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'In every case they made the ground to 

suit the plan and not the plan to 

suit the ground' 

Sir Marc Isambard Brunel 

(1769 - 1849) 
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Mr J. Perry 

The extent and an analysis of shallow failures 
on the slopes of highway earthworks/PhD/1991 

ABSTRACT 
The reported incidences of shallow failures on the slopes of 
highway earthworks has increased in recent years. This Thesis 
includes a study of the extent of this problem, the likely 
factors contributing to failure, and presents the results of 

empirical design and the analysis of the likely mechanism of 

failure. 

A survey was conducted, covering a total length of 570km of 

selected lengths of motorway in England and Wales, which 

included the principal geologies encountered on the British 
motorway system, in 

clays predominate. 

have contributed to 

particular, areas where over-consolidated 
From the survey, the basic factors that 

shallow failures on the side slopes of 

embankments and cuttings can be deduced, and attempts are made 

to quantify any long-term problems. The results show a high 

incidence of failure associated with the major influences of 

geology, age of earthworks and geometry of slope, with many 

more failures occurring on embankments than on cuttings. The 

slope angles recommended are empirically derived and can be 
used both in the design of new earthwork side slopes and to 

identify slopes at risk of failure in existing earthworks. An 

estimate is made of the extent of failures in the future which 

suggests that three times as many slopes are likely to fail 

than have failed so far. 

To study the mechanisms of failure and the behaviour of over­

consolidated clays at extremely low effective stresses, an 

analytical method is developed which includes a detailed study 
of non-linear failure envelopes and the fitting of the most 

representative curve to peak strength data. Also a new 

rigorous slope stability analysis method is developed which 

incorporates this type of failure envelope. Back-analyses are 

conducted for several embankment slopes from which samples have 

been tested in the laboratory. Results indicate that the 

critical state strength rather than the peak strength governs 

the formation of shallow failures. 
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THE EXTENT AND AN ANALYSIS OF SHALLOW FAILURES 

ON THE SLOPES OF HIGHWAY EARTHWORKS 

Chapter 1 

Introduction and literature review 

1.1 Introduction 

Shallow failures on the slopes of highway earthworks are 

undesirable (Plate 1/1). They can undermine the road 

structure, damage drainage, cabling and crash barriers, and in 

some cases obstruct the motorway hard shoulder. They are 

usually only locally reported and documented, but they can 

constitute a large maintenance expense item in Highway 

Authority budgeting. A single shallow failure is usually not 

extensive, normally only about 300m3 of slip material is 

involved, but the frequency of occurrence means the number of 

slopes requiring repair is considerable. 

Shallow failures do not constitute a threat to the integrity of 

the embankment or cutting as a whole, provided they are 

repaired before regression occurs further into the slope where 

critical areas can be undermined. Also the danger to the 

travelling public is minimal provided embankments are repaired 

before the road pavement is damaged or failed material in 
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cuttings is 'coned off' and subsequently removed from the 

motorway hard shoulder. 

The construction of the motorway system in Great Britain began 

over thirty years ago and, over considerable lengths of the 

system, a sufficient time has elapsed to allow a useful study 

to be made of the performance of the earthwork side slopes. A 

survey was therefore undertaken (Perry, 1989) to determine the 

scale of deterioration of earthworks, attempt to quantify their 

long-term performance and, if possible, identify the factors 

observed during the survey, for example geology, geometry and 

associated soil properties, that have contributed to slope 

instability. Further slope failures are inevitably going to 

occur on the motorway system, and this Thesis describes the 

opening phases of this continuing process. An in-depth study 

of the failure mechanism and investigations of the behaviour of 

soils at low effective stresses provides an understanding of 

the fundamental causes of shallow failures. 

In this Thesis, 'shallow failures' refers to failures on the 

slopes of cuttings and embankments at a vertical depth not 

greater than 2.5m with movement usually being translational 

although rotational movement may occur. Failure surfaces are 

usually slickensided (Plate 1/2). In terms of the 

classification of landslides by Skempton and Hutchinson (1969) 

this type of failure falls into the catagories of 'slab slide -

translational slides' and 'shallow slide - rotational slides'. 
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Most text books and courses will highlight the need to design 

man-made slopes, but usually only deep-seated failures are 

considered. Cuttings in over-consolidated clays have long been 

recognized as becoming more unstable with time (Vaughan, 1973; 

Chandler and Skempton, 1974; Chandler, 1984) and slope design 

has usually attempted to take this into account. Embankments 

on the other hand have usually been designed in the short-term 

when undrained conditions prevail. This is based on experience 

of failures which have occurred soon after construction due to 

the presence of weak foundation soils, the generation of 

excessive pore water pressures or movement along pre-existing 

shear planes. Consequently the opinion has been that if an 

embankment is seen to be stable shortly after completion then a 

design life is not always considered as the embankment is 

certain to last longer than the 120 year design life of 

associated structures such as bridges and reinforced earth 

retaining walls (Greenwood, Holt and Herrick, 1985). This may 

generally be true for deep-seated failures associated with the 

foundation soil but consideration needs to be given to shallow 

failures. To design an earthwork with this consideration is 

likely to become more common in the future as our man-made 

structures age and the possibility of further shallow failures 

increases. This Thesis will show that failures of embankments 

can occur well after the construction period and that failures 

in cuttings occur in a similar way. In order to give an 

indication of the performance of modern and past design and 

construction methods, consideration is given to earthworks 

which have been constructed at different times. 
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The early chapters of this Thesis describe a survey into the 

extent of shallow failures in England and Wales and 

investigates how certain factors have contributed to failure. 

Empirical designs are then presented based on the angles and 

heights of slopes where failures have and have not occurred. 

In order to study the mechanisms of failure, a number of 

drained triaxial tests is presented to illustrate the 

properties of six different over-consolidated soils from 

embankments where failures have occurred. To determine the 

strength characteristics of these soils, the shape of the 

failure envelope in shear and normal stress space is discussed, 

and six methods are developed and considered as possible ways 

of fitting a non-linear failure envelope to a series of Mohr 

circles. The peak strength parameters of the soils are then 

calculated using the most accurate method. A slope stability 

method of analysis is then developed that uses the strength 

parameters from the non-linear failure criteria. Back-analyses 

of the failed slopes are then conducted using the peak, 

'ultimate' and critical strengths with various pore water 

regimes. In the discussion, the results of this approach to 

low effective stress analysis of slopes is considered and areas 

of further work highlighted. 

Terms are used which have specific meanings, and a list of 

definitions is given in Appendix A. 
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1.2 Literature review of British sources. 

The first reference found to shallow failures as a specific 

engineering phenomenon separate from deeper seated failures is 

in the all-embracing volume by Newman (1890). He incorporates 

a considerable amount of experience in his book, and it must 

have been the most comprehensive document on 'earthwork slips 

and subsidences' in its time. The earthworks he describes are 

in connection with railways, canals, and roads. Today it can 

still be a useful collection of empirical data and further 

reference is made to it in Chapter 11. 

Glossop and Wilson (1953) recognized the problems associated 

with shallow failures on highways. They explained that shallow 

failures can cause transverse tilting or longitudinal cracking 

of a concrete pavement or local depressions in a flexible 

pavement. At that time slope drainage systems were only 

employed on embankments where 'surface failure is apparent' 

rather than as a preventative measure. The function of the 

drain was to remove water flowing down the slope to reduce 

softening of clay soils. 

In the discussion to this paper, Bradbeer (1953) stressed the 

high cost of repairing the 'innumerable day-to-day instances' 

of shallow failures for the county of Worcestershire. He 

described their undramatic nature, as compared to the more 

spectacular deep seated failures that have occurred, but 

explained that due to the frequency of the shallow failures 
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their total cost was considerable. 

Skempton (1953) continued on this theme and explained that the 

types of failure that occurred at depth, on a circular surface, 

and shallow failures were completely distinct and there were, 

no doubt, two entirely different mechanisms involved. In the 

first type of failure the ratio of the depth of the slip, D, to 

the length, L, measured up the slope lay between the limits 

0.15 and 0.28. The ratio of D to L in the shallow failures lay 

between the limits 0.03 and 0.06. Two different methods of 

stabilization would be required for the two types of failure. 

Stabilizing a deep seated failure by reducing the disturbing 

moment, either by removing soil from the top of the slope or 

adding weight to the bottom, or both, would not improve the 

stability significantly for a shallow failure where drainage of 

the slope is the preferred method. 

In 1970 a study was conducted using questionnaires (Symons, 

1970) to estimate the magnitude and cost of shallow failures. 

This study was limited to particular lengths of the M1, M10, 

M45 and M6 motorways, and sections of the Al trunk road. In 

order to determine the most economic long-term design, the 

study recommended that the estimated repair costs for failures 

on steep slopes should be compared to the costs of the 

additional land required for less steep and more stable slopes. 

It also reported that the maintenance expenditure on slope 

repairs appeared to be very low. Although failures were noted 

the problem was not considered to be extensive. 
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The first extensive detailed study of shallow failures was by 

Parsons and Perry (1985). This work highlighted the extent of 

failures on highway earthworks and published the results for 

the first stage of a survey of major earthworks constructed of 

a variety of materials. A further publication by Perry (1985) 

gave results of studies of Lower Lias and Weald Clay. TRRL 

Report RR199 (Perry, 1989), written as part of this Thesis, 

included all stages of the survey and produced a large 

collection of empirical information on slopes and shallow 

failures. This Thesis also expands on this information, and 

develops and applies possible failure mechanisms. 

Shallow failures in Gault Clay are described by Greenwood, Holt 

and Herrick (1985). The type of failure is the same as 

described by Perry when surveying motorways. Descriptions are 

given of the various repairs available for these types of 

failure in Greenwood et al, and by Johnson (1985) who also 

describes the relative costs of the repairs. 

Further investigations of the Gault Clay on the M20, M25 and 

M26 motorways are given by Garrett and Wale (1985). Both 

Greenwood et al, and Garrett and Wale have investigated the 

properties and behaviour of Gault Clay and show the difficulty 

of using or re-using Gault Clay in highway construction. 

Again on the M25, a major shallow failure occurred in a cutting 

of Gault Clay but in this particular case it was during 
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construction (Horner, 1985). Failure occurred along shear 

planes within soliflucted and cryoturbated material. Since 

failure occurred during construction along extensive pre­

existing shear planes, the mechanism is likely to be different 

from that of a first-time failure some time after construction. 

Also the extent of the failure reflects the nature of the 

glacially affected Gault Clay. This extent of failure is not 

usually found for shallow failures which also occur later in 

the earthwork's life. 

Research by Andrews (1990) shows the rate at which failures 

occur has increased in recent years. This would explain why, 

when Symons conducted his study in the late 1960's, failures 

were of limited concern. It also agrees with the increasing 

number of observed reports of shallow failures in the past few 

years. 

Earth embankment dams would seem to be a useful source of 

information. The most relevant reference is that of Charles 

and Boden (1985) who conducted a desk study of the failure of 

earth embankment darns in the United Kingdom. Almost all earth 

embankment dams were built before the beginning of the 20th 

Century before the science of soil mechanics was established 

and so few records exist of fill properties or a detailed 

description of the fill. Most failures occurred as a result of 

overtopping of the impounded water or internal erosion. Until 

35 years ago, darns of this sort were constructed with a puddle 

clay core with surrounding zoned fill ranging from clay to more 
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granular material on the slopes. The slope angle upstream 

tended to be 1:3 and 1:2.5 downstream. Since 1925, there has 

only been one recorded problem with the long-term performance 

of these dams and generally it appears that the possibility of 

slips occurring is reducing with the increasing age of the dam 

system. This is the reverse of the process for highway 

earthworks and probably reflects the different methods of 

construction and the rate at which construction takes place. 

With earth dams very little compaction of the fill occurred, 

the rate of construction was slow and material was handled in 

smaller quantities. This would provide a greater opportunity 

for negative pore water pressures to reach equilibration, that 

is absorb water, and reduce the number of long-term failures. 

Consequently any instability of the fill would occur early in 

the life of the structure for the slope geometries used. This 

has indeed proved the case with most failures unrelated to the 

impounded water, that is shear failures or slips, occurring 

during or soon after construction. The weak puddle clay itself 

may be a destabilising agent as its strength at construction 

was as low as 10kN/m2. Charles and Boden found only one case 

where a shallow slip was recorded. If more shallow slips did 

occur they presumably were not such a major problem as on 

highways. Possible explanations for this are that shallow 

slips do not effect the safety of the dam and that the 

possibility of failure is reduced since dams are relatively 

short although high structures in comparison with the length of 

the motorway system in the United Kingdom. 
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Records which give details of the construction of earth 

embankment darns and their types of materials are very rarely 

available; cohesion and internal friction parameters for soils 

were not even conceived at the time most earth darns were 

constructed. Also since pore water pressure equilibrium in 

darns appears to be achieved in a relatively short period of 

time the mechanism of failure is totally different from that of 

highway earthworks. From the reference of Charles and Boden 

and the above discussion it is doubtful if a detailed survey of 

slips on the slopes of earth darns would be fruitful at this 

time. 

The railway system would also seem to be a useful source of 

information for shallow slips on ageing earthworks. Although 

extensive literature searches were conducted, very little seems 

to have been written on this particular subject given that many 

shallow and deep fa~lures have occurred (Ayres 1990, personal 

communication). Apart from Newman (1890) mentioned earlier, 

only two other references were found. Gardner (1921) stresses 

the need for adequate slope drainage and presents slope angles 

at which earthworks will stand under ordinary conditions. 

Ayres (1985) includes two case histories where slab failures 

occurred after many years of movement. Stabilization in these 

cases involved the use of grouts. 

Since most railway earthworks and earth embankment dams were 

constructed in about the same period of time, the type and pace 
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of construction is likely to be the same. The construction 

method may therefore have the same effect on the stability of 

railway embankments as on earth embankment dams. 

If a detailed survey of the sort described in this Thesis were 

to be undertaken fo~ railway earthworks, there may be a problem 

locating failures which occurred in the distant past due to 

lack of records and masking of slips and repairs by erosion, 

vegetation and ballast. However, the extent of recent failures 

could be established in a survey or, if less detail were 

required, a study of aerial photographs could be considered. 

This would provide information on the amount of failure that 

could occur on highway earthworks within a short period in the 

future. Results for railway cuttings are likely to be relevant 

to highway cuttings but embankment comparisons are unlikely to 

be appropriate due to differing methods of construction. 

1.3 Literature review of foreign sources. 

The United Kingdom's motorway system is not unique in suffering 

from shallow failures. Similar earthworks failures can be seen 

elsewhere in the world. In the United States of America 

several states have reported shallow failures on embankment 

slopes which have been used in different applications. Shallow 

failures on cutting slopes have also been reported. North 

Carolina has been 'plagued' with numerous shallow failures on 

both cutting and embankment highway slopes (Sotir and Gray, 

1989). Similar failures are recorded on Missouri highways 
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(Missouri Highway and Transportation Department, 1984) and one 

of the conclusions reached is that 'the incidence of all forms 

of distress increased with increasing plasticity as well as 

with increasing slope height'. A slope survey was conducted in 

this state similar to that described in this Thesis, although 

there was greater detailed investigation of the type of 

vegetation. 

The conclusions of an examination of earth slope failures in 

Texas, explained that shallow failures represented the most 

significant type of slope stability problem examined in the 

study (Stauffer and Wright, 1984). Failures in embankments, 

studied in some detail as they occurred most frequently, were 

generally observed in soils where the liquid limit was in 

excess of 50, and plasticity indices were more than 30. Such 

soils are prone to swelling and shrinkage. Similar extensive 

numbers of failures are reported on Alabama and Arkansas 

highways (Blacklock and Wright, 1986). 

According to Templeton, Sills and Cooley (1984), shallow 

failures have been occurring along the mainline Mississippi 

River Levees for the past 40 years Although failures do not 
~ 

threaten the integrity of the levees, they pose a recurring 

maintenance problem as is the case for highways in England and 

Wales. The depth of failure varied from 1 to 2 metres and 

failures occurred in high plasticity clays after periods of dry 

weather followed by rainfall. 
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In Southern California 'surficial failures have become 

commonplace' and frequently occur after prolonged periods of 

rain (Day and Axten, 1989). Failures are generally 1.2m deep 

and occur in clay slopes. 

Failures in weathered shale material in Oklahoma (Laguros, 

Kumar and Medhani, 1982) are recorded for cuttings where the 

failure surfaces were 3.0m deep. Failures occurred only one or 

three years after construction. This highlights the rapid loss 

of strength of the outer layer of the cutting in this weathered 

shale material after heavy rainfall. 

At Notch Hill in Canada, shallow failures have occurred on both 

sides of a railway embankment several years after completion 

(Krahn, Fredlund and Klassen, 1989). Failure occurred over 

several kilometres of embankment constructed of a lacustrine 

silt. The maximum depth of failure of the slips was between 1m 

and 2m. 

In the Regina area of Saskatchewan, numerous cutting and 

embankment slopes have failed 4 to 6 years after construction 

(Widger and Fredlund, 1979). The failures are shallow, 

occurring at depths between 2.1m and 2.4m. 

Suzuki and Matsuo (1988) explained that 24 cases had been 

reported of failures in cutting along the Chuo Expressway in 

Japan between 1983 and 1985. The depth of failure ranged from 

1.0m to 2.0m, however the material type was sand and gravel, 
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not materials usually associated with shallow failures. Also 

in Japan, Kobashi (1971) carried out several laboratory 

investigations into shallow failures using a number of 

experimental models simulating sandy soils. He was able to 

classify shallow failures as those caused by piping phenomenon, 

and those failing in the manner of a soil flow. In the first 

case the pore water head rose higher than the slope surface, 

washing out the surface material, and in the second case 

movement occurred as soon as the soil became saturated with the 

pore water pressure increasing until the slope failed in a 

rapid manner. Kobashi identifies the main source of water as 

being from rainfall. 

The survey of slope condition described in this Thesis is very 

similar to the CHASE research project adopted for studying 

failures on earthworks in Hong Kong (Brand and Hudson, 1982). 

The only major differences are that with CHASE only cuttings 

were surveyed, the number of failures was measured rather than 

the length of failures, the geologies studied were very 

different and encompassed volcanic rocks, granite and residual 

soils, and the slopes were considerably steeper and higher. 

The survey method involved studies on foot and the same 

measurement and descriptive techniques as used for the motorway 

survey. Data sheets were used and arranged in a suitable way 

for entering on to a computer. The similar approaches adopted 

for gathering empirical slope information indicates the 

suitability of these procedures for a variety of situations. 

Also it indicates the acceptance of such methods for 
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determining slope designs. 

The literature review highlights the problem of shallow 

failures internationally and reveals that most failures are of 

embankments rather than cuttings. There may be some evidence 

to suggest that the problem has increased in recent times as a 

result of modern practice of relatively quick construction and 

the need to reduce settlement by good compaction. This process 

effectively 'locks in' negative pore water pressures, allowing 

slopes to be constructed at initially stable angles. These 

angles, however, prove to be too severe in the longer term as 

the negative pore water pressures reduce or become positive and 

result in failure of the weakened soil. 
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Chapter 2 

A survey of slope instability 

2.1 Extent of survey 

In 1987 there were over 2700km of motorway in England and Wales 

(Department of Transport, 1988). A survey covering 570km, 21 

per cent of the motorway system, was undertaken to study the 

extent of shallow failures, attempt to quantify the long-term 

performance of earthworks and identify factors contributing to 

failure. Figure B1 of Appendix B, shows the extent of the 

survey with respect to the current motorway system. Although 

some large earthworks occur on other major highways, motorways 

were chosen because of their high and extensive earthworks 

which are necessary to restrict the longitudinal gradient to an 

absolute maximum of 4 per cent (Department of Transport, 1981). 

Although Drift deposits were of interest, the choice of length 

of motorway was primarily governed by the Solid deposits 

present as more failures in these materials occurred, as 

reported in the literature review and as described by County 

Council and Department of Transport sources. Consequently, 

motorways in Scotland were not included since most of these had 

been constructed in Drift deposits and few failures were 

reported prior to the beginning of the survey. However, the 

reports of shallow failures in Scotland have increased since 

the completion of the survey (Scottish Development Department 

sources). As geology is one of the major factors affecting 
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stability, the survey covered the principal geologies 

encountered on motorways in England and Wales from the Old Red 

Sandstone Series to Recent deposits {Figures 82 to 818). 

Greater attention was paid to heavily over-consolidated clay 

soils where failures are likely to occur more frequently. The 

survey included a variety of motorways with earthworks of 

differing age, geometries, orientations and types of drainage. 

Table 81 of Appendix 8, gives details of the motorways that 

were covered in the survey. Motorways were chosen, in 

seventeen counties of England and Wales, which would 

incorporate large lengths of a variety of geologies and cover 

several ages since construction. 

For convenience, the motorway lengths were bounded by the 

maintenance limits of a county or the interchanges between 

which the geology occurred. These lengths, in some cases, were 

subsequently split into construction contracts. The age of a 

motorway within a county can vary due to different opening 

dates for each construction contract. The ages of sections of 

motorway included in the survey ranged from 1 year to 25 years 

with about 75 per cent of the lengths surveyed being 10 years 

and older, and 6 per cent of the younger ages being 

improvements, such as earthwork widening on existing motorways, 

which were included as part of the main motorway survey. 

Not all the geologies in England and Wales were encountered in 

the survey for the following reasons: 

(a) there are no motorways on some geologies. 
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(b) the geology is only present as a foundation material and 

is not present on the slope. 

(c) the survey did not cover some materials which are known 

to have relatively stable slopes, such as granites and basalts. 

The survey included the main carriageway, interchanges and the 

side road diversions built at the same time as the motorway; of 

the total length surveyed, each constituted 75 per cent, 11 per 

cent and 14 per cent respectively. Of the 1500km of slope 

surveyed 850km was embankment slope and 650km was cutting 

slope. (The length of slope is greater than the length of 

motorway becaus~ the slope length includes all slopes on both 

sides of the motorway and slopes associated with side roads and 

interchanges.) 

The survey procedure described here may be used for studying 

any length of highway where information is required for a 

particular area with significant earthworks. The survey was 

mostly carried out on foot although an aerial study was 

considered. Although an aerial survey may have been quicker, 

detail would not have been observed and many overgrown slips 

and cracks on the slope would have been missed. Also 

measurement of slope characteristics such as measurements of 

slope angle and height, and descriptions of soil type and 

drainage are more accurately found on the ground. An aerial 

survey would, however, be worth while in the future as a means 

of updating the results of this survey. 
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2.2 Preparatory work 

Before the on-site survey could begin an investigation was 

necessary of the likely site conditions. This involved 

obtaining plans of the lengths of motorway to be surveyed, 

usually at a scale of 1:2500, and superimposing the Solid and 

Drift geology likely to be encountered on the site. The 

geology was acquired from geological survey maps and site 

investigation reports. Borehole logs were particularly useful 

in establishing the depth of Drift in cutting slopes. The 

materials in embankments were established as accurately as 

possible from mass-haul data prepared during construction, from 

records made by supervisory staff of day-to-day earthmoving 

operations, progress photographs or from 'as constructed' 

motorway plans. Most of the information regarding materials in 

embankments was obtained from the Consulting Engineers or 

County Highway Authorities who supervised the motorway 

construction. 

Using longitudinal sections, earthworks on the plans were split 

into three height bands 0-2.5m, 2.5-5.0m and greater than 5.0m. 

This would assist in the graded investigation followed during 

the survey. 

2.3 The survey 

The purpose of the survey was to investigate, in detail, 

motorway slopes that had failed, slopes with problems that 
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might lead to instability and slopes that were behaving 

satisfactorily at the time of survey. 

The survey involved inspecting on foot all earthworks 

delineated on the prepared plans as being greater than 2.5m 

high. Those areas of earthwork less than 2.5m high were 

observed from a slow moving vehicle operating on the hard 

shoulder of the motorway. 

The types of instability encountered and the problems that 

might affect stability comprised 

(a) slope failures, generally known as slips (Plate 2/1) 

(b) slips that have been repaired (Plate 2/2) 

(c) tension cracks near the top of the slope, where a slip 

has begun to form, and shrinkage cracks all over the slope, 

promoting failure by allowing water to enter the slope 

(d) settlement emanating either within the fill or in the 

subsoil 

(e) seepage of water onto the slope (Plate 2/3) 

(f) erosion of material at the bottom of the slope (toe 

erosion) . 

Of the above problems, the most difficult to identify were the 

slopes where cracking had occurred and those areas where 

repaired slips had been topsoiled and seeded. Any omissions 

due to these difficulties are considered to be low in number as 

thorough on-site investigations were made and only two counties 

had a policy of topsoiling repaired failures. Also, since 
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slopes where cracking had occurred were not included in the 

failed slope category, any omission of slopes with cracking 

does not affect the total length of failed slope. If any 

omission did occur it would have resulted in an small 

underestimate of the problems. 

For those areas of earthworks with heights greater than S.Om 

and those slopes with a problem whatever the height of slope, 

full details of the characteristics of the slope and of the 

problem were noted on a specially designed survey form. It was 

recognised at an early stage that every slope on the motorways 

chosen could not be measured. If they were measured, the loss 

in time and resources would be such as to render a wide 

investigation of materials impractical. By concentrating more 

on slopes above S.Om high the major earthworks were covered 

with the caveat that a slope be measured if it had a problem 

whatever the height. Slopes above S.Om were identified by 

Symons (1970) as having the greatest number of failures. 

Figure 2/1 shows an example of a completed survey form. 

Several slips and repairs can be entered on a single form with 

descriptions of slip type, for example slab or circular, and 

shape of area affected. The type of failure was identified by 

studying the inclination of both the failed material's surface 

and tension crack profile. With slab type failures the angle 

of the surface of the slipped material remains similar to the 

rest of the stable slope and the tension crack is usually 

vertical (Plate 1/2). Rotational failures exhibit heave at the 
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toe and near vertical downward motion at the crest (Plate 1/1), 

and, if there is sufficient movement, an observed tension crack 

which is curved in profile. The vertical depth to the failure 

surface is fairly constant for slab type failures and so 

measurements of depth of slipped material were made at the 

tension crack. For rotational failures, the depth varies of 

course, as the failure surface is curved concave upwards and so 

the depth of slip was taken to be the maximum vertical distance 

from the original slope to the failure surface. In most cases 

of rotational failure, the depth of failure had to be judged 

due to insufficient movement of the slipped material. This 

depth assessment was made by studying the inclination of the 

tension crack profile, the amount of slope effected and 

assuming a circular failure surface. 

The condition of slip repairs, such as satisfactory, bulging or 

complete failure beneath the material used in the repair, can 

also be recorded. 

Measurements of slope angle were taken using an optical 

prismatic clinometer or an Abney level, mounted on a ranging 

rod sighted along the slope to a marker at the same height on 

another ranging rod. The ranging rods were positioned at the 

top and bottom of a slope. Other methods of measuring slope 

angle are available (Stauffer and Wright, 1984; Francis, 1987) 

but this method was considered the most appropriate. The 

instruments were accurate to 0.5 degrees and including operator 

error the maximum error is 1.0 degree. The advantage of this 
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method is that minor local changes in slope profile did not 

influence the slope angle. This allowed a representative slope 

angle to be measured and at a reasonable speed. Where a change 

of slope angle occurred at a higher point on an earthwork, the 

slope angles were measured independently. -With benched slopes, 

each slope was measured separately and a measure taken of the 

width of the bench. The length of slope was measured with a 

30m tape or with a lOOm tape on exceptionally large earthworks. 

In the exceptional cases where access was not possible, optical 

range finders were used. The height of the slope was 

calculated from measurements of the slope angle and the 

distance between the top and bottom of the slope. The slope 

bearing is the direction the slope faces, ie the bearing of a 

normal away from the slope. Other major characteristics noted 

were the drainage at the top and bottom of the slope and the 

drainage on the slope itself. A photographic record was also 

kept of failures and problems of interest. 

Generally one survey form would cover the length of slope of a 

single earthwork unless the earthwork was split by bridges, 

contract demarcations or retaining walls, when a corresponding 

number of sheets would be completed. 

A description of the soil or rock was made by observing any 

exposed material, for example on a failure surface, and by 

using a simple probe made from 6mm steel reinforcing rod. The 

feel of the probe as it was pushed into the slope indicated how 

granular, cohesive or rocky the material was. A visual 
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inspection could be made from the material adhering to the 

probe when it was withdrawn. As well as being useful for 

identifying construction materials, the probe could identify 

repaired areas beneath topsoils. In these cases the contrast 

in materials detected and the shape of the area in which they 

were found, were good indications as to when a repair was 

present. 

2.4 Processing the data 

Information from the completed survey forms and the prepared 

plans was used to describe the motorways as a series of 

'features' as defined in Appendix A. These were entered and 

analysed on the TRRL CDC Cyber mainframe computer with the aid 

of an appropriate computer program. The program was outlined 

by the author and required his geotechnical input but was 

written by TRRL, partly in Fortran 5 (a CDC extension of 

Fortran77) and partly in Cyber Control Language (CCL). Using 

the program, the length of slope with any given combination of 

characteristics could be extracted by summing those features 

with the characteristics required. Interpolation within a 

feature was necessary for restrictions on slope angle and 

height. An example of a feature and the type information it 

contains is given in Figure 2/2. The feature connection type 

defines if the slope is continuous, splits into a number of 

slopes or a number of slopes converge to become a single slope. 
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2.5 Factors studied in the analysis of slopes 

It was considered that the principal factors having an 

influence on the extent of failures were the geology, the age 

of the earthworks and their geometry. (These criteria are 

based on evidence given in the literature and common 

engineering practice.) The effects of these factors have 

therefore been studied in detail. Also considered to be worthy 

of examination was the type of drainage used (at the bottom of 

embankment slopes and the top of cutting slopes) and the 

orientation of the slope, as these could effect the pore water 

pressure regime within slopes, by either removing water or 

providing a micro-climate for slopes facing in certain 

directions. For example, slopes facing south may be drier than 

north facing slopes and as a result be more susceptible to 

cracking; this could allow water to enter deep into the slope. 

Geology was the first slope characteristic to be examined and 

variation in age and geometry was not taken into account at 

that stage. Initially this Thesis considers the effect of 

geology in two Sections, beginning with the youngest materials, 

Drift deposits, and going on to Solid deposits. Chapter 5 

covers the overall problem of failure. Single and combinations 

of two geologies were studied. The proportional effect of each 

geology in combination with others was difficult to quantify. 

Where mixtures of geologies occur in an earthwork, they are 

considered in the Section where the youngest geology appears. 

Similarly in the tables of results, the youngest geologies 
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appear first (as they would in a geological log of a borehole) 

and where there is a combination of materials the younger 

geology governs its position. 

Analyses have been made, for given ranges of height and slope 

angle, of the variation of percentage of failure for geologies 

on different motorways, or on different lengths of the same 

motorway, which cover a number of ages. Percentage of failure 

is defined as the length of failed slope expressed as a 

percentage of the total length of slope involved. The 

necessity to compare different ages, each with failures in the 

same geology, restricts the number for comparison and 

consequently any trends are limited. Height bands of 0-2.5m, 

2.5-S.Om and more than S.Om were used in this instance. 

In order to determine the effect of age on the performance of 

earthworks for each individual motorway, dates of occurrence of 

slope failures are required over a long time- scale. 

Unfortunately, such information was not readily available 

during the survey from the Authorities responsible for the 

maintenance of the particular lengths of motorway. Andrews 

(1990) has, however, determined the effect of age on specific 

lengths of motorway by studying aerial photographs taken in the 

lifetime of the earthworks as explained early in the literature 

review. Locations were selected where high percentages of 

failure have been observed during the survey presented in this 

Thesis. 
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Although surveyed, failures which occurred during motorway 

construction have not, for the purposes of analysis, been 

included in the length of failed slope. The survey was 

primarily concerned with the performance of slopes since 

construction. 

In general, the slope angles of the earthworks tended to be 

designed as fairly uniform for any given age, especially for 

embankments, although sufficient variability occurred in 

practice to provide some indication of the effect of slope 

angle on the occurrence of failures. The height bands used in 

the Sections relating to the effect of geometry are in 2.Sm 

steps. 

The effect on the percentage of failure of three types of 

drainage at the bottom of embankments and the top of cuttings 

is considered. The drainage in both locations has been 

categorized as follows: none, where no drainage was seen; open 

ditch, where a simple steep sided, lined or unlined ditch 

occurred; and French drain, which appeared as parallel sided, 

aggregate filled trenches with a pipe at the bottom. 

Comparisons of the effect of the types of drainage are made and 

in each case earthworks of the same geology, age and geometry 

are considered. 

A study has been made to find the effect of slope drains on the 

percentage of failure. This is discussed in the Section on 

Jurassic and Triassic deposits for embankment slopes and in the 
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Section on Eocene and Cretaceous deposits for cutting slopes. 

A slope drain appears as an aggregate filled trench running up 

the slope in a straight line or in a pattern such as 

herringbone. Slope drains were very rarely seen on embankments 

and were more commonly seen on cuttings in areas of seepage. 

To show the effect of orientation on the percentage of 

failures, combinations of geology, age and geometry were 

classified in 90 degree quadrants averaging north, east, south 

and west facing directions. 

From the geometry data, maximum slope angles are derived for 

given ranges of heights, which minimize the risk of shallow 

failures within the maximum life span of the motorways studied. 

(Data from the survey only apply to a maximum age of 25 years, 

with many results only being applicable to younger ages.) In 

most cases these recommended slope angles are based on results 

where no failures occurred. For the remaining cases a 

percentage of failure of up to 1 per cent is assumed to be 

acceptable in order to exclude single slips less than 10m wide, 

which have occurred because of local effects. Also the cost of 

repairing such small lengths of failure is acceptable when 

compared to the greater landtake required to prevent them. 

Similarly, the effect of the various types of drainage at the 

top and bottom of slopes on the above recommended slope angles 

has been studied. The percentage of failure is again 

restricted to 1 per cent or less within 25 years of 

construction as indicated by the results of the survey. It 
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should be noted that the provision of drainage at the top and 

bottom of a slope may be unavoidable even if shallow failures 

occur as a result. For example, drains may be needed to drain 

the foundation, provide a cut-off for water flow on the natural 

ground surface or provide continuity for the whole scheme's 

drainage system. 
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OUTPUT FROM PROGRAM SLEX 
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Fig 2/2 A typical feature 
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PLATE 2/2 

AN EMBANKMENT WHICH HAS BEEN REPAIRED 
OVER IDST OF ITS LENGTH 





3.1 Geology 

Chapter 3 

Drift deposits 

Drift deposits are extremely heterogeneous and allowance must 

be made for this in the following analyses. In addition, the 

geological name as shown on the geological survey maps may not 

describe the material accurately in an engineering sense, for 

example some of the named gravels have a high clay content. 

The Drift titles used in this Thesis are general terms for 

similar types of material and consequently may encompass 

several geologies. 

Tables 3/1 and 3/2 give the overall results for single Drift 

deposits and for combinations of two geologies where at least 

one geology is a Drift deposit, for total lengths of cutting 

and embankment slope in excess of 1.0 km. Drift deposits do 

not always occur at one particular geological age, so the order 

of geologies given in the Tables is only a guide. 

Considering embankment slopes of a single geology, River Gravel 

has the highest percentage of failure of 2.8 per cent and shows 

the steepest predominant slope angle of 1:1.5. The other 

geologies have much smaller percentages of failure of less than 

1 per cent and a slope angle of 1:2 is most commonly used. 

Plateau Gravel is the only single material in cutting slopes 
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with a percentage of failure greater than 1 per cent and the 

predominant slope angle is 1:3. 

Comparing single geologies in embankments and cuttings shows 

higher percentages of failure in River Gravel and Clay-with­

flints embankments, however Glacial Gravel and Boulder Clay 

have the opposite trend. Cuttings show a greater variety of 

predominant slope angle varying from 1:3 to 1:2 whereas 

embankments are generally steeper varying from 1:2 to 1:1.5. 

Glacial Gravel with Middle Lias (Silts and Clays) in 

embankments has a very high percentage of failure of 11.0 per 

cent. Boulder Clay with Enville Beds also has a high 

percentage of failure of 6.6 per cent. Concentrating on the 

over-consolidated clays, London Clay when combined with three 

differing Drift deposits, consistently had percentages of 

failure in a range from 2 to 6 per cent. There were no 

failures in River Gravel with Oxford Clay and Clay-with-flints 

with Reading Beds, but Boulder Clay mixed with Gault Clay has a 

percentage of failure.of 1.4 per cent. The combinations of 

Glacial head with Lower Lias or Keuper Marl have a percentage 

of failure of 5.8 per cent and 2.8 per cent respectively but 

Boulder Clay with Keuper Marl slopes are stable. Clay-with­

flints with Reading Beds shows no sign of failure. 

Boulder Clay with Enville Beds has the highest percentage of 

failure in cuttings with a value of 8.1 per cent. The 

percentages of failure in other combinations of geologies range 
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from 0 to 3.3 per cent. 

Compared with embankments, cuttings of Boulder Clay with London 

Clay and Glacial Gravel with Carboniferous Limestone Series 

(Carbonate) or Lower Old Red Sandstone - St Maughan's Group 

show lower percentages of failure. Cuttings of Boulder Clay 

with Enville Beds, Clay-with-flints with Upper Chalk and 

Glacial Gravel with Boulder Clay have higher percentages of 

failure than the same combinations in embankments. The range 

of predominant slope angle in cuttings is greater than in 

embankments with extremes of slope of 1:3.5 and 1:1.25. 

Boulder Clay, the most extensive material surveyed, behaves 

differently depending on the area where the slope occurs as 

shown in Table 3/3. Southern England (M1 Hertfordshire, 

Bedfordshire, Buckinghamshire and M11 Essex) has the highest 

percentage of failure, North-West England (M6 Cumbria) has a 

low percentage of failure or none at all and South Wales (M4) 

is between the two. There was only a short length of 

embankment surveyed in the Midlands (M45 Northamptonshire). It 

would appear from these results that the properties of Boulder 

Clay, with respect to slope stability, deteriorate to the south 

and east. It should also be remembered that 'Boulder Clay' 

exhibits considerable variation in its engineering properties 

and is found commonly on geological survey maps with reference 

to its origin rather than specific material type. 

Many of the Drift deposits encountered in the survey, over 
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significant lengths of cutting and embankment slopes, exhibited 

percentages of failure of less than 1 per cent or had no 

failures at all. 

3.2 Age of earthworks 

The ages of the earthworks in Drift deposits are included in 

Tables 3/1 and 3/2 and range from 2 to 25 years. Tables 3/4 

and 3/5 show the results of an analysis to compare percentages 

of failure of similar earthworks which cover a number of ages. 

Failures begin at a variety of ages depending on the geology 

and the geometry. The general trend in embankments is for the 

percentage of failed slope to increase with the age of the 

earthwork, as would be expected, although one of the results 

for Boulder Clay is inconsistent. Cuttings show a less clear 

trend with some geometries behaving very erratically. The 

variability of these results, especially for Boulder Clay, may 

reflect the heterogeneous nature of the materials. Four out of 

the seven cases where failure occurred, however, show an 

increase in the percentage of failure with time. 

3.3 Geometry of slope 

Results of the effect of geometry on the percentage of failure 

are given in Figures 3/1 and 3/2 for those combinations of 

geology and age that had a percentage of failure greater than 1 

per cent and a total length of slope in excess of 2.5km. These 

Figures illustrate the high percentages of failed slope that 
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have occurred with certain combinations of geology, age and 

geometry. Boulder Clay with London Clay (6 years old), Plateau 

Gravel with London Clay (10 years old) and Glacial Head with 

Lower Lias (13 years old) are cases where more than 50 per cent 

of embankment slopes have failed for particular geometries. In 

cuttings the percentages of failure are generally lower; the 

highest percentage being Boulder Clay with London Clay (7 years 

old) which has approximately 25 per cent of slopes failing. It 

is worth noting again the poor performance of London Clay in 

combination with more granular materials. 

For both embankments and cuttings there is clear evidence that 

the height of slope has an effect on the percentage of failure. 

In the majority of cases an increase in height for constant 

slope angle is accompanied by an increase in the percentage of 

failure. 

The effect of slope angle on embankments and cuttings is not so 

clear and in some instances flatter or intermediate slope 

angles have yielded higher percentages of failure. This is 

most pronounced for embankments of River Gravel (10 years old), 

River Gravel with London Clay (10 years old), Glacial Head with 

Lower Lias (13 years old) and Glacial Head with Keuper Marl (23 

years old) . A similar effect is shown by cuttings of Boulder 

Clay with London Clay (7 years old) and Clay-with-flints with 

Upper Chalk (10 years old). Embankments of Glacial Gravel with 

Lower Old Red Sandstone - St Maughan's Group show an increase 

in the percentage of failure with increasing slope angle at two 
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different ages. In cuttings of Clay-with-flints with Upper 

Chalk, there is a similar behaviour for both the ages studied 

at the steeper slope angles. At the flatter slope angles both 

ages may show a similar trend but a comparison has not been 

possible as there were no 22 year old slopes, in these 

materials, encountered in the survey. 

3.4 Type of drainage 

For embankments there were no cases where all three types of 

drainage at the bottom of the slope could be compared. 

Comparing the cases where two types occurred, in six out of 

eleven cases distinctly higher percentages of failed slope 

occurred where no drainage was provided; slopes with open 

ditches had the smallest percentage of failure in five of these 

six cases. There were two cases where slopes with open ditches 

had a higher percentage of failure than when drainage was not 

provided. In the eleven examples studied the ranges of 

percentages of failure are as follows: 

None 

French drain 

Open ditch 

0 - 58 per cent 

0 - 13 per cent 

0 - 4 per cent 

With cutting slopes there were three cases where all three 

types of drainage occurred at the top of the slope and in every 

case the greatest percentage of failure occurred with no 

drainage. Where there were two types of drainage to compare, 
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slopes with French drains showed distinctly higher percentages 

of failure in three cases, two of which were greater than where 

no drainage was provided, however, in the third case the slopes 

with no drainage produced the higher percentage of failure. 

Slopes with open ditches had no failures or a very small amount 

in the four cases where they occurred. In the seven examples 

studied the ranges of percentages of failure are, 

None 

French drain 

Open ditch 

0 - 35 per cent 

0 - 13 per cent 

0 - 5 per cent 

These ranges are similar to those for embankments and it would 

appear that drainage at the bottom of embankment slopes and at 

the top of cuttings produces, in the majority of cases, the 

least percentages of failure for earthworks constructed of 

Drift material or mixtures of Drift and Solid material. The 

presence of an open ditch or French drain at the top of 

cuttings indicates that the need for a cut-off drain was 

recognized during design and the results show this arrangement 

performs satisfactorily. 

3.5 Orientation of slope 

Variations occurred between the percentages of failure of 

embankment and cutting slopes of differing orientations, but 

there was no consistent pattern of behaviour over the range of 

geologies studied. No evidence has been obtained to indicate 
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whether or not the climatic influence of orientation has any 

effect. 

3.6 Design of side slopes in new construction 

Tables 3/6 and 3/7 give the results of an analysis of the 

maximum slope angles allowable to minimize failure in the 

height ranges of 0-2.5m, 2.5-5.0m and greater than 5.0m. The 

geologies are given in the same order as Tables 3/1 and 3/2 so 

that comparisons can be made between the maximum recommended 

slope angle and the actual predominant slope angle. For 

example embankments of Glacial Gravel with Middle Lias (Silts 

and Clays) are constructed at a predominant slope angle of 1:2, 

but a slope angle of 1:3 would reduce the percentage of failure 

from 11 per cent to less than 1 per cent based on the results 

of the survey. In the North-West of England, engineers have 

independently, over the years since construction of the MS 

Preston Northern By-Pass, reduced the slope angle used for 

Boulder Clay cuttings to 1:2.5 (Arrowsmith 1987, personal 

communication). This slope angle is exactly the same as the 

maximum recommended slope angle found in the survey. 

The effect of drainage on the maximum recommended slope angles 

of certain geologies is given in Table 3/8. This Table shows 

the types of drainage and geometry that restrict failures to 

less than 1 per cent within 25 years of construction as 

indicated by the results of the survey. Steeper slope angles 

can be used for slopes with open ditches in most of the cases 
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where Drift deposits are present, and French drains also affect 

two of the remaining geologies. Only River Gravel with London 

Clay in embankment slopes exhibits a greater percentage of 

failure when drainage is provided. The results for both this 

Section and Section 3.4 indicate that open ditches are more 

effective than French drains at reducing slope failures. Open 

ditches are also less expensive and simpler to construct than 

French drains although in the longer term they may require more 

maintenance. 
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TABLE 3/1 

Drift der;osi ts encountered in the survey I with a total 
length of slope in excess of 1.0krn. 

Age of Total Percentage Predominant 
earth"WOrks length of measured slope angle 

when surveyed (km) 
(years) 

EMBANKMENI'S SIN:iLE GEDIJXIES 
River Gravel 10119 2.8 

Glacial Gravel 6.519.5122 9.6 

Boulder Clay 3161719.51161 49.4 
17118122123125 

Clay-with-flints 10122 12.7 
<XMBINATICNS OF 'liD GEDIJXIES 

River Gravel with 
London Clay 
Upper Chalk 
Lower Chalk 
Oxford Clay 

Plateau Gravel with 
London Clay 

Glacial Gravel with 
Boulder Clay 
Pebbly Clay and Sand 
Upper Chalk 
Middle Lias 

(Silts and Clays) 
Keuper Marl 
carboniferous Limestone 

Series (carbonate) 
Lower Old Red Sandstone 

- St. Maughan 1 s Group 
Lower Old Red Sandstone 

- Raglan Marl Group 

Boulder Clay with 
Glacial Silt and Varved Clay 
London Clay 
Upper Chalk 
Gault Clay 
Lower Greensand 
Keuper Marl 
Enville Beds 
carboniferous Limestone 

Series (carbonate) 
carboniferous Limestone 

Series (Arenaceous) 

Glacial Head with 
Lower Lias 
Keuper Marl 

Clay~th-flints with 
Reading Beds 
Upper Chalk 

10 2.8 
10122 1.7 

22 2.5 
22 2.2 

10 4.7 

3118122 3.0 
22 1.5 
22 3.1 
25 2.1 

23 4.2 
9.5 4.2 

6.519.5120 10.8 

6.5120 1.4 

18 2.6 
617 3.9 
3 6.9 
22 3.3 
22 2.2 
23 2.7 
19.5 3.7 
16117 10.6 

16 1.9 

13 11.5 
23 3.3 

10 1.8 
10122 22.5 
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failure all heights 
(v:h) 

2.8 1:1.5 

0.4 1:2 

0.3 1:2 

0.7 1:2 

2.2 1:2 
0 1:2 
0 1:2 
0 1:2.5 

6.0 1:2 

0 1:2 
0 1:2.5 

0.3 1:2 
11.0 1:2 

0 1:2 
1.4 1:2 

2.3 1:2 

0 1:2 

0.6 1:2 
4.6 1:3 
0 1:2 

1.4 1:2.5 
0 1:2 
0 1:2 

6.6 1:2 
0 1:2 

0 1:2 

5.8 1:2 
2.8 1:1.5 

0 1:2 
0.1 1:2 



TABLE 3/2 

Drift deposits encountered in the survey, with a total 
length of slope in excess of l.Okm. 

Age of Total Percentage Predominant 
earthworks length of measured slope angle 

when surveyed (km) failure all heights 
(years) (v:h) 

CU'ITIN3:;2 Sm:;LE GEX)I(X;IES 
River Gravel 10,20,22 4.7 0.2 1:2.5 

Plateau Gravel 6,10 2.6 1.1 1:3 

Glacial Gravel 3,6.5,7,9.5,20, 36.4 0.6 1:2 
22,23,25 

Boulder Clay 2,3,4.5,6,7,9.5, 97.2 0.8 1:2 
14,16,17,18,22, 

23,25 

Glacial Head 6,13,23 4.4 0 1:3 

Clay-with-flints 10,22 29.4 0.2 1:3 

Pebbly Clay and Sand 22 1.0 0.5 1:2 

ro1BINATICN3 OF 'IW) GEX)I(X;IES 

Glacial Gravel with 
Boulder Clay 3,18,25 2.0 1.7 1:2 
carboniferous Limestone 9.5 4.7 0.1 1:2 
Series (carbonate) 

Lower Old Red Sandstone 6.5,9.5,20 6.9 1.4 1:2 
- St.Maughan's Group 

Boulder Clay with 
London Clay 0,6,7 2.6 3.3 1:3.5 
Upper Chalk 3 3.3 0 1:2 
Lower Greensand 22 2.9 0 1:2 
Oxford Clay 22 1.0 0 1:2 
Keuper Conglomerate 2,4.5,9.5 1.8 1.5 1:2.5 
Enville Beds 19.5 2.0 8.1 1:2.5 
carboniferous Limestone 4.5,9.5,16 3.1 0 1:2 
Series (carbonate) · 

Clay-with-flints with 
Reading Beds 22 1.1 0 1:3 
Upper Chalk 9,10,22 10.5 2.1 1:1.25 
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TABLE 3/3 

The percentages of failure of Boulder Clay in different parts of 
England and Wales with a slope angle of 1: 2 and a 

height greater than S.Om 

Age of Total Percentage 
Area earthworks length of 

when surveyed {rn) failure 
{years) 

Embanlgnents 

Southern England 6,7,22 1418 8.8 

South Wales 9.5 546 2.7 

North-west England 16,18 1296 0 

Cuttings 

Southern England 22 1033 18.1 

South Wales 9.5 648 11.6 

Midlands 25 690 5.5 

North-west England 16,17,18 3089 3.9 
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TABLE 3/4 

Comparisons of the percentages of failure in embankments of different 
ages for given combinations of Drift deposits and geometry 

Slope angle Height Age Total Percentage 
Geology (v:h) (m) (years) length of 

(m) failure 

Embankment~ 1:2.5 0-2.5 7 1155 0 
22 287 0.7 

Boulder Clay 2.5-5.0 7 1307 0 
16 392 0 
22 311 1.5 

1:2 0-2.5 3 to 22 4572 0 

2.5-5.0 3 to 18 2483 0 
22 2075 0.2 

rrore than 5 . 0 6,7 748 8.7 
9.5 546 2.7 
16 316 0 
18 980 0 
22 670 8.9 

0-2.5 6.5 590 0 
9.5 724 0 

Glacial Gravel 
with Lower Old Red 
sandstone - 1:2 2.5-5.0 6.5 712 0 
St Maughan's Group 9.5 830 0 

rrore than 5. 0 6.5 1179 7.5 
9.5 636 12.9 

0-2.5 10 1749 0 
22 1108 0 

Clay-with-flints 1:2 2.5-5.0 10 1823 0 
with Upper Chalk 22 957 0 

rrore than 5 . 0 10 3339 0 
22 216 13.9 
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TABLE 3/5 
Comparisons of the percentages of failure in cuttings of different 

ages for given combinations of Drift deposits and geometry. 

Slope angle Height Age Total Percentage 
Geology (v:h) (m) (years) length of 

(m) failure 

Cuttings 

Boulder Clay 1:2.5 0-2.5 3 to 22 4744 0 

2.5-5.0 3 to 18 4142 0 
22 204 20.5 

rrore than 5. 0 3 1634 2.4 
7 2558 0 

9.5 502 7.0 
16 567 0 

1:2 0-2.5 3 to 7 746 0 
9.5 803 0.2 

16 to 23 6665 0 
25 898 1.7 

2.5-5.0 7 to 17 3291 0 
18 1750 1.0 
22 2319 3.7 
25 463 5.8 

rrore than 5 . 0 9.5 648 11.6 
16 to 17 1064 0 

18 2025 5.9 
22 1033 18.1 
25 690 5.5 

Glacial Gravel 1:2 0-2.5 6.5 202 0 
with Lower Old 9.5 472 0 
Red Sandstone-
St Maughan's 
Group 2.5-5.0 6.5 629 0 

9.5 . 274 0 

rrore than 5 . 0 6.5 1994 2.6 
9.5 987 0 

Clay-with-flints 1:2 2.5-5.0 9 202 0 
with Upper Chalk 22 290 1.7 
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TABLE 3/6 

Maximum slope angles allowable to restrict the percentages of failure to below 
1 per cent within 25 years of construction as indicated by the results of 

the sur:vey 

DRIIT DEPQSITS MaximJrn slope angle (v:h) 

Height 
0 - 2.5m 2 . 5 - 5. Om : t-bre than 5 . Om 

EMBANKMENI'S 
River Gravel 

Glacial Gravel 

SIN;LE GOOiroiES 
1:1.5 

1:1.75 

1:1.75 

1:2.5 

Boulder Clay South 
West 
North-west 

Clay-with-flints 

1:2 1:3 
1:2 1:2 
1:1.75 1:1.75 
1:2 1:3 

a:::MBINATICNS OF 'liD GOOiroiES 
River Gravel with 

London Clay 
Upper Chalk 
Lower Chalk 
Oxford Clay 

Plateau Gravel with 
London Clay 

Glacial Gravel with 
Boulder Clay 
Pebbly Clay and Sand 
Upper Chalk 
Middle Lias 

(Silts and Clays) 

1:2 
1:2 
1:1.75 
1:2.5 

1:2 

1:2 
1:2 
1:2 
1:3* 

Keuper Marl 1:2 
carboniferous Limestone 1:1.75 

Series (carbonate) 
Lower Old Red Sandstone 1:1.75 

- St. Maughan's Group 
Lower Old Red Sandstone 1:2 

- Raglan Marl Group 
Boulder Clay with 

Glacial Silt + Varv. Cl. 
London Clay 
Upper Chalk 
Gault Clay 
Lower Greensand 
Keuper Marl 
Enville Beds 
carboniferous Limestone 

1:2.5* 
1:2 
1:1.75 
1:2.5 
1:2 
1:2 
1:2 
1:2 

Series (carbonate) 
carboniferous Limestone 1: 2 

Series (Arenaceous) 
Glacial Head with 

Lower Lias 
Keuper Marl 

Clay-with-flints with 
Reading Beds 
Upper Chalk 

* Extrapolated result. 

1:2 
1:1.5 

1:2 
1:1.75 
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1:3* 
1:2 
1:1.75 
1:2.5 

1:3* 

1:2 
1:2 
1:2 
1:3* 

1:2* 
1:1.75 

1:2 

1:2.5* 
1:2 
1:1.75 
1:3.5* 
1:2 
1:2 
1:3 
1:2 

1:2 

1:3.5 
1:2 

1:2 
1:1.75 

1:1. 75* 

1:2.5* 

1:3 
1:2.5* 
1:1.75 
1:3.5* 

1:3* 

1:3.5* 

1:2 
1:3* 

1:2* 
1:2 

1:3 

1:2.5* 
1:3 
1:1.75 

1:2 
1:3.5* 
1:2 

1:2 

1:3.5 
1:2 

1:2 
1:2.5 



TABLE 3/7 

Maximum slope angles allowable to restrict the percentages of failure to below 
1 per cent within 25 years of construction as indicated by the results of 

the survey 

DRIFI' DEPQSITS Maxim..lm slope angle (v: h) 

Height 
0 - 2.5m 2.5 - 5.0m : More than S.Om 

CU'ITINJS Sm.E GEX)UX;IES 
River Gravel 1:2.5 

Plateau Gravel 1:2.5 

Glacial Gravel 1:1.5 

Boulder Clay South 1:1.75 

Glacial Head 

West 1:1.75 
Midlands 1 : 2 . 5 
North~est 1:1.75 

1:2.5 

1:2.5 

1:2.5 

1:1.75 

1:3.5 
1:2 
1:2.5 
1:2 

Clay-with-flints 1:2.5 1:2.5 
CDffiiNATIOOS OF '00 GOOI.CGIES 

Glacial Gravel with 
Carboniferous Limestone 1:1.75 

Series (Carbonate) 
Lower Old Red Sandstone 1:2 

- St Maughan's Group 

Boulder Clay with 
London Clay 
Upper Chalk 
Lower Greensand 
Oxford Clay 
Keuper COnglomerate 
Enville Beds 
Carboniferous Limestone 

Series (Carbonate) 

Clay-with-flints with 
Upper Chalk 

* Extrapolated result. 

1:2.5 
1:2 
1:2 
1:2 
1:2 
1:2 
1:2 

1:2 
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1:1.75 

1:2 

1:2.5 
1:2 
1:2 
1:2 
1:2 
1:3 
1:2 

1:3.5 

1:2.5 

1:3.5* 

1:2 

1:3.5 
1:3* 
1:2.5* 
1:2.5 

1:2.5 

1:1.75 

1:2.5 

1:4* 
1:2 
1:2 

1:3 

1:3.5* 



TABLE 3/8 

Types of drainage and maximum slope angles allowable to restrict the percentages 
of failure to below 1 per cent within 25 years of construction as indicated by 

the results of the survey 

DRIFT DEFQSITS 

River Gravel with 
London Clay 

Plateau Gravel with 
London Clay 

Glacial Gravel with 
carboniferous Limestone 

Series (Garbonate) 
Lower Old Red Sandstone 

- St Maughan's Group 

Glacial Head with 
Lower Lias 
Keuper Marl 

Plateau Gravel 

Clay-with-flints with 
Upper Chalk 

Type of drainage Maximum slope angle (v:h) 

Height 
0 - 2.5m : 2.5 - 5.0m : More than 5.0m 

CDiBINATICNS OF 'lWO GEXJLOGIES 

None 

Open ditch 

Open ditch 

French drain 

Open ditch 
Open ditch 

1:2 

1:2 

1:1.75 

1:1.75 

1:2 
1:1.5 

SINGLE GEDLOGIES 

French drain 1:2.5 

1:2 

1:2 

1:1.75 

1:2 

1:2 
1:1.5 

1:2.5 

CDiBINATICNS OF 'lWO GroLOGIES 

Open ditch 1:1.25 1:1.25 
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1:1.75 

1:2 

1:2 
1:1.5 

1:3 
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4.1 Geology 

Chapter 4 

Solid deposits 

4.1.1 Eocene and cretaceous deposits 

Tables 4/1 and 4/2 show the overall results of single Eocene 

and Cretaceous deposits and combinations of two geologies, 

provided they are not associated with younger deposits where 

they will have appeared previously in Chapter 3. Again only 

total lengths of slope greater than 1.0km have been considered. 

For embankments, Gault Clay, Reading Beds, Reading Beds with 

Upper Chalk, London Clay with Reading Beds and London Clay 

have, in descending order, high percentages of failure ranging 

from 8.2 to 4.4 per cent. The remaining deposits have 

percentages of failure of 1.6 per cent or less. Overall 1:2 is 

the most common and steepest predominant slope angle but slope 

angles as flat as 1:2.5 and 1:3 do occur. 

Gault Clay shows a high percentage of failure of 9.6 per cent 

in cuttings and a predominant slope angle of 1:2.5. Reading 

Beds have a percentage of failure of 2.9 per cent and the other 

geologies have percentages of failure of 1.2 per cent or less. 

Cutting slopes show a greater variety of predominant slope 

angle than embankments and vary from 1:3 to 1:1.25. 
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Cutting slopes of Gault Clay had 1.4 per cent more failure than 

embankment slopes with the predominant slope angle being 1:2.5 

in each case. The slopes of Reading Beds and those of London 

Clay have a much higher percentage of failure in embankments 

than in cuttings which may be due to the predominant slope 

angle, for both geologies, being much steeper in embankments. 

There are a number of Eocene and Cretaceous deposits that 

exhibited percentages of failure of less than 1 per cent or had 

no failures at all. 

4.1.2 Jurassic and Triassic deposits 

The overall results for Jurassic and Triassic deposits, with 

total lengths of slope greater than 1.0km, are given in Tables 

4/3 and 4/4. Results for combinations of these geologies with 

a younger deposit are given earlier in Chapter 3 or Section 

4 . 1 . 1 . 

Kimmeridge Clay and Oxford Clay are the geologies with the 

highest percentages of failure in embankment slopes, with 

values of 6.1 per cent and 5.7 per cent respectively. Lower 

Keuper Sandstone slopes have a predominant slope angle of 1:1.5 

and a percentage of failure of 4.9 per cent. Of these 

failures, 62 per cent were failures of the topsoil at its 

junction with the more rocky material within the fill. It 

would appear, therefore, that although the rock fill is stable, 

for most slopes of Lower Keuper Sandstone, the topsoil fails at 

76 



such steep slope angles. These slips were overgrown at the 

time of the survey indicating failure at an earlier stage in 

the motorway's life. Lower Lias and Oxford Clay with Kellaways 

Beds both have percentages of failure of 3.5 per cent. All 

other geologies have percentages of failure of 1.2 per cent or 

less, with some having no failures at all. The commonest 

predominant slope angle overall is 1:2 with other slope angles 

ranging from 1:2 up to 1:1.5. 

Middle Lias (Silts and Clays) with Lower Lias cutting slopes 

show a very high percentage of failure of 13.1 per cent. 

Oxford Clay and Bunter Pebble Beds show percentages of failure 

of 3.2 and 2.3 per cent respectively. All other geologies have 

percentages of 1.0 per cent or less. The predominant slope 

angles for all the cuttings in these geologies range from 1:4 

to 1:1.5 with 1:2 being the most frequent. 

Oxford Clay and Lower Lias slopes failed in both cuttings and 

embankments but Oxford Clay with Kellaways Beds failed in 

embankments only which may reflect the flatter predominant 

slope angle in cuttings. 

4.1.3 Carboniferous and Old Red Sandstone deposits 

Tables 4/5 and 4/6 show the overall results for single 

geologies and combinations of two geologies for Carboniferous 

and Old Red Sandstone deposits with total lengths of slope 

greater than 1.0km. Where these deposits are combined with 
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younger materials they appear earlier in Chapter 3, Section 

4.1.1 or Section 4.1.2. The Coal Measures and Millstone Grit 

Series are divided into argillaceous and arenaceous 

lithologies, using information from geological survey maps and 

observations made during the survey. These divisions were 

necessary as the stability of each lithology varied. 

There is no percentage of failure greater than 0.8 per cent for 

embankments constructed from these geologies and the failures 

that do occur are in geologies with some argillaceous material 

present. These failures appear to be a result of weathering of 

the shale or mudstone at the surface of the fill beneath the 

topsoil. The predominant slope angle in all cases is 1:2. 

Cutting slopes of Enville Beds have 5.8 per cent failure; other 

materials have 1.7 per cent or less and some have none at all. 

Cutting slopes of Carboniferous Limestone Series (Carbonate) 

have 1.1 per cent failure. This is due to failure of the soil 

which infills cavities within the limestone as explained in 

more detail in Chapter 5. The commonest predominant slope 

angle is 1:2 with a range from 1:2.5 to 1:1.25. 

A meaningful comparison cannot be made between the performance 

of Enville Beds in cuttings and its performance in embankments. 

Although 3.3km of cutting slope were surveyed in this material, 

there was only a total length of 75m of embankment slope which 

is not considered sufficient to be representative. 
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4.2 Age of earthworks 

4.2.1 Eocene and Cretaceous deposits 

Tables 4/1 and 4/2 show that the ages of earthworks constructed 

of Eocene and Cretaceous deposits range from 0 to 22 years. 

The results of an analysis of the effect of age on the 

percentage of failure is given in Table 4/7. 

There is a clear trend for embankments constructed of London 

Clay and London Clay with Reading Beds, which shows that slopes 

of particular geometries on younger earthworks are exhibiting 

higher percentages of failure than the slopes of older 

earthworks. A similar trend can be seen in embankments of 

Oxford Clay in Section 4.2.2. Variations of soil properties, 

motorway specifications and construction practices are likely 

explanations of this behaviour. Cutting slopes in London Clay 

and Gault Clay, exhibit higher percentages of failure as the 

age of earthworks increases. 

4.2.2 Jurassic and Triassic deposits 

The ages of the earthworks surveyed in these deposits range 

from 1 to 25 years. The effect of age on the percentage of 

failure was analysed and the results are given in Table 4/8. 

Oxford Clay embankment slopes show a similar trend to the 

Eocene deposits in Section 4.2.1 where the percentage of 

failure decreases as the age of the earthworks increases. 
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However, Lower Lias over a similar range of ages shows the 

opposite trend in both embankments and cuttings. 

4.2.3 Carboniferous and Old Red Sandstone deposits 

Tables 4/5 and 4/6 show that the ages of earthworks studied 

range from 4.5 to 23 years. An analysis of the effect of age 

on the percentage of failure is shown in Table 4/9. Embankment 

slopes and cutting slopes show a similar trend, with higher 

percentages of failure occurring on the older motorways. There 

is one exception to this trend in Lower Old Red Sandstone - St. 

Maughan's Group, where 5 year old slopes with a geometry of 1:2 

slope angle and a height of more than 5.0m show a higher 

percentage of failure than slopes of 6.5 years, 9.5 years and 

20 years of age at the same geometry. This erratic behaviour 

may reflect the differences in the proportions of strong and 

weak rock that occur in this formation. 

4.3 Geometry of slope 

4.3.1 Eocene and Cretaceous deposits 

Figures 4/1 and 4/2 show the results of the effect of various 

combinations of geology, age and geometry on the percentage of 

failure, for slopes of total length in excess of 2.5km with a 

percentage of failure greater than 1 per cent. 

It was recognized during the survey that Reading Beds contained 
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two·extensive soil types, one that was granular and the other 

cohesive, occurring in two distinct areas. The cohesive beds 

contained the majority of failures and consequently are 

analysed in detail. 

Total failure has occurred in embankment slopes of Reading Beds 

(cohesive) which have a slope angle of 1:2 and heights in the 

range of 12.5m to 15.0m. Although embankments within this 

height range in an over-consolidated clay are uncommon, Reading 

Beds (cohesive) showed high percentages of failure for all 

heights above 2.5m at 1:2. Similarly, Gault Clay (22 years 

old) has a high percentage of failure of nearly 50 per cent at 

1:2.5 and over 25 per cent at 1:2 for heights between S.Om and 

7.5m. Greenwood, Holt and Herrick (1985) also report a large 

number of failures in this material on the A45 trunk-road at a 

slope angle of 1:2. Reading Beds (cohesive), Reading Beds with 

Upper Chalk, London Clay with Reading Beds (cohesive) and Gault 

Clay all show a reduction in the percentage of failure with 

increasing slope angle. (Upper Tunbridge Wells Sand shows a 

gradual increase and then a reduction in the percentage of 

failure for one particular height band but the percentages are 

small.) London Clay, as a single geology, and Weald Clay show 

the opposite trend. 

In cuttings, the two geologies represented show high 

percentages of failure. Twenty-two year old Gault Clay slopes 

at 1:3 between S.Om and 7.5m high have a percentage of failure 

in excess of 50 per cent. The 10 year old slopes in Gault Clay 
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show an increase in the percentage of failure with an increase 

in slope angle while the 22 year old slopes show a maximum 

percentage of failure at a slope angle of 1:3. It is 

reasonable to assume that the older Gault Clay slopes would 

behave similarly to the 10 year old slopes, with the percentage 

of failure increasing, if slopes with angles steeper than 1:2 

had been found. 

There is a clear indication, with both embankments and 

cuttings, that the percentage of failure increases as the 

height of slope increases. 

4.3.2. Jurassic and Triassic deposits 

The effect of geometry on the percentage of failure is 

illustrated in Figures 4/3 and 4/4 for Jurassic and Triassic 

deposits with total lengths of slope in excess of 2.5km and a 

percentage of failure of greater than 1 per cent. Embankment 

slopes of Oxford Clay, Kimmeridge Clay and Lower Lias and 

cutting slopes in Oxford Clay show percentages of failure of SO 

per cent or more for certain combinations of geometry. Bunter 

Pebble Beds and Lower Keuper Sandstone embankment slopes, and 

Bunter Pebble Beds and Keuper Conglomerate cutting slopes 

exhibit lower percentages of failure. The results for each 

height band do not always cover more than one slope angle. 

In the 10 year old Oxford Clay embankments there is a strong 

trend for the percentage of failure to decrease as slope angle 
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increases. However, the 22 year old Oxford Clay embankments, 

covering the same range of slope angle, show the opposite trend 

for one height band, the same trend for another and a constant 

percentage of failure for 2.5-5.0m. Lower Lias embankments (25 

years old) show a similar pattern to that seen with other 

geologies, where there is an increase in the percentage of 

failure as the slope angle increases at the lower end of the 

range, then a reduction occurs at steeper slope angles. 

Presumably the percentage of failure would have again increased 

if slopes with steeper angles had been encountered. 

Kimmeridge Clay shows a reduction in the percentage of failure 

with an increase in slope angle. 

In cuttings, the 22 year old Oxford Clay slopes show an 

increase in the percentage of failure at steeper slope angles. 

In both embankment and cutting slopes, there is evidence that 

as the height of slope increases so does the percentage of 

failure. 

4.3.3 Carboniferous and Old Red Sandstone deposits 

As shown in Table 4/5, no lengths of embankment slope were 

found, in these materials, with a percentage of failure greater 

than 1 per cent. The geometry of these slopes has proved to be 

sufficient to prevent most failures from occurring. 

Consequently an analysis of the effect of geometry on the 

percentage of failure, for these lengths of embankment slope, 
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is not possible. 

Figure 4/5 shows the results of the effect of geometry on the 

percentages of failure for cutting slopes. Only geologies with 

a total length of slope greater than 2.5km and a percentage of 

failure greater than 1 per cent were considered. Enville Beds 

have a trend of increasing percentage of failure with 

increasing slope angle for two bands of height, and Raglan Marl 

Group (6.5 years old) shows the same trend for one band of 

height. St. Maughan's Group (5.0 years old) has one band of 

height with increasing percentage of failure, and another with 

decreasing percentage, as the slope angle is steepened. 

In most cases the percentage of failure increases as the height 

of slope increases. 

4.4 Type of drainage 

4.4.1 Eocene and Cretaceous deposits 

At the bottom of embankment slopes there were seven cases where 

the effect of all three types of drainage could be compared. 

The types of drainage associated with the slopes having the 

highest percentage of failure varied in each case. French 

drains and no drainage were highest in two cases and open 

ditches were highest in three cases. Open ditches never 

occurred at the bottom of slopes with the least percentage of 

failure. Studying all the cases where more than one type of 
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drainage occurred, twelve out of a total of nineteen cases 

showed slopes with open ditches as having the highest 

percentage of failure. French drains accounted for three of 

the other cases and no drainage for the remaining four. The 

last two types of drainage each had some cases where the 

percentage of failure of the slope was greater than for a 

comparable slope with open ditch. Open ditches occurred with 

slopes having the least percentage of failure in three cases 

compared to eight for each of the two other types of drainage. 

It would appear from these results that open ditches at the 

bottom of embankment slopes are associated with the majority of 

failures. The ranges of percentages of failure found are, 

French drain 

Open ditch 

None 

0 - 46 per cent 

0 - 45 per cent 

0 - 22 per cent 

Only five cases for comparison could be made of drainage at the 

top of cuttings. In the one case where all three types of 

drainage could be compared, the highest percentage of failure 

was for slopes with no drainage. These slopes also had a 

distinctly higher percentage of failure when compared with 

French drain only. There were three cases in Gault Clay where 

slopes with open ditches had a distinctly higher percentage of 

failure than slopes with no drainage. The ranges of 

percentages of failure found are, 

Open ditch 0 - 83 per cent 
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None 

French drain 

5.8 - 37 per cent 

0 - 10 per cent 

There are insufficient data for cuttings to describe trends for 

all the geologies. In Gault Clay cuttings, however, there is a 

higher percentage of failure in slopes associated with open 

ditches at the top, rather than in slopes with no drainage. 

The effect of slope drains, that is drains situated on the 

slope itself rather than just at the top or bottom, on the 

percentages of failure of cutting slopes in Reading Beds 

(cohesive) is given in Table 4/10 for slope angles of 1:3. 

These results clearly show that slope drains can prevent 

shallow failures from occurring with this type of material. 

The slopes affected by slope drains accounted for thirty per 

cent of the cutting slope at 1:3 in Reading beds (cohesive). 

4.4.2 Jurassic and Triassic deposits 

There were three cases of embankment slopes where all three 

types of base drainage could be compared. Each case had slopes 

with one of the three types of drainage associated with the 

highest percentage of failure. Where two or three types of 

drainage could be compared, fifteen out of a total of twenty­

one cases had slopes with open ditches associated with the 

highest percentage of failure. In fourteen out of the twenty­

one cases, slopes with no drainage had the least percentage of 

failure. The ranges of percentages of failure are, 
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Open ditch 

French drain 

None 

0 - 62 per cent 

0 - 58 per cent 

0 - 34 per cent 

In cuttings, comparing all cases including one where all three 

types of drainage occurred, slopes with open ditches at the top 

had the highest percentage of failure in four out of the total 

of six cases. Slopes with no drainage had the least percentage 

of failure in five of the cases. The performance of slopes 

with French drains cannot be fully established as there were 

only two cases for comparison. The ranges of percentages of 

failure are as follows: 

Open ditch 

None 

French drain 

6 - 52 per cent 

0 - 20 per cent 

0 - 3 per cent 

Open ditches at the bottom of embankment slopes and at the top 

of cutting slopes appear to be associated with most of the 

highest percentages of failure. The lowest percentages of 

failure occurred with slopes which had no drainage. 

In the survey, the area found to have the most slope drains on 

embankments was the M6 in Staffordshire on slopes of Keuper 

Marl. These lengths, with slope angles up to 1:1.5 and 

heights greater than S.Om, had no failures of either slopes 

with drains on them (which accounted for twenty five per cent 

87 



of the measured length) or of slopes without drains. Other 

motorways, with similar slope characteristics and no slope 

drains only show small percentages of failure, illustrating the 

good performance of the existing Keuper Marl embankments up to 

the present time. Based on the results of the survey, slope 

drains in Keuper Marl embankments, under normal drainage 

conditions, will prevent only a small number of failures 

occurring within 23 years of construction. This number of 

failures is probably too small to warrant the cost of extensive 

slope drains. Although the evidence for the use of slope 

drains in Keuper Marl embankments is unfavourable, this 

certainly does not mean that other materials would not benefit 

from such drainage facilities. For example, outside the survey 

area, slope drains installed in an embankment slope of Gault 

Clay (Johnson, 1985) are currently stable while adjacent 

untreated slopes are failing; slope drains were also the least 

expensive of the two preventative measures considered. 

4.4.3 Carboniferous and Old Red Sandstone deposits 

The design and maintenance of the types of drainage used, as 

well as the geometry, may be further reasons for the lack of 

failure in most of these geologies. The slips that have 

occurred are in cuttings of Enville Beds and Lower Old Red 

Sandstone where nearly 16km of slopes were surveyed. In these 

materials there are insufficient data from which to draw any 

conclusions about the effect of drainage on slope failures. 
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4.5 Ori~ntation of slope 

Out of all the geologies studied, Reading Beds (cohesive) was 

the only geology which showed any distinct trend toward a 

particular slope orisntation having an effect on the percentage 

of failure. In this material, the majority of slope angle and 

height combinations with the highest percentages of failure in 

embankments, and all the highest percentages in cuttings, faced 

toward the north as shown in Table 4/11. 

4.6 Design of side slopes in new construction 

4.6.1 Eocene and Cretaceous deposits 

Results of an analysis of the maximum slope angles allowable to 

minimize failure in the height range of 0-2.5m, 2.5-5.0m and 

greater than 5.0m are given in Tables 4/12 and 4/13. 

Comparisons can be made, with Tables 4/1 and 4/2, between the 

predominant slope angle and those required for a percentage of 

failure of less than 1 per cent. The major over-consolidated 

clays would require flatter slope angles. Gault Clay, for 

example, in embankments and cuttings, would require a slope 

angle of 1:5 (for slopes greater than 5.0m high) in order to 

reduce percentages of failure, while their current predominant 

slope angle is 1:2.5 in both cases. 

A considerable amount of data exists concerning the stability 

of cutting slopes in London Clay as reviewed by Skempton 
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(1977). Vaughan and Walbancke (1973), Leonards (1979) and 

subsequently Tavenas and Leroueil (1981) used this data and, 

based on the relation between the pore pressure parameter ru 

and time, produced a graph of slope angle against time (Figure 

4/6). The recommended slope angle from the survey was 1:3.5, 

indicating that failures were occurring at 1:3, and the maximum 

age for this recommendation was 10 years. Figure 4/6, however, 

indicates that 1:3 cutting slopes should fail at 45 years. A 

possible reason for this is that Skempton's original back­

analyses was of deep-seated failures and pore water pressures 

were only measured at depths greater than those associated with 

shallow failures. Although pore water pressure equilibration 

is described as being a slow process at depth, nearer the 

surface equilibration appears to be achieved much more rapidly. 

Shallow failures might also have occurred on these slopes 

nearer the time of construction. Time will tell as to whether 

deeper failures will occur on cutting slopes at 1:3 on the 

present motorway system and the survey computer database will 

be a valuable source for fulfilling this purpose. Based on the 

results of both sets of data a slope angle of 1:3.5 is 

recommended for London Clay cutting slopes; this slope angle 

should prevent shallow failures for at least 10 years after 

construction and prevent deeper failures for at least 120 years 

after construction. 

Table 4/14 shows how the use of particular types of drainage 

located at the bottom of embankments and the top of cuttings 

can result in a steepening of the recommended slope angle for a 
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number of geologies. Open ditches are associated with most of 

the highest percentages of failure, as shown in Section 4.4, 

and so they are not a recommended type of drainage for most of 

the geologies shown. 

For cuttings in Reading Beds (cohesive), the recommended slope 

angle can be altered by taking into account the slope's 

orientation (Table 4/11). On those slopes up to S.Om high 

which face east, south or west, with any type of drainage, the 

recommended slope angle can be steepened to 1:3.5. For slopes 

facing south with a French drain at the top, further steepening 

to a slope angle of 1:3 is possible while still keeping 

failures to a minimum. 

4.6.2 Jurassic and Triassic deposits 

Tables 4/15 and 4/16 show the results of an analysis of the 

maximum slope angles allowable to minimize failure in the 

height ranges 0-2.5m, 2.5- 5.0m and greater than 5.0m. 

Comparisons with the predominant slope angles in Tables 4/3 and 

4/4 can be made. Oxford Clay, for example in embankments and 

cuttings, was commonly constructed at a slope angle of 1:2 but 

a percentage of failure of less than 1 per cent would have been 

achieved on slopes more than 5.0m high if, based on the results 

of the survey, a slope angle of 1:3.5 had been used. 

Table 4/17 shows how the recommended slope angle for Oxford 

Clay embankments and Bunter Pebble Beds cuttings can be 
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steepened if a particular type of drainage is used. 

4.6.3 Carboniferous and Old Red Sandstone deposits 

Tables 4/18 and 4/19 show the results of an analysis of the 

maximum slope angles allowable to minimize failure in the 

height ranges of 0-2.5m, 2.5-5.0m and greater than 5.0m. 

Comparisons can be made, with Tables 4/5 and 4/6, between the 

predominant slope angles and those required for percentages of 

failure of less than 1 per cent. In embankments, for a large 

number of geologies, the predominant slope angle is the same as 

the maximum allowable to minimize failures on slopes more than 

5.0m high. This indicates that, for these materials, the 

original design has proved to be correct for the majority of 

slopes and conservative for the shorter lengths of slope at a 

flatter slope angle than the predominant. The exceptions 

which would require flatter slope angles are Middle Coal 

Measures (Argillaceous), Middle Coal Measures (Argillaceous 

with Arenaceous) and Lower Coal Measures (Argillaceous with 

Arenaceous). The only geology which is stable at a steeper 

slope angle than the predominant is Millstone Grit Series 

(Argillaceous with Arenaceous). For cuttings, there is some 

evidence that for certain geologies a steeper slope angle than 

the predominant one would still produce a percentage of failure 

of less than 1 per cent. Some geologies, particularly Enville 

Beds, show percentages of failure in excess of 1 per cent and 

would require flatter slope angles to reduce the amount of 

failure. 
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TABLE 4/1 

Eocene and Cretaceous deposits encountered in the survey, with a total 
length of slope in excess of 1.0km. 

Age of Total Percentage Predominant 
earthworks length of measured slope angle 

when surveyed (km) failure all heights 
(years) (v:h) 

EMBANKMENI'S 
ECX:ENE DEPOSITS S:rn:iLE GEX)L(X;IES 

London Clay 5,6,10 60.9 4.4 1:2 

Reading Beds 3,10 40.7 7.6 1:2 
cx:J.fBINATICNS OF 'lW:l GEX)L(X;IES 

Bag shot Beds with 
London Clay 5 1.6 0 

London Clay with 
Reading Beds 10,14 10.7 5.0 1:2 

Reading Beds with 
Upper Chalk 10 4.1 5.9 1:2 

CRETACEX:JUS PEPQSITS s:rn:;u: GEX)L(X;IES 
Upper Chalk 10,19,22 11.1 0.1 1:2 

Middle Chalk 3,22 5.3 0 1:2 

Lower Chalk 10,22 7.7 <0.1 1:2 

Gault Clay 9,22 5.3 8.2 1:2.5 

Lower Greensand 22 4.1 0.1 1:2.5 

Weald Clay 9 12.0 1.6 1:2.5 

Folkestone Beds 9 1.2 0 1:3 

Upper TUnbridge Wells Sand 9 14.2 1.0 1:2 
cx:J.fBINATICNS OF 'lW:l GIDimiES 

Upper Chalk with 
Lower Chalk 10 3.7 0 1:2 

Lower Chalk with 
Upper Greensand 10 4.3 0 1:2 

Upper Greensand and 
Gault Clay 10 1.6 0 1:2 

Weald Clay with 
Upper TUnbridge Wells 8,9 4.0 0.4 1:2 

Sands 

Folkestone Beds with 
Sandgate Beds 9 1.3 0 1:3 
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TABLE 4/2 

Eocene and Cretaceous deposits encountered in the survey, with a total 
length of slope in excess of 1.0km. 

Age of Total Percentage Predominant 
earthworks length of measured slope angle 

when surveyed (km) failure all heights 
(years) (v:h) 

CU'I'I'INJS 
EOCENE DEFQSITS S:m;LE GEDI.CGIES 

Bagshot Beds 5 1.5 0 

London Clay 0,3,5,6,7,10 20.2 0.3 1:3 

Reading Beds 10 20.0 2.9 1:3 

CREI'ACEX:XJS DEPQSITS S:m;LE GEX)ra;IES 

Upper Chalk 3,10,14,22 28.4 0 1:2 

Middle Chalk 3,9,10,22 10.6 0 1:2 

Lower Chalk 9,10,22 13.8 0.1 1:2 

Gault Clay 10,22 6.5 9.6 1:2.5 

Lower Greensand 10,22 2.7 0 1:1.75 

weald Clay 9 6.1 0 1:3 

Folkestone Beds 9 1.7 1.2 1:1.5 

Upper Tunbridge Wells Sand 9 14.9 0.4 1:2 

ca.miNATICNS OF 'IW) GEDI.CGIES 
Lower Chalk with 

Upper Greensand 10 1.2 0 1:1.25 
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TABLE 4/3 

Jurassic and Triassic deposits encountered in the survey, with a total 
length of slope in excess of 1.0km. 

EMBANI<MENI'S 
JURASSIC DEJ?CSITS 

Kirrmeridge Clay 

Coral Rag 

Oxford Clay 

Great Oolite Clay 

Acton Turville Beds 

Age of 
earthworks 

when surveyed 
(years) 

Snm.E GEX)I.(x;IES 

10 

10 

10,22 

10 

10 

Total 
length 

(krn) 

16.7 

3.6 

33.8 

7.5 

1.1 

Percentage Predominant 
of measured slope angle 

failure all heights 
(v:h) 

6.1 1:2 

0 1:2 

5.7 1:2 

0 1:1.75 

0 1:2 

Middle Lias (Silts and Clays) 25 2.8 0 1:2 

Lower Lias 4.5,13,25 34.1 3.5 1:2 
a::MBINATICNS OF 'lWJ GEX)I.(x;IES 

Kirrmeridge Clay with 
Coral Rag 10 1.1 0 1:1.75 

Oxford Clay with 
Kellaways Beds 10 1.6 3.5 1:1.75 

Kellaways Beds with 
Cornbrash 10 7.9 0.9 1:1.75 

Cornbrash with 
Great Oolite Clay 10 1.1 0 1:1.5 

'TRIASSIC PEl?CSITS Snm.E GEOI.CGIES 

Keuper Marl 10,20,23 29.6 <0.1 1:1.5 

Lower Keuper Sandstone 10,23 4.0 4.9 1:1.5 

Bunter Pebble Beds 19.5,23 6.5 1.2 1:2 
a::MBINATICNS OF 'lWJ GOOI.(x;IES 

Keuper Marl with 
Lower Keuper Sandstone 23 1.9 0.8 1:1.5 
Bunter Pebble Beds 23 1.3 0 1:2 
Lower Old Red Sandstone 5,20 1.8 0 1:2 

- St. Maughan's Group 

Lower Keuper Sandstone with 
Bunter Pebble Beds 23 1.4 0 1:2 

Bunter Pebble Beds with 
Keele Beds 23 3.1 0 1:2 
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TABLE 4/4 

Jurassic and Triassic deposits encountered in the survey, with a total 
length of slope in excess of 1.0km. 

CUITIN:;S 
JURASSIC DE£PSI'I'S 

Kinmeridge Clay 

Coral Rag 

Oxford Clay 

Kellaways Beds 

Cornbrash 

Great Oolite Clay 

Acton TUrville Beds 

Great Oolite Limestone 

Middle Lias (Marlstone Rock) 

Middle Lias (Silts and Clays) 

Lower Lias 

Oxford Clay with 
Kellaways Beds 

Kellaway Beds with 
Cornbrash 

Middle Lias (Silts and Clays) 
Lower Lias 

TRIASSIC DEEQSI'I'S 

Rhaetic 

Keuper Marl 

Keuper Conglomerate 

Lower Keuper Sandstone 

Bunter Pebble Beds 

Age of 
earthworks 

when surveyed 
(years) 

Total 
length 

(km) 

STIG.E GEX)I.O;IES 

10 4.5 

10 2.4 

10,22 14.6 

10 6.1 

10 3.8 

10 9.0 

10 2.0 

10 2.4 

25 2.5 

25 6.5 

4,5,13,25 41.0 

Percentage Predominant 
of measured slope angle 

failure all heights 
(v:h) 

0 

0 1:2.5 

3.2 1:2 

0 1:4 

0 1:1.5 

0 

0 

0 

0 1:2 

0.6 1:2 

0.4 1:3 
a:MBrnATICNS OF 'IWJ GID:ux;IES 

10 1.1 0 1:3 

10 1.9 0 1:2 

with 
25 1.7 13.1 1:2 

STIG.E GEX)I.O;IES 

4.5 4.5 <0.1 1:2 

4.5,5,10,20,23 35.6 0.2 1:2 

2,4.5,9.5,20 3.0 1.0 1:2 

10,23 5.3 0 1:1.5 

1,19.5,23 10.6 2.3 1:2 
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TABLE 4/5 

carboniferous and Old Red Sandstone deposits encountered in the survey, 
with a total length of slope in excess of 1. Okm. 

EMBANKMENI'S 
CAROCNIFEEaJS DEFQSITS 

Middle Coal measures 
(Argillaceous} 

Lower Coal Measures 
(Argillaceous} 

Lower Coal Measures 
(Arenaceous} 

Millstone Grit Series 
(Argillaceous} 

Millstone Grit Series 
(Arenaceous} 

carboniferous Limestone 
Series (carbonate} 

Upper Coal Meas (Arg} with 
Upper Coal Meas (Aren} 

Middle Coal Meas (Arg} with 
Middle Coal Meas (Aren} 

Lower Coal Meas (Arg} with 
Lower Coal Meas (Aren} 

Mill Grit Series (Arg} with 
Mill Grit Series (Aren} 

~ Em SANDS'ICNE 
DErosiTS 

Lower Old Red Sandstone 
- St Maughan's Group 

Lower Old Red Sandstone 
- Brownstone Group with 

Lower Old Red Sandstone 
- St Maughan's Group 

Age of 
earthworks 

when surveyed 
(years} 

Sm:;LE GEOICGIES 

14,15 

13 

13 

4.5,15 

4.5,15 

9.5 

Total 
length 

(km} 

12.8 

9.3 

1.6 

8.9 

1.8 

10.3 

Percentage Predominant 
of measured slope angle 

failure all heights 
(v:h} 

0.5 1:2 

0.3 1:2 

0 1:2 

<0.1 1:2 

0 1:2 

0 1:2 

a:MBINATICNS OF 'Im GEX)llX;IES 

15 2.0 0 1:2 

14,15 38.5 0.8 1:2 

4.5,13,14 24.8 0.8 1:2 

4.5,15 20.1 0 1:2 

Sm:;LE GEOICGIES 

5,9.5,20 6.4 0 1:2 

a:MBINATICNS OF 'Im GEX)llX;IES 

6.5 2.5 0 1:2 
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TABLE 4/6 
Carboniferous and Old Red Sandstone deposits encountered in the survey, 

with a total length of slo:pe in excess of 1. Okm. 
Age of Total Percentage Predominant 

earthworks length of measured slope angle 
when sw:veyed (km) failure all heights 

(years) (v:h) 

ctliTIN2S 
CARBCNIFEROOS PEWITS Sm:;LE GEX)L(x;IES 
Enville Beds 19.5 3.3 5.8 1:2.5 

Keele Beds 19.5,23 2.6 0 1:1.75 

Upper coal Measures 15 1.1 0 1:2 
(Argillaceous) 

Upper coal Measures 15 4.4 0 1:2 
(Arenaceous) 

Middle Coal Measures 14,15 22.2 0.9 1:2 
(Argillaceous) 

Middle coal Measures 14,15 3.5 0.7 1:2 
(Arenaceous) 

Lower coal Measures 4.5,13,14 11.6 0.3 1:2 
(Argillaceous) 

Lower coal Measures 4.5,13 1.8 0 1:2 
(Arenaceous) 

Millstone Grit Series 4.5,15 3.8 0.3 1:2 
(Argillaceous) 

Millstone Grit Series 4.5,13,15 13.4 0.1 1:1.25 
(Arenaceous) 

Carboniferous Limestone 4.5,9.5,16,17 6.7 1.1 1:2 
Series (Carbonate) 

cx::MBINATICNS OF 'IWJ GEX)r.o:;IES 
Upper Coal Meas {Arg) with 

Upper Coal Meas (Aren) 15 1.1 0 1:2 

Middle Coal Meas (Arg) with 
Middle Coal Meas (Aren) 14,15 23.3 0.4 1:2 

Lower Coal Meas (Arg) with 
Lower coal Meas (Aren) 13,14 21.0 0.4 1:2 

Mill Grit Series (Arg) with 
Mill Grit Series (Aren) 4.5,15 13.9 <0.1 1: 1. 75 

OLD ,RW SANDS'ICNE Snrn.E GOOI.a;IES 
DEIQSilS 
Upper Old Red Sandstone 9.5,20 3.7 0.5 1:2 

Lower Old Red Sandstone 5,6.5,9.5,20 9.7 1.7 1:2 
- St. Maughan's Group 

Lower Old Red Sandstone 6.5,7,20 2.9 1.5 1:2 
- Raglan Marl Group 

98 



TABLE 4/7 

Comparisons of the percentages of failure in embankments 
and cuttings of different ages for given 

Eocene and Cretaceous deposits and geometry 

Slope angle Height Age Total Percentage 
Geology (v:h) (m) (years) length of 

(m) failure 

EmbanJqrents 

London Clay 1:2 0-2.5 5,6 551 0 
10 7426 0 

2.5-5.0 5,6 625 14.6 
10 9499 6.2 

rrcre than 5 . 0 5,6 149 32.2 
10 7596 21.6 

London Clay with 1:2 0-2.5 10 834 1.8 
Reading Beds 14 286 0 

2.5-5.0 10 713 14.8 
14 302 3.3 

rrcre than 5. 0 10 1008 11.7 
14 429 6.2 

CUttinas 

London Clay 1:3 0-2.5 0 424 0 
10 380 3.2 

2.5-5.0 0 390 0 
6 533 1.9 

10 543 3.2 

Gault Clay 1:2.5 0-2.5 10 348 0 
22 202 0 

2.5-5.0 10 353 3.8 
22 299 4.4 
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TABLE 4/8 

Comparisons of the percentages of failure in embankments and cuttings 
of different ages for given Jurassic and Triassic deposits 

and geometry. 

Slope angle Height Age Total Percentage 
Geology (v:h) (m) (years) length of 

(m) failure 

EmbanJgnents 

Oxford Clay 1:2 0-2.5 10 3567 2.0 
22 1417 1.8 

2.5-5.0 10 1191 23.0 
22 1500 7.1 

rrore than 5 . 0 10 512 41.4 
22 1263 36.3 

Lower Lias 1:2 0-2.5 13 3672 0 
25 654 5.5 

2.5-5.0 13 2402 1.7 
25 694 12.6 

rrore than 5. 0 13 1726 10 
25 293 32.6 

Cuttinas 

Lower Lias 1:2 0-2.5 4.5 443 0 
25 679 6.4 

2.5-5.0 4.5 529 0 
25 894 1.4 
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TABLE 4/9 

Comparisons of the percentages of failure in embankments and cuttings 
of different ages for given carboniferous and Old Red Sandstone 

deposits and geornei:Iy 

Geology Slope angle Height Age Total Percentage 
(v:h) (m) (years) length of 

(m) failure 

0-2.5 4.5 373 0 
13,14 2731 0 

EmbanJqnents 
Lower Coal Measures 2.5-5.0 4.5 670 0 
(Argillaceous with 1:2 13,14 3322 4.4 
Arenaceous) 

m::>re than 5 . 0 4.5 917 0 
13,14 3718 0.8 

0-2.5 5 392 0 
9.5 508 0 

20 223 0 

currrms 2.5-5.0 5 443 0 
Lower Old Red 1:2 9.5 570 0 
Sandstone - St Maughan's 20 449 0 
Group 

m::>re than 5 . 0 5 736 7.6 
6.5 382 1.0 
9.5 952 1.9 

20 742 2.0 
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TABLE 4/10 

The effect of slope drains on the percentages of failure 
in cuttings of Reading Beds (cohesive) at a slope 

angle of 1:3 (10 years old). 

Height 
(m) 

0-2.5 

2.5-5.0 

rrore than 5. 0 

Percentage of failure 

Slopes without 
drains 

0 

5 

33 

TABLE 4/11 

Slopes with 
drains 

0 

0 

0 

Effect of slope orientation on the 
percentages of failure of Reading Beds (cohesive) 

embankment and cutting slopes (10 years old) 

Percentage of failure 

Slope Height 
angle (m) North East, 
(v:h) South, West 

Embankments 1:2.5 0-2.5 8 0 
1:2.5 2.5-5.0 41 7 
1:2.5 5.0-7.5 60 19 
1:2 2.5-5.0 9 15 
1:2 5.0-7.5 31 27 

Cuttings 1:3.5 2.5-5.0 10 0 
1:3 2.5-5.0 14 1 
1:3 5.0-7.5 41 10 
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TABLE 4/12 

Maximum slope angles allowable to restrict the percentages of failure to below 
1 per cent within 22 years of construction as indicated by the results of 

the survey 

EMBANKMENTS 
E0:ENE DEIPSITS 

London Clay 

0 - 2.5rn 

Sm:;LE GOOI.CGIES 
1:2 

Maxirm.lrn slope angle {v: h) 

Height 
2.5 - 5.0rn 

1:3 

Reading Beds {cohesive) 1 : 3 1 : 4 * 
(non-cohesive) 1:1.75 1:1.75 

cx:MBINATICNS OF 'IW) GOOI.CGIES 
London Clay with 

Reading Beds 1:2.5 1:3* 

Reading Beds with 
Upper Chalk 1:2.5 1:3* 

CREI'ACEXIJS DEPQSITS Sm:;LE GEOI.CGIES 
Upper Chalk 1:2 1:2 

Middle Chalk 1:2 1:2 

Lower Chalk 1:2 1:2 

Gault Clay # 1:3.5* 1:4* 

Lower Greensand 1:2 1:2 

Weald Clay 1:2.5 1:3* 

Folkestone Beds 1:3 1:3 

Upper Tunbridge Wells Sand 1:2 1:2.5 
cx:MBINATICNS OF 'IW) GEOI.CGIES 

Upper Chalk with 
Lower Chalk 1:2 1:2 

Lower Chalk with 
Upper Greensand 1:2 1:2 

Upper Greensand with 
Gault Clay 1:2 1:2 

Weald Clay with 
Upper Tunbridge Wells Sand 1:2 1:2 

Folkestone Beds with 
Sandgate Beds 1:3 1:3 

* Extrapolated result. 
# These results take account of a failure on a more recently 

constructed rnotorway (M26) than those included in the survey. 
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More than 5 . Om 

1:3* 

1:4* 
1:1.75 

1:3* 

1:3* 

1:2 

1:2 

1:2 

1:5* 

1:3* 

1:3 

1:3 

1:2 

1:2 

1:2 

1:2.5 

1:3 



TABLE 4/13 

Maximum slope angles allowable to restrict the percentages of failure to below 
1 per cent within 22 years of construction as indicated by the results of 

the survey 

Maximum slope angle (v:h) 

Height 
0 - 2.5m 2 . 5 - 5 . Om : More than 5 . Om 

a.rrrm:;s 
ECX:ENE DEFQSITS Sm:iLE GEOI.CGIES 

London Clay 1:3.5 

Reading Beds (cohesive) 1:4* 
(non-cohesive) 1:2.5 

CRETACEX:XJS DEFQSI'I'S 

Upper Chalk 

Middle Chalk 

Inwer Chalk 

Gault Clay 

Lower Greensand 

Weald Clay 

Sm:iLE GEOI.CGIES 

1:1.25 

1:1 

1:1.5 

1:3.5 

1:1.75 

1:2.5 

Upper Tunbridge Wells Sand 1:2 

1:3.5 

1:4* 
1:2.5 

1:1.25 

1:1 

1:2 

1:4 

1:1.75 

1:2.5 

1:2 

cx::MBINATICNS OF 'IWJ GEOI.CGIES 

Inwer Chalk with 
Upper Greensand 

* Extrapolated result. 

1:1.25 1:1.25 
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1:3.5 

1:4* 
1:3 

1:1.25 

1:1 

1:2 

1:5* 

1:1.75 

1:2.5 

1:2.5 

1:1.25 



TABLE 4/14 

Types of drainage and maximum slope angles allowable to restrict the percentages 
of failure to below 1 per cent within 22 years of construction as indicated by 

the results of the survey 

Type of drainage Maximum slope angle (v:h) 

Height 
0 - 2.5m : 2.5 - 5.0m : More than 5.0 

EMBANKMEN1'S 
EXX:ENE DEIQSITS 

London Clay None 

Sm::iLE GIDI.£X;IES 

1:2 

Reading Beds (cohesive) French drain 1:2.5 

1:2.5 

cx:MBINATICNS OF 'liD GEOI.CGIES 

London Clay with 
Reading Beds French drain 1:2 

CRETACEWS DEIPSI'I'S Sm::iLE GEOI.CGIES 

Weald Clay Open ditch 1:2 

Upper 'I\mbridge Wells Sand None 1:2 

Sm::iLE GIDI.£X;IES 

Reading Beds (cohesive) French drain 1:3 
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1:2.5 

1:2 

1:3 

1:2.5 

1:2 



TABLE 4/15 

Maximum slope angles allowable to restrict the percentages of failure to below 
1 per cent within 25 years of construction as indicated by the results of 

the survey 

EMBANKMENI'S 
JURASSIC DEEQSITS 

Kinmeridge Clay 

Coral Rag 

Oxford Clay 

Great Oolite Clay 

Acton TUrville Beds 

Middle Lias (Silts and Clays) 

Lower Lias 

Kinmeridge Clay with 
Coral Rag 

Kellaways Beds with 
Cornbrash 

TRIASSIC DEFQSITS 

Keuper Marl 

Lower Keuper Sandstone 

Bunter Pebble Beds 

Keuper Marl with 
Lower Keuper Sandstone 
Bunter Pebble Beds 

Bunter Pebble Beds with 
Keele Beds 

* Extrapolated result. 

Max:i.rrum slope angle (v:h) 

0 - 2.5m 

Snrn.E Grol.(X;IES 

1:2.5 

1:2 

1:3* 

1:1.75 

1:2 

1:2 

Height 
2.5 - 5.0m 

1:3.5* 

1:3.5* 

1:1.75 

1:2 

1:2 

1:5 1:5* 
a::MBINATICNS OF TMJ GEDI.CGIES 

1:1.75 1:1.75 

1:2 1:2.5 

1:1.5 1:1.5 

1:2* 1:2* 

1:1.75 1:1.75 
CXMBINATICNS OF TMJ Grol.(X;!ES 

1:1.5 
1:2 

1:2 
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1:1. 75* 

1:2 

: More than 5. Om 

1:3.5* 

1:3.5* 

1:1.75 

1:2 

1:2 

1:5* 

1:3* 

1:1.75* 

1:2* 

1:1.75 

1:2* 

1:2 



TABLE 4/16 

Maximum slope angles allowable to restrict the percentages of failure to below 
1 per cent within 25 years of construction as indicated by the results of 

the survey 

0 - 2.5m 

CUTI'IN:?S 
JURASSIC DEIPSITS SnG.E GEXJI.CGIES 

Coral Rag 1:1.25 

Oxford Clay 1:2.5 

Kellaways Beds 1:2 

Cornbrash 1:1.5 

Middle Lias 1:2 
(Marlstone Rock) 

Middle Lias 1:2 
(Silts and Clays) 

Lower Lias 1:4 

Maxinurn slope angle (v:h) 

Height 
2.5 - 5.0m 

1:1.25 

1:3 

1:3 

1:1.5 

1:2 

1:2.5* 

1:5* 

: More than 5. Om 

1:3.5* 

1:3.5 

1:1.5 

1:2 

1:2.5* 

1:5* 

CQ.IDINATICNS OF 'Iw:> GEX)r.cx:;IES 

Oxford Clay with 
Kellaways Beds 

Kellaways Beds with 
Cornbrash 

Middle Lias 
(Silts and Clays) with 

1:3 

1:2 

Lower Lias 1:2 

TRIA$SIC DEIQSITS sm:;u: GEXJI.CGIES 

Rhaetic 1:1.5 

Keuper Marl 1:1.5 

Keuper Conglomerate 1:1 

Lower Keuper Sandstone 1:1.25 

Bunter Pebble Beds 1:2 

* Extrapolated result. 
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1:3 

1:2 

1:2.5 1:2.5 

1:1.5 1:1.5 

1:1.75 1:1.75 

1:1.25 1:1.5 

1:2 1:2.5 



TABLE 4/17 

Types of drainage and maximum slope angles allowable to restrict the percentages 
of failure to below 1 per cent within 25 years of construction as indicated by 

the results of the survey 

EMBANKMENI'S 
JIJRASSIC DEPQSI'I'S 

Oxford Clay 
CU'I'I'IN2S 
TRIASSIC DEPQSI'I'S 

Bunter Pebble Beds 

Type of drainage MaxirmJm slope angle (v: h) 

Height 
0 - 2.5m : 2.5 - 5.0m : More than S.Om 

Sm:;LE GEX)I(X;IES 

French drain 1:2 1:2 

Sm:;LE GEX)I(X;IES 

None 1:2 1:2 1:2 
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TABLE 4/18 

Maximum slope angles allowable to restrict the percentages of failure 
to below 1 per cent within 23 years of construction as indicated 

by the results of the survey 

Maximum slope angle (v:h) 

0 - 2.5m 
Height 

2.5 - 5.0m 

EMBANKMEm'S 

CARBCNIFERaJS DEFGSITS STIG..E GEOU:X;IES 
Middle Coal Measures 1:2.5 1:3* 
(Argillaceous) 

Lower Coal Measures 1:1.75 1:2 
(Argillaceous) 

Lower Coal Measures 1:2 1:2 
(Arenaceous) 

Millstone Grit Series 1:2 1:2 
(Argillaceous) 

Millstone Grit Series 1:2 1:2 
(Arenaceous) 

Carboniferous Limestone 1:2 1:2 
Series (Carbonate) 

CXM3INATICNS OF 'IW:> GEX)Il:X;IES 
Upper Coal Meas (Arg) with 

Upper Coal Meas (Aren) 1:2 1:2 

Middle Coal Meas (Arg) with 
Middle Coal Meas (Aren) 

Lower Coal Meas (Arg) with 
Lower Coal Meas (Aren) 

Mill Grit Series (Arg) with 
Mill Grit Series (Aren) 

QW EW SANOOirnE 
DEIWITS 
Lower Old Red Sandstone 

-st. Maughan's Group 

1:2 1:2.5 

1:2 1:2.5 

1:1.5 1:1.75 

STIG..E GEOU:X;IES 

1:2 1:2 

CXM3INATICNS OF 'IW:> GEOU:X;IES 
Lower Old Red Sandstone 

-Brownstone Group with 
Lower Old Red Sandstone 1:1.5 1:1.75 

-St. Maughan's Group 

* Extrapolated result. 

109 

: More than 5. Om 

1:3* 

1:2 

1:2 

1:2 

1:2 

1:2 

1:3 

1:2.5 

1:1.75 

1:2 

1:2 



TABLE 4/19 
Maximum slope angles allowable to restrict the percentages of failure to below 

1 per cent within 23 years of construction as indicated by the results of 
the survey 

Maximlrn slope angle (v:h) 

Height 
0 - 2.5m 2.5 - 5.0m : More than 5. Om 

CU'ITINGS 
CARBCNIFEROOS DEKl$ITS STIG.E GEXJI.CX;IES 
Enville Beds 1:2 1:2.5 1:3 

Keele Beds 1:1.75 1:1.75 

Upper Coal Measures 1:2 1:2 1:2 
(Argillaceous) 

Upper Coal Measures 1:2 1:2 1:2 
(Arenaceous) 

Middle Coal Measures 1:2.5 1:3 1:3.5 
(Argillaceous) 

Middle Coal Measures 1:2 1:2 1:2.5 
(Arenaceous) 

Lower Coal Measures 1:2 1:2 1:2 
(Argillaceous) 

Millstone Grit Series 1:1.75 1:1.75 1:1.75 
(Argillaceous) 

Millstone Grit Series 1:1.5 1:1.5 1:1.75 
(Arenaceous) 

carboniferous Limestone 1:1 1:1.25 1:1.25 
Series (carbonate) 

CXMBINATICNS OF 'liD GEXJI.CX;IES 
Upper Coal Meas (Arg) with 

Upper Coal Meas (Aren) 1:2 1:2 1:2 

Middle Coal Meas (Arg) with 
Middle Coal Meas (Aren) 1:2 1:2.5 1:2.5 

Lower Coal Meas (Arg) with 
Lower Coal Meas (Aren) 1:1.75 1:2 1:2.5 

Mill Grit Series (Arg) with 
Mill Grit Series (Aren) 1:1 1:1 1:1 

QW Em SANDS'ICNE STIG.E GEXJI.CX;IES 
DEPa;iiTS 
Upper Old Red Sandstone 1:1.75 1:2 1:2 

Lower Old Red Sandstone 1:1.75 1:2 1:2.5 
-St. Maughan's Group 

Lower Old Red Sandstone 1:2 1:2.5 1:2.5* 
- Raglan Marl Group 

* Extrapolated result. 
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Chapter 5 

General results for all the motorways surveyed 

5.1 Description of slope failures 

The survey has revealed a significant incidence of slope 

failures in side slopes of both cuttings and embankments. In 

the 570km of motorway surveyed, accumulated lengths of over 

17km of embankment slope and over 5.5km of cutting slope have 

failed. The type of slope failure observed varied from 

distinct slab type to shallow circular type but with most slips 

having a combination of translational and circular movement. 

The vertical depth of the failure surface beneath the surface 

of slopes unrepaired at the time of the survey rarely exceeded 

1.5m with a minimum depth of 0.2m and a maximum depth of 2.5m, 

(Table 5/1). 

Where embankments are constructed of rock and the slope angle 

is high, very shallow failures can develop due to failure of 

the topsoil on the stable rock fill beneath, for example on 

Lower Keuper Sandstone and Chalk. Although the slope is stable 

for the rock fill it cannot always retain a topsoil and when 

failure occurs the rock becomes exposed to weathering. In the 

majority of embankments constructed of soil, the failure 

surface extends through the topsoil into the fill to greater 

depths than in embankments of rock fill. 

In most instances the area of failure extended from the crest 
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to the toe of the slope. 

During the survey it was observed that, at the bottom of a 

small percentage of embankments and cuttings, the toe of the 

slope had been disturbed leaving a vertical face. This has 

been called 'toe erosion' and may have formed as a result of 

disturbance by maintenance plant or as a consequence of the 

motorway hard shoulder being widened. The vertical face was 

normally less than O.Sm high in those geologies susceptible to 

failure. Although failures were present on slopes affected by 

toe erosion, analysis indicates that usually other factors, 

such as geometry, contributed to these failures. 

The method used for repairing failures has been similar for all 

areas included in the survey and involved excavating the failed 

material, sometimes in benches, to below the failure surface 

and backfilling with a granular free-draining material such as 

gravel, brick rubble or crushed rock. Topsoil has been added 

in some regions, obscuring the repair and providing a more 

attractive appearance. Occasionally failure of a previously 

repaired slope has occurred presumably because excavation did 

not proceed beyond the original failure surface or a new 

failure surface has developed deeper in the fill. 

Only one fabric reinforced soil reinstatement was located in 

the survey area, in a cutting on the M4 in Berkshire. This was 

a reinstatement of a deep seated failure, rather than a shallow 

slip, the design and construction of which is described by 
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Murray, Wrightman and Burt (1982). 

In cutting slopes where a soil overlies a rock, failures have 

occurred where the soil infilled cavities in the rock (Figure 

5/1). Although the upper soil slope is generally constructed 

at a flatter slope angle, soil within the cavities is 

constructed at the steeper slope angle suitable for the rock 

and consequently fails. Drift material above Carboniferous 

Limestone Series limestone is a good example of this. Failures 

have also occurred in steep rock cuttings due to weathering of 

vulnerable sections of the exposed rock face. In both 

situations, rock 'dentition', where the failed soil or 

weathered rock is removed and the remaining material buttressed 

with more durable blocks of rock, has been used as a successful 

repair technique. 

Failures that occurred during construction were usually deep 

seated and infrequent, compared to the number of shallow 

failures in later years. Repairs of these failures were 

completed before the motorway was open to traffic. 

Slopes where cracking has occurred, have been treated in the 

survey as contributing to the length of stable slope. However 

a number of these slopes have subsequently failed. Had these 

slopes been treated as fully developed failures, the length of 

failure would have increased by a factor of about 1.8 for 

embankments and 2.0 for cuttings. No information is available 

on the time between the initial crack formation and the fully 
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developed failure occurring. However, when the failure does 

become fully developed movements can occur at a rate of 1m in 

13 days {Crabb et al, 1987). 

An assessment has been made as to what lengths of slope will be 

at risk of failure in the future. This is based on two 

criteria. Firstly, that an earthwork with an existing failed 

or cracked area will be likely to fail elsewhere in the same 

earthwork (with the same geology and age) but on slopes of more 

severe slope angle and height. Secondly, that slopes which 

have cracked are likely to fail in the future. The total 

length at risk of failure is the sum of the slopes of more 

severe geometry and the length of slope with cracking. Based 

on this premise, three times as many slopes are likely to fail 

in the future than have failed so far if no preventative 

measures are taken. This future estimate is almost certainly 

conservative as it is most likely that in the long-term 

failures will occur on slopes constructed at less severe 

geometries or on earthworks where no previous failures have 

occurred. The time-scale of future failures is, however, 

uncertain at this time but for some slopes it may take up to 

120 years before failure occurs (Chandler and Skempton, 1974). 

5.2 Variation of design parameters 

The survey covered a number of motorways of differing age and 

geology and, as a result, included many different design 

parameters. Figure 5/2 illustrates the range of heights and 
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slope angles encountered. The distribution of height shows 

that 81 per cent of the embankment length and 76 per cent of 

the cutting length is less than S.Om high and that only 6 per 

cent of the embankment length and 9 per cent of the cutting 

length is greater than 7.5m high. The highest embankment slope 

and highest cutting slope were 66.7m and 32.0m respectively. 

The height distribution is almost identical to that found 

previously by Parsons and Broad (1970). The distribution of 

embankment slope angle shows that over half the slopes were at 

1:2. Cutting slopes were more variable and ranged up to 90 

degrees for some rock slopes. 

The overall drainage distribution for all the motorways 

surveyed is given in Table 5/2. 

Open ditches are the most common type of drainage at the bottom 

of embankments. The majority of cutting slopes have no 

drainage at the top, which may reflect the fact that in cases 

where water movements at or near the ground surface are away 

from the motorway, a cut-off drain was not thought to be 

necessary. 

The previous chapters present a catalogue of real events. 

Consequently the conclusions reached are not subject to the 

uncertainties and assumptions of the analysis and testing of 

soils. The values given in the tables of maximum slope angle 

are based on actual failures and so no assumptions have to be 

made and, unless the situation of the slope is exceptionally 

120 



unusual, the uncertainties have been reduced by the large 

lengths of motorway studied. Steeper slope angles than those 

recommended in the tables may be acceptable in existing and new 

slopes if suitable preventative measures, such as rock ribs and 

geomesh plus anchors, are used (Johnson, 1985). In new 

construction or for widening an existing highway where only a 

small amount of land is available, steeper slope angles may be 

constructed by, for example, using more stable material, such 

as rock fill, on the outer slope or by incorporation of geomesh 

or geotextile reinforcement. 

Using various types of drainage can result in the recommended 

slope angles being steepened. Based on the analysis of 

differing types of drainage and its effect on the percentage of 

failure, tables are given in most Sections, of the steepened 

slope angle and most effective type of drainage. Although 570 

km of motorway were surveyed, there is insufficient data to 

show the effect of drainage on the recommended slope angle for 

all of the geologies with failures. 

The choice of slope angle may also be affected by other 

factors, outside the scope of this Thesis, such as land prices, 

environmental considerations and possible uses for the slope. 

Observation of shallow failures during the survey provides 

information on the design of slope geometries based on 

engineering considerations. In order to take this further and 

study how failure occurs, information is required on the 
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mechanism of failure and is the subject of following chapters. 

An understanding of the failure mechanism will not only explain 

why failures occur but will provide design criteria for 

preventative and reinforcement methods, and allow design of 

slopes in materials and situations not met in the survey. 
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TABLE 5/1 

Percentage of slips with different 
depths of failure 

Depth of 
failure surface 

(m) 

0.2 - 0.4 
0.5 - 0.9 
1.0 - 1.5 
1.6 - 2.0 
2.1 - 2.5 

Percentage of total 
slip length 

14 
35 
46 

4 
1 

TABLE 5/2 

Distrirution of drainage at the bottcm of embankments 
and the top of cuttings 

Type of drainage EmbanJanents Cuttings 

None 
Open ditch 
French drain 
other 

26% 
46% 
27% 

1% 
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Chapter 6 

Testing of soils for detailed investigation 

6.1 Location of sampling sites 

In the survey, over-consolidated clays were the materials most 

frequently found to be susceptible to failure. Six of these 

clays with a high percentage of failure were chosen for 

investigation from six sites where failure had occurred. 

Undisturbed samples were taken for laboratory testing and 

subsequent back-analysis. A further Gault Clay site was chosen 

where no failure had occurred in order to extend the studies of 

the behaviour of soils at low effective stresses. Table 6/1 

shows the geologies sampled, their location and the date the 

motorway was opened. Only embankments were sampled as most 

failures occur in this type of earthwork and very little is 

known of the behaviour of embankments in the long-term. 

At each site, large diameter holes were manually augered to a 

depth of 1.5m before any sampling commenced; this depth 

corresponds to the most frequent depth of failure (Table 5/1). 

Six, and in one case seven samples were taken using thin-walled 

38rnm sampling tubes with a relieved bore cutting edge. The 

tubes were jacked into the soil on an anchored framework. 

Using this type. of apparatus, taking the necessary care, and 

following this procedure keeps the disturbance of the soil to a 

minimum. The samples were sealed within the tubes until ready 

for testing as soon as possible after the samples were taken. 
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6.2 Types of test conducted 

The effective normal stresses at the depth at which shallow 

failures occur are very low. In order to simulate these 

conditions in the laboratory, City University were contracted 

by TRRL to conduct a series of special tests, as well as 

conventional tests, at low effective stresses on the six types 

of clay under study. As a starting point for studying the 

shear strength at failure, peak strength conditions were first 

considered. All the soil tests were conducted in a triaxial 

apparatus using a hydraulic Bishop and Wesley (1975) cell with 

automatic control (Atkinson, Evans and Scott, 1976). The soils 

were saturated at a mean effective normal stress of 100kPa, and 

then swollen to a low all round stress. For each soil, except 

the Gault Clay at Nepicar, three samples were subjected to 

conventional drained triaxial compression tests and three were 

induced to failure by increasing pore water pressure at low 

normal stresses. The Gault Clay from Nepicar was subject to 

four conventional triaxial tests and three were induced to 

failure by increasing pore water pressure at low normal 

stresses. At low effective stresses it is considered most 

important to apply a membrane correction. For the drained 

compression tests the correction was applied to the peak stress 

and for the failure by pore water increase tests the correction 

was applied to a defined failure point. Appendix C describes 

the correction applied. 
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For failure by increasing pore water pressure, the definition 

of failure is not well defined. The failure point has 

therefore been defined, arbitrarily, as the instant when the 

ratio of the change in volumetric strain, caused by the water 

pumped into the sample, to the change in all round effective 

stress, directly related to the increase in the pore water 

pressure, achieved a value of 1%/kPa. This is a rate of 

deformation exceedingly close to catastrophic failure, but not 

necessarily the penultimate point especially if the record 

interval was very small in relation to the rate of pore water 

pressure increase. These types of deformation were 

irrecoverable leaving no opportunity to examine behaviour at 

higher shear strains. 

The drained compression tests were however strain controlled up 

to and beyond their failure points (peak stresses) and 

permitted further examination of the soil under higher strains. 

For the drained compression tests, a definite maximum value of 

deviatoric stress was observed but in all cases the additional 

compression of the sample was not accompanied by the expected 

substantial decrease in the deviatoric stress and as a result 

the end point of the test does not represented the critical 

state strength (Schofield and Wroth, 1968; Atkinson and 

Bransby, 1978) or residual stress (Skempton, 1964) but was more 

indicative of an 'ultimate' condition for the testing. The 

residual strength, which is associated with the development of 

highly polished slip surfaces as a result of clay particles 

orientating in a preferred direction, requires large movements, 
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of the order of several metres, before developing. These 

amounts of movement were not observed in the field and so the 

residual strength is considered not to have developed before 

failure occurred. The critical state strength, however, 

requires much smaller strains and is characterized by straining 

at constant volume and constant effective stress. Skempton 

(1970) refers to this critical state strength as the fully 

softened strength. The reason for adopting critical state 

strength (or fully softened) is that for fissured clays 

progressive failure (associated with the fissures) reduces the 

mobilized strength to between peak and residual. This is not 

to say that the critical state strength is the actual mobilized 

condition but it seems to give a comparable strength to that 

developed due to progressive failure. 

In order to study the critical state strength, further tests 

were carried out on remoulded samples at higher effective 

stresses. Unfortunately the graphs of q' versus strain or 

q'/p' versus strain did not become asymptotic to a horizontal 

line which would have indicated that the critical state 

strength had been achieved; p' is the mean normal effective 

stress 1/3. (~'a+2~'r>, q' is the effective deviator stress 

(~'a-~'r}, and ~'a and ~'rare the axial and radial effective 

normal stresses applied to the sample during testing. It was 

then considered that the best way to achieve the critical state 

strength was to reconstitute the over-consolidated clays to try 

to remove their brittle behaviour and encourage plastic 

deformations which should allow the critical state strength to 

128 



be achieved more easily. Reconstitution of the samples 

involved completely breaking down the structure of the soil by 

oven drying each sample and grinding it to a powder. The soil 

was then rebuilt as a normally consolidated soil by saturating 

and consolidating the sample. Hence, the final material has 

the same mineralogy as the original over-consolidated soil but 

is in a normally consolidated state. Two undrained triaxial 

tests with pore water measurement were then conducted at high 

stress levels for each soil type. Only two tests were 

conducted because the critical state strength requires the 

critical state failure envelope to intercept the origin of the 

effective normal stress and shear stress plot. Although these 

tests are at high stress levels and since the critical state 

failure envelope is represented by a straight line, the 

strength measured at high stresses is as applicable to low 

stresses levels as it is to high stress levels. 

6.3 Results of tests 

The City University test results are contained in Tables 6/2, 

6/3 and 6/4, and Figures 6/8 to 6/29. The results of the low 

effective stress tests on undisturbed samples at the peak 

stresses are given in Table 6/2 and the Mohr stress circles are 

plotted in Figures 6/1 to 6/7. The stress paths to the peak 

strength and 'ultimate' strength are shown in Figures 6/8 to 

6/11 and the associated stress-strain curves are given in 

Figures 6/12 to 6/22. By studying the Mohr circles, it can be 

seen that a curved failure envelope would seem to be more 
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appropriate than a straight line. The stress path graphs show 

the two types of test used and points of failure. The stress 

paths at the lower stresses are those of the tests where 

failure occurred by increasing pore water pressure and results 

in a fall. in p' at constant q'. The higher stress tests are 

the drained compression tests. The 'ultimate' strengths are 

shown on these graphs on the same stress paths as for the peak 

strengths but at lower stress values. Table 6/3 shows the 

results for the best 'ultimate' condition possible in these 

tests. Table 6/4 and Figure 6/23 contain the results for the 

tests on the reconstituted samples at higher effective stresses 

in order to study the critical state strength. Figures 6/24 to 

6/29 are the stress-strain curves for these results. 
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TABLE 6/1 

Sampling locations and associated failures 

Geology 

Gault 
Clay 

Oxford 
Clay 

London 
Clay 

Reading 
Beds 
Clay 

Kimmeridge 
Clay 

Weald 
Clay 

Location of slip 
from which samples 
were taken 

M26 Nepicar (Kent) 
A20 Junction Exit 
Slip Road Eastbound 

Ml J13 (Beds) S.Side 
of A5140 W.Approach 

M4/A329m JlO (Berks 
Westbound Approach 
Slip Road 

M11 (Essex) N.of J8 
ch.Sl.O 

M4 J16 (Wilts) 
N.Side of Roundabout 

M23 (Surrey) 
ch. 36.0 

Date 
of 
opening 

Nov' SO 

Nov' 59 

Dec'71 

Nov'79 

Dec'71 

Dec'74 

Sampling location where no failure had occurred 

Gault 
Clay 

M26 Dunton Green 
(Kent) ch.25.0 
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TABLE 6/2 

Effective stresses at the peak strength for undisturbed samples 

Geology Test no. 1 2 3 4 5 6 7 

Gault- ~I a 14.3 27.6 37.6 77.2 127.1 177.0 
Dunton ~I r 0. 9 3.8 2.3 21.3 41.1 61.1 

Gault- ~I a 14.2 31.9 51.9 97.2 90.9 149.5 173.1 
Nepicar ~I r 2.1 1.8 8.5 29.8 31.5 45. 1 60.9 

Kimmeridge ~I a 17.7 31.6 53.5 56.5 101.9 126.3 
Clay ~· r 3.4 4.0 14.5 15.7 30.9 45.7 

London ~I a 15.3 27.2 37.4 48.1 84.2 101.8 
Clay ~I r 0. 4 0.8 3.1 6.0 16.0 26.2 

Oxford ~· a 17.0 28.8 40.4 94.0 88.3 112.7 
Clay ~I r 1.6 3.3 5.0 26.2 16.2 36.2 

Reading ~· a 19.1 29.0 40.4 55.1 80.5 94.7 
Beds-clay ~I r 3.5 3.6 5.7 15.8 25.6 35.6 

Weald ~I a 16.6 29.1 41.6 92.4 108.0 126.5 
Clay ~I r 2.6 6.6 6.1 20.8 30.7 40.9 

(All units are kPa) 

TABLE 6/3 

Effective stresses at 'Ultimate' condition of undisturbed samples 

Geology Test no. 1 2 3 4 

Gault- ~I 
a 81.3 93.0 143.7 160.0 

Nepicar ~I 
r 31.3 30.0 46.7 61.0 

Kimmeridge ~I 
a 52.2 87.7 109.2 

Clay ~· r 15.2 29.7 45.2 

London ~· a 30.0 66.3 93.3 
Clay ~I 

r 4.5 14.8 25.3 

Oxford ~· a 79.5 95.3 
Clay ~· r 25.5 36.3 

Reading ~· a 54.7 75.3 87.3 
Beds-clay ~· r 14.7 25.3 37.3 

Weald ~· a 81.7 100.0 120.7 
Clay ~· r 20.7 31.0 41.7 

(All units are kPa) 
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TABLE 6/4 

Effective stresses at the critical state strength 
using reconstituted samples 

Geology Test no. 1 2 

Gault- 11 I a 140.0 298.7 
Nepicar 11 I r 59.0 129.7 

Kimmeridge 111 a 139.3 314.7 
Clay 11 I 

r 62.3 136.7 

London 11 I 
a 161.0 312.3 

Clay 11 I 
r 59.0 127.3 

Oxford 11 I 
a 149.7 321.0 

Clay 111 r 58.7 129.0 

Reading 11 I 
a 154.7 308.0 

Beds-clay 111 
r 72.7 155.0 

Weald 11 I a 164.7 322.3 
Clay 111 r 64.7 134.3 

(All units are kPa) 
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Chapter 7 

Linear failure envelopes at low effective stresses 

7.1 Introduction 

In the previous Chapter, the Mohr circle diagrams for the soils 

under test indicated that a non-linear failure envelope may be 

a more accurate indication of peak shear strength than a linear 

failure envelope. To consider this point, this Chapter 

investigates the linear failure envelope and Chapter 8 

considers the curved failure envelope. The present knowledge 

of linear envelopes is discussed and taken further to consider 

a curved envelope and how it may be fitted to experimental 

data. Analyses of the test results is conducted using the 

methods developed for fitting curved and linear failure 

envelopes and an assessment made of the accuracy of these 

methods. Emphasis will be placed on a power curve relation 

between shear and normal stress as it is shown that this is 

more accurate than a straight line relation. 

7.2 The Mohr circle diagram and Mohr-Coulomb failure criteria 

To understand the concept of the linear shear strength envelope 

it is first necessary to consider the effects of stress on an 

element of soil subject to plane deformation ie. the thickness 

of element is not altered by any change in the stress state 

(Figure 7/1). ~ 1 is the major principal stress and ~ 3 is the 

minor principal stress. 
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Resolving forces in horizontal and vertical directions gives 

respectively 

Combining equations 2 and 1 to eliminate 1, gives 

a-3 + (a-1- a-3).cos2~ =a-

now from trigonometry identities 

cos2~ = 2cos 2 ~ - 1 

so a- 3 + Ccos2!1 + 1) (a- 1 _ a- 3) = a-
2 

~1~31.COS2~ + ~1~31 = a' 

2 2 

( 1) 

( 2) 

( 3) 

Substituting equation 3 for a- in equation 2 and applying 

suitable trigonometry identities gives 

~1~31.sin2~ = 1 
2 

( 4) 

Putting values ~' a- 1 and a- 3 in equations 3 and 4 allows the 

normal and shear stresses to be calculated theoretically. 

However a more convenient method is the graphical method used 

by Mohr in his work on ideal plastic materials. 

Consider equations 3 and 4. If these equations are written as 

follows 

~1~31.cos2~ = a- - ~1~31 
2 2 

~1~31.sin2~ = 1 
2 

and then squared and added together 

[ ~1T31sin21 T + [ ~1T31cos21 y = [ a' - ~1~31 y + 1
2 

164 



r ll1T3l. r = r ~~ - ll1~3l. r + r
2 

This is the equation of a circle of the form 

r 2 =(11-a) 2 +(r- b) 2 

where a and b = co-ordinates of centre of 
circle 

and r = radius of circle 

The radius of the circle is U1~3l. and the centre has 
2 

The circle represents 

all possible states of normal and shear stress. Figure 7/2 

illustrates how the Mohr circle diagram presents the 

stresses on a plane. 

The co-ordinates of point Q, which are the normal and shear 

stresses on a plane at an angle of ~ to the minor principal 

stress direction, are given by equations 3 and 4. The locus of 

the stress conditions for all planes through a point in shear 

and normal stress space is a circle called a stress or Mohr 

circle. It should be noted that in the case of triaxial 

testing, which is the basis of the above diagram, the principal 

planes are on the x-axis because in the triaxial test the 

imposed stresses are the principal stresses. As a number of 

circles are drawn from tests where samples have failed, it 

becomes clear that there is a line which is tangential to all 

these circles. This line corresponds to the equation developed 

by Coulomb and its significance is now discussed. 

The Mohr-Coulomb yield criteria is one of the major 

suppositions used in soil mechanics. It assumes that the 

difference between the major and minor principal stresses is a 
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function of their sum and that the intermediate stress can be 

ignored. It has long been the practice to approximate the 

tangential line to a series of Mohr circles at failure, over a 

finite stress range, by a single straight line which is known 

as the failure envelope. The gradient of the envelope is 

considered to be a measure of the intergranular friction within 

the soil and is referred to as tan$ where $ is the angle of 

internal friction. The intercept on the shear stress axis is 

taken as a measure of the soils inherent strength at zero 

stress and is called the cohesion of the soil. Collectively, 

the intergranular friction and the cohesion of a soil are known 

as the shear strength. It should be stressed, however, that 

more emphasis should be placed on c and $ as parameters rather 

than trying to explain them in physical terms. They are not 

fundamental properties of the material and they vary with the 

type of soil test, sample size, soil's initial state, rate of 

stress application and permeability. 

The failure envelope is therefore defined by the Coulomb 

relation in effective .stress terms as 

1 = ~·.tan$' + c' 

where 1 = shear stress at failure 

ie. shear strength 

~· = effective normal stress at 

failure ie. ~ - u, where 

u = pore water pressure 

~ = total normal stress 

$' = angle of friction with 
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respect to effective stresses 

c' = cohesion with respect to 

effective stresses 

Figure 7/3 shows the relation graphically. Any deviation of 

the Mohr circles from the envelope is attributed to 

experimental error and the inconsistencies between samples. By 

definition a soil cannot attain a state of stress outside the 

envelope. Furthermore the line must be a tangent since it 

represents a stress boundary for the largest possible circle. 

7.3 Techniques for fitting the Mohr-Coulomb failure envelope 

to experimental data 

When a number of tests have been conducted, each causing a 

sample to fail, the Mohr circles are plotted and it is then 

necessary to construct the failure envelope at a tangent to the 

circles and is taken to be a straight line obeying the Coulomb 

relation. There are a number of ways of constructing the 

failure envelope. One simple method is to draw a tangential 

straight line by eye but this results in imprecise values of c' 

and$'. The most common method though is to use the 'Top Point 

Construction' (Vickers, 1983 for example). This involves 

taking the 'top point' of each stress circle which is the 

maximum shear stress and the normal stress for those particular 

principal stresses (see Figure 7/4). 

It is worth pointing out that although the top point is where 
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the maximum shear stress occurs it is not the failure point and 

failure occurs at a lower shear stress where the circle just 

touches the failure envelope at maximum obliquity. Since the 

straight line failure envelope is rarely an exact tangent to 

all the circles and consequently precise failure stresses 

cannot be found, using the top points, which can be found 

accurately, allows the most representative envelope to be 

found. A least squares fit regression line is drawn using 

standard statistical procedures to minimize the vertical 

distances between the line and top points. The shear stress 

errors are minimized in this way although errors occur in both 

shear and normal stresses. The top points may not sit exactly 

on a straight line because, 

(a) assuming the top points lie on a straight line assumes 

Coulomb's relation is also a straight line. However, the 

failure envelope for peak stresses is in fact curved (discussed 

in Chapter 8) and is most marked at low effective stresses (up 

to lOOkPa) . At higher stresses the curvature is small over the 

same stress range and in most cases an approximation to a 

straight line is appropriate. For shallow failures the 

effective stresses are extremely low and curvature of the 

failure envelope will be quite marked. 

(b) soil is a very heterogeneous material with variations in 

mineral types, mineral orientation, cementation, degree of 

fissuring, degree of consolidation and moisture content. 

Consequently a collection of samples can have different values 

of c' and ~' when compared to another set of samples from the 

same location. 
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(c) experimental errors will occur, the magnitude of which 

will depend on the accuracy of the apparatus and the method of 

testing. 

When a least square fit line has been drawn through the top 

points, it can be related to the failure envelope using the 

similar triangles in Figure 7/5. (c'rp and ~'rp are the 

cohesion intercept and angle of friction of the failure 

envelope calculated in the top point construction.) 

and x = a.cota. 

sin~'rp = 

tana. = 

resulting in sin~'rp = tana. 

Also tan~'rp = ~TP 
X 

therefore tanQ'yp = 
tan a. 

and tana. = ,a 
X 

' ,1\ I 
S.ln'+' TP = 

cos~'rp·sin~'rp cos~'rp 

resulting in c'rp·cos~'rp =a 

An alternative method has been proposed by Lisle and Strom 

(1982) which minimizes the perpendicular distance between the 

failure envelope and the Mohr circles. This method is worth 

considering in some detail as it initially appears to be more 

accurate 
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The most accurate straight line failure envelope is the one 

produced by a least-squares fit and entails minimizing the sum 

of the radial distances from the Mohr circles perpendicular to 

the required failure envelope, S = E~i 2 (Figure 7/6). If i 

equals the number of each circle 1,2,3,4 . . n 1 then the centre of 

each circle and the radius of the ith Mohr circle are 

respectively 

t i = L1 i=--L..3 i 
2 

(Note that s' i and ti are the mean effective normal stress and 

maximum shear stress respectively for two dimensions and are 

defined differently to those used in Chapter 6 which relate to 

testing only.) 

The distance requiring minimizing is given by 

~i = XY- ti 

Also XY = 1.cos~~LS where 1 is the shear stress at point z. 

The Coulomb relation for the straight line at this point on the 

failure envelope is 1 = c'Ls + s' i.tan~~Ls and the trigonometry 

identity used is 

so 

cos~'Ls = .----~1~------­
~(tan2~~Ls + 1) 

ai = ~Ls + s 1 i.tan~ 1 LS - ti 
~(tan 2 ~'Ls + 1) 

now S = E ( ~ i) 2 = \n [ ~L s + s I i . tan~ I L s - t i ]2 
Li=l ~(tan2~'Ls + 1) 

The parameters c'Ls and tan~'Ls are as yet unknown so 

minimizing S with respect to them ie. ~S = 0 
~c

1

LS 
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and §S = 0 gives 
atan~~Ls 

as 
ac 1 LS 

= 2. "". [ ~L s + s I i . tan~ I L s - t i ]· 1 = o 
.: 1=1 ~(tan 2 ~~LS + 1) ~(tan 2 ~~LS + 1) 

0 = 2~ = 1 [ $E~n Z ~ 7 ~! . :al~ I LS - t i J ( 5) 

as = 2~ 2. [ ~Ls + s~i~tan~~Ls- ti ]· 
atan~~Ls 1=1 ~(tan 2 ~ 1 Ls + 1) 

and 

~L s + ~I i. tan~ I L s) ( -2. tan~ I L s--~ + f i = 0 
2 (tan ~ 1 L s + 1) I ~ (tan 2 ~ 1 L s + 1) ~ (tan ~I L s + 1) 

0= 1 2n r~LS + S~i.tan~~LS- ti ]· 
(tan 2 ~~Ls + 1)~(tan 2 ~ 1 Ls + 1) i= 1 ~(tan 2 ~~Ls + 1) 

[ ( -c I L s - s I i I tan~ I L s ) tan~ I L s + s I i (tan 2 ~I L s + 1) 1 

O =2" r~LS z S 1 i~1 LS - ti ]· 
i=1 ~(tan ~~Ls + 1) 

0 =2~ r~LS + Sl i .tan~~LS - ti ]· (-c~Lstan~~LS + Sl i) 
1=1 ~(tan2~~Ls + 1) 

0 = 2" [ ~L s + s I i. tan~ I L s - t i ]· s I i -
i=1 ~(tan2~~Ls + 1) 

from equation 5 

2n [ ~L s + s I i I tan~ I LS -t i Jc I L stan~ I L s 
i=1 ~(tan2~~Ls + 1) 

0=\n r~LS + S
1 i~~~LS - ti] and C 1 Lstan~ 1 LS is a constant 

.:i=1 ~(tan2~~Ls + 1) 

so 

and N = ~n gives for equations 5 and 6 

NC 1 Ls + P.tan~ 1 Ls - Q~(tan 2 ~ 1 Ls + 1) = 0 

PC 1 Ls + T.tan~ 1 Ls - R~(tan 2 ~ 1 Ls + 1) = 0 

rearranging equation 7 

and substituting in equation 8 

( 6) 

( 7) 

( 8) 

PO~ltan 2 ~ 1 Ls + 1) - P 2 ~tan~ 1 Ls + T.tan~ 1 Ls - R~(tan 2 ~~Ls + 1)=0 
N 
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(NT- P 2 )tan~'ts = (NR- PQ)~(tan 2 ~'ts + 1) 

1 + 1 = 
tan2~'ts 

replacing equation 9 in 7 

NR - P9 
NT - P 

lNT- P 2 l 2 

(NR - PQ) 2 

( 9) 

Nc'ts+ PlNR- POl -Q j1+ ~NR- POl 2 =0 
~[(NT- P2) 2 - (NR- PQ) 2] ~ [(NT- P) 2 - (NR- PQ) 2] 

Nc'ts = OlNT- P 2 ~ - PlNR- PO~ 
~((NT - P2) - (NR - PQ) ] 

c'ts = 9T- PR 
~[(NT- P ) 2 - (NR- PQ) 2] 

(10) 

Since ~'ts can be found from equation 9, the point nearest to 

the failure envelope and on the Mohr circle (ie. the nominal 

failure stress; point W in Figure 7/6) is given by 

ri = ti.cos~'ts 

In order to place confidence intervals on the slope tan~'ts and 

the intercept c'ts, it is necessary to consider the statistical 

procedure known as the major axis theorem (Pearson, 1901). 

This procedure fits the line with the least error to a scatter 

of points using the perpendicular distance between the points 

and the line. Applying the major axis theorem to the failure 

stresses produces the same line as applying Lisle and Strom's 

method to Mohr circles. The two methods are therefore 

comparable but opposite in approach. One uses the best fit 

line to calculate the failure stresses while the other uses the 

failure stresses to calculate the best fit straight line. For 

both methods all points are given equal weight, which is the 
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case for the tests undertaken here; if different points are 

known to be more accurate than others they can be weighted by 

using a method originated by York (1966). These types of 

analyses are not invariant under a change of scale; this will 

not, however, be a problem in shear and normal stress space as 

the scales are the same in order to allow the stress circles to 

be constructed. 

Confidence interval limits are useful in the design of slopes 

in new construction in order to obtain an estimate of the 

variability of the soil properties upon which the design is 

made (Bland, 1981). The amount of confidence in the deduced 

soil parameters will, amongst other factors, determine the 

factors of safety used in the final design. When back­

analysing a slope failure, however, the determination of the 

most likely soil parameters are being investigated and so the 

mean values of shear strength parameters are usually taken as 

being representative and a good guide to the likely soil 

behaviour (Chandler, 1977; Leroueil and Tavenas, 1981; 

Skempton, 1977). Confidence intervals are given in this Thesis 

for linear and non-linear failure envelopes so that sufficient 

information is available for design purposes. The failure 

mechanism found by back-analysis can, of course, be used in the 

design of slopes in new construction and for designing 

preventative measures in existing slopes. 

Calculating the failure stresses using Lisle and Strom's method 

allows the confidence limits to be determined for the gradient, 
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tan~', and the intercept, c', using the same calculations as 

applied to the major axis line. For a straight line of the 

form r =tan~'.~' + c' the parameters of the regression, tan~' 

and c', and their standard errors (Kermack and Haldane, 1950) 

are given by 

( 11) 

ec =~T~~· .tan~') z + (1- r)tan~'[ 2e~,eT + g'tan~~~1 + r) J 

( 12) 

and ui = ~I i - ~I 

e = standard error 

The above calculation of coefficients tan~' and c' is of no use 

for failure envelope determination because the precise failure 

stresses (ri, ~' i) are not known until the envelope has already 

been fitted. The standard errors can, however, be determined 

from equations 11 and 12, using the failure stresses deduced 

from Lisle and Strom's method, and when multiplied by the t-

value for the required probability and degrees of freedom, the 

limits can be found. The t-value is obtained from the 

statistical t-distribution for small samples. This method is 

used in Section 7.4. 
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At first, therefore, the method of Lisle and Strom appears 

theoretically to be appropriate. Bland (1980) also comes to 

the same conclusion but his method is described as requiring 

the use of an iteration and is not as convenient as that of 

Lisle and Strom. Bland's method produces equations exactly the 

same as Lisle and Strom (Bland 1983) and his method is 

explained below. Bland (1981) carries the procedure further to 

find confidence limits on the best fit line and non-linear 

failure envelopes. 

The centre and radius of the circle in Figure 7/7 are as before 

s'i = L1i~
1

li 
2 

t i = L-1 1--=--..,[,' 3 i 
2 

The point, W, on the circle with the shortest perpendicular 

distance from the envelope has normal stress ~· i and shear 

stress ri and the point on the failure envelope with normal 

stress ~·. 1 is the shear stress r 81 • 

From the Figure 

~ i = ( r B i - r i ) . cos~' B 

or ~ 1 = (cr 1 1 .tan~~B + C 1

8 - t 1 .cos~ 1 8 ).cos~' 8 

now cr' 1 = S 1 

1 - t 1 .sin~~B and so 

~ i = ( s 1 

1 • tan~' 8 - t 1 • sin~' 8 • tan~' 8 + c' 8 - t 1 • cos~' 8 ) • cos~' 8 

the trigonometry identities cos~~B = .----~1 ____ __ 
~ (tan 2 ~I 8 + 1) 

and sin~'s = tan~s-
~(tan1~~8 + 1) 

are used to give 
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a i = [ s ' i tan~' s -t i t'n 2 ~' B-- + c' s - t i J 
~(tan ~' 8 + 1) ~(tan 2 ~' 8 + 1) · 

1 
~(tan 2 ~'s + 1) 

ai = [ s' i.tan~'s- ti·~(tan 2 ~' 8 + 1) + c' 8 J·.--~1 ___ __ 
~(tan 2 ~' 8 + 1) 

Similarly to Lisle and Strom, considering n Mohr circles, 

and a minimum occurs when ~ = ~ = 0 
atan~'s ac' 8 

Rather than differentiate with respect to c' 8 and include the 

summation result in the summation of S when it is 

differentiated with respect to tan~'s as Lisle and Strom had 

done, Bland (1983) considers that the two equations are only 

solvable by iteration. 

Differentiating with respect to tan~' 8 , 

n 
0 = ~ i = 1 c' B s' i + s' i 2 tan~' B - tis ' i ~ (tan 2 ~' B + 1) -

c' 8 2 tan~'s- c' 8 .s' i.tan 2 ~' 8 + ti.c' 8 .tan~' 8 .~(tan 2 ~' 8 + 1) 

0 = Ttan~'s - R~(tan 2 ~' 8 + 1) - Nc' 8 2 tan~'s -

Pc' 8 (tan 2 ~'s- 1)+ Qc' 8 tan~' 8 .~(tan 2 ~' 8 + 1) 

in similar notation to Lisle and Strom. 

Differentiating with respect to c' 8 , 

0 = 2 2n [ ~B + f i. tan~' B - t i ]· :-------.~1,__ __ _ 
i=l ~(tan ~' 8 + 1) ~(tan 2 ~'Ls + 1) 

0 = Nc' 8 + Ptan~'s - Q.~(tan 2 ~' 8 + 1) 

replacing Q.~(tan 2 ~'s + 1) in equations 13 from 14 
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0 = T.tan~~B - R.~(tan 2 ~~B + 1) - Nc 1 b 2 .tan~ 1 s -

Pc 1 8 (tan 2 ~ 1 B - 1) + Nc 1 8 2 .tan~~B + Pc 1 8 .tan 2 ~~B 

0 = T. tan~ 1 

8 - R. ~ (tan 2 ~ 1 

8 + 1) + Pc 1 

8 ( 15) 

Equations 14 and 15 are identical to equations 7 and 8 

where ~~B = ~~Ls and C 1 s = C 1 Ls 

These equations are then considered to require an iterative 

process to solve for tan~~B and then C 1 s in equations 14 and 

15. Iterations are, in fact, not necessary as shown above in 

equations 9 and 10. The process developed by Lisle and Strom 

is, therefore, considerably simpler. 

To consider the level of confidence in the failure envelope 

Bland (1981) applies a normal distribution to the shear stress 

r given by the failure envelope for a particular value of 

effective normal stress q
1

, The standard error of r is given 

by 

(g'- g')2 + 1] 
~~ (ql.- ql)f 

1 = 1 
1 

( 16) 

based on Bajpai (1977). q' is the mean value of q' i· 

This is useful because for a particular value of q' from a 

series of tests the shear stress lower limit can be given by 

multiplying the standard error by the required t-value. It can 

then be said with the necessary confidence (at n-2 degrees of 

freedom) that the shear stress at failure is not less than this 

lower limit of r. 

In order to find the limits on c' 8 , q' is made equal to 0, 
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( 17) 

The standard error for tan$' is given by 

( 18) 

The standard errors are, however, using the vertical error in 

their computations when the perpendicular error is more 

appropriate since this was used to calculate the best fit line. 

As a consequence the method used with the major axis is 

preferred. 

Unfortunately Lisle and Strom's, and Bland's, method for 

determining the best fit line using the least sum of the 

squares of error, and the determination of the line by top 

point construction, although derived differently, produce 

exactly the same line as will now be shown. 

When calculating the best fit line with the top point 

construction, the first step is to calculate the least square 

fit to the points of maximum stress. 

From Figure 7/8 

a i = xz - ti 

= ru- ti 

= a + s' i tana. - ti 

where a = intercept of top point line 

tana. = gradient of top point line 
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The best fit line is given by minimizing S = Eai 2 ie. 

minimizing the vertical distances between line and top point of 

circle. 

n 

~ = ~ = 0 
aa atana. 

~ = Ei=l 2(a + s' i.tana.- ti) 
a a 

0 = Na + P.tana. - Q 

and 
n 

~ = Ei=l 2(a + s' i.tana.- ti)s' i 
atana. 

0 = Pa + T.tana.- R 

rearranging equation 19 

a = 0 - P.tana. 
N 

substituting in equation 20 

0 =g. (Q - P.tana.) + T.tana.- R 
N 

0 = PQ- P 2 .tana. + NT.tana.- NR 

tana. = NR - P9 
NT - P 

replacing in 20 

0 = Pa + TCRN - POl - R 
NT - P 2 

0 = PNTa - P3 a + TRN - TPQ - TRN + P 2R 

a = OT - P~ 
NT - P 

comparing equations 9 and 21 

tan a. 
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= NR - P9 
NT - P 

( 19) 

( 20) 

(21) 

( 2 2) 



tan(j)'Ls = tang.fNR - POl 

tan(j)'Ls = tang. 
--J ( 1 - tan 2 a.) 

tana. = sin(j)'Ls ( 23) 

and is the relation between the angle of the best fit line to 

the top points and the angle of friction using the Lisle and 

Strom method. Comparing equations 10 and 22 

c'Ls = 

c'Ls = 

a = OT PR 
NT - P2 

since tana. = sin~'Ls and from trigonometry 1=sin 2 ~'Ls+cos 2 ~'Ls 

( 2 4) 

From equation 23, tana. = sin~'Ls but tana. = sin~'rp where ~·TP 

is the angle of friction found using the top point 

construction. Therefore 

From equation 24, a= c'Ls·cos~'Ls but a= c'rp·cos~'rp where 

~'rp = ~'Ls from above and c'rp is the cohesion intercept found 

from using top point construction. Therefore 

c'Ls = c'rp 

So the angle of friction and cohesion of Lisle and Strom, and 

Bland, is identical to the conventional top point construction 

currently in popular use. The major axis. theorem also produces 

identical values of c' and ~· using a similar approach. As 

confirmation, these methods were applied to the tests that were 

conducted at low effective stresses and all produced the same 
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values of c' and~'. 

There is, therefore, nothing to be gained by using a more 

complex method than the top point construction for general 

linear failure envelope determination. However, where the 

Lisle and Strom method does prove worthwhile is if confidence 

limits are required as actual failure stresses can be 

determined. (In the top point construction the failure 

envelope variance cannot be determined because it does not rely 

on actual failure stresses.) The failu~e stresses found can 

then be used to calculate confidence intervals for c' and tan~' 

using the same method as described for Pearson's major axis 

theorem. 

7.4 Results from test data using techniques for fitting 

linear failure envelopes 

In order to study the shape of the failure envelope at low 

effective stresses, a straight line has been fitted to the peak 

stress data given in Chapter 6. Table 7/1 presents the data; 

the values of c' and ~· are the same using either Top Point 

Construction, Lisle and Strom's method, Bland's method or 

Pearson's Major Axis Theorem. The 90 per cent confidence 

intervals have been calculated using the method for the major 

axis theorem with the t-value for n-2 degrees of freedom and 

failure stresses deduced from Lisle and Strom's method. In 

Table 7/1, the ranges of c' and ~· are not linked; for example 

the minimum value of c' does not correspond to the maximum 
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value of~'. The mean sum of the least squares of error, s;n = 

Eai 2 /n, is given and will be used as a measure of the accuracy 

of the shape of the failure envelope. The number in the 

sample, n, is in this case the number of Mohr circles obtained 

from tests on each soil type. There are six Mohr circles for 

each soil type except Gault Clay - Nepicar which has seven. 

Linear envelopes for these data show a large range within the 

confidence interval. Also, for this particular stress range, 

the error at the lower stresses is the highest as this error is 

compensated for by more frequent smaller errors at higher 

stresses. This could lead to large errors in the intercept and 

gradient if this low stress level is appropriate to a 

particular shallow failure. 

Also, in Table 7/2, the results are given for reconstituted 

samples at higher effective stresses using a linear failure 

envelope to model the Critical State Condition and for use in 

the conventional slope stability analysis carried out in 

Chapter 10. Since the critical state failure envelope must 

pass through the. origin, zero axial and radial stresses have 

been included with the two other stresses at failure. This 

assumes the model to be correct and that when the tangent to 

the two Mohr circles from the tests does not quite pass through 

the origin it is only because of experimental error and sample 

inconsistencies. The figures in brackets are the intercepts of 

the best fit line but for critical state strength analysis it 

can be assumed that the intercept is zero. The friction angle 

deduced is the critical state (or constant volume or fully 
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softened) friction angle. 

The values in Table 7/3 are the 'ultimate' strength parameters 

and are given so that comparison can be made with the critical 

state strength parameters in Table 7/2. It can be seen that 

the intercept of the envelope c'u t' which includes the origin 

as a value for stress, is similar to those bracketed values in 

Table 7/2. However, the friction angles are much higher. This 

provides confirmation of the observation in Chapter 6, which 

was that only the ultimate condition of testing was achieved 

and that there was an insufficient drop in strength to indicate 

that the critical state strength had been reached. 
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Geology 

Gault-
Dunton 

Gault-
Nepicar 

TABLE 7/1 

Linear strength parameters at the peak strength 
for undisturbed samples 

~· 
(deg) 

26.5 

26.5 

c' 90% confidence intervals S/n 
( kPa) ( [ kPa] 2 ) 

~' (deg) c' (kPa) 

6 24.0 to 28.5 2 to 11 2.72 

6 23.0 to 29.5 -1 to 13 6.30 

Kimmeridge 26.0 5 22.5 to 29.0 0 to 10 2.22 
Clay 

London 32.5 6 28.0 to 37.0 1 to 11 2.32 
Clay 

Oxford 29.0 6 22.0 to 35.0 -1 to 14 7.66 
Clay 

Reading 22.5 7 18.0 to 27.0 1 to 12 2.70 
Beds-clay 

Weald 30.0 4 25.0 to 34.5 -3 to 12 5. 11 
Clay 

TABLE 7/2 

Critical state strength parameters 

Geology ~, c c, 
c 

(deg) (kPa) 

Gault- 23.0 0 
Nepicar ( 0) 

Kimmeridge 23.5 0 
Clay (-1) 

London 25.0 0 
Clay ( 2) 

Oxford 25.0 0 
Clay ( 0) 

Reading 19.5 0 
Beds-clay ( 1) 

Weald 24.5 0 
Clay ( 1) 
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TABLE 7/3 

'Ultimate' strength parameters 

Geology ~·ult c, u 1 t 
(deg) (kPa) 

Gault- 28.0 0 
Nepicar 

Kimmeridge 25.0 2 
Clay 

London 35.0 2 
Clay 

Oxford 28.0 0 
Clay 

Reading 25.0 2 
Beds-clay 

Weald 30.0 2 
Clay 
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Fig.7/1 Stress conditions in a soil during compression 

Fig.7/2 The Mohr circle diagram 
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Fig.7/3 The modified Mohr-Coulomb relation 
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Fig.7/4 Top point of a Mohr circle 
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Fig.7/5 The relation between the least square fit line 

through the maximum shear stresses and the failure 

envelope 

T Linear failure envelope 

Fig.7/6 Minimizing the distances between Mohr circles and the 

failure envelope using the method of Lisle and Strom 
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~ ti 
Fig.7/7 Using Bland's method to minimize the perpendicular 

distance between Mohr circles and the failure envelope 

Fig.7/8 Minimizing the error for a top point construction 
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Chapter 8 

Non-linear shear strength envelopes at low effective stresses 

8.1 Types of non-linear shear strength envelope 

Several shapes of non-linear failure envelope have been 

suggested (Balmer, 1952; Szymanski, 1958; Nowatzki and 

Karafiath, 1974; De Mello, 1977; Hoek and Brown, 1980; Hoek and 

Bray, 1981; Charles and Soares, 1984a and 1984b; Taylor, 1984; 

Atkinson and Farrar, 1985; Hawkins and Privett, 1985; Collins, 

Gunn and Pender, 1986; West, 1987; Zhang and Chen, 1987; 

Collins, Gunn, Pender and Yan, 1988). The most common shape 

used for soil, rockfill and jointed rock is the power curve 

since it best represents the data measured. The power curve 

has the function 

1 = Aa'b 

where 1 = shear stress 

a' = effective normal stress 

A and b = parameters of the function 

The parameter b is independent of the units used for stress and 

the parameter A has dimensions (a') l-b. 

It is a simple function and only requires the calculation of 

two parameters. This is an extremely useful property when 

trying to fit a power curve to Mohr circles as the iterative 

procedures involved are complex. It will be shown that the 

power curve rather than the straight line is a more accurate 
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model of the failure envelope over a range of stresses. 

Using the power curve approximation more accurately reflects 

the shape of the complete failure envelope at low effective 

stresses and provides parameters, for use in stability 

analysis, that remain constant at varying effective stresses. 

By considering a number of Mohr circles the effect of the 

experimental and sampling errors of a particular circle on the 

failure envelope is reduced. 

The nature of the power curve is given in Figure 8/1 and the 

following observations can be made: 

(a) as A and b increase so does the gradient of the curve, 

(b) intersection of the curves occur, 

(c) the change of gradient is greatest nearer the origin and 

the curve is approximately linear at high values of x, 

(d) the curve always passes through the origin, 

(e) the parameter b determines the amount of curvature. 

The third property makes this type of function extremely useful 

for approximating a shear strength envelope at low effective 

stresses. One of the criticisms that can be made of this model 

is that a zero intercept is endemic, consequently no 'cohesion' 

exists at zero stress. Many of the authors referenced at the 

beginning of this Chapter considered this point and concluded 

that for soil, rockfill and jointed rocks a zero cohesion 

intercept is a very good approximation even if it may not be 

physically appropriate. It certainly provided a more accurate 

simulation than a linear approximation. 
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8.2 Techniques for fitting a power curve to Mohr circles 

One of the problems with using a power curve as a function for 

shear strength is that fitting the curve to a series of Mohr 

circles requires a more complicated procedure than is used for 

linear envelopes. All the authors who considered triaxial 

testing, have deduced the curved strength envelope by sketching 

the best fit curve and, by eye, taking the nearest points on 

the Mohr circles as the failure stresses. Up until this 

Thesis, there has not been an accurate method available for 

fitting the best fit curve. In this Section, six methods are 

considered comprising the free-hand method and five new 

procedures. One method in particular is recommended as being 

the most accurate and is used to determine the strength 

envelopes for the soils tested for use in subsequent slope 

stability back-analysis. 

A description and assessment of each method is given in the 

following Sections. Later in this Chapter the relative 

accuracies of these methods are discussed with respect to the 

Mohr diagrams in Chapter 6. Each method, in different ways, 

tries to overcome the main problem of determining the stresses 

at failure. 
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8.2.1 Free-hand method for fitting a power curve to Mohr 

circles (Method 1) 

This method involves sketching a curve which is judged by eye 

to be the best fit. The judgement is based on keeping the sum 

of the perpendicular distances between the curve and the Mohr 

circles to a minimum (Figure 8/2). The point on the Mohr 

circle nearest, if the circle is below the curve, and furthest, 

if the circle intersects the curve, are taken as the failure 

stresses. These points can then be assumed to lie 

approximately on a power curve. Taking logarithms of the 

failure stresses and plotting them, results in a straight line 

of the form lnr=lnA+bln~'. The best fit straight line through 

these points is found using the standard statistics method of 

least square fitting. The parameter A can then be calculated 

from the intercept of the line on the vertical axis and the 

parameter b can be calculated directly from the gradient of the 

line. 

This method is prone to considerable errors especially near the 

origin where the radius of the curve is similar to the radius 

of the circle. Interpretation by different workers is, of 

course, likely to be the main source of error. 

8.2.2 Top point construction (Method 2) 

Since the top point construction is used so widely in the 

engineering profession for linear failure envelopes, it seems 
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only logical to see if the method can be adapted to curved 

failure envelopes. First the top points are plotted as 

logarithms, lnti=lnC+dlns' i• in order to determine the best fit 

line through these points using a statistical regression. c 

and d are the parameters describing the power curve through the 

top points. 
. . d 

From the resulting power curve, ti=Cs' i , a range 

of values of ti and s'i are chosen, which lie on this curve, 

and Mohr circles plotted. This procedure provides a more 

uniform pattern of Mohr circles so that a power curve can be 

drawn by hand. The points of intersection of the curve and the 

circles are taken as the failure stresses. By taking 

logarithms of the failure stresses the parameters A and b can 

be found as explained in the previous Section. 

There are several procedures involved in this method all of 

which can be subject to error. The sketching of the curve by 

hand is subject to the same errors as given in the previous 

Section. Smoothing out any irregularities in the Mohr circles 

may not produce a failure envelope which is representative. 

8.2.3 Method requiring an approximation of the failure 

stresses using a tangent through the origin 

(Method 3) 

In order to determine the failure stresses, a tangent can be 

drawn which passes through the origin of the Mohr diagram 

(Figure 8/3). The point of intersection of the tangent and the 

circle is an approximation of the stresses at failure, ri and 
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~' i' and can be calculated for each circle using the angle the 

tangent makes with the effective normal stress axis: 

~ 

1 i = .t.i (s' i 
s I i 

~' 0 1 = .L_(s'i2- ti2) 
S I i 

When the failure stresses have been calculated using this 

method, the power curve can be deduced, as before, by taking 

logarithms, fitting the best fit straight line and finding the 

parameters A and b. 

The method of calculating the failure stresses is clearly an 

approximation, an approximation whose error increases at the 

higher stresses where the gradient of the line is much greater 

than that of the power curve. The approximation is therefore 

not a good one. 

8.2.4 Method using a power curve or straight line between 

two Mohr circles to determine the failure stresses 

(Method 4) 

The first consideration here is to fit a power curve which 

touches two circles and passes through the origin (Figure 8/4). 

For a circle, the general equation is 

ti2 = (S'i- ~'i)2 + (Z- Ti)2 
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for a Mohr diagram z = 0 

ri2 = ti2- (s'i 

For a power curve the equation is 

1 = A~'b 

~' i ) 2 

- ~'. 2 
1 ( 1) 

( 2) 

If the failure envelope meets at one point with a circle, it is 

a tangent for small increment of curve and will have the same 

gradient. Hence from equation 1 

( 3) 

From equation 2 

dr/d~' = A.b.~,b-l ( 4) 

At the point of intersection dri/d~' i = dr/d~' 

and so ( 5) 

Three equations now exist for one circle, equations 1, 2,and 5. 

If two consecutive circles are studied, six equations will 

exist, equations 1, 2 and 5 for each circle. Both will have 

the same values of A and b since a power curve is taken as 

joining them both. 

Combining equations 2 and 1, 

and equations 2 and 5. 

A2.b ... 'i2b -- ' ' .., s i·~ i- ~'. 1 

( 6) 

( 7) 

Four equations have been deduced, equations 6 and 7 for two 
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circles, a solution is possible as there are four unknowns, A, 

b, ~' i and ~' i+ 1. This would, however, be difficult to achieve 

without a computer iterative procedure. Since the values of A 

and b would have to be averaged over the complete number of 

pairs of circles the method is not strictly accurate or 

mathematically rigorous. Also, in practice, Mohr circles do 

not always occur consecutively and circles can occur within 

larger circles rendering them impossible to be included in this 

procedure. 

Using a straight line between consecutive circles may be a 

simple method for determining the failure stresses, from which 

a power curve can be fitted using the method described in 

Section 8.2.1. Consider Figure 8/5. 

By geometry 

~I • = s I • - ti.sine 1 1 

~' i + 1 = s ' i + 1 - ti+ 1.sine 

1 i = ti.cose 

1 i + 1 = ti+ 1.cose 

sine = ( t i + 1 - ti)/(s 1 i+1 - s I i ) 

and tane = ( 1 i + 1 - 1i)/(~
1

i+1 - ~I i ) 

Combining equations 8 and 12, and 9 and 12 gives 

( 8) 

( 9) 

( 10) 

( 11) 

( 12) 

( 13) 

ti+1(ti+1- td]/(s'i+1- sli) (15) 

From equations 12 and 13 
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(Ti+l- 1i).COS9/(c:T'i+l- c:T'i) (16) 

Subtracting equation 14 from 15 and substituting for (c:T' i+l -

c:T' i) in equation 16, 

cose = ~i+l-=-iil. rs' i+l - s' il2 - rti+l-=-iil3 
{1 i+l - 1 i) · (s' i+l - s' i) 

Substituting for cose in equations 10 and 11 provides two 

equations from which ri and ri+l can be calculated 

independently 

1 i = .t.i.rrs'i+l- s'il2 - rti+l-=-iil2l 112 
(s'i+l- s'i) 

1 i+l = .t.i+l·[(s'i+l- s'il2 - rti+l-=-iil2l 112 
(s'i+l- s'i) 

{ 17) 

{ 18) 

Equations 14 and 17, and 15 and 18 can be used to calculate the 

failures stresses for two consecutive circles. Two failure 

stresses will be produced for each circle {except the first and 

last) and so a mean will need to be taken. When failure 

stresses have been calculated for all the circles, a power 

curve can be fitted. 

In a similar way to using the power curve between consecutive 

circles, this method cannot cope with cases where one circle is 

within another and also approximations have to be made for the 

failure stresses. 

8.2.5 Using Mohr circles in logarithmic space (Method 5) 

Since a power curve will become a straight line in log space, 

that is when the axes are the logarithms of the variables, it 
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is conceivable that if the Mohr circles are plotted as log. 

'circles' the best fit common tangent to all of them will be 

the strength envelope. An example is given in Figure 8/6. It 

can be seen that this method does not remove the erratic nature 

of some Mohr circles and the problem of determining the 

stresses at failure still remains. 

8.2.6 Method for determining the 'best fit' of a power 

curve to a series of Mohr circles (Method 6 - Least 

sum of squares method) 

This method is considered to be the most accurate, as will be 

proved later, and to be the most rigorous. It follows 

statistical practice for the best fit curve and considers only 

the shortest (perpendicular) distance between circles and 

curve. Consider Figure 8/7 which shows one of a series of Mohr 

circles. In order to find the best fit curve, the total error 

of the curve must be a minimum. In other words the best 

fitting curve will have the minimum total square of the 

perpendicular distances of the power curve to the circles. 

The coordinates of the point X are (s' i - R.sine, Rcos9) and so 

the power curve can be expressed as 

R.cose = A(s' i - R.sin9)b ( 19) 

To minimize ai, the error of the curve for a particular value 

of e, R is differentiated with respect to 9: ai = R- ti and so 
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dR/d&.cose- R.sine = A.b(s' i - R.sin&)b- 1 • (-dR/d&.sine 

- R.cose) 

dR/d& = 0 at the minimum, and so 

R.sine = A.b.R.cose(s' i - R.sine)b- 1 

or R.sine = s'i- [tan6/(A.b)J 1 ' b- 1 (20) 

Replacing equation 20 in 19 to eliminate R gives 

Values of A and b are chosen and using equation 21, e is 

calculated by iteration for minimum value of R. R, itself, is 

calculated using this value of e in equation 20. The error can 

then be calculated by ~i = R- ti. Hence for a particular 

circle and values of A and b, the error has been calculated. A 

series of ~i values are then found for all Mohr circles 

considered and the sum of the square of the errors, Eai 2 = S, 

calculated. The values of A and b chosen must then be varied 

in order to determine the curve with the minimum value of S. 

This is done using the matrix method described in Draper and 

Smith (1981) with the partial differentials of the power 

relation with respect to A and b being evaluated at the point 
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X. This method, however, only applies to iterations in the y­

axis direction. Therefore the ai value from each circle is 

corrected in a vertical direction such that the error in the y 

direction equals ai.cose. The criteria that E(ai.cos9) 2 should 

be a minimum is only used to find which curve has the least 

error in the matrix procedure although the curve's actual error 

remains as S. S only is used in any analysis. If necessary, 

the coordinates of the failures stresses can be found using the 

derived values of A and b, e from equation 20 and R from 

equation 21. 

This method provides a more rigorous approach than any of the 

other methods and is statistically sound. It can be applied to 

any arrangement of Mohr circles and provides a statistical 

parameter to describe the accuracy of the curve fitted. The 

variance of the residuals is weighted in favour of the lowest 

values (Taylor, 1984) which is an advantage as it makes the 

fitting of the curve sensitive to the lower values which are 

the most critical. 

In order to make the computations easier and quicker the 

procedure explained above has been written as a computer 

program which is given in Appendix D. The program was written 

for a Hewlett-Packard 9816 desk-top computer in Basic 3.0 

language. This computer has a facility for handling matrices 

which made iterations of this type easier. The program is 

intended to be user-friendly and includes plotting facilities 

for the screen or on paper. The program also includes the 
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option of fitting a straight line to Mohr circles for higher 

stress levels. When fitting a power curve to data it is 

essential that reasonable initial values of A and b are chosen 

in order for the iteration process to converge to the curve 

with minimum error. It is possible for an iteration process of 

this type to converge on incorrect values if the initial values 

are too far from the correct answer (Draper and Smith, 1981). 

Values of 3.0 and 0.7 are recommended as starting values for A 

and b respectively as they are near to those values found for 

the soils studied here. The calculation of parameters A and b 

which produces the curve with the least error is very quick and 

the resulting curve can be plotted on the Mohr diagram. The 

value of S is also given so that the accuracy of the curve can 

be seen. 

Since this method is considered to be a statistically rigorous 

method, the accuracies of the other methods can be determined. 

The program calculates S for the values of A and b found by the 

other methods; no iterations for A and b are conducted and S is 

calculated using equations 20 and 21. It could be argued that 

when a method is used to test another method then the first 

method is bound to appear more accurate. However since Method 

6 is an extension of existing sound and widely accepted 

statistical techniques, then accurate results must be assured 

and other methods should be gauged against it. 
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8.3 Results and accuracies of methods developed 

The parameters A and b for the power curves representing the 

failure envelopes at the peak strength of the soils under 

study, found by each of the methods described in Section 8.2, 

are given in Table 8/1. Note that values are not given for 

Methods 4 and 5. As described in Sections 8.2.4 and 8.2.5, 

Method 4 cannot be used in some cases and values could not be 

calculated using Method 5. The accuracies of all the methods 

can be determined using the computer program developed for 

Method 6. The most accurate method, both linear and curved is 

determined by considering the mean sum of the squares of the 

errors s;n, where n is the number of Mohr circles. 

For all the materials studied, Method 6 produced the least 

error of all the methods considered for fitting a power curve. 

Also, Method 6 was more accurate than a straight line 

approximation for all materials except Gault Clay-Nepicar 

(compare the errors in Table 8/1 with the errors in Table 7/1). 

Gault Clay - Nepicar showed an error of 6.30 for a linear 

relation, and an error of 6.58 for a power relation. 

The shear strength envelopes using the least sum of squares 

program have been plotted with their Mohr circles in Figures 

8/8 to 8/14. 

The confidence intervals for the parameters A and b can be 

calculated using the 'Jackknife' statistical procedure (Efron 
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and Gong, 1983). This procedure requires estimates of A and b 

to be made for a set of data with one observation removed. In 

this case an estimate of A and b is made using the computer 

program with one Mohr circle removed. The procedure is 

repeated with the Mohr circle replaced and a different Mohr 

circle removed. This continues until all the Mohr circles have 

been removed once. The number of estimates of A1 i> and b 1 il' 

i=1 ... n, should therefore equal the number of Mohr circles, n, 

for that material. The means of these values, A1 • 1 = 

(1/n).EA<i> and b 1 , 1 = (1/n).Eb 1 i 1 , are then calculated. The 

Jackknife estimates of the standard errors for A and b are 

given by 

eA = [n ~ 1 ~~fA<il- A! .l)2r/2 

and eb = [n ~ 1 ~~fb<il- b(,))2r/2 

Multiplying these standard errors by the t-value for n-2 

degrees of freedom, as mentioned in Section 7.3, gives the 

range of values of A and b with the required confidence. Table 

8/2 gives the values of A and b and their range for a 90% 

confidence interval considering only Method 6. The confidence 

interval is large but is probably not unusual and is of the 

same order as the range for the linear strength parameters 

given in Table 7/1. It is suggested, therefore, that 

confidence limits be used as a guide to the Designer as to 

variability of the test results rather than as a strict limit. 

In general, Engineers use only a single value which they 

consider representative and adjust their design for any 
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variability of testing (and material of course). The ranges of 

A and b are not linked and so, for example, the minimum value 

of A does not correspond the maximum value of b. 

Table 8/3 shows the results of fitting a power curve to the 

'ultimate' strength data for undisturbed samples. These values 

of shear strength parameters are based on the two, three or, in 

one case four, Mohr circles given in Chapter 6. They also 

represent the higher section of the stress range used for the 

values in Table 8/2. As discussed in Section 8.2.6 the power 

curve parameters are very sensitive to low values. Since these 

have been removed it is likely that any subsequent analysis is 

going to be influenced considerably and it is unlikely that any 

relevant comparison can be made between results using these 

parameters and the parameters found at the peak strength. 
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TABLE 8/1 

Power curve parameters, A and b, for curved failure envelopes 
at the peak strength of undisturbed samples, 

using methods developed 

Geology Parameter Method 

1 2 3 6 

Gault- A 2.6 3.0 2.5 2.3 
Dunton b 0.65 0.61 0.66 0.69 

S/n 2.96 7.38 3.89 2.31 

Gault- A 2.4 2.5 2.4 1.9 
Nepicar b 0.67 0.66 0.66 0.73 

S/n 7.39 9.06 9.09 6.58 

Kimmeridge A 1.7 2.0 1.7 1.8 
Clay b 0.72 0.68 0.72 0.71 

S/n 1. 46 2.38 1. 43 1. 34 

London A 2.9 5.8 3.0 3.7 
Clay b 0.66 0.41 0.63 0.58 

S/n 1. 21 0.89 0.41 

Oxford A 2.3 2.8 2.2 3.4 
Clay b 0.69 0.63 0.70 0.58 

S/n 5.16 4.48 5.33 4.08 

Reading A 2.1 2.6 2.2 2.8 
Beds-clay b 0.66 0.60 0.64 0.58 

S/n 1. 95 1. 42 1. 79 1. 36 

weald A 1.3 1.5 1.5 2.2 
Clay b 0.84 0.79 0.79 0.70 

S/n 4.58 3.56 3.57 2.73 
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Geology 

Gault-
Dunton 

Gault-
Nepicar 

Kimmeridge 
Clay 

London 
Clay 

Oxford 
Clay 

Reading 
Beds-clay 

Weald 
Clay 

TABLE 8/2 

Non-linear strength parameters at peak 
strength of undisturbed samples 

A b 90% confidence intervals 

A b 

2.3 0.69 0.6 to 3.9 0.51 to 0.87 

1.9 0.73 0.4 to 3.4 0.55 to 0.91 

1.8 0.71 0.9 to 2.8 0.57 to 0.85 

3. 7 0.58 2.9 to 4.5 0.51 to 0.65 

3.4 0.58 1.3 to 5.6 0.41 to 0.76 

2.8 0.58 1.3 to 4.4 0.43 to 0.72 

2.2 0.70 0.4 to 4.0 0.50 to 0.90 

TABLE 8/3 

Non-linear strength parameters at test's ultimate 
condition for undisturbed samples 

Geology A b 

Gault- 0.8 0.92 
Nepicar 

Kimmeridge 2.5 0.60 
Clay 

London 2.1 0.71 
Clay 

Oxford 6.4 0.37 
Clay 

Reading 5.8 0.37 
Beds-clay 

Weald 4.1 0.52 
Clay 
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Chapter 9 

A slope stability method of analysis for soils with 

a non-linear strength envelope 

9.1 Introduction 

Since new strength parameters are introduced, new methods of 

analysis are required. In slope stability, a method is 

therefore required for back-analysing existing failures for 

which a curved failure envelope is more accurate than a linear 

one. This problem is taken in hand in this Chapter which 

develops a slope stability method of analysis using these 

strength parameters. 

9.2 A suitable existing method for conversion 

The obvious procedure for developing a method for slope 

stability analysis based on a non-linear failure criterion is 

to consider what existing methods are available, see how 

applicable they are for these types of shallow failure and use 

the most appropriate method as a basis for the new method. 

There are numerous existing methods available using a linear 

failure criterion. They have been developed for particular 

types of failure, for various degrees of accuracy and for 

various soil types and profiles. As the area of slope 

stability analysis has developed, the degree of sophistication 

has increased with many methods trying to cover as many of the 

factors as possible which contribute to instability. The 
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increasing development of computers has made this easier, 

taking a lot of the tedium out of calculations and allowing 

methods to be devised which would otherwise have not been 

feasible at all. Most modern analyses are therefore extremely 

involved. The following is a list of the limit equilibrium 

methods, currently known to the author, and a broad description 

of their application. 

(a) Method of slices - Rigorous methods where the difference 

in inter-slice stresses is not taken as zero. 

(i) Failure surfaces of arbitrary shape 

1. Janbu's generalised procedure of 

(1954a, 1957, 1973) 

2. Nonveiller's method (1965) 

3. The Morgenstern and Price method 

4. Spencer's method (1967, 1973) 

5. Sarma's method (1973) 

6. Bell's method (1968) 

(ii) Circular failure surfaces 

1. Bishop's method (1952) 

slices 

(1965) 

2. The ~u=O method-circular arc analysis 

(Fellenius, 1918) 

(b) Method of slices - Simplified methods which accept a 

value for the factor of safety that satisfies moment 

equilibrium if the difference in inter-slice stresses is zero. 

1. Bishop's simplified method (1955) 

2. The ordinary, conventional, USBR (United States 

Bureau of Reclamation), or Swedish method 

(Fellenius, 1927 and 1936) 
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3. Janbu's simplified generalised procedure of slices 

(Janbu et al, 1956) 

4. Kenney's method (1956) 

5. Greenwood's method (1983) 

6. Nonveiller's simplified method (1965) 

(c) Planar failure surfaces 

1. The wedge method 

2. The infinite slope analysis (Haefeli, 1948) 

3. The ~u=O analysis for a vertical cut 

(d) Non-dimensional methods of analysis 

1. The Fellenius-Taylor stability numbers 

(Taylor, 1937 and 1948) 

2. The Gibson and Morgenstern stability numbers (1962) 

3. The Hunter and Schuster stability numbers (1968) 

4. Bishop and Morgenstern's stability coefficients 

(1960) 

5. Spencer's stability charts (1967) 

6. Morgenstern's stability charts for rapid draw down 

(1963) 

7. Janbu's dimensionless parameters 

(Janbu, 1954b) 

(e) 3-D methods 

1. Hungr (1987) 

2. Zhang (1988) 

3. Michalowski (1989) 

(f) Probabilistic methods 

1. Chowdhury and A-Grivas (1982) 

2. McGuffey, Grivas, Iori and Kyfor (1982) 
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3. Rosenbaum and Jarvis {1985) 

4. Chowdhury, Tang and Sid {1987) 

5. Li and Lumb {1987) 

{g) Methods using a non-linear failure envelope 

1. Charles and Soares (1984a, 1985b) 

2. Hill (1950) 

3. Kingston and Spencer (1970) 

4. Collins, Gunn and Pender (1986) 

(h) Differential equation approach 

1. Kotter ( 1903) 

2. Sokolovskiis (1965) 

Before choosing a method it is necessary to consider a number 

of points. Firstly, what method is best suited to the types of 

failure under analysis? The types of failure being considered 

here are, 

(a) shallow failures with failure surfaces rarely exceeding 

1.5m depth below the surface of the slope, 

(b) the failure surface is usually planar, parallel to the 

ground surface and not of infinite length, 

(c) the failures are occurring after a considerable period of 

time, when an effective stress approach is the most 

appropriate. 

Secondly, what method is appropriate for simple conversion to a 

shear strength which is non-linear? 

And thirdly, a rigorous method should give more accurate 
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results which is important for a new method of analysis based 

on a fundamentally different set of strength parameters to 

those usually used. 

From the list of available analysis methods, the first point 

excludes all the methods in (a) (ii), (c) and (g), the second 

criteria excludes all the methods in (d), (e), (f) and (h), at 

least at an initial stage, and the third point excludes all the 

methods in (b). Only the methods in paragraph (a) (i) therefore 

remain. The method of Charles and Soares is considered later 

in Section 9.9 as a non-linear failure criteria is used in 

analysing circular failures. The accuracies of the methods in 

(a) (i), for the relatively simple slopes considered here, are 

very similar, plus or minus 5%, according to Fredlund and Krahn 

(1977), Duncan and Wright (1980) and Anderson and Richards 

(1987). The method chosen is therefore not too critical. The 

rigorous methods require the use of a computer and it is always 

desirable to use a method, with the appropriate program, with 

which the operator is familiar and experienced. It is risky to 

switch to a new program, in search of greater accuracy, as 

serious errors can arise unless a full understanding of its 

capabilities has been grasped. Of these remaining methods the 

author is familiar with Janbu's general procedure of slices 

which is sufficiently straightforward to be used as a basis for 

conversion to a stability analysis with a non-linear failure 

criteria. It also has the advantage of being simple enough to 

be used with a hand calculator if desired. Janbu's method is 

used throughout the civil engineering profession and is 
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generally accepted as being sufficiently accurate for the 

analysis of simple slopes. 

9.3 The Janbu generalised procedure of slices 

Janbu first published an outline of his method in 1954, 

extending the formulations to cover the analysis of bearing 

capacity and earth pressures in 1957. In 1973 he published a 

full account of his method and included comprehensive worked 

examples. The method can be applied to both circular and non­

circular slip surfaces. It was the first method of slices in 

which overall force equilibrium and overall moment equilibrium 

were satisfied. A detailed derivation of the method will not 

be given here as a similar procedure will be followed in the 

next Section to find a method with a non-linear failure 

criteria rather than a linear one. 

9.4 A limit equilibrium slope analysis method for soils 

exhibiting a non-linear shear strength 

Considering the slice of the potential slope failure given in 

Figure 9/1, for force equilibrium, 

resolving vertically 

P.cos~ + S.sin~ = W- (Xn~l - Xn) 

Now (u' + u) .1 = P and 

r.l = S 

where u' = effective normal stress 

at the base of the slice 
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r = shear stress at the base 

of the slice 

u = pore water pressure at 

the base of the slice 

so 

(a' + u) .!.cos.; + r.l.sin.; = W- (Xn+l - Xn) (1) 

The non-linear shear strength criterion is given by r = A(a')b 

and if a factor of safety is applied, r = ACg'lb. Replacing r 
F 

in (1) and rearranging 

a' = W -""--- - u- ACg'lb.tan.;- 1Kn+l-=-Xnl 
!.cos.; F !.cos.; 

Resolving parallel to base of slice 

S = (W- (Xn+l- Xn)J.sin.;- (En+l 

r.l = (W- (Xn+l- Xn)J.sin.;- (En+l 

Replacing r with the non-linear shear strength criteria and 

rearranging gives 

( 2) 

En+l- En= [W- (Xn+l- Xn)J.tan.;- l.ACg'lb.sec.; (3) 
F 

Summing all the slices in the slope 

1: En+l - En = l (W - (Xn + 1 - Xn) ].tan.; - 1. A< g' l b. sec.; ( 4) 
F 

In the absence of any surface loading 

so 
F = 1: l.ACg'lb.secw ( 5) 

1: (W- (Xn+l- Xn)].tan.; 

Taking moments about the centre of the base of the slice, ie 

where the resultant normal stress occurs and where the total 

vertical stress acts, and assuming that a is the same for the 

whole width of the slice, 

(Xn +Xn+l) .1- En(h- t.tan.; + t.tana) + En+ 1 (h- 1.tan.;)=O (6) 
2 2 2 

where h = height of thrust line above the failure 
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surface on the lower side of the slice. 

a = angle thrust line makes with the horizontal when 

acting on the lower side of the slice and is 

assumed to be straight across the width of 

the slice. 

Now let Xn+ 1 - Xn =~X or Xn = Xn+ 1 -~X and 

Replacing in (6) 

(2.Xn+ 1 - ~X).~- (En+ 1 - ~E) (h -~.tan~ + t.tana) 
2 2 

+ En+ 1(h- ~.tan~) = 0 
2 

If t is very small then ~X.t ~ 0 

and ~E. t ~ 0. 

t.Xn+ 1 + ~E.h- En+ 1.t.tana = 0 

X n + 1 + .b.. (En+ 1 - En) - En+ 1 . tan a = 0 ( 7) 
t 

Equations ( 2) 1 ( 3) I ( 5) and ( 7) are the working equations that 

will be used in the stability analysis and are reproduced below. 

~~ = _.~.~.w __ - u- Alg 1 )b.tan~- 1Xn+1-=-Xnl ( 2) 
l.cos~ F l.cos~ 

En+ 1 - En= [W- (Xn+ 1 - Xn)].tan~- l.Alg 1 lb.sec~ (3) 

F = 

F 

E l.A.secJ ·[ W - u- Alg 1 )b.tan~ 
E [W- (Xn+ 1 - Xn) ].tan~ l.cos~ F 

- ..LXn + 1-=-Xnl ]b 
l.cos~ 

9.5 A computer program using a rigorous solution 

and non-linear failure envelope 

A computer program has been written using the above analysis 
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and is included in Appendix E. It is intended for use in the 

fairly simple situations described in the survey where the 

slopes are usually fairly homogeneous and not multi-layered. 

The convention of a slope decreasing in height to the right has 

been adopted and should be used when entering geometrical data. 

The coordinates should be in metres. 

The following data are required to input into the program: 

(a) the number of slices to be analysed, N; 

(b) the X coordinate of the top of the slope, X(O); 

(c) the bottom and top Y coordinates of the higher side of 

the first slice on the left, Yb and Yt; 

(d) the Y coordinate of the phreatic surface at the top of 

the slope, Yw(O). 

And for each slice 

(e) failure envelope parameters A and b, A(I) and B(I) 

(f) unit weight in kN/m3, Ga(I) 

(g) the X coordinate of the right side of the slice, X(I) 

(h) the Y coordinate of the bottom of the right side of the 

slice, Yb(I) 

(i) the Y coordinate of the top of the right side of the 

slice, Yt(I) 

(j) the Y coordinate of the phreatic surface on the right 

side of the slice, Yw(I) 

(k) the angle of the line of thrust at the right side of the 

slice in degrees, Alph(I) 
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(1) the Y coordinate of the height of the line of thrust 

above the bottom of the right side of the slice, Ht(I} 

Several iterations are required to examine a failure and the 

following routine is used in the computer program (see the flow 

diagrams in Figures 9/2). 

In the first phase, the simplified solution, the Fellenius 

assumption is made that the inter-slice forces can be ignored. 

A value of ~' = ~.h.cos 2 ~ - u can therefore be used for each 

slice, I, and the factor of safety calculated by iteration from 

equation 5 using the total number of slices, N. (The factor of 

safety of the previous cycle, FL, and the new factor of safety, 

F, are compared until the difference between the two is 

extremely small.) The factor of safety is then used in 

equation 2 and the values of ~' found by iteration for each 

slice; the value of the effective normal stress from the 

previous cycle, ~'L, is compared with the new value, ~'. The 

values of ~' and the factor of safety from the previous cycle, 

Fa, which included iterations of the factor of safety and 

effective normal stress, are then used in equation 5 to find a 

new value of F. The new value of F allows new values of ~· to 

be calculated and so on until successive values of ~' and F are 

within a very small percentage of each other. At this point 

the interslice forces have been ignored. Now that the values 

of F and ~' are known for the simplified case, the interslice 

forces can be included and the rigorous solution calculated. 

Using the value of F and values of ~, for each slice, ~E can 
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be calculated for each slice using equation 3. The individual 

horizontal forces can now be found and used in equation 7 to 

obtain the first approximation to the interslice shear forces 

for each slice. The values of the shear force are inserted in 

equation 2 to find the values of ~· for each slice and a 

similar procedure followed as before in the simplified solution 

phase. This results in new iterated values for ~· and F for 

the first approximation to the interslice forces. The whole 

procedure is then repeated with these new values, first being 

used to find ~E (using the previous iterations values for X) 

and then E; the new values calculated for X can then be used in 

the iterations for ~· and F. The values of X lapse one 

iteration behind the other values. This procedure continues 

until the difference between the values of the effective normal 

stresses and factors of safety, ~·a and Fb (from the previous 

cycle which included iterations of factor of safety, effective 

normal stress and calculations of interslice forces) and the 

new values of effective normal stress and factor of safety, ~· 

and F, is so small, ~ 0.001 and ~ 0.0001 respectively, so as to 

be ignored. A very rapid iteration convergence is achieved, 

usually less then ten iterations for F, using the program. 

An example of the type of calculations that are carried out is 

given in Table 9/1 and Figures 9/3 and 9/4. 

9.6 Effect of varying the position of the line of thrust 

In order to see how sensitive the factor of safety is to the 
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position of the line of thrust, an analysis has been conducted 

using the shallow failure and the deep failure given in Figures 

9/3 and 9/4; the results are given in Table 9/2. The 

calculations of the factor of safety for the cases where the 

line of thrust is in extreme positions vary from the factor of 

safety of the most likely position of the line of thrust by 

less than 1% in all cases. It is clear that the position of 

the line of thrust has very little effect on the factor of 

safety. Janbu (1973) made the same observation for his method. 

9.7 Effect of soil parameters on the factor of safety 

To investigate the effect of soil parameters on the factor of 

safety F, an analysis has been conducted on the Gault Clay at 

Nepicar. Figure 9/5 shows the effect on the factor of safety 

F when varying A, b, the depth of slip, slope height, phreatic 

surface and the slope angle. 

There is an approximately linear increase in F with A over the 

range considered and F becomes increasingly sensitive to 

higher values of b. 

An increase of F occurs at shallower depths of failure, a 

result that is not surprising given the shape of the failure 

surface taken and the increasing instability caused by 

increasing the size and weight of the slice as a result of a 

deeper failure plane. Since the shape of the slip surface is 

correct, as this is the shape observed, this result would seem 
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to indicate that other factors such as much weaker embankment 

edges on a stronger core are having an effect and restricting 

the position of the failure plane. In Greenwood et al (1985), 

a minimum F is calculated for a particular shallow depth of 

failure plane which could be a direct result of the shape of 

failure plane used. Significant toe restraint is included for 

deeper failures, as the slip becomes shallower this restraint 

becomes proportionally smaller when compared to the weight of 

block it is supporting and so F reduces. At very shallow slips 

the weight of block is much less and the restraint is probably 

more efficient and hence F increases again. Since the shape of 

failure surface observed by Greenwood et al (1985} was not 

observed for the failures studied in this Thesis it is unlikely 

that such a solution will be applicable. 

In Figure 9/5, F reduces as the height of slope increases which 

is exactly what was seen on the slopes during the survey. 

Since the factors of safety were so high, the effect of the 

phreatic surface is not so representative but it can be seen 

that small movements of the phreatic surface near the slope 

surface cause the greatest change in F. 

Reducing the slope angle results in an increase in the rate of 

change in F, given that no other mechanisms are at work such as 

rates of water infiltration at different slope angles. 

These results indicate that the method of analysis developed 
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appears to be behaving as expected from observations in the 

field. 

9.8 Applications of the computer program 

The program and the analysis developed here, will be used to 

analyse shallow failures on clay slopes, but the methods could 

easily be used for other materials where a non-linear failure 

envelope is appropriate, such as rock fills and jointed rock 

masses. The results of back-analyses are invariably used in 

the design of slopes in new construction as a way of preventing 

or quantifying further failures. The determination of soil 

parameters and stability for the design of new slopes can be 

assessed using the program and analysis presented in this 

Thesis. 

9.9 The method of Charles and Soares 

Charles and Soares published two papers in 1984, one on the 

stability of compacted rock fills, and the other on the 

stability of soil slopes, both used a non-linear failure 

envelope. In both situations a power curve is used with a 

circular arc stability analysis. The method is only 

appropriate to circular failures and employs an analysis based 

on the semi-rigorous analysis of Bishop (1955). This involves 

the assumption that the resultants of the interslice forces act 

horizontally. The derivation of the equations used in the 

analysis is straightforward using a similar approach to that 
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used by Bishop. The working equations require iterations of 

the factor of safety and effective normal stress in the same 

way as described in Section 9.5. A computer program was 

written by Charles and Soares and, from the results, stability 

charts were compiled using stability numbers. However, for 

slopes which fail with arbitrary shaped failure surfaces 

stability charts are not readily appropriate as there is no 

consistent failure surface geometry on which to base them. 

Also, varying slope geometry, surcharge loading, pore water 

pressures and shear strength can easily be accommodated by a 

computer program. 

The equations derived by Charles and Soares are similar, but 

not the same, as equations 2 and 5. 

tr' = w - u- A(g')b.tan.J, 
F l.cos.J, 

F = E l.A. ·[ W - u- A(;')b.tan.J,] 
E (W- sin.J,] l.cos.J, 

This method could be used for shallow slips on simple slopes 

with a circular failure surface as occasionally occurs. 

Charles and Soares mention that iteration problems occurred 

with their method when the soil parameter b was greater than 

0.75. No such problems were encountered with the analysis 

given in this Thesis for any value up to b=l.O. Problems were 

encountered, however, for steep slopes in the same way as the 

Charles and Soares method. For slope angles greater than those 

given in Figure 9/5, problems were encountered with the 
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iterative process which calculates the effective normal stress 

at the base of the slice. This has no effect on the analysis 

of most soils but may have some effect on steep slopes in rock. 

This restraint was not a problem for any of the back-analyses 

carried out in Chapter 10. 

9.10 Methods used for rock fill and closely jointed rock. 

Highly weathered rock slopes or rock fills behave more like 

soils than fresh insitu rock slopes which are governed by pre­

existing features such as faults, bedding planes and joints. 

Consequently, methods applicable to rocks of this type can be 

used with soils and vice versa. As with soils, the failure 

surface in degraded rock and rock fills are free to adopt the 

shape of 'least resistance'. There is ample empirical evidence 

to show that the relation between shear and normal stress is 

non-linear at all stress levels (Hoek and Bray, 1981). As 

mentioned above, Charles and Soares (1984b) used a non-linear 

failure envelope, a slip circle, and the method of slices to 

obtain stability factors for a certain class of non-linear 

failure envelope. Hoek (1983) used two block collapse 

mechanisms to study particular cases of closely jointed rock. 

Collins, Gunn and Pender (1986) considered a non-linear failure 

envelope for wedge, block and log spiral failure using a 

partial differential stress distribution. 
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TABLE 9/1 
An example of the computations involved in the determination 
of a factor of safety using the rigorous method of slices 

with a non-linear failure envelope. 

P(I) 

L(I) 

U(I) 

W (I) 

TH(I) 

SLICE 
P(I) 
L(I) 
U(I) 
W(I) 
TH(I) 

= 
= 
= 
= 
= 
= 
= 
= 

angle of the shear plane with the horizontal,~. 
arctan[Yb(I)-Yb(I-1) 1/[X(I-1)-X(I) 1 
the length of the slice's shear surface,l. 
~{ [Yb (I)-Yb (I-1) 1 2 + [X(I)-X(I-1) 1 2 } 
average pore water pressure,u. 
9.81/2. {[Yb(I-1)+Yb(I) 1 - [Yv(I)+Yv(I-1) 1} 
weight of slice,W. 
'Y/2. [X(I)-X(I-1) 1· [Yt (I)+Yt (I-1)-Yb(I)-Yb(I-1) 1 

= thickness of slice,t. 
= X(I)-X(I-1) 

NOS. 1 2 3 4 
24.23 23.63 24.63 23.63 

4.39 4.37 4.39 4.37 
9.81 9.81 9.81 9.81 

78.80 78.80 78.80 78.80 
4 4 4 4 

Initial value of factor of safety, F = 1. 000 

S (I) 6.57 6.73 6.57 6.72 
Iterated value of F = 1.1983 

S(I) (iterated) 7.10 7.16 7.10 7.16 
Iterated value of F = 1. 1805 

. . . . .. ......... continues un ti 1 ............. 

5 (I) (iteration 7.07 7.13 7.07 7.13 
complete) 

rterated value for the simplified solution, F = 1.1816. 

including inter-slice forces ..... 

5 
0 

4.00 
4.91 

39.40 
4 

4.95 

4.95 

4.95 

~igorous solution 
~X (I) 0 0 0 0 0 
~E (I) (NB E~E=O) 
~(between slices) 
{(between slices) 
~X ( I ) ( NB E ~X=O ) 

5.304 4.414 5.304 4.414 -19.436 
0 5.304 9.718 15.022 19.436 
0 2.129 3.963 6.251 5.874 

2.129 1.834 2.288 -0.377 -5.874 

){I) (iterated) 6.65 6.77 6.63 7.21 6.41 
[terated value of F = 1.216 

0 
0 

....... when S(I) and Fare within the required tolerances, new inter­
)lice forces are calculated and the procedure repeated. The computation 
:inishes when no further improvement in the factor of safety and the 
~ffective normal stress can be achieved. 
~X(I) 2.564 2.270 2.782 -0.524 -7.092 
)(I) (iteration 6. 6 4 6. 7 5 6. 6 0 7. 3 0 6. 7 2 

complete) 

~actor of safety = 1.220 
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TABLE 9/2 

Effect of the position of the line of thrust on the factor of safety 

Angle of Height above Factor of Difference 
thrust for base for each safety in factor 
each slice, slice, of safety 
ALPH (Deg) HT (m) 

SHALLOW FAILURE 

Likely position 25 0.26 1. 22 
of line of 24 0.33 
thrust 24 0.37 

18 0.40 

Extreme variations 26 0.22 1. 21 0.6% 
24 0.25 
24 0.25 
15 0.33 

24 0.40 1. 23 0.4% 
24 0.45 
24 0.45 
20 0.50 

DEEP FAILURE 

Likely position 42 5.00 0.92 
of line of 26 7.30 
thrust 18 7.50 

6 6.00 

Extreme variations 44 2.50 0.93 0.6% 
27 3.60 
18 3.80 

5 3.00 

40 6.00 0.92 0.0% 
26 9.50 
20 10.00 

7 7.30 
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Xn 

En Line of thrust 

t/2. tan "o/ 
s 

l 

E = h or i z on t a l i n t e rs l i c e f or c e } n and n + 1 designate t he 
X= vertical i nt ersl ice force higher and lower sides 
W: total weight of slice respectively 
t =width of slice 
P:total normal force on the base of the slice over 

a length I 
5= shear force mobilized on the base of the slice 
ex: angle of line of thrust 
h= height of line of thrust 
*= angle of base of slice 

Fig 911 Forces acting on a slice 
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10.1 General 

Chapter 10 

Back-analyses of shallow failures 

In order to conduct any reasonable back-analysis of slope 

failures the details of the slope itself must be accurately 

observed, sampling should be as representative as possible, 

testing should be carried out at the stress levels encountered 

in the field and be as accurate as current technology allows, 

and pore water pressures should be assessed to a high degree of 

confidence. Based on the philosophy of Leroueil and Tavenas 

(1981) and Chandler (1977) the following criteria have been 

met: 

(a) every aspect of slope behaviour has been considered as 

accurately as possible without losing sight of observations in 

the field, that is the survey. 

(b) a good understanding of the problem has been gained from 

the literature as well as the results of the survey. 

(c) theories, such as a non-linear failure envelope, have 

been led by observation, not observation led by theories. 

10.2 Characteristics of slopes and soil properties 

Back-analyses are conducted on the six embankment failures 

given in Table G/1. Emphasis has been placed on embankments as 

they were highlighted in the survey as being more of a problem 

than cuttings. Also embankments have not received the same 
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level of attention as cuttings and so more work is needed to 

investigate their behaviour. 

Table 10/1 summarizes the characteristics of the slopes. The 

profile of the slope, the profile of the failure surface 

(Figure 10/1) and the soil properties are entered into the 

stability program as described in Section 9.5 and Figure 9/3. 

The failure surface profile is considered to be a plane 

parallel to the slope surface. This profile is based on 

observations of these particular failures, failures observed 

during the survey and a report for TRRL describing the shape of 

a failure surface as observed in a trench cut through a shallow 

failure on a Gault Clay embankment on the A45 in Cambridgeshire 

(Figure 10/2). In Figure 10/1, the depth of slip increases as 

the slope angle decreases for the geologies studied, a 

phenomena discussed in Chapter 11. 

Back-analyses are conducted using a non-linear failure envelope 

for the peak strength parameters (Table 8/1), representing the 

maximum strength of the soils in a natural state, and the 

'ultimate' strength parameters (Table 8/2). The stability 

analysis method developed in Chapter 9 is used for these 

parameters. Further analysis is conducted using the critical 

state strength parameters (Table 7/2) which represents 

homogeneous strain conditions at the point when initial failure 

of the soil mass occurs. Residual strength requires larger 

strains and the formation of a pre-existing shear plane before 

failure which were not observed at the site locations. These 
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strengths are illustrated in Figure 10/3. Note that the 

residual strength failure envelope is generally curved at low 

effective stresses (Lupini, Skinner and Vaughan, 1981) in a 

similar manner to the peak strength envelope. 

10.3 Pore water pressures 

Pore water pressures were not measured at the exact location of 

all the slips. However there is sufficient evidence from the 

Nepicar site (Crabb, West and O'Reilly, 1987) and from other 

similar highway earthworks for a realistic assessment to be 

made. Observations in the field at the sites of the failures 

indicated that the soil was saturated mainly in the lower half 

of the embankment to the full depth of the slip. This is 

evidenced by standing water, shrinkage cracking on the failure 

plane, mud flow structure, water loving plants and inspection 

with the simple probe used during the survey for any signs of 

wettness. The work of Crabb and West (1985), Crabb et al 

(1987) and Anderson and Kneale (1980a and 1980b) on measuring 

pore water pressures in embankments of Gault Clay, and Oxford 

or Kimmeridge Clay indicates that pore water pressures in the 

outer 1.5m of the embankment, the part most effected by 

failure, periodically become positive, or more positive, in 

winter especially in the lower part of the slope. During 

periods when measurements were taken the phreatic surface was 

at or near the lower slope surface. Shrinkage cracking can 

allow relatively rapid changes in pore water pressures to occur 

within the outer layer, an effect recorded both by Anderson, 
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Hubbard and Kneale (1982) and Crabb et al (1987). Failure of 

the slope occurred while Anderson and Kneale (1980a and 1980b) 

were taking readings and the positive pore pressures measured 

indicated a phreatic surface at the surface of the lower part 

of the slope. The readings of Crabb et al (1987) indicate 

lower positive pore water pressures. The pore water pressures 

higher up the slope were zero. Towards the core of the 

embankment, negative pore water pressures were measured some of 

which were very high. This pore water regime is similar to 

that described for cuttings (Chandler and Skempton, 1974). 

10.4 Results of back-analyses 

Considering the evidence in Section 10.3, it would seem that 

taking a phreatic surface at the surface of the slope and peak 

strength parameters would be a good initial assumption on which 

to conduct an analysis. This initial approach is recommended 

by Bromhead (1986). The 'ultimate' strength, that is the 

ultimate condition for testing as explained in Chapter 6, is 

analysed in the same way. Progression can then be made to 

consider critical state strengths for slopes with zero pore 

water pressures to the full depth of the slip, and slopes with 

zero pore water pressures at the high levels of the slip and 

positive pore water pressures at the toe of the embankment. 

The latter regime represents the situation measured by Anderson 

and Kneale (1980a and 1980b), and Crabb et al (1985 and 1987) 

and is considered to apply to all the soils being analysed. 

Slight variations in the regime were necessary to achieve 
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failure and reflect different rates of consolidation or 

swelling of each material. 

Using the slope characteristics observed, the peak shear 

strength parameters measured and a phreatic surface at the 

surface of the slope in the slope stability analysis method for 

the curved failure envelope results in the factors of safety 

given in Table 10/2. Since a factor of safety of unity has in 

no way been achieved, these results indicate that since the 

accuracies of the parameters entered into the analysis are 

known to be reasonable then an incorrect assumption has been 

made. The most likely assumption to be at fault is that peak 

strength conditions prevailed. This would cause the shear 

strength to be too high and that lower shear strengths are 

actually occurring. This effect was noted by Crabb et al 

(1987), and by Coxon (1986) in connection with the Carsington 

Dam failure in 1984. Furthermore if a three dimensional 

analysis could be devised for curved failure envelopes the 

factor of safety would have been even higher. 

The factors of safety calculated for the 'ultimate' condition 

from undisturbed samples with a phreatic surface at the slope 

surface samples are given in Table 10/3. These are not 

consistently lower than the factors of safety for the peak 

strength as would be expected. The results illustrate how much 

the stresses near the origin influence the fitting of a power 

curve and hence the calculated shear strength values as 

mentioned in Section 8.3. 
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Since the peak strengths and 'ultimate' strengths have produced 

factors of safety which are too high, and since residual 

strengths did not occur in the field, the application of the 

critical state strength, in the context of progressive failure, 

may be more appropriate. 

Progressive failure (for example Bishop, 1952 and 1967) results 

from a non-uniform mobilization of shear strength along a 

potential failure surface. This is particularly appropriate to 

the over-consolidated fissured clays studied here, where large 

strains can develop irregularly along a potential failure 

surface due to stress concentrations at fissures, shrinkage 

cracks or other discontinuities. This results in the peak 

strength being reached, followed by a gradual decrease in 

strength at these areas of large strain. It also facilitates 

load shedding to neighbouring clay elements which in turn may 

become over-stressed. Load shedding is one of the implications 

of brittle materials with strain softening characteristics such 

as those studied here (Figures 6/14, 6/17 and 6/22). The 

average mobilized strength along a potential failure surface 

will then be somewhat less than the peak strength and can 

approach the critical state strength (Schofield and Wroth, 

1968) or fully softened condition (Skempton, 1970). The 

critical state strength represents the average strength at 

failure for a slip surface; that is not to say that critical 

state strength is the actual mobilized condition but it seems 

to give a comparable strength to that developed due to 
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progressive failure. The critical state strength represents a 

useful lower bound strength for first-time slides, and this has 

been confirmed by back-analysis of failures in cuttings 

(Skempton, 1977). In cuttings, large strains can develop at 

fissures and for embankments this may still be the case but to 

a lesser extent as the material has been disrupted during the 

construction process. Shrinkage cracks may play a more 

important part (Anderson, Hubbard and Kneale, 1982), as well as 

the large strains developed during excavation, removal, 

deposition and during the compaction process (Whyte and 

Vakalis, 1987; Coxon, 1986). 

The factors of safety using conventional linear failure 

envelopes, the Janbu rigorous method and a phreatic surface at 

the slope surface are shown in Table 10/4 for the critical 

state strength of reconstituted samples. As can be seen, the 

factors of safety are extremely low. Assuming zero pore water 

pressures and critical state strengths increases the factor of 

safety to above unity in most cases (Table 10/5). Using the 

most likely pore water regime, a phreatic surface at the toe of 

the embankment and zero pore water pressures elsewhere (Figure 

10/1), and a critical state strength results in factors of 

safety of unity in most cases. This model is therefore the 

most likely failure mechanism for most of the soils studied. 

Table 10/6 and Figure 10/1 show, for each geology studied, the 

proportion of slope surface required to be effected by a 

phreatic surface in order to achieve a factor of safety of 

unity in the analyses. The proportions for Kimmeridge Clay, 

251 



Oxford Clay, Reading Beds clay and Weald Clay slopes are what 

can be expected in the field based on past research. Gault 

Clay, however, required a greater proportion of the slope to be 

effected than might be expected and London Clay fails whatever 

the position of the phreatic surface. 
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TABLE 10/1 

Slope characteristics and soil bulk density 

Geology Angle Height Depth Bulk 
of of of Density 

slope slope slip 
(kN/m3) (deg) (m) (m) 

Gault 17 6.7 1.3 18.8 
Clay-
Nepicar 

Kimmeridge 24 8.1 1.0 19.7 
Clay 

London 29 6.5 0.5 19.5 
Clay 

Oxford 25 7.3 1.5 19.7 
Clay 

Reading 19 7.5 2.0 19.9 
Beds-clay 

Weald 24 6.7 1.5 20.5 
Clay 

TABLE 10/2 

Factors of safety from back-analysis using a non-linear failure 
envelope and peak strength for undisturbed samples 

(phreatic surface at surface of slope) 

Geology Gault Kimmeridge London Oxford Reading Weald 
Clay- Clay Clay Clay Beds- Clay 
Nepicar Clay 

Factor 1. 69 1.11 1. 70 1. 42 1. 46 1. 29 
of 
safety 
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TABLE 10/3 

Factors of safety from back-analysis using a non-linear failure 
envelope and 'ultimate' strength for undisturbed samples 

(phreatic surface at surface of slope) 

Geology Gault Kimmeridge London Oxford Reading Weald 
Clay- Clay Clay Clay Beds- Clay 
Nepicar Clay 

Factor 1. 04 1. 21 1.10 1. 62 1. 69 1. 58 
of 
safety 

TABLE 10/4 

Factors of safety from back-analysis using a conventional 
linear failure envelope and critical state strength from 

reconstituted samples (phreatic surface at surface of slope) 

Geology Gault: Kimmeridge London Oxford Reading Weald 
Clay- Clay Clay Clay Beds- Clay 
Nepicar Clay 

Factor 0.70 0.45 0.33 0.51 0.57 0.55 
of 
safety 

TABLE 10/5 

Factors of safety from back-analysis using a conventional 
linear failure envelope and critical state strength from 

reconstituted samples (zero pore water pressures) 

Geology Gault Kimmeridge London Oxford Reading Weald 
Clay- Clay Clay Clay Beds- Clay 
Nepicar Clay 

Factor 1. 58 1. 06 0.88 1.18 1. 22 1.19 
of 
safety 

TABLE 10/6 

Proportion of slope surface requiring a phreatic surface 
to achieve a factor of safety of unity 

Geology Gault Kimmeridge London Oxford Reading Weald 
Clay- Clay Clay Clay Beds- Clay 
Nepicar Clay 

Proportion 0.6 0.1 0.2 0.4 0.3 
of 
slope 
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Chapter 11 

Discussion 

The survey described in this Thesis covered 1500km of motorway 

slope, which were selected in order to include a large number 

of geologies and a variety of geometries, motorway ages and 

types of drainage. This it has done very successfully, with 

the exception of some cases of motorway age, and in so doing 

has generated the largest computer database of its kind in 

Britain and probably the world. Since the failure of cutting 

and embankment slopes is a continuing process, the database can 

be used in the future to study the long-term performance of the 

motorway earthworks surveyed. 

Table 11/1 shows the top six single geologies, in embankments 

and cuttings, whose slopes have the highest percentages of 

failure. 

For embankments, the Table includes most of the well known 

over-consolidated clays, illustrating their susceptibility to 

failure. Most of the failures in Lower Keuper Sandstone are of 

the topsoil and not of the fill itself as was the case with the 

other geologies listed. In cuttings well known over­

consolidated clays are again included as well as the Enville 

Beds, which were found on the MS in Hereford and Worcester. 

London Clay, a well documented material because of its unstable 

behaviour, is not one of the six geologies in cuttings with the 

highest percentages of failure. The percentage of failure in 
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this material was only 0.3 per cent with a predominant slope 

angle of 1:3, much less than that for embankments which may 

reflect the cautious approach adopted for cuttings in this 

material. 

Considering embankment slopes with a combination of two 

geologies, Glacial Gravel with Middle Lias (Silts and Clays) 

has the highest percentage of failure of 11.0 per cent. In 

cuttings, Middle Lias (Silts and Clays) with Lower Lias has the 

highest percentage of failure of 13.1 per cent. However, none 

of these geologies individually has a percentage of failure 

greater than 0.6 per cent. In some cases, therefore, a 

combination of geologies can have a higher percentage of 

failure than the individual geologies. 

In relation to age, higher percentages of failure were recorded 

in the more recently constructed embankment slopes of London 

Clay, Oxford Clay and London Clay with Reading Beds. To explain 

this, additional detailed studies would be required into the 

soil properties, specifications, design standards and 

construction practices for each individual motorway. 

The study of the effect of geometry on slope stability has 

unexpectedly revealed that the steepest slope angle on over­

consolidated clay soils is not necessarily associated with the 

highest percentage of failure. The phenomenon is not yet well 

understood and long-term studies of embankments on Gault Clay 

are being undertaken to find an explanation (Crabb and West, 
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1985 and 1987). Cutting and embankment slopes in over­

consolidated clay soils have a high initial strength due to 

negative pore water pressures (Skempton, 1977; Crabb et al, 

1987). The rate at which these pressures change (Vaughan and 

Walbancke, 1973; Chandler and Skempton, 1974; Chandler, 1984) 

is, amongst other things, related to slope angle, with the most 

rapid reductions occurring on flatter slopes which do not shed 

water as readily as steeper slopes. 

On the other hand disturbing forces are greatest on the 

steepest slopes and failures result from an interaction between 

this and the reducing shear strength with depth due to pore 

pressure equilibration. A possible implication is that in the 

longer term the slopes with steeper angles will reach at least 

the same percentages of failure as those flatter slope angles 

currently exhibiting the highest percentages of failure. 

Interestingly the CHASE study of the more homogeneous rocks in 

Hong Kong (Denness, 1982) showed that the number of failures 

increased with decreasing slope angles, the same behaviour as 

observed in this survey. In Hong Kong, steeper slopes were 

more stable for heights greater than 10m; slopes between 50 

degrees and 75 degrees became more stable as slope height 

increased, a phenomenon not observed in the motorway survey. 

These observations indicate that slope processes are extremely 

complex, that designing a less steep slope does not necessarily 

make it more stable, and empirical design has a very useful 

role to play especially for the more homogeneous slopes of 
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embankments and cuttings in clays. 

Further evidence that infiltration may be causing less steep 

slopes to fail over greater lengths than steeper slopes, may 

reasonably be deduced from a study of the depth of failure 

surface and slope angle. Table 11/2 presents the results of a 

limited study which includes three of the major problematical 

geologies used in the construction of earthworks. The depths 

of failure surface given are weighted means for the particular 

geometries given. Although not conclusive, there appears to be 

some evidence that deeper failures tend to occur on less steep 

slopes. A more extensive study was restricted as many slips 

had been reinstated and so measurements of depth of failure 

surface could not be made for a particular combination of 

geology, age and geometry. 

Other factors which may affect stability are the presence of 

shear surfaces induced by compaction plant (Whyte and Vakalis, 

1987; Coxon, 1986) which could have a detrimental effect on 

stability, and the roots of trees, shrubs and grasses (Barker, 

1986) which may have a beneficial effect on stability. The 

normal variations in soil properties (for example Cripps and 

Taylor, 1986 and 1987) could possibly account for differences 

in the behaviour of some geologies. Access of water into 

slopes can be assisted by the presence of shrinkage cracks 

initiated in hot, dry spells, the lack of compaction near the 

outer edges of embankments, if not overfilled and trimmed to a 

slope, and the opening up of fissures, near the slope surface 
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of cuttings, due to stress relief. Also, disturbance of the 

slope by tree planting can assist water infiltration. 

When comparing embankments and cuttings with each other, the 

types of failures (for example slab type failures), the depths 

of the failure surfaces beneath the slopes and the areas of 

slopes affected by individual slips, were all found to be 

similar. So, whatever the different causes of failure may be 

in each of the earthwork types, the geometry of the resulting 

slips are very much alike. 

The effect on the percentage of failure of the three major 

types of drainage has been studied at the bottom of embankment 

slopes and the top of cutting slopes. Drift deposits, or 

mixtures including Drift deposits, have a lower percentage of 

failure on slopes with open ditches when compared to slopes 

with no drainage, but slopes of Solid deposits show the 

opposite behaviour. These results are difficult to explain but 

are likely to be related to the different permeabilities of 

these materials. Drift deposits, which generally have a high 

permeability, may be effectively drained by open ditches and, 

consequently, slopes in this material have fewer failures than 

when no drainage is provided. Solid deposits are usually of 

low permeability and so open ditches would be as ineffective as 

no drainage at all. The factors which cause open ditches to 

have a detrimental effect on stability in Solid deposits could 

be associated with the lack of restraint at the bottom of 

embankments or the flow of groundwater on to the slopes of 

262 



cuttings where open ditches are located. In Drift deposits, 

these factors seem to be more than outweighed by the beneficial 

effects of the drainage. 

There is no consistent pattern of behaviour between the 

percentage of failure of slopes and orientation except for 

Reading Beds (cohesive) which in both embankments and cuttings 

had significantly greater percentages of failure on north 

facing slopes. There are many opposing factors to be taken 

into consideration when determining the effect of climate on 

embankment and cutting slopes. For example, the north side of a 

slope may remain wetter for longer periods but since the south 

side receives more sunshine the soil can dry out; shrinkage 

cracks may then develop allowing water to enter deeper into the 

earthwork when precipitation occurs. This may explain the 

irregular pattern of failures seen for nearly all the geologies 

when correlated with orientation; a pattern observed in Hong 

Kong for slopes included in the CHASE project described 

earlier. In the case of Reading Beds (cohesive), the north 

facing slopes appear to be more consistently affected by the 

wetter micro-climate associated with that orientation. 

Figure 11/1 shows the maximum recommended slope angle for the 

least stable geology, or one of the least stable geologies, in 

each of the deposits studied. This Figure uses the information 

on single geologies given in the tables of maximum slope angle 

for new earthwork construction. The slope angles given 

restrict the percentage of failure to less than 1 per cent for 
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all earthworks over S.Om high. It is clear that the younger 

Jurassic, Cretaceous and Eocene deposits contain geologies with 

a high percentage of failure at flatter slope angles. In slope 

design, slope geometries derived by empirical means, such as 

presented in this Thesis, are extremely useful as they provide 

the Designer with a 'bottom line' for stability. If he designs 

steeper slopes than those found by empirical design and the 

slope characteristics appear to be the same, then failures 

should be expected. The cost of repairing such failures might 

well be minimal compared to the amount of land required to 

sustain a slope angle of 1:5 for example. However, if he 

designs an over-consolidated clay slope at 1:2 in areas where 

land is relatively inexpensive, it is extremely likely that the 

cost of repairing the large number of failures which are 

inevitably going to occur will be more than the extra landtake 

for a slope angle of 1:3. Each design must be considered 

individually. Consideration should also be given to 

preventative and reinforcement methods if steeper slopes are 

required. In heterogeneous materials, such as jointed and 

weathered rock, empirical design is unlikely to include all the 

variations in properties that are likely to occur and 

consequently a large enough sample could never be taken to be 

representative. 

Similar recommended angles to those given in this Thesis are 

given by Newman (1890) and Gardner (1921) who based their 

designs on the experience gained during the construction of 

most of Britain's railway system. It is likely that these 
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recommendations are based on a number of observations of slope 

failures. Failures of the sort seen on modern highways might 

well therefore have occurred in the past on railway earthworks. 

Although specific geologies are not mentioned by name, 

embankment slope angles of 1 in 6 and 1 in 3 are quoted by 

Newman for 'brown laminated clay' and 'damp clay soil' 

respectively. Gardner recommends slope angles between 1:3 and 

1:5 for wet clay slopes. 

From casual observation, it appears that railway earthworks are 

stable at steeper slope angles than are found on highways. If 

clays or clayey materials were used in embankments with steep 

angles, it could be that the method of construction only 

allowed stronger materials to be used. In a similar way to 

earth embankment darns, lack of compaction and smaller negative 

pore water pressures as a result of considerable remoulding 

during construction of embankments may have resulted in only 

those clays or clayey materials of sufficient strength 

remaining stable after construction. Because of the smaller 

negative pore water pressures, failures in the long-term may 

not have occurred to the same extent as in highways. 

Conversely, clays retaining high negative pore water pressures 

which are initially stable in highway embankments but fail much 

later could not have been used in railway embankments of 

similar slope geometry and would form a basis for Newman's and 

Gardner's recommendations. 

In cuttings, the behaviour of slopes on highways and railways 
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should be similar as the method of construction should have no 

effect on the slope. It is, therefore, difficult, without 

conducting a detailed survey, to explain why railway slopes in 

the same clays as highway slopes appear to be more stable at 

steeper slope angles. 

The general steepness of railway earthwork slopes may be 

explained by the greater choice of railway alignment when 

compared to highways. Where there has been a choice between 

construction in sound material and construction through 

problematical materials the railways, which were constructed 

before most major highways, have, naturally, taken the easier 

option leaving the highway to be constructed in poorer 

materials at less steep slope angles. The M26 motorway is a 

good example of this; it had to be constructed through the 

Gault Clay because the railway and other traffic routes had 

taken the line through the better materials (Garrett and Wale, 

1985). Also most conurbations were constructed on the better 

materials because of the better foundation conditions and the 

proximity of the main transport routes. 

Other factors which can effect railway earthwork stability 

include the large amounts of granular ash that have accumulated 

on slopes during the age of the steam engine and areas of 

replaced track ballast that have also accumulated on slopes as 

a result of maintenance procedures. The loading and draining 

effect of these materials at the toe of cutting slopes could 

have a long-term stabilizing effect on those materials beneath 
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which are susceptible to pore water pressure increases. Where 

placed down the whole slope of embankments, the granular ash 

provides a drainage medium but if irregularly placed with more 

material at the crest, the slope may become overloaded and 

result in failure. 

Rea (1956) recommends slope angles of 1:3.5 for 'wet clay' 

cutting slopes while Harger and Bonney (1927) recommend a much 

steeper slope angle of 1:2 for highway cutting slopes. 

However, Harger and Bonney suggest a slope angle of 1:4 would 

be more suitable for highway embankments. 

Horner (1981) suggests angles up to 1 in 6 for cuttings in clay 

and 1 in 2.5 for clay embankments based on his experience of 

earthworks. The survey suggests that embankment slopes should 

be less steep than those given by Horner. 

Having observed the problems in the survey, studies were 

conducted into the failure mechanism, not only to explain how 

failures were occurring but also to provide a tool for 

designing slopes in unusual situations not encountered in the 

survey and for designing preventative and reinforcing methods. 

From the testing of undisturbed samples at low effective 

stresses it is observed that the peak strength failure envelope 

is markedly curved. This curvature is usually not critical at 

higher and limited ranges of effective stress but becomes 

important not only for shallow failures but for conditions 
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covering a large stress range (Bishop, Webb and Lewis, 1965). 

There is a good case for using the least sum of squares method 

for fitting a curved failure envelope to a set of test data, 

from a statistical and from an accuracy point of view, and 

there is little doubt it is the most appropriate. This method 

is not only suitable for low effective stress soil mechanics 

but can be used for fitting a power curve to triaxial results 

from samples of rockfill and jointed rocks. Areas requiring 

care with the method encompass the correct choice of starting 

values for A and b in the iteration procedures of the computer 

program so that the correct values are converged on. 

Additional Mohr circles will be required than are usually in 

practice in order to cover a wider range of stresses, as the 

best fit line is influenced by values from zero to the stress 

level being considered. For these reasons the method is 

recommended for studies of soils at low effective stresses, and 

for rocks where a curved failure envelope is appropriate and 

tests have been conducted over a wide range of stresses. 

Rather than use the parameters A and b from a power curve 

relation at low effective stresses, a straight line may be 

drawn at the particular stress level being considered which is 

tangential to this curve. This has the advantage of allowing 

c' and $' to be found and conventional analysis to be 

conducted. It does, however, have the disadvantage that any 

changes in pore water pressure can not be easily accommodated 

as new values of c' and $' have to be calculated. 
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An alternative method which allows c' and ~· to be calculated 

is to draw a tangent to two Mohr circles at the stress level 

being considered without calculating the non-linear relation. 

In addition to the disadvantage above, this method is strongly 

influenced by any experimental errors; the power curve includes 

all the Mohr circles and hence is more representative of the 

material properties. 

It is clear from the results of the back-analysis that peak 

shear strengths are not representative of the conditions that 

were prevailing at the time of failure of these shallow 

failures. The likely mechanism for failure for most of the 

slopes studied involves an average shear strength equivalent to 

the critical state strength at the failure surface, mobilized 

as a result of significant strains within the slope but not as 

high as those required for the residual strength condition 

(Atkinson and Bransby, 1978), with positive pore water 

pressures only at the lower part of the slope. For design 

purposes, therefore, it is necessary to deduce the critical 

state friction angle of a material. Rather than reconstitute 

the sample, high stress testing can be carried out and the 

friction angle of the peak strengths taken as the critical 

state friction angle (Skempton, 1970; Coxon, 1986). Table 11/3 

compares critical state friction angles calculated from the 

tests by City University on reconstituted samples, with 

friction angles from tests, conducted by a commercial testing 

laboratory for TRRL, on the same material type and from the 
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same location as the reconstituted samples but using 

conventional high stress triaxial testing on undisturbed 

samples. The maximum difference is four degrees, well within 

the experimental errors of the two types of test and 

inconsistencies between samples. 

In the back-analysis of embankment failures, the Gault Clay 

embankment required the most slope surface to be effected by a 

phreatic surface. The critical state strength is not 

particularly high compared to the other geologies, but the 

slope angle is the flattest of all six geologies. The extent 

of high pore water pressures may well be appropriate for 

flatter slopes as water infiltration could be higher as 

evidenced by the studies of the effect of geometry on 

instability in the survey. 

The London Clay slope is too weak at the critical state 

strength even with zero pore water pressures and has the 

highest factor of safety for peak strength and a phreatic 

surface at the surface of the whole slope. It would appear 

therefore that London Clay exhibits an average shear strength 

between peak and critical, probably reflecting progressive 

failure within the slope. 
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TABLE 11/1 

Geologies with a high percentage of failure 

Geology Percentage Predominant 
of failure slope angle 

Ernbankroonts Gault Clay 8.2 1:2.5 
Reading Beds 7.6 1:2 
Kinmeridge Clay 6.1 1:2 
Oxford Clay 5.7 1:2 
Lower Keuper 

Sandstone 4.9 1:1.5 
London Clay 4.4 1:2 

CUttings Gault Clay 9.6 1:2.5 
Enville Beds 5.8 1:2.5 
Oxford Clay 3.2 1:2 
Reading Beds 2.9 1:3 
Bunter Pebble Beds 2.3 1:2 
Lower Old Red Sandstone-
St Maughan's Group 1.7 1:2 
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TABLE 11/2 
Comparison of depth of failure surface in embankments of different 

ages and geometries 

Geology Age Height Slope angle Depth of 
(years) (rn) (v:h) failure 

(rn) 

2.5-5.0 1:2.5 1.7 
1:2 1.0 
1:1.75 0.5 

Reading Beds 10 5.o-7.5 1:2.5 2.5 
1:2 1.7 
1:1.75 0.5 

7.5-10.0 1:2 0.8 
1:1.75 0.3 

2.5-5.0 1:2.5 1.0 
1:2 1.1 
1:1.75 1.3 

Kimmeridge Clay 10 

5.0-7.5 1:2 0.7 
1:1.75 1.3 

0-2.5 1:2 0.5 
1:1.75 0.4 

10 2.5-5.0 1:2 0.6 
1:1.75 0.6 

5.0-7.5 1:2.5 1.0 
1:2 0.7 
1:1.75 0.5 

Oxford Clay 

0-2.5 1:2.5 1.5 
1:2 0.6 
1:1.75 0.3 

22 2.5-5.0 1:2.5 1.5 
1:2 1.1 
1:1.75 1.0 

5.0-7.5 1:2.5 1.4 
1:2 1.0 
1:1.75 1.2 
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TABLE 11/3 

Comparison of critical state strength friction angles and 
friction angles from triaxial tests at high stress 

levels on undisturbed samples 

Gault Kimmeridge London Oxford Reading Weald 
Clay- Clay Clay Clay Beds- Clay 
Nepicar Clay 

~, c 23 23 25 25 19 24 

~· 25 

Cutting 

19 

6culde· c:a .. ISOo,.;tt't:~:~ 

E:_~~·.w.a. DRIFT 

21 

St \·1il-...;:·::;r·, Grc .. o OL~ RED S.:..i\:OSTONE 

IVen,cal scale x 21 

23 19 21 

Embankment 

Fig.11/1 Maximum recommended slope angles for less than 1 per 

cent failure on slopes greater than 5.0m high 
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Chapter 12 

.Conclusion 

Shallow slope failures are a significant problem on motorway 

earthworks. Of the 570km of motorway surveyed, over 17km of 

embankment slope and over S.Skm of cutting slope have failed 

with the failure surface rarely exceeding l.Sm in depth. The 

types of failures, depths to the failure surfaces and areas of 

slopes affected by individual slips, were similar in both 

embankments and cuttings. The method of repair of shallow 

slips involved replacement of the failed soil with a free 

draining material. 

A study of the survey data confirmed that the principal factors 

having an influence on the extent of failures were geology, age 

of earthworks and geometry of slope. 

The greatest incidence of failure occurred in high plasticity 

over-consolidated clays. In some of these materials the 

percentage of failure unexpectedly decreased with increasing 

slope angle. The majority of geologies, however, show an 

increase in the percentage of failure with increasing slope 

angle. Also, for most of the geologies studied, the percentage 

of failure increases as the height of slope increases. 

For some geologies in embankments, higher percentages of 

failure were recorded in the more recently constructed slopes. 

Cutting slope failures occurred at a number of ages but 
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generally the older earthworks showed higher percentages of 

failure. 

Fifty per cent or more of embankment slopes have failed for a 

number of geologies with particular combinations of slope 

angle, height and age. In cuttings there are a much smaller 

number of geologies that have percentages of failure greater 

than 25 per cent for particular geometries and age. 

In Solid deposits, embankments with an open ditch at the bottom 

of the slope usually have a higher percentage of failure than 

similar slopes with no drainage at all. The same effect can be 

seen with these types of drainage at the top of cutting slopes. 

In Drift deposits, however, the opposite occurs for slopes 

under similar conditions. Slope drains increased the stability 

of slopes in materials susceptible to shallow failures. The 

survey shows that the orientation of the slopes studied was not 

a cause of failure for most geologies. 

General guidance on the design of new earthwork side slopes can 

be gained from the results of the survey and the identification 

of areas at risk of failure in the longer term will be aided by 

reference to the maximum recommended slope angles given in this 

Report. 

A conservative estimate of failures in the future suggests that 

three times as many slopes are likely to fail than have failed 

so far if no preventative measures are taken. 
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The construction, specifications and design methods used on the 

motorways studied have been successful at reducing shallow 

slope failures for many of the older deposits and for some of 

the more recent deposits. 

There is no point in using sophisticated statistical methods to 

fit linear failure envelopes to Mohr circle data, unless a 

degree of confidence is required in the data, as conventional 

'Top Point Construction' gives the same answer. 

The peak strength failure envelope is markedly curved at low 

effective stresses and a useful method has been developed for 

fitting a power curve shaped failure envelope to laboratory 

triaxial data. 

The shear strength parameters for a curved failure envelope can 

be used in a specially developed slope stability analysis for 

failure surfaces of arbitrary shape. This analytical method 

overcomes the need to approximate or restrict the study of 

slope failures to linear shear strength parameters, allowing 

the design and back-analysis of soil slopes at low effective 

stresses. As well as considerable potential in soil mechanics, 

the method could also be applied to jointed rock, weathered 

rock and rock fill. 

For most of the slopes studied, the mechanism involved in the 

formation of shallow failures entails a reduction in average 
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shear strength from peak to critical state, at which time 

progressive failure occurs in association with the development 

of positive pore water pressures only in the lower part of the 

slope. 

Theoretically, Gault Clay requires a high proportion of the 

slope surface to be effected by a phreatic surface before 

progressive failure occurs at the critical state strength. 

This may be occurring, as flatter slopes may be subject to 

higher pore water pressures. London Clay exhibits an overall 

average shear strength between peak and critical state. 

This Thesis presents the early stages of a continuing process. 

Areas for further study include the following: 

(a) the computer database is a very useful source of 

information for the future. If the surveyed motorway lengths 

are studied again in say ten years time, either on the ground 

or from the air, an accurate assessment can be made of the 

increase in failures and the rate at which this is occurring. 

Together with the historical survey using aerial photographs by 

Andrews (1990), there is an extensive and exhaustive amount of 

information which should be an investment for the future. 

(b) further research is needed into pore water pressure 

variations in slopes of the same material but of different 

slope angles. This would help to explain the variations in 

failures with slope steepness. 

(c) since high negative pore water pressures have been 
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recorded in highway embankments (Crabb et al, 1987) there is 

the possibility that deep-seated failures as well as shallow 

failures may occur in the future based on the evidence of old 

cuttings (Skempton, 1977). Consequently, pore water pressures 

should continue to be monitored to study the rate at which 

these pressures increase or, perhaps equilibrate, in the core 

of embankments. 

(d) vegetation may or may not have a stabilizing effect on 

shallow failures (Coppin and Richards, 1990); trials need to be 

conducted with various likely stabilizing arrangements of 

vegetation of varying species. Account must be taken not only 

of the slope's stability but of the maintenance costs, 

accessibility and resources required to keep the plants 

healthy. 

(e) a survey, of the type described in this Thesis, of 

railway cuttings would provide valuable information on the 

extent of future failures on the slopes of highway cuttings. 

(f) the computer program developed in this Thesis is shown to 

be useful in analysing the stability of earthwork slopes. It 

could, however, be made more sophisticated by incorporating 

existing data handling and graphics programs. 
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Appendix A 

Glossary of terms 

Slope angle is the angle of a slope expressed either as the 

gradient of the slope, in terms of the vertical to horizontal 

distance (eg 1:3), or in degrees to the horizontal. 

~ percentage Qf ULilure is the length of failed slope 

(parallel to the centre line of the road) expressed as a 

percentage of the total length of slope involved; only repaired 

and unrepaired slips were considered as failures. 

~ is the time between a motorway being opened to traffic and 

the survey. 

Drift and Solid deposits are here defined as they would appear 

on a geological survey map, ie Drift is all superficial 

deposits including glacial, fluvio-glacial and alluvial, and 

Solid is all non-superficial deposits. 

FeabLras are lengths of slope where there is no change of any 

of its characteristics. Where a change occurs a new feature 

begins and so the motorway is divided into sections for storage 

as a computer database and subsequent analysis. 

Earthworks are embankments and cuttings used in the 

construction of roads, railways, waterways etc .. 
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Appendix B 

Details of motorways surveyed 
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TABLE 81 
Motorways surveyed 

Age when 
Length Date of surveyed 

Motorway County Section Chainage (kml opening (years) 

M1 Hertfordshire J5 ( Berrygrove) 27.7 66/67 14.0 
J5-J7- St Albans By-Pass 27.7-36.5 8.8 Jan 60 22.0 
2-section being widened during 
84/86 
J7 and M10 to J10 and Luton 36.5-49.6 13.1 Nov 59 22.0 
Spur- St Albans By-Pass 1 21.9 --

M1 Bedfordshire J10-J13 (Luton to Ridgmont) 49.6-73.2 23.6 Nov'59 22.0 
23.6 

M1 Buckinghamshire J13-ch.94.0 (Ridgmont to 73.2-94.0 20.8 Nov'59 22.0 
maintenance limit) 20.8 

M1 South Yorkshire J30-J32 239.2-250.5 11.3 Dec'67 15.0 
(Barlborough to Morthen) 
J32-J34 (Morthen to Tinsley) 250.5-260.0 10.0 Dec'67 15.0 
J34-J38 (Tinsley to Haigh) 260.0-284.2 24.2 Oct'68 14.0 

45.5 

M1/M45 Northamptonshire J16-J17 (M1) (A45 to M45) 109.5-123.7 14.2 Nov' 59 25.0 
J17-A45 U/B (M45) 0.0-9.8 9.8 Nov' 59 25.0 
(Northants C C) 
A45 U/B to end M5 9.8-12.6 2.8 Nov' 59 25.0 
(Warwicks C C) 26.8 

M4 Wiltshire J18-J15 (Tormarton to 169.5-123.5 46.0 Dec'71 10.0 
Liddington) 46.0 

M4 Berkshire J 15-J8/9 ( Liddington to Holyport) 123.5-44.5 79.0 Dec'71 10.0 
Maidenhead and Slough by-pass 44.5-31.0 13.5 Dec'71 10.0 
widening 92.5 

Maidenhead by-pass (side roads 1962 19.0 
for M4) 
Slough by-pass (side roads for Apr'63 18.0 
M4) 
A329(M) A4 to Lodden Bridge 74/75 6.0 
A329(M) A321 Twyford Road to 75/76 5.0 
A329 

M4 Mid-Giamorgan J34-J35 (Miskin to Pencoed) 253.3-264.5 11.2 Dec'77 9.5 
J35-E of J37 (Bridgend Northern 264.5-278.8 14.3 Sept'81 4.5 
By-Pass) 
J37 Additional work Sept'81 4.5 

25.5 

Advanced works at Hoel Las Sept'81 4.5 
Embankment 

M4 South Glamorgan J29-J32 (Castleton to Coryton) 232.8-244.9 12.1 Dec'77 9.5 
J32-J34 (Coryton to Miskin) 244.9-253.3 7.0 Jul'80 6.5 
J33 Culverhouse Link 249.8-251.2 1.4 Mar'85 2.0 

20.5 

M4 Gwent J23-J24 (Magor to Coldra) 211.2-218.2 7.0 Mar'67 20.0 
J24-J28 (Newport By-Pass) 218.2-228.4 10.2 Apr'67 20.0 
J28-J29A and A48(M) (Tredegar 228.4-236.1 7.7 Oct'n 9.5 
Park to St Mellons) 24.9 

J24-J25 Widening (Coldra to 218.2-222.1 Apr'82 5.0 
Caerlon) 
J26-J28 Widening (Malpas to 224.8-227.4 Apr'80 7.0 
Tredegar Park) 
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Age when 
Length Date of surveyed 

Motorway County Section Chainage (km) opening (years) 

M5 Gloucestershire J12-ch.94.2 (Moreton Valence 97.3-94.2 3.1 Apr'71 13.0 
section) 
ch.94.2-ch. 74.1 (Cheltenham and 94.2-74.1 20.1 Apr'71 13.0 
Gloucester section) 
ch.74.1-J9 (Tewkesbury section) 74.1-70.2 3.9 Apr71 13.0 

27.1 --
M5 Worcester and Canal U I B to J4 ( Lydiate Ash) 42.9-22.9 20.0 Jul'62 23.0 

Hereford 
J4 ( Lydiate Ash to Frankley 22.9-16.5 6.4 Nov'65 19.5 
Service Area (Midlands Link C1.) 26.4 

Addition of crawler lanes on NB 30.6-28.9 1975 10.0 
carriageway 26.8-25.2 
Widening to 3 lane dual 
carriageway north of J4 
1) Lydiate Ash to Dayhouse Bank one cut 1984 1.0 
(ch.21.4) affected 
2) Dayhouse Bank to J3 original 

slope 
M6 Staffordshire J13-J14 (Dunston to Stafford) 219.9-230.9 11.0 Sept'62 23.0 

J14-ch.241.3 (Stafford to 230.9-241.3 10.4 Dec'62 23.0 
Tittensor) 
ch.241.3-J15 (Tittensor to 241.3-246.4 5.1 Dec'62 23.0 
Hanchurch) 26.5 

M6 Cumbria N of J38-Thrimby 433.0-447.8 14.8 Oct'70 16.0 
Thrimby- Hackthorpe 447.8-451.6 3.8 Aug'69 17.0 
Hackthorpe-J40 (Penrith 451.6-459.2 7.6 Nov'68 18.0 
By-Pass) 26.2 --

M11 Essex J3-J5 (Redbridge to Laughton) 10.0-18.5 8.5 1976 6.0 
J5-J7 (Laughton to South 18.5-31.0 12.5 1976 6.0 
Harlow) 
J7-J8 (South Harlow to A120) 31.0-46.5 15.5 June75 7.0 
J8-J9 (A 120 to Stump Cross) 46.5-71.0 24.5 Nov79 3.0 

61.0 
--

M23 Surrey J7-J8 (Hooley to Merstham) 27.0-30.2 3.2 Dec'74 9.0 
M23/ M25 Junction 8 30.2-32.9 2.7 Dec74 9.0 
J8-J11 (Bietchingley to Pease 32.9-54.4 21.5 Dec74 9.0 
Pottage) 27.4 

Gatwick Link Nov'75 8.0 
M62 West Yorkshire J22-J23 (Moss Moor to Outlane) 75.5-87.4 11.9 Dec70 15.0 

J23-J24 (Outlane to Ainley) 87.4-89.7 2.3 Dec'72 13.0 
J24-J26 (Ainley to Chain Bar) 89.7-100.5 10.8 Jul'73 12.5 

25.0 

Total 
Surveyed 567.6 
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Fig81 Map of moto rway sections studied 
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Appendix C 

Membrane correction for triaxial tests at 

low effective stresses 

Assumptions for membrane correction 

(a) sample remains a right cylinder 

(b) no initial axial stretch in fitting membrane 

(c) initial radial stretch occurs, the initial diameter of an 

unstretched membrane being 36.25mm 

(d) all membranes have a initial thickness of 0.2mm 

(e) no wrinkling occurs 

Nomenclature 

Am, s = cross sectional area of membrane, soil 

dm, s = diameter of membrane, soil 

E = Young's Modulus of membrane = 1300 kPa 

lo,lp = initial and final length of sample 

ro,rp = initial and current radius of sample 

to,tp = initial and current thickness of membrane 

v = volume of membrane 

!a = axial strain in soil, membrane 

!r = radial strain in soil, membrane 

'Y = Poisson's ratio of rubber = 1/2 

~ a = axial stress membrane correction 

~(fr = radial stress membrane correction 
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1. To calculate current membrane thickness, tp 

Volume of membrane is constant 

Volume of membrane, V = lo.2~(ro+to/2) .to 

: 2n.ro.lo.to 

At peak/failure V : 2~.rp.lp.tp 

therefore tp = to.ro.lo/(rp.lp) 

Er = (rp-ro)/ro 

1+£r = (ro+(rp-ro))/ro = rp/ro 

similarly, Ea = (lp-lo)/lo 

therefore 1+£a = lp/lo 

and tp = to/(1+Er) (l+Ea) rnm 

2. Axial stress correction 

= -Arn.E ( Ea+"YErl 
As ( 1-'Y 2 ) 

Am = 2~.rp.tp where rp = ds+tp 
2 

= 2~(ds+tp) .tp/2 : ~ds.tp 

As = ~ds 2 /4 therefore Am/As = 4tp/ds 

therefore ~~a= -4tp.E.fA = -6933.tp.EA/ds kPa 
ds(1-'Y ) 

3. Radial stress corrections 

~~r = -2E.tp(£r+Y£al 
drn ( 1-"Y 2 ) where dm = ds+tp/2 

therefore ~~r = -2E.tp.fR = -3467.tp.ER/drn kPa 
drn ( 1-'Y ) 
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Appendix D 

Computer program for 'best fit' power curve 
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1 <• ' r·mHF: · s r: I F;:r.::u:: f:·L.tJT MID cur;:•,,.E F r -~T I 1'-IG 
:~~-~ r:or·1 :::-; L ·J t 1: :~t). 1. ~ ~-:. l • ·~: .. ~:~1-_l_to 

-::'-0 ::;un i P 1 c~,. c; 1 •Jm;•::, 1 r.tTEGEF: Co 
-~~~~ ~~;c)r·l .. 'r-·::1_/ ~----~.it, F·,=u. 
::.1 .' ~·:. f;: [ t·,J T F ~:.: 1. ~::; .L 
'.:• ::;;;·,:,f-HJ'-~':0 UFT 
-,-, r:·t_':JtrF.t:;: [S :;,"INTEF:NAL" 

:=-<<l 1--~ :; t ::.:(1 

c;·1 ~ F·:· •-: Ll =-=0 

11:"' DIM Ti.tletC2•)J 
11.0 I !'HEGER No 
l :20 S•.=i:.,_,_p=l) 
130 PRINT CHRS<121; 
140 PRINT "MOHR'S CIRCLE F'LOT" 
150 LOOP 
l60 GRAPHICS OFF 
170 Sigmax=O 
180 Co=O 
190 F·RINT 
200 DISF' "SELECT DATA SOURCE" 
210 ON I<EY 0 LABEL "DISC" GOTO Disc 
220 ON I<EY 4 LABEL "I<EYBOARD" GOTO l<eybd 
230 GOTO 230 
240 Disc:OFF I<EY 
250 DISP 
260 CALL RetrieveCSigCo) ,No,TitleSI 
270 CALL ListCSigl*l ,No,TitleSI 
280 F'AUSE 
290 GOTO Ll 
300 
310 l<eybd:OFF KEY 
320 DISP 
330 INPUT "TITLE?",Title:l> 
340 PRINT TitleS 
350 INPUT "NUMBER OF CIRCLES",No 
360 PRINT 
370 PRINT No;" Circles" 
380 REDIM Sigi1:No,1:21 
390 PRINT 
400 PRINT "Circle", "Sigma_a", "Sigma_r" 
410 FOR N=l TO No 
420 DISP "CIRCLE ";N; 
430 INPUT ", ENTER Si gma_a, Si gma_r", Si ga, Si gr 
440 PRINT N,Siga,Sigr 
450 SigCN,li=Siga 
460 SigCN,21=Sigr 
470 NEXT N 
480 
490 Ll: FOR N=l TO No 
500 Co=l 
510 NEXT N 
520 Sigmax=MAXCSigCo)) 
530 CALL PlotCSigCoJ ,No,TitleSI 
540 DISP "" 
550 PRINT CHRSC121; 
560 END LOOP 
570 END 
580 
590 '************************************************************************* 
600 
610 Plot:SUB PlotCSigCo> ,INTEGER No,TitleSI 
620 COM /Plot/ Sigmax,INTEGER Co 
630 COM /Env/ C,0,Limitx,Limity,Line,A,B 
640 COM /Set/ Setup 
650 INTEGER Addfl 
660 Line=O NO ENVELOPE 
670 C=O 
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.sao Liant;:"'O 
690 Limity=O 
700 A=O 
710 1:::0=(• 
7~0 GRAPHICS OFF 
7~0 INTEGER Device,I,P1,P~,P3,P4,X,Y,Pen,Entry,Sc 
7if0 
750 
76(1 

770 New: OFF f•:EY 
780 DISF· "" 
790 GRAPHICS OFF 
800 PRINT CHRS<121 
810 ALPHA ON 
820 
830 D I SF' "SCREEN OR F'LOTTEF':" 
840 ON fEY 0 I_A8EL "SCREEN" GOTO Screen 
850 ON f::EY 5 LABEL "PLOTTER" GOTO F· 1 otter 
860 GOTO 860 
870 Screen:OFF f::EY 
880 Device=! 
890 PF.' I NT 
900 F'R I NT "F'LOT ON SCREEN" 
910 GOTO Ques 
920 Plotter:OFF f::EY 
930 Device=O 
940 PRINT 
950 PRINT "F'LOT ON PLOTTER" 
960 Ques: 1 

970 ON f<EY 0 LABEL "PROCEED" GOTO Nel< t 
980 ON f::EY 5 LABEL "RESTART" GOTO New 
990 
1000 
1010 
1020 
1030 
1040 
1050 
1060 
1070 
1080 
1090 
1100 
1110 
1120 
1130 
1140 
1150 
1160 
1170 
1180 
1190 
1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 
1280 
1290 
1300 
1310 
1320 
1330 
1340 
1350 
1360 
1370 
1380 
1390 

GOTO 990 
I********************************************************************** 

Ne~: t : D 1 SF' " " 
IF Device THEN 

GIN IT 
PLOTTER IS 3, "INTERNAL" 1 ALSO GCLEARS AFTER GIN IT 
ALPHA OFF 
GRAPHICS ON 
VIEWPORT 0,100+RATI0,10,98 
GOTO Start__plot 

END IF 

I*********************************************************************** 
'---------------------------------------------------------------

INITIALIZE PLOTTER TO CONVENIENT GRID POINTS MAINTAINING 
! NEAR MAXIMUM PLOTTING AREA BEFORE P1 AND P2 ARE READ BY THE 

'PLOTTER IS' STATEMENT 
'---------------------------------------------------------------

Copy: OFF f<EY 
Device=O 
ON TIMEOUT 7,5 GOSUB Time 
IF NOT Set__plotter THEN 

GRAPHICS OFF 
ALPHA ON 
F'RINT CHR$<121 
PRINT "LOAD ONE PEN IN LEFT PEN HOLDER <FOR AXES AND LABELS>," 
F'RINT 
F'RINT "AND ANOTHER IN RIGHT <FOR DATAl; LOAD PAPER , THEN CONT" 
PAUSE 
PRINT CHR$(121 

OUTPUT 705;"0S" 
ENTER 705;Status 
IF NOT BIT<Status,4> THEN 

DISP "PAPER NOT LOADED" 
GOTO 1240 

END IF 

IF NOT Setup THEN . 
OUTPUT 7<)5; "INf IP140,60, 10890, 7260" 
Setup=1 
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END IF 
OUTPUT 705;"0F'" 
ENTER 705;P1,P2,P3,P4 
OUTPUT 705; "SF' 1 " 

1400 
1410 
1420 
1430 
1440 
145(1 
146(1 
147(1 
148(1 
149(1 No: 
150(1 

OUTPUT 705: "F·A"; F' 1: " , ": F'2: ";PO; F'U" 
DISF' "IS THE PEN ALIGNED WITH A CENTIMETER INTEf':SECTION" 
ON f<EY 0 LABEL "YES" GOTO Yes 
ON fEY 5 LABEL "NO" GOTO No 
GOTO 1480 
OFF fEY 
D I SF' "THERE ARE 40 UNITS I mm, ENTER 'X ' AND 'Y' I NCF:EMENTS TO CORRECT 

". 
' 1511) 

1520 
1530 
1540 

INPUT "",X,Y 
F'l =F'l+X 
F'2=F'2+Y 
GOTO 1440 
OFF f<EY 1550 Yes: 

1560 OUTPUT 705;"PA";P3:",";P4;":F'D;F'U" 
1570 
1580 

DISP "IS THE PEN ALIGNED WITH A CENTIMETER INTERSECTION" 
ON f<EY 0 LABEL "YES" GOTO Yes2 

1590 ON I<EY 5 LABEL "NO" GOTO No2 
1600 GOTO 1600 

OFF f<EY 1610 No2: 
1620 
163<) 

DISP "ENTER 'X' AND 'Y' INCREMENTS TO CORRECT"; 
I NF'UT " " , X , Y 

164(1 
1650 
1660 
1670 Yes2: 
1680 
1690 

P3=P3+X 
P4=P4+Y 
GOTO 1560 
OFF f<EY. 
DISP "" 
Set__pl otter=1 

1700 
1710 
1720 
1730 
174(1 
1750 
1760 

OUTPUT 705; "IN; I p"; p 1; II'"; P2; " '"; F'3; "' "; P4 
END IF 
GIN IT 
PLOTTER IS 705,"HPGL" 
ON I<EY 4 LABEL "ABORT" GOTO Edt 
GOTO Start__plot 

1770'*************************************************************************** 

* 
1780 Time: ! 
1790 BEEP 
1800 GRAPHICS OFF 
1810 ALPHA ON 
1820 DISP "PLOTTER NOT RESPONDING; Check, Power, Paper load, 'View' released" 
1830 RETURN 
1840!*************************************************************************** 
1850! ' 
1860 Start__pl ot: 
1870 GRAPHICS ON 
1880 

GOSUB ScaleO 
PEN 1 

IF Sigm~x<=480 THEN 
AXES 10, 10 

ELSE 
AXES 50,50 

END IF 

MOVE 0,<) 
DEG 
LDIR 0 
LORG 8 
CSIZE 3 
CLIP OFF 
SELECT Sigmax 
CASE <=240 

1890 
1900 
1910 
1920 
1930 
1940 
1950 
1960 
1970 
1980 
1990 
2000 
2010 
2020 
2030 
2040 
205(1 
2060 
2070 
2080 
2090 

FOR I=Cbot TO Ctop-1 STEP 10 
MOVE Cleft,I 
LABEL USING "DDDD,X";I 

NEXT I 
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21(10 
::: 1 1 t) 

:.:::1 ::::o 
: l-.::(1 

21.4(1 
:150 
2160 
2171) 
2180 
2190 
'2200 
2210 

.22.·.::o 
2'240 
2~50 

2260 
2:270 
2280 

2300 
2310 
:2320 
2330 
2340 
2350 
2360 
2370 
2380 
2390 
2400 
2410 
2420 
2430 
2440 
2450 
2460 
2470 
2480 
2490 
2500 
2510 
2520 
2530 
2540 
2550 
2560 
2570 
2580 
2590 
2600 
2610 
2620 
2630 
2640 
2650 
2660 

CASE =ABO 
FOR I=Cbot TO Ctop-1 STEP 2(1 

r10VE Cleft,I 
I_ABEL USING "DODD, X": I 

NEXT f 

CriSE ': =960 
FOR I~Cbot TO Ctop-1 STEP 5(1 

~lOVE Cleft, I 
LABEL USING "DODD,:<"; I 

r,!EXT I 

[-':ND SELECT 
MO\/E (>, 0 
LDIR 91) 
U.'JF:G 8 
SELECT Sigma:< 
CASE ,·: =240 

FOR !=Cleft TO Cright-1 STEP 10 
MOVE I, 0 
LABEL USING "X,DDD,X";I 

NEXT I 

CASE <=480 
FOR !=Cleft TO Cright-1 STEP 20 

MOVE I 1 0 
LABEL USING "X,DDD,X";I 

NEXT I 

CASE <=960 
FOR I=Cleft TO Cright-1 STEP 50 

MOVE I 1 0 
LABEL USING "X,DDD,X";I 

NEXT I 

END SELECT 
IF Sc=l THEN MOVE Cleft-15, (Cbot+Ctop)/2 
IF Sc=2 THEN MOVE Cleft-30 1 <Cbot+Ctop>/2 
IF Sc=4 THEN MOVE Cleft-60, <Cbot+Ctop>/2 
IF Sc=8 THEN MOVE Cleft-120, <Cbot+Ctop)/2 
LDIR 90 
CSIZE 3.5 
LORG 6 
LABEL "Shear Stress < kF'a)" 
IF Sc=1 THEN MOVE <Cleft+Cright)/2,Cbot-10 
IF Sc=2 THEN MOVE <Cleft+Cright)/2,Cbot-20 
IF Sc=4 THEN MOVE <Cleft+Cright)/2,Cbot-40 
IF Sc=8 THEN MOVE <Cleft+Cright>I2,Cbot-80 
LDIR 0 
LORG 6 
LABEL "Effective Normal Stress <I<Pa>" 
MOVE <Cleft+Cright)/2,Top 
CSIZE 4 
LORG 6 
LDIR 0 
LABEL Title$ 

2670 '************************************************************************* 
2680 PLOT DATA 
2690 CLIP ON 
2700 
271<) 
2720 
2730 
2740 
2750 
2760 
277(1 
2780 
2790 
2800 
2810 

PEN 2 
FOR N=1 TO No 

Centre=<Sig<N,1>+Sig<N 1 2))/2 
Radius=<Sig<N,l>-Sig<N,2))/2 
Start=18t) 
End=O 
Step=2 
FOR I=Start TO End STEP -Step 

'CHANGE PEN 

PLOT Centre+Radius*COS<I> ,Radius*SIN<I> 
NEXT I 
PEN UP 
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NEXT N 
F'R I NT CHR$ ( 12 l 
IF Line THEN 

:820 
2830 
2840 
2850 
2B60 
:87(> 
2880 
2!0.19(• 
2900 

IF Line=1 THEN CALL Line<Cright,Ctop,Devicel 
IF Line=2 THEN CALL CurveiCright,Ctop,Devicel 

END IF 
k: ON fo: EY (l LABEL "HAF:D COF'Y" GOTO C~py-

ON fO::EY l LABEL "1\IEI . .J DATA" GOTO E:-: it 
ON fo:EY .:. LABEL "LIST DATA" GOTO Li 
IJN kEY .:;. LABEL ''STORE DATA" GOTO St 
fJN fEY 4 L.A8EL "EDIT DATA" GOTO Ed 

293<) 
2940 
2950 
2960 
2970 

ON :o.EY c: 

'"' LABEL "CHANGE SCALE" GOTO Sc 
1JN f.EY 6 LABEL "PRINTER" GOTO F'ri 
ON fEY --. LABEL "FIT ENVELOF'E" GOTO Fit I 

ON kEY 8 LABEL "PLOT ENVELOF'E" GOTO Env 
ON fEY 9 LABEL "ADD ENVELOPE" GOTO Add 

2980 GOTO 2980 
2990 Fit:OFF kEY 
3000 ON kEY 5 LABEL "CURVE" GOTO Pwr 
3010 ON fEY 6 LABEL "LINE" GOTO Str 
3020 GOTO 3020 
3030 Ed: OFF KEY 
3040 CALL EditCSig(o) ,No,Title$1 
3050 GOTO fo:: 
3060 Sc: OFF KEY 
3070 
3080 
3090 
3100 
3110 
3120 

ON VEY 5 LABEL "UP SCALE" GOTO Sc2 
ON KEY 6 LABEL "DOWN SCALE" GOTO Sc:l 
GOTO 3090 

Pri:OFF t::EY 
ON t<EY 5 LABEL 
ON KEY 6 LABEL 

"SCREEN" GOTO Scrprt 
"PRINTER" GOTO Prprt 

3130 GOTO 3130 
3140 Scrprt:PRINTER IS CRT 
3150 DISF' "F'rinter is screen" 
3160 GOTO K 
3170 Prprt:PRINTER IS PRT 
3180 DISP "Printer is e>:terna.l printe2r" 
3190 GOTO K 
3200 Li: OFF KEY 
3210 GRAPHICS OFF 
3220 ALPHA ON 
3230 CALL List<Sig<*> ,No,Title91 
3240 GOTO K 
3250 Pwr:OFF t<EY 
3260 CALL SqfitCCright,Ctop,No,Device,TitleSI 
3270 Cur=1 
3280 GOTO K 
3290 Str:OFF KEY 
3300 CALL SsCCright,Ctop,No,Device> 
3310 GOTO K 
3320 St: OFF KEY 
3330 
3340 
3350 
3360 
3370 
3380 
3390 
3400 
3410 
3420 
3430 
3440 
.3450 
3460 
3470 
3480 
3490 
3500 
3510 
3520 

CALL StoreCSigC*> ,No, Title$) 
GOTO K 

Scl:OFF KEY 
SELECT Sigma>< 
CASE 480 TO 960 

Sigmax=470 
GOTO Ne~ 

CASE 240 TO 480 
Sigmax=230 
GOTO New 

CASE 130 TO 240 
Sigmax=120 
GOTO New 

CASE ELSE 
BEEP 
DISP "LARGEST SCALE" 
WAIT 2 
Sigma.x=120 
GOTO K 

END SELECT 
3530 Sc2:0FF KEV 
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3540 
3550 
3560 
3570 
3580 
359(1 
36(11) 

36[(1 
3620 
36~_!.(1 

3640 
3650 
3660 
3670 
3680 
3690 
3700 

SELECT Sigma:: 
Ci~SE < 1 30 

S i. grna:< = 140 
GOTO New 

CASE <240 
S i. gma:: =250 
GOTO N<~w 

CASE ,480 
5 i g ma:' =490 
GOTD New 

CASE ELSE 
BEEF' 
D I SF' "SMALLEST SCALE" 
WAIT 2 
5lgma>:=490 
GOTO t< 

END SELECT 
3710 Add:OFF t<EY 
3720 Addfl=1 
3730 GOTO 3760 
3740 Env:OFF KEY 

Addfl=O ::.750 
3760 
3770 
3780 
3790 

CALL Envelope<Cright,Ctop,Device,Addfl> 
t10VE O, 0 
F'EN 0 
GOTO f( 

3800 E:: it: 
3810 SUBEXIT 
3820 
3830 
3840 
3850 
3860 
3870 
3880 
3890 
3900 
3910 
3920 
3930 
3940 
3950 
3960 
3970 
3980 
3990 
4000 
4010 
4020 
4030 
4040 
4050 
4060 
4070 
4080 
4090 
41(H) 
4110 
4120 
4130 
4140 
4150 
4160 
4170 
4180 
4190 
4200 
4210 
4220 
4230 
4240 
4250 

!********************************************************************~** 
ScaleO: 1 COMPRESSION TEST 

SELECT Sigmax 
CASE <=130 

Left=-15 
Right=120 
Bottom=-20 
Top=70 
Cleft=O 
Cright=120 
Cbot=O 
Ctop=60 
Sc=l 

CASE <=240 
Left=-30 
Right=240 
Bottom=-40 
Top=140 
Cleft=O 
Cright=240 
Cbot=O 
Ctop=l20 
Sc=2 

CASE <=480 
Left=-60 
Right=480 
Bottom=-80 
Top=280 
Cleft=O 
Cright=480 
Cbot=O 
Ctop=240 
Sc=4 

CASE <=960 
Le-ft=-120 
Righto960 
Bottom:o-160 
Top=560 
Cleft::oo 
Cright=960 
Cbot=O 
Ctop=480 
Sc=8 

CASE ELSE 
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426(• 
4270 
4280 
4~~90 

4.300 
4310 
4.3:0 I 

4".:: :.o 
4340 
435(1 

4360 
4370 
4380 
4390 

8EEF· 
D I SF' "PLOT TOO LAF.:GE" 
WAIT : 

END f:JELECT 
GOSU8 Set 
f~[-':TUF:N 

Set: IF Devtce THEN I SCF:EEN 
SHOW Left,Right,8ottom,Top 

ELSE 
WINDOW Left,Right,Bottom,Top 1 

END IF 
CLIP Cleft,Cright,Cbot,Ctop 
RETURN 

PLOTTER 

4400 
441(1 I 

SUBEND 

44::0 
4430 
4440 
4450 
4460 
4470 
4480 
4490 
4500 
4510 
4520 
4530 
4540 
4550 
4560 
4570 
4580 
4590 
4600 
4610 
4620 

I************************************************************************** 
En vel ope: 

SUB Envelope<Cright,Ctop,INTEGER Device,Addfll 
COM /Env/ C,0,Limitx,Limity,Line,A,B 
IF Device AND NOT Addfl THEN ERASE IF SCREEN AND NOT ADDING 

GRAPHICS OFF 1 ENVELOPE 
IF Line=1 THEN 

MOVE O,C 
F'EN 0 
DRAW Limitx,Limity 

END IF 
IF Line=2 THEN 

F'EN -1 
GOSUB Cur 

END IF 
END IF 
DISP "YOU MAY PLOT A STRAIGHT LINE DR A POWER CURVE" 
ON f(EY 0 LABEL "LINE" GDTD Line 
ON KEY 4 LABEL "CURVE" GOTO Curve 
GOTO 4610 

4630 Line:OFF KEY 
4640 INPUT "Enter C' in kF'a and 0'in degrees",C,!!l 
4650 
4660 

CALL Line<Cright,Ctop,Devicel 
SUBEX IT 

4670 Curve:OFF KEY 
4680 INPUT "Enter 'A' and 'b' <T=a.:<"'·b>",A,B 
4690 CALL Curve<Cright,Ctop,Devicel 
4700 SUBEXIT 
4710 
4720 Cur:MOVE 0,0 
4730 FOR X=O TO Cright 
4740 Y=A*(XA8) 
4750 DRAW X,Y 
4760 NEXT X 
4770 RETURN 
4780 
4790 SUBEND 
4800 
4810 
4820 
4830 

I************************************************************************* 

Store: 4840 
4850 
4860 
4870 
4880 
4890 

SUB Store<Sig<*l ,INTEGER No,Title:f) 
GRAPHICS OFF 
DISP "INSERT DATA DISC IN DRIVE 1, CONT. WHEN READY" 
PAUSE 
PRINT CHR:f ( 12> 

4900 CAT ": 1 700,1" 
4910 Inp: INPUT "ENTER FILENAME ON WHICH TO STORE DATA",File:$ 
4920 ON ERROR GOTO Error 
4930 Recs=INT<<No*8+24+2l/256l+1 
4940 Create:CREATE BOAT File:$3!": ,700,1",Recs 
4950 ·ASSIGN @File TO File$&":,700,1" 
4960 OUTPUT @File;Title$,No,Sig<*> 
4970 ASSIGN @File TO * 
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·''~·80 SU8El IT 
49q0 Error:OFF ERROR 
·~;nt·,,> IF ERF·rJo-=54 THEN 
51,1•) DISF' "FILE EXISTS DO YOU l<JANT TO OVEr\WRITE Y/N": 
S(J:21:' l r·Jr-:·u T II~~ , v~:,:;n o~t 

S,.!·.:::o IF Ye:·sno:t="Y" THEN 
":,,:,.J.O F'IJRGE Fi 1 e:t~'·": , 700, 1" 
'_':;,.:::;.:; GOTO Create 
5060 END IF 
~07<1 

5080 

5100 

GOTO Inp 
END IF 
D I SF· ERRM:t~," 

F'AUSE 
CONT. WHEN READY" 

5110 SUBEND 
5120 
5130 '********************************************************************••••• 
5140 Ret: 
5150 SUB Retrieve<Sig<•> ,INTEGER No,Title:tl 
5160 DISP "INSERT DATA DISC IN DRIVE 1, CONT. WHEN READY" 
5170 
5180 
5190 
5200 
5210 
5220 
5230 
5240 
5250 
5260 
5270 
5280 
5290 
5300 
5310 
5320 
5330 
5340 
5350 
5360 
5370 
5380 
5390 
5400 
5410 

F'AUSE 
F'RINT CI-IR$ I 121 
CAT ": , 700, 1" 
INPUT "ENTER FILENAME CONTAINING REQUif':ED DATA",File$ 
ASSIGN @File TO File$~": ,700,1" 
ENTER @File;Title:t,No 
REDIM Sigll:No,l:21 
ENTER @File;Sigl*> 
ASSIGN @File TO * 

SUBEND 

'********************************************************************* 
List: 

SUB List<Sig<*> ,INTEGER No,Title$1 
INTEGER Entry 
PRINT USING "///" 
PRINT 
PRINT Title$ 
PRINT 
PRINT USING """CIRCLE"",10X,""Sigma a"",3X,""Sigma r""" 
FOR Entry=1 TO No 

PRINT USING "DD,l4X,S3Z.D,4X,S3Z.D";Entry,Sig(Entry,11 ,Sig<Entry,2> 
NEXT Entry 
PRINT USING "///" 

SUBEND 
5420 I 

5430 I 

5440 1 ************************************************************************** 
5450 
5460 Sqf it: ! 
5470 SUB Sqfit<Cright,Ctop,INTEGER Num,Device,Title$) 
5480 OPTION BASE 1 
5490 
5500 
5510 
5520 
5530 
5540 
5550 
5560 
5570 
5580 
5590 
5600 
5610 
5620 
5630 
5640 
5650 
5660 
5670 
5680 
569<) 

COM /Env/ C,0,Limitx,Limity,Line,A,B 
GRAPHICS OFF 
INTEGER I,K 
COM Sig<*> ,Setup 
ALLOCATE Sqerr<Num> ,Theta<Numl ,Diff<Numl 
DEG 
PRINT USING "///" 
PRINT "POWER CURVE FITTING ROUTINE FOR MOHR'S CIRCLES" 
PRINT 
PRINT Title$ 
PRINT 
PRINT TA8<3>;"A";TAB<181;"b";TA8<25>;"Sum of error squares" 
Ans$="A" 
INPUT "Manual or auto iteration on A,b IM,A, Default AI?",Ans$ 
Iter=O 
IF Ans:S="A" THEN Iter=l 

Start:INPUT "Enter starting 
IF Iter THEN Iter 
FOR I=1 TO Num 

GOSUB Funct 
NEXT I 

values of A,b",A,B 
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57(J(J 

.5710 
57'20 

130SUE: F·r in t 
GOTO Another 
'-----------------------------------------------------------·-----------

ST~i) Iter: ' 
5740 ALLOCATE F·rn<2l ,F'ml <2l ,Z <Num,2l ,Der <Num) ,Zt <2,Num> ,Ztl <2,2) ,Zt_inv<2,2l, 
Z2<2l ,Z3<2> 
5750 Flag=(> 
.5/',~::~0 

5770 
5780 
579(1 
S800 
':'j810 
58:20 
5830 
'3840 
5850 
5860 
5870 
5880 
5890 
5900 
5910 
5920 
5930 
5940 
5950 
5960 
5970 
5980 
5990 
6000 
6010 
6020 
6030 
6040 
6050 
6060 
6070 
6080 
6090 
6100 
6110 
6120 
6130 
6140 
6150 
6160 
6170 
6180 
6190 
6200 
6210 
6220 
6230 
6240 
6250 
6260 
6270 
6280 
6290 
6300 
6-310 
6320 
6330 
6340 
6350 
6360 
6370 
6380 
6390 

Cr· it~. Or)(ll 
F'ml (l)=A 
F'ml <21=8 
LOOP 

t_sum=Sumsq 
MAT F'ml= F'rn 
t1AT Z= (I)) 

MAT Di ff= (I)) 

t1AT Der-= (I)) 

MAT Zt= ((I) 

MAT Zt 1= (I)) 

MAT Zt inv= ((I) -MAT Z2= (I)) 

MAT Z3= <O> 
MAT Theta= (0) 
F'm < 1) =A 
F'm<2>=B 
FOR 1=1 TO Num 

GOSUB Func:t 
! FOR EACH CIRCLE 

CALL F'ar-tial <Pm<*> ,Sigma-R*SIN<Theta<I>> ,Der-<*>l 
FOR f<=l TO 2 

Z <I, K > =-Der- O() 
NEXT I< 

NEXT I 
IF NOT Flag THEN GOSUB F'r-int 
MAT Zt= TRN<Z> 
MAT Zt 1= Zt*Z 
MAT Zt_inv= INV<Ztl) 
MAT Z2= Zt*Diff 
MAT Z3= Zt_inv*Z2 
MAT Pm= Pm+Z3 
A=Pm(1) 
B=Pm<2> 
FOR I=l TO Num 

GOSUB Func:t 
NEXT I 
Flag=l 
GOSUB Pr-int 

EXIT IF ABS<Sumsq-Lsum><Cr-it AND ABS<Pm<ll-Pml <1>><Cr-it 
END LOOP 
DEALLOCATE Pm ( * > , F'ml < *) , Z ( *) , Der- < *) 1 Zt < *) , Zt 1 < *) 1 Zt _i nv ( *) , Z2 ( * > , Z3 ( *) 

GOTO Another 
'-----------------------------------------------------------------------

Func:t: 1 

Sigma=< Si g <I, 1 > +Si g <I 1 2 > > /2 
Tau=<Sig<I 1 1)-Sig<I 1 2)l/2 
CALL Iterate<A,B,Theta<I> ,Sigma> ! EVALUATE THETA 

! EVALUATE FUNCTION 
R=<Sigma-<TAN<Theta(!))/(A*B))A(l/(8-1)))/SIN<Theta(I)) 
Di=<R-Tau> 
Diff<I>=Di*COS<Theta<I>> 
Sqerr <I> =Di ·"'2 
Sumsq=SUM<Sqerr) 
RETURN 

! sum of squares of errors for a set of c:ir-c:les 

'----------------------------------------------------------------------
Print: ! 

PRINT 
PRINT USING "Z.:SD,7X,Z.SD,6X,:SD.SD";A,B 1 Sumsq 
RETURN 
~-----------------------------------------------~-----------------------

6400 Another:Ans:f="Y" 
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6410 
6420 
6430 

Line=2 
INF'UT "Another A and b <Y/N)':'",Ans$ 
IF NOT <Ansct="N") THEN Start 

6440 F'l: INPUT "Plot curve !Y/N)':'",Ans$ 

FOR CURVE 

6450 IF Ansct="N" THEN SUBEXIT ' +++++++++++++++EXIT 
6460 ------------------------ PLOT -------------------------
647•) CALL CLtrve(Cright,Ctop,Device) 
6480 SUBEND 
6490 
6501) 
6510 '*************************************************************~*********** 

SUB Iterate<A,B,Theta,Sigmal 
Crit=.OOl 
IF 8>.5 THEN 

Theta=89 
ELSE 

Theta=l 
END IF 
Th2=Theta 
~:EF'EAT 

Theta=<Theta+2•Th21/3 
Fl=A·~- < 1/ ( 1-81 I 
F2=<TAN<Theta))A((2*B-1l/(8-1)l 
F3=B·~· <B/ ( 1-Bl l 
F4=A*B*(Sigma-<Fl*F2•F3llA(B-11 
Th2=ATN<F4l 

UNTIL ABS<Th2-Thetai<Crit 
SUBEND 

6520 
6530 
6540 
6550 
6560 
6570 
6580 
6590 
66(H) 
6610 
6620 
6630 
6641) 
6650 
6660 
6670 
6680 
6690 
6700 
6710 
6720 
6730 
6740 
6750 
6760 
6770 
6780 
6790 
6800 
6810 
6820 
6830 
6840 
6850 
6860 

!************************************************************************* 

I FOR Y=A•X'"'b 
SUB Partial <P<•> ,X,Der<•>> 

Der<1l=X"P<2l 
Der<2l=P<1l•X'"'P(21*LOG<Xl 

SUB END 

'************************************************************************* 

SUB Edit<Sig<*l ,INTEGER No,Title$1 
INTEGER N 

6871) 
6880 M: 
6890 

GRAPHICS OFF 
DISP "CHANGE existing ADD new data, 
ON KEY 0 LABEL "CHANGE" GOTO Ch 
ON KEY 2 LABEL "ADD" GOTO Add 

or EXIT?" 

6900 
6910 ON KEY 4 LABEL "EXIT" GOTO Exit 
6920 Wt: GOTO Wt 
6930 Ch: OFF KEY 
6940 
6950 
6960 
6970 
6980 
6990 
7000 
7010 
7020 
7030 
7040 
7050 
7060 
7070 
7080 
7090 
7100 
7110 
7120 

CALL List<Sig<*> ,No,Title$1 
LOOP 

In: INPUT "ENTER NUMBER OF CIRCLE TO CHANGE, ZERO TO EXIT",N 
EX IT IF N=O 

IF N<1 OR N>No THEN 
BEEF' 
GOTO In 

END IF 
INPUT "ENTER Sigma_a,Sigma_r",Siga,Sigr 
PRINT 
PRINT "Sig_a=";Siga;TA8<20I;"Sig_r,.";Sigr 
Sig<N,U=Siga 
Sig<N,2l=Sigr 

END LOOP 
GOTO M 

Add:OFF KEY 
INPUT "HOW MANY CICRLES TO ADD?",N 
IF N+No>50 THEN 
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7130 
7140 
7150 
7160 
7170 
7180 
7].0(1 

7200 
721(1 
7220 
7230 
7240 
7250 
7260 
7270 
7280 
7290 

BEEF' 
DISP "TOTAL 50 CICLES MAX AT PRESENT" 
WAIT 2 
GOTD Add 

END IF 
No=No+N 
REDIM SigCl:No,1:2l 
PRINT 
F'F:INT "Circle", "Sigma_a", "Sigma_r" 
FOR N=No-N+l TO No 

DISF' "CIRCLE ":N: 
INPUT ", ENTER Sigma_a,Sigm:>._r-" ,Siga,Sigr­
PRINT N,Siga,Sigr-
SigCN,ll=Siga 
5ig<N,2l=Sigr 

NEXT N 

7300 Ll: FOR N=l TO No 
7310 Co=l 
7320 NEXT N 
7330 Sigmax=MAXCSig(o)) 
7340 GOTO M 
7350 
7360 
7370 Exit:SUBEND 
7380 I 

7390 I 

7400 1 ************************************************************************** 
7410 
7420 
7430 
7440 
7450 
7460 
7470 
7480 
7490 
7500 
7510 
7520 
7530 
7540 
7550 
7560 
7570 
7580 
7590 
7600 
7610 
7620 
7630 
7640 
7650 
7660 
7670 
7680 
7690 
7700 
7710 
7720 
7730 
7740 
7750 
7760 
7770 
7780 
7790 
7800 
7810 
7820 
7831) 
7840 

SUB Line<Cright,Ctop,INTEGER Device> 
COM /Env/ C,JZI,Limitx,Limity,Line,A,B 
Line=1 
Limitx=Cright 
Limity=C+CrightoTANC0) 
ALPHA OFF 
GRAPHICS ON 
IF Device THEN 

F'EN 0 
ELSE 

PEN 1 
END IF 
MOVE O,C 
DRAW Limitx,Limity 
GOSUB Lab 
IF Device THEN 

ALF'HA ON 
PRINT TABXY<30,4>; 
PRINT USING """C'="",2Z.2D,"" kF'a""";C 
PRINT TAB<30>; 
PRINT USING """0'="",2Z.2D,"" """";12! 

ELSE 
MOVE Crighto.2,Ctopo.80 
LABEL USING """C'="" 9 2Z.2D,""kPa""";C 
LABEL USING """J21'="",2Z.2D,"" """";0 

END IF 
SUBEXIT 

Lab:! 
CSIZE 3 
LORG 2 
PEN 1 
LDIR 0 
RETURN 

SUBEND 

!************************************************************************* 

SUB Curve<Cright,Ctop,INTESER Device> 
COM /Env/ C 9 ~ 9 Limitx,Limity,Line,A,B 
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7850 
786(1 
7870 
7881) 
789(J 
790(1 
7910 
79.20 
7Ci.30 
794() 
7950 
7960 
7970 
7980 
7990 
8(10<) 
801 (J 

8020 
8030 
8040 
8050 
8060 
8070 
8080 
8090 
8100 
8110 
8120 
8130 

PEN 2 
ALF'HA OFF 
GRAF'H I CS ON 
L1ne=2 
GOSUB CLlr 
GIJSUB L.ab 
IF Device THEN 

f':iLF'HA ON 
F'F: I NT CHR:f ( 12) 
IF Addfl THEN 

F'RINT TABXYC20,71; 
F'RINT USING """T= "",Z.3D,"":·:··"",Z.3D,10X";A,B 

ELSE 
PRINT TABXY<20,61; 
F'RINT USING """T= "",Z.3D,"":-:····"",Z.3D,10X":A,B 

END IF 
ELSE 

IF Addfl THEN 
MOVE Cright•.2,Ctop•.60 

ELSE 
MOVE Cright•.2,Ctop•.7 

END IF 
LABEL USING "" "T= "" , Z. 3D, "" :-: ·····"" , Z. 3D"; A, 8 

END IF 
SUBEXIT 

CLlr: MOVE (I 9 0 
FOR X=O TO Cright 

Y=A* (X ···91 
D~·Aw x, v 

8140 NEXT X 
8150 ~:ETURN 

8160 Lab:' 
8170 CSIZE 3 
8180 LORG 2 
8190 F'EN 1 
8200 LDIR 0 
8210 RETURN 
8220 SUBEND 
8230 
8240 
8250 
8260 
8270 
8280 
8290 
8300 
8.310 
8320 
8330 
8340 
8350 
8360 
8370 
8380 
8390 
84(H) 
8410 
8420 
8430 
8440 
8450 
8460 
8470 
8480 
8490 
8500 
8510 
8520 
8530 
8540 
8550 
8560 

!********************************************************************** 

Ss:! 
SUB Ss<Cright,Ctop,INTEGER No,Devicel 

COM /Env/ C,0,Limitx,Limity,Line 9 A9 8 
COM Sig<•>,Setup 
INTEGER I 
GRAF'HICS OFF 
FOR I=1 TO No 

Sigt=<Sig<I,1>+Sig<I,211/2 
Taut= < S i g < I 9 1 I -S i g < I , 2 I I I 2 
F'=P+Sigt 
Q=Q+Taut 
T=T+5igt•Sigt 
R=R+5igt•Taut 

NEXT I 

F2= < No•T-P*PI ''2 
F3=<No•R-F'*CI>"'2 
Mu=Fl/SQR<F2-F3) 
0=ATN<Mu> 
F4=CI*T-P•R 
C=F4/5CIR<F2-F31 

FOR I=l TO No 
5 i g t = < 5 i g < I 9 1 > +5 i g < I , 2 > I /2 
Taut=<Sig<I,11-Sig<I,211/2 
Error=<<C+Mu•Sigti/SQR(l+Mu•Mu>>-Taut 
Sumsq=5umsq+Error•Error 
NEXT I 

F'RINT TAB<3>;"C";TAB<181B"C21";TAB<2SI~"Sum of error squares" 
F'RINT USING "/,ZZ.5D 9 7X,ZZ.5D,6X,5D.5D";C,IZI,Sumliiq 
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8570 
8580 
8590 
8600 
8610 
8f.o20 
:36-C:O 

Ans:J="Y" 
INF'UT "F'LOT LINE<YIN>"'",Ans$ 
IF Ans:f.·::>"N" AND Ans:t<>"Y" THEN 8580 
IF Ans:f.="N" THEN SUBE:<IT 
F'Fd NT CHR.f < 1:) 
CALL Line<Cright,Ctop,Devlce> 
SUBEND 
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Appendix E 

Computer program for slope stability analyses using 

a non-linear failure envelope 
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10 'NON-LINEAR FAILURE ENVELOPE : SLOPE ANALYSIS : RIGOROUS METHOD 

60 

DIM Ar:'OJ ,8<20) ,L!2C:•J ,F'(20J ,U<::OJ ,W<20J ,AlphC20J ,Del:{(2(>i ,D-:leC2(•) 
DIM xr20J ,Xb(20) ,·,'t(20J ,Ga.!20J ,S<20J ,Ht<20J ,E<2•)J ,Sh\20> ,Th!20J 
DEG 

71) '•**********************************************~*******~***************** 
8(: 
ql) I INPUT THE DATA 
100 
110 
1:20 
130 
140 
150 
OJ, Yt (I)) 

160 
170 
180 
190 
200 
210 
220 
2.30 
240 

INPUT "ENTER NUMBER OF SLICES",N 
F'RINT N 
INPUT "ENTER X COORDINATE OF TOP OF SLOPE <Ml:",XCO> 
PRINT XCOJ 
INPUT "ENTER BOTTOM AND TOP Y COORDS. ,LEFT SIDE OF TOP SLICE <MJ; ",Yb< 

PRINT Yb<O> ,Yt<O> 
INPUT "ENTER WATER TABLE LEVEL AT TOP OF SLOPE <Ml:",Yw<O> 
PRINT Yw<OJ 
PRINT "ENTER DATA FOR EACH SLICE:" 
GOSUB 1230 
FOR I=1 TO N 

GOSU8 1260 
NEXT I 

250 '*********************************************************************** 
260 
270 'CALCULATE DERIVED QUANTITIES 
280 
290 FOR I=l TO N 
300 P < I ) =ATN < < Yb < I > - Yb < I -1 > > I <X < I -1 > -X < I > > > 
310 L <I) =SQR < < < Yb <I) -Yb <I -1> J .~.2 > + < <X <I> -X< I -1> > ·''2 > > 
320 U<Il=9.81•.5•<Yw<Il+Yw<I-1l-Yb(Il-Yb<I-1ll 
330 IF U<I><O THEN U<I>=O 
340 W <I> =Ga <I>*< X< I l -X< I -1 > > *. 5* <Yt <I) +Yt <I -1 > -Yb <I> -Yb <I -1) J 
350 Th<I>=X<I>-X<I-1> 
360 NEXT I 
370 
380 
390 
400 
410 
420 
430 
440 
450 
460 
470 
480 
490 
500 
510 
520 
530 
540 
550 
56() 
570 
580 
590 
600 
610 
620 
6.30 
640 
650 
<I> )) > 

!********************************************************************* 

'CALCULATE FACTOR OF SAFETY,INITIAL GUESS 1.0 

Fb=l. 0 
Fa=1. 0 
F=1. 0 
T=O 
R=O 
FOR I=l TO N 

S <I J =Ga <I>*. 5* < Yt <I J +Yt <I -1 > -Yb <I> -Yb <I -1 > J * < <COS <P <I> > l ··'·2 l -U <I J 
G=S <I J ·"8 <I>* <A< Ill •TAN <P <I>> /F 
T=T+< <W<I> I<L<I>•COS<P<I> > >-U<I>-G>·"<B<I> >•A<I>•L<I>•<11COS<F'<I> l > > 
R=R+W<I>•TAN<P<I>> 

NEXT I 
Fl=F 
F=T/R 
IF ABS<Fl/F-1)).0001 THEN 450 
Del x <I> =0 
IF Delx<I>=O THEN 810 

!**************************************************************** 

CALCULATE INTERSLICE FORCES 

Fb=F 
FOR 1=1 TO N 

Dele (I)=< <W <I> -Del x (I>> *TAN <P <I>>)-< <S <I> ''·B <I> *A< I l *L <I>> I< Fb*COS <P 
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aoO 
670 
68(1 
.'.,9(1 

7(11) 

71(; 

7:20 

7 'tO 
::-so 
C'.SC• 
771) 

780 
790 
801) 

810 
820 
830 
840 
.'350 
860 
870 
880 
890 
900 
910 
920 
930 
940 
950 
960 
970 
980 
990 
1000 
1010 
1020 
1030 
1040 
1050 
1060 
1070 
1080 
1090 
1100 
1110 
1120 
1130 
1140 
1150 
1160 
1170 
1180 
119(1 
1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 
1280 
1290 
1300 
1310 
1320 
1330 
1340 
1350 
1360 
1370 

r·1EXT 1 
FOF: I-=1 TON 

E ( (l) o:(l 

E < I :• =E 0: I -1 ) + L'e l '"' < I l 
t'-IEXT I 
I'' iJ F· I " l T 0 N 

~:.h I 1 ) = ( E ( I ) *TAN (A 1 ph ( I ) ) ) - I ( Ht ( I ) 11- Dele I I ) ) / Th ( I ) ) 
fjE:cr I 
FOR 1=1 TO N 

2·h ( 0) ~I) 

C•el: <I>=Sh<!l-Sh<I-1> 
t·1EXT I 

F:>.=F 
FOR I=1 TO N 

Sa< I) =S <I) 
NEXT I 

FOR I=1 TO N 
S <I l =Ga <I)*. 5* < Yt <I l +Yt <I -1 l -Yb <I l -Yb <I -1 l l * < <COS< P <I) l l ·--:;: l -IJ <I) 
G= < S (I l l ·B <I)*< A< I l ) *TAN< P <I) ) IF 
H=Del:< <Il I<L<Il*COS(F'(Il)) 
51 <Il=S<Il 
S < I l = < W < I l I < L < I l *CDS < P < I l l l l -U < I l -G-H 
IF ABS<Sl <IliS<I>-1>>.001 THEN 880 

NEXT I 
GOTO 1330 

'*************************************************************** 

F'RINT "FACTOR OF SAFETY <JANBU RIGOROUS METHOD> IS" ,F 

!*****************************••********************************* 

'OPTIONS ON CHANGING DATA 

F'RINT "ENTER -2 TO CHANGE POSITION OF SLIP SURFACE" 
PRINT " -1 TO CALCULATE FACTOR OF SAFETY" 
PRINT " 
PRINT " 
INPUT I 

0 TO EXIT" 
1. .N TO CHANGE DATA FOR A SLICE <GIVE SLICE NUMBER>" 

IF I=O THEN STOP 
IF I=-1 THEN 290 
IF I=-2 THEN 1150 
GDSUB 1230 
GOSUB 1260 
GOTO 1040 
PRINT "ENTER NEW YB COORDINATES ALONG SLIP SURFACE" 
FOR I=O TO N 

INF'UT Yb <I> 
NEXT I 
GOTO 290 

!*************************************************************** 

PRINT "ENTER 
PRINT "ENTER 
RETURN 

A, B, GAMMA' X' YB, YT' YW, ALF'H, HT II 

, ,KNIM3,M, M, M, M,DEG ,M" 

PRINT "SLICE NUMBER",! 
INPUT A<I> ,B<I> ,Ga.<I> ,X<I> ,Yb<Il ,Yt<Il ,Yw<I> ,Alph<I> ,Ht<Il 
PRINT A<I> ,B<I> ,Ga.<Il ,X<I> ,Yb<I> ,Yt(Il ,Yw<Il ,Alph<Il ,Ht<I> 
RETURN 

'************************************************************* 

T=O 
R=O 
FOR I=1 TO N 

G =S < I ) -'· B < I> * < A < I ) ) *TAN < P < I> ) IF 
T=T+ < < W <I l I <L <I l *CDS <P <I> > l -U <I> -G- <Del x <I l I < L <I> *COS< P <I) l > l ) ··· < B <I 
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) ! .. A\ II •L <'I) * (1 /COS (P 0 l l ~ 3 
1 ::so F:=F\+ ( W < I l -De 1 :: < I l ) • TAN< F' < I ) ) 
1.-:_'.9(' r\IE X T I 
140(• Fl=F 
1410 
14:2(1 
14-:::0 
1440 

1450 
1460 
1470 
1480 
149(1 

fC=T /R 
Teo;t=O 
FDR I=1 TO N 

IF \ABS<F!Fb-·ll .OOOll AND <ABS<Sa(Il/S(Il-ll<.(•('l/ THEN T•"'5t=Te5t• 

1\iEXT I 
IF Test=N THEN 980 
IF ABS<Fl/F-1) ).0001 THEN 1330 
IF A8S<F!Fa-1l<.0001 THEN 600 
IF ABS<F/Fa-1) ).0001 THEN 810 

1500 F'ETUF:N 
1510 Ei'.JD 
1520 '****••••••••••*******•***************•**************•*••••*•••••• 


