
Durham E-Theses

Structural testing techniques for the selective

revalidation of software

Hartmann, Jean Zoren Werner

How to cite:

Hartmann, Jean Zoren Werner (1992) Structural testing techniques for the selective revalidation of

software, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/6082/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6082/
 http://etheses.dur.ac.uk/6082/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

University of Durham

School of Engineering and Computer Science
(Computer Science)

Structural Testing Techniques

for the

Selective Revalidation of Software

Jean Zoren Werner Hartmann

Ph.D.

1992

OCT 1993

Abstract

The research in this thesis addresses the subject of regression testing. Emphasis is

placed on developing a technique for selective revalidation which can be used during

software maintenance to analyse and retest only those parts of the program affected by

changes. In response to proposed program modifications, the technique assists the

maintenance programmer in assessing the extent of the program alterations, in selecting a

representative set of test cases to rerun, and in identifying any test cases in tlie test suite

which are no longer required because of the program changes.

The proposed technique involves the application of code analysis techniques and

operations research. Code analysis techniques are described which derive information

about the structure of a program and are used to determine the impact of any

modifications on the existing program code. Methods adopted from operations research

are then used to select an optimal set of regression tests and to identify any redundant test

cases. These methods enable software, which has been validated using a variety of

stmctural testing techniques, to be retested.

The development of a prototype tool suite, which can be used to realise the technique

for selective revalidation, is described. In particular, the interface between the prototype

and existing regression testing tools is discussed. Moreover, the effectiveness of the

technique is demonstrated by means of a case study and the results are compared with

traditional regression testing strategies and other selective revalidation techniques

described in this thesis.

Acknowledgements

This thesis is dedicated lo Rosemarie. I would like to thank her for the love, support,

and encouragement that she has given me over the years.

I wish to thank Dr. David J. Robson for agreeing to be my supervisor, and for tlie

invaluable advice and encouragement that he has given me.

I would also like to thank British Telecom Research Laboratories, Martlesham

Heath, Ipswich, United Kingdom for their financial support and, in particular, Mr.

Stuart Birchall and Mr. Colin Archibald for their guidance and support during my

numerous visits to the Laboratories.

I wish to express my sincere gratitude to Professor Keith Bennett and the members

of the Centre for Software Maintenance. In particular, I would like to thank Mr. Chris

Turner and Dr. Gerardo Canfora for their comments on the thesis.

This Ph.D. thesis has been produced using an Apple® Macintosh™ using the

Microsoft® Word 5.0 wordprocessing package and the Claris MacDrawPro™ graphics

package.

® Apple is a registered trademark.

™ Macintosh is a registered trademark of Apple Computer Incorporated.

® Microsoft is a registered trademark of Microsoft Corporation.

MacDraw Pro is a registered trademark of Claris Corporation.

i

Copyright

The copyright of this thesis rests with the author. No quotations from it should be

published without his prior written consent and information derived from it should be

acknowledged.

11

Declaration

The work contained in this thesis is submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy in Computer Science, and

represents an independent contribution by the author. None of the work has been

previously submitted by the author for a degree at this or any other University.

I l l

Contents

Chapter 1 : Introduction 1

1.1 Puipose of the Research 1

1.2 Motivation 1

1.3 Objectives of the Research 2

1.3.1 Assumptions 2

1.3.2 Goals 5

1.3.3 Anticipated Benefits 6

1.4 Thesis Structure 8

Chapter 2 : Testing During Development 10

2.1 Introduction 10

2.2 Testing Activities 11

2.2.1 Testing Phases •. 11

2.2.2 Testing Strategies 13

2.3 Structural Testing Techniques 16

2.3.1 Control-Flow Testing 18

2.3.2 Data-Flow Testing 24

2.3.3 Limitations 27

2.4 Summary 27

Chapter 3 : Testing During Maintenance 29

3.1 Introduction 29

3.2 Regression Testing 32

3.2.1 A Definition 32

3.2.2 Cuirent Practices 33

3.3 Selective Revalidation 35

3.3.1 Test Suite Classification 36

IV

3.3.2 Test Suite Management 37

3.4 Summary 38

Chapter 4 : Techniques for Selective RevaHdation 40

4.1 Introduction 40

4.2 Code Analysis 40

4.2.1 Testing Strategies 41

4.2.2 Change Analysis 43

4.3 Revalidation Criteria 47

4.3.1 Test Selection 47

4.3.2 Test Update 50

4.4 Experimental Evidence 51

4.5 Alternative Approaches 53

4.5.1 Specification-Based Revalidation 53

4.5.2 Design-Based Revalidation 55

4.6 Summary 56

Chapter 5 : Code Analysis Techniques 58

5.1 Introduction 58

5.2 Graph Terminology 59

5.3 Dependency Analysis 61

5.3.1 Control Dependency 63

5.3.2 Data Dependency 65

5.3.3 Program Dependency Graphs 69

5.4 Language-Specific Dependency 70

5.4.1 Complete Intersection 72

5.4.2 Partial Intersection 73

5.4.3 Possible Intersection 74

5.4.4 Updated Definition 77

5.5 Change Analysis 78

v

5.5.1 Program Slicing 80

5.5.2 New Approach 83

5.5.3 Application 88

5.6 Summary 92

Chapter 6 : Test Suite Management 94

6.1 Introduction 94

6.2 operations Research 95

6.3 Test Selection and Test Update 99

6.3.1 Generalised Objectives 100

6.3.2 Generalised Constraints 101

6.3.3 Generalised Goal Programming 102

6.4 Algorithms 109

6.4.1 Cutting-Plane Methods 109

6.4.2 Enumerative Techniques 110

6.4.3 Heuristic Methods 115

6.4.4 New Approach 119

6.5 Application 124

6.6 Summary 126

Chapter 7 : R E T E S T - Development of a Tool Suite 128

7.1 Introduction 128

7.2 Design Issues 129

7.2.1 Structure 129

7.2.2 Interfaces 131

7.3 Description 135

7.3.1 Program Instrumentation 135

7.3.2 Program Flow Analysis 136

7.3.3 Test Coverage Analysis 137

7.3.4 Change Analysis 138

vi

7.3.5 Test Suite Management 138

7.4 Summary 139

Chapter 8 : Evaluation of Selective Revalidation 141

8.1 Introduction 141

8.2 Application 143

8.2.1 Initial VaUdation 143

8.2.2 Modification 147

8.2.3 Revalidation 149

8.3 Results and Analysis 151

8.4 Summary 157

Chapter 9 : Conclusions 159

9.1 Contributions 159

9.2 Future Directions 161

9.2.1 Code Analysis Techniques 161

9.2.2 Test Suite Management 163

9.2.3 Operations Research 165

Appendix A : Glossary of Terminology 166

Appendix B : Glossary of Notation 178

Bibliography 180

Vll

List of Figures

2.1 Activities within the Software Lifecycle 10

2.2 Branch Testing - An Example 18

2.3 Condition Testing - An Example 19

2.4 Testing of LCSAJs - An Example 21

2.5 Boundary-Interior Path Testing - An Example 23

2.6 Data-Flow Testing - An Example 25

3.1 The Maintenance Cycle 29

4.1 Fischer's Algorithms - An Example 44

4.2 Retestable Unit - An Example 46

5.1 Graph Representations 60

5.2 Dependency Analysis - An Example 63

5.3 Control Dependency 64

5.4 Formal Definition of a Control Dependency Graph 65

5.5 The Data Flow Graph 66

5.6 Formal Definition of the Reaching Definitions 67

5.7 The Data Dependency Graph 68

5.8 Formal Definition of a Data Dependency Graph 68

5.9 The Program Dependency Graph 69

5.10 Formal Definition of a Program Dependency Graph 69

5.11 Dereferencing a Pointer Variable 71

5.12 Examples of Complete Intersection 73

5.13 Examples of Partial Intersection 74

5.14 Examples of Possible Intersection 75

5.15 More Examples of Possible Intersection 76

Vll l

5.16 Updated Definition of the Reaching Definitions 78

5.17 Formal Definition of a Program Slice 82

5.18 Formal Definition of Reachable Nodes 82

5.19 Example of a Program Slice 83

5.20 Formal Definition of the Change Analysis Technique 87

5.21 Formal Definitions of the Supporting Relations 88

5.22 Applying the Change Analysis Technique 90

6.1 Search Tree in Implicit Enumeration I l l

6.2 Block Diagram of Implicit Enumeration Scheme 113

6.3 Testing Information 116

6.4 New Heuristic Method - The Algorithm 121

6.5 A Technique for Selective Revalidation 125

7.1 Architecture of the Prototype Tool Suite 130

7.2 Interfacing the Tool Suite to an Existing Regression Testing Tool 131

7.3 Features of an Automatic Test Script 133

7.4 Enhanced Features of an Automatic Test Script 134

8.1 Sample Program and Graph Used in Evaluation 144

8.2 Testing Histories Used in Evaluation 146

8.3 Dependency Information for the Sample Program 148

IX

List of Tables

1.1 Maintenance Activities and Affected Program Attributes 3

2.1 Summary of Data-Flow Criteria 26

6.1 Generalised Goal Programming Formulations 106

8.1 Revalidation Statistics Based on Path Testing Criterion 153

8.2 RevaUdation Statistics Based on All-Uses Data-Flow Testing Criterion 154

8.3 Savings Attained for the Path Testing Criterion 155

8.4 Savings Attained for the All-Uses Data-Flow Testing Criterion 155

8.5 Extent of Modifications for the Path Testing Criterion 156

8.6 Extent of Modifications for the All-Uses Data-Flow Testing Criterion 157

Chapter 1

Introduction

1.1 Purpose of the Research

A technique for selective revalidation^ [101] is described, which can be applied

to the regression testing of programs during software maintenance. This

technique is intended to help maintenance programmers analyse and retest their software

in a systematic and efficient manner. The proposed technique, together with the

supporting software tools, can lead to a reduction of resources required for regression

testing and can improve the confidence of maintenance programmers by ensuring that

their modifications have been adequately tested.

1.2 Motivation

Perhaps the most frequently quoted aphorism in the field of computer science is

expressed by Dijkstra [58]:

'''Program testing can be used to show the presence of bugs, but never their

absence"

Many theoreticians and practitioners agree with the substance of this observation and

use it to justify their research into formal methods to assert the correctness of a

program. However, there are several reasons why not to rely upon formal approaches

alone: their inability to capture the non-functional requirements of software, such as its

performance and usability; their implicit assumptions concerning the correctness of

supporting software; the current lack of automated tools; and in most cases, the sheer size

of the problems being addressed. The latter reason alone leaves sufficient scope for

unstated assumptions, or simple reasoning errors, in the derivation of proofs.

^ In this thesis, words in bold typeface are defined in the Glossary given in Appendix A.
1

Until such issues have been resolved, software testing [1 , 52] remains a viable

and effective technique for complementing formal methods during software

development. Together, the two approaches ensure the correct operational behaviour of

a system. However, this premise does not hold for software maintenance where it

appears that testing alone is responsible for ensuring the correctness of software which

may not have been formally specified or adequately documented. It is tlierefore essential

that a systematic and efficient framework for maintenance testing is developed.

Software maintenance represents the most costly phase of the software lifecycle,

and accounts for between 40%-80% of the total programming effort [163, 214]. Two

important factors contributing to the high costs are the analysis and retesting of the

modified software. Regression testing [282] is the testing strategy applied to ensure that

no adverse side-effects have been introduced into the modified software, and that the

modified software still complies with its requirements. However, the problems and

uncertainty concerning which parts of the software are affected by the changes, and how

thoroughly these parts need to be retested, have not yet been adequately resolved [98].

Different strategies have been developed in an attempt to solve these problems; each of

them possesses some benefits, yet none can provide an effective and reliable solution.

Therefore, it is the goal of the research described in this thesis to produce a systematic

and efficient technique for regression testing.

1.3 Objectives of the Research

1.3.1 Assumptions

The work in this thesis is concerned with the development of a technique for selective

revalidation. As such, the work is influenced by a number of important factors relating to

the area of application, the quality of the existing test suite, and certain aspects of

program analysis. The special requirements needed to consider some of these factors will

not be addressed in this thesis.

2

Area of Application

Software maintenance activities may be classified into corrective maintenance,

preventive maintenance, adaptive maintenance, and perfective maintenance

[11, 214]. Corrective maintenance is aimed at rectifying program errors revealed during

testing or operational use, and involves making corrections to the program code. In the

case of preventive maintenance, alterations are made to the program code witli the aim of

improving the existing program so as to ease future maintenance. With adaptive

maintenance, the program design and code are modified in order to reflect alterations in

the software's operating environment. Perfective maintenance describes the changes

made to the program specification, design and code in order to enhance the functionality

of the software. These enhancements usually reflect user demands for new system

capabilities, and result in the inclusion of additional system features, the deletion of old

features, or the modification of existing ones. Table 1.1 summarises how the various

maintenance activities affect a program's attributes, namely its specification, design and

implementation.

Corrective
Maintenance

Preventive
Maintenance

Adaptive
Maintenance

Perfective
Maintenance

Specification •

Design • •

Implementation • • • •

Table 1.1: Maintenance Activities and Affected Program Attiibutes^

The technique, described in this thesis, is discussed in the context of software

maintenance. As such, it concentrates upon the analysis and retesting of modifications

made to the program's implementation and is therefore relevant to every type of

maintenance activity.

Corrective maintenance and preventive maintenance may affect the low-level design requirements of a
program.

3

Quality of Test Suite

Empirical research indicates that using a specific type of testing strategy alone cannot

detect all errors in a program [116]. Thus, test cases are often created using a

combination of techniques based on functional testing and structural testing. This

leads to the concept of grey-box testing [267]. The use of functional testing, for example,

may result in only 40%-60% of the program code being executed [1, 107]. Structural

testing, however, can help to expose and alleviate potential problems, such as

unreachable or island code [52], by identifying and exercising the remaining, untested

code.

The aim of functional and structural testing techniques is to satisfy their respective

test coverage criteria. The quality of a test suite is therefore measured by the degree

to which these criteria are fulfilled. The application of the selective revalidation technique,

described in this thesis, requires the existence of a high quality test suite which satisfies

its criteria. However, the test suite quality is assessed and maintained only on the basis of

the structural test coverage criteria.

Incremental Code Analysis

Program analysis forms an important aspect of the technique described in this thesis.

In particular, code analysis is used to derive information about the structure of the

program code, determine the dependencies between code entities and assess the impact

of any proposed code changes by way of these entities. This is achieved by means of an

exhaustive analysis of the program code. While such analysis can provide sufficient

information about the existing program structure, it is inadequate for assessing its

modified structure. Therefore, the technique assumes the existence of incremental code

analysis techniques [224, 225, 226] to update the existing program structure and

dependencies, in response to a program change, without needing to reanalyse the entire

program.

4

1.3.2 Goals

In this thesis, a technique for selective revalidation is presented which is characterised

by two important objectives: to increase maintenance programmers' confidence in the

correctness of their modified software, and to reduce the overall cost of regression

testing. In order to achieve these goals, ways must be found to systematically analyse the

impact of any proposed program modifications and to efficiently select and update test

cases in the test suite.

Initially, the technique must acquire information relating to the structure of the

program code. This is accomplished by examining the software using code analysis

techniques. The resulting dependencies between code statements are depicted by a

graphical representation of the program. Techniques for dependency analysis have been

successfully developed for a variety of programming languages [21, 38, 135]. In this

thesis, however, the techniques are directed at the analysis of programs written in the C

programming language [137].

The application of code analysis techniques also enables the test requirements for

a program to be determined. The test requirements discussed in this thesis are dependent

upon the type of structural testing technique being used and its corresponding test

coverage criterion. During testing, an association is formed between each test requirement

and the test cases exercising it; thus, a testing history emerges. This testing history

later forms the basis for selecting and updating of test cases in the test suite.

In response to a proposed program modification, it is necessary to determine those

parts of the program which are directly and indirectly affected by the changes. Therefore,

a technique for change analysis is developed, which uses the graphical representation of

the program established during code analysis in order to trace existing program

dependencies from the point of modification and determine a set of affected program

statements. These statements are subsequently used to identify affected test requirements.

5

Based on these test requirements and the set of test cases implicated by them,

methods adopted I'rom operations research can be used to select an optimal set of

regression tests. After a modification has been implemented, the regression tests aj e rerun

and the test suite is updated. Operations research methods are then applied again in order

to determine any redundant tests.

When dealing with large and complex programs, time-consuming activities, such as

code analysis and test suite management, need to be automated. Therefore, a prototype

suite of tools is developed to provide support for these tasks, and this thesis describes the

v^ays in which the tools are used to realise the technique for selective revalidation.

1.3.3 Anticipated Benefits

Given the time constraints, it is impossible to study all the applications of a technique

for selective revalidation in this thesis. Some of the anticipated benefits of this work are

briefly described below. It is hoped that some of these can be pursued in future research.

Path Selection Strategy

In software testing, a significant amount of time and effort is spent in analysing the

program code in order to create suitable test data with which to exercise it. In structural

testing, the development of an optimal path selection strategy [164, 212, 251] represents

an important issue. Such a strategy can guide users in the establishment of an optimal set

of test cases, which traverse paths through the program code, such that every test

requirement is exercised at least once.

0

The technique for selective revalidation, described in this thesis, can be adapted for

use as an optimal path selection strategy as it performs a similar task in the context of

regression testing. It assists in the selection of an optimal set of test cases from an

existing test suite instead of helping with the creation of a new set of tests. More
6

importantly, however, the technique concentrates on selecting a subset of test cases from

the existing test suite which will traverse only those test requirements affected by the

proposed modifications.

Revalidation

During software development, specification-based testing ensures that a program is

assessed from an external point of view. Test cases are created to exercise the program's

functionality and their execution is traced by means of dt. feature-test matrix [109]. In a

similar manner, the program's design can be validated such that the conditions of each

design function are related to a set of test cases in a condition-test matrix [37, 177, 223].

Finally, testing of the implementation involves the validation of individual, or a collection

of, program modules. In this case, a test matrix is created in which different structural

attributes of the program are exercised by a set of test cases.

During maintenance, however, revalidation is usually restricted to the analysis and

retesting of the program code [101]. Few techniques are available to ensure that the

corresponding changes to the program specification [151] or design [18] are tested. The

development of a technique for selective revalidation, which is independent of any testing

strategy, can provide a more consistent approach to regression testing. Changes at a

given level can now be validated at all lower levels. For example, in the case of perfective

maintenance, the same technique can be used to analyse and retest a change to the

program's functionality which requires certain specification-based tests, as well as

design-based and code-based tests, to be selected.

Metrics

Predicting the cost of regression testing is a difficult task. A change, which appears

simple, may have a much larger impact on the software than originally anticipated, and

thus requires extensive retesting. As a result, the resources required for regression testing

7

are often underestimated and project schedules are jeopardised. If, however, the factors

affecting the cost of regression testing could be considered as part of the selective

revalidation process, then maintenance programmers could more accurately predict the

level of resources required to validate any program changes before actually making them.

This, in turn, would have a significant influence on their choice of change

implementation. It would also allow them to judge which, of possibly several, program

changes could be implemented using the existing resources.

The technique described in this thesis is able to consider various cost factors as part

of the selective revalidation process. For example, the test execution costs and result

analysis costs [159], which represent the time and effort required to load the test cases,

execute them and analyse their output can be considered. Therefore, in response to a

change proposal, the selective revalidation technique can not only detennine how many of

the test cases need to be rerun, but also estimate the level of resources required to rerun

them. As a result, it may be possible to define a relationship between a proposed program

change and the extent of required retesting of the program. This relationship, along with

other factors, such as program understandability [274] and modifiability [275], could

then be used to define a maintainability metric [34, 86, 161].

1.4 Thesis Structure

Chapter 2 describes different testing phases and strategies used during software

development, with emphasis being placed on structural testing techniques. Chapters 3-4

introduce the subject matter of this thesis. In Chapter 3, the role of testing during

software maintenance is described, its problems are examined and the subject of selective

revalidation is defined. For Chapter 4, existing techniques for selective revalidation are

reviewed.

Chapters 5-6 describe the two aspects of a technique for selective revalidation. In

Chapter 5, code analysis techniques are developed to systematically analyse the program

8

dependencies and assess the impact of proposed program changes. In Chapter 6, the

problems of test suite management are addressed, with techniques adopted from

operations reseaixh being used to define and efficiendy solve them.

The development of a tool suite, which realises the technique for selective

revalidation, is presented in Chapter 7. Brief descriptions are given concerning its design

and the functionality of its components. In particular, the interface between the protoype

and existing regression testing tools is discussed. Chapter 8 describes a case study in

which the effectiveness of the technique for selective revalidation is analysed.

Comparisons are then made with traditional regression testing strategies and other

selective revalidation techniques described in this thesis. Concluding remarks, and future

research, are outlined in Chapter 9.

Chapter 2

Testing During Development

2.1 Introduction

The software lifecycle describes the period of time which begins with the conception

of the software and ends when it is no longer of use. It consists of two main phases: the

development phase, which includes the requirements definition, specification, design,

implementation and testing, and the operations and maintenance phase. Figure 2.1

illustrates the different activities within the software lifecycle [230].

PERCENTAGE OF INFLUENCE PERCENTAGE OF INFLUENCE

REQUIREMENTS
DEFINITION

DEFINITION / DESIGN
SPECIFICATION

OPERATIONS

MAINTENANCE TESTING

f>°/A 25% 20% 5% 1̂0%J10%^ 15%

PERCENTAGE OF EFFORT EXPENDED PERCENTAGE OF COSTS

Figure 2 .1 : Activities Within the Software Lifecycle

As seen in Figure 2.1, software testing represents one of the costliest, but also least

influential, phases within the lifecycle; it accounts for as much as 25% of the overall

programming effort and 50% of the costs [23, 216]. A need for testing arises from an

inability to guarantee that tasks performed earlier in the software lifecycle have been

satisfactorily completed; testing helps to increase confidence in die con-ectness of a piece

of software by discovering any errors of omission and commission. Thus, testing forms

an attempt to assess the quality of the completed work and to gain confidence in the

10

software [57]. As such, testing is regarded as part of Verification and Validation (V&V)

process in which verification ensures the correctness of the software during each phase

of its development and validation compares the software with its requirements [2, 249,

250], The opportunity is taken here to discuss the testing activities occurring as part of

software development

2.2 Testing Activities

2.2.1 Testing Phases

The testing activities, which accompany the requirements definition and specification,

help to ensure the adequacy of both phases with respect to their completeness,

correctness, and consistency [54, 185], They include the adoption of a general testing

strategy, the selection of testing techniques, and the formulation of specific evaluation

criteria. The resulting test plan provides the testing schedule, which contains the test case

specifications and descriptions. Using scenarios of both expected and unexpected system

usage, test data and its anticipated results are generated. These test cases now form the

core of the final test suite. A test analysis summarises and documents the test results and

their findings.

It is claimed that as many as 80% of errors detected in the software lifecycle arise

from problems occurring during program design [248]. Testing activities need to exercise

the functionality introduced during the design process, as well as the structure of a

system. Their purpose is to show that the detailed design is consistent and complete.

Apart from generating test cases, which are required for the implementation phase, the

design itself must be examined and analysed for errors which may include missing test

cases, faulty logic, interface mismatches and data structure inconsistencies.

11

During implementation, developers are presented with the program design from which

they code the individual program modules. Unit testing ensures that each module

correcdy implements its design and is ready to be integrated into the system. This type of

testing, which is also referred to as infraprocedural testing, is performed in isolation from

other modules and relies on the use of test drivers and test stubs [187].

After unit testing is concluded, the individual code modules are collated, integrated

into a complete system and validated. The objective of integration testing is to ensure

that all program modules interact and interface correctly with each other [20, 87]. This

type of testing, across module boundaries, is also known as mferprocedural testing. Two

common testing strategies used during integration testing are: bottom-up testing and

top-down testing [187].

System testing is concerned with validating the entire software system, or a major

part of it, with respect to requirements such as performance, security and recovery

capabilities. At this stage, software testing is concerned with revealing errors which might

have been missed during the previous unit testing or integration testing. Until this stage,

all testing activities are carried out using test data provided by the system developers.

Acceptance testing is the activity during which the entire system is evaluated in an

operational environment using typical user data. It often demonstrates errors in the

requirements of the system. In the case of erroneous software, for example, the

requirements may not reflect the actual facilities and performance expected of the system.

However, acceptance testing will highlight the problem by demonstrating that the system

does not operate as was envisaged. Although acceptance testing is usually considered as

part of system testing, it actually occurs after system testing and immediately before

delivery of the software to customers.

12

The majority of activities associated with development testing lend themselves to

automation. Software tools, for example, are available to support the generation of test

data [13, 74, 200], its execution [44, 43, 182] and its documentation and management

[166].

2.2.2 Testing Strategies

Software development includes a large number of testing strategies which, for all their

apparent diversity, cluster or separate according to their underiying principles. However,

two distinct classes emerge within the field of software testing: static analysis and

dynamic testing as well as functional testing and structural testing. The degree to

which the techniques use either static analysis versus dynamic testing, or functional

testing versus structural testing, provides one possible way for classifying them^.

In this thesis, emphasis is placed on describing the latter classification, functional

testing versus structural testing. Functional testing is considered relevant, because it aids

in understanding certain techniques for selective revalidation which are examined later on

in this thesis. Structural testing has influenced the research direction of the thesis and

forms the basis of a technique for selective revalidation. However, for completeness, both

static analysis and dynamic testing are also mentioned.

Static Analysis and Dynamic Testing

Methods for static analysis attempt to analyse the software and detect errors without

actually executing i t To achieve this, information is extracted concerning the structure of

the program and represented by a program graph^. Dynamic testing techniques specify

various test coverage criteria based on test requirements derived using the program graph.

1 This type of classification is often complicated by the fact that some techniques may belong to several
different categories.
^ Graph terminology is defined in Chapter 5.

13

Test cases are then executed in order to exercise these test requirements and,

subsequently, to satisfy the test coverage criteria. An indication of the achieved test

coverage is given; i f die test coverage has not been satisfied, then additional test cases are

submitted. This process is repeated until the chosen test coverage criterion is fulfilled.

Although errors may still exist after testing, the required degree of reliability in the code's

correctness has been achieved according to the test coverage criteria which were used to

validate it.

Functional Testing

Functional testing [119, 120, 198] considers the program's specification as a basis for

testing. The program under consideration is effectively treated as a black box, where the

contents are hidden and no consideration is given as to how the program performs the

specified functionality. Thus, functional testing is also referred to as black-box testing

[125, 222].

The most obvious, and generally intractable, functional testing technique is exhaustive

testing. This form of testing is usually impractical as the range of input values for a

program would result in an excessive number of test cases needing to be created.

Therefore, the objective of functional testing is to maximise the number of errors detected,

while selecting a finite set of test cases whose values are representative of the input

domain of the program. Techniques, such as cause-effect graphing [16] and

revealing subdomains [258], have been developed to assist in this selection

procedure.

Cause-Effect Graphing

Cause-effect graphing, which was first defined by Elmendorf [60] and adopted for

testing purposes by Myers [188], identifies individual system functions to be tested. For

14

each function, all significant causes and effects on the function's behaviour are

determined. A graph is then constructed, which relates combinations of the causes to the

effects they produce. Test cases are defined for each effect by considering all

combinations of causes which produce that effect.

Although careful use of the cause-effect graph can produce effective tests, the

technique is difficult to apply in practice. In particular, the cause-effect graph can become

very complex when a function has a large number of causes. To reduce the complexity of

the corresponding graph, intermediate nodes are added to represent logical combinations

of several causes. However, the choice of appropriate intermediate nodes is not always

obvious. Other problems related to cause-effect graphing include the difficulty of

verifying its correctness, and the updating of the internal graph structure while the

specification is being modified. In fact, the transformation of a specification into a set of

cause-effect graphs only ensures that one complex representation is replaced by another.

Revealing Subdomains

Weyuker-Ostrand [258] propose the theory of revealing subdomains which represents

a combined functional and structural testing strategy to derive a partition for a function's

input domain into revealing subdomains. A revealing subdomain contains elements which

are either all processed correctly or incorrectly. Once such a subdomain has been

identified, executing the program on a single one of its elements is sufficient to test the

entire subdomain. The existence of a correctly processed input from a subdomain,

together with an indication that the subdomain is revealing, are equivalent to proving the

program's correctness for all inputs in the subdomain. However, given the difficulty, in

general, of proving program correctness, it should not be assumed that revealing

subdomains can be easily produced.

15

The technique attempts to construct revealing subdomains by identifying the most

likely places for errors to occur. A problem partition is created from the specification by

examining classes of inputs which should be treated as equivalent by the program. A path

partition is then created whose equivalence classes contain inputs that actually are treated

the same way by the program. The partition to be used for functional testing, known as

the testing partition, is then created by intersecting the problem and path partitions. This

results in a set of equivalence classes, whose elements are equal and are treated as such by

the program. During testing, therefore, test cases are generated by choosing one element

from each of the testing partition's classes.

The main difficulty lies in the implementation of the revealing subdomain method. No

formal, or systematic, guidelines exist for creating a problem partition. However, the

category-partition method proposed by Ostrand-Balcer [200] may provide a partial

solution to this problem. It describes a systematic approach to creating test sets on the

basis of the specification and could conceivably help in creating such a problem partition.

Other functional testing techniques include equivalence partitioning [188, 219, 220,

231], boundary-value analysis [188] and condition tables [83]. These techniques are

mentioned for completeness, but will not be further considered in this thesis.

2.3 Structural Testing Techniques

With structural testing [197, 257], or white-box testing, the testing effort is not

directed at assessing the program's functionality, but rather at identifying errors in its

actual implementation. Thus, test data is developed and executed on the program code.

The aim of detecting data-flow anomalies [123, 127, 199, 244] is to highlight any

anomalous circumstances within the program code which may indicate errors. For

example, the repeated definition of a program variable without any intei-vening reference.

16

a variable reference which is undefined, or undefining a variable, which has not been

referenced since its last definition, can indicate possible errors.

For symbolic execution [39, 118, 138], three inputs are accepted: a program to be

interpreted, the symbolic input for a program and a program path to be followed.

Correspondingly, two outputs are produced in the form of the symbolic output, which

describes the computation of the selected program path, and the path condition for that

path. While the symbolic output is used to prove the program correctness with respect to

its specification, the path condition assists in generating test data to exercise the desired

path. The symbolic inputs refer to variable names instead of actual values, and the

program outputs are expressed as logical or mathematical expressions involving these

names.

With domain testing [40, 262, 263], test data is selected on, or near, the boundary of

the path domain, which represents the set of values which cause a program path to be

executed. During mutation testing [56, 139,195, 269], errors, or mutants, are purposely

planted in a program which is considered to be error-free. The program is then executed

with the existing test data, and its adequacy is measured in terms of the number of

mutants which are detected by the test cases.

However, this thesis concentrates on examining structural testing techniques [122,

194], or path selection criteria [41], which guide the selection of test cases for traversing

paths through the program code and ensure that the program is adequately tested. Two

types of techniques, namely control-flow testing and data-flow testing, are

described, which rely upon the control structure and data structure of a program as the

basis for developing test cases.

17

2,3.1 Control-Flow Testing

Control-flow testing involves the testing of program statements, branches, and paths

throughout the program. Test coverage criteria, such as Test Effectiveness Ratios (TERn)

[106], have been defined to provide increasing degrees of test coverage which become

progressively more difficult to achieve as n increases. For example, Teri = 1 and Ter2 =

1 represent the situation in which every program statement and program branch has been

tested, respectively. Thus, the two test coverage criteria are related via the subsumption

relation, Ter2 = 1 => Teri = 1.

Executing each program statement at least once during testing constitutes statement

testing. It represents the most basic structural testing technique and is regarded as a

minimum testing requirement. Statement testing is often associated with segment testing,

otDD-path testing [181, 267], in which a linear sequence of statements is tested instead

of just a single program statement. However, the problem with statement testing is that

achieving satisfactory test coverage does not ensure that each transfer of control (branch)

is exercised. Consider the following fragment of program code. (Note that the line

numbers in the leftmost column are to facilitate the discussion of the program and do not

form part of die actual program.)

1 : program example

2 : b e g i n

3: r e a d (x , y) ;
4 : i f (x > 0) then
5 : b e g i n
6 : w r i t e (x) ;
7 : end

8: w r i t e (y) ;

9 : end

Figure 2.2 : Branch Testing - An Example

18

Test data can be generated to execute these program statements. For example, if

variables x and y are assigned values 1 and 2, respectively, all statements in the program

would be traversed. However, the F A L S E outcome of the predicate expression (x > 0)

in the conditional statement (if-statement) at line 4 remains unexercised.

With branch testing, both the correct and incorrect outcomes of the predicate

expression contained in a conditional statement need to be tested. In the above example,

therefore, a further test case with inputs: x = -1 and y = 2, would need to be generated

and executed. Tools for branch testing annotate the predicate expression of every

conditional statement in order to evaluate its overall outcome during the execution of a test

case [8, 24, 29, 278]. However, a limitation of branch testing is that predicate

expressions, which consist of compound conditions, are not adequately tested.

Consider the following fragment of program code. (Note that the line numbers in the

leftmost column are to facilitate the discussion of the program and do not form part of the

actual program.)

1 : program example
2 : b e g i n
3: r e a d (x , y) ;
4: i f (x > 0 AND y < 0) t hen

5 : b e g i n
6 : w r i t e (x) ;
7 : end
8: w r i t e (y) ;
9 : end

Figure 2.3 : Condition Testing -An Example

Test data can be generated to execute both program branches. For example, i f

variables x and y are assigned values 1 and - 1 , respectively, then the overall correct

outcome of the conditional statement is executed. In contrast, a test case with variables x

19

and y being assigned values -1 and - 1 , respectively, would cause the overall incorrect

outcome to be executed. For these cases, however, the condition (y > 0) of the predicate

expression (x > 0 AND y < 0) is never tested.

A predicate expression contains either a simple condition or a compound condition. A

simple condition is represented by a logical variable or a relational expression of the form:

<arithmetic expression> <relational operator> <arithmetic expression>, where the

relational operator is one of <, >, <, >, A =. A compound condition is composed of two,

or more, simple conditions, logical operators (OR, AND, NOT), and parentheses. A

compound condition without relational expressions is referred to as a logical expression.

With conditional testing [188], test cases must be generated to exercise the

compound condition, and every simple condition within it, at least once. Therefore,

conditional testing is more difficult to achieve than branch testing. Its purpose is to

guarantee the detection of logical and relational operator errors in a condition, provided

that all logical variables and relational expressions in the condition occur only once and

have no common variables [241, 242]. The notion of condition-constraints is introduced

for specifying the outcome of a logical variable (TRUE, F A L S E) and a relational

expression (>, <, =). Consider the above example in which the constraint set would be

given by { (T R U E , T R U E) , (F A L S E , T R U E) , (TRUE, F A L S E) } ; only the first two

condition-constraints are satisfied and, therefore, a third test case with inputs: x = 1 and y

= 2, must be created to satisfy the test coverage criterion. I f the compound condition is

incorrect due to a logical operator error, then at least one of the three test cases will

produce an incorrect outcome. A similar approach is taken for the testing of relational

expressions, where condition-constraints are created using suitable combinations of

relational operators. Tools for conditional testing [240] decompose the compound

condition within each predicate expression into a set of simple conditions and nested

conditional statements before testing i t

20

The testing of a Linear Code Sequence and Jump (LCSAJ) has been shown to

be more effective, but also more difficult to achieve, than either statement testing or

branch testing [105]. An LCSAJ is defined in terms of the program text and represents a

subpath through the program code. It consists of a sequence of consecutive statements in

the program text, starting at an entry point, or after a control-flow jump, and terminating

with a jump or at an exit point. The entry and exit points include the beginning and end of

a program. Consider the following fragment of program code. (Note that the line numbers

and text in the leftmost column are to facilitate the discussion of the program and do not

form part of the actual program.)

START 1 : program example
2 : b e g i n
3 : r e a d (x , y , z) ;

START 4 : w h i l e (
5 : Y > 5

F I N I S H 6 :) do
7 : b e g i n
8: z - z + 1;

F I N I S H 9: X = X + 2 ;
10: end

START 11: b = 1 ;
12 : i f {
13 : X > 10

F I N I S H 14:) t h e n

15: b e g i n
16: b = b + 1 ;
17 : end

F I N I S H 18: e l s e
START 19: b e g i n

20: c = c + 3 ;
21: end

F I N I S H 22: w r i t e (b , c , x) ;
23 : end

Figure 2.4 : Testing of LCSAJs - An Example

21

A t o t a l o f s i x L C S A J s (l : 6 : l l , 1 :9 :4 , 11 :14 :19 , 11 :18 :22 , 4 : 6 : 1 1 ,

1 9 : 2 2 : 2 3) can be identified from the program. Each LCSAJ is represented by a start

statement, an end statement, and the target statement for the control-flow jump. In this

case, the Test Effectiveness Ratio measures the number of LCSAJs exercised by the test

data and is expressed by Ter3. By combining LCSAJs, progressively longer subpaths

may be tested and it becomes progressively more difficult to satisfy the test coverage

criterion. For example, the combination of two LCSAJs, 1 : 6 : 1 1 and 1 1 : 1 4 : 1 9 ,

would constitute the Test Effectiveness Ratio, Ter4, while the combination of three

LCSAJs, 1 : 6 : 1 1 , 1 1 : 1 4 : 1 9 and 19 :22:23 would represent Ters. Therefore, Test

Effectiveness Ratios, Tern+2. can be applied, where n specifies the number of

concatenated LCSAJs required to exercise the subpaths through the program.

However, the most stringent control-flow testing technique and test coverage criterion

is path testing [268], which requires the execution of every possible path through a

program. By experimentation, Howden [117] showed that path testing is the single best

method for exposing errors in a program. However, due to the presence of program

loops, the number of paths through a program can be extremely large (possibly infinite),

even for the most trivial programs [188, 192].

Boundary-interior path testing [116] is a restricted version of path testing in which the

potentially infinite number of paths are partitioned into a finite set of equivalent paths

based on the program loop characteristics. Testing is then conducted using a few

representative paths from each partition. In boundary-interior testing, two classes of paths

are considered from each group of similar paths with respect to each loop. Paths in the

first class enter the loop, but do not iterate it (boundary tests), while paths in the second

class iterate the loop at least once (interior tests). Among the boundary tests, those are

selected which follow different paths within the loop. Among the interior tests, those are

selected which follow different paths through the first iteration of the loop.

22

Consider the following fragment of program code. (Note tiiat the line numbers in the

leftmost column are to faciUtate the discussion of the program and do not form part of the

actual program.)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

program example
b e g i n

r e a d (x , y) ;
w h i l e (x > 0) do

b e g i n

i f (y > 3) t hen
b e g i n

y = y - 1 ;
end

e l s e
b e g i n

Y = y + 2;

end
X = X - 1 ;

end
w r i t e (y) ;

end

Figure 2.5 : Boundary-Interior Path Testing - An Example

Two boundary tests must be developed to exercise the w h i l e loop at statement 4 and

then immediately exit the loop. Thus, a test case is created to exercise each branch of the

i f - t h e n - e l s e statement; test cases with inputs: x = 1 and y = 2, and x = 1 and y = 4

would fu l f i l l these conditions. In addition, four interior tests need to be created, all of

which execute the body of the loop for a second time. Test cases with inputs: x = 2 and y

= 5, X = 2 and y = -3 , x = 2 and y = 4, and x = 2 and y = 3 cause all four possible

permutations of the i f - t h e n - e l s e statement to be exercised; they have the following

outcomes: (TRUE, TRUE) , (F A L S E , F A L S E) , (TRUE, F A L S E) , and (F A L S E , TRUE).

According to the testing technique, interior test paths may exit the loop or iterate it an

23

additional number of times taking any of the branches after the second execution of the

body of the loop.

However, path testing is also faced with another problem: path infeasibility. An

infeasible path is impossible to execute with test data due to contradictions in the predicate

expressions of some conditional statements which may lie on the same program path.

This problem is highlighted in a study conducted by Hedley-Hennell [104] where a

number of sample programs, containing as many as one thousand paths, were found to

contain only eighteen feasible paths. Although current path testing strategies and tools

[182, 265] cannot identify path infeasibility and need manual guidance, research into the

subject is ongoing [35, 53, 117, 268].

2.3.2 Data-Flow Testing

The first data-flow testing criterion, known as reach coverage, was proposed by

Herman [108]. It requires the testing of a program path between a variable definition and

its corresponding use. This type of interaction is also referred to as a 2-dr interaction

[193]. The main shortcoming of this strategy is that it does not guarantee that branch

testing is achieved. The required pairs strategy developed by Ntafos [193] ensures that at

least one required pair is produced for each 2-dr interaction. If a 2-dr interaction involves

a reference within a branch predicate, a required pair for each outcome of that predicate is

produced. The required k-tuples strategy [193] is an extension of the required pairs

technique in which sequences of 2-dr interactions, or k-dr interactions, are tested.

Laski-Korel [147,148] proposed two data-flow testing strategies, the first of which is

equivalent to the reach coverage criterion. The second testing technique requires the

elementary data context of every program statement to be tested at least once. The

elementary data context of a statement includes those variables definitions which reach the

given statement and correspond to referenced variables in it. A more extensive strategy

24

called ordered data context requires that the definitions in each elementary data context are

tested along all subpaths leading to their corresponding uses. In order to support these

data-flow testing strategies, tools such as STAD [141,149] have been developed.

However, the most recent work in data-flow testing has been conducted by Weyuker

[72, 218] who proposes a number of test coverage criteria or test adequacy criteria [41].

The effectiveness of these data-flow testing criteria has been evaluated in a number of

empirical studies [259, 260, 261] using tools such as ASSET [70, 71]. With this type of

data-flow testing, each variable occurrence in a program is classified as either a definition

(def), a computation-use (c-use) or a predicate-use (p-use). A def swggtsts that a program

variable is assigned a value during a computation, while a c-use or a p-use represents a

program variable being referenced in a computation or predicate expression, respectively.

Consider the following fragment of program code. (Note that the line numbers in the

leftmost column are to facilitate the discussion of the program and do not form part of the

actual program.)

1 : program example
2 : b e g i n
3 : r e a d (x , y) ;
4 : i f (x > 0) t hen
5: b e g i n
6 : X = X * 2 ;
7: end
8 : w r i t e (x , y) ;
9 : end

Figure 2.6 : Data-Flow Testing - An Example

Testing from a defio a c-use of program variable x requires that a definition-clear

subpath can be found from statement 3, which contains the def, to statement 6 which

25

contains the corresponding c-use. Similarly, testing from a defio a p-use of program

variable x requires that definition-clear subpaths must be found from statement 3 to both

of the successor statements 6 and 8 of the p-use at statement 4. A def-use pair, or def

use association, therefore, is denoted by an ordered triple, where the first element

identifies a given program variable, the second element depicts the program statement

containing the def and third element represents the statement, or ordered pair of

statements, containing the corresponding c-use or p-use. Thus, for the above example, a

total of five definition-use associations can be determined: (x, 3, (4, 6)), (x, 3, (4, 8)),

(X, 3, 6), (X, 6, 8), (y, 3, 8).

The degree of test coverage varies depending on the data-flow criteria which are

chosen. Table 2.1 summarises the different data-flow criteria proposed by Weyuker. For

the all-p-uses, all-c-uses/some-p-uses, all-p-uses/some-c-uses and all-uses criteria,

associations consisting of the definition and use of a variable are tested by some subpath.

For the all-du-paths criterion, every subpath from a defmition to its use must be tested. As

with the control-flow criteria, the data-flow criteria provide increasing degrees of test

coverage, while being progressively more difficult to achieve.

CRITERIA DESCRffTION

aU-p-uses Each p-use in the program is tested

all-c-uses/

some-p-uses

Each c-use is tested; if there are no c-uses, then some p-use is tested

all-p-uses/
some-c-uses

Each p-use is tested; if there are no p-uses, then some c-use is tested

all-uses Each use in the program, both c-uses and p-uses, is tested

all-du-paths Every subpath to each use in the program, both c-uses and p-uses,

is tested

Table 2 .1 : Summary of Data-Flow Criteria

26

2.3.3 Limitations

It is important to realise that for control-flow testing and data-flow testing, there is not

necessarily any correlation between high test coverage and low defect rates. The different

test coverage criteria are meaningless i f testing is not conducted properly; high test

coverage will not expose errors. Structural testing possesses weaknesses in that it simply

measures what is present in the program code. Thus, no structural testing technique can

expose missing-code errors which occur when part of the functionality described in the

specification is overlooked and has not been implemented.

Another problem is caused by the fact that test coverage criteria becomes increasingly

difficult to satisfy. A non-linear relationship is established whereby the higher the current

level of test coverage, the more difficult it is to improve on it. This often requires

elaborate test cases to be created in order to marginally increase the level of test coverage.

One reason for the increased difficulty is that as the test coverage increases, the untested

sections of code tend to become widely dispersed throughout the program.

A further shortcoming of structural testing techniques is highlighted during Uie testing

of concurrent systems [239, 245]. As structural testing techniques cannot account for the

concept of timing, program code containing any timing errors may be deemed tested

without exposing diese errors.

2.4 Summary

In this chapter, the importance of testing as part of the software development phase is

emphasized. The testing activities and tools supporting the specification, design and

implementation of a program are described. While examining the existing testing

strategies, two distinct classes of techniques emerge: static analysis and dynamic testing,

and functional testing and structural testing. Emphasis is placed on describing structural

27

testing techniques, in particular, control-flow testing and data-flow testing. In addition,

the effectiveness of these techniques in detecting program errors through the application

of increasingly stringent test coverage criteria is assessed. Moreover, the limitations of

structural testing techniques are outlined. Structural testing techniques are considered

relevant as they provide a basis for the selective revalidation technique described in this

thesis.

28

Chapter 3

Testing During Maintenance

3.1 Introduction

After a software system is delivered to its customers, it may require further

modification; it therefore enters the operations and maintenance phase of its lifecycle.

Software maintenance can be classified into four distinct stages involving program

comprehension, definition of a change proposal, analysis of the proposed changes, and

the actual implementation and revalidation of these changes [272]. Figure 3.1 illustrates a

typical maintenance cycle.

PROGRAM
UNDERSTANDING I

CHANGE
PROPOSAL I

CHANGE
ANALYSIS I

IMPLEMENTATION/I
REVALIDATION

YES
~~r~

^ ANY A
" ^RRORS?J

STAGE 1

STAGE 2

STAGE 3

STAGE4

"^NO

Figure 3.1: The Maintenance Cycle

After a change request has been received from users, maintenance programmers need

to gain an understanding of the program; their comprehension of the software is

29

influenced by its complexity, documentation and self-descriptiveness. Once the program

has been examined, maintenance programmers must generate a specification of the

modification by means of a change proposal; this helps to specify the maintenance

objectives. As part of this proposal, a set of basic modifications are described to satisfy

the objectives. Before implementing any of the proposed changes, however, their impact

upon the existing program needs to be assessed. It may be possible that a number of

change implementations are being considered and so each one must first be examined in

terms of its effect on the existing program. In the final phase, the change is implemented

and the modified program is retested to ensure its functional consistency. If any errors are

discovered during revalidation, a new change request may need to be generated and the

entire procedure is then repeated.

Software maintenance is characterised by a predicament similar to that of software

testing - it accounts for a large percentage of the overall programming effort and cost, yet

possesses only negligible influence on the lifecycle. Two factors, which contribute to the

high cost, are the analysis and retesting of the modified software [84]. While

contemporary models of software maintenance often emphasize the need to formalise

procedures for analysing and testing program changes, few of these models actually

provide any guidelines [45]. Maintenance methodologies are therefore deployed with

serious consequences. Unexpected side-effects, which inadvertentiy influence the

existing functionality, are often introduced into the system. Recent studies [46] into

maintenance practices substantiate these claims by revealing that as many as 53% of the

exposed defects are related to side-effects which affect the unchanged portions of a

system. It has also been suggested that the probability of invoking an error during

maintenance is three to ten times greater than during development [180].

A possible reason for these problems may lie in the fact that practitioners often regard

testing during maintenance simply as an extension of their approach to development

testing. However, it should be emphasized that testing during development differs from

30

maintenance testing in a number of ways.

A major difference between the two types of testing usually lies in the availability of

a test suite. Software development is concerned with the testing of software which

constitutes the completed system. It involves the creation of test cases to satisfy the

specification and the associated implementation. As testing proceeds, a test plan is slowly

completed using functional and structural test cases which are added to the test suite.

Therefore, the prime concern of testing during development is to ensure that the software

is correct before its release to customers. During maintenance, testing begins with a

possibly modified specification, a modified program and an existing test suite which

requires updating. It involves selecting and executing some of the existing test cases,

introducing new test cases into the test suite and deleting others. Thus, the testing

activities focus on software that has already been released.

Testing during development and maintenance aims at validating a program to ensure

its correctness and to locate errors. Although the two types of testing have similar goals,

differences exist in the way in which these goals are achieved. During development, the

individual components of a system are tested for correct implementation in accordance

with the design. They are then integrated into the system in order to test their

interconnections with the other components. With maintenance testing, only those parts

of the program, which are affected by the maintenance modifications, need to be

validated.

In general, adequate resources are allocated for development testing at the beginning

of every software project. However, the resources required for maintenance testing

activities are often underestimated, or simply ignored, in the project schedule and budget

[155]. As a result, maintenance testing may be performed in a limited amount of time,

and under the false assumption that testing only certain parts of a software system

requires far less time than development testing.

31

Testing during development is based upon the knowledge that information about the

software development process is accessible. It can be assumed diat testers have an insight

into the documentation concerning the specification and design. They may also access

parts of the program code and execute test cases generated by the developers.

Furthermore, they can approach developers to question them about specific aspects of the

code, exploiting their expertise and intimate knowledge of die code and its structure. With

maintenance testing, most, i f not all, of this information is unavailable. In most cases, the

development team wil l have been disbanded, or assigned to new projects, and the test

cases will have been abandoned shortly after the completion of acceptance testing and the

release of the product. In addition, the associated documentation may have been

misplaced or destroyed. Thus, maintenance testing is usually approached in an ad hoc

manner.

Differences between development and maintenance testing also occur with respect to

the frequency of the activity. Development testing is a well defined activity, which is

undertaken at regular intervals during the project, but it is completed when the product is

released to customers. However, the time taken in maintenance testing often spans a time

period, which far exceeds that of the development phase, and is conducted far more

frequentiy, preferably after every program modification.

3.2 Regression Testing

3.2.1 A DeHnition

Activities relating to maintenance testing are characterised by regression testing [213,

228] which has also been referred to as redundancy testing [243]. The Standard Glossary

of Software Engineering Terminology [282] defines regression testing as:

32

"Selective re testing to detect faults introduced during modification of a system

or system component, to verify that modifications have not caused unintended,

adverse side effects, or to verify that a modified system or system component still

meets its requirements."

Two types of regression testing can be identified based on whether changes are made

to the functionality of a software system or any of its subsystems. Progressive

regression testing [155] involves retesting in the presence of an altered program

specification, or design, where the changes can cause many of the existing test cases to

no longer specify a correct input-output relationship. As a result, these test cases can no

longer be used to revalidate the program. Typically, progressive regression testing would

be conducted at regular intervals during perfective and adaptive maintenance [121].

Corrective regression testing [155] is applied whenever the program

specification and design remain unchanged and modifications are restricted to the

implementation. As no new functionality is being introduced, most of the existing test

cases in the test suite can be reused. Typically, corrective regression testing would be

invoked at irregular intervals during corrective and preventive maintenance [121].

3.2.2 Current Practices

At present, regression testing is only considered from a functional point-of-view

where the objective is to ensure that the existing program functionality has not been

damaged during modification. Regression testing is based on the use of already devised

test cases, which minimises the effort required to create test cases, and allows the direct

comparison of output from the modified software and the original test cases. This

approach, however, relies upon the automation of the regression testing process. Tools

have been developed to facilitate the creation, execution, and storage of test cases as well

as their automatic replay and comparison of test results.

33

The use of regression testing tools has become increasingly widespread [48, 150,

162]. In 1983, a survey conducted by Beck-Perkins [17] reported that approximately

20% of the organisations being questioned performed regression testing. By 1986, this

figure had risen to 53% according to a survey conducted by the Quality Assurance

Institute [283]. In fact, regression testing tools are being used to test an increasing

number of software systems, ranging from telecommunications equipment [140, 152,

207, 221] to embedded control systems [22, 25, 279].

The purpose of early regression testing tools, such as the Automated Unit Tester

(AUT) [205] and the Fortran Test Procedure Language System (TPL/F) [206] was to

serve as automatic software test drivers. While their primary application was in module

testing, their facilities were equally well suited to regression testing. With the introduction

of the graphical user interface (GUI) and alternative input devices for computers, a new

generation of regression testing or 'capture-replay' tools has been developed [9, 133,

233, 234, 247]. Apart from validating the actual application program, these tools also

process the interactions between users and the graphical user interface. Subsequentiy, all

input data supplied via the keyboard and mouse, and output data in the form of windows,

icons and menus can be captured and later replayed.

The growing importance of regression testing is also reflected in the number of

dedicated software testing environments which have incorporated regression testing

capabilities alongside their more traditional testing facilities. Examples of such test

environments include the Virtual Terminal, Scaffold Test Package Automation Tool and

Test Package Standard [73], and Buster [10].

Without doubt, the automation of regression testing has helped considerably in

alleviating some of the tedious and time-consuming tasks associated with it. However,

the reduction in testing effort is, in effect, confined to automating the capture of test

inputs and the comparison of test outputs. As a result, maintenance programmers are still

34

faced with the problems and uncertainty concerning which parts of the program

functionality and code are affected by the changes, and how thoroughly these parts

should be retested. These problems have so far not been adequately resolved and there is

neither an accepted technique, nor criterion, for program revalidation. This thesis,

therefore, proposes the development of a systematic and efficient approach to regression

testing knovm as selective revalidation [101].

3.3 Selective Revalidation

A single program modification is usually revalidated by rerunning all of the existing

test cases, rather than a selected portion of them, to ensure that the change has not

introduced any side-effects into the program [232]; this strategy is often referred to as the

retest-all strategy. Alternatively, a modification cycle is imposed in which a series of

changes are made over a period of time, and the changes are then collectively tested at the

end of the cycle using the entire test suite. Other retesting strategies envisage the

rerunning of a set of confidence tests aimed at exercising the major system features, the

execution of a number of randomly, or intuitively, selected test cases or the exercising of

all those test cases which traverse the modified program parts [89].

While rerunning an entire test suite can prove to be costly, and in some cases

infeasible, the intuitive approaches to regression testing assume that maintenance

programmers have an intimate knowledge of the program's purpose and its test suite. I f

such personnel are available, then it may be possible for them to select specific test cases

which directly exercise the modified program functionality. In some cases, the

maintenance programmers may possess sufficient knowledge of the program stmcture in

order to select additional, structural tests which can be used to complement the already

selected set of functional test cases. However, it is doubtful whether the extent of any

given program change can be systematically analysed and an optimal set of regression

tests selected to exercise the change.

35

The objective of a technique for selective revalidation, therefore, is to assist

maintenance programmers in systematically analysing the modifications made to the

program code, and in efficiently selecting and updating the test cases from the existing

test suite [98]. The technique may thus be used to complement and enhance the cuirent

regression testing process. However, to achieve the objective, the technique must address

the issue of test suite classification and solve the problems of test suite

management.

3.3.1 Test Suite Classification

In response to changes in the program specification, design, or implementation, a test

suite can be classified into four different categories of test cases. An accurate

classification of the test suite is essential in order to later on define the problems of test

suite management. Below, a description of each test case category is given.

Reusable tests constitute those functional and structural test cases which are

associated with the unmodified portions of the program. These test cases traverse those

parts of the software which are neither directly, nor indirecfly, affected by the

modifications and which continue to exercise the same functionality and code as before.

Thus, the test cases should be retained in the test suite between testing sessions.

Retestable tests represent the set of test cases which need to be rerun after

modifications have been made to the program functionality or code. They include

functional and structural tests which exercise those sections of the specification, design

and code which have been directly, or indirecdy, affected by the changes. As a result of

these changes, the retestable tests may now exercise different aspects of these program

attributes.

36

New tests, both functional and structural, may need to be created in order to satisfy

their respective test coverage criterion. Maintenance activities may include enhancements

to the program's functionality which require the generation of new, functional test cases.

However, these tests may not achieve the desired level of structural test coverage and

therefore additional, structural test cases may need to be created to improve this level of

coverage.

Unnecessary tests represent those test cases in the test suite which may be removed

once the modifications have been validated. Structural and functional test cases are

referred to as redundant tests i f , after modifications, they exercise program

functionality and traverse program code which has already been validated by other test

cases in the test suite. Thus, their removal does not affect the respective test coverage,

because other test cases provide the same measure of coverage for the program.

3.3.2 Test Suite Management

In response to program modifications, a test suite must be updated to reflect the

changes. Although the test suite can now be classified into the different categories of test

cases, problems still arise concerning how to determine these different categories of test

cases during regression testing. Two problems, in particular, need to be solved. The

problem of test selection [156] is concerned with the determination of the retestable

tests; it is desirable to select a representative set of test cases from the test suite to ensure

the integrity of the modified program. The problem of test update [156] is concerned

with the updating of the test suite and involves the identification of the redundant tests as

well as the design of new tests; it is desirable to maintain a representative set of test cases

in the test suite to ensure its high quality. In this thesis, therefore, a technique for

selective revalidation is developed which addresses the problems of test selection and test

update and provides a solution to them.

37

3.4 Summary

The role of testing during the operations and maintenance phase of the software

lifecycle is examined. It is found that apart from the analysis of program modifications,

the testing of these modifications contributes to the high cost of maintenance. By

examining the different stages which occur in a typical maintenance cycle, it is discovered

that, while the activities related to the modification of the software have been clearly

defined, the procedures associated with the validation of the modified software are still

lacking the required formality and rigour. This has had a detrimental effect on the quality

of the modified software with unexpected and undesirable side-effects being introduced

into the software.

The lack of a formal approach to maintenance testing is examined and it is found that

its cause may he in the attitude of programmers - they regard maintenance testing simply

as an extension of development testing. A number of differences between testing during

development and maintenance are subsequently examined.

The subject of regression testing is introduced and a distinction is made between

different types of regression testing according to whether, or not, the maintenance

activities include changes to the program functionality. Current regression testing

practices and tools are examined, and it is discovered that existing techniques promote a

rather ad hoc approach to regression testing.

The subject of selective revalidation is defined and a corresponding technique is

proposed which effectively complements and enhances current regression testing

practices. As a result, maintenance modifications may now be analysed and retested witli

respect to both the program functionality and code. However, selective revalidation is

faced with a number of problems which are addressed by the technique described in this

thesis. The issue of test suite classification categorises the test cases in the test suite into

38

retestable, reusable, new and redundant tests, while the problems of test selection and test

update require a set of retestable tests to be chosen in order to revalidate the modifications

and redundant test cases to be determined during the updating of the test suite.

39

Chapter 4

Techniques for Selective Revalidation

4.1 Introduction

The work by Hartmann-Robson [101] defmes the subject of selective revalidation. It

discusses existing techniques and highlights five important issues concerning the subject:

a) the majority of techniques for selective revalidation concentrate upon the analysis and

retesting of individual program modules; b) few of the techniques recognise the

importance of change analysis as part of selective revalidation; c) most techniques do not

select a minimal set of retestable tests and do not provide a way of identifying redundant

tests; d) little experimental evidence is available to demonstrate the benefits of selective

revalidation; and e) very few techniques can demonstrate a consistent approach to the

selective revalidation of the program specification, design and code.

In this chapter, each of the above issues is examined. In Section 4.2, the capabilities

of existing techniques with respect to code and change analysis are investigated. Section

4.3 describes the revalidation criteria which are applied by individual techniques in order

to select and update test cases in the test suite. Section 4.4 assesses any experimental

evidence which has so far been presented. Finally, Section 4.5 analyses two approaches

to selective revalidation, which are capable of retesting changes to a program's

specification and design, as well as to its implementation.

4.2 Code Analysis

Code analysis forms an important aspect of every selective revalidation technique and

is used to examine the dependencies which exist between different entities in a program.

40

Code analysis techniques^ obtain this dependency information by static analysis of the

program code. In particular, the quality of these techniques needs to be assessed as it

reflects upon the type of testing strategy and change analysis which can be used for

selective revalidation.

4.2.1 Testing Strategies

Code analysis is used to determine the test requirements of different structural testing

strategies. Therefore, it influences the applicability of selective revalidation techniques by

restricting their use to certain testing strategies. Two types of code analysis are used in

conjunction with selective revalidation, namely intraprocedural code analysis [6, 19, 136]

and interprocedural code analysis [5,15].

Intraprocedural code analysis confines itself to analysing individual program modules

and makes a number of assumptions concerning the use of global variables and module

parameters for called modules. Its main advantage, however, lies in the fact that it is easy

to implement. Consequently, intraprocedural code analysis forms the basis of most

"selective revalidation techniques. For example, the techniques developed by Harrold-

Soffa [90], Taha et al. [238], and Ostrand-Weyuker [201] are based on data-flow testing

of individual program modules. Moreover, Leung-White [154] describe a technique for

selective revalidation which is based on statement testing. Other techniques, such as those

developed by Benedusi et al. [18] or Fischer et al. [65, 67] are based on the path testing

of program modules.

Interprocedural code analysis removes the restrictions imposed by intraprocedural

code analysis to account for the effects of global variables and module parameters when

another module is called; it can be categorised into flow-insensitive interprocedural code

analysis [49] and flow-sensitive interprocedural code analysis [30, 93, 131]. While the

^ Code analysis techniques are described in Chapter 5.

41

former approach summarises the data-flow information pertaining to each parameter and

global variable in a called module and ignores the control structure of the called module.

The latter approach, however, takes into the account the control structure of the called

module. Subsequently, flow-sensitive interprocedural code analysis is far more accurate

than either flow-insensitive interprocedural or intraprocedural code analysis, but it is also

more costly to implement. This fact is reflected by the small number of selective

revalidation techniques based on interprocedural code analysis.

The work by Harrold-Soffa [91, 96] describes a technique for selective revalidation

which is capable of retesting modifications made to a collection of program modules and

is based on data-flow testing. It relies upon the use of flow-sensitive interprocedural code

analysis [93] for ensuring that definition-use associations, which correspond to module

parameters and global variables, are examined and tested. However, this technique has

yet to be implemented and applied in practice.

The work by Leung-White [157] describes a technique for selective revalidation

which allows the analysis and retesting of a collection of program modules written in

Pascal. The technique does not incorporate flow-sensitive or flow-insensitive

interprocedural code analysis, but instead examines the program's calling hierarchy or

call-graph in order to establish its test requirements. In response to module changes, a

fire-wall [158] is defined for focusing the retesting effort on those program modules

which may directly or indirectly be affected by the modified module. As revalidation is

limited to the calling interaction between program modules, neither global variables, nor

module parameters, are examined by this technique.

Apart from affecting the applicability of selective revalidation with respect to different

testing strategies, the quality of code analysis also influences the accuracy with which

program dependencies and test requirements are determined. The majority of techniques

for selective revalidation [67, 90, 160, 201, 238] are based on code analysis techniques

which examine programs written in Pascal [129] or Fortran [281]. With these techniques,

42

conservative assumptions are made concerning the analysis of composite variables and

pointer variables. However, a lack of accuracy in analysing these variables as well as their

aliases can significantly influence the number of dependencies, which are identified, and

affect the number of test requirements being generated; this is especially true of the

analysis and testing of programs written in the C programming language [113, 202].

Later on in this thesis, language-specific program dependencies are described using C

programs.

4.2.2 Change Analysis

Another important aspect of code analysis is change analysis. With respect to selective

revalidation, change analysis is used to identify the impact of the proposed program

modifications and select those test requirements from a program's testing history which

correspond to the affected program statements. Thus, change analysis helps to focus the

retesting effort on those program paths traversing die affected portions of the program and

influences the process of choosing a set of retestable tests during test selection. As change

analysis is characterised by the accurate analysis of a program's control and data

structure^, it is directly affected by the quality of the code analysis being conducted.

The majority of selective revalidation techniques consider only the direct effects of a

modification. Very few techniques utilise change analysis in order to identify the indirect

effects of a program change. One selective revalidation technique, which does use change

analysis to identify affected test requirements and program paths, is described by Fischer

et al. [65]. Their algorithm for change analysis is defined solely in terms of the control

structure of a program. With this technique, a program is represented in terms of a

control-flow graph^ and the reachability between program statements is examined.

^ This is explained further in Section 5.5.
^ Control-flow graphs are described in Section 5.3.1.

43

Consider the following fragment of program code. (Note that the line numbers in the

leftmost column are to faciUtate the discussion of the program and do not form part of the

actual program.)

1 : program example
2 : b e g i n

3: r e a d (a) ;
4: a = a + 2;

5: b = 10;

6: c = 20;
7: i f (a > 0) t h e n
8 : b e g i n

9 : a = b ;
10 : end
11: e l s e
12 : b e g i n

13 : a = c;

14 : end

15: w r i t e (a) ;

16 : end

Figure 4.1: Fischer's Algorithms -

According to Fischer's algorithm, a modification to statement 6 would result in all

computational statements being reported as affected; the reason for this being that in terms

of the program's control structure all other program statements either reach to or can be

reached from statement 6. As the program contains two possible paths, both of which

traverse the modified statement and represent test cases, then both of these test cases need

to be rerun. However, careful inspection of the program's control and data structures

reveals that only statements 13 and 15 would be affected by a change to statement 6,

resulting in only one of the two test cases needing to be rerun. Thus, the usefulness of

Fischer's algorithm is limited as change analysis based solely on a program's control

structure results in an overestimate of the number of affected program statements and

subsequently, test cases.

44

Further work by Fischer et al. [67, 68] resulted in the definition of two new

algorithms, simply referred to as A and B. These algorithms trace the impact of proposed

code changes using the program's control structure and variable information, which

describes the assignments and uses of variables within each program statement.

Algorithm A identifies those program statements which reach to the modified statement in

terms of control structure and contain variable assignments and references which affect

those in the modified statement - the algorithm therefore attempts to solve the backward

data-flow problem [136]. In a similar manner, algorithm B determines those

statements which can be reached from the modified statement in terms of control stioicture

and contain variable assignments and references that are affected by those in the modified

statement - the algorithm therefore attempts to solve the forward data-flow problem

[136].

Applying these two algorithms to the previous modification would now result in

statements 6, 13 and 15 being flagged as affected. However, the algorithms contain

inconsistencies in their definitions which still cause them to select an incorrect set of

affected program statements; this may affect the number of paths and retestable tests being

selected. For example, the application of algorithm A to a modification of statement 15

results in statements 3,4, 5, 6, 9, 13 and 15 being flagged as affected. However, careful

inspection of the program code reveals that statements 3 and 4 should not be flagged as

variable a is redefined on every program path leading to its use in statement 15.

In constrast, a change to the computation in statement 4 would cause algorithm B to

indicate that only statements 7 and 15 are affected by the modification. Apart from

neglecting the fact that variable a is redefined at statements 9 and 13, the algorithm does

not consider the possibility that a modification to the computational statement 4 could

affect the value of the predicate expression in statement 7 and cause the path condition to

be changed. Thus, the algorithm should also flag those statements as affected which

contain dependencies straddling the affected predicate expression and lie on the same

control-flow path as die modified statement. For a modification to statement 4, this would

45

result in statements 5/9 and 6/13 being flagged. In addition, the algorithm should examine

those statements, which are control-dependent upon the evaluation of the predicate

expression and subsequently affect statements throughout the program. For a

modification to statement 4, this would result in statements 9 and 13 causing statement 15

to be flagged.

An alternative approach to change analysis, proposed by Leung-White [154], is based

on the concept of a retestable unit. The principles of a retestable unit are closely linked to

those of program slicing. Two algorithms are defined by Leung-White in order to

provide solutions to the backward data-flow problem and forward data-flow problem.

While the former problem is adequately addressed, the algorithm responsible for solving

the latter problem contains inconsistencies which may result in an underestimate of the

number of affected program statements. Consider the following fragment of program

code. (Note that the line numbers in the leftmost column are to facilitate the discussion of

the program and do not form part of the actual program.)

1 : program example
2 : b e g i n
3: r e a d (x , y) ;
4: i f (x > 0) t h e n
5 : b e g i n
6: X = X + y ;
7 : end
8: e l s e
9 : b e g i n
10: y = Y - x ;
11 : end
12: i f (X > 10) t h e n
13 : b e g i n
14: a = x ;
15 : end
16: e l s e
17 : b e g i n
18: a = y ;
19 : end
20: w r i t e (a) ;
21 : end

Figure 4.2: Retestable Unit - An Example

46

According to the algorithms defined by Leung-White, a modification to the predicate

expression in statement 12 would cause program statements 3, 6, 12, 14, 18 and 20 to be

reported as affected. For the backward slicing algorithm, any definitions associated with

the use of variable x in statement 12 are traced; this implicates statements 3 and 6. For the

forward slicing algorithm, statements 14,18 and 20 are examined; statements 14 and 18

are implicated because they are control-dependent upon statement 12, while statement 20

is flagged as it is data-dependent upon statements 14 and 18̂ .̂ This approach, however,

fails to implicate those statements which form dependencies that straddle the modified

predicate expression. Thus, in response to the above modification, the forward slicing

algorithm should also consider statement 10 as affected, because it is data-dependent upon

statement 18 which was included in the original set of affected statements and lies on one

of the control-flow paths traversing the modified statement. This thesis later on describes

a technique for change analysis, which extends the work by Leung-White, and is based

on the concept of program slicing.

4.3 Revalidation Criteria

The advantage of selective revalidation over current regression testing practices lies in

its ability to distinguish between the different categories of test cases in a test suite and

determine the sets of retestable and redundant test cases. To achieve this, however, the

individual techniques must first develop and then apply suitable revalidation criteria to the

problem of test selection and test update. In the following section, emphasis is placed on

examining the quality of these criteria.

4.3.1 Test Selection

A number of techniques for selective revalidation [90, 96, 201, 238] apply their test

selection criteria to programs which have been validated using data-flow testing. These

^ Control dependency and data dependency are described in Chapter 5.

47

criteria require only those test requirements to be identified which correspond to modified

or deleted definition-use associations. This approach leads to the selection of a set of

retestable tests which ensure that those program parts, which are directly affected by the

modifications, are validated. However, it does not consider those definition-use

associations and corresponding program code which may be indirectly affected by the

modifications. This may lead to situations in which the test selection criteria underestimate

the number of affected test requirements and thus cause too many retestable tests to be

selected.

The work by Leung-White [154], which is based on statement testing, introduces an

all-essential assumption in order to simplify the problem of test selection. It assumes that

every statement on a program path contributes to the overall path computation. Thus, if a

program statement is executed by n test cases, then its subcomputations are also exercised

by those n test cases. A change to a given program statement would therefore be affected

by computations on all program paths leading to the modified statement. Similarly, the

modified statement itself would perform a computation which may affect statements on

paths reaching from the changed statement. Therefore, the revalidation criterion developed

by Leung-White simply selects all test cases for rerun which traverse the modified

statement. However, this assumption is not valid for all cases as the statement being

modified may only rely upon subcomputations on certain program paths leading to the

modified statement and affect computations on some of the paths reaching from the

changed statement. This may lead to situations in which the test selection criterion

overesfimates the number of affected test requirements and thus causes too many

retestable tests to be selected.

To implement their approach, Leung-White [154] define a bit vector which is

associated with each program statement or its corresponding node in the control-flow

graph of the program^. I f a test case i traverses a statement, then the ith bit of the

^ Control-flow graphs are described in Section 5.3.1.

48

corresponding node's bit vector is set to one. Whenever a node is modified or deleted, the

corresponding bit vector determines the set of test cases which needs to be rerun.

The technique, described by Benedusi et al. [18], selects its test cases based on the

automatic analysis of those program paths which have been modified or deleted during

maintenance. To achieve this, the program's control structure is first transformed into its

equivalent algebraic expression using an algebraic representation known as exp(prog)

[33]. This algebraic expression consists of operands and operators which depict the

different control structures and sequencing operations found within a program. By

applying the distributive law^ with respect to the operators, a series of expressions can be

derived for the paths through the program. Problems, such as loops, are overcome in this

technique by grouping program paths, which execute the loop zero or more times, into an

exemplar path (e-path).

For test selection, the path expressions of the program, before and after the

modifications, are determined and then automatically compared using difference

operators. Subsequently, the test suite can be categorised into unmodified paths, modified

paths, cancelled paths and new paths. Once the modified paths have been determined, the

corresponding test cases are selected from the testing history. However, the accuracy of

test selection is limited by the algebraic representation, exp(prog), which can only depict

the control structure, but not the data structure, of a program. Thus, a situation may arise

whereby the first statement in a program is modified and all paths are flagged as being

modified. This would result in all test cases in the test suite being rerun and constitute an

overestimate in the number of retestable tests.

Apart from overestimating the number of retestable tests due to the lack of an

integrated mechanism for change analysis, the test selection criteria described above also

fail to account for the possibility of extraneous tests being introduced into the set of

^ The distributive law for an algebraic expression a(b + c) = ab + ac.

49

retestable tests. Thus, whenever a set of retestable tests is identified, the possibility exists

for considerable overlap, that is redundancy, in the set of test cases required to exercise

the affected test requirements. In fact, the majority of techniques described above do not

determine an optimal set of retestable tests. However, the work by Hartmann-Robson

[103] describes an approach to test selection which can provide such an optimal set, and

relies upon the combined application of operations research and change analysis to do so.

This work is described later on in this thesis.

4.3.2 Test Update

For test update, Leung-White [154] define a set of bit-vector operations which are

used to update the test cases associated with modified program statements'̂ . They include

a replacement operation for updating a test case execution whenever it traverses a

statement, a bit shifting operation for deleting old test cases that no longer exercise the

statement and an appending operation for the addition of new test cases. In the technique,

described by Benedusi et al. [18], the comparison of path expressions, before and after

the modifications, results in the generation of new test cases to exercise the modified

paths and the deletion of old test cases which no longer exercise valid paths. Those

techniques for selective revalidation, which are based on data-flow testing [90, 96, 201,

238], determine whether additional test cases must be created to exercise any new

definifion-use associations, or test cases need to be deleted should the definition-use

associations, which they previously exercised, no longer exist.

These selective revalidation techniques, however, fail to consider the possibility of

redundant tests being introduced into the test suite during test update. This can lead to an

uncontrolled increase in the size of the test suite as successive maintenance changes are

implemented. The approach described by Leung-White [155] characterises most other

selective revalidation techniques with respect to this problem. It proposes that those test

^ Recall that these statements are defined as the nodes of the program's control-flow graph.

50

cases, which are identified during test selection, should be executed until the imposed test

coverage criterion is satisfied. Any remaining test cases should then be classified as

redundant and eliminated.

However, the random choice of test case order can have a substantial impact on the

number of redundant test cases which are introduced. A number of selective revalidation

techniques [94, 160] have therefore suggested the use of operations research to determine

redundant test cases in an updated test suite. Their approach to the problem of test update

is based on the earlier work conducted by Hartmann-Robson [99].

4.4 Experimental Evidence

The concept of selective revalidation has been adopted by relatively few prototype

maintenance environments and testing tools. This may give an indication of the difficulty

associated with implementing a technique for selective revalidation. For example, the Test

Inc. incremental data-flow testing tool [170] forms the basis of a selective revalidation

technique described by Harrold-Soffa [92]. However, the tool confmes itself to analysing

small programs or modules written in a subset of Pascal.

Benedusi et al. [18] describe their selective revalidation technique as part of the

MAINT_DB maintenance environment which retains informafion such as the

specification, design documentation and code for a program. The Post-Maintenance

Testing subsystem of the MAINT_DB environment is then responsible for coordinating

the regression testing activities and utilises testing and dependency information supplied

by the environment. However, the environment is restricted to analysing and retesting

program modules implemented in COBOL or Pascal [129]. Other techniques for selective

revalidation [65, 273, 238] are used in the analysis and retesting of program modules

written in Fortran [281] or a subset of Ada® [280].

Ada is a registered trademark of the U.S. Government, Ada Joint Program Office.

51

None of the tools described above have been used to evaluate the concept of selective

revalidation. The resulting lack of experimental evidence means that any claims

concerning the benefits of selective revalidation remain largely theoretical. However, in a

recent experiment conducted by Leung-White [158], a sample program consisting of over

five hundred lines of Pascal source code, and implemented in thirty-two modules, was

analysed, modified and retested. Initial validation resulted in a total of 120 unit tests, 235

integration tests and 104 system tests were executed. A series of modifications, which

included changes to the program call-graph, were implemented. Leung-White tiien applied

their technique for selective revalidation and compared its effectiveness against the retest-

all strategy in which the entire test suite needed to be rerun. It was found that selective

revalidation achieved a similar level of confidence to the retest-all strategy in terms of its

error detection capabilities. More importantly, however, it indicated that with the help of

selective revalidation, significantly fewer, on average 66% fewer, test cases needed to be

rerun.

While these results are encouraging, a number of important issues should be

highlighted. First, all activities relating to the evaluation of the actual program including

its instrumentation, code analysis, and test suite management were conducted manually.

This could give rise to a considerable margin of error and have a significant influence on

the outcome of any experimentation. Second, the revalidation criteria, which were

applied, neither considered the possibility of selecting an optimal set of retestable tests,

nor applied a mechanism for identifying redundant test cases. Third, the technique only

compared its results with those obtained for the retest-all strategy. It did not provide a

comparison with other selective revalidation techniques.

However, Hartmann-Robson [102] propose the development of a tool suite based on

the technique for selective revalidation described in this thesis. This tool suite, which is

described later on in the diesis, allows the tasks associated witii selective revalidation to

be automated and ensures that both an optimal set of retestable tests and any redundant

tests can be identified. More importantiy, however, it enables software, which has been

52

validated using various structural testing strategies, to be retested and allows comparisons

between different selective revalidation techniques to be made.

4.5 Alternative Approaches

The majority of techniques for selective revalidation are applicable only to the analysis

and retesting of modified program code. They do not consider the impact of modifications

on the program specification or design. In the following section, however, two strategies

are examined which revalidate a program's specification and design as well as its

implementation.

4.5.1 Specification-Based Revalidation

Yau-Kishimoto [273] have developed a technique for selective revalidation based on

information derived from the program specification and code. The technique assumes that

the program specification is defined in terms of a cause-effect graph and that the program

code is represented by its control-flow graph^. I t then applies the theory of revealing

subdomains^ in order to define two types of partitions for the program.

The first partition is created by identifying different combinations of input conditions

f rom the modified program specification based on the cause-effect graph. Another

partition, referred to as the path partition, is established by considering each executable

program path through the graph as corresponding to an input partition class^o. The two

existing partitions are then intersected to form a third partition or testing partition. In

practice, the derivation, application and updating of revealing subdomains and cause-

effect graphs is difficult .

^ Control-flow graphs are described in Section 5.3.1.
^ Revealing subdomains are described in Section 2.2.2.

The exception is formed by those paths that differ in the number of loop iterations.

53

For the purposes of test selection, those paths in the control-flow graph, which

correspond to the reaching set of a modified program statement, are marked. Data-driven

symbolic execution is then used to evaluate the predicates encountered during program

execution. This form of symbolic execution requires no program path to be specified as

input data in the fo rm of previous test inputs is used to evaluate the predicates. The

symbolic execution tree, which is generated for the modified program, contains an entry

for each node in the control-flow graph. Every entry maintains certain state information

pertaining to the path constraints. The predicates, which are encountered at the decision

points along the path, are then evaluated; the combination of these predicates dictates the

input values for which the program path can be executed. Each predicate results in a

constraint on the input data which is then conjoined with all previously evaluated

constraints for this path to form the path condition.

During symbolic execution, a path through the modified program is evaluated using a

depth-first search, and is subject to a number of outcome selection criteria. Thus,

symbolic execution is continued for as long as: i t follows any path in the reaching set of

the modified nodes, and it selects, at every decision point, an outcome whose constraint is

satisfied. The symbolic execution is then repeated until an exit point for the program is

encountered. Any test cases, whose input values do not select the correct outcome for a

given predicate, are stored at that particular entry in the tree. These are processed later on,

after an exit point o f the program is reached, by performing a backtracking operation to

the root of the symbolic execution tree.

Once the symbolic execution terminates, those test cases which have satisfied all path

predicates and traversed the reaching set of the modified program statement are collected.

This also includes any test cases which may have been identified as part of the

backtracking operation. Together, they are collated in a test information table which for

each test case contains its number, a tree entry at which symbolic execution terminated

and a boolean outcome to indicate its suitability for rerun.

54

The revalidation criteria are then applied by examining the path conditions at the leaf

entries of the symbolic execution tree. These entries represent the valid input conditions

for the modified program. Subsequentiy, test cases, which are attached to these leaf

entries and cover the modified input partitions, are rerun. I f any of these input partitions

remain unexercised, then new test cases need to be generated to exercise the partition and

satisfy the test coverage criterion.

For the technique described by Yau-Kishimoto [273], the derivation of the input

partition, which represents the program code, is difficult as program logic can be complex

and equivalent classes of program paths are di f f icul t to identify. In addition, symbolic

execution is more effective in testing of numeric, rather than non-numeric programs. Its

application to a complex, numeric program may result in large amounts of output

representing lengthy, symbolic expressions which must be correlated with the input

partition constraints. A further disadvantage is that symbolic execution requires a large

amount of computing resources and can really only be justified when applied to safety-

critical systems, where the gain outweighs the cost of using such a technique.

4.5.2 Design-Based Revalidation

Benedusi et al. [18] describe a technique for selective revalidation which ensures the

consistency of both the program design and code. For their strategy to be applicable, a

program design must be represented in the form of low-level design documentation such

as Jackson diagrams [128] or Wamier-Orr diagrams [252]. The work by Benedusi et al.

exploits the fact that a detailed design specification can be expressed in terms of

pseudocode or flowcharts and that i t is directiy related to the underlying source code. It

appUes the algebraic representation, exp(prog), to the design specification in order to

transform i t into its equivalent set of algebraic path expressions. For test selection, the

path expressions before and after the design modifications are determined and

automatically compared using difference operators. The modified, or deleted, paths

through the design specification are identified and the corresponding test cases are

55

selected for rerun. These test cases then exercise affected constructs in both the program

design and code.

4.6 Summary

In this chapter, a review of existing techniques for selective revalidation is conducted.

The state-of-the-art is examined based on five important criteria which address the code

analysis and change analysis capabilities of different techniques, their revalidation criteria,

the presentation of experimental evidence, and the use of these techniques in analysing

and retesting o f modifications to the program specification or design.

A number o f important conclusions are drawn f rom the review. The majority of

selective revalidation techniques are based on code analysis which allows them to be used

in conjunction wi th structural testing strategies and be applied to the unit testing of

modified software. Few techniques have been defmed for integration testing; this is due to

a lack of suitable code analysis techniques. Those selective revalidation techniques, which

do propose such approaches, have either not yet been implemented or make a number of

assumptions which l i m i t their use. Moreover, the majority o f selective revalidation

techniques are based on code analysis techniques which make conservative assumptions

in their analysis of composite variables and pointer variables.

Few techniques for selective revalidation recognise the importance of change analysis

in influencing the number of retestable tests chosen during test selection. As a result, the

revalidation criteria being applied may tend to overestimate the number of retestable tests.

More importantly, however, the majority of these techniques are incapable of selecting a

minimal set of retestable sets and determining any redundant test cases in the test suite.

Very little experimental evidence is available which can be used to justify the claims

made by existing techniques concerning the benefits of selective revalidation. Therefore,

the concept of selective revalidation remains largely theoretical. However, encouraging

56

results have been presented by a recent experiment in which a sample program was

initially validated, a set of program modifications applied and a technique for selective

revalidation used to determine the number of retestable tests. These results indicate that

wi th the help of selective revalidation, significantly fewer test cases in the test suite

needed to be rerun.

The majority of techniques for selective revalidation are applicable only to the analysis

and retesting of modified program code. However, two strategies are examined which

consider the impact of modifications on the program specification or design and can be

used to revalidate them. As part of the conclusion, this thesis suggests ways of extending

the existing technique for selective revalidation to include the retesting of the program

specification and design.

57

Chapter 5

Code Analysis Techniques

5.1 Introduction

Code analysis is a generic term used to denote those activities where the primary

emphasis is on examining a piece of program code. Code analysis techniques can assume

various forms, for example, the error and anomaly detection of Osterweil-Fosdick [199],

Huang [123] and Jachner-Agrawal [127], the work by Burke-Cytron [26], Ferrante et al.

[63] and Cooper et al. [50] on the optimisation and parallelisation of compilers, and the

work by Burke-Ryder [27], Lu-Qian [168] and Zadeck [277] in incremental data-flow

analysis.

Two aspects o f code analysis which contribute to selective revalidation are:

determining the dependencies existing between different entities in a program and using

these dependencies to assess the impact of proposed program modifications. For any

maintenance operation, programmers need to gain a general understanding of how the

program works, together with knowledge about which sections of code are important to

the maintenance operation and how these have been tested. Maintenance programmers

need to assess the extent of the modifications by considering both the direct and indirect

influences of any changes. I t is, therefore, important that suitable code analysis

techniques are developed as part of a technique for selective revalidation.

To be able to discuss tiiese code analysis techniques, i t is important that a suitable

structure be used to represent the particular properties of a program. The graph has been

found to be a suitable structure for other code analysis techniques [32, 271], so it wi l l be

used in this thesis to record and describe die dependencies within a program.

58

This chapter concentrates on developing code analysis techniques for dependency

analysis and change analysis. Section 5.2 explains some important graph terminology.

Section 5.3 describes dependency analysis in which control dependency and data

dependency within a program are defined in terms of graph relations and may be

combined to fo rm a Program Dependency Graph. Section 5.4 examines data

dependencies induced through the use of composite variables as well as pointer variables

and their aliases. Emphasis is placed upon describing these dependencies with respect to

programs written in the C programming language. As a result, an updated definition of

data dependency is presented. In Section 5.5, a technique for change analysis is

developed, which makes use o f the Program Dependency Graph, in order to identify the

direct and indirect effects of a proposed program modification. This technique is then

used to extract those test requirements f rom the program's testing history which

correspond to the parts of the program affected by the changes.

5.2 Graph Terminology

Graph theory suffers f rom a lack of a standard terminology. I t is, therefore,

necessary to give a brief explanation of the terminology used in this thesis. This

terminology is taken f rom [82,179].

Formally, a graph G is represented by a pair (N,E), where N is a finite set of

vertices, or nodes, { n i , . . ,nE}, and E is a finite set of ordered pairs called edges,

{ (n i . n i) , (nE-i,nE)}.

Figure 5.1(a) illustrates a directed graph structure where the direction of the edges

between nodes is of importance^. A n ordered pair (nx,ny) denotes an edge connecting

node nx with node Uy. Two nodes are classed as being adjacent i f there exists an edge

connecting die two nodes. With a directed graph, the existence of the edge (Ux.Uy) cannot

^ This is in contrast to undirected graph structures where no importance is placed upon the order of the nodes of
an edge.

59

be used to infer the existence of an edge (ny,nj). Therefore, when determining adjacent

nodes, the existence of edge (n^jUy) implies that ny is adjacent to n j , but does not mean

that Ux is adjacent to ny. Therefore, node n^ is described as the predecessor of node ny

and node ny is termed the successor of node Uj.

A B C D E A B C D E
A 0 1 0 0 0 ~ A ~ 1 1 1 1 1
B 0 0 0 1 1 B 1 1 1 1 1
C 1 0 0 0 0 C 1 1 1 1 1
D 0 0 1 0 0 D 1 1 1 1 1
E 0 0 0 1 0 E 1 1 1 1 1

(a) A Directed Graph (b) Connectivity Matrix (c) Reachability Matrix

Figure 5 . 1 : Graph Representations

The indegree of a node nx represents the number of edges entering at node nx, while

the outdegree of a node ny represents the number of edges leaving Uy. A node with an

indegree of zero is referred to as a source node. Similarly, a node with an outdegree of

zero is known as a sink node.

With respect to software, a path is a sequence of nodes such that successive pairs of

nodes are adjacent. I t starts wi th a source node and may end with one, or more, sink

nodes. The path n i ,n2 , ni is a path of length (i-1) f rom node n i to ni.

Correspondingly, a subpath represents a path of any length between n a , n (i . i) . I f , in a

given path, each node and edge appears only once, then the path contains no cycles and is

referred to as a simple path. In contrast, a simple loop path signifies a path in which a

node may appear twice, but each edge appears only once.

Apart f rom the pictorial representation of a directed graph, shown in Figure 5.1(a), a

directed graph can be described by its connectivity matrix. I t represents a boolean matrix

in which adjacent nodes, that is edges, are identified by a TRUE (1) value, and all other

60

values are set to a FALSE (0) value. The connectivity matrix corresponding to the

directed graph is shown in Figure 5.1(b).

The transpose of a matrix describes the operation whereby the rows and columns of a

matrix are interchanged so that the first row of the matrix forms the first column, and so

forth. However, in terms of the pictorial representation of a directed graph, the ti-anspose

operation implies that the directions of the edges in the directed graph are simply

reversed.

The set of edges E in a directed graph represents a specification of subpaths of length

unity. Based on the composition of relations, i t is possible to show that the composition

of E wi th itself can produce subpaths of length two; the composition of this result with E

again can produce subpaths of length three, and so forth. This leads to an induction

argument which represents the process of computing the transitive closure of E [276].

The kth power of E is defined as = E^-^ °E where " represents the compositional

operator and k lies in the range 2 to N , the number of nodes in the directed graph.

Subsequently, a path exists between two nodes nx and Uy in the graph i f f n^E^iiy for

l < k < N . Hence, the transitive closure of E is given by E* = u (k g N) E"̂ . The matrix E* is

referred to as the reachability matrix of the directed graph and is illustrated in Figure

5.1(c). Transitive closure can be computed either by the repeated self-multiplication of E,

which requires order 0(N'*) operations or by applying one of the numerous different

transitive closure algorithms [59, 186, 215, 253, 254] which can usually reduce the

computational complexity of computing transitive closure to order 0 (1^) operations.

5.3 Dependency Analysis

Dependency analysis is the process of determining the control dependency and data

dependency in a program; i t involves analysing its control structure and data structure. A

set of graph relations can be defined in order to express these dependencies. The formal

61

notation used to describe these graph relations has been adopted from the programming

language M L [183]. Consider the following generic use of 1 e t :

let < d e c l a r a t i o n s > i n < e x p r e s s i o n >

Here, < d e c l a r a t i o n s > consists of a sequence of name bindings that may be used

inside < e x p r e s s i o n > . The scope of these bindings is limited to < e x p r e s s i o n > .

The result of evaluating < e x p r e s s i o n > is returned as the value of the l e t constiuct.

For example, the following expression evaluates to 3.

let a = 2 , b = l in a+b

Names may also be bound using 'pattern matching' between two sides of the symbol

=. For example, i f the complex number X + Y i is represented by the tuple (X,Y) , then

the sum of two complex numbers c o m p l e x i and complex2 may be defined as follows:

s u m (c o m p l e x i ,complex2) =
let c o m p l e x i = (r e a l i , i m a g i n a r y i) ,

complex2 = (r e a l 2 , imaginary2)
i n (r e a l i + r e a l 2 , i m a g i n a r y i + imaginary2)

In the above expression, reali, imaginaryi, real2, and imaginary2 were all defined

using pattern matching. The symbol u is used to denote set union. For example, i f S =

{ x i , X2,... , Xn}, then:

U X G S f (X) = f (X i) U f (X 2) U . . . U f (X n)

Set unions may also be composed. For example, i f Si = { x i , X2} and S2 = { y i , y2}.

then:

6 SI "^y 6 S2 g (x , y) = U x 6 SI g (x , y) =
y 6 S2

g (x i , y i) u g (x i,y2) u g (x 2 , y i) u g(x2,y2)

62

5.3.1 Control Dependency

The concept of control dependency is introduced to model the sequence of statement

executions within a program. Control dependency is entirely a property of the program's

control structure in that i t can be defined in terms of a control-flow graph. Thus, a

program P can be depicted as a directed graph G(N,E) where N is a set of nodes

corresponding to program statements and a set of directed edges E which illustrate the

transfer of control through the program2.

Consider the sample program in Figure 5.2, whose purpose is to compute the

function z=xy where both x and y are integers. (Note that the line numbers in the leftmost

column are to facilitate the discussion of the program and do not form part of the actual

program.)

program power
begin

I : read{x,y);
2 : i f (y < 0) then

begin
3 : P = -y;

end
e l s e

begin
4 : P = Y ;

end
5 : z = 1 ;
6: while (p <> 0) do

begin
7 : z = z * x;
8 : p = p - 1;

end
9 : i f (y < 0) then

begin
10 : z = (1/z) ;

end
I I : w r i t e (z) ;

end

Figure 5.2 : Dependency Analysis - A n Example

^ In some applications, the nodes of the control-flow graph correspond to basic blocks. For our purposes, it
is more convenient to associate nodes with individual program statements.

63

Control dependency is defined as a relation on die graph G whereby an edge between

node n and node m indicates that the execution of the statement at node n is dependent

upon the outcome of the conditional statement at node m^; node n is said to be dominated

by node m. This dominance relation, which has been formally defined by Feirante et al.

[63], is denoted in this thesis by the relation C o n t r o l P r e d (n) . Thus, for example,

nodes 7 and 8 of the control-flow graph illustrated in Figure 5.3(a) are dominated by, and

strongly control dependent upon, node 6.

0

©

(a) Control-Flow Graph (b) Control Dependency Graph

Figure 5.3 : Control Dependency

^ It should be noted that node n possesses an outdegree of one.

64

A Control Dependency Graph or CDG of a program P is a tuple (N,C) where N is tiie

same set of nodes as found in the control-flow graph G, but C represents the set of edges

described by the the graph relation ControlPred (n) . Figure 5.3(b) illustrates the

Control Dependency Graph and its formal definition is given in Figure 5.4.

Control Dependency Graph(P) =

let G(P) = (N,E),

C = U n e N { (n,m) }
m £ ControlPred(n)

i n (N,C)
Figure 5.4 : Formal Definition of a Control Dependency Graph

Consider, for example, the Control Dependency Graph illustrated in Figure 5.3(b) in

which the C o n t r o l P r e d (5) = { } indicates that program statement 5 is executed

unconditionally. In contrast, the relation ControlPred (3) = {2} shows that program

statement 3 is dependent upon the boolean outcome of the predicate expression in

program statement 2 and thus in its scope of control influence.

5.3.2 Data Dependency

The concept of data dependency is introduced to model the interaction of variables in

programs. Although several types of data dependency are discussed in the literature, the

description given in this thesis relates to data-flow dependency [7, 19, 62] which is

dependent upon both the control structure and data structure of a program. The data

flow graph of a program P is established by augmenting the nodes of the control-flow

graph G with variable usage information. Therefore, each node of a data-flow graph

F(N,E) has a use set and a defs&t associated with it . The use set of a node in F consists

of all program variables referenced during the computation associated with the node,

while a defset consists of the variable computed at the node, i f any. The data-flow graph

65

with its defset D and use set U is illustrated in Figure 5.5 and coiTesponds to the sample

program presented in Figure 5.2.

D
U
R

{p}
{y}
{1}

D
u
R
D
U
R
D
U
R

{}
(y)
{1}
{z}
{z}
{5,7}
{}
{z}
{5,7,10}

{x,y}

3 , 4 , 8 }

{z,x}
1,5,7}

{p}
{p}
{ 3 , 4 , 8 }

Figure 5.5 : The Data-Flow Graph

Data dependency is defined as a relation on the graph F whereby an edge between

node n and node m indicates that the value o f a variable var computed at node n is direcdy

dependent upon the computation performed at node m. I t assumes that the flow of control

can transfer f rom node m to node n without encountering an intervening redefinition of

variable var along any control-flow subpath between the two nodes in graph F.

66

In order to determine a set of nodes in F containing a variable definition which can

reach the variable use at node n, a graph relation ReachingDef i n i t i o n s

(var, n, F) must first be defined; i t is described formally in Figure 5.6.

ReachingDefinitions(var,n,F) =

let F = (N,E)
i n L>'(ni,n) e E i f var e def(m) then

{m}
e l s e

ReachingDefinitions(var,ra, (N,E-{(m,n)}))

Figure 5.6 : Formal Definition of the Reaching Definitions

In Figure 5.5, the reaching definitions set R for all nodes with nonempty use sets is

shown alongside the defand use sets for each node. For example, the program statement

3 contains one reaching definition for the use of variable y without any intervening

redefinitions of the variable. Thus, ReachingDef i n i t i o n s (y, 3, F) = { 1 } .

A Data Dependency Graph, or DDG, of a program P is a tuple (N,D) where N is the

same set of nodes as in the data-flow graph F, but D describes the set of edges which

reflect data dependency between the nodes in F. Figure 5.7 illustrates the Data

Dependency Graph of the program and a formal definition is given in Figure 5.8. Data

dependencies, which occur as a result of a program loop, are known as loop-carried data

dependencies [63, 203]. They arise from the iteration of a loop; a variable referenced on

the current iteration may have been assigned a value in the previous iteration'*. For

example, the program illustrated in Figure 5.2 contains a loop-carried dependency with

respect to variable z at statement 7. In contrast, loop-independent data dependencies [63,

203] occur due to the program execution order and regardless of any loop iteration. An

^ This is based on the assumption that the loop is executed at least twice.

67

example of this type of dependency exists between program statements 1 and 2 with

respect to variable y.

/
/ (2) \

/
\

'• i>T< ^ I

(i^ :
Figure 5.7 : The Data Dependency Graph

Data Dependency Graph(P) =
l e t F(P) = (N,E),

D = '^n 6 N {(n,m)}
varGuse(n)
mGReachingDefinitions(var, n, F (P))

i n (N,D)

Figure 5.8 : Formal Defmition of a Data Dependency Graph

68

5.3.3 Program Dependency Graphs

In Figure 5.9, the Program Dependency Graph, or PDG, for the sample program in

Figure 5.2 is formed by combining its Control Dependency Graph (CDG) shown in

Figure 5.3(b) and its Data Dependency Graph (DDG) shown in Figure 5.7.

Figure 5.9 : The Program Dependency Graph

Program Dependency Graph(P) =

let Data Dependency Graph(P) = (N,D),
C o n t r o l Dependency Graph(P) = (N,C)

in (N, D U G)

Figure 5.10 : Formal Definition of a Program Dependency Graph

69

The Program Dependency Graph, which is formally defined in Figure 5.10, can be

used to describe the control and data dependencies which exist within individual program

modules and small programs. However, dependency analysis could be extended to

complete systems consisting of a single (main) module and a collection of supporting

modules. By establishing the Program Dependency Graph for each module in the system

and linking them together via their respective calling dependencies and parameter

dependencies, a System Dependency Graph could be defined [115, 97]. However,

considering the objectives of this thesis, which are to develop a change analysis technique

based on the Program Dependency Graph, it is hoped that the development of a System

Dependency Graph can be pursued in future research.

5.4 Language-Specific Dependency

The definition of data dependency, presented above, has provided a language-

independent view of dependency analysis which accounts for data dependencies arising

from the use of scalar variables. However, additional data dependencies may need to be

considered when programs include the use of pointer variables and composite variables

such as structures, unions and arrays. In the following section, therefore, such data

dependencies are examined with respect to the C programming language. Consequently,

the existing definition of data dependency is updated.

Modern programming languages, such as C, encourage the use of abstraction. For

this purpose, they define a set of simple data types such as pointer variables, structures,

unions, and arrays, from which programmers can then create their own structured data

types. As in most programming languages, the C programming language enables

variables to be defined which are nested, or contained, within each other. It defines a

s t r u c t variable which consists of a set of fields or members. A similar construct is the

u n i o n variable, which also contains a list of fields or members, but whose members

actually occupy the same memory locations; they are effectively overlapping. In Pascal,

the equivalent variables would be known as fixed and variant records.

70

In C, a pointer variable may be associated with a standard or abstract data type.

Consider the C code fragment in Figure 5.11, where the pointer variable p of type i n t is

declared alongside the integer variables a and b. In the course of program execution, the

pointer variable p is assigned to the address of the integer variable a, and later the

dereferenced pointer value *p is assigned to integer variable b. Although this is a rather

contrived example in which a simple assignment a=b would have sufficed, it illustrates

the effect of the dereferencing operator (*) and address operator (&) in C. Figure 5.11

shows the memory allocation made by a typical compiler for all variables along with their

contents at each stage of program execution^.

PROGRAM CODE

i n t *p;

i n t a = 5;

i n t b ;

MEMORY

VARIABLE ADDRESS CONTENTS

P
a

b

1000

1004

1008

p = &a; P
a

b

1000

1004

1008

1004

b = *p; P
a

b

1000

1004

1008

1004

Figure 5.11: Dereferencing a Pointer Variable

The use of pointer variables creates the situation in which code analysis cannot

determine a unique memory location referred to by a pointer during program execution.

^ Memory allocation may vary from compiler to compiler.

71

The alias set of a pointer expression at a program point is the set of all program variables

to which the expression could refer at that point, as determined by code analysis. In

Figure 5.11, for example, the assignment, p = &a implies that a is a member of the

alias set of p. Thus, Figure 5.11 provides an indication of how the value of a could be

indirectly modified, or accessed, via the dereferenced pointer variable p.

To facilitate the discussion of language-specific dependency, the notion of an

intersection between two 1-valued expressions is introduced. An expression is said to be

an 1-valued expression if a memory location can be associated with it. A simple check to

determine whether an expression is an 1-valued expression, or not, is to see if it can

appear on the left hand side of an assignment statement. For example, expressions var,

A [i] , s . f , B [i] . g , *p, are all 1-valued expressions. In contrast, none of the

expressions 200, X + y , or a < b is 1-valued. The presence of pointer variables and

composite variables, such as arrays, structures, and unions in a programming language

requires that both use and def sets of statements be defined in terms of 1-valued

expressions.

A use expression ei is said to intersect with a def expression e2 i f the memory

location associated with Ci may overlap with that associated with ei. To this end, three

types of intersections can be defined: complete intersection, partial intersection, and

possible intersection.

5.4.1 Complete Intersection

A use expression ei completely intersects a ̂ ie/expression &2, i f the memory location

associated with ei is totally contained within that associated with e2.

Consider the C code fragment in Figure 5.12(a), where the use of scalar variable x at

program statement 2 completely intersects with its definition at statement 1. (Note that the

72

line numbers in the leftmost column are to facilitate the discussion of the programs and do

not form part of the actual programs.)

v o i d example() v o i d example()
{ {

i n t X , y ; union {
s t r u c t {

s h o r t a,bz-
l r X = 3; } s;

long c;
2: y = x; } t e s t ;

}
1: t e s t . c = 5;

2: p r i n t f {''%d",test.s.b) ;

}

(a) (b)

Figure 5.12: Examples of Complete Intersection

Complete intersections may also occur during the use of composite variables. In the

case of u n i o n variables, for example, where the number of memory locations is

governed by the member with the largest storage requirements, a complete intersection

results when a member occupying fewer memory locations is referenced after a member

with greater storage requirements has been defined. Figure 5.12(b) illustrates this

relationship for the u n i o n members t e s t . c and t e s t . s. b.

5.4.2 Partial Intersection

If Si use expression ei partially intersects with a def expression ei, then the memory

location associated with ei is partially contained within that associated with 62. Thus,

P r e E x p (e i , 62) describes the portion of the memory locations associated with ei,

which lie before those associated with 62, and PostExp (e i , 62) refers to be the portion

of memory locations which lie after those associated with e2.

73

Consider the C code fragment in Figure 5.13(a), where the ith element of the

character array x is defined at statement 1 and the entire array is then referenced at

statement 2. (Note that the line numbers in the leftmost column are to facilitate the

discussion of the programs and do not form part of the actual programs.)

v o i d example() v o i d example()
{ {

c h a r x [4] ; union {
i n t i ; c h a r a,b,c,d;

long e;
} t e s t ;

1 : X [i] = ' a' ;

2: p r i n t f (" % s " , x) ; 1 : t e s t . c = ' s ' ;

} 2 : p r i n t f (" % l d " , t e s t , e) ;

}

(a) (b)

Figure 5.13 : Examples of Partial Intersection

In this case, PreExp (x , x[i]) = x [1. . (i - 1)] and P o s t E x p (x, x [i]) =

x [(i + 1) . . 3] . Another example of partial intersection is illustrated in Figure 5.13(b),

where the union member t e s t . c of type c h a r is defined at statement 1, and

correspondingly the union member t e s t . e of type long i n t is used at statement 2.

In this case, P r e E x p (t e s t . e , t e s t . c) = t e s t . a , t e s t . b and

Pos t E x p (t e s t , e, t e s t . c) = t e s t . d .

5.4.3 Possible Intersection

A use expression ei is said to possibly intersect with a expression e2, i f the

memory location associated with Ci partially, or completely, intersects with that

associated with 62. However, the decision as to whether or not they actually do intersect

74

is dependent upon program execution. In fact, possible intersections could only be

resolved through the use of dynamic code analysis techniques [31, 123].

Consider the C code fragment in Figure 5.14(a), where the array element x [i] is

defined at statement 1 and the element x [j] is used at statement 2. (Note that the line

numbers in the leftmost column are to facilitate the discussion of die programs and do not

form part of the actual programs.)

v o i d example() v o i d example()
{ {

c h a r X [4] ; union {
i n t i , j ; c h a r a,b,c,d;

long e;
1: x.[i] = 'a'; } t e s t [10] ;

f o r (j = 0 ; j < 4 ; j + +) i n t i , k;
2 : p r i n t f (''%c" ,x[j]) ;

}
1: t e s t [i] . b = ' t ' ;

for(k=0;k<4;k++)
2: p r i n t f (m d " , t e s t [k] .e) ;

}

(a) (b)

Figure 5.14 : Examples of Possible Intersection

Whether, or not, the use of x [j] at statement 2 intersects with the definition of

X [i] depends on the actual values of program variables i and j at the time of program

execution; the memory location accessed wil l vary from one loop iteration to another.

However, i f the two values should coincide, then the two expressions wil l form a

complete intersection.

The situation may also arise, whereby a possible intersection and a partial intersection

occur together. In this case, the possible intersections are analysed before partial

intersections. This is illustrated in Figure 5.14(b), where the possible intersection

75

occurring between the array element t e s t [i] at statement 1 and the array element

t e s t [k] at statement 2 takes precedence over the analysis of the partial intersection

created between the two union members t e s t [i] . b and t e s t [k] . e.

However, the most significant influence upon the creation of possible intersections

are pointer variables [146]. Consider the C code fragment in Figure 5.15(a). (Note that

the line numbers in the leftmost column are to facilitate the discussion of the programs

and do not form part of the actual programs.)

v o i d example 0 v o i d example 0
{ {

i n t a, b ; i n t i , j ;
i n t *p; i n t *p;

1 : a = 3; i f (. . .)
{

2: b = 4; 1 : y = . . .
. . . p = &x;
i f (. . .) }

p = &a; e l se
e l s e p = &y;

p = &b;
2 : *p = *p

*p = .
. . . . 3: = y ;

4 : = a; }
}

(a) (b)

Figure 5.15 : More Examples of Possible Intersection

The intersection between the use of variable a at program statement 4 and its

definition at statement 1 is dependent upon the dereferencing of pointer variable p at

statement 3. At this statement, pointer variable p may or may not be accessing variable a;

both variables a and b are considered to be members of the alias set of p. However, if

the aliased variable a at statement 3 is redefmed, an alternative intersection may arise with

the use of a at statement 4.

76

A similar situation is illustrated in Figure 5.15(b), where a possible intersection exists

between the definition of variable y at statement 1 and its corresponding use at statement

3 i f pointer variable p were to be pointing to variable x; both variables x and y are

considered to be members of the alias set of p. In addition, an intersection is possible

between the same definition of variable y and the use at statement 2 due to y being an

alias of pointer variable p.

The latter example, however, demonstrates the limitations of current algorithms for

pointer aliasing, which compute the alias set of a pointer variable with respect to program

statement [114, 202, 204], and shows die extent to which the accuracy of these

algorithms can affect the number of possible intersections. I f an analysis of program

paths in Figure 5.15(b) is conducted, then it would be revealed that the program contains

two paths which are mutually exclusive. The possible intersection with respect to variable

y between statements 1 and 3 would, in fact, turn out to be a complete intersection as the

pointer variable p would be pointing at variable x during program execution. It follows

that the other possible intersection, which relates the definition of y at statement 1 to its

use at statement 2, is erroneous.

The accuracy of dependency analysis could be improved through the use of path-

sensitive aliasing algorithms. As a result, the number of possible intersections would be

reduced and the number of complete intersections be increased. It is hoped that the

development of path-sensitive aliasing algorithms can be pursued in future research.

5.4.4 Updated Definition

L e t C o m p l e t e l n t e r s e c t , P a r t i a l l n t e r s e c t and P o s s i b l e l n t e r s e c t

represent boolean functions which determine i f two 1-valued expressions form a complete

intersection, partial intersection, or possible intersecfion, respectively. With the

definitions of control dependency and data dependency remaining the same, the graph

relation R e a c h i n g D e f i n i t i o n s is updated to account for the language-specific

77

dependencies described above. Figure 5.16 defines the updated graph relation

ReachingDefinit ions.

ReacbingDefinitionB{'var,n,F) =

let F = {N,E)

in ' ^ { m , n) 6 E

i f def(m) = { } then

ReachingDef init ions(var,m, (N , E - { (m , n) }))
e l s e

let def(m) = { v a r } , E = E - { (m , n) }
in i f C o m p l e t e l n t e r s e c t (v a r , v a r) then

{m}
e l s e
i f P o s s i b l e l n t e r s e c t (v a r , v a r) then

{m} u ReachingDef init ions [vdir ,m, {'^, E))

e l s e
i f P a r t i a l l n t e r s e c t (v a r , v a r) then

{m} u
J l e a c l i i n g D e f i z i i t i o i i s { P r e E x p (v a r , v a r) , m, (N , S)) L/

J l e a c h i n f f D e f i n i t i o u s (P o s t E x p (v a r , v a r) , m, (N, E))
e l s e

ReachingDef init ions {\rar (N , S))

Figure 5.16 : Updated Definition of the Reaching Definitions

5.5 Change Analysis

Schneidewind [229] notes that one of the difficulties experienced during software

maintenance is the analysis of proposed program changes. Maintenance activities often

require simple changes to be made to the program code which involve either the addition,

deletion or modification of a program statement. They may, for example, include the

alteration of a variable declaration, the modification of a computation in an assignment

statement or the adjustment of a predicate value in a conditional statement. Such changes,

however, can give rise to a number of problems.

78

A modification may need to be made to a variable use whose value has been defined

using different declarations or assignments throughout the program. Thus, maintenance

programmers may change the expression involving the use of the variable, while only

being aware of some of the corresponding variable definitions. A change to the variable's

value may then correct a problem occurring on one of the program padis leading up to the

use, but at the same time introduce a new problem on another path.

Another frequent error made by maintenance programmers involves changing a

variable assignment due to the assigned expression being incorrect and not ensuring that

the new expression is appropriate for all the variable's uses. I f the resulting variable

assignment is used as part of several other computations, maintenance programmers may

focus on only one or two of these uses and may not be aware of the value being used in

other places.

These problems are compounded when the indirect effect, or logical ripple effect

[270], of a program change is considered. For each set of statements involved in a

maintenance operation (primary error sources), a further set of statements {secondary

error sources) may be implicated; this is known as the first-order ripple effect. This

process is continued when the secondary error sources become the primary error sources

and implicate further statements, which causes a second-order ripple effect. The logical

ripple effect therefore propagates throughout a program until no new secondary error

sources are discovered.

In order to test modified program statements, the majority of selective revalidation

techniques proceed with an inspection of the program's testing history. They aim to

identify those test requirements, which are associated with the directly affected program

statements^, and then examine each of these test requirements to establish the

corresponding set of retestable tests. Selective revalidation techniques based on data-flow

^ Their approach to test selection is examined in Section 4.3.1.

79

testing examine only those test requirements (definition-use associations) in which either

the variable definition or use forms part of the proposed modification. While this

approach may ensure that the first-order ripple effect is analysed, the possibility that

second-order ripple effects may arise as a result of the proposed modification is not

considered. However, it is precisely these higher order ripple effects, which may cause

further test requirements to be implicated and enable the retesting effort to focus on

specific program paths affected by the changes.

In constrast, the selective revalidation techniques based on path testing require that

whenever a particular program statement is modified, all test cases traversing that

statement are rerun. This approach is based on the assumption that the computation

performed in the modified statement is dependent upon the subcomputations on all paths

leading to and from the statement. While this assumption may be valid in some cases, it

does not hold for all cases. Thus, a computation may only affect or be affected by

subcomputations on certain paths leading to or from the modified statement. To ensure

that those test requirements affected by the proposed program modifications are

systematically identified, a change analysis technique, based on the concept of program

slicing [256], is developed.

5.5.1 Program Slicing

Program slicing is a form of program decomposition based on the extraction of

information from the Program Dependency Graph. A program slice S, extracts from a

program P, a sequence of statements in which the order of the statements in S is the same

as in P. The slice S is obtained by selecting only those statements from P which conform

to a slicing criterion C represented by an ordered tuple {statement-range, variables). For a

particular slicing criterion, the value of statement-range is the range of statements over

which a program is sliced and the value for variables represents some subset of variable

identifiers which are visible in the given statement range. When a program is sliced in this

80

way, those statements which do not affect the value of one of the chosen variables are

deleted, with the remaining statements forming the desired program slice.

Since the concept of a program slice was first introduced by Weiser [255, 256], two

distinct forms of program slicing have evolved: dynamic slicing [3, 142, 143] and static

slicing [171, 75]. Both forms of slicing have been applied to the testing [142, 144] and

debugging [4,47] of program code.

During testing and debugging, a program fault may occur and manifest itself as an

error at the output of the program. Slicing techniques can then be applied to localise the

fault by extracting those statements from the program which directly and indirectly affect

variables referenced in an output statement; the techniques effectively trace program paths

backward from an output statement. While dynamic slicing requires only those affected

statements to be extracted which lie along the path traversed during the actual execution of

a test case, static slicing extracts affected statements based on the potential execution of

several test cases.

A number of static slicing algorithms have been defined in terms of graph reachability

[203]. Conceptually, these algorithms are easier to understand than the one originally

formulated by Weiser [256] and also more efficient when several slices at a time are

required. For the purposes of fault localisation, a static slice can be extracted from a

program P based on the knowledge that a variable var is referenced at a statement or node

n in the Program Dependency Graph. Thus, a graph relation Program Slice(P,var,n)

can be defined in terms of reaching definitions and reachable nodes; all reaching

definitions of variable var at node n are identified and each reaching definition used to

determine all other reachable nodes in the Program Dependency Graph. A formal

definition of the program slice is presented below in Figure 5.17.

81

Program S l i c e (P , v a r , n) =

let F = (N,E), D = Program Dependency Graph(P)
i n me ReachingDef i n i t i o n s (var, n,F) ReachableNodes (m, D)

Figure 5.17 : Formal Defmition of a Program Slice

The above definition incorporates a graph relation ReachableNodes (n , S) for

determining the set of nodes in a directed graph S, which can be reached from node n by

following one or more edges in S. In fact, this relation represents the transitive closure of

node n in graph S.

ReachableNodes(n,S) =

let S = (V,A)

i n {n} u L>'(n,m)£A ReachableNodes (m, (V, A-{ (n,m)}))

Figure 5.18 : Formal Definition of Reachable Nodes

Consider the sample program illustrated in Figure 5.19(a). I f a slice is to be taken

with respect to the variable z at the output statement (11) in the program, then according

to the above definition all other program statements would be extracted as each one of

them directly or indirectly affects the value of z at statement 11; Program S l i c e (P , z,

11) = (1 , 2, 3, 4, 5, 6, 7, 8, 9, 10}. The statements, which are initially identified as

reaching definitions of z, are depicted in Figure 5.19(b) as the striped nodes, while the

remaining reachable nodes are indicated by the shaded nodes in the Program Dependency

Graph.

82

program power
b e g i n

r e a d (x , y) ; 1 :
2 :

4:

5:
6:
do

7 :
8:

9:

10:

1 1 :

i f (y < 0) t h e n
b e g i n

P = -y;
end

e l s e
b e g i n

P = y;
end

z = 1 ;
w h i l e (p <> 0)

b e g i n
z = z * x;
P = P - 1 ;

end
i f (y < 0) t h e n
b e g i n

z = (1 / z) ;
end

w r i t e (z) ;

(a) (b)

Figure 5.19 : Example of a Program Slice

J

5.5.2 New Approach

The change analysis technique developed in this thesis defines a number of graph

relations which utilise the Program Dependency Graph in order to identify the effects of a

proposed modification. Their objective is to extract only those statements from a program

which are directly and indirectly related to the proposed change. Based on these

statements, a set of test requirements is chosen which influences the choice of retestable

tests during test selection^. A number of benefits accrue from the development and use of

this change analysis technique; fewer faults are introduced into the program during the

changes and the growth rate of program complexity is reduced due to a greater

A procedure for test selection is described in Section 6.5.

83

understanding of the effects of maintenance. More importantly, however, program

changes can be implemented and tested more systematically as only those test cases in the

test suite, which traverse the set of affected test requirements, are selected for remnning.

A technique for change analysis is described, which is based on static slicing and can

thus be used to examine the potential effects of a proposed program modification.

Emphasis is placed upon developing a technique which allows a slice S to be extracted

with respect to a modified statement n occurring anywhere in a program P. This is in

constrast to the approach taken during program debugging where a slice is constructed

with respect to an output statement. Slicing, as part of change analysis, also requires the

variable definitions (def set) and uses {use set) of a modified statement to be examined

instead of just the variable uses in an output statement

A further consideration, when adapting static slicing for the purposes of change

analysis, is the nature of its definition: a program slice must form an executable program

in itself. Therefore, a slice needs to consider both the control dependency and data

dependency of a program. As a result, the slice may contain program statements which

are not directly relevant to a modified program statement, but are included as they

represent a subset of the program's original control structure. For example, a slice taken

with respect to the variable z during a proposed modification of statement 10 in the

program in Figure 5.19(a) would include two reaching defmitions from statements 5 and

7. Of these two statements, statement 7 is control-dependent upon statement 6; thus,

statement 6 forms part of the slice. By examining the data dependencies involving

statement 6, it is found that statements 3 and 4 are implicated which, in turn, are in the

scope of control influence of statement 2; thus, statement 2 is also included in the slice,

and so forth. Of a total of eight statements (1-8) in the slice, five statements (2, 3, 4, 6

and 8) are due to the control dependency of the program being considered.

Unlike slicing, the change analysis technique developed in this thesis is only

concerned with the program's data dependency; the only control dependency information

84

being considered is expressed implicitly by the data dependency. Instead of examining

both the affected statements and their associated control structure to determine a set of

potentially affected program paths, the change analysis technique concentrates on

extracting statements, which directly and indirectly affect the value of the modified

variables, and assumes that these statements will be traversed by some subset of the

affected paths. The corresponding graph relation thus identifies a considerably smaller

number of affected statements; for example, it would only implicate statements 1, 5, 7

and 10 in response to a proposed modification of statement 10.

The traditional role of program slicing as an aid to debugging has meant that static

slicing algorithms have focused on the backward data-flow problem. Therefore, any

slicing algorithm adapted for the purposes of change analysis would only be able to

identify those statements in a program which contain definitions, and subsequent uses

and definitions, affecting a modified variable use. However, as part of developing a

technique for change analysis, new graph relations are defined to also address the

forward data-flow problem. These enable the technique to not only identify those

statements which ajfect a modified statement, but also those statements which are affected

by a modified statement. Therefore, the technique identifies those statements containing

uses, and subsequent definitions and uses, affected by a modified variable definition.

In particular, the change analysis technique has to consider the effects of a proposed

modification on conditional statements as any change to the value of an associated

predicate expression will cause an alteration in the path condition. Whenever a predicate

expression undergoes an explicit change or its value is affected by program

modifications, those data dependencies, which straddle the modified conditional

statement or lie on a path that traverses the affected conditional statement, need to be

examined^. Therefore, program statements are considered as affected if the data

dependency connecting them relates to a variable definition being encountered prior to the

^ The variables associated witli these data dependencies may not necessarily be related to the variables in the
predicate expression.

85

conditional statement and the corresponding variable use lying beyond, but in the scope

of control influence of, the conditional statement. Furthermore, those statements, which

are control-dependent upon the conditional statement and are associated with any data

dependencies, need to be analysed.

The change analysis technique is described by a new graph relation

Change (P, var, n) , which can address both the forward and backward data-flow

problems, and is formally defined in Figure 5.20(a). It enables a set of affected program

statements to be extracted from a program P based on the knowledge that a modified

variable var is either defined or used at the statement (node) n in the Program Dependency

Graph. The set of program statements, which are obtained, can then be used to determine

the corresponding set of test requirements.

The initial step of the change analysis technique determines whether the affected

variable is being analysed in the context of a directly modified computational or

conditional statement. To achieve this, a relation ControlSucc is used to determine

whether a node m dominates a node n. This relation, which has been formally defined by

Ferrante et al. [63], represents a transposed ControlPred relation. If a computational

statement is being examined, for which the ControlSucc relation returns no control-

dependent statements, then the change analysis technique establishes whether the

modified variable is defined or used. It initialises the analysis of either the backward or

forward data-flow problem by using the existing graph relation

ReachingDef i n i t i o n s and its transposed relation ReachingUses, respectively,

to determine the corresponding definitions or uses. The latter relation, which is formally

defined in Figure 5.21(a), is used to identify those variable uses that can be reached from

a directly modified variable definition. In the case of a directly modified conditional

statement, the technique analyses the backward data-flow problem as well as those data

dependencies which may be associated with statements in its scope of control influence.

86

Change(P,var,n) =
let F = (N,E),

D = Data Dependency Graph(P),

ir! i f var G def(n) then
{n} U meReachingUses (var, n,F) Ripple (m,n)

e l s e
i f ControlSucc(n) = {} then

^ m€ReachingDef i n i t i o n s (var, n, F) ReachableNodes (m, D)
e l s e

{n} KJ

^ meReachingDef i n i t i o n s (var,n, F)ReachableNodes (m, D) U

'^meControlSucc (n)RiPPle (m, n)

(a) The Change Relation

Ripple{a,b) =
let F = (N,E),

D = Data Dependency Graph(P),
var e def (a) ,

i n i f ControlPred(a) = {} then
i f ControlSucc(a),= {} then

{a} U Uc G R e a c h i n g U s e s (v a r , a , F) R i P P l e (c , b)
e l s e

{a} u ReachingNodes(a,b) u
' ^ c e C o n t r o l S u c c { a) R i P P l e (c , b)

e l s e
i f ControlSucc(a) = {} then

{a} u ReachingNodes(a,b) u

^ c€ReachingUses (var, a, F)Ripple (C, b)
e l s e

{a} u ReachingNodes(a,b) u
' ^ c e C o n t r o l S u c c (a) Ripple (C,b)

(b) The Ripple Relation

Figure 5.20 : Formal Definition of the Change Analysis Technique

87

The change analysis technique is supported by the new graph relation Ripple

which recursively analyses the implicated statements. Emphasis is placed on

distinguishing between computational and conditional statements as well as nested and

unnested statements. During the analysis of the backward data-flow problem, the

ReachingNodes relation, defined in Figure 5.21(b), ensures that only those statements

are identified which lie on the same control-flow path as the originally modified statement

and thus may be affected by any changes made to it

ReachingUses(var,m,F) =
let F = (N,E)

in ^{m.n) e E i f var e use(n) then
{n}

e l s e

ReachingUses(var,n,(N,E-{(m,n)}))

(a) Formal Definition of the Reaching Uses Relation

ReachingNodes(a,b) =
let F = (N,E),

D = Data Dependency Graph(P),
var e u s e (a) ,

i n i f c e ReachingDefinitions(var,a,F) andalso
b e ReachableNodes(c,F) o r e l s e
c € ReachableNodes(b,F) then

ReachableNodes{c,D)
e l s e

{ }

(b) Formal Definition of the Reaching Nodes Relation

Figure 5.21 : Formal Definitions of the Supporting Relations

5.5.3 Application

During the maintenance phase, change proposals detail the modifications to be made

to the program specification, design and code. With respect to the implementation and, in

88

particular, individual program modules, a list of basic modifications comprises the

addition, deletion and alteration of program statements. As a result of these

modifications, the control and data dependency in the existing Program Dependency

Graph may need to be updated, with some of the current dependencies being removed

and new dependencies being created. With the help of incremental code analysis

techniques, it would be possible to transform the existing Program Dependency Graph

into a new Program Dependency Graph to reflect the updated program structure. While it

is hoped that the development of incremental code techniques can be pursued in future

research, this thesis assumes their existence for the purposes of demonstrating the

application of the change analysis technique.

Whenever a program statement is added, deleted, or modified, the change analysis

technique is applied with respect to each affected variable definition and use in that

particular statement. While the analysis of any inserted statement requires the technique to .

utilise the updated Program Dependency Graph in order to examine its new variable

definitions or uses, the latter types of modification require their deleted or affected

definitions and uses, respectively, to be examined. Their analysis is based upon the

existing Program Dependency Graph. The change analysis technique therefore ensures

that those program statements, which directly or indirectly contribute to the computation

performed by the modified statement and also rely upon the value computed by that

statement, are determined. As a result, the retesting effort focuses on those test

requirements, and subsequently test cases in the test suite, which previously traversed the

modified statement and may now help to expose any errors induced by the program

changes.

In order to demonstrate the effectiveness of the change analysis technique,

modifications are suggested for the sample program and associated Program Dependency

Graph illustrated in Figure 5.22. The list of definition-use associations are included so

that comparisons with other selective revalidation techniques based on data-flow testing

can be made in terms of the number of affected test requirements being selected.

89

program power
begin

1: r e a d (x , y) ;

5 :
6:

7 :
8:

9 :

10

11

i f (y < 0) then
begin

P = - y ;
end

e l s e
begin

P = y ;
end

z = 1;
while (p <> 0) do
begin

z = z * x ;
p = p - 1;

end
i f (y < 0) then
begin

z = (1 / z) ;
end

w r i t e (z) ;
end

J

(y , 1, (2 , 3)) (y , 1, 3) (y , 1, (9 , 10))
(y . 1, (2 , 4)) (y , 1, 4) (y . 1, (9 , 11))
(P , 3 , (6 , 9)) (X , 1, 7) (p . 3 , (6 , 7))
(P , 8, (6 , 9)) (P, 3 , 8) (p . 4, (6 , 7))
(P , 8, (6 , 7)) (P, 4, 8) (p . 4, (6 , 9))
(P , 8, 8) (z , 5 , 7) (z . 5 , 10)
(z , 7 , 7) (z , 7, 1 0) (z , 5, 11)
(z . 7 , 11) (z , 1 0 , 1 1)

Figure 5.22 : Applying the Change Analysis Technique

For a proposed program modification to statement 10, the change analysis technique

is applied with respect to both the definition and use of the variable z. In a backward

slicing operafion, those variable definitions, and subsequent uses and definitions, are

considered which may possibly affect the value of z; thus, statements 1, 5 and 7 are

identified. A forward slicing operation then determines those uses, and any subsequent

definitions and uses, possibly affected by a change to the value of z; thus, statement 11 is

flagged as affected. From this set of affected statements, produced by the graph relation

90

Change(Power, z, 10) = {1, 5, 7, 10, 11}, the following list of test requirements or

definition-use associations can be identified: (z, 5, 10), (z, 7, 10), (z, 10, 11), (z, 5, 7),

(z, 7, 7) and (x, 1, 7).

Another example demonstrates the application of the change analysis technique to a

proposed modification of the predicate expression in statement 9. This analysis is more

complex than for the computational statement being considered earlier as it involves the

explicit change of a conditional statement. First, data dependencies are traced which are

related to the affected variable y in the predicate expression. As a result, statement 1 is

identified as affected. Second, those data dependencies are analysed in which a variable

definition is encountered prior to the affected conditional statement and the corresponding

variable use lies beyond, but in the scope of control influence of, the conditional

statement. This reveals that, in particular, data dependencies relating to the variable z

straddle the modified conditional statement. Subsequently, statements 5, 7 and 10 are

included in the set of affected statements. Finally, statement 11 is identified during a

forward slicing operation on statement 10 which lies within the scope of control of

statement 9. From the set of affected statements, produced by the graph relation

Change(Power, y, 9) = {1, 5, 7, 9, 10, 11}, the following list of test requirements or

definition-use associations can be identified: (y, 1, (9,10)), (z, 5, 10), (z, 7, 10), (z, 10,

11), (z, 7,7) , (z, 5, 7) and (x, 1,7).

If the program had initially been validated using data-flow testing techniques and

revalidated using the corresponding selective revalidation technique^, then the above

examples would have resulted in the following definition-use associations being

identified: (y, 1, (9,10)), (z, 7, 10), (z, 5, 10), (z, 10, 11) and (y, 1, (9,10)), (y, 1,

(9,11)), (p, 3, (6,9)), (p, 4, (6,9)), (p, 8, (6,9)). This approach ensures that those test

requirements, which are associated with the immediately affected data dependencies of

the variables z and y, are considered for test selection. In both cases, the retesting effort

^ This technique requires only those definition-use associations to be selected in which the modified statement
contains either a definition or use with respect to the modified variable

91

is limited to certain subpaths along which the variable z and y are defined and used,

respectively. However, with the change analysis technique, developed in this thesis, the

scope of the retesting effort is extended to include those subpaths in the program along

which the modified variables and any affected variables may possibly have been defined

or used.

The above examples have highlighted the important role of a change analysis

technique in systematically determining the extent of a proposed program modification.

Although this approach often results in a larger number of test requirements being

implicated than for other selective revaUdation techniques, in particular, data-flow based

techniques, it also ensures a more thorough approach to selective revalidation. Together

with the operations research techniques described in Chapter 6, the change analysis

technique can have a significant influence on the process of test selection.

5.6 Summary

In this chapter, code analysis techniques are developed based on a graph theoretic

approach which depicts a program's control dependency and data dependency

information in terms of nodes and edges in a directed graph. Two aspects of code

analysis are examined in the context of selective revalidation: dependency analysis and

change analysis.

For any maintenance operation, programmers need to gain a general understanding of

how the program works, together with knowledge about which sections of code are

important to the maintenance operation. Thus, dependency analysis is responsible for

identifying the dependencies between different entities in a program. Apart from

investigating the dependencies arising between scalar variables in a program, the analysis

also examines the dependencies expressed by composite and pointer variables with

particular reference to the C programming language.

92

Maintenance programmers need to assess the extent of the modifications by

considering both the direct and indirect influences of any changes. Therefore, a new

change analysis technique, which utilises the control and data dependency within a

program in order to extract the affected statements, and subsequently test requirements

from the program's testing history, is developed.

93

Chapter 6

Test Suite Management

6.1 Introduction

The management of a test suite during maintenance requires solutions to be found to

the problems of test selection and test update. In response to these problems, existing

strategies for selective revalidation have developed procedures based on revalidation

criteria which neither determine a minimal set of retestable test cases, nor identify any

redundant tests. Moreover, these procedures are usually restricted to a particular testing

phase or testing strategy.

However, a systematic and efficient solution to the problems of test suite management

may be found in the application of operations research. With operations research, the

problems of test selection and test update are formulated as decision problems and solved

using optimisation methods. As a result, procedures for test selection and test update can

be developed which select a minimal set of retestable tests and identify any redundant

tests.

A further benefit of operations research is that the decision models, established as part

of the formulation, allow different testing objectives and constraints to be considered.

The problems of test suite management can therefore be solved independently of any

testing strategy or testing phase. In this thesis, emphasis is placed on developing

procedures for test selection and test update to enable the selective revalidation of the

program code. The procedures are applied with respect to a test suite which may consist

of both functional and structural test cases, but where the selection and update of test

cases is undertaken only on the basis of their structural test coverage.

94

In this chapter, solutions are presented to the problems of test suite management.

Section 6.2 introduces the subject of operations research by explaining important

terminology and describing its application with respect to software testing. In Section

6.3, the problems of test selection and test update are formulated in terms of decision

problems. The corresponding decision models are described in terms of generalised

objectives and constraints. Section 6.4 explores the algorithms which can be used to

solve these decision models. Particular emphasis is placed upon examining

approximation algorithms and describing them in terms of their solution size and run-time

complexity. A new heuristic method is then developed to address the limitations of

existing algorithms. Finally, Section 6.5 describes selective revalidation based on the

technique developed in this thesis. Details are given, concerning procedures for test

selection and test update, which rely upon the use of the new change analysis technique

and new heuristic method described in this thesis.

6.2 Operations Research

The subject of operations research has been discussed extensively in the literature

[110, 237]. Therefore, the aim of the following discussion is not to provide a complete

reference to the subject, but instead to concentrate only on those aspects of operations

research which have influenced the research directions of this diesis.

Although many different definitions of operations research exist, a set of common

denominators can be established to describe it. Operations research defines: a) the

solution of problems relative to the attainment of specified objectives or criteria, b) the

identification of alternative solutions, c) the optimisation, or selection, of the best

altemative-for the stated criterion, and d) the provision of a system perspective in which a

tendency exists to consider the interrelationship of components in their environment

rather than as separate entities.

95

In recent years, significant advances in the development of computer hardware have

made the practical application of operations research possible and the development of

optimisation mediods for solving of large and complex problems a viable proposition. A

wide range of applications, including telecommunications networks, transportation

systems, emergency services, and utilities have benefitted as a result [169]. However, an

increasing number of discipUnes within computer science have used operations research.

In the field of software engineering, the subject of software testing has seen the

extensive application of operations research. For example, in structural testing, path

selection strategies are needed to guide users in the selection of an optimal set of test

cases. A number of these optimal path selection strategies have been developed based on

techniques adopted from operations research [55, 145, 192, 211]. They result in a

minimal set of test cases being developed in order to traverse paths through the program

code and exercise every test requirement at least once; thus satisfying the associated test

coverage criterion.

However, structural testing strategies require infeasible paths in the program to be

identified. Thus, where a particular path cannot be executed, an alternative path must be

sought to ensure that the associated test coverage criteria are satisfied. Coward [53] and

White-Sahay [264] describe methods for the identification of such infeasible paths in the

program code. Again, techniques adopted from operations research are used to solve the

problem of path feasibility. The solufion of the problem indicates whether, or not, a

feasible padi dirough the code exists and, if so, identifies which of the program variables

must be used as input variables in order to exercise the feasible path.

Other problems in software testing involve the elimination of redundant test cases

during development testing. For example, Ince-Hekmatpour [125, 126] describe an

empirical evaluation of random testing in which operations research is used to select a

subset of test cases from the original set of test cases and yet achieve the same structural

test coverage as the original set.

96

The subject of operations research encompasses a large number of optimisation

methods [110]. In this thesis, however, emphasis is placed on describing optimisation

methods based on linear programming [112]. A linear programming model consists of

two parts: a) an objective function Z, which forms a linear function f(x) with respect to a

set of decision variables, x = xi , X2, Xn, and b) a set of constraints in x in which

each constraint represents a linear function g(x) such that g(x) ^ b, g(x) > b, or g(x) = b,

where b is a constant. By solving a linear programming model, a set of decision variables

in X is identified, which aim to either maximise or minimise the objective function Z. In

this thesis, however, the aim of any linear programming model is to minimise the

objective function. The standard form of a linear programming model (LP) is:

minimise Z = C^x • (6.1)

subject to Ax > b (6.2)

and X > 0 (6.3)

where A is the constraint matrix of order [m x n], C is an [n x 1] cost matrix, b is an

[m X 1] requirements matrix, and X represents the set of decision variables of size n

components. The superscript T denotes the vector transpose.

In this thesis, a linear programming problem known as integer programming

[184, 235, 236] is examined. Its corresponding model differs from linear programming

in that it specifies an objective function, decision variables, and consti-aint coefficients, all

of which are represented by integers. The standard form of an integer programming

model (IP) is:

minimise Z = c'^X (6.4)

subject to Ax > b (6.5)

and x > 0, X e Z (6.6)

97

Some integer programming problems have the special feature that their decision

variables are restricted to only one of two values: zero or one. In effect, the decision

variables represent binary variables. Therefore, this type of integer programming problem

is referred to a binary (zero-one) programming problem [77]. The standard form of a

binary programming model (BP) is:

minimise Z = C^x (6.7)

subject to Ax > b (6.8)

and X 6 {0,1} (6.9)

The set-covering problem refers to a special instance of the binary programming

problem where the constant b, which is associated with every constraint, is represented

as a vector of ones. In fact, the problems of test selection and test update can be described

in terms of such a set-covering problem which can be stated as follows:

Given: a test suite TS containing a list of test requirements R = (rj , v i , r ; } for a

program, and a collection of testing subsets T = (T i , T 2 , T ; } , in which one Tj is

associated with each test requirement q (l<i<m), and each T; comprises a set of test cases

t = (ti, t 2 , t j } and associated cost factors cj such that at least one test case tj (l<j<n)

from Ti can be used to exercise the test requirement r,.

Find: die representative set of test cases tj, which at minimum cost, exercise eveiy test

requirement rj.

The test requirements q may represent those test requirements which correspond to

the modified portions of a program (test selection) or all test requirements (test update) of

a program. The set of test cases tj must contain at least one test case from each subset T;.

Such a set is referred to as the cover of T. To find the representative set of test cases tj

requires a cover of minimum cardinality^ to be found for the collection of subsets T,.

^ The cardinality of a finite set represents the number of elements contained in the set.

98

However, the problem of finding such a cover has been shown to be NP-complete.

The notion of NP-completeness [76, 174] is the basis of a theory allowing a class of

problems, such as integer programming and set-covering, to be identified for which no

efficient, polynomial-time algorithm is likely to exist. As a result, it cannot be predicted

with a degree of certainty whether a solution to such problems is attainable^. However,

this does not detract from the fact that such problems need to be solved. In practice, two

types of algorithms, which are discussed in Section 6.4, are examined to solve such

problems.

In terms of the binary programming model, described by Equations 6.7-6.9, a set-

covering problem is defined as: a) an objective function Z, which aims to obtain a cover

of minimum cardinality; b) a cost vector C of size [n x 1], which represents a cost factor

Cj associated with each test case tj; c) a set of decision variables X of n components,

which relate to each test case tj in the test suite; and d) a constraint matrix A = [aij], which

represents an [m x n] matrix of test requirements ri versus test cases tj. Thus, the rows of

A correspond to the elements of R, while columns of A correspond to the test cases tj in

each Tj. The value of ay is set to one, if test requirement r, is exercised by test case tj;

otherwise it is zero. Thus, Ri denotes the ith row of A and Cj denotes the jth column of

A.

6.3 Test Selection and Test Update

The idea of formulating the problems of test suite management as set-covering

problems was first proposed by Fischer [65, 66]. However, his work concentrated upon

the problem of test selection, with the resulting decision model being characterised by a

limited set of objectives and constraints which did not consider all of the important

aspects of test suite management. Furthermore, the algorithm used to solve the decision

model was not suitable for solving large decision models. In this thesis, the work by

^ This fact is ascertained regardless of the problem size.

99

Fischer has been extended to address not only the problem of test selection, but also that

of test update. Decision models are developed in which objectives and constraints can be

generalised in order to better reflect the important characteristics of the test suite

management problem. These single-objective models are then evolved into multiple-

objective models which reflect situations in which the selection or update of test cases in

the test suite needs to be optimised with respect to a number of different objectives,

simultaneously.

6.3.1 Generalised Objectives

The most common objective for test selection or test update requires an optimal set of

test cases to be determined, either to validate the modified portions of the program or the

entire program, respectively. Therefore, a decision model is formulated in which an

objective function Z is specified with a unit cost vector C to indicate that the same

resources are associated with each test case in the test suite.

However, alternative objectives can be specified to more accurately reflect the

problems of test suite management. For example, a set of test cases may need to be

selected or maintained at minimum cost. A number of cost factors [159] have been

identified for use in the decision model; the test execution cost includes the cost, time,

and effort required to set up the testing environment and execute each test case, and the

result analysis cost involves collecting die output of each test case, comparing it with any

previous output, and verifying i t . As a result, a decision model can be formulated in

which an objective function Z is specified with a cost vector C which reflects the test

execution cost and result analysis cost associated with each test case in the test suite.

Selective revalidation may also be performed based on the subjective qualities of a test

suite. Thus, a test suite may be associated with a priority scale in which those test cases

exercising a particularly critical piece of program functionality or code are given a

different priority f rom those test cases exercising less critical aspects. Consequently, a

100

decision model can be fomiulated in which an objective function Z is specified with a cost

vector C which reflects the priority associated with each test case in the test suite; its aim

being to select the most important test cases.

6.3.2 Generalised Constraints

Apart from being able to specify different objectives, a decision model includes a set

of constraints which reflects the testing history of a program, with each constraint

representing a test requirement and the test cases exercising it. While in this thesis, the

test requirements are restricted to those specified by structural testing techniques, it

should be noted that it is possible for the constraints to represent test requirements

specified by other testing strategies.

For test selection, the set of constraints is confined to those test requirements which

exercise statements directly and indirectly affected by the program modifications. In order

to determine these constraints, the change analysis technique, described in Section 5.5, is

used. It assesses the impact of the proposed changes on the existing program code and

then selects the con-esponding test requirements and test cases from the program's testing

history. For test update, the set of constraints reflects the complete testing history of a

program.

In each decision model, a set of constraints is established based on the constraint

matrix A, which reflects the testing history of a program, and a requirements matrix b.

The latter matrix usually consists of a unit vector to indicate that at least one test case in

the test suite exercises the test requirement represented by the corresponding constraint.

However, situations may arise where particular values in the requirements matrix need to

be changed. Critical sections of program code can be identified in the testing histoiy by

the large number of test cases which traverse their corresponding test requirements.

Whenever these sections of code are affected by the proposed modifications, they may

need to be retested more thoroughly than other paits. Therefore, during test selection, the

101

affected test requirement is identified and its corresponding value in the requirements

matrix increased to a value, which lies between one and the maximum number of test

cases traversing that particular test requirement. This will force the decision model to

increase the number of test cases traversing the affected piece of code to the new value

indicated by the requirements matrix. Similarly, during test update, it may be desirable to

retain a number of additional test cases to exercise particularly critical sections of program

code.

Other situations can arise in which the test requirements may have not been implicated

by the proposed modifications, but still need to be considered as part of a test selection

model. Consequently, any additional test requirements must be appended to the selected

set of constraints. This action wil l force the decision model to adjust its solution and as a

result, extra retestable tests may be determined. Conversely, test requirements may be

deleted from those selected during change analysis thereby possibly reducing the number

of retestable tests.

During maintenance, a program is often enhanced through the incorporation of

additional features, with new source code being added and existing code either being

modified or deleted. As part of the maintenance operation, improved testing procedures

may be introduced which ensure that the new program release is validated using more

stringent structural testing techniques. Therefore, a situation may arise in which portions

of the code have been validated using different test coverage criteria. The decision model

developed in this thesis can accommodate different sets of constraints whereby each set

of constraints represents a testing history generated through the use of a different

structural testing technique.

6.3.3 Generalised Goal Programming

Previously, the problems of test suite management were described in terms of a

decision model which consisted of a single objective function and a set of constraints.

102

Thus, test selection and test update could be solved by selecting or maintaining a test suite

either at minimum cost, time or priority. A benefit of this type of decision model was that

any decisions concerning the choice of objective and constraints could be cleariy made.

In practice, however, the problems of test selection and test update may require

several objectives to be satisfied at the same time. For example, a critical piece of

program functionality may require correction and maintenance programmers wish to

revalidate the modified software using a set of retestable tests which exercise its most

important features in the minimum amount of time, with less emphasis being placed on

the cost of regression testing. One way of addressing this problem using the existing

decision model is to: a) list all problem objectives, b) choose one of these objectives as

the single objective in the model while considering all other objectives to be rigid

constraints, and c) solve the resultant model. The steps b) and c) are then repeated with

the remaining objectives as the single objective in the model. Finally, a solution is chosen

from those solutions found in step c), which appears to 'best' satisfy all the listed

objectives.

However, there are at least three drawbacks with this approach. The first of these

relates to the uncertainty as to which single objective is really the most important one

amongst several objectives. The second problem concerns the treatment of objectives as

rigid constraints. An equality such as f(x) > b, f(x) < b, or f(x) = b must be formed,

whereby the right-hand side of the inequality must reflect an aspired level which the left-

hand side must achieve. However, setting an incorrect aspired level may result in the

decision model having an infeasible solution. The third problem relates to the quality of

the resultant solution, whereby the above method may not represent the solution that

'best' satisfies all the objectives.

There are at least two primary approaches, or philosophies, which form the basis for

nearly all the multiple-objective techniques that have been proposed. These include

weighting or utility methods, and ranking or prioritising methods.

103

The weighting method refers to those approaches which attempt to express the

problem objectives in ternis of a single measure, for example, as unit cost. The basic aim

of all such models is to transform a multiple-objective model into a single-objective

model. This is an attractive proposition in that it may reduce the computational effort.

However, the major disadvantage with this approach is diat it is associated with actually

developing truly credible weights. For example, if one objective is to minimise the cost of

regression testing and another is to minimise the time required for regression testing, how

much more, or less important, is the expense of testing as opposed to the time taken?

The ranking, or prioritising, methods attempt to circumvent this problem by requiring

users to rank the list of single objectives according to their perceived importance in the

problem. For example, in determining a minimum number of test cases, a procedure may

be used to first rank the test suite according to its cost, time and priorities. The problem

with this approach is how to associate the results of a given solution to the satisfaction of

the ranking.

The two basic approaches, described above, also represent some of the extremes in

multiple-objective approaches. However, the benefit of a generalised goal

programming model [124] for test selection and test update is that a comprimise can be

developed, which results in a working combination of the above approaches. A goal is a

mathematical function of the decision variables x, which represents the combination of a

single-objective function f(x) with a target value. The standard form of a goal is defined

in a way similar to that of a constraint, that is either as f(x) < b, f(x) > b, or f(x) = b,

where b is a constant. An aspiration level is a specific value associated with a desired, or

acceptable, level of achievement of an objective. Thus, an aspiration level is used to

measure the achievement of an objective. The goal deviation is the difference between the

value of the resulting solufion and the aspiration level. In all, but the most trivial

problems, or where the aspiration level has been incorrectly set, goal deviations will be

encountered. It should be noted that a deviation can represent an overachievement, as

well as an un^/erachievement, of a given goal.

104

It should be emphasized that an objective differs from a goal in that, for a goal, a

minimum acceptable or target value for its level of performance is described, whereas in

the case of an objective, it is simply stated that its measure of performance is to be

minimised. As a result, the objective is not represented as an inequality. The difference

between a goal and a constraint is more subtle. While both form inequalities, the concept

of a goal implies more flexibility and less rigidity than that of a constraint. For the goal,

the right-hand side of the inequality is simply a target value to which it aspires. However,

in the case of the constraint, the right-hand side must always be achieved; otherwise the

constraint is considered violated with the further implication that the entire problem is

infeasible.

Consider the objective function expressed in general terms as fi(x); thus, fi(x) is the

mathematical representation of objective i as a function of the decision variables x = (xi,

X 2 , X n) , and bi constitutes the value of the aspiration level associated with objective i .

Three possible forms of goals may then result: a) fi(x) < b, - the value of the objective

fi(x) is to be equal to or less than hi, b) fi(x) > bj - the value of the objective fi(x) is to be

equal to or greater than bi; and c) fi(x) = b, - the value of the objective fi(x) is to be equal

to bj.

Regardless of their form, these relations are transformed into the goal programming

format by adding a negative deviation variable (rji > 0) and subtracting a positive

deviation variable (pi > 0). By considering the relationship between the original goal

form (>, <, =) and the deviation variables, the following statements can be made: a) to

satisfy fi(x) < bi, the positive deviation variable (pi) must be minimised; b) to satisfy

fi(x) > bi, the negative deviation variable (rji) must be minimised; and c) to satisfy fi(x) =

bi, both the positive and negative deviation variable (pi and Tji) must be minimised. Table

6.1 summarises these points.

105

Goal Type Goal Programming Forni Deviation Variables
to be Minimised

fi(x) < bi f i(x) -1- Tl - p i= bi Pi
f i(x) > bi f i(x) + T] - Pi = bi

f i (x) = bi f i(x) + Tl - p i = bi Tli + Pi

Table 6.1 : Generalised Goal Programming Formulations

As seen from Table 6.1, the three goal types form constraints, which in tenns of goal

programming, can be treated in the same as rigid constraints. They are transformed to

include the negative and positive deviation variables, and an attempt is made to minimise

appropriate deviation variable, or a combination of them, in order to achieve the

relationship shown.

Once every objective and constraint has been transformed, a relationship is developed

which indicates and measures the level of achievement of any solution proposed. This

relationship is appropriately named the achievement function. As the satisfaction of the

goals or constraints is obtained by minimising various deviation variables, diis should be

indicated by the achievement function.

However, a further question remains to be answered. It concerns the quality of the

solution X which is obtained by the multiple-objective model as represented by the above

goal formulations. Is, for example, the quality measured in terms of how well it

minimises the sum of the weighted goal deviations or satisfies the maximum (worst) goal

deviation? Does the solution lexicographically minimise an ordered, ranked or prioritised,

set of goal deviations?

The achievement function, developed to address the problems of test suite

management, is one that combines the points described above. Thus, achievement is

measured in terms of a lexicographic minimisation of an ordered set of goal deviations.

106

Weights may then be assigned within each set of goals at a particular rank. Thus, this

achievement function or vector can be stated as follows:

a = (a i ,a2 ak QK) (6.10)

where a represents the achievement vector for which the lexicographic minimum is

sought, k is the ranking or priority, and

ak = gk(Tl.p) k=1,2 K (6.11)

where gk('n,p) is a linear function of the goal or constraint deviation variables, which

are to be minimised at rank or priority k. Moreover, the first term in a, that is, ai is

reserved for the deviation function associated with any rigid constraints. The

lexicographic minimum can be described as follows: given an ordered array a of non-

negative elements a '̂s, the solution given by a(i) is preferred to a(2) i f 3̂ (1) < â ^̂) ^nd all

higher order elements, that is (a i , a ^ . i) are equal. I f no other solution is preferred to

a, then a is the lexicographic minimum. Thus, i f two solutions aW and â)̂ are available,

where a « = (0, 10, 16, 33) and = (0, 7, 5,100) then a(s) is preferred to a « .

Another term, which is used to describe the lexicographic minimum notion is the

concept of preemptive priorities. A solution that provides a lexicographic minimum to a

also satisfies the concept of preemptive priorities. Any goal at preemptive priority k will

always be preferred to, that is, preempt any at a lower priority k + 1 , K regardless of

any scalar multiplier associated with these priorities. It should be emphasised that this

concept was first used implicitly in the single-objective decision model where the first

priority was to find a solution, which satisfied the constraints, and the second priority

was to minimise a single objective without violating the constraints. Thus, the concept of

preemptive priorities can effectively be used in decision problems as an iterative screening

process.

107

Some of the criticisms being directed at goal programming concentrate on the use of

the lexicographic minimum or preemptive priorities. Although the lexicographic minimum

may not always result in the most desirable measure of achievement for a given problem,

it generally forms a starting solution which can be improved upon by relaxing the strict

interpretauon of the lexicographic minimum. Thus, the lexicographic minimum or

preemptive priority measure is used primarily in this thesis for its flexibility and general

applicability to the problems of test suite management.

Apart from specifying the objective functions and set of constraints, the construction

of a multiple-objective decision model requires the following, additional assumptions to

be made: a) aspiration levels may be associated with each and every objective so as to

transform them into goals; b) negative and positive deviation variables are included for

each and every goal and constraint; c) goals are ranked in terms of importance whereby

any rigid constraints are set at priority one; and d) an achievement function is established

in which all goals within a given priority are either commensurable or can, by means of

weights, be made commensurable. Once these steps are accomplished, the following

linear goal programming model is formed:

lexicographically minimise a = (gi(Ti ,p), gk(ri,p)) (6.12)

subject to fj(x) + rii - Pi = bj (6.13)

and X e {0,1}, 1<i<m,-n > 0, p > 0 (6.14)

The benefits of this multiple-objective model are that it better reflects the problems of

test suite management than any single-objective model. In future research, it is hoped tliat

algorithms for solving this type of model can be investigated and integrated into the

technique for selective revalidation described in this thesis.

108

6.4 Algorithms

The two primary determinants of computational difficulty for an integer programming

problem with a single objective function are the number of decision variables and the

structure of the problem. This situation is in contrast to linear programming problems,

where the number of linear constraints is more important than the number of decision

variables^. Depending on the nature of an integer programming problem, it may be

possible to first use the approximate procedure of solving the problem using a linear

programming algorithm and then rounding the non-integer variables to integers in the

resulting solution [153, 227]. The same problem is thus considered except that the

restriction concerning the need for an optimal integer solution is removed. If, for

example, linear programming produces radier large numerical values, tlien rounding tliem

up or down to the nearest integer value may provide a perfectly acceptable result and

cause relatively small errors.

However, there are two problems with this approach. First, the rounding procedure

may result in solutions that are infeasible; it is often difficult to decide on which way the

rounding should be done in order to retain feasibility. Second, the rounding of the

decision variables may cause the solution to be far from its optimal integer value. In this

thesis, however, two categories of algorithms are examined which are suitable for

solving integer programming problems. They include optimal algorithms, such as

cutting-plane methods and enumerative techniques, and approximation algorithms.

6.4.1 Cutting-Plane Methods

Gomory [81] developed the first finite algorithm called the cutting-plane method. It is

characterised by the idea of using a cut, which is a derived constraint with the property of

cutting off part of the set of feasible solutions while not excluding any integer solution. In

In integer programming, the number of constraints is of some importance, but it is strictly secondary to the
other two factors.

109

this method, the cut constraints are constructed and linear programming algorithms

applied iteratively until an optimal integer solution is found.

The Gomory all-integer cutting-plane method has been used with some success in

solving large set-covering problems. However, it is less effective for general integer

programming problems. Even though a cutting-plane algorithm converges in a finite

number of iterations, this finite number may prove to be large; thus, this algorithm is an

exponential time algorithm. In general, the cutting-plane method tends to be unpredictable

in terms of computer run-time. This has been attributed to the fact that a cutting-plane

method can make substantial progress in the first few iterations of solving a problem and

then tends to slow down dramatically. Given an integer programming problem, however,

a cutting-plane method should be used in the first instance, because if a converging

solution to the problem exists, then this method will quickly obtain a solution. Should

this approach prove to be unsuccessful, it may be necessary to use enumerative

techniques in order to solve the problem.

6.4.2 Enumerative Techniques

The most obvious approach to solving an integer programming problem is to

enumerate all possible candidate solutions and select an optimal solution from them.

However, this approach, which is known as explicit enumeration, is not considered

practical for problems of reasonable size as it requires all 2" possible solutions of a

problem with n decision variables to be investigated. An alternative approach, therefore,

is to examine only some sets of integer solutions which will produce optimal solutions.

Implicit enumeration methods [85] apply heuristic rules so that during analysis only a

portion of the 2" solutions are considered. In particular, the correct selection of next

decision variable to be investigated may significantly influence the algorithm efficiency.

This is particularly true in the initial stages of solving the problem, where the poor

selection of such a variable could result in a needless enumeration of a large number of

110

nodes. A heuristic rule designed to direct the search toward a solution has been given by

Balas [12].

Consider the zero-one integer problem specified by Equations 6.7-6.9. To solve this

problem, search algorithms are used which enumerate either explicitly or implicitly all 2"

possible zero-one vectors in X. In such procedures, the vast majority of solutions are

enumerated implicitly. The enumerative procedure can be illustrated by means of a search

tree composed of nodes and branches. Figure 6.1 illustrates such a search tree.

F O R W A R D
S T E P

B A C K W A W)
S T E P

X i c j . 1 = 0

F R E E V A R I A B L E S F R E E V A R I A B L E S

Figure 6.1 : Search Tree in Implicit Enumeration

A node corresponds to a zero-one candidate solution X. Two nodes connected by a

branch differ in the state of one variable. Each variable can be in one of three states: fixed

at 1, fixed at 0, ox free. A new node is defined by fixing a variable to 1 (forward step)

and a node is revisited by fixing a variable to 0 (backward step).

In order to explain how the above search tree is traversed, it is assumed that the

current partial solution under consideration is given by vector u = (ui, U2, Uj , 0, 0,

0) with entries interpreted as follows: a) Uk = jk , l^k<s, means that xj has been fixed at 1

in accordance with the heuristic rule mentioned above. Its complement (xjk = 0) has not

111

yet been considered; b) u^ = - j k , l^k<s, means that xjk = 1 or 0, and that the

complements of these values have already been considered; c) u^ = 0 for k>s.

Now suppose that an incumbent solution X is available which represents the best

feasible solution discovered so far. Furthermore, assume that xjs = 1, Ug = j s (Ihe value of

Xjs = 0 has not yet been considered) and that at node X, the partial solution X = (x j] , Xj2,

Xjs, 0, 0) is infeasible. I f a test is now used which by setting the variable Xjs+i to

1 indicates tliat the infeasibility can be reduced and the objective function value Zq can be

improved, then a forward step is taken; thus, Uj+i = js+i is added to the vector u.

At the new node x', it is found that x' is feasible and it produces an objective

function value Z which is better (less) than that associated with the incumbent solution.

The incumbent solution X is now replaced by x' and the objective function value Zgis

replaced by Z. Al l completions in this partial solution with Xjs+i = 1 have now been

enumerated since there can be no improvement on the current feasible solution by fixing

any new free variable at 1. Therefore, this partial solution has he&n fathomed and all

completions of it have been implicitly enumerated.

Next, all completions of X with xjs+i = 0 are considered with a backtracking step

being taken to node x". However, it is found that there is no attractive completion for

this node, that is no completion of this partial solution can produce an optimal solution.

At this point, all possible completions of X have been enumerated whereby xjs+i = 1 and

Xjs+i = 0 have been examined.

A backtracking step is now taken to consider xjs = 0. The element ujs of the vector u

is now set to - js , assuming that previously Xjs = 0 was not considered. If, however, Us =

-js and Xjs = 0, that is, Xjs = 1 was previously considered, the rightmost element of u is

found, the sign is changed to negative, and the new partial completions are examined. In

this case, backtracking steps over more than one branch of the search tree are taken. The

112

block diagram in Figure 6.2 summarises the basic enumeration process for a general

implicit enumeration scheme.

B A C K T R A C K

N O

^ S T A R T j

N O

C A N S O L U T I O N

B E F A T H O M E D ?

I
A U G M E N T

P A R T I A L S O L U T I O N

Y E S

IS C U R R E N T

Z < Z o ?

I
N O

Y E S

R E P L A C E

Z q B Y Z

I
A L L S O L U T I O N S

I M P L I C I T L Y E N U M E R A I F I D ?

T Y E S

^ S T O P ^

Figure 6.2 : Block Diagram of Implicit Enumeration Scheme

As mentioned earlier, the effectiveness of implicit enumeration algorithms is

dependent on the strength of their exclusion tests. It has been found that the criterion used

to detect whether or not a partial solution has a feasible completion is not very effective.

This is especially true whenever the algorithm attempts to solve problems with a

considerable number of constraints. In order to remedy this problem, the concept of a

surrogate constraint has been introduced which effectively combines a set of constraints,

but does not eliminate any of the original, feasible integer points of the problem [80, 79].

The new constraint is devised such that it has the potential to reveal information that

cannot be conveyed by any of the original constraints considered separately. Consider the

two constraints:

113

and
where

2X1 - X 2 < - 1

-xi + 2x2 ^ - 1 ,
x i , X2 e (0,1}

(6.15)
(6.16)
(6.17)

By considering each constraint separately, it cannot be concluded that the two

constraints do not have a feasible solution. However, i f the two constraints are

combined, the resulting surrogate constraint, xi + X2 < -2, shows decidedly that the

problem cannot have a feasible solution. Empirical evidence indicates that the use of tlie

surrogate constraint can be effective in reducing the computational time [28].

One particular observation about implicit enumeration is that the computation time is

often data-dependent. Therefore, the specific ordering of the decision variables and

constraints may have a direct effect on the efficiency of an implicit enumeration

algorithm. For example, the constraints could be ordered such that the most restrictive

constraint is the first one to be investigated by the algorithm, and variables could be

arranged according to an ascending order of their objective coefficients. Both conditions

are favourable to producing/a^fer fathoming of the partial solutions.

A number of implicit enumeration algorithms have been designed to solve the binary

programming problem [61, 78]. Comparative studies [64, 69, 173, 190, 208, 246] of

their computational performance concluded that for the majority of samples, the Balas

algorithm could solve problems in fewer iterations, be applied to denser matrices'*, and

examine problems with a larger number of decision variables. However, as any

enumerative technique must investigate either implicitly, or explicitly, all 2" binary

combinations, the solution time varies almost exponentially with the number of decision

variables n.

The density of a matrix is related to the ratio of non-zero to zero values in the constraint matrix A.

114

6.4.3 Heuristic Methods

An altemative approach to solving large integer programming problems, in particular

set-covering problems, is to apply heuristic methods or approximation algorithms [14,

36, 42, 111, 132, 172]. Heuristic methods can be considered as incomplete enumerative

techniques, which do not invesfigate branches of the search tree even though they may

contain the optimal solution. As a result, these algorithms are not guaranteed to find an

opUmal soluUon, but they extremely efficient in solving large problems. More

importantly, however, they are polynomial-time algorithms.

Effective heuristic methods should possess three important properties: a) they should

yield solutions within a reasonable amount of computation time, b) the solutions that are

produced should, on average, be as close as possible to the optimal solution, and c) the

probability of solutions which vary widely from the optimal solution, should be low. The

conditions b) and c) are not identical, although they are related, since obtaining a solution

close to the optimal one does not preclude the possibility of a poor solution in certain

instances. The effecdveness of a heuristic method, however, can only be judged after

conducting extensive numerical tests.

Two approximation algorithms have been developed to solve the problems of test

suite management and, in particular, the problem of test update. However, neither

algorithm accomodates some of the important characteristics required to solve a decision

model consisting of generalised objectives and constraints. For example, neither

algorithm considers the fact that each test case tj may be associated with a cost Cj. Instead,

bodi algorithms implicitly assume that all test cases have the same cost. In addition, both

algorithms concentrate on solving a set-covering problem for which the values in the

requirements matrix b are restricted to one, as opposed to an arbitrary value between one

and the maximum cardinality of each testing subset.

115

The work by Leung [160] describes a heuristic method of order 0(mn), where m

represents the number of testing subsets Ti for the program and n is the number of test

cases tj in the test suite. The method is described in terms of operations on the constraint

matrix A^. The initial step of the algorithm involves the summation of all columns Cj in

the constraint matrix A forming a column C T whose elements indicate the cardinality of

each testing subset Ti. In the next step, each test case tj in the test suite is processed by

subtracting its associated column, Cj, from the current value of Cj. The order for

processing is either in ascending, or descending, order of test execution. After

subtracting each column Cj from its current C T value, the new value of C T to examined to

see whether any new zero values have appeared. According to the author, the appearance

of a zero value in the summation C T relates to the presence of a representative test case tj

which needs to be retained. The algorithm repeats this step for each test case tj until all

tests in the test suite have been processed.

Consider the following example, in which the testing information is presented in

terms of the test requirements ri and the tesUng subsets Ti, and a constraint matrix that

illustrates test cases tj exercising testing subsets Ti.

test requirement,
Ti

testing subset,

Ti

REQl {2,5}

REQ2 {5}
REQ3 (1,2,3}

REQ4 {3,6}

REQ5 {1,4}

REQ6 {1,6}

REQ7 {3,4,7}

REQ8 {2,3,4,7}

Figure

test case, tj
testing subset, Ti

1 2 3 4 5 6 7

Tl 0 1 0 0 1 0 0

T2 0 0 0 0 1 0 0

T3 1 1 1 0 0 0 0

T4 0 0 1 0 0 1 0

T5 1 0 0 1 0 0 0

T6 1 0 0 0 0 1 0

T7 0 0 1 1 0 0 1

Tg 0 1 1 1 0 0 1

6.3 : Testing Information

Recall from Section 6.2, that a binary programming problem consists of an objective function Z, a cost
vector c, and a set of constraints whose coefficients are represented by a matrix A.

116

A set of count vectors, which correspond to test cases tj in the test suite, can be

derived from the columns of. the constraint matrix; Ci = [00101100], C2 = [10100001],

C 3 = [00110011], C4 = [00001011], C5 = [11000000], Ce = [00010100] and C7 =

[00000011] with the resulting summation Cj = [21322234]. I f the test cases are

processed in an ascending order, then the first step requires CT' = C T - C I = [21221134].

The new summation C T ' is then examined to see i f any of the C T ' elements contain zero

entries. In this case, however, no new zero entries have appeared in C T and, therefore,

test case t i is deemed redundant; otherwise, the test case would have been retained. Tliis

operation is now repeated for test case t2, whereby CT" = CT' - C2 = [11121133], and so

forth. A similar approach is taken with a descending order of subtraction, whereby Cf =

C T - C7 = [21322223], and so forth.

However, the algorithm developed by Leung [160] fails to determine a representative

set of test cases and, therefore, does not eliminate a maximum set of redundant test cases.

The application of Leung's algorithm to the above example yields a representative test set

consisting of five test cases (ts, t4, ts, tg, and ty); this is based on an ascending order of

test execution. In reverse order, however, the same algorithm results in only four test

cases (t i , t2, t3, ts) being chosen. In fact, the minimal set of test cases consists of test

cases t i , t3, and 15, with the test cases t2,14, tg and t? being redundant.

The example illustrates the problems arising from the restrictive ascending, or

descending, order of processing. Test cases are retained, or discarded, based on whether

or not a testing subset is still exercised by a test case. No criteria are applied which could

guide the algorithm in selecting a specific test case from amongst those test cases that

comprise each testing subset. As a result, the algorithm tends to choose representative test

cases from the latter half of the test suite when processing in an ascending order and from

the former half of the test suite during a descending order.

The work by Harrold et al. [95] describes a heuristic method which determines a

representative set of test cases in order 0(nm(m+n)) where m represents the number of

117

testing subsets T, for the program and n is the number of test cases tj in the test suite. It

defines a selection criterion which is based on the maximum cardinaUty of each test case.

The algorithm consists of the following two steps. First, all subsets T, are examined in

order to determine which of them contain only a single test case. Each discovered test

case immediately forms part of the representative set of test cases, or so-called hitting set.

Al l testing subsets, which include this test case, are marked as processed. Second, all

unmarked subsets with cardinality two are investigated. The test case which appears in

the maximum number of testing subsets is added to the hitting set. If, at this stage, a tie

arises between several of these test cases, unmarked subsets of next higher cardinality are

examined using only these tests. The process of determining which test case is

represented in the majority of testing subsets is continued until the tie is broken and a test

case can be selected. Subsequently, all testing subsets, which include this test case, are

marked as processed. This procedure may then be repeated using testing subsets of

increasing cardinality.

Consider again, the testing information illustrated in Figure 6.3 where a test suite

consisting of seven test cases and eight test requirements, that is testing subsets, is being

examined. Test case ts is added to the hitting set since it is the only test case exercising

testing subset T2; therefore, testing subsets T i and T2 are marked as being processed.

Unmarked testing subsets of cardinality two are then examined. Each of test cases ts and

t4 appears in one of the testing subsets under consideration, while each of test cases ti

and t6 appears in two of those testing subsets. Since there is a tie between test cases ti

and tg for the maximum, processing continues with unmarked testing subsets of

cardinality three. Thus, testing subsets T3 and T7 are considered next. Only the tests

cases involved in the tie are used to compute the maximum for cardinality three. Test case

t i appears in testing subset T3 while test case t6 appears in neither of the testing subsets.

Therefore, test case t i is chosen and added to the hitting set. Testing subsets T3, T5, and

Te are marked since they contain test case t i . Processing now continues with testing

subset T4, the only unmarked testing subset of cardinality two. Again, there is a tie

between test cases 13 and t6 causing testing subsets of cardinality three to be investigated.

118

Test case t3 appears in testing subset T7 and thus it is added to the hitting set which

allows the remaining testing subsets T4, T7, and Tg to be marked. The resulting hitting

set comprises test cases ti, tj, and ts, with the test cases t2, t4, tg and tj being redundant.

While the algorithm described by Harrold-Gupta [95] proves to be more precise than tlie

one developed by Leung, it is complex in terms of computational effort.

6.4.4 New Approach

In this thesis, a new heuristic method is developed to address the limitations of the

above algorithms. The new algorithm is characterised by its simplicity and flexibility in

computing a minimum cover. It considers the situation whereby each test case tj is

associated with a cost cj and each test requirement, that is testing subset, is associated

with an arbitrary value in the requirements matrix b which lies between one and the

maximum cardinality of each testing subset. The algorithm defines a selection criterion

which is based on the ratio of maximum cardinality to minimum cost of each test case.

Step 1 of the algorithm Minimum_Cover consists of the required initialisation and

preprocessing of the test cases. The cardinality of each test case tj is established by

inspecting the testing subsets Tj to see i f the test case exercises them. The number of

testing subsets, which contain the test case tj , are then indicated by the corresponding

value of element j in the array card . If a test requirement should specify a constraint on

the number of test cases exercising it, then the array i n i t _ r e q u i r e m e n t s reflects this

number. After the test case cardinalities have been determined, the array r a t i o is used

to reflect the value of test cardinality/test cost for each test case tj . In Step 2, the sum of

the elements in array r a t : i o is determined to ascertain whether any of the test

requirements remain to be exercised. I f so, a test case is chosen, based on the test

selection criterion, and included in the cover; otherwise the sum is zero and the algorithm

terminates. I f a test case is selected, a subtraction process ensures that all testing subsets

containing this, and other test cases, no longer need to consider these test requirements if

their constraints have been fulfilled. As a result, the array c a r d and, subsequently, the

119

array r a t i o can be adjusted accordingly. This step is now repeated using the test case

with the highest value in the an-ay ra t : io . The algorithm which implements this heuristic

method is given in Figure 6.4.

algorithm Minimum_Cover

input cost : array [l . .n] of test cost factors Cj,
Ti : set of testing subsets Ti containing tj test cases,
init_requirements : array [l . .m] of constraints bi.

output cover : set of test cases tj representing the minimum
cover, initialised empty.

declare card : array [l..n] of current cardinality of test cases tj,
ratio : array [l . .n] of ratio card/cost,
new_requirements : array [l . .m] of intermediate constraints bi,
next_test : test case tj.

begin
/* Step 1: Initialisation */

foreach j , j = 1 to n do
foreach i , i = 1 to m do

if tj € Ti then
cardQ] : = card[j] + l/init_requirements[i]

endif
new_requirements[i] = init_requirements[i]

endfor
ratiolj] := card[j]/cost|j]

endfor

/* Step 2: Selection Process */

while Sum(ratio) 0 do /* termination criterion */
next_test := Max_Ratio(ratio) /* test selection criterion */
cover := cover u next_test
ratio := Substract(next_test, card, ratio)

endwhile

return(cover)

end Min_Cover

function Sum(ratio)

/* tliis function determines whether the sum of test case ratios is zero or not */

declare sum : sum of test case cardinalities, initialised to zero

begin
foreach j , j = 1 to n do

sum := sum + ratio[j]
endfor

120

return(sum)

end Sum.

function Max_Ratio(ratio)

/* this function determines the test case with the maximum cardinality/cost ratio */

declare max : maximum in a set of numbers, initialised to zero,
index : test case with maximum ratio, initialised to zero

begin
foreach j , j = 1 to n do

if ratiolj] > max then
max := ratiolj]
index := j

endif
endfor

return(index)

end Max_Ratio.

function Substract(next_test, card, ratio)

/* this function adjusts the test case cardinalities after a particular test case is selected */

begin
card[next_test] := 0
foreach i , i = 1 to m do

if next_test e Ti then
Ti := Ti - next_test
new_requirements[i] := new_requirements[i] - 1
if new_requirements[i] = 0 then

foreach j , j = 1 to n do
if tj € Ti and not next_test then

card[j] := card[j] - l/init_requirements[i]
ratio[j]: = card[j]/cost[j]
T i : = T i - t j

endif
endfor

endif
endif

endfor

return(ratio)

end Subtract.

Figure 6.4 : New Heuristic Method - The Algorithm

Consider again, the testing information illustrated in Figure 6.3. In that example, the

test costs and associated constraints are implicitly assumed to be one. The first step of the

121

algorithm examines each of the testing subsets T, in order to establish the cardinality of

each test case tj ; thus, c a r d = [3343222]. With a cost factor of one for each test case, the

array r a t i o reflects the array ca rd , that is r a t i o = [3343222]^. As the sum of the

elements in array r a t i o is not zero, the algorithm selects the test case with the highest

value element in the array; thus test case 13 is identified and included in the cover''.

Examination of the test requirements reveals that test case 13 exercises the requirements

{REQ3, REQ4, REQ7, REQ8}. Subject to the constraints specified by each test

requirement, the test cases contained in the coiresponding testing subsets are no longer

required to exercise these test requirements. Consequently, the cardinality of each test

case tj associated with the test requirements {REQ3, REQ4, REQ7, REQ8} can be

reduced and a new set of values calculated for array c a r d , that is array r a t i o =

[2101210]. During the second iteration, the algorithm ensures that the sum of the new

elements in array r a t i o is non-zero and test case t i is subsequently selected. This

implicates test requirements {REQ5, REQ6}, both of which are exercised by test case ti.

As a result, the cardinality of each test case tj exercising these requirements is affected

such that the array r a t i o = [0100200]. In the third, and final, iteration of the algorithm,

test case ts is selected with test requirements (REQl, REQ2} being considered. The

subtraction process, which follows, causes all elements of array r a t i o to be reduced to

zero values and the algorithm terminates as all test requirements have been exercised by at

least one test case. The final cover consists of test cases t i , ts, and ts, with the test cases

t2> t4, tfi and t7 being redundant.

The worst case run-time complexity of the new algorithm has also been analysed to

demonstrate its efficiency and suitability for incorporation in a test suite management

procedure. Let n denote the number of test cases tj in the test suite and m the number of

test requirements, that is testing subsets. The heuristic presented involves two main steps:

the computation of the number of occurrences of each test case in various testing subsets

^ However, the values in array r a t i o will vary depending on the test costs and the constraints placed upon the
test cases by the test requirements.
^ Any ties for maximum value would be resolved by choosing the first test case encountered with the maximum
value.

122

and the selection of the next test case. The latter step is performed repeatedly in order to

find a minimal cover for the testing subsets. The computation of the number of

occurrences of each test case in various testing subsets requires order 0(nm) time since

there are m testing subsets and they are examined n times. The selection of the next test

case to be included in the minimal cover requires the complexity of each function Sum,

Max_Ratio and S u b t r a c t to be examined; the respective worst case run-time

complexities are order 0(n), 0(n), and 0(nm). Therefore, each iteration during the

selection of a test case takes at most order 0(n(m -f-1)) time. Assuming that both n and

m are large, the run-time complexity is order 0(nm). The selection of a test case and the

recomputation of the test case cardinalities is repeated at most m times since after the

selection of a test case at least one testing requirement is satisfied^. Therefore, the overall

run-time complexity is 0(nm + m(nm)). Rearranging this expression, the time

complexity is order 0(nm(l -i- m)), and assuming that a reasonable number of iterations

are performed by the algorithm, then the run-time complexity of the algorithm is order

0(nni2). This compares favourably with the run-time complexity of the algorithm

proposed by Harrold et al. [95]. Although the above analysis provides the worst case

time complexity of the algorithm, in practice, the algorithm may solve the given problem

faster.

Two important questions arise from this analysis; the first concerns the size of the

problems which may be solved by the new heuristic method, while the other concerns the

size of the solutions generated by it. Lee-He [151] provides an indication of the problem

size which can be addressed; they describe the solving of set-covering problems

consisting of several hundred test requirements and test cases. It was also found that for

the decision problems being examined, the size of the solution obtained by the heuristic

method was comparable to that obtained using an optimal algorithm. However, in order

to obtain a better measure of its effectiveness, a larger number of decision problems need

to be considered. It is hoped that this work can be pursued in future research.

o
° This is based on the assumption that each test requirement needs to be exercised by no more than one test
case.

123

6 . 5 Application

The following section describes selective revalidation based on the technique

developed in this thesis. Details are given concerning procedures for test selection and

test update, both of which rely upon the use of the new heuristic method developed in

Section 6.4.5. The objective of the technique, described in this thesis, is to provide

maintenance programmers with a set of formal guidelines which wil l enable them to

perform the revalidation of individual program modules in a systematic and efficient

manner. It also aims to integrate the concept of selective revalidation into the traditional

maintenance cycle.

During the maintenance phase, programmers typically receive a number of change

requests from users. Each of these change requests is then described, in detail, in a

change proposal which contains a list of modifications to be made to the program

specification, design and code. With respect to the implementation and, in particular,

individual program modules, a list of basic modifications comprises the addition, deletion

or alteration of program statements. The technique for selective revalidation examines

each of these modifications assuming that a test suite and a set of test costs are provided

by users. The technique, which is presented in Figure 6.5, consists of two steps: one for

test selection, the other for test update.

procedure Selective_Revalidation

input test_suite : current testing history containing testing subsets Ti,
costs : set of test costs,
modification : list of basic modifications.

output new_test_suite : set of test cases reflecting updated testing histoiy,

declare Change : function tiiat returns the set of affected testing subsets Ti,
Rerun : function to reset test execution history, rerun retestable

tests, and indicate test coverage,
Update : function to update the current testing history and indicate

test coverage,

requirements : current set of testing subsets Ti,
retestable_tests : set of retestable test cases,

124

begin

redundant_tests : set of redundant test cases,
new_tests : sets of new test cases,

test_coverage : a boolean value to indicate satisfactory test coverage,
initialised to true,

phase : value to indicate test selection/test update.

foreach modification do
requirements := Change(modification, test_suite)
phase := test_selection
retestable_tests := Decision_Model(costs, requirements, phase)
implement modification
test_coverage := Rerun(retestable_tests)
while not test_coverage do

generate new_tests
test_coverage := Update(new_tests)

endwhile
phase := test_update
redundant_tests := Decision_Model(costs, test_suite, phase)
new_test_suite := test_suite - redundant_tests

endfor

return (new_test_suite)

end Selective_Revalidation.

function Decision_Model(costs, requirements, phase)

declare Modify_Model : procedure to modify constraints,

model : decision model consisting of test costs and testing
subsets Ti,

solution : set of non-redundant test cases,
constraints : boolean value to indicate that specific constraints

associated with testing subsets Ti need to be amended,
initialised to false,

begin
model := costs -i- requirements
if constraints then

Modify_Model(model)
endif
if phase = test selection then

retestable tests := Minimum_Cover(model)
return(retestable tests)

elseif phase = test update then
solution := Minimum_Cover(model)
redundant_tests := requirements - solution
return (redundant_tests)

endif
end Decision Model.

Figure 6.5 : A Technique for Selective Revalidation

125

In the case of test selection, change analysis is performed in order to determine the

impact of each basic modification on the existing program code. The function Change

relates to the change analysis technique, which was described in Section 5.5. Its purpose

is to identify a set of affected testing subsets Ti, that is test requirements, with which to

retest the modified code. The resulting test requirements are then used, alongside die test

costs, to establish a decision model for solving the problem of test selection. After

possible adjustments to the constraints and test costs (specified by users), the decision

model is solved using the heuristic algorithm Minimum_Cover described in Section

6.4.5. It returns the set of retestable tests which are needed to ensure the consistency of

the modified program. The modification is then implemented. At this stage, it may be

desirable to introduce an additional step into the procedure where the impact of the

modification is assessed in terms of the cost of rerunning the test cases. As a result, it

may prove too costly to implement the change and alternative modifications must be

investigated.

In the case of test update, the set of retestable tests is rerun and the test coverage

monitored to ensure that the quality of the test suite is maintained. If this is not the case,

then additional test cases may need to be generated until the given test coverage criterion

has been satisfied. The test suite, together with the test costs, can now be used to

establish a decision model for solving the problem of test update. Once again,

adjustments can be made to the model, which may then be solved using the new heuristic

method. As the solution obtained from the function Decision_Model fornis the set of

redundant test cases, the updated test suite is obtained by eliminating the redundant tests

from the current test suite.

6 . 6 Summary

In this chapter, a systematic and efficient solution to the problems of test suite

management has been developed. Through the use of operations research, the problems

of test selection and test update have been formulated as binary programming or set-

126

covering problems. Different testing objectives and constraints have been considered as

part of each problem and incoiporated into the corresponding decision model in order to

better reflect the characteristics of the problem. Moreover, a way has been found to

specify and solve the problems of test suite management independently of any structural

testing technique.

Two types of algorithms have been identified for solving the resulting decision

models. While optimal algorithms tend to produce a minimal solution for a given

problem, they may also exhibit an exponential run-time. In constrast, heuristic methods

cannot guarantee the production of a minimal solution for all problems, but they have

been found to be extremely efficient at computing solutions to problems. Subsequently, a

new heuristic method has been developed which compares favourably with both existing

optimal and other approximation algorithms in terms of the problem sizes being

addressed, the size of solutions being generated and the worst-case run-time

complexities.

Selective revalidation has also been described based on the technique developed in

this thesis. Details are given, concerning procedures for test selection and test update,

both of which rely upon the use of the new heuristic method. It is also shown how the

technique can be integrated into the traditional maintenance cycle.

127

Chapter 7

RETEST - Development of a Tool Suite

7.1 Introduction

Software maintenance consists of four distinct phases whose activities are supported

by a wide range of automated tools [196]. The first phase is concerned with analysing the

program code to be modified in order to understand its structure; source code browsers

[217], cross-referencers [209, 266], and complexity analysers [191, 178] assist with

program comprehension. During the second phase, a set of modifications is specified by

way of change proposals; change management systems [51,134] provide the editing and

storage facilities required for specifying such proposals. In the third phase, the

consequences of the proposed changes are determined; program slicers [130, 189] and

ripple effect analysers [165, 167] have been developed for this purpose. Finally, the

fourth phase involves the implementation and testing of the modified program to ensure

its functional consistency; numerous regression testing tools [22, 162] are available.

However, none of these tools provide facilities for selective revalidation, which ensures

the structural consistency of the modified program [100].

In this chapter, the development of a tool suite known as RETEST (Regression

Testing Support Tools) [102] is described which can provide the support needed for the

selective revalidation of C program modules during software maintenance. The aim of

developing this prototype is not to develop a production-quality tool suite, but to

demonstrate the feasibility as well as the usefulness of the technique for selective

revalidation described in this thesis. It is envisaged that the tool suite will be used in

conjunction with existing regression testing tools in order to complement and enhance

current practices. In Section 7.2, the design of the tool suite is described, with particular

emphasis being placed on discussing its structure and interface to current regression

testing tools. Section 7.3 outlines the implementation of the tool suite by giving a brief

128

description of each of its components and their purpose with respect to selective

revalidation.

7.2 Design Issues

7.2.1 Structure

The design of a tool suite emphasizes the concept of modularity in that each of its

components is developed as a standalone tool and then assembled around a common user

interface and program representation, notably in the form of the Program Dependency

Graph. This approach improves the testability of the tool suite as individual components

can be tested in isolation and then integrated into the tool suite. At the same time, a

modular design promotes the maintainability of a tool suite as existing tools can easily be

updated and new tools introduced. For debugging purposes, a diagnostic option is

available from within die user interface which, when enabled, displays messages relating

to the tools' current processing status. This considerably reduces the time and effort

required to locate possible errors in the tool suite. To achieve portability, the tool suite is

implemented under a common programming environment, such as tlie Unix™ operating

system, and using the C programming language together with compiler development

tools such as Lex and YACC. Moreover, the adaptability of the tool suite is considered so

that it can be used on a variety of hardware platforms; important system parameters are

therefore defined as program constants which can be adjusted if the size of programs

being analysed exceeded the default values. To ensure the integrity of the tool suite,

unauthorised accesses to data files or illegal operations widiin die user interface are kept

to a minimum by restricting file permissions and including input eiTor-handling routines.

In order to support the different tasks associated with a technique for selective

revalidation, a total of five automated tools have been developed. Figure 7.1 provides a

™ Unix is a trademark of Bell Laboratories.

129

schematic of the tool suite, which includes tools for program instrumentation, program

flow analysis, test coverage analysis, change analysis, and test suite management. All

tools are accessed via a common user interface component which is not shown. The

diagram illustrates the main flows of information through the proposed tool suite by

means of bold arrows. Important inputs, and outputs, are depicted by the shaded, and

striped boxes, respectively.

SOURCJ-
CODE

PROGRAM
INSTRUMENTATION

TEST
DATA

TEST
COVERAGE
ANALYSIS

PROGRAM
FLOW

ANALYSIS

CHANGE
ANALYSIS

PROGRAM
MODIFICATIONS

TEST SUITE
MANAGEMENT

Figure 7.1 : Architecture of the Prototype Tool Suite

130

7.2.2 Interfaces

An important consideration in the design of the tool suite is its interoperability; this

concerns the definition of its external interfaces. In terms of the user interface, the design

envisages a menu-driven system with command-line prompts instead of a graphical user

interface. Apart from considerably reducing the development effort, this approach has the

advantage of allowing the tool suite to be used with character-based terminals as well as

bit-mapped workstation displays.

However, particular attention must be paid to the design of the interface which allows

the tool suite to interact with existing regression testing tools. The importance of this

interface relates to its potential for improving the existing process of regression testing.

By combining the proposed tool suite with a commercial regression testing tool, the

regression testing procedure could be entirely automated. This concept is illustrated in

Figure 7.2 where an existing regression testing tool and its interactions with the software

under test are depicted by the shaded boxes and solid arrows, while the proposed tool

suite and its interactions with bodi the software under test and the proposed program

modifications are indicated by the striped boxes and dotted arrows.

Rl (iurssio.N
Ti^STIN(}

lOOL

TEST
STIMULI

KEYBOARD
INPUT

SCREEN
OUTPUT

SOFTWARE
UNDER

TEST

TRACEFILES
BASELINE

COMPARISON

AUTOMATIC
Tr.ST

S C R l l T

SELECTED
REGRESSION

TESTS

Figure 7.2 : Interfacing the Tool Suite to an Existing Regression Testing Tool

131

At present, regression testing tools assist users with a number of time-consuming

tasks. During the initial validation of the software, a regression testing tool is used to

record users' input stimuli (keystrokes) and capture the corresponding output

(screenshots) from the executing application. Test cases are then foiinulated using these

interactions, and stored as a so-called baseline set. In response to program modifications,

the regression testing tool automatically replays those baseline test cases, which have

been specified by users, and compares their current output with their previous output.

Any differences in the two outputs are flagged to indicate the possible presence of eirors.

After any eiTors have been corrected, the baseline set of test cases is updated to reflect the

modified functionality of the software.

To automate the current process of regression tesUng, users need to create an

Automatic Test Script or ATS. This script is specified using a customised scripting

language, which contains constructs similar to those found in most programming

languages. It allows users to describe individual test cases and hierarchically organise

them into test groups. Two advantages accrue from this type of test organisation. First,

users can execute part, or all, of the test set according to their needs. Second, since the

functions of most programs are organised hierarchically, the test structure can accurately

model most program structures.

Figure 7.3 illustrates the current structure of an Automatic Test Script. It forms a

hierarchic structure, whereby the test group example contains a series of test cases

including f i r s t . t e s t and second. t e s t . Each test case specifies a list of elements

including: a) the test case name (DEFINE); b) a brief textual comment explaining the

purpose of the test (SOURCE); c) a series of system commands that invoke the software

under test and specify the test case inputs and their outputs (ACTIVATION); and d) an

evaluation criterion, which compares the current output of the test case with its previous

output, which is stored as part of the baseline set (EVALUATION).

132

/* e x a m p l e . a t s - D e s c r i p t i o n o f an A u t o m a t i c T e s t S c r i p t */

DEFINE GROUP example

/* T e s t g r o u p d e f i n e s a s e r i e s o f t e s t cases */

{

DEFINE CASE f i r s t . t e s t

/* I l l u s t r a t e s t h e s t r u c t u r e o f a t e s t case */

{
SOURCE
"Comment t o e x p l a i n o r i g i n o f t h i s t e s t case";

A C T I V A T I O N

"System commands t o e x e c u t e t h i s t e s t case";

EVALUATION WITH BASELINE
" f i r s t . o u t " v s . " f i r s t . b a s e l i n e " ;

}

DEFINE CASE s e c o n d . t e s t

}
Figure 7.3 : Features of an Automatic Test Script

In the event of program changes, maintenance programmers have two possible

choices for retesting their modifications. They can invoke the regression testing tool and

command it to either automatically rerun a set of regression tests, which they themselves

have chosen (interactive mode), or rerun the entire test suite (batch mode). Such

strategies, however, can be ad hoc and wasteful of resources.

A better approach is to interface the proposed tool suite to the regression testing tool,

as shown in Figure 7.2, so that users no longer need to judge which test cases need to be

rerun, or have to wait for the entire test suite to be executed. Instead, the tool suite

automatically selects the appropriate set of test cases based on the program changes, and

the regression testing tool is used to automatically rerun them. This automation of the

133

regression testing process can be achieved by way of minor enhancements to the structure

of the existing Automatic Test Script. Figure 7.4 illustrates these enhancements.

/* e x a m p l e . a t s - D e s c r i p t i o n o f an A u t o m a t i c T e s t S c r i p t */

DEFINE GROUP e x a m p l e

/* T e s t g r o u p d e f i n e s a s e r i e s o f t e s t cases */

{

DEFINE CASE f i r s t . t e s t

/* I l l u s t r a t e s t h e s t r u c t u r e o f a t e s t case */

{
SOURCE
"Comment t o e x p l a i n o r i g i n o f t h i s t e s t case";
A C T I V A T I O N

"System commands t o e x e c u t e t h i s t e s t case";

O B J E C T I V E

"Value f o r t e s t c o s t , t i m e , o r p r i o r i t y " ;

TAG
" e x a m p l e . a t s " and "example" and " f i r s t . t e s t " ;
TRACE
" f i r s t . t r c " ;
EVALUATION WITH BASELINE
" f i r s t . o u t " v s . " f i r s t . b a s e l i n e " ;

}

DEFINE CASE s e c o n d . t e s t

}

Figure 7.4 : Enhanced Features of an Automatic Test Script

Three new elements must be added to the test script: a) a test objective (OBJECTIVE)

is defined, which represents the cost factor associated with each test case; b) a test tag

(TAG) is specified, which contains the names of the current test script, test group, and

test case, and c) a tracefile name (TRACE) is given, which the tool suite requires for the

puiposes of structural testing.

134

7.3 Description

In the following section, the functionality of each component in the tool suite is

described and its contribution towards realising a technique for selective revalidation is

emphasized. Implementing an automated system, which assists in the analysis and

retesting of modified software, provides a number of benefits for maintenance

programmers. They would no longer need to spend a considerable amount of time in

analysing the program code to determine the extent of a given modification and in

selecting, what they believe, is an adequate set of regression tests. Instead, their efforts

would be focussed on locating the faulty program code and deciding which change

implementation is the most cost effective. Given a set of change requests, the tool suite

would allow maintenance programmers to judge which test cases can be reiun using the

current level of resources. Moreover, the proposed tool suite would permit a more

tiiorough (re)testing of the program code than could be achieved manually. This improves

tlie confidence of maintenance programmers in the correctness of their software.

7.3.1 Program Instrumentation

Program instrumentation forms the first stage of code analysis conducted by the tool

suite. Its objective is to perform static analysis of C program modules and to prepare

them for the purposes of dynamic testing. For program instrumentation to be successful,

the program code must be syntactically correct. It is then preprocessed in order to expand

any conditional compilation directives and macros that may be present. Furthermore, any

program comments are removed.

As the tool suite performs structural testing of individual program modules, program

instrumentation entails the insertion of probes at every conditional statement (branch) and

sequence of statements (segment) within a program module. These probes are later

executed during dynamic testing to allow the monitoring of different structural test

coverage criteria. In general, the introduction of probes into the existing source code

135

affects the size and performance of the instrumented source code as they represent

additional lines of code.

Apart from generating an instrumented version of the original source file, a

corresponding reference listing is produced for each source file. The listing highlights, by

means of comments, the probes that are inserted into the source code, and contains

various program statistics for each program module. These statistics include the number

of executable lines of code, a summary of the different language constructs used,

Halstead's Software Science [88] and McCabe's cyclomatic number complexity metric

[176].

7.3.2 Program Flow Analysis

Program flow analysis represents the second stage of code analysis conducted by the

tool suite. The component performs interprocedural data-flow analysis of the source

code, which when completed, allows the control dependency and data dependency for

each program module to be determined and represented in a Program Dependency Graph.

At the same time, the test requirements for each program module are derived; a list of

statements, branches, path expressions and definition-use associations are produced.

Apart from generating the information needed for selective revalidation, program flow

analysis also collates information concerning the overall structure of the program. In

particular, the program call-graph is generated which lists both direct and indirect module

calls and provides statistics concerning the number of user-defined modules in the

program, the number of interfaces per module and, more importantly, any unreachable

modules. Such details can prove to be useful to maintenance programmers when

debugging and help them in understanding the program structure.

136

7.3.3 Test Coverage Analysis

When requested, dynamic testing of individual program modules commences using

the instrumented program code and the set of test requirements derived during program

flow analysis. Test coverage analysis performs three important functions: a) the selection

of structural test coverage criteria, b) the compilation of the instrumented program and its

execution with test data, and c) the assessment of the results to ensure the adequacy of the

test data.

Before test execution, users specify their required test coverage criteria with the

component providing a selection of control-flow and data-flow coverage criteria, as

described in Section 2.3.1-2.3.2. In addition, users define a test coverage limit for the

corresponding criteria'. This value represents a threshold value at which the code has been

sufficiently tested, the coverage criteria have been satisfied, and the test data is deemed

adequate.

In order to perform dynamic testing of the program code, test coverage assessment

provides a run-time interface for compiling the instrumented code and executing it with

test data. Users can be delivered to a Unix command-shell from within the environment

which allows them to perform these tasks. During test execution, the probes that were

inserted during program instrumentation, are activated. They result in a set of tracefiles

being generated which contain information about the branches and segments executed

during each test execution. However, the generation of these tracefiles produces a run

time overhead for the instrumented program which is proportional to the number of times

a call is made to the component's corresponding probe function.

Test adequacy is assessed by means of a cumulative analysis. Tlie component judges

test adequacy by referring to the existing tracefiles, the set of test requirements, the

cuiTent test coverage criteria, and the test coverage limit. A test coverage profile is

generated for each module, which indicates the different test requirements, test coverage

137

criteria, and the specified test coverage limit. It indicates which test requirements have

been exercised by the existing set of test cases. I f the test coverage criteria have not been

satisfied to the specified limit, additional test data must be generated by users to validate

the untested program code. This task is made easier through the use of the reference

listing, which was produced during program instrumentation. The entire procedure is

then repeated until the specified test coverage limit is reached. Once satisfactory test

coverage has been achieved, a test summary report is produced by the component. It

considers the testing history of the program in terms of the different test requirements,

test coverage criteria, and the specified test coverage limit.

7.3.4 Change Analysis

The change analysis component relies upon information obtained from program flow

analysis and the set of proposed program modifications which are specified by users.

Each of these modifications needs to be presented in terms of a changed program

statement, which has been either added, deleted, or modified, within a program module.

Subsequently, the component determines, by means of the Program Dependency Graph,

those program statements affected by each proposed modification and lists the

coiTesponding set of test requirements.

7.3.5 Test Suite Management

Test suite management encompasses two important tasks: test selection and test

update. For test selection, a decision model is formulated based on infomation obtained

during change analysis and test coverage analysis. The model constraints are fomied by

combining the testing history of a program module with the set of affected test

requirements resulting from each program modification. Before solving the decision

model, both the test costs and requirements in the model can be adjusted, if necessary. A

new decision model must be established and solved for each program modification being

investigated.

138

After the proposed program modification has been implemented, the resulting set of

retestable tests is executed using the modified program. Test execution histories are

subsequently updated during test coverage analysis; i f any new test requirements have

resulted from the modification, then additional test data may be needed to exercise them.

After the modified code has been tested, the test suite is analysed in order to determine

any redundant test cases which can then be eliminated by users. A decision model,

similar to that defined for test selection, is established and solved. The test update

procedure is based on the current testing history of the program and does not involve the

use of any change analysis information.

Three different algorithms have been implemented to solve the decision models. They

include the cutting-plane method, developed by Gomory, the implicit enumeration

algorithm, described by Balas, and the new heuristic algorithm developed in this thesis.

In the case of test selection, the model solution presents details concerning the proposed

program modification, the identity of the retestable tests, the total cost associated with

these tests, and the type of algorithm used to solve the model. For test update, the model

solution simply identifies the set of redundant tests.

7.4 Summary

In this chapter, the development of a tool suite known as R E T E S T is described

which concentrates on the selective revalidation of program modules during maintenance.

The objective of this tool suite is to support the activities associated with the technique for

selective revalidation described in this thesis. Apart from providing automated support for

the initial validation of the software, the tool suite includes facilities for change analysis

and test suite management. As regression testing tools are currently lacking such

facilities, it is envisaged that the tool suite will be used in conjunction with these tools in

order to complement and enhance current practices.

139

Apart from outlining the design of the proposed tool suite, emphasis is placed on

describing its interface to current regression testing tools. By developing such an

interface, the possibility exists for the complete automation of the regression testing

process. Furthermore, the implementation of the tool suite is briefly described, with the

role of each component with respect to selective revalidation being examined.

140

Chapter 8

Evaluation of Selective Revalidation

8.1 Introductiomi

Few studies have been conducted to demonstrate the benefits and limitations of

selective revalidation. The work by Leung-White [158] represents the only experimental

study which has so far attempted to evaluate a technique for selective revalidation against

the retest-all strategy. The study makes a number of interesting observations concerning

test selection. Compared with the retest-all strategy, significant savings of upto 40% were

achieved in the number of retestable tests selected during unit testing of the modified

software. This figure, however, could be improved through a better choice of revahdation

criterion as the current criterion did not allow an optimal set of retestable tests to be

selected. Furthermore, the authors noted that the extent of a proposed modification on an

existing piece of program code was not a deciding factor in predicting the number of

regression tests which needed to be rerun. Their observation, however, was influenced

by the fact that their selective revalidation technique did not include a change analysis

technique and therefore could not assess the impact of a modification on the program

code. Instead, the authors concentrated on examining the effects of changes on the

program functionality.

The primary objective of this evaluation is to compare the technique for selective

revalidation, developed in this thesis, with both the retest-all strategy and representative

selective revalidation strategies described in Chapter 4. The comparison is made possible

by the fact that the technique described in this thesis is independent of the underiying

testing strategy and can therefore be examined alongside other selective revalidation

techniques based on structural testing strategies. The evaluation aims to assess the

usefulness of the change analysis and operations research techniques. While this

evaluation restricts itself to examining techniques for test selection, it is hoped that future

141

work will allow a similar evaluation to be conducted for those techniques which address

the problem of test update.

In this chapter, a case study is undertaken to demonstrate the benefits and limitations

of the technique for selective revalidation developed in this thesis. In Section 8.2, the

application of the technique is described in three distinct phases: a) initial validation, b)

modification, and c) revaUdation of the sample program. Each phase is discussed in terms

of the code analysis techniques and procedures for test suite management developed in

Chapters 5-6. Section 8.2.1 describes the initial validation of the sample program using

two different structural testing strategies. In Section 8.2.2, maintenance modifications are

applied to a range of program statements. Thus, the effectiveness of the selective

revalidation technique, developed in this thesis, can be compared with other selective

revalidation techniques in terms of change analysis. Section 8.2.3 describes the test

selection procedure and demonstrates how the selective revalidation technique utilises

operations research to select a set of retestable tests. Finally, Section 8.3 analyses and

summarises the results of the evaluation.

Although any conclusions drawn from this case study may be insufficient to

demonstrate the effectiveness of this selective revalidation technique for a broad class of

programs or maintenance activities, they can nevertheless be used to highlight a number

of important properties or characteristics of the technique. In future research, it is hoped

that a larger sample of programs can be analysed to confirm the results and analyses

presented in this thesis.

142

8.2 Application

8.2.1 Initial Validation

The sample program to be analysed, modified, and retested is shown in Figure 8.1.

The program was chosen based on two selecUon criteria, namely program size and

complexity. While program size was measured as lines of executable code (37), the

complexity was determined in terms of McCabe's cyclomatic complexity number [175].

These criteria provided an indication of whether or not the sample program contained a

sufficient number of variable interactions and distinct program paths for the case study to

be non-trivial and yet manageable in terms of analysis and comprehension.

McCabe devised a measure of program complexity V(G) using graph theoretic

techniques. His theory maintained that program complexity was not dependent upon

program size, but on the control structure of the program. Measurement of the complexity

of a program depends on transforming the program so that it is represented in terms of its

control-flow graph G, and counts the number of nodes n, edges e and connected

components in a graph; thus, the complexity of a program can be calculated using

V(G)=e-n+2. Alternatively, the metric can be determined by adding one to the number of

decision statements in the program. For the sample program, therefore, the McCabe's

complexity number is six.

The McCabe complexity metric has some validity, but it suffers from a number of

disadvantages. It does not take into account the data structures used in the program, the

program comments, or the use of meaningful variable names. However, the metric was

chosen as a selection criterion for this case study, as it is widely used and accepted in the

software engineering community despite its apparent disadvantages.

143

(C (0

U

O

I I I I I I

a tD oi
I I I I I I

a o en

m (0 rH

I I I I I I I I It I I I I I I I I I I I I I I I I It I I I I I I

o

U in

•—• ns <-{
w » ^

I I I I I I

Q D 05

u in
in <N

I I I I I I I I I I I I I I I I . I I I I I I I I I I I I I I

Q D 05 Q D D i

C o •a
cj
3 -a >

2 O

CO

(1)

(0
X
0)

E
CO

Dl
O
U

O

XI O - H >
- + C D -

(0 A d)

C (0 I I —
H O) M-l

0)

c
<1) + +

<0
C II C I I

C c o • H • H
0) + + 0) Dl (0 -0 D) +

. c . c A 01 c (1) c
Hi 4 J

•0 Xi 0)
01 Xi 0) u

,— C I I £ I I .-^ c —̂ (A n I I u (V
c o • H • H o • H <«-i < H • H c
0) Gi 43 "0 D) <0 0) - H d) T i D) o d) +

X ! A 0) C 01 c A 0) c 0) c x:
4-1

0)
ja

u
(I) XI

0)
01 XI o

C — CI) c — cn — C II XJ

T l
C
0)

(1)
m

0)-
(1)
XI

o

C A 0)
i) XI

Dl 0) T3 (0
C —

4 J

4̂

S T l

01

00

144

Instrumentation and flow analysis prepared the sample program for testing and allowed

the necessary control dependency and data dependency information to be derived; the

resulting data-flow graph is shown in Figure 8.1. Test requirements, in particular, path

expressions and definition-use associations were determined for the sample program.

These were required as the technique for selective revalidation was to be compared not

only with the retest-all strategy, but also with two selective revalidation techniques, one of

which was based on the path testing criterion and the other on the all-uses data-flow

testing criterion. In fact, flow analysis identified a total of ten paths and thirty-two

definition-use associations in the program.

The sample program was then validated using a combination of functional and

structural testing techniques. A test case order was maintained whereby the imposed

structural test coverage criterion was first satisfied using functional test cases and later

supplemented with additional structural tests. Functional tests were derived from the

natural language specification of the sample program and defined using, for example,

boundary-value analysis and equivalence partitioning. With boundary-value analysis,

extremal data values close to the boundary input values specified for the program were

chosen. The concept of equivalence partitioning was then used to supplement this set of

input values by selecting additional values from within the typical operating range of the

program's input domain.

The resulting test suites for the sample program are shown in Figure 8.2, with the

testing history in Figure 8.2(a) being based on path testing and the testing history in

Figure 8.2(b) being based on the all-uses data-flow testing. Although the test cases

generated are labelled Ti-Tio and TpTy, respectively, they do not necessarily represent

the same test inputs; the test data used to satisfy the data-flow testing criterion consisted of

a subset of test cases used for path testing.

145

Program Test Test Test Test Test Test Test Test Test Test
Statement T i T2 T3 T4 Ts Te T7 T8 T9 Tio

1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 0 0 0 0 0 0
5 1 1 0 0 0 0 0 0 0 0
6 0 0 1 1 0 0 0 0 0 0
7 0 0 0 0 1 1 1 1 1 1
8 0 0 0 0 1 1 1 1 0 0
9 0 0 0 0 1 1 0 0 0 0
10 0 0 0 0 0 0 1 1 0 0
11 0 0 0 0 0 0 0 0 1 1
12 1 1 1 1 1 1 1 1 1 1
13 1 0 1 0 1 0 1 0 1 0
14 1 1 1 1 1 1 1 1 1 1

Figure 8.2(a): Testing History Based on Path Coverage

Definition-Use Test Test Test Test Test Test Test
Association T i T2 T3 T4 T5 T6 T7

(a,1,2) 1 1 1 1 1 1 1
(a,l,(3,4)) 1 1 1 0 0 0 0
(a,l,(3,7)) 0 0 0 1 1 1 0

(a,l,6) 0 0 1 0 0 0 0
(a,l,9) 0 0 0 1 1 0 0
(a,l,10) 0 0 0 0 0 1 0
(a, 1,14) 1 1 1 1 1 1 1
(a,6,14) 0 0 1 0 0 0 0
(a,9,14) 0 0 0 1 1 0 0

(a, 10,14) 0 0 0 0 0 1 0
(b,l,(4,5)) 1 1 0 0 0 0 0
(b, 1,(4,6)) 0 0 1 0 0 0 0

(b,l,5) 1 1 0 0 0 0 0
(b,l,13) 1 0 1 1 0 0 1
(b,l,14) 1 1 1 1 1 1 1
(b,5,13) 1 0 0 0 0 0 0
(b,5,14) 1 1 0 0 0 0 0

(c, 1,(7,8)) 0 0 0 1 1 1 0
(c, 1,(7,11)) 0 0 0 0 0 0 1

(c , l , l l) 0 0 0 0 0 0 1
(c,l,13) 1 0 1 1 0 0 1
(c,l,14) 1 1 1 1 1 1 1

(c,ll,13) 0 0 0 0 0 0 1
(c,ll,14) 0 0 0 0 0 0 1

(cl,l,2) 1 1 1 1 1 1 1
(d,l,(8,9)) 0 0 0 1 1 0 0
(d,l,(8,10)) 0 0 0 0 0 1 0

(d,l,14) 1 1 1 1 1 1 1
(e, 13,14) 1 0 1 1 0 0 1

(f,2,(12,13)) 1 0 1 1 0 0 1
(f,2,(12,14)) 1 1 1 1 1 1 1

(f,2,14) 1 1 1 1 1 1 1

Figure 8.2(b): Testing History Based on All-Uses Coverage

146

8.2.2 Modification

During the experimentation conducted by Leung-White, modifications were specified

in response to a set of change requests. However, the locations of these modifications

within the program code were, in effect, ad hoc. No systematic approach was taken by

the authors to examine the performance of the associated selective revalidation technique

for a wide range of maintenance scenarios. Instead, Leung-White concentrated on the

analysis of a small set of ad hoc program changes from which they drew conclusions

concerning the performance of their selective revalidation technique.

However, the evaluation described in this thesis uses a more systematic approach by

first classifying the program statements in terms of their criticality. This criticality is

determined by an inspection of the program's control structure whereby statements of

high criticality, medium criticality and low criticality are identified according to whether

they were traversed by most, some or relatively few program paths, respectively.

Subsequently, modifications to statements of high, medium and low criticality are

categorised into Type I, Type n and Type HI modifications, respectively. For example, a

Type I modification is associated with statements of high criticality such as the entry

statement (1) and exit statement (14) of the sample program. Modifications to the sample

program are undertaken as changes to individual statements. The change analysis

technique is then applied to each variable definition and use in the modified statement.

Consequently, a set of affected program statements, that is test requirements, is

determined.

The application of the change analysis technique to statements of different criticality

enabled its effectiveness to be evaluated for a range of possible maintenance scenarios. It

also allowed the benefits and limitations of the selective revalidafion technique, in

selecting the set of affected test requirements, to be demonstrated. Compared with the two

other selective revalidation strategies, which reUed upon a manual inspection of the testing

147

history to select their affected statements or definition-use associations, the change

analysis technique can be used to systematically determine the extent of each modification.

To achieve this, the change analysis technique relies upon both the control

dependency and data dependency derived during flow analysis. This information is often

displayed using its graphic representation. Figure 8.3, however, represents it in the form

of matrices. While the control dependency matrix embodies both the C o n t r o l S u c c and

C o n t r o l P r e d relations associated with the Control Dependency Graph, the data

dependency matrix represents the R e a c h a b l e N o d e s relation, that is the transitive

closure of the Data Dependency Graph. This matrix, which forms the reachability matrix

of the data dependency matrix, depicts both direct and indirect interactions between each

variable use and its corresponding set of definitions in the program. Direct and indirect

interactions are indicated by means of the non-zero values in the matrix.

Dl
C

-H
U
(0 0)
a:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Reached Statements

1 2 3 4 5 6 7 8 91011121314

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0
0 0 0

0
0
0
0

0 0
1 1

0 0
1
0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0
0 0
0 0
1 1
0 0
0 0
0 0
0 0
0 0
0 0

0 0
0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0
0
0 0 0
0 0 0
0 0 0

0 0
1 0
0 0
0 0

43

u

1
2
3
4
5
6
7
8
9
10
11
12
13
14

V a r i a b l e De f in i t i ons

1 2 3 4 5 6 7 8 91011121314

0
0
0
0
0
0 0
0 0
0 0
0
0 0
0 0
1 0
0 0
1 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0

0
0
0

0 0
0
0
0
0
0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0

0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0

0
0
0
0
0
0
0
0
0
0

0 0
0 0
0 0
0 0
1 0

(a) Control Dependency (b) Data Dependency

Figure 8.3 : Dependency Information for the Sample Program

All variable interactions in the reachability matrix are listed according to the program

statements in which they occur. By calculating the transitive closure of the program's data

dependency, the change analysis technique can determine the possible extent of a program

148

modification with respect to every statement in the program. The effects of the

modification are then expressed in terms of the number and identity of affected program

statements or definition-use associations.

Apart from the control dependency matrix, the row and column vectors of the

reachability matrix, which are associated with the modified program statement, are

examined. For example, a proposed modification to statement 13 in the sample program

yields two reachability matrix bit-vectors, [10001000001010] and [00000000000011].

They correspond to those variable defmitions, which directly or indirectly may affect the

value of the computation being performed in statement 13, and those variable uses

possibly affected by the changed value. Subsequently, a total of five statements (1, 5, 11,

13 and 14) and seven definition-use associations ((b,l,5), (b,l,13), (b,5,13), (c , l , l l) ,

(c,l,13), (c,ll,13) and (e,13,14)) are implicated. In constrast, the two existing selective

revalidation techniques either overestimate the number of affected program statements or

underestimate the number of affected definition-use associations. While the technique

based on path testing causes virtually all program statements to be flagged as affected, the

technique based on data-flow testing identifies a total of six definition-use associations

((b,l,13), (b,5,13), (c,l,13), (c,ll ,13), (e,13,14) and (f,2,(12,13))). The implications

of such over- and underestimates are demonstrated in this evaluation.

8.2.3 Revalidation

Revalidation of the sample program entailed the selection of a set of retestable tests

based on the affected test requirements identified during the modifications. Using the two

test suites created during initial validation, the retest-all strategy simply required the entire

test suite to be rerun. For the two representative selective revalidation techniques, test

selection criteria were applied which involved a manual inspection of the conesponding

testing history. These criteria specified that all test cases, which traversed the affected test

requirements, needed to be rerun. For example, the modification of statement 13 in the

sample program required five test cases (Ti, T3, T5, T7 and T9) to be selected for rerun

149

from the testing history shown in Figure 8.2(a) and four test cases (Tj, T 3 , T 4 , T 7) to be

selected from the testing history shown in Figure 8.2(b).

However, the technique for selective revalidation developed in this thesis can be used

to further reduce the number of retestable tests. Thus, for the modification of statement

13, two decision models are defined; one of which is based on the path testing history,

the other on the data-flow testing history. In both cases, an objective function Z is

specified in terms of a set of decision variables X which represented the number of test

cases in the respective test suite. The aim of the objective function is to select a minimal

number of retestable tests, with a set of constraints being established to reflect the affected

testing history 1.

Equations 8.1-8.6 depict a decision model which reflects the test cases and test

requirements associated with a proposed modification of statement 13; the model is based

on the path testing history illustrated in Figure 8.2(a). (Note that the test requirements in

the leftmost column represent affected program statements which are used to facilitate the

discussion of each decision model and do not form an actual part of the decision model.)

Z = X i + X2 + X3 + X4 + X5 + Xe + Xy + Xa + Xg + X10 (8.1)

I X i + X2 + X3 + X4 + X5 + Xe + X7 + Xs + Xg + X i 0 ^ 1 (8.2)
5 X i + X2 > 1 (8.3)

I I Xg + X10 ^ 1 (8.4)
13 X i + X3 + X5 + Xy + Xg > 1 (8.5)
1 4 X i + X2 + X3 + X4 + X5 + Xe + Xy + Xa + Xg + X i 0 ^ 1 (8.6)

Similarly, Equations 8.7-8.14 represent a decision model which is based on the data

flow testing history shown in Figure 8.2(b). (Note that the test requirements in the

leftmost column represent affected defmition-use assocations which are used to facilitate

^ Recall that for a modification of statement 13, the technique identified five statements (1, 5, 11, 13 and 14)
and seven definition-use associations ((b,l,5), (b,l,13), (b,5,13), (c , l , l l) , (c,l,13), (c,ll,13) and (e,13,14)).

150

the discussion of each decision model and do not form an actual part of the decision

model.)

Z = Xi -I- X2 + X3 -I- X4 -h X5 -I- Xe + Xy (8.7)

(b , l ,5) Xi + X2 > 1 (8.8)

(b,l,13) X i + X3 + X4 + Xy > 1 (8.9)

(b,5,13) X i > 1 (8.10)

(c . l . l l) Xy > 1 (8.11)

(c,l,13) X i + X3 + X4 + Xy > 1 (8.12)

(c, l l ,13) . Xy > 1 (8.13)

(e,13,14) X i + X3 + X4 + Xy > 1 (8.14)

In order to solve the two decision models, the new heuristic method described in

Section 6.4.5 is applied. In both instances, the solution consists of two test cases

whereby the former decision model is satisfied by test cases T i (xi=l) and T9 (x9=l),

while the latter model is satisfied by test cases T i (xi=l) and T7 (x7=l). These solutions

represent an optimal set of test cases for traversing only the affected test requirements and

thus affected program code. To compare the technique with the retest-all strategy, as well

as the two other selective revalidation techniques, it was assumed that each decision

model included equal test costs (cj = 1) and constraint requirements (bi > 1). This

assumption enabled comparisons to be made solely in terms of the number of test cases

and ensured that at least one test case was required to exercise the affected statement or

definition-use association.

8.3 Results and Analysis

Tables 8.1-8.2 summarise the results obtained when the four different regression

testing strategies were applied to the sample program and its associated testing histories.

Statements were classified according to their criticality and modifications of Type I , n and

I I I were performed. For each statement, the extent of the modification was then

calculated. This was based on the testing criterion associated with the respective testing

151

history. While the selective revalidation technique based on path testing identified all those

statements which lay on program paths traversing the modified statement, the technique

based on data-flow testing determined the affected definition-use associations. In

constrast, the technique developed in this thesis used change analysis to systematically

select the affected test requirements from both testing histories.

A decision model was then established and solved, with the coiresponding number of

retestable tests being recorded. The performance of each selective revalidation technique

was measured in terms of the reduction or savings achieved in the number of retestable

tests. A metric was developed in which the percentage reduction achieved by the selective

revalidation technique was defmed as the ratio of the number of retestable tests to tlie total

number of test cases in the respective test suite.

152

T
yp

e
II

I

r—t 00 <N o o o o cs o oo

T
yp

e
II

I

O (S o o o a\ o o oo

T
yp

e
II

I

0\ CO o CN o o o o o oo

T
yp

e
II

I

CO 00 (N o O o O o
00

T
yp

e
II

I

00 o o o o o
00

T
yp

e
II

o o o
00

o >o o
IT)

T
yp

e
II

 00 m <s o •t o o
(N

o
00

o O vo

T
yp

e
II

00 m o o o o vo O T
yp

e
II

«s o\ o O o
00

o o

o\ <o o o o >o o 8 o

<s r~ «s •<t o o o o
00 8 o

T
yp

e
I

cs
y—i

o o o
IT)

o >ri 8 o

ts o o o
(S

o
00 8 o

o o o o 8 o

M
od

ifi
ca

tio
n

St
at

em
en

t

E
xt

en
t o

f
M

od
ifi

ca
tio

n
(S

ta
te

m
en

ts
)

N
um

be
r

of
 R

et
es

ta
bl

e
T

es
ts

(M

y
A

pp
ro

ac
h)

A
ff

ec
te

d
St

at
em

en
ts

(O

th
er

 A
pp

ro
ac

h)

N
um

be
r

of
 R

et
es

ta
bl

e
T

es
ts

(O

th
er

 A
pp

ro
ac

h)

To
ta

l N
um

be
r

of
 T

es
t C

as
es

(R

et
es

t-
al

l
A

pp
ro

ac
h)

R
et

es
ta

bl
e

T
es

ts
/T

ot
al

 T
es

ts

in
 %

 (
M

y
A

pp
ro

ac
h)

Sa
vi

ng
s

in
 T

es
t C

as
es

 in
 %

(M

y
A

pp
ro

ac
h)

R
et

es
ta

bl
e

T
es

ts
/T

ot
al

 T
es

ts

in
 %

 (
O

th
er

 A
pp

ro
ac

h)

Sa
vi

ng
s

in
 T

es
t C

as
es

 in
 %

(O

th
er

 A
pp

ro
ac

h)

c
o

I
•c
U
c •a

•S
c
o

CO
PQ
VI
o
•a
B
00
c
o

T3

h

00

I

153

T
yp

e
II

I

T i •<r VO
oo

VO 00

T
yp

e
II

I

o ro t~ VO 00 VO 00

T
yp

e
II

I

<s VO 00 00 <N <s

T
yp

e
II

I

VO m r-- VO oo VO 00

T
yp

e
II

I

•t r~ VO oo OS
<s

T
yp

e
II

m VO 00 «N ts IT)

T
yp

e
II

 00 VO ts m r~ 00
cs r~

T
yp

e
II

t~ 1^ t~ >o in
en T

yp
e

II

• t 00 r~- 00 fS r~-

T
yp

e
I

r- r-- 0̂ 8 o

T
yp

e
I

<s cs r~ f- oo <s n r~ 8 o

T
yp

e
I

m in r- T-H

r-
Ov 8 o

T
yp

e
I

«s <s >o r- r- oo <s (S 8 o

T
yp

e
I

f—1 ,—1

d r- r- n 8 o

M
od

ifi
ca

tio
n

St
at

em
en

t

E
xt

en
t

of
 M

od
ifi

ca
tio

n
(D

ef
in

it
io

n-
U

se
 A

ss
oc

s.
)

N
um

be
r

of
 R

et
es

ta
bl

e
T

es
ts

(M

y
A

pp
ro

ac
h)

A
ff

ec
te

d
D

ef
in

it
io

n-
U

se

A
ss

oc
s.

 (
O

th
er

 A
pp

ro
ac

h)

N
um

be
r

of
 R

et
es

ta
bl

e
T

es
ts

(O

th
er

 A
pp

ro
ac

h)

T
ot

al
 N

um
be

r
of

 T
es

t C
as

es

(R
et

es
t-

al
l A

pp
ro

ac
h)

R
et

es
ta

bl
e

T
es

ts
/T

ot
al

 T
es

ts

in
 %

 (
M

y
A

pp
ro

ac
h)

Sa
vi

ng
s

in
 T

es
t

C
as

es
 in

 %

(M
y

A
pp

ro
ac

h)

R
et

es
ta

bl
e

T
es

ts
/T

ot
al

 T
es

ts

in
 %

 (
O

th
er

 A
pp

ro
ac

h)

Sa
vi

ng
s

in
 T

es
t

C
as

es
 in

 %

(O
th

er
 A

pp
ro

ac
h)

c
o
•a
5
c
GO

O
E
i
Q

I
c
o
T3 V
m
O
•a
1 CO
a
o

-a

oo
u

154

The different selective revalidation techniques were compared against the retest-all

strategy in terms of the reductions or savings attained in the number of retestable tests.

This revealed that the traditional selective revalidation techniques provided an average

saving of approximately 40%, which confirmed the results obtained by Leung-White

during their empirical study. However, the technique developed in this tliesis was able to

improve on this figure and attain average savings of 77% and 67% when applied with

respect to a test suite consisting of a path testing and data-flow testing history,

respectively. This suggested that the technique could provide an average improvement in

savings of 69% over existing selective revalidation techniques. Tables 8.3-8.4 summarise

the savings attained in the number of retestable tests with respect to the criticality of the

modified program statements.

Criticahty of
Statements High Medium Low Average

Average Savings
(Otiier Approach) 0% 53% 80% 44%
Average Savings
(My Approach) 62% 78% 90% 77%

Table 8.3: Savings Attained for the Path Testing Histoiy

Criticality of
Statements High Medium Low Average

Average Savings
(Other Approach) 0% 50% 72% 41%
Average Savings
(My Approach) 46% 68% 86% 67%

Table 8.4: Savings Attained for the Data-Flow Testing Histoiy

Tables 8.3-8.4 also highlight the fact that the three techniques for selective

revalidation chosen for this study provide the most significant savings whenever they are

used to revalidate modified statements of low criticality. As these statements tend to be

traversed by fewer program paths, and their modification implicates few data

dependencies within the program, then substantial savings can be attained by the selective

revalidation techniques compared with the retest-all strategy. While the existing

techniques select their retestable tests based on an inspection of the test suite, the

155

technique described in tliis thesis achieves its sUght improvement in savings by examining

the existing variable interactions, which induce a ripple effect, and attempting to optimise

the resulting set of affected test cases.

Tables 8.3-8.4 also indicate that the modification of highly critical statements results

in the least amount of savings. Statements of high criticality are usually traversed by the

majority of program paths and contain computations that interact with variables

throughout the program code. Therefore, these statements tend to implicate the majority of

statements when modified. In such circumstances, traditional selective revalidation

techniques can provide little, i f any, savings, with all test cases in the respective test suite

needing to be rerun. However, the technique described in this thesis can attain a

substantial reduction in the number of retestable tests by using change analysis to trace die

ripple effects induced by the modified variables and operations research to determine an

optimal set of tests.

Tables 8.5-8.6 support the notion that change analysis is especially useful in the

selective revalidation of highly critical statements and that it should form an essential part

of any selective revalidation technique. The two tables illustrate the extent of each

modification in terms of the number of affected program statements and definition-use

associations. They reveal that the technique based on path testing produces a persistent

overestimate in the number of affected statements with respect to the technique described

in this thesis. Conversely, the technique based on data-flow testing tends to underestimate

the number of affected definition-use associations. This trend is particularly evident when

considering the extent of any modifications due to highly critical statements.

Criticality of
Statements High Medium Low Average

Affected Statements
(Other Approach) 14 11 9 11

Affected Statements
(My Approach) 10 6 3 6

Table 8.5: Extent of Modifications for the Path Testing Criterion

156

Criticality of
Statements High Medium Low Average

Affected Definition-
Use Associations
(Other Approach)

8 4 3 5

Affected Definition-
Use Associations
(My Approach)

20 8 3 10

Table 8.6: Extent of Modifications for the All-Uses Data-Row Testmg Criterion

The technique based on data-flow testing only examines first order ripple effects and

therefore identifies only those subpaths in the immediate vicinity of the modified

statement. This, however, means that the technique underestimates the number of affected

definition-use associations in the presence of any higher order ripple effects, and

subsequently overestimates the number of retestable tests. Similarly, the technique based

on path testing overestimates the number of retestable tests. In this case, the technique

disregards any ripple effects and simply assumes that a modified statement is associated

with statements on all program paths exercising it - the number of affected statements is

overestimated. However, the change analysis technique described in this thesis is more

discerning. In the presence of higher order ripple effects, it not only identifies directly,

but also indirectly affected statements. Subsequently, long sequences of interrelated

variable definifions and uses help the retesting effort to focus on possibly affected

program paths and assist in selecting the retestable tests. As suggested above, the

technique for selective revalidation performs particularly well for statements which induce

a high order ripple effect.

8.5 Summary

In this chapter, a case study was conducted in order to evaluate the technique for

selective revalidation developed in this thesis. Using a sample program, which was

initially validated using two different structural testing strategies and then modified,

comparisons were made with both the retest-all strategy and representative selective

157

revalidation strategies. The evaluation assessed the usefulness of change analysis and

operations research techniques as part of a selective revalidation technique, and also

examined the factors influencing the effectiveness of die selective revalidation technique

described in this thesis.

A number of interesting observations were made as a result of this evaluation. It was

found that considerable savings in the number of retestable tests were achieved not only

with respect to the retest-all strategy, but also with respect to the two traditional selective

revalidation techniques. In fact, an average reduction of 72% was attained in comparison

with the retest-all strategy, together with an improvement of neariy die same amount over

existing selective revalidation techniques.

Although the technique described in this thesis attained the largest reduction in test

cases when applied to the modification of low criticality statements, its change analysis

and operations research techniques proved to be most beneficial when retesting changes to

highly critical statements. For each type of modification, the systematic identificadon of

affected test requirements, as well as the efficient reduction of the corresponding set of

test cases, enabled the technique to significantly reduce the number of retestable tests. The

technique proved that it could maintain an appreciable reduction in the number of

retestable tests for a range of maintenance modifications.

158

Chapter 9

Conclusions

9.1 Contributions

The work described in this thesis has addressed the subject of regression testing with

particular emphasis placed on developing a technique for selective revalidation. The

technique has been applied to the regression testing of programs during the maintenance

phase of the software lifecycle. It is intended to help maintenance programmers analyse

and retest their software in a systematic and efficient manner. This technique, together

with the supporting software tools, can lead to a reduction of resources required for

regression testing and can improve the confidence of maintenance programmers by

ensuring that their modifications have been adequately tested. To achieve this, the

technique involves the application of code analysis and operations research.

Code analysis techniques have been developed in order to systematically derive

information about the structure of a program and assess the impact of any proposed

modifications on the existing program code. In particular, these techniques have been

directed at the analysis of programs written in the C programming language. Techniques

for dependency analysis have been developed to examine the control dependency and data

dependency of a program and depict them by way of a graphical representation known as

the Program Dependency Graph. Emphasis has also been placed on addressing the

problems of pointer variables and their aliases, as well as examining the dependencies

which arise from them.

In response to a proposed program modification, the existing program code has to be

analysed in order to determine which parts of the code could be directly or indirectly

affected by the change. A change analysis technique has therefore been developed to

examine the dependencies depicted in the Program Dependency Graph and to identify the

159

affected program statements. The technique can then be used to select those test

requirements, that is test cases, which exercise the affected paits of the program.

Apart from code analysis, the technique for selective revalidation has addressed the

issue of test suite classification in which test cases are categorised into reusable,

retestable, redundant and new tests. It has subsequently highlighted the problems of test

suite management, namely test selection and test update, and proposed solutions to these

problems. A detailed description of the technique has been given to show how the

concept of selective revalidation can be integrated into the traditional maintenance cycle.

Techniques adopted from operations research have been used to efficiently select a set

of retestable tests during test selection and identify any redundant tests in the test suite

during test update. By formulating the problems of test selection and test update as

decision problems, it has become possible to consider a wide range of regression testing

objectives and constraints. In fact, the corresponding decision models can consider

objectives, such as the number, cost and priority of test cases, and constraints resulting

from die use of different structural testing techniques as well as the testing requirements

associated with critical parts of the program code. In addition, the decision models can

accommodate the situation whereby several testing objectives need to be considered

simultaneously.

Both optimal and approximation algorithms have been examined in order to find a

way of solving die decision models associated with the problems of test selection and test

update. Emphasis is placed on describing cutting-plane methods and implicit enumeration

techniques which can provide optimal solutions to these problems. However, due to their

potentially exponential run-time, such algorithms may not be able to produce a solution to

larger problems in a reasonable amount of time. Therefore, a new heuristic method,

which compares favourably with both optimal and approximation algorithms in terns of

die size of its solutions and its worst-case run-time complexity, has been developed.

160

When working with large and complex programs, it is impractical to analyse and

retest the software without the aid of suitable software tools. A tool suite has therefore

been designed to realise the technique for selective revalidation and automate the tasks

associated with code analysis and test suite management. In particular, the interface

between existing regression testing tools and the tool suite is described. Together, these

tools can potentially lead to the complete automation of regression testing.

A case study is presented which evaluates the benefits and limitations of the selective

revalidation technique described in this thesis. In this study, the technique is compared

with both the retest-all strategy and other selective revalidation strategies described in this

thesis. Its results indicate that, for a range of maintenance modifications, the technique

selects on average 72% fewer test cases compared with the retest-all strategy, with a

similar saving in test cases being attained with respect to the existing selective revalidation

techniques based on path testing and data-flow testing. The effectiveness of the technique

appears to be directly dependent upon the location and extent of the proposed program

modifications.

9.2 Future Directions

9.2.1 Code Analysis Techniques

The work described in this thesis concentrates on the development of code analysis

techniques for individual program modules, with the resulting control dependency and

data dependency information being represented by a Program Dependency Graph. These

techniques, however, do not allow a program, which may consist of a collection of

modules, to be examined. One way of overcoming this problem would be to construct a

Program Dependency Graph by in-line substitution; this would involve replacing every

call to a program module by its corresponding control dependency and data dependency

information.

161

However, this representation would be prohibitive for all, but the most trivial, of

programs. An alternative approach is to develop a System Dependency Graph, whereby a

Program Dependency Graph is constructed for each module in the program and the

individual Program Dependency Graphs are then linked via two types of dependency:

calling dependency and parameter dependency. The calling dependency reflects the

control dependency existing between two program modules and intends to capture their

calling context. With respect to a collection of modules, this interaction is often illusttated

by means of the program call-graph. The parameter dependency reflects the data

dependency, which may arise between two program modules as a result of parameter

aliasing where two distinct variables simultaneously accessing die same memoiy location.

In this case, a dependency would be created between each actual parameter of the calling

module and the corresponding formal parameter of the called module. Global variables

would then be treated as additional module parameters.

The development of a System Dependency Graph would allow the existing change

analysis technique to be extended so as to enable it to trace the impact of any proposed

maintenance modifications across the module boundaries. To achieve this, change

analysis would rely upon the use of the calling dependency and parameter dependency

information. It would be described as an iterative process characterised by the alternate

application of in?raprocedural and mferprocedural code analysis. For example, in

response to a proposed modification, the dependencies would first be analysed within the

context of a program module. I f it is found that any of the interface variables, such as

global variables and module parameters, are affected, then the change analysis technique

would trace the corresponding dependencies across the respective module boundaries and

repeat the process for each implicated program module.

A significant task, which has not been addressed in this thesis, is the development of

incremental code analysis techniques. At present, any changes made to the program code

result in a complete reanalysis of the modified code. However, incremental code analysis

would allow a program's control dependency and data dependency information, as well

162

as its test requirements, to be updated without the need for such an exhaustive analysis.

Operations could then be defined for incrementally updating the Program Dependency

Graphs and System Dependency Graph.

The proposed tool suite was designed so that new tools could easily be integrated and

existing ones upgraded. With some extensions, the existing intraprocedural code analysis

techniques could be used to derive data dependencies and test requirements, such as

interprocedural definition-use associations, and develop a System Dependency Graph.

Consequently, the existing change analysis technique could be upgraded to enable it to

examine these dependencies within the framework of a System Dependency Graph.

Moreover, incremental parsing and data-flow techniques and tools would need to be

developed, implemented and integrated into the tool suite.

9.2.2 Test Suite Management

The work described in this thesis concentrates on solving the problems of test suite

management. Emphasis is placed on the development of procedures for test selection and

test update, which ensure that modifications made to individual program modules can be

efficiently revalidated. The application of operations research, however, has led to the

development of a technique for selective revalidation which is independent of any testing

strategy and could therefore be applied not only to the testing of code modules (unit

tesfing), but also to the testing of the design specification (integration testing) and

functional specification (system testing). It is therefore possible to extend the scope of the

technique by applying it to the analysis and retesting of changes made not only to the

implementation, but also to the specification and design of a program.

A functional specification usually describes the functionality of a program in tems of

a set of features. During system testing, each feature is exercised by a set of test cases

and the results are recorded in a feature-test matrix. A l l test cases are generated using

functional testing and the feature-test matrix represents the testing histoiy of tlie program

163

specification. Each entiy in the matrix takes either the value zero, or one, depending upon

whether, or not, a test case exercises a particular feature.

The design specification relates to the decomposition of each feature into a

corresponding set of data structures or design functions^. A structure chart is

established in which the design functions and their interactions may be represented. Each

design function is then refined, which entails specifying the function in terms of a

hierarchy of subordinate design functions. As the refinement progresses, the algorithms

used in each design function can be specified, in detail, by means of pseudocode or

flowcharts. If , for example, the design is based on the Jackson Structured Programming

methodology (JSP) [128], or Wamier-Orr method [252], test cases may be derived from

the structure chart and recorded in a condition-test matrix to represent the testing history

of the program design. Each entry in this matrix takes either the value zero, or one,

depending upon whether, or not, a test case exercises a particular design condition.

For the implementation, each design function is coded as either a program module or

a collection of modules. These code modules can then be tested individually (unit testing)

or collectively (integration testing). In each case, a test case order prevails insofar as the

test cases derived from the design specification are executed first in order to exercise

some components in the program code. Additional test cases are tiien used to validate the

remaining program code. For integration testing, the test cases are recorded in a module-

test matrix reflecting the testing history of the implementation. Each entry in this matrix

takes either the value zero, or one, depending upon whether, or not, a test case exercises

a particular program module.

During maintenance, each change proposal is decomposed into a set of basic

modifications with respect to the program specification, design and implementation.

Changes made to the each of these program attributes may be related to the addition,

^ This approach assumes the use of a function-oriented design methodology.

164

deletion or modification of features, functions and code modules. In the case of perfective

maintenance, for example, changes would need to be made to the program specification,

design and code. Subsequently, the technique for selective revalidation, described in this

thesis, would be applied in a top-down fashion whereby a proposed change at the

specification level would also be analysed and retested at the design and code levels. For

each program attribute, the procedure for test selection would examine the impact of the

proposed modification and, based on the corresponding requirements-test matrix, select a

set of retestable tests. The procedure for test update would then be invoked in order to

update the respective testing history and ensure that the test coverage criterion with

respect to that attribute is satisfied.

The technique described in this thesis therefore represents a consistent approach to

selective revalidation in which the same procedures for test selection and test update can

be applied to the analysis and retesting of a modified program specification, design and

implementation. Thus, a proposed modification is validated not only widi respect to each

program attribute at a given level, but also with respect to all attributes at lower levels in

the program hierarchy.

9.2.3 Operations Research

The work described in this thesis concentrates on developing a heuristic method

which can be used to solve the problems of test selection and test update. However,

further empirical evidence is required in order to determine the effectiveness of the

heuristic and its application to problems of test suite management. To achieve this,

different test suites w i l l need to be examined whose characteristics vary in terms of the

number of decision variables (test cases) and constraints (testing subsets), associated test

costs and imposed constraint requirements. The algorithm would then be applied to each

test suite in order to determine its cover. The size of this cover could then be compared to

those generated using different optimal algorithms.

165

Appendix A

Glossary of Terminology

Acceptance Testing Formal testing conducted to determine whether or

not a program satisfies its acceptance criteria, tliat

is, enable the customer to determine whether or

not to accept the system.

Adaptive Maintenance Maintenance activities performed to make a

program usable i n a changed operating

environment . Contrast w i t h : corrective

maintenance; perfective maintenance; preventive

maintenance.

Backward Data-Flow Problem The problem associated with determining a set of

statements affecting a given statement in ternis of

their control-flow and data-flow interactions witii

that statement.

Basic Blocks A linear sequence of program statements with a

single entry and exit point. Also referred to as a

segment. Constrast with: Linear Code Sequence

and Jump.

Bottom-Up Testing Pertains to a testing activity which starts with the

lowest-level components of a software system

hierarchy and proceeds through progressively

higher levels. Contrast with: top-down testing.

166

Branch Testing Testing designed to execute each outcome of each

decision point in a program. Contrast with;

conditional testing; path testing; statement testing.

C a l l - G r a p h A diagram, usually in the form a graph, which

identifies the modules in a software system and

shows which modules call one another.

Cause-Effect Graphing Testing strategy in which test cases are developed

based on combinations of input conditions

(causes) and their expected outputs (effects).

Causes and effects are related by means of a

graph which is derived f rom a program's

specification.

Code Analysis The process of examining a program in order to

gain some knowledge of its structure or

execution behaviour.

Conditional Testing Testing strategy in which the outcomes of the

individual and overall predicate expressions at

each decision point in the program are exercised

by test cases. Contrast with: branch testing; path

testing; statement testing.

Control-Flow Graph A diagram, usually in the form of a graph, which

depicts the control structure of a program and

indicates the possible sequences in which

operations may be performed during the

167

execution of a program.

Control-Flow Testing Testing strategy which relies upon the control

structure of a program as the basis for developing

test cases.

Corrective Maintenance Maintenance activities performed to conect faults

in a program. Contrast w i th ; adaptive

maintenance; perfective maintenance; preventive

maintenance.

Corrective Regression Testing Regression testing that is applied whenever the

program functionality remains unchanged, and

the program modifications are restricted to the

code.

Correctness The extent to which software meets its specified

requirements.

Data-Flow Graph A diagram, usually in the form of a graph, which

depicts the data structure of a program and

indicates possible sequences in which variables

are assigned and referenced during the execution

of a program.

Data-FIow Testing Testing strategy which relies upon the data

structure of a program as the basis for developing

test cases.

168

Def-Use Association An ordered triple in which the first element

identifies a given program variable, the second

element depicts a program statement containing a

definition of that variable, and the third element

represents a statement or ordered pair of

statements containing a coiresponding use of the

variable.

Directed Graph A graph consisting of a finite set of nodes and a

finite set of edges in which the direction of the

edges between nodes is of importance.

Dynamic Testing The process of evaluating a system or component

based on its behavior during execution.

Entit ies These relate to objects, types, values or modules

that can be named or denoted in a program.

Forward Data-FIow Problem The problem associated with determining a set of

statements affected by a given statement in tenns

of their control-flow and data-flow interactions

with that statement.

Functional Testing Testing that ignores the internal mechanism of a

system, or component, and focuses solely on the

outputs generated in response to selected inputs

and execution conditions; testing conducted to

evaluate the compliance of a system or

component w i t h spec i f i ed f u n c t i o n a l

169

requirements. Syn: black-box testing. Contrast

with: structural testing.

Goal Programming A decision problem which encompasses the

attainment of multiple objectives. See also:

operations research.

Integer Programming A decision problem in which all problem

parameters are expressed exclusively in terms of

integer values. See also: operations research.

Integration Testing Testing in which software components are

combined and tested to evaluate the interaction

between them. See also: system testing; unit

testing.

Linear Code Sequence and Jump A sequence of program statements in which the

start point is the target line of a control-flow jump

or the first line of the program text. An end point

is any line which can be reached from the start

point by an unbroken linear sequence of code and

from which a jump is added to the start and end

points.

Logical Ripple Effect The effect of a code change in one part of a

system causing defects in other parts of the

system and/or necessitating further changes to

other parts of the system.

170

Module A program unit that is discrete and identifiable

with respect to compiling, combining with other

units, and loading; for example, the input to, or

output f rom, an assembler, compiler, linkage

editor or executive routine; a logically separable

part of a program.

New Tests Test cases, both functional and structural, which

are created in order to exercise modified or

additional program functionality and code.

NP-compIeteness A notion, which is the basis of a theory, for

al lowing certain classes of problems to be

ident i f ied fo r which no polynomial- t ime

algorithm is likely to exist.

Operations Research A management science which defines: a) the

solution of problems relative to the attainment of

specif ied objectives or criteria, b) the

identification of alternative solutions, c) the

optimisation, or selection, of the best alternative

for the stated criterion, and d) the provision of a

system perspective in which a tendency to

consider the interrelationship of components in

their environment, rather than as separate entities,

exists.

Path Testing Testing designed to execute all or selected paths

through a program's code. Contrast with: branch

171

testing; conditional testing; statement testing.

Perfective Maintenance Maintenance activities perfoiTned to enhance the

functionality of a computer program. Contrast

w i t h : adaptive maintenance; corrective

maintenance; preventive maintenance.

Preventive Maintenance Maintenance activities performed to improve the

performance, maintainability or other attiibutes of

a program. Contrast with: adaptive maintenance;

corrective maintenance; perfective maintenance.

Program Slicing A form of program decomposition which is

based on the extraction of information from the

program's control structure and data structure.

Progressive Regression Testing Regression testing which is applied in the

presence of an altered program specification,

design and implementation.

Redundant Tests Test cases, both functional and structural, which

exercise program functionality and code already

exercised by other test cases.

Regression Testing Selective retesting of a system or component to

ver i fy that modifications have not caused

unintended effects and that the system or

component s t i l l complies wi th its specified

requirements.

172

Retestable Tests

Reusable Tests

Test cases, both functional and structural, which

need to be rerun as they exercise those parts of

the program functionality and code which are

affected by program modifications.

Test cases, both functional and structural, which

are not affected by program changes and

represent the unmodif ied portions of the

program.

Revealing Subdomains Testing strategy in which test cases are developed

based on the intersection of partitions of the

program input domain and path set.

Selective Revalidation The analysis and retesting of those parts of a

program which have been directly or indirectly

affected by program modifications. See also:

regression testing.

Software Development The period of time that begins with the decision

to develop a software product and ends when the

software is delivered. This cycle typically

includes a requirement specification phase,

design phase, implementation phase, test phase

and, sometimes, installation and checkout phase.

Software Lifecycle The period of time that begins when a software

product is conceived and ends when the software

is no longer available for use. The software l ife

173

cycle typica l ly includes a requirements

s p e c i f i c a t i o n phase, design phase,

implementation phase, test phase and operation

and maintenance phase.

Software Maintenance The process of modifying a software system or

component after delivery to correct faults,

improve performance or other attributes, or adapt

to a changed environment. See also: adaptive

maintenance; corrective maintenance; perfective

maintenance; preventive maintenance.

Software Testing The process of operating a system or component

under specified conditions, observing or

recording the results, and making an evaluation

of some aspect of the system or component. See

also: acceptance testing; dynamic testing;

functional testing; integration testing; mutation

testing; regression testing; structural testing;

system testing; unit testing.

Statement Testing Testing designed to execute each statement of a

program. Contrast w i t h : branch testing;

conditional testing; path testing.

Static Analysis A testing activity that occurs without a program

being executed. Contrast with: dynamic testing.

174

Structural Testing Testing that takes into account the internal

mechanism of a system or component. Types

include branch testing, conditional testing, path

testing, statement testing. Syn: white-box testing.

Contrast with: functional testing.

Structure Chart A diagram that identifies modules, activities or

other entities in a program and shows how

larger, more general, entities break down into

smaller, more specific, entities. Note: The result

is not necessarily the same as the one depicted in

a call graph. Conti-ast widi: call-graph.

System Testing Testing conducted on a complete, integrated

system to evaluate the system's compliance with

its specified requirements. See also: integration

testing; unit testing.

Test Coverage Criter ia The criteria that define the degree to which a

given test case, or set of test cases, address all

specified requirements for a given system or

component.

Test Drivers Software modules used to invoke a module under

test and, often, provide test inputs, control and

monitor execution, and report test results.

Test Requirements The requirements specified for a given system or

component that must be satisfied by at least one

175

test case in a test suite.

Test Selection This concerns the selection of test cases from the

test suite in order to revalidate a modified

program and ensure its functional and structural

consistency. See also: retestable tests; reusable

tests.

Test Stubs A skeletal or special-purpose implementation of a

software module, used to develop or test a

module that calls, or is otherwise dependent upon

it .

Test Suite Classification This concerns the classification of a test suite into

redundant, retestable, reusable and new tests in

response to program modifications. See also:

redundant tests; retestable tests; reusable tests;

new tests.

Test Suite Management This concerns the selection and maintenance of

test cases in a test suite in response to program

modifications. See also: test selection; test

update.

Test Update This concerns the updating of test cases in the

test suite involving the identification of any

redundant test cases and the possible generation

of new test cases. See also: redundant tests; new

tests.

176

Testing History The association that is formed between each test

requirement of a program and those test cases

which exercise it. See also: test requirements.

Top-Down Testing

Unit Testing

Pertains to a testing activity which starts with the

highest level component of a software system

hierarchy and proceeds through progressively

lower levels. Contrast with: bottom-up testing.

Testing of individual software units or groups of

related units. See also: integration testing; system

testing.

Validation The process of evaluating a system or component

during or at the end of the development process

to determine whether i t satisfies specified

requirements. Contrast with: verification.

Verif icat ion The process of evaluating a system or component

to determine whether the products of a given

development phase satisfy the conditions

imposed at the start of that phase. Contrast with:

validation.

177

Appendix B

Glossary of Notation

a A n achievement vector or function.

A Constraint matrix.

b Requirements vector, b] , b 2 , b , n .

C Cost vector, c i , cj, Cn-

C j Denotes the jth column of A.

gk(Tl , p) Denotes the kth linear function of the deviation

variables r j and p.

r i Denotes the ith test requirement.

R Set of test requirements, r i , X 2 , r ^ .

R i Denotes the ith row of A

t Set of test cases, t i , t2,.. . . tn.

t j Denotes the jth test case.

T Set of testing subsets, T j , T 2 , T , n .

T i Denotes the ith testing subset.

X Set of decision variables, x i , X2, x„.

X. Incumbent solution.

U Current partial solution.

178

Z Objective function.

T) Negative deviation vai'iable.

p Positive deviation variable.

179

Bibliography

[1] Abbott, J. Software Testing Techniques. NCC Publication, 1986.

[2] Adrion, W.R., Branstad, M . A . , and Chemiavsky, J.C. "Validation, Verification,

and Testing of Computer Software", ACM Computing Surveys, vol. 14, no. 2,

pp. 159-92, June, 1982.

[3] Agrawal, H . and Horgan, J.R. "Dynamic Program Slicing". In Proceedings of

ACM SIGPLAN'90 Conference on Programming Languages, Design and

Implementation, A C M Press, New York, pp. 246-56, June, 1990.

[4] Agrawal, H . , D e M i l l o , R.A., and Spafford, E.H. "Dynamic Slicing in the

Presence of Unconstrained Pointers". In Proceedings of the Symposium on

Testing, Analysis and Verification (TAV4), A C M Press, New York, pp. 60-73,

October, 1991.

[5] Allen, F.E. "Inteiprocedural Data Flow Analysis". In Proceedings of Information

Processing Conference (IFIP'74), North-Holland Publishing Company, New

York, pp. 398-402, August, 1974.

[6] Al len , F.E. and Cocke, J. " A Program Data Flow Analysis Procedure",

Communications of the ACM, vol . 19, no. 3, pp. 137-47, March, 1976.

[7] Al len , J.R., Kennedy, K. , Porterfield, C , and Warren, J. "Conversion of

Control Dependence to Data Dependence". In Proceedings of 10th Annual ACM

Symposium on Principles of Programming Languages (POPL), A C M Press, New

York, pp. 177-89, January, 1983.

[8] Ambras, J.P., Berl in, L . M . , Chiarelli , M . L . , Foster, A . L . , O'Day, V. , and

Splitter, R.N. "Microscope: An Integrated Program Analysis Toolset", Hewlett-

Packard Journal, pp. 71-82, August, 1988.

[9] Andreas, J.R. "Automated Regression Testing of Graphical User Interface Based

Applications". In Proceedings of 24th Annual Hawaii Conference on System

Sciences(HICSS), IEEE Computer Society Press, Los Alamitos, pp. 101,

January, 1991.

[10] Archie, K.C. and McLear, R.E. "Environments for Testing Software Systems",

AT&T Technical Journal, vol . 69, no. 2, pp. 65-75, March/April, 1990.

180

[11] Arthur, L.J. Software Evolution-The Software Maintenance Challenge. John
Wiley, Wiley-Interscience, 1988.

[12] Balas, E. "An Additive Algorithm for Solving Linear Programs with Zero-One

Variables", Operations Research, vol. 13, no. 4, pp. 517-46, July/August, 1965.

[13] Balcer, M. , Hasling, W., and Ostrand, T. "Automatic Generation of Test Scripts
from Formal Test Specifications". In Proceedings of ACM SIGSOFT'89 - Third
Symposium on Software Testing, Verification, and Analysis (TAVS-3), ACM
Press, New York, pp. 210-8, December, 1989.

[14] Bar-Yehuda, R. and Even, S. "A Linear-Time Approximation Algorithm for the
Weighted Vertex Cover Problem", Journal of Algorithms, vol. 2, pp. 198-203,
1981.

[15] Barth, J.M. "A Practical Interprocedural Data Flow Analysis", Communications
of the ACM, vol. 21, no. 9, pp. 724-36, September, 1978.

[16] Baxter, A.Q. and French, J.A. "Specifications and Testing Aided by a Variant of
the Cause-Effect Graph". In Proceedings of the 30th Annual Southeast
Conference, ed. Pancake, C M . and Reeves, D.S., ACM Press, New York, pp.
405-8, April, 1992.

[17] Beck, L.L. and Perkins, T.E. "A Survey of Software Engineering Practice ;
Tools, Methods and Results", IEEE Transactions on Software Engineering, vol.
SE-9, no. 5, pp. 541-61, September, 1983.

[18] Benedusi, P., Cimitile, A., and DeCarlini, U. "Post-Maintenance Testing Based
on Path Change Analysis". In Proceedings of Conference on Software
Maintenance (CSM-88), IEEE Computer Society Press, Los Alamitos, pp. 352-
61, October, 1988.

[19] Bergeretti, J.F. and Carre, B.A. "Information Flow and Data Flow Analysis of
while Programs", ACM Transactions on Programming Languages and Systems,
vol. 7, no. 1, pp. 37-61, January, 1985.

[20] Bering, C.A. and Covey, J.H. "Software Testing - Concepts and Approach". In
Proceedings ofNAECON'91, IEEE Computer Society Press, Los Alamitos, pp.
750-6, May, 1991.

[21] Berns, G.M. "Analysis Tool Tracks Down Bugs in Fortran Code", Computer

Design, pp. 169-74, June, 1985.

181

[22] Blair, R.M. and Uhrich, D. "Regression Testing Tools for Embedded Software
Control Systems". In Proceedings of Eight Pacific Northwest Software Quality
Conference, pp. 167-83, October, 1990.

[23] Brooks, F. The Mythical Man-Month. Addison-Wesley, 1975.

[24] Brown, J.M. and Gilg, T.J. "Sharing Testing Responsibilities in the
Starbase/XU Merge System", Hewlett-Packard Journal, vol. 40, no. 6, pp. 42-6,
December, 1989.

[25] Brown, P. and Hoffman, D. "The Application of Module Regression Testing at
TRIUMF", Nuclear Instruments and Methods in Physics Research, vol. A293,
no. 1/2, pp. 377-81, August, 1990.

[26] Burke, M . and Cytron, R. "Interprocedural Dependence Analysis and
Parallelization". In Proceedings of ACM Sigplan'86 Symposium on Compiler
Construction, ACM Press, New York, pp. 162-75, July, 1986.

[27] Burke, M.G. and Ryder, B.C. "A Critical Analysis of Incremental Iterative Data
Flow Analysis Algorithms", IEEE Transactions on Software Engineering, vol.
SB-16, no. 7, pp. 723-8, July, 1990.

[28] Byrne, J.L. and Proll, L.G. "Initialising Geoffrion's Implicit Enumeration
Algorithm for the Zero-One Linear Programming Problem", The Computer
Journal, vol. 12, no. 4, pp. 381-4, November, 1969.

[29] Cagan, M.R. "The HP SoftBench Environment: An Architecture for a New
Generation of Software Tools", Hewlett-Packard Journal, vol. 41, no. 3, pp. 36-
47, June, 1990.

[30] Callahan, D. "The Program Summary Graph and Flow-Sensitive Interprocedural

Data Flow Analysis". In Proceedings of the SIGPLAN'88 Conference on
Programming Language Design arul Implementation, ACM Press, New York, pp.

47-56, June, 1988.

[31] Calliss, F.W. and Cornelius, B.J. "Dynamic Data Flow Analysis of C
Programs". In Proceedings of 21st Annual Hawaii International Conference on
System Sciences (HICSS), IEEE Computer Society Press, Los Alamitos, pp.
518-23, January, 1988.

[32] Calliss, F.W. "Inter-module Code Analysis Techniques for Software

Maintenance", PhD. thesis. University of Durham, 1989.

182

[33] Cantone, G., Cimitile, A., and DeCarlini, U. "Testability and Path Testing
Strategies", Microprocessing and Microprogramming, vol. 21, pp. 371-82, 1987.

[34] Chang, P.S. "'Some Measures for Software Maintainability", PhD. thesis,
Northwestern University, August, 1987.

[35] Chellappa, M . "Nontraversible Paths in a Program", IEEE Transactions on
Software Engineering, vol. SE-13, no. 6, pp. 751-6, June, 1987.

[36] Chvatal, V. "A Greedy Heuristic for the Set-Covering Problem", Mathematical
Operations Research, vol. 4, pp. 233-235, 1979.

[37] Cimitile, A. and DeCarlini, U. "Post-Maintenance Testing: The Effectiveness of
the Structural Approach". In 2nd European Software Maintenance Workshop,
Durham, England, September, 1988.

[38] Cimitile, A., DiLucca, G.A., and Maresca, P. "Maintenance and Intermodular
Dependencies in Pascal Environment". In Proceedings of Conference on
Software Maintenance(CSM-90), IEEE Computer Society Press, Los Alamitos,
pp. 72-83, November, 1990.

[39] Clarke, L.A. "A System to Generate Test Data and Symbolically Execute
Programs", IEEE Transactions on Software Engineering, vol. SE-2, no. 3, pp.
215-22, September, 1976.

[40] Clarke, L.A. and Hassel, J. "A Close Look At Domain Testing", IEEE
Transactions on Software Engineering, vol. 8, no. 4, July, 1982.

[41] Clarke, L.A., Podgurski, A., Richardson, D.J., and Zeil, S.J. "A Comparison of
Data Flow Path Selection Criteria". In Proceedings of International Conference
on Software Engineering (ICSE), IEEE Computer Society Press, Los Alamitos,
pp. 244-51, August, 1985.

[42] Clarkson, K.L. "A Modification of the Greedy Algorithm for Vertex Cover",

Information Processing Letters, vol. 16, no. 2, pp. 23-5, January, 1983.

[43] Collofello, J.S. and Klinkel, G.D. "An Automated Pascal Test Coverage
Assessment Tool". In Proceedings of COMPSAC'82, IEEE Computer Society
Press, Los Alamitos, pp. 626-33, November, 1982.

[44] Collofello, J.S. and Ferrara, A.F. "An Automated Pascal Multiple Condition Test

Coverage Tool". In Proceedings of COMPSAC'84, IEEE Computer Society

Press, Los Alamitos, pp. 20-3, November, 1984.

183

[45] CoUofello, J.S. and Bortman, S. "An Analysis of the Technical Information
Necessary to Perform Effective Software Maintenance". In Proceedings of 5th
Annual Phoenix Conference on Computers and Communications, IEEE Computer
Society Press, Los Alamitos, pp. 420-4, March, 1986.

[46] CoUofello, J.S. and Buck, J.J. "Software Quality Assurance for Maintenance",
IEEE Software, vol. 4, no. 5, pp. 46-51, September, 1987.

[47] CoUofello, J.S. and Cousins, L. "Towards Automatic Software Fault Location
Through Decision-to-Decision Path Analysis". In Proceedings of AFIPS
Conference (NCC), pp. 539-44, 1987.

[48] Connell, C. "DEC's VAXset Tools", DEC Professional, pp. 72-7, March, 1987.

[49] Cooper, K.D. and Kennedy, K. "Efficient Computation of Flow Insensitive
Interprocedural Summary Information". In Proceedings of ACM SIGPLAN'84
Symposium on Compiler Construction (SIGPLAN Notices), ACM Press, New
York, pp. 247-58, June, 1984.

[50] Cooper, K.D., Kennedy, K., and T.orczon, L. "Interprocedural Optimisation:
Eliminating Unnecessary Recompilation". In Proceedings of ACM Sigplan'86
Symposium on Compiler Construction, ACM Press, New York, pp. 58-67, July,
1986.

[51] Cooper, S.D. and Munro, M . "Software Change Information for Maintenance
Management". In Proceedings of Conference on Software Maintenance(CSM-
89), IEEE Computer Society Press, Los Alamitos, pp. 279-87, October, 1989.

[52] Coward, P.D. "A Review of Software Testing", Information and Software
Technology, vol. 30, no. 3, pp. 189-98, April, 1988.

[53] Coward, P.D. "Determining Path Feasibility For Commercial Programs", ACM

Sigplan Notices, vol. 23, no. 3, pp. 93-101, March, 1988.

[54] Daly, E.B. "Management of Software Development", IEEE Transactions on
Software Engineering, vol. SE-3, no. 2, pp. 229-42, May, 1977.

[55] Deb, R.K. "On Generation of Test Data and Minimal Cover of Directed Graphs".

In Proceedings oflFIP Congress'77, pp. 13-6, 1977.

[56] DeMillo, R.A. "Test Adequacy and Program Mutation", Technical Report SERC-

TR-37-P, Software Engineering Research Center(SERC), Purdue University,

February, 1989.

184

[57] Denning, P.J. "What is Software Quality?", Communications of the ACM, vol.
35, no. 1, pp. 13-5, January, 1992.

[58] Dijkstra, E.W. "Notes on Structured Programming". In Structured Programming,
Academic Press, ed. Dahl, O.J., Dijkstra, E.W., and Hoare, C.A.R., pp. 6,
1972.

[59] Ebert, J. "A Sensitive Transitive Closure Algorithm", Information Processing
Letters, vol. 12, no. 5, pp. 255-8, October, 1981.

[60] Elmendorf, W.R. "Functional Analysis using Cause-Effect Graphs". In
Proceedings of SHARE XUII, SHARE, New York, pp. 567-77, 1974.

[61] Etcheberry, J. "The Set-Covering Problem: A New Implicit Enumeration
Algor i thm" , Operations Research, vol. 25, no. 5, pp. 760-72,
September/October, 1977.

[62] FeiTante, J. "A Program Form Based on Data Dependency in Predicate Regions".
In Proceedings of 10th Annual ACM Symposium on Principles of Programming
Languages (POPL), ACM Press, New York, pp. 217-31. January, 1983.

[63] Ferrante, J., Ottenstein, K.J., and Warren, J.D. "The Program Dependence
Graph and Its Use in Optimisation", ACM Transactions on Programming
Languages and Systems (POPLAS), vol. 9, no. 3, pp. 319-49, July, 1987.

[64] Fiala, F. "Computational Experience with a Modification of an Algorithm by

Hammer and Rudeanu for 0-1 Linear Programming". In Proceedings of ACM
National Conference, ACM Press, New York, pp. 482-8, 1971.

[65] Fischer, K.F. "A Test Case Selection Method for the Validation of Software
Maintenance Modifications". In Proceedings ofCOMPSAC'77, IEEE Computer
Society Press, Los Alamitos, pp. 421-6, November, 1977.

[66] Fischer, K.F. "A Graph Theoretic Approach to the Validation of Software
Maintenance Modifications", PhD. thesis. University of California, Los Angeles,
1980.

[67] Fischer, K.F., Raji, F., and Chruscicki, A. "A Methodology for Re-Testing

Modified Software". In Proceedings of National Telecommunications
Conference, IEEE Computer Society Press, Los Alamitos, pp. B6.3.1-6,

November, 1981.

185

[68] Fischer, K.F., Raji, F., and Onaszko, D. "Software Retest Techniques",
Technical Report RADC-TR-82-275, Rome Air Development Center, October,
1982.

[69] Fleischmann, B. "Computational Experience with the Algorithm of Balas",
Operations Research, vol. 15, no. I , pp. 153-5, 1967.

[70] Frankl, P.O., Weiss, S.N., and Weyuker, E.J. "ASSET: A System to Select and

Evaluate Tests". In Proceedings of International Conference on Software Tools,
IEEE Computer Society Press, Los Alamitos, pp. 72-9, April, 1985.

[71] Frankl, P.G. and Weyuker, E.J. "A Data Flow Testing Tool". In Proceedings of
SOFTFAIRII - 2nd Conference on Software Development, Tools, Techniques
and Alternatives, IEEE Computer Society Press, Los Alamitos, pp. 46-53, 1985.

[72] Frankl, P.G. and Weyuker, E.J. "An Applicable Family of Data Flow Testing
Criteria", IEEE Transactions on Software Engineering, vol. SE-14, no. 10, pp.
1483-98, October, 1988.

[73] Fuget, C D . and Scott, B.J. "Tools for Automating Software Test Package

Execution", Hewlett-Packard Journal, vol. 37, no. 3, pp. 24-8, March, 1986.

[74] Furukawa, Z., Nogi, K., and Tokunaga, K. "AGENT: An Advanced Test-Case
Generation System for Functional Testing". In Proceedings of AFIPS
Conference (NCC), pp. 525-35, 1985.

[75] Gallagher, K.B. and Lyle, J.R. "Using Program Slicing in Software
Maintenance", IEEE Transactions on Software Engineering, vol. SE-17, no. 8,
pp. 751-61, August, 1991.

[76] Garey, M.R. and Johnson, D.S. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman and Company, 1979.

[77] Garfinkel, R.S. and Nemhauser, G.L. Integer Programming. John Wiley,
Interscience, 1972.

[78] Geoffrion, A . M . "Integer Programming by Implicit Enumeration and Balas'

Method", SIAM Review, vol. 9, no. 2, pp. 178-90, April, 1967.

[79] Geoffrion, A . M . "An Improved Implicit Enumeration Approach for Integer

Programming", Operations Research, vol. 17, pp. 437-54,1969.

186

[80] Glover, F. "A Multiphase-Dual Algorithm for the Zero-One Integer Programming
Problem", Operations Research, vol. 13, no. 4, pp. 879-919,
November/December, 1965.

[81] Gomory, R. "All-Integer Integer Programming", Technical Report RC-189, IBM
Research Center, 1960.

[82] Gondram, M. and Minoux, M . Graphs and Algorithms. John WUey, 1984.

[83] Goodenough, J.B. and Gerhart, S.L. "Toward a Theory of Test Data Selection",
IEEE Transactions on Software Engineering, vol. SE-1, no. 2, pp. 156-73, June,
1975.

[84] Graham, D.R. "Software Testing Tools: A New Classification Scheme", Journal
of Software Testing, Verification and Reliability, vol. 1, no. 3, pp. 17-34,
October/December, 1991.

[85] Gue, R.L., Liggett, J.C, and Cain, K.C "Analysis of Algorithms for the Zero-
One Programming Problems", Communications of the ACM, vol. 11, no. 12, pp.
837-44, December, 1968.

[86] Henry, S.H. and Wake, S. "Predicting Maintainability with Software Quality
Metrics", Journal of Software Maintenance: Research and Practice, vol. 3, no. 3,
pp. 129-43, September, 1991.

[87] Haley, A. and Zweben, S. "Development and Application of a White Box
Approach to Integration Testing", Journal of Systems and Software, vol. 4, no.
4, pp. 309-15, November, 1984.

[88] Halstead, M.H. Elements of Software Science. North Holland, Amsterdam,
1977.

[89] Hamlet, R.G. "Testing Programs with the Aid of a Compiler", IEEE Transactions
on Software Engineering, vol. SE-3, no. 4, pp. 279-90, July, 1977.

[90] Harrold, M.J. and Soffa, M.L. "An Incremental Approach to Unit Testing During
Maintenance". In Proceedings of Conference on Software Maintenance (CSM-
88), IEEE Computer Society Press, Los Alamitos, pp. 362-67, October, 1988.

[91] Harrold, M.J. and Soffa, M.L. "Interprocedural Data Flow Testing". In

Proceedings of ACM SIGSOFT'89 - Third Symposium on Software Testing,
Verification, and Analysis (TAVS-3), ACM Press, New York, pp. 158-67,

December, 1989.

187

[92] Harrold, M.J. and Soffa, M.L. "An Incremental Data Flow Testing Tool". In
Proceedings of 6th International Conference on Testing Computer Software,
Washington D.C., June, 1989.

[93] Harrold, M.J. and Soffa, M.L. "Efficient Computation of Interprocedural Data
Dependencies". In Proceedings of International Conference on Computer
Languages, IEEE Computer Society Press, Los Alamitos, pp. 297-306, March,
1990.

[94] Harrold, M.L , Gupta, R., and Soffa, M.L. "TBM: A Testbed Management

Tool". In Proceedings of 7th International Conference on Testing Computer
Software, San Francisco, pp. 47-55, June, 1990.

[95] Harrold, M.J., Gupta, R., and Soffa, M.L. "A Methodology for Controlling the
Size of a Test Suite". In Proceedings of Conference on Software Maintenance
(CSM-90), IEEE Computer Society Press, Los Alamitos, pp. 302-10, November,
1990.

[96] Harrold, M.J. and Soffa, M.L. "Selecting and using Data for Integration
Testing", IEEE Software, vol. 8, no. 2, pp. 58-65, March, 1991.

[97] Harrold, M.J. and Malloy, B. "A Unified Interprocedural Program Representation
for a Maintenance Environment". In Proceedings of Conference on Software
Maintenance (CSM-91), IEEE Computer Society Press, Los Alamitos, pp. 138-
47, October, 1991.

[98] Hartmann, J. and Robson, D.J. "Approaches to Regression Testing". In
Proceedings of Conference on Software Maintenance (CSM-88), IEEE Computer
Society Press, Los Alamitos, pp. 368-72, October, 1988.

[99] Hartmann, J. and Robson, D.J. "Revalidation During the Software Maintenance

Phase". In Proceedings of Conference on Software Maintenance(CSM-89), IEEE

Computer Society, Los Alamitos, pp. 70-80, October, 1989.

[100] Hartmann, J. "Development of Testing Methodologies and Tools for Use in
Software Maintenance". In Proceedings of Third International Workshop on
Computer-Aided Software Engineering (CASE'89), pp. 33-4, July, 1989.

[101] Hartmann, J. and Robson, D.J. "Techniques for Selective Revalidation", IEEE

Software, vol. 7, no. 1, pp. 31-6, January, 1990.

188

[102] Hartmann, J. and Robson, D.J. "RETEST - Development of a Selective
Revalidation Prototype Environment for Use in Software Maintenance". In
Proceedings of 23rd Annual Hawaii International Conference on System Sciences
(HICSS-23), IEEE Computer Society Press, Los Alamitos, pp. 93-101, January,
1990.

[103] Hartmann, J. and Robson, D.J. "A Systematic Approach to Regression Testing".
In Proceedings of Ninth Annual Pacific Northwest Software Quality Conference,
pp. 309-23, October, 1991.

[104] Hedley, D. and Hennell, M.A. "The Causes and Effects of Infeasible Paths in
Computer Programs". In Proceedings of International Conference on Software
Engineering (ICSE), IEEE Computer Society Press, Los Alamitos, pp. 259-66,
August, 1985.

[105] Hennell, M.A. and Prudom, LA. "A Static Analysis of the NAG Library", IEEE
Transactions on Software Engineering, vol. SE-6, no. 4, pp. 329-33, 1980.

[106] Hennell, M.A., Hedley, D., and Riddell, LJ. "Assessing a Class of Software
Tools". In Proceedings of International Conference on Software Engineering
(ICSE), IEEE Computer Society Press, Los Alamitos, pp. 266-77, March, 1984.

[107] Herington, D.E., Nichols, P.A., and Lipp, R.D. "Software Verification using
Branch Analysis", Hewlett-Packard Journal, vol. 38, no. 6, pp. 13-23, June,
1987.

[108] Herman, P.M. "A Data Flow Analysis Approach to Program Testing", The

Australian Computer Journal, vol. 8, no. 3, pp. 92-6, November, 1976.

[109] Hetzel, W . C The Complete Guide to Software Testing. QED Information
Sciences, Inc., 2nd Edition, 1988.

[110] Hillier, F.S. and Lieberman, G.J. Introduction to Operations Research. Holden-
Day, 4th Edition, 1986.

[I l l] Hochbaum, D.S. "Approximation Algorithms for the Set Covering and Vertex
Cover Problems", SIAM Journal of Computing, vol. 11, no. 3, pp. 555-6,
August, 1982.

[112] Holzman, A.G. "Linear Programming". In Mathematical Programming for
Operations Researchers and Computer Scientists, Marcel Dekker, ed. Holzman,
A.G., chapt. 1, pp. 1-40, 1981.

189

[113] Horgan, J.R. and London, S. "Data Flow Coverage and the C Language". In
Proceedings of the Symposium on Testing, Analysis and Verification (TAV4),
ACM Press, New York, pp. 87-97, October, 1991.

[114] Horgan, J.R. and London, S. "A Data Flow Coverage Testing Tool for C". In

Proceedings of the Symposium on Assessment of Quality Software Development
Tools, IEEE Computer Society, Los Alamitos, pp. 2-10, May, 1992.

[115] Horwitz, S., Reps, T., and Binkley, D. "Interprocedural Slicing Using
Dependence Graphs", ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 12, no. 1, pp. 26-60, January, 1990.

[116] Howden, W.E. "Methodology for the Generation of Program Test Data", IEEE
Transactions on Computers, vol. C-24, no. 5, pp. 554-9, May, 1975.

[117] Howden, W.E. "Reliability of the Path Testing Strategy", IEEE Transactions on
Software Engineering, vol. SE-2, no. 3, pp. 208-15, September, 1976.

[118] Howden, W.E. "Symbolic Testing And The DISSECT Symbolic Evaluator",
IEEE Transactions on Software Engineering, vol. SE-3, no. 4, April, 1977.

[119] Howden, W.E. "Functional Program Testing", IEEE Transactions on Software
Engineering, vol. SE-6, no. 2, pp. 162-9, March, 1980.

[120] Howden, W.E. Functional Program Testing and Analysis. McGraw-Hill,
Computer Science, 1987.

[121] Howley, P.P. "An Assessment of Software Testing Techniques for

Maintenance". In Proceedings of Software Maintenance Workshop, IEEE

Computer Society Press, Los Alamitos, pp. 261-6, December, 1983.

[122] Huang, J.C. "An Approach to Program Testing", ACM Computing Surveys, vol.
7, no. 3, pp. 113-28, September, 1975.

[123] Huang, J.C. "Detection of Data Flow Anomaly Through Program
Instrumentation", IEEE Transactions on Software Engineering, vol. SE-5, no. 3,
pp. 226-36, May, 1979.

[124] Ignizio, J.P. Linear Programming in Single- and Multiple-Objective Systems.
Prentice-Hall Inc., 1982.

[125] Ince, D. and Hekmatpour, S. "The Evaluation of Some Black-Box Testing

Methods", Technical Report 84/7, Open University, December, 1984.

190

[126] Ince, D.C. and Hekmatpour, S. "An Empirical Evaluation of Random Testing",
The Computer Journal, vol. 29, no. 4, pp. 380, August, 1986.

[127] Jachner, J. and Agrawal, V.K. "Data Flow Anomaly Detection", IEEE

Transactions on Software Engineering, vol. SE-10, no. 4, pp. 432-7, July, 1984.

[128] Jackson, M.A. Principles of Program Design. Academic Press, London, 1975.

[129] Jensen, K. and Wirth, N. PASCAL: User Manual and Report. Springer-Veriag,
3rd Edition, 1985.

[130] Jiang, J., Zhou, X., and Robson, D.J. "Program Slicing for C - The Problems In

Implementation". In Proceedings of Conference on Software Maintenance (CSM-
91), IEEE Computer Society Press, Los Alamitos, pp. 182-90, October, 1991.

[131] Johmann, K., Liu, S.S., and Yau, S. "Dataflow Equations for Context-
Dependent Flow-Sensitive Interprocedural Analysis", Technical Report SERC-
TR-45-F, Software Engineering Research Center(SERC), University of Florida,
January, 1991.

[132] Johnson, D.S. "Approximation Algorithms for Combinatorial Problems", Journal
of Computer and System Sciences, vol. 9, pp. 256-78, 1974.

[133] Johnson, M.A. "Automated Testing of User Interfaces". In Proceedings of the
5th Pacific Northwest Software Quality Conference, pp. 285-93, 1987.

[134] Kaiser, G.E., Perry, D.E., and Schell, W.M. "INFUSE: Fusing Integration Test
Management with Change Management". In Proceedings of COMPSAC'89,
IEEE Computer Society, Los Alamitos, pp. 552-8, September, 1989.

[135] Kao, H. and Chen, T.Y. "Data Flow Analysis For COBOL", ACM Sigplan
Notices, vol. 19, no. 7, pp. 18-21, July, 1984.

[136] Kennedy, K. "A Survey of Data Flow Analysis Techniques". In Program Flow
Analysis: Theory and Applications, Prentice-Hall Inc., ed. Muchnick, S.S. and
Jones, N.D., chapt. 1, pp. 5-54, 1981.

[137] Kemigan, B.W. and Ritchie, D. The C Programming Language. Prentice-Hall,
1st Edition, 1978.

[138] King, J.C. "Symbolic Execution and Program Testing", Communications of the

ACM, vol. 19, no. 7, pp. 385-94, July, 1976.

191

[139] King, K.N. and Offutt, A.J. "A Fortran Language System for Mutation-based
Software Testing", Software - Practice and Experience, vol. 21, no. 7, pp. 685-
718, July, 1991.

[140] Kojo, T., Kobayashi, H., and Kitamura, A. "A Software Testing System for
Digital Switching Systems". In Proceedings of International Communications
Conference, IEEE Computer Society Press, Los Alamitos, pp. 1016-9, May,
1984.

[141] Korel, B. and Laski, J. "A Tool for Data Flow Oriented Program Testing". In
Proceedings of SOFTFAIRII - 2nd Conference on Software Development Tools,
Techniques and Alternatives, IEEE Computer Society Press, Los Alamitos, pp.
34-7, December, 1985.

[142] Korel, B. and Laski, J. "Dynamic Program Slicing", Information Processing
Letters, vol. 29, no. 3, pp. 155-63, October, 1988.

[143] Korel, B. and Laski, J. "Dynamic Slicing of Computer Programs", Journal of
Systems and Software, vol. 13, no. 3, pp. 187-95, November, 1990.

[144] Korel, B. "A Dynamic Approach to Test Data Generation". In Proceedings of
Conference on Software Maintenance(CSM-90), IEEE Computer Society Press,
Los Alamitos, pp. 311-7, November, 1990.

, [145] Krause, K.W. and Smith, R.W. "Optimal Software Test Planning Through
Automated Network Analysis". In Proceedings of Symposium on Computer
Software Reliability, IEEE Computer Society Press, Los Alamitos, pp. 18-22,
April, 1973.

[146] Landi, W. and Ryder, B.G. "Pointer-induced Aliasing: A Problem
Classification". In Proceedings of 18th Annual ACM Symposium on Principles
of Programming Languages (POPL), ACM Press, New York, pp. 93-103,
January, 1991.

[147] Laski, J. "On Data Flow Guided Program Testing", ACM Sigplan Notices, vol.
17, no. 9, pp. 62-71, September, 1982.

[148] Laski, J.W. and Korel, B. "A Data Flow Oriented Program Testing Strategy",
IEEE Transactions on Software Engineering, vol. SE-9, no. 3, pp. 347-54, May,
1983.

[149] Laski, J. "Data Flow Testing in ST AD", Journal of Systems and Software , vol.
12, no. 1, pp. 3-14,ApriL 1990.

192

[150] Leach, D.M., Paige, M.R., and Satko, LE. "AUTOTESTER: A Testing
Methodology for Interactive User Environments". In Proceedings of 2nd Annual
Phoenix Conference on Computers and Communications, IEEE Computer Society
Press, Los Alamitos, pp. 143-7, March, 1983.

[151] Lee, J.A.N, and He, X. "A Methodology for Test Selection", Journal of Systems
and Software, vol. 13, no. 3, pp. 177-85, November, 1990.

[152] Lee, J., Wang, K.H., and Chou, CR. "An Implementation of Software Tools for
Replay and Partial Replay of Concurrent-C Programs". In Proceedings of
COMPSAC'90, IEEE Computer Society Press, Los Alamitos, pp. 106-11,
October, 1990.

[153] Lemke, C.E., Salkin, H.M., and Spielberg, K. "Set Covering by Single-Branch
Enumeration with Linear-Programming Subproblems", Operations Research, vol.
19, no. 4, pp. 998-1022, July/August, 1971.

[154] Leung, H.K.N, and White, L. "A Study of Regression Testing", Technical

Report TR 88-15, University of Alberta, September, 1988.

[155] Leung, H.K.N, and White, L.J. "Insights into Regression Testing". In
Proceedings of Conference on Software Maintenance(CSM-89), IEEE Computer
Society Press, Los Alamitos, pp. 60-9, October, 1989.

[156] Leung, H.K.N, and White, L.J. "A Study of Regression Testing". In
Proceedings of 6th International Conference on Testing Computer Software,
Washington D.C, June, 1989.

[157] Leung, H.K.N, and White, L.J. "Regression Testing at the Integration Testing
Level". In Proceedings of 7th International Conference on Testing Computer
Software, pp. 225-35, June, 1990.

[158] Leung, H.K.N, and White, L.J. "A Study of Integration Testing and Software
Regression at the Integration Level". In Proceedings of Conference on Software
Maintenance (CSM-90), IEEE Computer Society Press, Los Alamitos, pp. 290-
301, November, 1990.

[159] Leung, H.K.N, and White, L. "A Cost Model to Compare Regression Testing

Strategies". In Proceedings of Conference on Software Maintenance (CSM-91),

IEEE Computer Society Press, Los Alamitos, pp. 201-8, October, 1991.

[160] Leung, H.K.N. "A Framework for Regression Testing", PhD. thesis. University
of Alberta, May, 1992.

193

[161] Lewis, J. and Henry, S. "A Methodology for Integrating Maintainability using
Software Metrics". In Proceedings of Conference on Software
Maintenance(CSM-89), IEEE Computer Society Press, Los Alamitos, pp. 32-9,
October, 1989.

[162] Lewis, R., Beck, D.W., and Hartmann, J. "Assay - A Tool to iSupport
Regression Testing". In Proceedings of 2nd European Software Engineering
Conference (ESEC'89), pp. 487-96, September, 1989.

[163] Lientz, B.P., Swanson, E.B., and Tompkins, G.E. "Characteristics of
Application Software Maintenance", Communications of the ACM, vol. 21, no.
6, pp. 466-71, June, 1978.

[164] Lin, J.C. and Chung, C.G. "Zero-One Integer Programming Model in Path
Selection Problem of Structural Testing". In Proceedings of COMPSAC'89,
IEEE Computer Society, Los Alamitos, pp. 618-27, September, 1989.

[165] Liu, S.S. and Ogando, R. "An Emacs-Based Logical Ripple Effect Analyzer
Prototype User's Manual", Technical Report TR-32-F, Software Engineering
Research Center(SERC), University of Florida, September, 1989.

[166] Liu, L. and Robson, D.J. "SEMST - A Support Environment for the Management
of Software Testing". In Proceedings of the Symposium on Assessment of
Quality Software Development Tools, IEEE Computer Society, Los Alamitos, pp.
11-20, May, 1992.

[167] Livadas, P.E. "The C-Ghinsu Tool", Technical Report SERC-TR-49-F,
Software Engineering Research Center(SERC), University of Florida, March,
1991.

[168] Lu, Q. and Qian, J. "Incremental Flow Analysis and its Applications in
Incremental Programming Environment". In Proceedings of COMPSAC'87,
IEEE Computer Society Press, Los Alamitos, pp. 89-95, October, 1987.

[169] Luss, H. "Optimization: Methodology, Algorithms, and Applications", AT&T
Technical Journal, vol. 68, no. 3, pp. 3-6, May/June, 1989.

[170] Lutz, M . 'Testing Tools", IEEE Software, vol. 7, no. 3, pp. 53-7, May, 1990.

[171] Lyle, J.R. and Gallagher, K.B. "Using Program Decomposition to Guide

Modifications". In Proceedings of Conference on Software Maintenance(CSM-

88), IEEE Computer Society Press, Los Alamitos, pp. 265-9, October, 1988.

194

[172] Muller-Merbach, H. "Modelling Techniques and Heuristics for Combinatorial
Problems". In Combinatorial Programming: Methods and Applications, Reidel
Publishing, ed. Roy, B., pp. 3-27, 1974.

[173] Mahendrarajah, A. and Fiala, F. "A Comparison of Three Algorithms for Linear
Zero-One Programs", ACM Transactions on Mathematical Software (TOMS),
vol. 2, no. 4, pp. 331-4, December, 1976.

[174] Manber, U. Introduction to Algorithms - A Creative Approach. Addison-Wesley,
1989.

[175] McCabe, T.J. Tutorial: Structured Testing. IEEE Computer Society Press, Los
Alamitos, October, 1982.

[176] McCabe, T.J. "Structured Testing: A Testing Methodology using the McCabe
Complexity Metric". In Tutorial: Structured Testing, IEEE Press, chapt. Section
I I , pp. 19-47, Los Alamitos, 1983.

[177] McCabe, T.J. and Schulmeyer, G.G. "System Testing Aided by Structured
Analysis: A Practical Experience", IEEE Transactions on Software Engineering,
vol. SE-11, no. 9, pp. 917-21, September, 1985.

[178] Meekel, J. and Viala, M . "LOGISCOPE: A Tool for Maintenance". In
Proceedings of Conference on Software Maintenance(CSM-88), IEEE Computer
Society Press, Los Alamitos, pp. 328-34, October, 1988.

[179] Melhorn, K. Graph Algorithms and NP-Completeness: Data Structures and
Algorithms. Springer Veriag, 2, 1984.

[180] Meredith, D.C "Regression Testing As Preventive Medicine", System Builder,
pp. 42-7, October/November, 1989.

[181] Miller, E.F., Bardens, J.A., Benson, J.P., Melton, R.A., Urban, R.J., and
Wisehart, W.R. "Structurally Based Automatic Program Testing". In
Proceedings of Eascon'74, IEEE Computer Society Press, Los Alamitos, pp.
134-9, 1974.

[182] Miller, E. "Advanced Methods in Automated Software Test". In Proceedings of
Conference on Software Maintenance(CSM'90), IEEE Computer Society Press,

Los Alamitos, pp. I l l , November, 1990.

[183] Milner, R., Tofte, M. , and Harper, R. The Definition of Standard ML. The MIT

Press, Cambridge, Massachusetts, 1990.

195

[184] Minoux, M . Mathematical Programming - Theory and Algorithms. John Wiley,
chapt. 7, pp. 245-59, 1986.

[185] Mullin, F.J. "Considerations for a Successful Software Test Program", TRW-
SS-77-01, TRW Systems Engineering and Integration Division, Redondo Beach,
CA, January, 1977.

[186] Munro, I . "Efficient Determination of the Transitive Closure of a Directed Graph",
Information Processing Letters, vol. 1, pp. 56-8, 1971.

[187] Myers, G.J. Software Reliability: Principles and Practices. John Wiley, New
York, 1976.

[188] Myers, G.J. The Art of Software Testing. John Wiley, New York, Interscience,
1979.

[189] Nanja, S. and Samadzadeh, M . "A Slicing/Dicing-Based Debugger for C". In
Proceedings of Eight Pacific Northwest Software Quality Conference, pp. 204-
12, October, 1990.

[190] Narula, S.C. and Kindorf, J.R. "Linear 0-1 Programming: A Comparison of
Implicit Enumeration Algorithms", Computing and Operations Research, vol. 6,
pp. 47-51, 1979.

[191] Nejmeh, B.A. "NPATH: A Measure of Execution Path Complexity and Its
Application", Communications of the ACM, vol. 31, no. 2, pp. 188-200,
February, 1988.

[192] Ntafos, S.C. and Hakimi, S.L. "On Path Cover Problems in Digraphs and

Applications to Program Testing", IEEE Transactions on Software Engineering,
vol. SE-5, no. 5, pp. 520-9, September, 1979.

[193] Ntafos, S.C. "On Required Element Testing", IEEE Transactions on Software
Engineering, vol. SE-10, no. 6, pp. 795-803, November, 1984.

[194] Ntafos, S.C. "A Comparison of Some Structural Testing Strategies", IEEE
Transactions on Software Engineering, vol. 14, no. 6, pp. 868-74, June, 1988.

[195] Offut, A.J. "Using Mutation Analysis to Test Software". In Proceedings of 7th
International Conference on Testing Computer Software, San Francisco, pp. 75-
7, June, 1990.

[196] Oman, P. "Maintenance Tools", IEEE Software, vol. 7, no. 3, pp. 59-64, May,
1990.

196

[197] Omar, A.A. and Mohammed, F.A. "Structural Testing of Programs : A Survey",
ACM Sigsoft Software Engineering Notes, vol. 14, no. 2, pp. 62-70, April,
1989.

[198] Omar, A.A. and Mohammed, F.A. "A Survey of Software Functional Testing
Methods", ACM Sigsoft Software Engineering Notes, vol. 16, no. 2, pp. 75-82,
April, 1991.

[199] Osterweil, L.J., Fosdick, L.D., and Taylor, R.N. "Error and Anomaly Diagnosis
Through Data Flow Analysis". In Computer Program Testing, Elsevier North-
Holland, ed. Chandrasekaran, B. and Radicchi, S., pp. 35-63, 1981.

[200] Ostrand, T. and Balcer, M.J. "The Category-Partition Method for Specifying and
Generating Functional Tests", Communications of the ACM, Special Section on
Software Testing, vol. 31, no. 6, pp. 676-86, June, 1988.

[201] Ostrand, T.J. and Weyuker, E.J. "Using Data Flow Analysis for Regression

Testing". In Proceedings of 6th Annual Pacific NorthWest Quality Assurance
Conference, pp. 233-48, September, 1988.

[202] Ostrand, T. and Weyuker, E.J. "Data Flow-Based Test Adequacy Analysis for
Languages with Pointers". In Proceedings of the Symposium on Testing,
Analysis and Verification (TAV4), ACM Press, New York, pp. 74-86, October,
1991.

[203] Ottenstein, K.J. and Ottenstein, L .M. 'The Program Dependence Graph in a
Software Development Environment". In Proceedings of ACM Sigsoft/Sigplan
Software Engineering Symposium on Practical Software Development
Environments, ACM Press, New York, pp. 177-84, April, 1984.

[204] Pande, H., Ryder, B.G., and Landi, W. "Interprocedural Def-Use Associations
in C Programs". In Proceedings of the Symposium on Testing, Analysis and
Verification (TAV4), ACM Press, New York, pp. 139-53, October, 1991.

[205] Panzl, D.J. "Automatic Software Test Drivers", IEEE Computer, vol. 11, no. 4,
pp. 44-50, April, 1978.

[206] Panzl, D.J. "A Language for Specifying Software Tests". In Proceedings of

AFIPS Conference (NCC), pp. 609-19, 1978.

[207] Peleato, J.M., Mills, F.W., and Cheng, S.K. "Automation of Regression Testing

for Packet Switches". In Proceedings of Globecom'87, IEEE Computer Society

Press, Los Alamitos, pp. 1638-41, 1987.

197

[208] Petersen, C.C. "Computational Experience with Variants of the Balas Algorithm
Applied to the Selection of R&D Projects", Management Science, vol. 13, no. 9,
pp. 736-50, May, 1967.

[209] Platoff, M . , Wagner, M . , and Camaratta, J. "An Integrated Program
Representation and Toolkit for the Maintenance of C Programs". In Proceedings
of Conference on Software Maintenance (CSM-91), IEEE Computer Society
Press, Los Alamitos, pp. 129-37, October, 1991.

[210] Podgurski, A. and Clarke, L.A. 'The Implications of Program Dependences for
Software Testing, Debugging and Maintenance". In Proceedings of ACM
SIGSOFT'89 - Third Symposium on Software Testing, Verification, and
Analysis (TAVS-3), ACM Press, New York, pp. 168-78, December, 1989.

[211] Popkin, G.S. and Shooman, M.L. "On the Number of Tests Necessary to Verify
a Computer Program", Technical Report RADC TR-78-229, Rome Air
Development Center, November, 1978.

[212] Popkin, G.S. "A Binary Programming Solution to a Problem in Computer
Program Testing", PhD. thesis. Polytechnic Institute of New York, Brooklyn,
NY, January, 1987.

[213] Powell, P.B. "Software Validation, Verification and Testing Technique and Tool
Reference Guide", Technical Report NIST-SPEC-PUB 500-93, NIST,
September, 1982.

[214] Pressman, R.S. Software Engineering: A Practitioner's Approach. McGraw-Hill,
1st Edition, 1987.

[215] Purdom, P. "A Transitive Closure Algorithm", BIT, vol. 10, pp. 76-94,1970.

[216] Radatz, J.W. "Analysis of I V & V Data", Technical Report RADC-TR-81-145,
Rome Air Development Center, June, 1981.

[217] Rajlich, V. "VIFOR: A Tool for Software Maintenance", Software Practice and
Experience, vol. 20, no. 1, pp. 67-77, January, 1990.

[218] Rapps, S. and Weyuker, E.J. "Selecting Software Test Data Using Data Flow

Information", IEEE Transactions on Software Engineering, vol. SE-11, no. 4,

pp. 367-75, April, 1985.

198

[219] Richardson, D.J. and Clarke, L.A. "A Partition Analysis Method to Increase
Program Reliability". In Proceedings of International Conference on Software
Engineering (ICSE), IEEE Computer Society Press, Los Alamitos, pp. 244-53,
March, 1981.

[220] Richardson, D.J. and Clarke, L.A. "Partition Analysis: A Method Combining
Testing and Verification", IEEE Transactions on Software Engineering, vol. SE-
11, no. 12, pp. 1477-90, December, 1985.

[221] Riechert, G.E. and Smith, S.S. "Automatic Regression Test System". In

Proceedings of International Switching Symposium, IEEE Computer Society

Press, Los Alamitos, pp. B9.1.1-5, March, 1987.

[222] Roe, R.P. and Rowland, J.H. "Some Theory Concerning Certification of

Mathematical Subroutines by Black-Box Testing", IEEE Transactions on
Software Engineering, vol. SE-13, no. 6, pp. 677-82, June, 1987.

[223] Roper, M . and Smith, P. "A Structural Testing Method for JSP Designed
Programs", Journal of Software - Practice and Experience, vol. 17, no. 2, pp.
135-57, February, 1987.

[224] Ryder, B.G. "Incremental Data Flow Analysis". In Proceedings of 10th Annual
ACM Symposium on Principles of Programming Languages (POPL), ACM

Press, New York, pp. 167-76, January, 1983.

[225] Ryder, B.G. and Carroll, M.D. "An Incremental Algorithm for Software

Analysis". In ACM Sigplan/Sigsoft Symposium on Practical Software
Environments, pp. 171-9, December, 1986.

[226] Ryder, B.G., Landi, W., and Pande, H.D. "Profiling an Incremental Data Flow

Analysis Algorithm", IEEE Transactions on Software Engineering, vol. SE-16,

no. 3, pp. 129-40, March, 1990.

[227] Salkin, H.M. and Koncal, R.D. "Set Covering by an A l l Integer Algorithm:
Computational Experience", Journal of the ACM, vol. 20, no. 2, pp. 189-93,
April, 1973.

[228] Scherr, A.L . "Developing and Testing a Large Programming System". In

Program Test Methods, Prentice-Hall, ed. Hetzel, W.C., chapt. 14, pp. 168-80,

1973.

[229] Schneidewind, N.F. "The State of Software Maintenance", IEEE Transactions of

Software Engineering, vol. SE-13, no. 3, pp. 303-10, March, 1987.

199

[230] Shumskas, A.F. "Certification of Production-Representative/Production
Software-Intensive Systems for Dedicated Test and Evaluation", IEEE Aerospace
and Electronic Systems Magazine, vol. 6, no. 9, pp. 9-14, September, 1991.

[231] Solis, D.M. "AutoParts - A Tool to Aid in Equivalence Partition Testing". In
Proceedings ofSOFTFAIR II - 2nd Conference on Software Development Tools,
Techniques and Alternatives, IEEE Computer Society Press, Los Alamitos, pp.
122-5, December, 1985.

[232] Stuebing, H.G. "A Modem Facility for Software Production and Maintenance".
In Proceedings of CO MP SAC80, IEEE Computer Society Press, Los Alamitos,
pp. 407-18, 1980.

[233] Su, J. "Testing M o t i f . In Proceedings of the 7th Pacific Northwest Software
Quality Conference, pp. 361-79, 1989.

[234] Su, J. and Ritter, P.R. "Experience in Testing the Motif Interface", IEEE
Software, vol. 8, no. 2, pp. 26-33, March, 1991.

[235] Syslo, M.M. , Deo, N. , and Kowalik, J.S. Discrete Optimization Algorithms
Using Pascal Programming. Prentice-Hall, chapt. 1, pp. 1-116,1983.

[236] Taha, H.A. "Integer Programming". In Mathematical Programming for
Operations Researchers and Computer Scientists, Marcel Dekker, ed. Holzman,
A.G., chapt. 2, pp. 41-69, 1981.

[237] Taha, H.A. Operations Research - An Introduction. Macmillan Publishing, 3rd
Edition, 1982.

[238] Taha, A.B., Thebaut, S.M., and Liu, S.S. "An Approach to Software Fault
Localization and Revalidation Based on Incremental Data Flow Analysis". In
Proceedings of COMPSAC'89, IEEE Computer Society, Los Alamitos, pp. 527-
34, September, 1989.

[239] Tai, K.C. "On Testing Concurrent Programs". In Proceedings of
COMPSAC'85, IEEE Computer Society Press, Los Alamitos, pp. 310-7, 1985.

[240] Tai, K.C. and Su, H.K. "Test Generation for Boolean Expressions". In

Proceedings of COMPSAC'87, IEEE Computer Society Press, Los Alamitos, pp.

278-83, 1987.

[241] Tai, K.C. "What to Do Beyond Branch Testing?". In Proceedings of 6th
International Conference on Testing Computer Software, Washington D.C., June,
1989.

200

[242] Tai, K.C. "Condition Testing for Software Quality Assurance". In Proceedings
of COMPASS'89, IEEE Computer Society Press, Los Alamitos, pp. 31-5, June,
1989.

[243] van Tassel, D. Program Style, Design, Efficiency, Debugging and Testing.
Prentice-Hall, 1974.

[244] Taylor, R.N. and Osterweil, L.J. "Anomaly Detection in Concurrent Software by
Static Data Flow Analysis", IEEE Transactions on Software Engineering, vol.
SE-6, no. 3, pp. 265-77, May, 1980.

[245] Taylor, R.N. and Kelly, C D . "Structural Testing of Concurrent Programs". In
Proceedings of Workshop on Software Testing, IEEE Computer Society Press,
Los Alamitos, pp. 164-9, July, 1986.

[246] Trauth, C.A. and Woolsey, R.E. "Integer Linear Programming: A Study in
Computational Efficiency", Management Science, vol. 15, no. 9, pp. 481-93,
May, 1969.

[247] Tuttle, M.R. and Low, D. "Videoscope: A Nonintrusive Test Tool for Personal
Computers", Hewlett-Packard Journal, vol. 30, no. 4, pp. 58-64, June, 1989.

[248] Viravan, C. and Dunsmore, H.E. "Where Design Testing Fits In", IEEE

Software, vol. 7, no. 3, pp. 105-6, May, 1990.

[249] Wallace, D.R. "The Validation, Verification and Testing of Software: An
Enhancement to Software Maintainability". In Proceedings of Conference on
Software Maintenance (CSM'85), IEEE Computer Society Press, Los Alamitos,
pp. 69-78, November, 1985.

[250] Wallace, D.R. and Fujii , R.U. "Software Verification and Validation: An

Overview", IEEE Software, vol. 6, no. 3, pp. 10-7, May, 1989.

[251] Wang, H.S., Hsu, S.R., and Lin, J.C. "A Generalized Optimal Path-Selection
Model for Structural Program Testing", Jpumal of Systems and Software, vol.
10, no. 1, pp. 55-63, July, 1989.

[252] Warnier, J.D. Logical Construction of Programs. Van Nostrand Reinhold, New
York, 1977.

[253] Warren, H.S. "A Modification of Warshall's Algorithm for the Transitive Closure
of Binary Relations", Communications of the ACM, vol. 18, no. 4, pp. 218-20,
April, 1975.

201

[254] Warshall, S. "A Theorem on Boolean Matrices", Journal of the ACM, vol. 9, no.
1, pp. 11-2, 1962.

[255] Weiser, M. "Programmers Use Slices When Debugging", Communica tions of the
ACM, vol. 25, no. 7, pp. 446-52, July, 1982.

[256] Weiser, M . "Program Slicing", IEEE Transactions on Software Engineering, vol.

SE-10, no. 4, pp. 352-7, July, 1984.

[257] Weiser, M.D., Gannon, J.D., and McMullin, P.R. "Comparison of Structural

Test Coverage Metrics", IEEE Software, pp. 80-5, March, 1985.

[258] Weyuker, E. and Ostrand, T. "Theories of Program Testing and the Application
of Revealing Subdomains", IEEE Transactions on Software Engineering, vol.
SE-6, no. 3, pp. 236-46, May, 1980.

[259] Weyuker, E.J. "An Empirical Study of the Complexity of Data Flow Testing". In
Proceedings of Second Workshop on Software Testing, Verification, and
Analysis (TAVS-2), IEEE Computer Society Press, Los Alamitos, pp. 188-95,
July, 1988.

[260] Weyuker, E.J. "The Cost of Data Flow Testing: An Empirical Study", IEEE
Transactions on Software Engineering, vol. SE-16, no. 3, pp. 121-8, March,
1990.

[261] Weyuker, E.J. and Jeng, B. "Experiences with Data Flow Testing". In

Proceedings of 7th International Conference on Testing Computer Software, San

Francisco, pp. 219-24, June, 1990.

[262] White, L.J. and Cohen, E.I. "A Domain Strategy for Computer Program
Testing", IEEE Transactions on Software Engineering, vol. SE-6, no. 3, pp. 247-
57, May, 1980.

[263] White, L.J. and Sahay, P.N. "A Computer System for Generating Test Data
using the Domain Strategy". In Proceedings of SOFTFAIRII - 2nd Conference
on Software Development Tools, Techniques and Alternatives, IEEE Computer
Society Press, Los Alamitos, pp. 38-45, December, 1985.

[264] White, L.J. and Sahay, P.N. "Experiments Determining Best Paths for Computer

Program Predicates". In Proceedings of International Conference on Software
Engineering (ICSE), IEEE Computer Society Press, Los Alamitos, pp. 238-43,

August, 1985.

202

[265] White, L.J. and Wiszniewski, B. "Path Testing of Computer Programs with
Loops using a Tool for Simple Loop Patterns", Software - Practice and
Experience, vol. 21, no. 10, pp. 1075-102, October, 1991.

[266] Wilde, N. , Huitt, R., and Huitt, S. "Dependency Analysis Tools: Reusable
Components for Software Maintenance". In Proceedings of Conference on
Software Maintenance(CSM-89), IEEE Computer Society Press, Los Alamitos,
pp. 126-31, October, 1989.

[267] Woodfield, S.N., Gibbs, N.E., and Collofello, J.S. "Improved Software
Reliability Through the Use of Functional and Structural Testing". In
Proceedings of 2nd Annual Phoenix Conference on Computers and
Communications, IEEE Computer Society Press, Los Alamitos, pp. 154-7,
March, 1983.

[268] Woodward, M.R., Hedley, D., and Hennell, M.A. "Experience with Path
Analysis and Testing of Programs", IEEE Transactions on Software Engineering,
vol. SE-6, no. 3, pp. 278-86, May, 1980.

[269] Woodward, M.R. "Mutation Testing - An Evolving Technique". In Colloqium on

Software Testing for Critical Systems, BCS Press, pp. 3.1-3.6, June, 1990.

[270] Yau, S.S., Collofello, LS., and MacGregor, T. "Ripple Effect Analysis of
Software Maintenance". In Proceedings of COMPSAC'78, IEEE Computer
Society Press, Los Alamitos, pp. 60-5, November, 1978.

[271] Yau, S.S., Grabow, P.C., and Weems, B.P. "A Binary Relation Representation
for Program Models". In Proceedings of COMPSAC'82, IEEE Computer
Society Press, Los Alamitos, pp. 188-95, November, 1982.

[272] Yau, S.S., NichoU, R.A., and Tsai, J.J.P. "An Evolution Model for Software

Maintenance". In Proceedings of COMPSAC'86, IEEE Computer Society Press,

Los Alamitos, pp. 440-6, 1986.

[273] Yau, S.S. and Kishimoto, Z. "A Method for Revalidating Modified Programs in
the Maintenance Phase". In Proceedings of COMPSAC'87, IEEE Computer
Society Press, Los Alamitos, pp. 272-7, October, 1987.

[274] Yau, S.S., NichoU, R.A., Tsai, J.J.P., and Liu, S.S. "An Integrated Life-Cycle

Model for Software Maintenance", IEEE Transactions on Software Engineering,

vol. SE-14, no. 8, pp. 1128-44, August, 1988.

203

[275] Yau, S.S. and Chang, P.S. "A Metric for Modifiability for Software
Maintenance". In Proceedings of Conference on Software Maintenance(CSM-
88), IEEE Computer Society Press, Los Alamitos, pp. 374-81, October, 1988.

[276] Yellin, D. "A Dynamic Transitive Closure Algorithm", Technical Report RC-
13535-61958, IBM Research, June, 1988.

[277] Zadeck, F.K. "Incremental Data Flow Analysis in a Structured Program Editor".
In Proceedings of ACM Sigplan'84 Symposium on Compiler Construction, ACM
Press, New York, pp. 132-42, June, 1984.

[278] Zang, X. and Thompson, D. "Public-Domain Tool Makes Testing More

Meaningful", IEEE Software, vol. 8, no. 4, pp. 109-10, July, 1991.

[279] Ziegler, J., Grasso, J.M., and Burgermeister, L.G. "An Ada-Based Real-time
Closed-Loop Integration and Regression Test Tool". In Proceedings of
Conference on Software Maintenance(CSM-89), IEEE Computer Society Press,
Los Alamitos, pp. 81-90, October, 1989.

[280] Reference Manual for the Ada Programming Language, ANSI/MIL-STD 1815A,
1983.

[281] Standard FORTRAN Programming Manual, 2nd Edition, 1972.

[282] "IEEE Standard Glossary of Software Engineering Terminology". IEEE

Computer Society Press, Los Alamitos, 1983.

[283] "1986 Results of Survey on Software Testing", Quality Assurance Institute
Report 1987.

204

