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A B S T R A C T 

Next-to-leading order QCD fits are performed to F$p, F£n/F£p, F%Fe and 

xF%Fe deep-inelastic scattering data using the F$p data of either the E M C or 

BCDMS collaborations, appropriately renormalized for consistency with the re-

analysed S L A C F%p data. 

The parton distributions from these fits are then used to predict next-to-

leading order prompt photon production cross-sections. The variation in the 

quality of the overall description of the deep-inelastic scattering and prompt 

photon production data simultaneously determines and the form of the 

gluon distribution of the proton. 

Next, cross-sections are predicted at next-to-leading order for the Drell-Yan 

process. Here, the quality of the overall description determines the antiquark 

content of the proton. 

Two sets of parton distributions are presented according to whether the EMC 

or BCDMS F£p data were used in the analysis. 

Possible alternatives for the low-x behaviour of the gluon distribution— 

outside the range of the fitted data—are discussed and predictions are made 

for future experiments which have the potential to distinguish between these 

alternatives. 
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1. Introduction 
Nothing exists except atoms and empty space; 
everything else is opinion 

Democritos of Abdera, ca. 400 BC 

This thesis aims to be a step forward towards the goal of understanding the 

fundamental structure of matter and the interactions between the fundamental 

constituents. The quest for this goal has come a long way: matter was found to 

consist of atoms (Greek for 'indivisible'—an early example of over-optimism!); 

these were found to comprise a minute central nucleus orbited by electrons; the 

nucleus was further resolved into protons and neutrons; and we now believe that 

these are built from quarks, bound together by gluons. As a 'working hypothesis', 

these are thought to be the truly fundamental particles although to believe this 

to be true could be considered a contemporary example of over-optimism! With 

present experiments, we are unable to discern any further substructure of the 

particles we consider to be fundamental. We have managed, however, to collate 

all the information we have acquired into a very successful 'Standard Model'. 

Although some of the pieces of this model have not yet been discovered experi­

mentally (the top quark, Higgs boson and graviton), the model is proving quite 

resilient to experimental attacks on it which try to show that it is incorrect or 

incomplete. The Standard Model is, however, only a model and not a 'theory of 

everything'. There is much in it that is apparently arbitrary—parameters such 

as fermion masses, coupling constants and mixing angles are not determined by 

the model and seem to have to be determined empirically. Even the fact that 

the charge of an electron is an integer multiple of the charge of a quark is not 

explained by the model. 

There is, however, much theoretical speculation on the resolution of these 

problems and extensions to the Standard Model such as Grand Unified theories 

[l] (in which all the 'fundamental' forces are low-energy manifestations of one 

truly fundamental force), Supersymmetry [2] (a symmetry relating fermions and 

bosons) and String Theory [3] (which considers elementary entities to be one-

dimensional 'strings' rather than zero-dimensional points). However elegant and 

appealing these theories may be, the final arbiter on their correctness or otherwise 

is experimental testing. Today, most of this experimentation is done at high-

energy particle accelerators where the most common particle-particle interactions 

1 



1. — Introduction 

studied are e +e~, e~p and n~p, up and up, pp and pp. It is apparent, then, that 

the proton is considered a very useful tool in the probing of the interactions 

of its more-fundamental constituents. It is thus important that we understand 

the detailed structure of the proton—how it is made up of quarks and gluons. 

Unfortunately, this structure is another example of something in the Standard 

Model which is not predicted but which has to be decided empirically. However, 

there have been many experiments dedicated to this end and a wealth of data 

now exists which, after appropriate analysis, can tell us much about the structure 

of the proton. 

Here, we shall attempt to use this data, in as systematic a way as possible, to 

determine the most accurate picture of the proton to date, as well as an estimate 

of a fundamental mass scale, A n r n . 

2 



2. Measuring the Proton's Structure 
Every statement in physics has to state rela­
tions between observable quantities. 

Mach's Principle 

2.1 E L A S T I C E L E C T R O N - P R O T O N S C A T T E R I N G 

We shall begin our investigation of the detailed structure of the proton 

by briefly reviewing the not-so-detailed structure revealed in low-energy elas­

tic electron-proton scattering. Details of the derivations of the formulae given 

are in most elementary textbooks [4], [5], [6] and are not reproduced here. Figure 

2.1 defines the notation we shall be using. 

The differential cross-section for the case in which the proton is approximated 

as a spinless point particle is 

da\ _ a2 E' 2 

j n ) Mott - 4 £ 2 S m 4 ( 0 / 2 ) ^ C ° S ( < V - ) ( 2 * 1 } 

with 

!= i +H s i i i 2w2> (2-2) 

where, as in all that follows, the electron has been assumed to be relativistic 
—* 

(E ^> me) so that |A;| = E. As indicated, this is known as the Mott cross-section 

and occurs as a factor in the more realistic cross-sections discussed below. In 

fact, we can write the cross-section for an electron scattering from an arbitrary 

charge distribution as 

where F(q) is known as a 'form factor' with q the (three-)momentum transfer, 

k — k'. F(q) is just the Fourier transform of the charge density provided the 

charge does not recoil: 

F(q)= J p(x)e^Sd3x . (2.4) 

all space 

If we now consider a more realistic spin-1/2 proton (still regarding it as a point), 

3 



2. | Measuring the Proton's Structure 

(« - ) («-) 

p = p^ etc. 

= |fc||P|cos0 

elastic => pn - p 2(= M£) 

(proton) (proton) 

7* 

9 = 9 ) 

Figure 2.1 Notation for elastic e~p scattering. The angle 

between the incident and scattered electron in the L A B frame 

is 6. 

Equation (2.1) is modified to 

O D i ~ c " 3 F ^ W i ) l ( " ^ " 4Sin2W2)) <2-5) 

where it can be seen that the extra term becomes significant for large momentum 

transfers or large scattering angles, i.e. collisions with small impact parameters. 

In fact, this term is caused by 'magnetic scattering' and dominates at sufficiently 

4 



2. | Measuring the Proton's Structure 

small distances because the magnetic dipole potential of the proton varies as r~2 

while the electric potential varies as r - 1 . 

Finally, we consider a wholly realistic spin-1/2 proton with unknown, spa­

tially extended structure. In this case, we can no longer write the proton transi­

tion current (used in the derivation of Equation (2.5) ) as proportional to 7^ sand­

wiched between Dirac spinors as is appropriate for a point-like vertex. Instead, 

we must replace 7^ by the most general sum of four-vectors we can construct, 

each term being multiplied by an arbitrary scalar function of q2 (being the only 

independent Lorentz scalar product at the j*p vertex). Explicitly, relativistic 

covariance, time-reversal symmetry, and parity conservation imply that 

—> FifoV + ^ ^ V ' V (2-6) 

where K (= ^p X P/ / /p* r a c — 1—the anomalous magnetic moment of the proton) 

and Mp have been extracted from (the arbitrary) Ft{q2) for convenience (i.e. 

such that in the limit q2 —• 0 when the virtual photon's resolution is so IOAV that 

it does not 'see' any structure, Equation (2.6) reduces to that of a point particle 

with anomalous magnetic moment /c, provided we choose -Fi(O) = i*2(0) = 1). 

This general vertex further modifies our differential cross-section to 

da\ a2 E' 
dn J Rosenbluth 4 ^ 2 S M 4 ( 0 / 2 ) E 

F ? ~ C ° s 2 m ) - 2 ^ ( F l + " F * ) 2 S i n 2 ( * / 2 ) 

(2.7) 

Conventionally, two new form factors are defined as Gg = Fi + (nq2/4Mp)F2, 

GM = F\ + KF2 such that cross terms F\Fi are eliminated: 

d<r\ a2 E' 
dQ, J Rosenbluth 4E2 sin 4(0/2) E 

co8'(0/2) + 2CGfc8in'(0/2) 

da 
dQ, J Mott 

G'E + CG2

M 

1 + C 

(2.8) 

+ 2C,G'l

M tan 2(0/2) 

with ( = — g2/4M|>. Now, we should like to interpret the contents of the square 

bracket in Equation (2.8) as the modulus-squared of the Fourier transform of 

5 



2. | Measuring the Proton's Structure 

the charge density and magnetic moment distributions of the proton (see (2.3)). 

In fact, it can be shown that Ggfg 2) is the Fourier transform of the charge 

density distribution and GM(Q2) is the Fourier transform of the magnetic moment 

distribution, but only provided that \q\ -C Mp. This is because we do not have 

a function of \q\ as in Equation (2.3), but one of q2. 

These form factors have been determined experimentally and are found to 

obey the empirical law (see Figure 2.2) 

GM _ ( q2 

MP V (0-84)2 

- 2 

with q2 in GeV 2 . 

The inverse Fourier transform of this function gives us a charge or magnetic 

moment distribution which falls exponentially with radius: 

p(r) = P o e - ° U r (2.10) 

with r in G e V - 1 (where 1 G e V - 1 = 0.2 fm) A typical measure of the electric or 

magnetic 'size' of the proton is thus (1/0.84) G e V - 1 = 0.24 fm. 

It is apt, at this point, to introduce a piece of notation. Figure 2.2 shows that 

q2 is negative for a scattering process. This is easily derived: from Figure 2.1, we 

see that q» = (E - E',k-k') so that q2 = -2(EE' - \k\\k'\ cos 9) (neglecting the 

mass of the proton) which, with our assumption of relativistic speeds, becomes 

q2 K —2EE'{\ — cos 8) which is negative for all 8. We therefore define Q2 = —q2 

for use when it is more convenient. 

We should like to resolve more and more structure by increasing Q2, but if 

we select only elastic events, we soon run into trouble. For Q2 ^ Mj>, the Q2 

dependence of the form factors is G ~ Q - 4 which, on substitution into Equation 

(2.8) gives 

\dn) Rosenbluth ~ Q6 

i.e. the cross-section for elastic scattering falls rapidly with increasing Q2. This 

is because the proton is much more likely to break up when it has to absorb a 

large amount of four-momentum. In other words, we must understand inelastic 

scattering if we want to probe the proton with high resolution. 

6 



2. | Measuring the Proton's Structure 

10 

1 0 

a 

a 1 0 

Q - 3 | i | | I 1 I I I I I 

0 2 4 6 8 1 0 

- q 2 (GeV s ) 

Figure 2.2 The empirical behaviour of the electric (GE) and 

magnetic (GM) form factors of the proton as a function of (the 

negative of) the square of the four-momentum of the probing 

virtual photon. 

2.2 I N E L A S T I C E L E C T R O N - P R O T O N S C A T T E R I N G 

Our notation for inelastic e~p scattering is given in Figure 2.3 where the in­

variant mass (sometimes called 'missing mass') of the hadronic fragments of the 

proton is no longer the constant Mj> but the variable W2. As before, we con­

struct the most general tensor form to represent the blob, introducing arbitrary 

functions of all the independent Lorentz scalars. As with elastic scattering, we 

7 



2. | Measuring the Proton's Structure 

find two arbitrary functions, but this time, we must make them depend on two 

independent scalars, v and q2: W\(v,q2) and Wi(v, q2). With elastic scattering, 

v — E — E' is not independent of q2 since q2 = —2Mpv> is a consequence of 

W2 = Mp whereas for inelastic scattering 

W2 = (p + q)2 = Ml + q2 + 2MPv 
(2.12) 

=> q2 = W2 - MP - 2MPv . 

We thus arrive at a formula analogous to Equation (2.8) : 

or equivalently, 

l A l - , - 4 P ^ ( > / 2 ) > ^ > ° ' ' m + ^ ' ' » - ' M 

(2 .14) 

(note that the functions Wi,2 have dimensions [ M ] - 1 ) . It is sometimes convenient 

to replace u and q2 by dimensionless variables which range from zero to one, viz. 

r - ^ x = 
2MPv (2.15) 
v 

V = E 

giving us a third version of Equation (2.13): 

fi " dF&fa™*,,)«*Vm + W . ( M ) * ' « / 2 ) ) • (2.16) 

The next section will show that x has more significance than that of a convenient 

variable. 

8 



2. | Measuring the Proton's Structure 

(E,k) (E',k>) 

(7*) 

T T ' 2 with p 

(proton) ( X ) 

Figure 2.3 Notation for inelastic e p scattering. 

2 .3 T H E P A R T O N M O D E L 

A priori, then, we should expect the functions Wi^(v,q2) to depend on two 

kinematic variables if the proton were just some arbitrary charge distribution. 

However, let us see the consequences of imagining the proton to be made up of 

point-like objects—'partons' [7], [8], [9], [10], [11], [12]. 

9 



2. | Measuring the Proton's Structure 

The argument is simplest i f we work in a reference frame in which the partons 
are moving in the same direction as the proton which they compose and that 
each parton carries a fraction £ of the proton's four-momentum (usually denoted 
by 'z ' but we do not want to confuse i t with the variable denned in §2.2 as 
x = —q2/2Mpu—for the moment, at least) so that 

Pparton — ^ p r o t o n ' (2-17) 

This is a very odd frame of reference as can be seen by considering what i t means 

for the energy and momentum components under a Lorentz transformation: 

•yE - fiyp = £E 
(2.18) 

-/?7 E + 7p = £p 

(where PpTQ^on = (E, 0,0,p) ) . For a non-trivial solution, the determinant of the 

coefficients of E and p of these homogeneous equations must equal zero giving 

( £ - 7 ) 2 = 7 2 - l 

e+i • (2-19) 
=> 7 = 

Since £ is a fraction in the range 0 < £ < 1, we see that the corresponding 

range in 7 is 1 < 7 < 00 (its entire permitted range). Although 7 is formally 

^-dependent, we can see that 7 —> 00 is an approximate solution of (2.18) for 

all £ because in this l imit , E —> p. This corresponds to the frame in which 

(f)-E w (OP? i - e - the one in which m = £Mp « 0, where m is the mass of the 

parton. For obvious reasons, this is known as the 'infinite momentum frame'. 

The advantage of using this frame is that the LAB time required for the proton 

to absorb the virtual photon is very brief compared with that taken by the proton 

to disintegrate into the final state, X. Using the Uncertainty Principle, the LAB 

collision time wil l be of order h/u while the proper time for disintegration wil l 

be of order h/W which is jh/W in L A B . A more illuminating way of looking 

at this situation is to realize that, to the electron, the proton will appear as an 

infinitesimally-thin (Lorentz-contracted) 'pancake'. Thus, the electron-parton 

interaction time will be vanishingly small. In contrast, the relative motion of— 

or 'communication' between—the target parton and the others will appear to 

10 



2. | Measuring the Proton's Structure 

be almost infinitely slow, due to relativistic time dilation. In this frame, then, 

we can certainly consider the electron as interacting with a free parton. This 

'impulse approximation' is valid for — q2,u2 >> M p . Assuming these partons to 

be spin-1/2 and charge e;e, we can write down the differential cross-section as a 

Dirac one: 

= a 2 j g . (cos2(0/2) - J L sin2(0/2)) (2.20) 
dtl 4 £ 2 sin 4(0/2) E \ V / ' 2m 2 W ' ) V ; 

or 

d(-q2)du 4 £ 2 s i n 4 ( 0 / 2 ) £ £ ' 

(2.21) 

where Equation (2.21) has been written as a double differential cross-section— 

even though the two variables are not independent—with a 'compensating' 8-

function. This is so that i t can easily be compared with our inelastic cross-section 

(2.14) . Summing Equation (2.21) over all partons, i, and performing an integral 

over all possible £ values, weighted by the probability /i(£) that the parton has 

a momentum fraction between f and f + d£, we find the correspondence 

o 
l 

(2.22) 

W2{v,q->) = e ? £ J dUiW (» + ^ ) 

0 

and so, using 8{z) — aS(az) wi th a = and m = £Mp, we find 

^ 2MP i 

W W ) = e ? 5 > ( 0 

(2.23) 

giving us 

2(MPWl{C) = uW2(0 (2.24) 

or, defining new dimensionless structure functions F\$ (this is the conventional 

notation—these F's are not to be confused with the elastic form factors in , for 

11 



2. | Measuring the Proton's Structure 

example, (2.6)) 

F 2 (£ ) = ^ 2 ( 0 = £ e ? ^ ( 0 (2.25) 
i 

and 

^ ( 0 = ^ ^ ( 0 = ^ (2.26) 

((2.26) is known as the Callan-Gross relation [13] and is a direct consequence of 

quarks being spin-1/2 particles). £ is defined via 6(( + q2/2Mpu) to be 

-<72 

£ = — — . (2.27) 
* 2MPv K ' 

So we find that this f , equal to the fraction of the proton's four-momentum carried 

by an individual parton in the infinite momentum frame, is indeed equal to the 

dimensionless variable describing the kinematics of the virtual photon given in 

(2.15). 

This analysis was proposed after Bjorken had predicted [14], [15] that, in the 

limit 

v —• CO 
(2-28) 

—q —• oo 

for fixed values of x — —q2/2Mpv (i.e. in the kinematic region in which the 

impulse approximation is valid), the existence of point-like constituents in the 

proton would be seen as the degeneration of the two-variable dependence of 

MpW\(x,q2) and vW2(x,q2) into dependence on just one dimensionless ratio, 

viz. 

MpW^q2) -» Fi(x) 
(2.29) 

vW2(u,q2)-+F2(x) . 

Now this is not a very remarkable 'prediction' unless the functions Fi^x) are 

non-zero and non-infinite since, otherwise, all two-variable functions have this 

behaviour. But, looking at Equation (2.25), and recalling that fi(x) is a prob­

ability and that x ranges from zero to one as well, Bjorken's prediction is that 

these functions are finite. 

12 



2. | Measuring the Proton's Structure 

Do experimental data support this hypothesis? Figure 2.4 shows the most 
accurate data currently available for vWi{y, Q2) f rom the BCDMS collaboration: 
(a) versus x for many different Q2 values and (b) versus Q2 for different x values. 
Bearing in mind that we have no idea how 'close' we are to the limits where the 
impulse approximation is valid, i t is quite impressive that vWi does indeed seem 
to be a function of x with l i t t le Q2 dependence. Although there is obviously 
some Q2 dependence, this is to be contrasted wi th that of G2^, the square of the 
elastic form factor, which decreases as the fourth power of Q2! 

2.4 S C A T T E R E D P A R T O N S AND S P E C T R O S C O P I C Q U A R K S 

Three years before Bjorken made his hypothesis, Gell-Mann [17] and Zweig 

[18] had postulated the existence of baryon and meson constituents on the ba­

sis of the regularities occurring when baryons and mesons of a given were 

displayed on axes labelled by the z-component of isospin and the quantum num­

ber 'strangeness'. I t was found that almost all the known mesons and baryons 

had values of these quantum numbers consistent with their being composed of 

just three different 'quarks' (plus their corresponding antiparticles) which were 

named 'up', 'down', and 'strange' (denoted by u, d and s respectively). More 

recent baryon spectroscopy has shown that a further two quarks are needed to 

account for additional baryons that have been discovered. These are known as 

'charm' (c) and 'bottom' (or, rarely, 'beauty') (6). Given the success of this 

'Quark Model' in accounting for the known baryons, i t was obvious to try to 

identify these quarks with the partons found in deep-inelastic scattering. 

We might first check that we can account for all the momentum of a proton 

or a neutron. The Quark Model tells us that a proton is made up of the three 

quarks uud and the neutron ddu. Denoting the functions fi(x), introduced in 

Equation (2.22), by u(x),d(x),s(x),c(x) and b(x) where xfi{x)dx is understood 

to be the probability of finding that type ('flavour') of quark with a momentum 

fraction between x and x + dx in a proton, and using the fact that the proton 

and neutron are members of the same isospin doublet with 

u(x) = i£^ o t o B (ar) = (T e " ' r o n (ar) (2.30) 

13 



2. | Measuring the Proton's Structure 

1 0 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ii 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 n 111_ 

i o - -

C\2 

10" 

•JQ - 3 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 

X 

Figure 2.4(a) Data on the 1/W2 structure function of the pro­

ton obtained from the BCDMS collaboration [16] by scattering 

muons off a hydrogen target. The data for all the Q2 values 

at each value of x have been shown together with the experi­

mental error bars (the statistical and systematic errors added 

in quadrature). At a given x, the higher Q2 values are the lower 

data points. The data shown here are the same as those in Fig­

ure 2.4(b) so that the rightmost 'tower' of points at x = 0.75 in 

this Figure corresponds to the lowest, almost horizontal, band 

of points in Figure 2.4(b). 
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Figure 2.4(b) Data on the vW2 structure function of the pro­

ton obtained from the BCDMS collaboration [16] by scattering 

muons off a hydrogen target. The data for all the x values at 

each value of Q2 have been shown together with the experi­

mental error bars (the statistical and systematic errors added 

in quadrature). At a given Q2, the higher x values are the lower 

data points. The data shown here are the same as those in Fig­

ure 2.4(a) so that the lowest, almost horizontal, band of points 

in this Figure corresponds to the rightmost 'tower' of points at 

x = 0.75 in Figure 2.4(a). 
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2. | Measuring the Proton's Structure 

and 

d(x) = droion{x) = u n e v t r o n ( x ) (2 .31) 

we can integrate (2 .25) to find 

J dxF*{x) = J dxx ( ( | ) 2 (u + u ) + ( - 2 (d + d) 

0 
1 

J dxF2

n{x) = j d x x ( ( | ) \d + d ) + ( - ^ \ u + u) 

(2 .32) 

where we have used the fact that the charge of a u quark is |e and that of a d 

quark — \e and we assume any s quark content is small. From experiment, the 

integrals of F\ and F% in (2 .32) are approximately 0.18 and 0.12 respectively. 

Solving the two equations then gives 

l 

x(u + u + d + d)dx = 0.54 . (2 .33) 

o 
/ 

We seem to have 'lost' almost half of the total momentum. More precisely, this 

tells us that about half of the proton's momentum is carried by partons with no 

electromagnetic charge. 

The successful predictions of the Quark-Parton Model demonstrate that i t is 

quite close to the t ruth about the structure of the proton. However, we should 

like a theory which explains why there are scaling violations and tells us what 

uncharged particles carry about 46% of the proton's momentum. That theory is 

discussed i n Chapter 3. 

2.5 N E U T R I N O - P R O T O N S C A T T E R I N G 

The kinematics needed to describe (charged-current) neutrino-proton scat­

tering {v(jf)p —* fi~(fx+)X) are essentially the same as for e~p scattering, but 

differing i n one important respect. We can no longer assume parity conservation 

when deducing the form of the most general tensor to represent the proton 'blob' 

since weak interactions violate parity conservation. This requires us to have three 

16 
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independent functions of the two independent Lorentz scalars—w["23 (^Q2) 

and the differential cross-section* 

= pL&iwi'V c o s 2 { e / 2 ) + 2WW s i A e / 2 ) 

d(-q*)du 2TT E ( 2 3 4 ) 

where u — p scattering takes the — sign and V — p takes the + sign and we are 

assuming the approximation 

2^2 
G\ (2.35) 

2 s i n 4 % ( 9 2 + M2,)2 

where Gp is the Fermi constant, 6yv the weak mixing angle and M\y the mass of 

a W boson. In other words, we are replacing the virtual W propagator by a (di-

mensionful) four-point coupling (see Figure 2.5). (We note here that the neutrino 

scattering data we shall be using later—essentially the W;'s—were extracted from 

the measured differential cross-sections without making this approximation.) 

As before, we define dimensionless structure functions which scale in the 

Bjorken l imit (2.28) for fixed values of x = —q2/2Mpu: 

MPW[V'U) = 
(2.36) 

In the Parton Model, we find^ 

F 2" p = 2x(d + s + b + u + c) 

F\v = 2x(d + s + b + u + c) 

xF£p = 2x(d + s + b-u-c) 

x F f p = 2x(-d-s-b + u + c) 

(2.37) 

The neutrino-neutron scattering versions of these are obtained simply by making 

the replacements d *-* u and d *-* u. Thus, for an isoscalar target (equal numbers 

• Equation (13.106a) in [6] is incorrect: dq2 should be d(—q2) or d\q2\. Equation (11.101) is 
correct 

f these formulae are for the case of only five flavours of quark. To include a sixth (<) quark, 
make the replacements u - » u + i and u —+ u +1 
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2. | Measuring the Proton's Structure 

(a) 

(b) 

Figure 2.5 (a) shows a neutrino-quark interaction proceeding 

via a virtual W boson propagator and (b) the same interaction 

in the low-energy approximation of a four-point interaction. 

of protons and neutrons), such as a deuteron, we obtain (by averaging) 

F%d = x(d + d + u + u + 2s + 2c + 2b) 

Fld = x(d + d + u + u + 2s + 2c + 2b) 

xFZA = x(dv + u v + 2s - 2c + 26) 

xF£d = x(dv + u v - 2s + 2c - 26) 

(2.3S) 

where, for example, uy = « — u. Finally, taking the sum of the measured cross-

18 



2 . | Measuring the Proton's Structure 

sections for u scattering and u scattering, we can determine the v — iz-averaged 

function 

* 3 * = + (2-39) 

(where the summation runs over q = u,d,s,c,b) and by taking the difference of 

the measured cross-sections we can determine the corresponding version for xFz 

xF£d = u v + d v (2.40) 

where we have assumed that the non-valence flavour quarks and antiquarks occur 

in equal numbers, e.g. s — s = 0. An unfortunate piece of conventional nota­

tion dictates that the tildes are not usually written to indicate v — V- averaged 

functions in Equations (2.39) and (2.40) because experimentally-quoted values 

of these functions are invariably averaged ones. Henceforth, we shall follow this 

convention. 

As for — p scattering, the F" structure function is simply related to the 

F2" structure function by (2.26) in the Quark-Parton Model. 
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3. Improving the Quark Parton Model—QCD 
The aim of research is the discovery of the 
equations which subsist between the elements 
of phenomena. 
Ernst Mach, Popular Scientific Lectures 

3.1 G L U O N S AND C O L O U R 

In Chapter 2, we noted the fact that about 46% of the proton's momentum 

must be carried by uncharged particles. We also know that the force responsible 

for holding a baryon together cannot be electromagnetic in origin since we know of 

some baryons which are composed of three like-charge quarks, for example A + + 

(uuu), A ~ (ddd), Cl~ (sss), and E~ (dss). In addition, some baryons appear 

to have three identical quarks in the same quantum state, in apparent violation 

of the Pauli exclusion principle—apparent violation because we are making the 

judgement on the basis of the quantum numbers we know about. 

In quantum chromodynamics (QCD) [19], [20], [21], the resolution of all these 

problems is achieved by postulating the existence of an exchange force between 

quarks, mediated by electrically-neutral particles—'gluons'. These couple to a 

new quark quantum number known as colour. By having three different colour 

'charges' (often denoted by R(ed), B(lue), and G(reen) ), we can avoid the prob­

lem with fermion statistics mentioned above by postulating that the three, other­

wise identical quarks, in fact each carry a different colour charge. Finally, because 

we have never seen any experimental evidence for this new quantum number, we 

postulate that all hadrons (baryons and mesons) carry no net colour. In group-

theoretical language, we are proposing that quarks are in a triplet representation 

of an exact SU(3) colour symmetry group and that hadrons are always colour 

singlets. The symmetry implied by SU(3) is that the laws of physics remain un­

changed by 'rotations' in colour space* e.g. i f we were to change the colour of 

all quarks in a system by R —> I?, B —* G, G —> R, there would be no physical 

consequences. The gluons arise i f we insist that this symmetry be local, i.e. that 

we can make independent 'rotations' in colour space at every space-time point 

such that physics is unchanged. This local gauge field theory is non-Abelian 

* SU(3) is not the same as 0(3), which is the group for rotations in 3-space, so we cannot 
think of R , G and B as being 'the x, y and z axes'. 
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B G B G 

\ 
a) BG 

\ 

Figure 3.1 (a) The colour content of a gluon and (b) three-

gluon and four-gluon vertices. 

which means that the gluons themselves also carry the colour charge (unlike in 

quantum electrodynamics (QED) where photons are uncharged). We can picture 

the interaction between, say, a B quark and an anti-B quark as in Figure 3.1(a) 

therefore identifying gluons as particles with colour content c i c j . There are thus 

nine gluons possible taking all colour-anticolour combinations, but the colour-

singlet combination, (RR + BB + GG)/y/3 decouples leaving us with eight which 

are in the octet representation of SU(3). Since they carry colour charge, gluons 

can also couple to other gluons as in Figure 3.1(b). 
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3.2 G L U O N S IN T H E P A R T O N M O D E L — S C A L I N G V I O L A T I O N S 

The existence of gluons within the proton wil l affect the differential cross-

sections we derived in Chapter 2 since we must now allow for the possibility of 

interactions such as those shown in Figure 3.2, where (a) the interacting quark 

radiates a real gluon before or after interaction with the virtual photon and (b) 

where a gluon from the proton creates a qq pair. An obvious consequence of 

these diagrams is that the scattered quark is now able to acquire some trans­

verse momentum with respect to the virtual photon whereas, previously, the 

only transverse momentum i t could have was that demanded by the uncertainty 

principle for a quark confined within the size of a proton ( < p\ > ~ (0.3 GeV) 2 ). 

There is another consequence of the presence of gluons in the theory, of great 

importance to the analysis of physical structure functions, of which we will give 

a brief derivation. Let us define a single parton version of F2—the F2 structure 

function before i t has been convoluted with the probability distribution, fi(x), 

and summed over all partons (see (2.22))—denoting i t by F2. Let the initial and 

final momentum fractions of the quark be different as in Figure 3.3 to allow for 

gluon radiation. Then we can recover the structure function F2 by integrating 

over all y and z subject to the conservation of momentum condition x = zy, and 

summing over partons 

where the lower l imit of y = x is because the incoming parton of momentum yp 

loses some momentum by radiating a gluon. By using S(x — zy) = S(x/y — z)/y, 

we can do the z integral to obtain 

F2(x,Q2) = T dz dyfi{y)F2{z,Q2)8{x - zy) 

0 

(3.1) 

1 dy 
F2(x,Q*) = Y,J fi(y)F2(x/y,Q2) 

y 
(3.2) 

In the quark parton model, of course, F2(x/y) 

whereby (3.2) reduces back to 

= xe 2 5( l — x/y) since y = x 

F 2 (x ) = V e 2 * / , ( x ) (3.3) 
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a 

b) 

9SISLQSI 

Figure 3.2 (a) New diagrams to allow for gluon radiation and 

(b) a gluon from the proton 'dissociates' into a quark-antiquark 

pair. 

Now, we can incorporate the parton process j*q —> gq into our description of 

deep-inelastic scattering. I t can easily be shown (see, for example, [5]) that, for 

this process, the differential cross-section can be written as 

da 2 ^ 1 T a 2 1 a s 
= e Pgq(z) (3-4) 

where pr is the quark (or gluon) transverse momentum in the COM frame, s 

is the square of the COM energy of j*qtn,ttal or g q f t n a l , z is as in Figure 3.3 
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xp 
\zVi] 

/ {y - x)i 
yp 
[Pi] (y - x)p 

Figure 3.3 Notation for the gluon radiation diagram, p is the 

momentum of the proton and p,- that of the initial-state quark. 

and a3 is the coupling constant of QCD. For simplicity, (3.4) is written in the 

high-energy limit ( i large). The function Pqq is given by* 

p « « = 5 ( T I T ) ( 3 5 ) 

and is some measure of (see later) the probability that a quark of momentum 

pi emits a gluon so becoming a quark with momentum fraction zp{. Integrating 

* but see §3.3 
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(3.4) over p j . , we find 

i . * e ? i ^ P I ! W l n ( ( 3 V / ) (3.6) 
S 3 ZTT 

where an upper limit of p j . = 5/4 = Q 2 ( l — z)jkz and a lower l imit of /x2 have 

been used with l n ( i / 4 ) « I n Q 2 for large Q2. i / 4 is the maximum transverse 

momentum of the gluon or final state quark and / i 2 is used instead of zero to 

prevent the divergence at p j . = 0. The label rad reminds us that this contribution 

is due to gluon radiation. 

Since this is a process distinguishable f rom -y*q —* q, we can add probabilities 

(instead of amplitudes) to obtain 

\ . - tot . 

Fi{x) = y f d y f . ( y )

F * ( x / y ) 
x -J y 

(3.7) 

where 

£ W ) s A(*/y) + F;%/y) = e , ( 4 ( 1 _ x l y ) + ^ p j x / v ) H Q V t t ^ . 
x x \ J,ir / 

(3.8) 

Now we see that the Fi structure function no longer 'scales'—it has gained a In Q2 

dependence. A neat way of rewriting (3.7) is to absorb the extra, gluon-induced 

piece of (3.8) into the probability functions fi(y): 

• J y 
* X 

= £ « ? ( / * ( * ) + */.-(*, Q 2 ) ) 

(3.9) 

with 

Afi(x,Q2) = ^ l n ( g 2 / ^ 2 ) / ^fi{y)Pqq(xly) . (3.10) 
x 

Differentiating with respect to I n Q 2 , we obtain 

a ^ a - ^ / ( , n ) 
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but we may expand fi(y) 

and use 

to obtain 

/.(y) = / . ( y , Q 2 ) - A / t ( y , Q 2 ) 

= fi(y,Q2) - 0(aa) 

d(Afj(x,Q*)) _ 3 / , ( x , Q 2 ) 
5 m Q 2 d\nQ2 

l 
dfi(x,Q2) ct3 f dy 

(3.12) 

(3.13) 

dlnQ 2 

This simply states that, when increasing the resolution of the virtual photon (by 

increasing its Q 2 ) , an increasing number of quarks are seen at smaller values of 

x (smaller since y > x) due to the possibility that quarks may degrade their 

momentum by radiating gluons. 

We showed in Figure 3.2b that we have also to consider the case when a gluon 

from the proton 'dissociates' into a qq pair, one of which interacts with the virtual 

photon. Proceeding in the same way as before, we find that the contribution to 

F-ijx from this process is 

l 

X>? / % ( y ) ^ P q g ( X / y ) H Q V ^ ) (3.15) 
• J y IK 

where 

P„{*) = \ ^ + (1 - *) 2 ) (3-16) 

gives some measure of the probability of a gluon dissociating into a qq pair 

leaving the gluon with a fraction z of its original momentum, and g(x) is the 

probability distribution for gluons analogous to the /;(x) for quarks. This is 

obviously another contribution we must add to (3.14) leading to 

%(x,<? 2 ) a. 
ainQ 2 g / y ( « ( v , Q V „ ( * / v ) +g(y,Q2)P<,a(*/y)) (3.17) 

where we have changed notation from /,• to qi to emphasize the difference between 

the quark and gluon pieces. Now, clearly, the gluon probability distribution in 
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(a) 
y 2* 

QQQQQQQQQQ 

(b) 

Figure 3.4 The splitting functions (a) Pgq and (b) P& 99 

the proton must also be changing. We obviously have the case shown in Figure 

3.4(a) represented by Pgg, but due to the allowed three-gluon vertex in QCD, we 

also have the case shown in Figure 3.4(b) represented by Pgg. So, we obtain 

r A 2 N f 

= Y - { Y J ^ y ^ ) P ^ x l y ) + 3 { y , Q 2 ) P g g { x / y ) ) (3.18) 
7 7 { y i=l 

dg(x,Q2) _ as f dy 
d l n Q 2 

where 2NF implies that the summation is over all quarks and antiquarks and 

where the splitting functions are found to be 

(3.19) 

and 

(3.20) 

Equations (3.17) and (3.18) are known as the Altarelli-Parisi equations [22], 

[23], [24]. 

* but see §3.3 
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3 . 3 V I R T U A L G L U O N C O R R E C T I O N S 

So fax, we have ignored the z —> 1 singularities in Pqq{z) and Pgg(z) when 

the final parton emerges with the same momentum fraction as the initial parton. 

Clearly, the probability for this to happen is not infinite, so what have we for­

gotten? We have, in fact, omitted some diagrams which always have 2 = 1. In 

addition to Figure 3.2 we must also include the virtual gluon diagrams of Figure 

3.5. If we identify the term 

a. 5 ( l - 2 ) + g P g ? ( 2 ) l n ( Q 2 / ^ 2 ) (3.21) 

(see, for example, (3.8) ) as the probability per unit z that a quark of momentum 

pi appears to be a quark with momentum zpi, then the integral of (3.21) over all 

z must be unity, giving 

i 
J dz(S(l - z ) + % P „ { Z ) W Q V S ) ) = 1 
o 

l 

=> J Pqq{z)dz = 0 . 

(3.22) 

We can therefore add a contribution to our (incomplete) Pqq to ensure this con­

dition is satisfied. In fact, 

/ 4 z 2 - l 
3 1 - 2 

+ 25(1 - z) dz = 0 (3.23) 

thus showing that 

Pgq(z) = ^2^-j- + 2S(l-z) (3.24) 

is the required function. This is often written using the 'plus-prescription' defined 

by 

0 0 0 
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Figure 3.5 Virtual gluon corrections to the process y*q —» q. 

as 
,2 

Pniz) = t ^ Z ^ + 2 S ^ ~ z ) • ( 3 - 2 6 ) 

Similarly, the corrected Pgg is given by 

p" = 6 {^r1+jrhy;+2(1"2)) -+ ̂ (33" 2 N f ) S { 1 ~z) • (3-27) 

3.4 T H E S T R O N G C O U P L I N G , a s 

Another assumption we have made up till this point is that the strong cou­

pling, as, is a constant. In fact, there are virtual corrections to the q — g vertex 

(shown in Figure 3.6) which have the effect of making as 'run', that is, it becomes 

a function of Q 2 . In the leading logarithm approximation (see §3.5 and §3.6), 

a s ( Q 2 ) turns out to be the solution of the differential equation 

that is 

a - « 2 ' = « m < 3- 2 9> 

where the integration has produced an arbitrary constant A,to be determined by 

experiment and where (3Q is a calculable function arising from the evaluation of 

the virtual correction diagrams: 

ft, = 11 - . (3.30) 
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/ \ 
\ I \ / 

Figure 3.6 The full quark-gluon vertex decomposed into the 

'bare' vertex and one-loop virtual-particle corrections (the dashed1 

line circle is a 'ghost'—a fictitious particle whose diagrams must 

be included when calculations are done in covariant gauges). 

In this leading logarithm approximation, the Altarelli-Parisi equations can be 

corrected for the dependence of aa on Q 2 simply by replacing a3 by a s ( Q 2 ) . We 

thus see that in QCD when there are less than 16 flavours of quark (currently, 

there are five known flavours of quark and a sixth is postulated in the Stan­

dard Model), the coupling goes asymptotically to zero for Q 2 —» oo and becomes 

very large as Q2 approaches A 2 . These two properties are known respectively as 

'asymptotic freedom' [25], and 'infra-red slavery' [11], and are dispayed graph­

ically in Figure 3.7. This is in contrast to QED where the coupling increases 

with Q 2 because /3®ED is negative. Physically, the reason for this is that a bare 

electric charge tends to get shielded by the cloud of virtual e+e~ charges it pro­

duces, whereas a colour charge is anfo'-shielded due to the presence of gluons in 
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Figure 3.7 The running coupling constant of QCD in the 

leading logarithm approximation showing the two extreme be­

haviours at low and high Q 2 / A 2 . 

the theory. 

A remark should be made about the Np which appears in the equation for 

PQ. This is to be interpreted as the number of flavours of quark which can go 

around the quark loops in Figure 3.6. This number depends on the energy scale 

and so may be equal to 3,4,5 Since, in (3.28), a s ( Q 2 ) is supposed to be 

a physical quantity and /?o = ^o(Np), we see that A must also depend on Np. 

Thus, care must be used when quoting or interpreting values of A based on a 
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measurement of a8 at some Q2—the number of flavours assumed must also be 
known (less confusion is caused, of course, if one quotes the value of as(Q2) and 

Q 2 ) . 

3.5 H I G H E R O R D E R C A L C U L A T I O N S 

Let us first briefly recap the ingredients for calculation in the leading order 

approximation (or, more precisely, leading logarithm approximation [23], [26], 

[27], [28] ). Taking the physical structure function F^x^Q2), we have 

F 2 ( z , Q 2 ) / z = £ e

2 ? ( ^ Q 2 ) (3.31) 

where the parton momentum distributions, q(x, Q 2 ) , obey the first-order (or one-

loop) Altarelli-Parisi equations (3.17) and (3.18) in which the splitting functions 

are first order (one loop) (3.26),(3.27),(3.19) and the coupling constant obeys the 

first order (one loop) renormalization group equation (3.28) to give (3.29). 

These parton distributions can now be used in the calculation, in the lead­

ing logarithm approximation, of some inclusive hadronic process AB —> CX. 

Schematically, we have 

OAB-.CX = f%\LL ® t?bZn

cX ® fBlLL • (3.32) 

In a sense, this is a formula which is not consistently 'leading logarithm' 

since we use just the lowest order sub-process cross-section a B o r n . However, this 

is what is meant by leading logarithm. 

Before discussing next-to-leading logarithm corrections, we will briefly discuss 

different types of expansions in perturbation theory. Consider a physical quantity 

R—a function of Q 2 and some other variables. This can be expressed as a series 

R =(RQ + R i a s + R2a] + • • •) 

+ In p ^ a , + R'2a2

a + R'3a3

s + •••) 

+ ln 2 p\RWs+RWs + RWs + ---) , x 

(3.33) 
+ ... 
+ In* p\Rkak

a + Rk+1ak

3

+1 + Rk+2ak+2 + • • •) 

+ . . . 
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where p 2 = Q 2 / f x 2 . Calculating 'fixed order' corrections means rewriting this 

series as 

Rfized order = R q + ^ ^ + ^ m p 2 ) + a ^ R j + ^ m p2 + R » fcJ p2 ) + . . . (3.34) 

and taking the term proportional to a" to be the n**1 order. Calculating in the 

leading logarithm approximation means approximating (rather than rewriting) 

the series by retaining only those terms with the highest power of In p 2 for a given 

power of a s viz. 

RlL « -Ro + <*s lnp 2 iJi + a 2 In 2 p2R'2' + • • • . (3.35) 

In this approximation, therefore, the expansion parameter is a a l n p 2 which is 

not necessarily much less than one when a s < 1 so that successive terms do not 

necessarily get smaller. Thus, it is essential to sum this infinite series completely 

to obtain a meaningful answer. Methods for doing this are discussed in [23], [24]. 

The next-to-leading logarithm approximation keeps, in addition to (3.35), 

terms of the form a" I n " - 1 p 2 

RNLL « -Ro + <*,(lnp2J2i) + a 2(ln 2p 2i?' 2' + I n p 2 R ' 2 ) + • • • (3.36) 

where, as before, it is necessary completely to sum the series. Figure 3.8 shows 

the structure of all these schemes. 

Schematically, then, we have 

Parton Model: F2/x ~ q(x) (3.37) 

L L A : F2/x ~ q(x,Q2,AP[PLL,a3LL]) (3.38) 

NLLA: F2/x ~ q(x,Q2, AP[PNLL,asNLL,X}) + a,NLLX (3.39) 

where, for example, A.P[PNLLiasNLLiX] means that the Altarelli-Parisi equa­

tions are 'functions' of the next-to-leading logarithm splitting functions, the NLL 
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ln°Q 2 I n V ln 2 Q 2 l n 3 Q 2 
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1 o 

2 
O 

o 

\ \ \ 
Figure 3.8 Structure of perturbative corrections. The hori­

zontal lines show the fixed order corrections. The leading log­

arithmic corrections (LL) are represented by the inclined line. 

Lines showing the next-to-leading (NLL) and the next-to-next-

to leading (NNLL) corrections are parallel to the LL line. Ar­

rows indicate that the whole series has to be summed for LL, 

NLL and NNLL approximations: £ > ? l n " Q 2 , X X m " " 1 ^ 2 , 

and £ a ? l n " ~ 2 Q 2 respectively. 

coupling constant and X. The function X arises at NLL because there is some 

arbitrariness in the renormalization and factorization procedures: different X's 

characterize different schemes. In the DIS ('deep-inelastic scattering') scheme, X 

is identically zero, thus retaining the QPM and L L A relationship between Fi—the 

most commonly measured structure function in deep-inelastic scattering—and 

the (ft. In the MS ('modified minimal subtraction') scheme, X is not identically 

zero. (This scheme is defined by the way it subtracts the poles and some other 

(finite) terms which occur in the calculational method of 'dimensional regulariza-

tion'). In addition, this scheme has the advantage of being simple to generalize 
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ft) 

(ft) 

(«i) 

Figure 3.9 A higher-order splitting function. 

to all orders of perturbation theory. The relationship between the quark distri­

butions in the two schemes is 

= / - k i - *) - ^ / 9 ( Z ) 9

D I S ( , / Z , Q 2 ) 

x L * (3.40) 

"^~U\Z)9 \ x l z i Q ) 

where fg and fg are known functions (q.v. [29], [30]). 

As an example of the increased complexity of the splitting functions, we take 

Pqq as an example. We find that the transition from leading logarithm to next-

to-leading logarithm is 

liPn —> * W + QjPifij] ( 3 - 4 1 ) 
i 

(where the arguments have been suppressed for clarity). This is because, at 

leading logarithm, a quark could only split into a quark of the same flavour. 

At NLL, however, with two quark-gluon vertices, a quark can split into a quark 

or antiquark of any flavour (see Figure 3.9). Full expressions for the splitting 

functions P are given in [26], [27], [28]. 
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3.6 A P P R O X I M A T I O N S T O as(Q2) 

In the leading logarithm (one loop) approximation to a3(Q2), we consider all 

one-loop corrections to the quark-gluon coupling (see Figure 3.6) and obtain 

a,(Q2) = as(S)(l - | j j - a V W Q V A * 2 ) + • • • + - £ a . 0 i a ) l n ( Q V / * a ) 
-i k 

(3.42) 

which is trivial to sum since it is a geometric progression with successive terms 

in the ratio — /?oa a(/x 2)ln(Q 2/V 2)/47r: 

A S ( Q 2 ) =

 Q ^ 2 ) (3.43) 
i + H 2 ) M Q 2 / ^ 2 ) 

or 

- — I n Q + —rpr^r = - — m/T + — — = - — InA' (3.44) 
47r <*«(<?) 4TT a 4 ( ^ ) 47r 

where both sides have been equated to a constant, — /?o In A2/47r, since / / 2 and 

Q 2 are independent. Hence, 

a ' L L ( Q 2 ) - A h ( f f / A ' ) • ( 3 - 4 5 ) 

The extension to next-to-leading logarithm goes along similar lines. In fact, as 

we have mentioned in (3.28) OCSLL(Q2) 1 S the solution of the ordinary differential 

equation 

W = - ° > ^ ™ 

as can readily be seen by differentiating (3.45) . The summation of the next-to-

leading logarithms is effectively done by solving an extension of this 

dlnQ2 47r \ 47T 

where 0\ is another calculable loop function to get (approximately) 

„ (Q^ - 4 7 r f i & ^ l n ( Q 2 / A 2 ) \ 
a s N L L { Q } " -^HOW) V ~ ft MQW ) • ( 3 - 4 8 ) 
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Figure 3.10 An example of an interaction between the scat­

tered quark and the spectator partons responsible for higher-

twist corrections to physical structure functions calculated in 

perturbative QCD. 

3.7 H I G H E R T W I S T E F F E C T S 

There is another problem with this analysis: that of so-called 'higher-twist' 

effects (the name coming from the terminology of the operator-product expan­

sion). The theory outlined above does not include Feynman diagrams in which 

there are interactions between the scattered quark and the spectator partons, an 

example of which is shown in Figure 3.10. The physical structure functions, F, 

are really a power series expansion in 1/Q2 viz. 

Fphv* = F(0) + ^ + ^ + --' ( 3 - 4 9 ) 

where the higher order terms originate from increasingly convoluted diagrams. 

We can lessen the effects of our non-inclusion of the higher-twist terms by 

using only the structure function data with Q2 > Q2

ut since at higher values of 

Q2 the physical structure function is dominated by the lowest-twist term. The 

difficulty with this is an obvious one— what is Q2

cut such that F^/Q2

cut <C ify) ? 

To answer this question necessitates the calculation of the higher-twist diagrams 

to see how big F^ is. Alternatively, the size of the corrections needed can 
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be estimated by performing fits to data with the physical structure function 

parametrized as 

i W . = ^(0) ( l + ^ ) (3-50) 

where C(x) is fitted as a free parameter in each x bin. Fits of this kind have 

recently been performed by Milsztajn [31] with the conclusion that the corrections 

are negligible for x <, 0.5 where C(x) « 0 and that C(x) grows, linearly within 

the accuracy of the analysis, from approximately zero at x « 0.5 to around 1 

GeV 2 at x = 0.75. 

3 .8 T H E L O N G I T U D I N A L S T R U C T U R E F U N C T I O N , FL 

In equation (2.26), we saw that the F\ and F2 structure functions are simply 

related in the Parton Model. We rewrite that equation here as 

F2{x) - 2xF1(x) = FL(x) = 0 (3 .51) 

in order to define the longitudinal structure function, FL, which is related to the 

absorption cross-section for longitudinally-polarized virtual photons. Equation 

(3 .51) holds true provided the quark interacting with the virtual photon has no 

transverse momentum but, as we have seen in §3.2, in QCD there is the possibility 

of the quark acquiring some by radiating a gluon. In the MS scheme, it can be 

shown that 

7T 
1 

4 
L x q=u,d,s,c,.. 

(3 5^) 

J y y j J y y y 

This structure function is usually discussed in terms of the quantity 

p( G2, _ F2(x,Q*)-2xF1(x,Q*) 
R { X > Q } = 2xF1(x,Q*) • ( 3 , 5 3 ) 
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4. The Deep-Inelastic Scattering Data 

4.1 I N T R O D U C T I O N 

Here, we discuss the deep-inelastic scattering data that we need. We have 

used data on F 2

W , Fgn/Fgp, F%Fe , and xF£Fe where the data produced using 

an iron target have been corrected to those produced using deuterium. These 

correspond, in the leading-logarithm approximation,* to the quark combinations 

(as shown in §2.3 and §2.5): 

F£p = (4uv + dv + lOu + 2J+ 8c)/9 (4.1) 

F£n = {uv + 4dv + lOu + 21 + 8c)/9 (4.2) 

F2

vd = uv + dv + 4u + 2s + 2c (4.3) 

zFg* = uv + dv (4.4) 

(the arguments (x ,Q 2 ) have been omitted for clarity) where we have assumed 

d = u. Thus, naively speaking, we see that at a given (x,Q2) point within the 

common kinematic range of the data, we are unable to determine the independent 

quantities uy,dv,u,s and c because we have four equations in five unknowns. 

We say 'naively' because, in our fitting, we do not make a point-by-point determi­

nation of uv,dv,u,s and c—as explained in Chapter 5, we vary the parameters 

describing these quantities at Q% and, for each combination of the parameters, 

we use the Altarelli-Parisi evolution equations to generate their values at higher 

Q2 (so the five quantities are not, in fact, independent if we assume QCD). Let 

us discuss each type of data set in turn: 

* in the next-to-leading logarithm approximation, the quark distributions must be convoluted 
with the appropriate coefficient functions as shown in §3.5 
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4.2 F$P DATA 

We use the F$* data of both the E M C [32] and BCDMS [16] collaborations 

produced using a hydrogen target. Both of these data sets were produced in ex­

periments using the same muon beam at the same time, the BCDMS experiment 

being the further 'downstream'. The BCDMS experiment collected 1.8 x 106 

events (after cuts) of deep-inelastic scattering of muons on a hydrogen target at 

four different beam energies (E =100,120, 200 and 280 GeV). This enabled them 

to estimate R (see §3.8) by extracting the F2s of the four beam energies in each 

x bin from 

&o 4TT<*2 / Q2 y2E2 + Q2 

dxdQ* = w r ! , " ^ + 2 j B » ( f l + D ) F * ( 4 - 5 ) 

assuming trial values of R (which was assumed to be independent of Q2—a 

reasonable approximation). The value of R = R(x) chosen as the experimental 

result was then taken to be the trial value which made the extracted F2's as near 

independent of E as possible. 

The kinematic range of the data is 0.06 < x < 0.80 and 7 GeV 2 < Q2 < 

260 GeV 2 . The collaboration's own analysis of their results finds that R is 

compatible with RQQJ) and so their published values of F2 assume R = RQQJ)-

Furthermore, the systematic errors are comparable in size to the statistical errors. 

In using this data set, we impose the ar-dependent Q2 and y = Q2/2MpEx cuts 

specified in [16] on the data from each beam energy and then merge together 

the data at the four (consistent) beam energies, finally adding the statistical and 

systematic errors in quadrature. The overall normalization uncertainty of these 

data is estimated to be 3%. 

The E M C experiment was performed similarly. The four beam energies used 

were E = 120, 200, 240 and 280 GeV. For these data, though, a value of R = 0 

(the Parton Model prediction) was assumed to extract the F2 structure function 

from the measured differential cross-section. The kinematic range of these data 

is 0.03 < x < 0.80 and 3.5 GeV 2 < Q2 < 170 GeV 2 . A data set consisting of the 

merged F2 values from the four beam energies was produced by the collaboration 

itself and this is the data set that we use. The errors on these F2 values are 

significantly larger than those on the corresponding BCDMS values—typically 
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three times as great. The estimated overall normalization uncertainty on these 
data is 5%. 

To put the E M C and BCDMS F£P data sets on an equal footing, we should 

correct one of the sets to the value of R used by the other. Since the BCDMS 

analysis favoured a value consistent with RQQJ) over R = 0—which the E M C 

analysis assumed—we should correct the E M C data. This is difficult to do be­

cause of the complexity of the procedure E M C used to merge the data from the 

four beam energies. However, the correction is small (compared to the experi­

mental errors) over the whole kinematic range and only becomes non-negligible 

for x < 0.20 at high Q2 [33]. Therefore, we do not correct the E M C data for this 

small effect because it is insignificant compared to the experimental errors and 

the overall normalization uncertainty. 

It was obviously hoped that these two experiments would give consistent 

results, effectively cross-checking one another. Unfortunately, this is not the 

case. Figure 4.1 shows the disagreement between the data sets in a concise way— 

displaying the Q2-averaged ratio jrEMCy_pBCDMS a s a f u n c t i on of x. From this, 

it is evident that there is no global, relative renormalization of the data sets which 

would render them consistent. Recently, however, a re-analysis [34] of low-Q2 

F2

ep measurements made at S L A C , which extends them to higher Q2 (such that 

there is some overlap with the E M C and BCDMS data), has provided something 

against which to compare the later measurements. Figure 4.2 (taken from [34]) 

shows the SLAC, E M C and BCDMS hydrogen ((a) and (b)) and deuterium ((c) 

and (d)) target data after the most favourable renormalizations of the E M C and 

BCDMS data have been applied ('favourable' in the sense of minimizing the x2 

of a parametrization of F2 to the combined S L A C - E M C or SLAC-BCDMS data). 

For the hydrogen target data, these renormalizations are of +8% for the E M C 

data and -2% for the BCDMS data (the corresponding numbers for the deuterium 

data are +8% and -1%). The E M C data are now consistent with the SLAC data 

at all £ and, in fact, a renormalization of about 8% had been found necessary 

by the collaboration itself in order to obtain consistency between their F^d data 

at low x and low Q2. It has also been noted by Martin, Roberts and Stirling 

(MRS) [35] who required a relative renormalization between the E M C F2

P data 

and the neutrino scattering data of CDHSW [36] and C C F R R [37] of about 10% 
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on 

o 

CO CM 

CM 

Figure 4.1 The (Q2-averaged) ratio of the F£p structure func­

tions measured by EMC [32] and BCDMS [16], from reference 

[16]. 

for consistency. Therefore, we perform this renormaJization on the data we use 

in our analysis. 

The B C D M S data, however, cannot be globally renormalized to match the 

S L A C data. Without renormalization, the B C D M S data are a few percent too 

high at low x whilst at high x, they are too low, although there is good agreement 

in the intermediate range. We choose to renormalize the B C D M S data down by 

2% aiding the agreement at low x. We then attribute the blame for the poor 
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Figure 4.2 Comparison of the re-analysed SLAC [38], BCDMS 

[16], [39] (with the hydrogen (deuterium) target data renormal-

ized downwards by 2%(1%)), and EMC [32], [40] (hydrogen and 

deuterium target data both renormalized upwards by 8%) mea­

surements of F2 • 

to* 
0* (Cev/e)' 

match at high x to the large systematic errors on the high-x, low-Q 2 B C D M S 
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data. In any case, we do not use this region of the data because of the cuts we 

Thus , we have made a relative renormalization of 10% between the E M C and 

B C D M S F$p data sets. As previously mentioned though, this cannot make them 

consistent with each other. Rather than make an arbitrary choice to use just one 

'favoured' data set, we perform our full analyses twice—once with the E M C data 

and once with the B C D M S data. 

4.3 F$Fc AND xFgFe DATA 

For these structure functions, we use the high-statistics data of the C D H S W 

collaboration [36]. These data are based on 4.3 x 10 6 u-Fe events and 5.4 x 10 6 V-

Fe events. The structure functions used are the average of F?Ft and F"Fe and are 

corrected to remove contributions from higher-order electroweak processes and 

for the non-isoscalarity of the iron target. C D H S W use a method of extracting 

i<2 whereby the uncertainty introduced by the unknown R is certainly less than 

the combined statistical and systematic errors. 

The most important correction that we apply to this data is for the so-

called E M C effect. This is a phenomenon discovered by that collaboration in 

a comparison of its F<i data measured on several different nuclei. They found 

that there is a significant difference between the values of F^ ( = 1/2(^2 + F£)) 

measured on heavy nuclei and those measured on deuterium. We have taken a 

compilation of all F^ea,V^ (x)/F^ix) data and fitted a functional form (see Figure 

We then correct the C D H S W F^Fe structure functions to equivalent deuterium 

ones by dividing them by this function (assuming, therefore, that xF%Fe can be 

corrected in the same way as F%Fe). 

We did not renormalize these data. As has already been mentioned, Martin 

et al. found it necessary to apply a relative renormalization between the E M C 

F% data and the C D H S W and C C F R R neutrino data of about 10%. As we have 

make in order to lessen the impact of higher-twist processes (see §4.5). 

4.3): 

heavy 

F* 

1.23 + 0.21og 1 0 x for x < 0.11 

1.04 for 0.11 < x < 0.24 

0.79 - 0.4log 1 0 x for x > 0.24 . 

(4.6) 
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Figure 4.3 Compilation of data showing the discrepancy be­

tween F{ as measured using heavy-nucleus targets and that us­

ing deuterium. The line drawn through the data is the function 

given in Equation (4.6). 

decided on renormalizing the E M C data upwards by 8%, these neutrino data will 

be consistent with the E M C data to a large degree. In fact, we find that when we 

take our final parton distributions (see Chapter 8) and refit all the deep-inelastic 
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scattering data with the and C D H S W data normalizations (only) as free 

parameters, the optimum values of these parameters (with respect to the total 

X2) are within 1/2% of the values we chose. Obviously, part of the reason for 

this is that the other parameters are 'biased' towards these values, but this fact 

does lend some support to our choices. 

Previous analyses (by M R S [35], [41] ) have also used the F%Fe and xF£Fe 

data of the C C F R R collaboration. We have not because these data are largely 

consistent with those of C D H S W but have much greater errors, giving them little 

role in the determination of the par ton momentum distributions. 

4.4 F£n/F£p DATA 

We have used measurements of F 2 " n / jP 2

w produced by E M C [40], B C D M S 

[42], and N M C [43]. These data are obtained by placing targets of hydrogen and 

deuterium in the same muon beam. This substantially reduces many sources of 

systematic error—in particular, the overall normalization—because these cancel 

in the ratio. Assuming that R is the same for protons and deuterons, the ratio 

of the structure functions is given simply by 

F? 

Because of the absence of an overall normalization uncertainty for these data, 

we can have particular confidence in them. Thus , we are especially keen for our 

parton momentum distributions to fit them well. 

From Equations (4.1) and (4.2), we see that (neglecting charm and with 

2s = u = d* which is a good approximation at the low Q2 of these data) 

F$ 4uv + d v + llu v ; 

giving the expected asymptotic behaviour 

jpn ( 1 as x —• 0 

where the first limit assumes that the sea quarks dominate at low x and the 

• This assumption is motivated in §5.2 but is not important for this argument: SU(3) flavour 
symmetry, J = « = d yields the same results. 
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Figure 4.4 Data on the structure function F$n/F^ from the 

NMC [43]. The errors shown are the statistical and systematic 

errors, added in quadrature. 

second limit assumes that dyjuy —* 0 as a; —• 1. As can be seen from Figure 

4.4, this is well borne out by the data (and the a l ternat ive—F$ n /F l f* —* 4 as 

x —• 1—is certainly ruled out). Thus , we enforce dy/uy —* 0 as x —* 1 in our 

fits. 
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4.5 A L L DATA 

To all of these deep-inelastic scattering data we perform some global cuts. 

Recalling the discussion in §3.7 on higher-twist effects, we can see (for x > 0.5) 

that these might make a contribution of over 5% for 4(x - 0 .5) /Q 2 > 0.05, 

that is, Q2 < S0(x - 0.5) (where Q2 is in G e V 2 ) . Thus , we require Q2 cuts 

Qmin(x) o { 4 G e V 2 (0-55), 12 G e V 2 (0.65) and 20 G e V 2 (0.75). For this reason, 

we impose a cut on the invariant mass of the debris of the inelastic collision, 

W 2 = Q2(l - x)/x + M2

P (see (2.12)), of W2 > 10 G e V 2 . This gives us x-

dependent Q2 cuts of 11 G e V 2 (0.55), 17 G e V 2 (0.65) and 27 G e V 2 (0.75)— 

keeping higher-twist effects well below 5% in the kinematic regions where they 

may occur. We also impose a global Q2 cut of Q2 > 5 G e V 2 and an x cut of 

x > 0.05. Both of these help to eliminate data in the kinematic region where 

differences in the values of R (discussed in §3.8) used by the collaborations to 

extract the physical structure functions are greatest. 
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5. Parton Distributions from DIS data 

5.1 M E T H O D F O R E X T R A C T I N G T H E P A R T O N D I S T R I B U T I O N S 

How are we to determine the parton distribution functions given the experi­

mentally measured physical structure functions? Schematically, from Section 4.1, 

we have 

F ( a r , Q 2 ) = J > K * , Q 2 ) (5.1) 
v 

where p represents some parton distribution function. Alternatively, inverting 

the equations, we have 

xp(x,Q2) = Y , H x , Q 2 ) • (5.2) 
F 

The most direct approach might seem to be to use the latter of these equa­

tions at each (experimental) (x*,Q2*) point and hence determine the parton 

distribution functions at that point 

x*p(x*,Q 2 *) = £ > ( * * , Q 2 *) = A±eA ( 5 > 3 ) 

F 

where is the experimental error from statistical and systematic uncertainties 

and normalization uncertainty. This approach has many difficulties. The physical 

structure function data exist only at a discrete set of ( x , Q 2 ) points and so the 

resulting parton distribution functions would only be determined at those points 

on each parton distribution function surface. Furthermore, there would be an 

error associated with each point. This would not give a very useful set of parton 

distribution functions! I n addition, we must remember that this analysis is being 

carried out using Q C D and that it is not supposed to be a test of it: in Q C D the 

Q 2 evolution of the parton distribution function at some (x\,Q\) is determined 

via the Altarelli-Parisi equations by the parton distribution functions at all x > 

x\,Q2 < Q\ (and by A q c d ) . This is difficult to incorporate into this method. 

Another problem is that of using several data sets of physical structure functions. 

In general, each of these has its own overall normalization uncertainty which 

would lead to (infinitely!) many alternative parton distribution function surfaces: 

one for each combination of the normalizations. 
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Thus we are forced to abandon this method as impractical. Instead, we must 

use 

F(x,Q2) = ^xp(x,Q2) ( 5 4 ) 

p 

and proceed as follows. We construct trial sets of xp(x,Q2) covering the whole 

range of (x,Q2) of the data, using Q C D via the Altarelli-Parisi equations . We 

then use these to construct theoretical (i.e. trial) 'physical' structure functions 

and compare these, using an appropriate measure of 'goodness of fit', with the 

experimental physical structure functions. Optimization with respect to the mea­

sure of goodness of fit then leads to a set of parton distribution functions which 

best describes the data. This method has none of the drawbacks of the previous 

one: the resulting parton distribution functions cover the entire (x,Q2) range of 

the data (and beyond); the experimental errors are used in the determination 

of the goodness of fit by giving more weight to points with smaller errors; Q C D 

is input from the beginning; and the normalization of different data sets can be 

made parameters of the fit. 

This method, however, does have a drawback of its own: to start off the 

Altarelli-Parisi evolution of the parton distribution functions, these must be 

parametrized a •priori at some initial value Q2 — Q\ which inevitably leads to a 

restriction on their possible forms (note: the Altarelli-Parisi equations describe 

only the Q2 evolution of the x-dependence of the parton distribution functions). 

Nevertheless, we can use Q C D to guide us in the asymptotic regions of x —> 0 and 

x —y 1, choose suitable functions which mimic this behaviour, and experiment 

with modified forms of these functions so that we obtain satisfactory fits to the 

data with the minimum number of parameters. 

5.2 P A R A M E T R I Z A T I O N O F T H E P A R T O N D I S T R I B U T I O N S 

Now we are ready to see how precisely a set of parton distribution functions 

can be determined using all the deep-inelastic scattering data at our disposal. 

We must first decide on a value of QQ at which to parametrize the functions. 

This value ought to be lower than any Q2 at which we would like to use the 

functions for two reasons: Q2 evolution towards higher Q2 always eliminates 

fine structure in the functions so it is reasonable to assume that 'backwards 
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evolution' (i.e. towards lower Q 2 will be inherently unstable, especially under 
the influence of numerical uncertainties such as rounding errors) perhaps giving 
rise to spurious features in the functions; and, as a practical consideration, some 
complex evolution programs may be unable to run 'backwards' for a variety of 
reasons. A common choice has been QQ = 4 G e V 2 and so, for ease of comparison 
between our new functions and previous ones, there seems to be no good reason 
not to use this same value. 

Next, we must decide on the parametrization of the functions at QQ. Clearly, 

the more free parameters we have in our functions, the better will we be able 

accurately to reproduce the deep-inelastic data. So why should we not use 100-th 

order polynomials, for example? Apart from the enormous amount of computing 

time that would be necessary to minimize our 'goodness of fit' criterion with 

respect to so many free parameters, we do not want so much flexibility in our 

parametrization that we even fit the statistical fluctuations in the data: our 

theoretical predictions of the physical structure functions ought to be reasonably 

smooth curves through the experimental data and not ones that attempt to 

fit obviously anomalous data points. In practice, we should stop introducing 

new parameters when the payoff, in terms of a better 'goodness of fit', becomes 

insignificant. In addition, there are theoretical reasons to suppose that we know 

the form of these functions in various kinematic regions viz. at high and low x 

and Q2. For example: there are 'counting rules' [44], [45], [46], [47] which propose 

that 

/ , ( * ) (1 - Z ) 2 " * - 1 (5.5) 
X—>1 

where Ns is the number of 'spectator' valence quarks (i.e. those that do not take 

part in the scattering); and Regge theory predicts that the small-a: behaviour is 

determined by the intercept, £, of the appropriate Regge exchange trajectory, 

fi(x) —> x~< (5.6) 
x—»0 

where £giuon = (q = 1 and £qv = 1/2. Our parametrization reflects these ideas 

with its incorporation of powers of (1 — x) and x although we leave the exponents 

to be decided by the data: we do not want to be unduly influenced by unnecessary 
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theoretical prejudices. Thus , at Q2 = Q\ = 4 G e V 2 we take 

x[uv + dv] = Aud x1" (1 - i f * (1 + 7 u r f x) 

xdv = Ad xm{\ - xy* (1 + jd x) 

z'Sea' = 2x[u + d +1] = As x6s (1 - (5.7) 

xg = A g ( l - xfo 

xc = 0 . 

Points to note in this parametrization are 

i) the use of x(uy + dy) and xdy as the two independent functions of the 

valence quarks. The reason we do this is essentially historical. The computer 

program we use is set up to work in this manner mainly because it simplifies the 

analysis of xF%d which, as we have seen, is simply x(uy + dy) 

ii) Aud and Ad are not variables parameters of the fit but are coefficients 

calculated so that sum rules which ensure that the sum over all x of u — u is 2 

and of d — d is 1: 
l 

(uy + d\r)dx = 3 

(5.S) 

1 

dydx = 1 

0 

assuming that, at some Q2, the proton consists of two u quarks and one d quark, 

this is simply an enforcement of baryon number conservation. The integrals (5.8) 

are easily performed analytically in terms of the Beta function, B 

B { a + h b + 1 ) s j z ^ x n x ^ J ^ t ± ^ . ( , 9 ) 

o 

iii) Ag is calculated so that the total momentum sum rule 

l 

iv + dy + 'Sea' + g) = 1 (5.10) 

o 

is obeyed. This reduces our total number of degrees of freedom by one. 
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iv) xg has only two free parameters because the deep-inelastic data are fairly 

insensitive to the form of the gluon distribution (although not completely at 

next-to-leading order in the MS scheme)—in fact, even after we have considered 

prompt photon data, which we consider to be sensitive to the gluon distribution, 

we are still not justified in having more freedom (see §6.3). 

v) the distribution of the charm quarks is set equal to zero at Q2 = Q\. We 

assume the charm quark to be massless and thus charm quarks are generated 

by the evolution for Q2 > Q 2,. The charm structure function, F f 5 [48], is well 

described by using this procedure, as shown by M R S in [49]. 

vi) We assume the composition of the sea to be 

u = d = 21 (5.11) 

at QQ. The justification for this is that a recent experiment by the C C F R collab­

oration [50] has produced an estimate of the ratio of the momentum carried 

by s and J quarks to that carried by the other sea quarks, u and d. The 

experiment is based on observations of opposite-sign dimuons in the process 

i>M(or V^N —• n+n~X (Figure 5.1). The s-quark distribution was assumed to 

be of the form 

xs{x) = xs(x) = 5 0 (1 + 0 ) ( l - x f (5 .12) 

where /? was fitted to be 4.8 ± 1 . 0 and they found that 

l l 

J dxx(s(x) + s(x)) = [0.44l°;Ji] J dxx(u(x) +d(x)) . (5.13) 

0 0 

Thus, if we are to make the assumption that s/u = r\ at Qjj, then 77 = 1/2 seems 

reasonable. 

vii) lui a n d Jd must never be allowed to be less than -1 as this would make 

the valence quark distributions negative for x > —1/7. 

We thus have 10 degrees of freedom describing the Q\ shape of the parton 

distributions. In addition, we have another parameter, A t t=- , which is directly 
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Figure 5.1 Opposite-sign dimuon production. 

correlated with the rate of Q2 evolution, since 

dlnQ2 
oc a3(Q2) (5 .14) 

and 

*,(Q2) 

making a total of eleven degrees of freedom in all. 

5.3 M I N I M I Z A T I O N P R O C E D U R E 

(5 .15) 

With such a large dimensional parameter space to search, it is important to 

start the minimization procedure at a point reasonably close to an acceptable 

minimum (no algorithm exists which can guarantee to find a global minimum 

and there will, almost certainly, be numerous local minima). As we are using a 

parametrization consistent with that of the M R S sets, this allows us to use, as one 

guess, the parametrizations of the latest of those sets ( M R S E ' and M R S B ' [41]) as 

a starting point (note that we are not merely reproducing that work since most of 

the data has been revised and we shall eventually be incorporating prompt photon 
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production data and Drell-Yan process data in a different, more systematic way). 
Ideally, we should like to allow all 11 parameters to be free in the minimization, 
whilst endeavouring to stay in roughly the same region of parameter space, thus 
producing optimum values of all the parameters. With hindsight, and from the 
results of previous studies, we know that this is not sensible because of the strong 
correlations between specific subsets of the parameters. In this study, we shall 
concentrate on the most important of these correlations: that between A^jg- and 
Tfg. Both of these parameters have the same effect on the rate of evolution of sea 
quarks as can readily be seen from the Altarelli-Parisi equation: 

^~HQv*y{Pm0q+p"®9)- (5-16) 

Increasing the gluon distribution increases the rate of evolution of quarks (the 

Pqg ® g term being always positive), as does increasing Aj^g (of course, this 

rough qualitative argument doesn't prove that the A^jg- — r)g correlation will be 

particularly marked). Deep-inelastic scattering data may well be satisfied with a 

whole range of different pairs of A^g and T]g but many other processes will not. 

Thus, in order to investigate the severity of this correlation, we must perform fits 

to the data for a whole range of fixed A^jg- — r}g pairs of values. 

Next, we come to the question of the 'goodness of fit' criterion. The ap­

propriate measure to use is x2 — (Theory-Data) 2 / ( E r r o r ) 2 for each point. We 

should like to use Xtot — Hi^l X2 s o treating every experimental point equally. 

When looking at the results, however, what we should like to see is that each 

individual data set has been fitted reasonably and not that some have been fitted 

poorly and some fitted exceptionally well to compensate. This would suggest us-

ing Xlt = £f=r X j / N s e t { j ) = Zj=T Ef " i ' 0 ) X 2

j k / N s e t U ) , i.e. rescaling the X

2 to 

each data set by dividing by the number of data points in that set. However, in 

practice, it is found that a reasonable fit to each set individually can be obtained 

with the former criterion, so that is what we use. In using this criterion, we 

might think that we should be hoping to see Xtot within the approximate range 

(Ntot — y/2Nt0t) < x2

0t < (Ntot + y/2Ntot) (corresponding to the one standard 

deviation limits—see [51]) but we would be abusing statistics if we did. This is 

because the errors we shall be using are not intrinsic statistical errors but will 
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be the resultant of the statistical and systematic errors added in quadrature i.e. 

certainly be less than the statistically correct one. As an example, data sets with 

very large systematic errors may well give x2 & 0 for virtually any theoretical fit. 

Thus we should perhaps be expecting, very roughly, 0 < Xtot < (Ntot + y/2Nt0t) 

and similarly for each data set individually (with abnormally small x2 values due 

to large systematic errors and not due to the theoretical fit following every small 

fluctuation). 

In this fitting to deep-inelastic data, the F*n jF%v data have been singled 

out for some special attention. As has been previously mentioned, we can have 

a higher degree of confidence in these data since there is no overall normaliza­

tion uncertainty. Therefore, we make a special point of trying to fit these data 

well. Since there are so few points, we find it useful to perform some weighting. 

Since we are especially interested in reproducing the low-z shape of the N M C 

measurement, we find that a large weighting factor applied to the x2 value of 

the x = 0.03 point ensures a good reproduction of this shape. We decide on the 

magnitude of this weighting by performing fits to all the deep-inelastic data with 

a range of weightings of this data point. We then plot the total x2 O I the three 

F^1 jF^v data sets versus this weighting factor and take the optimum weighting 

factor to be that near the minimum (near and not at because we also take into 

account any adverse effect of this weighting on the x2 to the other data sets). 

The final subtlety we introduce is based on the fact (see §4.4) that, at high a:, 

dy —* 0 faster than uy —* 0 (see Equations (4.8) and (4.9)). We arrange this by 

minimizing with respect to a parameter (774 — 772) in place of 774. We then perform 

fits to all the deep-inelastic data for a range of values of (7/4 — 772 ) > 0 and choose 

an optimum value (with respect to ^ ( - F j n / F £ p ) since F$nIF$P is a function of 

dy/uy only at high x) which is then fixed in all subsequent fits. 

The algorithm of the computer program we use [52] is as follows: 

i) The experimental data and the initial Q2, parametrization are read into 

ii) The parton momentum distributions are evolved at next-to-leading order 

Thus , a true statistical interpretation of the Xtot *s no* + e error stat sys-
valid because of our standard "physicists'" treatment of the esys whereby x2

0t 

arrays. 
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to a value of Q 2 higher than that of any of the data. The integrations (on 

the right hand side of the Altarelli-Parisi equations and all auxiliary inte­

grations) are performed using a Gaussian quadrature rule. The differential 

equations (e.g. 

% ( z , Q 2 ) 
= number ) 

are solved using a modified predictor-corrector method [53] with a step size 

As = 0.08 where 

(this is a more convenient variable to use than I n Q 2 ) 

Hi) The physical structure functions are calculated at the appropriate ( x , Q 2 ) 

values. 

iv) The x 2 (= Z^Data ( (Theory-Data) /Error) 2 ) is calculated. 

v) The parameters are altered (see below) and the process is repeated from 

step (» ) . 

The program incorporates a minimization procedure which decides how best 

to alter the parameters to minimize the ,\;2. This procedure is based on an 

algorithm by Marquardt [54]. The program stops when the change in x2 between 

sucessive iterations is less than some pre-set value. 

Now, we are ready to perform a range of fits to the deep-inelastic data for 

pairs of fixed ( A ^ - T ^ ) . A S has been mentioned, the whole procedure has to be 

duplicated since the F ^ d a t a sets of E M C and B C D M S are incompatible. The 

starting sets we use for every one of the minimizations at a specific (^-j^-Vg) 

point are shown in Table 5.1 (where an asterisk denotes that that parameter is 

fixed in the minimization). Throughout this thesis, A ^ g - denotes that quantity 

evaluated with four flavours of quark. 
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E M C - t y p e B C D M S - t y p e 
* * 

19 * * 

m 0.373 0.337 

m 4.04 4.07 

8.86 11.3 
0.620 0.506 
0.75* 0.75* 

"id 0.818 3.23 

As 1.61 2.16 

6s 0.0836 0.131 

is 7.5 7.5 

Table 5.1 Starting values of the parameters used in the mini­

mizations. 

5.4 R E S U L T S 

The results are shown in Figures 5.2(a)—5.2(h) as contours of equal x2 m 

the (Aj^g-77ff) plane. Figure 5.2(g) (5.2(h)) shows the total x2 for the fit which 

included the E M C (BCDMS) F£p data. The rest of the plots show the com­

ponents of that total in terms of the combined x 2 °f the three F%n/F^ sets 

(DIS(n/p)), the x 2 of the relevant Fgp set (DIS(F.f p)), and the combined x2 of 

the F%N and xF$N ( D I S ^ " ) ) sets. (It is important to realize, therefore, that 

these component plots show the variation in fit quality of the specified data set 

subject to the constraint of the other data sets. The E M C (BCDMS) results are 

in the left(right)-hand columns. 

First, we discuss the fits using the E M C F$v data. Figure 5.2(a) shows a 

very weak dependence on the F^/F^ data over the range of the plot. However, 

since we have fixed the parameter (774 — 772) to ensure a good fit to this data, this 

is not too surprising. 

Figure 5.2(c) shows that the dependence on the E M C F£v data is also quite 

weak. This is for a different reason—it is due to the relatively large errors on 
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Figure 5.2 Components of the total x 2 obtained by globally fitting to F£p 

[32], [16], F$N and xF$N [36], and F f n / F £ p [40], [42], [43] data over a range of 

A^jg- and t)s. The contour interval is one unit of x 2 - The starting parameters 

for each of the fits are given in Table 5.1. (a) shows the total x 2 to all three sets 

of F£n/F£p data for the fit which used the E M C F£p data and (c) shows the x 2 

to that F$p data, (b) and (d) show the corresponding contours for the fits which 

used the BCDMS F$p data. All statistical and systematic errors have been 

combined in quadrature. The E M C F$p data were renormalized upwards by 8% 

and those of BCDMS downwards by 2%. The neutrino data were corrected for 

the "EMC effect" according to Equation (4.6) (see, also, Figure 4.3). 

those data. This is unfortunate since it means that those data do not carry much 
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Figure 5.2 (cont.) Components of the total x2 obtained by globally fitting to 

F£p [32], [16], F$N and xF$N [36], and F£n/Fgp [40], [42], [43] data over a range 

of Aj^g-and j]g. The contour interval is one unit of x 2 - The starting parameters 

for each of the fits are given in Table 5.1. (e) shows the total x2 to the F%N and 

xF%N data for the fit which used the E M C F$p data and (g) shows the total x2 

for that fit. (f) and (h) show the corresponding contours for the fits which used 

the BCDMS F%p data. All statistical and systematic errors have been combined 

in quadrature. The E M C F$p data were renormalized upwards by 8% and those 

of BCDMS downwards by 2%. The neutrino data were corrected for the "EMC 

effect" according to Equation (4.6) (see, also, Figure 4.3). 

weight in the joint fit. We could, of course, have weighted them in one of two 
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ways: either by artificially reducing the errors before the minimization; or by 

weighting the x 2 after the minimization. However, having no good reason for 

increasing the importance of those data, we decided not to weight them. This 

plot shows, however, that those data do favour a broad range of values of Ajĵ g-

but are fairly tolerant to the range in Tjg. 

Figure 5.2(e) shows that the neutrino scattering data behave similarly: there 

is a favoured band of A^g with little dependence on rjg. Notice, however, that 

the central value of Aj^g is here somewhat lower than that of the E M C F£p data. 

Figure 5.2(g), then, shows the sum of Figures 5.2(a,c & e). It is clearly 

dominated by the behaviour of the neutrino scattering data and gives us a broad 

range of favoured values of A^jg centred around 80 MeV but poor resolution in 

T]g (relative to the range covered in this plot). 

Next, we turn to the results of those fits which included the BCDMS F£p 

data. Again, we see, in Figure 5.2(b), that there is little dependence on the 

F£n/F£p data. Figure 5.2(d), however, clearly demonstrates the accuracy of the 

BCDMS F£p data with its high density of contour lines. Because of this, the 

favoured range in A^g is more precisely delineated although t]g is once more 

poorly determined. The neutrino-scattering data in Figure 5.2(f) seem quite at 

odds with this, seeming to favour low values of both variables (although there is a 

clear correlation between A^g- and r]g so it is possible that a very low value of rjg 

might give a value of Ajjjg consistent with that of Figure 5.2(d) with a reasonable 

X 2 ) . The resultant plot, Figure 5.2(h), shows that the acceptable region for the 

F£p data has been pulled down to lower A^g- and lower tjg. 

We can examine the compatibility between the F£p data sets and the neutrino 

scattering data sets in aother way. With a sea composition of u = d = 25", we 

have the equality 

F£n _ 11F%N - xF£N 

I f - T s T f 1 ( 5 , 1 8 ) 

We calculate the fraction on the right-hand side using the neutrino scattering 

data of CDHSW and the F£r data of either BCDMS or E M C . We can then com­

pare this derived value with well-determined experimental F ^ n / i r ^ i p data. Figure 

5.3 shows the outcome: 'the EMC-derived' values are in agreement with the ex-
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perimental values while the 'BCDMS-derived' ones clearly are not—even though 
the experimental values shown are those of BCDMS. It is possible, therefore, 
that the high-ar BCDMS F^v data are systematically too low. It is also possible, 
however, that the fault lies in the CDHSW neutrino data (in particular, the F%N 

data since those data dominate the numerator of the right-hand side of (5.18)). 
It is apparent from Figure 5.3, though, that it would be impossible to remedy 
the situation with a renormalization of any of the data sets. 

5.5 C O N C L U S I O N S 

We have found broad ranges of Aj^g for our EMC-type and BCDMS-type 

fits. These ranges, however, are not in agreement with each other if we are to 

take a value whose x 2 is within a few units of the most favoured value (which, 

for the EMC-type fit is around 75 MeV and, for the BCDMS-type fit, around 

200 MeV). 

There appears to be inconsistency between the BCDMS F$p data and the 

CDHSW F$N and xF{fN data. 

Neither type of fit gives precise information on the value of r)g. 

We should note here that the promised — rjg correlation does not appear 

particularly marked in Figures 5.2(g) and 5.2(h) but this is due to the restricted 

ranges of t]g that we have shown. We chose these ranges because we were concen­

trating on the region we knew, from preliminary studies, would be relevant after 

consideration of the prompt photon data and we concentrated our computing 

efforts on the attainment of an accurate contour picture of that region. 

Before we consider the prompt photon data in the next chapter, we will briefly 

remark on alternative methods for determining A ĵg- which reduce or eliminate 

any dependence on t]g 

There are, in principle, three easy ways of determining A ĵg- according to this 

criterion. 

i) We fit to DIS data as before, but we confine ourselves to considering a region 

of x, high enough such that the gluon distribution there is negligible. This, of 

course, begs the question, at what x can we neglect the gluon distribution? Since 
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Figure 5.3 Comparison of the large-z F^fF^ data from 

the BCDMS collaboration [42] (solid circles) with the "effec­

tive" ratio derived from the F$N and xF£N structure function 

data (according to Equation (5.18)), using respectively the E M C 

(open squares) and BCDMS (open circles) F%v data. Note that 

the neutrino data are corrected for the " E M C effect". 

it is a priori unknown, we should have to err on the safe side and choose quite a 

large value ( i > 0.5, say). However, by doing this, we have to contend with two 

problems: we have considerably reduced the amount of data we can use; and the 

data at high x are the most uncertain. Thus, in this approach, we are likely to 
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determine a value of A ^ r with even bigger errors than we have already. 

ii) We fit to combinations of physical structure functions that correspond to 

the sum of differences of quark distributions, ^2(qi — qj). Consideration of the 

Altarelli-Parisi equation for the evolution of such a 'non-singlet' distribution tells 

us that the gluon distribution cancels out. One such physical structure function 

is 

xF£d = x(uv + d v ) = x 53 (9 - g) . (5.19) 
q—u,d 

However, we again find that, due to the inaccuracy of the data, we obtain rather 

large errors on Ajjjg (especially if we compound experimental errors by forming a 

combination of physical structure functions to obtain a non-singlet distribution, 

such as 3(F? - F 2

e n ) = u v - d v ) . 

iii) Moments analysis of non-singlet distributions can, in principle, tell us 

^MS t n r o u g h a simple linear plot: 

MniQ2)-1/*"5 = const.Qn Q2 - In A 2 ) (5.20) 

where the nth moment, M n , is defined by 

1 

M N S ( Q 2 ) = j dxx^q^ix^Q2) . (5.21) 

0 

The limits here are our problem—we must extrapolate our measured q^^ (e.g. 

xFgd) to x = 0 and to x = 1 which inevitably introduces errors. 

In the next chapter, we turn to consideration of the gluon distribution. 

64 



6. Prompt Photon Production 

6.1 I N T R O D U C T I O N 

Recently, there has been much interest in the prompt photon (also called 

'direct photon') production process as an aid in the determination of parton 

momentum distributions. This is partly because both theory and experiment 

are in an advanced state—with full next-to-leading order expressions [55], [56], 

[57] and high precision data [58] available—but mainly because this process gives 

very good information on the form of the gluon distribution without having too 

great a dependence on the value of the mass-scale parameter A ^ - . Thus, it 

may complement deep-inelastic data—for which the and gluon distribution 

dependence is the opposite—and allow us to determine both of these unknowns. 

This idea has also been pointed out by Aurenche et al. [59] (see §6.6). 

6.2 T H E O R Y 

The two lowest-order (0 (aa 5 ) ) diagrams needed to calculate the differen­

tial cross-section for this process are given in Figure 6.1 (we might expect the 

annihilation subprocess to dominate in pp collisions where there are valence anti-

quarks and the Compton subprocess to dominate in pp collisions where the only 

antiquarks are in the sea). The differential cross-section for the inclusive pro­

cess pp —* jX (with A and B representing the parent protons and a and b the 

respective initial state quarks) is 

E. 
d3a 

7 ffipy abed 
dxadxbGa/A(xa,M2)Gb/B(xb, M2)-^(ab -» cd)S(s + i + u) 

(6.1) 

where G = q or g (whence, we can see that, for the Compton diagram, there is a 

direct dependence on the gluon distribution) and 

da 
di 

^ ll + I ! Tr*<*a.(Q2) Compton 
Xnaas(Q2) Annihilation 8* 

9 
(6.2) 

with i = xaxbs, t = —xapT\/se y and u = — xbpry/sey. y is the rapidity of the 
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(a) 

QSUISLSI 

(b) > v 

SISLSlSLSi 

Figure 6.1 Lowest order diagrams for prompt ('direct') photon 

production: (a) q — q annihilation and (b) the Compton process. 

photon defined by 

2 \ E - P L 
(6.3) 

The scale M 2 in G(x,M2) is the factorization scale at which radiative correc­

tions to the incoming and outgoing partons are absorbed into the distribution 

functions. The scale Q2 in aa(Q2) arises when one takes certain vertex and gluon 

propagator effects into account, as discussed in §3.4 and §3.6. In the leading 

logarithm approximation, the all-orders cross-section is given by Equation (6.1) 

with the dcr/dVs of the Compton and annihilation diagrams and the one-loop 

approximation for a3, viz. 

«*(Q 2 ) = 
12TT 

( 3 3 - 2 i V F ) l n ( g 2 / A 2

L O ) 
(6.4) 

(where Q 2 is a large momentum scale characteristic of the process) and par ton 

distributions, G ( x , M 2 ) evolved at leading order. 
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The next-to-leading logarithm calculation is that of Aurenche et al. [55], [56], 
[57]. Some of the diagrams that have to be considered are shown in Figure 6.2. 
The full expression for dza/d3py is "rather lengthy, when the next-to-leading 
order QCD corrections . . . are all included" [57] and has not been published, 
although the analytic expressions are available in F O R T R A N from the authors. 

There are several methods for dealing with the unknown scales Q2 and M2. 

These include: setting M2 = Q2 = pj<, the square of the transverse momentum of 

the photon; the 'fastest apparent convergence' method (FAC) [60], [61] in which 

M2 and Q2 are taken to be equal and varied until the next-to-leading order 

contributions vanish; and the 'principle of minimum sensitivity' [62], [63], [64], 

The latter determines Q2 and M2 by ensuring that the cross-section has no local 

variation with respect to these scales, just like the all-orders cross-section, i.e. it 

demands that da/dQ2(Q2

opt,M2

pt) = 0 and that da/dM2(Q2

opt,M2

pt) = 0. This 

is the method that we shall be using. The factorization scale is first parametrized 

by M2 = Cprr(l — a;j"). Then, for each data point, a range of values of C is tried. 

For each trial, the value of the running coupling (which is used in place of Q2 

for convenience) is set to be that which maximizes the cross-section. The range 

of cross-sections is then scanned for the minimum value. This method locates 

the saddle-point in the a8 — C plane at which there is no local variation of the 

cross-section to either of the scales. It has been shown, though, that the PMS 

and FAC procedures give very similar results and that the naive M2 = Q2 = ~p\ 

destroys the agreement between the different sets of experimental prompt photon 

data and also prevents the existence of a gluon distribution consistent with both 

prompt photon and deep-inelastic data [57]. 

Another scheme-dependent problem which occurs beyond the leading order 

is that of the definition of the quark distributions. There are two commonly used 

conventions: the MS ('universal') convention and the physical ('non-universal') 

convention. We shall, of course be using the MS convention as with the deep-

inelastic analysis. Aurenche et al. [57] have shown that there is little difference 

between these definitions insofar as the resultant gluon is concerned. 
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Figure 6.2 Diagrams that contribute to the calculation of the 

prompt photon cross-section up to order a a j . 

.3 S E N S I T I V I T Y T O T H E G L U O N D I S T R I B U T I O N 

How well, do we expect prompt photon production data to determine the 
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gluon? We can rewrite the differential cross-section (Equation (6.1)) as 

^ ^ = E / * . ^ ( - H ' V - ( » » ) | S : ^ f { — - ) (6.5) 

where 
xaxxe v 2pr xxev

 t n xb = -, xT = —7=-, xamin = — — . (6.6) 
2xa — XTeV y/s 2 — xye v 

Figure 6.3 shows the integrand for XT = 0.38, y/s = 22.96 GeV, y = 0 using the 

Duke and Owens (Set 1) set of leading-order parton distributions [65]). We see 

that the integrand is dominated by xa (and xj) values in the approximate range 

XT — 0.1 <, x 0 , xj <, XT + 0.1. This behaviour is the same for a wide range of XT 

and is fairly insensitive to the detailed form of the parton distributions. So, in 

fact, the sensitivity of the cross-section to the gluon distribution is confined to 

quite a small region around XT so we should expect to obtain information on it, 

mainly between the smallest and largest XT values of the data. As with our DIS 

analysis, we take our parametrization to be xg{x1Q\) = A(l — x)71. 

6.4 F I T T I N G T O T H E WA70 P R O M P T P H O T O N D A T A 

There is a wealth of data on prompt photon production [58] and we choose 

to use the subset of the WA70 collaboration's data [66] with —0.35 < xp < 0.45 

(the largest range in Xf at y/s = 22.96 GeV). This provides us with a range in 

XT of 0.36 < XT < 0.55. As these data are over a range in rapidity, we correct 

each point for finite bin size to the equivalent cross-section at y = 0 for ease of 

comparison with theoretical cross-sections. The factors we use [67] (and which 

depend slightly on the parton distributions assumed for the proton) are given in 

Table 6.1: the data are corrected by dividing by these factors. 

Having selected our prompt photon data, we shall now discuss how it is used 

in the analysis. As before, for a range of pairs of A^g- and rjg, we perform a 

fit to the DIS data, so we know we have a set of parton distributions consistent 

with the DIS data, and use each of these sets to calculate the cross-section for 

prompt photon production at next-to-leading order, using the PMS criterion to 

find unique renormalization and factorization scales (in practice, the optimum 
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Figure 6.3 The integrand of the lowest order expression for the 

cross-section for prompt photon production (Equation (6.5)). 

xT = 0.38, y/s = 22.96 GeV, and y = 0. The leading-order 

parton distributions used are those of Duke and Owens (Set 1) 

[65]. 

factorization scale is often below the Qq = 4 GeV 2 of our parametrization in 

which case we use M 2 = 4 GeV 2 as an approximation which does not introduce 

any serious error).The results are shown by the contour plots in Figures 6.4((a)— 

(d)). 

First, we discuss the EMC-type results . Figure 6.4(a) is the x2 to the WA70 
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PT Factor 

4.11 0.670 
4.36 0.669 
4.61 0.667 
4.86 0.663 

5.11 0.658 
5.36 0.653 
5.70 0.644 
6.20 0.624 

Table 6.1 Factors used to correct the WA70 prompt photon 

data for —0.35 < xp < 0.45 to their equivalent values at y = 0. 

data alone. In complete contrast to Figure 5.2(g), we see that here it is rjg that is 

quite well-determined and Aĵ g- that is ill-determined. This is an ideal situation 

as the respective minimum bands cross almost perpendicularly. In the sum of 

the two plots, Figure 6.4(c), we see that, despite there being only eight WA70 

data points, the resultant is dominated by the form of the fit to the prompt 

photon data. This is because the variation in the DIS(TOTAL)^ plot is very 

weak (note that the contour-line spacing in Figure 5.2(g) is one unit whereas, 

in Figure 6.4(c), it is three units). We choose, as our fit that best describes the 

deep-inelastic and prompt photon data, the one marked with a triangle, viz. that 

with rig = 4.4 and = 100 MeV. 

Turning to the BCDMS-type fits, we see a similar story. Figure 6.4(b) again 

pinpoints a narrow band of values of r\g and, when added to Figure 5.2(h) (which 

is quite specific about the favoured range of A ĵg-) gives, in Figure 6.4(d), a 

nicely-defined minimum from where we select the point r\g = 5.1, A^g- =190 

MeV as our best fit. This is reasonably close to the individual minima of all the 

components bar the neutrino scattering data. 
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Figure 6.4 (a) and (b) show contours of constant x 2 (with an interval of 

three units) in the Aj^jg- — r\a plane where x 2 1S a measure of the quality of 

the theoretical prediction for the WA70 prompt photon data [66] in the range 

—0.35 < XF < 0.45 (corrected to y — 0) using the various sets of parton dis­

tributions obtained by fitting to the deep-inelastic scattering data of ((a))[32], 

((b))[16] ( F f ) , [36] (FS" and xF3*N) and [40], [42], [43] (Ffn/F?>) The sta-

tistical and systematic errors of all data have been combined in quadrature, (c) 

and (d) show the corresponding total x 2 when the x 2 t o all the deep-inelastic 

data is added and indicates the quality of the simultaneous description of the 

deep-inelastic and prompt photon data. The optimum overall description is 

obtained for the values of AT-TJT and r\g shown by the triangles. 

72 



6. | Prompt Photon Production 

6.5 C O M P A R I S O N W I T H A S I M I L A R A N A L Y S I S 

Aurenche et al. [59] have performed a similar joint analysis of prompt photon 

production data and deep-inelastic scattering data and so here we point out some 

differences and similarities between that work and this one. 

Both analyses are performed with the same computer programs and use the 

same prompt photon data, but the deep-inelastic scattering data that Aurenche et 

al. use consists of just the F£p and F£"/Fgp data of BCDMS. With regard to the 

DIS data, then, the main difference is our inclusion of neutrino-scattering data 

and the recent NMC F%n/F^ data with its much tighter constraints, especially 

at low i . The parametrizations used for the parton distributions at Q 2 = QQ 

are identical apart from that for sSea: our factor of xSs—introduced to aid 

the fitting of the low-a: NMC data—is absent from that of Aurenche et al. In 

addition, we do not assume an SU(3) symmetric sea, as they do, and we use 

QQ = 4 GeV 2 compared to their QQ = 2 GeV 2 (this lower value aids their 

analysis by enabling prompt photon prodection data points with low px to be 

'PMS-optimized' exactly, i.e. it is lower than any required optimized factorization 

scale). 
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7. The Drell-Yan Process 

7.1 I N T R O D U C T I O N 

There is at least one more point we ought to consider for our parton dis­

tributions: we have no good reason to believe that the quark distributions are 

apportioned correctly between the valence and sea parts. We should like an accu­

rate determination of one of these things. Fortunately, there exist accurate data 

on a process which is very sensitive to the antiquark distribution in the sea. 

7.2 T H E O R Y 

The final process we shall make use of in our determination of a set of parton 

distributions is the Drell-Yan process [68], [69]. This is the process AB —» l+l~X 

where A and B are hadrons and 1 a lepton. The basic subprocess for this is 

QQ —* 7* —* ( s e e Figure 7.1) with a cross-section (the same as the QED 

e+e~ —• n+n~ apart from the quark charge factor) 

a = e*MP ( 7 - 1 } 

where M is the (large) invariant mass of the dilepton pair (or qq pair) 

M2 = (xiPA + x2PB)2 

= x\M\ + x\M\ + 2*1*2^ • PB (7-2) 

« X1X2S 

where the masses of A and B have been neglected to obtain the last line, and s is 

the square of the centre-of-mass energy. Since we shall not be considering fixed 

M 2 , we rewrite (7.1) as the differential cross-section 

* = e & i - M ' ) . (7.3) 
dM2 9 3 M 2 

Convoluting with the parton momentum distributions and introducing the scaling 
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(?) 

(?) 

Figure 7.1 Lowest-order diagram for the Drell-Yan process. 

variable 

T = M2/s < 1 (7.4) 

we obtain 

da AB^l+TX 

dM2 = Y , I d x i d x 2 iGq/A(xi,M2)Gq/B(x2,M2) + {q «-» q)] 
J I J q=v,d,8,c,b,.. o 

1 247TQ;2 nc/. „ ,2\ 
3 C » 3 M 2 " ^ X i a ; 2 " T W * ~ M ) 

(7.5) 

where (1/3) is the proportion of the nine qq states which are colour singlets 

and where the parton momentum distributions have acquired the same scale 

dependence as in deep-inelastic scattering after absorbing the mass singularities 

of the leading logarithm contributions such as 

q g _> q j * _> ql+r 

and 

qq 91* -* 9 l + l ' 

The incorporation of all the 0 ( a s ) corrections (see Figure 7.2) gives us the 

75 



7. | T h e Drel l -Yan Process 

next-to-leading formula 

l 

J dx\dx2dz8{x\xiz — r ) -

1 
da _ 47ra2 

dAP = ~97 
o 

( E ^ ^ M ^ i ^ ) + GI/A{*I,M*))G,,B(**,M2) + ( A ~ B ) 

as(M2) 
2ir 

where 

fe=l((1 + 1 r ) 4 ( 1 - z ) + ( r ^ - 6 - 4z+ 

2(l + , ' ) ( ! ^ ) + ) (7.7) 

f « = + (1 " - ) 2 W l -*) + \z* " 5* + | ) • 

In fact, the data we shall use is the double differential cross-section sd2a/dy/rdy 

where y is the photon rapidity defined by x\ = y/rey, X2 = \Jre~v. Now, dy/r 

is simply dM/y/s (see Equation (7.4)) but the additional y differential makes 

the corresponding formula fairly unwieldy: it is given in Appendix A in the MS 

scheme, but we can write it here in abbreviated form as 

5 ^ = ̂ ^ M 8 ) ( E ^ i , M a ) ^ a , M 2 ) + ( 9 ^ 5 ) ) (7.8) 

where K = KqK' with Ko(y,M2) accounting for the first-order QCD correc­

tions. The Drell-Yan process is interesting in that the higher order corrections 

are particularly large with K = o-exP/<7^^ ~ 1.7. Thus, when we compare 

our theoretical cross-sections with the experimental data, we use the next-to-

leading order expressions and attempt to accomodate even higher-order correc­

tions (which could make a substantial contribution) by allowing ourselves to 

multiply our next-to-leading order result by another factor, K', which we take 
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Figure 7.2 Lowest-order Q C D corrections to the Drell-Yan 

process. 

to be constant, and which we optimize to obtain the best possible fit. That is to 

say, we will allow ourselves a free normalization and fit solely to the 3hape of the 

data. 

7.3 F I T T I N G T O T H E E 6 0 5 D R E L L - Y A N D A T A 

The data we use is that of the E 6 0 5 collaboration [70] 

Our procedure for examining the variation of the x2 *° the data with respect 

to the shape of the sea quark distribution will be similar to that employed in the 

A|j|jjj- — T]g dependence of the prompt photon data. In this case, we shall explore 

variations in both the shape and magnitude of zSea by producing contour plots 

77 



7. | The Dre l l -Yan Process 

versus the parameters As and r}s in 

arSea = Asx6s(l - x)"s , (7.9) 

i.e. for each (As, 775) pair, we produce a next-to-leading order theoretical pre­

diction (with the subtlety previously mentioned—that we optimize the quality of 

the fit with respect to a free normalization factor, K'). 

For each of the two (E- and B-type) sets, we can show the results as eight 

contour plots in the As — rjs plane showing the x2 components to (see Figures 

7.3(a-h) and 7.4(a-h)): 

(a) the Fgp data 

(6) all the F£n/F£p data 

(c) the sum of the F$N and the xFj[N data 

(d) the sum of (a)-(c) 

(e) (same as (d)) 

( / ) the E605 Drell-Yan data 

(g) the grand total: the sum of the Drell-Yan data and the DIS data ,\2's 

(h) this plot shows the variation in K'Q^—the 'normalization' which minimizes 

the x2 to the E605 Drell-Yan data 

The star on each plot shows the position of the fit that we decided gave the 

optimal description of all the data. 

Starting with the E-type contour plots (Figure 7.3), we see that the optimal 

fit gives an excellent decription of all the individual sets of data. There is a 

pronounced positive As — rjs correlation for all the DIS components. The form of 

the total of all the DIS components is dominated by the form of the DIS(/^) com­

ponent (because of its large number of points and because the other components 

are broadly in agreement). The plot of the E605 x2t somewhat surprisingly at 

first, has an almost 'vertical' valley showing very little dependence through more 

than a fourfold increase in As at a constant rjs of about 11. We will discuss this 

later on in this section. We also see that the value of K' . is close to unity as we 
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(b) DIS(n/p) E a) DIS(Ff) 

s 
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12 13 8 9 13 10 12 10 11 8 9 11 

(d) DIS(T0TAL)E c) DIS i/)E 

5.5u* 

i 
8 9 10 11 12 13 8 9 10 11 12 13 

Figure 7.3 Components of the total x 2 obtained by globally fitting to E M C F 2 " p [32], F%N and 

xF%N [36], and F£"/F£p [40], [42], [43] data over a range of As and TJS. The contour interval is 

five units in (a), (c) and (d) and one unit in (b). (a) shows the x 2 to the F$p data, (b) shows 

the total x 2 to all three sets of F£n/F£p data, (c) shows the x 2 to the F$N and xF%N data 

and (d) shows the total x 2 to all the deep-inelastic scattering data (the sum of (a), (b) and (c). 

All statistical and systematic errors have been combined in quadrature. The E M C F$p data 

were renormalized upwards by 8% and those of BCDMS downwards by 2%. The neutrino data 

were corrected for the " E M C effect" according to Equation (4.6) (see, also, Figure 4.3). The 

significance of the stars is explained overleaf. 

would have expected. The mean value of Kq for this fit is 1.51, increasing slowly 

with i / r . 
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(e) DIS(TOTAL)E (f) (E605), 

5.5 1 5.5 

8 9 10 11 12 13 

(g) DIS(TOTAL)E+(E605)E 

8 9 10 11 12 13 

(h) K ' o p t 

5.5 5.5 

Figure 7.3 (continued) (e) is the total x 2 obtained by globally fitting to 

E M C 'F$* [32], F 2

v J V and xF%N [36], and F£n/F?p [40], [42], [43] data over a 

range of As and 7/5 and is the same as Figure 7.3(d). (f) shows contours of 

constant x 2 where x 2 is a measure of the quality of the theoretical prediction 

for the E605 Drell-Yan data [70] using the various sets of parton distributions 

obtained by fitting to the deep-inelastic scattering data. Each prediction was 

optimized by multiplication by a factor, A'', (g) shows the sum of (e) and (f) 

and demonstrates the quality of the overall description of the deep-inelastic and 

Drell-Yan data, (h) indicates the values of K' which minimized the x 2 of the 

theoretical prediction to the E605 Drell-Yan data. The stars in these Figures 

and Figures 7.3(a-d) indicate the As and r/s values of the optimum overall fit. 
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(b) DIS(n/p) (a) DIS(F?) B B 
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Figure 7.4 Components of the total x 2 obtained by globally fitting to BCDMS F£p [16], F f N 

and xF$N [36], and F£n/Fgp [40], [42], [43] data over a range of As and r]S. The contour interval 

is five units in (a), (c) and (d) and one unit in (b). (a) shows the x 2 to the F£p data, (b) shows 

the total x 2 to all three sets of F£n/Fgp data, (c) shows the x 2 to the F%N and xF$N data 

and (d) shows the total x 2 to all the deep-inelastic scattering data (the sum of (a), (b) and (c). 

All statistical and systematic errors have been combined in quadrature. The E M C F£p data 

were renormalized upwards by 8% and those of BCDMS downwards by 2%. The neutrino data 

were corrected for the "EMC effect" according to Equation (4.6) (see, also, Figure 4.3). The 

significance of the stars is explained overleaf. 

The situation for the B-type fit looks much less straightforward and one may 

wonder how the messy plots 7.4(a-c) could arise. The fitting program, however, 
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(e) DIS(TOTAL) (f) (E605) B B 
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Figure 7.4 (continued) (e) is the total x 2 obtained by globally fitting to BCDMS F£p [16], 

F%N and xFgN [36], and F£n/F£p [40], [42], [43] data over a range of As and 775 and is the same 

as Figure 7.4(d). (f) shows contours of constant x 2 where x 2 is a measure of the quality of the 

theoretical prediction for the E605 Drell-Yan data [70] using the various sets of parton distribu­

tions obtained by fitting to the deep-inelastic scattering data. Each prediction was optimized by 

multiplication by a factor, K'. (g) shows the sum of (e) and (f) and demonstrates the quality of 

the overall description of the deep-inelastic and Drell-Yan data, (h) indicates the values of K' 

which minimized the x 2 of the theoretical prediction to the E605 Drell-Yan data. The stars in 

these Figures and Figures 7.4(a-d) indicate the As and rjs values of the optimum overall fit. The 

statistical and systematic errors of all data have been combined in quadrature. 

only 'knows' about the total DIS x 2 shown in Figure 7.4(d) which is relatively 
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tidy. Again, this shows a positive As — »/s correlation. The x2 *° the E605 

Drell-Yan data in Figure 7.4(f) doesn't have quite such a vertical valley as the 

E-fit and the minimum overlaps that of the DIS total. The resultant x2 in Figure 

7.4(g) shows quite a large area of minimum but, in this case, there is no one point 

which is an approximate minimum of all the components. We therefore choose 

an optimal point with a degree of subjectivity. Our choice, marked with a star, is 

influenced by our desire to fit well the F ^ / F ^ 1 1 data. In Figure 7.4(h), we again 

see a reassuringly reasonable value of K'Q^, close to unity. The mean value of 

KQ for this optimum fit is 1.62. 

In Figure 7.5(a), we show a range of seas of the E-type fits at some DIS 

average of Q2 = 40 GeV 2 . We have taken the fits at the four corners of the 

As — r)s space, shown in Figure 7.3, plus the optimal fit. The lines axe labelled 

'TR' for the top-right hand corner of the plot, ' B L ' for the bottom-left etc. The 

optimal fit is labelled 'HE'. Note that this spread in shapes is perhaps not as 

great as might have been expected due to two factors: the Q% differences tend to 

get 'washed out' as Q2 increases; and we still have one a:Sea parameter, 63, which 

is free in the fitting to the DIS data. Here, we see the reason for the observed 

As — VS correlation in, for example, Figure 7.3(e). If we look at the B L - H E - T R 

diagonal, we see that the evolved xSea. lines are very similar, thus explaining 

the correlation. In Figure 7.5(b), we show a range of seas at some E605 average 

M2 =st = 0.1s « 150 GeV 2 . Figure 7.3(f) might lead us to expect that the seas 

of B R and T R are not too different in the range of x relevant to the Drell-Yan 

data, but we must remember to take the K'OPI factors into account: although 

A 5 ( T R ) / A s ( B R ) = 4.5, we also have ^ p t ( B R ) / ^ p l ( T R ) = 1.7. In addition, the 

parameter 65—left free in the minimization—is very different for the two fits and 

gives a factor xSs(B'R)/x6s(T'R.)= a ; - 0 - 4 9 which varies between 3.1 and 1.4 as x 

goes from 0.1 to 0.5. 

The full parametrization of the optimum fits (alongside the previous optimum 

fits to the DIS and prompt photon data) are given in Table 7.1 together with the 

breakdowns of the the total v 2 . We see that the inclusion of the Drell-Yan data 

changes the distributions very little. In fact, the B-type fit, which we denote 

HMRS(B), is scarcely changed from the best fit for the prompt photon and DIS 

data. It seems, therefore, that we have good consistency between the various 
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Figure 7.5(a) A range of seas of the fits to all the deep-

inelastic scattering that included the E M C • F 2

u p data [32] evolved 

to Q2 = 40 G e V 2 —typical of the deep-inelastic data. Sea is 

defined by a:Sea= 2x(u + d+s). We show the seas of the fits 

at the four corners of the As — Vs space, shown in Figure 7.3, 

plus the optimal fit. The lines are labelled ' T R ' for the top-

right hand corner of the plot, ' T L ' for the top-left, 'BR' for the 

bottom-right, and ' B L ' for the bottom-left. 'Top' corresponds 

to high As and 'right' to high t]s- The optimal fit is labelled 

'HE' . 

data sets. 
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Figure 7.5(b) A range of seas of the fits to all the deep-

inelastic scattering that included the E M C F$p data [32] evolved 

to an M2 typical of the E605 Drell-Yan data: AP - ST = 0. Is ss 

150 GeV 2 . Sea is defined by xSea= 2x(u + d+ s). We show the 

seas of the fits at the four corners of the As — TJS space, shown 

in Figure 7.3, plus the optimal fit. The lines are labelled ' T R ' 

for the top-right hand corner of the plot, ' T L ' for the top-left, 

'BR' for the bottom-right, and ' B L ' for the bottom-left. 'Top' 

corresponds to high As and 'right' to high TJS- The optimal fit 

is labelled 'HE' . 
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7. | T h e Drel l -Yan Process 

with E M C with B C D M S 

+ P P + P P + D Y + P P - t -PP+DY 

100 100 190 190 

4.4 4.4 5.1 5,1 

m 0.357 0.352 0;224 6.237 

T)2 
4.07 4,08 4.06 4.07 

7«d 10.0 10.6 26.6 23.8 

» 7 3 0.608 0,607 0.411 0.426 

» 7 4 4.82 4.83 4.81 4.82 

Id 1.13 1.26 7,05 6.32 

As 3.22 4.50 5.35 5.25 

6s 0.270 0.359 0.404 0.401 

*)s 9.45 10.5 9.87 9.75 

Nud 
1.264 1.216 0.4893 0.5469 

Nd 1.754 1.735 0,6384 0.6957 

Ag 
2.614 2.622 2.856 2.855 

P(uv) 26.4% 26.5% 26.2% 26.2% 

P(dv) 10.6% 10.7% 10.7% 10.7% 

P(5) 14.5% 14.2% 16.2% 16.3% 

P(8) 48.4% 48.5% 46.8% 46.8% 

Data [ # Points] X 2 values 

F$p (EMC,BCDMS)[88,142] 58.1 58.6 163.8 163.8 

F 2 " (CDHSW) [84] 27.0 25.8 52.9 54.6 

xF% (CDHSW) [94] 71.3 73.0 116.3 115.4 
F?n/F£p (BCDMS) [11] 5.9 6.2 9.2 8.7 

F£n/F?p (EMC) [10] 4.1 4.1 2.9 2.8 

FF/FF (NMC) [11] 10.3 10.6 4.3 4.1 

DlS( to ta l ) [298,352] 176.7 178.3 349.3 349.3 

Prompt Photon (WA70) [8] 7.2 7.2 7.3 7.3 
Drell-Yan (E605) [8] (19.2) 12.4 (12.0) 11.8 

Total [314,368] 203.1 197.9 368.6 368.4 

Table 7.1 The upper portion of the table lists the parameter values of the QQ = 4 GeV 2 

parametrization of the optimum fits to the deep-inelastic and prompt photon data (columns 
headed '+PP') and the overall optimum fits after the consideration of the Drell-Yan data (columns 
headed '+PP+DY') . The headings 'with E M C and 'with BCDMS' refer to the collaboration 
whose F^ data was used in the fits. We also list the values of the quark distributions' pre-
factors Nud and Nd, which are determined by the condition that there are two valence u quarks 
and one valence d quark in the proton, and the gluon pre-factor Ag which is determined by total 
momentum conservation. In addition, we give the percentage of the total proton momentum 
carried by each parton distribution at Q3 = 4 GeV 2 . The lower part of the table shows the 
contribution to the total x 2 coming from each data set. The figures in brackets in the Drell-Yan 
row are given for information since the fits in these columns did not involve the Drell-Yan data. 
The values of K't for these fits are 1.06 ('with E M C ) and 0.96 ('with BCDMS') . 
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8. The Final Parton Distributions 

8.1 G R A P H I C A L C O M P A R I S O N W I T H T H E D A T A 

We denote our final parton distributions HMRS(E) (for those determined us­

ing the E M C F£p data) and HMRS(B) (determined using the BCDMS Fgp data). 

In Figures 8.1—8.6, we show, graphically, the agreement between the predictions 

of our distributions and the experimental data that we used. HMRS(E) is shown 

by the continuous lines and HMRS(B) by the dashed ones. In both cases, we see 

that there is a very good description of the data. 

In Figure 8.1(a), we see an exceptionally impressive fit to the BCDMS F£p 

data, in view of the very small errors on those data. However, the theory lines 

do systematically undershoot the data at x = 0.65 and x = 0.75. This is prob­

ably because all the data sets tend to have larger errors at high x and so this 

region is the one which inevitably bears the brunt of any ill-fitting. Figure 8.1(b) 

shows the comparison between the predicted and measured 'scaling violations' 

dlnF2/d\nQ2. 

This same feature is seen in the HMRS(E) fit to the E M C F£p data in Figure 

8.1(c) which, otherwise, is a very satisfactory fit (as was to be expected with the 

relatively large errors on the data). Figure 8.1(d) shows the scaling violations. 

Both sets give \ 2 values per point of less than unity in the fits to the CDHSW 

F$N data in Figure 8.2(a) although HMRS(E) gives a \ less than half that of 

HMRS(B). It is apparent that the magnitude of the slope of the HMRS(B) fit 

(and we use the word 'slope' here because all the fits are essentially linear, i.e. 

8lnF2(x,Q2)/d\nQ2 = const.(x)). is greater than that of the HMRS(E) fit at 

all values of x. This is a reflection of the higher value of A^jg which implies a 

higher as (to which dinF2(x, Q2)/d\nQ2 = const.(x) is proportional). This is 

seen more clearly in Figure 8.2(b). 

This is also seen in the fits to the CDHSW xF£N data (Figure 8.3(a)). This 

figure is an indication of the accuracy of our theoretical values of x(uy + dy). 

The agreement between theory and data is not particularly good for x <, 0.125 for 

either theoretical fit although HMRS(E) fares significantly better (as we might 

have foreseen since HMRS(E) is constrained much less by its F£p data). We have 
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8. | T h e Final Parton Distributions 
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Figure 8.1(a) Data on the structure function F£p(x, Q2) from 

the BCDMS collaboration [16] with the HMRS(B) fit. The data 

are renormalized downwards by 2%. 

already seen, though, in §5.4, that we have reason to doubt the compatibility of 

the CDHSW neutrino data and the BCDMS F$p data. The scaling violations 

are shown in Figure 8.3(b). 

Both HMRS(E) and HMRS(B) are, needless to say, excellent fits to the 

F$nIF%V data (Figure S.4a) since this was a 'design feature' of the analysis. Fig­

ure 8.4b, however, shows the even more impressive disagreement between some 

other, widely used, parton distributions and the new measurements of NMC. 
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8. | The Fina l Parton Distributions 
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Figure 8.1(b) The 'scaling violations' of the F£p data of the 

BCDMS collaboration [16] compared with those predicted by 

the HMRS(B) solution. The experimental value at each x value 

was determined by performing a linear fit to In F£p versus In Q2 

with the gradient and intercept as free parameters and x 2 as 

the value minimized (using the statistical and systematic errors 

added in quadrature). The errors were calculated by allowing 

the gradient to vary (with the intercept free) higher and lower 

than its optimum value such that the total x 2 increased by one 

unit. The theoretical values were calculated by a least-squares 

fit to the theoretical prediction over the same range in Q2. 

89 



8. | T h e F i n a l Partem D i s t r i b u t i o n s 
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Figure 8.1(c) Data on the structure function F ^ x , Q2) from 

the E M C collaboration [32] with the HMRS(E) fit. The data 

are renorraalized upwards by 8%. 

Clearly, these other distributions are obsolete in the light of these new data. 

Figure 8.5 displays the agreement of the two fits with the WA70 prompt 

photon data (the fine-tuning of the sea distribution has hardly affected this as 

can be seen by the x2 values in Table 7.1). The theory lines are equally good but 

are quite different as a result of the softer gluon and larger A ^ r of the H M R S ( B ) 

set. 

Finally, Figure 8.6 shows the excellent fit of both sets to the very accurate 
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8. | T h e F i n a l P a r t o n D i s t r i b u t i o n s 

•3 M I I I I I I I I I I I I I I I I I I I I I I I I I I I ( I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I, 

C\2 

C O 

.2 -

0 -

. 1 -

EMC 

_ ^ h i 11111 a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i ' 
.5 .6 .8 1 . 0 

X 

Figure 8.1(d) The 'scaling violations' of the F£p data of the 

E M C collaboration [32] compared with those predicted by the 

HMRS(E) solution. The experimental value at each x value 

was determined by performing a linear fit to In F£p versus In Q2 

with the gradient and intercept as free parameters and x 2 as 

the value minimized (using the statistical and systematic errors 

added in quadrature). The errors were calculated by allowing 

the gradient to vary (with the intercept free) higher and lower 

than its optimum value such that the total x 2 increased by one 

unit. The theoretical values were calculated by a least-squares 

fit to the theoretical prediction over the same range in Q2. 
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8. I T h e F i n a l P a r t o n D i s t r i b u t i o n s 
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Figure 8.2(a) Data on the structure function F%N(x, Q2) from 

the CDHSW collaboration [36], together with the HMRS(B) 

(continuous lines) and HMRS(E) (dashed lines) fits. The data 

have been corrected for the " E M C effect". 

Drell-Yan data of E605. 

8.2 COMPARISON WITH OTHER PARTON DISTRIBUTIONS 

Here, we compare the H M R S parton distributions with the previous best (in 

our opinion) next-to-leading order ones—the MRS' distributions of [41] and also 

with the leading order ones of Duke and Owens' D O l (Set 1, A/^o = 200 MeV) 

[65]. However odd the idea of this comparison of parton distributions evolved at 
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Figure 8.2(b) The 'scaling violations' of the F$N data of the 

CDHSW collaboration [36], compared with those predicted by 

the HMRS solutions. The experimental value at each x value 

was determined by performing a linear fit to In F%N versus In Q2 

with the gradient and intercept as free parameters and x 2 ^ 

the value minimized (using the statistical and systematic errors 

added in quadrature). The errors were calculated by allowing 

the gradient to vary (with the intercept free) higher and lower 

than its optimum value such that the total x 2 increased by one 

unit. The theoretical values were calculated by a least-squares 

fit to the theoretical prediction over the same range in Q2. 
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8. | T h e F i n a l P a r t o n D i s t r i b u t i o n s 
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Figure 8.3(a) Data on the structure function xF%N{x,Q2) 

from the CDHSW collaboration [36], together with the HMRS(B) 

(continuous lines) and HMRS(E) (dashed lines) fits. The data 

have been corrected for the "EMC effect". 

different orders may seem, we do it because those of Duke and Owens are very 

widely used, regardless of the order of parton distributions that are required (and 

a major reason for this may be that there exists a convenient parametrization 

of them over all x and a wide range of Q2—we hope, shortly, to have such a 

parametrization of the H M R S distributions [73]). 

Figure 8.7 shows plots of xu, xd, xg, and x-Sea for these parton distributions 
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Figure 8.3(b) The 'scaling violations' of the xF%N data of the CDHSW col­

laboration [36], compared with those predicted by the HMRS solutions. The 

experimental value at each x value was determined by performing a linear fit 

to In xF%N versus In Q2 with the gradient and intercept as free parameters and 

X 2 as the value minimized (using the statistical and systematic errors added in 

quadrature). The errors were calculated by allowing the gradient to vary (with 

the intercept free) higher and lower than its optimum value such that the total x 2 

increased by one unit. The theoretical values were calculated by a least-squares 

fit to the theoretical prediction over the same range in Q2. 

at Q 2 = 20 G e V 2 . The H M R S xu and xd are dramatically different from those 

of Duke and Owens and it is not necessary to draw the comparisons of D O l with 
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Figure 8.4(a) Data on the structure function ratio F!fn IF£P 

from E M C [40] (open circles), BCDMS [42] (solid circles), and 

NMC [43] (solid squares), together with the HMRS(B) (contin­

uous line) and HMRS(E) (dashed line) fits. 

the latest experimental data to realize that there would be a severe discrepancy. 

There are two main reasons for the differences between the M R S ' and H M R S 
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Figure 8.4(b) Comparison of the predictions for the ratio 

Fgn/F£p using various parton distributions (HMRS(E), HMRS(B), 

D O l , D02 [65], EHLQ1 [71], and D F L M [72]) with data from 

the NMC collaboration [43] (solid squares). 

distributions. One is the adherence of the latter to the new, precise F f n / F £ p data 
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Figure 8.5 Data on the prompt photon transverse momen­

tum distribution in pp collisions at yfs = 23 GeV from the WA70 

collaboration [66] (corrected to y — 0), together with the pre­

dictions using the HMRS(B) (continuous line) and HMRS(E) 

(dashed line) parton distributions. 

of the N M C while the other, which can be seen in the xu and xd distributions, is 

due to the renormalization of the data we performed (that of E M C upwards 

by 8% and that of B C D M S downwards by 2% ). The xg and a;Sea distributions 

appear to be broadly similar (although the steepness of the graphs makes it 

difficult to tell) apart from the fact that the HMRS a;Sea distributions, being 

evolved from starting parametrizations with a factor xSs (where 8$ is positive) 
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Figure 8.6 Drell-Yan data from the E605 collaboration [70] in 

pN collisions at y/s = 38.8 GeV, together with the predictions 

using the HMRS(B) (continuous line) and HMRS(E) (dashed 

line) parton distributions. 

still 'turn over' at this low Q 2 . In Figure 8.8, we plot the ratios of the two H M R S 

sets (at Q2 = 20 G e V 2 ) and the ratios between the H M R S and M R S ' sets (for 

completeness, we also show the ratio of the two MRS' sets). This figure shows, 

most vividly, the great difference between the two H M R S sets. 

In Figure 8.9, we compare the two H M R S sets (on a logarithmic scale) over 

a range in x and at a Q 2 value relevant to W and Z production. Figure 8.10 
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Figure 8.7 The continuous and dashed curves are the HMRS 

and MRS' [41] parton distributions x / , ( i , Q 2 = 20 G e V 2 ) re­

spectively. The left- (right-)hand plots are the parton distribu­

tions obtained using data sets which include the E M C (BCDMS) 

F%p measurements. In each case, we show the distributions of 

Duke and Owens Set 1 [65] for comparison. 

shows an extrapolation of the F$p of H M R S ( E ) and H M R S ( B ) to Q2 values 

which the H E R A ep collider will be able to probe within a few years. Our 

predictions provide the most accurate benchmark predictions for H E R A . Note 

that we have not included Z° contributions to the neutral-current cross-section 

which become significant for Q2/(Q2 + M | ) >, 0 (1 ) (to the right of the dash-
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Figure 8.8 Ratios of the quark and gluon distributions at 

Q2 = 20 G e V 2 : 

(a) / j ( M R S E ' ) / / j ( H M R S ( E ) ) ; (b) / , (MRSB') / / i (HMRS(B)) ; 

(c) / , (MRSB') / / , (MRSE') ;and(d) / i (HMRS(B)) / / ; (Hi\IRS(E)) . 

dotted hne). The differences in the F£v predictions of the two sets persist at 

higher Q2 and the dispersion in the predictions—due to the different values of 

A^|g—can also clearly be seen. Detailed simulations of structure functions at 

H E R A have been performed by Blumlein et al. [74], [75]. It should be possible 

to discriminate between the two different predictions in the range 0.01 <, x 0.5 

and thereby resolve the conflict between the F$p measurements of E M C and 

B C D M S . 
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Figure 8.9 The HMRS gluon and sea quark distributions at 

Q2 = 
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Figure 8.10 Predictions for F£p(x, Q2) (electromagnetic part 

only) extrapolated to the H E R A kinematic region. 
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9. Freedom in the Gluon Distribution 

9.1 UNCERTAINTY IN T H E FINAL DISTRIBUTIONS 

We have presented parton distributions, H M R S ( E ) and H M R S ( B ) , which give 

an excellent overall fit to deep-inelastic scattering data, prompt photon data and 

data on the Drell-Yan process. In this chapter, we should like to discover where 

the major uncertainties in these distributions lie. 

We need some criterion on which to base our answer and, unfortunately, a 

meaningful one is not easy to find. We could, for example, vary each parameter in 

turn, keeping all others fixed, to find the positive and negative changes required 

to increase the total x2 by some amount thus producing a set of parameters, each 

with its own ± error. Having done this, we would realize that the results don't 

answer the question—what we should really like to know is, how well is the shape 

of each parton distribution determined and how is it correlated with the shapes 

of the other parton distributions. This is obviously very difficult (impossible?) 

to do in a systematic way so we will content ourselves with asking some simpler 

questions. 

9.2 T H E GLUON DISTRIBUTION 

We shall start with the gluon distribution for which we could only justify 

two free parameters, given the two constraints below. First , we can be sure that 

the magnitudes of our gluon distributions are reasonably accurate in the range 

0.35 < x < 0.55 where the accurate prompt photon data exist. Secondly, we can 

also have some confidence that the integrated gluon distribution for x > 0.05 has 

approximately the right value since we have fitted F 2 structure functions well, 

down to low x, and these depend, albeit somewhat indirectly, on the gluon (in 

DIS-schemes, the dependence is a consequence of the amount of momentum "left 

over" for the quark distributions after the gluon has taken its share while, in our 

MS scheme, there is also a direct contribution from the gluon, reduced by a factor 

What flexibility is there in the form of the gluon distribution at the low values 

of x which will soon become accessible to colliders? This is a difficult question 
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which we choose to try to answer in the following way. Our gluon has previously 

been of the form 

xg(x,Q2) = Ag(l-x)*<> (9.1) 

where Ag is determined by the constraint of the total momentum sum sule. The 

gluon distribution at low x is of great importance because many high-energy 

scattering cross-sections are dominated by gg interactions. So the question we 

will pose is: by allowing much greater flexibility in the Q% parametrization of the 

gluon, what is the spread in xg at low x (at various Q2 values) ? 

We extend the limited flexibility of our two-parameter gluon by allowing it 

two more: 

xg(x, Ql) = Agx6°(l - + l 9 z ) (9.2) 

and we determine acceptable fits to the WA70 prompt photon data for two ex­

treme low-x behaviours: one with Sg = —1/2 which is a gluon with singular 

behaviour as x —> 0 and one with Sg = +1 /2 which has the valence quark be­

haviour of xg —> 0 as x —• 0 (but only at Q2 = Q\—as Q2 increases, xg(x = 0, Q2) 

increases). There is good motivation for the small-x behaviour, 8g w —1/2, as 

discussed in [76] where it is shown to be 

xg(x,Q2) ~ h(Q2)ex™*lRWx) = h(Q2)x~Xm" (9.3) 

with Xmax = (1-9 ± 0.8)a«(fcg) where left is an infra-red cut-off: taking a s ( fc§) ss 

0.25 yields A m 0 x « 1/2. 

The factor (l+^gx) is included so that a good fit to the WA70 prompt photon 

data can easily be maintained. We proceed slightly differently to our previous 

fitting of prompt photon data in Chapter 6 in that we keep all of the quark 

parameters and Ajjjg fixed to preserve our excellent fit to the D I S data, (thus, all 

our trial gluons carry the same percentage of the total momentum as the H M R S 

gluons at Q2 = Q\) and we evolve sets of parton momentum distributions for 

a range of (r}g,7g) pairs for each of Sg = —1/2 and Sg = - f l / 2 . We, in fact do 

the same for a gluon with Sg = 0 in order to show the \ 2 'landscape' in the 

rjg — yg plane, with the same Sg as our optimum solutions. The contour plots we 
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obtain axe shown in Figures 9.1-9.7 where the plots marked (a) show the x2 *° 
the WA70 prompt photon data, (b) the x2 *° all the DIS data, and (c) the sum 
of (a) and (b). 

In Figure 9.1, we have detailed the immediate area of the HMRS(E) fit (de­

noted in this and Figure 9.2 by a star) in the *yg — r]g plane. This shows that the 

HMRS(E) fit is, in fact, a local minimum. Note that the points at ( i g = —l,rig) 

are identical to those at (-yg = 0,7^+1) since ( l - z ) , ? « ( l — x ) 1 = (l—x)T'»+1(l—x)0. 

Figure 9.2 shows the same plot extended to a much larger region of the i g — j]g 

plane. Figure 9.2a shows that the fit to the WA70 data improves slightly with in­

creasing jg and i)g at low f g (since these two parameters can almost compensate 

each other). Then, with jg £ 10, the x2 improves for constant T]g and increasing 

jg. The dependence on the DIS data in 9.2b is fairly weak but shows the same 

general trend. We would expect, as jg —• oo for fixed rjg, that the x 2 would 

stay virtually constant since the parametrization, Ag(l — x)V9(l + igx), tends to 

A'g(l — x^'x1 except for x < l / j g where there are no data. 

In Figure 9.3(a), the E-type 8g = +1/2 gluon, we see that there is a 'valley' 

of points with x 2 /p°mt; £j 1 (the best being around yg = 0,rig = 6 with a x 2 

of 6.0 to the eight WA70 data points). Figure 9.4 shows we can also obtain a 

good fit with a 'singular' Sg = —1/2 E-type gluon. As yg —* oo in this plot, the 

parametrization tends to xg = A'gX+l/2(l — x)n« for x •> 1/7^ and so, in that 

limit, we should reproduce the x 2 values along the jg = 0 line of Figure 9.3. 

The contour plots of the B-type gluons in Figures 9.5-9.7 have the same 

qualitative features as the E-type gluons (the HMRS(B) fit is denoted, in Figure 

9.5, by a star). In this case, however, the much smaller errors on the BCDMS 

F£p data accentuate the dependence of the x2 o n t n e DIS data and it is easier 

to see that this dependence is the same as that of the WA70 data (in the MS 

scheme, the gluon contributes directly to the F2 structure functions as well as 

affecting the Q 2 evolution of the quark distributions). Again, acceptable fits to 

both DIS and prompt photon data can be achieved with all three values of Sg 

From these plots, we choose, for illustrative purposes, the fits marked E + , 

E _ , B+, and B_ plus the HMRS(E) and HMRS(B) fits where, for example, E _ 

is the E-type gluon with 8g = —1/2. We have chosen the 8g = 0 fits to be the 
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(a) (WA70)E (a) (WA70)E 

g 

-1 0 1 

(b) DIS(TOTAL)E (c) DIS(TOTAL)E + (WA70) 

^g 

(c) DIS(TOTAL)E + (WA70) (b) DIS(TOTAL) E E 
6 6 

g 
<3 

0 1 1 0 1 1 
yg 7g 

F i g u r e 9.1 (a) shows contours of constant Y2 l n the ya—r]g plane where \ 2 is a 

measure of the quality of the theoretical prediction for the WA70 prompt photon 

data [66] in the range —0.35 < xp < 0.45 (corrected to y = 0) using the various 

sets of parton distributions obtained by re-evolving the H M R S ( E ) set with the 

gluon momentum redistributed in the form xg(x, Q%) = J 4 a x < » ( l — z)"'»(l + - f g x ) 

with 6g fixed at zero, (b) shows the total x 2 to the deep-inelastic scattering data 

of [32] ( E M C F 2 " p ) , [36] (F$N and xF$N) and [40], [42], [43] {F£n/F£p). (c) is 

the total of (a) and (b). T h e stars signify the position of the H M R S ( E ) fit. T h e 

statistical and systematic errors of al l data have been combined in quadrature. 

T h e contour interval is three units of x 2 for all three contour plots. 
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(a) (WA70) E 
10 

30.0 
30° g 

-1 8 17 

(c) DIS(TOTAL)E + (WA70) (b) DIS(T0TAL)E E 
10 10 

225.0 

^g g 

'95.0 

8 17 8 1 1 
yg yg 

F i g u r e 9.2 (a) shows contours of constant x 2 in the ys —r\s plane where x 2 is a 

measure of the quality of the theoretical prediction for the WA70 prompt photon 

data [66] in the range —0.35 < xp < 0.45 (corrected to y = 0) using the various 

sets of parton distributions obtained by re-evolving the H M R S ( E ) set with the 

gluon momentum redistributed in the form xg(x, Qq) — Asxs»{l — x)ne(\ + ygx) 

with Sg fixed at zero, (b) shows the total x 3 to the deep-inelastic scattering data 

of [32] ( E M C F j p ) , [36] (F$N and xF£N) and [40], [42], [43] (F£n/F£p). (c) is 

the total of (a) and (b) . T h e stars signify the position of the H M R S ( E ) fit. T h e 

statistical and systematic errors of all data have been combined in quadrature. 

T h e contour interval is 10 units of x 2 for all three contour plots. 
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(a) (WA70)E (a) (WA70)E 

bO.O 

30.0 
g 

8 17 
g 
(c) DIS(T0TAL)E + (WA70) (b) DIS(T0TAL)E E 

12 12 

2\0 
g CD © 

-1 8 1 7 - 1 8 17 

F i g u r e 9.3 (a) shows contours of constant x2 in the jg — r\g plane where x2 is a 

measure of the quality of the theoretical prediction for the WA70 prompt photon 

data [66] in the range —0.35 < xp < 0.45 (corrected to y = 0) using the various 

sets of parton distributions obtained by re-evolving the H M R S ( E ) set with the 

gluon momentum redistributed in the form xg(x, Q$) = Agx6«(l — + -ygx) 

with 6g = +1 /2 . (b) shows the total x2 t ° the deep-inelastic scattering data 

of [32] ( E M C F 2 " p ) , [36] (F%N and xFgN) and [40], [42], [43] ( F £ n / F f p ) . (c) 

is the total of (a) and (b). ' E + ' signifies the position of the gluon chosen for 

illustrative purposes (see text). T h e statistical and systematic errors of all data 

have been combined in quadrature. T h e contour interval is 10 units of x 2 for 

all three contour plots. 
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(a) (WA70) 

(b) DIS(TOTAL)E 
1 0 i—Ti— i—i—i—i—c^i—i—r 

(c) DIS(T0TAL)E + (WA70)E 

^ g 

F i g u r e 9.4 (a) shows contours of constant x 2 m the 7g~rl9 plane where x 2 is a 

measure of the quality of the theoretical prediction for the WA70 prompt photon 

data [66] in the range —0.35 < xp < 0.45 (corrected to y = 0) using the various 

sets of parton distributions obtained by re-evolving the H M R S ( E ) set with the 

gluon momentum redistributed in the form xg(x, Q%) = j4 y a: '» ( l — i)*'«(l + l g x ) 

with 6g = —1/2. (b) shows the total x 2 to the deep-inelastic scattering data 

of [32] ( E M C F$p), [36] (FSK and xF$N) and [40], [42], [43] (F£n/F£p). (c) 

is the total of (a) and (b). ' E _ ' signifies the position of the gluon chosen for 

illustrative purposes (see text). T h e statistical and systematic errors of all data 

have been combined in quadrature. T h e contour interval is 10 units of x 2 for 

all three contour plots. 

110 



9 . | Freedom in the Gluon Distribution 

(a) (WA70) B 
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(c) DIS(T0TAL)B+(WA70) (b) DIS(TOTAL) B B 
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F i g u r e 9.5 (a) shows contours of constant x 2 in the "Yg—rig plane where x2 is a 

measure of the quality of the theoretical prediction for the WA70 prompt photon 

data [66] in the range —0.35 < x<0.45 (corrected to y = 0) using the various sets 

of parton distributions obtained by re-evolving the H M R S ( B ) set with the gluon 

momentum redistributed in the form xg(x, Q%) = Agxse(l — i ) , ' » ( l + ygx) with 

6g fixed at zero, (b) shows the total x 2 to the deep-inelastic scattering data of 

[32] ( B C D M S F 2 " p ) , [36] ( F i N and xF$N) and [40], [42], [43] (F£n/F£p). (c) is 

the total of (a) and (b). T h e stars signify the position of the H M R S ( B ) fit. T h e 

statistical and systematic errors of all data have been combined in quadrature. 

T h e contour interval is 10 units of x 2 for all three contour plots. 
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(a) (WA70) 

(b) DIS(TOTAL) (c) DIS(TOTAL)B + (WA70)B 

7g yg 

F i g u r e 9.6 (a) shows contours of constant x2 in the i 9 — T)9 plane where x2 is a 

measure of the quality of the theoretical prediction for the WA70 prompt photon 

data [66] in the range —0.35 < xp < 0.45 (corrected to y = 0) using the various 

sets of parton distributions obtained by re-evolving the H M R S ( B ) set with the 

gluon momentum redistributed in the form xg(x, Q$) = Agxf*(l — xy»(l + ygx) 

with 6g — + 1 / 2 . (b) shows the total x2 to the deep-inelastic scattering data of 

[32] ( B C D M S F£p), [36] ( F 2

v A r and xFgN) and [40], [42], [43] ( F 2

B n / F 2

u p ) . (c) 

is the total of (a) and (b). ' B + ' signifies the position of the gluon chosen for 

illustrative purposes (see text). T h e statistical and systematic errors of all data 

have been combined in quadrature. T h e contour interval is 10 units of x2 for 

all three contour plots. 
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F i g u r e 9.7 (a) shows contours of constant x 2 in the ya —r)s plane where x 2 is a 

measure of the quality of the theoretical prediction for the WA70 prompt photon 

data [66] in the range —0.35 < xp < 0.45 (corrected to y = 0) using the various 

sets of parton distributions obtained by re-evolving the H M R S ( B ) set with the 

gluon momentum redistributed in the form xg(x, Qq) = Asxs»(l — x)n'(l + ygx) 

with 6g = —1/2. (b) shows the total x 3 to the deep-inelastic scattering data of 

[32] ( B C D M S F f p ) , [36] (F$N and xF%N) and [40], [42], [43] (F£n/F£p). (c) 

is the total of (a) and (b) . ' B _ ' signifies the position of the gluon chosen for 

illustrative purposes (see text). T h e statistical and systematic errors of all data 

have been combined in quadrature. T h e contour interval is 10 units of x 2 for 

all three contour plots. 
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actual HMRS fits so that we will have some 'controls' against which to measure 
the others. These fits give (by design) the acceptable fits to the WA70 data 
shown in Figures 9.8 and 9.9 (we have deliberately chosen non-optimum fits to 
attempt, simultaneously, to show borderline good fits to the WA70 data). 

The low x behaviour of these gluons at three Q2 values is shown in Figure 

9.10. Momentum conservation ensures that the gluons cross, e.g. the singular 

gluon, being greater than the control at low x is forced to be smaller at high 

x. The three solutions are, predictably, similar in the region 0.4 < x < 0.6 since 

they are good fits to the WA70 data which is sensitive to the gluon in this region 

of x. Looking at the Q2 evolution of the three solutions, we see demonstrated 

the well-known fact that differences in the forms of the gluons decrease with 

increasing Q2. 

9.3 D I S C R I M I N A T I N G B E T W E E N T H E D I F F E R E N T G L U O N S 

We now discuss what implications these different gluon distributions have on 

predictions of high-energy cross-sections which are sensitive to the gluon at low 

x (for x >, 0.05, we can see that the gluons are still very similar at all values of 

Q2). We discuss the most promising methods—the cross-section for J/^» photo-

production and the measurement of the longitudinal structure function, Fi, at 

the HERA ep collider. Studies of the phenomenology of these two processes can 

be found in [77] and an experimental simulation in [78] and [79]. 

The inelastic photoproduction of J/ip mesons, 7p —• Jfi^X is dominated 

by 7<7 —* Jli> g at low values of x and the production cross-section can be well 

approximated by the very simple form (see [80]): 

<r(7p -> J/tfrX) « 1.8zg(x,m2j/j) nb (9.4) 

where x = 3.4m j ^ / * (with s equal to the square of the 7» COM energy). The 

differences between the cross-sections for our three gluons therefore mirror the 

differences between the gluons at Q2 = m 2 ^ (see Figure 9.11). In [78], it is 

shown that an integrated luminosity of 100 p b - 1 at the H E R A collider will be 

able to put some data points on Figure 9.11, with small enough errors for a choice 
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to be made between the different gluons in this x region (the abcissa of Figure 

9.11 corresponds to a range in x of 0.6 x 10"3 to 2.3 x 10" 3). 

Another potential discriminator is the longitudinal structure function, Fi, 

which also depends quite strongly on the gluon distribution at low x. In fact, to 

a good approximation [79], 

FL(0Ax, Q2) = 2 a " ^ 2 ) (0.565*<7(*, Q2) + F 2(0.8x, Q 2 ) ) . (9.5) 

Figure 9.12 shows the three predictions at Q2 = 40 GeV 2 , calculated using the 

exact formula (recall (3.52)) 

l 
F l = ̂ r 1 * 2 / v [lF^ Q2)+y(1 - x l y ) y 9 ^ Q 2 ) l • ( 9- 6 ) 

The kinematic range in x accessible at HERA should be 10 3 <, x < 10 2 so this 

method should also serve to help determine the low-x behaviour of the gluon. 
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F i g u r e 9.8 Data on the prompt photon transverse momen­

tum distribution in pp collisions at y/s = 23 G e V from the WA70 

collaboration [66] (corrected to y = 0) , together with the pre­

dictions using the E (continuous line), E + (dot-dashed line) and 

E _ (dashed line) parton distributions. T h e gluon parameters 6, 

y, r) of Equation (9.2) are (0 ,0 ,4 .4 ) , (1 /2 ,17 ,8 ) , ( - 1 / 2 , 1 1 , 5 ) 

for E , E + and E _ respectively. 
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F i g u r e 9.9 Data on the prompt photon transverse momen­

tum distribution in pp collisions at yfs = 23 G e V from the WA70 

collaboration [66] (corrected to y — 0), together with the pre­

dictions using the B (continuous line), B + (dot-dashed line) and 

B _ (dashed line) parton distributions. T h e gluon parameters 6, 

7, x] of Equation (9.2) are (0 ,0 ,5 .1) , (1 /2 ,4 ,8 .5 ) , ( - 1 / 2 , 2 0 , 6 ) 

for B , B + and B _ respectively. 
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F i g u r e 9.10 T h e left-hand column shows the three gluon 

distributions E (continuous line), E + (dot-dashed line) and E _ 

(dashed line) as functions of x for three Q 2 values: 4 G e V 2 , 20 

G e V 2 and 10 4 G e V 2 . T h e right-hand column shows the same for 

the B (continuous line), B + (dot-dashed line) and B _ (dashed 

line) gluon distributions. 
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F i g u r e 9.11 T h e left-hand column shows the predictions for 

the inelastic J/ip production cross section, using the three glu-

ons: E (continuous line), E + (dot-dashed line) and E _ (dashed 

line), as a function of y/s^ relevant to H E R A energies and 

the right-hand column shows the same for the corresponding B 

(continuous line), B + (dot-dashed line) and B _ (dashed line) 

gluons. A n energy cut of E$ < 0.8Ey and a momentum cut of 

ptj> > O.lro^ have been applied. 
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F i g u r e 9.12 T h e left-hand column shows the predictions 

for the longitudinal structure function Fi(x,Q2) at H E R A as 

a function of x at Q2 = 40 G e V 2 , for the three gluons: E 

(continuous line), E + (dot-dashed line) and E _ (dashed line), 

and the right-hand column shows the same for the corresponding 

B (continuous line), B + (dot-dashed line) and B _ (dashed line) 

gluons. 
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10. Conclusions 

We have determined partem momentum distributions using a next-to-leading 

logarithm approximation in the MS scheme. We have not biased our analysis 

towards either of the mutually-inconsistent sets of F£p data of BCDMS and E M C 

and have performed it using both. We cannot conclude that our analysis favours 

either of these sets in preference to the other and so that remains a problem to 

be resolved. 

We have taken pains to ensure that the data we used were as up-to-date as 

possible—the determination of the parton momentum distributions was, in fact, 

repeated many times to accommodate revisions of the BCDMS F$v data, the 

NMC F%n/F$p data and the CDHSW F f N and xF$N data. 

We have tried to be systematic in our methods, for example, in the way we 

have calculated the high-x ratio of the valence quarks, the way we have tried to 

break the correlation between the 'hardness' of the gluon distribution and A ĵg-, 

and our determination of the sea quark distribution (for which we do not assume 

SU(3) flavour symmetry but use the more realistic s = u/2 = d/2 as indicated 

by the dimuon neutrino data). 

We have also attempted a kind of 'error analysis' of the gluon distribution 

to show, in particular, what behaviours are possible in the very important low-x 

region and have also shown predictions for processes which look promising for 

pinning down this behaviour. 
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Appendix: the Cross-Section of the Drell-Yan Process 

Here we present the explicit expressions for the differential cross-section of 

the data of the E605 collaboration based on those given by Kubar et al. [81], but 

tranformed into the MS scheme by W . J . Stirling. For convenience, we have set 

A - * * £ l (01) 
3?r v ' 

wi = -U l n x i (02) 

W2 = —t2lnx2 (03) 

and defined functions 

c it P \ - (̂  + 66) (r 2 + (66) 2 ) r n 4 , 
( u ? 2 r ( ? i + «iX« + 2:2) 

rr (P P \ - ~ 2 r ( r + &6) f n ^ 

( 6 6 ) 2 ( 6 6 + 6 6 ) 3 ( 0 7 ) 

where the dilogarithm function, L i 2 , is 

00 

L i ^ ) = E S • ( ° 8 ) 
1 n 

n = l 

We have shown the convolution with the structure functions explicitly in terms 

of the joint probability distribution functions 

4rg(6.6) = I> 2 ( 5 (6X7(6) + <Z(6A7(6)) (09) 

= £e?GK6)(<z(6) + * ) ) + + 5(6))) (010) 

and it only remains to integrate over t\ from x\ to 1 and over <2 from z i to 1 to 

obtain the physical differential cross-sections from these sub-process ones. 
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The "annihilation" contribution is 

daA „ 
"J<g> 

dy/Tdy 

J9q(xi,x2)[l + —(-8 + 7T2 - I n 2 x i - 2 L i 2 ( l - x i ) - I n 2 x 2 - 2 L i 2 ( l - x 2 ) 

- X2 

+ ((1 + ( * i / * i ) V „ ( < i , * 2 ) - 2 J q g ( x 1 , x 2 ) ) l n ( \ ( x i A l ) ) 

<1 - X l 

+ m 2 | K , , l ( ( 2 , l 0 ( 4 - l ) l n Q^g) 1 , „ ( _ l ) 2 1 n ( i _ £ i 

+ ((1 + ( x 2 / t t f ) J q g ( t 2 , X l ) - 2 J g 9 ( x 2 , x 1 ) ) l n ( 1 " ( a ? 2 / < 2 ) ) 

- v ^ . x - f + £ + (i + ( , 2 / i 2 ) ^ ) ^ M ) ) 
r 2 15 r 2 — x 2 

+ WlW2A[(Jqg(tl,t2)GA(t1,t2) ~ Jqq(tl,X2)GA(tl,X2) 
1 

- Jqq(xi,t2)GA(xi,t2) + Jqq(xi,X2)GA(xi,X2)) 
(h ~ Xl)(h ~ x2) 

+ Jqq(tl,t2)HA(tl,t2)] 

and the "Compton" contribution is 

" J ® 
dy/rdy 

x2 J i i — x i 

<2 — x 2 

(Oi l ) 

3 , i 7 / • war? + (*i - x i ) 2 , 2(h - x i ) ( l - x 2 ) 1 . 

7 / 4 ^ 2 + ( < 2 - * 2 ) 2 2(i2 - x 2 ) ( l - x i ) 1 . 

3 2 
+ - A w i W 2 ( ( J q g ( t l , t 2 ) G C { t \ , t 2 , X l , X 2 , T ) - J w ( < l , X 2 ) G c ( < l , X 2 , X i , X 2 , T ) ) 

I 2 — X 2 

+ ^ ( * l , < 2 ) - f f c ( * 1 ^ 2 , « l , a ; 2 , T ) ) 
3 Y 

+ -Aw2W1((Jqg(t2,t1)GC(t2,t1,X2,X1,T) - Jqg(t2,Xl)GC(i2,XUX2,X1,T)) 
<1 - Xi 

+ Jqg(t2,tl)Hc(t2,tl,X2,Xl,T)) 

(012) 
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