects during analysis. The crucibles 

were then placed into a preheated electric muffle furnace and fused for 1 hour at 1250°C. 

The elevated temperature and extended fusion time were found necessary in order to 

dissolve chromite grains. After this period the crucibles were removed from the furnace and 

the molten fused beads poured into graphite discs and pressed into shape with an aluminium 

plunger in a steel collar. The discs were then labelled and stored in polyethelene bags. 

All analyses were carried out on a Phillips PW1400 wavelength dispersive X-ray 

spectrometer, with a rhodium tube, equipped with a PW1500/10 sample changer. The 

spectromemter was controlled by the dedicated Phillips software package X41. Accelerating 

potential was 80kV and the electron current was 35mA. Other operating conditions are given 

in Table 0.1. 

Analytical runs consisted of up to 120 analyses, 24 of which were calibration 

standards and the rest of which were run as unknowns. The PW1400 spectrometer corrects 

for drift by utilizing four internal monitor samples. The spectrums were stored on hard disk 

and processed offline using the software package ALPHAS (Phillips Analytical). The data 
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correction used for major elements used influence coefficients (de Jongh, 1973) to correct for 

interelements effects. For trace elements, the rhodium Compton scatter method was used 

(Jenkins and de Vries, 1970), by taking the ratioo of the net (peak-background) element 

intensity to the gross intensity of the rhodium Compton scatter line (Ka). 

Table D.2 shows the analysis of two standard geological materials that were included 

in an analytical run as unknowns. 

The abbreviations in Table D.3 are: 

Hz Harzburgite 

D Mantle sequence dunite 

Pxnite Pyroxenite 

PI Hz Plagioclase Harzburgite (Transition zone) 

PID Plagioclase Dunite 

Serp Serpentinite 

CumD Cumulate Dunite 

Troct Troctolite 

Gb Gabbro 

Dol Dolerite dyke 

Element Crystal Angle +bkg -bkg Peak time bkg time 
Si 3 109.14 4.80 4.20 40 20 
AI 3 145.07 1.40 5.10 40 20 
Fe 2 57.580 2.30 2.00 40 20 
Mg 6 23.325 2.30 2.40 40 20 
Ca 2 113.260 4.30 2.00 40 20 
Na 6 28.11 2.92 100 40 
K 2 136.885 3.00 40 20 
Ti 2 86.28 5.00 40 20 
Mn 1 95.415 4.6. 40 20 

Zr 1 32.155 0.90 80 20 
Sr 1 35.925 0.90 80 20 
Cu 1 65.645 1.10 80 20 
Ni 1 71.355 2.00 80 20 
v 1 13.335 2.00 80 20 
Cr 1 107.305 2.00 80 20 
Sc 1 97.895 2.00 2.00 80 20 
Co 1 77.940 2.00 3.50 80 20 
Zn 1 60.520 1.20 0.80 80 20 

Table (D.l) Analytical conditions for the Phillips PW1400 wavelength dispersive X­

ray spectrometer. The X-ray fluorecence line used is the Ka line. Crystals used are: 1 -

LiF220 ; 2- LiF200; 3- PE; 4- THAP; 5- Ge; 6- PX1. Angle refers to the 20 at which the 

crystal was set for measurement of the line concerned. Positive and negative background 
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angular offsets, where used, are given relative to the position of the peak angle. Count times 

are in seconds. 

PCC-1 Recomended* NIM-D Recomended* 

Si02 41.40 41.67 39.09 38.96 

Ti02 0.008 0.013 0.015 0.020 

A120 3 0.83 0.67 0.29 0.30 

Fe20atotal 8.58 8.25 17.38 16.96 

MnO 0.116 0.119 0.197 0.220 
MgO 42.73 43.43 42.82 43.51 
CaO 0.56 0.52 0.30 0.28 

Ni 2400 2380 
Cr 2697 2730 
Sc 8.35 8.4 
v 37 31 
Co 118 112 

Table (0.2) Analysis of two standard geological samples that were included as 

unknowns during an analytical run. Recomended values from Govindaraju (1989). 

I Mansolas 1991 241 



Appendix D Whole-rock chemical analyses (XRF) 

SAMPLE 655 AG1 AG2 AG3 AG881 AG882 AG883 AG885 
Hz Hz Hz Hz Hz Hz Hz Hz 

Si02 38.52 41.13 41.87 40.86 39.29 36.19 40.46 39.93 
Ti02 0.01 0.00 0.00 0.01 0.03 0.00 0.01 0.02 
Al203 0.34 0.78 0.36 0.44 0.31 0.21 0.35 0.25 
Fe20 2" 7.93 8.29 8.64 8.93 8.66 8.97 8.04 8.99 
MnO 0.12 0.11 0.11 0.11 0.12 0.09 0.11 0.13 
MgO 42.20 43.89 47.36 45.52 40.02 45.03 42.36 39.05 
CaO 0.30 0.57 0.27 0.30 0.44 0.14 0.40 0.19 
Na20 
K20 
L.O.I. 10.75 5.26 1.57 2.05 10.83 8.37 7.08 11.34 
Total 100.16 100.04 100.19 98.21 99.69 99.00 98.81 99.89 
Mg# 0.914 0.913 0.916 0.910 0.902 0.909 0.913 0.896 

Ni 2515 2398 2557 2583 2288 2511 2380 2330 
Cr 1803 2573 2317 2915 2435 4914 2475 2546 
v 26 31 14 24 34 24 21 25 
Sc 1 7 2 3 9 6 7 
Co 118 115 122 128 109 134 111 111 
Zr 
Sr 
Zn 50 44 42 45 45 51 44 44 
Cu 12 14 12 12 14 11 13 12 

SAMPLE 8AK1 8013 809 DR10 DR11 DR14 DR19H DR23 
Hz Hz Hz Hz Hz Hz Hz Hz 

Si02 43.03 41.50 41.00 41.29 41.00 37.71 47.95 40.26 
Ti02 0.01 0.02 0.01 0.01 0.02 0.02 
Al203 1.53 0.61 0.40 0.76 0.57 0.63 0.85 0.16 
Fe20 2" 8.63 8.56 9.03 7.48 7.82 7.95 7.06 8.40 
MnO 0.12 0.12 0.12 0.11 0.11 0.11 0.06 0.11 
MgO 46.43 44.58 46.86 38.62 41.08 41.00 37.43 44.76 
CaO 0.47 0.51 0.35 1.09 0.86 0.55 0.57 0.28 
Na20 
K20 
L.O.I. 0.07 3.63 2.20 10.10 8.41 11.18 6.44 4.71 
Total 100.29 99.51 99.97 99.46 99.86 99.12 100.37 98.69 
Mg# 0.914 0.912 0.912 0.911 0.913 0.911 0.913 0.914 

Ni 2424 2350 2548 2047 2383 2424 2057 2418 
Cr 2534 3499 3128 2763 2575 2398 8633 2405 
v 34 43 28 49 40 36 n 25 
Sc 9 3 12 10 1 15 4 
Co 119 118 128 99 107 114 76 126 
Zr 
Sr 
Zn 43 46 45 41 45 46 40 49 
Cu 12 13 13 12 17 19 48 13 
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SAMPLE DR3 DR31 DR32 DR34 DR36 DR4 DR42 DR44 

Hz Hz Hz Hz Hz Hz Hz Hz 
Si02 40.00 39.75 41.11 43.54 39.13 40.74 42.73 43.47 

Ti02 0.01 0.01 0.03 0.01 0.01 0.00 0.00 0.01 

A1203 0.67 0.83 0.75 0.91 0.44 0.44 0.57 0.41 
Fe20 2* 7.90 7.73 8.38 8.49 9.23 8.14 8.78 8.37 

MnO 0.11 0.10 0.12 0.11 0.12 0.12 0.13 0.11 
MgO 39.06 40.06 41.55 43.83 46.97 39.61 46.69 46.09 
CaO 0.85 0.82 0.75 0.97 0.19 1.31 0.53 0.46 
Na20 

K20 

L.O.I. 10.24 9.61 6.23 1.61 3.86 9.15 0.44 0.20 
Total 98.84 98.91 98.91 99.48 99.94 99.52 99.87 99.12 
Mg# 0.908 0.911 0.908 0.911 0.910 0.906 0.914 0.916 

Ni 2268 2266 2254 2315 2570 2118 2431 2394 
Cr 2748 2428 2616 3099 2788 2596 2579 2955 
v 42 40 41 37 22 54 30 29 
Sc 10 15 10 4 11 1 7 
Co 108 109 113 112 132 108 120 117 
Zr 
Sr 
Zn 46 38 46 46 53 48 47 44 
Cu 13 13 12 12 13 14 11 12 

SAMPLE DR9 KK12 KK24 KK25 KK6 KK7 KK8812 KK881 
3 

Hz Hz Hz Hz Hz Hz Hz Hz 
Si02 39.49 39.56 41.53 42.90 42.53 39.81 40.27 

Ti02 0.00 0.02 0.03 0.01 0.02 0.00 

Al203 0.76 0.62 0.26 0.97 1.03 1.23 0.83 
Fe20 2* 7.51 7.80 8.42 8.74 8.51 8.05 7.80 

MnO 0.11 0.11 0.11 0.13 0.12 0.11 0.10 
MgO 40.91 39.61 44.61 43.73 43.30 39.54 40.67 
CaO 0.71 0.97 0.34 2.44 1.38 0.88 0.81 
Na20 

K20 

L.O.I. 10.53 10.87 3.89 0.99 2.22 8.78 10.34 
Total 100.01 99.54 99.17 99.93 99.09 98.41 100.82 
Mg# 0.915 0.910 0.913 0.909 0.910 0.907 0.912 

Ni 2328 2221 2253 2330 2301 22n 2258 2232 
Cr 2370 2670 2512 2490 2734 2508 2687 3250 
v 36 35 38 29 43 42 42 39 
Sc 7 10 6 4 13 6 8 4 
Co 104 112 109 119 114 112 111 107 
Zr 
Sr 
Zn 46 45 47 44 
Cu 14 14 13 14 
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SAMPLE KK8820 Ll881 Ll8811 Ll8812 Ll8813 Ll8816 L18827H Ll885 
Hz Hz Hz Hz Hz Hz Hz Hz 

Si02 39.00 38.80 41.24 41.41 38.45 38.45 38.51 42.54 

Ti02 0.01 0.00 0.02 0.00 0.01 0.01 0.00 0.01 

Al203 0.60 0.16 0.57 0.54 0.25 0.47 0.22 0.76 
Fe20 2* 7.99 7.88 7.96 8.05 8.49 8.17 7.89 8.46 

MnO 0.11 0.10 0.12 0.11 0.11 0.10 0.10 0.12 
MgO 41.12 45.60 43.21 43.89 48.23 44.72 44.82 43.79 
CaO 0.73 0.15 0.52 0.41 0.16 0.17 0.24 1.11 
Na20 

K20 

L.O.I. 10.17 7.79 6.31 5.23 3.76 6.74 8.39 3.33 
Total 99.73 100.49 99.94 99.64 99.46 98.83 100.17 100.10 
Mg# 0.911 0.920 0.915 0.915 0.919 0.916 0.919 0.911 

Ni 2359 2668 2427 2466 2326 2654 2393 2266 
Cr 2021 2268 2416 2348 2931 2018 2594 2735 
v 31 15 32 33 35 16 35 42 
Sc 8 2 2 6 4 3 3 4 
Co 116 124 110 115 112 122 109 11 
Zr 
Sr 
Zn 46 41 45 43 41 45 40 48 
Cu 14 13 12 12 13 12 11 12 

SAMPLE Ll886 Sl13 Sl21 Sl25 Sl27 Sl33 Sl43 SI46A 
Hz Hz Hz Hz Hz Hz Hz Hz 

Si02 42.23 39.80 38.60 39.46 41.34 38.31 39.24 38.18 
Ti02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Al203 0.73 0.53 0.65 0.71 0.47 0.66 0.73 0.59 
Fe20 2* 8.42 8.42 7.55 7.96 7.82 7.74 7.80 8.10 

MnO 0.12 0.12 0.10 0.12 0.11 0.10 0.11 0.12 
MgO 43.29 40.45 39.60 40.91 42.41 39.28 39.81 41.55 
CaO 0.83 0.82 0.61 1.08 0.95 0.42 0.96 0.56 
Na20 

K20 

L.O.I. 3.03 9.69 12.01 9.76 6.41 12.23 10.17 10.68 
Total 98.65 99.84 99.13 100.00 99.50 98.75 98.83 99.78 
Mg# 0.911 0.905 0.912 0.911 0.915 0.910 0.910 0.911 

Ni 2304 2335 2298 2344 2400 2288 
Cr 2726 2676 2490 3156 2595 2935 
v 42 34 27 36 40 49 
Sc 11 4 12 12 14 11 
Co 111 108 110 105 107 
Zr 
Sr 
Zn 47 53 45 45 42 41 45 45 
Cu 13 13 13 11 12 12 16 12 
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SAMPLE DR18 Sl31 SI14A Sl15 8135 
Hz Hz PI Hz PI Hz Serp 

Si02 42.14 38.46 36.76 38.69 36.73 
Ti02 0.01 0.00 0.03 0.03 0.03 
Al203 0.52 0.27 1.67 0.81 1.32 
Fe20 2* 8.67 7.61 9.30 8.82 11.13 
MnO 0.13 0.10 0.12 0.12 0.12 
MgO 44.81 42.78 41.66 39.74 36.26 
CaO 0.58 0.24 1.12 0.95 0.02 
Na20 
K20 
L.O.I. 3.09 10.22 9.11 9.60 14.22 
Total 99.95 99.69 99.77 98.75 99.84 
Mg# 0.911 0.918 0.899 0.899 0.866 

Ni 2395 2525 2547 
Cr 2346 2193 3236 
v 37 11 64 
Sc 4 6 11 
Co 117 115 151 
Zr 
Sr 
Zn 45 42 46 51 62 
Cu 13 12 22 13 15 

SAMPLE DR17 KK30 KK32 DR1 DR13 DR16 DR19D DR20 
Pxnite Pxnite Pxnite D D D D D 

Si02 51.30 50.76 51.15 34.81 33.31 34.15 39.91 36.14 
Ti02 0.04 0.05 0.05 0.02 0.02 0.01 
Al203 0.97 0.90 0.96 0.12 0.72 0.32 0.14 0.24 
Fe20 2* 5.51 10.45 7.45 8.65 9.45 8.64 8.38 6.75 
MnO 0.15 0.23 0.19 0.11 0.10 0.12 0.11 0.09 
MgO 24.29 25.48 23.47 42.41 40.60 41.73 45.15 46.00 
CaO 16.89 11.54 15.94 0.18 0.25 0.24 0.19 0.09 
Na20 
K20 
L.O.I. 0.66 0.34 0.60 13.05 14.93 13.51 6.05 9.95 
Total 99.82 99.75 99.81 99.34 99.39 98.71 99.93 99.26 
Mg# 0.897 0.829 0.862 0.907 0.895 0.906 0.914 0.931 

Ni 393 256 272 2384 2418 2243 2584 3058 
Cr 2520 778 1230 2350 3322 1998 1405 2406 
v 98 139 127 19 16 21 16 11 
Sc 45 54 62 5 6 2 
Co 16 63 26 130 142 126 125 110 
Zr 
Sr 
Zn 32 51 41 47 50 46 37 41 
Cu 1.3 13 14 13 47 92 13 11 
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SAMPLE DR22 DR26 DR35 DRS DRS KK8817 Ll8810 Ll8815 
D D D D D D D D 

Si02 36.58 34.75 34.66 34.95 35.52 34.58 35.60 42.48 
Ti02 0.02 0.01 0.01 0.02 0.04 0.01 0.02 0.01 
Al203 0.24 0.15 1.26 0.17 0.67 0.23 0.26 0.86 
Fe20 2* 7.98 6.67 8.78 9.44 9.20 9.12 6.49 8.23 
MnO 0.09 0.10 0.11 0.13 0.11 0.12 0.11 0.11 
MgO 45.56 43.47 42.98 42.78 42.28 41.88 45.07 42.71 
CaO 0.02 0.09 0.16 0.12 0.26 0.09 0.13 0.68 
Na20 
K20 
L.O.I. 8.43 14.33 11.59 11.14 11.03 13.72 12.28 4.67 
Total 98.91 99.58 99.55 98.n 99.11 99.75 99.96 99.75 
Mg# 0.919 0.928 0.907 0.900 0.901 0.901 0.932 0.912 

Ni 2701 2806 2497 2129 2260 2326 2858 
Cr 3830 899 1767 2260 2987 1497 2418 
v 21 2 18 16 21 27 17 
Sc 2 2 1 2 
Co 123 114 130 139 128 136 134 
Zr 
Sr 
Zn 40 35 50 44 47 37 48 
Cu 12 27 184 13 12 16 12 

SAMPLE Ll8817 Ll882 Ll8820 Ll8823 Ll8824 Ll8826 L18827D Ll883 
D D D D D D D D 

Si02 37.54 37.53 37.32 35.59 36.74 36.25 39.31 37.04 
Ti02 0.03 0.01 0.00 0.00 0.01 0.01 0.02 0.01 
Al203 0.27 0.24 0.17 0.06 0.52 0.22 0.18 0.35 
Fe20 2* 7.64 8.36 9.02 7.05 7.68 7.73 8.33 7.13 
MnO 0.10 0.10 0.11 0.12 0.07 0.08 0.12 0.10 
MgO 46.90 45.36 45.88 45.19 45.42 44.38 44.18 47.04 
CaO 0.13 0.19 0.25 0.07 0.37 0.12 0.36 0.14 
Na20 
K20 
L.O.I. 6.97 6.49 7.28 10.82 8.30 10.04 7.18 4.66 
Total 99.59 98.28 100.02 98.88 99.10 98.82 99.67 96.45 
Mg# 0.924 0.915 0.910 0.927 0.922 0.919 0.913 0.929 

Ni 2823 2727 2695 3215 2756 2759 2669 3055 
Cr 2642 2871 2274 726 5878 4496 2576 1892 
v 13 21 16 11 28 13 28 11 
Sc 1 2 1 4 5 
Co 120 126 142 118 119 120 119 115 
Zr 
Sr 
Zn 42 47 50 40 43 40 44 38 
Cu 12 11 12 13 12 12 13 12 
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SAMPLE Ll884 KK8816 Sl10 Sl16 SI16A Sl17 Sl18 Sl19 
D CumD CumD CumD CumD CumD CumD CumD 

Si02 35.86 35.77 37.34 37.18 39.48 38.87 33.44 34.18 
Ti02 0.02 0.02 0.07 0.06 0.01 0.03 0.01 0.03 
Al203 0.23 0.59 3.41 3.76 0.83 0.70 0.49 0.31 
Fe20 2* 7.75 9.93 9.40 9.11 8.07 9.83 9.36 9.05 
MnO 0.12 0.10 0.13 0.12 0.12 0.14 0.11 0.12 
MgO 45.06 38.57 35.80 36.97 40.20 37.97 41.21 40.84 
CaO 0.15 0.12 1.57 0.69 0.60 0.05 0.13 0.11 
Na20 

K20 

L.O.I. 11.51 13.23 11.88 12.38 10.24 12.15 13.99 14.40 
Total 100.70 98.33 99.60 100.27 99.56 99.75 98.74 99.05 
Mg# 0.920 0.885 0.883 0.890 0.908 0.885 0.897 0.900 

Ni 2817 2249 1944 2228 
Cr 1824 2171 2213 2537 
v 14 27 40 42 
Sc 1 4 11 9 
Co 122 145 120 113 
Zr 
Sr 
Zn 45 52 49 53 44 47 
Cu 13 14 13 21 15 15 

SAMPLE Sl23 SI31A Sl37 Sl38 Sl40 Sl7 SIS Sl9 
CumD CumD CumD CumD CumD CumD CumD CumD 

Si02 37.21 38.25 38.71 36.34 39.24 39.51 37.27 

Ti02 0.05 0.05 0.02 0.03 0.02 0.01 0.06 

A1203 1.91 2.47 0.66 3.42 1.02 0.95 3.13 
Fe20 2* 11.67 8.97 10.00 9.75 7.82 7.51 9.28 

MnO 0.12 0.13 0.10 0.12 0.10 0.11 0.12 
MgO 35.83 36.22 37.18 36.29 38.34 37.33 38.08 
CaO 0.21 0.16 0.42 0.19 0.04 0.04 1.28 
Na20 

K20 

L.O.I. 11.72 12.49 11.53 14.60 12.62 14.58 9.71 
Total 98.71 98.73 98.61 100.74 99.20 100.04 98.92 
Mg# 0.859 0.889 0.881 0.881 0.907 0.908 0.891 

Ni 1709 255 2231 2119 2032 2433 1977 
Cr 3964 657 2626 1980 3374 2711 2569 
v 48 80 51 34 33 41 48 
Sc 12 26 10 11 13 6 6 
Co 148 10 127 132 115 112 122 
Zr 
Sr 
Zn 58 51 47 49 41 
Cu 29 14 15 12 12 
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SAMPLE KK887 GM4 KK28 KK8821 Sl20 8139 KK886 KK8811 
CumD PID PID PID PID PID PID PI Ddvke 

Si02 38.21 37.46 35.81 33.91 36.05 42.35 37.19 38.44 
Ti02 0.06 0.04 0.08 0.02 0.02 0.09 0.06 0.05 
Al203 2.83 2.48 1.39 1.75 2.15 1.17 2.72 3.68 
Fe20 2* 8.23 9.69 10.09 9.16 10.31 8.09 8.37 8.95 
MnO 0.11 0.11 0.13 0.08 0.13 0.15 0.11 0.11 
MgO 36.49 36.20 38.73 40.12 39.26 32.25 37.17 36.22 
CaO 0.53 0.53 1.32 0.09 1.18 8.n 1.94 3.39 
Na20 
K20 
L.O.I. 12.12 12.08 10.53 12.98 9.92 6.89 10.47 8.31 
Total 98.56 98.59 98.07 98.11 99.01 99.75 98.03 99.16 
Mg# 0.898 0.881 0.884 0.897 0.883 0.888 0.898 0.889 

Ni 1946 1471 1967 2322 1870 1058 1885 1728 
Cr 3685 3109 3393 6172 3247 2687 3628 3142 
v 53 36 46 43 31 99 57 48 
Sc 7 2 8 10 4 29 10 11 
Co 112 139 132 127 135 64 107 108 
Zr 
Sr 
Zn 46 43 53 49 54 40 48 48 
Cu 16 12 29 20 23 32 17 14 

SAMPLE KK16 KK18 KK20 KK33 KK36 KK19 KK46 Sl41 
Wehrlite Wehrlite Wehrlite Wehrlite Wehrlite Troct Troct Troct 

Si02 40.94 40.80 40.10 37.84 41.40 41.00 38.27 37.96 
Ti02 0.10 0.05 0.07 0.07 0.04 0.07 0.04 0.07 
Al203 2.40 3.03 9.03 6.56 1.01 13.94 7.23 6.02 
Fe20 2* 8.19 8.19 7.65 9.64 7.33 5.08 10.68 9.22 
MnO 0.12 0.14 0.12 0.13 0.11 0.08 0.15 0.14 
MgO 32.19 32.49 29.76 32.61 37.92 21.66 31.08 31.49 
CaO 5.22 6.12 5.53 4.00 1.22 10.83 3.85 5.08 
Na20 0.47 0.74 
K20 
L.O.I. 9.97 8.94 7.05 7.62 9.67 6.50 8.65 9.63 
Total 99.13 99.n 99.79 98.46 98.70 99.91 99.95 99.61 
Mg# 0.886 0.887 0.885 0.870 0.911 0.894 0.852 0.872 

Ni 1015 1138 1233 1384 2083 845 1155 1111 
Cr 1876 3984 2025 1976 3117 1022 1786 1435 
v 62 79 42 33 64 45 27 53 
Sc 19 22 14 7 15 15 4 22 
Co 92 72 70 111 95 30 106 91 
Zr 6 2 10 2 2 
Sr 42 5 100 13 6 
Zn 45 43 51 50 42 32 57 48 
Cu 21 30 21 26 19 18 27 39 
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SAMPLE SIS GM5 KK1 KK15 KK21 KK50 KK8810 Sl11 

Tract Gb Gb Gb Gb Gb Gb Gb 
Si02 38.63 39.61 49.05 43.35 43.22 46.40 47.32 44.57 

Ti02 0.13 0.04 0.41 0.09 0.06 0.15 0.28 0.05 

Al203 5.13 16.41 15.61 12.71 21.19 24.75 15.06 25.03 
Fe20 2* 9.20 4.77 7.29 4.25 3.73 3.53 5.83 2.11 

MnO 0.12 0.07 0.16 0.10 0.07 0.07 0.13 0.04 
MgO 34.34 19.90 10.05 19.00 13.86 6.58 12.64 4.66 
CaO 2.30 12.34 12.81 15.96 13.28 15.37 15.89 18.80 
Na20 0.55 2.38 0.57 1.05 1.42 1.10 0.86 

K20 0.01 0.21 0.01 0.16 

L.O.I. 8.35 5.72 1.16 3.44 3.11 1.10 0.92 3.27 
Total 98.20 99.41 99.12 99.46 99.59 99.37 99.17 99.55 
Mg# 0.881 0.892 0.732 0.899 0.881 0.787 0.812 0.814 

Ni 1671 851 162 446 383 201 223 117 
Cr 2585 797 374 1986 324 435 726 134 
v 64 25 173 73 28 56 125 28 
Sc 17 19 36 35 24 24 47 28 
Co 110 26 17 11 10 10 
Zr 4 7 19 8 9 11 15 22 
Sr 6 81 93 80 95 80 57 263 
Zn 54 32 46 21 24 30 35 13 
Cu 15 13 28 13 29 21 29 16 

SAMPLE Sl3 Sl36 SIS DR15 SI42B KK23 Sl32 Sl4 

Gb Gb Gb Gbdvke Gbdvke Dol Dol Dol 
Si02 45.85 43.84 42.98 44.20 46.01 43.02 44.65 49.74 

Ti02 0.24 0.14 0.17 0.05 0.16 0.62 0.10 0.19 

Al203 17.25 18.94 14.76 16.63 18.12 16.49 15.01 10.94 
Fe20 2* 5.99 6.03 8.18 6.71 4.04 11.90 3.83 10.57 

MnO 0.13 0.11 0.14 0.14 0.08 0.17 0.07 0.17 
MgO 12.45 14.24 18.83 13.44 12.31 6.39 16.55 15.65 
CaO 15.41 13.62 11.00 14.21 16.17 18.65 15.09 7.51 
Na20 1.03 0.94 0.89 1.48 1.09 0.80 1.33 

K20 0.01 0.01 0.29 

L.O.I. 1.05 1.79 2.53 2.83 1.07 2.67 3.00 2.64 
Total 99.40 99.66 99.48 99.69 99.04 99.91 99.10 99.02 
Mg# 0.805 0.824 0.820 0.799 0.858 0.516 0.896 0.746 

Ni 247 364 400 342 319 82 353 208 
Cr 733 470 518 372 992 78 695 800 
v 118 64 83 131 79 306 86 231 
Sc 34 25 28 42 35 41 39 36 
Co 15 23 47 21 28 1 46 
Zr 3 10 12 26 21 45 16 14 
Sr 43 71 65 336 206 106 187 53 
Zn 37 39 43 41 25 57 20 68 
Cu 37 31 29 12 23 14 11 41 

Table (0.3) Major and trace element composition of Pindos ultramafic and mafic 

rocks. 
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Appendix E. Microprobe analyses 

Mineral analyses were obtained using a modified Cambridge Instruments Geoscan 

microprobe, fitted with a Link 860 energy-dispersive detector system centred on a silicon 

solid-state detector. The microprobe was operated at a beam current of SnA with an 

accelerating voltage of 15kV, and used Lidoped Sidetectors, maintained at the temperature of 

liquid nitrogen to reduce electronic noise. A 'livetime' of 100 sec (corresponding to -120 sec 

real-time) was used for each analysis. Processing was carried out using a Link Systems AN 

1 0/56AS unit. Spectra of the standards are held on hard disc in the on-line computer. These 

are compared with the unknown spectra, calibrated using a cobalt metal standard for the 

calculation of element concentrations. The Co analysis thus corrects for any longterm drift, 

acting as a 'monitor' sample. In addition, the Co calibration was monitored with natural olivine, 

jadeite, and wollastonite standards during each analytical run. The analyses were performed 

on standard, carbon-coated, polished thin sections. Si, Ti, AI, Mg, Fe, Ca. Na, K, Mn, Ni and 

Cr were all analysed simultaneously, using the Ka peak in all cases (Fe La was also 

measured but only for correction purposes). ZAF corrections were applied using Link-supplied 

software that uses a procedure based on the TIM1 program of Duncumb and Jones (1969). 

The atomic number correction described by Duncumb and Reed (1968) is used, together with 

Reed's ( 1965) fluorescence correction. The absorbtion effects are calculated using Philibert's 

(1963) equation, using Heinrich's (1967) absorbtion coefficients, and bulk mass absorbtion 

coefficients as calculated by Yakowitz et al. (1973). 

In the following tables the first column identifies the mineral that was probed. The first 

3-6 digits are the sample name, followed by a two digit mineral identifier (i.e. OL, OX, CX, or 

SP), followed by a serial analysis number. C and R refer to core and rim of a grain 

respectively and may be followed by a number if more than one places were probed. A and B 

refer to different analyses of the same grain. 
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Si02 Cr20 3 FeO"' MnO MgO NiO Total 

ag20L8C 41.1 0.14 8.3 0.04 48.4 0.42 98.35 
ag20L8R 41.7 n.d. 8.5 0.08 49.4 0.42 100.14 
ag20L9 41.8 0.02 8.9 n.d. 48.1 0.24 99.00 
ag20L10 43.2 0.05 8.0 0.12 46.9 0.55 98.88 
ag20L11 41.3 0.03 8.6 0.05 48.9 0.37 99.21 
ag20L12 41.5 n.d. 8.5 0.03 49.3 0.16 99.49 
ag30L6 41.5 0.20 9.0 0.14 49.1 0.50 100.44 
ag30L7C 41.8 n.d. 8.6 0.19 49.1 0.54 100.19 
ag30L7R 41.6 n.d. 9.0 0.16 49.7 0.46 100.92 
ag30L8C 41.8 0.05 8.8 0.09 48.8 0.42 100.05 
ag30L9 41.8 0.18 9.0 0.22 49.0 0.33 100.57 
ag30L10 40.9 n.d. 9.0 0.10 47.9 0.46 98.43 
ag30L11 41.6 0.04 8.8 0.19 48.8 0.36 99.75 
ag30L12 41.5 n.d. 9.1 0.07 48.9 0.30 99.87 
ag30L13 42.2 n.d. 8.7 0.27 48.3 0.45 99.86 
ag8830L1 41.2 n.d. 8.3 0.14 50.4 0.36 100.36 
bak10L 1 41.3 0.07 8.4 0.12 48.1 0.27 98.27 
bak10L 18 41.5 0.04 8.8 n.d. 48.5 0.54 99.36 
bak10L1R 43.3 0.26 8.2 0.07 47.1 0.16 99.04 
bak10L2 41.5 n.d. 8.9 0.17 48.5 0.32 99.35 
bak10L2B 41.2 0.04 8.5 0.17 47.9 0.59 98.46 
bak10L3 41.1 n.d. 8.3 0.07 48.5 0.38 98.36 
bak10L3R 43.4 0.01 8.1 0.24 47.5 0.28 99.52 
bak10L4C 41.3 0.02 7.8 0.06 48.7 0.57 98.45 
bak10L4R 41.8 0.06 8.2 0.15 49.7 0.48 100.27 
bak10L5C 41.8 0.03 8.9 0.08 48.7 0.38 99.84 
bak10L5R 41.4 n.d. 8.7 0.14 48.6 0.57 99.45 
bak10L6 41.7 0.09 8.1 0.20 49.7 0.40 100.25 
bo130L1 41.3 0.03 8.9 0.18 48.5 0.50 99.43 
bo130L2 42.0 0.01 9.1 0.07 48.2 0.22 99.55 
bo130L3 40.8 0.04 8.9 0.11 48.8 0.54 99.17 
bo130L4 40.9 0.10 8.8 0.18 48.0 0.52 98.44 
bo130L5 40.9 0.06 8.9 0.10 47.8 0.45 98.17 
bo140L1 41.2 n.d. 8.4 0.04 48.6 0.43 98.58 
bo140L2 41.4 n.d. 8.4 0.06 48.2 0.44 98.52 
bo140L3 42.1 n.d. 8.8 0.06 48.8 0.17 99.98 
bo140L4 42.1...- 0.01 8.4 0.27 48.5 0.25 99.56 
bo180L5 41.9 0.03 9.1 0.19 47.0 0.48 qR 7n 

bOltlULI 41.4 n.a. 'd./ u.~J 47.8 0.35 99.45 
bo180L8 41.4 n.d. 9.0 0.19 47.7 0.55 98.80 
bo220L6 41.1 n.d. 10.3 0.03 47.6 0.54 99.50 
bo220L7 41.4 n.d. 10.0 ·.· 0.28 47.1 0.50 99.28 
bo220L8 40.9 n.d. 10.0 0.17 47.0 0.12 98.16 
bo220L9 41.3 0.09 9.8 0.14 47.7 0.41 99.38 
bo60L5 40.8 0.05 9.2 0.22 47.5 0.54 98.37 
bo60L6 41.5 n.d. 9.7 0.06 48.4 0.29 99.96 
bo60L7 41.3 0.13 9.7 0.05 48.3 0.59 100.19 
bo60L8 41.0 0.04 9.5 0.18 47.6 0.27 98.52 
cmt7300L2 42.0 n.d. 7.9 0.16 50.0 0.55 100.66 
cmt7300L3 41.8 n.d. 7.4 0.07 49.5 0.39 99.23 
cmt7300L4 41.9 0.02 7.5 0.24 50.0 0.50 100.18 
cmt7300L5 42.3 n.d. 7.8 0.06 50.0 0.51 100.67 
dr110L6 42.1 0.01 8.9 0.16 49.0 0.47 100.56 
dr110L7 41.8 n.d. 8.5 0.24 49.0 0.37 99.87 
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Appendix E Microprobe analyses 

Si02 Cr20 3 FeO* MnO MgO NiO Total 

dr160L1 41.3 0.25 9.5 0.10 48.5 0.47 100.11 
dr160L2 41.4 n.d. 8.5 0.20 48.0 0.05 98.09 
dr160L3 42.2 0.07 8.8 0.09 49.3 0.09 100.50 
dr160L4 41.5 0.01 9.2 0.23 48.1 0.30 99.35 
dr160L5 41.7 n.d. 9.1 0.36 49.2 0.31 100.71 
dr160L6 41.0 0.04 9.0 0.24 47.7 0.42 98.43 
dr200L1 42.1 0.10 6.9 n.d. 49.9 0.15 99.14 
dr200L2 41.6 0.17 6.6 0.16 50.0 0.42 98.91 
dr200L3 41.9 0.10 7.0 0.06 50.1 0.50 99.65 
dr200L4 41.5 0.00 7.0 0.23 49.5 0.46 98.72 
dr220L4 41.0 0.17 7.7 n.d. 48.8 0.33 98.01 
dr220L5 41.2 0.53 7.8 0.16 48.8 0.07 98.52 
dr220L6C 41.3 0.03 7.7 0.13 48.5 0.46 98.10 
dr220L6R 41.9 n.d. 8.1 0.12 48.9 0.26 99.28 
dr220L7 41.3 0.15 8.1 0.02 49.5 0.69 99.76 
dr230L10 41.3 0.03 8.5 0.17 48.3 0.44 98.70 
dr230L7 41.2 0.14 8.7 0.18 48.0 0.38 98.64 
dr230L8 41.1 0.06 8.2 0.27 48.6 0.46 98.69 
dr230L9 41.7 n.d. 9.1 0.14 48.5 0.53 99.99 
dr230L1 41.7 0.67 7.8 0.14 49.8 0.41 100.60 
dr230L2 41.6 n.d. 8.6 0.15 48.8 0.30 99.45 
dr230L3 41.8 n.d. 8.3 0.13 48.9 0.43 99.54 
dr230L9 41.0 n.d. 8.0 0.13 48.8 0.72 98.71 
dr230L10 41.2 n.d. 7.9 0.28 49.1 0.46 98.98 
dr30L7 42.0 n.d. 9.2 0.39 49.2 0.58 101.33 
dr30L8 41.6 n.d. 8.7 0.16 48.9 0.49 99.90 
dr340L6 41.3 0.13 9.3 0.21 48.0 0.45 99.40 
dr340L7 40.8 0.01 9.4 0.13 47.7 0.41 98.44 
dr420L1 41.8 0.05 9.1 0.13 48.4 0.46 99.99 
dr420L2 41.4 n.d. 9.5 0.11 47.9 0.24 99.11 
dr420L3 41.1 n.d. 8.8 0.14 47.9 0.42 98.44 
dr420L4 41.9 0.08 8.7 0.19 48.0 0.58 99.48 
dr420L5 41.2 n.d. 9.0 0.15 47.9 0.21 98.46 
dr60L5 40.7 0.07 9.6 0.18 47.4 0.27 98.26 
dr60L6 41.1 n.d. 9.6 0.09 47.3 0.06 98.10 
dr90L1 41.7 0.02 7.9 0.01 48.4 0.39 98.37 
dr90L2 41.6 0.05 8.1 0.09 48.5 0.22 98.51 
dr90L3 42.2 n.d. 8.2 0.18 49.1 0.16 99.88 
dr90L4 41.4 n.d. 7.9 0.23 48.8 0.42 98.71 
dr90L5 41.2 0.03 8.0 0.16 48.5 0.54 98.37 
kk280L11 40.5 0.05 11.5 0.22 46.0 0.30 98.53 
kk280L12 40.4 n.d. 11.2 0.38 45.9 0.36 98.29 
kk280L13 40.3 n.d. 11.1 0.23 46.0 0.44 98.02 
kk70L 1 41.7 0.02 8.7 0.14 48.4 0.32 99.30 
kk70L2 41.2 n.d. 8.6 0.29 48.6 0.51 99.23 
kk70L3 41.8 0.11 8.6 0.15 47.9 0.42 98.98 
kk88120L1 41.1 n.d. 9.2 0.18 48.3 0.60 99.43 
kk88120L2 41.5 n.d. 9.2 0.05 48.4 0.23 99.29 
kk88120L3 41.3 n.d. 8.8 0.20 48.2 0.24 98.66 
kk88120L5 41.4 0.09 8.8 0.15 48.2 0.50 99.23 
kk88130L5 41.3 n.d. 8.6 0.18 48.6 0.31 99.00 
kk88130L6 41.7 n.d. 8.8 0.13 49.2 0.37 100.19 
kk88130L7 41.4 n.d. 8.8 0.11 49.1 0.40 99.80 
kk88130L8 41.4 0.02 8.4 0.15 48.4 0.04 98.50 

I Mansolas 1991 252 



Appendix E Microprobe analyses 

8102 Cr20 3 FeO* MnO MgO NiO Total 

kk88190L8 40.8 n.d. 9.2 0.32 48.1 0.25 98.72 
kk88190L9 41.0 n.d. 9.1 0.30 47.5 0.15 98.06 
kk88190L10 41.0 n.d. 9.4 0.17 47.5 0.32 98.45 
kk88290L1 41.3 n.d. 8.9 0.10 47.9 0.53 98.68 
kk88290L2 41.5 n.d. 8.7 0.23 48.7 0.48 99.72 
kk88290L2B 41.6 n.d. 9.0 0.13 49.0 0.58 100.24 
kk88290L3 41.1 n.d. 9.1 0.14 48.4 0.46 99.13 
kk88290L4C 41.4 0.00 8.7 0.21 48.3 0.12 98.76 
kk88290L4R 41.3 n.d. 9.1 0.31 48.5 0.41 99.64 
kk88240L1 41.6 0.04 7.7 0.31 48.8 0.50 98.98 
li88110L 1 41.2 0.07 8.5 0.18 48.5 0.40 98.82 
li88110L4 41.5 0.09 8.5 0.23 48.9 0.40 99.65 
li88110L6 41.5 0.02 8.6 0.15 48.4 0.41 99.10 
li88160L6 41.3 n.d. 8.2 0.18 48.3 0.47 98.46 
li88160L7 41.8 0.00 8.2 0.13 48.9 0.35 99.41 
li88190L1C 41.5 n.d. 8.7 0.09 48.9 0.58 99.77 
li88190L1R 40.6 0.08 8.9 0.24 48.0 0.42 98.12 
li88190L2 42.1 0.18 8.1 0.25 49.0 0.34 99.94 
li88190L3 41.2 0.02 9.1 0.06 48.5 0.56 99.41 
li88210L1 41.0 n.d. 8.3 0.21 48.4 0.54 98.48 
li88210L2 40.9 n.d. 8.6 0.20 48.2 0.33 98.17 
li88210L3 41.3 0.08 8.5 0.22 48.6 0.37 99.07 
li88210L4 42.0 0.06 8.2 0.18 49.2 0.39 99.96 
li88240L1 41.2 0.02 7.3 0.20 49.5 0.50 98.75 
li88240L2 41.5 0.04 7.1 0.25 49.3 0.30 98.54 
li88240L3 41.3 0.03 6.9 0.14 49.4 0.32 98.17 
li88240L4 41.5 0.03 7.2 0.20 49.9 0.43 99.22 
li88240L5 41.3 0.02 7.4 0.07 49.1 0.29 98.20 
li88240L6 41.8 0.01 7.3 0.30 50.0 0.50 99.85 
li88240L7 41.9 0.00 7.4 0.27 49.6 0.31 99.41 
li88240L8 41.4 0.01 7.0 0.16 49.6 0.53 98.73 
li88240L9 41.8 0.09 7.4 0.21 49.6 0.44 99.50 
li88240L10 41.5 n.d. 6.8 0.15 49.4 0.39 98.21 
li88240L11 41.3 0.04 6.9 0.29 49.8 0.24 98.58 
li88240L12 41.6 n.d. 7.4 0.20 49.4 0.23 98.88 
li88240L12A 41.9 0.04 7.3 0.11 49.5 0.48 99.35 
li88240L 13C 41.4 0.09 7.0 0.19 49.0 0.51 98.24 
li88240L 13R 41.4 0.04 7.2 0.14 49.7 0.42 98.92 
li88260L1 41.6 0.02 8.2 0.01 49.4 0.52 99.70 
li88260L2 41.2 n.d. 7.9 0.01 48.9 0.51 98.53 
li88260L3 41.5 n.d. 8.0 0.05 49.9 0.47 99.92 
li88260L4 41.4 0.10 7.9 0.01 48.8 0.38 98.48 
li88260L5 41.3 0.10 7.9 0.12 48.5 0.20 98.06 
si430L4 41.4 n.d. 9.0 0.18 48.3 0.46 99.23 
si430L5 40.9 0.04 8.8 0.36 47.9 0.40 98.38 
si450L14 41.5 0.06 9.0 0.15 48.3 0.49 99.53 
si450L15 40.7 0.02 8.9 0.05 48.2 0.29 98.10 
si450L16 40.9 0.10 9.2 0.05 47.9 0.34 98.48 

Table (E.1) Olivine analyses. 
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Appendix E Microprobe analyses 

Si02 Ti02 Al20 3 Cr20 3 FeO* MnO MgO CaO NiO Total 

ag20X1 57.2 n.d. 0.58 0.19 5.56 0.18 33.8 0.50 0.05 98.07 
ag20X2 58.0 0.06 0.85 0.34 5.53 0.25 33.5 1.26 n.d. 99.75 
ag20X3 58.0 0.04 0.75 0.46 5.49 0.18 33.7 1.21 0.03 99.94 
ag30X1C 58.0 0.04 0.86 0.51 5.66 0.09 33.0 1.40 n.d. 99.51 
ag30X1R 58.2 0.01 0.97 0.38 5.69 0.13 33.9 0.92 0.14 100.35 
ag30X2C 57.9 n.d. 0.97 0.47 5.68 0.21 33.8 1.08 0.25 100.37 
ag30X2R 58.4 0.10 0.94 0.55 5.77 0.10 33.9 1.01 0.35 101.08 
ag30X3C 57.6 0.06 0.71 0.55 5.53 0.03 33.2 1.45 0.15 99.31 
ag30X3R 57.6 0.08 0.45 0.45 5.47 n.d. 33.5 0.75 0.28 98.58 
ag30X4C 58.3 n.d. 0.98 0.40 5.78 0.11 33.9 1.17 0.22 100.79 
ag30X4R 57.6 0.06 0.66 0.29 5.80 0.09 33.7 0.83 0.20 99.29 
ag30X48 55.5 0.03 1.19 0.44 5.93 0.19 34.3 1.12 0.20 98.98 
ag8830X1C 58.3 n.d. 1.28 0.41 5.63 0.17 35.0 0.7il 0.21 101.72 
ag8830X1R1 57.0 0.01 1.58 0.44 5.72 0.25 34.3 0.74 n.d. 99.97 
ag8830X1R2 58.5 n.d. 1.32 0.52 4.90 0.08 33.2 0.68 0.15 99.38 
ag8830X2 53.5 0.01 0.86 0.13 6.38 0.35 38.8 0.49 0.42 100.89 
ag8830X3R 55.6 n.d. 1.01 0.26 6.16 0.11 34.0 0.92 n.d. 98.10 
ag8830X3C 57.8 0.09 0.94 0.35 5.42 0.17 34.6 1.07 0.03 100.49 
ag8830X4 58.6 0.08 0.94 0.40 5.37 0.05 35.7 0.66 n.d. 101.82 
bak10X1 56.3 0.07 1.86 0.61 5.39 0.17 32.8 1.09 n.d. 98.28 
bak10X1 R 56.4 0.04 1.83 0.54 5.80 0.16 32.7 0.69 0.08 98.27 
bak10X1C 57.1 n.d. 1.52 0.25 5.57 0.18 33.7 0.48 0.02 98.90 
bak10X2 57.2 0.04 1.91 0.60 5.55 0.19 32.9 1.29 0.18 99.81 
bak10X2R 57.4 n.d. 1.95 0.55 5.43 0.19 33.5 0.79 0.02 99.87 
bak10X2R2 57.3 0.00 2.04 0.77 5.48 0.21 33.1 0.91 0.03 99.79 
bo130X1 57.1 0.10 0.70 0.51 5.69 0.13 32.8 1.20 0.26 98.49 
bo130X2 57.0 0.03 0.75 0.37 5.62 0.26 32.7 1.11 0.23 98.06 
bo130X3 57.4 0.05 0.82 0.46 6.02 0.11 33.2 1.04 0.33 99.37 
bo130X4 57.5 0.02 0.88 0.39 5.78 0.21 32.8 1.08 0.01 98.65 
bo180X2C 55.8 0.09 4.02 0.65 6.26 0.11 32.4 0.93 0.17 100.42 
bo180X3C 55.4 0.12 3.61 0.49 6.30 0.24 32.2 0.88 0.13 99.33 
bo180X3R 55.4 n.d. 3.34 0.36 5.90 0,31 32.1 0.62 0.14 98.12 
bo180X4C 56.5 0.07 3.11 0.37 6.26 0.31 32.7 0.66 0.02 100.01 
bo180X4R 56.0 n.d. 2.99 0.30 6.31 0.19 32.9 0.68 0.00 99.39 
bo180X5 56.8 n.d. 3.37 0.60 6.50 0.18 33.1 0.59 0.10 101.17 

bo180X7 55.8 0.04 3.80 0.79 6.31 0.05 32.2 0.60 0.06 99.67 
bo220X5 53.5 0.10 3.88 0.59 6.58 0.01 31.4 3.20 0.14 99.41 
bo220X6 54.7 0.18 3.76 0.55 6.44 0.22 31.2 1.20 0.09 98.27 
bo220X7 55.0 0.06 3.50 0.56 6.98 0.08 31.9 0.74 0.03 98.90 
bo220X8 54.3 n.d. 3.81 0.73 5.96 0.31 29.5 4.12 0.18 98.89 
bo220X9 54.9 0.08 3.43 0.48 6.21 0.23 31.9 0.63 0.24 98.07 
bo60X4 55.5 0.08 3.04 0;53 6.38 0.28 32.4 0.47 0.04 98.68 
bo60X5 55.6 0.03 4.07 0.86 6.02 0.11 31.8 1.30 0.00 99.84 
bo60X6 54.9 0.18 4.15 0.65 6.23 0.17 30.8 1.41 0.16 98.61 
bo60X6 56.1 n.d. 3.86 0.51 6.17 0.17 31.5 1.62 n.d. 99.85 
bo60X7 55.3 0.10 3.28 0.53 6.24 0.08 31.9 1.38 0.16 98.95 
bo60X8 55.5 0.12 3.69 0.80 6.21 0.22 32.2 0.59 n.d. 99.27 
bo60X9 55.6 0.10 3.31 0.64 6.26 0.17 31.7 0.92 0.22 98.94 
dr110X5 56.8 n.d. 1.93 0.35 5.89 0.28 32.8 1.17 n.d. 99.26 
dr110X6 56.8 0.04 2.05 0.62 5.86 0.26 32.9 1.49 0.04 100.04 
dr110X7 56.8 n.d. 1.32 0.59 5.62 0.07 33.1 0.87 0.14 98.55 
dr170X8 56.2 0.00 0.85 0.39 8.67 0.22 30.8 1.37 0.05 98.58 
dr170X9 56.2 n.d. 1.09 0.30 9.98 0.16 30.0 1.59 0.15 99.46 
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Appendix E Microprobe analyses 

Si02 Ti02 Al20 3 Cr20 3 FeO* MnO MgO CaO NiO Total 

dr230X2 56.7 n.d. 1.26 0.62 5.44 0.18 32.9 0.98 n.d. 98.05 
dr230X3 57.0 n.d. 1.48 0.71 5.68 0.06 33.0 1.25 0.27 99.46 
dr230X4 57.2 n.d. 1.66 0.46 5.73 0.12 33.0 1.03 n.d. 99.17 
dr230X1 56.0 0.03 1.20 0.40 5.98 0.16 34.2 0.64 0.20 98.80 
dr230X2 57.6 0.04 1.56 0.63 5.61 0.09 32.8 1.29 0.06 99.67 
dr230X28 56.7 0.04 1.59 0.65 5.40 0.13 33.3 0.86 0.02 98.69 
dr230X3 56.4 n.d. 1.49 0.73 5.31 0.12 33.0 1.03 0.14 98.16 
dr230X10 56.9 n.d. 1.58 0.40 5.45 0.06 33.4 0.75 0.21 98.75 
dr30X1 56.6 n.d. 1.50 0.49 5.81 0.23 32.9 1.05 0.05 98.55 
dr30X2 55.3 0.09 1.33 0.54 6.39 0.20 33.5 2.26 0.06 99.70 
dr30X3 57.6 n.d. 1.50 0.38 5.99 0.10 33.7 0.62 n.d. 99.90 
dr30X4 57.1 n.d. 1.85 0.59 5.89 0.29 33.4 0.60 n.d. 99.69 
dr30X5 57.2 n.d. 1.77 0.51 5.89 0.15 33.4 0.6'1 0.19 99.77 
dr340X5 56.3 0.05 1.71 0.92 6.02 0.17 32.6 0.89 0.14 98.78 
dr340X6 56.7 n.d. 1.29 0.38 6.37 0.07 33.0 1.16 0.22 99.15 
dr340X7 56.9 n.d. 1.45 0.51 6.13 0.30 33.4 0.50 0.03 99.20 
dr420X1C 57.2 n.d. 1.52 0.55 5.74 0.16 33.7 0.92 0.19 99.95 
dr420X1R 57.1 0.07 1.44 0.72 5.43 0.10 32.6 1.10 0.34 98.86 
dr420X2 56.8 0.09 1.63 0.64 5.72 0.24 32.9 0.97 0.01 98.98 
dr420X3 57.3 0.05 1.71 0.56 6.13 0.19 33.0 1.15 0.06 100.16 
dr420X4 56.4 0.12 1.54 0.62 5.56 0.25 32.5 0.99 0.10 98.13 

dr90X1 56.5 n.d. 2.01 0.31 5.74 0.17 33.5 0.67 n.d. 98.85 
dr90X2 56.0 0.01 1.98 0.60 5.68 0.21 32.8 1.04 0.08 98.48 
dr90X3 56.5 0.04 2.80 0.98 5.41 0.04 32.0 2.36 n.d. 100.12 
dr90X4 57.2 0.10 2.26 0.66 5.09 0.30 32.8 1.50 0.11 99.98 
kk300X5 55.1 n.d. 1.19 0.02 12.28 0.30 26.6 2.77 0.07 98.28 
kk300X6 55.3 0.07 1.00 0.17 12.77 0.35 28.3 1.04 n.d. 99.07 
kk70X1 56.7 0.02 2.86 0.70 5.76 0.17 32.8 0.82 0.15 99.98 
kk88120X1 57.7 0.03 1.73 0.56 5.86 0.11 33.3 0.90 n.d. 100.20 
kk88120X2 57.1 0.01 2.02 0.79 5.71 0.16 32.5 2.17 0.05 100.47 
kk88120X3 57.3 0.03 1.43 0.57 6.01 0.17 33.0 0.87 n.d. 99.40 
kk88120X7C 56.1 0.07 1.56 0.75 5.57 0.06 32.1 1.96 0.12 98.25 
kk88120X7R 56.4 0.16 1.74 0.74 5.61 0.10 32.1 1.79 0.08 98.68 
kk88120X8 56.7 0.01 1.80 0.63 5.64 . 0.22 33.0 1.23 0.01 99.28 
kk88120X9 55.8 0.01 2.05 0.88 5.74 0.08 32.4 1.24 n.d. 98.29 
kk88130X7 57.6 0.03 2.56 0.61 5.68 0.18 33.0 1.43 n.d. 101.13 
kk88130X8 56.8 n.d. 2.28 0.76 5.35 0.13 32.0 2.72 0.17 100.23 
kk88130X5 57.4 0.03 2.06 0.56 5.77 n.d. 33.3 0.85 0.30 100.34 
kk88130X6 57.1 0.02 2.25 0.72 5.76 0.09 33.0 0.88 n.d. 99.86 
kk88130X6 56.7 0.11 1.66 0.41 5.88 0.14 33.1 0.78 0.09 98.91 
kk88130X9 56.0 n.d. 2.27 0.58 5.28 0.22 32.3 1.73 n.d. 98.40 
kk88200X1 55.8 0.01 1.77 0.7.3 5.60 0.05 31.7 2.39 0.09 98.08 
kk88200X2 57.0 0.05 2.03 o.6o 5.84 0.11 33.0 1.51 0.05 100.21 
kk88200X3 57.0 0.04 1.93 0.69 5.76 0.07 32.5 2.26 0.02 100.19 
kk88200X4 57.1 0.01 2.08 0.55 5.94 0.33 33.1 1.18 0.24 100.54 
li88110X5 57.2 n.d. 1.78 0.44 5.60 0.17 33.5 1.09 0.08 99.92 
li88110X1C 57.7 n.d. 1.43 0.47 5.76 0.12 32.7 1.10 n.d. 99.26 
li88110X1R 57.2 0.09 1.58 0.50 5.69 0.06 33.3 0.90 0.06 99.35 
li88110X2C 57.0 0.03 1.56 0.49 5.50 0.12 33.4 0.77 0.13 99.05 
li88110X2R 56.8 n.d. 1.64 0.45 5.56 0.17 33.0 0.96 0.12 98.72 
li88110X3R 56.7 n.d. 1.72 0.73 5.48 0.21 33.0 1.15 n.d. 98.97 
li88110X3R 56.9 n.d. 1.35 0.54 5.57 0.05 33.2 1.05 n.d. 98.69 
li88110X4 56.9 0.10 1.76 0.52 5.48 0.28 33.1 1.03 0.10 99.34 
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Si02 Ti02 Al20 3 Cr20 3 FeO* MnO MgO CaO NiO Total 

li88160X5 57.5 n.d. 0.46 0.16 5.47 0.11 35.3 0.43 0.04 99.43 
li88160X7 54.0 0.00 1.02 0.12 6.05 0.08 36.5 0.36 n.d. 98.19 
li88210X1 57.5 0.04 0.52 0.39 5.41 0.19 33.7 0.97 0.24 98.97 
li88210X2 57.7 n.d. 0.90 0.45 5.41 0.27 33.8 0.59 0.16 99.34 
li88210X3 57.6 n.d. 0.80 0.30 5.42 0.21 35.0 0.61 n.d. 99.89 
li88260X1 58.0 0.03 0.37 0.14 4.99 0.17 34.2 0.66 0.06 98.66 
li88260X2 57.9 0.12 1.19 0.15 5.14 0.25 33.6 0.93 0.08 99.34 
li88260X5 58.5 n.d. 0.29 0.16 5.22 0.11 34.2 0.76 0.05 99.29 
si430X4 56.7 n.d. 1.88 0.85 5.66 0.12 32.3 1.88 n.d. 99.31 
si430X5 57.2 n.d. 1.51 0.68 6.12 0.19 32.7 1.49 n.d. 99.86 
si430X6 56.3 0.06 1.94 0.81 5.45 0.09 32.2 1.48 0.00 98.30 

Table (E.2) Orthopyroxene analyses. 
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Appendix E Microprobe analyses 

Si02 Ti02 A120 3 Cr20 3 FeO* MnO MgO CaO NiO Total 

bo18CX1 53.1 0.25 2.84 0.56 2.31 0.11 16.9 24.3 n.d. 100.56 
bo18CX3 52.6 0.20 2.46 0.41 2.18 0.06 17.2 23.7 0.02 99.09 
bo18CX4 51.8 0.21 3.31 0.71 2.09 0.10 16.1 23.9 n.d. 98.55 
bo18CX5 51.6 0.23 2.97 0.52 2.10 0.10 16.4 24.0 n.d. 98.21 
bo22CX1 52.0 0.25 3.34 0.69 2.39 n.d. 15.7 24.0 0.01 98.71 
bo22CX2 51.8 0.27 2.92 0.65 2.36 0.04 16.1 24.1 0.18 98.55 
bo22CX3 45.2 0.23 9.13 3.24 4.27 0.06 17.5 19.4 n.d. 99.33 
bo22CX4 49.5 0.17 5.02 1.24 3.53 0.14 18.4 20.5 0.11 98.89 
bo6CX1 51.3 0.31 4.37 1.33 2.18 0.01 16.4 23.6 n.d. 99.80 
bo6CX2 52.2 0.16 2.75 0.88 1.83 0.24 16.2 24.8 0.03 99.26 
bo6CX3 52.6 n.d. 2.13 0.48 2.19 0.13 17.3 23.5 0.08 98.55 
dr11CX4 53.3 0.03 2.16 0.76 2.22 0.01 17.2 24.0 n.d. 99.79 
dr11CX5 52.2 n.d. 2.23 0.99 2.28 0.06 17.3 23.3 0.11 98.77 
dr23CX1 52.3 0.06 1.72 0.84 2.38 0.15 18.3 22.1 0.27 98.37 
dr3CX6 53.3 n.d. 1.96 0.88 2.37 0.17 17.1 23.0 0.03 99.20 
dr3CX7 54.2 0.08 2.06 1.13 2.28 n.d. 17.3 23.7 0.06 101.00 
dr3CX7 53.0 0.14 1.71 o.n 2.23 0.17 17.5 22.8 n.d. 98.76 
dr3CX8 52.1 0.03 1.89 0.82 3.00 0.20 20.3 19.9 n.d. 98.65 
dr3CX9 52.0 0.05 1.73 0.90 2.91 0.20 20.5 19.1 0.24 98.14 
dr34CX1 53.4 0.05 1.82 1.07 2.51 0.04 19.2 21.3 0.16 99.77 
dr9CX2 52.5 n.d. 1.99 0.82 2.33 n.d. 17.8 22.6 n.d. 98.37 
dr9CX3 52.4 n.d. 2.36 1.13 2.25 0.12 17.1 22.4 0.01 98.00 
dr9CX1 53.0 n.d. 2.57 1.32 2.12 0.01 17.1 23.1 0.25 99.76 
kk30CX5 53.7 0.13 1.18 0.26 4.95 0.04 16.1 23.5 0.23 100.44 
kk30CX6 52.9 n.d. 1.11 0.21 5.32 0.24 16.3 22.7 0.16 99.15 
kk30CX7 53.6 0.02 1.16 0.22 5.06 n.d. 16.4 23.4 0.11 100.19 
kk8812CX1 52.6 n.d. 1.64 1.11 2.45 0.13 17.6 23.2 0.06 98.91 
kk8812CX5 52.2 n.d. 2.08 0.78 2.49 0.14 17.0 23.2 n.d. 98.10 
kk8813CX7 52.9 0.01 2.52 1.30 2.27 0.12 17.3 23.1 n.d. 100.05 
kk8813CX4 53.5 n.d. 2.15 1.04 2.22 0.01 17.4 23.3 n.d. 100.02 
kk8813CX5 53.7 0.12 2.44 1.00 2.01 0.03 17.1 23.6 0.19 100.65 
kk8813CX6 53.1 n.d. 2.70 1.28 2.14 n.d. 16.5 23.7 0.16 99.93 
kk8819CX1 49.8 0.26 1.79 1.01 4.34 0.06 21.5 19.8 0.04 98.65 
kk8820CX1 52.1 0.04 2.35 0.92 2.62 0.03 17.0 23.5 0.06 98.83 
kk8820CX2 52.6 0.08 1.79 0.57 2.30 0.14 17.4 23.3 n.d. 98.30 
kk8820CX3 53.1 n.d. 1.82 0.56 2.49 0.18 17.9 22.8 0.21 99.42 
si43CX1 53.0 0.07 1.58 0.81 2.62 n.d. 17.6 22.8 0.36 99.13 
si43CX4 52.8 n.d. 1.86 0.81 2.78 0.05 19.0 21.4 0.15 99.28 
si43CX2 52.4 n.d. 2.19 0.88 2.65 0.07 17.8 21.9 0.13 98.38 

Table (E.3) Clinopyroxene analyses. 
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ag2SP15C 0.35 0.10 9.9 60.8 19.3 n.d. 9.6 n.d. 100.12 
ag2SP15R 1.69 0.08 10.5 57.8 20.4 0.24 10.4 n.d. 101.14 
ag2SP16C 0.41 0.04 9.9 61.3 19.4 0.21 9.8 0.05 101.13 
ag2SP16R 0.65 0.02 10.7 58.6 20.6 0.43 9.1 0.09 100.11 
ag2SP17 0.68 0.12 10.5 60.4 20.0 n.d. 9.8 n.d. 101.50 
ag3SP10 0.23 n.d. 12.9 58.6 21.5 0.17 9.0 n.d. 102.45 
ag3SP11 0.31 0.11 13.0 57.0 20.9 0.32 9.2 n.d. 100.79 
ag3SP12C 0.32 0.06 13.2 58.0 20.0 n.d. 9.7 0.24 101.47 
ag3SP12R 0.35 0.06 14.0 56.4 20.3 n.d. 9.7 n.d. 100.82 
ag3SP13C 1.42 0.15 13.2 57.3 20.6 n.d. 9.6 0.25 102.52 
ag3SP13R 0.35 0.11 13.5 54.3 24.2 0.17 8.6 0.19 101.40 
ag3SP14 0.23 0.09 12.9 57.7 20.7 0.26 9.4 n.d. 101.34 
ag3SP15C 0.07 n.d. 12.8 57.5 19.1 0.04 9.9 0.17 99.66 
ag3SP15R 0.11 0.06 13.7 56.8 20.8 n.d. 9.8 n.d. 101.24 
ag883SP1 0.76 0.07 13.8 56.3 18.7 0.46 11.4 n.d. 101.36 
ag883SP2 0.82 n.d. 14.3 55.5 18.7 0.21 11.1 0.46 101.00 
ag883SP3 0.88 n.d. 14.4 54.6 19.8 0.33 11.0 0.17 101.13 
ag883SP4 0.36 0.12 13.6 57.4 19.2 n.d. 11.2 0.03 101.85 
ag883SP5 0.94 0.13 13.6 56.3 18.6 0.03 12.0 0.03 101.69 
ag883SP6 0.23 0.13 13.7 56.2 19.1 n.d. 11.0 0.04 100.35 
ag883SP7 0.25 n.d. 13.6 56.1 19.0 n.d. 11.0 0.16 100.11 
ag883SP8 0.24 0.03 13.5 55.6 18.9 n.d. 10.9 0.18 99.36 
ag883SP9 0.11 n.d. 13.5 55.3 18.8 n.d. 11.3 0.20 99.23 
ag883SP10 0.87 n.d. 13.5 53.9 18.8 n.d. 11.3 0.05 98.40 
bak1SP1 0.17 n.d. 24.4 44.8 16.2 n.d. 13.2 0.01 98.65 
bak1SP1B 0.20 0.11 23.5 45.8 16.1 0.44 12.8 0.09 99.07 
bak1SP3 0.40 0.08 23.9 45.3 16.7 0.39 12.8 0.05 99.63 
bak1SP4 0.21 0.21 23.3 46.9 16.6 0.36 12.9 0.06 100.56 
bak1SP5 0.26 0.14 24.0 46.5 17.2 n.d. 13.2 n.d. 101.27 
bak1SP6 0.22 0.14 24.0 46.4 16.5 0.33 13.2 n.d. 100.65 
bak1SP7 0.29 0.07 23.7 47.3 16.3 0.16 13.4 0.21 101.40 
bak1SP7B 0.14 0.05 23.1 47.3 16.3 0.14 13.2 0.18 100.43 
bak1SP8 0.17 0.07 24.4 46.5 16.3 0.22 13.3 0.12 101.14 
bak1SP9 1.09 0.06 24.1 43.8 17.0 0.22 13.5 0.11 99.95 
bak1SP3R 0.33 0.08 25.0 43.5 16.3 n.d. 13.1 0.25 98.56 
bak1SP4R 0.48 0.06 23.9 47.1 16.9 0.14 13.3 0.02 101.94 
bak1SP4R2 0.17 0.10 23.8 47.4 17.3 0.14 13.3 0.20 102.49 
bak1SP21 1.33 n.d. 25.5 43.3 15.7 n.d. 14.6 n.d. 100.44 
bak1SP22 0.23 0.03 24.1 46.4 16.3 0.10 14.1 0.16 101.42 
bak1SP23 1.25 0.09 25.5 42.8 15.9 0.13 14.8 0.04 100.50 
bak1SP24 0.31 n.d. 23.4 46.1 16.6 0.07 13.5 0.09 100.09 
bak1SP25 0.35 0.09 24.0 46.2 16.4 0.16 13.9 n.d. 100.95 
bak1SP26 0.19 0.03 23.9 45.5 15.7 0.13 13.7 0.21 99.48 
bak1SP27 0.14 n.d. 23.8 46.1 16.4 0.21 13.9 0.10 100.61 
bak1SP28 0.19 n.d. 24.1 45.6 16.5 n.d. 14.3 0.08 100.73 
bak1SP29 0.27 0.01 23.8 45.9 16.7 n.d. 14.0 0.01 100.64 
bak1SPB30 0.26 0.10 24.1 45.1 15.9 n.d. 14.5 0.08 100.02 
bo13SP1 0.21 0.08 12.8 56.6 21.8 0.56 9.3 n.d. 101.37 
bo13SP2 0.17 0.06 12.9 55.6 21.5 0.61 9.1 0.01 100.01 
bo13SP3 0.23 0.08 12.5 56.7 21.6 0.66 9.1 0.08 101.04 
bo14SP1 0.28 0.09 21.6 45.7 20.5 0.63 11.5 n.d. 100.42 
bo14SP2 0.34 0.12 21.6 46.3 19.7 0.13 12.1 n.d. 100.29 
bo14SP3 0.26 0.12 21.6 46.2 20.0 0.56 11.7 n.d. 100.42 
bo14SP4 1.34 0.16 17.9 45.8 23.3 0.56 10.6 n.d. 99.69 
bo14SP5 2.65 0.14 14.4 45.9 25.8 0.34 9.6 n.d. 98.73 
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bo18SP2C 0.41 0.14 45.7 19.9 14.4 0.02 17.1 0.59 98.24 
bo18SP2R 0.47 0.16 46.6 19.8 14.5 0.01 17.4 0.31 99.25 
bo18SP3C 0.19 n.d. 45.6 20.7 14.7 0.12 17.2 0.33 98.94 
bo18SP3R 1.00 0.05 45.6 20.0 14.7 0.04 16.9 0.08 98.39 
bo18SP4C 0.44 n.d. 45.9 20.0 14.8 n.d. 17.5 0.18 98.86 
bo18SP4R 21.31 n.d. 29.9 13.5 11.3 n.d. 24.7 0.46 101.15 
bo18SP5 0.27 0.04 46.4 19.4 14.5 0.17 17.7 0.22 98.73 
bo22SP4 0.03 0.10 47.1 19.8 14.5 0.06 17.7 0.15 99.40 
bo22SP5 1.53 0.12 45.1 19.8 14.3 0.25 18.0 0.52 99.68 
bo22SP6 1.84 0.06 45.7 19.1 13.2 n.d. 18.2 0.28 98.29 
bo22SP7 0.49 0.09 47.3 19.2 13.9 0.05 17.4 0.50 98.81 
bo6SP5 0.74 0.13 48.3 19.4 13.5 0.08 17.5 n.d. 99.59 
bo6SP6 0.83 0.09 44.2 22.8 15.0 n.d. 16.7 0.37 99.88 
bo6SP7 0.50 n.d. 43.7 23.9 15.2 0.09 16.3 0.42 100.13 
bo6SP8 0.99 0.02 45.0 20.5 14.1 0.13 17.5 0.09 98.33 
cmt730SP7 0.35 0.12 20.5 48.9 17.6 0.46 14.0 0.11 101.97 
cmt730SP8 0.14 0.02 20.0 48.4 18.1 0.21 13.5 0.12 100.56 
cmt730SP9 0.21 0.06 20.5 48.7 17.3 n.d. 14.3 0.09 101.17 
cmt731SP2R 0.26 0.21 18.7 51.0 14.9 n.d. 13.8 n.d. 98.92 
cmt731SP4R 0.46 0.17 19.3 49.5 15.8 0.13 13.9 0.17 99.35 
cmt731SP5R 0.22 0.24 18.7 51.9 15.4 0.13 14.4 0.08 101.12 
cmt731SP6R 5.80 0.25 17.5 44.1 14.0 0.11 17.5 0.06 99.38 
dr11SP4 3.94 0.03 26.1 29.6 14.8 0.33 23.1 0.23 98.11 
dr11SP5 15.63 n.d. 17.2 19.6 12.6 0.17 34.3 0.40 99.93 -=-=-
dr16SP1 0.41 0.29 19.1 45.3 23.4 0.38 10.2 0.30 99.44 
dr16SP2 2.05 0.44 15.0 44.2 27.6 0.63 8.9 0.10 98.92 
dr16SP3 0.22 0.45 19.4 45.9 22.7 0.26 10.6 0.08 99.61 
dr16SP4 1.99 0.45 18.7 45.3 22.1 0.17 10.6 0.32 99.62 
dr16SP5 0.29 0.44 19.1 45.5 22.0 0.27 10.7 n.d. 98.36 
dr16SP6 0.41 0.45 18.9 45.1 24.5 0.21 9.9 0.02 99.44 
dr16SP7 1.83 0.29 17.1 43.4 25.7 0.17 9.5 0.12 98.16 
dr16SP1R 0.47 0.32 20.1 -44.0 23.1 0.60 10.5 n.d. 99.08 
dr17SP11 3.35 0.10 20.4 39.3 27.2 n.d. 8.7 0.29 99.22 
dr20SP1 0.65 n.d. 8.9 61.7 16.9 0.86 10.5 0.22 99.63 
dr20SP2 0.49 0.04 8.5 62.8 17.7 0.84 10.0 n.d. 100.40 
dr20SP3 0.49 n.d. 8.9 62.8 17.0 1.19 10.1 n.d. 100.40 
dr22SP12 0.77 0.08 12.7 57.1 19.4 0.18 11.2 0.02 101.40 
dr22SP13C 0.77 0.14 13.9 56.1 18.1 0.01 10.8 0.30 100.12 
dr22SP13R 1.11 0.06 12.6 56.6 19.0 0.08 11.3 0.11 100.80 
dr22SP14C 0.84 0.01 12.1 56.3 20.2 0.15 10.9 0.06 100.57 
dr22SP14R 2.28 0.11 11.0 53.0 20.5 0.10 11.9 0.08 99.05 
dr23SPb7 0.26 0.22 18.6 51.0 17.6 0.34 12.2 n.d. 100.20 
dr23SPb7B 0.24 0.20 18.2 51.1 18.0 0.52 12.1 0.20 100.58 
dr23SPb8 0.33 0.08 18.5 51.6 17.5 0.45 11.9 0.13 100.44 
dr23SP9C 0.13 0.16 19.3 50.2 17.2 0.14 12.9 0.10 100.13 
dr23SP1C 0.20 0.26 19.8 49.5 17.1 0.44 12.1 0.01 99.46 
dr23SP2C 0.13 0.19 19.0 50.4 17.5 0.37 12.0 0.19 99.85 
dr23SP9R 0.23 0.12 19.7 48.3 17.3 0.07 12.5 n.d. 98.16 
dr23SP1R 0.53 0.25 20.7 47.1 17.0 0.42 12.2 n.d. 98.12 
dr23SP2R 0.19 0.06 19.3 48.9 17.8 0.29 12.1 0.13 98.80 
dr3SP10 0.31 0.13 18.0 49.9 19.7 n.d. 12.3 0.06 100.32 
dr3SP11 0.33 0.11 20.3 46.8 19.9 n.d. 12.1 n.d. 99.53 
dr3SP12 1.02 0.03 21.9 41.3 22.3 n.d. 12.0 0.03 98.58 
dr3SP8 1.17 0.18 21.0 43.8 20.5 0.26 12.3 0.34 99.46 
dr3SP9 1.09 0.11 20.9 42.6 22.7 0.19 10.7 n.d. 98.22 
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dr34SP5 1.95 0.01 20.6 45.6 18.4 0.41 12.7 n.d. 99.68 
dr34SP6 0.26 n.d. 21.7 47.6 20.6 n.d. 11.4 0.01 101.62 
dr34SP7 0.14 n.d. 19.8 50.2 19.5 0.12 12.0 0.05 101.84 
dr34SP7R 0.22 0.13 20.9 48.3 20.0 0.10 11.8 n.d. 101.46 
dr34SP8 0.17 0.12 20.9 49.2 19.5 0.21 12.4 0.03 102.57 
dr42SP1 0.26 0.07 22.1 49.5 18.0 0.38 12.4 n.d. 102.73 
dr42SP2 5.09 n.d. 19.2 42.8 17.4 0.57 16.2 0.15 101.45 
dr42SP3 0.36 0.15 23.1 48.1 17.9 0.50 12.6 n.d. 102.67 
dr42SP4 0.38 0.11 22.2 49.2 17.7 0.37 12.4 n.d. 102.39 
dr6SP6 0.52 0.43 18.4 36.8 32.2 0.54 9.3 n.d. 98.13 
dr6SP6B 0.31 0.49 18.9 42.9 26.8 0.43 9.4 0.12 99.44 
dr9SP1C 0.59 0.02 30.3 37.5 16.4 0.28 14.5 0.21 99.81 
dr9SP2 3.71 n.d. 28.3 34.1 17.9 0.22 15.2 0.06 99.36 
dr9SP3C 0.17 n.d. 28.0 41.2 15.9 n.d. 14.4 0.20 99.89 
dr9SP1R 1.21 0.09 30.2 35.9 16.5 0.47 14.7 0.08 99.15 
dr9SP3R 0.26 n.d. 27.2 39.6 17.2 0.11 13.6 0.22 98.12 
kk28SP9 3.77 0.22 20.3 30.7 33.0 0.37 10.8 0.26 99.41 
kk28SP10 0.19 1.04 17.6 39.7 31.1 0.43 8.3 0.15 98.53 
kk49SP3 0.26 0.13 29.1 32.8 23.7 0.29 13.7 0.21 100.11 
kk49SP4 0.36 0.25 28.9 34.0 23.1 0.33 13.8 0.24 100.95 
kk49SP6 0.26 0.30 28.9 34.4 21.4 0.45 13.9 n.d. 99.66 
kk7SP1C 0.69 0.06 38.8 29.1 14.9 0.18 16.3 0.12 100.03 
kk7SP1R 1.30 0.09 39.4 25.8 15.1 0.37 16.3 0.24 98.72 
kk8812SP1C 0.45 n.d. 23.3 43.0 19.4 0.41 12.5 0.19 99.18 
kk8812SP2C 1.12 0.10 24.4 40.9 19.6 0.40 12.8 n.d. 99.35 
kk8812SP2R 1.03 n.d. 25.6 40.5 19.9 0.65 13.0 0.01 100.61 
kk8812SP1R 0.48 n.d. 23.8 42.0 19.2 0.36 12.4 0.04 98.28 
kk8812SP3 0.57 0.09 24.6 40.7 18.9 1.04 12.4 0.12 98.35 
kk8813SP4 0.24 0.04 25.7 41.9 18.0 0.06 13.7 0.15 99.81 
kk8813SP5 0.35 n.d. 25.6 40.8 18.3 n.d. 13.8 0.19 99.02 
kk8813SP6 0.13 0.05 24.5 42.2 17.7 n.d. 13.7 0.20 98.46 
kk8813SP7 0.57 0.07 26.1 40.4 17.6 0.05 13.9 0.31 99.16 
kk8813SP8 1.30 0.04 27.8 37.4 18.2 0.15 14.3 0.05 99.30 
kk8813SP6R 0.25 0.04 26.0 40.5 18.1 n.d. 13.8 0.09 98.77 
kk8819SP10 0.52 0.62 16.0 45.1 25.1 0.09 11.7 0.21 99.28 
kk8819SP8 1.51 0.43 16.1 45.5 22.6 n.d. 11.9 0.09 98.18 
kk8819SP9 2.13 0.38 14.7 41.5 26.6 0.18 12.9 0.24 98.67 
kk8820SP1 4.00 0.09 22.6 37.4 19.2 0.34 14.7 0.31 98.67 
kk8820SP2 0.89 0.12 25.6 40.2 20.2 0.13 12.8 0.02 99.98 
kk8820SP3 0.69 0.11 24.1 40.0 20.2 0.31 12.7 0.17 98.33 
kk8824SP1C 0.27 0.25 26.9 41.8 17.0 0.48 14.4 0.09 101.11 
kk8824SP2C 0.23 0.05 26.5 41.6 16.8 n.d. 14.2 0.08 99.48 
kk8824SP3C 0.35 0.10 26.7 42.0 17.1 0.15 14.2 0.08 100.66 
kk8824SP4 0.19 0.10 26.7 41.5 18.2 0.16 13.6 0.24 100.72 
kk8824SP5 0.19 n.d. 26.7 42.4 15.3 0.46 15.2 0.15 100.42 
kk8824SP6 0.18 0.12 26.2 42.3 15.9 n.d. 14.6 0.50 99.67 
kk8824SP1R 0.30 0.12 26.7 40.7 19.3 0.28 12.8 0.07 100.35 
kk8824SP2R 0.18 0.05 26.8 40.1 17.1 0.12 13.8 0.27 98.35 
kk8824SP3R 0.12 n.d. 26.9 40.3 18.4 0.41 13.8 n.d. 99.92 
li8811SP1 0.36 0.10 22.4 48.9 17.1 0.47 12.7 n.d. 102.07 
li8811SP2 0.52 0.19 20.6 48.5 17.4 0.25 11.9 0.25 99.67 
li8811SP3C 0.29 0.02 21.0 49.4 17.7 0.19 12.1 n.d. 100.66 
li8811SP3R 2.70 0.15 22.0 43.1 16.6 0.21 14.3 0.16 99.20 
li8811SP4C 0.29 0.12 21.4 48.8 17.6 0.24 12.4 0.05 100.98 
li8811SP4R 1.13 0.06 22.5 45.7 16.6 0.27 12.8 0.02 99.12 
li8811SP5C 0.26 n.d. 20.8 48.7 17.5 0.43 11.6 n.d. 99.33 
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Appendix E Microprobe analyses 

Si02 Ti02 Al20 3 Cr20 3 FeO* MnO MgO NiO Total 

li8811SP5R 0.46 n.d. 22.4 46.5 17.4 0.50 12.0 n.d. 99.20 
li8816SP5 0.93 0.10 10.6 58.8 21.2 0.50 8.8 0.08 100.98 
li8816SP6 5.35 0.10 8.4 50.6 22.0 0.32 12.4 n.d. 99.28 
li8816SP7 0.57 n.d. 8.2 62.2 21.2 0.20 9.0 0.26 101.64 
li8819SP1 OC 0.33 0.26 15.4 52.8 20.6 0.39 10.5 0.08 100.30 
li8819SP10R 1.21 0.42 15.1 50.4 23.0 0.51 10.2 0.46 101.27 
li8819SP11 0.76 0.26 16.3 52.0 20.0 0.10 11.3 0.26 101.03 
li8819SP7 0.93 0.42 2.9 52.1 37.8 1.19 2.8 0.21 98.37 
li8819SP8C 0.29 0.36 16.1 52.7 20.0 0.20 11.0 0.11 100.77 
li8819SP8R 0.52 0.25 15.6 51.7 20.1 0.51 10.9 0.16 99.67 
li8819SP9 0.37 0.28 15.5 52.2 22.5 0.21 9.6 0.05 100.65 
li8821SP1 0.75 0.08 11.4 57.7 20.8 0.38 8.7 n.d. 99.92 
li8821SP2 0.48 0.09 10.3 58.4 21.7 0.32 9.1 0.05 100.36 
li8821SP3 0.30 n.d. 10.0 59.1 20.5 0.25 9.4 0.07 99.74 
li8821SP4 0.56 0.14 10.7 58.9 21.3 0.19 9.1 n.d. 100.85 
li8824SP10 0.13 0.15 10.5 57.3 20.3 0.17 10.0 n.d. 98.49 
li8824SP8C 0.22 0.08 10.4 59.2 20.4 n.d. 9.9 0.01 100.19 
li8824SP9C 0.22 n.d. 10.9 59.7 18.0 0.13 11.2 0.07 100.17 
li8824SP11 C 0.24 0.04 10.8 59.0 19.6 n.d. 10.3 0.42 100.46 
li8824SP12C 0.20 0.07 10.8 59.2 18.9 0.05 10.7 0.25 100.23 
li8824SP13C 0.15 0.10 10.8 59.6 18.4 n.d. 11.0 n.d. 99.98 
li8824SP14C 0.28 0.09 10.7 58.6 19.7 n.d. 10.0 0.02 99.36 
li8824SP15C 0.01 0.11 10.8 58.2 18.1 n.d. 11.1 0.27 98.44 
li8824SP8R 0.32 0.02 10.3 57.5 22.3 0.21 9.0 0.12 99.70 
li8824SP9R 0.20 0.13 11.0 57.9 19.6 0.21 10.6 n.d. 99.61 
li8824SP11R 0.25 0.16 11.1 58.1 20.6 n.d. 9.9 0.32 100.42 
li8824SP12R 0.15 0.22 11.6 58.1 19.2 n.d. 10.8 0.41 100.50 
li8824SP13R 0.19 0.17 11.3 57.0 19.5 n.d. 10.6 0.02 98.79 
li8824SP14R 0.30 n.d. 12.5 54.5 21.4 n.d. 9.8 0.31 98.87 
li8824SP15R 0.08 n.d. 10.6 58.2 18.6 n.d. 10.7 n.d. 98.15 
li8826SP1 0.83 0.16 7.0 62.7 20.3 0.38 8.7 0.26 100.33 
li8826SP1R 5.09 0.01 6.2 55.3 19.6 0.49 11.4 0.03 98.09 
li8826SP2C 0.72 0.03 6.1 63.1 20.7 0.29 8.2 n.d. 99.17 
li8826SP2R 1.98 n.d. 8.1 58.7 19.9 0.52 9.1 0.08 98.40 
li8826SP3 1.04 n.d. 6.8 63.1 21.0 0.19 8.5 n.d. 100.71 
li8826SP4 1.78 0.02 8.0 59.7 21.0 0.49 8.4 n.d. 99.45 
si23SP9 0.31 0.57 19.2 41.0 28.3 0.03 8.7 0.03 98.23 
si23SP10 0.53 0.60 21.7 39.0 26.3 0.25 9.6 0.07 98.07 
si23SP11 0.78 0.57 19.6 38.6 30.1 0.37 8.1 0.13 98.27 
si43SP3 0.43 0.30 21.7 46.5 19.5 0.15 12.4 0.18 101.15 
si43SP28 0.45 0.18 21.8 45.7 20.0 0.51 12.1 n.d. 100.73 
si43SP4 0.76 0.10 23.9 41.9 20.5 0.23 12.8 0.21 100.34 
si43SP5 2.43 0.03 22.1 38.3 22.0 0.18 13.2 n.d. 98.11 
si45SP11 0.27 0.33 23.5 43.6 18.5 0.06 12.9 0.17 99.33 
si45SP12 0.23 0.16 23.9 44.2 18.6 0.14 13.5 0.26 101.02 
si45SP13 0.21 0.10 23.6 43.9 18.0 0.01 13.5 0.19 99.57 
si45SP14 0.44 0.12 23.5 42.1 20.6 0.16 12.5 0.23 99.76 

Table (E.4) Spinel analyses. 
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