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ABSTRACT 

1. A quantitative investigation of the benthic macrofauna associated with seagrass 
swards was carried out over a period of four months, on the intertidal mud flats at 
Lindisfame, Northumberland. 

2. Two species of seagrasses belonging to the genus Zostera are present at this site: 
Z.noltii, a perennial species which overwinters as rhizomes, and Z.marina. an 
annual germinating each year from seed. 

3. Core samples were collected from three midshore sites at Lindisfame and from 
three different habitat types, namely swards of both Zostera species and from 
adjacent bare mud surfaces. The samples were removed to the laboratory and 
carefully washed through a sieve of mesh size 40 squares per inch, to extract the 
macrofauna. 

4. Comparisons were made between the invertebrate faunas associated with the 
vegetated and unvegetated sites, as well as between the two species of Zostera. 

5. Several of the more obvious environmental variables at the sites were measured -
Zostera biomass, detrital biomass, RPD depth and sediment granulometry - in 
order to identify any possible causal agents of these variations in community 
composition. 

6. Differences were found in both the densities and the biomass of invertebrates 
present between vegetated and unvegetated sites and also between the two 
seagrass species. The highest densities were recorded in Z. noltii samples, due 
largely to the abundance of oligochaetous annelids. Z.marina cores, despite having 
the lowest total densities of benthic macrofauna, showed the highest diversity and 
biomass of invertebrates. 

7. Epifaunal taxa, especially the isopod Idotea baltica and the gastropod molluscs, 
were generally more abundant in the structurally more complex Z. marina sites. 

8. Polychaetes were often poorly represented in the study, but two sedentary 
species - Scoloplos armiger and Ampharete balthica - showed an apparent 
preference for sediments supporting the annual seagrass species. 

9. The data suggested that Z.noltii sediments maintained an invertebrate 
community somewhat intermediate to those of bare mud and Z.marina samples. 

10. Statistical analysis of the data gathered on several environmental variables, 
highlighted a number of differences between the different sample sites and also the 
different habitat types. 

11. The influence of the seagrasses on the composition and nature of the sediments 
was found to account for approximately 26% of the observed variation in species' 
densities. 

12. The presence of Zostera species on the surface of intertidal sediments was 
therefore seen to play a potentially important role in determining the composition of 
benthic macrofauna! communities. 
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CHAPTER 1. INTRODUCTION 

1.1 THE SEDIMENTARY INTERTIDAL ENVIRONMENT 

Mud flats are expanses of fine intertidal sediments periodically exposed and 
submerged by the tides and which usually slope gently towards the sea. 
Sand and mud flats are the most extensive intertidal habitat in the majority 
of the north-west European countries, occupying over 2000 km2 in Great 
Britain (Wolff, 1987). A transient habitat, these areas nevertheless comprise 
some of our most biologically fertile land. 

The unstable nature of such flats do not allow the establishment of many 
macrophyte species. As such, they are mostly bare, apart from the brown 
hue of the sediment surface caused by the presence of innumerable 
microscopic diatoms. 

One notable and very conspicuous exception to this are the seagrass 
meadows which (outside the polar regions) often characterize photic-zone 

sand and mud communities. The seagrasses are monocotyledonous 
angiosperms adapted for marine life both through their physiology and 
morphology (McRoy and Helfferich, 1977). Their most obvious characters are 
the extensive rhizome and rooting system to prevent upheaval, and generally 
the very strap-like leafmg pattern to minimise drag (Boaden and Seed, 
1985). 

There are 49 seagrass species, of which 11 belong to the genus forming the 
basis of this study, Zostera. On a broad geographic scale, it is found that 
Zostera and its subgenus Zosterella are widely distributed in the temperate 

zones of Europe, North America and Asia, as well as the south temperate 
coasts of Australia (Day et al.,1989). Members of this genus have little 
capacity for upward rhizome growth and are therefore limited to areas where 

the deposition and erosion of sediments is more or less in equilibrium. 
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1.2 RELEVANT PREVIOUS INVESTIGATIONS 

Beeftink (1977), in a review of the wet coastal ecosystems of western and 

northern Europe, defined Zostera communities as homogeneous 

assemblages of one (or two) Zostera species. Two types of association are 

commonly found, one dominated by the broad-leaved annual Zostera 

marina, the other by the finer-leaved perennial species Zostera noltii. The 

former is essentially a sublittoral association penetrating into the intertidal 

belt at the most to about mean sea level, dependent on the water-holding 

capacity of the substratum. In Britain, the climate is such that the rhizomes 
are killed by frost in the eulittoral zone and as a consequence, the 

assemblage is summer-annual. The Z.noltii association is less susceptible to 
frost damage, developing in intertidal flats of mud or fine sand rich in 

detritus, between the MLWN and MHWN tide levels. 

It has long been recognised that seagrass meadows represent an important 

source of food and shelter for benthic invertebrates and a nursery ground 

for fishes. As a result, numerous studies have been conducted to investigate 

macrofauna! invertebrate assemblages associated with seagrass meadows 

and to assess differences between vegetated and unvegetated habitats. 

Many of the studies that have focussed on this particular ecological aspect 

have been carried out in near-tropical areas, such as western Australia 
(Edgar, 1990), Florida (Brook, 1978) and the Seychelles (Taylor and Lewis, 

1970). These investigations have in general found both qualitative and 

quantitative differences among the faunas of sites with different degrees of 

macrophyte cover, with the number of species and density of invertebrates 

being significantly lower in the bare sediment environment. However, due to 

the latitudinal differences between study areas such as these and those 

around the British Isles, and associated differences in tidal regime, sea 
temperature, current velocities etc.. the results of such analyses are not 

strictly comparable. 

Much previous work has also been on single Zostera spp. systems, most 

commonly Z.marina, often in subtidal environments. For example, Stoner 

(1980) was able to eliminate differences in the granulometric properties of 

subtidal sediments and isolate the role of seagrass biomass in regulating the 

community organisation of benthic macrofauna. He concluded that the 
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biomass of benthic subtidal macrophytes, independent of sediment 

granulometry and hydrodynamic effects, was an important regulator of 

species abundances, dominance, diversity and trophic organisation in 
macrofauna! assemblages. 

Reise's extensive work in the Dutch Wadden Sea (for review see Reise, 1985) 

included studies predominantly concerned with intertidal Z.noltii systems in 

Konigshafen. His work, unlike much other research focussing on either the 

epifaunal (for example, Schneider and Mann, 1991 b) or infaunal component, 

dealt with the whole benthic invertebrate macrofauna! (and meiofaunal) 

community in relation to sediment characteristics. He found that the most 

diverse macrofauna of the area (an approximate 70% increase in species 

number compared to unvegetated sand or mud flats) occurred within the 

grass beds. Total abundance was also higher in such vegetated sites than 

anywhere else in Konigshafen. 

1.3 PURPOSE OF THE PRESENT STUDY 

Although Reise (1985) referred to a few localities where Z.noltii and Z.marina 

grew together, his studies on invertebrate assemblages did not take account 

of the two-species situation present at Lindisfarne. Since the two Zostera 

species grew in close proximity to each other at this location, comparisons 
between the two could be made, as well as those between vegetated and 

unvegetated sites. 

Due to the localised distribution pattern of the Zostera, the studies focussed 
solely on the midshore region. Within the Lindisfame N.N.R., three suitable 

areas were identified, within which samples were taken:-

(a) Z.noltii beds 
(b) Z. marina beds 

(c) Bare mud surfaces 

In quantitative biological surveys the main aim is to estimate the numbers of 

one or more species or another parameter (such as biomass, RPD depth etc.) 

per unit area from a series of samples taken from the populations within a 

defined area. From data gathered on macrofauna! densities and the 
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measurement of several of the more obvious ecological parameters, it was 
hoped to be able to compare: 

1. Invertebrate community differences between vegetated and 

unvegetated areas within a particular site. 

2. Invertebrate communities associated with the two species of Zostera. 

3. Any differences in community composition between sites within the 

Lindisfame N.N.R .. 

These studies would ideally identify any differences in faunal dominance 

and species composition within and between the sites at Lindisfame and 

also establish possible explanations for any such dissimilarities. 
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CHAPTER 2. STUDY AREA 

2.1 DESCRIPTION AND IDSTORY 

The project was carried out within the Lindisfarne National Nature ReseiVe 
in northern Northumberland. Lindisfarne (or alternatively Holy Island) is 
situated approximately 80 kilometres north of Newcastle-upon-Tyne, the 
nearest town being Berwick-upon-1\veed on the Scottish Borders, 13 
kilometres to the north. The tiny island is cut off from the mainland at high 
tide and was famous in ecclesiastical history as the seat of the Saxon See of 
Lindisfarne. 

Lindisfarne was designated a national nature reseiVe in 1964 and consists 
mainly of intertidal mudflats, sandflats, saltmarsh and sand dunes. The 
importance of the site for wintering wildfowl and shorebirds has been 
recognised for at least two hundred and f:lfty years (see for example Perry, 
1946). Today the most noteworthy species utilising the area include Pale­
bellied Brent Geese (Branta bemicla) and large numbers of Wigeon (Anas 

penelope). On the island itself, considerable botanical interest is found in 
the dune and particularly dune slack areas, where several species of orchid 
occur. The entire reseiVe is today protected under legislation outlined in the 
Nature ConseiVancy Act ( 1973) and the Wildlife and Countryside Act (1981) 
and is managed both for research and for its conseiVation needs. 

Lindisfarne is a particularly important intertidal site since it contains both 
floral and faunal communities which are not subject to such extremes of 
salinity fluctuation as might be expected in estuarine localities. The 
protection from onshore winds afforded by Holy Island itself has in the past 

been important in the development of mudflats and saltmarsh. 
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2.2 SELECTION OF STUDY SITES 

The particular areas of the Lindisfame N.N.R. relevant to this study were the 
intertidal mudflats, stretching from the edge of Spartina dominated 
saltmarsh to Low Water Mark. The nature of the investigations meant that: 

(a) individual sites had to consist of areas of Zostera interspersed with 

bare mud surfaces enabling within site comparisons to be carried out. 
(b) different sample sites had to be as similar as possible in terms of 
tidal height, granulometric properties etc., to enable between site 

comparisons to be made. 

The actual sites chosen for the study were those which in the past have 
been noted for having considerable swards of Zostera present. 

In recent years the extent of the seagrass meadows has gradually decreased 
leaving three major sites -

- Beal Blacks 
- Elwick Sands 
-The Swad. 

Figure 2.1 shows the three sites selected for the study. They were similar in 
that they each contained both species of Zostera: the perennial Z.noltii which 
overwinters as rhizomes and the annual Z.marina which germinates each 

year from seed. 

It was intended that most of the samples should be taken from the midtidal 
level of the shore within these sites, in order to negate the effects of 
differences in community structure associated with differences in tidal level. 
However, due to the patchy nature of the Zostera beds, this proved 
unfeasible. It was possible to select sites at Beal and Elwick which were at 
very similar tidal levels, towards the upper regions of the midshore. At the 
Swact, on the other side of South Low (the stream which flows through the 

flats), it was possible to collect samples only from the lower midshore region. 

The effects of such disparities will be discussed later. 



FIGURE 2.1 :Loc-ation of the Stugy Sites within the 
Lindisfame N.N.R. 
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2.3 NATURE OF THE STUDY SITES 

As stated previously, the sites were chosen both out of necessity and for the 

presence of the two Zostera species. It was noticeable from field obsexvations 
that Z.marina showed a marked preference for the areas of sediment that 
maintained a relatively high water content during periods of emersion viz. 

the run-off channels and the surface pools. Z.rwltii was associated with 
areas that dried out more fully at low water and was seldom found in such 
channels or pools. 

Beal Blacks was the first area to be sampled on May 19th. 1992 (Low Tide: 
11.18). The Zostera at this site was found growing within twenty metres of 
the edge of the Spartina on relatively muddy, unconsolidated sediments. On 
this date, both species of the seagrass were distinguished. On return two 
months later, a dense blanket of Enteromorpha was found, overlying the 
Z.noltii in particular. The effects of such an algal mat on benthic macrofauna 
have been shown to be fairly dramatic in previous studies on saltmarsh 
(Millard, 1976) and open mud flats (Nicholls et al., 1981). 

Elwick Sands as the name suggests is largely an area of muddy sands in 
the south-west corner of the bay. The Zostera beds at this locality were 
reached by walking approximately 100 metres downshore from the edge of 
the Spartina. Samples were taken on June 5th. 1992 (Low Tide: 12.55) 

The area of the Swad was reached from the causeway. This site in particular 
has recently shown a dramatic reduction in the extent of the Zostera sward. 
Once again, the sediments are of a muddy-sand type. Sampling of this site 
was carried out on June 22nd. 1992 (Low Tide: 14.25). 
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CHAPTER3.METHODOLOGY 

3.1 INVERTEBRATE MACROFAUNA 

3.1.1 Sample Collection 

The macrofauna of intertidal sediments are usually defined as "all 

invertebrate animals retained by a sieve with a mesh size of 0.5 or l.Omm" 
(Wolff, 1987). 

The standard technique in the collection of benthic macrofauna from 

intertidal sediments involves the use of hand-held cylindrical corers, as 

shown in Figure 3.1. Such corers are open at the bottom end, with the lower 

edge sharpened. The device is driven into the sediment at low tide to the 
required depth and then twisted and pulled out at an angle. The mud core is 

then pushed back out of the chamber manually. The nature of the 

sediments to be sampled at Lindisfarne meant that a corer with diameter of 

80 mm and cross-sectional area of 0.005m2 was most suited to the task. 

Preliminary results showed that approximately 97% of the macrofauna! 

numbers were located within the top 5cm of sediment. However some of the 

larger bivalves and oligochaetes were often found below this level, so cores 
were taken to a depth of approximately 14cm (equivalent to the height of the 

corer chamber) to ensure adequate sampling. Preliminary investigations also 

indicated that 12 cores was a sufficient number to provide statistically 
significant results and to take account of the heterogeneity within the 
sample areas (see Appendix A). At each of the sample areas therefore, 12 

cores were taken in eacJ::l of the three habitat types ie. Z.marina beds, Z.noltii 

beds and the bare mud surfaces. 

These cores were placed in plastic tubs with lids, to prevent desiccation, and 

transported back to the laboratory. 



FIGURE 3.1 :Sketch of Hand-Held Corer Used in the Study 
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3.1.2 Laboratory Analyses 

Core samples were placed upright in individual plastic tubs and covered 
with sea-water for 48 hours. After this time, it was possible to pick off the 
living, mobile gastropods (ie. Hydrobia and Littorina spp.) from the mud 
surface and/ or tub sides. 

The mud cores were then gently broken down to produce a slurry (method 
from Nicholls et al., 1981) and sieved with tap water as delicately as possible 
using a screen with mesh size of 40 squares per inch (0.64 mm). Lewis and 
Stoner (1980), in an examination of methods used in the sampling of the 

macrobenthos in seagrass meadows, showed that the common practice of 
using a l.Omm screen allowed the passage of 14% of the macrofauna! 
species and 47% of the macrofauna! number. The material retained by the 
sieve was washed into a sorting tray and examined. 

The benthic samples were sorted by hand and all molluscs, polychaetes, 
nemertines and crustaceans identified to at least genus level. This enabled 
both quantitative and qualitative analyses to be carried out. The taxonomy 

of the oligochaetes was beyond the scope of my investigations, involving 
electron microscopy, and they were thus counted but not identified. Owing 
to the problems of numerous empty gastropod shells in the samples, all 

molluscs were removed into sea -water and observed for a period of a few 
minutes. If such shells were inhabited, movement could be noted within this 
time and these individuals removed, counted and preserved. The soft-bodied 
invertebrates were preserved directly in a 4% formalin-seawater mixture. 

Ash-free dry weights were determined for the invertebrates extracted from 
the sediments by drying at 100"C for 24 hours followed by ashing in a muffle 
furnace at 450"C for 6 hours. The ash-free dry weights were calculated for 
the molluscs and for the soft-bodied invertebrates separately, and 
subsequently combined and used as a measure of biomass. 

Several cores were divided horizontally into 2cm deep sections prior to 

sieving each section separately. This provided data on the vertical 

distribution of the invertebrate taxa within the sediment cores. 



10 

3.2 ZOSTERA BIOMASS 

The sieving procedure outlined above also retained the fragments of Zostera 

present within the cores. In the laboratory, it was possible to separate the 

aerial green parts of the seagrass from the living and dead rhizomes. The 

latter may be distinguished, since living rhizomes are white or light brown, 

while dead sections are black and fragmentary (Sand-Jensen, 1975). The 

remaining largely amorphous material was grouped together with the dead 
rhizomes and collectively termed "detritus". 

The separate parts obtained from each core were dried for 24 hours at 

105 °C, cooled in a desiccator and weighed. This gave a measure of the above 

ground and below ground living Zostera biomass. The detrital component 

was ashed at 450°C in a muffle furnace for 6 hours to establish the dead 
organic component of the sediment. This ash-free dry weight was expressed 
as a percentage of the total sediment dry weight, minus the Zostera biomass. 

3.3 SEDIMENTS 

At each sampling station, a further two variables were measured. 

(a) Twelve cores were taken in the field and split longitudinally in two with a 
sharp blade. The depth of the Redox Potential Discontinuity (RPD) layer 
below the surface of the sediment was measured, enabling a mean value and 

standard error to be derived. 

(b) Four cores were extracted in order to investigate the granulometric 

properties of the sediments. These samples were broken up and oven-dried 
for 24 hours at 105°C. The dried muds were then passed through a 
sediment shaker consisting of screens with mesh sizes of 20(1.27mm), 
40(0.64mm), 60(0.42mm), 100(0.25mm) and 200(0.12mm) squares per inch. 
Particles which passed through the 200 squares per inch mesh (ie. had a 

diameter of less than 0.125 mm), producing the residue at the base of the 

shaker, were deemed to form the silt-clay fraction. In actual fact, this 

residue would also contain a very fme sand fraction (since 63 micrometre 

diameter particles represent the arbitrary division of the sands and clays), 

but the terminology was sufficient for my investigations. 
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3.4 BEHAVIOURAL INVESTIGATIONS 

In conjunction with the results obtained through other methods of analysis, 

it was decided to carry out some investigations of behavioural preferences in 
selected species. Invertebrates were given the opportunity to "choose" 
between a bare mud sample and one which had Zostera growing on it. 

Simple choice chambers were therefore set up, as shown in Figure 3.2, in 
which half the tank was lined with mud alone and the other half with 
sediment supporting the seagrass. 

The invertebrates most suitable for a study of this sort were the mobile 

gastropods Hydrobia and Littorina. These invertebrates were easily marked 
to facilitate counting, using a spot of Tipp-Ex positioned on their shell (see 

Figure 3.3). 

Twenty individuals of the same genus were placed along the line dividing the 
two sediment samples, moistened carefully with a small quantity of sea 
water, and left in a constant temperature of SOC for 24 hours. After this 
time, the numbers of gastropods in each "chamber" (ie. each half of the 
tank) and those remaining on the start line were counted and recorded. 

The experiment was then repeated at least twenty times with different 
individuals of each of the two genera, so that statistical tests could be 
confidently applied to the data obtained. 



FIGURE 3.2: Example of the Choice Chamber set up to 
analyse Behavioural Preferences in Gastropod Molluscs 

FIGURE 3.3 : Hydrobiid Snail marked with Tipp-Ex, to 
Facilitate Counting 
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CHAPTER 4. RESULTS 

4.1 ENVIRONMENTAL VARIABLES 

4.1.1 Depth of Redox Potential Discontinuity Layer 

The depth of the black anoxic level (RPD layer) below the sediment surface 

was measured in each of the three vegetation types at each of the three 

sample sites. Figure 4.1 shows the mean depth of this layer at each location. 

Statistical analysis of variance showed that RPD depths below a chosen 

habitat were not significantly different between sample sites:-

1. Bare mud samples- F= 1.17, d.f.= 20 P>0.05 

2. Z.noltii samples-

3. Z.marina samples -

F= 0.18, d.f.= 20 P>0.05 

F= 2. 77, d.f.= 20 P>0.05 

This enabled data to be combined for each of the three habitat types (Table 

4.1). 
Table 4. 1 : Mean depths of redox potential discontinuity layer below sediment 

swjace within different habitats of three study sites at Lindisfame. 

SITE MEAN DEPTH (em) 
[Sample size) Bare Mud Z. noltii Z. marina 

Beal 26.29 13.14 12.01 
[n= 7) (2.64) (1.61) (2.05) 

Elwick 41.14 13.00 15.41 
[n= 7) (7.89) (1.59) (2.17) 

The Swad 28.29 13.57 21.00 
[n= 7) (9.86) (2.46) (3.54) 

Mean 31.90 em 13.24 em 16.14 
Standard error (4.34) (1.06) (1.68) 
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Figure 4.2 : Mean RPD Depths for the 
Three Habitat Types at Lindisfarne. 
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The mean values for depths of RPD at Lindisfarne are shown in Figure 4.2. 
T-tests applied to these data provided the following levels of significance : 

Table 4.2 : Significance levels of differences in RPD depth between the 
different vegetation types. 

Sample Size (n) = 21 

Bare 

Z.marina 

Bare 

t = 3.39 
d.f.= 40 

p < 0.01 

Z.noltii 

t = 4.18 
d.f.= 40 

p < 0.01 

t = 1.46 
d.f.= 40 

n.s. 

d.f. - Degrees of Freedom 
P - Levels of Significance 

From Table 4.2, it can be seen that the depth of the RPD was significantly 

deeper in sediments supporting no vegetation, than in those supporting 

either Zostera noltii or Zostera marina. Sediment cores removed from within 

swards of the two Zostera species did not differ significantly with respect to 

the depth of the black anoxic layer. 

4.1.2 Sediment Granulometry 

Despite attempts to sample from sites with similar granulometric properties, 

statistical analysis of particle size distributions, showed that this had not 

been achieved. 

The quantity of sediment retained by each sieve, after passing through the 

next largest mesh size, was expressed as a percentage of the total. Figure 

4.3 illustrates the differences at the three sampling sites. Analysis of 

variance showed the major differences to be between sediments supporting 
Z.marina compared to the other two habitat types. These differences are 

illustrated in Table 4.3. 



Fia:ure 4.3 Comparison of the 
Sediment Granulometry at Different Sites 
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Table 4.3: Significant differences (ANOVA, P< 0.05) in sediment grain sizes at 

SITE 
In= 4 per site) 

Beal 
Fvalue 

d.f. 
Elwick 

Fvalue 
d.f. 

TheSwad 
Fvalue 

d.f. 

each of the sample sites. 

MESH SIZE 
20 40 60 100 

n.s. n.s. n.s. 3>>1,2 
0.2 0.4 1.9 37.2 
11 11 11 11 

n.s. n.s. 3<<1,2 3<<1,2 
3.3 0.9 18.1 13.2 
11 11 11 11 

n.s. 3>>1,2 3>>1,2 3>>1,2 
1.8 15.1 13.1 15.6 
11 11 11 11 

1. Bare mud samples 2. Z.noltii 3. Z.marina 
>> -significantly greater than (P<0.05) 

<< - significantly less than (P<0.05) 
n.s. -no significant difference 

d.f. - degrees of freedom 

200 

n.s. 
2.2 
11 

3<<1 
5.8 
11 

3<<1,2 
56.6 
11 

14 

Res 

n.s. 
2.6 
11 

3>>1,2 
8.6 
11 

n.s. 
1.4 
11 

There was also substantial between-site variation in particle size 

distributions, making the combination of results difficult. It was therefore 
accepted that the effects of sediment granulometry could not be eliminated 
from the study as a possible contributory source of variation. 

4.1.3 Silt/Clay Content 

Measures of the sediment silt/ clay content (that fraction with particle 

diameter less than 0.125mm) at the different sites ranged from 7.7% to 

44.2%. Table 4.4 illustrates the mean percentage that this fraction 
comprised within the sediments. 

Table 4.4: Mean percentage silt/clay content (particles less than 0.125mm 
diameter) of sediments extracted. 

SITE MEAN PERCENTAGE 
[Sample size) Bare Z.noltii Z.marina 

Beal 19.90 11.00 11.75 
[n= 6] (4.70) (1.40) (1.90) 

Elwick 17.50 17.30 36.40 
[n=6] (1.50) (1.90) (6.00) 

The Swad 12.70 9.80 11.55 
[n= 8] (1. 70) (0.90) (1.00) 

0 Standard errors 
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Significant differences between habitat types, within sample sites, were 

restricted to Elwick, where Z. marina sediment cores were found to have a 
statistically greater percentage content of this fraction (ANOVA: F= 8.6, d.f.= 

11; P<0.05). The presence of seagrasses at the surface might intuitively slow 

water speeds down, enabling finer particles to sediment out. However, the 

data described in this study on the whole do not support this theory. 

Variations between the sample sites were evident and are shown in Figure 

4.4. Sediments supporting both Zostera species had significantly higher 
proportions of silt/ clay particles at Elwick compared to Beal and the Swact. 

4.2 ZOSTERA BIOMASS 

Figure 4.5 shows the mean aerial and root or rhizome biomass measures for 

each of the seagrass species at each site. Superimposed on top of these 

means is a seasonal variation coupled to the growing season. However, even 

in the perennial Z. noltii. there is considerable variation in for example 

rhizome biomass between the sites, creating problems in making 
comparisons. 

4.2.1 Aerial Biomass 

Measures of above-ground biomass were similar for each of the Zostera 

species at both Elwick and the Swact. However, the finer leaved Zostera noltii 

was found to have on average approximately 50% less aerial biomass 
compared to Z.marina. 

Samples collected from Z.marina beds on 16.07.92 showed an increased 

aerial biomass, compared to those collected earlier in the growing season 
(19.05.92), which was similar to both Elwick and the Swact. A seasonal 
variation in above ground biomass was therefore apparent. 



FIGURE 4.4 : Percentage Silt/Clay 
Content of Lindisfarne Sediments. 
(Particles of diameter less than 1251-lm) 
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FIGURE 4.5 : Mean Measures of 
Zostera Biomass at Lindisfarne. 
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Table 4.5: Mean aerial biomass ojZostera spp. at the three study sites. 

SITE 
[Sample size] 

Beal 
[n=6) 
[n= 8) 

Elwick 
[n=6) 

TheSwad 
In= 8] 

SAMPLING DATE 

19.05.92 
16.07.92 

05.06.92 

22.06.92 

4.2.1 Rhizome Biomass 

MEAN BIOMASS (gm-2) 
Z. noltii Z. marina 

0.69(0.27) 

25.12(4.31) 

21.39(5.41) 

14.89(1.75) 
68.39(15.48) 

51.24(9.86) 

45.51(8.87) 

0 standard error of mean 

Measurements made of below ground living Zostera biomass showed 

substantial variation both within and between sites (Table 4.6). 

Table 4.6: Mean rhizome biomass ojZostera spp. at the three study 
areas. 

SITE 
[Sample size) 

Beal 
[n=6] 
In= 8) 

Elwick 
In= 6) 

The Swad 
In= 8) 

SAMPLING DATE 

19.05.92 
16.07.92 

05.06.92 

22.06.92 

MEAN BIOMASS(gm-2) 
Z. noltii Z. marina 

9.98(5.09) 

72.12(10.18) 

43. 77(4.41) 

24.37(2.66) 
49.74(11.10) 

89.48(7. 72) 

48.00(10.82) 

0 standard error of mean 

There was no significant difference between the two Zostera species at any of 
the three sites in terms of the biomass of their below ground portion. 

Between site variation was such that all three sampling areas differed in 

their Z.noltii rhizome biomass. The rhizome biomass in Z.marina was 

significantly greater at the Elwick site compared to the Swad and the two 

Beal samples. 
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4.2.3 Dead Organic Component 

Measurements of the actual organic detrital component (gm-2) of the 
sediments were extremely variable, with those removed from the Swad 
differing from the other sites by an order of magnitude (Table 4. 7). 

Table 4. 7 : Mean detrital biomass and percentage that this component 
jonned in upper 14 em of sediment at the three study areas. 

SITE VEGETATION 
[Sample size] Bare Mud Z.noltii Z.marina 

Beal g/m2 87.88 224.5 261.97 
[n=6] (33.17) (26.24) (29.78) 

% 2.61 6.17 7.79 
(0.68) (1.68) (0.64) 

Elwick g/m2 89.78 146.49 178.57 
[n= 6] (8.08) (5.86) (17.44) 

% 1.56 2.85 2.78 
(0.03) (0.21) (0.15) 

The Swad gjm2 1534.02 644.48 3854.13 
[n= 8] (418.23) (153.38) (393.30) 

% 11.74 7.24 20.38 
(3.10) (1.38) (1.29) 

0 standard error of mean 

g/m2- mean biomass 
% - percentage detrital component 

A more appropriate method of presenting the data was to consider the 
percentage that the detrital component formed within the sediments 

collected, ie. the top 14 em .. Figure 4.6 shows that the Swad site, despite 

considerable variability, had in general a higher percentage of dead organic 

matter compared to Beal and Elwick. 

The general pattern was that the samples removed from the bare mud areas 
had a substantially lower percentage detrital element compared to those 
supporting Zostera. The bare mud cores differed significantly to Z.marina 

samples at all three sites: Beal (t= 5.5, d.f.= 6; P<0.01). Elwick (t= 5.99, d.f.= 

6; P<0.001) and the Swad (t= 2.6, d.f.= 10; P<0.05) Bare mud samples 

differed from Z.noltii cores at Elwick only (t= 7.91, d.f.= 6; P<O.OOl). At the 

Swad, core samples taken from the two seagrass species also differed 

significantly (t= 6.97, d.f.= 10; P<0.001), with the bare mud samples 

showing extreme variation. 
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FIGURE 4.6 : Mean Measures of 
Detrital Biomass Within Habitat Types 

at Lindisfarne. 
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4.3 CORRELATION OF MEASURED VARIABLES 

Mean values for the five variables measured were examined for significant 

correlation. The five variables are listed in Table 4.8, together with the 
coefficients of correlation. 

Table 4.8: Coeffrcients of Correlation between the different environmental 
variables measured. 

RPD 
CLAY 

AERIAL 
RI-UZOME 
ORGANIC 

RPD 

1.0000 

CLAY AERIAL 

.0782 -.4373 
1.0000 -.4592 

1.0000 

Significance Level 
*- P< 0.05 **- P< 0.01 

RHIZOME 

-.5733 
.5238 

.8994** 
1.0000 

ORGANIC 

-.1832 
-.4871 
.3157 
-.0106 
1.0000 

From Table 4.8, it can be seen that the above and below ground Zostera 

biomasses are significantly positively correlated. This is not too surprising, 

since both biomass measures were gathered from the vegetated sites, but 
neither from the bare mud samples. Figure 4. 7 shows this relationship 

graphically. 

No other significant correlations were found in the data. 



Figure 4.7 : Relationship between 
Aerial and Rhizome Biomass of 

Zostera 
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4.4 BENTWC MACROFAUNA 

During the course of the two month study, a total of 116 core samples were 
removed from Lindisfarne and analysed. These yielded 6167 macrobenthic 
invertebrates, the majority of which were oligochaetous annelids, the 
sedentary polychaete Scoloplos armiger and several mollusc genera. Table 
4.9 shows the list of organisms identified. The major feature of the list is the 
presence of both substantial epifaunal and infaunal components. 

A total of twenty two invertebrates were identified to species level, one to 
genus, two to family (including the larval and pupal stages of a Dipteran fly), 
and due to taxonomic difficulties, the oligochaetes were simply grouped 
together. 

4.4.1 Relative Abundance 

Table 4.10 illustrates the relative abundance of the different genera in the 
nine sample sites. It can be seen that the patterns of abundance were 
generally similar within a habitat, at the different sample sites. For example, 
Hydrobia and the oligochaetes were present in virtually all the cores, 
irrespective of vegetation type, whilst Ampharete and Lineus spp. were only 
found in cores supporting Zostera. Littorina and Mytilus occurred in a 
greater percentage of cores from the seagrass sward compared to the bare 
mud samples, whereas the dipteran larvae and pupae were not recovered 
from Z.marina cores at all. The isopod Idotea baltica conversely was 
restricted solely to Zostera marina samples 

This pattern was not consistent however in the polychaete annelids - a 
group which was rather poorly represented in the samples. Cores removed 
from Elwick, for example, yielded only one errant polychaete (a nereid) in 
total. From Table 4.10, it appears that this group tended to prefer the 
vegetated habitats and that the Swad appeared to have the highest relative 
abundance and diversity of errant polychaetes. However, with so few 
individuals recorded, these conclusions are extremely uncertain. 

4.4.2 Density of Invertebrates 

Figure 4.8 shows the mean values for total invertebrate number per square 

metre at each of the three sampling localities and in each of the three 



Table 4.9: List of Invertebrates Identified 

MOLLUSCA 

NEMERTINI 

ANNELIDA 

POLYCHAETA: 

Hydrobia ulvae 
Hydrobia ventrosa 
Macoma balthica 
Mytilus edulis 
Littorina littoralis 
Littorina littorea 
Littorina saxatilis 
Cerastoderma edule 
F: Lepidochitonidae (species n.d.) 

Lineus spp. 

Arenicola marina 
Eulalia viridis 
Eteone longa 
Nephtys caeca 
Nereis diversicolor 
Phyllodoce maculata 
Phyllodoce mucosa 

Ampharete balthica 
Oweniafusiformis 
Pectinaria koreni tubes 
Pygospio elegans 
Scoloplos armiger 

OLIGOCHAETA: Species n.d. 

ARTHROPODA 

CRUSTACEA: 

DIPTERA: 

Idotea baltica 
Corophium volutator 
Urothoe spp. 

Larvae, F: Dolichopodidae (species n.d.) 
Pupae, F: Dolichopodidae (species n.d.) 



Table 4.10 : Invertebrate Abundances at the 

Different Sample Sites. 

BEAL ELWICK THE SWAD 

B N M B N M B N M 

HYDROBIA ** *** *** *** *** *** *** *** *** 

MACOMA *** *** *** * *** *** ** *** *** 

LITTORINA * ** ** * ** *** 0 ** ** 

MYTILUS * ** ** 0 * *** * ** ** 

CERASTO- 0 0 0 0 0 0 0 * * 

DERMA 

LINE US 0 0 ** 0 0 0 0 * * 

NEREIS 0 0 0 0 0 * 0 0 ** 

NEPHTYS 0 * 0 0 0 0 0 0 * 

ETEONE 0 0 * 0 0 0 ** 0 0 

EULALIA 0 0 0 0 0 0 0 0 * 

PHYLLODOCE 0 0 0 0 0 0 0 * ** 
ARENICOLA 0 * 0 0 0 0 0 * 0 

SCOLOPLOS ** ** *** 0 *** *** ** ** *** 

AMPHARETE 0 ** ** 0 ** ** 0 * ** 

OWEN/A 0 0 0 0 0 * 0 0 0 

PECTIN ARIA * * * 0 0 0 0 0 0 

PYGOSPIO ** 0 0 0 0 0 * 0 0 

OLIGO- *** *** *** *** *** *** *** *** *** 

CHAETA 

!DO TEA 0 0 ** 0 0 * 0 0 ** 

COROPHIUM 0 0 0 0 0 0 * * 0 

UROTHOE 0 0 0 0 0 0 0 0 0 

DIPTERA * ** 0 *** ** 0 * ** 0 

No. of Cores (out of 12) in which 

the Invertebrate Occurred. 

*** ALL 

** 1< NO.< ALL 

* 1 ONLY 

B-Bare Mud; N-Z.noltii; M-Z.marina 
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different vegetation types. This mean number ranged from 1182 to 27772 

invertebrates per square metre. Despite this variation, there were statistical 
differences between the sample sites (ANOVA, P<0.05). 

At Beal, Z.noltii cores differed statistically from both bare (t= 2.51, d.f.= 22; 

P<0.05) and Z.marina (t= 6.26, d.f.= 22, P<O.OO 1) cores. At Elwick, the 
unvegetated cores yielded a significantly lower faunal number than either of 
those supporting vegetation (Z.noltit t= 5.67, d.f.= 22, P<0.001; Z.marina: t= 

4.29, d.f.= 22, P<0.001). At the Swad, the Z.marina cores showed a 

significant difference to unvegetated cores (t= 3.81, d.f.= 22; P<0.01) and 

also to the other species of Zostera (t= 2.28, d.f.= 22; P<0.05) 

Between site differences were restricted to bare mud cores at Elwick and the 
Swad (t= 5.16, d.f.= 22; P<0.001) and Z.noltii samples at Beal and the 
Swad(t= 3.17, d.f.= 22; P<0.01). Elwick had a significantly higher mean total 
invertebrate number inhabiting the Z.marina beds than Beal (t= 2.68, d.f.= 
22; P<0.05) and the Swad (t= 3.11, d. f.= 22; P<O.O 1). 

Table 4.11 provides a breakdown of the different invertebrate groups (full 

details are given in Appendix B). From this it can be seen that the vast 

majority of the density is made up by oligochaetes. On average, two-thirds of 
all macrofauna! numbers are provided by this group, but in some samples, 
this value rose to over 90%. The second most important group with respect 
to density were the molluscs, followed by the polychaetes, with the other 
groups forming only a fraction of the number (always less than 5% of the 

total). 
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FIGURE 4.8 Mean Numbers of all 
Invertebrates at the Different Sites 
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Table 4.11 : Mean Densities (No.m·2] of Individuals belonging to Different 
Invertebrate Groups. 
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BEAL ELWICK THESWAD 

MOLLUSCA B 846 275 4941 
N 1282 1424 2947 
M 1575 3238 2848 

POLYCHAETA B 622 -- 444 
N 136 1763 228 
M 3839 2412 1248 

OUGOCHAETA B 8589 5204 6997 
N 14416 11225 7461 
M 2321 6151 2934 

OTHERS B 50 271 33 
N 163 33 88 
M 249 17 53 

TOTALS B 10107 5750 12415 
N 15997 14445 10724 
M 8004 11818 7083 

Owing to the considerable differences in relative densities of the different 

invertebrates within the sample sites, it was appreciated that few of those 

organisms identified actually occurred in sufficient numbers to be suitable 
for quantitative analysis. The nine macrofauna! types chosen for the study 

included four mollusc genera, Hydrobia, Macoma, Mytilus and Littorina, two 
polychaetes, Scoloplos and Ampharete, the group collectively referred to as 
the oligochaetes, the isopod Idotea and the dipteran larvae and pupae. Table 
4.12 below shows the mean densities of these organisms within the study 
areas (full details are given in Appendix B). The results are shown 
graphically in Figure 4.9. 
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Table 4.12: Mean densities (No.m-2) ojthe nine invertebrates chosenjor 
analysis, present at the d!lferent sample sites. 
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SITE: BEAL ELWICK THESWAD 

INVERTEBRATE BB BN BM EB EN EM SB SN s M 

HYDROBIA 249 506 680 230 846 1326 4609 1641 121 9 

MACOMA 464 577 381 31 398 398 315 883 74 6 

MYTILUS 83 181 448 -- 17 365 17 348 69 6 

UTTORINA 50 18 66 17 166 1161 -- 75 18 7 

OLIGOCHAETES 8589 14416 2321 5204 11225 6151 6997 7461 293 

SCOWPWS 613 145 3432 -- 1691 2338 464 236 121 

A.MPHARE'IE 50 -- 448 -- 66 50 -- 25 37 

lD01EA -- -- 199 -- -- 17 -- -- 37 

DIPfERA 50 163 -- 122 33 -- 17 37 --

(a) Variation in the vertical distribution of invertebrates. 

Investigations were carried out at the Swad into the vertical distribution of 

invertebrates within the cores. The vast majority of individuals occurred 

within the top 6 em. of sediment, irrespective of RPD depth or any other 

environmental variable measured. Only the oligochaetes and the tellinid 

Macoma balthica appeared consistently in at measurable densities below 

this depth. Table 4.13 shows an example of this vertical distribution pattern 

in core no.4 taken from the Z.noltii bed on the Swad. 

Table 4.13: Example ojvariation in the vertical plane ojinvertebrate numbers 
from one core sample. 

SwadLNoltii 4 DEPTH (em) 

INVERTEBRATE 0-2 2-4 4-6 6-8 8-10 10-12 

Hydrobia 2 0 0 0 0 0 
Macoma 1 0 1 0 0 0 
MytUus 3 0 0 0 0 0 
Littorina 0 0 0 0 0 0 
Scoloplos 5 4 1 0 0 0 

Oligochaetes 56 13 3 7 0 0 
Dipteran 1 0 0 0 0 0 

Phyllodoce 1 0 0 0 0 0 

PERCENTAGE 71 17 5 7 0 0 

5 

9 
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(b) Between site variations. 

It has already been indicated that mudflats represent a very heterogeneous 
environment. It was hoped that the three study sites chosen within the 
Lindisfame N.N.R. for their similarity, would generate statistically 

comparable invertebrate densities such that differences between habitat 

types (vegetated and bare) could be examined. 

Table 4.14 demonstrates the significant differences for the nine chosen 
invertebrates between the different study sites. Full details are given in 
Appendix C(i). These differences refer to mean densities given in Table 4.12. 

Table 4.14: Levels of significance ojvariations in mean invertebrate densities 
within the different habitat types between sample sites at Lindisjame (ANOVA, 

all sites). 

BARE MUD 

HYDROBIA 3 >> 1,2 

MACOMA 2 << 1,3 

MYI1WS n.s. 

LITTORINA n.s. 

OLIGOCHAETES n.s. 

SCOWPWS 1 >> 2 

AMPHARE1E n.s. 

IDOTEA n.s. 

DIPfERA 2 >> 3 

Z.NOLTII 

1 << 3 

2 << 3 

n.s. 

n.s. 

3 << 1,2 

2 >> 1,3 

n.s. 

n.s. 

n.s. 

Interpretation 

Z.MARINA 

n.s. 

n.s. 

n.s. 

2 >> 1,3 

2 >> 1,3 

1 » 3 

1 >> 2,3 

n.s. 

n.s. 

SITE 1 : BEAL BLACKS 
SITE 2 : ELWICK SANDS 

SITE 3 : THE SWAD 

1 >> 2 ... Site 1 (Beal) had a significantly (ANOVA, P<0.05) higher density 
of a given invertebrate than Site 2 (Elwick). 

2 << 1,3 ... Site 2 (Elwick) had a significantly lower density of a given 
invertebrate than either Site 1 (Beal) or Site 3 (The Swad) 
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From Table 4.12, it can be seen that there was considerable between site 
variation in the densities of most invertebrates utilising the three habitat 
types. 

The density of hydrobiid gastropods tended to be significantly greater at the 
Swad, except in those cores removed from Z.marin.a beds. This was linked to 

the observation that the Hydrobia at this location were in general of a 
smaller size than the other two sites. It was thought possible that this 
augmented density represented an influx of this year's young. However, no 
investigations were carried out into hydrobiid shell size distributions at the 
different sites (see Wood, 1972 for further details relating to this aspect). 

The other gastropod studied, Littorina, showed moderately low, statistically 

similar densities at the three sample sites in bare mud samples and Z.noltii 

beds. The density at Elwick within Z.marina beds (approximately 1161 
individuals m-2) was however an order of magnitude greater than either Beal 

or the Swad. 

The hemi-sessile bivalve, Mytilus edulis, although exhibiting a rather patchy 
distribution and occurring in relatively low densities, did not show statistical 

differences in density within the different habitat types at any of the three 

sample sites. 

Macoma balthica, a deposit-feeding tellinid living within the sediment (see 
Section 4.4.2 (a)) again showed significant differences in density between the 
sites supporting no vegetation and the finer-leaved Zostera noltiL 

Oligochaetes in general showed higher densities within swards of both 
Zostera species at Elwick than at the other two sites. 

Scoloplos armiger, a sedentary bacteria -eating polychaete, varied 

significantly in density between sites in all habitat types. 

The other sedentary polychaete, Ampharete, was present in rather low 
numbers, but in general appeared in highest densities at Beal. 

Idotea was solely found in Z.marina samples and did not show any statistical 

between site differences. 
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The dipteran larvae, belonging to the family Dolichopodidae, were found in 
samples taken from Beal and Elwick. At the Swad only the pupal stage was 
recovered from cores. This family of Diptera contains several genera that 

spend their larval and pupal stages in intertidal sediments (see Assis 
Fonseca, 1978 for further details). Since the Swad was sampled later in the 

season, it was felt this pattern reflected a natural progression in the life 
cycle of this invertebrate, with the pupal stage following on from the larval 
stage. Between site variation was restricted to bare mud samples removed 

from Elwick and the Swad. 

It was therefore apparent that combination of the invertebrate density data 

from the different sample sites within the Lindisfarne N.N.R. was not 

possible. The heterogeneous nature of the environment meant that each site 
had to be treated more or less independently. 

(c) Within site variations. 

The major aim of the project was to investigate invertebrate community 
differences between the two Zostera habitats and between vegetated and 

unvegetated sites. Table 4.15 shows the significant differences between 

vegetation types at each sample site, in terms of mean invertebrate densities 
recovered. Full details are given in Appendix C(ii). 



Table 4.15 : Levels of significance of variations in mean invertebrate densities 
between habitat types within the different sample sites at Lindisfame (ANOVA, 

all sites). 

BEALBLACKS ELWICK SANDS THESWAD 

HYDROBIA 1 << 3 1 << 2,3 1 >> 2,3 

MACOMA n.s. 1 << 2,3 1 << 2 

MYIILUS n.s. 3 >> 1,2 n.s. 

LITTORINA n.s. 3 >> 1,2 1 « 3 

OLIGOCHAETES 2 >> 1 >> 3 2 >> 1,3 3 << 1,2 

SCOWPWS 3 >> 1,2 1 << 2,3 3 >> 1,2 

AMPHARETE 3 >> 1,2 n.s. n.s. 

IDOTEA 3 >> 1,2 n.s. n.s. 

DIPfERA n.s. 1 >> 3 n.s. 

26 

SAMPLE 1 : BARE MUD 
SAMPLE 2 : Z.NOLTII 

SAMPLE 3 : Z.MARINA 

Interpretation 

1 >> 2 ... Cores removed from vegetation type 1 (Bare mud samples) had a 
significantly (ANOVA, P<0.05) higher density of a given invertebrate than 

type 2 (Z.noltii). 

2 << 1,3 ... Cores removed from vegetation type 2 (Z.noltii) had a 
significantly lower density of a given invertebrate than either type 1 (Bare 

mud samples) or type 3 (Z.marina) 

The obvious first impression from the table is that there are many 
differences in the densities of particular invertebrate groups between the 
different habitats at a site. A general point is that it is almost solely either 
communities extracted from bare mud cores or else from Z. marina cores 
which differ significantly from one or either of the other two types of 
vegetation. 

Molluscs 

The molluscs collected in this study could be categorized as epifaunal or 

infaunal. The epiphytic grazer Littorina belongs to the epibenthic component, 
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whereas Macoma lives wholly within the sediment but feeds using a long 
inhalent siphon at the surface. Hydrobia is noted for its behavioural pattem 
of daytime low tide avoidance by remaining buried a few millimetres within 
the sediment and retuming to the surface when the rising tide passes. 

However, since its feeding behaviour is concentrated at or above the 
sediment surface, Hydrobia may be grouped in the epibenthic component. 

Mytilus also lives half-buried in the sediment, filter feeding during periods of 

immersion. 

Those sediments removed from Zostera marina beds, in particular, are 
notably rich in epibenthic grazers. The observation that this guild was 
especially abundant in the Zostera beds led to the investigation of 
behavioural preferences discussed in Section 4.4.4. The situation is 
complicated at the Swad, where vast numbers of the hydrobid snails were 

recorded in bare mud samples. However a possible reason for this disparity 

was discussed earlier. 

Macoma reached its highest densities within the Zostera swards, particularly 
Z.noltiL At both Elwick and the Swad, densities of Macoma were significantly 
lower in bare mud samples than in samples extracted from perennial 
(Z.noltii) seagrass beds. A possible explanation for this preference might lie 
in the feeding mechanism employed, whereby a long inhalent siphon 

extends above the sediment surface and is used to suck in food particles 
comprising diatoms, detritus with bacteria and some protozoans. Such food 
particles are likely to be more abundant in sediment supporting Zostera, 

since water speeds are likely to be less, reducing the risk of removal by the 
current. It was also apparent that the majority of the larger Macoma 

(showing more than two annual growth rings on their shells) were present 
within those samples taken from vegetated sites. This aspect was not 
investigated in this study, but might provide an interesting topic for future 

investigation. 

Mytilus numbers as stated previously were extremely variable, ranging from 
mean density values of zero to six thousand per square metre. This 
variability arose from its very patchy distribution. Despite this, at Elwick, 

the Z.marina beds were found to support a significantly higher density of 

this bivalve. Mean density values for Mytilus were always higher in samples 
taken from the Zostera swards than in the bare mud samples (Table 4.12). 
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Polychaetes 

The rather sparse representation of this group within the mud flats at 
Lindisfarne restricted the statistical analysis to two sedentary species, 
Scoloplos armiger and Ampharete balthica. 

Scoloplos is a readily recognisable polychaete owing to its bright red colour, 
and belongs to the family Orbiniidae. It was easily the most abundant 

member of this group, occurring at all but one of the sampling locations 
(bare mud samples at Elwick). It reached particularly high numbers in 
Z.marina cores, showing statistically higher densities than in bare mud 
samples at all sites. Scoloplos was found in general at higher densities in the 
annual rather than the perennial Zostera species. Only at Elwick were mean 
Scoloplos densities within the two seagrass species not statistically different. 
Indeed at the other two sites, mean densities were infact lower in Z.noltii 

samples than in bare mud samples. 

Ampharete balthica is a creamy coloured polychaete which lives within a 
membranous tube composed of agglutinated sediment particles. It was 
abundant only within samples taken from the Z.marina beds at Beal. At this 
location, numbers recovered from the coarse-bladed seagrass cores were 
significantly greater than either bare mud or Z.noltii samples (F= 6.8, d.f.= 
34; P<O.O 1). At the other sites, despite not actually appearing in any of the 
bare mud cores, mean densities of this polychaete within the habitat types 
showed no significant difference to one other. 

Oligochaetes 

The oligochaetes were by far the most densely represented group overall. 
Subdivision of this group from simple observations of differences might have 
been possible, but without the taxonomic expertise to back up such 
divisions, it was deemed most appropriate to leave the group entire. 
Oligochaetes were recorded in every single core sieved, with mean densities 
ranging from 800 to 24000 m-2. 

Samples extracted from Z.noltii swards yielded the highest densities of 

oligochaetes at all three sampling localities. Densities were significantly 
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greater in this vegetation type at Beal (F=l9.1, d.f.= 34; P<O.OOl) and Elwick 

(F= 10.8, d.f.= 36; P<O.Ol) than in either bare mud samples or sediments 
supporting Z.marina. At the Swad, Z.marina cores contained significantly 

fewer oligochaetes than the other two habitat types (F= 14.6, d.f.= 43; 

P<O.Ol). 

Oligochaetes were therefore most abundant in Z.noltii sediments and 

generally least abundant in sediments upon which the annual seagrass was 

established. The two seagrass species seemed to contrast markedly in their 
relative attractiveness to this group of invertebrates. 

Other Groups 

The other two invertebrate groups studied, despite not occurring at very 

high densities, showed very interesting distributional patterns. 

Idotea baltica is an epibenthic isopod, commonly associated with Zostera. It 

often adopts a colouration to blend in with that of the seagrass blades. 
These investigations showed a distinct preference in this species for 

Z.marina. No individuals of this species were recorded in any other habitat. 

However, the only statistically significant difference was at Beal, where 
densities rose to almost 200 m-2 (F= 4.8, d.f.= 34; P<0.05). It is 

understandable that this species might prefer sites containing Zostera 

rather than bare mud patches, due to its scavenging feeding behaviour and 
food availability. However the distinct preference for the annual ahead of the 

perennial seagrass warrants further investigation. 

The dipteran, recovered from all three sample sites as either larvae or 
pupae, was absent from all Z.marina cores. It was nevertheless found in 

densities up to 160m-2 in both bare and Z.noltii samples. Due to low 

densities at the majority of sites however, the only statistical difference was 
at Elwick where bare mud samples yielded a significantly higher number of 

the dipteran than Z.marina cores (F=6.4, d.f.= 36; P<O.Ol) 
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4.4.3 Invertebrate Biomass 

The ash-free dry weights of the invertebrates extracted from the samples 
were calculated and used as a measure of biomass per square metre for 
each of the sites at Lindisfarne. The values for molluscan biomass were 

calculated separately (Table 4.16). 

Table 4.16: MeWl invertebrate biomass measures {gm-2) recorded at the 
different sample sites. 

SITE MOLLUSC 

BEAL 
In= 6) BB 41.1(14.5) 
In= 6) BN 36_2(7.3) 
In= 6)BM 83.1(20.5) 

ELWICK 
In= 6) EB 3.0(1.0) 
In= 6) EN 11.6(2.6) 
In= 6)EM 56.4(28.7) 

THESWAD 
In= 8) SB 15.4(2.9) 
In= 8) SN 10.4(1.5) 
In= 8)SM 217.2(129.2) 

SOFT-BODIED 

3.6(0.4) 
2.3(1.2) 
2.0(1.0) 

11.6(0. 7) 
15.9(1.2) 
21.9(3.1) 

2.6(0.3) 
3.7(0_3) 
3.0(0.4) 

TOTAL BIOMASS 

44.8(15.0) 
38.5(8.5) 

85.1(21.5) 

18.6(1.8)* 
27.5(L4)* 
78.3(31.7) 

18.1(2.9) 
14.2(1.6) 

219.9(128.8) 

n - Sample Sizes 
0 Standard Errors 

• Significant Difference 

The size of the standard errors in Table 4.16 provide an indication of the 
extreme variability within the data. For example, at the Swad, invertebrate 
biomass derived from Z. mwina cores varied from a mere 3 gm -2 to over 1 
kgm-2. This high value coincided with the presence of a number of large 

Mytilus within that particular sample. 

From Table 4.15, it can be seen that molluscs contribute most of the 

biomass at all sites except bare mud and Z.noltii samples from Elwick. The 
majority of the mollusc biomass is provided by bivalves (I..amellibranchia), 

particularly Mytilus edulis and Macoma balthica. The abundance of 

epibenthic gastropods at the Swad does not influence biomass measures 

greatly. 
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Significant within-site differences in total biomass were restricted to Elwick, 
where samples removed from the bare mud had statistically lower 
invertebrate biomass measures than Z.noltii samples. 

4.4.4 Behavioural Investigations 

The behavioural experiments carrted out sought to back up some of the 

information on distributional patterns. The simple choice chamber enabled 
counts to be made of individuals' preference for sediments supporting 
Zostera and those devoid of the seagrass (Figure 1 0). Hydrobia and Littorina 

were studied and the results analysed using a Wilcoxon matched-pairs 
signed ranks test (see Appendix D for full details of observations). A total of 

20 gastropods were tested in each experiment and the choice expertment 

repeated 21 times for Hydrobia and 23 times for Littorina. 

Table 4.17 : Results and Signifl.cance Levels for the Behavioural Analyses 
Conducted 

TOTAL 

Genus + signed ranks - signed ranks Significance 

Hydrobia 148 83 n.s. 
[n= 21] 

Littorina 276 0 p < 0.01 
[n= 23] 

From this table, it can be seen that Littorina show a statistically significant 
preference for the seagrass sediments, as opposed to the bare mud 
sediments. This agrees with the results achieved from core sampling (Table 
4.12), in which the greater densities of this gastropod were always 
associated with either or both seagrass species, relative to the bare mud 

samples. 

Hydrobia, although numbers observed within the Zostera chamber were 
generally higher, show no significant preference for the seagrass. This result 

also mirrors the less clear cut density patterns observed for this genus. 
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The relationship between invertebrate densities and the environmental 
variables measured was investigated statistically. 

4.5.1 Correlation and Regression Analysis 

(i) Total Density 

Total densities of all invertebrates at the nine sample sites were used as the 
dependent variable in multiple regression analysis. The environmental 
variables - RPD depth, percentage clay content, aerial biomass, rhizome 
biomass and percentage organics - were the independent variables in 
stepwise multiple regression This procedure removes the independent 
variable with the largest probability-of-F value from the regression equation, 

before recomputing the equation omitting this removed variable. In this way, 
if a single independent variable is very highly significantly related to the 
dependent variable, then this does not obscure other less evident 
relationships. 

Prior to regression analysis, the correlation coefficients between total 

densities and the environmental variables were derived (Table 4.18). 

Table 4.18 : Correlation coefficients of mean total invertebrate density and the 
measured environmental variables 

RPD %CLAY AERIAL ROOTS %ORGANICS 

MEAN NUMBER -0.57 0.06 -0.09 0.20 -0.23 

From this table, there are no significant correlations between mean density 
and the environmental variables. However, there is a distinct negative 

relationship between the RPD depth and density and a slight positive 
correlation with root and rhizome biomass. Regression analysis 

subsequently, failed to show any significant relationships in the data. 
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(ii) Densities of Individual Taxa 

Mean densities of the nine individual invertebrate taxa were then regressed 

against the environmental variables. 

Molluscs 

The two mollusc genera that showed significant relationships to the 

environmental variables were Mytilus and Littorina. 

Mytilus edulis densities were found to be significantly correlated with above 

ground Zostera biomass (r= 0. 70; P<0.05). This species was also strongly 

(but not significantly) positively correlated with percentage organic content 

of sediments (r= 0.67; P>0.05). 

Littorina spp. densities were found to show a significant correlation to the 

organic content of sediments (r= 0. 79; P<0.05). 

In stepwise multiple regression analysis on Mytilus, the first variable 

removed was aerial biomass, followed by rhizome biomass and finally RPD 

depth. Littorina spp. densities were related significantly to percentage 

organic content only. Table 4.19 shows the F values and significance levels 

for these relationships. 

Table 4.19 : F values and significance levels for moUusc taxa, derived through 
stepwise multiple regression of invertebrate density against environmental 

variables. 

RPD %CLAY AERIAL ROOTS %ORGANICS 

MY1LUS 
F 16.88 -- 6.75 8.79 --

d.f. 3,5 -- 1,7 2,6 --
p P< 0.01 -- P<0.05 P<0.05 --

UTTORINA 
F -- -- -- -- ll.5 

d.f. -- -- -- -- 1,7 
p -- -- -- -- P<0.05 
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Armelids 

No significant correlations were found be~een densities of Ampharete, 

Scoloplos or oligochaetes and any of the vartables measured. However, both 
the polychaetes showed negative correlations (r= -0.38 and r= -0.52 
respectively) to RPD depth. Scoloplos also showed a distinct positive 
correlation with the two Zostera variables, aerial biomass (r= 0.51) and 

rhizome biomass (r= 0.52). The oli~ochaetes showed a negative correlation 

with all the measured vartables. 

Stepwise multiple regression failed to highlight any significant relationships. 

Other groups 

Neither Idotea nor the dipteran larvae and pupae showed any significant 
correlations with the environmental vartables. The particularly low 

correlation (r= 0.10) between Idotea densities and aerial biomass measures 

was perhaps a little surprising, since this organism was only ever found on 

Zostera marina blades. Dipteran densities do show strong negative 
correlations to Zostera biomass measures (aerial: r= -0.61; rhizome: r= -
0.51). mirroring some of the distributional patterns described earlier (see 

Table 4.10) 

(iii) Invertebrate Biomass Measures 

Correlations between mean invertebrate biomass at the different sample 

sites and the environmental vartables are given in Table 4.20. 

Table 4.20: Correlation coe.fficients of mean invertebrate biomass and the 
measured environmental variables 

RPD %CLAY AERIAL ROOTS %ORGANICS 

BIOMASS -0.14 -0.58 0.64 0.30 0.75* 

•- Significant Correlation (P<0.05) 
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Invertebrate biomass in this study was therefore seen to be significantly 

positively correlated with percentage organic content of the sediments (see 
Figure 4.11). Strong positive correlations were also evident, particularly with 

aerial Zostera biomass but also root and rhizome biomass. 

Stepwise multiple regression analysis, with invertebrate biomass as the 

dependent variable confirmed the significant relationship to percentage 

organics (F= 8.67, d.f.= 1,7; P<0.05). Removal of this variable failed to reveal 

any further significant relationships in the data. 

4.5.2 Canonical Correspondence Analysis (CANOCO) 

CANOCO is a multivariate analysis technique developed to relate community 

composition to known variation in the environment. It provides an 

integrated description of species-environmental relationships by assuming a 

response model that is common to all species, and the existence of a single 

set of underlying environmental gradients to which all species respond rrer 
Braak, 1986) 

Data for the different sample sites of the densities of invertebrates present 

were related to the environmental variables measured (see Appendix E). 

From the programme results, it was found that approximately 26% of the 

variation in the species densities recorded could be accounted for by those 

environmental variables measured (sum of all canonical eigenvalues = 

0.25872). 

The ordination analysis produced a series of axis scores for each taxon and 

for each sampling site. For each axis, an eigenvalue is calculated which is 

proportional to the variation (of the 26%) accounted for by that axis. In this 

study, four axes were specified, with the following variation accounted for: 

Axis 1: 54.1% 

Axis 1,2: 82.2% 

Axis 1,2,3: 96.9% 

Axis 1,2,3,4: 99.4% 
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Although time did not enable a full analysis of the results achieved through 
CANOCO, the axis scores for the two primary axes were plotted. It was 
acknowledged that these plots were two dimensional representations of a 
multidimensional ordination diagram, but it is convention to display the 
scores for those canonical axes that account for the greatest variation in the 

data. 

Figure 4.12 shows the species scores for these axes, together with the biplot 

scores for the environmental variables. The aerial and rhizome biomass 
measures are reasonably close to one another, indicating the significant 
positive correlation mentioned previously. The rhizome biomass also appears 
to show a very close association with percentage clay content. The diagram 
is however in only two dimensions. Substantial differences between these 
variables occur in other dimensions. 

From Figure 4.12, it can be seen that the various invertebrate groups 
studied (molluscs, polychaetes etc.) show a degree of aggregation, suggesting 

they have similar ecological relationships. For example, the two sedentary 
polychaetes Scoloplos and Ampharete are in the same sector of the diagram, 
displaying a positive association with rhizome biomass. The molluscs, except 

for Littorina, are clustered in the top two sectors, and display a positive 
association with sediment organic content. The dipteran larvae and pupae 

show a negative association with all variables measured apart from depth of 
RPD, an observation borne out by correlation analysis. Idotea is positively 

associated with aerial biomass - a feature that was recognised from field 

observations but not supported by regression analysis. 

Figure 4.13 shows the nine site scores for the two primary axes. A distinct 
clustering is apparent between several of the sites. The sites dominated by 
Z.marina show a distinct positive association to all variables except RPD 
depth, particularly and not surprisingly to aerial biomass. The Z.noltii and 

bare mud sites produced axis scores analogous to one another, suggesting 
they had a similar set of underlying gradients in those environmental 

variables measured. This is interesting since it actually shows the difference 

between the two Zostera species in terms of these ecological variables. 

The canonical correspondence analysis showed that the different 

invertebrate taxa do have different responses to those environmental 
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variables measured, but that there is a degree of cluster associated with the 
different groups. Another important result was regarding differences 
between habitat types, and particular that between the two seagrass 

species. The inclusion in the analysis of a greater number of variables would 

undoubtedly highlight these relationships better. 
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CHAPTER 5. DISCUSSION 

The investigations within the different study areas at Lindisfarne were 
primarily concemed with differences in benthic macrofauna! communities 
between (a) vegetated and unvegetated sites, and (b) the different species of 
Zostera. Not surprisingly, the heterogeneous nature of the intertidal habitat 

was such that there were significant differences between the three different 
sample sites at Lindisfarne, calling problems with respect to combining 

data. 

Multivariate analysis of the data gathered suggested differences between the 
sample sites in terms of the environmental variables measured and the 
assemblages of invertebrate taxa present. It appeared from ordination that 

the two seagrass species differed in terms of their macrofauna! component, 
such that communities from Z.noltii beds showed a greater similarity in 
composition to those extracted from bare mud, than they did to Z.marina 

beds. There seemed therefore to be a degree of specificity in terms of the 
communities associated with the two species of seagrass. 

Despite these differences in overall community composition, few consistent 
pattems emerged in the data gathered on invertebrate densities within the 
different habitat types. However, it was possible with the results achieved, to 
highlight a number of relationships and to provide tentative explanations of 

any apparent associations. 

5.1 ENVIRONMENTAL HETEROGENEITY 

The measurement of several of the more obvious environmental variables 
was an important aspect of this study, since the specific composition and 

distribution of the macrofauna! community in any given area is a function of 

the response of individual species to such environmental factors (Day et 

al., 1989). These variables provided an indication of the environmental 
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variability in the habitats under consideration. Few significant differences 
were documented, between the two Zostera species, in terms of those 
variables measured. Nevertheless, in comparing bare and vegetated sites, a 
number of interesting dissimilarities were found. 

Seagrasses have been shown to influence the nature and depth of their own 
sediment bed through the trapping and binding of suspended particles 

associated with damping wave and tidal energy. A reduction in wave action 

within seagrass beds has been shown to effect the redox potential 
discontinuity layer, granulometric properties and organic content of 
sediments (Zieman, 1975), with consequent impacts on the macrofauna. 

The depth of the redox potential discontinuity layer dramatically effects 
vertical distribution of organisms beneath the sediment surface. This 
phenomenon has been studied in the micro- and meiofauna (Fenchel and 
Riedl, 1970), but is also evident in the macrofauna. In this study, RPD 

depths were significantly greater in unvegetated sediments compared to 
those supporting Zostera. This interstitial oxygen defficiency would appear 
to limit the depth to which obligate aerobic organisms (lacking any adaptive 
avoidance or endurance mechanisms) could live beneath seagrass swards. 
This feature of the sediments does represent one possible constraint on 
invertebrate densities beneath Zostera swards. An obvious exception is 
Macoma balthica which lives in anoxic sediments, but draws oxygen and 
food particles down from the surface by means of a long inhalent siphon. 

The two Zostera species differ to a great extent in terms of their life histories 
and ecological requirements. Such differences might have been expected to 
effect sediment RPD depth. For example, differences in the above ground 
floral morphology of the two might exert an influence on boundary layer 
dynamics, reducing current velocities and thereby altering oxygen tensions 
within the sediments. The difference between the perennial and the annual 
seagrass species in terms of sediment water content preferences might also 
lead to variations in depth of this layer. However, no such differences were 
recorded, with the RPD measured within Zostera swards at the three sites 

showing no significant variation. 

Several authors have noted that macrofauna! densities at sites vegetated by 

seagrasses were higher than nearby unvegetated sites. However, it has often 
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been difficult in past investigations to differentiate between macrophytic 
effects and those relating to sediment granulometry. There are many 
examples in the literature of differences in the relative abundance of benthic 

taxa being attributed to differences in granulometry (Rhoads, 1974; Dankers 
and Beukema, 1983). Stoner (1980), working within subtidal (and 

presumably more stable) seagrass beds, was able to remove this variable 
from his analyses, thereby isolating the role of seagrass density in regulating 
community structure. 

Attempts to eliminate sediment granulometric differences between the 
sample sites were unsuccessful. Cores removed from the different habitat 

types showed significant differences in terms of particle size distributions. It 

was largely those cores from Z.marina beds that differed in this respect, but 

there was no overall pattern between the sampling areas. 

An appreciation of the silt/ clay content of the sediments is important, since 
it is around particles of this approximate diameter that the organic 
molecules that constitute the food for many of the macrofauna, are 

associated. The percentage silt/clay contents within the Lindisfame N.N.R. 
were very variable and showed no overall correlation to the presence or 

absence of vegetation. This is again surprising for reasons explained earlier 

relating to boundary layer dynamics. 

Three variables were measured relating to the Zostera itself. Values for both 
above- and below-ground biomass of Z.marina were considerably less than 
those reported from subtidal studies in Denmark by Sand-Jensen (1975), 

but these might be attributed to differences in tidal level. The biomass 
measures for Z. rwltii are of the same order as those of Hoek et aL ( 1983). 

In general, the thicker bladed Z.marina had on average double the above­
ground biomass of the finer-leaved Z.rwltiL This in itself is not too surprising 
and could be estimated from simple field observations. Values for living root 
biomass were similar between the two seagrass species, and were equivalent 
at most sites to the figure achieved for aerial biomass of Z.marina. An 

extensive rooting and rhizome system is therefore present, preventing 

upheaval and providing a habitat for infaunal invertebrates. 
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Variations in seagrass biomass between the sites at Lindisfarne were 
considerable, reflecting not only the heterogeneity of the environment, but 
also a seasonal variation during the early part of the growing season. 

Measures of detrital biomass throughout the study period were particularly 
erratic, making it difficult to identify patterns in the data. The Swad 
emerged as having by far the greatest biomass and percentage of this 
fraction compared to the other two sites. This was perhaps a consequence of 
the substantial reduction in recent years in the total area of the seagrass 
sward at this site. It is thought that the slow decomposition of the plant 
tissue within the sediments would augment detrital biomass measures 
substantially, providing much suitable organic material for infaunal deposit­
feeding invertebrates such as Scoloplos, Arenicola and oligochaetes. An 

increase in the diversity of the polychaetes present at this site was observed, 
but not on a scale proportional to that recorded in detrital biomass. 

Statistical analysis failed to identify any significant correlations between the 
environmental variables, apart from the obvious relationship between above­
and below-ground Zostera biomass. Previous investigations have highlighted 
a correlation between percentage clay content of sediments and percentage 
organics. Tubbs (1977) reported an increase in the organic composition and 
nutrient status of sediments associated with the decrease in particle size. 
However, no such significant correlations were evident in this data. 

5.2 QUALITATIVE INVESTIGATIONS 

The number of invertebrate taxa collected from Lindisfarne (27) was 
comparable to that found in other similar studies. For example, Reise ( 1985) 
found 32 taxa of similar trophic groups to those in Table 4.9 associated with 

intertidal seagrass beds in the Wadden Sea. 

Table 4.9 is a fairly impressive list of the benthic macroinvertebrates present 

at Lindisfame. At first sight, this list may be seen to contain all those 
organisms that might have been expected - several species of epifaunal and 
infaunal mollusc, a wide range of annelid genera and several crustaceans. 

However on closer inspection, although these taxa were present at 

Lindisfame, numbers of the vast majority were very low. The number of 
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different species recovered from any single core rarely exceeded ten and 
were generally the same groups occurring repeatedly, pointing to a rather 
high dominance of a select few. 

The absence of several often very abundant benthic intertidal mud flat 

invertebrate species was surprising. The polychaete Nereis diversicolor and 
the amphipod Corophium volutator, for example, appeared in less than 1% of 
all cores taken, despite being known to establish dense assemblages on tidal 

flats (although not always associated with seagrass swards) and to 
physically dominate the habitat. However, rather than dwelling on those 
taxa that were not present at Lindisfarne, it is of greater value to look at 
those species actually recorded and look at their relation to 

vegetation/habitat type. 

Differences in the species composition of the samples were evident in all 

three habitat types. Diversity in invertebrate taxa was usually greatest in 

Z.marina cores. The relative abundances of the epifaunal invertebrate 
groups were generally dependent upon the presence of seagrasses. Idotea 

baltica was only recorded from cores supporting the larger bladed Zostera 

marina, and Littorina, in the behavioural analyses, showed a distinct 
preference for the seagrass habitat. Stoner ( 1980) suggested this was 

evidently related to increased surface area and habitat complexity above the 
sediment provided by grass blades and epiphytes. Schneider and Mann 

(1991b) suggested that both the degree of epiphyte cover and its shape were 
important factors in determining the distribution of epifaunal invertebrates. 

The effects of predation by epibenthic predators have also been shown to be 
mediated by the spatial resistance offered by the roots and blades of 
seagrasses (Reise, 1985). 

The dipteran larvae and pupae showed an apparent avoidance of Z.marina 

sediments. Their presence in Z.noltii and bare mud samples is probably 

related to the lower water content of such sediments, enabling respiration 
and feeding in the larvae and respiration in the pupal stage, during periods 

of low tide. 
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5.3 QUANTITATIVE ASPECTS 

The densities of macrofauna! invertebrates from all stations were of the the 
same order as those reported in other studies. Densities removed from 
vegetated sites at Lindisfame were comparable to those reported by a 
number of authors in the United States (for example, Santos and Simon, 
1974) and by Castel et aL(l989) in Arcachon Bay, France. Reise (1985) 
reported densities of macrobenthic organisms of between 4000 and 18000 
jm2 within sand and mud flats at Konigshafen, corresponding to the 
abundance values recorded for bare mud samples in this study. However, 
this author's exceptionally high figures for invertebrate densities removed 
from seagrass beds (> 50000 invertebratesjm2), were not mirrored in these 
investigations. 

At Lindisfame, densities were generally highest in Z.noltii beds, due to the 
presence of large numbers of oligochaetous annelids, together with the 
abundance of mollusc taxa. In bare mud samples, densities of molluscs 
were lower (except at the Swad, where large numbers of hydrobiid snails 
were recovered), but the abundance of oligochaetes was again responsible 
for producing large mean total density values. In Z.marina cores, the 
oligochaetes were in general of much lower abundance. Much of the 
observed total density in this habitat was attributable to the abundance of 
molluscs and the sedentary polychaete Scoloplos anniger. In this case, 
macrofauna! density was not greater in the vegetated sites compared to 
nearby bare areas, an observation that contrasts with other studies (Stoner, 
1980; Schneider and Mann, 1991a). However, total invertebrate biomass 
was found to be greatest in amongst the seagrass vegetation, particularly 

Z.mmina. 

Densities of several individual taxa were directly related to the presence of 
vegetation. Larger individuals of Macoma balthica were particularly 
abundant in Zostera beds (possibly related to their feeding mechanisms), as 
were Mytilus edulis bivalves which rely upon the protection afforded by the 
seagrass to currents and predators. The presence of the latter is however a 
possible consequence of the moisture retaining properties of the Zostera 

blades during low tide periods of emersion. The preferences of the epifaunal 

gastropods Littorina and Hydrobia have been mentioned and the results 

backed up by behavioural investigations. The latter species shows an 
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interesting mechanism of avoidance of daytime low tide conditions by 
staying buried a few millimetres within the sediment and closing its shell 
with the operculum. The experimental set-up, m1m1ck1ng low tide 

conditions, was therefore perhaps too simplified to take account of such a 
behavioural pattern. 

Differences in the relative abundance of polychaete trophic groups have 
been shown to be a function of many different environmental variables, 
including macrophyte biomass (Stoner, 1980). Polychaete densities at all 

sites were dominated by Scoloplos armiger. Numbers recorded from Z.rwltii 

sediments were comparable to those reported by Reise (1985) at 
Konigshafen. However, particular abundance at all sites was noted in 
Z.marina samples, where densities rose to over 1000/m2. It appeared that 

this bacterivorous species had a distinct preference for sediments 
supporting Z.marina, possibly related to the rhizomal properties of this 
seagrass and their effect on bacterial populations. 

The increased number within Z.marina beds was also reflected in total 
polychaete densities. Explanations for this and also an apparent avoidance 
of Z.noltii supporting sediments by the group as a whole (except at Elwick), 

warrant further detailed investigation of the rhizome mats of the respective 

seagrass species. 
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5.4 CONCLUDING REMARKS 

The intertidal system at Undisfarne is undoubtedly very complex and 
variable. The two Zostera species present do influence the characteristics of 
the sediments that support them, and consequently affect the benthic 

macrofauna! assemblages associated with them. This study showed 
however, that those invertebrates associated with the two seagrass species 
are not identical in terms of their community structure. There are obvious 
differences between vegetated and unvegetated sites and also between 
Zostera marina and Zostera noltii sites. 

Sediments supporting Z.marina were found to contain the highest diversity 
and biomass of invertebrates, but least overall invertebrate densities. Z.noltii 

samples were found to bear greater similarities to bare mud samples than 
those supporting Z.marina in terms of invertebrate community composition. 

Further research could follow seasonal trends in the macrobenthic 
communities associated with the annual and the perennial species of 
seagrass. The region of the rhizosphere might also be focussed upon, with 
studies investigating exudations from root surfaces and possible effects on 
the microbial organisms upon which much of the macrofauna depends. 

In short, there is much scope for further ecological research in this field, 
which will enable the better understanding of the factors affecting 
invertebrate communities associated with both species of Zostera within this 
unique ecosystem. 
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APPENDIX 



Appendix A: Calculation of Sample Size 

Size of sample size required was calculated by considering 95% 
probability of a standard error equal to 20% of the mean to be a 
reasonable level of accuracy to aim for. 

Samples removed during a preliminary visit to Elwick and Beal 
yielded the following numbers: 

SAMPLE SIZE 

n= 8 

n= 10 

n= 12 

MEAN NO. STANDARD ERROR PERCENTAGE 

56 

54 

52 

13.88 

11.79 

9.84 

24.78% 

21.83% 

18.92% 

The sample size was therefore set at 12 per habitat type. 



Appendix B: Invertebrate Densities recovered per core from the three 
Sample Sites at Lindisfame 

KEY 
z : number per core H- Hydrobia 

Z X 198.9654 : number per square metre Ma- Macoma 
My- Mytilus 

B: Bare mud cores Li - Littorina 
N : Z. noltii cores 0 - Oligochaetes 
M : Z. marina cores Sc - Scoloplos 

A - Ampharete 
I- Idotea 
D- Diptera 

l. BEAL BLACKS 

H Ma My Li 0 Sc A I D 

Bl 0 4 0 0 16 6 0 0 0 
B2 0 3 0 0 30 5 0 0 0 
B3 0 2 l 0 12 5 0 0 0 
B4 l 2 0 0 22 l 0 0 0 
B5 0 2 0 0 56 8 l 0 0 
B6 0 2 0 0 38 4 0 0 l 
B7 l 2 0 0 22 l 0 0 0 
B8 0 2 0 0 16 5 l 0 l 
B9 8 2 4 3 123 0 l 0 0 
BlO 2 3 0 0 20 0 0 0 0 
Bll 3 3 0 0 87 0 0 0 0 
Bl2 0 l 0 0 76 2 0 0 l 

Nl 2 l 4 0 85 0 0 0 0 
N2 0 2 0 0 92 0 0 0 0 
N3 l 2 0 0 96 0 0 0 0 
N4 3 2 2 0 56 0 0 0 0 
N5 4 4 0 1 88 0 0 0 l 
N6 5 2 l 0 80 0 0 0 2 
N7 5 4 0 0 51 3 0 0 0 
N8 4 2 0 0 84 2 0 0 4 
N9 0 6 3 0 49 l 0 0 2 
NlO l 3 0 0 53 0 0 0 0 
Nll 3 4 0 0 61 l 0 0 0 
Nl2 

Ml 3 0 l 1 10 28 4 2 0 
M2 3 0 0 1 14 18 2 4 0 
M3 6 3 1 0 8 19 9 0 0 
M4 2 2 0 1 7 11 5 3 0 
M5 5 2 20 1 38 10 0 0 0 
M6 3 2 2 0 12 23 0 0 0 
M7 2 4 1 0 7 24 0 0 0 
M8 2 3 0 0 11 21 2 3 0 
M9 3 3 1 0 4 9 0 0 0 
M10 5 3 1 0 8 16 3 0 0 
M11 5 0 0 0 15 21 2 0 0 
M12 2 1 0 0 8 9 0 0 0 



2. ELWICK SANDS 

H Ma My Li 0 Sc A I D 

B1 1 0 0 1 22 0 0 0 1 
B2 3 0 0 0 14 0 0 0 1 
B3 1 0 0 0 5 0 0 0 0 
B4 1 0 0 0 20 0 0 0 1 
B5 1 0 0 0 57 0 0 0 1 
B6 0 0 0 0 26 0 0 0 0 
B7 1 0 0 0 48 0 0 0 0 
B8 1 0 0 0 33 0 0 0 1 
B9 2 1 0 0 15 0 0 0 0 
B10 0 1 0 0 13 0 0 0 0 
B11 0 0 0 0 28 0 0 0 0 
B12 2 0 0 0 37 0 0 0 1 
B13 2 0 0 0 22 0 0 0 2 

N1 2 3 0 0 50 4 0 0 0 
N2 4 5 0 1 47 11 2 0 0 
N3 2 1 0 1 37 9 0 0 0 
N4 6 1 0 0 43 8 0 0 0 
N5 3 3 0 2 47 5 0 0 0 
N6 4 1 0 0 42 7 0 0 0 
N7 10 1 0 0 81 11 0 0 0 
N8 4 0 1 1 91 15 0 0 0 
N9 3 4 0 1 56 6 0 0 1 
N10 4 1 0 2 89 14 0 0 0 
N11 3 3 0 1 54 5 1 0 0 
N12 6 1 0 1 40 7 1 0 1 

M1 6 1 3 6 55 12 0 0 0 
M2 4 3 1 9 60 9 0 1 0 
M3 5 2 2 16 43 28 0 0 0 
M4 8 0 1 6 20 17 1 0 0 
M5 4 3 0 5 10 22 0 0 0 
M6 5 1 6 6 31 7 0 0 0 
M7 4 3 0 4 28 6 0 0 0 
M8 11 3 4 1 18 9 0 0 0 
M9 8 3 0 3 29 10 0 0 0 
M10 6 1 0 9 53 3 0 0 0 
M11 4 1 0 1 12 13 1 0 0 
M12 15 3 5 4 12 5 1 0 0 



3.THESWAD 

H Ma My Li 0 Sc A I D 

B1 16 0 0 0 28 3 0 0 0 
B2 16 1 0 0 17 5 0 0 0 
B3 12 1 0 0 23 9 0 0 0 
B4 16 1 0 0 19 7 0 0 0 
B5 66 5 0 0 23 1 0 0 0 
B6 17 2 0 0 57 1 0 0 0 
B7 23 4 0 0 45 0 0 0 1 
B8 26 4 0 0 48 1 0 0 0 
B9 18 0 0 0 33 1 0 0 0 
BlO 27 0 0 0 39 0 0 0 0 
B11 24 1 0 0 39 0 0 0 0 
B12 17 0 1 0 51 0 0 0 0 

N1 2 2 3 0 65 2 0 0 0 
N2 1 4 0 1 32 2 0 0 0 
N3 4 3 11 0 83 1 0 0 1 
N4 2 3 2 0 38 5 2 0 0 
N5 20 10 4 2 35 2 0 0 0 
N6 14 5 2 3 46 1 0 0 0 
N7 14 5 2 3 29 4 0 0 0 
N8 10 6 0 0 44 0 0 0 0 
N9 9 6 0 0 35 0 0 0 1 
N10 6 6 0 0 23 0 0 0 0 
N11 5 2 0 0 25 0 0 0 0 
N12 6 0 0 0 41 0 0 0 0 
N13 9 4 0 0 32 1 0 0 0 
N14 11 7 0 0 23 0 0 0 0 
N15 4 4 0 0 21 0 0 0 0 
N16 8 1 0 0 28 0 0 0 1 

M1 3 0 0 0 12 4 0 0 0 
M2 4 2 0 2 21 4 0 2 0 
M3 8 10 1 2 17 17 0 0 0 
M4 7 4 0 0 4 6 0 0 0 
M5 2 6 18 1 14 4 1 0 0 
M6 2 6 0 2 4 6 1 1 0 
M7 2 5 32 2 18 18 0 0 0 
M8 3 2 0 0 12 9 0 0 0 
M9 1 3 0 0 22 4 0 0 0 
M10 2 1 0 0 28 2 0 0 0 
M11 0 0 0 0 26 6 1 0 0 
M12 15 3 3 4 12 8 0 0 0 
M13 15 3 3 4 12 4 0 0 0 
M14 12 3 2 1 14 3 0 0 0 
M15 16 10 0 0 5 0 0 0 0 
M16 19 5 0 1 18 3 0 0 0 



Appendix C(i): F-values and levels of significance of variations in mean invertebrate 
numbers within the different vegetation types between sample sites at Lindisfame. 

HYDROBIA 

MACOMA 

MYTILUS 

UTTORINA 

OLIGOS. 

SCOLOPWS 

AMPHARETE 

IDOTEA 

DIPTERA 

STATISTIC BARE MUD Z.NOLTII 

F 
d.f. 
Sig. 

F 
d.f. 
Sig. 

F 
d.f. 
Sig. 

F 
d.f. 
Sig. 

F 
d.f. 
Sig. 

F 
d.f. 
Sig. 

F 
d.f. 
Sig. 

F 
d.f. 
Sig. 

F 
d.f. 
Sig. 

3 >> 1,2 1 << 3 
28.79 6.81 

36 38 
P<0.001 P<0.01 

2 << 1,3 2 << 3 
12.11 5.01 

36 38 
P<0.001 P<0.05 

n.s. n.s. 
1.28 2.12 
36 38 

P>0.05 P>0.05 

n.s. n.s. 
0.73 3.21 
36 38 

P>0.05 P>0.05 

n.s. 3 << 1,2 
1.70 12.67 
36 38 

P>0.05 P<0.001 

1 >> 2 2 >> 1,3 
5.98 45.45 
36 38 

P<0.01 P<O.OOl 

n.s. n.s. 
2.83 1.41 
36 38 

P>0.05 P>0.05 

n.s. n.s. 
-- --
36 38 
-- --

2 >> 3 n.s. 
3.84 2.67 
36 38 

P<0.05 P>0.05 

SITE 1 : BEAL BLACKS 
SITE 2 : ELWICK SANDS 

SITE 3 : THE SWAD 

Z.MARINA 

n.s. 
1.96 
39 

P>0.05 

n.s. 
3.1 
39 

P>0.05 

n.s. 
0.25 
39 

P>0.05 

2 >> 1,3 
19.95 

39 
P<0.001 

2 >> 1,3 
9.61 
39 

P<0.001 

1 >> 3 
11.47 

39 
P<O.OOl 

1 >> 2,3 
7.41 
39 

P<0.01 

n.s. 
2.68 
39 

P>0.05 

n.s. 
--
39 
--



Appendix C(ii): F-values and levels of significance of variations in mean invertebrate 
densities between habitat types within the different sample sites at Lindisfame. 

STATISTIC 

HYDROBIA 
F 

d.f. 
Sig. 

MACOMA 
F 

d.f. 
Sig. 

MYTILUS 
F 

d.f. 
Sig. 

UTTORINA 
F 

d.f. 
Sig. 

OLIGOS. 
F 

d.f. 
Sig. 

SCOLOPLOS 
F 

d.f. 
Sig. 

AMPHARETE 
F 

d.f. 
Sig. 

IDOTEA 
F 

d.f. 
Sig. 

DIPTERA 
F 

d.f. 
Sig. 

BEAL ELWICK 

1 << 3 1 << 2,3 
3.87 17.06 
34 36 

P<0.05 P<0.001 

n.s. 1 << 2,3 
1.87 11.72 
34 36 

P>0.05 P<0.01 

n.s. 3 >> 1,2 
0.90 8.44 
34 36 

P>0.05 P<0.01 

n.s. 3 >> 1,2 
0.47 21.17 
34 36 

P>0.05 P<0.001 

2 >> 1 >> 3 2 >> 1,3 
19.11 10.82 

34 36 
P<0.001 P<0.001 

3 >> 1,2 1 << 2,3 
58.94 21.45 

34 36 
P<0.001 P<0.001 

3 >> 1,2 n.s. 
6.78 1.86 
34 36 

P<0.05 P>0.05 

3 >> 1,2 n.s. 
4.85 1.04 
34 36 

P<0.05 P>0.05 

n.s. 1 >> 3 
3.21 6.44 
34 36 

P>0.05 P>0.05 

SITE 1 : BARE MUD 
SITE 2 : Z.NOLTII 

SITE 3 : Z.MARINA 

THESWAD 

1 >> 2,3 
13.96 

43 
P<0.001 

1 << 2 
4.16 
43 

P<0.05 

n.s. 
1.27 
43 

P>0.05 

1 << 3 
3.95 
43 

P<0.05 

3 << 1,2 
14.63 

43 
P<0.001 

3 >> 1,2 
8.54 
43 

P<0.001 

n.s. 
0.81 
43 

P>0.05 

n.s. 
1.65 
43 

P>0.05 

n.s. 
1.72 
43 

P>0.05 



Appendix D: Wilcoxon matched-pairs signed ranks Test for the data 
gathered during the Behavioural Experiments. 

1. HYDROBIA 

l. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 

OBSERVED EXPECTED 
BARE 

8 
12 
8 
12 
6 
4 
9 
6 
6 
7 
9 
6 
5 
4 
6 
5 
1 
9 
8 
3 
5 

ZOSTERA ZOSTERA DIFFERENCE (d) 

6 7 -1 
8 10 -2 
7 7.5 -0.5 
8 10 -2 
9 7.5 1.5 
11 7.5 3.5 
10 9.5 0.5 
7 6.5 0.5 
8 7 1 
5 6 -1 
8 8.5 -0.5 
8 7 1 
5 5 0 
8 6 2 
7 6.5 0.5 
6 5.5 0.5 
7 4 3 
9 9 0 
3 5.5 -2.5 
10 6.5 3.5 
7 6 1 

TOTAL OF POSITIVE SIGNED RANKS = 148 

TOTAL OF NEGATIVE SIGNED RANKS = 83 (T) 

SIGNIFICANCE LEVEL : n.s. 

RANKED AND 
SIGNED d 

-11 
-16 
-5.5 
-16 
14 

20.5 
5.5 
5.5 
11 
-11 
-5.5 
11 
1.5 
16 
5.5 
5.5 
19 
1.5 
-18 
20.5 

11 



2. UTTORINA 

OBSERVED EXPECTED 
BARE 

1. 1 
2 1 
3. 0 
4. 1 
5. 0 
6. 3 
7. 1 
8. 0 
9. 0 
10. 3 
11. 4 
12. 4 
13. 2 
14. 5 
15. 4 
16. 4 
17. 3 
18. 1 
19. 3 
20. 2 
21. 2 
22. 5 
23. 2 

ZOSTERA ZOSTERA DIFFERENCE (d) 

18 9.5 8.5 
17 9 8 
18 9 9 
16 8.5 7.5 
18 9 9 
17 10 7 
19 10 9 
16 8 8 
19 9.5 9.5 
13 8 5 
12 8 4 
11 7.5 3.5 
15 8.5 6.5 
14 9.5 4.5 
16 10 6 
12 8 4 
11 7 4 
19 10 9 
17 10 7 
16 9 7 
13 7.5 5.5 
13 9 4 
18 10 8 

TOTAL OF POSITIVE SIGNED RANKS = 276 

TOTAL OF NEGATIVE SIGNED RANKS= 0 (T) 

SIGNIFICANCE LEVEL: P < 0.01 

RANKED AND 
SIGNED d 

18 
16 

20.5 
14 

20.5 
12 

20.5 
16 
23 
7 

3.5 
1 

10 
6 
9 

3.5 
3.5 

20.5 
12 
12 
8 

3.5 
16 



Appendix E(i): File containing the Environmental Variable Information 
used in CANOCO Analysis 

meanenvvardec 
(II',E>(I~.~E>.C>)) 

E> 
1 1 ~8 ~ ~() 3 ()4 
~ 1 15 ~ 11 3 14 
3 1 1~ ~ 1~ 3 15 4 
4 1 41 ~ 18 3 ()4 
5 1 13 ~ 1 jf 3 ~54 
E> 1 lE> ~ 3E> 3 514 
jf 1 ~3 ~ 13 3 ()4 
8 1 14 ~ 1() 3 ~1 4 
9 1 ~1 ~ ~1 3 4E> 4 

() 

RPDCIAY AERIALRHIZOMEORGANICS 
Be alB BealN Be aiM ElB 
SwadN SwadM 

()5 
1() 5 
~4 5 
()5 

jf~ 5 
89 5 
()5 

44 5 
48 5 

ElN 

2.E> E> 
E>.2 E> 
1'.8 E> 
l.E> E> 
2.8 E> 
2.8 E> 

ll.I'E> 
1'.2 E> 

2().4 E> 

ElM SwadB 

Appendix E(ii): File Containing Information on Species Abundances used 
in CANOCO Analysis 

meaninvertsdec 
(11',9(12.~E>.C>)) 
9 
1 1 249 ~ 4E>4 
2 1 5()() 2 51'8 
3 1 ()8() 2 381 
4 1 23() 2 31 
5 1 84E> 2 398 
E> 1 13~() 2 398 
jf 1 4()()9 2 315 
8 1 1E>412 883 
9 1 1218 2 1'4E> 
() 

3 83 
3 181 
3 448 
3() 
3 1 jf 
3 3E>5 
3 1 jf 
3 348 
3 E>9E> 

4 5() 5 8589 E> E>l3 jf 5() 
4 18 5 1441E> E> 145 jf () 
4 E>E> 5 2321 E> 3432 jf 448 
4 15 5 52()3 E> () jf () 

4 lE>E> 5 11225 E> 1E>91 jf E>E> 
4 llE>l 5 E>l51 E> 2338 jf 5() 
4 () 5 E>991' E> 4E>4 jf () 
4 1'5 5 jf 4E> 1 E> 23E> jf 25 
4 181' 5 2935 E> 1219 jf 31' 

8() 
8() 
8 199 
8() 
8() 
8 1 jf 
8() 
8() 
8 31' 

9 5() 
9 1E>3 
9() 
9 122 
9 22 
9() 
9 1 jf 
9 25 
9() 

HYDROBIA MACOMA MYfiLUS LITT OLIGOS SCOL AMPH IDOTEA 
DIPTERA 

BealB BealN BealM ElB ElN ElM SwadB SwadN SwadM 



Appendix E(iii): Species Scores derivedfor each Canonical Axis by 
Canonical Correspondence Analysis 

SPECIES AXIS 1 AXIS2 AXIS 3 AXIS 4 

HYDROBIA -10 260 69 -64 
MACOMA 102 71 -142 154 
MY11LUS 292 143 -194 397 
UTTORINA 337 -183 555 158 
OLIGOS -57 -38 0 6 
SCOWPWS 200 -55 -17 -129 
AMPHARETE 212 -150 -459 -388 
IDOTEA 318 -58 -595 -326 
DIPTERA -215 -137 -156 589 

Appendix E(iv): Site Scores derived for each Canonical Axis by 
Canonical Correspondence Analysis 

SITE AXIS 1 AXIS2 AXIS3 AXIS 4 

BEALBARE -27 -27 -8 
BEALNOLTII -44 -24 -7 

BEALMARINA 113 -13 -55 

ELWICKBARE -56 -28 0 
ELWICK NOLTII -14 -22 2 

ELWICK MARINA 56 -13 45 

SWAD BARE -25 75 21 
SWAD NOLTII -16 21 -6 

SWADMARINA 61 35 -16 

Appendix E(v): Biplot Scores of Environmental Variables for each 
Canonical Axis derived through Canonical Correspondence 

Analysis 

VARIABLE AXIS 1 AXIS2 AXIS 3 AXIS 4 

RPDDEPTH -73 10 12 22 
%CLAY 92 -33 70 9 

AERIAL BIOMASS 350 -11 87 18 
ROOT BIOMASS 222 -66 89 2 
%ORGANICS 102 189 -40 4 

7 
18 
-58 

17 
-9 
1 

-20 
18 
25 


