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A b s t r a c t 

The leg A gene from Pisum sativum L. has been extensively characterised and 

a distinct pattern of developmental and organ-specific gene expression demon

strated. Homology between legumin genes from other species has given some 

indication of those sequences which may be responsible for the regulation at the 

level of transcription. This study was designed to provide a functional analysis of 

the upstream sequences. 

A number of plasmid vectors containing a maximum of 1.2 kb of upstream 

sequence from the leg A gene of Pisum sativum L., ligated to the coding region of 

the nopaline synthase (nos) gene, were constructed. The use of smaller promoter 

fragments and the insertion of spacer DNA within the promoter region was em

ployed in an effort to localise the regions of 5' flanking sequence which may play 

a role in tissue specific expression. 

In a minority of tumours derived from tissue transformed with the vector con

taining the ' full-length ' leg A promoter, low levels of nopaline were detected, but 

not with those containing a shorter promoter fragment. Results from the analysis 

of .Seed tissue indicatesthat 800 bp of the leg A promoter was insufficient to 

direct tissue-specific expression of the fused nopaline synthase gene in transgenic 

Nicotiana tabacum, although one individual plant showed a constitutive pattern 

of nopaline synthesis. 

However, published results obtained with legumin and other storage protein 

gene promoters would suggest that this promoter fragment should have been suf

ficient to confer seed-specific expression. This suggests that there may have been 

undesirable secondary structures, or small undetected rearrangements, introduced 

during the construction of the transcriptional fusions between leg A and nos. Al

ternatively the marker gene may be inadequately sensitive to permit detection of 

low levels of expression. 
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Abbrev ia t ions 

All abbreviations used here are derived from the 'Instructions to Authors,' 

Biochemical Journal 249 (1988) 1-20, with the following exceptions: 

^260 = absorbance at 260nm 

A P = ampicillin 

A R E = anaerobic regulatory element 

bp — base pairs 

B S A — bovine serum albumin 

C-terminal = carboxy terminus of a peptide 

C A M - crassulacean acid metabolism 

C a M V = cauliflower mosaic virus 

C A T - chloramphenicol acetyl transferase 

cDNA = complementary DNA 

C I P = calf intestinal alkaline phosphatase 

C m = chloramphenicol 

c.p.m. = counts per minute 

d.a.f. --_ days after flowering 

D E P C = diethylpyrocarbonate 

DMSO - dimethylsulphoxide 

D M F = dimethylformamide 

DNAse — deoxyribonuclease 

dNTP = deoxyribonucleoside triphosphate 

D T T — dithiothreitol 

E R = endoplasmic reticulum 

E r y = erythromycin 

E t B r — ethidium bromide 

G m = gent amy cin 

G U S = /3-glucuronidase 

H S E = heat shock element 

kb — kilobase pairs 



kD = kilodalton 

K m - kanamycin 

K T i l = kunitz trypsin inhibitor I 

leg A = legumin A gene from Pisum sativum 

L I H = limited internal homology 

L R E = light responsive element 

N-terminal = amino terminus of a peptide 

Nm = neomycin 

nos = nopaline synthase gene 

npt/7 = neomycin phosphotransferase 

ocs = octopine synthase gene 

O R F = open reading frame 

P E G = polyethylene glycol 

L E G 0.7 = legumin A promoter fragment from pDUB1301 

L E G 1.2 = legumin A promoter fragment from pDUB1300 

poly A + R N A = polyadenylated R N A 

Rif = rifampicin 

RNAse = ribonuclease 

SDS = sodium dodecyl sulphate 

SDW = sterile distilled water 

S E V = split end vectors 

Sm = streptamycin 

Sp = spectinomycin 

SSC = saline sodium citrate 

SV40 = simian virus 40 

T c = tetracycline 

T - D N A = transforming DNA of the Ti-plasmid 

Ti-plasmid — tumour inducing plasmid 

X-gal = 5-dibromo-4-chloro-3-indoylgalactoside 

5' = 5' terminal phosphate of a DNA or R N A molecule 

3' = 3' terminal hydroxyl of a DNA or R N A molecule 
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C H A P T E R 1 

I N T R O D U C T I O N 
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1.1 G E N E R A L I N T R O D U C T I O N 

Historically, plant seed proteins have been the focus of investigation because of 

their economic importance and their ease of study. The seed protein genes are only 

expressed in a specific orejA/a at a predetermined stage of development, allowing 

the relatively simple identification of the seed-specific transcripts. The study of 

the controlling elements involved in seed protein expression is worthy of interest to 

shed light on the determination of developmental expression and to enable seed-

specific expression of introduced protein genes using current genetic engineering 

techniques. Additionally, plants are a good system for studying the regulation 

of developmentally-regulated and tissue-specific genes because of the ease with 

which whole plants can be regenerated from undifferentiated, transformed tissue 

of an increasing number of plant species. 

Major improvements in the yield of a number of crop plants have been made 

in recent decades, achieved by the use of fertilizers, pest control and by genetic 

improvements. These genetic improvements are the result of conventional plant 

breeding techniques, for example, exploiting hybrid vigour and selecting for high 

yielding and pest resistant strains. The introduction of a useful characteristic by 

sexual crosses requires numerous backcrossing experiments in order to produce 

a plant with just the desired characteristic without any detrimental effects on 

other aspects of the plant and is therefore time-consuming. However, the rate 

of these improvements has decreased in recent years and new methods of crop 

improvement have been investigated. 

These techniques have included plant tissue culture, protoplast fusion and 

transformation of plant tissue with foreign or altered genes. The use of these 

techniques has circumvented certain limitations of conventional plant breeding 

by allowing useful characteristics to be introduced into the desired plant from a 

donor that is sexually incompatible. The use of plant tissue culture allows rapid 

propagation of improved varieties and the introduction of a single gene into a crop 

plant avoids the lengthy back-crossing experiments and opens up the possibility 



of adding genes from distantly related organisms, even from prokaryotes, if the 

correct controlling sequences are introduced. Therefore, genetic engineering tech

niques may be employed in suitable cases to avoid some of the more protracted 

aspects of conventional plant breeding. Intensive farming methods used in the de

veloped world have already provided high yield crop production and there may be 

scope for qualitative rather than quantitative improvements in crop plants, which 

are more amenable to genetic engineering techniques, being encoded by a single 

or a few genes. However, these new methods are likely to supplement rather than 

replace conventional plant breeding techniques, particularly for those aspects of 

plant physiology that have not been fully characterised at the gene level (Miflin 

and Lea, 1984). 

A number of methods are currently available to introduce DNA into plant cells 

including transformation of protoplasts with DNA using electroporation, calcium 

chloride or P E G (Shillito and Saul, 1988) and more recently, microprojectiles 

(Klein et al. 1988). The regeneration of transformed, fertile maize plants has re

cently been reported using the last technique (Gordon-Kamm et ah, 1990). These 

methods are used especially for the Gramineae which are not easily transformed 

using Ti-plasmid vectors. Unfortunately, the regeneration of fertile plants from 

these transformed cell lines has often proved difficult. More success has been 

achieved with the dicotyledenous plants which are relatively easily transformed 

with Ti-plasmid vectors, using tissue pieces or protoplasts, and in an increasing 

number of species whole plants have, b&ea regenerated e.g. tobacco, petunia, 

tomato and potato. 

A number of genes have been successfully expressed in transformed plants 

including various antibiotic resistance genes, pesticide resistance genes, viral pro

teins and seed storage proteins. Usually the plant genes are expressed in het

erologous systems, particularly tobacco, because the majority of crop species are 

not readily regenerated. In the earliest work these genes were under the control 

of constitutive promoters such as the nopaline synthase promoter or promoters 



from the 19S and 35S proteins of cauliflower mosaic virus. The possibility of in

troducing modified seed protein genes using these techniques will necessitate the 

expression of the foreign gene in the correct tissue in a developmentally-regulated 

manner. 

The large protein-rich seeds of plants which belong to the legume family are 

an important source of both human and animal food in many areas of the world. 

The principal food legumes include peas, kidney beans, lima beans, lentils, chick 

peas, mung beans, cow peas, soy beans, peanuts, and broad beans. In many 

poor countries, the legumes are the most important high protein food (Chrispeels 

and Sadava, 1977). However, the use of legume crops as a sole protein source 

is limited by the amino acid composition of the seed proteins. In particular, the 

sulphur containing amino acids are poorly represented in most commercial legume 

varieties. Attempts to enhance the sulphur amino acid content of legumes by 

traditional plant breeding techniques have only been partially successful (Payne, 

1983). Therefore, the improvement of the nutritional quality of legumes for both 

human and animal consumption by the genetic manipulation of the seed proteins 

would be an obvious candidate for these techniques (Shewry et al, 1981; Croy 

and Gatehouse, 1985). 

In order to express altered proteins in the seed, an understanding of the mecha

nisms which determine the expression of the storage proteins in the relevant tissue 

will be required. This study is intended as an initial exploration of the mecha

nism of the tissue-specific expression of one legume storage protein, legumin, from 

Pisum sativum L. 

1.2 I N T R O D U C T I O N O F F O R E I G N G E N E S I N T O P L A N T S 

The study of plant gene regulation has required the introduction of modified 

genes into plant cells. A number of systems are available including transient 

expression in protoplasts; stable integration into the plant genome using direct 

transfer techniques or Ti-plasmids, to generate callus tissue or mature plants. 

4 



The technique chosen will depend on the type of gene to be expressed and the 

availability of reliable protocols for the plant species to be studied. 

Transient expression of introduced genes in plant protoplasts allows rapid anal

ysis of promoter deletions and has facilitated the investigation of certain inducible 

genes (Howard et al., 1987). Some genes including ribulose 1,5-bisphospate car

boxylase are switched off during protoplast formation (Fleck et al., 1979; Vernet 

et al., 1982) which limits the usefulness of this approach. 

Foreign DNA has been introduced and integrated into the plant genome by 

direct transfer methods and transgenic plants regenerated from the treated proto

plasts (Hain et al., 1985; Paszkowski et al., 1984; Potrykus et al., 1985a). These 

techniques have been used to investigate the expression of introduced genes in a 

number of monocots e.g. Triticum monococcum (Lorz et al., 1985; Werr and Lorz, 

1986); Oryza sativa (Uchimiya et al., 1986); Lolium multiflorum (Potrykus et al., 

1985b). Electroporation has been developed to transform plant cells (Fromm et 

al., 1985) and the integration of the introduced DNA into a monocot genome has 

been reported using this technique (Fromm et al., 1986). More recently, a report 

demonstrating expression of an introduced nptll gene in plants regenerated from 

electroporated maize protoplasts has been published (Rhodes et al., 1988). 

The ability of Agrobacterium tumefaciens to tn+ttjnxte- stakljpart of a large 

tumour inducing plasmid into the plant genome during infection has resulted in 

the development of a number of vectors based on these plasmids. Transformation 

of plants using Ti-plasmid vectors is the simplest method currently available to 

introduce foreign genes into dicotyledonous plants. There are very few reports of 

successful transformation of monocotyledonous plants with Agrobacterium tume

faciens, although opine production has been detected following A. tumefaciens 

infection in certain species, including two members of the Lilaceae and Amarylli-

dacae families (Hooykaas-Van Slogteren et al., 1984), Asparagus (Hernalsteens et 

al., 1984), maize (Graves and Goldman, 1986a), Gladiolus (Graves and Goldman, 

1986b) and sugar cane (Schafer et al., 1987). 



Constitutive and light-regulated plant genes have been studied in callus tissue 

induced by oncogenic Ti-plasmid vectors, which rapidly produce assayable tumour 

mass. However, with more tightly regulated genes the results have sometimes been 

conflicting and organ-specific expression has necessitated the development of T i -

plasmids in which the genes coding for hormone biosynthesis, on the transferred 

portion of the Ti-plasmid (the T - D N A ) , have been deleted. Plant tissues trans

formed by these plasmids, known as disarmed vectors, have a normal hormone 

balance and allow the regeneration of phenotypically normal plants of some plant 

species. The most commonly used hosts include tobacco and petunia. 

1.2.1 Development and biochemistry of T i - p l a s m i d vectors 

The ability of Agrobacterium tumefaciens strains carrying a tumour inducing 

(Ti)-plasmid (Van Larebeke et. al., 1974; Watson et. al., 1975; reviewed by Bevan 

and Chilton, 1982) to transfer a specific portion of the plasmid, known as the T -

DNA, to the plant genome (Chilton et. al., 1977; Chilton et. al., 1978; reviewed 

by Nester et al., 1984), has resulted in the development of a range of vectors which 

utilise this phenomenon (Klee et al., 1987). 

The appearance of a tumour following infection with an Agrobacterium tume

faciens strain occurs because of the synthesis by the infected tissue of plant growth 

substances which lead to the disorganised tissue growth observed (Schroder et al., 

1983; Thomashow et al., 1984; Thomashow et al., 1986). At this stage the inciting 

bacteria are no longer required because of the stable transfer of the T - D N A to 

the plant genome which encodes the genes responsible for the auxin and cytokinin 

synthesis pathways under the control of sequences recognised by the plant R N A 

polymerases. 

Additionally, the T - D N A encodes genes for the synthesis of opines, for ex

ample nopaline synthase or octopine synthase, which can be metabolised only by 

the inciting bacterium and other nopaline or octopine strains, respectively. The 

appearance of these opines has been used as a marker for the integration of the T -
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DNA, especially where the genes encoding the phytohormones have been deleted 

in order to regenerate phenotypically normal plants. 

In tumour tissues the T - D N A transcripts, which are not expressed in the 

bacterial cell, account for approximately 0.001% of the polyadenylated R N A 

(Willmitzer et al., 1982). In most vectors the insertion of a gene coding for 

antibiotic resistance within the T - D N A allows the selection of transformed tissue 

in culture. 

The near-perfect 25 bp repeats that flank the T - D N A (Zambryski et al., 1982; 

Wang et al., 1984) are recognised by a site-specific endonuclease encoded by the 

virD operon, which generates a single-stranded intermediate (Stachel and Zam

bryski, 1986; Yanofsky et al., 1986). The orientation of the right border specifies 

the direction of the T - D N A transfer and deletion of these repeats abolishes trans

fer (Shaw et al., 1984b; Wang et al., 1984). The remainder of the T-DNA is not 

required, and vectors in which the T - D N A has been replaced by foreign genes, 

including a selectable marker gene, have been developed flanked by the essential 

border sequences. 

The vir genes (Klee et al., 1983; Horsch et al., 1986), which are involved in 

this transfer event, are located in another portion of the Ti-plasmid. They are not 
r* 

cotransfered and are functional when present in trans on a separate replicon as 
A 

part of a binary system (Hoekema et al., 1983). The vir region comprises at least 

six operons which encode a number of functions of the T - D N A transfer process, 

including the original chemotactic response (Ashby et al., 1987; Shaw et al., 1988) 

and the induction of vir genes in response to plant exudates (Stachel et al., 1985; 

Stachel and Zambryski, 1986). 

Another locus, overdrive, located just outside of the flanking repeats of the 

T-DNA, has been identified} thi'S increases the efficiency of T-DNA transfer (Per-

alta et al., 1986) but fortuitously most vectors possess this fragment although 

transformation has been achieved when this region is absent. 



1.2.2 Cointegrating vectors 

This approach uses homology between sequences of a resident Ti-plasmid with 

an intermediate vector to introduce novel genes within the T - D N A region. The 

intermediate vector is capable of replication in E.coli and the original gene ma

nipulations are carried out in this vector which, being much smaller than the 

Ti-plasmids, is more easily handled and may possess one or more unique restric

tion sites. 

The intermediate vector may be unable to replicate in A. tumefaciens, which 

allows direct selection of integration by the ability of the Agrobacteria to grow on 

an antibiotic specified by the integrating vector, or alternatively may have a broad 

host range allowing it to replicate in both E.coli and Agrobacterium tumefaciens. 

The requirement for homology means that the vector will be capable of integrating 

into only one or a few specific Ti-plasmids which may limit host range (De Cleene 

and De Ley, 1976). In reports of successful transformation using these vectors, 

the majority of plants had only a single copy of the gene of interest (Spielmann 

and Simpson, 1987). 

Zambryski and coworkers (1983) have developed a cointegrating vector based 

on the disarmed Agrobacterium Ti-plasmid pGV3850. The phytohormone genes 

have been replaced by pBR322 sequence, which allows any plasmid with homol

ogous sequences to cointegrate. The Ti-plasmid provides the border sequences, 

a nopaline synthase gene and the vir functions. Cointegration with the pBR322 

sequences places the integrated vector within the T - D N A region which will be 

cotransfered with the nopaline synthase gene, allowing easy identification of plant 

transformants. 

Cointegrating vectors which also contain a selectable marker have been devel

oped, for example the pLGVneol l03 vector which contains a single Eco R I site 

and a nptll gene fused to the nos promoter to code for kanamycin resistance in 

the transformed plant tissue (Herrera-Estrella et ai, 1984). An oncogenic variant, 

8 



pGV3851 has been constructed (Zambryski et al., 1984) containing a smaller inter

nal T - D N A deletion and retaining the tmr gene which generates a phytohormone 

independent shooty phenotype to enable easy identification of transformants. 

The integrative vectors described by Rogers et al. (1986), such as pMON200, 

possesses an intact nopaline synthase gene, a multilinker for easy insertion of 

DNA fragments and an npfll gene under the control of nos flanking sequences. 

In addition, pMON200 contains a nopaline border sequence and a small por

tion of the octopine-type T - D N A , referred to as the Limited Internal Homology 

(LIH) . The latter sequence allows recombination with octopine Ti-plasmids, such 

as pTiB6S3E in which the phytohormone genes have been removed. The T i -

plasmid vector contains the Ti left border and following the integration event, 

the left and right hand border sequences are correctly reconstructed flanking the 

genes of interest. This approach is known as the S E V (split end vectors) system 

(Fraley et al. 1985). 

A transmission frequency for pBR322 based replicons from E.coli to Agrobac-

terium tumefaciens of 4.5 x 10~3 has been reported by Van Haute et al. (1983) 

and a frequency of 2 x 10~2 observed by Zambryski et al. (1983) for the recom

bination event with the homologous Ti-plasmid. The cointegrating vectors are 

small, easily manipulated and readily maintained in both the E.coli host and, 

once stably integrated in the Ti-plasmid, the Agrobacterium strain. There is also 

some evidence that efficiency of plant transformation may be higher with a coin

tegrating vector than a binary system (Zambryski et al., 1984; McCormick et al., 

1986). 

1.2.3 Binary vectors 

Binary vectors exploit the observation that the vir region and the T-DNA can 

be physically separated on two plasmid replicons within an Agrobacterium host, 

without affecting the transfer of the T-region (de Frammond et al., 1983; Hoekema 

et al., 1983). This approach was first developed by Hoekema and co-workers (1983) 

9 



using pLA4404, a derivative of the octopine type Ti-plasmid pTiAch5, to provide 

the virulence functions in the transformation strategy. The binary vectors can be 

used with a disarmed Ti-plasmid or with a wild-type Ti-plasmid which may be 

useful in extending the host range of the vectors. The shuttle vectors tend to be 

less stable in the Agrobacterium host than the wild-type Ti-plasmids and require 

antibiotic selection for their maintenance. 

An et ah, (1985) constructed a number of shuttle vectors with a range of useful 

characteristics including: i) a nos-nptll gene; ii) the C o l E l replicon; iii) the cos 

site of phage A; iv) T - D N A border sequences; and v) a broad-host range replicon. 

The transformation of a range of plant species including tobacco, potato, tomato 

and Arabidopsis thalianahas been achieved using these vectors (An et <xl., 1986b), 

although a wild-type Ti-plasmid was required for Arabidopsis transformation. 

Similarly, the development of a number of binary vectors was reported by 

Bevan (1984), using the vir functions of pAL4404 to transfer the T - D N A from 

the shuttle vectors. One vector, pBIN6 contains a nos-nptll fusion as a selectable 

marker in plant tissues, a prokaryote kanamycin resistance gene and single re

striction sites for Sal I and Eco R I . This vector also contains the left and right 

border sequences and a nopaline synthase gene. However, at 15 kb it is too large 

for efficient blunt end ligation and a derivative, pBIN19, of 10 kb was also con

structed. To obtain the smaller vector the nopaline synthase gene was removed 

and unwanted T-DNA sequences were deleted with 5a/31. In addition, a 440bp 

Haell fragment from Ml3mpl9, containing sites for Eco R I , Barn HI, Hindlll, 

Sstl, Kpnl, Smal, Xbal and Sail, was inserted 80bp from the left border within 

the T-DNA. This also allows the presence of an insertion in this region to be 

distinguished using X-gal. 

1.3 R E P O R T E R G E N E S 

Although, there have been numerous reports of the introduction of various 

plant genes under the control of their own regulatory sequences in heterologous 
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systems, the use of reporter genes allows the study of gene regulation in a homol

ogous system. The enzyme activities encoded by these marker genes allows low 

levels of gene transcription to be detected where there is not an endogenous enzy

matic activity. Although most plant species can be transformed using direct DNA 

transfer or Ti-plasmid vectors, the regeneration of fertile plants from transformed 

tissue of some commercial crop species has been less successful. The regeneration 

of transformed pea tissue has only very recently been achieved (Puonti-Kaerlas 

et. al., 1990). 

One of the earliest reporter genes used in transformed plants was octopine 

synthase (De Greve et al., 1982). The opine product of octopine or nopaline 

synthase activity can be easily detected by the method of Otten and Schilperoort 

(1978). Originally used as the entire gene to register successful integration of the 
octopine s jn+hose 

T-DNA, A has also been used in chimaeric constructions with the coding region 

under the control of various putative promoter sequences in a number of expression 

cassettes (Herrera-Estrella et al., 1983b; Jones et al., 1985). Octopine synthase 

is not functional following amino terminal fusions, which limits its usefulness in 

some systems (Jones et al., 1985). 

Nopaline synthase activity has been successfully used as an indicator of gene 

expression by a number of workers (Depicker et al., 1982; Bevan et al., 1983a; Hep

burn et al., 1983; Willmitzer et al., 1983; Shaw et al., 1984a; Jones et al., 1985). 

The assay is quick and does not employ expensive and potentially hazardous ra

diochemicals. The detection of the opine product in tumours transformed with 

vectors carrying various promoter deletions of the nos gene was used to map the 

nopaline synthase promoter (Shaw et al., 1984a). It has been used, fused to 

a rubisco small subunit promoter fragment from soybean, to demonstrate light-

inducible enzyme activity in a distantly related plant, Kalanchoe daigremontiana 

(Shaw et al., 1986). These authors have also reported that the nopaline assay is 

20-100 times more sensitive than dot-blot analysis of R N A (Shaw et al., 1986). 

When this study was initiated, the nopaline synthase assay system was well char-
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acterised, shown to be sensitive, easy to carry out and suitable vectors were avail

able. 

More recently a number of other reporter genes have been employed. The bac

terial genes chloramphenicol acetyl transferase and neomycin phosphotransferase 

encode enzymes that are not normally found in plant tissues, although competing 

enzyme reactions from endogenous esterases, phosphatases and transferase can 

limit sensitivity. However, a number of plant promoters have been investigated 

using chimaeric fusions with these genes (see section 1.4; Bevan et al., 1983b; Fra-

ley et al., 1983; Herrera-Estrella et al., 1983a,b) despite the assays being relatively 

expensive and tedious to perform. 

Chloramphenicol acetyltransferase has been widely used as a reporter of gene 

expression directed by fused prokaryote, animal and plant promoter sequences. A 

radiolabeled enzyme assay in the presence of plant extracts detects the conversion 

of [1 4C]-chloramphenicol to its 1,3 and 1-3 acetylated derivatives. This results in 

altered mobility of the inactivated antibiotic, as detected by thin layer chromo-

tography, when this gene is expressed. Certain plant extracts contain inhibitors of 

the enzyme which can be partially overcome by the addition of ascorbic acid and 

L-cysteine and others may have non-specific acetylases giving a high background 

signal in untransformed tissues. 

The ability of the Tn5 gene, neomycin phosphotransferase, to phosphor^jio-^e 

Specifically aminoglycoside antibiotics such as kanamycin and G418 has allowed 

both direct selection of plant tissues transformed with this gene and the develop

ment of an assay to monitor its activity. The detection of this gene activity in 

transformed plant cells was first carried out by Herrera-Estrella et al. (1983b). 

The nptll gene retains enzyme activity when fused to an amino terminal peptide 

and has been used to study the effect of putative signal peptides on organelle 

transport (De Block et al., 1985). An assay system has been developed using 3 2 P 

labelled A T P as a substrate which allows autoradiography to be used to detect 

the phosphorylation reaction (Reiss et al., 1984). This assay is expensive but it 
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can detect as little as lng of active enzyme and demonstrate changes in the size 

of the enzymatically active proteins (Lichtenstein and Draper, 1984). 

Other reporter genes have also been investigated. The luciferase reaction 

can generate m-Jenest1^ results in transgenic plants (Ow et al., 1986) but the 

enzyme is not stable and difficult to assay accurately (DeLuca and McElroy, 1978). 

However, the development of an assay to detect enzyme activity from fusions with 

the coding region of the 0- glucuronidase (GUS) gene was reported by Jefferson 

and co-workers (1987) and has been widely used (for recent examples see Benfey 

et. al., 1990; Gordon-Kamm, et. al., 1990; Ohl, et. al., 1990; Schmid, et. al., 

1990; Szabados, et. al., 1990; Thomas and Flavell, 1990). This does not appear to 

have the same problems as /3- galactosidase, which suffers from high endogenous 

levels in some plant tissues (Helmer et al., 1984) although this is not true for 

all tissues studied (Plegt and Bino, 1989). The enzyme is functional following 

amino terminal fusions, can be detected using a range of commercially available 

spectrophotometric, fluorimetric, and histochemical subtrates, and is relatively 
clod.. 

stable (Jefferson^ 1987). 

1.4 P L A N T G E N E E X P R E S S I O N 

1.4.1 Eukaryote gene expression 

In 1984, when this investigation started, there was little information available 

on those sequences which were functionally significant for plant gene regulation. 

In other eukaryote systems a number of common motifs of similar sequence had 

been identified upstream of the start of transcription. One of these, the promoter 

sequence called the 'TATA' box (Breathnach and Chambon, 1981) appear to 

be essential for the precise localisation of the transcription initiation site. A 

conserved ' C A A T ' box (Benoist et al., 1980), required for the expression of many 

animal genes (Corden et al., 1980; Hentschel and Birnstiel, 1981; Grosveld et al., 

1981; Tsai et al., 1981; Tokunaga et al., 1984), had also been identified. 

Similar sequences have been identified in the 5' region of plant genes that have 
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been sequenced (Messing et al., 1983; Heidecker and Messing, 1987). 

A n element called an ' A G G A ' box was identified (Messing et al., 1983) in 

addition, or instead of, the C A A T box in some plant genes, although whether this 

is functionally significant is unclear. 

Differences in codon usage between animal and plant genes have also been 

noted (Lycett et al., 1983a, Lutcke et al., 1987). There is more variability in the 

conserved sequences in the 3' untranslated region (Lycett et al., 1983a) compared 

to animal genes and experiments have shown that animal gene polyadenylation 

signals are not properly recognised by plant cells (Hunt et al., 1987). 

The diverse pattern of eukaryote gene expression, both spatial and temporal, 

requires that many genes possess additional regulatory elements which modulate 

the level, tissue-specificity or developmental stage of expression. Some authors 

have proposed a tripartite structure for a functional promoter (Grosschedl and 

Birnstiel, 1980), comprising an initiator, selector and modulator elements. An 

initiator sequence proximal to the start of transcription ( 'TATA' and ' C A A T ' 

boxes) controls accurate initiation of transcripts but the tissue in which the gene is 

active may be controlled by an element upstream, the selector. Similar sequences 

may also respond to the environmental state in which expression of the gene 

occurs. The activity of the promoter may be modulated by an enhancer which 

influences the level of expression and may be tissue-specific (Voss et al., 1986) or 

more general in action and largely independent of location or orientation on the 

same piece of DNA. 

These cis-acting promoter elements are thought to act by interaction with 

frans-acting transcription factors (Dyan and Tjian, 1985), sequence-specific DNA-

binding proteins such as the Spl factor, found in mammalian cells and required 

for SV40 transcription. Some experimental results suggest that these regulatory 

sequences act cooperatively to produce the particular pattern of expression of 

their associated gene, via interactions of their specific binding proteins (Garcia et 

al., 1986; McKnight and Tjian, 1986; Schvile et al., 1988). Although in some cases 
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the specific DNA binding proteins have been shown to be ubiquitous, being found 

in ceil types or under environmental conditions in which the gene is inactive, post-

translational modification of these factors may be involved in their regulatory role 

(Maniatis et al., 1987). 

The factor that binds the T A T A sequence, designated T F I I D , has been isolated 

from a number of eukaryote organisms and shown to possess conserved amino acids 

in the C-terminal region (reviewed by Latchman, 1990; Lewin, 1990; Ptashne and 

Gann, 1990). Binding of this factor to the T A T A box causes a conformational 

change which facilitates the binding of other factors such as T F I I C , T F I I E and 

RNA polymerase to form a stable transcription complex. Two cDNA clones for 

T F I I D have been identified in Arabidopsis thaliana (Gasch et. al., 1990). In 

addition, the use of sequence-specific DNA affinity chromotography has been used 

to isolate DNA binding proteins which bind the C C A A T motif found in many 

animal genes (Cohen et al., 1986; Jones et al., 1987). 

Many of these trans acting factors have now been shown to conform to three 

protein structural types (reviewed in Johnson and McKnight, 1989). The first of 

these is called the helix-turn-helix motif in which two a-helixes are separated by a 

sharp beta turn. These proteins bind as dimers to DNA sequences showing dyad 

symmetry, one a-helix of each protein interacting with the specific recognition 

sequence situated in the major groove of the DNA helix. Examples of this type of 

structure are found in the products of Drosophila homeotic genes and the mating 

type locus of Saccharomyces cerevisiae. 

A second type of DNA-binding protein identified is the zinc finger motif which 

is characterised by conserved cysteine and histidine residues which generate a loop 

structure within the protein molecule via the binding of a zinc ion. The first 

example of this arrangement was observed in the transcription factor I l i a from 

Xenopus laevis. A constitutive element of a pea light-inducible promoter has been 

shown to bind a protein factor, termed 3AF1, in a metal dependent manner. A 

tetramer of this element was used to screen a cDNA library and the deduced 
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protein product of a positive clone showed a putative zinc finger structure (Lam 

et. al., 1990). 

Another conserved structure has been noted in the transforming proteins Fos, 

Myc, Jun and the yeast regulatory protein GCN4. These proteins share a heptad 

array of leucine residues which are involved in the dimerization of these molecules 

and termed a leucine zipper. This arrangement is thought to bring an adjacent 

basic region of each protein in the dimer into direct contact with the DNA. This 

feature has been found in some plant regulatory proteins such as EmBP-1 which 

binds the A B A response element (Guiltinan et. al., 1990) and ASF-1 ( T G A l a ) 

which binds the motif T G A C G found in the promoters of nopaline synthase, 

wheat histone H3 and the 35S promoter of cauliflower mosaic virus (Katagiri et. 

al., 1989). 

Sequencing of related genes from plants has focused attention on certain con

served elements in the 5' region of the genes which may play a role in their regula

tion. Computer analysis of upstream sequences that are highly conserved between 

members of a gene family were implicated by Davidson and associates (1983) in 

the particular type of regulation of their associated genes, creating selection pres

sure against substitution or deletion of these nucleotides. Similarly, a more recent 

analysis of highly recurring sequence elements in eukaryotic DNAs has shown 

that these are often homologous to regulatory sequences or protein binding sites 

(Bodnar and Ward, 1987). 

Specific, conserved elements have been noted in the histone, globin, actin and 

glucocorticoid-responsive gene families in animals (Grosschedl et al., 1980; Dierks 

et al., 1983; Groner et al., 1984; Nudel et al., 1985) and the light-inducible and 

seed-specific gene families in plants (Baumlein et al., 1986; Brown et al., 1986; 

Coruzzi et al., 1986; Kuhlemeier et al., 1987b). Another example is the heat 

shock protein genes that are found in organisms as divergent as Drosophila (Pel-

ham, 1982), man (Wu et al., 1986) and soybean (Czarnecka et al., 1985; Schoffl 

et al., 1984) and shown to possess a distinctive sequence motif which is a protein 
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binding site in Drosphila (Wu, 1984). However, the binding of protein factors to 

specific DNA sequences may show a quite complex pattern. For example, Wein

berger and associates (1988) demonstrated that distinct factors bound apparently 

homologous sequences in the immunoglobulin heavy chain enhancer. Therefore it 

is not sufficient to simply identify homologous sequences because the exact context 

may play a significant role. 

An enhancer element was first identified in the DNA tumour virus SV40 

(Banerji et al., 1981) distinguished by the ability to stimulate expression of a 

gene independent of its position relative to the start of transcription in a variety 

of tissue types. Similarly, in the constitutively expressed octopine synthase gene, 

an element that can stimulate expression of heterologous plant promoters has been 

identified (Ellis et al., 1987a, 1987b). Enhancers associated with developmentally 

regulated genes expressed in a specific cell-type have been identified in the 5' flank

ing region and introns of the immunoglobulin gene families (Bergman et al., 1984; 

Voss et al., 1986) as well as within the structural genes of human a and f3 globin 

(Charnay et al., 1984). A light-responsive element in plants has been isolated from 

the upstream region of the small-subunit of ribulose-l,5-bisphosphate carboxylase 

which shows enhancer-like properties (Kuhlemeier et al., 1987b). However, the 

precise mechanism of action of enhancer elements is unclear but it has been pro

posed that there may be looping of the DNA (Ptashne, 1986) such that distant 

enhancer elements can interact with promoter sequences, presumably mediated 

by DNA-binding proteins. 

A number of animal genes were used to transform plant tissue when suitable 

plant genes were not available but expression of these genes was rarely detected. 

The genes included developmentally regulated genes e.g. rabbit /9-globin (Shaw 

et al., 1983) or chicken ovalbumin (Koncz et al., 1984), which are only expressed 

in one particular tissue-type in the animal system, so this is hardly surprising. 

However, these experiments did demonstrate the successful integration of foreign 

genes into the plant genome, usually employing Agrobacterium tumefaciens and 
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vectors derived from Ti-plasmids (see section 1.2). 

As most plant genes have been isolated from commercial species which are 

not readily transformed (most monocotyledonous species) or regenerated from 

transformed tissue (some dicots e.g. pea), functional analysis of domains impor

tant in the regulated expression of these genes has involved the transformation of 

more amenable species such as tobacco or petunia. In most cases the introduced 

genes have been correctly expressed in the introduced tissue but there is some 

evidence that monocot pre-mRNAs are not efficiently processed in tobacco (Keith 

and Chua, 1986). 

Chimaeric constructs of putative regulatory sequences with various marker 

genes, encoding a more readily detectable protein product have been employed (see 

section 1.3). These marker genes can increase the likelihood of detecting low levels 

of expression in a heterologous system and are particularly useful in homologous 

systems when reintroducing various promoter deletions of an endogenous gene 

product. 

In plants, the earliest genes to be studied were those showing a constitutive 

pattern of expression, allowing relatively rapid and simple analysis in callus tissue. 

The functional mapping of nopaline synthase (nos) was one of the earliest studies 

undertaken (Shaw et al. 1984a, An et al. 1986a). Although the gene does not 

occur naturally in plants, being introduced into the genome during infection with 

virulent Agrobacteria, it shows eukaryotic characteristics at the 5' end and is 

constitutively expressed in plant tissues. These constitutive promoters have been 

used to test implied enhancer action of isolated sequence elements(Si**pSov\, eJr.oJ 
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1.4.2 Constitutive plaut genes 

The ability to express consfci+u-Hvel^ a n antibiotic resistance gene in plant 

tissues has formed the basis of the selection of phenotypically normal trans

formed plant tissue. Previously, transformation had been identified by hormone-

independent growth following infection with oncogenic Ti-plasmid vectors, but the 

abnormal hormone levels prevented regeneration of whole plants in most cases. 

The study of constitutive plant promoters has allowed the development of chi-

maeric constructs in which these promoters drive the expression of bacterial an

tibiotic resistance genes (Bevan et al., 1983b). 

1.4.2.1 The genes of the T - D N A from Agrobsteterium tumefaciens 

Koncz and co-workers (1983), showed that the genes responsible for the syn

thesis of opines carried by Ti-plasmids had all the signals necessary for expression 

when transferred to plants during Agrobacterium infection. The nopaline synthase 

gene is expressed in all tissues examined in transformed tobacco (De Block et al., 

1984; Horsch et al., 1984). Similarly, the octopine synthase gene functions in tu

mours, leaves, roots, stem and seeds of tobacco (Otten et al., 1981). Analysis of 

the 5' flanking sequence of the nopaline synthase gene revealed sequences resem

bling the ' C A A T ' and 'TATA' boxes (Depicker et al., 1982, Bevan et al., 1983a). 

In contrast, the octopine synthase gene does not possess a recognisable ' C A A T ' 

box. 

Initial experiments demonstrated that sequences upstream of-261, relative to 

the cap site, were not required for nos expression (Koncz et al., 1983) and more 

detailed analysis by Shaw and co-workers (1984a) delineated a 88 bp fragment 

immediately upstream of the cap site, which includes the 'TATA' and ' C A A T ' 

boxes, sufficient for wild-type levels of nopaline synthase expression in Kalancho'e 

callus tissue. Deletion of the ' C A A T ' box from this sequence reduces the level of 

expression by an order of magnitude and removal of the ' T A T A ' box completely 

abolishes expression (Shaw et al., 1984a). 
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However, other workers (An et al., 1986a) using a bacterial gene, chloram

phenicol acetyl transferase ( C A T ) , to monitor expression from the nopaline syn

thase promoter have described an additional element beween -130 and -101 im

portant for nos promoter activity and showed some activity after deletion of the 

'TATA' box from the 3' end. These authors carried out both 3' and 5' deletions 

on chimaeric nos-CAT fusions and used a binary Ti-plasmid vector to generate 

transformed tobacco calli. The differences in the marker gene employed and the 

plant system used may be responsible for the conflicting patterns of expression 

observed. These authors have reported similar findings in transgenic tobacco and 

a transient expression system (Ebert et al., 1987) and demonstrated that dupli

cation of the upstream element tripled the promoter activity. The importance 

of sequences upstream of -100 is also shown by the work of Lam and co-workers 

(1990) in which binding of the tobacco nuclear factor, ASF-1 , to the region -138 

to -103, was shown. A synthetic tetramer of the region -131 to -111, designated 

nos-1, conferred leaf and root expression when fused to a truncated C a M V 35S 

promoter but not in a similar construction in which nucleotides within the two 

T G A C G motifs of nos-1 had been mutated. 

The nopaline synthase gene does show some differences in organ-specificity 

and developmental stage (An et al., 1988). Higher levels of expression are found 

in younger plants than older specimens. Recent work indicates that the nopaline 

synthase promoter can be induced by wounding, a response which is enhanced by 

auxin (An et. al., 1990). Examination of promoter deletions suggest that the 

important sequences for this response reside in the same region as nos-1. 

It has been shown that the octopine synthase gene requires sequences between 

-170 and -294 for expression in tobacco and sunflower (Konz et. al., 1983). Later 

work showed that fusion of an ocs promoter element 5' to a chimaeric Adh-l-CAT 

gene was essential for high levels of anaerobically-induced gene expression (Ellis 

et al., 1987a) in transgenic tobacco. Further analysis of this segment delineated a 

16 base pair palindrome, located at -193 to -178 , capable of enhancing expression 
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when placed either 3' or 5' of the Adh-l-CAT gene in a transient expression sys

tem (Ellis et al., 1987b). There is a homologous sequence in the flanking region 

of nopaline synthase gene in which 12/16 bases correspond and although this se

quence does not appear to act as enhancer (Ellis et al., 1987b), it lies in a 29 bp 

region (-130 to -101) identified by An et al. (1986a) as essential for nos expression. 

More recently it has been shown that the ocs enhancer can confer tissue-

specific expression on a gene construction consisting of the GUS coding region 

and the C a M V 35S T A T A box (Fromm et. al., 1989). G U S gene expression 

was detected in the root tip and the shoot apex of transgenic tobacco. These 

workers also showed that root-specific expression could be confered on the rbcS-

3A promoter when the ocs palindrome was inserted at -55 relative to the start of 

transcription. Using gel shift assays and competition experiments it was shown 

that the ocs enhancer binds activation sequence factor ( A S F ) - l , a factor from 

tobacco nuclear extracts that interacts with the as-1 element of the C a M V 35S 

promoter (Fromm et. al., 1989). Specific protein binding to the ocs element has 

also been found with maize nuclear extracts (Tokuhisa et. al., 1990). 

In the Ti-plasmid-encoded 780 gene, which is transcribed in crown gall tissue, 

Bruce and Gurley (1987) have identified an activator element located -440 to -229 

upstream of the transcription start site which leads to a 100-fold decrease in tran

scription when deleted. Removal of the T A T A element reduced promoter activity 

to < 0.1% of a cointegrated wild-type 780 gene and additional elements upstream 

have been indicated by some of the internal deletion experiments performed. 

1.4.2.2 The 19S and 35S proteins of the Cauliflower Mosaic Virus 

The domains of the promoter regions important for the constitutive expression 

of the two major transcripts from cauliflower mosaic virus (CaMV) have been 

characterised. The 35S promoter was active in all tissues examined in transgenic 

tobacco (Odell et al., 1985), shows no light-regulation (Fluhr and Chua, 1986) 

and is a stronger promoter than the nopaline synthase (Sanders et al., 1987) 
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or the 19S promoter (Lawton et al., 1987) in transgenic plants. High levels of 

expression are obtained with a 35S promoter fragment from -343 to -46 (Odell 

et al., 1985). Mutants deleted to -46, which still possess the T A T A motif, show 

low levels of correctly initiated transcripts in tobacco, although this is not the 

usual host for the virus (Odell et al., 1985). These authors have also shown that 

a region from -46 to -105, containing the ' C A A T ' box, an inverted repeat region 

and a sequence resembling the consensus core for enhancers in animal systems 

( G T G G A / T A / T A / T G ) , gave increased levels of transcription and appears to play 

an accessory role in increasing levels of transcription in conjunction with upstream 

sequences (Fang et. al., 1989). This more recent work has used an internal 

reference gene to standardize expression levels from different transgenic plants. It 

was shown that a 35S fragment (-209 to -46) could act as an enhancer to activate 

transcription from a heterologous T A T A box (Fang et. ah, 1989). 

DNA-footprinting studies have identified a region from -58 to -90 (as-1) in 

the 35S promoter which is protected by a protein factor present in leaf and root 

extracts from tobacco and pea (Lam et al., 1989). This factor, ASF-1, binds the 

sequence T G A C G in as-1 (activation sequence-1) but not mutated sequences. Mu

tations in the T G A C G motif of the promoter attenuates root and stem expression 

in transgenic tobacco. When the as-1 sequence is inserted into a light-regulated 

promoter expression was detected in roots with some increase in leaf expression. 

A second factor (ASF-2) which binds in the -100 region (as-2) of the 35S pro

moter has been identified in nuclear extracts from tobacco leaves but not roots 

and shown to confer leaf expression when a tetramer of this sequence was fused 

to a truncated 35S promoter (Lam and Chua, 1989). Although this sequence 

shows homology to a G A T A repeat conserved among several cab gene promters, 

the tetramer does not confer light-inducibility. 

A 0.4 kb DNA fragment containing the promoter domain of the 19S transcript 

is sufficient to promote constitutive expression of the nptll gene in transformed 

petunia cells using oncogenic and partially disarmed Ti-plasmids (Koziel et al., 
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1984). Similarly, by direct transfer to tobacco, a construct containing the coding 

region of nptll with the 5' and 3' signals from the 19S gene was shown to be func

tional (Potrykus et al., 1985a). An enhancer-like element at -100 to -40 relative 

to the transcription start site of the 19S gene has also been identified (Kuhlemeier 

et al., 1987b) using homologous and heterologous promoter fusions. 

1.4.3 Inducible plant genes 

Inducible plant genes have also been studied. In addition to the canonical 

promoter sequences found in plant genes, namely the TATA box and in some cases 

the CAAT sequence, additional sequences must be responsible for the induction 

of gene expression in response to environmental stimuli. Such elements have been 

identified in light-inducible and heat-inducible genes. Other plant genes have been 

investigated which require wounding or anaerobic conditions for expression. 

1.4.3.1 Light-inducible genes 

Transcription of many genes involved in photosynthesis is controlled by light 

(Tobin and Silverthorne, 1985; Ellis, 1986). This response is mediated by 

photoreceptors, the most thoroughly characterised in higher plants being phy-

tochrome. Phytochrome negatively regulates the expression of its own gene or 

genes (Colbert et al. 1983, 1985) and controls the genes encoding the small sub-

unit (rbcS) of ribulbse-l,5-bisphosphate carboxylase (Tobin, 1981; Thompson et 

al. 1983) and the chlorophyll a/b binding (cab) protein of the light-harvesting 

chlorophyll-protein complex (Apel, 1979; Tobin, 1981). 

A number of phytochrome-regulated genes studied showed different kinetics of 

accumulation of mRNA in response to a pulse of red light (Kaufman et al., 1987) 

which suggests that there must be other factors in the pathway from light pulse 

to gene expression which control the exact pattern of the response. The control of 

these light regulated genes is complex, for example, members of the pea rbcS gene 

family show different light responses, levels of accumulation and tissue specificity 
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(Kuhlemeier et al., 1987b). 

Less than 1 kb of 5' flanking region of a number of ribulose-l,5-bisphosphate 

carboxylase genes has proved sufficient to direct light-regulated and organ-specific 

expression (Broglie et al., 1984; Herrera-Estrella et al., 1984; Morrelli et al., 1985; 

Nagy et al., 1985; Timko et al., 1985; Fluhr et al., 1986a; Shaw et al., 1986). 

The major rbcS transcripts in mature green leaves of pea are modulated by both 

phytochrome and a blue-light receptor (Fluhr and Chua, 1986). This photoregu-

lation is maintained, together with leaf-specificity, when the genes, rbcS-ZA and 

rbcSSC, were transfered to petunia with 0.4 kb and 2 kb of upstream sequences, 

respectively (Fluhr and Chua, 1986). Similar rbcSSA promoter fragments are suf

ficient to confer light-inducibility and organ-specificity on a CAT fusion or when 

ligated to a truncated CaMV promoter (Fluhr et al., 1986a). Negative regulatory 

elements have been found in the 5' noncoding region (-50 to -169) of rbcS-SA 

which decrease the level of transcription in the dark (Kuhlemeier et. al., 1987a). 

A 58bp sequence in this region contains two regulatory elements, one of which 

is highly homologous to the SV40 core enhancer, and the other to an adenovirus 

enhancer and the constitutive part of the human interferon-/? gene enhancer. 

Pea rbcS-E9 and r6c5-SS3.6, together account for less than 7% of rubisco 

small-subunit transcripts in mature green leaves (Fluhr et al., 1986b). Rela

tively low levels of expression were observed in petunia calli transformed with 

a chimaeric rubisco-CKY construct containing 1 kb of upstream sequences from 

rbcS-E9 (Morelli et al., 1985) but normal levels of expression were observed with 

a 352 bp fragment in transgenic plants (Nagy et al., 1985). A smaller upstream 

fragment from rbcS-E9 (-317 to -82) is sufficient to direct light-inducible and 

leaf-specific expression (Fluhr et al., 1986a). 

Similarly, light-induction was obtained with a 900 bp fragment (-973 to -90) 

from the upstream region of the pea rbcS-SS3.6 gene in a callus system using 

nptll as a reporter gene (Timko et al., 1985). This element shows enhancer-like 

properties in that it functions independent of orientation but only when placed 
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5' of the reporter gene. Simpson et al., (1986b) were able to demonstrate light-

regulation with a similar 850 bp fragment from rbcS-SS3.6, but no phytochrome 

response. Specific protein binding has been demonstrated for a region spanning 

-574 to -433 to a factor from pea, designated AT-1 (Datta and Cashmore, 1989). 

These workers identified a 33bp sequence (-566 to -533) as the smallest fragment 

to form a protein-DNA complex with this factor. Inspection of this sequence has 

revealed two copies of an AT-rich element (the AT-1 box) which is also present 

in other light regulated genes, including pea rbcS-SA, tomato rbcS-ZA and the 

tobacco Cab E gene. The AT-rich fragments from tomato rbcS-SA and Cab E from 

Nicotiana plumbaginifolia were able to compete with the pea rbcS-3.6 promoter 

fragment (-574 to -433) for binding of AT-1. Phosphorylation of the AT-1 protein 

causes almost complete loss of activity which is consistent with the mechanism of 

regulation of some other regulatory proteins (Datta and Cashmore, 1989). 

A conserved promoter structure, involved in the light regulation of rubisco 

genes from highly diverged plant species, is also implied by the observation by 

Shaw and associates (1986). A 900 bp promoter fragment from soybean, a C3 

plant, was sufficient to drive light regulated expression of a marker gene in trans

formed Kalanchoe, a CAM (Crussulacean Acid Metabolism) plant, despite the 

inherent differences in the tissue-specific pattern of rubisco expression between 

these species (Edwards and Huber, 1981). Therefore it is not surprising that a 

comparison of the upstream regions of a number of rbcS genes from higher plants 

has revealed a consensus sequence G / A T G T G G / T C / T C A / T A T A T / A G in the -

140 region (Coruzzi et. al, 1984; Green et. al, 1987) called the G T motif. The 

13 bp motif in this region, found in a number of rbcS genes from pea, is completely 

conserved between rbcS-E9, rbcS-ZA, rbcS-ZC and rbcS-SS3.6. These sequences 

are highly similar to the enhancer motifs of SV40 and adenovirus (Kuhlemeier et. 

al, 1987b). 

Using the enhancer element from the CaMV 35S promoter and the CAT coding 

region (Kuhlemeier et al., 1987b), a light regulatory element (LRE) was identi-
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fied in a 58 bp fragment (from -168 to -110), which contains two sequence boxes 

conserved among members of the pea rbcS gene family. However, this activity 

could not be observed without the CaMV enhancer element, although a rubisco 

promoter fragment from -189 to -50 could mediate light induction of the CAT 

gene, suggesting there may be quantitative elements responsible for the level of 

expression in this larger fragment. Additional LREs have been indicated further 

upstream which allow light-induction in a tissue-specific manner when the con

served boxes in the -150 region are deleted (Kuhlemeier et al., 1987a). These 

authors have also shown binding of the upstream region of the rbc-ZA gene, but 

not the CaMV 35S promoter, to one or more protein factors present in nuclei from 

mature pea leaves (Green et al., 1987). In DNA foot-printing experiments two 

protected sites have been identified at -140 and -220 which contain the G T motif 

(Coruzzi et al., 1984). The protein factor which binds to these sites (also called 

boxes II and III) has been designated GT-1 (Green et al., 1987). In experiments 

in which these boxes were mutated, mutation of a single element was insufficient 

to produce a profound effect on expression (Kuhlemeier et al., 1988). 

Another conserved element, termed the G-box, which shows dyad symmetry 

and an inverted repeat, has been identified in the 5' region of 14 different rbcS 

genes from pea, tomato, tobacco, petunia, soybean and arabidopsis (Giuliano 

et. al., 1988). This sequence is recognised by a nuclear factor obtained from 

tomato and Arabidopsis thaliana seedlings, designated the G box binding factor 

(GBF). The protein factor is absent in root extracts but is present in extracts 

from dark-adapted plants (Giuliano et. al., 1988). The ABA response element in 

the promoter of the wheat Em gene also contains an element conforming to the 

G-box motif (Guiltinan et. al., 1990). 

The regulation of the chlorophyll a/b binding protein (cab) gene expression, 

which shows a similar pattern of regulation to the small subunit of rubisco has 

also been studied. Although, expression of a wheat rbcS gene could not be de

tected when transfered to tobacco (Keith and Chua, 1986), a wheat cab gene 
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showed light-regulated and organ-specific expression when used to generate trans

genic tobacco and petunia (Lamppa et al., 1985). An upstream fragment from 

-354 to -90 was shown to confer bi-directional enhancement, tissue-specificity and 

phytochrome control when ligated adjoining the 35S TATA box fused to the CAT 

gene (Kuhlemeier et al., 1987b). Further analysis of promoter deletions indicated 

that a L R E is located between -180 and -90. 

Simpson et al. (1986a) have shown that a 400 bp upstream fragment from 

the pea cab gene (AB&Q) was sufficient to promote light-inducible and tissue-

specific expression of a fused npt II coding region. Sequences further upstream 

have been shown to increase the level of expression of homologous chimaeric con

structs (Simpson et al., 1985). These authors have identified a fragment from 

-100 to -347 which is responsible for light-inducibility when placed in both ori

entations upstream of the homologous promoter, or the constitutively expressed 

nos promoter, fused to the npt II coding sequence (Simpson et al., 1986b). In 

the same constructs, this fragment was shown to have a silencer effect on the nos 

promoter, being sufficient to switch off expression of the formerly constitutive pro

moter in plant roots. Additionally, duplicate copies of this enhancer-like element 

were shown to have an additive effect on the level of induction by light. 

Another fight regulated gene that has been studied is phosphoenolpyruvate 

carboxylase from maize which accounts for about 10% of total soluble protein in 

green leaves. The expression of the gene is mediated by phytochrome. Sequencing 

of the 5' flanking region by Matsuoka and Minami (1989) has revealed a number 

of putative regulatory sequences including a G C box (Dyan and Tjian, 1985), 

six long GC-rich directly repeated sequences and an L R E (Grob and Stuber, 

1987). Later work has shown these GC-rich repeats to be a binding site for 

a protein factor found in nuclear extracts from green leaves but not etiolated 

leaves or roots (Kano-Murakami et. al., 1991). This factor, designated PEP-I, 

also binds a synthetic oligonucleotide, based on the consensus sequence of these 

repeats ( C C C T C T C C A C A T C C ) . Therefore it has been proposed that this factor 
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may be involved in the light regulation and tissue specificity. 

1.4.3.2 Heat shock protein genes 

Heat-shock proteins are a set of specific polypeptides, synthesized in response 

to environmental stress, which are highly conserved between animals and plants. 

These proteins are at least partly regulated at the transcriptional level and the 

characteristic heat-shock elements (HSE) found in the promoter region of animal 

heat-shock protein genes have been found in the equivalent plant genes by sequence 

comparison (Czarnecka et al., 1985; Schoffl and Baumann, 1985). 

A 457 bp upstream sequence from the Drosophila hsp70 gene was sufficient to 

direct heat-regulated expression of a fused bacterial reporter gene when introduced 

into tobacco calli (Spena et al., 1985) and in transgenic plants (Spena and Schell, 

1987). Similarly, a construct containing 1.1 kb of upstream sequences from a 

maize heat shock protein gene, which is highly homologous to the Drosophila 

gene, showed thermally induced expression in transgenic petunia (Rochester et 

al., 1986). 

Similar results have been obtained with a number of soybean heat shock pro

tein genes (Gurley et al., 1986). A soybean heat shock protein gene, hspYI.bE, 

with 3.25 kb of upstream flanking sequence, showed the expected heat induction 

of the mRN A in transgenic sunflower hypocotyls and tumour tissue at a level com

parable to the homologous system. However in sunflower tumours a basal level of 

expression was also observed with this construct at low temperatures (Gurley et 

al., 1986). Deletion downstream of —1175 bp increased the basal level observed 

in tumours and a further deletion to —95 bp reduced both the basal and induced 

level of expression. 

In a similar fashion, these authors transfered the soybean /is6871 gene with 

1 kb of 5' flanking sequence, which contains several copies of an element homol

ogous to that found in Drosophila heat shock genes, to sunflower and showed 

thermo-regulated transcription, although levels were significantly reduced in tu-
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mour tissue. However, Schoffi and co-workers (1986) have shown that the levels 

of induced native heat shock proteins in sunflower tumour tissue were also sig

nificantly reduced compared to other tissues. It has been reported that heat 

shock elements from soybean are sufficient, when placed upstream of a truncated 

35S promoter, to drive heat-induction in transgenic tobacco of a fused bacterial 

reporter gene (Kuhlemeier et al., 1987b). 

More recently heat shock protein genes from Arabidopsis thaliana were iso

lated and shown to possess multiple overlapping copies of HSE-like sequences 

(Takahashi and Komeda, 1989). These authors also demonstrated heat-inducible 

expression with 913 bp of 5' flanking sequences from one of these genes fused to 

GUS when introduced into petunia. 

1.4.3.3 Anaerobically-induced genes 

Another stress response that has been studied in some detail is the alcohol 

dehydrogenase (Adh) genes which are induced under anaerobic conditions. Com

parison of the flanking regions of Adh genes from maize and Arabidopsis thaliana 

has revealed that the only blocks of homology are located within the first 290 bp 

upstream of the transcription start site (Chang and Meyerowitz, 1986). A DNase-I 

hypersensitive site has also been detected at -40 to -100 under anaerobic condi

tions although another hypersensitive region, from -150 to -400, was present under 

non-induced conditions (Paul et al., 1987). 

In vivo genomic footprinting of Adh-1 from maize has revealed binding sites 

for possible regulatory molecules located at -100 to -108 and -186 to -190 in the 

induced state, and addition binding sites under normal conditions at -117 to -120 

and -138 to -145 (Ferl and Nick, 1987). The factor binding at the latter site was 

found to alter its binding characteristics when the gene was induced. Differences 

were found between maize Adh-1 and Adh-2, which both possess anaerobic re

sponsive elements (AREs). Later experiments using in vivo DMS footprinting 

showed that factor binding was constitutive for Adh-2 sequences (Paul and Ferl, 
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1991). 

In transformed maize protoplasts, 247 bp of upstream sequence from a ho

mologous Adh-1 gene is sufficient for anaerobic induction of a fused CAT gene 

(Howard et al., 1987) and linker scanning mutants have identified a 40 bp region 

capable of promoting anaerobic regulation of a heterologous promoter (Walker 

et ah, 1987). However, a heterologous enhancer is required for induction of the 

Arf/i-l/CAT fusion in transgenic tobacco (Ellis et al., 1987a). 

1.4.3.4 Other inducible genes 

The interaction of bacterial and plant genes in nodule formation has also been 

studied in depth and early- and late-induced nodulin genes identified in response 

to Rhizobium infection. Potential regulatory elements have been noted in the 

5' flanking region of three soybean genes, nodulin-2Z, nodulin-24 and leghaemo-

globin (Lbc^), induced early in infection (Mauro et al., 1985). Three conserved 

regions were revealed by sequence comparison, one of which, an octanucleotide 

( G T T T C C T ) was 100% homologous. 

Deletion analysis of the 5' and 3' flanking regions of the soybean leghaemoglobin 

Lbcz gene fused to CAT in transgenic Lotus corniculatus plants has shown a pos

itive regulator element at -1100 to -950 and a weaker element at -230 to -170 

(Stougaard et al., 1987). Nodule specific expression was confered by 37 bp located 

between -139 and -120 but deletions downstream of the gene did not identify any 

essential elements. 

Jensen et. al. (1988) identified a nuclear factor (now designated NAT2) iso

lated from soybean nodules that recognizes two AT rich sequences in the promoter 

of leghaemoglobin Lbc$ gene. Binding sites for this factor has also been found in 

the promoters from leghaemoglobin genes of the stem nodulating legume, Sesba-

nia rostrata (Metz et. al., 1988) and the soybean nodulin gene N23 (Jacobsen et. 

al., 1990). This more recent work has identified additional factors that bind AT 

rich sequences in the promoter region of the soybean nodulin N23 gene, NAT2 
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from roots and nodules and LAT1 in young leaves (Jacobsen et. al., 1990). 

Another type of inducible plant gene that has been studied is those activated 

by wounding. Induced expression of a potato proteinase inhibitor II gene has 

been observed in transgenic tobacco plants, on wounding or following treatment of 

detached leaves with oligosaccharides (Sanchez-Serrano et al., 1987). The induced 

gene expression was systemic, involving non-wounded leaves, stem and roots of the 

transgenic plants. This wound-inducible gene from potato, which is homologous 

to that found in tomato, was reported to require both 3' and 5' flanking sequences 

to confer wound induced expression of a fused CAT gene in transgenic tobacco 

(Thornburg et al., 1987), but more recent work has excluded the involvement of 

3' sequences (Keil et. al., 1990). Promoter deletions of this gene fused to CAT 

indicates that wound-inducibility requires sequences between -700 and -514 (Keil 

et. al., 1990). High levels of wound-inducible expression were observed when 

additional upstream sequences were present. Orientation-independent expression 

on wounding was observed with the promoter fragment -1300 to -195 fused to a 

truncated CaMV promoter (Keil et. al., 1990). 

1.4.4 Tissue-specific plant genes 

The sequences responsible for the tissue-specific expression of the small sub-

unit of ribulose bisphosphate carboxylase and chlorophyll a/b binding protein 

genes have already been described (section 1.4.3). Leaf, stem and tuber-specific 

genes from potato have been studied in both heterologous and homologous tissues. 

Other obvious candidates for study are the storage proteins which are synthesized 

in the seed, in either the endosperm or embryo tissues. Tissue-specific expression 

of introduced genes was demonstrated by using a 17 kb fragment of soybean ge

nomic DNA, containing a lectin gene and at least four nonseed genes, to transform 

tobacco, and subsequently detecting the various gene products in their expected 

tissues (Okamuro et al., 1986). 

In potato, the ability to regenerate transformed plants from this species, has 
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allowed the study of patatin and other potato genes in a homologous system. A 

leaf and stem specific gene, ST-LSl, requires only the sequences from -334 to 

+ 11 to direct leaf/stem specific and light-inducible expression of a fused CAT 

gene (Stockhaus et al., 1987). Enhancer-like properties have been attributed to 

an upstream fragment from ST-LSl (-98 to -675) which confers organ-specific 

expression in a head-to-head fusion with a minimal CaMV 35S promoter and the 

CAT coding region, which is not expressed in the absence of this fragment. Tuber 

specific expression of the patatin gene is confered by a 3.8 kb upstream fragment 

(Rosahl et al. 1987; Twell and Ooms, 1987) in both tobacco and potato. 

The seed storage proteins show both temporal and organ-specific gene expres

sion, accumulating in the developing seed at a predetermined time after pollination 

(Higgins, 1984). Although these genes are normally highly regulated, sunflower 

tumour tissues allowed expression of an introduced zein gene, resulting in de

tectable mRNA at low levels, but no observable protein accumulation (Matzke 

et al., 1984). Similarly, a phaseolin gene was correctly expressed and the protein 

product detected in sunflower tumours (Murai et al., 1983). These authors com

pared the levels of transcription of the introduced phaseolin gene with a chimaeric 

construct of the phaseolin coding region fused to the octopine synthase promoter. 

At 0.025% of the total poly.4+ RNA, the transcription level from the phaseolin 

promoter was very much lower than the level of 0.5% achieved with the octopine 

synthase promoter fused to the phaseolin coding region. 

A number of storage protein genes have been used to generate transgenic 

plants. In the seeds of regenerated tobacco, an introduced phaseolin gene, con

taining 863 bp of 5' and 1226 bp of 3' flanking DNA, was correctly transcribed to 

give comparable protein levels to that found in bean (Sengupta-Gopalan et al., 

1985). Phaseolin starts to accumulate 16 days after anthesis in both bean and 

transgenic tobacco, although the native tobacco storage proteins first appeared 

9 days after anthesis. Analysis of callus and seedlings showed significantly lower 

levels of phaseolin protein, approximately one thousandth of that found in seed. 
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Tobacco storage proteins are synthesized in both embryonic and endosperm tis

sues, but phaseolin was found only in the embryo, reflecting the localisation in 

bean seeds. However, some degradation of phaseolin into smaller peptides was 

observed. 

This phaseolin promoter fragment contains a region (-628 to -682) that binds 

nuclear proteins from immature bean cotyledons (Bustos et. al., 1989). The 

sequence of the protected region identified in foot-printing studies was found to 

contain two inverted A/T-rich motifs. Although fusion of 0.8 kb of the phaseolin 

promoter to a GUS reporter gene generated the correct spatial and temporal 

expression in transgenic tobacco, a different pattern was seen when the 55 bp 

fragment (-628 to -682) was fused to a minimal CaMV 35S promoter. This isolated 

fragment gave the strongest expression in roots and the timing of expression was 

altered. More recent work by these workers has revealed different regions involved 

in the spatial and temporal control of expression (Bustos et. al., 1991). A number 

of constructions were tested in both a transient assay in bean cotyledon protoplasts 

and transgenic tobacco. These authors defined two upstream activating sequences 

(UASl and UAS2) which direct tissue specificity. UAS1 (-295 to -109) gave seed-

specific expression, confined to the cotyledons and shoot meristem, when fused 

to both homologous and heterologous promoters. UAS2 (-468 to -391) extended 

the observed expression to the hypococotyl. Temporal control was shown to be 

generated by two negative regulatory sequences NRS1 (-391 to -295) and NRS2 

(-518 to -418) in combination with UASl. 

In contrast, transgenic petunia plants transformed with the gene coding for 

the alpha' subunit of /3-conglycinin from soybean showed organ-specific expression 

of the introduced gene but the timing followed that of the endogenous petunia 

proteins (Beachy et al., 1985). Analysis of 5' deletions has implicated sequences 

between -131 and -257 in the high level of organ-specific expression observed (Chen 

et al., 1986). A low level of correctly regulated expression with a -159 deletion, 

and complete loss of activity with a -69 deletion, were also shown. The tissue-
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specific region has enhancer-like properties, indicated by experiments in which this 

fragment was cloned at position -90 of the 35S CaMV promoter or downstream 

of the 3' non-coding region of a fused CAT gene, being sufficient to confer organ-

specific CAT gene expression (Chen et al., 1988). This conclusion is also suggested 

by experiments in which constructs, containing the a1 and 0 subunit genes in direct 

or convergent orientations, were used to transform petunia (Naito et. al., 1988). 

This comparison showed the greatest (3 subunit gene expression when the two 

promoters were in a divergent orientation, suggesting an influence of the a' gene 

promoter proximity on the other gene. 

Interestingly, when the coding region of the a' subunit gene was fused to a 

constitutive promoter (either the 19S or 35S promoter from cauliflower mosaic 

virus), a higher level of immunodetectable protein was observed in the seeds of 

transformed petunia compared to leaf or callus tissue. The higher level of the a' 

subunit polypeptide seen in seed tissues probably reflect protein stability rather 

than transcriptional activity in this experiment (Lawton et al., 1987). 

In legumin genes a 28 bp sequence has been identified (section 1.5.3) at be

tween 100 to 150 bp upstream of the mRNA cap site. In pea, the leg A gene 

with 1.2 kb of flanking sequence is sufficient to direct seed specific expression in 

transgenic tobacco (Ellis et al., 1988). Analysis of promoter deletions in trans

genic tobacco revealed that 549 bp of upstream sequence was required for seed-

specificity and temporal regulation (Shirsat et. al., 1989). Quantitative elements 

were identified in two additional upstream fragments from -549 to -833 and -833 to 

-1203. Subsequent experiments demonstrated pea seed nuclear proteins binding 

to the -549 promoter fragment but not to a smaller fragment which contained the 

'legumin ' box (Shirsat et. al., 1990). 

Expression of a legumin gene in transgenic tobacco has been obtained by 

Baiimlein and co-workers (1988) with 2.7 kb of the 5' flanking region of the LeB4 

gene from Vicia faba. Similarly, a 400 bp fragment from a helianthin gene, situated 

322 bp upstream of the transcription start site, when fused to a truncated CaMV 

35S promoter-GUS construct, enhanced GUS expression in transformed tobacco 

embryos (Jordano et. al., 1989). 
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Goldberg has identified a soybean embryo DNA binding protein of 60kd, which 

binds to the 5' region of a lectin and the Kunitz trypsin inhibitor gene but not non-

seed genes such as leghaemoglobin. (Jofuku et al., 1987). Using gel retardation 

and DNase I footprinting, two binding regions for this protein were identified 

upstream of the lectin gene (within a region from -77 to -217) with a common 

seven-nucleotide core motif of 5' ATTA/TAAT 3', which is also found in the 5' 

flanking region of the Kunitz trypsin inhibitors, K T i 1 and K T i 2. These authors 

also reported experiments which indicated that only 0.5 kb of lectin 5' sequence 

and 0.4 kb of K T i 2 5' flanking sequences were required to program gene expression 

in developing tobacco seeds. 

Expression of zein proteins has been achieved at a low level in tumour tissues 

(Goldsbrough et al., 1986; Matzke et al., 1984; Kuhlemeier et al., 1987b). Sub

sequent experiments using sunflower tumour tissues or carrot protoplasts have 

identified an upstream sequence of a 19 kd zein gene from -337 to -125, which 

contains five regions that share homology with the SV40 enhancer core sequence. 

These sequences are required for maximal expression of a fused CAT gene, with 

only very low levels of transcription observed with a minimal promoter fragment 

containing only the CAAT and TATA boxes (Roussell et al., 1988). 

The 5' flanking sequence of a B-hordein gene (Marris et al., 1988), and the 

upstream sequences of wheat LMW and HMW glutenin genes (Colot et al., 1987), 

are sufficient to promote endosperm-specific expression of a fused CAT gene in 

transgenic tobacco. A deletion series of the LMW sequence identified a region 

between 326 bp and 160 bp upstream of the transcription start site essential for 

this pattern of activity (Colot et al., 1987). 

Conserved sequence motifs have been identified in the 5' region of certain gene 

families of monocot storage proteins. A sequence that is conserved between the 

prolamin genes of barley, wheat and maize located at around 300 bp upstream 

of the ATG codon, which has not been found in other cereal genes (Forde et 

al., 1985), has been described. A 15 nucleotide motif, which overlaps with the 
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sequence described by Forde et al., (1985), present in all zein genes examined 

(Brown et al., 1986), binds a nuclear protein factor from maize endosperm (Maier 

et al., 1987). This sequence is also found in the maize sucrose synthase gene which 

displays a similar pattern of expression in the endosperm (Werr et al., 1985) as 

zein genes. Additionally, there is some preliminary evidence that protein factors 

from barley nuclei bind with high specificity to the 5' flanking region of a B hordein 

gene (Kreis et al., 1987). 

In rice, the promoter (-677 to -45) of a glutelin gene has been shown to possess 

multiple binding sites for nuclear factors from immature rice seeds (Kim and Wu, 

1990; Takaiwa and Oono, 1990), using gel retardation and DNase-I footprinting. 

Two of the binding sites identified contain the motif T G A G T C A which is known 

to bind the transcription factors jun and GCN4 (Curran and Franza, 1988). This 

binding site is also found in the -300 element of various seed storage proteins of 

wheat and barley (Forde et. al., 1985). 

A different approach to the identification of elements essential for gene ex

pression is the comparison of conventional mutants, which do not express the 

gene of interest, with the wild-type. The production of mutants which has gener

ated information in bacterial systems is not usually applicable to plants because 

of their much larger and often polyploid genomes, multiple gene families and 

1 non-functional DNA.' However, comparisons of the 5' region of alleles from the 
of- PUASCoi*^ V u l^aAi 

wild-type plant and a cultivar showing altered levels of phytohaemaglutinin genes 
A 

has revealed deletions which appear to cause the reduced levels observed (Voelker 

et al., 1986). The sequence of four phytohaemagglutinin genes were nearly identi

cal from -400 to 100 bp downstream of the stop codon. In one of the genes, d/ec2, 

a deletion just upstream of the TATA box (-40 to -200 upstream of the ATG 

codon) was identified but the gene was fully active suggesting that this region is 

not essential. In the Pinto mutant the Pdlec2 gene had an apparent deletion in 

the -250 to -360 region, which in the other alleles consisted of a direct repeat of 

55 nucleotides with stretches of palindromic T G C A repeats, and which may ac-
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count for the weak expression of this gene during seed development. It has been 

demonstrated that the differences in expression of these alleles are maintained in 

transgenic tobacco (Voelker et al., 1987). 

1.5 P E A S T O R A G E P R O T E I N S 

The most common seed storage proteins found in dicotyledonous plants are 

the globulins, defined by their solubility in salt at neutral pH (Osborne, 1924). Al

though most monocotyledonous plants have prolamins as their predominant seed 

storage protein, many also contain a globulin fraction. The globulin component 

of proteins found in legumes are divided into two different size classes, 7S and 12S 

(Danielsson, 1949). Reflecting their function as a source of nitrogen for the devel

oping seedling, plant storage proteins show relative abundance of the amino acids, 

asparagine, glutamine, and arginine or proline (Spencer, 1984). 5o>e 

amino acids are poorly represented and the protein of pea seeds, in common 

with that of many legume grains, is limited in its nutritional suitability for man 

and other monogastric animals by its low content of the sulphur-containing es

sential amino acids, methionine and cysteine (Higgins, 1984). In cereal grains the 

content of lysine in the seed proteins is the limiting essential amino acid (Shewry 

et al., 1981), although high lysine maize strains have been obtained using conven

tional plant breeding techniques (Mertz et al., 1964; Nelson et al., 1965). 

The two major groups of storage protein in pea are the vicilins and legu-

mins, distinguishable by differing salt-solubility, heat coagulation of the former 

and sedimentation coefficients of 7S and 12S, respectively (Derbyshire et al., 

1976). Additionally, legumin can be distinguished by the absence of any asso

ciated carbohydrate (Gatehouse et al., 1980), in contrast to the glycoprotein, 

vicilin (Derbyshire et al., 1976). Legumins are relatively sulphur-rich, containing 

more methionine and cysteine than vicilins. Considerable variation in the content 

of sulphur-containing amino acids from legumins from different pea strains has 

been reported (Casey and Short, 1981). Additionally, different pea cultivars have 
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been shown to possess considerable variation in the ratio of vicilin to the relatively 

sulphur-rich legumin component, of between 0.5 - 4.0 (Croy and Gatehouse, 1985). 

It has therefore been considered that an increase in the proportion of legumin to 

vicilin would be a desirable objective in the breeding of pea seeds with increased 

nutritional quality. 

1.5.1 Structure and synthesis of legumin proteins. 

Legumin occurs in the seeds of many of the Leguminosae (Derbyshire et al., 

1976) including peas, broad beans (Wright and Boulter, 1974; Croy et al., 1979) 

and soybean (Neilsen, 1984). Homologous 12S proteins have also been found in 

pumpkin, sunflower rapeseed, rice and oats (Allen et. al., 1985; Casey et al., 

1986). Legumins derived from a number of leguminous plants have been shown 

to have a common hexameric structure, each monomer comprising an acidic and 

basic subunit covalently joined by a disulphide bond (Croy et al., 1979). 

Legumin proteins exhibit a lot of heterogeneity in both molecular weight and 

charge (Casey, 1979; Gatehouse et al., 1980; March et al., 1987). The technique 

of two-dimensional non-reducing/reducing gel electrophoresis in conjunction with 

isofocusing was used by Matta et al., (1981) to show the specificity of a and 

jS-subunit pairing. These authors estimated that Pisum legumin comprised at 

least 22 different a- and 11 different /^-polypeptides. The subunit pairs have been 

divided into 'major' and 'minor' legumin species (Casey et at, 1981; Matta et 

al., 1981) based on abundance. The 'minor' legumins have been further subdi

vided into 'big' (o-subunit 39-42,000 Kda) and 'small' (a-subunit < 25,000 Kda) 

legumins (Matta et al., 1981). 

The acidic and basic subunits are derived from a single translation product 

in peas as identified by in vitro translation studies (Croy et al., 1980) and the 

predicted sequence from cDNA clones (Croy et al., 1982; Domoney and Casey, 

1984). Similarly, legumin precursor molecules have been identified in other species 

including Vicia faba and Glycine max as well as in non-legumes such as oats 
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and rice (Croy and Gatehouse, 1985). At least three different types of legumin 

precursor have been identified in pea (Croy et al., 1980; Spencer and Higgins, 

1980) with Mr of between 60,000-65,000. A minor component of the legumin 

precursor molecules with a Mv of 80,000 has also been identified (Domoney and 

Casey, 1984). 

The storage proteins of pea are synthesized during the early phase of seed 

development and are sequestered in membrane bound structures called protein 

bodies (Pernollet, 1978). Hurkman and Beevers (1982) have shown that the stor

age proteins of pea cotyledons are synthesized exclusively by membrane-bound 

polysomes. Other workers (Chrispeels et al., 1982a) demonstrated in pulse-chase 

experiments that the newly synthesized storage protein accumulated transiently in 

the rough endoplasmic reticulum (ER) prior to transport to the Golgi and protein 

bodies. The subcellular localisation of the legumin mRNA was confirmed by in 

situ hybridization with biotinylated cDNA probes (Harris and Croy, 1986; Harris 

et. al., 1989). These protein bodies are thought to be of vacuolar origin in legumes 

(Craig et al., 1979) in contrast to those of cereals that are derived from the ER. 

The legumin precursors are assembled into 8S oligomers in the E R but proteolytic 

cleavage and final assembly of legumin probably takes place in the protein bodies 

approximately 1-2 hrs after their synthesis (Chrispeels et al., 1982b). In lupin 

the proteolytic cleavage of legumin-like molecules appears to be developmentally 

regulated as immature cotelydons are incapable of fully processing the precursor 

molecules (Johnson et al., 1985). 

1.5.2 Genetics and regulation of legumin synthesis. 

The globulin storage proteins are probably derived from two ancestral genes 

(Borroto and Dure, 1987), giving rise to the 7S and 12S fractions. Hence, legumin-

like molecules from different species show greater homology than the different 

globulin fractions from the same plant species. A number of related legumin 

proteins are produced in the developing seed, encoded by a small multigene family 
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of approximately ten members. Three genetic loci (Lg-1, Lg-2 and Lg-3) were 

proposed based on segregation of the subunits in crossing experiments carried out 

by Matta and Gatehouse (1982). 

In agreement with the three types of legumin precursor peptides identified 

(Croy et al., 1980), three classes of cDNA have been indicated by mRNA hybrid-

selection/translation experiments (Domoney and Casey, 1984) which are expressed 

at different times in the developing seed (Domoney and Casey, 1987). The hy

bridization patterns of these cDNAs to pea genomic DNA (Domoney and Casey, 

1985) has allowed the gene copy numbers of the three classes to be determined. 

Using plasmids pCD43, pCD40 and pCD32, gene copy numbers of 4-6, 2-3 and 

1-2, respectively, were estimated for the haploid genome. One class of legumin 

genes which hybridized with pCD43 sequences mapped close to the r locus on 

chromosome 7, corresponding to Lg-1 (Domoney et al., 1986). The r locus is 

associated with the characteristic of wrinkled or smooth seeds, increased levels 

of legumin being associated with the latter (Davies, 1980). The r locus is also 

associated with other aspects of metabolism e.g. starch biosynthesis. Another 

class (pCD40-related genes) mapped near to the a locus of chromosome 1 and a 

third class (pCD32-related genes) also showed linkage to this locus in one cross 

analysed (Domoney et al., 1986). The organisation of the legumin gene families 

in Pisum sativum L. is illustrated in Fig 1.1. 

The synthesis of storage protein in pea commences 9 days after flowering 

(d.a.f.) for vicilin and 10 d.a.f for legumin (Millerd and Spencer, 1974; Boul

ter, 1981). The accumulation of these storage proteins is essentially complete 22 

d.a.f. (Boulter, 1981; Gatehouse et al., 1982). This synthetic activity occurs after 

cell division during a phase of cell expansion (Dure, 1975) coincident with endo-

reduplication of the DNA within the developing cotyledon (Millerd and Spencer, 

1974). At this time there is an increase in the amount of mRNA transcription, 

but a reduction in the variety of sequences produced, resulting in a few highly ex

pressed mRNA species (Morten et al., 1983). The additional genomic DNA above 
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the 2C level does not appear to act as a template for RNA synthesis (Millerd and 

Spencer, 1974), possibly due to limitations on the available RNA polymerase II. 

By Northern blot analysis of pea seed poly>l+-RNA, Gatehouse et al. (1982) 

showed that the levels of legumin and vicilin mRNA species increased and de

creased in agreement with the estimated rates of synthesis of the respective polypep

tides. These authors could not detect any legumin mRNA in leaf poly.A+-RNA, 

the limits of detection being one thousandth that found in cotyledon poly>l+-RNA, 

demonstrating tissue-specific expression. Evans and associates (1984a) showed by 

'run-off' transcription from isolated cotyledon nuclei at various times after flower

ing, that the pattern of transcripts obtained reflected the synthesis of polypeptides 

during development. Together, these results suggest that regulation of storage 

protein synthesis in pea is primarily at the level of transcription. Some post-

transcriptional regulation is indicated in work by Thompson et. al., (1989) in 

which steady state mRNA levels and transcription rates of Leg A, Leg J and LegS 

during cotyledon development showed little correlation. Also at later stages of 

development, mRNA stability may play a regulatory role because continued pro

tein synthesis occurs despite declining mRNA transcription (Morton et ah, 1983). 

These authors presented evidence for a relatively long half-life, of >10 hrs, for 

some seed mRNAs (Morton et al., 1983). 

The levels of the various storage proteins of pea are modulated by various en

vironmental conditions. Under conditions of sulphur deficiency the relative levels 

of legumin are decreased but sulphur-poor vicilin is increased (Randall et al., 1979; 

Evans et al., 1985b). This regulation of storage protein production in response 

to environmental sulphur levels is thought to occur at both the transcriptional 

and post-transcriptional (i.e. stability of mRNA) level since legumin mRNA tran

scription is decreased by a smaller factor than the decrease in mRNA level (Beach 

et al., 1985; Evans et al., 1985b). When levels of potassium or phosphorus are 

limited the levels of legumin are increased (Randall et al., 1979). 
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Fig 1.1 Legumin gene families of Pisum sativum L. 
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1.5.3 Legumin gene structure 

A number of cDNAs for legumin genes have been isolated (Croy et al., 1982; 

Lycett et al., 1984b; Casey et al., 1986). Comparison of published protein se

quences with a cDNA isolated from developing pea cotyledons showed that the 

basic subunit was located at the 3' end of the legumin messenger RNA (Croy et 

al., 1982; Lycett et al., 1984b). These cDNAs have been used to isolate genomic 

clones from a A genomic library derived from Pisum sativum cv. 'Feltham First' 

(Lycett et al, 1984a). 

One genomic clone A Leg 1 contains two genes; one is leg A which appears 

to be functional and another in the same orientation, approximately 1.3 kb 3' 

from leg A, denoted ^/leg D, which is presumed to be a pseudogene (Lycett et al., 

1984a; Bown et al., 1985). The gene sequence of leg A shows strong homology 

to several previously sequenced cDNAs (Croy et al., 1982; Lycett et al., 1984b) 
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and complete homology with one particular cDNA clone, pDUB8. The predicted 

amino acid sequence of leg A agrees closely with the L3 subunit pair (Matta et al., 

1981) and also with the aM-subunit described by Casey et al. (1981) in a different 

pea strain. This indicates that the gene is transcriptionally active in vivo as well 

as in vitro, as demonstrated by Evans et al. (1985a) in a heterologous expression 

system. 

The leg A gene has been completely sequenced (Lycett et al., 1984a) and 

shown to contain three introns, two within the a-subunit coding region and one 

within the /3-subunit sequence. The boundary sequences obey the G T / A G rules 

(Breathnach and Chambon, 1981) and are in agreement with the plant concensus 

sequence identifed by Slightom et al. (1983). The intervening sequences are 

relatively short in length (88-99 bp), AT rich and at least two have been found in 

the leg C gene from pea which belongs to the same legumin gene family. Both 

the class I and class II glycinin genes contain three introns in analogous positions 

to those in leg A. (Fischer and Goldberg, 1982; Nielsen, 1984). The leg J gene 

sequence (Gatehouse et al., 1988) has only two introns but belongs to a different 

legumin sub-family (Casey et al., 1986). The same two-intron structure has been 

described by Wobus et al. (1986) for the type-B legumin from Vicia faba. 

Comparison of the predicted amino acid sequence of leg A (Lycett et al., 

1984a) with the amino acid sequence determined by Casey and associates (1981) 

for an a-subunit indicates that a short hydrophobic region extends beyond the 

N-terminu8 of the mature protein. This, together with evidence presented by in 

vitro translation studies (Spencer and Higgins, 1980), suggests that the 21 amino 

acid peptide functions as a signal peptide (Blobel and Dobberstein, 1975). Sim

ilarly, leg J possesses a 22 amino acid leader peptide (Gatehouse et al., 1988). 

A number of other legumin genes have been shown to possess a leader sequence: 

e.g. those from Vicia faba (Baumlein et al., 1986) and Glycine max (Turner et 

al., 1982). Leader sequences have been identified in other storage proteins of pea, 

one vicilin gene encodes a 15 amino acid hydrophobic signal sequence (Lycett et 
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al., 1983b) and another has a 27 amino acid leader sequence (Spencer, 1984). 

The leg A coding region gives a protein containing 5 cysteine residues and 4 

methionine residues (Lycett et al., 1984a) which places leg A towards the top of the 

range for sulphur amino acid content compared to other legumins from various 

pea strains (Casey and Short, 1981). A higher sulphur-amino acid content is 

desirable, so the leg A gene is a good candidate for genetic manipulation. The 

leg A gene contains three direct repeats near the C-terminal region of the acidic 

polypeptide (Lycett et al., 1984a; Evans et al., 1984b). These repeated sequences 

have also been found in leg C but not in leg J (Casey et al., 1986). The glycinin 

A5A4B3 gene, which is a class II gene showing homology with leg J , also has 

three copies of a repeated sequence in this region (Momma et al., 1985). There 

is significant homology between leg A and the pseudogene, Wleg D, but the latter 

contains in-frame stop codons, deletions and frame-shift errors and is not thought 

to be transcriptionally active (Bown et al., 1985). 

The transcription start site of leg A, determined by Si nuclease mapping 

(Lycett et al., 1984a), occurs 25 bp downstream of the TATA box within a se

quence ( C / T A T C / A ) identified at the start of other plant mRNAs (Vodkin et al., 

1983). The 5' region of the leg A gene contains promoter elements observed in 

other plant genes (Messing et al., 1983). Sequences showing homology with the 

'TATA' box are found at position -66 and a 'CAAT' box at -126 (Lycett et al., 

1984a) relative to the ATG codon. Immediately upstream of the 'CAAT' box, a 

motif, showing partial homology with the 'AGGA' box proposed for plant genes 

by Messing et al. (1983), has been identified (Lycett et al., 1984a). This overlaps a 

sequence conserved between all the legumin genes currently sequenced (Baumlein 

et al., 1986). 

The 5' sequences of a number of pea legumin genes have been compared and 

considerable homology observed in the region immediately upstream of the tran

scription start site (Lycett et al., 1985). The 5' region of leg A, leg B and leg C are 

identical for 300 bp upstream of the start codon and the pseudogene 9 leg D shows 
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homology up to -145, although the 'CAAT' box is significantly diverged (Bown 

et al., 1985). There is no recognisable 'CAAT' box in leg J although homology 

with a cDNA clone suggests that the gene is expressed (Gatehouse et al., 1988). 

In leg B and leg C, an additional 550 bp upstream shows homology, including an 

additional 'TATA' and 'CAAT' box in this region. The sequence upstream of 

-900 in leg B and leg C diverges, the later contains a sequence resembling a plant 

insertion sequence and designated Pisl (Shirsat, 1988). 

The genes of one legumin gene family, namely leg A, leg B and leg C contain 

a sequence 90% homologous to the SV40 enhancer core sequence (Weiher et al., 

1983) at -160 to -167 and another sequence 80% homologous to the adenovirus 

core enhancer (Hearing and Shenk, 1983) at -181. Analysis of the promotor region 

of a number of legumin genes from various sources has revealed a highly conserved 

sequence of at least 28 bp located approximately 100 bp upstream of each cap site 

(Baumlein et al. 1986). This sequence (Fig 1.2) has been named the 'legumin' 

box by these authors. The 'legumin' box has been found in the region of the 

'AGGA/CAAT' box in all the pea legumin genes currently sequenced, including 

the pseudogene Vleg D, as well as in the homologous region of the U S genes of 

Fig 1.2 Sequence conservation of legumin genes - the 'legumin' box 

LeB4 -110 T C C A T A G C C A T G C A T G C T G A A G A A T G T C -80 

Leg A GCTTCCATAGCCATGCA4GCTGC7AGAATGTC 

G l A G G C T T C C A T A G C C A T G C A T J I C T G A A G A A T G T C 

LeB4 is a functional B-type legumin gene from field bean (Vicia faba). Leg A 

and G l (clone DA28-30, Goldberg, R. and Sim, T.) are A-type legumin genes. 

Adapted from Baumlein et al., 1986. 
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soybean and field bean (Baumlein et al., 1986). Homologous sequences have not 

been found in other plant storage protein genes including representatives of the 

prolamin class (e.g. zein, gliadin) or in the 7S globulins (e.g. vicilin, phaseolin). 

This sequence is highly specific for one class of storage proteins from divergent 

sources but no functional significance has been demonstrated, although a number 

of workers are currently investigating the problem by deletion analysis in trans

genic plants. 

Multiple polyadenylation signals have been identified in the 3' region of the 

leg A, \&leg D and leg J genes (Bown et al., 1985; Casey et al., 1986; Lycett et 

al., 1984b; Gatehouse et al., 1988) but these are not homologous. The leg A gene 

sequence has three sequences at the 3' end resembling polyadenylation signals, 

the second of which is followed by the sequence A T T T C A T G C . This is similar 

to the sequence found at the 3' end of many eukaryote messages (Benoist et al., 

1980), and close to a site of potential secondary structure (Lycett et al., 1984a). 

Indeed, polyadenylation is thought to occur approximately 19-20 bp downstream 

of the second sequence in agreement with the polyadenylated cDNAs sequenced 

which do not possess the third polyadenylation signal (Lycett et al., 1984a). 

1.6 A I M S O F T H E P R O J E C T 

The main aim of this project was the delineation of 5' flanking sequences 

responsible for the tissue and stage-specific pattern of expression of the legumin A 

gene from Pisum sativum L.. The modular nature of eukaryote promoters may 

also allow the modification of constitutive promoters by isolated elements to give a 

new pattern of expression. Identification of a seed-specific enhancer or a non-seed 

silencer sequence could potentially be used to perform this function. 

The leg A gene has been sequenced and shown to be transcriptionally active. 

Related legumin genes have also been sequenced allowing the identification of con

served elements which may play a role in tissue-specific expression. Additionally, 

the leg A gene belongs to the more abundant 'major ' class of legumin genes which 
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may indicate that the promoter is relatively more active than those of some other 

legumin seed protein genes. 

Improvement of nutritional quality of seed proteins could be achieved by the 

introduction of modified or foreign seed proteins under the control of a promoter 

shown to be active in the seed. Altenbach et. al. (1989) used a methionine rich 

2S seed protein gene from Brazil nut to enhance the methionine levels of trans

genic tobacco. An additional copy of the 2S albumin gene (at2Sl) of Arabidopsis 

thaliana with modifications in the large subunit was introduced and gave appar

ently increased levels of this 2S protein (determined by hybridization to the 3' 

unmodified end) without obvious effects on other 2S proteins (Guerche et. al. 

1990). Other workers (Dickinson et. al., 1990) have increased the methionine 

content of the U S protein glycinin without disrupting subunit assembly. Leg A 

has a higher methionine content than some other legume seed proteins and would 

be a good candidate for a similar approach. 

The different leg A promoter fragments used in this study were selected to test 

the functional significance of various elements that had been identified by sequence 

analysis. The smallest promoter fragment (0.1 kb) tested contained the TATA 

and CAAT boxes and 12 bp of the ' legumin box '. Larger promoter fragments 

of 0.7 kb and 0.8 kb were used which, in addition to the elements of the smallest 

promoter fragment, contained an intact ' legumin box ' and two of three copies of 

an element closely related to the consensus sequence TGHAAARK found in the 

glutenin genes. The longest promoter fragment (1.2 kb) contained an additional 

glutenin-like element. 

In this study a number of promoter deletions were placed upstream of the 

coding region of the nopaline synthase gene in p D U B l l l l (Shaw et al., 1986), 

a vector derived from pASK1029 (Shaw et al., 1983), which contains pBR322 

sequences and the Hindlll fragment 23 of pTiC58. This vector was a product of 

a deletion strategy used to study the functional sequences of the nopaline synthase 

promoter and effects on oncogenicity (Shaw et al., 1984a, b). This vector contains 
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the right border of the T-DNA and the coding region of the nopaline synthase 

gene. A unique Eco RI site in p D U B l l l l immediately upstream of the translation 

start codon of nos allows simple insertion of leg A promoter fragments. 

After integration of each these plasmids into a suitable Agrobacterium host, 

Kalanchoe plants were inoculated and the tumour tissue harvested. Analysis 

of this tissue for nopaline production was carried out to test for the absence of 

any upstream silencer sequences within the individual promoter deletions. In 

addition, the plasmid pBIN19 was used to construct a number of similar leg A 

promoter fusions with the nopaline synthase coding region, in order that whole 

plants could be regenerated and seed harvested to test the effect of the deletions 

on tissue-specific expression. 

Nopaline synthase activity has been used as a reporter gene by a number of 

workers (Section 1.3). The detection of the opine product in tumours transformed 

with vectors carrying various promoter deletions of the nos gene was used to map 

the nopaline synthase promoter (Shaw et al., 1984a). A deletion of the entire 

promoter region of this gene was a convenient starting point for a number of 

leg A promoter fusions in this work. When this study was initiated, the nopaline 

synthase assay system was well characterised, shown to be sensitive, easy to carry 

out and suitable vectors were available. 

After the experimental portion of this study was completed similar work with 

the leg A gene was published by Ellis et. al., (1988). These workers transferred 

a 3.4 kb genomic fragment containing the leg A gene to Nicotiana plumbaginifo-

lia using the Binl9 binary vector system. Using messenger affinity paper dot 

blots strong hybridization to a labelled leg A fragment was demonstrated with 

RNA obtained from transgenic seeds but not leaves. More detailed analysis of 

one transformed plant line allowed the demonstration of the introduced legumin 

gene protein predominantly in the embryonic tissue of the seeds. Analysis of the 

legumin protein by immunoblotting suggested that the protein was correctly pro

cessed in tobacco seeds. The total amount of leg A protein produced in transgenic 
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tobacco seeds was only 4% of the level found in pea seeds. 

This work was extended to examine the pattern of expression of a number 

of deletions of the legA promoter in transgenic tobacco (Shirsat et. al., 1989). 

Analysis of transgenic Nicotiana plumbaginifolia showed that 97bp of the leg A 

promoter, including the CAAT and TATA boxes, was insufficient for expression. 

A low level of temporally and tissue-specific expression was obtained with 549bp 

of 5' flanking sequence from leg A. Longer promoter fragments of 833 and 1203 bp 

gave increasing levels of expression suggesting quantitative elements within these 

sequences. 
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2.1 M A T E R I A L S 

2.1.1 Chemical and biological reagents 

All chemical reagents, with the exception of those listed below, were obtained 

from BDH Chemicals Ltd., Poole, Dorset, U.K., and were Analar or the best grade 

obtainable. 

All antibiotics, adenosine 5' -triphosphate (ATP), 6-benzyl amino purine, 

bovine serum albumin (BSA), deoxynucloeside 5' -triphosphates, dithiothreitol 

(DTT), ethidium bromide (EtBr), lysozyme, a-naphthaleneacetic acid, nopaline, 

octopine, ornithine, pronase E , RNase A, salmon sperm DNA and spermidine 

were obtained from Sigma Chemical Co., Poole, Dorset, U.K. 

Restriction endonucleases were from Bethesda Research Laboratories (U.K.) 

Ltd., (BRL), Cambridge, U.K., The Boehringer Corporation (London) Ltd., Lewes, 

East Sussex, U.K. or Northumbria Biologicals Ltd., Crainlington, Northumberland, 

U.K. 

T4 DNA ligase, Klenow fragment (DNA Pol I), 5-dibromo-4-chloro-3- indoyl-

galactoside (X-gal) were from The Boehringer Corporation (London) Ltd., Lewes, 

East Sussex, U.K. 

[3 2-P] a-dCTP and nick translation kit N.5000 were from Amersham 

International p.l.c, Amersham, Bucks, U.K. 

Sephadex G-50 and Ficoll 400 were from Pharmacia Fine Chemicals, 

Uppsala, Sweden. 

Caesium chloride, sodium chloride and 9,10-phenanthraquinone were from 

Koch-Light Ltd., Haverhill, Suffolk, U.K. 

Nitrocellulose filters (BA85, 0.45/zm) were from Scheicher and Schiill, 

Anderman and Co. Ltd., Kingston-upon-Thames, Surrey, U.K. 

BBL trypticase peptone was from Becton Dickinson and Co., Cockeyville, 

M.D., U.S.A. 
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Bacto-agar and noble agar were from Difco Laboratories, Detroit, Michigan, 

U.S.A. 

Yeast extract was from Sterilin Ltd., Teddington, U.K. 

Agarose was from Bethesda Research Laboratories (U.K.) Ltd., 

3MM paper was from Whatman Ltd., Maidstone, Kent, U.K. 
jLtAA.Kes-s were f r o m (beM^e^dtK. Rjesecwcl*. uJooroJronjL^ (u- O iM. 

2.1.2 Glassware and plasticware 

All glassware and plasticware was sterilized by autoclaving. Glassware used for 

the preparation of small amounts of DNA was siliconised by first degreasing with 

chloroform and then immersing in Repelcote, a solution of dichlorodimethylsilane, 

followed by baking at 100°C for two hours and autoclaving. 

2.1.3 Bacterial strains and plasmids 

Bacterial strains and plasmids are listed in Table 2.1. The following conven

tion has been used to assign numbers to plasmids constructed by the Durham 

Agrobacterium Research Group: 

pDUB1000-1049 are nopaline Ti-plasmid derivatives in A. tumefaciens. 

pDUBHOO-1149 are subcloned Ti-plasmid fragments in pBR322 in E.coli. 

pDUB1200-1249 are Ti-plasmid subclones containing mini-Sa (pGVH06). 

pBUB1300-1303 are legumin promoter fragment subclones in pUC vectors. 

pDUB1500-1503 are leg-nos fusions in pBIN19. 
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Table 2.1 Bacterial strains and plasmids 

Bacterial strains 
or plasmids 

Markers Specifications Reference 
or source 

E. coli 
K514 - thr leu thi hsd R Colson et al., 1965 

JM83 - araA (lac-proAB) 
rpsL (— strA) 
(f>80, lacZ A M15 

Bethesda Research 
Laboratories (BRL) 

DH5a F ~ , endAl, A - , recAl , 
hsdR17(r^, mjj"), supE44, 
thi-1, gyrA496, re/Al, 
Rec+, (j> 80d/acZ A M15 

Bethesda Research 
Laboratories (BRL) 

A.tumefaciens 
C58ClRif Rif a derivative of C58 

cured of its pTiC58 
plasmid 

Van Larebeke 
et al., 1974 

C58ClSm rSp r Sm/Sp 

C58ClEry r Cm r Ery, Cm » Holsters 
et al. 1980 

LBA4404 Rif, Sm A136 harbouring 
pAL4404 

Hoekema 
et al. 1983 
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Table 2.1 Bacterial strains and plasmids (continued) 

Bacterial strains Markers 
or plasmids 

Specifications Reference 
or source 

Plasmids 
pAL4404 A derivative of 

the octopine plasmid, 
pTiAch5, with deletion 
of the T-DNA region 

Hoekema 
et al., 1983 

pASl l Ap nos gene in pUC8 Shirsat (Department 
of Botany, Durham) 

pBIN19 Km Disarmed Ti vector 
containing the right border, 
the npt II gene and a 
multiple cloning site 

Bevan 1984 

pDUB24 Ap leg A gene in pUC8 Lycett 
et al. 1984a 

pDUB1003A31 Km/Nm, Vir+, Small nos promoter 
Nos+, Onc+, deletion 
Tra+, Oec+ in pTiC58 

Shaw 
et al. 1984a 

pDUB1006 Km/Nm, Vir+, Nos promoter deletion 
Nos~, Onc+ in pTiC58 
Tra+, Occ+ 

Shaw 
et al. 1986 

pDUB1016 

pDUB1017 

Vir+, Onc+, 
Tra+,Occ+ 

V i r + , 0rac +, 
Tra+,Occ+ 

Gm f l Nm s recombinant 
between pDUB1006 
and pDUB1207 

Nm" recombinant 
between pDUB1006 
and pDUB1215 

This work 

This work 
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Table 2.1 Bacterial strains and plasmids (continued) 

Plasmids Markers Specifications Reference 

or source 

pDUB1018 Vir+,Onc+, 
Tra+,Occ+ 

Gm sNm s recombinant 
between pDUB1006 
and pDUB1216 

This work 

pDUB1019 Vir+, Onc+, 
Tra+,Occ+ 

Nm" recombinant 
between pDUBl006 
and pDUB1218 

This work 

p D U B l l l l Ap TVos-promoter deletion 
in pBR322 

Shaw 
et al. 1986 

pDUB1122 Ap 1.2 kb leg A promoter 
fragment from 
pDUB1300 in p D U B l l l l 

This work 

pDUB1128 Ap 0.7 kb leg A promoter 
fragment from pDUB1301 
in p D U B l l l l 

This work 

pDUB1207 Ap Km/Gm # m d I I I cut PDUB1122 
ligated to Hin d i l l 
cut pGV1106 

This work 

pDUB1215 Ap, Km/Gm, 
Sm/Sp 

Pstl partial cut pDUB1122 
ligated to Pstl cut pGV1106 

This work 

pDUB1216 Ap Km/Gm f f m d I I I cut pDUB1128 This work 
ligated to tfmdIII cut pGV1106 

pDUB1217 Ap, Km/Gm As pDUB1215 with Eco RI 
fragment containing promoter 
sequences upstream of the 
Pst I site excised 

This work 
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Table 2.1 Bacterial strains and plasmids (continued) 

Plasmids Markers Specifications Reference 
or source 

pDUB1300 Ap Bam Hl/Dde I leg A promoter 
fragment from pDUB24 
subcloned in pUC9 via 
Eco RI linkers 

This work 

pDUB1301 Ap Haelll/EcoRI leg A promoter 
fragment from pDUBl300 
subcloned in pUC9 via 
Eco RI linkers 

This work 

pDUB1302 Ap pDUB1122 Pstl fragment 
containing leg A-nos 
sequences in pUC9 

This work 

pDUB1303 Ap Bgl I I /Bam HI leg A promoter 
fragment subcloned in pUC!9 

This work 

pDUB1500 Km Bgl 11/Stul fragment from 
pDUB1122 in pBIN19 

This work 

pDUB1501 Km Hin d i l l /Stu I fragment from 
pDUB1302 in pBIN19 

This work 

pDUB1502 Km 0.4 kb Hin d i l l fragment 
from pDUB1303 in pDUB1500 
in correct orientation 

This work 

pDUB1503 Km As pDUB1502 with the 
Hmdlll fragment in the 
reverse orientation 

This work 
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Table 2.1 Bacterial strains and plasmids (continued) 

Plasmids Markers Specifications Reference 
or source 

pGV0601 A P 
Hmdlll fragment 23 of 
pTiC58 in a pBR322 
derivative with a 
deleted BamHI site 

Shaw et al. 
1983 

PGV1106 Km, Sm/Sp 5^ZII-deletion mutant 
of Sa (MiniSa) 

Leemans 
et al. 1981 

pRK2013 Km Kmr ColEl derivative 
with the tra genes of RK2 

Figurski and 
Helinski 1979 

pRN3 Sm/Sp Tc Su N-type plasmid Datta and 
Hedges 1971 

pUC9 Ap lacZ Vieira and 
Messing 1982 

pUC19 A P 
lacZ Vieira and 

Messing, 1982 

2.2 B I O C H E M I C A L T E C H N I Q U E S 

2.2.1 Purification of nucleic acids 

Samples of DNA were dissolved in sterile distilled water or TE (10 mM Tris-

HC1, ImM EDTA, pH 8.0). In order to remove residual proteins from DNA 

preparations, or following enzymatic manipulations, the DNA sample was 'phenol-

extracted' as follows. The sample was shaken with an equal volume of phe

nol/chloroform (phenol : chloroform : isoamyl alcohol 25:24:1, equilibrated with 

TE) to form an emulsion. This was centrifuged, the upper phase removed and 

mixed with a second volume of phenol/chloroform. After centrifugation, the up

per phase was mixed with chloroform (chloroform : isoamyl alcohol 24:1) and 
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recentrifuged to remove traces of phenol. Alternatively, five ether extractions 

were carried out on the upper phase, particularly with high molecular weight 

DNA. The aqueous phase was recovered and ethanol precipitated. When purify

ing small amounts of DNA the organic phases were re-extracted with a 0.5 vol of 

TE. 

2.2.2 Alcohol precipitation of DNA 

The volume of the sample was estimated and 3M sodium acetate, pH 4.8 (0.1 

vol) added, followed by cold 100% ethanol (2.5 vols). The solution was mixed 

and stored at -80°C for 20 mins or -20°C overnight. The DNA was pelleted 

by centrifugation at full speed for 5 mins in a microcentrifuge. Larger samples 

were spun in 30ml corex tubes at 10,000 rpm for 20 mins at 4°C using an 8 x 50 

rotor in the M.S.E 18. centrifuge. The pellet was gently washed with 70% (v/v) 

ethanol and respun. The DNA was vacuum dried and resuspended in TE or sterile 

distilled water. When large volumes were to be precipitated, isopropanol (0.6 vol) 

was used instead of ethanol. 

2.2.3 Quantitation of DNA 

The concentration of small amounts of DNA was estimated by running a 

known volume on an agarose gel against a precise amount of a predetermined 

DNA sample. Larger amounts of DNA were estimated by absorbance at 260nm 

as measured on a Pye Unicam SP8-150 spectrophotometer, usually employed in a 

scanning mode from 200-300nm. ^260 °f 1 corresponds to 50^g/ml of double-

stranded DNA, 40//g/ml of single-stranded DNA and RNA, and 20/xg/ml for 

oligonucleotides; so the quantity of DNA present could be calculated. The purity 

of the sample could be determined by the ratio of J426O/-^280 which should be 1.8 

and 2.0 in an uncontaminated sample of DNA and RNA, respectively. A lower 

ratio might indicate contamination by protein or phenol. 
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2.2.4 Preparation of dialysis tubing 

Dialysis tubing was cut into suitable lengths and boiled for 10 minutes in 
a large volume of 2% (w/v) sodium bicarbonate and ImM EDTA. The dialysis 
tubing was washed thoroughly in distilled water, boiled in distilled water for 10 
mins, allowed to cool and stored at 4°C. 

2.2.5 Preparation of denatured salmon sperm DNA 

Denatured salmon DNA was incorporated into prehybridisation and hybridisa

tion buffers when probing Southern blots of genomic DNA, to prevent non-specific 

hybridisation of labelled DNA. Salmon sperm DNA (lOmg/ml) was dissolved in 

sterile distilled water by stirring overnight at room temperature. The DNA was 

sheared by extruding three times through an 18 gauge needle and denatured by 

heating to 100°C for 10 mins. The salmon sperm DNA was allowed to cool and 

stored in 0.5ml aliquots at —20°C. The aliquots of denatured salmon sperm DNA 

were heated in a boiling water bath for 10 mins and placed on ice immediately 

before use. 

2.3 E N Z Y M A T I C M O D I F I C A T I O N OF DNA 

2.3.1 Restriction endonuclease digestion 

Plasmid DNA was cleaved with type-II restriction endonucleases in one of 

the four buffers recommended in Maniatis et al. (1982), outlined in Table 2.2. 

A number of enzymes were found to function at a fairly broad range of NaCl 

concentration, so that multiple digestions could be carried out in the same re

striction buffer simultaneously. The restriction enzyme buffers were prepared at 

lOx concentration and stored at —20°C. 

Typically reactions consisted of 1/ig of DNA digested with 5U of enzyme in a 

final volume of 25/zl. Digestions were carried out at the temperature recommended 

by the manufacturer, usually 37°C for l-2hrs. When digesting plasmid DNA from 

crude minipreps or genomic DNA, 0.1M spermidine (0.1 vol) was added and the 
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incubation time increased. The reaction was stopped by phenol extraction or by 

the addition of a 0.2 vol of gel loading buffer (section 2.4). 

Table 2.2. Buffers for restriction endonuclease digestion 

Buffer KCl 
(mM) 

NaCl 
(mM) 

Tris-HCl, pH 7.5 
(mM) 

MgClo 
(mM) 

DTT 
(mM) 

Low 0 0 10 10 1 
Medium 0 50 10 10 1 

High 0 100 50 10 1 
Smal 20 0 10 10 1 

2.3.2 Nick translation 

Typically 0.1 — l.O t̂g of DNA was labelled to 108 — 109 cpm///g in a reaction 

volume of 50/xl using a method based on that described by Rigby et a/.(1977). 

This was carried out using the Amersham nick-translation kit as described in its 

instructions. The reagents were added in this order: 

Probe DNA up to 30/d 

5x nick translation buffer, (100/zM dNTPs) 10/zl 

o-dCTP[32P] (50/xCi; 125pmol) 5/d 

Sterile distilled water made up to 45/xl 

Enzyme solution (2.5U DNA polymerase I , 50pg DNase I) 5/d 

The reaction mixture was incubated at 16°C for 2 hrs. The 32P-labelled DNA 

was separated from unincorporated nucleotides by chromatography using sepha-

dex G50, packed into a 5ml disposable pipette, equilibrated and eluted with TENS 

(lOmM Tris-HCl pH 8.0, ImM EDTA, lOOmM NaCl, 0.1% SDS). Aliquots (0.5ml) 

were collected and 1/il of each dispersed in scintillation fluid (3.37g PPO, 667ml 

toluene and 333ml Triton X-100 per litre) and the radioactivity counted using a 

Packard (PL Tri-Carb) liquid scintillation counter. The relevant fractions were 

pooled, used immediately in a hybridisation reaction, or stored at —20°C for up 

to one week. 
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2.3.3 Phosphorylation of linkers 

Linkers (2—5/ig) were phosphorylated in kinase buffer (66mM Tris-HCl pH 7.6, 
lOmM MgCl2, lOmM dithiothreitol, 2mM ATP) with 10U T4 polynucleotide ki
nase in a total volume of 20/xl. The reaction mixture was incubated for 2hrs at 
37°C and used immediately or stored at -20°C. 

2.3.4 Filling recessed 3' ends with Klenow fragment 

In order to blunt-end ligate isolated DNA restriction fragments to linker 

oligonucleotides, treatment with the Klenow fragment of E.coli DNA polymerase 

was employed. The ethanol precipitated DNA was resuspended in 85/d sterile 

distilled water and 10/il of 10 x ligase buffer (660mM Tris-HCl pH7.5, lOmM 

EDTA, lOOmM MgCl 2, lOOmM dithiothreitol, lmg/ml BSA and 5mM ATP). A 

solution containing dATP, dCTP, dTTP and dGTP was added to give a final 

concentration of 250//M of each nucleoside triphosphate. Finally, Klenow (9U) 

was added and incubated at 15 — 20° C for up to lhr. At the end of the incuba

tion period the reaction mixture was extracted first with phenol/chloroform, then 

chloroform/isoamyl alcohol and finally ethanol precipitated. The DNA pellet was 

recovered by centrifugation and resuspended in SDW. 

2.3.5 Addition of linkers 

In order to make the cohesive ends of restriction fragments compatible with 

the vectors used, linker adaption was employed. The linker molecules (2-5/xg) 

were phosphorylated (section 2.3.3) and ligated to the isolated fragment or a total 

digest (1-10/ig) which had been treated with Klenow (section 2.3.4) as described in 

section 2.3.8. The ligation mixture was phenol extracted, ethanol precipitated and 

the linkers digested with a vast excess of enzyme, usually in excess of 100U. The 

fragment of interest was gel purified in order to remove unincorporated linkers. 

Typically, the fragment was cloned into the relevant site in pUC9 to select for those 

molecules containing linkers. These were easily identified by the colour selection 

on L-agar containing the chromogenic substrate, 5-bromo-4-chloro-3-indolyl-/3-D-
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galactoside (X-gal) and ampicillin. The linker-adapted fragment could be easily 

excised and inserted into the vector of choice. 

2.3.6 Phosphatase treatment of vectors 

The terminal 5' phosphates can be removed from DNA by treatment with calf 

intestinal alkaline phosphatase (CIP). This prevents recircularisation of the vector 

in the absence of insert DNA. The enzyme is inactivated by nitrilotriacetic acid 

(NTA), heating to 70°C and phenol extraction. The NTA (0.1M) solution was 

made by the addition of 0.19g NTA solid to 9.4ml SDW and 0.6ml of 5M NaOH 

to approximately give a final pH of 8.9. 

The plasmid DNA (up to 15/xg) was digested with the appropriate restriction 

enzyme, phenol/chloroform extracted, ethanol precipitated and resuspended in 

40/d of TE. The reaction was carried out in 50mM Tris-HCl, O.lmM EDTA, pH 8.0 

at 37° C with 22U CIP. After 30 mins the reaction was stopped by the addition of 

4.8/zl 0.1M NTA and heated to 70°C for 15 mins. The solution was extracted once 

with phenol/chloroform and the aqueous phase ethanol precipitated. The DNA 

was recovered and dissolved in TE to give a final concentration of approximately 

0.1/ig/ml. 

2.3.7 Ribonuclease treatment 

In small scale preparations of plasmid DNA, contaminating RNA was removed 

by resuspending the precipitated nucleic acids in TE containing 50/zg/ml RNase 

A. The contaminating RNA was digested during the incubation with restriction 

enzymes and allowed the visualization of small DNA fragments on agarose gels, 

which would otherwise have co-migrated with the contaminating RNA. 

In order to remove contaminating DNase activity before use, RNase A was 

dissolved in 15mM NaCl, lOmM Tris-HCl (pH 7.5) at a concentration of lOmg/ml 

and heated to 100°C for 15 minutes. This was allowed to cool and dispensed into 

aliquots prior to storage at — 20° C. 
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2.3.8 Ligation conditions 

Typically, approximately 200ng of vector DNA, digested with an appropriate 

restriction enzyme, was ligated with a 10 x molar excess of a DNA fragment 

with compatible cohesive ends. The reaction was carried out in 1 x ligase buffer 

(section 2.3.4) with 1-2U T4 DNA ligase in up to 50/il. The reaction mixture was 

incubated at 4°C or 16°C for at least 4 hrs. 

When ligating DNA with blunt ends, the vector and insert DNA concentra

tion was increased by performing the ligation in a smaller volume, the final ATP 

concentration increased to 2mM and the reaction carried out at 4°C for at least 

24hrs. Similar reactions conditions were employed to ligate kinased linkers (sec

tion 2.3.3) to DNA fragments with the exception that a vast molar excess of linker 

DNA (2/ig) was used. 

2.4 A G A R O S E G E L E L E C T R O P H O R E S I S 

Agarose gel electrophoresis was employed in order to identify and purify DNA 

fragments. For most applications 0.7% (w/v) agarose gels were used which are rec

ommended for the separation of DNA fragments in the range 0.8-10kb (Maniatis 

et al. 1982). 

The agarose was dissolved in an appropriate buffer by heating in a microwave 

oven for 5-8mins. Typically the agarose was dissolved in a Tris-acetate buffer 

(40mM Tris-acetate, ImM EDTA pH 7.7) and cast in a 200ml perspex mould. For 

minigels (50ml), Tris-borate buffer (89mM Tris-borate, 89mM boric acid, 2mM 

EDTA) was used for its greater buffering capacity. When casting low melting 

point agarose gels, the mould was maintained at 4°C. Ethidium bromide was 

added to both buffer and gel at a concentration of 0.5/xg/ml in order to visualise 

the DNA bands under ultraviolet light (Sharp et al. 1973). 

Samples were mixed with a 0.2 vol of gel loading buffer (25mM Tris-HCl pH8.0, 

50mM EDTA, 1% SDS, 7.5% ficoll, 0.25% bromophenol blue) and loaded into the 

gel slots. The gels were run at 20-30V overnight or at 100V for 4-6hrs. Minigels 
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were run at 100V for lhr and were employed as a quick check for the success of 

digestions or ligations, before proceeding with the sample. After electrophoresis, 

the gels were photographed using transmitted UV light at 302nm, through a red 

filter, for lsec at F8 on Polaroid film ASA 3000. 

2.4.1 Recovery of DNA from agarose gels 

Three methods were sucessfully employed to isolate DNA fragments from 

agarose gels. Typically 10/xg of digested DNA was loaded into a wide gel slot 

and run on an agarose gel overnight. Electrophoresis at 100V for 4hrs was pref-

ered when isolating DNA fragments smaller than lkb. 

2.4.1.1 D E A E cellulose method 

Isolation of DNA fragments for nick translation were carried out using a 

method based on that described by Dretzen et al. (1981). The DNA obtained 

was also sucessfully ligated. 

DEAE cellulose (Whatman DE-81) paper was soaked in 2.5M NaCl for several 

hours, rinsed several times in distilled water and finally in ImM EDTA. The paper 

was dried in a vacuum oven and stored for future use. 

The band of interest was located by UV transillumination and a slit cut each 

side. NaCl-treated DEAE cellulose paper was placed in the incisions and the 

gel returned to the gel tank. Electrophoresis was continued until the band had 

entered the paper. The paper was blotted dry on filter paper, rolled into a tube 

and placed in a 0.5ml eppendorf with a siliconised glass wool plug and a hole 

pierced in the top and bottom. Ice cold sterile distilled water (150/d) was added 

and spun out into a 1.5ml eppendorf. This step was repeated and then 150/xl 

of extraction buffer (1.5M NaCl, ImM EDTA, 20mM Tris-HCl pH 7.5) added to 
containing 

the paper tube. The small eppendorf was wrapped in nescofilm and incubated 
A 

at 37°C for at least 2hrs. The extraction buffer was spun into a large eppendorf 

tube in a microcentrifuge, a second aliquot of extraction buffer added and spun 
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immediately into a second large eppendorf tube. The two aliquots of extraction 

buffer were combined and ethanol precipitated. The pellet was resuspended in 

100/d TE buffer and phenol extracted, the aqueous phase ethanol precipitated 

and the phenol extraction repeated. Following ethanol precipitation, the DNA 

pellet was resuspended in 25/zl TE buffer. 

2.4.1.2 Low melting point agarose gels 

After electrophoresis the desired fragment was excised, blotted dry on What

man 3MM paper, and 20mM Tris HC1, ImM EDTA, pH 8.0 (5 vols) added. 

This was heated to 65°C for 5 mins to melt the gel. The melted gel slice was 

allowed to cool to room temperature and extracted with an equal volume of 

phenol. The aqueous phase was recovered by centrifugation and extracted with 

phenol/chloroform. After centrifugation, the aqueous phase was recovered and 

extracted with chloroform. The DNA was recovered from the aqueous phase by 

ethanol precipitation. 

2.4.1.3 Electroelution into dialysis tubing 

This method is based on that described by McDonnell et al. (1977). The 

DNA band was located, excised and placed in a piece of dialysis tubing sealed at 

one end with a Medi-clip. This was filled with Tris-acetate buffer and sealed at 

the other end with a second Medi-clip, excluding any excess buffer. 

The dialysis tubing was immersed in a shallow layer of Tris-acetate buffer 

and electrophoresis continued at 60-100V for about 45 mins. The polarity of 

the current was reversed for two minutes to release the DNA from the walls of 

the dialysis bag. The buffer was recovered and the dialysis tubing washed out 

with a small volume of Tris-acetate buffer. These were combined and the volume 

reduced by sequential extractions with butanol, which forms the upper phase after 

centrifugation. When a final volume of 100/i/ was obtained, the lower aqueous 

phase was ethanol precipitated. Two rounds of phenol extraction followed by 

ethanol precipitation were carried out and the DNA pellet finally redissolved in a 
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suitable volume of TE. 

2.5 S O U T H E R N B L O T T I N G 

The verification of homologous recombination, and the subsequent resolution 

of introduced plasmids with the endogeous Ti-plasmid pDUB1006, was achieved 

by the method described by Southern (1977), in which restricted DNA is transfered 

to nitrocellulose filters and hybridised to 32P-labelled DNA probes. The presence 

of introduced chimaeric leg-nos genes in regenerated Nicotiana tabacum plants was 

similarly identified by transfer of a digest of isolated genomic DNA to nitrocellulose 

filters and subsequent hybridisation with relevent gene probes (Botchan et al. 

1976; Jeffreys and Flavell 1977). 

2.5.1 Transfer of DNA to nitrocellulose filters 

Agarose gels were run with digests of total bacterial or eukaryote DNA (10/jg) 

and photographed. These were then soaked in 1% HC1 for 15 mins to partially 

hydrolyse the DNA, in order to aid the transfer of large DNA fragments. The gel 

was rinsed twice in distilled water and soaked in denaturation buffer (1.5M NaCl, 

0.5M NaOH) with occassional gentle agitation. After 45 mins the gel was rinsed 

twice in distilled water and soaked in three changes of neutralisation buffer (3M 

NaCl, 0.5M Tris-HCl, pH 7.0) for a total of 60 mins. The gel was then rinsed in 

20 x SSC (3M NaCl, 0.3M Sodium citrate) and transfered to the moistened filter 

paper of the blotting apparatus. 

The blotting apparatus consists of a glass plate, the same width as the gel, 

suspended above a reservoir of 20 x SSC, with a wick of Whatmans 3MM paper 

over the glass plate and in contact with the 20 x SSC. The nitrocellulose filter, 

cut to the same size as the gel, was prewetted in distilled water followed by 20 x 

SSC and placed over the gel, taking care to exclude air bubbles. One piece of 

Whatman 3MM paper moistened in 20 x SSC, and three dry pieces, were placed 

on top. Absorbent cotton wool pads were placed above the filter papers and a 

heavy weight placed on top of the assembly. 
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The transfer was carried out overnight, the nitrocellulose filter then rinsed in 

3x SSC and baked in a vacuum oven at 80° C for two hours and stored dry. 

2.5.2 Hybridisation of 3 2 - P labelled probes to filter-bound DNA 

Labelled probes were used to locate specific sequences in filter-bound DNA 

from in situ hybridisation of bacterial colonies (section 2.9.2), total DNA from 

Agrobacterium tumefaciens (section 2.11) and total genomic DNA from trans

formed Nicotiana tabacum plants (section 2.13). 

Prehybridisation and hybridisation of the nitrocellulose filter was carried out 

at 65°C in heat-sealed plastic bags, in a shaking water bath, under the conditions 

given in table 2.3. The filters were prehybridised for 4-16hrs and hybridised for 

16-48 hrs with the labelled DNA (107 - 108 cpm). The longer incubation times 

were favoured when using filter-bound plant genomic DNA. The temperature and 

solutions used for the subsequent washing steps are also given in table 2.3. After 

washing the filters were dried for 2 hrs in a vacuum oven and autoradiographed. 

Table 2.3 Conditions for hybridisation of 3 -P labelled probes 

Type of filter-
bound DNA 

Prehybridisation 
buffer 

Hybridisation 
buffer 

Washing 
conditions 

Colony 
hybridisation 

& 
Total 

Agrobacterium 
DNA 

l x Denhardts 
3x SSC 

l x Denhardts 
3x SSC 
ImM EDTA 
0.5% SDS 

3x SSC, 
0.1% SDS 
4x15 mins., 65°C 
3x SSC 
4x15 mins., 65°C 

Plant genomic 

DNA 

Heparin sulphate 
(0.5g/l) 
Denatured salmon 
sperm DNA 
(50mg/l) 
Sodium pyro
phosphate (lg/1) 
0.5%SDS 
4xSSC 

Same as 
prehybrid-

-isation 
buffer 

0.1 x SSC, 
0.1% SDS 
1 hr, 65°C 

Repeated at RT 

0.1 x SSC 
30 mins, RT. 

Denhardts was made as a 50 x solution (10g/l BSA, 10g/l ficoll 400, 10g/l 

polyvinylpyrollidine) and stored at —20°C. 
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2.5.3 Autoradiography 

Autoradiography was used to detect 32P-labelled nucleic acids on nitrocellu

lose filters. The nitrocellulose filter was mounted on a glass plate, covered with 

clingfilm and the following procedure carried out in a dark room under a red 

safe-light. 

A piece of X-ray film (Fuji RX) was preflashed and placed " flashed "-side 

down on the filter. An intensifier screen was placed on top of the film and another 

glass plate placed on top to complete the sandwich. This assembly was secured 

by elastic bands, placed inside a number of black plastic bags, within a light-tight 

box. 

The autoradiograph was stored at — 70° C for at least an hour, and up to 

a month if there were no detectable counts on the filter. The X-ray film was 

developed in Kodak X-Omat developer for 5mins, rinsed in water and immersed 

in Kodak fixer for 5mins, rinsed and air-dried. 

2.6 G R O W T H AND M A I N T E N A N C E OF B A C T E R I A L STRAINS 

2.6.1 Media and antibiotics 

For most applications, bacteria were grown in Luria broth containing suitable 

antibiotics as described by Miller (1972). For conjugations between strains of 

Agrobacterium tumefaciens, the bacteria were grown on minimal media (Miller, 

1972). Selection of opine catabolism, of Ti-plasmid containing Agrobacteria, was 

achieved using supplemented nitrogen free media (Bomhoff et al. 1976). The 

media were prepared as outlined in table 2.4. 

Solid media was prepared by adding Bacto agar (15g/l) before autoclaving 

the solutions, with the exception of NO.O media in which noble agar was used. 

To prevent precipitation of salts, the constituents of Minimal media and NO.O 

media were prepared as separate concentrated sterile solutions and added to sterile 

distilled water or a molten agar solution immediately before use. 
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Table 2.4 Bacterial Media 

Media Constituents 

Luria Broth 
(L-broth) 

lOg Trypticase Peptone 
5g Yeast Extract 
5g NaCl 

made up to 1 litre and 
adjusted to pH 7.0 

Minimal 
media 

(Min A) 

1 ml 20% glucose 
0.1 ml 1M MgS0 4.7H 20 
20 mis 5x Mm,4 salts (52.5g K 2 HP0 4 , 

22.5g KH 2 P0 4 , lg (NH 4 ) 2 S0 4, 
2.5g Na Citrate.2H20 per litre) 

78 mis sterile distilled water 

Nitrogen free 
media 
(N0.0) 

0.28 ml 1M MgS0 4.7H 20 
0.4 ml 22mM CaCl 2.H 20 

5 mis 5 x NO.O salts (51.3g K 2 HP0 4 , 
61.75g KH 2 P0 4 , 0.75g NaCl 
per litre, adjusted to pH 7.5.) 

95 ml sterile distilled water 

Table 2.5 Antibiotic concentrations 

Antibiotic 
Concentration (/ig/ml) 

in E. Coli in A. tumefaciens 

Ampicillin (Ap) 1 50 
Carbenicillin (Cb) - 100 
Chloramphenicol (Cm) 25 25 
Erythromycin (Ery) 100 100 
Gentamycin (Gm) 25 100 
Kanamycin (Km) 50 50 
Neomycin (Nm] 100 
Rifampicin (Rit) 100 
Spectinomycin (Sp)2 50 100 
Streptomycin (Sm)2 20 300 
Tetracychne (Tc) 10 2.5 

1. X-gal was added dissolved in DMF, to a final concentration of 40mg/l 

2. Higher concentrations of spectinomycin (200^g/ml) and streptomycin (lmg/ml) 

were used with minimal media. 
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Antibiotics were added after autoclaving when the media had cooled to 55°C, 

at the concentrations indicated in table 2.5. The chromogenic substrate, X-gal 

was added to the media to allow the detection of plasmids such as the pUC 

vectors (Messing et ah, 1983), which contains the amino terminal portion of the 

/3-galactosidase gene, in host strains containing a defective /5-galactosidase gene 

(eg. JM83, DH5a). 

To select for the presence of a Ti-plasmid encoding for octopine catabolism, 

NO.O media was supplemented with octopine (100mg/l) and ornithine (2g/l). 

2.6.2 Storage of bacterial strains 

Bacterial strains were stored at 4°C on L-agar plates, containing relevant 

antibiotics and wrapped in nescofilm, for up to 4 weeks. For prolonged storage 

an overnight culture in L broth was mixed with an equal volume of 80% glycerol 

(v/v) and stored at -80°C. 

2.7 B A C T E R I A L CONJUGATIONS 

2.7.1 Conjugations between E. coli strains 

Plasmids containing sequences from pGVH06 (e.g. pDUB1215), a broad host 

range vector, were mobilised from E. coli to A. tumefaciens using the 7ncN plasmid 

pRN3. The helper plasmid, pRN3, cannot stably replicate in A. tumefaciens 

(Leemans et ai, 1981; Shaw et ai, 1983). 

The E.coli strain K514, containing the pGVH06:pDUBllll derivative, and 

K514 (pRN3) were each grown overnight at 37°C in L broth. An equal volume 

of the cultures were then mixed and an aliquot (0.1ml) spread on L agar plates. 

Aliquots (0.1ml) of each culture were also spread separately on L agar plates as 

controls. 

After incubating for 4 hrs at 37°C, the bacterial lawn was removed by scraping 

the plates with lOmM MgSC>4 (3xlml). The bacterial suspensions were diluted to 

10~7 in lOmM MgSCU and aliquots (0.1ml) of the dilution series plated on L-agar 

69 



containing kanamycin (Km), streptomycin (Sm) and spectomycin (Sp), to select 

for transconjugants. 

The numbers of the donor strain in the mixture were determined by plating 

the dilutions (1(T 6 - 10"7) on L-Sm, Sp. The numbers of the recipient strain 

in the mixture were estimated by plating the dilutions (10 - 6 — 10 - 7 ) on L-Km. 

The antibiotic selection was checked by plating dilutions of the strains incubated 

separately on L-Km, Sm, Sp plates. 

Transconjugants were observed after 24 hrs at 37°C and checked by streaking 

on L agar plates containing the non-selected markers (Ap, Tc). An efficiency of 

transfer of pRN3 to the recipient strain, harbouring the pGV1106 derivative, of 

approximately 40% was observed. 

A single transconjugant was purified by streaking for single colonies and used 

in the subsequent conjugation with A. tumefaciens harbouring the Ti-plasmid 

pDUB1006. 

2.7.2 Conjugations between E. coli and A. tumefaciens 

The pGV1106 derivatives were mobilised from E. coli (K514) containing pRN3 

to the Agrobacterium tumefaciens strain C58ClEry r Cm r [pDUBl006]. This al

lowed the incorporation of the pGVH06:pDUBll l l derivative into the T-DNA 

by homologous recombination with sequences derived from p D U B l l l l . 

Overnight cultures of each strain were grown in L broth at 27° C, equal volumes 

mixed and 0.1ml spread on an L agar plate. Aliquots (0.1ml) of the cultures 

were also spread on L-agar plates as controls for the subsequent selection on 

antibiotics. After 24hrs at 27°C the bacterial lawn was removed with lOmM 

MgSC>4 (3mls). The cell suspension was serially diluted in lOmM MgSC-4 and 

dilutions (10° — 10~2) plated on L-Ery, Cm, Nm, Gm plates to select for the 

transcojugant e.g. C58ClEryrCmr[pDUB1006:1215]. The numbers of donor and 

recipient strains were determined by plating suitable dilutions on L-Km, Sm, Sp 

and L-Ery, Cm, Nm, respectively. 
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Colonies were observed after incubation at 27° C for 3-5 days. Transconjugates 

were isolated at an average frequency of 1.9xl0~ 6. 

2.7.3 Conjugations between A. tumefaciens strains 

Selection for homologous recombination between the pGV1106 derivative and 

pDUB1006 in C58ClEry r Cm r was achieved by mobilisation to a cured strain of 

Agrobacterium tumefaciens, to distinguish between bacteria harbouring the two 

plasmids as separate entities. In order to induce the tra functions, which are 

negatively regulated, the strains were grown on minimal media. The cured strain 

used was typically C58ClRif" and the cointegrated form was selected by growth 

on L-agar containing rifampicin, gentamycin and neomycin. 

A single colony from each strain was used to inoculate Min A (10ml) and 

incubated for up to 48 hrs at 27°C. The cultures were mixed and aliquots (0.1ml) 

plated on Min A and incubated at 27°C. The individual cultures were plated on 

Min A as controls for the antibiotic selection. After 24 hrs the bacterial lawn was 

removed with lOmM MgS04 and serially diluted. The cured strain, C58ClRiF, 

harbouring the cointegrate between the pGVH06 derivative and pDUB1006 was 

selected by plating on L-Rif, Gm, Nm. Colonies harbouring the cointegrate ap

peared after 3-5days at 27° C. 

The efficiency of transfer of all T i plasmids, determined by selection on L-Rif, 

Nm was approximately 4%. Of these 1.9 x 1 0 - 4 were the cointegrate formed by a 

single crossover event between the two plasmids. The presence of the cointegrate 

was verified by Southern blotting (section 2.5) of total DNA (section 2.11) from 

R i f G m r N m r colonies. 

Selection for a second crossover event was achieved by transmission of the 

cointegrate to the cured strain C58ClSm rSp r and selection for spectinomycin/ 

streptomycin-resist ant, octopine catabolising (Occ + ) transconjugants which dis

played the genotype, NmBGma (Shaw et al, 1983). The spectinomycin/strepto-

mycin resistance encoded by pGV1106 had previously been eliminated by the 
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ligation of the vector containing the chimaeric leg-nos gene within the Hind HI 

site. 

The conjugation was carried out as described previously but the selection on 

solid media was carried out after two or three enrichment steps in liquid culture 

containing NO.O media, supplemented with octopine, ornithine, spectinomycin 

and streptomycin. Each enrichment step was carried out for 48 hrs at 27°C and 

finally aliquots of a dilution series plated on NO.O agar containing octopine, orni

thine, spectinomycin and streptomycin. The colonies obtained were screened for 

neomycin and gentamycin sensitivity. 

2.7.4 Triparental mating 

Bin 19 derivatives (Bevan, 1984), containing a variety of chimaeric leg-nos 

constructs, were mobilised from E. coli JM83 to the Agrobacterium tumefaciens 

strain LBA4404 (pAL4404) (Hoekema et al. 1983) using HB101 (pRK2013). This 

was achieved during a triparental mating of the strains, as described by Ditta 

et al. (1980). Although pRK2013 confers kanamycin resistance, it is not stably 

maintained in A. tumefaciens. Selection for kanamycin resistant Agrobacteria on 

minimal media as described by Bevan (1984) proved unpredictable, so selection 

on L-Rif, Km, Sm was employed. 

Each strain was grown overnight in L-broth, mixed, plated on L-agar and 

incubated for 24 hrs at 27°C. The bacteria were resuspended in 10 mM MgS04, 

diluted and LBA4404 (pAL4404) harbouring the Bin 19 derivative selected by 

plating on L-Rif, Km, Sm. Single colonies were streaked on L-agar or Min A 

using Rif (50/ig/ml), Km (50/xg/ml) and Sm (lmg/ml) before use in subsequent 

plant transformation steps. The prescence of the Bin 19 derivative was verified 

by probing southern blots of total bacterial DNA. 
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2.8 T R A N S F O R M A T I O N O F E. COLI B Y P L A S M I D D N A 

2.8.1 Preparation of competent cells 

Competent cells were prepared using calcium chloride as described by Dagert 

and Ehrlich (1979). A washing step in NaCl, and a relatively low calcium chloride 

concentration, were employed to enable prolonged storage of the competent cells 

at -80°C. 

Briefly, E.coli were grown in L-broth (50ml) to an ODQSQ of 0.2, the cells spun 

down at 6,000g for 5 mins at 4°C, resuspended in ice-cold lOmM NaCl (25 mis) 

and respun. The pellet was resuspended in ice-cold 30mM CaCl2 (25 mis) and 

recentrifuged. The bacteria were resuspended in a second aliquot of 30mM CaCh 

and left on ice for 20 mins before the cells were spun down. Finally, the bacterial 

pellet was resuspended in 4 mis of 30mM CaCl2, 15% glycerol (v/v), and stored 

in aliquots (200/x/) at — 80°C until required. 

2.8.2 Transformation 

Competent cells were thawed slowly on ice and lOOng of ligated DNA, diluted 

at least 1:2 in 30mM CaCl2, added. These were left on ice for at least 30 mins, 

then heat-shocked at 42° C for 2 mins, placed briefly on ice and L-broth (1 ml) 

added. This was incubated, shaking at 37° C for one hour to allow the transformed 

cells to express the relevant antibiotic resistance and then aliquots (100/d) plated 

on L-agar containing suitable antibiotics. The plates were incubated at 37°C for 

16-20 hrs. 

2.9 I D E N T I F I C A T I O N O F R E C O M B I N A N T C L O N E S 

When the pUC vectors were used the recombinant plasmids were identified by 

the appearance of white colonies when plated on L-agar plates containing X-gal. 

The phosphatase treatment of the vector molecules prevented recircularisation of 

the vector without the presence of the 5' phosphate groups on the insert DNA, so 

most colonies resulting from the transformation were recombinant plasmids and 
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were verified by small-scale isolation of the plasmid DNA. With these exceptions 

the recombinant plasmids were identified by in situ hybridisation of the plasmid 

DNA to nitrocellulose niters, followed by hybridisation of a 3 2 P labelled probe, 

complementary to the insert DNA. 

2.9.1 Small scale isolation of plasmid D N A 

Plasmid DNA was obtained from transformed E. coli by alkali lysis as de

scribed by D. Ish-Horowitz (Maniatis et al., 1982). This is a modification of the 

method of Birnboim and Doly (1979). Briefly a 1.5ml aliquot of an overnight 

culture was spun down in an eppendorf and the pellet vortexed with 100/x/ of an 

ice-cold solution of 50mM glucose, lOmM EDTA, 25mM Tris-HCl, pH 8.0. After 

5 mins at room temperature a freshly prepared solution of 0.2M NaOH, 1%SDS 

(200/x/) was added, mixed by inverting gently and stored on ice. After 5 mins, an 

ice-cold solution of 5M potassium acetate, pH 4.8 (150/i/) was added, vortexed 

vigorously and stored on ice for 5 mins. The precipitated proteins were removed 

by centrifugation for 5 mins and then the supernatant extracted with an equal 

volume of phenol/chloroform. The plasmid DNA was precipitated with ethanol 

(2 vols) at room temperature for 2 mins and pelleted in a microcentrifuge. The 

pellet was drained on tissue, washed with 70% ethanol (v/v) and dried under vac

uum. The pellet was resuspended in T E (50///) containing DNase-free pancreatic 

RNase. A yield of at least 3fig plasmid DNA was routinely achieved. 

2.9.2 In situ hybridization of bacterial colonies 

After transformation the resulting colonies were picked onto fresh plates in 

a regular grid formation for easy subsequent identification. Nitrocellulose filters 

(Schleicher & Schiill BA85/3, 85mm diameter) were placed gently on the agar 

surface, the orientation of the filter marked and left for 5 mins. The nitrocellulose 

filters were removed and the agar plates returned to the incubator in order that 

the colonies could regrow. 

The filters were placed with the adhering colonies uppermost onto a succession 
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of pre-wetted Whatman 3MM filter papers. The filters were moistened with the 

following solutions and left for the times indicated: 

1. ) 0.5N NaOH, 1.5M NaCl 

2. ) 1.0M Tris-HCl pH 7.6 

3. ) 1.0M Tris-HCl pH 7.6 2 mins. 

7 mins. 

2 mins. 

4.) 1.5M NaCl, 0.5M Tris-HCl pH 7.6 4 mins. 

The filters were then placed on a piece of dry Whatman 3MM paper and allowed 

to dry at room temperature. After approximately 15 mins the filters were placed 

sequentially onto Whatman 3MM soaked in 20%, 40%, and 70% (v/v) ethanol and 

then air-dried on a dry filter paper. Finally the nitrocellulose filters were baked in 

a vacuum oven at 80°C for two hours. The filters were probed with 32P-labelled 

probes complementary to the insert DNA (section 2.5.2.). 

2.10 L A R G E - S C A L E I S O L A T I O N O F P L A S M I D D N A 

The large-scale isolation of plasmid DNA was carried out by essentially the 

same method described in section 2.9.1, except the initial buffer was supplemented 

with lysozyme. 

A single colony was used to inoculate 5ml of L broth and grown at 37° C, 

shaking overnight. The overnight culture (1ml) was used to inoculate 5Q0ml_of_L 

broth and incubated for 6hrs shaking at 37° C. Suitable plasmids were amplified 

overnight by the addition of chloroamphenicol (170/ig/l) to the culture. The cells 

were harvested by centrifugation at 6,000rpm in a 6 x 500 rotor in the Sorvall 

RC-5B at 4°C. 

The bacterial pellet was resuspended in 10ml of cold 50mM glucose, 25mM 

Tris-HCl (pH 8.0), lOmM EDTA, 5mg/ml lysozyme and stored at room temper

ature for 10 mins. The suspension was transfered to 50ml Sorvall tubes and 20ml 

of 0.2N NaOH, 1%SDS added, mixed gently and stored on ice for 5-10 mins. An 

ice-cold solution of 5M potassium acetate, pH 4.8 (15ml) was added, vortexed and 
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the cell debris spun down, after 10 mins on ice, by centrifugation at 10,000 rpm 

for 20 mins. The supernatant was carefully decanted into two 30 ml corex tubes, 

a 0.6 vol ( « 12ml) of isopropanol added, mixed and left for at least 15 mins. at 

room temperature. The DNA was recovered by centrifugation at 10,000 rpm for 

30 mins.in a Sorvall HB4 rotor at room temperature. The pellet was allowed to 

drain, washed in 70% ethanol (v/v) and resuspended in T E . 

In order to set up caesium chloride gradients, the volume of the DNA solu

tion was measured. Solid CsCl (lg/ml) and ethidium bromide (600/zg/ml) were 

added and the density checked, and if necessary, modified, to give a final density 

of 1.55g/ml. Occassionally, a clearing spin was carried out, in order to remove 

precipitated proteins, by centrifugation at 10,000 rpm for 20 mins at room tem

perature. The DNA solution was transfered to quick-seal Beckman tubes, placed 

in a Vti 50 vertical Beckman rotor and centrifuged for 24-36 hrs in a Sorvall OTD 

65 Ultracentrifuge at 44,000 rpm at 15°C. 

The DNA bands were visualised under UV light and the lower supercoiled 

band recovered. The ethidium bromide was removed by sequential extractions 

with CsCl-saturated isopropanol. The plasmid DNA was then dialysed against 

three changes of T E at 4°C to remove the CsCl. The DNA was either stored 

directly or concentrated by ethanol precipitation. 

2.11 P R E P A R A T I O N O F T O T A L B A C T E R I A L D N A 

Putative recombinant Ti-plasmids were screened by Southern blotting of total 

A. tumefaciens DNA as described by Dhaese et al. 1979. An overnight culture 

(1.5ml) was centrifuged, the supernatant discarded and the pellet resuspended in 

400/i/ of 50mM Tris-HCl (pH 8.0), 20mM EDTA, 0.8% sodium lauroyl sarcosinate, 

lmg/ml pronase. This was incubated at 37° C for at least 1 hr and then sheared 

by pipetting through a glass pasteur three times. The proteinaceous material was 

removed by sequential phenol extraction and ethanol precipitation. The nucleic 

acids were finally resuspended in T E . 
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2.12 T R A N S F O R M A T I O N O F P L A N T T I S S U E 

2.12.1 Transformation of Plants with oncogenic Ti-plasmids 

Tumours were induced on stems and leaves of Kalancho'edaigremontiana by 

wounding with a sterile syringe needle, immediately followed by inoculation of the 

wound site with a fresh overnight culture of A. tumefaciens in L broth. Tumours 

were assayed for nopaline after 4-6 weeks. 

Tumour tissue was excised from axenically grown plants and transfered to 

hormone-free Murashige and Skoog medium (Murashige and Skoog, 1962) contain

ing carbenicillin (lmg/ml) and sucrose (30g/l). The tumour tissue was transfered 

every three weeks. 

2.12.2 Transformation of Nicotiana tabacum with B in 19 vectors 

In order to maintain sterility all manipulations described were carried out in 

a laminar flow hood. 

The presence of a Bin 19 derivative in LBA 4404 was confirmed by streaking 

the cells on L-Rif, Km, Sm. Single colonies were used to inoculate L broth con

taining 50fig/ml kanamycin and grown shaking at 27°C for 48 hrs. The overnight 

culture (1ml) was used as the inoculant for 50mls of L broth(50/i<//m/ kanamycin) 

which was grown at 27°C for 24hrs and harvested by centrifugation. The pellet 

was washed by resuspending in an equal volume of 2mM MgSO± and respun. 

This step was repeated twice and the bacteria finally resuspended in twice the 

volume of Murashige and Skoog medium (Murashige and Skoog, 1962) containing 

10g/l sucrose. 

Tissue from Nicotiana tabacum SRI leaves was surface sterilised in the follow

ing way. The cut petiole from a fully expanded leaf was sealed with wax, immersed 

in 70% (v/v) ethanol for 30 sees, washed in sterile distilled water and immersed 

in 5% (v/v) chloros solution with 2-3 drops of Tween 20 for at least 15 mins. The 

leaf was then washed three times in a large volume of sterile distilled water and 
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cut into pieces approximately 1 cm square. 

The leaf pieces were mixed with the bacterial suspension and left for 10 mins, 

placed on 0.8% (w/v) agar plates containing shooting medium (Murashige and 

Skoog medium, 20g/l sucrose, lmg/ml 6-benzyl aminopurine, O.lmg/ml a-naph-

thaleneacetic acid, pH 5.8) and maintained at 25°C in a plant growth room. 

After 48hrs the leaf pieces were removed and placed in liquid shooting medium 

with carbenicillin (lmg/ml). These were incubated, shaking, overnight, then 

washed briefly in shooting medium, blotted and placed on shooting medium plates 

containing carbenicillin (500fig/ml) and kanamycin (200fig/ml) in a plant growth 

room until green shootlets appeared. 

The shootlets were excised and transfered to rooting medium (Murashige and 

Skoog medium, 20mg/ml sucrose, 0.8% agar, pH 5.8) in 60ml sterilin containers. 

Roots appeared after 7-10 days and after three weeks when the roots were estab

lished the plants were transfered to pots containing 50:50 perlite:soil. The plants 

were covered in plastic bags and allowed to stand in water for 1 week after which 

the plastic covering was slit. After three days the bags were removed completely 

and watered as required. The plants flowered after three months. 

2.13 I S O L A T I O N O F P L A N T D N A 

2.13.1 Large-scale isolation of plant D N A 

Genomic DNA from putative transformed Nicotiana tabacum was isolated by 

a method based on that described by Graham (1977). Leaf tissue (approx 4g) 

was frozen in liquid nitrogen and ground to fine powder in a precooled pestle 

and mortar. The ground tissue was transfered to a 100ml flask and the following 

added:-

4ml Homogenising buffer (lOOmM NaCl, 25mM EDTA, 2% SDS, 0.1% DEPC) 

lml 5M sodium perchlorate 

4ml phenol 
4ml chloroform/octanol (99:1) 
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This was shaken gently on ice for at least 50mins. The mixture was then 

transferee! to a 30ml corex tube and spun at 8,000g for 5mins at 10°C in a 8 x 50 

rotor in an MSE 18 centrifuge. The supernatant was removed to a fresh corex 

tube and shaken with an equal volume of chloroform/octanol (99:1). The tube 

was spun for 1 min at 8,000g, the aqueous phase removed to a fresh tube and the 

DNA precipitated with cold ethanol (2 vols). The DNA was recovered by spinning 

at 8,000g for 20 mins at 4°C. 

The pellet was resuspended by shaking with 2 mis of resuspension buffer 

(50mM Tris-HCl, lOmM EDTA, pH 8.0) on ice overnight. Pronase was added to 

a final concentration of 500/iff/m/ and incubated at 37°C for 3 hrs.The nucleic 

acid solution was made up to 6.8ml with resuspension buffer and 6.8g of caesium 

chloride added followed by ethidium bromide to a final concentration of 200\ig/ml. 

The solution was mixed thoroughly and centrifuged in a 10 x 10 rotor in an 

MSE Prepspin 65 centrifuge overnight at 44,000rpm at 15°C. The DNA band 

was collected, the EthBr extracted with CsCl saturated isopropanol. The CsCl 

present was removed by dialysis against three changes of T E . The DNA was 

ethanol precipitated and resuspended in 1 ml of T E . The concentration of DNA 

and purity was estimated by scanning from 200-300nm. 

2.13.2 Miniprep method of plant D N A isolation 

The Dellaporta plant DNA miniprep technique (Dellaporta et al. 1983) was 

used to initally screen large numbers of putatively transformed tobacco plants. 

This method had the advantage of requiring less than a gram of tissue and allowed 

the DNA to be isolated in one day. The speed of isolation allowed relatively 

undegraded material to be retrieved but considerable RNA contamination was 

usual. 

At least 0.5 - 0.75g of leaf tissue was weighed, transfered to a pestle and 

mortar, frozen in liquid nitrogen and ground to a fine powder. This was transfered 

to 30ml corex tube on ice and 15ml extraction buffer (lOOmM Tris-HCl, 50mM 
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EDTA, 500mM NaCl, lOmM mercapatoethanol, pH 8.0) and 1ml 20% (w/v) SDS 

added. The mixture was mixed thoroughly and incubated at 65°C. After 10 mins 

5M potassium acetate (15ml) was added, shaken thoroughly and placed on ice 

for 20 mins. The mixture was spun at 8,000 rpm for 30mins in a HB-4 rotor in 

the Sorvall at 4°C. The supernatant was poured through three layers of muslim 

cloth into a 30 ml corex tube containing 10ml isopropanol. This was mixed, 

incubated at —20°C for at least 30 mins and spun at 8,000 rpm for 20 mins. The 

supernatant was discarded and the pellet allowed to drain on tissue. The pellets 

were resuspended in 0.7 ml resuspension buffer I (50 mM Tris-HCl, 10 mM EDTA, 

pH 8.0), transfered to an eppendorf tube and spun in a microcentrifuge at full 

speed for 10 mins. The supernatant was transfered to a clean eppendorf and the 

DNA precipitated with 3M sodium acetate, pH 4.8 (75///) and isopropanol(0.5 

ml). The DNA was pelleted by centrifugation for 30 sees, the pellet washed in 

70% (v/v) ethanol, dried and redissolved in 100-200/i/ resuspension buffer II (10 

mM Tris-HCl, ImM EDTA, pH8.0). Usually at least 40ftg of DNA was isolated 

by this method. 

2.14 N O P A L I N E A S S A Y S 

The presence of nopaline in a variety of transformed plant tissues was detected 

using a simple paper electrophoresis method based on that described by Otten 

and Schilperoort (1978). This method is sufficient to distinguish between nopaline 

and octopine and a variety of related products depending on the relative migration 

of the substance and the colour of the stained product. However, attempts were 

also made to develop more sensitive methods of nopaline detection and provide a 

more readily quantitative assay. These included HPLC which can detect a related 

product, nopalinic acid, and an ELISA technique. Unfortunately an assay based 

on these methods was not successfully developed in the time available. 

The paper electrophoresis was carried out as follows. Approximately lOOmg 

of plant tissue was placed in a small eppendorf tube and then crushed with a 
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metal rod. These were spun down for 5 mins and the supernatant removed. 

The supernatant (20//1) from each sample was spotted, at 1 cm intervals, onto a 

30x21 cm piece of Whatman 3MM paper, 4.5 cm from the anodal side. Nopaline, 

octopine and arginine standards were also loaded onto the paper, together with 

colour markers (methyl green, orange G and xylene cyanol) to monitor the progress 

of the samples. The samples were allowed to dry completely. The Whatman 3MM 

paper was placed in a Shandon 600x100 electrophoresis apparatus, wetted gently 

with the running buffer (5:15:80 formic acid : acetic acid : water, pH 1.8) and run 

for 1-2 hrs at 400V. The paper was dried and then sprayed with a 50:50 mixture 

of 9,10-phenanthraquinone (20mg/ml) in ethanol and 10% (w/v) NaOH in 60% 

(v/v) ethanol, mixed immediately before use. The paper was dried in a fume hood 

and the opines visualised under a UV lamp. 
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C H A P T E R 3 

R E S U L T S 
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3.1 I N T R O D U C T I O N 

A series of chimaeric leg-nos genes were constructed using two different vector 

systems. These complementary sets of vectors were designed to study promoter 

deletions in both callus tissue and regenerated plants. 

Initially sequences from the upstream region of leg A were combined with the 

nopaline synthase coding region in p D U B l l l l . These leg-nos fusions allowed the 

construction of a number of vectors based on the oncogenic Ti-plasmid pDUB1006. 

This Ti-plasmid vector has no intrinsic nos activity but allows the homologous 

recombination of the different chimaeric leg-nos genes, constructed in p D U B l l l l . 

These constructs were intended to address the question of potential silencer se

quences in the leg A promoter region. It was hoped that analysis of different 

deletion mutants would reveal differences in levels of expression in callus tissue 

and therefore the sites of any silencer sequences that may be present. Although 

the integration of the chimaeric gene sequences required laborious conjugations 

and selection of the desired crossing-over event, the callus tissue could be quickly 

assayed for any nopaline synthase activity. 

The more time-consuming regeneration of mature, flowering plants, required 

the synthesis of a parallel set of leg-nos genes in a disarmed vector. These vec

tors were required in order to dissect the minimum length of upstream sequence 

required for tissue and stage-specific expression of the leg A gene. The undifferen

tiated state of callus tissue is therefore unsuitable. The vector used was pBIN19 

(see section 1.2.3), which possesses a polylinker sequence for simple insertion of 

the leg-nos fusions. Once the constructs were inserted into pBIN19 the plasmids 

could be rapidly transfered from the E.coli host to the Agrobacterium tumefaciens 

strain LBA4404 during a triparental mating. Mature plants were obtained and 

various tissues tested for the presence of nopaline, which would indicate nopaline 

synthase activity. Where time permitted, the plants were allowed to self-pollinate 

and seed collected for analysis. 
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3.1 Restriction sites upstream of the Legumin A gene 

Restriction sites that have been used to generate suitable promoter 

fragments are indicated (not drawn to scale). These have been used to 

create a set of chimaeric genes, when fused to the nopaline synthase 

coding region. The location of the canonical promoter sequences of 

eukaryote genes that have been identified in the 5' flanking region of 

the legumin A gene from Pisum sativum L. are shown, together with 

sequences showing homology to the adenovirus and SV40 enhancers. 
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3.2 A N A L Y S I S O F P R O M O T E R D E L E T I O N S I N C A L L U S T I S S U E 

3.2.1 Strategy for construct ion of oncogenic T i - p l a s m i d vectors. 

The legumin promoter sequences were contained within pDUB24, a genomic 

clone of leg A in pUC8 (Lycett et al. 1984a), which is described in section 1.5.3. 

Analysis of the leg A sequence revealed CK> Ddel site lo caJted 

between the transcription start site and the coding region. This has allowed 

the relatively simple construction of a number of chimaeric genes, containing up

stream fragments of the legumin A gene from Pisum sativum L., ligated to the 

coding region of the nopaline synthase gene. 

The legumin promoter sequences were inserted into p D U B l l l l which contains 

the 25 bp repeat essential for T - D N A transfer. This vector was derived from a 

pBR322 derivative containing Hindlll fragment 23 of pTiC58 in which sequences 

between -1 and -287 of the nos promoter had been replaced by a unique Eco R I 

site (Shaw et. al., 1986). Different restriction fragments from within the 5' flank

ing region of leg A starting from the Dde I site upstream to suitable restriction 

sites (shown in fig 3.1) were adapted with Eco R I linkers to allow insertion into the 

unique Eco R I site in p D U B l l l l . To check for the addition of the linkers the frag

ments were first subcloned into pUC9, which also allowed large-scale preparation 

of these fragments for 3 2P-labelled probes. 

Following the insertion of the pSa derivative, pGV1106, to enable replication 

of these constructs in both Agrobacterium and E.coli, the plasmids were mobilised 

to the strain, C 5 8 C l E r y r C m r [ p D U B l 0 0 6 ] , mediated by pRN3. Therefore, the 

chimaeric genes could be integrated into the endogenous Ti-plasmid, pDUB1006, 

by homologous recombination between the nos coding region or right border se

quences. Tumours were then induced on the leaves of Kalanchoe daigremontiana. 

Four chimaeric leg-nos genes with differing lengths of 5' legumin A sequences 

were constructed. The details of synthesis of these constructs are outlined in 

the following sections. The leg-nos fusions contain the start of transcription from 
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3.2 S truc ture of the chimaeric Leg-nos genes at the site of 

fusion 

The genetic origin of the transcription and translation start signals, of 

the gene fusions between legumin A and nopaline synthase sequences, 

are shown. Sequences derived from p D U B l l l l , flanking the leg A pro

moter fragment, are indicated by a broken line. Sequences from the 

legumin promoter (0.1-1.2 kb) are indicated by a solid line. 
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leg A, separated by 68 bp, and the EcoRl linker, from the nopaline synthase trans

lation start codon. This results in tandem cap sites, which appears to have little 

effect on gene expression (Shaw et. ai, 1986). The arrangement of potential tran

scription and translation start points following fusion of sequences from the two 

constituent genes in pDUB1122 and p D U B H 2 8 is illustrated in fig 3.2. 

Initially, the "full-length" (1.2 kb) legumin promoter fragment was inserted 

into the plasmid p D U B l l l l to give pDUBH22. This plasmid has formed the 

starting point for a number of additional leg-nos chimaeric genes (fig 3.3) as well 

as a range of homologous disarmed Ti-plasmid vectors (described in section 3.3.1). 

A homologous construct with a smaller, 0.7 kb promoter fragment was constructed 

and designated pDUB1128. 

The two other plasmids were constructed to test the functional relevance of the 

legumin box and other sequences showing homology with the SV40 and adenovirus 

enhancers. A promoter fragment including the legumin transcription start site up 

to the Pst I restriction site at -95 (relative to the start of transcription) ligated to 

the nos coding region was constructed. This 0.1 kb promoter fragment retains the 

T A T A and C A A T boxes (Fig 3.1) and the first twelve nucleotides of the conserved 

sequence known as the 'legumin box' (see section 1.5.3). However, a promoter 

fragment of < 0.1 kb was difficult to isolate from agarose gels so alternatively 

pGV1106 was inserted into the Pst I site at -95 on the leg A promoter fragment in 

pDUB1122, to give pDUB1215. This spacially separated the promoter sequences 

upstream of the Pst I site by at least 8 kb. An Eco R I fragment containing the 

sequences upstream of -95 was excised from pDUBl215 to create an additional 

construct, pDUB1217, in order to exclude the possibility of any enhancer function 

in this upstream fragment. 

3.2.2 Cons truc t ion of legA promoter subclones 

Promoter fragments from the leg A gene which extend 1.2 kb (Bamill site) 

and 0.7kb (Haelll site) upstream from the Ddel restriction site were subcioned 
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3.3 Genealogy of oncogenic chimaeric Leg-nos constructs 

The construction of oncogenic Ti-plasmid vectors containing chimaeric 

Leg-nos genes has been carried out in four steps: 

i) Construction of promoter fragment subclones in pUC9; ii) inser

tion into the EcoBl site in p D U B l l l l ; iii) insertion of pGV1106 into 

the p D U B l l l l derivatives to create intermediate vectors; and finally, 

iv) recombination and resolution of cointegrates with the Ti-plasmid 

pDUB1006. 

Plasmids pDUB1016, pDUBH22 , pDUB1207 and pDUB1300 contain 

the full-length legumin promoter. Plasmids pDUB1018, pDUBH28 , 

pDUBl216 and pDUB1301 contain 0.7 kb of the legumin promoter. 

Plasmids pDUB1019 and pDUB1217 contain 0.1 kb of the legumin pro

moter. Plasmids pDUBl017 and pDUB1215 contain the full-length 

promoter with pGV1106 inserted at -95. 
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Fig 3.3 Genealogy of oncogenic chimaeric leg-nos constructs 
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into pUC9 using Eco R I linkers to give pDUBl300 and pDUB1301, respectively 

(Fig 3.4). Briefly, the plasmid, pDUB24, which contains 1.2 kb of 5' flanking 

sequence from the leg A gene was digested with Bam HI and Ddel, the ends 

rendered flush with Klenow and EcoBI linkers added (see section 2.2). Following 

Eco R I digestion, the 1.2 kb legumin promoter fragment, which spans a region from 

+19 to -1200 upstream of the legumin A gene, with its associated Eco R I linkers, 

was isolated. The isolation of the promoter fragment and removal of unbound 

linkers was achieved in a single step, by purification of the 1.2 kb fragment from 

an agarose gel (section 2.4.1), the linkers and other restriction fragments from the 

digested plasmid migrating much further down the gel. The 1.2 kb fragment was 

ligated to an Eco R I digest of pUC9 and colonies containing a recombinant plasmid 

identified on X-gal /Ap plates. The resulting plasmid was designated pDUB1300 

(fig 3.4). 

Similarly, pDUB1301 was constructed by the addition of Eco R I linkers to a 

Hae I I I digest of pDUBl300, followed by an Eco R I digestion. The 0.7 kb fragment 

was gel purified and inserted into the Eco R I site of pUC9 (fig 3.4). 

3.2.3 C o n s t r u c t i o n of chimaeric leg-nos genes in p D U B l l l l 

The promoter fragments from the pUC9 subclones were isolated and inserted 

into p D U B l l l l ( fig 3.5). A chimaeric leg-nos gene construct, pDUB1122, con

taining the entire length of the legumin A promoter sequences from pDUB24 was 

prepared by the insertion of the 1.2 kb Eco R I fragment from pDUB1300 into the 

single Eco R I site of p D U B l l l l . Following transformation and ampicillin selec

tion, colonies containing the insert were identified by colony hybridisation (sec

tion 2.9.2) with a labelled 1.2kb EcoRl fragment (section 2.3.2) from pDUB1300 

( L E G 1.2). Of the eight positive colonies isolated, the clone containing the pro

moter sequences in the correct orientation relative to the nopaline synthase coding 

region was identified by restriction analysis (fig 3.6). Five isolates showing the 

correct insert and vector size by Eco R I digestion were digested with Pst I. The 
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3.4 C o n s t r u c t i o n of leg A promoter subclones in p U C 9 

Legumin A promoter fragments (represented by open boxes) spanning 

1.2 kb and 0.7 kb of upstream sequences were modified with Eco RI 

linkers and inserted into pUC9. The restriction sites are indicated 

as follows: B=BamEI, Bg=Bglll, D=Ddel, E=EcoM, H=tfaeIII , 

Rp=HpaIl, P=Pst I . ATG signifies the position of the initiation codon 

of the legumin coding region. OnUj "the. l+eceUT scte u-oe_d -for 

C Nlot drcu^sw t o SdcJsi 3 t o SCeJjZ J 
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3.5 Cons truc t ion of chimaeric Leg-nos genes i n p D U B l l l l 

The promoter fragments subcloned into pUC9 were reisolated and in

serted into the Eco HI site immediately upstream of the nopaline syn

thase translation start codon, to generate pDUB1122 ( L E G 1.2) and 

pDUB1128 ( L E G 0.7). Sequences homologous to the Ti-plasmid vector, 

pDUB1006, namely the right border repeat and the nopaline synthase 

coding region (HindUI fragment 23 from pTiC58), are indicated by 

hatched boxes. H d = i f m d I I I and RB=right border sequences. Other 

symbols used are the same as Fig 3.4. 

OALM 4be HtieUI Si+e u^aed -for 44ne promote*-
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3.6 Res tr i c t i on analysis of p D U B 1 1 2 2 

Isolates identified by colony hybridisation were cultured and plasmid 

DNA digested with restriction enzymes. The DNA fragments from 

these digestions were sized on agarose gels against a Pst I digest of A 

DNA. Isolate 2 (lanes d and i) contains the correct fusion between nos 

and the leg A promoter. 

K e y : lane (a) p D U B l l l l Eco RI; (b) pDUB1300 Eco RI ; 

(c) - (g) are isolates 1-5 digested with Eco RI; 

(h) - (1) are isolates 1-5 digested with Pst I . 
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presence of asymmetric Pst I sites in the construct, generating fragments of 5.8 kb 

and 2.8 kb, allowed the correct orientation to be distinguished. 

Similarly, the 0.7 kb promoter fragment from pDUBl301 was isolated and 

ligated with EcoBl cleaved p D U B l l l l to give pDUB1128 (fig 3.5). By colony 

hybridisation with L E G 1.2 it was shown that 20% of the colonies obtained had 

the insert DNA. Again, the clone with the promoter sequences in the correct 

orientation was identified by restriction analysis (data not shown). 

Two additional vectors with only 95 bp of promoter sequences immediately 

upstream of the legumin A gene proximal to the nos coding region were prepared 

by the insertion of pGV1106 into pDUB1122 (section 3.2.4). 

3.2.4 Cons truc t ion of intermediate vectors 

Leg-nos constructs capable of replication in Agrobacterium tumefaciens were 

made using the following approach. Sequences from pGV1106 (Mini Sa), which 

can replicate in both E. coli and A. tumefaciens, were inserted into pDUB1122 

and pDUB1128, and designated pDUB1207 and pDUB1216, respectively. An ad

ditional oncogenic construct, with the first 95 bp of the legumin promoter spatially 

separated from upstream promoter sequences, has been made by the insertion of 

pGV1106 within the Pstl site of the legumin promoter of pDUB1122 to give 

pDUBl215. A construct with only the 95 bp promoter fragment, pDUB1217, 

was obtained by the excision of an Eco R I fragment from pDUB1215. The DNA 

manipulations and selection steps required are described in detail below. 

The intermediate vector, pDUB1207, was constructed by mixing equimolar 

quantities of pGV1106 and pDUB1122, Hin dill digesting and religating (fig 3.7). 

The recombinant plasmid was selected by ampicillin and kanamycin resistance of 

transformed E.coli [K514]. The integration and orientation of the isolates obtained 

was verified by Pst I digestion (fig 3.8a and b). In one orientation fragments of 

2.7, 4.0 and 9.5 kb were obtained (isolates 2, 4 and 5) and in the other a doublet 

of 2.7 kb and an 11 kb band (isolates 1 and 3). The 2.1 kb fragment seen in the 
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3.7 Cons truc t ion of intermediate vector p D U B l 2 0 7 

The intermediate vector pDUB1207, constructed by religating a iTmdl l l 

digest of the two constituent plasmids, pDUB1122 and p G V H 0 6 , was 

identified by selection with ampicillin and kanamycin. Legumin A pro

moter sequences are represented by open boxes; sequences homologous 

to Hin&lll fragment 23 from pTiC58 are indicated by hatched boxes. 

The restriction sites are indicated as follows: B=Bam HI, Bg=BglII, 

D=DdeI, E=EcoBl, E=HaeIll, H d = # m d I I I , Hp=tfpaII, P=Pstl. 
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3.8 Restriction analysis of pDUBl207 and pDUB1216 

(a) Minilysate DNA from the Km r Ap r clones (putative pDUBl207 iso
lates) was digested with Pst I to establish the correct relative orienta
tion of the two constituent plasmids. The bacterial isolate 1 generated 
a suitable restriction pattern (11.0 and 2.7 kb fragments) and was used 
for the subsequent conjugation with pDUB1006. 

Key: lanes (a) - (e) isolates 1-5 digested with Pst I ; lane (f) A Pst I . 

(b) The restriction pattern of pDUB1207 and pDUBl216 was checked 
by digestion with Eco RI (E), Bam HI (B) and Pst I (P). The 1.2 kb 
promoter fragment (LEG 1.2) derived from pDUB1300 and used as a 
probe in subsequent experiments is shown. 

95 



Fig 3 8a 

a b c d e f 

11 

Fig 3 8 b 

kb 

11 5 

4 8 

2 8 

12 

v ' pDUB ' P DUB ; . 
A 1216 1207 P L e 9 

Pst 1 2 
E B P E B P 



Bam HI digest of pDUB1207 (fig 3.8b) indicates that Bam HI site of the original 

leg A promoter was unexpectedly maintained after Klenow treatment and the 

addition of Eco RI linkers. 

The orientation of the two constituent plasmids, seen in isolates 1 and 3, en

sured that the possibility of activation of the deleted tetracycline gene by adjacent 

fragments was unlikely, which is important for the subsequent conjugation with a 

pRN3-containing strain which is selected by tetracycline resistance. The desired 

antibiotic sensitivity was confirmed by streaking on L-agar containing tetracycline 

and only those isolates which failed to grow selected for subsequent conjugations. 

Similarly, pDUB1216 was constructed by the ligation of Hindlll digests of 

pDUB1128 and pGV1106, followed by Ap/Km selection of transformed K514 cells 

(fig 3.9). This event was confirmed and the desired orientation of the constituent 

plasmids selected using restriction analysis (fig 3.8b). The correct orientation 

was indicated by 2.3, 2.7 and 11 kb fragments on Pstl digestion and two large 

fragments with Bam HI. 

The construct, pDUB1215, containing a leg-nos gene with 95 bp of legumin 

sequences proximal to the the nos coding region and 1.1 kb of these sequences spa-

cially separated by the insertion of pGV1106, was derived from pDUBH22. The 

plasmid, pDUB1122 contains two Pstl sites, one in the legumin promoter frag

ment and the other in the ampicillin resistance gene. The insertion of pGV1106 

into the first of these two sites could be easily detected by the retention of a 

functional gene for ampicillin resistance, in addition to the kanamycin resistance 

encoded by the inserted sequences. A partial Pst I digest of pDUB1122 was mixed 

with a complete Pstl digest of pGVH06 and ligated (fig 3.10). The recombinant 

plasmid, pDUB1215, was identified by ampicillin and kanamycin resistance. 

The orientation of the two plasmid components in pDUBl215 was determined 

and the isolate containing the single Eco RI site of pGV1106 proximal to the 

larger leg A promoter fragment was selected for further manipulations. This ori-
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3.9 Construction of intermediate vector pDUBl216 

The intermediate vector pDUBl216, constructed by religating a Hindlll 
digest of the two constituent plasmids, pDUB1128 and pGV1106, was 
identified by selection with ampicillin and kanamycin. Legumin A pro
moter sequences are represented by open boxes; sequences homolo
gous to the Ti-plasmid pDUB1006 are indicated by hatched boxes. 
The restriction sites are indicated as follows: B=BaraHI, Bg=Bglll, 
D=DdeI, E=EcoRl, H=i/aeIII, Hd=#mdIII, Hp=#paII, P=Pstl, 
RB=right border sequences. 
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3.10 Construction of intermediate vector pDUBl215 

The intermediate vector, pDUBl215 was constructed by religating a 
partial Pst I digest of pDUB1122 to a PstI digest of pGVH06. Re
combinant plasmids were identified by selection with ampicillin and 
kanamycin. Legumin.A promoter sequences are represented by open 
boxes; sequences homologous to the Ti-plasmid pDUBl006 are indi
cated by hatched boxes. The restriction sites are indicated as follows: 
B=Bamm, Bg=BglIl, D=Ddel, E=EcoKL, H=ffaeIII, Hd=#mdIII, 
Hp=//paII, P=Pst I , RB=right border sequences. 
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entation of the Eco RI sites allowed the simple excision of a 2.3 kb Eco RI fragment 

containing the larger leg A promoter fragment and the Sm/Sp resistance gene of 

pGV1106. The deleted variant, pDUBl217, was obtained by a partial EcoRl 

digest of pDUB1215 which was religated and Ap r , Km r colonies selected. Of 400 

transformants, six of the colonies were also Sm/Sp sensitive, indicating the loss 

of the Eco RI fragment. This was confirmed by digestion of the plasmid DNA 

which shows the absence of the smallest Eco RI fragment and the loss of a Pst I 

site within this fragment (fig 3.11). 

3.2.5 Insertion of chimaeric leg-nos genes into the T-DNA 

The insertion of the chimaeric leg-nos genes into the T-DNA has been achieved 

by the mobilisation of the intermediate vectors to the Agrobacterium tumefaciens 

strain, C58ClEryCm[pDUB1006] and homologous recombination. The deleted 

nos gene and the 25 bp repeat in pDUB1006 are homologous to sequences in 

the intermediate vectors derived from p D U B l l l l and allow a crossover event 

at these two locations, as indicated in fig 3.12. The resultant recombinant Ti-

plasmid, following a single crossover event, can have one of the two configurations 

shown in figure 3.13. The two different configurations can be distinguished by 

probing southern blots of restricted bacterial DNA with homologous fragments. A 

double crossover event was detected by antibiotic selection and hybridisation data 

indicating the replacement of the Km/Nm-resistance gene in the Tn903 fragment 

by leg-nos sequences. 

The mobilisation of the intermediate vectors to C58ClEryCm[pDUB1006] was 

mediated by pRN3 (Datta and Hedges, 1971). The InciV plasmid, pRN3, which 

contains the two genes coding for tetracycline and streptomycin/spectinomycin 

resistance, was transfered to E. coli [K514] containing the intermediate vectors 

by conjugation (section 2.7.1). With the exception of conjugations involving 

pDUB1215, which retains a functional gene encoding Sm/Sp resistance, the trans

fer was detected by selection of transconjugants on L-Km/Sm/Sp and verified by 
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3.11 Restriction analysis of pDUB1215 and pDUBl217 

The ligation of the two plasmids pDUB1122 and pGV1106 (MiniSa) in 
the kanamycin and ampicillin resistant clones isolated, was confirmed 
by digestion with a number of restriction enzymes. The derivative 
plasmid, pDUB1217 was obtained from pDUB1215 by the excision of 
a 2.3 kb Eco RI fragment. 

Key: lane (a) A Pst I 
(b) pDUB1215 Eco RI 
(c) pDUB1215 Pst I 
(d) PDUB1215 tfmdIII 
(e) pDUB1215 Bam HI 
and (j) A tfmdIII 

(f) pDUB1217 Eco RI 
(g) pDUB1217 Pst I 
(h) pDUB1217 tfmdIII 
(i) pDUBl217 Bam HI 
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3.12 Cointegration of pDUB1207 and pDUBl006 

A conjugation was carried out between E.coli, harbouring pDUB1207, 
and the Agrobacterium tumefaciensstrain C58ClZ?ryTCmr[pDUB1006]. 
A cointegrate plasmid is formed by a single crossover event through ei
ther .ffmdIII fragment 23 a or b, as indicated. The plasmids, not to 
scale, show the sequences derived from HindlH fragment 23 as hatched 
boxes, legumin sequences as open boxes, the fragment containing the 
neomycin gene from pDUB1006 as a box with straight lines, the Ti-
plasmid sequences as broken lines and pBR322 and pGV1106 as solid 
lines. A double crossover event results in the direct replacement of the 
neomycin resistance gene by the legumin promoter fragment. 

101 



3.12 

pDUB 1006 
(Ti-plasmid) 

H RB NmR n o s H 

(a) x / ( b ) 

H / \ / \ StuI 

I RB P L E G B O S 1 

pDUB 1207 



3.13 The two possible results of a single crossover between 
pDUB1207 and pDUBl006 

The cointegrate plasmid formed by a single crossover event generates 
two different plasmid conformations depending on the site of the cross
over event, indicated in this figure as (a) the right border or (b) the 
nopaline synthase coding region. 
The plasmids show the sequences derived from Hindlll fragment 23 as 
hatched boxes, legumin sequences as open boxes and pBR322 as a black 
box and sequences from pGV1106 as a stippled box. The fragment con
taining the neomycin resistance gene is indicated by a box with straight 
lines and the remainder of the Ti-plasmid sequences are indicated by 
broken lines. Restriction sites are indicated as follows: B=Bam HI, 
E=Eco RI, U=HindlII , P=Pst I , RB=right border sequences. 
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streaking on media containing the antibiotics, tetracycline and ampicillin. How

ever, with an efficiency of transfer of up to 70%, most isolated colonies contained 

both plasmids. 

The four different intermediate vectors were each transmitted from E.coli to 

the Agrobacterium tumefaciens strain C58ClEryCm [pDUB1006] during conju

gation (section 2.7.2). These transconjugants were identified by selection with 

erythromycin, chloramphenicol, neomycin and gentamycin at a frequency of be

tween 10 - 5-10~ 8. However, this selection does not distinguish between bacteria 

harbouring the two plasmids separately and those containing the desired cointe-

grate. To select for the cointegrate, a purified transconjugant was transmitted 

to a cured strain, C58ClRif r (section 2.7.3). An unintegrated pGV1106 derived 

plasmid cannot be transfered and the transconjugant can be distinguished from 

the original Ti-plasmid by the antibiotic markers transferred to the cured strain. 

The Ti-plasmids were transmitted to the recipient strain during conjugation with 

an efficiency of 4%. 

In this way the cointegrates, C58ClRif [1207::1006] and C58ClRif [1216::1006] 

were isolated at a frequency of 10 - 5 — 10 - 7 . These cointegrates were selected by 

plating on rifampicin, neomycin and gentamycin and checked for Sm" before the 

next conjugation step. The successful formation and orientation of the cointe

grate with the intermediate vector was confirmed by Southern blotting of total 

Agrobacterium DNA (section 2.5) using pGV0601 (fig 3.14) and LEG 1.2 (fig 3.15 

and 3.16) as probes. 

The probe, pGV0601, contains the Hindlll 23 fragment from pTiC58 and 

is homologous to sequences in both pDUB1006 and the intermediate vector, 

pDUBl207 (fig 3.14). Hybridisation with this probe to a flmdIII digest of 

pDUBl207::1006 would give radioactive bands at 7.1, 4.3 and 1.5 kb if the crossover 

event had occurred through the nopaline synthase coding region. In fig 3.14 the 

hybridising Hindlll fragments of 8.6, 2.8 and 1.5 are diagnostic of crossover be-
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3.14 Southern blot of total DNA from a cointegrate plasmid 
between pDUBl207 and pDUB1006, probed with pGV0601 

An Agrobacterium isolate containing a putative cointegrate between 
plasmids pDUBl207 and pDUB1006 was confirmed by probing total 
DNA (section 2.11) with 3 2-P labelled pGV0601. 10//g of isolated DNA 
was digested with EcoKl (E), tfmdIII (H) or Bam HI (B). These di
gests were run on agarose gels, Southern blotted onto nitrocellulose and 
probed with labelled DNA (section 2.5) 
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3.15 Southern blot of total D N A from a cointegrate plasmid 

between p D U B l 2 0 7 and p D U B l 0 0 6 , probed with L E G 1.2 

The presence of the legumin promoter fragment in the putative coin

tegrate was confirmed by probing total DNA from lysed cells with a 
3 2 - P labelled 1.2 kb fragment isolated from pDUB1300. 10/xg of total 

isolated DNA from individual isolates was digested with Eco RI (E), 

Hindi!! (H) or Bam HI (B). These digests were run on agarose gels, 

Southern blotted onto nitrocellulose and probed with labelled DNA. 
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3.16 Southern blot of total Agrobacterium tumefaciens D N A 

from a cointegrate plasmid between p D U B l 0 0 6 & p D U 8 l 2 1 6 

probed with L E G 1.2 

The presence of the legumin promoter fragment in the putative coin

tegrate, pDUB1216::1006, was confirmed by probing EcoKL digested 

total DNA from lysed cells (section 2.11) with a 3 2 - P labelled 1.2 kb 

fragment (section 2.5) isolated from pDUB1300. 

Key: Lane (1) pDUB1006 £co RI; (2) pDUB1207::1006 Eco RI; 

(3)-(5) Three isolates of pDUBl216::1006 EcoKL digested; 

(6) pDUB1006 Bam HI; (7) pDUB1207::1006 Bam HI. 
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tween the right border seqences. An Eco RI digest of either crossover product 

would give almost identical hybridising fragments because of the similarity in size 

of the legumin promoter fragment and the neomycin resistance gene of pDUB1006. 

The legumin promoter probe ( L E G 1.2) hybridises to a single Eco RI band 

of 1.2 kb in the plasmid cointegrate pDUBl207::1006, confirming the presence of 

the promoter sequences (fig 3.15). The L E G 1.2 probe also hybridises to a single 

Hindlll fragment of approximately 7kb and a 2.1 kb Bam HI fragment in this 

plasmid (fig 3.15). Using the same methodology, the putative Agrobacterium iso

lates of the cointegrate between pDUB1216 and pDUB1006 were verified (fig 3.16). 

The second crossover event within the cointegrate plasmids, pDUB1207::1006 

and pDUB1216::1006, was identified following a conjugation to a second cured 

strain, C58ClSm r Sp r , and the plasmids finally obtained designated pDUB1016 

and pDUB1018. This crossover event results in the loss of genes encoding for both 

gentamycin (encoded by pGVH06) and neomycin (encoded by Tn903) resistance 

so the transmitted plasmids were selected by octopine catabolism. This involved 

subculturing twice in liquid media before plating the bacteria on octopine and 

ornithine supplemented NO.O media, containing streptomycin and spectinomycin 

(section 2.7.3). The colonies obtained were replica plated onto L-Nm and L-Gm 

to isolate bacteria that had lost both resistance genes. Plasmids derived from the 

second crossover event were isolated at a frequency of between 1 0 - 2 — 10 - 3 . 

Initial experiments had used the cured strain C58ClEry r Cm r in which to 

select the double crossover, but the observed sensitivity of isolated colonies to 

neomycin and gentamycin was often the result of the loss of the entire Ti-plasmid. 

Subsequent conjugations were carried out with the C58ClSm r Sp r strain and DNA 

from a number of opine catabolising isolates digested with EcoRl to screen for 

the presence of the legumin promoter, as shown in figures 3.17 and 3.18. 

The majority of putative isolates of the plasmids pDUB1016 and pDUB1018 

hybridised to the Leg 1.2 probe giving a characteristic, 1.2 kb (fig 3.17) or 0.7 kb 
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3.17 Southern blot of total Agrobacterium tumefaciens D N A 

from putative p D U B l 0 1 6 isolates probed with L E G 1.2 

The resolved plasmid pDUBl016 results in the loss of the genes en

coding neomycin and gentamycin resistance and can be selected (af

ter enrichment) on solid media containing opines as the sole nitrogen 

source. However, to exclude the possibility of the phenotype being a 

result of the loss of the Ti-plasmid, total DNA from individual isolates 

was cleaved with Eco RI and probed with L E G 1.2. The ten putative 

isolates analysed all possessed the 1.2 kb promoter fragment. The four 

isolates used for subsequent tumour induction are indicated. 
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3.18 Southern blot of total Agrobacterium tumefaciens D N A 

from putative p D U B l 0 1 8 isolates probed with L E G 1.2 

The resolved plasmid pDUBl018 results in the loss of the genes encod

ing neomycin and gentamycin resistance and can be selected (after en

richment) on solid media containing opines as the sole nitrogen source. 

However, to exclude the possibility of the phenotype being a result of 

the loss of the Ti-plasmid, total DNA from twelve individual isolates 

was cleaved with Eco RI and probed with LEG1.2. The majority of the 

isolates tested had the 0.7 kb promoter fragment. 
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band (fig 3.18), respectively. In fig 3.17 the additional hybridising bands observed 

are probably caused by partially digested products which would be 7.4, 9.2 and 

12.2 kb in length. Additionally, to verify these crossover events total DNA from 

two different isolates was cleaved with Bam HI, Eco RI, and Hindlll and Southern 

blots probed with the labelled legumin promoter (fig 3.19). The hybridising bands 

in each case showed the expected pattern, generating a Bam HI band of 2.1 kb 

and a 4.3 kb Hindlll band. The additional partial Eco RI digestion products were 

not observed in this experiment. 

Similarly, the cointegrates between pDUB1006 and the other pGV1106 deriva

tives, pDUB1215 and pDUB1217, were selected on rifampicin and gentamycin at 

a frequency of 10 - 7 . The loss of the Tn903 Km/Nm fragment from these plasmids 

by a double crossover event was observed at a frequency of > 1 0 - 2 and could be 

screened directly by replica-plating of the colonies obtained onto neomycin plates 

and sensitive colonies determined. The RifrGmrNms cointegrates of pDUB1215 

and pDUB1217 with pDUB1006 were designated pDUB1017 and pDUB1019, re

spectively. 

The crossover event was confirmed by probing Southern blots of total Agrobac-

terium DNA digested with Eco RI, Bam HI and Pst I (fig 3.20) with the legumin 

promoter fragment. In fig 3.20b it can be seen that the legumin A promoter probe 

would be expected to hybridise to two bands with digests of pDUB1017 but only 

one band with pDUB1019. In Eco RI digests of pDUB1017 two hybridising bands 

are seen (fig 3.20) but the more intense signal of the 1.1 kb legumin fragment is 

absent in the corresponding pDUB1019 digests. The larger promoter fragment is 

found on a 2.3 kb Eco RI fragment in pDUB1017 and the small promoter fragment 

is found on a 7.6 kb Eco RI fragment. Some larger hybridising .Eco RI bands are 

probably caused by partial digestion products. 
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3.19 Southern blot of total Agrobacterium tumefaciens D N A 

from p D U B l 0 1 6 isolates probed with L E G 1 . 2 

The plasmid pDUBl016 isolates identified in figure 3.17 were confirmed 

by probing 10/zg of isolated DNA, digested with Eco RI, Bam HI, or 

tfmdIII, with L E G 1.2. 

Key: 

Lane (1) pDUB1207::1006 Eco RI; (2) PDUB1016 (isolate 1) Eco RI ; 

(3) pDUB1016 (isolate 1) Bam HI ; (4) pDUB1016 (isolate 1) fitndHI; 

(5) pDUB1016 (isolate 4) Eco RI ; (6) pDUB1016 (isolate 4) Bam HI; 

(7) pDUB1016 (isolate 4) Hindlll. 
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3.20 Southern blot of total Agrobacterium tumefaciens D N A 

from putative p D U B l O l ? and p D U B l 0 1 9 isolates probed with 

L E G 1.2 

These plasmids were identified by the loss of the gene encoding neomycin 

resistance. Total DNA from three putative isolates of pDUBl017 and 

two isolates of pDUB1019 were cleaved with Eco RI (E), Bam HI (B) 

or Pst I (P) and probed with L E G 1.2. 
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3.2.6 Analysis of callus tissue 

The four Ti-plasmid vectors finally constructed, containing the different leg-

nos fusions shown in fig 3.21, were screened for nopaline production in callus tissue 

obtained from Kalanchoe. Cultures of Agrobacteria harbouring these Ti-plasmid 

vectors were used to inoculate multiple wound sites on Kalanchoe leaves. Addi

tionally the same plants were inoculated with Agrobacteria containing pDUBl006 

and pDUB1003A31, as negative and positive controls, respectively. The propor

tion of inoculation sites which produced visible tumours appeared to depend on 

the physiological state of the individual plant rather than differences in the in

ducing strain. However differing responses were noted between tumours incited 

by plasmids, pDUB1016 and pDUB1018, as compared to those initiated by plas

mids which contained sequences derived from pGV1106, namely, pDUB1017 and 

pDUB1019. Plasmids pDUB1016 and pDUB1018 appeared to be relatively more 

oncogenic, producing larger and faster growing tumours. 

The tumours induced on Kalanchoe leaves infected with Agrobacterium tume-

faciens harbouring pDUB1017 or pDUB1019, which contain just 0.1 kb of the leg A 

promoter proximal to the nos coding region, were slow growing and fewer were 

obtained. Analysis was hindered by the small amount of tumour tissue obtained 

but no detectable nopaline was observed in tumour extracts (fig 3.22). UV fluo

rescent material was observed in the extracts of tumours derived from pDUBIO 19 

(fig 3.22b), and to a lesser extent in other inducing strains, but this did not 

co-migrate with the nopaline standards. Similarly, no nopaline production was 

detected in tumour extracts derived from agrobacteria harbouring pDUB1018, 

the 0.7 kb promoter construct (data not shown). 

Chronologically pDUB1016, the full-length \egA promoter fusion, was the 

first oncogenic vector of the series to be constructed and four separate isolates 

were used to infect Kalanchoe plants. Infection with agrobacteria harbouring 

pDUB1016, the ' full-length' promoter construct, gave rise to tumours, a few of 

which produced low levels of nopaline, as shown in figure 3.23. All these nos + 
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3.20b Structure of pDUB1017 and pDUBl019 

The product of a double crossing over event between (1) pDUB1215 
and pDUB1006; and (2) pDUB1217 and pDUB1006 are shown. These 
products were identified by a RifT GmT Nma phenotype. 
The plasmids show the sequences derived from Hindlll fragment 23 
as hatched boxes, legumin sequences as open boxes, sequences from 
pGVH06 as a stippled box and the Ti-plasmid sequences are indicated 
by broken lines. Restriction sites are indicated as follows: B=Bam HI, 
E=EcoKL, H=#mdII I , P=Pstl, RB=right border sequences. 
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3.21 Structure of the oncogenic leg-nos constructs 

The four different promoter deletions of legA fused to nopaline syn
thase are shown. The Eco RI linkers, the signal sequences required for 
transfer to the plant genome and the nopaline synthase translational 
start site are indicated. The plasmid numbering system is outlined in 
Table 2.1. 
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3.22 Opine assays on tumours induced with pDUBl017 and 
pDUB1019 

Approximately 50/xg of tumour tissue, derived from separate wound 
sites, was crushed in an eppendorf with a glass rod and the supernatant 
loaded onto 3MM paper. After electrophoresis and staining the UV 
fluorescent spots were visualised and photographed. Nopaline (2.5, 12.5 
and 25 /ig) and octopine standards (12 /ig) are indicated. The tumours 
were induced with C58C1 containing the following: 

Key: (a) 1. pDUB1006; 
2. pDUB1017; 
3. pDUB1017; 
4. pDUBl017; 
5. pDUB1017; 
6. pDUB1017. 

(b) 1. PDUB1006; 
2. pDUB1019 
3. pDUB1019. 
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3.23 Opine assays on tumours induced with pDUBl016 

Approximately 50/zg of tumour tissue, derived from separate wound 
sites, was crushed in an eppendorf with a glass rod and typically 20/xl 
of supernatant was loaded onto 3MM paper. After electrophoresis and 
staining the UV fluorescent spots were visualised and photographed. 
Nopaline (6.25, 12.5 and 25 /ig) and octopine standards (12 //g) are 
indicated. The tumour were induced with the following strains: 

Key: (a) 1. pDUB1003A31; 

2. pDUB1006; 
3. pDUB1006; 
4. PDUB1017; 
5. pDUB1016 isolate 4 with 20/il extract; 
6. pDUB1016 isolate 4 with 30/il extract; 
7. pDUB1016 isolate 4 with 40/d extract; 
8. pDUB1016 isolate 3. 

(b) 1. pDUB1006; 

2. pDUB1003A31; 
3. pDUB1016 isolate 1 
4. pDUBl016 isolate 1 
5. pDUB1016 isolate 3 
6. pDUB1016 isolate 3 
7. pDUBl016 isolate 4 
8. pDUBl'016 isolate 4 
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tumours were derived from one particular isolate, indistinguishable from those 

strains which did not produce nopaline, on the Southern blots probed with the 

legumin promoter fragment (fig 3.17 and fig 3.19). At least half of the tumours 

obtained with pDUB1016 (isolate 4) showed a fluorescent spot that co-migrated 

with the nopaline standard (fig 3.23b), corresponding to an average of O.lmg/mg 

of tumour tissue. This level of nopaline production is only 5-10% of that observed 

with the positive control, pDUB1003A31. 

These results were consistently obtained when these isolates were used to 

inoculate an additional set of Kalancho'e plants and the resulting tumours assayed 

for nopaline production. 

3.3 ANALYSIS OF P R O M O T E R D E L E T I O N S IN R E G E N E R A T E D 

T O B A C C O P L A N T S 

3.3.1 Strategy for the construction of disarmed Ti-plasmid vectors 

A series of disarmed vectors containing the promoter fragments from legA 

ligated to the nos coding region, were prepared in parallel using pBinl9 (Bevan, 

1984). The disarmed Ti-plasmid vector, 

pBINl9, contains the polylinker from M13 mpl9, the nptll gene regulated 

by the nopaline synthase promoter and a kanamycin resistance gene for selection 

in bacteria._ Therefore _the insertion of-.chimaeric-/ep-nos fusions,- derived from 

pDUB1122, within the polylinker of pBIN19, was simply achieved. An example 

of the construction of one of these vectors, pDUB1500, is shown in figure 3.24. 

The other disarmed (leg-nos) Ti-plasmid vectors were made in a similar fashion, 

as outlined in fig 3.25a and fig 3.25b. 

Four different transcriptional fusions, derived from pDUB1122, were finally 

synthesised and ligated into pBIN19, spanning 0.1, 0.8 and 1.2 kb of the leg A 

promoter and were designated pDUBl501, pDUB1500 and pDUBl502. An ad

ditional construct, pDUB1503, containing the "full-length" legumin promoter, 

but possessing an inverted upstream promoter fragment relative to the remain-
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3.24 Construction of chimaeric leg-nos genes in pBIN19 

The legumin-nopaline synthase fusion in pDUB1122 was isolated by a 
BgHl/Sttd digest. The chimaeric gene was isolated from an agarose gel 
as a 2.8 kb fragment and ligated to a Bam Ml/Smal digest of pBIN19. 
The insertion of the fragment into the polylinker of pBIN19 allows the 
simple detection of recombinant plasmids by selection on X-gal plates 
containing kanamycin. 

Sequences derived from the Ti-plasmid, namely the right (RB) and left 
border (LB) repeats and the nopaline synthase coding region (Hindlll 
fragment 23 from pTiC58), are indicated by hatched boxes. The neomycin 
phosphotransferase gene under the control of the nos promoter is in
dicated by a cross-hatched box and legumin promoter sequences by a 
black box. B=fiamHI; Bg=Bglll; E=EcoRl; Hd= JffmdIII; P=Pstl; 
S=Stul. 
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3.25a Construction of pDUBlSOl 

The 0.1 kb leg-nos construct was derived from pDUB1122 by exci
sion with Pst I . This 2.8 kb fragment was subcloned into pUC9 to give 
pDUB1302, which allows the isolation of a 2 kb fragment using Hmdlll 
and StuI, which can be ligated into the polylinker region of pBIN19. 
Sequences derived from the Ti-plasmid, namely the right (RB) and left 
border (LB) repeats and the nopaline synthase coding region (HindlH 
fragment 23 from pTiC58), are indicated by hatched boxes. The neomycin 
phosphotransferase gene under the control of the nos promoter is in
dicated by a stippled box and legumin promoter sequences by a black 
box. B=SamHI; Bg=B.glil\ E=EcoM; H=#mdIII ; P=Pstl. 
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3.25b Construction of pDUBl502 

The 'full length' promoter fragment was reconstructed by the addition 
of Hindlll linkers to a B gill j Bam HI fragment from pDUB24 and the 
insertion of this fragment into the Hindlll site of the polylinker region 
of pDUB1500, which lies upstream of the 0.8 kb promoter fragment of 
this vector. 
Sequences derived from the Ti-plasmid, namely the right (RB) and left 
border (LB) repeats and the nopaline synthase coding region (Hindlll 
fragment 23 from pTiC58), are indicated by hatched boxes. The neomycin 
phosphotransferase gene under the control of the nos promoter is in
dicated by a stippled box and legumin promoter sequences by a black 
box. B=Bam HI; Bg=Bgll\\ E=£coRI; H=#mdIII ; P=Pstl. 
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der of the legumin promoter, was also synthesised (section 3.3.3) The pBinl9 

derivatives were mobilised from their E. coli host to the Agrobacterium tumefa-

ciens strain, LBA4404(pAL4404) as described in section 2.7.4. Total DNA from 

bacteria showing the Rif/Sm/Km-resistant phenotype were Southern blotted and 

hybridised with suitable probes to confirm the presence of the pBinl9 derivative 

in LBA4404. 

These constructs were used to infect leaf discs of Nicotiana tabacum (sec

tion 2.12.2) and plants regenerated from Km-resistant shootlets. A variety of 

plant tissues, including callus, leaf and seed, were assayed for nopaline production 

(section 2.14). Genomic DNA was extracted from the transformed plant tissue as 

described in section 2.13, and analysed for unrearranged insertion of the chimaeric 

leg-nos genes by probing Southern blots (section 2.5). 

3.3.2 Construction of subclones in pUC9 and pUCl9 

In order to construct pDUB1501, a subcloning step in pUC9 was used. A Pst I 

fragment from pDUB1122, which encompasses pBR322 sequences from the Ap r 

gene, the entire nos coding region and leg A sequences up to the Pst I site at -95, 

was subcloned into the Pst I site in pUC9. The resulting plasmid, pDUB1302, was 

maintained in the rec~ E.coli strain DH5o to prevent homologous recombination 

between the sequences derived from pBR322 and thevector, pUC9: The Pstl 

fragment from pDUB1122 could combine with pUC9 in two orientations so a 

number of clones were screened by a Hindlll/StuI digestion of miniprep DNA. 

One recombinant plasmid was selected in which the orientation of the vector and 

insert were such that a fragment containing the legumin and nopaline synthase 

sequences could be excised with Hindlll and StuI, generating a fragment of 

approximately 2 kb (fig 3.26). The purpose of the subcloning step was essentially 

to convert the Pstl site at -95 in the leg A promoter to a Hindlll site using the 

polylinker from pUC9 There are three Pstl sites in pBIN19 but Hindlll is a 

unique site in the disarmed vector. 
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3.26 Restriction analysis of putative p D U B l 3 0 2 isolates 

A Pstl fragment from pDUB1122 was subcloned into pUC9. The ori

entation of insertion was determined such that a leg-nos fragment span

ning 2kb could be excised by Hindlll/StuI digestion. Miniprep DNA 

was digested with Hindlll and Stul. Lanes b and d show the correct 

orientation, giving characteristic bands of 2.0 and 3.6 kb. The opposite 

orientation produces fragments of 0.8 and 4.8 kb 

Key: lane (a) pUC9 Pst I; (b) - (d) pUC9 subclones of the pDUB1122 

Pst I fragment digested with Hindlll and Stul. 
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3.27 Restriction analysis of putative p D U B l 3 0 3 isolates 

Hindlll linkers were ligated to the 0.4 kb fragment from pDUB24, 

Hindlll digested and gel purified. Following ligation to Hindlll cleaved 

pUCl9 and transformation, miniprep DNA obtained from a number of 

white colonies was digested and run on an agarose gel. Isolates 1, 3 

and 4 appear to have the correct insert. 

Key: lanes 1-5. pUCl9 subclones digested with Hindlll; 6. A Pst I. 
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Fig 3.28 Restriction analysis of p D U B l 5 0 0 and p D U B l S O l 

Plasmids pDUBl500 and pDUBl501 were digested with a range of 

restriction enzymes. pDUB1500 contains a 0.6 kb Pst I fragment absent 

in pD-UB1501. An Eco RI fragment of 2kb which corresponds to the 

nos coding region is common to both vectors. 

Key: lane (a) A Pst I; (b) pDUB1500 Bam HI; (c) pDUB1500 Eco RI; 

(d) pDUB1500 Pst I; (e) pDUBl501 Bam HI; (f) pDUB1501 Eco RI; 

(g) pDUB!501 Pst I; (h) pDUB1303 flmdlll; (i) A Eco RI. 
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The constructs containing the full-length legumin promoter were synthesised 

in two steps. First a disarmed vector containing 0.8 kb of the legumin pro

moter (pDUB1500) was constructed (see section 3.3.3) and then a 0.4 kb sequence 

was inserted immediately upstream. This 0.4 kb sequence was derived from a 

Bglll/Bam HI fragment of pDUB24 which contains promoter sequences upstream 

from the Bgl II site at -829. This was subcloned into pUC19 after the addition of 

ffmdIII linkers to give pDUB1303 (fig 3.27). 

3.3.3 Insertion of leg-nos sequences into pBIN19 

The disarmed vector, pDUB1501 (Leg 0.1) was constructed by insertion of the 

Hindlll/Stul fragment from pDUB1302, which contains 0.1 kb of the legumin 

promoter fused to the nos coding region, into the Hindlll/Smal sites within 

the polylinker of pBIN19 (fig 3.25). Another vector, pDUB1500 (Leg 0.8) was 

constructed by the insertion of the 2.8kb Bglll/Stul fragment from pDUB1122 

into the Bam HI and Smal sites of the pBinl9 polylinker (fig 3.24). These 

constructs were checked by restriction mapping, the larger of these constructs gives 

an additional Pst I fragment corresponding to the legumin promoter upstream of 

the P s t l site at -95 (fig 3.28). 

The vectors, pDUB1502 and pDUB1503, were obtained by the insertion of 

the 0.4 kb Hindlll fragment from pDUB1303 into the polylinker immediately up

stream of "the promoterfragment^of pDUBl500, utilising the ffindlll site adjacent 

to the former Bam HI site. The Hindlll digest of pDUB1500 was phosphatased 

(section 2.3.6) prior to ligation to ensure efficient selection of recombinant plas-

mids. An assymmetric Ncol site within the 0.4kb insert allowed the orientation 

of insertion to be deduced (fig 3.29). The plasmid with the two pLEG fragments 

in phase was designated, pDUB1502 and the opposite orientation was designated, 

pDUB1503. 

3.3.4 Integration of deleted leg-nos genes into the tobacco genome. 

The structures of the four chimaeric leg-nos genes in pBIN19 are given in 
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3.29 Restriction analysis of p B I N l 9 derivatives 

The different legumin promoter fragments in the four disarmed vec

tors constructed could be demonstrated by iVcol digestion. Plasmids 

resulting from the ligation of the ifindlllfragment of pDUB1303 to 

pDUB1500 were further characterised by iVcol digestion so that the 

correct orientation of the promoter fragment relative to the nos coding 

region could be identified. The potentially functional orientation was 

designated pDUB1502 and the reverse, PDUB1503. 

Key: Lane 1. A Pst I; 2. pBIN19 Ncol\ 3. pDUB1501 Ncol; 4. 

pDUB1500 Ncol; 5. pDUB1502 Ncol; 6. pDUBl502 Ncol; 7. pDUB1503 

Ncol; 8. pDUB1503 Ncol; 9. A Eco RI; 10. A Pst I. 
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3.30 Structure of disarmed leg-nos constructs 

The four disarmed leg-nos constructs are shown, indicating the location 

of the Eco RI and Hindlll linkers, the right border sequences and the 

translation start site for nopaline synthase. The key is given previously 

in fig 3.21 and the plasmid numbering is outlined in table 2.1. 
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3.31 Southern blot of total Agrobacteriuin D N A from dis

armed vectors probed with L E G 1.2 

Agrobacterium total DNA from lysed cells was probed with a 3 2 - P la

belled promoter fragment from leg A. 10//g of total DNA from individ

ual isolates was digested with Bam HI (B), Eco RI (E) , Hindlll (H) 

or Pst I(P). These digests were run on agarose gels, Southern blotted 

onto nitrocellulose and probed with labelled DNA. As a negative con

trol, total DNA from pBIN19 was also run on the gel. The plasmid 

DNA gave the expected hybridisation pattern, pDUB1501 with only 

0.1 kb of leg A sequences gives only faint hybridisation. 
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3.32 Kanamycin resistant shootlets derived from transformed 

tobacco tissue 

Shootlets were obtained after 4-6 weeks on MS medium supplemented 

with sucrose (5g/l), carbenicillin (500mg/l) and kanamycin (200mg/l). 
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3.33 Southern blot of D N A from transgenic plants probed with 

nos 

DNA from 15 transgenic plants, transformed with pDUB1500, was 

prepared by the Dellaporta method (section 2.13) and digested with 

Eco RI. These digests were run on an agarose gel to check for com

plete digestion and to allow transfer of the DNA to nitrocellulose. The 

Southern blot was probed with a labelled EcofU/Stul fragment from 

p D U B l l l l which corresponds to the nos coding region. The strongly 

hybridising band seen with plants 1, 3,4,5,6,7 and 8 corresponds to this 

2.0 kb fragment. Fainter hybridisation is also seen in some of the other 

tracks. 
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3.34 Opine assays on leaf t issue from transformed S R I 

The presence of nopaline in tissues from transgenic S R I transformed 

with pDUB1500 was sreened. As controls, tissue from untransformed 

S R I and a cell line producing nos constitutively were used. Extracts 

from sixteen regenerated plants were made and run beside nopaline 

(nop) and octopine (oc) standards. 
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fig 3.30. The disarmed vectors constructed were mobilised from E.coli to Agrobac-

terium tumefaciens in a triparental mating (Section 2.7.4). LBA4404, harbouring 

these plasmids were isolated on L-agar containing rifampicin, streptomycin and 

kanamycin and verified by Southern blotting (fig 3.31). The resulting strains were 

used to transform Nicotiana tabacum leaf tissue and the kanamycin^shootlets ob

tained (fig 3.32) were regenerated into mature plants as described (section 2.12.12) 

Sixteen tobacco plants showing kanamycin resistance were obtained following in

fection of leaf discs with pDUB1500, which contains 0.8 kb of the leg .A promoter. 

Initially six plants were selected and genomic DNA isolated by the method 

of Graham (section 2.13.1). In order to screen rexpidUj the remaining plants, a 

miniprep method for preparing genomic DNA was used (section 2.13.2) and the 

DNA cleaved with EcoKL. Southern blots were probed with a 2.0kb EcoRl/Stul 

fragment which encompasses the entire nos coding region. Of the fifteen plants 

analysed in this way, DNA from eleven plants showed the expected band pattern 

after hybridisation to a probe for the nos coding region (fig 3.33). The regeneration 

of transformed tobacco plants from the other disarmed constructs generated only 

a few specimens which failed to flower and analysis of the integration of the binary 

vector was not carried out. 

3.3.5 Ana lys i s of transgenic tobacco 

A callus line of Nicotiana tabacum^ which had been transformed with p A S l l , 

a plasmid containing a nopaline synthase gene homologous to pDUB1003A31, 

was used to regenerate fertile plants to function as a positive control for nopa

line production. High levels of opine production were observed in the leaves of 

regenerated plants (fig 3.34). Similar results were observed with seeds except that 

this material produced a high level of background fluoresence which made inter

pretation difficult. The tissues from untransformed S R I was used as a negative 

control. 

resist***.!: 

Callus, leaf and seed tissues from plants transformed with pDUBl500 were 
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assayed for nopaline production. No nopaline was detected in leaf tissue (fig 3.34) 

from these plants with the exception of one plant (14). Analysis of seed harvested 

after self-pollination was carried out and only p A S l l and plant 14 showed any 

nopaline production (data not shown). 

3.4 S U M M A R Y 

Nopaline production was not detected in callus tissue with the exception of 

a number of individual transformants with 1.2 kb of leg A upstream sequences. 

There was no evidence to suggest that seed-specific expression can be successfully 

achieved with 0.8 kb of the leg A promoter region, when fused to the nos gene, in 

transgenic tobacco. 
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4.1 D I S C U S S I O N O F R E S U L T S 

4.1.1 Des ign and construct ion of vectors 

The oncogenic Ti-plasmids were used to elucidate possible silencer sequences 

in the leg A promoter and required numerous sub-cloning and cointegration steps. 

Negative controlling elements have been identified in the 5' upstream region of the 

cab gene from Pisum sativum (Simpson et ai, 1986b) and Nicotiana plumbagini-

folia (Castresana et ai, 1988). In contrast the pBIN19-derived vectors involved 

fairly simple ligation steps which were easily verified by restriction analysis. This 

set of vectors was used to test for tissue-specific expression in regenerated Nico

tiana. 

The initial plasmid manipulations were carried out in E.coli and verified by 

restriction mapping. The construction of the oncogenic vectors involved cointe

gration and resolution of homologous sequences in pDUBl006 and the p G V H 0 6 -

derivatives (pDUB1207,1215,1216,1217). The retention of the introduced sequences 

from the cointegrating vectors was verified by probing Southern blots of digested 

DNA from bacterial isolates demonstrating the desired pattern of antibiotic resis

tance and sensitivity. 

The loss of the antibiotic markers, involving a second crossover event, was 

distinguished from the loss of the Ti-plasmid by selecting for opine catabolism. 

However there is some evidence that the cured strain was able to grow-on-the 

selective media despite the absence of a supplied nitrogen source. Therefore the 

crossover event was verified by Southern blotting of a number of independent 

colonies obtained on opine supplemented nitrogen-free media, after a number of 

enrichment steps in the liquid media. 

The ability of the resulting plasmid constructs obtained to produce tumours 

provided further evidence that the restriction fragments corresponding to the chi-

maeric gene constructs were integrated into pDUB1006 rather than present as an 

autonomous replicating units. However, although no gross rearrangements were 
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observed, small changes in individual bases would not be detected. It would have 

been feasible to sequence the original plasmid constructions in p D U B l l l l , in par

ticular the crucial region of the legumin and nopaline synthase gene fusion, but 

mutations occuring at a later stage could not be ruled out. 

4.1.2 Nopal ine synthase as a reporter gene 

The various chimaeric leg-nos constructs failed to synthesise sufficient levels 

of the enzyme, nopaline synthase, to produce quantities of nopaline comparable 

to the levels observed with the positive controls, pDUB1003A31 in callus tissue, 

or the homologous construct p A S l l in regenerated tobacco tissues. 

In Kalanchoe tumour tissue, low levels of nopaline were observed with one 

particular isolate of pDUB1016, containing the full-length legumin promoter, but 

similar results were not obtained with three apparently identical strains. The 

other oncogenic vectors containing deleted leg-nos genes did not produce nopaline 

in the tumours examined. Similarly, analysis of callus tissue obtained during the 

transformation of Nicotiana tabacum using the homologous binary vectors, failed 

to demonstrate opine production. 

In transgenic Nicotiana tabacum S R I plants, regenerated from tissue trans

formed with pDUB1500, which contains 800 bp of 5' flanking sequences from the 

leg A gene, no evidence for opine production in any plant tissue was normally 

obtained. The only regenerated_pjant jwhich produced nopaline, apart_from the 

positive controls, gave an abberrant pattern on Southern blots and showed a con

stitutive type of gene expression. Unfortunately, there was not time to regenerate 

flowering plants from tissue transformed with the full-length leg A promoter so 

the possibility that factors upstream of the Bglll site at -829 are required for 

high levels of gene expression cannot be excluded. 

Normally opines are produced in response to Agrobacterium tumefaciens in

fection and have been used as an indicator of integration of the T - D N A into the 

plant genome. These opines have generally not been detected in wild-type tis-
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sues (Biemann et al., 1960; Braun et al., 1962; Holderbach and Biederbeck, 1976; 

Lioret, 1956; McKee, 1962). However, there have been a few isolated reports of 

the detection of opines in normal plant tissues (Johnson et al., 1974; Seitz and 

Hochster, 1964; Wend-Gallitelli and Dobrigkeit, 1973) although one report was 

subsequently retracted (Montoya et al., 1977). 

These opines have generally been detected by the paper electrophoretic tech

nique of Otten and Schilperoort (1978) which involves pre-incubation of the tissue 

with arginine. In a more recent publication by Christou et al. (1986), significant 

levels of nopaline was detected in soybean leaf and callus and small amounts in 

tissue from cotton. A structurally similar guanido-compound, acetopine which is 

an acetylated derivative of arginine, was detected in tobacco, soybean and cotton 

tissue. During electrophoresis, acetopine migrates between the spots correspond

ing to nopaline and arginine, so do not pose a problem in identification. If the 

tissues were not treated with arginine these compounds were barely detectable 

(Christou et al., 1986.). The nopaline assays described in this work were also 

carried out without pre-incubation with arginine. However in order to detect low 

levels of expression in seed tissues, an extract from 40 seeds was loaded. Follow

ing electrophoresis and staining a background smear stretching from the origin 

was observed in both transformed and untransformed seed tissue which may have 

masked very low levels of nopaline production. 

The nopaline synthase marker gene system-may have been insufficiently sen= 

sitive to detect low levels of expression. The detection of nopaline in seed from 
by Or A . /-repU-ec 

Nicotiana tabacum transformed with p A S l l ^ indicates that it is possible to detect 

nos gene expression using the enzyme product as an indicator in this plant tissue. 

Nopaline was detected in seed extracts without preincubation with arginine, which 

suggests that although the seed is actively synthesising storage proteins from the 

amino acid pool in this tissue, the levels of arginine were not limiting for nopaline 

synthase activity. 

Although the nopaline assay has the advantage of being quick, and inexpensive 
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to perform, it is probably not as sensitive as some other reporter genes currently 

in use. Different results were obtained by authors mapping the nopaline synthase 

promoter using nosas a marker gene (Shaw et al., 1984a) compared to those using 

C A T (An et al., 1986a). It is also difficult to quantitate the results. However, 

nopaline production was detected in leaf and seed of the transgenic tobacco plants 

which served as a positive control, so the failure to detect nopaline production may 

not be a fault of the marker gene used. Indeed one particular plant transformed 

with pDUB1500 produced nopaline in all tissues analysed which suggests that the 

nopaline synthase gene was potentially functional, although it may be only after 

some, as yet undefined rearrangement, or possibly the fortuitous proximity of an 

enhancer element in the plant genome. 

When promoters from monocot storage protein genes have been used to direct 

expression in dicot tissues, the often low levels of expression observed can make 

the marker gene system employed crucial to subsequent detection. Schernthaner 

and associates (1988) failed to detect expression of a 23kd zein gene (Z4) in trans

genic tobacco, but were able to demonstrate low levels of expression with some 

plants transformed with a Z4-promoter-CAT fusion gene and in all transformed 

tobacco with a Z4-GUS fusion. Therefore, G U S gene fusions appear to provide 

sensitivity without using radioactive products. However, in a recent paper (Plegt 

and Bino, 1989), tissue-specific differences in endogenous glucuronidase activity 

during flower development were observed. 

4.2 C O M P A R I S O N O F R E S U L T S W I T H O T H E R S T O R A G E P R O 

T E I N G E N E S 

Ellis et al., (1988), using a 3.4 kb genomic fragment containing the leg A gene, 

including 1.2 kb of 5' flanking sequences, have demonstrated accumulation of the 

legumin protein in the seeds of transgenic Nicotiana plumbaginifolia using an 

E L I S A detection system. The vector used was pBINl9 containing both the intact 

leg A gene and the marker gene, nopaline synthase. Of the 50 kanamycin plants 
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assayed for nopaline and immuno-detectable legumin, only three appeared to pos

sess functional copies of both genes. About half of these plants gave a positive 

result using an E L I S A for pea legumin but only ten plants gave a signal on the 

nopaline assay. The non-functional genes were associated with rearrangement but 

in at least one plant line, a rearranged legumin gene produced detectable legumin 

protein. These authors reported a failure to correlate gene copy number with the 

levels of expression obtained. 

In subsequent work (Shirsat et al., 1989) with a series of promoter deletions 

these workers identified 549 bp of flanking sequences required for tissue-specificity 

and temporal regulation, although elements further upstream were required for 

high level expression. Considerable variation between individual transformants 

was observed. Binding of nuclear proteins from pea seed has been correlated 

with these findings (Shirsat et al., 1990) but no binding to the legumin box was 

demonstrated. 

The expression of phaseolin and zein genes in callus tissue has been ob-

served using transformed sunflower, tobacco and petunia. I Although one isolate 

of pDUB1016 showed reproducible levels of nopaline, albeit at a lower level than 

the controls, a number of other similar isolates failed to elicite nopaline produc

tion. This may be explained be some alteration in the chimaeric gene that was 

not detected by the Southern blots carried out. The other oncogenic constructs, 

containing deleted leg-nos genes failed to produce nopaline in the tumour tissues 

examined. 

The detection of seed-specific expression has been achieved in seed promoter 

fusions with a number of marker genes, including octopine synthase, C A T and 

npt II. Only 863 bp of flanking sequences were required for the organ-specific 

expression of the phaseolin gene in transgenic tobacco plants (Sengupta-Gopalan 

et al., 1985) although there was evidence for degradation of the protein prod

uct. Sequences between -131 and -257 of the soybean protein /?-conglycinin have 

been implicated in the high level of organ-specific expression and correct tissue-
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specificity is maintained on further deletion to -159, albeit at a low level (Chen et 

al., 1986). 

Seed proteins from non-legumes, such as barley and wheat have been suc-

cesfully expressed in a heterologous system using a dicotyledonous host. This 

suggests that there are similar regulatory signals even in such evolutionally di

verged species. A region of the 5' flanking sequence, from -337 to -125, of a 19kd 

zein protein is sufficient for maximal, tissue-specific expression of a fused C A T 

gene in carrot and sunflower but not in tobacco (Roussell et al., 1988). The 5' 

flanking sequences from a B-hordein gene are able to confer tissue-specific expres

sion of a fused C A T gene in transgenic tobacco (Marris et al., 1988). Similarly a 

promoter fragment from a L M W glutenin gene of wheat, spanning 160 to 326 bp 

upstream of the transcription start site will direct tissue-specific expression of a 

fused C A T gene in transgenic tobacco (Colot et al., 1987). 

These regions of seed-specific promoters are very close to the essential pro

moter motifs, namely the C A A T and T A T A boxes and dissecting tissue-specific 

elements from those sequences required for transcriptional initiation would appear 

to be problematical. The upstream elements that have been fused to constitutive 

genes has generally resulted in a tissue-specific pattern of regulation. However, 

these results suggest that 800 bp of the legumin A flanking sequence should have 

been sufficient to direct seed-specific expression. 

4.3 F A C T O R S I N F L U E N C I N G G E N E E X P R E S S I O N I N T R A N S 

F O R M E D P L A N T S 

Many factors control the levels of expression of introduced genes in the plant 

genome, including position effects, methylation and the unrearranged insertion 

of the foreign DNA. The precise fusion of the legumin and nopaline synthase 

sequences may have introduced secondary structures that interfere with the ini

tiation of transcription. Results from a wide range of chimaeric gene fusions in 

transgenic plants indicate that lower levels of expression are observed compared 
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to the native genes, particularly in a heterologous system. Small deletions or re

arrangements in the coding or promoter components of the chimaeric genes may 

have occurred during the various subcloning steps, which were not distinguishable 

by restriction analysis. The copy number may influence the level of expression 

although in many cases this correlation was not observed, suggesting position 

effects. 

4.3.1 U n r e a r r a n g e d insert ion of introduced genes 

In a comparison of binary and cointegrate Ti-plasmid vectors by Spielmann 

and Simpson (1987), many reports of rearrangements of the T - D N A structures 

were indicated. The workers studying legumin expression in transgenic tobacco 

using pBIN19 reported a high incidence of rearrangements (Ellis et al., 1988) 

which may have been partially caused by having two copies of the nos promoter 

in these constructions. 

Point mutations which would be difficult to spot, except by laborious sequenc

ing of all constructions, may have a profound effect if they occur in the coding 

region of the marker gene and produce a truncated or modified protein which is 

no longer functional. Similarly a mutation in an element of the promoter region 

could also have profound effects. 

4.3.2 Transcr ip t iona l versus translat ional fusions 

The use of" a marker" gene can increase the sensitivity of detection of gene 

expression from a plant promoter, which may be particularly important if the 

promoter deletions result in very low levels of expression. The detection of the 

protein product of an introduced storage protein gene in transgenic plants can be 

problematical if there are similar endogenous products in the host tissue, which 

makes the use of a reporter gene desirable. Similarly, if reintroducing promoter 

deletions into a homologous system, to distinguish between the endogenous gene 

and an introduced gene, fusions of promoter sequences with a reporter gene have 

been employed. However, the fusion of a plant promoter with a reporter gene 
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may introduce novel sequences or potentially secondary structures which interfer 

with normal transcription and translation. Additionally, the use of linkers and 

the restriction sites used in the chimaeric gene fusion often alters the spacing of 

the cap site relative to the A U G codon. In different plant genes a considerable 

range in this distance had been observed (Joshi, 1987). The precise context of the 

A U G codon is important for translation (Kozak, 1987). 

Jones et al. (1985), using a fusion between the petunia cab promoter and the 

octopine synthase coding region, presented evidence that a translational fusion 

consistently gave a higher level of gene expression than a comparable transcrip

tional fusion. These authors suggested that in order to achieve high levels of 

expression of introduced genes, the sequence of the 5'-untranslated region should 

be as close to the original plant gene sequence as possible. Alterations in this 

region may exert deleterious effects on expression by increasing turnover of the 

messenger R N A by the destabilising effects of GC-rich regions. Alternatively, 

there may be regions downstream from the transcription start site that are im

portant for the regulation of transcription initiation as has been found for the 

globin genes (Charnay et al., 1984). 

In this laboratory, Shaw and co-workers have generated a number of tran

scriptional fusions between various promoters and the nopaline synthase coding 

region and demonstrated expression. The leg-nos fusions reported in this work 

and other fusions using the nopaline synthase gene (Shaw et al., 1986) have al

tered the spacing between the cap site and the A U G codon as well as possessing 

two potential transcriptional initiation sites. However, in most cases the asso

ciated nopaline synthase activity has been demonstrated although the prefered 

transcriptional initiation site has not been determined by these workers. 

4.3.3 Posi t ion effects of introduced genes 

The occurrence of position effects on foreign genes has been reported in most 

transgenic organisms. The site of integration greatly influenced the level of ex-
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pression of introduced genes in transgenic mice (Palmiter and Brinster, 1985) and 

in Drosophila (Bourouis and Richards, 1985). There is also one report of an intro

duced rabbit /3-globin gene being expressed in an unexpected tissue in transgenic 

mice (Lacey et al., 1983). 

Some authors have reported differences in the level of expression of introduced 

genes which cannot be explained by the number of copies detected by Southern 

hybridisation (An, 1986; Czernilofsky et al., 1986; Jones et al., 1985). This has 

been observed with both calli and regenerated plants, up to a 200 fold difference 

has been reported between individual calli and even two distinct genes on the 

same transfered T - D N A may show little relationship in their levels of expression 

(An, 1986). 

Analysis of a number of transgenic petunia plants carrying one or two copies 

of the pea rbc-E9 gene revealed differences of between 25 and 50-fold in the ratio 

of levels of mRNAs for this gene compared to the contransfered nos-nptll gene 

(Nagy et al., 1985). Jones et al. (1985) carried out a number of experiments to 

compare the level of expression of a number of transcriptional and translational 

fusions of the petunia cab promoter and the ocs gene using a cointegrated T i -

plasmid vector to transform both petunia and tobacco. Most transformed plants 

had between 1-5 copies of the gene, but one transformant which relative low levels 

of ocs mRNA had greater than ten copies in the genome. Individual transformed 

plants showed a 200-fold variation in their accumulated levels of chimaeric mRNA 
r 

(Jones et al., 1985). In these experiments a nos gene was also cotransfered and 

independent variation observed in the level of expression of these two genes, about 

10% of the Ocs+ plants showed no nopaline production and more rarely the ocs~ 

nos+ phenotype (2/100). 

Beachy et al. (1985) did not report similar effects when the a subunit of 

/3-conglycinin was used to transform petunia. Four independent transformants 

showed nearly identical amounts of an accumulated bean protein. 
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4.3.4 Methy la t ion of genes introduced into the plant genome 

Plant DNA contains a high content of methylated cytosine residues, pref

erentially at sites containing the nucleotides C G or C - X - G (Gruenbaum et al., 

1981). Unusual phenotypes following transformation with wild-type Ti-plasmids 

can sometimes be attributed to the loss of expression of a particular T-DNA tran

script caused by methylation (Hepburn et al., 1983). These authors reported a 

flax tumour line containing 22-24 copies of the T - D N A but only showing very low 

levels of nopaline synthase expression, which correlated with the methylation level 

of the DNA. This occurs indepedently of the methylation state of the surrounding 

plant DNA. 

4.3.5 Effects of the host tissues 

Although, Ellis et al. (1988) reported that the legumin protein deposited 

in seeds of transformed N. plumbaginifolia was correctly processed and unde-

graded, other workers have reported partial hydrolysis of the protein products of 

introduced genes. The vicilin-like proteins, phaseolin and /3-conglycinin showed 

some degradation to smaller peptides in transgenic plants (Beachy et al., 1985; 

Sengupta-Gopalan et al., 1985) However, the levels of nopaline synthesised in the 

tissues of transgenic plants containing an intact nos gene would indicate that this 

was not a factor, although a lower level of gene expression may have produced 

insufficient enzyme to be detected. 

The host plant can affect the level of expression. Nagy et al. (1985) reported 

that the level of expression of the pea rbcS-E9 gene is greater in transgenic petunia 

compared to tobacco (relative to an internal control). In transgenic petunia, the 

rbcS-E9 gene is expressed at only 0.2-10% of the level found in pea seedlings. 

4.4 C O N C L U S I O N 

In order for an introduced gene to be expressed in a transgenic plant, a num

ber of conditions have to be satisfied. When chimaeric gene fusions are used, the 
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precise site of fusion may generate novel sequences that are incompatible with effi

cient transcription/translation. The introduced gene has to be integrated, without 

rearrangement or mutation into a portion of the genome where the gene is likely 

to be actively transcribed (position effects). The site of integration may also in

fluence the susceptibility to methylation of the integrated gene sequences. The 

gene messenger RNA has to be stable in the tissue in which it is expressed, effi

ciently translated and the protein product undegraded if the enzyme activity is 

to be detected. The failure to achieve each of these conditions has been widely 

reported. 

The advances in our knowledge of the control of gene expression in plants 

has focussed attention on DNA-binding proteins in the promoter domain. This 

approach is attractive because the experiments are quick to perform and do not 

require the time-consuming regeneration of fertile plants, the results obtained 

give a functional role for the identified regions and can pinpoint sequences that 

deserve further characterisation by techniques such as scanning linker deletions. 

In addition new reporter genes have been developed whose assays are relatively 

inexpensive, quick and safe to perform and have been shown to be more sensitive 

than the more traditional marker genes in some systems. 

The dissection of controlling elements for expression in seed tissues have a 

number of potential applications. The expression of modified seed proteins or 

other proteins with a desirable nutritional status is an obvious-application but 

the presence of multi-gene families would entail multiple insertions of the foreign 

gene sequences that were highly expressed in order to have any appreciable ef

fect. Additionally legumes seeds can be viewed as a green fermenter (Croy and 

Gatehouse, 1985) producing high levels of proteins in the seed and requiring lit

tle in the way of exogenous energy inputs. Some seed proteins are undesirable 

and deletions might be affected by linking a strong seed-specific promoter to the 

anti-sense coding region of the deleterious protein. 
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