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Abs trac t : Let N/K be a Galois extension of number fields with Galois group T. T . 

Chinburg has constructed invariants of the extension N/K lying in the locally free class 

group C7(Zr) . 

In the first chapter we generalise this construction by defining weak homological equiv

alences and their projective invariants over any Noetherian ring A. 

In the case where A is an order in a semisimple algebra, we obtain for each A-lattice 

M an eifectively computable subgroup A ( M ) of the kernel group D(A). Specialising to 

the case A = ZT we relate A subgroups to generalised Swan subgroups and we describe a 

representative of the coset of the Swan subgroup T(ZT) containing Chinburg's invariant 

£l(N/K, 1) in terms of the projective invariant of a homomorphism. 

In the second chapter we generalise A. Frohlich's canonical factorisability from abelian 

to arbitrary finite groups. We obtain a canonical factorisation function — related to the 

ring of integers ON — which determines a unique coset of Cl(ZF) / D(ZT) equal to the 

coset generated by Chinburg's invariant £l(N/K, 2). Thus we establish "modulo D(ZT)" 

a conjecture of Chinburg. 
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G e n e r a l Introduct ion . 

This thesis is divided into two chapters which can be read independently — a separate 

and detailed introduction is included for each chapter. 

In the first chapter, we examine the possibility of obtaining projective invariants over an 

arbitrary Noetherian ring A. In other words we aim to produce elements of the group KQ(A) 

which classifies the finitely generated projective A-modules. Instead of producing projective 

modules directly, we use a more indirect approach (which in fact generalises previous 

methods of obtaining projective invariants from Mayer-Vietoris sequences). The raw data 

needed is a pair U and V of non-projective modules connected by a weak homological 

equivalence. This equivalence then gives rise to a projective invariant, which in some sense 

measures the "difference" between U and V. 

Our main interest is concentrated in the case where A is an order in a finite dimensional 

semisimple algebra over a number field. We show that in this case one can often obtain 

invariants of locally free modules, in other words elements of the locally free classgroup 

Cl(A). Further we show that each A-lattice U gives rise to an effectively computable 

subgroup A(U) of the kernel group D(A) C Cl(A). 

Let G be a finite group and R a Dedekind domain with field of quotients a number 

field. Many simplifications in the theory developed for orders occur when A is the integral 

group ring RG. We apply this theory in the case R = Z and give a connection between R. 

Oliver's generalised Swan subgroups and A-subgroups of permutation lattices. Both these 

sets of subgroups generate D(ZG). 

Our final specialisation in this chapter is to let G = T be the Galois group of a 

Galois extension N/K of number fields. T . Chinburg obtained in this case invariants 

Sl(N/K, i) G C 7 ( Z r ) for i = 1 to 3 from four-term exact sequences of Zr-modules. These 

sequences each induce an equivalence of Tate cohomology with dimension shift 2 of a 

Galois module U depending on N/K and a standard ZIMattice V. Thus the Chinburg 

invariants are examples of projective invariants of weak homological equivalences. These 

are the examples which motivated the work of this chapter. 

As an application of the theory developed for integral group rings we show that the 

coset of the Swan subgroup T(ZT) — in this case the subgroup H is T — containing 

£l(N/K, 1) is represented by the projective invariant of a homomorphism T —• Cj where 
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T is a standard syzygy of the r-trivial lattice Z and Cf is a finitely generated module 

introduced by Chinburg which has the Tate cohomology of the idele class group of N. 

In the second chapter we concentrate throughout on the Chinburg invariant Q ( N / K , 2). 

Again we use a method of obtaining projective invariants from pairs of ZG-modules — 

the finite group G in the applications is either T or a decomposition subgroup of T. The 

method we use is a generalisation of that initiated by A. Frohlich in the context of abelian 

groups G (for more details see I I §2). This method has its origins in the elegant notion of 

factorisability introduced by A. Nelson. 

Factorisability is essentially a condition imposed on Zr-lattices U and V which is 

weaker than local isomorphism. It can be decided by elementary computation. Frohlich's 

canonical factorisability is a refinement allowing one to salvage a projective invariant in 

the class group of a maximal order, or equivalently a coset of D(ZT) in C7(Zr) , in the 

case where U is not locally isomorphic to V. 

A n example of this is where U = ON is the ring of integers in JV, V is a free ZT-module 

of finite index in ON and N/K is wildly ramified. We compute in this case an invariant 

via canonical factorisability and show that the resulting coset of D ( Z T ) is that generated 

by Q ( N / K , 2). In the process we establish "modulo .D(Zr)" the conjecture of Chinburg 

that 

n(N/K, 2) = t N / K 

where t j f / K x s * h e generalised root number class; sometimes t^/K & D(ZT). This equality 

is the conjectural generalisation to wild N/K of M. Taylor's deep result for tame N/K 

where the stable isomorphism class of ON is computed in terms of the Artin root numbers. 

Thi s is my PhD thesis at Durham University. I would like to record here my deep 

indebtedness to Steve Wilson for his impeccable supervision, his unfailing input of ideas 

and his inexhaustible patience. 

To my brother Martin, Jacqueline Gough and Ewan Squires I am profoundly grateful 

for encouragement when it was most needed. 

I would like to thank David Burns and Ted Chinburg for useful comments on an early 

version of chapter I I . 
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Finally, my thanks also to Graham Robertson for lunchtime discussions of the mysteries 

of quantum theory... 
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C H A P T E R I . W e a k homological equivalences a n d the ir project ive invariants . 

1. Introduct ion . 

Let A be a Noetherian ring and let /Co(A) denote the Grothendieck group of the category 

of finitely generated projective A-modules. Let M and N be finitely generated A-modules 

and let n be a positive integer. A n element / of either of the groups H o m ^ A f , N) or 

E x t ^ ( M , N), satisfying certain conditions related to the homology of M and JV, determines 

a projective invariant d ( f ) € K.Q(A). 

This gives a method of obtaining projective invariants from non-projective modules, 

indeed ones of infinite projective dimension, over a very wide class of rings. 

We develop the most general properties of 5-invariants (the operator d is additive on 

compositions of maps, the ^-invariants of E x t are expressible in terms of those of Horn, 

and d factors through the quotient of of Horn by projective maps) in §§2-3. 

In §4 we restrict A to be an order in a finite dimensional semisimple Q-algebra, the 

case we are really interested in. We show that in many cases 9-invariants can be obtained 

in the locally free class group C / ( A ) of the order A. Indeed, we show that each finitely 

generated A-module M determines a subgroup A ( M ) (of 9-invariants of endomorphisms) 

of the kernel group D(A) of A. The main result of §4 is that A ( M ) can be determined in 

terms of reduced norms of local automorphisms of M if M is a A-lattice, using the idelic 

description of D(A). At opposite extremes, A ( Z ) = T(ZG), the Swan subgroup of A = Z G 

an integral group ring, and A(M) = D(A) if M is a maximal order containing A. 

Let R be a Dedekind domain with field of quotients a number field and let G be a 

finite group. In §5 we examine the case A = RG. Significant simplifications arise in the 

theory developed for orders. If U is an .RG-lattice then a weak homological equivalence 

/ € HOID.RG(U, V ) induces an equivalence of Tate cohomology of U and the i?G-module V . 

Further, the projective invariants of all such weak homological equivalences lie in the coset 

of A(f7) generated by d ( f ) . If W is a syzygy of the J?G-lattice U then A(U) = A(W). 

This theory is applied in §6 in the case R = Z . If i f is a subgroup of G — giving 

rise to the permutation ZG-lattice Z[G/H] — R. Oliver introduced the generalised Swan 
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subgroup Tg{ZG) of D(ZG) and showed in [Ol] that all such subgroups generated D(ZG). 

We show that 

TH(ZG) C A(Z[G/H]) 

and so the A(Z[G/H]) also generate D(ZG). If H is normal (so Z[G/H] is a quotient 

group ring) this inclusion is equality. On the other hand in §7 we give an example of strict 

inclusion when H is not normal and G is a dihedral group. 

The final specialisation (in §6) is to take G = V the Galois group of a Galois extension 

N/K of number fields. T . Chinburg (see [ C h i ] , [Ch2]) derived in this case invariants 

Q(N/K, i) for i = 1 to 3 from four-term exact sequences of finitely generated ZT-modules. 

These we express as d-invariants of E x t | r (which have been adjusted to make them rank-

less). Indeed this situation motivated the work of this chapter. Applying the results of §5 

we show that the coset of T{ZY) containing Cl(N/K, 1) is represented by the d-invariant 

of any map in Homzr(^\ C / ) which induces an equivalence of Tate cohomology. Here T 

is a certain Zr-lattice and C / a finitely generated Zr-module (introduced by Chinburg) 

with the Tate cohomology of the idele class group of N. Indeed, if T is a cyclic group then 

T(ZT) = 0 and T = Z , so that f l ( N / K , 1) equals this 0-invariant and only depends upon 

We shall return to Chinburg's invariants in the next chapter; this requires new tech

niques we shall develop there. 
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§2. W e a k equivalence and the 9-map. 

In this section we define weak homological equivalences and the d-map and give their basic 

properties. 

Let A be any Noetherian ring and let pd(M) denote the projective dimension (whether 

finite or infinite) of the A-module M. Let /Co(A) denote the Grothendieck group of the 

category of finitely generated A-modules of finite projective dimension. If L is such a 

module and pd(L) = k then there is an exact sequence 

0 - ^ P f c ^ > P 0 —• -L —• 0 

where each Pi is a finitely generated projective A-module. If we resolve the sequence 

into short exact sequences, and use the relations in /Co(A) (with respect to short exact 

sequences) then we obtain 

[L] = £ ( - l ) ' [ P . ] 6 JCo(A), 
t=0 

where square brackets are used to denote classes in /Co(A). As is well known, this induces 

a well-defined isomorphism between /Co (A) and the Grothendieck group of the category of 

finitely generated projective A-modules. We shall use the symbol /Co(A) for both of these 

groups and identify them under this isomorphism. This will lead to no confusion, as if L 

is projective then the class [L] in either group is the same under this identification. 

If a and b are A-maps whose composition ba is defined then there is an exact sequence 

of A-modules 

0 —• kera —• kerfea —• kerfe —• cokera —* coker&a —• coker6 —» 0 

with maps induced by a and b (see e.g. [Ba] I 4.5). We shall refer to this result as "the 

composition lemma for a and 6" in the sequel. 

We shall need some notation concerning extensions of A-modules; we adopt the view

point of MacLane in [Ma]. 

Suppose that M, N and T are A-modules and n > 0. We regard E x t X ( M , N) as the 

set of equivalence classes of n-fold extensions of M by N if n > 1, and identify Ext" ( M , N) 



and HomA(Af, N). Let / £ E x t £ ( M , N). Then / induces maps 

ft:Extk

A(N, r ) - E*l+k(M, T) 

for each > 1. For the definition of / £ see [Ma] C h . I l l ; refer to §5 p83 if n = 0 

(the definition of "the composite of the congruence class of a long exact sequence with 

a matching homomorphism") and §9 p97 if n > 1 (the definition of "iterated connecting 

homomorphism"). 

2.1 Def in i t ion: Let k be a positive integer. A class / G E x t £ ( M , N) is a weak homological 

equivalence of level k and grade n (abbreviated (k,n)-w.h.e.) if, for each A-module T, 

(i) / £ : E x t A ( 7 V , T) -> E x t £ + n ( M , T) is surjective, and 

(ii) f^+l:Extk

A

+1(N, T) -» E x t £ + n + 1 ( M , T) is injective. 

Write w.h.e. for a (l,0)-w.h.e. in HomA(M, N), and write W h e ^ M , N) for the set of 

all such w.h.e.s. 

2.2 T h e o r e m . Let k be a positive integer and f 6 E x t ^ ( M , N). The following are 

equivalent; 

(i) f is a (k, n)-w.h.e. 

(ii) is surjective and f£ is bijective for each I > k 

(iii) lfn=0, there is an exact sequence of A-modules 

0 _> L -». M ® F U4* N - 0 , 

where pd(L) < k — 1, g is some A-map and F is a free A-module. 

I f n > 0 , there is an exact sequence of A-modules 

0 —• TV —• £ —• Fn-2 -» • Fo —• M 0 € / 

with each free and pd(X) < k. 

P r o o f : (ii)=»(i) is trivial. 

8 



(i)=>(iii) If n = 0, choose a surjective map g:F —• N where F is a free module. Let 

L = ker( / , g). We then have a short exact sequence as in (iii), and have to prove that 

pd(L) < k — l . Apply HomA(—, T) to obtain along exact sequence of E x t . The hypotheses 

on / £ and ensure that E x t ^ ( X , T) = 0, thus (iii) follows. 

If n > 0, choose a resolution F —• M —• 0 of M by free modules. By the Comparison 

Theorem ([Ma] C h . 3 6.1) there is a commutative diagram 

0 -» Q ± F „ _ i -» • FQ -* M - » 0 

i " 1 i II 
0 - N -» r n _ i • T 0 M - » 0 € / 

where Q = i m ( F n -» F n _ i ) . Thus E x t £ ( M , TV) * H o m A ( Q , A r ) / H o m A ( i ; i n - i , N)oi. Then 

let L be the pushout of the maps (i , / i ) , so that we obtain an extension in / as in (iii); this 

time we have to prove that pd(L) < A;. Resolving the sequence into short exact sequences, 

by induction on n the hypotheses on / £ and ensure that E x t A

+ 1 ( X , T) = 0 as required. 

( i i i ) ^ ( i i ) If n = 0, apply HomA(—, T) to the given short exact sequence; the hypoth

esis on p d ( L ) ensures that (i) holds. Similarly, an easy induction gives the required result 

for n > 0. I 

2.3 Def ini t ion: Let M and N be finitely generated A-modules. Let / 6 HomA(Af, N) 

be a (A:,0)-w.h.e., then there is a short exact sequence 

0 -> L M@F N -> 0 (/, L, F) 

with pd(L) < k — 1, by 2.2 (iii). Since N is finitely generated we can assume the same for 

the free module F. We say that (/, £ , F) is a sequence for f . 

L is finitely generated, since A is Noetherian, so determines a class [L] in KQ(A). Define 

d ( f ) = [F] - [L] € JCo(A). 

I f / € E x t A ( A f , N) is a (/c,n)-w.h.e. for n > 0, we call the sequence of 2.2(iii), lying in / , 

a sequence for / , and define 

d ( f ) = [L] - [ F n _ 2 ] + • • • + ( - l r - 1 ^ ] e /Co(A). 

We will prove that d ( f ) is well-defined for (fc,0)-w.h.e.s next, and for (fc,n)-w.h.e.s (n > 0) 

in 3.5. 



2.4 T h e o r e m . Let M and N be finitely generated A-modules. If f € H o m ^ M , N) is a 

(k, 0)-w.h.e. then d ( f ) is independent of the choice of sequence for f . 

P r o o f : For the moment let us write d ( f , g) = [F] — [L] to emphasise the chosen g. B y 

symmetry, the lemma follows if we can prove that 

d ( f , 9) = d(f,g(Bg'), 

where g':F' —+ N is surjective and F' is finitely generated free. 

Let i denote the natural inclusion M f f i F — • M © F f f i . F ' . Then (/ , g) • 

B y the composition lemma for i and (/, g © g') there is an exact sequence 

0 ker(/ , g) - ker( / , g 0 g') —> F' —> 0 

since i is injective and (/ , g) is surjective. Hence 

d ( f , g) = [F] - [ker(/, g)] = [F] + [F'\ - [ker(/, g 0 g')] = d ( f , g © g'). I 

2.5 T h e o r e m . Let k and I be positive integers and let L, M and N be finitely generated 

A-modules. Suppose that f E W h e A ( £ , M) is a (k, 0)-w.i.e. and g € WheA(M, N) is a 

(I, 0)-w.h.e.. Then gf is a (max(fc, / ) , 0)-w.h.e. and 

d ( g f ) = d ( f ) + d(g). 

P r o o f : For each r > 1, (gf)* = /*<7*- Compositions of surjective maps are surjective, 

and similarly for injective maps. The first statement follows by 2.2(ii). 

Choose finitely generated free A-modules F\ and F2 so that there are surjective maps 

L®Fi-2>M®F2±N 

where the component L —• M of a is / and that M —• N of b is g. B y the composition 

lemma for a and b we obtain an exact sequence 

0 —• kera —• ker6o —• kerb —• 0 (*) 

Let c be the natural surjection M © F2 —* M. B y the composition lemma for a and c we 

10 

( / , g®g')°i-



obtain an exact sequence 

0 —• kera —• ker ca —• F2 —• 0 (**) 

Since the Fi are free, a* = / * , 6* = g* and c* is the identity map for r > 1. Thus a, 6 

and c are (m, 0)-w.h.e.s for various m, and by 2.2(iii) the kernels of these maps have finite 

projective dimension. Hence the same applies to each module in (*) and (**). Therefore 

d { g f ) - d ( f ) - d(g) 2=3 [Fi] - [ker ba} - [F{\ + [ker ca] - [F2] + [ker b] ^ ' i * * * 0. I 

§3 . P r o j e c t i v e H o m o m o r p h i s m s 

Let A be any ring, and M and N be finitely generated A-modules. First we must define 

projective homomorphisms, as in [ C R ] Vol. I I around 78.10. We also define some related 

objects, and introduce notation to be used throughout this chapter. 

3.1 Def ini t ion: A map / € HomA(M, TV) is a projective homomorphism if the map 

/ J : E x t i ( t f , - ) - E x t i ( M , - ) 

is the zero map for every 2nd variable. 

Let PA{M, N) denote the subgroup of all projective homomorphisms in HomA(M, N), and 

denote the quotient group HomA(M, i V ) / P A ( M , N) by H o m A ( M , iV) . 

If D is any left A-module we shall write D* for the right A-module Hom A ( .D, A) . 

Define 

r = TM,N- M* ® A JV -> H o m A ( M , N) 

by 

t ( / ® n): m f{m)n 

extended by linearity. 
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Define 

Ext A (M, J V ) = H o m A ( M , J V ) ; 

Extl\M, J V ) = ker(r); 

ExtX(Af, J V ) = E x t £ ( M , J V ) for each n > 1; 

ExtX n (M, J V ) = T o r J . ^ M * , J V ) for each n > 2. 

If / € HomA(M, J V ) denote by [/] the image of / in H O I I I A ( M , J V ) . 

Denote by W h e A ( M , J V ) the image of W h e A ( M , J V ) in H O I I I A ( M , J V ) . 

R e m a r k : In [ C R ] Vol. I 29.15, it is shown that im(r ) = P\(M, M) in the case M = J V . 

The proof given there holds for general JV. The Ext groups occur in a long exact sequence: 

3.2 T h e o r e m . Suppose we have a short exact sequence of A-modules 

0 - > A - + B - > C - > 0 

and that D is a A-module. Then there is an exact sequence 

» ExtX(2?,£) -» Extl{D,C) ExtX+ 1(Z>, 4) - . . . 

for aJJ integers n. If also E x t A ( C , A) = 0, then there is an exact sequence 

• Extl(B,D) - Ext]J(A,D) -> E x t £ + 1 ( C , L>) -» • • • 

for all integers n. 

P r o o f : B y naturality of r (in the 2nd variable) we have a commutative diagram: 

» D*®KA -* D*®\B -» D*®xC -> 0 

I* I* l r 

0 -+ Hom A (I>, A ) -» Hom A ( I> ) B) -* H o m A ( £ , C ) - * • • • 

B y diagram-chasing the first part follows. If E x t A ( C , A) = 0 then the sequence 

0 -> C* -+ B* —> A* —> 0 

is exact. A similar argument now completes the proof. I 
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The following useful characterisation of projective homomorphisms is adapted from 

[ C R ] . We need the finite generation property to obtain classes in KQ(A). 

3.3 T h e o r e m . Let f £ HomA(M, N). Then f is a projective homomorphism if and only 

if f factors through a finitely generated projective module. 

P r o o f : It is shown in [ C R ] Vol. I I 78.10 that / is a projective homomorphism if and 

only if / factors through some projective Q. Since we are assuming that N is finitely 

generated, we may choose a finitely generated projective P which projects onto N. The 

universal property of projectives now shows that / factors through P. I 

Here is the main result in this section, which shows that d factors through the quotient 

of HomA(M, N) by projective homomorphisms. 

3.4 T h e o r e m . Let / € HomA(M, N) be a (fc, 0)-w.h.e. and suppose that 

/ ' G H o m A ( M , N) is such that 

[/] = [/'] 6 H o m A ( M , N). 

Then f is a (k, 0)-w.h.e. and d ( f ) = d(f'). 

P r o o f : Let / ' = f + g where g E P\(M, N). Since g factors through some projective P, 

the induced map g* factors through E x t ^ P , —) = 0 for each r > 1 and each 2nd variable. 

Hence (/ ')* = / * and / ' is a (fc, 0)-w.h.e.. Now choose a finitely generated free module F 

mapping onto N—as in the proof of 3.3, we find that g factors through F. Say g = 5201, 

where g\:M —* F. B y 2.4 we can assume that / and / ' are surjective. For, if we choose 

a surjective map h:F —> N then (/', h) = ( / , h) + (g, 0) and (g, 0) € P\(M © F, TV). 

Further d ( f , h) - d ( f , h) = d ( f ' ) - 8 ( f ) . 

Let t denote transpose. We have / ' = (/ , gi) o (1, g i f . Since the sequence 

0 ^ M > M ®F • F —> 0 

is exact, by the composition lemma for (1, gi)* and (/, 52) we have an exact sequence 

0 k e r / ' ker( / , g2) —• F —> 0. 

13 



Hence 

9 ( f ) = [F] - [ker(/, g2)] = - [ k e r / ' ] = d(f'). I 

Using thi6 result, we can now show that d ( f ) does not depend on the choice of sequence 

for / for n > 1. Since the 2-extension we will consider in §6 (whose class is a (l,2)-w.h.e.) 

is not presented as in 2.2, we will prove a stronger result. 

3.5 T h e o r e m . Let f e E x t A ( M , N). Then f is a (t, n)-w.h.e. for some t if and only if 

there is an extension 

0 —> N —> T n _ i • To —• M —• 0 e f 

where each Tj is finitely generated, and of finite projective dimension. Moreover d ( f ) does 

not depend on the choice of sequence for f , and 

d ( f ) = m ^ p T n - i ] - [ T n _ 2 ] + • • • + ( - l ) " " 1 ^ ] 

= d(h) + [F] , 

where 0 - » Q - » F - » M - * 0 i s a truncated resolution of M as in the proof of 2.2, and h 

maps to f under the surjection 

H o m A ( Q , N) E x t J ( M , N). 

P r o o f : If we take t to be the maximum of the pd(jT ; ), it is plain that / is a (t, n)-w.h.e.; 

the converse holds a fortiori by 2.2(iii). 

Choose a surjective map g:F—*N with F a finitely generated free module. We obtain 

a commutative diagram 

0 Q © F -* Fn-i © F Fn-2 ~» • FQ M - » 0 

|(**) i I I 1 (*) 
0 —• N -> L — Fn-2 -* * FQ -> M -> 0 

in which all the vertical arrows are surjective. It follows immediately that ker(/i, g) has 

finite projective dimension, h is a (k, 0)-w.h.e. where k = pd(L), and d ( f ) = d(h) + [F]. A 
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more laborious argument, in which we add free modules to each Fj, establishes the same 

result with [T] replacing d ( f ) . Thus [T] = d ( f ) . Since 

ExtX(M, N) 2 HomA(C?, N)/HamA(Fn-U N) o i, 

where i is the map Q —• Fn-i, and the denominator consists of projective homomorphisms, 

by 3.4 it follows that d(h) does not depend on the choice of h in the diagram. I 

§4. Application to orders in semi-simple algebras. 

In this section we assume throughout that R is a Dedekind ring with field of quotients 

the algebraic number field K R), and that A is an i?-order in the finite dimensional 

semisimple iT-algebra A. Write 'A-lattice' for 'finitely generated i?-torsion-free A-module'. 

Note that if M is a A-lattice then the map M —» K ®R M is injective and we write KM 

for K ®R M. Denote by A\(M) = A(M) the set of invariants d(Whe\(M, M)) for any 

finitely generated A-module M. 

4.1 Theorem. Let M and N be finitely generated A-modules. Then 

(i) H O H I A ( M , N) is finite; 

(ii) Localisation (or completion) gives a natural isomorphism 

/ M , N : H o m A ( M , N) * © H o m A p ( M P , NP), 
P 

where the direct sum is taken over the maximal ideals P of R; 

(Hi) W h e A ( M , M) = E n d A ( M ) x ; 

(iv) If M and N are locally isomorphic, then Whe A (M, N) and WheA(JV, M) are non

empty. Choose f € Whe A (M, iV). Then IM,N[S] is represented by a local isomorphism. 

Further 

W h e A ( M , N) = \f] o E n d A ( M ) x 

and 
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0(Whe A(M, N)) = d ( f ) + A(M) 

Given f as above, there exists some f € WheA(iV, M) such that [f o /'] = [ljy] and 

[/' o / ] = [1M], and then d ( f ) = -d(f'). 

Proof of (i): Choose an exact sequence 

0 - » I - > . F - * J V - » 0 

where F is a finitely generated free A-module. By 3.2 there is an exact sequence 

HomA(M,F) -> H o m A ( M , N) -> E x t A ( M , L) -> E x t A ( M , F) (*) 

and the first term vanishes since F is projective. So H o m A ( M , N) injects into the R-

module E x t A ( M , L), which is i?-torsion since A is semisimple. Since all our modules are 

finitely generated, (i) follows. 

Proof of (ii): Naturality of localisation gives a commutative diagram (stemming from 

(*)): 

0 H o m A ( M , N)p ^ E x t A ( M , L)p E x t A ( M , F)p 

1 I 1 • 
0 - H o m A p ( M P , NP) -» Ext\p(MP, LP) -» E x t A p ( M P ) FP) 

in which the rows are exact and the middle and right-hand vertical arrows are isomor

phisms. Hence so is the left-hand vertical arrow. Since we are dealing with finite quotients, 

we could complete instead of localise at this point. The Chinese remainder theorem now 

completes the proof of (ii). 

Proof of (iii): An element of a finite ring whose right annihilator is zero is a unit. 

Then suppose that [h] G W h e A ( M , M) and that [hg] = [0] for some g € E n d A ( M ) , i.e. 

hg E PK{M, M). Then g*h* = (hg)*:Ext\(M, - ) -» E x t \ ( M , - ) is the zero map for each 

2nd variable. But h* is surjective hence g* = 0. Thus g 6 PA(M, M) and [g] = [0] which 

gives (iii). 
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Proof of (iv): Choose a local isomorphism i from M to N. Clearly ljj^[i] and 

are w.h.e.'s. Then /[/] = [i] o [ i - 1 ] o / [ / ] , and the P-component of [ i - 1 ] o /[/] lies in 

End/ip(Mp)x by (iii). But End/ip(Mp) is semi-local, so a unit of End/^p(Mp) lifts to a 

unit of EndA /,(Mp), by [Ba] I I I 2.9. Thus = [h] where h is a local automorphism 

of M. Consequently / is represented by a local isomorphism, j say. It follows that [/] is 

invertible with [/'] = I J / 1 ^ T h e remaining properties are now obvious. 1 

It is well-known that any maximal order A' of A is hereditary. Thus, pd(L) < 1 for 

any finitely generated A'-module L, hence L gives a class [L] in JCo(A'). The following 

result shows that the image of d ( f ) in JCo(A') for any / € WheA(Af, N) is a constant, only 

depending on M and N. 

4.2 Theorem. Let M and N be finitely generated A-modules. Let A' be a maximal 

order of A containing A. Write G for the functor A' ® A — • Then, if f € WheA(M, N), 

KQG(d(f)) = [A' ® A N] - [A' ®A M] € K0{A'). 

Proof : Choose a sequence (/, i , F) for / . Applying G, we obtain an exact sequence 

Tor A(A', N) A'<g>A£ -» A' <g>A M © A' ® A F -» A'®KN -> 0 

But A'®\L is A'-projective, (since L is A-projective) hence i?-torsion-free, and Tor A(A', N) 

is .R-torsion since A is semisimple. Hence we can replace the left hand term by zero, and 

then 

JC0G(d(f)) = [A' ®A F] - [A' ®A L] = [A' ® A N] - [A' ® A M] 

as required. I 

Now we introduce KQ (A), Cl(A) and D(A). Let Q be a finitely generated projective 

A-module. Q is locally free of rank k if Qp = Ap for every non-zero prime ideal P of R. 

Define K.Q (A) to be the subgroup of /Co(A) generated by each [Q], where Q is a locally 

free A-module of finite rank. 

There is a map rk: KQ (A) —> Z induced by the rank of a locally free module. We define 

Cl(A) = ker(rfc), the class group of A. It consists of elements [M] - [N] with M and N 

locally free of equal rank. The map [Q] —• [A' ®A Q] induces a surjection C7(A) -+ C7(A') 
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where A' is any maximal order of A containing A. Let D(A)—the kernel group of A— 

denote the kernel of this surjection. Regardless of the choice of A', we find that D(A) is 

uniquely determined. These results are easily proved using the idelic description of the 

class group, due to Frohlich, which we outline below. 

Write C = Z(A), the centre of A, throughout the remainder of this section. There is 

a well-known isomorphism 

C l { A ) ~ C*v{U{A))' 

(See [Ta] Chapter 1; here we write J(C) for the ideles of C, U(A) for the unit ideles of A, 

and v for reduced norm from A into C , extended continuously to all idelic constructions.) 

Following Wilson (c.f. [Wil] §2) denote by els the canonical map J(C) —• Cl(A). We 

will use the following notation from now on: let M be a A-lattice and let h £ WheA(M, M). 

Write V = KM, 0 = EndA(M) and B = EndA(V). We will devote the remainder of this 

section to proving that d(h) = cls(i//?) € D(A) for some (3 € U(Q). Note that Z(B) is 

naturally embedded in C. For, C maps onto Z{B) by multiplication maps V —• V. This 

surjection, restricted to simple components corresponding to simple -4-modules occuring 

in V, is an isomorphism. The inverse of this isomorphism embeds Z(B) in C. 

4.3 Lemma. There exists /? 6 U(Q) such that [ftp] — [hp] for every place P of K. 

Proof : The lemma follows directly from 4.1(iv) after observing that a local automor

phism (3 of M is just an element of £/(©), if we adopt the convention that the infinite 

components are equal to 1. Note that Ap = Ap at infinite places P, so by semisimplicity 

every Ap-map is projective. Hence the statement of the lemma places no restrictions on 

the infinite components of f3. I 

We find it convenient to prove the results first when M is a full lattice in a free A-

module. So let W be an yl-module such that there is an isomorphism / : V © W ^ Ak. 

For each place P, if @ is as in 4.3, then (3p extends uniquely to an element of (Bp)*. 

Write (3 0 1 for the idele of . / ( E n d ^ f 0 W)) such that (f3 © 1 ) P = /3P 0 1: VP © WP ^ 

VP © WP. 

4.4 Lemma. Choose ft as in 4.3, and let a = 

u/3 = va £ J(C). 
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Proof : It suffices to show that (v/3)p = {vot)p at each P. So we change notation for 

the local case. Now a G GLk(A) and (3 € B x . The diagram 

B* A Z ( B ) X 

1 I 
Ki(A) ^ C* 

commutes, where the left hand vertical arrow is the map c H-+ [V, c] for c G Aut^V = 

S x , and the right hand vertical arrow is the embedding on unit groups induced by the 

embedding Z(B) —• C described above. However, the diagram 

V®W X Ak 

V®W X Ak 

also commutes, hence [V, /?] = [V © W, (3 0 1] = [Ak, f(0 © 
using the relations 

in )Ci(A). By commutativity, identifying Z ( B ) X with its image in C x , it follows that 

i//3 = i/a. I 

Choose a full A-lattice N in W, and set X = f(M @ N), a full lattice in Ak. Then 

/ ( / i f f i l ) / " 1 <=End A (£) . 

4.5 Lemma. f(h 0 l ) / - 1 is a w.h.e. and d(h) = d(f(h © l ) / " 1 ) . 

Proof : Choose a surjective map g:F—*M where F is finitely generated free. The 

diagram 

0 M@F -> M®N@F —> N —> 0 

| ( M [(tola) | 
0 -> M -» M @N -* N -* 0 

commutes, where the rows are the natural split exact sequences. By the Snake lemma 

ker(h, g) = ker(h © 1, g), hence d(h) = d(h @ 1). Changing notation, we may assume that 

N = 0, and it suffices to prove that d(h) = d ( f h f ~ l ) . The diagram 
/©l 

M f f i F ^ L © F 

[(h,g) [ ( f h r \ f g ) 
f 

M ^ L 

commutes. Thus ker(/i, g) = k e r ( / / i / _ 1 , /#) and the result follows. I 
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We need a further lemma concerning injective w.h.e.s. This lemma will also be used 

in §5. We temporarily relax our assumptions on M and N in the statement of the lemma. 

4.6 Lemma. Let M and N be finitely generated A-modules and suppose that there 

exists some injective map h.E Hom A (M, N). Then 

(i) h is a w.h.e. if and only if pd(coker h) < 1. If h is a w.h.e. then d(h) = [coker/i]. 

(ii) If M is a A-lattice and f € Hom A (M, N) then there exists an injective map g € 

Hom A(M, N) such that [ f ] = [g]. 

Proof : For (i), choose a surjective map k:F—>N where F is finitely generated free. 

Then h = (/i, k) o i where i is the natural inclusion M —* M © F. By the composition 

lemma for i and (h, k) there is an exact sequence 

0 ker(/i, k) -> F -* coker h -> 0 

Thus h is a w.h.e. if and only if ker(/i, k) is projective, which occurs if and only if 

pd(coker/i) < 1. If h is a w.h.e. then 

8(h) = [F] - [ker(/i, k)] = [coker h] 

and (i) holds. 

For (ii), let t be the order of the finite group H o m A ( M , N). Let fa = f + ath for each 

positive integer a. If a ^ a' then ker(/ 0) n ker(/ 0/) = 0 since th is injective. But there are 

infinitely many lattices ker(/ 0 ) and M is finitely generated. Hence almost all of the fa are 

injective. But [/] = [/0] and so (ii) follows. I 

4.7 Theorem. Let M be a A-lattice, and 0 = E n d A ( M ) . The following diagram com

mutes: 
CIB O l / 

U(Q) > Cl(A) 

\ So 

W h e A ( M , M) 

where the unlabelled diagonal arrow is the natural one induced by the surjection U(Q) —* 

© p E n d A j s ( M p ) x and the isomorphism in 4.1 with M — N. 

Proof: We have to show that d(h) = c]&(v(3) where (3 is chosen as in 4.3. Since [ftp] = [hp] 

at every P, it is immediate that [ap] = [h'P] where hf — f(h © l ) / - 1 (note that a P is a 
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local isomorphism Lp —* Lp). By 4.5 d(h) = d(h'). Hence we may assume that L = M 

and (3 = a, i.e. that M is a full lattice in Ak. We now complete the proof using similar 

ideas to [Wi2] §5. Let 5 be a non-empty finite set of prime numbers, containing all primes 

p where Ap is not a maximal order. Choose any locally free sub-lattice X of M (with finite 

index in M) such that Xp = Mp whenever p f£ S. This is possible, because forp&S Ap is 

a maximal order. Hence the isomorphism class of Mp is determined by QpMp = Ap. Thus 

Mp * A*. 

Then let Y = ctX. Let c be a positive integer divisible by | M / F | and all primes in S. 

By weak approximation, choose g £ EndA(M) such that gp = ap (mod cEndA p(M p)) for 

every p in S. If p € S then ap is an automorphism, hence gp is an automorphism mod p, 

and hence an automorphism by [B] I I I 2.7 (since pEndA p(M p) C radEndA p (M p )). Thus 

(ker</)p = kev(gp) = 0 and ker<? is finite (since S is non-empty). But M is a lattice, hence 

g is injective. Suppose that F is a finitely generated free A-module and there is an exact 

sequence 

0 -» G -» F -» coker g ~* 0. 

If p € S then (coker g)p = coker(pp) = 0 and so Gp = Fp is free. If p 0 S then Ap is 

hereditary and so Gp is projective. Hence G is projective. Thus pd(coker g) < 1 and by 

4.6(i) g is a w.h.e. and 

(t) = [coker g]. 

We claim that 

(ii) g-\Y) = X; 

(iii) 5 ( M ) + r = M . 

For (ii), it suffices to prove that g~ 1(YP) = Xp for each p. If p 0 5 then lp = Xp = M p 

so the result is clear. If p € S then 

0p(^p) Q ap(Xp) + C-Wp b y choice of g 

= YP + cMp QYp by choice of c. 

But both gp and ap are isomorphisms so 

Mp 

ap(Xp) 
Mn 
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therefore gp(Xp) = Yp as required. 

For (iii), it suffices to show that gp(Mp) + YP = Mp for each p. This is obvious since in 

each case either gp(Mp) = Mp or Yp = Mp. Thus 

d(g) ® [M/g(M)}W[Y/Y n s ( M ) ] ( % / , 7 ( * ) ] 

(iv) 
= [Y] — [X] since g is injective. 

Now [hp] = [ap] = [gp] for each p 6 5. Further, if p £ 5 then hp and p p are projective 

homomorphisms (since Mp is projective). Thus by 4.1(ii) [h] = [g]. Thus by 3.4 

d(h) = a(5) ( =[aX] - [X] = els ua. I 

Remark: By 4.1(iv) a similar result holds when M and N are full lattices in V which are 

in the same genus, rather than taking M = N as in 4.7. However with M = N we have 

the following refinement. 

4.8 Theorem. Let M be a A-Jattice. Then A(M) is a subgroup of Z?(A). 

Proof : By 2.5 A(M) is closed under addition. Clearly 8(1) = 0 and by 4.1(iii) we have 

inverses. So A(M) is a subgroup of C/(A), by 4.7. The result now follows from 4.2. I 

More generally we have 

4.9 Theorem. Let M and N be finitely generated A-modules in the same genus and let 

f e Whe A (M, N). Then d ( f ) 6 C7(A). If M = N then A(Af) is a subgroup ofD(A). 

Proof : By 2.5 and 4.2 the second statement follows from the first. For the first 

statement, choose a sequence 

0 -» L -» M®F U-^] N — 0 

for / . It suffices to show that L is locally free. Changing notation for the local case, we 

have to show that L is free. Let J = radA and let A = A / J. For brevity write X for 
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A ®A X. By right exactness of tensor there is an exact sequence of A-modules 

(4.10) L -» M®F N -» 0. 

Let T = ker(/, 5). Since A is semisimple, the surjection (/, g) in 4.10 is split, hence 

(4.11) T®N*~M®F. 

A is also Artinian, and M = N by hypothesis. Hence T = F by the Krull-Schmidt theorem 

(in other words we can cancel M and N in 4.11). Thus the surjection L —> T coming from 

4.10 induces a surjection L —» F. By Nakayama's lemma this lifts to a surjection L —• F 

(see e.g. [Ba] III proof of 2.12). Because F is free, this surjection is split. Comparing 

ranks, F = L as required. I 

§5. Applications to Group Rings. 

In this section we let R be a Dedekind ring with field of quotients K (^ R) an algebraic 

number field. Also let G be a finite group and A = RG be the integral group ring. We 

write H*(G, M) for Tate cohomology with coefficients in a A-module M. We call M 

cohomologically trivial if Hn(G, M) = 0 for all integers n. 

5.1 Theorem. The following conditions on an RG-module M are equivalent. 

(i) M is cohomologically trivial; 

(ii) pd(M) < 1; 

(iii) pd(M) < 00. 

Proof : [Br] VI 8.12 for the case R = Z. The general case is similar. I 

We shall now give a number of results which are specific to orders which are group 

rings. 

5.2 Theorem. Let M be a A-lattice and N a finitely generated A-module. Let r be 

the map of 3.1, and write X = Hom*(M, N). Then Hn{G, X) a E x t J ( M , N) for each 

n € Z . In particular H^(G, X) = H o m A ( M , N) and H~l(G, X) 3 ker(r). 

Proof : The special cases can be extracted from the proof of (29.18) in [CR] Vol. I — 

once again the proof for M = N generalises. The remainder is well-known (see for example 

[Br] Ch. I l l 2.2). I 
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5.3 Theorem. Let M and N be as in 5.2 and Jet / 6 Hom A (M, N). The following are 

equivalent: 

(i) f is a w.h.e.; 

(ii) f is a (k, 0)-w.h.e. for some positive integer k; 

(Hi) /*: Hn(A, M) —> Hn(A, N) is an isomorphism for each n 6 Z and for aM subgroups A 

ofG. 

Proof : (i)^-(ii) is trivial by 2.2. For / as in (ii), choose a sequence (/, L, F) for / ; by 

2.2 pd(L) is finite. By 5.1 L is cohomologically trivial, which implies (iii) by taking the 

Tate cohomology of (/, L, F). Conversely, if (iii) holds, choose a finitely generated free 

module F mapping onto TV, so we obtain a short exact sequence (/, L, F), where we do 

not yet know that L is projective. Taking the Tate cohomology of (/, L, F), we find that 

L is a cohomologically trivial A-lattice, hence is projective by [CF] I V Theorem 8. I 

Remark: If we drop the condition that M is a A-lattice, we find that the theorem follows 

if (i) and (ii) are modified as follows: 

(i) / is a (2,0)-w.h.e., (ii) / is a (&,0)-w.h.e. for some integer k > 2. 

This follows by 5.1. If we further suppose that / is a (fc,n)-w.h.e. (where n > 0) it follows 

that / is a (l,n)-w.h.e., by 2.2(iii) and 5.1. 

The following property of group rings will be used repeatedly (see [CR] Vol. I §37 

example(i) after 37.8 or [Br] VI §8 Ex. 3(a)) 

5.4 E x t A ( M , P) = 0 if M and P are A-lattices, and P is projective. 

Next we show that the coset properties of w.h.e.'s in 4.1(iv) hold more generally for 

group rings. 

5.5 Theorem. Let M and N be as in 5.2 and let f € Whe A (M, N). Then 

Whe A (Af , N) = [ f ] o E n d A ( M ) x 

and 
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0(Whe A (M, N)) = 8 { f ) + A (M) . 

Proof : The second property follows from the first. Choose a sequence (/, L, F) for / . 

By 3.2 we obtain an exact sequence 

0 E n d A ( M ) — H o m A ( M , N) -» E x t A ( M , L) 

since L and F are projective. By 5.4 the right hand group vanishes and the first property 

follows. I 

There is a strong connection between A-lattices connected by a w.h.e., which provides a 

partial converse to 4.1(iv), since projectives are locally free over group rings, by a theorem 

of R. G. Swan. 

Definition: Let M and N be A-modules. Then M and N are projectively equivalent if 

M ® P ^ N ®Q 

where P and Q are projective A-modules. 

5.6 Theorem. Suppose that both M and N are A-lattices. Then Whe A (M, N) is non

empty if and only if M and N are projectively equivalent. 

Proof: "if is clear, for an isomorphism M@P = N®P*, where P and P' are projective, 

induces a w.h.e. M —* N since the other component-wise maps are all projective. 

For the converse, given / € Whe A (M, N), any sequence (/, L, F) for / splits by 5.4, 

giving the required equivalence M (& F = N © L. I 

The following result will be used in §6. First we introduce some notation for connecting 

homomorphisms (taken from [Ma] III Lemmas 1.2 and 1.4). For this we allow M, N, L 

and T to be any A-modules. Choose V> € Ext A (Af, N) and / € Hom A (L, M). Define 

i f f f € E x t A ( £ , N) as follows. Choose an extension 
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Let P be the pullback of (/, /?). There is a commutative diagram 

0 N -> P - 0 

II 1 
0 -» N A M -> 0 

and the class of the top row is t p f , depending only on V and f . Similarly define hif> € 

E x t A ( M , T) for each h 6 HomA(./V, T) using the pushout of (a, / i ) . We have (^/ l ) /^ = 

V K / 1 / 2 ) and 91(92^) = {9192)^, and also ([Ma] III Lemma 1.6) (gip)f = g(i>f)- Accord

ingly we write V ' / i ^ j etc. unambiguously. 

5.7 Theorem. Let N be an n-syzygy of the A-lattice M. Then there is a ring isomor

phism r : E n d A ( M ) S End A(7V) such that d [ f ] = ( - l ) n 0 ( r [ / ] ) for eaci / 6 Whe A (M, M) 

(where we extend the d-map to W h e A ( M , M) unambiguously by 3.4). In particular 

A(N) = A(M) . 

Proof : Breaking up an n-fold extension of M by N with projective middle modules 

into short exact sequences, it suffices by induction to prove the result for a 1-syzygy N. 

Then let 

Q - > N 1 P - ^ M ^ Q ei> 

be an extension with P projective. Since M is a A-lattice, using 5.4 we can apply 3.2 to 

obtain long exact sequences 

(5.8) . . . - E x t J ( - . P ) - E x t X ( - M ) - E x t ^ + 1 ( - , AT) —• • • • 

and 

(5.9) . . . - > E r t X ( P , - ) -> E x t ^ i V , - ) -> E x t X + 1 ( M , - ) - • • • 

Since P is projective, H o m A ( M , P ) = 0 = E x t A ( M , P ) , the last equality by 5.4. Then by 

5.8 with n = 0 and variable M there is an isomorphism 

a : E n d A ( M ) ^ E x t A ( M , JV) 

(5.10) b y 

[/] ~ 

by the definition of the connecting homomorphism. Similarly by 5.9 with n = 0 and 
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variable N we obtain an isomorphism 

/3:EndA(JV) * E x t A ( M , N) 

(5.11) b y 

[g] 9i>-

Put r = / 3 _ 1 a . It suffices to show that r is a ring map, and that if / is as given then 

d[f] = -d(r[f}). 

Let / l ) h € E n d A ( M ) . Choose h € End A ( iV) such that htp = t p f i f z , using 5.10 and 

5.11. Similarly choose hi e End A (iV) such that h{ip — ipfi for i = 1, 2. Then 

hip = V ' / l ^ = hiipf2 — hihii). 

Applying we see that r [ / i / 2 ] = [h] = [h^] = r[ / i ]r[ / 2 ] . 

For the last part, we may assume by 4.6 that / is injective, and d ( f ) 

E be the pullback of (/, 6). Since / is injective, so is the induced map E 

is an exact sequence 

0 —> E -> P —> coker/ -> 0. 

Thus pd(E) < oo. By 4.6 and 5.11 we can choose an injective map g 6 End A ( iV) such that 

gif> = rpf. Thus E is isomorphic to the pushout of (g, 7) and there is an exact sequence 

0 P -> E coker g -* 0. 

Thus pd(cokerg) < 00 and g is a w.h.e. (this is also a consequence of 4.1(iii)). But 

[g] = r [ f ) . Thus 

d(r[f]) = [cokerg] = [E] - [P] = -[coker/] = - d ( f ) I 

= [coker/]. Let 

—• P and there 
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§6. Swan Modules. 

Let A = ZG be the integral group ring of a finite group G and let i f be a normal subgroup 

of G. There is a Cartesian square 

where n = \H\, Jn = Z/nZ and ajj = YZkeHh £ ZH. The corresponding Mayer-Vietoris 

sequence (see [RU]) is 

Jn[G/H]* ^ D(ZG) D{Z[G/H])eD(Z[G/(as)]) - 0 (MV) 

6.1 Definition: (see [CR] Vol. II §53 or [Ol]) TH(ZG) = im(6s) is the Swan subgroup 

of ZG relative to H. When H = G we write simply T(ZG), and this group is known as 

the Swan subgroup. 

Let A' = Z[G/H], A" = Z[G/(aH)] and A = Jn[G/H]. 

6.2 Lemma. There is a ring anti-isomorphism End A (A' ) = A given by [ f ] K+ i r f f f ( H ) . 

Proof : Since ZG acts as Z[G/H] on A', there is an anti-isomorphism End A (A') = 

End A/(A') = A' by / (-• f{H). But 

P A (A', A , ) = a G . E n d z ( A ' ) = n<rGIHKntz(MpnPK,{M, A') = nEnd A ,(A'), 

the last equality because A' is free (over A'!). Evaluating the last group at H, we obtain 

ker7Tff = nA', and the result follows. I 

Let r denote the composite map WheA(A', A') Whe A (A' , A') = E n d A ( A ' ) * ^ A*, 

where the first map is the natural projection and the last is the restriction to unit groups 

of the anti-isomorphism in the lemma. 

ZG ^ Z[G/H] 

Jn[G/H] 
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6.3 Theorem. There is a commutative diagram 

WheA(A', A') • D(A) 

A x 

Proof : Write €, w for ZH^H- Let /i € Whe A (A ; , A'). By 4.7 we can choose some 

o G C/(EndA(A')) such that <?(/i) = clsi/a. If a p is right multiplication by vp G (Ap) x for 

each p, and if r(h) = w G A x , from the proof of 4.7 it follows that itpvp = wp for each p. 

Since Ap=0 if p/n, we may take vp = 1 in this case. We may identify A with 

{ ( e ( A ) , 7 r ( A ) ) : A e A } c A ' © A " ; 

this identification is compatible with the identification of QG with QA' © QA". Then the 

pullback Ait) (such that 6H(W) = [Aw] — [A] —see [RU]) is identified with 

{ (a , 6) G A' © A" : 7ra = {Sb)w}. 

Moreover Aw = A/3 where (3 G J{QG) is given by 

(1,1) ifp/n; 
= r (1,1) ifp/n; 

P p \ ( v p , l ) i£p\n. 

with components in QAp © QA^ for each p. (see [CR] Vol. II ex. 53.1). It is obvious that 

els VOL = els v(3 which proves the theorem. I 

Remark: 

(i) One can define a generalised Swan module (u, ag) = ZGu + ZGog, where the element 

u G ZG n QC?X is such that u € ZPGX for p\n. Then (u, trjj-) = d ( f ) = 6# (w) where 

(u, OH) denotes [(u, <TJI)] - [ZG] G D(A), and / G WheA(A', A') has image w G A* 

under the isomorphism of 6.2, and 7r#e#(u) = to. For any unit w, such a u exists. 
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(ii) Similar results hold for more general Mayer-Vietoris sequences. For example, if A' is 

any order containing A and (A' : A) is the two-sided conductor 

(A': A) = { x 6 KA : A'xA' C A } , 

then there is a commutative diagram, the analogue of 6.3, with 6g replaced by the 

connecting map e in the Mayer-Vietoris sequence corresponding to the Cartesian square 

A -» A' 

i I 
A A' 

(A': A) ~* (A': A) 
Here A can be any order as in §4. 

(iii) If A' as in (ii) is chosen to be a maximal order, we find that 8: WheA(A', A') —* D(A) 

is surjective, since e is surjective because D(A') = 0. This also follows directly from 

the idelic description in §4. 

6.4 Corollary. Let H be any normal subgroup of G. Then 

TH(ZG) = A(Z[G/H}). I 

The last result connects Chinburg's invariant Q(N/K, 1) of a finite Galois extension 

N/K of number fields with Galois group T, with the Swan subgroup of the class group, as 

we will soon show. We take the following definition from [Ch2]. 

There is an exact sequence 

0 — C 7 - > A - + . B - > Z — 0, 

of finitely generated Zr-modules, where A and B are cohomologically trivial. The module 

Cf is chosen to be a finitely generated Zr-module with the same Tate cohomology as the 

infinitely generated module C(N), the idele class group of N. In other words, 

Hn(T, C f ) S Hn(T, C(N)) for all integers n. 

Define ft = tt{N/K, 1) = [A] - [B] - r[A], where r = rk{[A)) - rk([B]). 

We can improve slightly on 3.5: 
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6.5 Theorem. Let 

0 -» T — P n _ i • P 0 M — 0 

be an n-fold extension of the A-lattice M where each Pj is a projective A-lattice. Then there 

is a natural isomorphism / i :Ext£(M, TV) = HomA(T, N) for any A-module N. Further, 

if f € ExtX(M, N) is a (l,n)-w.h.e., such that = [h], then h is a w.h.e. and d ( f ) = 

d(h) + [P}. 

Proof : Let Q be im(P n _i —• Pn-2)- A standard result says that there is a natural 

isomorphism Ext£(M, N) = Ext A (Q, N). Since Q is a lattice, by 5.4 and 3.2 the short 

exact sequence T —» P n - i —* Q yields a contravariant E x t sequence. Letting the variable 

be N, the connecting homomorphism gives an isomorphism HomA(r, N) = Ext\(Q, N). 

Putting these isomorphisms together yields the map p. The result about d ( f ) is a conse

quence of 3.4 and 3.5, and by 5.3 h is a w.h.e. (i.e. of level 1). I 

Applying 6.5 with M = Z , i V = C / , n = 2 and T the 2-syzygy in the bar resolution of 

Z (so [P] = [Zr]), we find: 

6.6 Theorem. Q lies in the coset ofT(ZT) determined by d(h) + (1 - r)[ZT] for any 

h 6 WheA(T, Cf). Since T is uniquely determined (as a submodule of ZT^), this coset 

depends only on the module C f . 

Proof: By 5.5 and 6.5, Q lies in the coset of A(T) determined by the given representative. 

By 5.7, A(T) = A(Z) , and the latter group is T(ZT) by 6.4. I 

6.7 Remark: A similar result holds when T is any 2-syzygy of a free resolution of Z; the 

bar resolution simply makes this choice explicit. 

In the case of a cyclic group T, two simplifications occur to make the above result more 

concrete. As in [Ta] Ch. 3 1.5, the Swan subgroup of a cyclic group is the trivial group. 

Also, we may choose the module T to be Z since there is an exact sequence Z —• ZT —* 

Z r -> Z, for a cyclic group T. Thus ft = d(h) - r[ZT] for any h € Whe Z r(Z, C f ) , and 

only depends on the module C f . 
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§7. Hecke algebras of subgroups of a finite group. 

Let G be a finite group and H a subgroup of G. Define 

* 2 T = £ f c > dg = Y , X ^ Z G > 
h£H xeHgH 

for g € G, and eH = crH/\H\ € Q G . 

Note that ejy is an idempotent, and the dg are the H — H double-coset sums. Let 

7.1 Lemma. Let g,g' 6 G. Then 

(i) gH = <=• p<rff = ^'ff^; 

("ii; \HC\HO\dg = aHgaH; 

(iii) dg € { (E ireG a xx )<rH : ax = 0 or 1 for all x}. 

Proof: 

(i) (7-ff = <7'if g' = <?/i some h £ H 4=>- ^tr^ = ^'ajj . 

(ii) Let € for i = 1,2. Then = h'^gh^ <=> g~l{h\)~lhigh2 = h'2. Fixing 

hi and h2, the latter equation requires that g~^{h\)~lh\g € H, which allows \H C\ H9\ 

choices of h\, each of which fixes h!2. 

(iii) Let h\,h2 € H. By (i), higtTff = h2gog -<=̂  h\gH = h2gH. Fixing h\, the second 

equation requires that g~1h2

1h\g € H, which gives \H n H9\ choices of h2. So (iii) 

now follows from (ii). I 

7.2 Theorem. 

(i) There is an isomorphism R[G/H] =RG RGeg, induced by R-linearity from the map 

gH H-» geg for g £ G, where R is a domain of characteristic 0; 

(ii) There is a ring anti-isomorphism 

EndqG{QGeH) Si eHQGeH = (d f l ) Q 

by right multiplications. (The r.h.s. is the Hecke algebra corresponding to H.); 
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(iii) E n d z c ? ( Z G e ^ ) 9* (dg/\H\)z, under the map of (ii). 

Proof : 

(i) follows from 7.1(i). 

(ii) The anti-isomorphism is clear, and the equality follows by 7.1(ii). 

(iii) We identify the image of EndzG(ZGeff) with { A € (dg)Q : ZGejyA C ZGeH }. 7.1(ii) 

shows that ejjX = A for A € (dg)Q. If follows that the image is 

(dg)QnZGeH = (dg/\H\) 

by 7.1(iii). e 

7.3 Corollary. Let X = (\H n H9\dg/\H\)z. Then the image of FzG(ZGeH, ZGeH) 

under the map of 7.2(iii) is X, hence 

E n d Z G ( Z [ G / f f ] ) g W M ? l ) z 

Proof : Let g, g' € G. There is a unique map f(g, g') € E n d z ( Z G e # ) such that 

f(9, 9')(9eH) = 9'eH, and f{g, g'){g"eH) = 0 if g"eH ? g'eH for g" G G. Then 

{°G-f(9, 9')}{eH) = £ (g'T'g'eE = £ ^"Veir = W ' V e j r . 
g"eH-geH h^H 

Since the /(<?, p') generate End z(Z(?e.£f) as abelian group, the result follows by 7.1 and 

5.4. I 

We will use the above results on Hecke algebras to show that Theorem 6.4 (i.e. 

Tff(ZG) = A{Z[G/H\) if H is normal) fails for non-normal subgroups H, in general. 

Since ZG®zN is A a t> f ° r a n y subgroup N of G, it follows by inducing a sequence for a 

w.h.e. of EndZ i V(Z[jV/.H']) that (following Oliver in [Ol]) 

TH{ZG)d^ind%TH(ZN) C A(Z[G/H]) 

where N = NG{H) is the normaliser of H in G. For our example, we will choose G to be 

a dihedral group Dpq, where p and q are odd distinct primes and 

D n = ( <T„, T : e£ = T 2 = 1, T<7 N = 0~LT ) 

is dihedral of order 2n. Abusing notation, we can write = <rp, and let f f p = (ap, r ) = 

£ ) p . Similarly the dihedral subgroup Hq of G is defined. We have 
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7.4 Theorem. A(Z[G/HP]) + A(Z[G/Hq]) = D(ZG). 

Before proving the theorem, we will show how it provides the required example, i.e. 

TH(ZG) / A(Z[G/H]) for some H which is not normal. 

Note that Hp and Hq are their own normalisers in G. Thus Tnp(ZG) = i n d ^ T(ZHp). 

But Hp £ Dp, and D{ZDp) = 0 ([CR] Vol. II 50.25), hence 

THp(ZG) = THq{ZG) = 0. 

Thus, whenever D(ZG) ^ 0, the theorem gives the required example with H either Hp or 

Hq. But D(ZG) ^ 0 when p = q=l (mod 4) ([EM] Theorem 2.3), providing an infinite 

class of examples. 

Proof of 7.4: Let O be the (unique) maximal order in the commutative semisimple 

algebra C = Z(QG). The idelic description of the kernel group is 

<7-5> fl<ZG> * armory 
Note that we may ignore the infinite primes in the idele groups since QG is a sum of matrix 

rings over fields (see below). 

Let 0^ = Endz<3f(Z[G'/'Hp\) and similarly for Qq. By the naturality of the isomorphism 

7.5 and 4.7 it suffices to show 

(7.6) i/(W(0 p))i'(W(0«))i/(W(ZG)) = U(O) 

We will prove 7.6 prime-by-prime. If r is a prime number, not dividing 2pq, then ZrG is 

a maximal order. Hence u(ZrGx) = O*. Thus it suffices to prove the local version of 7.6 

at the primes 2, p and q. 

We will use the following notation. C„ = (an) is the cyclic group of order n, Dn is 

the semi-direct product of C„ and the group Ci — (r) (we put ai = r), with r acting by 

inversion, an h-» a" 1 . Let Cn be a primitive nth root of unity, and let 

Ln = Q(Cn) Kn = Q(Cn + Cn1) 

S" = Z[C„] Rn = Z[(n + G1]. 
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We fix the isomorphism (c.f. [CR] Vol. I example 7.39) 

QG * Q C 2 ® X p o C 2 © I « o C 2 © I w o C 2 

where the "o" denotes twisted group algebras, T acting by complex conjugation, e.g. the 

projection Q G —» Lp o C2 is induced by apq H-» £p (and r *-* r ) . Further (ibid.) we have 

LnoC2 = M2{Kn) forn > 2 (though SnoC2 ¥ M2(Rn)). Also we have Q C 2 = Q ( + ) © Q ( _ ) , 

with T acting trivially on the (+)- and by negation on the (—)-component. Thus this 

identification is a + 6r i-+ ((a + 6)/2, (a — b)/2). We then have an identification 

O = Z < + ) © Z<"> 0 Rp © i ? 9 © J 2 M 

and correspondingly 

Z 2 G = Z 2 C 2 © S£ o C 2 © Sf o C 2 © Sg1 o C 2 . 

Now Z 2 C 2

X = Z 2

+ ^ X x Z 2 ~ ^ X , as is easily seen by computing radicals (units of Z 2 axe 

= 1 (mod 2)). We need a lemma (extracted from the proof of Theorem 3.4 in [Wi3]) 

7.7 Lemma. For each positive integer n and each prime number r 

K ( 5 r " o c 2 ) x ) = i ? r - • 

Applying 7.7 with r = 2 we have u(Z2Gx) = 0%. By symmetry in p and q 7.6 follows 

if we can show 

(7.8) K © f M © r M Z p G * ) = 0p* 

Write dg for the double coset sums of Hq in G, and write a for Opq. Observe that 

HqCX^mj>THq — Hq(TXHq = HqO XHq, 

the first equality because ap = aq and r lie in Hq, the second because raxr = a~x. Thus 
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there axe (p — l ) /2 + l double cosets: 

{HqaxHq : 0 < x < (p - l ) / 2 } . 

By 7.2(iii) we can identify 0 9 with 

( V 2 « > * T - f t ) < « * , . 2ejr ta"ejr t | 1 < x < (p - l ) / 2 ) z 

since Hq D Hq' = Cq if x ^ 0 (mod p) . There is an isomorphism of (commutative) rings 

(7.9) e q * ZCP

C* 

induced by euq >-> 1 and 2ejrflo,a!ejy< <rp + a~x. This clearly gives a group isomorphism, 

and that it is a ring map follows from the identity 

a*aHy = ax^aCq + a x "f aCqr. 

Thus we can omit the first two v signs in 7.8. 

Let B = B\ ® Bi be a direct sum of Wedderburn simple components of a semisimple 

algebra and let T be an order in B such that the restriction maps Y B{ have image the 

orders Ti for i = 1, 2. There is a fibre product diagram 

r - r i 

(7.10) | 1 

r 2 - r 

in which T is finite and all the maps are surjective. This identifies T with a submodule of 

T\ © I V The analogous result still holds if we complete at an integer prime r and pass 

to unit groups, by semilocality and surjectivity. Suppose further that i/((r<)^) = Aj for 

i = 1, 2. Then 

(7.11) Aii/(r r*) = Ax x A 2 = A 2 K r r

x ) , 

once more using surjectivity. We shall apply 7.11 thrice below. First observe that 

(7.12) ZPG = ZPDP 0 (5JC P ) o C 2 . 

Observe that the conditions on 7.10 are satisfied when 
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(i) T = Z C f 2 , Ti = RP, T 2 = Z and T = Z/pZ = F p . (The surjection r -» Ti is induced 

by ffp + ffp 1 •-» (p + Cp1, that r -» T 2 by ap >-> 1, that r i —• T by Cj> + CP

 1 ^ 2 (mod 2) 

and that r 2 —• T is reduction mod p.) 

(ii) T = ZDP, Ti = SpoC2, T 2 = Z C 2 and T = F p C 2 . The maps are analogous to (i), with 

ap + crp

 1 replaced by ap. r is unaffected by each map. e.g. the surjection T —> Ti is 

induced by ap t~* ( p and T H T . 

(Ui) T = (S*CP) o C 2 , T i = o C 2 ) T 2 = 5? o C 2 and T = 5* o C 2 ) where S9 = 5«/p5«. 

The maps are analogous to those in (ii) but with Z replaced by Sq. e.g. we think of 

5 W as Sq[(p] where of course Cp? = CpCq-

Now apply 7.11 with r = p and 

(i) A,- = (Ti)p ; 

(ii) Ai = R?p* (by 7.7) and A 2 = Z P C 2

X ; 

(iii) Ai = R.™* and A 2 = R?p* (by 7.7). 

Now 0 | S Z p C f 2 and = R* © Z p (by the definition of T in (i)). We may regard 

T 2 = Z in (i) as Z<+>, since effqea = eg- Then we have 

Qr*ei*v(ZpG*)7±2(Zp+)X x Rl*)ZpCp°2\(ZpDp*)v((StCp) o C 2 *) 

7=(z'+)x x x i i ; x H z ^ ; > ( ( s j c f ) o c 2 * ) 

W ( Z p + ) X x JJf* x RfXZpCZWF*) 

= Qp* 

since Z p C 2 = Z p

+ ) © Z p

_ ) , as 2 € Z£. This concludes the proof of 7.4. I 
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C H A P T E R I I . Canonical Factorisability and Chinburg's second invariant. 

§1. Introduction. 

Let N/K be a Galois extension of number fields with Galois group T. In [Ch2] T . Chinburg 

defined a class Q(N/K, 2) G Cl(ZT) which measures the Galois structure of J(N) (the 

idele group of N). The ring of integers ON in N is a locally free ZlT-module if (and only 

if) N/K is at most tamely ramified. We refer to this as the tame case. In the tame case 

ON determines a class (ON) 6 Cl(ZT) (this would have been written [ON] - \K : Q\[ZT] 

in chapter I) , and Chinburg showed that 

n(N/K, 2) = (ON). 

Also in the tame case, M. Taylor proved the following beautiful and far-reaching result: 

(1.1) (ON) = t W N / K e D(ZT) 

where WN/K (defined by Ph. Cassou-Nogues) is a function depending only on the root 

numbers W(x) = ± 1 of the irreducible symplectic characters \ °f I \ tWN/K i 8 *h e 

class in the kernel group i?(Zr) it determines. Thus (in multiplicative notation) (ON)2 = 1 

and in many cases (r abelian, odd order, dihedral) (ON) — 1 and indeed ON is then a free 

Zr-module. 

A. Frohlich generalised the definition of tWN/K t o wildly ramified extensions (the wild 

case). The resulting class in Cl(ZT) was called the Cassou-Nogues Frohlich class in [Ch2], 

and also goes by the name of the (generalised) root number class. We shall denote it by 

tN/K ( a definition appears in §4). This motivated the following conjectural generalisation 

of 1.1. 

1.2 Conjecture. (Chinburg) Q.(N/K, 2) = tN/K for all N/K. 
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We will prove in §4 that 

(1.3) n(N/K, 2) = t N / K (mod D(ZT)) 

thus giving evidence supporting 1.2, which has already been verified for a large class of 

quaternion extensions by S. Kim. Chinburg has shown that tjv/tf £ D(ZT) for certain 

wildly ramified extensions, hence the same applies for £l(N/K, 2). 

However, the arithmetic object ON has "disappeared" from the statement of 1.2. We 

reinstate it in the proof of 1.3 by the method of canonical factorisability (for the genesis 

of this method see §2). Since ON is not projective in the wild case, we cannot obtain from 

it a class in Cl(ZT). Instead, let b 6 ON be a normal generator of N/K and consider the 

finite module ON/bOicY'. We show in §3 that this module has a canonical factorisation 

gi,. This function (which depends on the norm resolvents N N / K ^ X ) °f & and t n e Galois 

Gauss sums T(N/K, X) °f characters x) gives rise to an invariant (which does not depend 

upon 6) in Cl(Mr) where Mr is a maximal order of Q r containing ZT. We show in §§3-4 

that this invariant equals the images of Q(N/K, 2) and tN/K under the surjection 

Cl{ZT) -* Cl{MT) 

(which has kernel D{ZT)) thus establishing 1.3. 

A word about notation. We shall be using [Frl] extensively as a reference for the tame 

theory, and shall adopt similar notations. In particular, in this chapter modules are right 

modules unless otherwise stated. Direction of composition of maps is inferred from the 

context (no endomorphisms appear in this chapter). 
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§2. Canonical Factorisability for finite groups. 

Let r be a prime number. Let k be either of Q (global case) or Q r (local case), and fix an 

algebraic closure k of A:, in which lies each finite extension K of k. Let OK be the ring of 

integers (maximal order) in K. Write QK for Gal(k/K). Write 1% for the fractional ideal 

group of K. In the global case, fix Q to be the unique algebraic closure of Q in C , and 

write J(K) for the idele group and U(K) for the unit ideles of the number field K. 

Let G be a finite group and let S(G) be the set of subgroups of G. Let RQ the ring 

of virtual characters of G, Irr(G) the absolutely irreducible characters and SQ the subset 

of Irr(G) consisting of symplectic characters, all characters over k. If we need to indicate 

the dependence on k in the notation, we shall write Rc(k), Irr(G, k), etc. If in doubt take 

fc = Q. 

Let U be a finite Galois extension of Q which realises the Q-characters of G. Then the 

group Homf)q(-RG) «7"(£0) 1 8 defined, and there is a natural surjection 

(2.1) clsA: H o m f i Q ( R e , J{U)) - Cl(A), 

for any order A in Q G , induced by Frohlich's Hom-description (see the proof of 2.6 below). 

There is a similar result for the group KQT(A), which is the Grothendieck group of the 

category of locally freely presented finite A-modules, taken with respect to exact sequences. 

By 1.5.1 if A = Z G the category is that of finite cohomologically trivial ZG-modules. 

Whereas if A is a maximal order then the category is simply that of the finite A-modules, 

and there is an ideal-theoretic description of KQT(A) (going back to Jacobinski) which we 

give a modern flavour via the Hom-description in 2.6. 

When A = Z G there are useful formulae for change of group which we shall use exten

sively in this chapter. Let H be a subgroup and N a normal subgroup of G. Restriction, 

induction and inflation of characters induce maps res%: 

RG -» RH, indg: RH -> RG and 

^G/N'-RG/N ~* RG o n t n e character rings. Further, fixing under N on QG-modules gives 

a map cutQ^: RQ —* RG/N- Let G\ and G 2 be arbitrary groups. Let M be an abelian 

group. Any group homomorphism RQ1 —• RQ2 induces a contravariant homomorphism 
(2.2) Hom(i? G 2 , M) -> Eom(RGl, M). 

In the case of the maps above, the contravariant, induced maps are denoted by ind#, 

res^, coinfg/jy and cocutQJ N respectively. The first three of these give maps in the Hom-

description for the groups KQT(ZG), KQT(ZH), etc. (but the analogue of cocut does 
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not preserve local freeness of modules). These are induced by the module-theoretic maps 

(again denoted by ind, res and coinf) as follows. The tensor product ®Z>HZG induces 

ind#: JCQT(ZH) —• KQT(ZG). Restriction of scalars from ZG-modules to Zi7-modules 

induces res#: KQT(ZG) —* KQT(ZH). Fixing under N (c.f. cutting of characters) from 

ZG-modules to Z[G/7V]-modules induces coinfg / i V: KQT(ZG) -> KQT(Z[G/N\). 

Let M.G(Q) = M-G t>e any maximal order in Q G containing Z G . There is an exact 

sequence 

(2.3) 1 U(U) -+ J{U) £ lu -» 1 

in which AI is the associated ideal map. This induces a map (also denoted AI) 

(2.4) AlrHomp^Jte, J(U)) -> rlomQq(RG, I V ) . 

We define I(G, Q) to be the subgroup of g € Homo^-Rc, lu) s u c h that 

(2.5) g ( X ) E Z Q ( X ) > for each X € RQ{Q)-

Note that the symbol Q(x) indicates the number field generated by the values of the 

character \ - This is not the same as the smallest field over which a representation of the 

character is realised, e.g. If x is an irreducible symplectic character, then in particular \ 

is real-valued so Q(x) is a subfield of R . But no representation of \ is real (one could take 

this as the definition of irreducible symplectic character). 

In 2.5—and throughout this paper—we are using the following convention. If L/K is 

a finite extension of number fields then there is a natural embedding of 1% in Xi, which 

we shall regard as an inclusion. A similar convention holds in the local case. Indeed, if 

we replace U by a completion Uft of U at a finite prime K\r and Q by Q r then we get 

the corresponding definition of I(G, Q P ) . Note that the symbol Q r means the algebraic 

closure of the r-adic numbers, not the r-adic completion of Q! 

In the global case, define P + ( G , Q) to be the subgroup of g £ J (G, Q) such that 

P(i) 9(x) is principal for each x € i?<?(Q); 

P(ii) g(x) has a real, totally positive generator for each x € SG,Q-



2.6 Theorem. There are isomorphisms 

KQT{MG) * I(G, Q) 

ker(KQT(MG) -> Cl(MG)) * P+(G, Q) 

induced by the Horn-description and the map AI. 

Proof (sketch): The Hom-description isomorphisms are 

Horn* (J2G, J{U)) 
W M G ) * E o m ^ U i U ) ) 

and 
Hom f i Q ( i?G, J(U)) 

Cl(MG) = 
Horn* ( ifc , U(U))KomnJRG, ^ x ) 

The surjection KQT{M.Q) —* CI(M.G) is then extension of coset. To establish the theorem 

it suffices to show the equalities 

AI o H o m £ Q ( i 2 G ) J{U)) = J (G, Q) 

and 

AI o H o m £ Q ( R G , U*) = P+(G, Q). 

For the second equality, note that one can place a + sign on each group in the Hom-

description of CI(MG)- The inclusions C are clear from the fact that 

J{Ufw* = J(Q(X)) 

for each x € RG(Q). We shall show how to pull back an element g € I(G, Q) to one g 6 

HomQQ(i2(3, J(U)). Let x run over a full set of representatives of the fiq-orbits in Irr(G). 

Since AI: «7(Q(x)) ~~* ̂ Q(x) ^ s u r J e c t i v e (and t n e infinite prime does not contribute) choose 

g(x) € J(Q(x)) such that Alg(x) = g(x) and g(x)<x> = 1- Choose g on the remaining 

elements of Irr(G) so that g respects ^Q-action. Since Irr(G) is a basis of RQ we find that 

AIo g = g and g € Hom^^-Rc, J{U)) as required, i 



In future we shall identify the groups in 2.6 under these isomorphisms. From the proof 

given, it suffices to specify an element of /(<?, Q) by its values on irreducible characters, 

which we shall do henceforth. It is easy to see that restriction, induction, inflation and 

cutting of characters induce corresponding maps on I(G, k) (Warning: These do not have 

a natural interpretation at the level of A^c-modules). For, these maps are well-defined 

if we take M = in 2.2, and if x £ Irr(G, k) then k(xesKx) Q Kx), and similarly for 

induction, inflation and cutting of characters. 

As motivation for the method of canonical factorisability, we give the elegant notion 

of factorisability (due to A. Nelson [Ne]). 

Definition: Let f:S(G) —• J Q be any map. Then / is factorisable if there exists a 

function g € I(G, Q) (a factorisation of / ) such that 

tes% g(lH) = f(H) 

for each H € S{G). 

Associating H with the G-set H\G one can consider / as a function on the Burnside 

ring of G, which is factorisable if it extends to the ring RQ. This idea has applications to 

integral representation theory of finite groups as follows. Let | : |z denote the Z-module 

index. If X and Y are ZG-lattices spanning the same QG-module, we can put 

f(H) = \XH : Y H \ Z 

and if / is factorisable we may say that X and Y are factor equivalent, written XyY. 

This gives an equivalence relation on such lattices, which is weaker than the relation of 

local isomorphism. In the context of Galois module structure, the lattice X is taken to 

be an arithmetic one whose structure is an object of study and Y a "standard" lattice of 

transparent structure. Thus, factor equivalence places strong restrictions on the module 

structure of X. In addition (see [Fr4]) a factorisation function g may be expressed in 

terms of arithmetic functions (values of L-functions or Galois Gauss sums, say) and the 

invariant of KQT{MG) it represents is then parametrised, giving a source of "structure 

theorems" (see [Fr4] and [Bu] regarding the Martinet conjecture and its generalisations). 

As examples, if N/K is a finite abelian extension of number fields with Galois group T (in 
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place of the group G) then (see [Fr4] or [Ne]) 

0 N Y O K T 

as Zr-modules. On the other hand, if Y is abelian but not cyclic we have (see [Fr2] or 

[Ne]) 

where M.T,K is the unique maximal order in KT. Frohlich introduced the notion of canoni

cal factorisability (an exposition of which appears in [Bu]) in the context of abelian groups 

G, to get around the problem that a function / may have several different factorisations (if 

it has any) and so the choice of an invariant in KQT{M.G) is not unique. Yet the arithmetic 

parametrisation of factorisations suggests that unique (and important) factorisations exist. 

Frohlich's canonical factorisations are uniquely determined, but of course this requires 

extra conditions on the function / . As in [Bu] one treats first the local case (completing 

at a prime number p) and then puts together all the local canonical factorisations into a 

global one. The extra information in the local case is encoded by extending the domain of 

/ by introducing certain local idempotents. 

In his second talk at the Durham Symposium on Algebraic Number Theory (1989) 

Frohlich sketched a generalisation to non-abelian groups G, with the local / defined on 

pairs (H, e) where H is any subgroup of G and e is an idempotent of an abelian character 

of some subgroup of G of order prime to p, and further e commutes with the idempotent 

ejj of the subgroup H. We have adopted a simpler definition, based on an idea of Steve 

Wilson, in which the subgroup H is restricted to be cyclic. The definition in [Bu] is 

equivalent to ours in the cyclic case, and if a canonical factorisation (for arbitrary finite 

groups G) exists in Frohlich's sense, then so does one in our sense, and they coincide. 

Before proceeding to the definitions, note that just as we use the symbol G for a 

generic finite group and switch to T when the group is the Galois group of an extension 

N/K of number fields, we let r denote a generic prime number and reserve the symbol p 

(in later sections) for the fixed prime below a prime p of K which is wildly ramified in 

N/K. This is to avoid confusion when using double-localisation methods (as in the tame 

additive theory), that is localising both arguments and values of functions, perhaps with 

respect to different primes. 
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2.7 Definition: Let r be a prime number. Let Sr(G) be the set of all pairs (G, e) as 

follows. C is any cyclic subgroup of G. We can write 

(2.8) C = Cr x G x 

where C r is the Sylow r-subgroup of C. Then e is any indecomposable idempotent of the 

maximal ZP-order Z r G x . 

Let f:Sr(G) —• J Q p be any map. Let p 6 / ( G , Q R ) . Then <7 is the canonical factorisation 

(C. F.) of / if 

(2.9) res^ f l ( inf^x) = / ( C , e ) 

for each (G, e) € Sr(G), where x is the Qr-valued character of Q r G x e . 

Before we prove uniqueness of (local) canonical factorisations, we shall need some 

terminology for cyclic groups (these concepts also make sense for abelian groups). If C is 

a finite cyclic group, write G* for Irr(G) (the character group of G). If H e S(C), define 

H* to be the subgroup of G* consisting of those characters ip such that ip(H) = 1. Define 

a division D of G* to be the set of generators of a subgroup (denoted D) of G*. 

2.10 Theorem. The canonical factorisation of f:Sr(G) —* 2Qt is unique if it exists. 

Proof : Let h and h! be canonical factorisations of / . Then h'h~l is a canonical 

factorisation for the constant map equal to Z r . For uniqueness, it suffices to show that 

any canonical factorisation for this constant map is also a constant map equal to Z r . Let 

(G, e) € 5 r ( G ) . Let x be as in 2.9. There is an fiqr-orbit $ in C*} such that 

Choose <f> € Galois operation on ideals is trivial in the local case, so nQr-equivariance 

of g actually means g{9) = g(9") for u> G ftqr and 9 € i?c?(Q7). Then by 2.9 

resg f l(infg x x) = resg 5 (infg x 0)1*' = Z r . 

Thus resgp(infg x <t>) = Z r . Let H € S(Cr). Then indg r l H = Z w 1>- L e t D r u n o v e r 
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the divisions of H*. Then 

(2 11) I I I I ™c9(i>, <t>) = resg S(indg' l f f , <f>) = r e s g x C x g(mfg*C* 4>) = Z r . 

By induction on the order of H it follows that for each division D of 

I I Tesc9(i>, <i>) = zr. 

Now 

(2.12) \D\ = |Gal(Q r(V>)/Qr)| = |Gal(Qr(t/>, * ) / Q P ( * ) ) | 

by standard properties of cyclotomic fields. Since g is a fortiori f2Qr(^-invariant, it follows 

that 

(2.13) res^^ is the constant map equal to Z r . 

Let C run over the cyclic subgroups of G. By the Artin induction theorem, the map 

i n d : ® i ? c — RQ 
C 

induced by the indg has image of finite index. Since J Q ^ - is torsion-free, the induced 

contravariant map 

res:Hom(#G, 1^) -> ® Hom(fl c , % ) 
C 

is injective. Hence by 2.13 g is the constant map equal to Z r . I 

Before defining the global version of canonical factorisation, we shall need a localisation 

procedure. 

2.14 Definition: Let g € Homn,Q(.R<;(Q), and let r be a prime number. Let U be 

any prime of U over r. Let j: U <-+ U-R be the canonical embedding. For each i> 6 -Rc(Qr) 
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there is a unique tpg € RQ(Q) such that ipg = ip. Define 

9 r € Bom(RG(Qr), Ivn) 

by 

9r(i>) = 9{i>g)n-

2.15 Lemma. gr € Homn Q r ( i?G(Q r ) , TU-R.) j s independent of the choice of 7Z\r. s^i <̂  j 

Proof : Note that Un = U%i for any other prime 72' of U over r, since Z7/Q is Galois. 

The natural embedding j ' : £/ <—• £7^' is equal to erj for some a g Gal(I7/Q). 

Consequently 72-' = 72^ 1 and ipg

 1 is the unique global character ipg> such that i\Pgl = i(>. 

It follows (since g preserves f2q-action) that 

Thus <jr is independent of 72. i u 4 <r|j J , 

The embedding j induces an embedding 

r : G a l ( C / 7 j / Q r ) - G a l ( C / / Q ) . 

If 1 6 U and u € Gal(E/7j/Q r) then the maps j and j * are connected by 

(x*) W = . 

Then 

It follows (since <j preserves flQ-action) that 

the last equality because the image of 7* is the decomposition group of %. The right hand 

side is gr(i>)- Thus gr preserves £2Qr-action. I 

47 



2.16 Definition: Let 

/* = { fr\r is a prime number } 

be any collection of maps fr:Sr(G) —* J q r . Let g € I(G, Q) . Then g is the canonical 

factorisation (C. F. ) of / * if gr is the canonical factorisation of f r for each prime number 

r. 

Now we shall introduce functions / * which depend on ZG-modules. Our treatment is 

formally different, but equivalent to that of Burns ([Bu]) in the case in which G is cyclic 

and M and N (below) are lattices. 

2.17 Definition: Let M and iV be—not necessarily finitely generated—ZG-modules. Let 

i: M —• N be an injective ZG-map with finite cokernel. Let ordz r be the order ideal map 

on finite Zr-modules. Define / * = {/?"} by 

fT(C, e) = ord Z r(coker(i^) re) = ord Z r(iV r

c '-e/i(M)^e) 

for each (C, e) 6 5 r ( G ) . When t is the inclusion map define f l j N - f*. When M = 0 (so 

N is finite) define /jy = /* . If it is necessary to indicate the dependence on G we shall 

write / ; = etc. 

Let H € S(G). Denote by N(H) the normaliser of H in G. If (C, e) € Sr(G) then 

N(Cr) D C and hence e € ZrN(Cr). The functor ( - <g>z Z r )e is exact. Thus the following 

rules for the / * hold 



(0 ftj = /*//; 

(ii) if there is a ZiV(fl")-isomorphism cokev(iH) = coker(j^) 

for each H € S(G), then f t = / / ; 

(iii) if there is a ZiV(.ff)-isomorphism coker(i - f f) = (cokeri)^ 

for each H € 5(G) , then = / * o k e r i ; 

(2.18) 
(iiia) i f H e S(G), i: M -> N is injective and #*(# , Af) = 0 

then there is a ZN(H) isomorphism coker(i^) = (cokeri)^; 

(iv) if there is a short exact sequence of ZiV(if )-modules 

0 coker(i-ff) -» cokei(kH) cokeT(jH) -» 0 

for each H € S(G), then /£ = / ; / / . 

These are obvious except perhaps for (iv), which follows by the multiplicativity of the 

order ideal map on short exact sequences (this is a generalisation of Lagrange's Theorem). 

Let us show that canonical factorisations exist. 

2.19 Theorem. Let T be a finite, cohomologically trivial ZG-module. Suppose that 

(T) in KQT(ZG) is represented in the Horn-description by h € Homft q(.RGi J ( P ) ) - Then 

g = AI o h is the canonical factorisation of fj>. 

Proof : factors through the relations in KQT(ZG) (because a short exact sequence 

of cohomologically trivial ZG-modules necessarily remains exact over ZN(H) upon fixing 

under the subgroup H—then apply 2.18(iv)). Since ]CQT(ZG) is generated by classes 

{ZG/I) where J is a locally-free ideal of ZG, we can assume that T = ZG/I. Now I = aZG 

for some a G J(QG), and h = Det a represents (T). By 2.6 g = Aloh € I(G, Q). Further, 

gr = AI o D e t a r (where AI is defined on the subgroup U£ of J{U)) by [Frl] II Lemma 

2.1. Since gr € HomnQr(jR<3(Q^), J Q ^ ) by 2.14, we only have to show (changing notation 
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for the local case) that for each (C, e) € SR(G) 

(2.20) (coinfgx resg o Det a(x)) = o r d Z r ( T a e ) . 

But res<5 Det a represents res^(T) in KQT{ZTC). So we may assume that G = C. Further, 

coinf^ Det a represents coinf£ x (T) = (TCr) in £ o T ( Z r C x ) . So we may assume that rJ(\C\ 

and 2.20 becomes 

(2.21) (Det x a) = ord Z r (Te) = o r d Z r ( Z r C e / a Z r C e ) . 

Now V = QrCe is a /e/f Q rC-module with character x- Let a: V —*• V be the Q r-linear 

map given by left multiplication by a. Then both sides of 2.21 are (detQr a) . I 

Note that the canonical factorisation g in the above theorem is the image of (T) under 

the natural surjection 1CQT(ZG) —• KQT(MG) (recalling the identification 2.6 and the 

Horn-description of KQT(ZG)). 

It is not difficult to show that g is also a factorisation. As our principal interest is in 

computing invariants, we shall not pursue this. 

We shall need in §3 two functorial properties of canonical factorisations under change 

of group. For those induced by cohomologically trivial modules as in 2.19, the results are 

obvious because of the functorial properties of KQT{ZG) and its Hom-description, and the 

fact that T'Q is surjective. However more generally we have (to simplify notation we assume 

that the usual injective map i is the inclusion, but the result holds generally) 

2.22 Theorem. Let N be a norma/ subgroup of G and let G — G/N. Let V C W be 

ZG-modules such that W/V is finite. Assume that f ^ v w ias the canonical factorisation 

g. Then cocut^^ is the canonical factorisation of JQ V W -

Proof : Let (C, e) € SR(G). It suffices to show that 

(2.23) r e s g c o c u t § 0 r ( l c r , x) = fh,vMC> e)' 

where ^ is as in 2.9 and i n f £ x X = (IcViXX i n t n e obvious notation. Let Cx be 

Cx/Cx n N. Let cut^-x = X> the character of ZrV^e where e is the image of e in ZrCx-

50 



Let 6 € C*. Then 

(2.24) cut§ indg 9 = ind§ cutg 0, 

where C denotes CN/N or C/C ON, as appropriate. Thus the left hand side of 2.23 is 

<7r(cut§indg(l C r , x)) = 5r(indgcutg(l C r ) x)) 

= SrMga^, X)) 

( I , i f k e r x g CxflAT; 

l ^ V , ^ ' ^ ' o t h e r w i s e -

= fa,vMc> e)- • 

2.25 Theorem. Let K € 5(G) and let V C W be ZK-modules such that W/V is 

finite. Assume that S*Ky,W flas t f l e canonical factorisation g. Then ind# g is the canonical 

factorisation of f* . ,G „. .o ,,r> where ind£ V denotes Z G ® z # V-

Proof : Let (C, e) 6 Sr(G). It suffices to show that 

(2-26) resg indg gT(lCr, x) = / J ) i n d g V f i n d o W(C, e). 

where x is as in 2.9. Let a run over representatives for the double cosets C\G/K. Let 

0 € C*. By the Mackey subgroup theorem 

(2.27) resg indg 0 = © i n d £ n C « res£? , c . 0 a . 
a 

Let e° = a - 1 eo. Let e a be the unique indecomposable idempotent of Qr[{K H G ° ) x ] such 

that e ae a = e a. Let Xa be the character of Qr[(A" D C ° ) x ] e 0 . Let raa be the degree of the 

"abstract" field extension QrC$ea/Qr[(K l~l Ca)x]ea. Let 0 = ( l C r , x)- It follows that 

(2.28) r e s £ n C ° 0 a = m a ( l ( i f n C a ) r ' Xa)-
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Then by 2.27 the left hand side of 2.26 is 

(2.29) 

0 r(resg indgfl) = Jlgr ( i n d £ n C „ res£° n t 7a 0° ) 
a 

= n r e s ? n c » 9r I (l(KnC°)r, r e s ( # n c » ) x * ° ) } 

= I I TesKnc« 0r { ( l ( jmc*) , > Xa) } 
a 

Now a - 1 runs over representatives of the double cosets K\G/C. There is an analogous 

formula to 2.27 for resgind^y. Thus 

( i n d g y ) ^ = ( r e s g i n d g r ) c ' 

(2.30) n > 

= © i n d 
(CnA-» _ 1)x 

, -l ^(cnKa ~)r 

K « - ^ ) 

The last isomorphism is by the analogue of 2.24 for modules. By orthogonality of the 

idempotents, and conjugating by a in the ath factor, there is an isomorphism of Zr-modules 

(indg VTf*e S< 0 Z r C x e ° ® Z r[(tfnC»)x]e« ( V r ) ( * n C > e a . 

By the definition of ma it follows immediately that the right hand side of 2.26 is 2.29. I 
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§3. Chinburg's second invariant and a canonical factorisation 

related to the ring of integers. 

In this section we will define Q.(N/K, 2) and prove that its coset mod D(2iT) is deter

mined by the canonical factorisation of 

fbOKT,0N 

in a sense we shall make precise (at the same time we shall show that this canonical 

factorisation does exist). 

Let N/K be a finite normal extension of number fields with Galois group T. For each 

finite prime p of K choose a prime p of N lying over p. Let T(p) be the decomposition 

group at p. Let expp be the p-adic exponential function, defined for elements of Np 

sufficiently close to 0. 

We shall call p tame if N p / K p is at most tamely ramified; otherwise we shall call 

p wild. We shall also call p ramified or unramified in an analogous way. If p is tame 

then Ojv,p is free as C?jf i Pr(p)-module, by E . Noether's theorem. Thus we can choose 

a £ np<9/v> (p running over finite primes of K) such that 

(i) ap e ON,P and apKpT(p) = Np for each p. 

(3.1) 
(ii) apOK,pT(p) = ONIP for each tame p. 

Since Np is isomorphic to the induced T-Galois algebra Mapr^)(r, iV*) the conditions 3.1 

imply the corresponding "semilocal" conditions obtained by replacing T(p) by T and p by 

p. 

We shall abbreviate apOK,PT(p) by Xp. Then X = aO^ is the locally-free OKT-

submodule of N whose p-adic completion is 

Xp = apOK,pT 2 M a p r ( W ( r , Xp), 

the right hand side being the induced T-module of Xp (the above is all taken from 

[Wi2] §3). 
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For the purposes of computation we shall require in addition 

( for each wild p, ap € pOx,p and 

(iii) < expp: Xp —> 1 + Xp 

[ is a well-defined isomorphism. 

For each wild p, let ap € Ext|r(p)(Z, Ng) (i.e. H2(T(p), Ng)) be the canonical class 

of Np/Kp. Let qp be the natural projection 

Ng ^ Ng/(l + Xp). 

As in [Wi2] §6, qpap € E x t | r ( ^ ( Z , Ng/(1+Xp)) is a w.h.e. of Zr(p)-modules (c.f. Ch. 

I) §§2,5) giving rise to an element 

d(qpap) e Cl(ZT(p)). 

Then we define 

(3.2) Sl(N/K,2) = £ indj: ( W d(qpap) + (X) G Cl(ZT). 
p wild 

(c.f. [Wi2], where it is proved that 3.2 is the same as Chinburg's original definition of 

Cl{N/K, 2) in [Ch2]) 

We shall concentrate on the local factor d(qpap). Then let p\p\p with p wild. For 

brevity write G = T(p), L = Np and F = KP. We can find a 2-extension 

(3.3) 1 - L*/(1 + X p ) - U A £ Z G - + Z - * 0 

whose class is qpap, where the map ZG —• Z is the augmentation, with kernel the aug

mentation ideal Aug(ZG). Thus A is cohomologically trivial and 

(3.4) d(qpap) = (A) - (ZG) 

where A determines a class (A) by resolution by locally free modules. Let OQ = Y,geG 9 be 

the trace element of ZG and let n = \G\. Because ZG is free, there exists a map 6 making 
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the right hand square of the following diagram commute (the lower row is taken from 3.3) 

0 — Z * Z G - {n-aG)ZG — 0 

(3.5) {7 [s [i 

1 - L*/{l+Xp) ^ X A Aug(ZG) - 0 

where i is the inclusion map and the maps Z —» Z G and Z G —* (n — <T(j)ZG are multipli

cation by the central elements OQ and n — CQ respectively. By diagram chasing some map 

7 exists making the diagram commute. 

3.6 Lemma. All the vertical arrows in 3.5 may be chosen to be injective. 

Proof : If 7 is injective there is nothing to prove. Otherwise, let 7TJP be a uniformiser for 

F, let M = X x / ( 1 + Xp) and let a: Z -> M and /3: ZG -* M be the unique ZG-maps which 

send 1 to the coset of TCJT. If J and J are subgroups of Z such that I D J = 0, it follows 

that J = 0 or J = 0. Now a is injective, because 1 + Xp C C?£. If we take / = ker7 ^ 0 

and J = ker(7 + \G\a) it follows that J = 0. But |G|a = /3<£. Since fj,e = 0 it follows that 

the diagram commutes with 7 replaced by the injective map 7 + |G|a and 8 replaced by 

6+ €(3. • 

Then by considering Z-ranks in 3.5 it follows that 

(3.7) cokertf D^T = TP 

is a finite, cohomologically trivial ZG-module. 

There is a commutative diagram 

JCoT(ZG) ^ K Q T { M G ) 

(3.8) jczo \CM0 

Cl(ZG) *-5 Cl(MG) 

in which all the maps are surjective. The horizontal maps are induced by — ® Z G MG- If 

is an exact sequence of ZG-modules in which U and V are locally free of the same rank 
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(so T is finite), then 

CZG(T) = (V) - (If), 

and analogously for CMG- Thus 

(3.9) *Gd(q<pC<P) = 7 r G c Z G ( T ) = cMa{ C. F . of fi.) € Cl(MG), 

by 3.4, 3.7 and 2.19. We shall eventually replace T by the finite module O L / X P in 3.9. We 

shall then use this "local" result, for each p, to establish the analogous global result which 

is the aim of this section (we now have the notation to state this precisely—see 3.37). 

Let 

(3.10) M = Ol/(l + XP). 

Let c be the positive rational 

(3.11) c = 
F*/(l + X P ) G 

/ n | M G | . 
7(Z) 

c is a quotient of integers c\/c2. Let / * be the product f*iz,z(f*2Z,z)~l-

Let G = G/GQ where Go is the inertia subgroup of G. 

Let ki be the residue class field of L. 

For each H € S(G) write e(LH/F) and f ( L H / F ) for the ramification index and residue 

class degree of LH/F. 

From [Fr2] §2 (up to Theorem 1) there is an exact sequence 

(3.12) 0 Aug(ZG) ^ ZG/agZG -* Z/\G\Z ^ 0 

3.13 Theorem. Let T be as in 3.7. Let M be as 3.10. Then 

IT = fldfc fnZG,ZG{fj)~l 

Remark: The first part of the proof consists of computing values |coker(a f f ) | where a 

is a ZG-injection of finite cokernel and H is a subgroup of G, and of the behaviour of 3.5 

after fixing under H (c.f. the discussion of factorisability). 
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Let (C, e) 6 Sr(G). There are two cases. If e is the idempotent of lc x then 

fa(C, e) = |coker(a c ) |Z r , 

so the next part of the proof applies the first part with H = C. 

In the second case (e is not the idempotent of l c x ) we make use of the first part with 

H = Cr. After fixing 3.5 under Cr, it only remains (in order to calculate the /£ (C , e)) to 

complete at r and multiply by e. In the last process we use the result eoo = 0 to simplify 

the results. 

Proof : Let H € S{G). The diagram 3.5 remains exact on fixing under H, because 

H\H, Z) = 0 = H\H, Lx) = Hl{H, Lx/(1+Xp)), the last equality because 1+Xp S Xp 

is cohomologically trivial. Thus by 2.18(iv) 

(3.i4) / ; / ; = ft = rT, 

the last equation by 2.18(iiia) and 2.18(iii). We can write 7 as a composition 

rw n ( L* \ G 12 T , x 

+ X* 

where 72 is the inclusion map. By 2.18(i) 

(3.i5) = 

Let vff-.(LA)X —* Z be the additive valuation which maps a uniformiser of LH to 1. Let 

i\\0$ -» Ol and i2:F* -+ L* be the inclusions. Since (l + X p ) H C ( O l ) H = (OLH)X = 

kevvg, there is an induced exact diagram 

1 - C?* / ( l+Xp) G £ F*/(l + Xp)G 5 Z - 0 

(3-16) | 5 * l 5 * I 

1 - ( < V ) X / ( 1 + - ( X i r ) s c / ( l + ^ ) J r Z - 0 

where the vertical maps are injective, and the map Z —• Z is multiplication by e(LH/F). 
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By the Snake lemma 

(3.17) | cokev(i2

H)\ = | coker(i"iff )\e(LH/F). 

Since 1 + XP is cohomologically trivial 

there are ZiV(if)-isomorphisms 
(3.18) { „ 

coker(*2 ) = coker( 7 f) and (OLH)*/(1 + XP)H 2 MH. 

Since 

tf°(#, AugZG) = H~\H, Z) = 0 = H\H, Z) = H°(H, (n - <rG)ZG), 

we have 

A u g Z G H AugZGaff 
= A, say. 

((n - aG)ZG)H (n - aG)ZGaH 

Let 72 be a left transversal of H in G, containing 1. Then the generators 

of AugZGajy are free, since the left cosets of H in G are disjoint. Clearly the set 

{ (ng — aG)ag : g G 7£ } generates (n — acJZGoff. The equation 

(ng - aG)aE = n(g - \)aH + (n - aG)aE 

(valid for g G 72) shows that 

{ ( n - <rG W , n($ - l)aH ' 9 e H \ 1} 

also generates (n-<7G)ZG<rjy. Thus 4 is the abelian group with generators { Xg : g G TZ\l } 



B y 3.21 to prove the formula for /^(C, ec x) it suffices to show 

ZGC : nZGc\ coker(jc) - l 

B y 3.22 the right hand side is 

Mc\cn}G-c\f{Lc/F)-lZ±l 

3.15 Mc M 

- l 

- l 

coker(7f ) |n ' ( ? ! C l - 1 / ( i i C /^) - 1 

coker(7

C) cokerfr?) ~* n ^ - " 1 / ^ / ^ ) " 1 

3.18,3.16 coker(iiC')| |coker(7C')| Jcoker(i2C') 

W |coker( 7

C)| n ^ ' 1 e{Lc / F)~l f{Lc/F)~l 

l iI 0 |coker(7 C ) |nl G : C 7 l - 2 |C| 

|coker( 7

c)| |coker(ic)| 

3 = 4 \TC 

\G:C\-1 f { L C / F ) ~ l 

3.20 

3.19 

If e ^ ecx then 

frT(C, e) 34 4/ 7

r(C, e)/T(C, e) 

3^f^(C,e)f;2(C,e)fT(C,e) 

= 5 /c r (C, e ) /J(C, e J - ^ C C , e)/T(C, e) 

3 = / c

r ( C e) /J(C, e)-Vj[/(C, e ) /r (C, e) 

Z=fr

c(C, e ) /J(C, e)-Vlf(C, e ) / ; Z G , Z G ( C , e) 

as required. 



and relations 

nXg = 0 for each g G K \ 1, and \H\ Xg = 0 

(since (n — <TG)<TH — — \H\ J2geTZ\i(9 ~ ^)AH)- Calculation of a determinant gives 

(3.19) \A\ = | coker(i J) | = \H\n\G:H\-2. 

Now 

(3.20) e(LH/F)f{LH/F)\H\ = n. 

Let (C, e) G Sr(G). If e = ee x (the idempotent of l c x ) then 

(3.21) / f (C , e) = ordz r (T r

c ) = r-part of | ! T C | , 

identifying principal ideals and their generators. Also we have 

(3.22) f { L H / F ) = | coker(j^)| and \ZGH/(nZG)H\ = n\GiE\ 

the first equality by [Fr2] Theorem 1. If we put H = C then 3.14-3.22 give the formula 

for / j - ( C , ecx) D v successive substitution. If e ^ ecrx then e annihilates aG, and hence 

G-trivial modules. Thus 

(n - o-G)Z rGe = n Z r G e and Aug(Z rG)e = Z r Ge. 

Hence 

(3-23) fT(C, e) = fnZG,ZG(C, e). 

From now on we put H — Cr. By the first part of 3.18 and 2.18(H) we have the first 

equality below. 

(3.24) / ; 2 ( C , e) = ord Z p(coker(i" 2

CV) = fh{C, e). 

The second equality follows after we apply (—<8>zZr)e and the Snake lemma to 3.16 (observe 

that (Z/e(LH/F)Z)re = 0) and use the second part of 3.18. Now 

(3.25) / ^ ( C , e) = fr

c(C, e) = 1 = / J ( C , e), 

the final equality by applying ( { - ) C r ®z Z r )e to 3.12, again observing that e annihilates 

G-trivial modules. By substitution the formula for / j - ( C , e) follows from 3.14, 3.15 and 

3.23-3.25. i 



We let the reader verify that 

c, i f x = lG; 

1, otherwise. 

is the canonical factorisation of /* , and that 

X ~ ( n d e g * ) 

is the canonical factorisation of / £ Z G , Z G > W N E R E X runs over Irr(G). 

From [Fr2] the function has the canonical factorisation 

6 >-* s(0) for each 9 € G\ 

1, i f* = l # 
the ideal of Q(0) generated by 

otherwise, 
the 6(g) — 1 for each g € G, 

and 0 runs over Irr(G). Frohlich only proves that this is a factorisation, which is generally 

a weaker result. However, if (C, e) G SR(G) and e ^ e c x , then (C, e) = 1 (as in the 

proof above) and this gives the result we need. Then by 2.22 f£ j also has a canonical 

factorisation. It now follows by 3.13 that j*M has a canonical factorisation, namely the 

product of the canonical factorisations of f f , ( Z * ) - 1 , ( / U Z G , Z G ) ~ 1 a n c * / / • Except for 

those of / j . and / J ^ , all these canonical factorisations lie in P+(G, Q ) . This is obvious for 

all but that of /*; but by 2.22 this is obtained from a canonical factorisation (with principal 

values) over the cyclic group G/GQ, which has no irreducible symplectic characters. Hence 

the process of cutting characters from G to G eliminates such characters. So the canonical 

factorisation of / * also lies in P+(G, Q ) . 

The final reduction involves a switch from multiplicative to additive Galois modules. 

Here the choice of Xp (see condition (iii) after 3.1) becomes important. 
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where 

s(tf) = 



Let 

(3.26) A = 0 L / X p . 

3.27 Theorem. Let M be as in 3.10 and A be as in 3.26. Then 

Remark: Let pi = rad C?x- The proof works by using filtrations by powers of pi (the 

additive case) and of 1 + pi (the multiplicative case). As is well known, the successive 

quotients in these filtrations are isomorphic. Condition (iii) on Xp allows a similar result 

(at a sufficient depth in the filtrations) when the terms are factored by Xp (additive case) 

or 1 + Xp (multiplicative case). The information is passed through the filtrations by use 

of 2.18. 

Proof : Let m: 1 + Xp —* and a: Xp —• OL be the inclusions. Suppose that Xp C p*L. 

By assumption (iii) on Xp we may assume that exp^ induces an isomorphism 

(3.28) p L / X p * ( l + pL)/(l + Xp). 

Now let a/ for / = 0, . . . , t + 1 be the inclusions as follows. 

ao-PL -*OL, (H+i-Xp p\ 

ai-PL+1 ~* PL> for e a c h J = 1, • • •»t-

Similarly define the inclusions mj (ra<+i: 1 + Xp —* 1 + p^, etc). By 2.18(i) 

t+i t+i 
(3.29) /a*=II/a* a n d / m = I I / - r 

<=0 1=0 

By 2.18(iiia) and 2.18(iii) 

(3.30) / * = f \ , /m — f f r f , fat+i ~ /cokat+i a n d fmt+i ~ fcokmt+\-

Let H e S(G). Then 0 ? = OLH, pf = PLH and kf = kLH. Similarly for etc. 
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Thus by 2.18(iii) 

(3-31) = fkL and / ^ = / ^ x 

By 3.29-3.31 it suffices to show that 

/ « * = / « , for/ = 1, . . . , f + 1. 

For I = t + 1 this follows by 3.28, 3.30 and 2.18(h). 

For the other I this follows because the well-known isomorphism 

AivT = (i + Aw + PT) 
restricts to an isomorphism of ZiV(ff)-submodules 

(P1L)H/(P1L+1)H = (I + P1L)H/(I + P 1 ^ ) H , 

since (1 + pl

L)H = 1 + (p^) J . Then apply 2.18(ii). I 

In order to prove that fxp,Oi ^ a s a canonical factorisation and 

(3.32) (C. F . of ft). (C. F. of fr^T1 € P+(G, Q) 

we only need—in view of 2.22, 3.13 and 3.27—to show that f£L and f*x have canonical 

factorisations which he in P+(G, Q) in the case where L/F is unramified. In this case we 

can identify G with Gal^i/hp). 

3.33 Lemma. f[Ch2] Lemma 4.3) 

Let l/k be & finite extension of finite fields and let T be the Frobenius element of G = 

Gal(l/k). Then there are exact sequences of ZG-modules 

(3.34) 0 — pZGO i ZGW - / - 0 

(3.35) 0 -» {q-F)ZG ± ZG — / x — 1 

in wiiicli p is the characteristic of /, q = p^ is the order of fc and i denotes inclusion. The 

modules pZG^ and (q - T)ZG are free of ranks f and 1, respectively. I 
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3.36 Remark: In the unramified case, it is well known that both ki and fc£ are cohomo-
logically trivial. However, 3.34 and 3.35 show the stronger result that they have class 0 
in Cl(ZG) under C^G- Hence the canonical factorisations of / £ £ and f*x lie in P+(G, Q) 
and 3.32 follows. 

We now have the main result of this section. 

3.37 Theorem. Let T, a and X be as in the beginning of this section. Let b € X be a 

free generator of N over KT. Then fT,bOKr,0N

 flas a canonical factorisation and 

*rn(N/K, 2) = cMr(the C. F. of fbOKV,0N)-

Proof : If i:V —• W is an injective (P^T-map with finite cokernel then there are 
isomorphisms 

coker(i£r)p S coker(if) a £coker( iJ ) 
p\p 

of ZpiV(JH')-modules for each H £ S(T). Since 

{ coker(i^), if 

0, ot! 

„ i — T — P\ 
coker(i" ) r otherwise. 

it follows (c.f. 2.18(ii),(iv)) that 

(3.38) /r=n/i=n/;> 

where the products make sense because f* = f*p = 1 for almost all p and p, as coker i is 
finite. Let i be the inclusion X *—* O f f . If p is tame then i p is the identity map. Hence 

(3.39) rx,oN= n / w , - . 
P wild 

By 3.1 and the remarks following it 
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By 3.2 

2) = E 7rrindF ( ^a(9^) + 7rr(A:) 
p wild 

= E i n d ^ c ^ C C . F . o f ^ J + TrrczGWbO^r) 
p wild 

3 i 2 J ] i n d F ( p ) c ^ r ( . ) ( C . F . o f / i . ^ ) + cA l r7rHX/6C7 i,r) 
p wild 

3- 4 0= 2' 2 5 E ^ ( C . F . o f / ^ ^ + c ^ T r H X / f c ^ r ) 
p wild 

3 i 9 c*< r (C. F . of frfis) + c ^ r ( C F. of / f c ^ ) 

(the first statement follows) 

= CMAC- F - o f fbOKT,0N)- 8 

§4. Norm resolvents, Galois Gauss sums and symplectic root numbers. 

In this section we shall compute the canonical factorisation which is the subject of 3.37. 
This function is parametrised by norm resolvents and Galois Gauss sums. All properties of 
the Gauss sums we shall use are already known. However, we shall do some computations 
with resolvents, hence for the reader's convenience we give their basic properties here. 

Let p be a prime number. Let k = Q or Q p. Let F be a finite extension of k in k = F. 
Let E/F be a finite Galois extension with Galois group G. Let B be a commutative F-
algebra. Then E ®f B is free on one generator over BG, where G acts via E. Define the 
resolvent mapping (a BG-homomorphism) 

C:E®FB -+ (E ®F B)G 

by 
a E a99~X-

Let x e RcCk)- Let a 6 E ®F B. Define 

(a|X) = DetxC(«). 

the resolvent of a with respect to x- The properties of resolvents are summarised as follows. 



4.1 Theorem. ([Frl] I §4) Let a be a free generator of E®FB over BG. Then 

C(a) £ (E®FB)G* and (a|x) G (F®FB)X. The map 

X ~ Hx) 

lies in HomnE(RG, (F ®F B)x). I 

In the case where E/F is abelian and \ 1 S a-n abelian character, (a\x) is the Lagrange 

resolvent. In the semilocal, unramified case the resolvent generates the trivial ideal: 

4.2 Theorem. ([Frl] I §4) Suppose that p is a prime ideal of Op, unramified in E/F 

and that a is a free generator of OE,p over 0FtPG. Then 

Next we need a formula for restriction of scalars on class groups in the Horn-description. 

Let M be a multiplicative fife-module. Let {a} be a right transversal of Q,F in £2*. Let 

/ € Homo, ̂  (.Re M). Then define the norm map 

This definition is independent of the choice of {a}. Return to the global case k = Q, 

E/F = N/K and G = T. 

Theorem. ([Frl] I Theorem 2) There is a commutative diagram 

C{a)eOE,pGx. 

AfF/k:rIomnF(RG, M) -+ Homn f c(i?G ) M) 

by 

{^F/kf)(x) = T [ f ( x f f ' 1 r . 

H o r n e r , J(U)) 
CI(OKT) 

HomaJRr, Ux)Det U{OKT) 

K/Q 
Hom n q(/?r, J(U)) 

I 

c/(zr) 
HomnQ(# r, £/*)Det U(ZT) 

where the left hand vertical map is induced by restriction of scalars. B 
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Let o be as in 3.1 and let 6 be as in 3.37. Following Frohlich ([Frl] I Theorem 4), 

assuming that U contains iV, we define resolvents (a\x) € J{U) (resp. (b\x) € Ux), where 

B = Ad(K), the adele ring of K (resp. B = K). Then define 

^K/Q(a\x) = U W 1 ) ' T 

and the same with 6 replacing a. 

Warning. These definitions do depend on the choice of {a}. However ([Frl] I Prop. 

By the inclusion U* «—*• J{U) we may regard (6|x) as lying in J(U). A slight mod

ification to Theorem 4 in [Frl] I (replacing ON by the locally free module X = aOjcT) 
gives 

4.4 Theorem. Let X, a and b be as in 3.37. Then (X) 6 Cl(ZT) is represented in the 

Horn-description by the map 

in Homnq(i2 r, J{U))- • 

This substitution of the locally free module X (in the wild case) for the locally free 

module Ojf (in the tame case) will occur repeatedly. 

Warning. In [Frl] one has the multiplicative inverse map to that of 4.4, for Frohlich's 

map £ 0 T(Zr) Cl(ZT) is - c Z r -

By 4.3 and 2.19 we have 

4.4(a)) 

AIoArK/Q(a\x) and (A/^ /q^Ix) ) 

(4.3) < 

are independent of {<r}. 

X A^/q(6|x)A^/q(a|x) - l 
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4.5 Theorem. Let X, a and b be as in 3.37. Then the canonical factorisation of fbQKrtx 

Let x £ -Rr(Q)- Let T(N/K, X) £ U* (again enlarging U as required) be the Galois 
Gauss sum of \ (for the definitions see [Frl] I §5). Now we can state our first main result 
of this section. 

4.6 Theorem. The canonical factorisation of fboKv,ON ( w n ^ e x j s t s by 3.37 and 4.5) is 
given by 

The proof of 4.6 will take up most of this section. First we deduce our second main 

result. 

Let Woo(N/K, x) be the root number at infinity of * e -Rr(Q) ( s e e t**1] 1 § 5)-
Following Wilson ([Wi2] §3) define T" € Hom(J2r, Ux) by its restriction to irreducible 
characters as follows. 

f T(N/K, X)WOO(N/K, X), if X is symplectic; 
(4.7) T\X) = 

\ 1, otherwise. 

In fact Ta e HomnQ(JRr, U*) ([Wi2] 3.9(i)). Let ip:U* J(U) be inclusion in £/p

x, 
where p runs over the finite and infinite places of Q. By [Wi2], before 3.11 

(4.8) clszr(*ooTa) is the Cassou-Nogues-Frohlich class t N / K . 

4.9 Theorem. Q(N/K, 2) = t N / K (mod D(ZT)). 

Proof : By 4.8 we have to show that 

(4.10) irrn{N/K, 2) = c l s ^ ^ T ' ) . 

We shall do this by comparing character functions in Homnq(-Rr, J{U)) which represent 
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invariants in Cl(M-r) under the Horn-description isomorphism: 

CKMr) - Hom f l Q(i?r, J(U)) 
" K ™ r ) Hom f i Q(i? r , ^ x)Hom+ (RT, U(U)) 

IQ v--» > - / J 4q 

Throughout this proof let x r u n o v e r Irr(r). The map 

(4.11) 
{NIK, X ) 

lies in Homnq(i?r, U*) 

by Theorem 20 in [Frl]. By 3.37 and 4.6 

(4.12) 

where gf is defined by 

(4.13) 

Now 

(4.14) 

where 

(4.15) 

Further 

(4.16) 

*TSl(N/K, 2) = c h M r 9 f , 

(iPc(x), ifp<oo; 
9f(x)P = \ 

11, otherwise. 

9f9oo = c 

5oo(x)i {;: 
ooc(x), ifp = oo; 

otherwise. 

9oo = 9°9+ 

where 

{ 1, if x is symplectic or p < oo; 

*ooc(x)> otherwise. 
We define gs analogously, with "not symplectic" in place of "symplectic". 
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Clearly 

(4.18) g+ eHom£Q(i2 r ,W(E/)). 

Checking all cases, we have 

s- rra\i _ / Z°° (^K/q(b\xWoo(N/K, x)) , if p = 00 and x is symplectic; 
(4.19) (g iooT )(x)p — { 

11, otherwise. 

Let V be any infinite prime of U. Let x G Sr. By [Frl] III 4.9 pl26 

signp 
(rfK/Q(b\xj) = W o o W * . X) . 

Hence by 4.19 

(4.20) gH^T" G Hom+Q(i2r, W(C7)). 

Successive substitution in 4.11, 4.14, 4.16, 4.18 and 4.20 gives 

gfiiooT*)-1 G Hom n q(i2r, £/ x )Hom+ Q ( i? r , U(U)) 

and 4.10 follows by 4.12. I 

By 4.5 and 2.18(i), 4.6 follows from 

4.21 Theorem. The canonical factorisation of fx,oN ( W f l J C f l exists by 3.37 and 4.5) is 
given by 

S ° X \r(N/K,X))-

We shall devote the rest of this section to the proof of 4.21. Let x G -Rr(Q) and let 
p be a finite prime of K. For the next result we shall need the local Galois Gauss sum 

,^ r- r r x , ; „ TT o „ r.^^a^r\ 5o<» l"EVi1 T R 
3r(p) 

definitions. 

r(Np/Kp, resf, - x x) G U* (once again enlarging £/ as necessary). See [Frl] I §5 for the 
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Define ga,p E Hom(ilr, lu) °Y 

4.23 Theorem. Let p\p be a finite prime of K. Let ga be as in 4.21 and ga,p be as in 
4.22. Then ga 6 I(G, Q ) and ga,p € HomnQ(i2r. Zu)- The values of ga,p are ideals lying 
over p. 

Proof : Let u G J2q and let x € i?r(Q)- By Theorem 20 in [Frl] 

U 9 A . J*KI<M*T _ ^ /q(« lx") 
1 j T ( J V / l f , x) w t ( J V / J T , xw) 

and 

/ . o « a MK/QMXT . r(iSTp/jTp, resf ( p ) x)" 
(4.25) " / s — r and — ; f r 2 2 r are roots of unity. 
* } ^K/QMX") r(Np/Kp, resf (. } x") 

It follows immediately that y 0 and ga,P lie in HomnQ(/2ri %u)- Now let u; € ^Q(x)- By 
4.24 again ga € I(T, Q ) . The final statement follows from the definition of the semilocal 
norm resolvent, and the fact that the square of the modulus of the local Galois Gauss sum 
is a power of p (c.f. [Frl] I 5.7). i 

4.26 Theorem. Let p\p be a finite prime of K. Let V be a prime ofU lying over p. Let 
j: U <—> Up be the canonical embedding. Let x € -Rr(p)(Q?) 

X9 G i ? r ( p ) ( Q ) be such that xj = X- Define 

M / A ^ p / Q p ( a P | x ) \ 
9 a « M - { r ( N p / K p , x9y)' 

Then ga,p € HomnQ p( JR r ( p)(Qp), Iuv) and 

i n d F ( p ) 5a,p = (Po,p)p • 

Hp is tame, then ga,p = 1 = ga,P-
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Remark: By 4.25 and a similar argument to the proof of 2.15, ga>p does not depend on 

the choice of V\p. 

Proof : Since j a , p € Homng^J?r(Q)i ?u) the-firot otatcmeniris a consequence of-the 

secxmd—Alternatively, adapt Theorom 20 of [Frl] for local characters. The last statement 

follows from the second and Theorem 23 in [Frl] (recall 3.1(H)). Let $ € #r(Qp)- T h e n 

(in the obvious notation) 

(9a,p)p (0) = 9a,p{0g)v 

[ 
= ( AIo (4.27) \ \r(Np/Kp,res^p)eg)j 

' ^ j W Q P K > l r e s r ( p ) 0 ) \ 
riNp/K^res^dgy)' 

The last equality, in the tame case, is Theorem 19 in [Frl]. As usual, we can replace ON 

by X to obtain a generalisation of Theorem 19 to the "wild" case. Thus 4.27 also holds 

for p wild. But 4.27 is ind^ pj ga,p(8)- • 

4.28 Theorem. ga,p is the canonical factorisation of fx^oN $ • * 

Before proving 4.28, we shall use it to establish 4.21. We need 

4.29 Lemma. 

9a- I I 9a,s>-
p wild 

Proof : Since (ap\x) = (a\x)P, by 4.2 

(4.30) A I o ^ / Q ( a | x ) = I I A I o ^ / Q ( a p | X ) . 
p ramified 

If 9 € i?r( p ) (Q) then r ( N p / K p , 6) isj^for p unramified, and 

(4.31) (r(N/K,x))=f Jl r(Np/Kp, v e s l { p ) X ) \ 
' [p ramified / 

by [Frl] Theorem 18. By 4.30, 4.31 and the last part of 4.26 the lemma follows. 
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Recall from 3.40 that 

Then by 2.25, the first part of 4.26, 4.28 and the last part of 4.23 

(4.33) ga,p i s theC.F .of f^XP,0N,P-

Finally, by 4.29 and 3.39, 4.21 holds. 

It remains to prove 4.28, which will take up the rest of this section. Change notation 
for the local case. Let G and L/F be as usual. Write a in place of op, X in place of Xp 

and g in place of ga,p. By the first statement of 4.26 it suffices to prove that, for each 
(C, e) € SP(G) 

(4-34) resg 5 (infg x X ) = / ^ 0 i ( C , e ) , 

where x is as in 2.9. Let $ be as in the proof of 2.10, and let <f> 6 Let 9 = inf£ x <t>-
We shall re-express 4.34 by the use of induction and inflation formulae for norm resolvents 
and Galois Gauss sums. Let M = Lc and let d be a free generator of L over MC. By 
the induction formulae in [Frl] III Notes [4] (generalised to the "wild" case—a is a free 
generator for L over FGy rather than for Oi over OpG as in the tame case, so the element 
A below lies in FC* rather than OpC* as in the tame case) 

(4.35) res cg{9) - j _ \ T { L / M ^ g ) j M m ^ { X ) ) -

for some A € FCX. To be more precise, we must introduce some notation. Let {u/} be a 
right transversal of QM m and let {cj} be a free basis of OM °ver Op. Let {a*} be any 
free basis of L over FC. Define 

(4.36) Det*{(*} = det a f W 1 ) . 

where c runs over C. With A as in 4.35 we have 

with the left hand side having the usual meaning and the right hand side that of 4.36 with 

{ai}i taken to be { a w - 1 } w and {cjd}j (4.36 and 4.37 are taken from [Fr3] ppl66-167). 
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def 
Let h run over H = Cp. So 6 = (Iff, 0). Let x run over C x . From 4.36 

Det*{af} = det I £ a ? ^ ( x ) " 1 

(4.38) ^ 7 

\ x ) u,% 

Let t = tTL/Litd. By the inflation formula for resolvents ([Fr3] Theorem 10 pl62), again 
extended to the wild case, and the inflation invariance of Galois Gauss sums (c.f. [Frl] III 
ex. 6 pl05) we have 

U 39̂  ( X M / q M 0 ) \ _ ( ^*/q,W) \ 
1 ^ \ r ( L / M , 6 g ) i ) ~ \T(L*/M, + g y J ' 

Now LH/M is tame (since H = CP). 

This reduction to the tame case appears in [Fr4] (where the case of abelian groups is 

treated) and our proof proceeds along similar lines. Indeed Frohlich's work motivated our 

computation of the canonical factorisation g. 

Returning to the proof, we can find a free generator z of OLH over DMC* • By [Frl] 

Theorem 23 

(4-40) K W ^ ) ) = {r(LH/M, ^ ) . 

By 4.39 and 4.40, 4.35 is 

( 4 4 1 ) ( " m m I ) 

Now <j> induces an isomorphism 

(4.42) ZpCxeSZpfo]. 

We shall identify the rings in 4.42 under this isomorphism. Let | : \zp[<t>] denote the module 

index. If we can show that 4.41 equals 

(4.43) PLHe:{aOFG)He\ZM 

then 4.34 follows by f2Qp-invariance of g, since the norm into Xqp of 4.43 is fx,oL(C, e). 

Note that 0LHe = OMCXSZ. If we now introduce the intermediate lattice C?AfCxet, 

the equality between 4.41 and 4.43 follows from 
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4.44 Theorem. Let w and u\ ran over the same right transversal of CIM in Let r 

Remark: The method of proof is to replace the modules appearing in the module indices 

by their isomorphic images under the resolvent mapping, and compute these indices as 

follows. A non-degenerate bilinear form (induced by the trace form M —» Q p ) is introduced. 

Because we are in the local, tame case, all the modules are free, and can be computed via 

discriminants with respect to this form. As with the trace form, each discriminant can 

be re-written as the determinant of the conjugates of a basis. Computing determinants of 

specific bases we obtain the required equalities. 

Proof : The resolvent map £:LH —» C(LH) Q LHCX is an MCX-isomorphism. Thus we 

can replace the lattices 0\iCxez, etc., appearing in the module indices of (i) and (ii) by 

their isomorphic images OjaCxe(i(z), etc. 

t and z axe free generators of LH over MCX. By 4.1 £(*) and C(z) lie in (LHCX)*. 

Multiplication by £ ( z ) - 1 e (or £( t ) - 1 e) is a QpCxe-linear automorphism of LHCxe, so we 

can replace the indices in (i) and (ii) by 

ight transversal ofQ.p in fiq_. For brevity (with the notation preceding this run over a ri 
theorem) write 

cjt and y tr 

Then 

\0MCxez : 0MCxet\z m 

(ii) 
1 

(A^ / Q p Det, (A)) # =n( 1 d e t ( E x x f r 0 ( x ) - 1 ) u,3 

\0MCxet :(aOFG)He\ZM. 

(to) \0MCxe:0MCxeamz)-l\zM 

and 

(iia) \0MCxe : £0FCxeC(yu,jCW_ 1lzPM 
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since (aOpG)11 = £Wl OfCxyUl. Let {<r} be a right transversal of QM in £IQP- Define 

Be:MCxe x MCxe — Q p C x e 

by 

where f2Qp acts coefiicient-wise on MCX. Then l? e is QPCXe-bilinear. If {6/} is a Zp-basis 
of OM then {tye} is a ZpCxe-basis of C?A/Cxe, and 

det JBc(6/c, bhe)Ul = (det(6f )<,,, e) / 0 

by a standard trick, since {&/} is a Qp-basis of M. Thus U e is non-degenerate. So we 

can compute (ia) and (iia) via J5e-discriminants. Now {£>/eC(t)C(z)-1} is a ZpCxe-basis of 

OMCxe((t)((z)~l. By the same determinant trick, (ia) is 

c , ( ^ g | g " * ' ) - n « « ^ ) . 

Extend 0 to LHCX by trivial action on the coefficients. If we apply <J> to (ib) then we 

obtain (i). 

Now 

1.37̂ .38 ^ 

and the first equality in (ii) holds. Take {a} to be {to;} and {bi} to be {cjdk} where 

{dfc} is some Zp-basis of Op- Thus {dfcC(2/wi)C(*)~ le} *8 a ZpCxe-basis of the lattice 

Eu»i OFCxe((yu>l)£(t)-1 (because {dkyUl} is a Zp-basis of Q^OpCy.y^). Then (iia) is 

(lift) 
/ det((cJ4rTe)(r,o;),0-,fc) \ = / det(<%)T,k Ur detjdf e)u,j \ 
Uet(^ T (C( l / 1 , 1 )CW- 1 ) W T e) (r , w ) , ( W l , f e ) ; Uet(4)r,fcnrdet((C(j/W l)C(0- 1) u ; Tek wJ 

„ / d e t f f l ^ r e ^ j \ 
A

T Hdet(C(yw a ) W T e) w , w J 

If we apply $ once more we get (ii). I 
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