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AND
CHINBURG’S INVARIANTS
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Abstract: Let N/K be a Galois extension of number fields with Galois group I'. T.
Chinburg has constructed invariants of the extension N/K lying in the locally free class
group CI(ZT). ‘

In the first chapter we generalise this construction by defining weak homological equiv-

alences and their projective invariants over any Noetherian ring A.

In the case where A is an order in a semisimple algebra, we obtain for each A-lattice
M an effectively computable subgroup A(M) of the kernel group D(A). Specialising to
the case A = ZI" we relate A subgroups to generalised Swan subgroups and we describe a
representative of the coset of the Swan subgroup T(ZI') containing Chinburg’s invariant

Q(N/K, 1) in terms of the projective invariant of a homomorphism.

In the second chapter we generalise A. Frohlich’s canonical factorisability from abelian
to arbitrary finite groups. We obtain a canonical factorisation function — related to the
ring of integers Oy — which determines a unique coset of CI(ZI')/D(ZT’) equal to the
coset generated by Chinburg’s invariant Q(N/K, 2). Thus we establish “modulo D(ZT")”

a conjecture of Chinburg.
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General Introduction.

This thesis is divided into two chapters which can be read independently — a separate

and detailed introduction is included for each chapter.

In the first chapter, we e;ca.mine the possibility of obtaining projective invariants over an
arbitrary Noetherian ring A. In other words we aim to produce elements of the group Ko(A)
which classifies the finitely generated projective A-modules. Instead of producing projective
modules directly, we use a more indirect approach (which in fact generalises previous
methods of obtaining projective invariants from Mayer-Vietoris sequences). The raw data
needed is a pair U and V of non-projective modules connected by a weak homological
equivalence. This equivalence then gives rise to a projective invariant, which in some sense

measures the “difference” between U and V.

Our main interest is concentrated in the case where A is an order in a finite dimensional
semisimple algebra over a number field. We show that in this case one can often obtain
invariants of locally free modules, in other words elements of the locally free classgroup
Cl(A). Further we show that each A-lattice U gives rise to an effectively computable
subgroup A(U) of the kernel group D(A) C CI(A).

Let G be a finite group and R a Dedekind domain with field of quotients a number
field. Many simplifications in the theory developed for orders occur when A is the integral
~ group ring RG. We apply this theory in the case R = Z and give a connection between R.
Oliver’s generalised Swan subgroups and A-subgroups of permutation lattices. Both these

sets of subgroups generate D(ZG).

Our final specialisation in this chapter is to let G = I' be the Galois group of a
Galois extension N/K of number fields. T. Chinburg obtained in this case invariants
Q(N/K,i) e CIA(ZI") for ¢ = 1 to 3 from four-term exact sequences of ZI'-modules. These
sequences each induce an equivalence of Tate cohomology with dimension shift 2 of a
Galois module U depending on N/K and a standard ZI'-lattice V. Thus the Chinburg
invariants are examples of projective invariants of weak homological equivalences. These

are the examples which motivated the work of this chapter.

As an application of the theory developed for integral group rings we show that the
coset of the Swan subgroup T(ZI') — in this case the subgroup H is I' — containing
QUN/K, 1) is represented by the projective invariant of a homomorphism T — C; where
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T is a standard syzygy of the I'-trivial lattice Z and Cf is a finitely generated module
introduced by Chinburg which has the Tate cohomology of the idele class group of V.

In the second chapter we concentrate throughout on the Chinburg invariant Q(N/K, 2).
Again we use a method of obtaining projective invariants from pairs of ZG-modules —
the finite group G in the a,p.plica.tions is either ' or a decomposition subgroup of I'. The
method we use is a generalisation of that initiated by A. Frohlich in the context of abelian
groups G (for more details see II §2). This method has its origins in the elegant notion of
factorisability introduced by A. Nelson.

Factorisability is essentially a condition imposed on ZI'-lattices U and V which is
weaker than local isomorphism. It can be decided by elementary computation. Froéhlich’s
canonical factorisability is a refinement allowing one to salvage a projective invariant in
the class group of a maximal order, or equivalently a coset of D(ZI') in CI(ZT'), in the

case where U is not locally isomorphic to V.

An example of this is where U = Oy is the ring of integers in N, V is a free ZI'-module
of finite index in Oy and N/K is wildly ramified. We compute in this case an invariant
via canonical factorisability and show that the resulting coset of D(ZT') is that generated
by 2(N/K, 2). In the process we establish “modulo D(ZI')” the conjecture of Chinburg
that

Q(N/K, 2) =tnk

 where t N/k is the generalised root number class; sometimes ty/x & D(ZT). This equality
is the conjectural generalisation to wild N/K of M. Taylor’s deep result for tame N/K

where the stable isomorphism class of Op is computed in terms of the Artin root numbers.

This is my PhD thesis at Durham University. I would like to record here my deep
indebtedness to Steve Wilson for his impeccable supervision, his unfailing input of ideas

and his inexhaustible patience.

To my brother Martin, Jacqueline Gough and Ewan Squires I am profoundly grateful

for encouragement when it was most needed.

I would like to thank David Burns and Ted Chinburg for useful comments on an early

version of chapter II.



Finally, my thanks also to Graham Robertson for lunchtime discussions of the mysteries

of quantum theory...



CHAPTER 1. Weak homological equivalences and their projective invariants.

1. Introduction.

Let A be a Noetherian ring and let Kg(A) denote the Grothendieck group of the category
of finitely generated projective A-modules. Let M and NV be finitely generated A-modules
and let n be a positive integer. An element f of either of the groups Homs(M, N) or
Ext} (M, N), satisfying certain conditions related to the homology of M and N, determines
a projective invariant 8(f) € Ko(A).

This gives a method of obtaining projective invariants from non-projective modules,

indeed ones of infinite projective dimension, over a very wide class of rings.

We develop the most general properties of 8-invariants (the operator 9 is additive on
compositions of maps, the §-invariants of Ext are expressible in terms of those of Hom,

and 9 factors through the quotient of of Hom by projective maps) in §§2-3.

In §4 we restrict A to be an order in a finite dimensional semisimple Q-algebra, the
case we are really intereéted in. We show that in many cases J-invariants can be obtained
~in the locally free class group CI(A) of the order A. Indeed, we show that each finitely
generated A-module M determines a subgroup A(M) (of 8-invariants of endomorphisms)
of the kernel group D(A) of A. The main result of §4 is that A(M) can be determined in
terms of reduced norms of local automorphisms of M if M is a A-lattice, using the idelic
description of D(A). At opposite extremes, A(Z) = T(ZG), the Swan subgroup of A = ZG
an integral group ring, and A(M) = D(A) if M is a maximal order containing A.

Let R be a Dedekind domain with field of quotients a number field and let G be a
finite group. In §5 we examine the case A = RG. Significant simplifications arise in the
theory developed for orders. If U is an RG-lattice then a weak homological equivalence
f € Hompg(U, V') induces an equivalence of Tate cohomology of U and the RG-module V.
Further, the projective invariants of all such weak homological equivalences lie in the coset
of A(U) generated by 8(f). If W is a syzygy of the RG-lattice U then A(U) = A(W).

This theory is applied in §6 in the case R = Z. If H is a subgroup of G — giving
rise to the permutation ZG-lattice Z|G/H] — R. Oliver introduced the generalised Swan
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subgroup Tg(ZG) of D(ZG) and showed in [O]] that all such subgroups generated D(ZG).
We show that

Ta(ZG) C A(Z[G/H))

and so the A(Z[G/H)) also generate D(ZG). If H is normal (so Z{G/H] is a quotient
group ring) this inclusion is equality. On the other hand in §7 we give an example of strict

inclusion when H is not normal and G is a dihedral group.

The final specialisation (in §6) is to take G = I the Galois group of a Galois extension
N/K of number fields. T. Chinburg (see [Chl], [Ch2]) derived in this case invariants
Q(N/K, i) for i = 1 to 3 from four-term exact sequences of finitely generated ZI'-modules.
These we express as d-invariants of Ext3y (which have been adjusted to make them rank-
less). Indeed this situation motivated the work of this chapter. Applying the results of §5
we show that the coset of T(ZI') containing Q(N/K, 1) is represented by the -invariant
of any map in Homzr (T, Cy) which induces an equivalence of Tate cohomology. Here T'
is a certain ZI-lattice and Cy a finitely generated ZI'-module (introduced by Chinburg)
with the Tate cohomology of the idele class group of N. Indeed, if " is a cyclic group then
T(ZT) =0 and T = Z, so that Q(N/K, 1) equals this §-invariant and only depends upon
Cy.

We shall return to Chinburg’s invariants in the next chapter; this requires new tech-

niques we shall develop there.




§2. Weak equivalence and the 8-map.

In this section we define weak homological equivalences and the d-map and give their basic

properties.

Let A be any Noetherian ring and let pd(M) denote the projective dimension (whether
finite or infinite) of the A-module M. Let Ko(A) denote the Grothendieck group of the
category of finitely generated A-modules of finite projective dimension. If L is such a

module and pd(L) = k then there is an exact sequence
0 - P, —»---— P - L — 0

where each P; is a finitely generated projective A-module. If we resolve the sequence
into short exact sequences, and use the relations in Kg(A) (with respect to short exact

sequences) then we obtain

k

[L] = 3°(-1)'[P] € Ko(A),

1=0

where square brackets are used to denote classes in Ko(A). As is well known, this induces
a well-defined isomorphism between K¢(A) and the Grothendieck group of the category of
finitely generated projective A-modules. We shall use the symbol Kg(A) for both of these
. groups and identify them under this isomorphism. This will lead to no confusion, as if L

is projective then the class [L] in either group is the same under this identification.

If a and b are A-maps whose composition ba is defined then there is an exact sequence

of A-modules

0 —- kera — kerba — kerb — cokera — cokerba — cokerb — 0

with maps induced by a and b (see e.g. [Ba] I 4.5). We shall refer to this result as “the

composition lemma for a and b” in the sequel.

We shall need some notation concerning extensions of A-modules; we adopt the view-

point of MacLane in [Ma).

Suppose that M, N and T are A-modules and n > 0. We regard Ext}(M, N) as the
set of equivalence classes of n-fold extensions of M by N if n > 1, and identify ExtoA(M , N)
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and Hom, (M, N). Let f € Ext}(M, N). Then f induces maps
fi:Exth (N, T) — Ext}t*(M, T)

for each k > 1. For the definition of fr see [Ma] Ch. III; refer to §5 p83 if n = 0
(the definition of “the composite of the congruence class of a long exact sequence with
a matching homomorphism”) and §9 p97 if n > 1 (the definition of “iterated connecting

homomorphism”).

2.1 Definition: Let k be a positive integer. A class f € Ext}(M, N) is a weak homological

equivalence of level k and grade n (abbreviated (k,n)-w.h.e.) if, for each A-module T,
(i) f2:Extk(N, T) — Exti+™(M, T) is surjective, and

(ii) fpy:ExtiH(N, T) - Ext{t™ (M, T) is injective.

Write w.h.e. for a (1,0)-w.h.e. in Homy (M, N), and write Whe, (M, N) for the set of
all such w.h.e.s.

2.2 Theorem. Let k be a positive integer and f € Ext}(M, N). The following are
equivalent:

(i) f is a (k,n)-w.h.e.
(ii) f} is surjective and fi' is bijective for each I > k

(iii) If n=0, there is an exact sequence of A-modules
0—»L—->_MEBF(£'?)N—>0,

where pd(L) < k — 1, g is some A-map and F is a free A-module.

Ifn > 0, there is an exact sequence of A-modules
0O - N - L - Fg9g —---—= F - M —- 0 ef

with each F; free and pd(L) < k.

Proof : (ii)=(i) is trivial.



(i)=(iii) If n = 0, choose a surjective map g: F — N where F is a free module. Let
L = ker(f, g). We then have a short exact sequence as in (iii), and have to prove that
pd(L) < k—1. Apply Hom,(—, T') to obtain a long exact sequence of Ext. The hypotheses
on f; and f{, ensure that Ext§(L, T) = 0, thus (iii) follows.

If n > 0, choose a resolutién F - M — 0 of M by free modules. By the Comparison

Theorem ([Ma] Ch. 3 6.1) there is a commutative diagram
0 — Q -!-) Fooy —o=> Fp - M —= 0
b Lo
0 - N - Thg —»-+=> Tp - M —- 0 €f
where Q@ = im(F,, — Fp—1). Thus Ext} (M, N) 2 Hom(Q, N)/Homy(Fn-1, N)oi. Then

let L be the pushout of the maps (%, k), so that we obtain an extension in f as in (iii); this
time we have to prove that pd(L) < k. Resolving the sequence into short exact sequences,

by induction on n the hypotheses on f; and f;,, ensure that Extﬁ"'l(L, T) = 0 as required.

(iii)=(ii) If n = 0, apply Homs(—, T') to the given short exact sequence; the hypoth-
esis on pd(L) ensures that (i) holds. Similarly, an easy induction gives the required result

forn>0. n

2.3 Definition: Let M and N be finitely generated A-modules. Let f € Homy(M, N)

be a (k,0)-w.h.e., then there is a short exact sequence
(£,9)
0 - L - MeF = N - 0 (f, L, F)

with pd(L) < k — 1, by 2.2 (iii). Since N is finitely generated we can assume the same for
the free module F. We say that (f, L, F) is a sequence for f.

L is finitely generated, since A is Noetherian, so determines a class [L] in Ko(A). Define
8(f) = [F] - [L] € Ko(A).

If f € Ext}(M, N) is a (k,n)-w.h.e. for n > 0, we call the sequence of 2.2(iii), lying in f,

a sequence for f, and define
3(f) = [L] = [Fu-a] + -+ - + (-1)""}[Fy] € Ko(A).

We will prove that 8(f) is well-defined for (k,0)-w.h.e.s next, and for (k,n)-w.h.e.s (n > 0)
in 3.5.



2.4 Theorem. Let M and N be finitely generated A-modules. If f € Homy(M, N) is a
(k, 0)-w.h.e. then 8(f) is independent of the choice of sequence for f.

Proof : For the moment let us write 8(f, g) = [F] — [L] to emphasise the chosen g. By

symmetry, the lemma follows if we can prove that

f,9)=0(f,9®4'),

where g': F' — N is surjective and F' is finitely generated free.

Let ¢ denote the natural inclusion M@ F — M @& F @ F'. Then (f, g) = (f, g® g¢')oi.

By the composition lemma for i and (f, g ® g') there is an exact sequence
0 — ker(f,g) — ker(f,9g®g) — F —0
since 1 is injective and (f, g) is surjective. Hence

a(f, g) = [F] - [ker(f, 9)] = [F] + [F'] - [ker(f, 9@ ¢')] = 0(f, 9@ g').

2.5 Theorem. Let k and | be positive integers and let L, M and N be finitely generated
A-modules. Suppose that f € Whey(L, M) is a (k, 0)-w.h.e. and g € Whep(M, N) is a
(1, 0)-w.h.e.. Then gf is a (max(k, ), 0)-w.h.e. and

8(¢f) = 8(f) + 8(9).

Proof : For each r > 1, (¢f)r = frgr. Compositions of surjective maps are surjective,

and similarly for injective maps. The first statement follows by 2.2(ii).

Choose finitely generated free A-modules F; and F3 so that there are surjective maps
LoeFLSMoFR AN

where the component L — M of a is f and that M — N of b is g. By the composition

lemma for a and b we obtain an exact sequence
0 — kera — kerba — kerb — 0 4 (*)

Let ¢ be the natural surjection M @ F» — M. By the composition lemma for a and ¢ we
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obtain an exact sequence

0 — kera — kerca — Fp, — 0 (%)

Since the F; are free, a; = f}, by = g} and c; is the identity map for » > 1. Thus a, b

and c are (m, 0)-w.h.e.s for various m, and by 2.2(iii) the kernels of these maps have finite

projective dimension. Hence the same applies to each module in (%) and (*x). Therefore

d(gf) — 9(f) - (g) 23 [F1] — [ker ba] — [F] + [ker ca] — [F3] + [ker b] (%) o 5

§3. Projective Homomorphisms

Let A be any ring, and M and N be finitely generated A-modules. First we must define
projective homomorphisms, as in [CR] Vol. II around 78.10. We also define some related

objects, and introduce notation to be used throughout this chapter.

3.1 Definition: A map f € Homy (M, N) is a projective homomorphism if the map
f:Exty(N, ) = Exty(M, ~)

is the zero map for every 2nd variable.

Let Py(M, N) denote the subgroup of all projective homomorphisms in Homa (M, N), and
denote the quotient group Homy (M, N)/Px(M, N) by Hom, (M, N).

If D is any left A-module we shall write D* for the right A-module Homy (D, A).

Define
=T N:M* @\ N — Homp(M, N)
(f@n):mw— f(m)n

extended by linearity.
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Define
Ext) (M, N) = Homy (M, N);

Ext;}(M, N) = ker(7);
ExtK(M, N) = Ext}(M, N) for each n > 1;
Ext,"(M, N) = Tor®_,(M*, N) for each n > 2.
If f € Homp(M, N) denote by [f] the image of f in Hom, (M, N).
Denote by Whey (M, N) the image of Whe, (M, N) in Homy (M, N).

Remark: In [CR] Vol. I 29.15, it is shown that im(7) = Py(M, M) in the case M = N.

The proof given there holds for general N. The Ext groups occur in a long exact sequence:
3.2 Theorem. Suppose we have a short exact sequence of A-modules
0 - A - B - C - 0

and that D is a A-module. Then there is an exact sequence

...— Exti(D,B) — Ext}(D,C) — ExtI*}(D,4) — ...
for all integers n. If also Ext}(C, A) = 0, then there is an exact sequence

.. > Ext}(B,D) — Ext}(4,D) — Ext}*(C,D) —...

for all integers n.

Proof : By naturality of 7 (in the 2nd variable) we have a commutative diagram:

<= D*®p A — D*®\ B — D*®,C - 0

I I I

0 — Homy(D,A) — Homy(D,B) — Homy(D,C) —---

By diagram-chasing the first part follows. If Ext}(C, A) = 0 then the sequence
0 - C* - B* - A* - 0

is exact. A similar argument now completes the proof. 1
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The following useful characterisation of projective homomorphisms is adapted from

[CR]. We need the finite generation property to obtain classes in Kg(A).

3.3 Theorem. Let f € Homp(M, N). Then f is a projective homomorphism if and only
if f factors through a finitely generated projective module.

Proof : It is shown in [CR] Vol. II 78.10 that f is a projective homomorphism if and
only if f factors through some projective Q). Since we are assuming that IV is finitely
generated, we may choose a finitely generated projective P which projects onto N. The

universal property of projectives now shows that f factors through P. n

Here is the main result in this section, which shows that 9 factors through the quotient

of Homy (M, N) by projective homomorphisms.

3.4 Theorem. Let f € Homy(M, N) be a (k, 0)-w.h.e. and suppose that
f' € Homy (M, N) is such that

[f] = [f'] € Homy (M, N).

Then f' is a (k, 0)-w.h.e. and 8(f) = 8(f').

Proof: Let f' = f+ g where g € PA(M, N). Since g factors through some projective P,
the induced map g} factors through Ext}, (P, —) = 0 for each r» > 1 and each 2nd variable.
Hence (f'): = f¥ and f' is a (k, 0)-w.h.e.. Now choose a finitely generated free module F
mapping onto N—as in the proof of 3.3, we find that g factors through F. Say g = g241,
where g1: M — F. By 2.4 we can assume that f and f’ are surjective. For, if we choose
a surjective map h: F — N then (f', h) = (f, k) + (g9, 0) and (g, 0) € Po(M & F, N).
Further 8(f', k) — 8(f, h) = 8(f') — 8(f).

Let t denote transpose. We have f' = (f, g2) o (1, g1). Since the sequence

1,g1) -1
0 —» M (l,9) MoF (=;,1)

F —- 0
is exact, by the composition lemma for (1, g1)* and (f, g2) we have an exact sequence

0 — kerf' — ker(f,g2) — F -0

13



Hence

8(f) = [F] = [ker(f, g2)] = ~[ker '] = 8(f').

Using this result, we can now show that 8(f) does not depend on the choice of sequence
for f for n > 1. Since the 2-extension we will consider in §6 (whose class is a (1,2)-w.h.e.)

is not presented as in 2.2, we will prove a stronger result.

3.5 Theorem. Let f € Ext}(M, N). Then f is a (t, n)-w.h.e. for some t if and only if

there is an extension
0 - N - Thyq == Tpg - M — 0 €f

where each T is finitely generated, and of finite projective dimension. Moreover 8(f) does

not depend on the choice of sequence for f, and

(f) = [T [To1] - [Tnea] + - - + (-1)"Y{T0]

= 8(h) + [F],

where 0 - Q@ - F — M — 0 is a truncated resolution of M as in the proof of 2.2, and h

maps to f under the surjection

Homy (Q, N) — Ext}(M, N).

Proof : If we take t to be the maximum of the pd(7j}), it is plain that f is a (t,n)-w.h.e.;

the converse holds a fortiori by 2.2(iii).

Choose a surjective map g: F — N with F a finitely generated free module. We obtain

a commutative diagram

0 - Q&F - F,16F - Fp9 —:---—= F - M - 0

[ l || I )

0 — N - L - Fhp g9 == F - M - 0

in which all the vertical arrows are surjective. It follows immediately that ker(h, g) has
finite projective dimension, & is a (k, 0)-w.h.e. where k = pd(L), and 8(f) = 8(h) + [F]. A
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more laborious argument, in which we add free modules to each Fj, establishes the same
result with [T] replacing 8(f). Thus [T] = 8(f). Since

Ext}(M, N) 2 Hom(Q, N)/Homp(Fa-1, N) 0,

where i is the map  — F,,_;, and the denominator consists of projective homomorphisms,

by 3.4 it follows that 8(h) does not depend on the choice of h in the diagram. &

§4. Application to orders in semi-simple algebras.

In this section we assume throughout that R is a Dedekind ring with field of quotients
the algebraic number field K (# R), and that A is an R-order in the finite dimensional
semisimple K-algebra A. Write ‘A-lattice’ for ‘finitely generated R-torsion-free A-module’.
Note that if M is a A-lattice then the map M — K ®p M is injective and we write KM
for K ®p M. Denote by Ap(M) = A(M) the set of invariants §(Whey (M, M)) for any
finitely generated A-module M.

4.1 Theorem. Let M and N be finitely generated A-modules. Then

(i) Homy (M, N) is finite;

(i) Localisation (or completion) gives a natural isomorphism

Iy, v:Homy (M, N) 3 @HomAP(MP, Np),
P

where the direct sum is taken over the maximal ideals P of R;
(iii) Whey (M, M) = Endp(M)*;

(iv) If M and N are locally isomorphic, then Whes(M, N) and Whep(N, M) are non-
empty. Choose f € Whea(M, N). Then lp n[f] is represented by a local isomorphism.
Further

Whey (M, N) = [f] o Endp(M)*
and
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8(Whep (M, N)) = 8(f) + A(M)

Given f as above, there exists some f' € Whep(N, M) such that [f o f'] = [1n] and
("0 f] = [Lal, aad then 8(f) = —8(s").

Proof of (i): Choose an exact sequence
0O - L - F - N - 0
where F' is a finitely generated free A-module. By 3.2 there is an exact sequence
Homa(M, F) — Homa(M,N) — Exti(M,L) — Exti(M,F) (%)

and the first term vanishes since F is projective. So Homy(M, N) injects into the R-
module Ext} (M, L), which is R-torsion since A is semisimple. Since all our modules are

finitely generated, (i) follows.

Proof of (ii): Naturality of localisation gives a commutative diagram (stemming from

(%)):

0 — Homy(M,N)p — Exti(M,L)p — Exti(M, F)p

! ! Lo

0 — Homy,(Mp, Np) — Extj,(Mp,Lp) — Extj,(Mp, Fp)

in which the rows are exact and the middle and right-hand vertical arrows are isomor-
phisms. Hence so is the left-hand vertical arrow. Since we are dealing with finite quotients,
we could complete instead of localise at this point. The Chinese remainder theorem now

completes the proof of (ii).

Proof of (iii): An element of a finite ring whose right annihilator is zero is a unit.
Then suppose that [h] € Whe,(M, M) and that [hg] = [0] for some g € Endp(M), i.e.
hg € Py(M, M). Then g*h* = (hg)*:Ext}(M, —) — Ext}(M, —) is the zero map for each
2nd variable. But h* is surjective hence g* = 0. Thus g € P5(M, M) and [g] = [0] which
gives (iii).
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Proof of (iv): Choose a local isomorphism ¢ from M to N. Clearly l;ll, nli] and lI‘v}M[z"l]
are w.h.e.’s. Then I[f] = [i] o [i"!] o I[f], and the P-component of [i~1] o I[f] lies in
End,,(Mp)* by (iii). But Endp,(Mp) is semi-local, so a unit of End, ,(Mp) lifts to a
unit of Endp .(Mp), by [Ba] III 2.9. Thus [i~!]ol[f] = [h] where h is a local automorphism
of M. Consequently f is represented by a local isomorphism, j say. It follows that | fis

invertible with [f'] = l}{,}M[j‘l]. The remaining properties are now obvious. &

It is well-known that any maximal order A’ of A is hereditary. Thus, pd(L) < 1 for
any finitely generated A’-module L, hence L gives a class [L] in Kp(A’). The following
result shows that the image of 8(f) in Ko(A') for any f € Whep(M, N) is a constant, only
depending on M and N.

4.2 Theorem. Let M and N be finitely generated A-modules. Let A' be a maximal
order of A containing A. Write G for the functor A' ®\ —. Then, if f € Whes (M, N),

KoG(8(f)) = [A' ®4 N] — [A' ®4 M] € Ko(A)).

Proof : Choose a sequence (f, L, F') for f. Applying G, we obtain an exact sequence
Torf(A', N) = NO\L — AN MOANGF — NN — 0

But A'®4 L is A'-projective, (since L is A-projective) hence R-torsion-free, and Tor(A’, N)
is R-torsion since A is semisimple. Hence we can replace the left hand term by zero, and

then

KoG(9(f)) = [A' @ F] — [A' ®x L] = [A' ® N] — [A' ®) M]
as required. &

Now we introduce ICf,f (A), CI(A) and D(A). Let Q be a finitely generated projective
A-module. @ is locally free of rank k if Qp = A'I‘, for every non-zero prime ideal P of R.
Define ICf,f (A) to be the subgroup of Kg(A) generated by each [Q], where Q is a locally
free A-module of finite rank.

There is a map rk: ICf,f (A) — Z induced by the rank of a locally free module. We define
CI(A) = ker(rk), the class group of A. It consists of elements [M] — [N] with M and N
locally free of equal rank. The map [@] — [A’' ®4 Q] induces a surjection Cl(A) — Cl(A')
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where A’ is any maximal order of A containing A. Let D(A)—the kernel group of A—
denote the kernel of this surjection. Regardless of the choice of A’, we find that D(A) is
uniquely determined. These results are easily proved using the idelic description of the

class group, due to Frohlich, which we outline below.

Write C = Z(A), the centre of A, throughout the remainder of this section. There is

a well-known isomorphism
J(C)

CUN) = s

(See [Ta] Chapter 1; here we write J(C) for the ideles of C, U(A) for the unit ideles of A,

and v for reduced norm from A into C, extended continuously to all idelic constructions.)

Following Wilson (c.f. [Wil] §2) denote by cls the canonical map J(C) — CI(A). We
will use the following notation from now on: let M be a A-lattice and let b € Whe, (M, M).
Write V = KM, © = Enda(M) and B = End4(V). We will devote the remainder of this
section to proving that d(h) = cls(vB8) € D(A) for some 3 € U(©). Note that Z(B) is
naturally embedded in C. For, C maps onto Z(B) by multiplication maps V — V. This
surjection, restricted to simple components corresponding to simple A-modules occuring

in V, is an isomorphism. The inverse of this isomorphism embeds Z(B) in C.
4.3 Lemma. There exists 8 € U(©) such that [8p] = [hp] for every place P of K.

Proof : The lemma follows directly from 4.1(iv) after observing that a local automor-
phism 8 of M is just an element of U(®), if we adopt the convention that the infinite
components are equal to 1. Note that Ap = Ap at infinite places P, so by semisimplicity
every Ap-map is projective. Hence the statement of the lemma places no restrictions on

the infinite components of 3. 8

We find it convenient to prove the results first when M is a full lattice in a free A-

module. So let W be an A-module such that there is an isomorphism f:V @ W =3 AF,

For each place P, if 3 is as in 4.3, then Bp extends uniquely to an element of (Bp)*.
Write 8 @ 1 for the idele of J(End4(V @ W)) such that (8@ 1)p=8p@1:VpdWp
Vp o Wp.

4.4 Lemma. Choose § as in 4.3, and let a = f(B® 1)f~! € J(Matg(A)). Then
vB =va € J(C).
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Proof : It suffices to show that (v8)p = (va)p at each P. So we change notation for
the local case. Now a € GL;(A) and 8 € B*. The diagram

B* 4 Z(B)®
Ki(4) = c*
commutes, where the left hand vertical arrow is the map ¢ — [V, ¢] for ¢ € AutyV =

B*, and the right hand vertical arrow is the embedding on unit groups induced by the

embedding Z(B) — C described above. However, the diagram

vew 4 4k

|se1 | 7o)
vew L 4
also commutes, hence [V, 8] = [V @ W, 8 & 1] = [A4*, f(B ® 1)f~!], using the relations
in K1(A). By commutativity, identifying Z(B)* with its image in C*, it follows that

vB=va. 1

Choose a full A-lattice N in W, and set L = f(M @ N), a full lattice in A*. Then
f(h®1)f~! € Endp(L).

4.5 Lemma. f(h@®1)f!isa w.h.e and 8(h) =0(f(h®1)f ).

Proof : Choose a surjective map ¢g: F — M where F is finitely generated free. The
diagram
0 - MeF - MeNoF —- N - 0

| |were) |
0 — M — MaN - N —- 0
commutes, where the rows are the natural split exact sequences. By the Snake lemma

ker(h, g) & ker(h® 1, g), hence 8(h) = 8(h ® 1). Changing notation, we may assume that
N =0, and it suffices to prove that 8(kh) = 8(fhf~1). The diagram

fel
MeoeF % LoeF
|0 )
f
M = L
commutes. Thus ker(h, g) & ker(fhf~?, fg) and the result follows. #
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We need a further lemma concerning injective w.h.e.s. This lemma will also be used

in §5. We temporarily relax our assumptions on M and N in the statement of the lemma.

4.6 Lemma. Let M and N be finitely generated A-modules and suppose that there
exists some injective map h.€ Homy (M, N). Then

(i) h is a w.h.e. if and only if pd(cokerh) < 1. If h is a w.h.e. then 8(h) = [coker A].
(ii) If M is a A-lattice and f € Homy(M, N) then there exists an injective map g €
Homp (M, N) such that [f] = [g].

Proof : For (i), choose a surjective map k: F — N where F is finitely generated free.
Then h = (h, k) o i where i is the natural inclusion M — M @ F. By the composition

lemma for i and (h, k) there is an exact sequence
0 — ker(h,k) — F — cokerh — 0

Thus h is a w.h.e. if and only if ker(h, k) is projective, which occurs if and only if
pd(coker h) < 1. If h is a w.h.e. then

8(h) = [F] — [ker(h, k)] = [coker h]

and (i) holds.

For (ii), let ¢ be the order of the finite group Homp (M, N). Let f, = f + ath for each
positive integer a. If a # a' then ker(f,;) Nker(f,) = O since th is injective. But there are
infinitely many lattices ker(f;) and M is finitely generated. Hence almost all of the f, are
injective. But [f] = [fs] and so (ii) follows. &

4.7 Theorem. Let M be a A-lattice, and © = Ends(M). The following diagram com-

mutes:

Ue) —= .,  ciA)
N /8
Whey) (M, M)

where the unlabelled diagonal arrow is the natural one induced by the surjection U(©) —
®pEndj ,(Mp)* and the isomorphism in 4.1 with M = N.

Proof : We have to show that 8(h) = cls(v3) where 3 is chosen as in 4.3. Since [Bp] = [hp]
at every P, it is immediate that [ap] = [h'p] where h' = f(h @ 1)f~! (note that ap is a
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local isomorphism Lp — Lp). By 4.5 8(h) = 8(h’). Hence we may assume that L = M
and 8 = a, i.e. that M is a full lattice in A*. We now complete the proof using similar
ideas to [Wi2] §5. Let S be a non-empty finite set of prime numbers, containing all primes
p where A, is not a maximal order. Choose any locally free sub-lattice X of M (with finite
index in M) such that X, = M, whenever p ¢ S. This is possible, because for p & § A is
a maximal order. Hence the isomorphism class of M, is determined by Q,M, = A;. Thus
My = Ak,

Then let Y = aX. Let ¢ be a positive integer divisible by |M/Y'| and all primes in S.
By weak approximation, choose g € Endj(M) such that g, = ap (mod cEndy,(Mp)) for
every pin S. If p € S then a, is an automorphism, hence gp is an automorphism mod p,
and hence an automorphism by (B] III 2.7 (since pEnd,,(Mp) C rad Endy,(Mp)). Thus
(ker g)p = ker(gp) = 0 and ker g is finite (since S is non-empty). But M is a lattice, hence
g is injective. Suppose that F is a finitely generated free A-module and there is an exact

sequence

0 - G - F — cokerg — 0.

If p € S then (cokerg), = coker(gp) = 0 and so Gp & Fy is free. If p € S then A, is
hereditary and so Gp is projective. Hence G is projective. Thus pd(cokerg) < 1 and by
4.6(i) g is a w.h.e. and

(2) 9(g) = [coker g].

We claim that
(i) g7}(Y) = X;
(iii) g(M)+Y = M.

For (ii), it suffices to prove that g;l(}’,,) = Xpforeachp. f pg€ Sthen Yy, = X, = M,
so the result is clear. If p € S then

gp(Xp) C ap(Xp) + cMp by choice of g
=Yp+cMp,CY, by choice of c.

But both g, and a, are isomorphisms so

My | _
9p(Xp)




therefore gp(Xp) = Y, as required.

For (iii), it suffices to show that g,(Mp) + Yp = M, for each p. This is obvious since in
each case either gp(My) = Mp or Y, = M,. Thus

a(g) 2 1M/g(M) Ly/Y n oM Dly/9(X)]

(iv)

=[Y]-[X]  since g is injective.
Now [hy] = [ap] = [gp] for each p € S. Further, if p ¢ S then h, and g, are projective
homomorphisms (since My, is projective). Thus by 4.1(ii) [h] = [g]. Thus by 3.4
(iv)

d(h) =0(g9)=[aX] - [X]=clsva. @

Remark: By 4.1(iv) a similar result holds when M and N are full lattices in V' which are
in the same genus, rather than taking M = N as in 4.7. However with M = N we have

the following refinement.

4.8 Theorem. Let M be a A-lattice. Then A(M) is a subgroup of D(A).

Proof: By 2.5 A(M) is closed under addition. Clearly 8(1) = 0 and by 4.1(iii) we have
inverses. So A(M) is a subgroup of Ci(A), by 4.7. The result now follows from 4.2. &

More generally we have

4.9 Theorem. Let M and N be finitely generated A-modules in the same genus and let
f € Whea(M, N). Then 8(f) € Cl(A). If M = N then A(M) is a subgroup of D(A).

Proof : By 2.5 and 4.2 the second statement follows from the first. For the first

statement, choose a sequence
0 - L — MoF ‘9 N - o

for f. It suffices to show that L is locally free. Changing notation for the local case, we
have to show that L is free. Let J = rad A and let A = A/J. For brevity write X for
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A ®p X. By right exactness of tensor there is an exact sequence of A-modules

(4.10) I - MoF Y9 ¥ o o

Let T = ker(F, ). Since A is semisimple, the surjection (f, g) in 4.10 is split, hence
(4.11) ToN2MeoF.

A is also Artinian, and M = N by hypothesis. Hence T & F by the Krull-Schmidt theorem
(in other words we can cancel M and N in 4.11). Thus the surjection L — T coming from
4.10 induces a surjection L — F. By Nakayama’s lemma this lifts to a surjection L — F
(see e.g. [Ba)] III proof of 2.12). Because F is free, this surjection is split. Comparing

ranks, F' & L as required. &

§5. Applications to Group Rings.

In this section we let R be a Dedekind ring with field of quotients K (# R) an algebraic
number field. Also let G be a finite group and A = RG be the integral group ring. We
write H*(G, M) for Tate cohomology with coeficients in a A-module M. We call M
cohomologically trivial if (G, M) = 0 for all integers n.

5.1 Theorem. The following conditions on an RG-module M are equivalent.
(i) M is cohomologically trivial;

(ii) pd(M) < 1;
(iii) pd(M) < oo.

Proof : [Br] VI 8.12 for the case R = Z. The general case is similar. 8

We shall now give a number of results which are specific to orders which are group

rings.

5.2 Theorem. Let M be a A-lattice and N a finitely generated A-module. Let T be
the map of 3.1, and write X = Homp(M, N). Then H"(G, X) & Ext}(M, N) for each
n € Z. In particular HY(G, X) = Homy (M, N) and H(G, X) & ker(r).

Proof : The special cases can be extracted from the proof of (29.18) in [CR] Vol. I —
once again the proof for M = N generalises. The remainder is well-known (see for example

[Br] Ch.III 2.2). ®
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5.3 Theorem. Let M and N be as in 5.2 and let f € Homy (M, N). The following are
equivalent:

(i) fisa w.h.e;
(ii) f is a (k,0)-w.h.e. for some positive integer k;

(iii) fo: HY(A, M) — H"(A, N) is an isomorphism for each n € Z and for all subgroups A
of G.

Proof : (i)=(ii) is trivial by 2.2. For f as in (ii), choose a sequence (f, L, F) for f; by
2.2 pd(L) is finite. By 5.1 L is cohomologically trivial, which implies (iii) by taking the
Tate cohomology of (f, L, F). Conversely, if (iii) holds, choose a finitely generated free
module F mapping onto N, so we obtain a short exact sequence (f, L, F), where we do
not yet know that L is projective. Taking the Tate cohomology of (f, L, F), we find that
L is a cohomologically trivial A-lattice, hence is projective by [CF] IV Theorem 8. &

Remark: If we drop the condition that M is a A-lattice, we find that the theorem follows

if (i) and (ii) are modified as follows:
(i) fis a (2,0)-w.h.e., (ii) fis a (k,0)-w.h.e. for some integer k > 2.
This follows by 5.1. If we further suppose that f is a (k,n)-w.h.e. (where n > 0) it follows

that f is a (1,n)-w.h.e., by 2.2(iii) and 5.1.

The following property of group rings will be used repeatedly (see [CR] Vol. I §37
example(i) after 37.8 or [Br] VI §8 Ex. 3(a))

5.4 Extk(M, P) = 0if M and P are A-lattices, and P is projective.

Next we show that the coset properties of w.h.e.’s in 4.1(iv) hold more generally for

group rings.

5.5 Theorem. Let M and N be as in 5.2 and let f € Whe, (M, N). Then
Whey (M, N) = [f] o Endp(M)*

and
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8(Whep (M, N)) = 8(f) + A(M).

Proof : The second property follows from the first. Choose a sequence (f, L, F) for f.

By 3.2 we obtain an exact sequence
0 — Ends(M) — Homy(M,N) — Exti(M,L)

since L and F are projective. By 5.4 the right hand group vanishes and the first property

follows.

There is a strong connection between A-lattices connected by a w.h.e., which provides a
partial converse to 4.1(iv), since projectives are locally free over group rings, by a theorem
of R. G. Swan.

Definition: Let M and N be A-modules. Then M and N are projectively equivalent if
MeoP=EN&Q

where P and @ are projective A-modules.

5.6 Theorem. Suppose that both M and N are A-lattices. Then Whey (M, N) is non-
empty if and only if M and N are projectively equivalent.

Proof: “if” is clear, for an isomorphism M@ P = N@® P’, where P and P' are projective,

induces a w.h.e. M — N since the other component-wise maps are all projective.

For the converse, given f € Whe, (M, N), any sequence (f, L, F') for f splits by 5.4,
giving the required equivalence M@ F NG L. 8

The following result will be used in §6. First we introduce some notation for connecting
homomorphisms (taken from [Ma] III Lemmas 1.2 and 1.4). For this we allow M, N, L
and T to be any A-modules. Choose ¢ € Extj(M, N) and f € HomA(L M). Define
¥f € Exty(L, N) as follows. Choose an extension

0o - N3 E L& M S o0 €9
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Let P be the pullback of (f, 8). There is a commutative diagram

0 - N - P —- L — 0

I

O—-)N-‘—I-»E—ﬁ—)M—)O

and the class of the top row is ¥ f, depending only on % and f. Similarly define hy €
Ext} (M, T) for each h € Homy(N, T) using the pushout of (a, k). We have (¥ f1)fs =

Y¥(f1f2) and g1(g2%) = (9192)¥, and also ([Ma] III Lemma 1.6) (g¢)f = g(¥f). Accord-
ingly we write ¥ f1 f2, etc. unambiguously.

5.7 Theorem. Let N be an n-syzygy of the A-lattice M. Then there is a ring isomor-
phism r: End (M) & End(N) such that 8[f] = (-=1)"8(r[f)) for each f € Whex(M, M)
(where we extend the 8-map to Whey(M, M) unambiguously by 3.4). In particular
A(N) = A(M).

Proof : Breaking up an n-fold extension of M by N with projective middle modules
into short exact sequences, it suffices by induction to prove the result for a 1-syzygy N.
Then let

0 - N X P 4% M o0 €

be an extension with P projective. Since M is a A-lattice, using 5.4 we can apply 3.2 to

' obtain long exact sequences

(5.8) ... = Ext}(-, P) — Ext}(-,M) — Ext}*(-,N)-...
and .
(5.9) oo > Ext}(P,-) — Ext}(N,-) - Ext}*}(M,-)- -

Since P is projective, Homy (M, P) = 0 = Ext} (M, P), the last equality by 5.4. Then by

5.8 with n = 0 and variable M there is an isomorphism
a:Endp(M) = Exth (M, N)
(5.10) by
[f] %],

by the definition of the connecting homomorphism. Similarly by 5.9 with n = 0 and
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variable N we obtain an isomorphism

B:End,(N) =% Ext} (M, N)

(5.11) by
9] — g¥.

Put 7 = #~la. It suffices to show that r is a ring map, and that if f is as given then
8[f] = —o(r[f]).

Let f1, fo € Endp(M). Choose h € End(N) such that hyp = 9 f1 fa, using 5.10 and
5.11. Similarly choose h; € Endp(N) such that h;yp = ¢ f; for i = 1, 2. Then

hip = Y fifa = h1v fa = hihat.

Applying 8-, we see that r(fi fo] = [h] = [h1h2] = r[f1]r[f2].

For the last part, we may assume by 4.6 that f is injective, and 8(f) = [coker f]. Let
E be the pullback of (f, §). Since f is injective, so is the induced map E — P and there
is an exact sequence

0 - E —- P — cokerf — 0.

Thus pd(E) < co. By 4.6 and 5.11 we can choose an injective map g € Ends (V) such that
gy = ¥ f. Thus E is isomorphic to the pushout of (g, v) and there is an exact sequence

0 - P - E — cokerg — 0.

Thus pd(cokerg) < oo and g is a w.h.e. (this is also a consequence of 4.1(iii)). But
/6] = rl]. Thus

8(r(f]) = lcoker g] = [E] - [P] = —[coker f] = ~8(f) ®
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§6. Swan Modules.

Let A = ZG be the integral group ring of a finite group G and let H be a normal subgroup

of G. There is a Cartesian square

ZG £ Z[G/H]

l lw

2(G/(om)] — JulG/H]

where n = |H|, J, = Z/nZ and og = Ty h € ZH. The corresponding Mayer-Vietoris
sequence (see [RU]) is

J[G/H* B D(2G) — D(Z[G/H])® D(Z[G/(ox)]) — O (MV)

6.1 Definition: (see [CR] Vol. II §53 or [Ol]) Tg(ZG) = im(ég) is the Swan subgroup
of ZG relative to H. When H = G we write simply T(ZG), and this group is known as

the Swan subgroup.

Let A' = Z[G/H], A" = Z[G/(og)) and A = J,[G/H].
6.2 Lemma. There is a ring anti-isomorphism Endj(A’) 2 A given by [f] — mgf(H).

Proof : Since ZG acts as Z[G/H]| on A’, there is an anti-isomorphism End(A’) =
Endy/(A') & A’ by f — f(H). But

Py(A, A')Sizac.Endz(A') = nO'G/H.Endz(A')gnPAI(A', A"} = nEndy/(A'),

the last equality because A’ is free (over A'l). Evaluating the last group at H, we obtain
ker 7g = nA', and the result follows. #

Let 7 denote the composite map Whey (A’, A') = Whey (A', A') = Endp(A')* = A%,
where the first map is the natural projection and the last is the restriction to unit groups

of the anti-isomorphism in the lemma.
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6.3 Theorem. There is a commutative diagram

Whea(A', A') —>—  D(A)
™\ /" bu

Proof : Write ¢,7 for eg,mg. Let h € Whes(A’, A'). By 4.7 we can choose some
a € U(Endj(A')) such that (k) = clsva. If ap is right multiplication by v, € (A})* for
each p, and if 7(h) = w € A, from the proof of 4.7 it follows that myv, = w, for each p.
Since Xp=0 if pfn, we may take v, = 1 in this case. We may identify A with

{(e(A),7(A)): A€ A} c A @A

this identification is compatible with the identification of QG with QA’ & QA". Then the
pullback Aw (such that §g(w) = [Aw] — [A] —see [RU]) is identified with

{(a,b) e A'® A" : ma = (6b)w}.

~ Moreover Aw = AB where 8 € J(QG) is given by

_[@,1)  ifpfw;
ﬂ"‘{(v,,,n if p|n.

with components in QA, ® QA,, for each p. (see [CR] Vol. II ex. 53.1). It is obvious that

clsva = clsyf which proves the theorem. 8

Remark:

(i) One can define a generalised Swan module (u, og) = ZGu+ZGog, where the element
u € ZG N QG* is such that u € Z,G* for p|n. Then (u, og) = 8(f) = 6u(w) where
(u, og) denotes [(u, og)] — [ZG] € D(A), and f € Whep(A', A’) has image w € A

under the isomorphism of 6.2, and mgeg(u) = w. For any unit w, such a u exists.
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(i)

i)

Similar results hold for more general Mayer-Vietoris sequences. For example, if A’ is

any order containing A and (A’ : A) is the two-sided conductor
(AM:A)={ze KA:NzA CA},

then there is a commutative diagram, the analogue of 6.3, with ég replaced by the

connecting map € in the Mayer-Vietoris sequence corresponding to the Cartesian square

A — A
| |
A A

(A:A) — (A:A)
Here A can be any order as in §4.
If A as in (ii) is chosen to be a maximal order, we find that §: Whes(A’, A’) — D(A)
is surjective, since ¢ is surjective because D(A’) = 0. This also follows directly from

the idelic description in §4.

6.4 Corollary. Let H be any normal subgroup of G. Then

Ty(ZG) = A(Z[G/H]).

The last result connects Chinburg’s invariant Q(/N/K, 1) of a finite Galois extension

N/K of number fields with Galois group I', with the Swan subgroup of the class group, as
we will soon show. We take the following definition from [Ch2].

There is an exact sequence

0O - ¢ - A - B - Z — 0,

of finitely generated ZI'-modules, where A and B are cohomologically trivial. The module

Cy is chosen to be a finitely generated ZI'-module with the same Tate cohomology as the

infinitely generated module C(N), the idele class group of N. In other words,

H™T, C;) = H™(T, C(N)) for all integers n.

Define Q@ = Q(N/K, 1) = [A] - [B] - r[A], where r = rk([A]) — rk([B)).
We can improve slightly on 3.5:
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6.5 Theorem. Let
0 - T - P4 —--+—> P -M -0

be an n-fold extension of the A-lattice M where each P; is a projective A-lattice. Then there
is a natural isomorphism p:Ext}(M, N) 2 Homy(T, N) for any A-module N. Further,
if f € Exti(M, N) is a (1,n)-w.h.e., such that u(f) = [h], then h is a w.h.e. and 8(f) =
a(h) + [P).

Proof : Let Q be im(P,_; — Pn_2). A standard result says that there is a natural
isomorphism Ext}(M, N) = Ext}(Q, N). Since Q is a lattice, by 5.4 and 3.2 the short
exact sequence T' — P,,_; — @ yields a contravariant Ext sequence. Letting the variable
be N, the connecting homomorphism gives an isomorphism Homy (T, N) & Ext}(Q, N).
Putting these isomorphisms together yields the map u. The result about 3(f) is a conse-
quence of 3.4 and 3.5, and by 5.3 his a-w.h.e. (i.e. of level 1). ®

Applying 6.5 with M = Z, N = Cy, n = 2 and T the 2-syzygy in the bar resolution of
Z (so [P] = [ZI]), we find:

6.6 Theorem. ( lies in the coset of T(ZI') determined by 8(h) + (1 — r)[ZT] for any
h € Whe(T, Cf). Since T is uniquely determined (as a submodule of ZI(?)), this coset

~ depends only on the module Cj.

Proof: By 5.5and 6.5, Q lies in the coset of A(T") determined by the given representative.
By 5.7, A(T) = A(Z), and the latter group is T(ZI') by 6.4. n

6.7 Remark: A similar result holds when T is any 2-syzygy of a free resolution of Z; the

bar resolution simply makes this choice explicit.

In the case of a cyclic group I', two simplifications occur to make the above result more
concrete. As in [Ta] Ch. 3 1.5, the Swan subgroup of a cyclic group is the trivial group.
Also, we may choose the module T to be Z since there is an exact sequence Z — ZI' —
ZT — Z, for a cyclic group I'. Thus Q = 8(h) — r[ZI'] for any h € Whezr(Z, Cf), and
only depends on the module Cy. .
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§7. Hecke algebras of subgroups of a finite group.

Let G be a finite group and H a subgroup of G. Define

aH=2h, dg = Z z € ZG,
heHd z€HgH

for g € G, and eg = og/|H| € QG.

Note that ey is an idempotent, and the dy are the H — H double-coset sums. Let
HI =g 1Hg.

7.1 Lemma. Let g,¢' € G. Then
(i) gH = ¢H <= gog = g'og;
(ii) |[HN HY\dg = oggop;

(iii) dg € {(Tzec @zz)om :az =0or 1 for all z }.

Proof :
(i) gH=¢H < ¢ =ghsomeh€ H < gog =g'og.

(ii) Let h;,h} € H, for i = 1,2. Then hyghy = highy, <= g~ 1(h})1highy = hj}. Fixing
hy and hg, the latter equation requires that g~1(h{)~1h1g € H, which allows |H N HY|

choices of h}, each of which fixes hj.

(iii) Let hi,hy € H. By (i), higog = hagog <= higH = hagH. Fixing h;, the second
equation requires that g~'h;'hig € H, which gives |[H N HY| choices of h. So (iii)

now follows from (ii). ®

7.2 Theorem.

(i) There is an isomorphism R[G/H)] ®pc RGep, induced by R-linearity from the map

gH — geg for g € G, where R is a domain of characteristic 0;

(ii) There is a ring anti-isomorphism
Endqg(QGen) = egQGep = (dg)q

by right multiplications. (The r.h.s. is the Hecke algebra corresponding to H.);
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(iii) Endzg(ZGeg) = (dy/|H|)z, under the map of (ii).

Proof :
(i) follows from 7.1(i).
(ii) The anti-isomorphism is clear, and the equality follows by 7.1(ii).
(ili) We identify the image of Endzg(ZGepy) with { X € (dy)q : ZGegA C ZGeg }. 7.1(ii)
shows that egA = X for A € (dg)q. If follows that the image is
(dg)Q N ZGeq = (dg/|H|)

by 7.1(iii). ®

7.3 Corollary. Let X = (|H N H%dy/|H|)z. Then the image of Pzg(ZGeg, ZGep)
under the map of 7.2(iii) is X, hence

Endzg(Z[G/H)) = _(dy/)|f-’|)z .

Proof : Let g,¢' € G. There is a unique map f(g, ¢') € Endz(ZGeg) such that
f(9, 9')(9en) = g'en, and f(g, g')(g"en) = 0 if g"ey # g'eq for g" € G. Then

{o6.f(g, 9\ Hem)= Y. (¢")'dem= Y hg~'denq =omg 'dexn.
g'en=gen heH

Since the f(g, ¢’) generate Endz(ZGep) as abelian group, the result follows by 7.1 and
54. &

We will use the above results on Hecke algebras to show that Theorem 6.4 (i.e.
Ty(ZG) = A(Z[G/H)) if H is normal) fails for non-normal subgroups H, in general.

Since ZG®zy is flat, for any subgroup N of G, it follows by inducing a sequence for a
w.h.e. of Endzy(Z[{N/H]) that (following Oliver in [Ol])

Tx(2G)Y ind§ Ta(ZN) C A(Z[G/H))

where N = Ng(H) is the normaliser of H in G. For our example, we will choose G to be
a dihedral group Dy, where p and ¢ are odd distinct primes and

Dyp=(on,1:00 =7t =1, 10, = 0;!7)
is dihedral of order 2n. Abusing notation, we can write 0§, = 0y, and let Hp = (g, 7) =

D,. Similarly the dihedral subgroup H, of G is defined. We have
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7.4 Theorem. A(Z[G/H,))+ A(Z[G/H,)) = D(ZG).

Before proving the theorem, we will show how it provides the required example, i.e.
Ty(ZG) # A(Z|G/H])) for some H which is not normal.

Note that Hy, and Hy are their own normalisers in G. Thus Tg,(ZG) = indg? T(ZH,).
But Hyp = Dy, and D(ZDp) = 0 ([CR] Vol. II 50.25), hence

THP(ZG_) =Tqg(ZG) = 0.

Thus, whenever D(ZG) # 0, the theorem gives the required example with H either Hy or
H,. But D(ZG) # 0 when p = ¢ =1 (mod 4) ([EM] Theorem 2.3), providing an infinite

class of examples.

Proof of 7.4: Let O be the (unique) maximal order in the commutative semisimple
algebra C = Z(QG). The idelic description of the kernel group is

U(o)

(7.5) D(ZG) & o

Note that we may ignore the infinite primes in the idele groups since QG is a sum of matrix

rings over fields (see below).

Let ©7 = Endgzq(Z[G/Hp)) and similarly for ©9. By the naturality of the isomorphism
7.5 and 4.7 it suffices to show

(7.6) v(U(OP) (U)W (U(ZG)) = U(O)

We will prove 7.6 prime-by-prime. If r is a prime number, not dividing 2pg, then Z,G is
a maximal order. Hence v(Z,G*) = O)¢. Thus it suffices to prove the local version of 7.6

at the primes 2, p and gq.

We will use the following notation. Cy = (0,) is the cyclic group of order n, Dy is

the semi-direct product of Cy, and the group C; = (7) (we put o3 = 7), with T acting by

th root of unity, and let

inversion, oy, — 0, 1, Let {, be a primitive n
LI"=Q(¢) K'=Q+¢Hh)
S"=1Z[ta] R"=Z[a+ Y
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We fix the isomorphism (c.f. [CR] Vol. I example 7.39)
QG2QCdIP0Co@Li0Co LP0 Cy

where the “o” denotes twisfed group algebras, 7 acting by complex conjugation. e.g. the

projection QG — LP o C; is induced by opg — (p (and 7 ~— 7). Further (ibid.) we have

L™oCy = Ma(K™) for n > 2 (though S™0Cy 2 M3(R™)). Also we have QC; = Q)@ Q(),

with 7 acting trivially on the (+)- and by negation on the (—)-component. Thus this

identification is a + b7 — ((a + b)/2, (a — b)/2). We then have an identification

0=2HeZ2) o RPo R"® RM
and correspondingly

Z2G=chzesgoCb@SgoCz@Sé’quz.

Now ZyCy' = Zgﬂ X x Z(z_) ¥, as is easily seen by computing radicals (units of Zy are
=1 (mod 2)). We need a lemma (extracted from the proof of Theorem 3.4 in [Wi3])

7.7 Lemma. For each positive integer n and each prime number r

V(5™ 0 Cy)%) = R*™. &

Applying 7.7 with r = 2 we have ¥(Z2G*) = O5. By symmetry in p and g 7.6 follows

if we can show
(7.8) u(e;;")u(eg")u(z,,ax) =0y
Write d; for the double coset sums of Hy in G, and write o for opg. Observe that
H,o™t™PrH, = Hyo"Hy = Hyo™"Hy,

the first equality because of = o4 and 7 lie in Hy, the second because 707 = ¢~*. Thus
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there are (p — 1)/2 + 1 double cosets:
{Hyo®Hy;:0< < (p—-1)/2}.
By 7.2(iii) we can identify ©¢ with
7.1(i%) .
(dg/2q9)z = (em,, 2eqg,0%eqg, |1<z<(p—1)/2)z
since Hy N HY "= Cyif z # 0 (mod p). There is an isomorphism of (commutative) rings
(7.9) 07 5 G,

induced by eg, — 1 and 2eg 0%eg, — oy + 0, . This clearly gives a group isomorphism,

and that it is a ring map follows from the identity
o%og,0¥ = 0" Voo, + 0* Yoc,T.

Thus we can omit the first two v signs in 7.8.

Let B = B; ® Bs be a direct sum of Wedderburn simple components of a semisimple
algebra and let I' be an order in B such that the restriction maps I' — B; have image the

orders I'; for 4 = 1, 2. There is a fibre product diagram

r - I
~ (7.10) | |
r, - T

in which T is finite and all the maps are surjective. This identifies I' with a submodule of
I'1 @ T'9. The analogous result still holds if we complete at an integer prime r and pass
to unit groups, by semilocality and surjectivity. Suppose further that v((T';)X) = A; for
i =1, 2. Then

(7.11) Av(TX) = A x Ag = Agu(T)),
once more using surjectivity. We shall apply 7.11 thrice below. First observe that
(7.12) Z,G = ZpDp ® (S{Cp) 0 Cs.

Observe that the conditions on 7.10 are satisfied when
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(i) T =2CS*, T1=RP,Ty=Z and T = Z/pZ = Fy. (The surjection I — I'; is induced
by op+0,1 — (p+(; !, that T — 'y by op - 1, that Ty — T by (p+ ¢yt — 2(mod 2)
and that I'y — T is reduction mod p.)

(ii) I' = ZDp, T'1 = SPoCy, Ty = ZC3 and T= F;Cs. The maps are analogous to (i), with
op+op 1 replaced by a,‘,. 7 is unaffected by each map. e.g. the surjection I' — I'; is

induced by gp — (p and 7 — T.

(iii) T = (S9Cp) 0 Cy, T1 = S0 Cy, Ta = S70Cy and T = 57 0 Cy, where 57 = 57/pS".
The maps are analogous to those in (ii) but with Z replaced by S9. e.g. we think of

SP4 as S9[(,) where of course (g = (p(q-

Now apply 7.11 with » = p and
(i) Ai=(Ts);
(i) Ar = Rgx (by 7.7) and Az = chzx;

(iil) Ay = qux and Ag = Rgx (by 7.7).

Now 07 = Z,,C'E2 and ©F = R} ® Z, (by the definition of T in (i)). We may regard

Ty = Z in (i) as Z(*), since em,eG = €G- Then we have
| 02X 09 1(Z,G* )2 (Z{N ™ x RE*)Z,CC2 w(Zp D )v((SICy) 0 CF)
INZD™ x RE* x RY)w(ZpDY v ((SICp) 0 CF)
711y (4)* p X g% X \( pPgX
228D x REX x RI*)(Z,C3 )(RES™)

=0,

since Z,Cq = Z;,"') &) Z§,_), as 2 € Z;,‘. This concludes the proof of 7.4. 8
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CHAPTER II. Canonical Factorisability and Chinburg’s second invariant.

§1. Introduction.

Let N/K be a Galois extension of number fields with Galois group I'. In [Ch2] T. Chinburg
defined a class Q(N/K, 2) € CI(ZT') which measures the Galois structure of J(V) (the
idele group of N). The ring of integers Oy in N is a locally free ZI'-module if (and only
if) N/K is at most tamely ramified. We refer to this as the tame case. In the tame case
On determines a class (Oy) € CI(ZT') (this would have been written [Oy] — |K : Q|[ZT)
in chapter I), and Chinburg showed that

Q(N/K, 2) = (On).
Also in the tame case, M. Taylor proved the following beautiful and far-reaching result:
(1.1) (ON) = tWN/K € D(ZF)

where Wy, (defined by Ph. Cassou-Nogués) is a function depending only on the root
numbers W(x) = %1 of the irreducible symplectic characters x of I', and tWy/x is the
class in the kernel group D(ZT') it determines. Thus (in multiplicative notation) (Oy)% = 1
and in many cases (I" abelian, odd order, dihedral) (On) = 1 and indeed Oy is then a free
ZT'-module.

A. Frohlich generalised the definition of tWy, g to wildly ramified extensions (the wild
case). The resulting class in CI(ZT') was called the Cassou-Nogués Frohlich class in [Ch2],
and also goes by the name of the (generalised) root number class. We shall denote it by
tn/k (a definition appears in §4). This motivated the following conjectural generalisation
of 1.1.

1.2 Conjecture. (Chinburg) Q(N/K,2)=ty/k forall N/K.
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We will prove in §4 that
(1.3) QN/K,2)=tyxk (mod D(ZT))

thus giving evidence supporting 1.2, which has already been verified for a large class of
quaternion extensions by S. Kim. Chinburg has shown that ty/x & D(ZT) for certain
wildly ramified extensions, hence the same applies for Q(N/K, 2).

However, the arithmetic object Oy has “disappeared” from the statement of 1.2. We
reinstate it in the proof of 1.3 by the method of canonical factorisability (for the genesis
of this method see §2). Since Oy is not projective in the wild case, we cannot obtain from
it a class in CI(ZT). Instead, let b € Oy be a normal generator of N/K and consider the
finite module On/bOkT. We show in §3 that this module has a canonical factorisation
- This function g, (which depends on the norm resolvents Nk (b|x) of b and the Galois
Gauss sums 7(N/K, x) of characters x) gives rise to an invariant (which does not depend
upon b) in Cli(Mr) where Mr is a maximal order of QI" containing ZI'. We show in §§3-4
that this invariant equals the images of Q(N/K, 2) and ty/x under the surjection

CI(ZT) — Cl(My)

(which has kernel D(ZI')) thus establishing 1.3.

A word about notation. We shall be using [Fr1] extensively as a reference for the tame
theory, and shall adopt similar notations. In particular, in this chapter modules are right
modules unless otherwise stated. Direction of composition of maps is inferred from the

context (no endomorphisms appear in this chapter).
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§2. Canonical Factorisability for finite groups.

Let 7 be a prime number. Let k be either of Q (global case) or Q, (local case), and fix an
algebraic closure k of k, in which lies each finite extension K of k. Let Ok be the ring of
integers (maximal order) in K. Write Qg for Gal(k/K). Write Zx for the fractional ideal
group of K. In the global case, fix Q to be the unique algebraic closure of Q in C, and
write J(K) for the idele group and U(K) for the unit ideles of the number field K.

Let G be a finite group and let S(G) be the set of subgroups of G. Let Rg the ring
of virtual characters of G, Irr(G) the absolutely irreducible characters and Sg the subset
of Irr(G) consisting of symplectic characters, all characters over k. If we need to indicate
the dependence on % in the notation, we shall write Rg(k), Irr(G, k), etc. If in doubt take
k=Q.

Let U be a finite Galois extension of Q which realises the Q-characters of G. Then the
group Homq (Rg, J(U)) is defined, and there is a natural surjection

(2.1) clsy: Homgg (Rg, J(U)) — Cl(A),

for any order A in QG, induced by Fréhlich’s Hom-description (see the proof of 2.6 below).
There is a similar result for the group K¢T'(A), which is the Grothendieck group of the
category of locally freely presented finite A-modules, taken with respect to exact sequences.
By 1.5.1 if A = ZG the category is that of finite cohomologically trivial ZG-modules.
Whereas if A is a maximal order then the category is simply that of the finite A-modules,
and there is an ideal-theoretic description of KoT(A) (going back to Jacobinski) which we

give a modern flavour via the Hom-description in 2.6.

When A = ZG there are useful formulae for change of group which we shall use exten-
sively in this chapter. Let H be a subgroup and N a normal subgroup of G. Restriction,
induction and inflation of characters induce maps resg: Rg — Ry, indg: Rpg — Rg and
infg IN* Rg/n — Rg on the character rings. Further, fixing under NV on QG-modules gives
a map cutg /N:RG — Rg/n. Let G and G, be arbitrary groups. Let M be an abelian

group. Any group homomorphism Rg, — Rg, induces a contravariant homomorphism
(2.2) Hom(Rg,, M) — Hom(Rg,, M).

In the case of the maps above, the contravariant, induced maps are denoted by indG,
res%, coinfg /v and cocutg /N respectively. The first three of these give maps in the Hom-
"description for the groups K¢T(ZG), KoT(ZH), etc. (but the analogue of cocut does
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not preserve local freeness of modules). These are induced by the module-theoretic maps
(again denoted by ind, res and coinf) as follows. The tensor product ®zxZG induces
indg:ICoT(ZH ) — KoT(ZG). Restriction of scalars from ZG-modules to ZH-modules
induces res$: XoT(ZG) — KoT(ZH). Fixing under N (c.f. cutting of characters) from
ZG-modules to Z[G/N]-modules induces coinf y: KoT(ZG) — KoT(Z[G/N)).

Let Mg(Q) = Mg be any maximal order in QG containing ZG. There is an exact

sequence

(2.3) 1 - Uv) - Ju) ¥ 1z - 1

in which Al is the associated ideal map. This induces a map (also denoted AI)
(2.4) Al:Homgq(Rg, J(U)) — Homqgq (Rg, Tv).
We define I(G, Q) to be the subgroup of g € Homgq (Rg, Zy) such that

(2.5) 9(x) € Iq(y), for each x € Rg(Q).

Note that the symbol Q(x) indicates the number field generated by the values of the
character x. This is not the same as the smallest field over which a representation of the
character is realised. e.g. If x is an irreducible symplectic character, then in particular x
is real-valued so Q(x) is a subfield of R. But no representation of yx is real (one could take

this as the definition of irreducible symplectic character).

In 2.5—and throughout this paper—we are using the following convention. If L/K is
a finite extension of number fields then there is a natural embedding of Zg in Z;, which
we shall regard as an inclusion. A similar convention holds in the local case. Indeed, if
we replace U by a completion Ug of U at a finite prime R|r and Q by Q;, then we get
the corresponding definition of I(G, Q,). Note that the.symbol Q. means the algebraic

closure of the r-adic numbers, not the r-adic completion of Q!
In the global case, define P*(G, Q) to be the subgroup of g € I(G, Q) such that
P(i) g(x) is principal for each x € Rg(Q);
P(ii) g(x) has a real, totally positive generator for each x € Sg,q-
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2.6 Theorem. There are isomorphisms
KoT(Mg) S I(G, Q)

ker(KoT(Mg) — Cl(Mg)) = P*(G, Q)

induced by the Hom-description and the map Al

Proof (sketch): The Hom-description isomorphisms are

Hom?iq(Rg, JU))
Homg’iq(Rg, U))

KoT'(Mg) =

and

HomQQ (RGa J(U))

CUM6) = o, (Ro, U(U))Homag(Ra, U%)

The surjection KoT'(Mg) — CIl(Mg) is then extension of coset. To establish the theorem

it suffices to show the equalities

Alo Hom'g"zq(Rg, J)) = I(G, Q)
and

AloHom§_(Rg, U*) = P7(G, Q).

For the second equality, note that one can place a + sign on each group in the Hom-

description of Cl(Mg). The inclusions C are clear from the fact that

J (V)% = 7(Q(x))

for each x € Rg(Q). We shall show how to pull back an element g € I(G, Q) to one § €
Homg Q (Rg, J(U)). Let x run over a full set of representatives of the Qq-orbits in Irr(G).
Since AL: 7(Q(x)) — Iq(y) is surjective (and the infinite prime does not contribute) choose
3(x) € J(Q(x)) such that AIg(x) = g(x) and (x)ooc = 1. Choose § on the remaining
elements of Irr(G) so that § respects Qq-action. Since Irr(G) is a basis of Rg we find that
Alog=gandge Homaq(RG, J(U)) as required. ®
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In future we shall identify the groups in 2.6 under these isomorphisms. From the proof
given, it suffices to specify an element of I(G, Q) by its values on irreducible characters,
which we. shall do henceforth. It is easy to see that restriction, induction, inflation and
cutting of characters induce corresponding maps on I(G, k) (Warning: These do not have
a natural interpretation at the level of Mg-modules). For, these maps are well-defined
if we take M = I3 in 2.2, and if x € Irr(G, k) then Ic(res% x) € k(x), and similarly for

induction, inflation and cutting of characters.

As motivation for the method of canonical factorisability, we give the elegant notion
of factorisability (due to A. Nelson [Ne]).

Definition: Let f:S(G) — Iq be any map. Then f is factorisable if there exists a
function g € I(G, Q) (a factorisation of f) such that

res§ 9(1g) = f(H)
for each H € §(G).

Associating H with the G-set H\G one can consider f as a function on the Burnside
ring of G, which is factorisable if it extends to the ring Rg. This idea has applications to
integral representation theory of finite groups as follows. Let | : |z denote the Z-module

index. If X and Y are ZG-lattices spanning the same QG-module, we can put
f(H) =X Y "y

and if f is factorisable we may say that X and Y are factor equivalent, written XyY.
This gives an equivalence relation on such lattices, which is weaker than the relation of
local isomorphism. In the context of Galois module structure, the lattice X is taken to
be an arithmetic one whose structure is an object of study and Y a “standard” lattice of
transparent structure. Thus, factor equivalence places strong restrictions on the module
structure of X. In addition (see [Fr4]) a factorisation function g may be expressed in
terms of arithmetic functions (values of L-functions or Galois Gauss sums, say) and the
invariant of KoT(Mg) it represents is then parametrised, giving a source of “structure
theorems” (see [Fr4] and [Bu] regarding the Martinet conjecture and its generalisations).

As examples, if N /K is a finite abelian extension of number fields with Galois group I' (in
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place of the group G) then (see [Fr4] or [Ne])
OnvOkT

as ZI'-modules. On the other hand, if " is abelian but not cyclic we have (see [Fr2] or
[Ne])

OKFWMI"K

where Mr g is the unique maximal order in KT'. Frohlich introduced the notion of canoni-
cal factorisability (an exposition of which appears in [Bu]) in the context of abelian groups
G, to get around the problem that a function f may have several different factorisations (if
it has any) and so the choice of an invariant in KoT'(Mg) is not unique. Yet the arithmetic

parametrisation of factorisations suggests that unique (and important) factorisations exist.

Frohlich’s canonical factorisations are uniquely determined, but of course this requires
extra conditions on the function f. As in [Bu] one treats first the local case (completing
at a prime number p) and then puts together all the local canonical factorisations into a
global one. The extra information in the local case is encoded by extending the domain of

f by introducing certain local idempotents.

In his second talk at the Durham Symposium on Algebraic Number Theory (1989)
Frohlich sketched a generalisation to non-abelian groups G, with the local f defined on
pairs (H, e) where H is any subgroup of G and e is an idempotent of an abelian character
of some subgroup of G of order prime to p, and further e commutes with the idempotent
eq of the subgroup H. We have adopted a simpler definition, based on an idea of Steve
Wilson, in which the subgroup H is restricted to be cyclic. The definition in [Bu] is
equivalent to ours in the cyclic case, and if a canonical factorisation (for arbitrary finite

groups G) exists in Frohlich’s sense, then so does one in our sense, and they coincide.

Before proceeding to the definitions, note that just as we use the symbol G for a
generic finite group and switch to I' when the group is the Galois group of an extension
N/K of number fields, we let » denote a generic prime number and reserve the symbol p
(in later sections) for the fixed prime below a prime p of K which is wildly ramified in
N/K. This is to avoid confusion when using double-localisation methods (as in the tame
additive theory), that is localising both arguments and values of functions, perhaps with

respect to different primes.

44



2.7 Definition: Let 7 be a prime number. Let S"(G) be the set of all pairs (C, e) as

follows. C is any cyclic subgroup of G. We can write
(2.8) C=0C; xCx

where C, is the Sylow r-subgroup of C'. Then e is any indecomposable idempotent of the

maximal Z,-order Z,Cx.

Let f:8"(G) — Iq, be any map. Let g € I(G, Q:). Then g is the canonical factorisation
(C.F.)of fif

(2.9) resg g(infg, x) = f(C, e)
for each (C, e) € S7(G), where x is the Q,-valued character of Q,Cxe.

Before we prove uniqueness of (local) canonical factorisations, we shall need some
terminology for cyclic groups (these concepts also make sense for abelian groups). If C is
a finite cyclic group, write C! for Irr(C) (the character group of C). If H € S(C), define
H* to be the subgroup of C! consisting of those characters 9 such that ¥(H) = 1. Define
a division D of C! to be the set of generators of a subgroup (denoted D) of C1.

2.10 Theorem. The canonical factorisation of f:S8"(G) — 1q, is unique if it exists.

Proof : Let h and A’ be canonical factorisations of f. Then A’A~! is a canonical
factorisation for the constant map equal to Z,. For uniqueness, it suffices to show that

any canonical factorisation for this constant map is also a constant map equal to Z,. Let
(C, €) € 8"(G). Let x be as in 2.9. There is an Qq,-orbit ® in Cx! such that

x= 3 ¢

¢ed

Choose ¢ € ®. Galois operation on ideals is trivial in the local case, so {2q,-equivariance
of g actually means g(8) = g(6“) for w € Qq, and 8 € Rg(Qy). Then by 2.9

resg g(mfgx X) = 1'888 g(lnfgx ¢)|¢| =2,.

Thus res& g(infgx ¢) = Z,. Let H € S(C;). Then indg" l1g = Tyen-¥. Let D run over
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the divisions of H*. Then

(2.11) I II resG 9(v, ¢) = res g(ind$ 15, ¢) = res§ ¢, g(infG " €< ¢) = Z,.
D veD

By induction on the order of H it follows that for each division D of oAl

H resg 9(¥, @) = Z,.
yeD

Now

(2.12) |D| = {Gal(Q:(¥)/Qr)| = |Gal(Q+(¥, $)/Q:r(¢))]

by standard properties of cyclotomic fields. Since g is a fortiori {1q,(4)-invariant, it follows

that
(2.13) res& g is the constant map equal to Z,.

Let C run over the cyclic subgroups of G. By the Artin induction theorem, the map
ind: @ Rc — Rg
C

induced by the indg has image of finite index. Since Iq: is torsion-free, the induced

contravariant map

res: Hom(Rg, I-Q-:) — ?Hem(Rc, Iﬁ,‘)

is injective. Hence by 2.13 g is the constant map equal to Z,. 8

Before defining the global version of canonical factorisation, we shall need a localisation

procedure.

2.14 Definition: Let g € HomQQ(RG(Q), Iy) and let r be a prime number. Let R be
any prime of U over r. Let j: U — Ug be the canonieal-embedding. For each ¢ € R:(Qr)
| l\ 46 -
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there is a unique 9, € R;(Q) such that 1,[:3 = 9. Define

g9 € Hom(Rs(Qy), Iy )

9r(¥) = 9(¥g)®-
2.15 Lemma. g, € HOIDQQT(RG(Q—«,-), Ty, ) is independent of the choice of R|r. ngJ )

Proof : Note that Ug = Ug for any other prime R’ of U over r, since U/Q is Galois.
*
The natural embedding j': U — Uz is equal to oj for some o € Gal(U/Q).

Consequently R' = R? ~ and 1/;5 ' is the unique global character ¥ such that ¢g: = .

It follows (since g preserves 2q-action) that

9(vg _I)R,—l = g("bg);’:—l = 9(¥g)r-

Thus g, is independent of R. a.) Jﬁ J-

The embedding j induces an embedding

j*: Gal(Ur/Qr) — Gal(U/Q).
If z € U and w € Gal(Uz/Q;) then the maps j and j* are connected by
) =)
Then
= () = ()
It follows (since g preserves Qq-action) that

g (") = g (¥7")) = 9 (W)™ = 9 (W),

the last equality because the image of ;* is the decomposition group of R. The right hand
side is gr(¢). Thus g, preserves Qq,-action. 8
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2.16 Definition: Let

f*={f"Ir is a prime number }

be any collection of maps f":S™(G) — Iq,. Let g € I(G, Q). Then g is the canonical
factorisation (C. F.) of f* if g, is the canonical factorisation of f” for each prime number

T.

Now we shall introduce functions f* which depend on ZG-modules. Our treatment is
formally different, but equivalent to that of Burns ([Bu]) in the case in which G is cyclic
and M and N (below) are lattices.

2.17 Definition: Let M and N be—not necessarily finitely generated—ZG-modules. Let
i: M — N be an injective ZG-map with finite cokernel. Let ordz, be the order ideal map
on finite Z,-modules. Define f¥ = { fT } by

f(C, e) = ordz, (coker(i®),e) = ordz (NCre/i(M)Ce)

for each (C, e) € S"(G). When i is the inclusion map define fi; y = f. When M =0 (so
N is finite) define fy = fF. If it is necessary to indicate the dependence on G we shall

write f! = f&;, etc.

Let H € S(G). Denote by N(H) the normaliser of H in G. If (C, e) € S"(G) then
N(C;) 2 C and hence e € Z,N(C;). The functor (— ®z Z,)e is exact. Thus the following
rules for the f] hold
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() fi5 = £ 15
() if there is a ZN(H)-isomorphism coker(iZ) & coker(j¥)
for each H € S(G), then f] = f};
(4) if there is a ZN(H)-isomorphism coker(i¥) 2 (cokeri)#

for each H € S(G), then [} = fi erii
(2.18)
(siia) if H € S(G), : M — N is injective and H(H, M) =0
then there is a ZN(H) isomorphism coker(if) = (cokeri);
(iv) if there is a short exact sequence of ZN(H)-modules

0 — coker(if) — coker(k#) — coker(jH) — 0

for each H € §(G), then f§ = ff;.

These are obvious except perhaps for (iv), which follows by the multiplicativity of the

order ideal map on short exact sequences (this is a generalisation of Lagrange’s Theorem).
Let us show that canonical factorisations exist.

2.19 Theorem. Let T be a finite, cohomologically trivial ZG-module. Suppose that
(T) in KoT(ZG) is represented in the Hom-description by h € Hom Q(RG, J(U)). Then

. g = Al o h is the canonical factorisation of fr.

Proof : f(‘_) factors through the relations in X¢T'(ZG) (because a short exact sequence
of cohomologically trivial ZG-modules necessarily remains exact over ZN(H) upon fixing
under the subgroup H—then apply 2.18(iv)). Since KyT(ZG) is generated by classes
(ZG/I) where I is a locally-free ideal of ZG, we can assume that T = ZG/I. Now I = aZG
for some a € J(QG), and h = Det a represents (T'). By 2.6 g = Aloh € I(G, Q). Further,
gr = Al o Det a, (where Al is defined on the subgroup Uz of J(U)) by (Fr1] II Lemma
2.1. Since gr € Homgqg_ (Re(Qr), Tg;) by 2.14, we only have to show (changing notation
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for the local case) that for each (C, e) € S7(G)
(2.20) (coinfgx res& o Det a(x)) = ordz, (T e).

But res& Det a represents res&(T) in KgT(Z,C). So we may assume that G = C. Further,
coinf& Det a represents coinfgx (T) = (T") in KoT(Z-Cx). So we may assume that 7 |C]|

and 2.20 becomes
(2.21) (Dety a) = ordz,(Te) = ordz,(Z,Ce/aZ,Ce).

Now V = Q,Ce is a left Q,.C-module with character x. Let @:V — V be the Q,-linear
map given by left multiplication by a. Then both sides of 2.21 are (detq, &).

Note that the canonical factorisation g in the above theorem is the image of (T') under
the natural surjection KoT(ZG) — KoT(Mg) (recalling the identification 2.6 and the
Hom-description of KoT'(ZG)).

It is not difficult to show that g is also a factorisation. As our principal interest is in

computing invariants, we shall not pursue this.

We shall need in §3 two functorial properties of canonical factorisations under change
of group. For those induced by cohomologically trivial modules as in 2.19, the results are
obvious because of the functorial properties of K¢T(ZG) and its Hom-description, and the
fact that 7y is surjective. However more generally we have (to simplify notation we assume

that the usual injective map ¢ is the inclusion, but the result holds generally)

2.22 Theorem. Let N be a normal subgroup of G and let G = G/N. Let V C W be
ZG-modules such that W/V is finite. Assume that f& yw has the canonical factorisation

g. Then cocut€ g is the canonical factorisation of f}. .
c9 GV,\W

Proof : Let (C, e) € S"(G). It suffices to show that

(2.23) resg cocutg gr(1c,, x) = f&vw(C, €),

where x is as in 2.9 and infgx x = (1¢,, x), in the obvious notation. Let Cx be
Cx/CxNN. Let cutg"—x =¥, the character of Z,Cx€ where € is the image of e in Z,Cx.
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Let § € Ct. Then

(2.24) cut—g- indg 6= indg cut—g—. 0,

where C denotes CN/N or C/C N N, as appropriate. Thus the left hand side of 2.23 is

gr(cut@ind@(1c,, x)) = gr(ind§ cuté(1c,, x))

= 9+(1nd(1¢7, %))

1, if kerx € Cx N N;
(C, &), otherwise.

T
f&,v,w

= f&,y,w(c, e). a

2.25 Theorem. Let K € S(G) and let V C W be ZK-modules such that W[V is
finite. Assume that fg vy has the canonical factorisation g. Then ind$ g is the canonical

factorisation of f& ind€ where ind% V denotes ZG ®zx V.
sind g

V,ind§ w’
Proof : Let (C, e) € S"(G). It suffices to show that
(2.26) res& ind$ g.(1c,, X) = f&,mdﬁ Vind$ w(C, e).

where x is as in 2.9. Let a run over representatives for the double cosets C\G/K. Let

¢ € Ct. By the Mackey subgroup theorem
(2.27) res$ ind€ 6 = D ind% g resG e 0°.
a
Let e® = a~lea. Let eg be the unique indecomposable idempotent of Q.[(K N C%)x] such

that e,e® = e®. Let x, be the character of Q.[(K N C®)x]es. Let m, be the degree of the
“abstract” field extension Q,C%e%/Q,[(K N C%)x]eq. Let 8 = (1¢,, x). It follows that

(2.28) resfnce 8° = ma(1(xnce),» Xa)-
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Then by 2.27 the left hand side of 2.26 is
gr(res$ ind& 9) = I1g- (indfgnc.. resnca 0“)
a

= l:_[ resIIgnca gr { (1(KnC¢)r, l"3’“(01(‘;(r10“)x Xa) }
(2.29) : m
= [Treskrce 9- { (ixnceyes xa)}
- _

= Hf;(,v’w(K N Ca, xa)mu.
a

Now a~! runs over representatives of the double cosets K\G/C. There is an analogous

formula to 2.27 for resg ind% V. Thus

(ind§ V)% = (res& ind§ VS
o G
~ a~
(2.30) =0 (deﬂK o resfa V )

i (CnK*"Y),
= @md(om{a.1 (reanKG_l Ve ) .

The last isomorphism is by the analogue of 2.24 for modules. By orthogonality of the

idempotents, and conjugating by a in the ath factor, there is an isomorphism of Z,-modules
(indﬁ V,-)C"e & @ Z,-Cx e® ®Zr[(KﬂC“)x]e¢ (Vr)(KnCa)'ea
a

By the definition of m, it follows immediately that the right hand side of 2.26 is 2.29. u
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§3. Chinburg’s second invariant and a canonical factorisation

related to the ring of integers.

In this section we will define Q(NN/K, 2) and prove that its coset mod D(ZT) is deter-

mined by the canonical factorisation of

fooxr, 08

in a sense we shall make precise (at the same time we shall show that this canonical

factorisation does exist).

Let N/K be a finite normal extension of number fields with Galois group I'. For each
finite prime p of K choose a prime  of N lying over p. Let I'(p) be the decomposition
group at p. Let exp, be the p-adic exponential function, defined for elements of IV,

sufficiently close to 0.

We shall call p tame if Ny/K, is at most tamely ramified; otherwise we shall call
p wild. We shall also call p ramified or unramified in an analogous way. If p is tame
then Oy is free as Ok pI'($)-module, by E. Noether’s theorem. Thus we can choose
a€ll, 0}’\‘,’9 ( running over finite prixries of K) such that

(i) ap € Onp and ap K I'(p) = Ny for each p.

3.1
(3.1) (44) apOk oI'(p) = Onp for each tame p.

Since N, is isomofphic to the induced I'-Galois algebra Mappp,) (T, Ng ) the conditions 3.1
imply the corresponding “semilocal” conditions obtained by replacing I'(p) by I' and § by
P

We shall abbreviate a,Og ,I'($) by Xp. Then X = aOkT is the locally-free OgT-
submodule of N whose gp-adic completion is .

Xp = a0kl = Mapp() (T, Xp),

the right hand side being the induced I'-module of X (the above is all taken from
[Wi2] §3).
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For the purposes of computation we shall require in addition

for each wild p, a, € pON, 5 and
(iii) expp: Xp — 1+ X

is a well-defined isomorphism.

For each wild g, let ap € Ext%r(b)(z, Nj) (i.e. H¥(T(p), N)) be the canonical class
of Np/K,. Let gy be the natural projection

Ny = N5 /(1 + Xp).

As in [Wi2] §6, gpap € Ext%r(g,)(z, N7 /(1+ Xp)) is a w.h.e. of ZT'(p)-modules (c.f. Ch.

I, §§2,5) giving rise to an element
8(aprs) € CU(ZL(B).
Then we define

(3.2) Q(N/K, 2) = Z’ld indpp,) 8(gpap) + (X) € CI(2ZT).
P W1

(c.f. [Wi2], where it is proved that 3.2 is the same as Chinburg’s original definition of
Q(N/K, 2) in [Ch2])

We shall concentrate on the local factor d(gpap). Then let p|p|p with p wild. For
brevity write G = I'(¢), L = Np and F = K. We can find a 2-extension

(3.3) 1 - LX/(1+X;) = A 5 26 - Z - 0

whose class is gpop, where the map ZG — Z is the augmentation, with kernel the aug-

mentation ideal Aug(ZG). Thus A is cohomologically trivial and
(3.4) d(gpap) = (4) - (2G)

where A determines a class (A4) by resolution by locally free modules. Let oG = L 4¢c g be
the trace element of ZG and let n = |G|. Because ZG is free, there exists a map § making
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the right hand square of the following diagram commute (the lower row is taken from 3.3)

0 — z % 26 - (n-0g)ZG — 0

(3.5) lv la li
1 — L¥/(1+Xp) > A 5 Auwg(ZG) - 0
where 1 is the inclusion map and the maps Z — ZG and ZG — (n — 0g)ZG are multipli-

cation by the central elements oG and n — o respectively. By diagram chasing some map

v exists making the diagram commute.
3.6 Lemma. All the vertical arrows in 3.5 may be chosen to be injective.

Proof : If v is injective there is nothing to prove. Otherwise, let 7p be a uniformiser for
F,let M = L*/(1+X,) and let :Z — M and 3: ZG — M be the unique ZG-maps which
send 1 to the coset of 7. If I and J are subgroups of Z such that I N J = 0, it follows
that I = 0 or J = 0. Now a is injective, because 1 + X C Of. If we take J = kery # 0
and J = ker(y + |G|ea) it follows that J = 0. But |G]a = B¢. Since pe = 0 it follows that
the diagram commutes with v replaced by the injective map v + |G|« and § replaced by
6+eB. 0

Then by considering Z-ranks in 3.5 it follows that
(3.7) coker 6%/ T = Tp

is a finite, cohomologically trivial ZG-module.

There is a commutative diagram

’

KoT(ZG) 8 KoT(Mg)

(3.8) |eza |e#mo
Cl(ZG) 8 Cl(Mg)

in which all the maps are surjective. The horizontal maps are induced by — ®zg Mg. If
0 - U -V - T -0

is an exact sequence of ZG-modules in which U and V are locally free of the same rank
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(so T is finite), then
czg(T) = (V) - (U),

and analogously for cpq,. Thus

(3.9) 160(gpap) = mgeza(T) = cmg( C. F. of fr) € Cl(Mg),

by 3.4, 3.7 and 2.19. We shall eventually replace T by the finite module Of /X in 3.9. We
shall then use this “local” result, for each p, to establish the analogous global result which

is the aim of this section (we now have the notation to state this precisely—see 3.37).

Let

(3.10) M = 0%/ +Xp).

Let ¢ be the positive rational

F* /(14 Xp)¢

n G.
~Z) [n|M”]

(3.11) c=

c is a quotient of integers c1/c2. Let f7 be the product f7;z z( f;"zz,z)'l.
Let G = G/Gy where Gy is the inertia subgroup of G.
Let k7 be the residue class field of L.

For each H € S(G) write e(L? /F) and f(L¥ /F) for the ramification index and residue.
class degree of LE /F.

From [Fr2] §2 (up to Theorem 1) there is an exact sequence

(3.12) 0 — Aug(ZG) L ZG/ogZG — Z/|[GIZ —0

3.13 Theorem. LetT be asin 3.7. Let M be as 3.10. Then
2= £ fazeze(f)™!

Remark: The first part of the proof consists of computing values | coker(af)| where o
is a ZG-injection of finite cokernel and H is a subgroup of G, and of the behaviour of 3.5
after fixing under H (c.f. the discussion of factorisability).
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Let (C, e) € 87(G). There are two cases. If e is the idempotent of 1¢, then
fo(C, €) = | coker(aC)|Zy,

so the next part of the proof applies the first part with H = C.

In the second case (e is not the idempotent of 1, ) we make use of the first part with
H = C,. After fixing 3.5 under C,, it only remains (in order to calculate the f3(C, €)) to
complete at r and multiply by e. In the last process we use the result eag = 0 to simplify

the results.

Proof : Let H € §(G). The diagram 3.5 remains exact on fixing under H, because
HYH,Z)=0=H'H, L*) = H'(H, L*/(1+ X)), the last equality because 1+ X = X,
is cohomologically trivial. Thus by 2.18(iv)

(3.14) L =1 =fr,

the last equation by 2.18(iiia) and 2.18(iii). We can write 7 as a composition

G
7:Z11+( L ) el L

where 72 is the inclusion map. By 2.18(i)

(3.15) fy = foa, fy-

Let vg:(L¥)* — Z be the additive valuation which maps a uniformiser of LA to 1. Let
i1: 0% — OF and 4p: F* — L* be the inclusions. Since (1 + Xp)? C (O})? = (Opx)* =

ker vy, there is an induced exact diagram
1 - OFA+Xp)¢ S FX/1+Xp)¢ S Z - 0

(3.16) oo oH l
1 = (O 1+ X)E S CH/1+X)H B 2 — 0

!

where the vertical maps are injective, and the map Z — Z is multiplication by e(LE/F).
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By the Snake lemma
(3.17) |coker(i;H)| = |coker(i~1H)|e(LH/F).

Since 1 + X, is cohomologically trivial

there are ZN(H )-isomorphisms
(3.18) {coker({gH) o coker(y4!) and (Opr)*/(1 + Xp)¥ = ME.
Since
H(H, AugZG) = H™Y(H, Z) =0= HY(H, Z) = H'(H, (n — 0¢)ZG),
we have

AugZGH _ AugZGog
((n — 0g)ZG)E ~ (n-—0g)ZGog

= A, say.

Let R be a left transversal of H in G, containing 1. Then the generators

{(g-1og:9€eR\1}

of AugZGopg are free, since the left cosets of H in G are disjoint. Clearly the set
{(ng —og)og : g € R} generates (n — 0g)ZGog. The equation

(ng —og)og =n(g—1)og + (n - og)og

(valid for g € R) shows that

{(n-o0g)og,n(g-1)og:ge R\ 1}

also generates (n—og)ZGog. Thus A is the abelian group with generators { Ay : g € R\1}
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By 3.21 to prove the formula for fH(C, ec, ) it suffices to show
I7€| = |M€|c|2GC : nZGC| |coker(5)| .
By 3.22 the right hand side is
|| cnlS€1 (2.6 Py | €[] feoker(46)] miSC11(LC /F) !

3:15 IMCl |MG|_1 |coker(7c)| Icoker('yzc)l—1 n'c"zc’vl‘lf(LC/F)"1

_ =
3.18,3.16 coker(z'lc) coker(i2c)| nlG:CI=1 £(1C  p)-1

|coker(7c)|

37| coker(C)| nlGCl-1e(LC/F) = {(LC | F) !

3%0 coker(vQ) n]G:C[-—ZIcl

319 coker(7°) lcoker(ic)l

3é4 TCI

If e # ec, then
HC, &)’ £5(C, e)f{(C. o)
215.(C, e)f5,(C, )fI(C, €)
3B 5r(C, e)fI(C, ) f5,(C, e)FI(C, )
B1(C, ) f1(C, &) F14(C )T (C €)

*Br1(C, f(C, &) fu(C, €)fia6,26(C €)

as required.



and relations

nAg =0 foreach g € R\1,and |H| Y A;=0

gER\1
(since (n — og)og = —|H| T4er\1(9 — 1)og). Calculation of a determinant gives
(3.19) |A| = | coker(:7)| = |H|nlG:HI=2,
Now
(3.20) e(LE/F)f(LE/F)|H| = n.

Let (C, e) € 87(G). If e = ec, (the idempotent of 1¢, ) then

(3.21) FH(C, e) = ordg, (TC) = r-part of |T°|,
identifying principal ideals and their generators. Also we have

(3.22) f(LH/F) = | coker(j7)| and |ZGH /(nZG)¥ | = nlGH|,

the first equality by [Fr2] Theorem 1. If we put H = C then 3.14-3.22 give the formula
for f7(C, ec, ) by successive substitution;f.e If e # ec, then e annihilates oG, and hence
G-trivial modules. Thus

(n —06)2;Ge =nZ,Ge and Aug(Z,G)e= Z,Ge.
Hence
(3.23) Fi(C, e) = frzc,26(C,; €).

From now on we put H = C,. By the first part of 3.18 and 2.18(ii) we have the first
equality below.

(3.24) £5,(C, €) = ordz, (coker(i2"" )re) = fi4(C, €).

The second equality follows after we apply (—®zZ, )e and the Snake lemma to 3.16 (observe
that (Z/e(L¥ /F)Z)re = 0) and use the second part of 3.18. Now

(3.25) £1(Cre) = f2(C, e) =1=f{(C, e),

the final equality by applying ((—)°" ®z Z,)e to 3.12, again observing that e annihilates
G-trivial modules. By substitution the formula for f1(C, e) follows from 3.14, 3.15 and
3.23-3.25. ®
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We let the reader verify that

¢, ifx=1lg;
Xl—)

1, otherwise.

is the canonical factorisation of f;, and that
X (ndegx)

is the canonical factorisation of f};¢ 7, where x runs over Irr(G).

From [Fr2] the function féj has the canonical factorisation
8 — 8(8) for each 8 € el

where
1, if 0 = 1g;

s(8) = { the ideal of Q(0) generated by .
_ otherwise,
the 6(g) — 1 for each g € G,

and @ runs over Irr(G). Frohlich only proves that this is a factorisation, which is generally
a weaker result. However, if (C, e) € S7(G) and e # ec,, then f-&-’j(C, e) =1 (as in the
proof above) and this gives the result we need. Then by 2.22 f&,j also has a canonical
factorisation. It now follows by 3.13 that f}, has a canonical factorisation, namely the
product of the canonical factorisations of fr, (fg)-l, (frzczg)~! and f}. Except for
those of f and f};, all these canonical factorisations lie in P*(G, Q). This is obvious for
all but that of f; but by 2.22 this is obtained from a canonical factorisation (with principal
values) over the cyclic group G/Gy, which has no irreducible symplectic characters. Hence
the process of cutting characters from G to G eliminates such characters. So the canonical

factorisation of f; also lies in P*(G, Q).

The final reduction involves a switch from multiplicative to additive Galois modules.

Here the choice of X} (see condition (iii) after 3.1) becomes important.
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Let

(3.26) A=0r/Xp.

3.27 Theorem. Let M be asin 3.10 and A be as in 3.26. Then
fir = Fafux (F,)7"

Remark: Let p; = rad Op. The proof works by using filtrations by powers of pr (the
additive case) and of 1 + pr (the multiplicative case). As is well known, the successive
quotients in these filtrations are isomorphic. Condition (iii) on X allows a similar result
(at a sufficient depth in the filtrations) when the terms are factored by X, (additive case)
or 1 + X (multiplicative case). The information is passed through the filtrations by use
of 2.18.

Proof : Let m:1+ Xy — OF and a: X — O be the inclusions. Suppose that X C p}.

By assumption (iii) on X we may assume that exp, induces an isomorphism

(3.28) PL/Xp = (14 p1)/(1+ Xp).

Now let a; for I =0, ... ,t + 1 be the inclusions as follows.
ao: pr, — OL, at41: Xp — P4,
a;:p’f‘l —>p’L, foreachi=1,...,¢t.

Similarly define the inclusions m; (my41:1 + Xp — 1 + p}, etc). By 2.18(i)

t+1 t+1
(3.29) fo=T17 and fo=TIfm
=0 =0
By 2.18(iiia) and 2.18(iii)
(3'30) f; = f.27 f‘;;l = fltl’ sz.]_ = f:oka¢+1 a‘nd f‘;&t+1 = f:okmt.,.l'

Let H € S(G). Then O = Opu, p¥ = pyn and kff = kpx. Similarly for (OF)H, etc.

61



Thus by 2.18(iii)
331) fa=fi, and fo, = fi,,
By 3.29-3.31 it suffices to show that

fo,=Ffm forl=1,...,t+1.

For I =t + 1 this follows by 3.28, 3.30 and 2.18(ii).

For the other [ this follows because the well-known isomorphism

pL/pf = (14 pL)/(1+ o
restricts to an isomorphism of ZN(H)-submodules
()T = 1+ ) /(1 + o,
since (1 + p4)¥ =1 + (p4 ). Then apply 2.18(ii). =®
In order to prove that f;(.a,o . has a canonical factorisation and
(3.32) (C. F.of f3).(C. F. of fx,0,)"' € P*(G,Q)

we only need—in view of 2.22, 3.13 and 3.27—to show that f; and f;x have canonical
L

factorisations which lie in P*(G, Q) in the case where L/F is unramified. In this case we

can identify G with Gal(kr/kF).

3.33 Lemma. ([Ch2] Lemma 4.3)

Let I/k be a finite extension of finite fields and let F be the Frobenius element of G =
Gal(l/k). Then there are exact sequences of ZG-modules

(3.34) 0 —» pzG¥H) &L zZ26H 1 -5 0

(3.35) 0 - (-F)ZG & 2G - ¥ - 1

in which p is the characteristic of |, ¢ = pf is the order of k and i denotes inclusion. The

modules pZG') and (¢ — F)ZG are free of ranks f and 1, respectively. 8
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3.36 Remark: In the unramified case, it is well known that both ki and kj are cohomo-
logically trivial. However, 3.34 and 3.35 show the stronger result that they have class 0
in Cl(ZG) under czg. Hence the canonical factorisations of fr, and f;}f lie in P*(G, Q)
and 3.32 follows.

We now have the main result of this section.

3.37 Theorem. LetT, a and X be as in the beginning of this section. Let b € X be a

free generator of N over KT. Then ff 0, r 0, has a canonical factorisation and

xrQ(N/K, 2) = cpp(the C. F. of fio, r.oy)-

Proof : If :V — W is an injective OgI'-map with finite cokernel then there are

isomorphisms

coker(i¥), 2 coker(:) = " coker(ig )
plp

of Z,N(H)-modules for each H € S(T'). Since

coker(if), if r = p;
coker(ig e = { d

0, otherwise.

it follows (c.f. 2.18(ii),(iv)) that
(3.38) r=11f=11%,
P P

where the products make sense because f,-‘; = f,-*P = 1 for almost all p and p, as cokeri is

finite. Let ¢ be the inclusion X <« Op. If p is tame then i, is the identity map. Hence

(3.39) fron= Il fx.on,.
o wild ‘

By 3.1 and the remarks following it

* —_ 3
(3.40) 'fl‘,indg(ﬁ) Xg'nindg(ﬁ) ON,ﬁ'D - -fI‘,Xp.ON,P.
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By 3.2

ON/K,2)= Y wrindly, 8gpap) + r(X)
p wild

¥ S indf,) emp, (C. F. of ff,) + mreza(X/bOkT)
ild

3.32 . N
= X indfyg) CMp s (C. F. of fX, 0n 5) + cMp 70 (X/6OKT)
P

3.40,2.25
=7 Y emp(C.F.of fx, 0y,) + cMe 71 (X/bOKT)
4] wild
3.39

=cpmp(C. F. of fx o)+ cmp(C. F. of fyo, 1 x)

(the first statement follows)

= ch(C' F. of f:okr’oN). B

§4. Norm resolvents, Galois Gauss sums and symplectic root numbers.

In this section we shall compute the canonical factorisation which is the subject of 3.37.
This function is parametrised by norm resolvents and Galois Gauss sums. All properties of
the Gauss sums we shall use are already known. However, we shall do some computations

with resolvents, hence for the reader’s convenience we give their basic properties here.

Let p be a prime number. Let k = Q or Q. Let F be a finite extension of k in kE=F.
Let E/F be a finite Galois extension with Galois group G. Let B be a commutative F-
algebra. Then E @ B is free on one generator over BG, where G acts via E. Define the

resolvent mapping (a BG-homomorphism)
(:EQ®r B — (E®F B)G

by

a— Y afg™l.
geG

Let x € Rg(k). Let a € E ®F B. Define
(alx) = Dety {(a),

the resolvent of a with respect to x. The properties of resolvents are summarised as follows.
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4.1 Theorem. ([Frl] I§4) Let a be a free generator of E @y B over BG. Then
((a) € (E®F B)G* and (a|x) € (F ® B)*. The map

x = (alx)
lies in Homgq(Rg, (F ®F B)*).

In the case where E/F is abelian and x is an abelian character, (a|x) is the Lagrange

resolvent. In the semilocal, unramified case the resolvent generates the trivial ideal:

4.2 Theorem. ([Frl] I §4) Suppose that p is a prime ideal of Op, unramified in E/F
and that a is a free generator of OF, , over OF, ,G. Then

((a) € O, ,G*. ®

Next we need a formula for restriction of scalars on class groups in the Hom-description.
Let M be a multiplicative Q;-module. Let {¢} be a right transversal of QF in Q. Let
f € Homq,(Rg, M). Then define the norm map

NF/k:HomQF(RG, M) — Homg, (Rg, M)

by
(Neyef) (x) = l;[ e

This definition is independent of the choice of {¢}. Return to the global case k¥ = Q,
E/F=N/K and G =T.

Theorem. ([Frl] I Theorem 2) There is a commutative diagram

Homgq, (Rr, J(U))
Homg, (Rr, U*)Det U(OkT)
| l”x/;:

Homgqg (Rr, J(U))
Homgqg (Rr, U*) Det U(ZT)

ClOkT) =%

CI(2T)

1

where the left hand vertical map is induced by restriction of scalars. 8
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Let a be as in 3.1 and let b be as in 3.37. Following Fréhlich ([Fr1] I Theorem 4),
assuming that U contains NV, we define resolvents (a|x) € J(U) (resp. (b|x) € U*), where
B = Ad(K), the adele ring of K (resp. B = K). Then define

Nk/qlalx) = I;I(alx"'l)"

and the same with b replacing a.

Warning. These definitions do depend on the choice of {¢}. However ([Fr1] I Prop.
4.4(ii))

AloNg/q(alx) and  (Nk/q(blx))

(4.3)
are independent of {c}.

By the inclusion U* «— J(U) we may regard (b|x) as lying in J(U). A slight mod-
ification to Theorem 4 in [Fr1] I (replacing Oy by the locally free module X = aOkT')

gives

4.4 Theorem. Let X, a and b be as in 3.37. Then (X) € CI(ZT) is represented in the
Hom-description by the map

x — Nx/q(blx)Nk/qlalx)™!
in Homﬂq(RI" J(U)) s

This substitution of the locally free module X (in the wild case) for the locally free

module Oy (in the tame case) will occur repeatedly.

Warning. In [Fr1] one has the multiplicative inverse map to that of 4.4, for Frohlich’s
map KoT'(ZT') — CI(ZT’) is —czr.

By 4.3 and 2.19 we have
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4.5 Theorem. Let X, a and b be as in 3.37. Then the canonical factorisation of fyq «T.X
is

Ao Ni/q(blx)
x> Al (NK/Q(0|X)).

Let x € Rp(Q). Let 7(N/K, x) € U* (again enlarging U as required) be the Galois
Gauss sum of x (for the definitions see [Fr1] I §5). Now we can state our first main result

of this section.

4.6 Theorem. The canonical factorisation of fin 1o, (Which exists by 3.37 and 4.5) is
given by

, Nk/q(blx)
X (T(N/K, x)) |

The proof of 4.6 will take up most of this section. First we deduce our second main

result.

Let Weo(N/K, x) be the root number at infinity of x € Rr(Q) (see [Frl] I §5).
Following Wilson ([Wi2] §3) define T° € Hom(Rr, U*) by its restriction to irreducible

characters as follows.

T(N/K, x)Ww(N/K, x), if x is symplectic;
(4.7) T*(x) = {

1, otherwise.

In fact T* € Homgqq(Rr, UX) ([Wi2] 3.9()). Let ip:U* — J(U) be inclusion in U,
where p runs over the finite and infinite places of Q. By [Wi2], before 3.11

(4.8) clszr(iecT®) is the Cassou-Nogués-Frohlich class ¢/ k-
4.9 Theorem. Q(N/K,2) =tyx (mod D(ZT)).

Proof : By 4.8 we have to show that

(4.10) 1rQUN/K, 2) = cspp (iooT?).

We shall do this by comparing character functions in Homgq(Rp, J(U)) which represent
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invariants in CI(Mr) under the Hom-description isomorphism:

Homgq (Rr, J(U))
Homgqg (Rr, U )Hom?z'q(Rp, U))

Cl(Mr) =

Throughout this proof let x run over Irr(I'). The map

ety Niq(blx)
' T(N/K, x)

lies in Homqg (Rr, U )

(4.11)

by Theorem 20 in [Frl]. By 3.37 and 4.6
(4.12) rQ(N/K, 2) = clspm;, g5,

where gy is defined by

iPC(X)’ if p < oo;
(4.13) 95r(x)p =
1, otherwise.
Now
(4.14) 990 =€
where
ioc(Xx), if p= oo;
(4.15) 9oo(X)p =
1, otherwise.
Further
(4.16) 9o = g°9"
where
1, if x is symplectic or p < oo;
(4.17) g+(x)p =9 .
i00¢(X), otherwise.

We define g° analogously, with “not symplectic” in place of “symplectic”.
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Clearly
(4.18) g+ € Hom}_(Rr, U(V)).

Checking all cases, we have

(419) (gioeT*)(x)p = {iw (Ni/q(blx)Wee(N/K, X)), if p= 0o and x is symplectic;

1, otherwise.

Let P be any infinite prime of U. Let x € Sr. By [Fr1] III 4.9 p126
signp (Ni/q(blx)) = Woo(N/K, X).
Hence by 4.19
(4.20) g%ioT? € Homgq(Rp, U)).
Successive substitution in 4.11, 4.14, 4.16, 4.18 and 4.20 gives
95(icT*)™" € Homqq(Rr, U*)Hom§_ (Rr, U(U))

and 4.10 follows by 4.12. 8

By 4.5 and 2.18(i), 4.6 follows from

4.21 Theorem. The canonical factorisation of fx o, (Which exists by 3.37 and 4.5) is
given by

ga:x — Alo (A—[K—/Q-Q—lx—)) ]

T(N/K, X)

We shall devote the rest of this section to the proof of 4.21. Let x € Rr(Q) and let
p be a finite prime of K. For the next result we shall need the local Galois Ga.u*ss sum
T(Np/ K, resg(g,) x) € U™ (once again enlarging U as necessary). See [Fr1] I §5 for the

definitions.
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Define g4, € Hom(Rr, Iy) by

(4.22) | gap(x) = Al o ( Ni/a(aplx) ) .

T(Np/ Ky, resg(@) x)

4.23 Theorem. Let p|p be a finite prime of K. Let g, be as in 4.21 and g, be as in
4.22. Then g, € I(G, Q) and gqp € Homgqg (Rr, Zy). The values of ga,p, are ideals lying

over p.
Proof : Let w € Qq and let x € Rr(Q). By Theorem 20 in [Fri]

Nk/qlalx)?  Ngqlalx®)

4.24 =
(4.24) T(N/K, x)» T7(N/K, x¥)
and
w Np/Kyp, resk o) x)*
(4.25) NK/ aleslx) d T(Np/ Ky ) x) are roots of unity.

— === an
Nx/qlap|x®) 7(Np/ Ko, resf.(i,) x“)

It follows immediately that g, and gq,p lie in Homgqg (Rr, Iy). Now let w € Qq(y)- By
4.24 again g, € I(T, Q). The final statement follows from the definition of the semilocal
norm resolvent, and the fact that the square of the modulus of the local Galois Gauss sum

is a power of p (c.f. [Fr1]15.7). =n

4.26 Theorem. Let p|p be a finite prime of K. Let P be a prime of U lying over p. Let
j:U < Up be the canonical embedding. Let x € RI‘(@)(Q—p) and let
Xg € Rr(z)(Q) be such that Xf; = x. Define

(v) = NKP/QP(GP|X)
9ap(X) = (T( Np/Kp, xg)? ) ‘

Then gqp € Homgqp(RF(g,)(Q;), Ty,) and

. 4T _

indr(z) 9a,6 = (9a,p)p -
If p is tame, then g, p = 1 = ga -
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Remark: By 4.25 and a similar argument to the proof of 2.15, g,  does not depend on
the choice of P|p.

Proof : Since—ga;
follows from the second and Theorem 23 in [Fr1] (recall 3.1(ii)). Let § € Rr(Qp). Then

(in the obvious notation)

haracters- The last statement

(ga,p)p (0) = ga,p(0g)P

_ Jate [ Mrsalepldy)
(4.27) - 7(Np/Kp, Testyg)00) ) | ,

_ ( NkorQy(aplrest;) 6)
T(Np/Ko, resg(m 8,)

The last equality, in the tame case, is Theorem 19 in [Frl]. As usual, we can replace Oy
by X to obtain a generalisation of Theorem 19 to the “wild” case. Thus 4.27 also holds
for p wild. But 4.27 is indf;) ga,5(6). 8

4.28 Theorem. g, is the canonical factorisation of ffy’(ﬁ’oNé. ]
Before proving 4.28, we shall use it to establish 4.21. We need

4.29 Lemma.

9 = H Ga,p-
p wild

Proof : Since (ap|x) = (alx)p, by 4.2

(4.30) Al °NK/Q(a|X) = H Al °NK/Q(aplX)-
p ramified

a.rmdbdﬁw@%

If § € Rr(;)(Q) then T(Np/K,, 0) isf§ for p unramified, and

p ramified

(4.31) (T(N/K, x)):( H T(Np/Kp, resg(g,) x),>

by [Fr1] Theorem 18. By 4.30, 4.31 and the last part of 4.26 the lemma follows. 8
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Recall from 3.40 that

. * = 4
(4.32) fI‘,indF(ﬁ) Xﬁ,indg(‘-,) Ono fP,Xp,ON,p.

Then by 2.25, the first part of 4.26, 4.28 and the last part of 4.23

(4-33) ga’p iS the C. F- Of fI*"XP’ON,p.

Finally, by 4.29 and 3.39, 4.21 holds.

It remains to prove 4.28, which will take up the rest of this section. Change notation
for the local case. Let G and L/F be as usual. Write a in place of ay, X in place of X
and ¢ in place of g, . By the first statement of 4.26 it suffices to prove that, for each
(C, e) € SP(G)

(4'34) resg g(infgx X) = fﬁsoL (07 e) 3

where x is as in 2.9. Let ® be as in the proof of 2.10, and let ¢ € ®. Let § = infgx @.
We shall re-express 4.34 by the use of induction and inflation formulae for norm resolvents
and Galois Gauss sums. Let M = L€ and let d be a free generator of L over MC. By
the induction formulae in [Fr1] III Notes [4] (generalised to the “wild” case—a is a free
generator for L over F'G, rather than for Of over OpG as in the tame case, so the element
A below lies in FC* rather than OpC™* as in the tame case)

Nr/q,(alindg ) _ ( Nuyq,(dlf) )
7(L/F, ind$ 8,)i T(L/M, 8,YNFq, Dets(A) )’

(4.35) res& g(6) = (

for some A € FC*. To be more precise, we must introduce some notation. Let {w} be a
right transversal of Qps in QF and let {¢;} be a free basis of Ops over Of. Let {a;} be any
free basis of L over FC. Define

(4.36) Detg{a;} = det (; a;-’“o(c)-l) R

where ¢ runs over C. With A as in 4.35 we have

DetO{aw-l }w

(4.37) Detg(A) = i,

with the left hand side having the usual meaning and the right hand side that of 4.36 with
{ai}i taken to be {a.“"-1 }w and {c;jd}; (4.36 and 4.37 are taken from [Fr3] pp166-167).
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Let A run over Hdépr. So 8 = (1g,¢). Let z run over Cx. From 4.36

Detg{a;} = det (}: a?h“’eb(:v)'l)
z,h :
(4.38) ws

~ det (; (g mai)™ ¢(z)—1)

w,i

Let t = try/ ud. By the inflation formula for resolvents ([Fr3] Theorem 10 p162), again
extended to the wild case, and the inflation invariance of Galois Gauss sums (c.f. [Fr1] III
ex. 6 p105) we have

Ny, (dl0)\ [ Nuyq,(tl9)
(4.39) (r(L/M, ogw) = (r(LH/M, ¢g>f) '

Now LH /M is tame (since H = Cp).

This reduction to the tame case appears in [Fr4] (where the case of abelian groups is
treated) and our proof proceeds along similar lines. Indeed Frohlich’s work motivated our

computation of the canonical factorisation g.

Returning to the proof, we can find a free generator z of Opx over OpCx. By [Frl]
Theorem 23

(4.40) (Mayq,(218)) = ((LH/M, ¢g)).
By 4.39 and 4.40, 4.35 is

Nuyq,(tlé) 1 )
(4.41) (NM/QP(Z|¢).NF/QP Detg(/\) '

Now ¢ induces an isomorphism
(4.42) Z,Cxe = Zy[4)].

We shall identify the rings in 4.42 under this isomorphism. Let | : IZp[¢] denote the module
index. If we can show that 4.41 equals ‘

(4.43) |Opue : (aOFG)He|zp[¢l

then 4.34 follows by Qq,-invariance of g, since the norm into Zq, of 4.43 is fio . (C, e).

Note that Oy ne = OpCxez. If we now introduce the intermediate lattice OpCxet,
the equality between 4.41 and 4.43 follows from

73



4.44 Theorem. Let w and w; run over the same right transversal of 2ps in Qp. Let T
run over a right transversal of Q in Qgq,. For brevity (with the notation preceding this

tbeorem). write

-1
zj =ct and y,=trppa(a” ).

Then

. Naayq,(t1#)

) (Fﬁfﬁm) = 10w Oxez : OuCxetizyig

.. A (det(Zz ol d,(z)—.l)k’,wl )
N, D A = L

) (Wrra, PetelN)™ = I\ Gz, =3 oy

= |OpCxet : (aOFG)Helzpw,].

Remark: The method of proof is to replace the modules appearing in the module indices
by their isomorphic images under the resolvent mapping, and compute these indices as
follows. A non-degenerate bilinear form (induced by the trace form M — Q,) is introduced.
Because we are in the local, tame case, all the modules are free, and can be computed via
discriminants with respect to this form. As with the trace form, each discriminant can
be re-written as the determinant of the conjugates of a basis. Computing determinants of

specific bases we obtain the required equalities.

Proof : The resolvent map ¢:L¥ — ¢ (LH ) C LEC, is an MCy-isomorphism. Thus we
can replace the lattices OprCxez, etc., appearing in the module indices of (i) and (ii) by
their isomorphic images OprCxe((z2), etc.

t and z are free generators of LE over MCyx. By 4.1 {(t) and {(z) lie in (LHCx)*.
Multiplication by ¢(z)e (or ¢(t)~le) is a QpCxe-linear automorphism of LHC e, s0 we

can replace the indices in (i) and (ii) by

(ia) |OuCxe : OrCxel(t)C(2) g, 4
and
(iia) |OmCxe: ZOFCXCC(ywx)C(t)_1|z,[¢]
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since (aOpG)H = T, OpCxyu,. Let {0} be a right transversal of Qs in Q2q,. Define

Be:MCyxe x MCye — QpCxe
by
(A1) = 3 (An)

a

where {2q, acts coefficient-wise on MCx. Then B, is Q,Cxe-bilinear. If {b;} is a Z,-basis
of Ops then {be} is a Z,Cxe-basis of OprCxe, and

det Be(be, by, ey = (det(bf)a,l e)#0

by a standard trick, since {§;} is a Qp-basis of M. Thus B, is non-degenerate. So we
can compute (ia) and (iia) via B,-discriminants. Now {bje((t){(2z)!} is a Z,Cxe-basis of

OuCxel(t)¢(z)"!. By the same determinant trick, (ia) is

et(be z -I\o - B
(i) e B (OO}

Extend ¢ to LHCy by trivial action on the coefficients. If we apply ¢ to (ib) then we
obtain (i).
Now

NFqQ, Det(14,4)(2) = I:I(DEtr-‘(la,¢)('\))T

4.37,4.38 det(T, 27 (r710)(2) Nu,i |
=11 (det(zz yﬁ‘l"(T’lfﬁ)(x)'l)w,wl)

and the first equality in (ii) holds. Take {o} to be {rw} and {b;} to be {c;jdr} where
{di} is some Z,-basis of Op. Thus {dk((yw,){(t) e} is a Z,Cxe-basis of the lattice
Tuy OFCxel(¥ur )C(t)™! (because {dxy., } is a Zp-basis of @u, OFCx ¥, ). Then (iia) is
(i1d)
det((cjdi)“” €)(r, w), Gy k) _ det(d})y r I1- det(c‘;"’ €)w, j )
(det(d‘é’f(f (3 JC () 1) e)(‘r‘,w),(w1,k)) B (det(di)r,k 11> det((¢ (5, )C(8) 1) €)w,wy

T

— det(¢(2;)"" €)uw,
- 1;[ (det(C(yw: )T €)u,wn )

If we apply ¢ once more we get (ii). 8
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