
Durham E-Theses

A documentation paradigm for an integrated software

maintenance support environment

Bittlestone, David

How to cite:

Bittlestone, David (1992) A documentation paradigm for an integrated software maintenance support

environment, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/6020/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6020/
 http://etheses.dur.ac.uk/6020/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

University of Durham

School of Engineering and Con1puter Science

A Documentation Paradigm for an Integrated Software

Maintenance Support Environment

David Bittlestone

Thesis snbrnittecl for the requirernents of the degree

of

Doctor of Philosophy

1992

27 JUL 1994

Abstract

""' Recent a.dvances in computer hard ware have not been matched by comparable advances iu
computer software. inhibiting the production of reliable software at greater levels of produc­
tivity.
Development of software is restricted by the so-called ·mainteuauce backlog·. Productivity
in the maintenance sector has not. kept pare with increasiug annual labour costs. making the
maintenance of software the major itetn i11 tlw budget of organisations responsible for the
development and maintenance of software.
Gains in productivit.Y can be anticipated by the exploitation of software-maintenance tools,
within the fra.me\\"ork of an Integrated Software :VIaintenance Support Environment (ISMSE).
for which a high-level design has lweu proposed in this thesis. offering comprehensive support
for all phases of the software life-cycle. particularly the maintenance phase.
A key factor in the reliable modification of software is the time taken to gain the prerequi­
site understanding. by a slttdy of the syst.ern's documentation. This documentation degrades
over a period of time. b~"('Otnittg unreliable. inhibiting maintenance of the software. which
ma .. v be a largP capital ctss<'l. l'lt itwll\·ly. tlw soft11·arc tnay becoll!e itnpossible to maintain,
requiring replacentent.
Understanding ga.inecl during maintenance is wide-ranging and at various levels of abstrac­
tion. but is often NOT well-recorded. since no effective clocumenta.tion system exists for
recording the maintenance history of large software systems.
The documentation paradigm in this thesis. used within the framework of an ISMSE, aims
to provide a means of recording the knowledge gained during maintenance, facilitating eas­
ier future maintenance. and preserving the reliability of the documentation, so reducing the
time required to gai11 an unclerst.ancling of the software being maintained. This provides a
powerful means of increasing product.i\·it.y. while simultaHeously presen·iug a valuable capital
asset.

Acknowledgements

I would like to thank 1m· supervisors. David Robson and Malcolm Munro, for their help
and encouragernettt. and for their comments upon numerous drafts of this thesis. I would
a.lso like to thank Colin \Valt.er. Stephett Eldridge. and Greg O'Hare of UMIST for helpful
discussions.

Financial support for this work was provided by a stuclentship from the Science and Engi­
neering Research Council.

Copyright

The copyright of this lhPsis rests with the author. No quotation from it should be published

without his prior writ.tett cottSPI!I and infortJJation derived from it should be acknowledged .

..
II

Contents

1 Introduction to the Problem Area 1

1.1 The sofhvare maintenance problem 1

1.2 Thesis objectives and outline. 6

2 Maintenance models 10

2.1

2.2

The rolf' oft he maintenance model 10

Literature survey of maintenance models 11

11 2.2.1 Introduction

L2. 2 T lw 11 HHlels . 1:2

1.2.2.1 Boehnt model . 12

2.2.2.2 Liu model . 13

2. 2. 2.:3 Sharpley model 14

2.2.:2.-1 :\lellor model . 15

2.2.2.:) Parikh model . 15

2.2.2.6 C~arter model .. 16

Ill

·) ·) ·} -
-·-·.:...I Chapi11 model 18

:2.:2.:2.8 l\'la.rt.in-l\'lcCiure model . 20

:!.:2.2.9 Patka.u model . 2:3

:2.:2.2.10 Osbonw model . :2.5

:2.:2.:2.11 \"au model :27

2. 2.:3 Other contributions to modelling the maintenance process 28

:2. :2.:3.1 [n trod uction 28

l.LL:! Fjelclst.ad nncl Hamlen·s contribution 28

:2.:2.:3.:3 Lit.tm;u1 et al"s coJ!t ribut.ion 29

:2.2.:3.-t Brooks' contribution 29

:2.:2.:3.:) Schneiderman and Meyer's contribution :30

:2.:2.:Ui Let.o1·sk1··s contribution

Leto1·skv and Sololl'av's contribution :31

:2.:2.:3.8 Linger. Mills and Witt's contribution :32

2.:3 DiscussioJJ . :3:3

2.:3.1 ('IIMd<"t eris<tt io11 of soft. ware ma.inte11ance :33

2.:3.2 Assessment of the the maint.enancP models surveyed :36

2.:3.3 Establishing a generalised maintenance process-model :39

2.:3.-+ Discussiou of the generalised maintenance model 4.5

·IV

LLLI l)roblc111 'erificat.io11

2.:3.4.:2 U nderst.ancling the program 46

!vloclification 47

LLI.-1 v·alidation . 48

:2.:3 .. s Sun unan·

3 Integrated Software Engineering Environments (ISE) 51

:).1 lntrodunio11 . -51

:).1.1 Tlw <1dvc·1Il of 111tegratecl Software Engineering Environments -52

:3.2 Overview of Integrated Soft\\·are Engineering Envirournents (ISE)

:3.2.1 Environrneut Archit.ecture . -54

:L-.2.:2 LII\·iroJJIIH'IJI iiJt.erfan-·s . :)6

:LL~.I l.ser i1llerface 58

:3.:2.:2.:2 T'ools i11terface . 60

:3.2.:2.:3 Database interface . 60

:).:3 C'lassificatiou of Integrated Software Engineeriug Environments 60

:3.:3.1 Dart ('lassifica.tiou 61

:3.:3.1.1 La.nguage-ceutrecl eti\·ironrnents . 61

:3.:3.1.:2 Structure-oriented environments. 62

:L:3.1.:3 Toolkit euviromnent:; . 63

v

~\let.hod-basecl environments

Houghton Clas::;ihcat ion 64

:).:1.:2.1 Progr<1rnming environments 6.5

:3.:3.:2.:2 Framing environments . 6.5

:3.:3.2.:3 Ceneral environments 6.5

:3.:3.:3 Comparisotl of Uart et ctls awJ 1-lougllton et al's classifications 66

:3.:Ll The Enropean .~lvey Integrated Project Support Environment (IPSE) 66

:3.:3.-t.l Overall objective of the IPSE 68

:LU.:2 Evolution of the IPSE . 69

:3.4 The Suitabilit.Y of an IPSE as arr lrtt.egratecl Software \laintenance Support

:3 .. 5

Environment 71

:3.4.1 Introduction . 71

:).1.:2 IPSE sttpport for rnaintettance . 7:2

:\. 1.:2.1 0 hjcc t lllatt<lg<'ll Will

:3.'!.:2.:2 Tool iutegra.tion .

~-) ,_

7.5

:3.4.:3 Problems associated with IPSEs . 76

Summary I I

4 Literature Survey of Current ISEs 79

4.1 Introduction . 7Y

VI

-L2 80

cl.:2.1 Environments providing e.rp!t:cll support for ma.inteuance .. _ 8:2

-L2.Ll i'viicroscope 8:2

-1.:2.1.:2 Arizona State University (AS{T) Practical Software :Vla.inte-
n<-ulce Environment _ . _ ..

4.:2 .I _:3 University of Colorado, Boulder - (prototype environment) . 8.5

4.:2.1.4 Genesis . 86

"I.:Z.I.-3 United States of America GeneraJ Service Administration's
·ProgranHuers· vVork Beuch.' (P\YB). 88

cl.:2.:2 r:,,,-i!"lllllll<-'llt.s pro\·idillg implicit support for the tllainteuance process 90

t\ion-hypert.e'-:1. environments 90

cl.:2.:3. l :\Luvel .. _ . _ . !:!0

1.:2.:L:2 .\spect. ____________ . ____ . _

--1.:2.:3.:) l:clipse. 94

4.:2.4 Hypertext Environments . 9.5

-L2.-Ll r,:!\·IS - r,:nowledge Managemeut Syst.en1 99

-1.:2 .-1. :2 Dynamic Design 100

-1.:3 Discussion 10:2

4.:3.1 The role of the process model . 102

4.:3.2 Support ofFered for the generalised maintenance model 105

..
Vll

I.:L2.1 Verifici:ltion of need for maintenance 10.5

4.:~.2.2 U n dersta.ncli ng 105

"1.:~.:2.:~ Support for abstraction, views. and the creation of informa.-

tion structures 101

4.:3.:3 :\tlodifica.Lion . 108

4.:3.4 Revalidation . 108

4.4 Summary 109

5 The information requirements of a maintenance organisation 113

!) . 1

- ·) .)._

lnt.roduction . 11:3

The role or tlw l\'laiJJI.Ptla.llCP ~doclel 114

5. :2. l The structure oft lw !\'laitttellallce Organisation. 114

. '). 2. 2 v·Prifyittg the need for maintenance ... ll 7

:).2.2.1 Information requirements for the front-desk 119

:). 2.:3 l·ucl<·rstcwding t.lte program 121

.).2.4 ~vloclification of Software . 127

5.2 .. 5 Revalidation . 130

:).2..').1 Regression Testing 1:30

~ ·) ~ ·) .)._ ..)._ Tt·stittg Strategies 1:31

.5.2.:).:3 Test-suite maintenance. 13:2

VIII

').2.'">.-1 Hevalida.t ion strategies . 1:34

.5.:3 Summary 1:34

6 A high-level design fot· an ISMSE 135

6.1 introduction . 1:3.5

6.2 Choosing a Software Development Model for the IS?viSE 1~36

6.2.1 The Spiral model 1:38

6.2.1.1 A typical cycle of the spiral ...

6.2.2 SoftwarP Process !'vlaturity !vlodel (SPl\Hvi) 141

6.:3 The dPsign process 144

6.:3.1 The rolt-~ of abst.ractiotl . 14-S

6.:3.2 .-\n Outline Soft\\·ar<' Requirements Specification (OSRS) l-18

6.:3.2.1 Ohtaitti11g tltc OSRS 1.50

ti.:\.2.1.1 Expressing the OSRS . 1.30

G. :l. 2 . I . 2 Tlte conceptual tnodel

6.:3.2.1.:3 The objectives of the IS:\ISE 1-54

6.:l.2.t.:3.l Increasing tlw productivity of a maintenance
organisation 1.5.3

!-d.2.1.:3.2 Research into the maint.enance process 1-56

6.:3.2.1 A The role of t.he IS!VISE 1.57

IX

6.4

G.:L:!.l.-1 The :\laint.enancP Organisation [.)9

6.:3.3 The OSRS document . 16:2

6.:3.:3.1 Introcluctioii

6.:3.:3.:2 Functional Requirements . 164

fd.:3.:2.1 Overview of functional requirements for an ISMS£ 164

G.:UJ:2 Ht:•quin~Ill<:'llts for object bast·' 166

6.:Ll. :2.:! l{equireiiWIIt.s for toolset. 168

6. :l. 3.:2.:3. 1 Introduction 168

6.:L3.:2A

Problems with tools in available !:iupport en­

,·ironments 169

Bt~quin·.'Inents for user-interface 170

Design of user- in terfa.ce 171

td.:l.:l A High-level ArchitecturP for an lSMSE. 172

G.:LL:_l.l Design and prototvping 174

176

7 An Information Structure for an ISMSE 177

7.1 Information Capture and Processing 177

\Vhat information to capture. 178

7.2.1 Ana.l_vsis of t.ool classes and tool fuiict.ions for information capture and
1 ~1 processing . u

X

1.:!.1.1 Tr<wsfonnation tools . 18:3

I. :2. l . :.! 184

I. :2. 1.:3 Dyna.rnic analysis tools 185

7.:3 Choice of information structure used to store the captured information 186

1.4

1 .. 5

A Maintenance History for a Software System

The i\[ailll!-'lldtiCt' Histun· a:; ill! ADT .. UJO

1 .. 5.1 Database ~lanagement Syste111 .-\rchit.ecture 191

- - ·) 1.·}._

1.:).1.1 lntrodrrction 191

1.:). l. :2 External schema 192

('once pt. ual schema 19:2

1.5.1.-1 ltlLE'rtl<ll schetllCl 194

1 .. 5.1.:) Summa.rv of Database Architecture 194

Description of the Conceptual Schema as an ADT 19.5

I.:).:!. I

- :- ·) ·) I ..)._.-

Descriptiott of the structure of the ADT Tree 199

1.5.:2.1.1 Graphical description 199

1.5.:2.1.:2 Natural language descriptiou

1.:).:2.1.:3 Formal clescri ption :20:3

Descri pt. ion of the structure of thf' A DT Linked List 204

7 .. 5.2.2.1 Graphical description 204

XI

/.:1.2.1.:2 Natural language description 204

/.:).:2.:2.:3 Formal description 204

/.6 Summary 206

8 Formal Specification of the ADT Maintenance-History 208

8.1 Introduction . 208

8.2 The benefits pro\·iclecl b\· the use of formal techniques for specification 209

8.3 The formal specification of data abstractions 211

tU.l Operat.io11al approach . 212

Defi11it ional dpproa.clt 21:2

8.4 Complet.t'IICss of Algebr<lic Specifications 214

8 .. 5 Consistency of Algebraic Specilic<ll ioJJs 211

8.6 The operations on tlte ADT !\la.intenance-History 217

8.6.1 The operations 011 the .-\ DT Anthology 218

8.6.2 :'-Jat.ural language ck'scription of axioms for A DT Anthology. 226

8.6.:3 The Operations 011 t.he A DT Hook :228

8.6A Natural language description of the axioms specifying the operations

on tltc t\OT Book . 245

8.7 Summary 248

9 Implementation of the Documentation Paradigm 249

XII

9.1 Choict· of l<wguage for the implementation .

\J.2 Prolol,vpittg tite AUT \lainu·n;wce_History. :251

9.2. L Strategy for testing :251

9.:2.:2 The operations :2.54

9.:3 Summary

10 Evaluation of the Documentation Paradigm 259

10.1 Introcluct.ion . :2.59

10.:2 Applying the clocunwnt.atiotl paradigm . :260

10.:2. L lnt rodwtion . :260

10.:2.'2 Pl<ctciug tlte docuttlentaliou paradigm in context :261

10.:2.:3 Tlw maintettattn· of a l_)ascal cross-rdereucer ·pxr· :t/0

IO.LLI ltltroduct.ion :210

I 0.:2.-1 ProdttcLiott of <l :'vlaintcttanc(' History for pxr :211

I 0.:2.-1.1 Clta.pt.n I - Verification of the need for l!laiuteuauce

10.2.-1.:2 Chapter :2 - t: nclerstaHdiug

l 0.:2.cl.:3 Chapter :3 - lVlodifi.cation . :28:3

I 0.:2.-1.-1 Chapter -1 - Revalidation . :28:3

l 0.:2.-1.:) (:hapt.er :) - Executive Summar_y :291

10.2 .. 5 Future maintenance of ·pxr· . 293

XIII

l0.2.G Other ntt.ril)l[t.e~ of the documentation paradigm :29.5

10.::!.1 \\eaktw~s<·~ as~ocia.ted with the documentation paradigm 2\:>6

10.:3 The effect of incomplete use of the toolset by ma.intainers

10.:3.1 Reasons for using the complete toolset

10.4 The scope for reuse of experience within the proposed ISMSE :300

10 .. 5 How llldllagers co1tld ittcorporate ·milestones' :301

10.6 The scope for us11tg the IS.\ISL to docunH'Ill its o11·n clen~lopmeut :301

10.1 Summ<tn· :30:2

11 Conclusions and Further Work 305

11.1 Revie"" of the \\"ork . :JQ.5

11.:2 Have the object.i\·e~ ht·'f'll achic'\Td .. :306

11.:3 Further Work . :310

XIV

List of Figures

:2.1 A Generic !\lainLettattc<-' Org;c-wisation Hierarchy and Associated Information
Types . . . _ . . _ _ _ . 41

:).1 Modelling of 1·:11\·irottiiiCIIt ltlL~:·rfaces 58

:3.2 Ct>neric .-\rchit.ect Lll'f' of a Software Engineering Environment based on the
l; nix op<'rc-tt.ittg s\·stetn ... -3~

:3.:3 The ..-\rcltit<·ct unJ of t.he Ada Programming Support Et,,·irottllWtlt (.-'\PSE) . . 61

4.1 Linked nodPs tn c-1 hvpertext . 98

5.1 St.ruc!.ttrf' of \ldilltetti-IIICf' Organisation 115

6.1 The \Vatcrfc-tll \lock! of tlw Software Developmeut Life Cycle .

6.:2 The Spiral [\·loclel of the Soft\\'M<-' lk\'('lopnlt'nt Life Cycle. 140

6.:3 The Software Process Ma.t.urity ?vloclel (SP!\H-'1) 14:3

6.4 Abstraction of the Design Process 146

6
,.. .. ') StructUI'f' for <HI OSHS . 149

6.6 A Generic !'vlaintenattce Organisation HiPra.rchy al1Cl Associated Information
1'ypes . 160

XV

6.7 Conceptual View of a i'vla.intenance Organisation 161

6.6 Requiren1cnt.s Definition for an lSl\•ISE 16:3

6.9 A High-Le,·el Design for an ISlVlSE 17:3

6.10 Prototype Life-Cycle l'vloclel . l/4

7.1

- •)
I·-

Generic Tool Types to support the Maintenance l'vloclel 182

The role of rlw i'vtaint.aiiwr- schematic . 187

7.3 The Book Forma.t as a Data i\·lodel for tlw Organisation of Information Con-
cerning a Software System 188

7.4 The A\Sl/SPARC Dl3:'vlS Three-Level Architecture. l~l

/ .. ') Tlw Book St rwt tire as n Directed Craph. 200

7.6 Backus-\aur description of Book Structure 202

7.7 Table of Contents showing Hierarchical Nature of the Book Format 202

7.8 The Linked-List structure as a directed graph 205

7.9 The AD'f \laint.eii<wce_I-listor.v constructed frorn the ADT Linked-List and
the A DT Tree . 207

8.1 Algebraic specification of ADT AI1thology 221

8.2 Algebraic specificatiou of ADT Anthology (contd.). 222

8.:3 Algebraic specification of ADT Anthology (contd.) 223

8.4 Algebraic specificatioil of ADT Anthology (contcl.) 224

8.5 Algebraic specification of ADT Anthology (contd.) 225

XVI

8.6 Conversion of m-ary tree t.o l'nuth ordered binarv tree

8. I Relationships between nodes in the l'nuth ordered binary tree 2:34

8.8 Algebraic specification of A D'f Book :235

8.9 Algebraic specification of A DT Book (con tel.) 236

8.10 Algebraic specification of ADT Book (contcl.) 2:37

8.11 Algebraic specification of :-\ DT Book (con tel.) 238

8.12 .-\lgebra.ic specifica.tiotl of .-\DT Book (cout.d.) 23\:l

8.1:3 .-\lgebraic specific<J.t.ioll uf .-\ DT Book (cont.d.) 240

8.1-l .\lgebraic specification of ADT Book (cont.cl.) 241

8.1-5 Algebraic specification of ADT Book (con tel.) 242

8.16 .-\lgebraic specificatiou of ADT Book (cont.cl.) 24:3

8.11 Algebraic speci hcat.iou of .-\ DT Book (con tel.) :244

10.1 The ~lai Ittenal!ce History of a software system 262

10.2 Project. structttre of tnaillkttallcc of p~r 264

10.:3 Book struct Ill'(' of a versio11 of p:-;r . 266

lOA The l\ilaintenance History of p~r . 27.5

10 .. 5 The Maintenance History of pxr . 276

10.6 New priorit.y for change requests . 276

10 ~ ri'l ~.~ • }-{' (" Y7 • 1 1E' tv atnt.etla.uce Istory o p~r . ~ {

XVII

10.8 The iVIaintettilllC<' Histor\ of pxr :278

10.9 The f'v!aintettance Hiswrv 11f p.\r . :280

10.10 The i'vlainteuance History of pxr 281

10.11 The Maintenance I-1 is tory of pxr :28:2

10.12 The Maintenance History of pxr

10.1:3 The [lvlaintenance 1-list.ory of pxr 285

10.14 ~vlodule hierarclt.v of a struct urecl program :287

10.1.5 lVIodifiecl module hierarchy of a structured program 287

10.16 The !vlaintt>n<UtCP 1-listorv of pxr 292

10.11 Out.put frotll t lw ·p<Lt [,· operat iLm 2Y4

10.18 Output frolll tlw ·abst r<t<·t · O[Wri-lt.iou . 2Y.S

XVIII

List of Tables

:2.1 Sunltlli-ll'_\" of \laitt1ettdi1CC:' tttodels. :31

-±.1 Summary of Errvirotttnettts· Ft:·<~tures 110

9.1 The operations for the :-\ DT Anthology 2-57

CJ.:2 TltP OjWI'dl io11s fur tlw A DT Book 2.58

10.1 Operatiotts <Utd <-~cti,·itics asso(i<l.t.ed with tlw dontttwttLat.iott paradigm 299

0

Chapter 1

Introduction to the Problem Area

1.1 The software maintenance problem

In recent years great ach·ances ha,·e been made in computer hardware, but these have not

been matched with advances in the productivity of reliable computer software: thus reducing

the effectiveness of computer harclwarP. This state of affairs is due. in part. to the "software

maintenance backlog': from this point onwards the term ·maintenance' is used in place of

the term ·software maintenann,·.

A definition of software maintenance is needed since it is the precursor to the establishment

of a model of the mainr.en:·:nce process. the subject of the next chapter. Several definitions

have appea.red iii the literatme. each bas its own merits: typical are those of IEEE [.57]

and Class [46]. The IEEE [.57] defines software maintenance as: ·rvtodificatiou of a software

product. after delivery to correct faults, to improve performance or other attributes, or to

adapt the product to a changed environment.' Class defines software maintenance as: ·The

act of taking <l soft11·ar<' product tltat has already been cleli1·ered t.o a custo!ller and is in use

by him. and ke<:'ping it funct i(ming in a satisfactory way. It is the process of being responsive

to user needs, fixiug errors, ma.kiug user specified modifications. honing the program to be

more useful'.

The producti1·it1 of t.lw IIIaiilff'llance programmer has not kept pace 11·ith increasing anuual

labour-cost .. therefore tl1e overall cost of maintaining software has gro11·n to become. by far.

the major item in the computiiig budget of rnost commercial organisatioiis [70]. This means,

in turn, that the development of new software has been restricted. exacerbating the growth

in the gap bet.\\'een ach·ances in computer hardware and the production of reliable software.

Thi!:> gap i!:i rdnred to as t.lw ·II<lrclware-soft.l\'t-He gap· in the remainder of this thesis.

The traditional role of the maintenance programmer is concerued 1\·ith manually scanning

large amounts of printed material, seeking to assemble enough knowledge of a software

system with the objective of making reliable modifications to it. This approach to software

maintenance has pron-:-d inadequate in dealing with the maintenance problem and as software

systems becOillt' lmg<'l' <:uid IIIOI'<' complex with a greater anticipated lifespan (concomitant

with the cost. of clevelopnwnt). automation of some aspects of the rnaintena.nce process offers

a means of decreasing the cost of maintenance through the increased productivity of the

ma.intena.nce progrnmnwr.

Before any moclifiration can lw made to a software system a thorough understanding of the

relevant part of the software is Iwcessarv because:

l. the place where t.lw modification Is to be made must be found

2. the change must be Im1cle without adversely affecting the software - I.e. the ·ripple

effect.· must. lw d\·oided.

U nderstancling is wiclt>-ranging and at ,·arious levels of abstraction - a general understanding

of the high level dt'sign may lw needed to identify the module; whicb need to be modified.

Partial knowledgf' of the control and data flows may be required to identify potential side­

effects elsewhere i11 tIt<· i-lpplic<it.ioiJ. A detailed knowledge of the implementation details in

the vicinity of the change(:;) is essent i<tl.

Program-underst i-liidi11g is t.lw keysto1w of software maintPililllCt'. all other acti,·ities are sub-

ordinate. since without tlte m•c(·ssary understanding of the software. the other maintenance

phases cannot begin. The understanding of any system usually begins with a survey of the

available supporting documentation. whose reliability for la.rge cornplex software systems

reduces with the increasing age of the software. For this reason. maintainers are often forced

to rely on the sourc<" listing as the only reliable documentation of the software; however,

the source listi11g o11ly pro\·ides a. low-level documentation a.id. whereas the documentation

which is most valuable to i-l maintainer is high-level documentation. such as design strategy

and functional specificat.io11s. Tlw understanding that tllP maintainer seeks from the source

listing bas bPf:'lJ refr~:-rod to ;-1s t lw plans in t hP codP by T .. Pt.ovs k y et al. [61] a.nd is initiated

by the process of information-capture.

Traditionally, much of this information capture has been carried out. by ma.inta.iners without

the use of software tools: a labour-intensive task made even more difficult with a software

system which has been m sernce for a considerable length of time. since the structure

and readability of ageing software degrades with time. It has been shown [104] that a

maintenance programmer spends most of his time in the ana.Ivsis of code (about 47% of his

time iu tota.l) <wd this lobuur-iJII<'llsi\·(' c11·t i\·ity reduc·<·s t lw producti\·it.v aud effectiveness

of the ma.intenancf' programmer because:

L such a mauual process 1s verv t.ime-consuming and f'rror-pronP

2. the onset of f<ll igue hrot1ght nbout by the drudgery of t lw task of ma!luall.v scan-

ning code to establish data. a.llCI control flo\\". hinders the maintenance programmer in

a.chie\·ing t.he prerequisite understanding of the soft\\"a.re

:3. the knowledge gained during this a11a.lysis phase is often \iOT recorded for the benefit

of future maint ai1wrs because this aspect of software maintenance is not well-supported.

This means that. Jnuch time will be wasted in repetition of this uudersta.ncling activity.

As a first step in reducing the maintenance backlog and narrowing the 'hardware-software

gap', product i vi t.y- g;-1.i us in the ma.i u tena.u ce sector are of para.tllouut illlportauce. These gains

in productivity ca.11 only be achie\·ed bv the introduction of automation. i.e. software tools,

4

and the adoption of a st.rat.egy for maki11g use of automatipu. within t.he confines of a software

mainte~1r:n,~~" support em·irontlw:H. thus releasing resources for software development.

Boehm [11] showed that the u:::e of a software engineering environment can reduce devel-

opment effort by 28 to -11 1
/'(,; since software maintenance is in some ways a tmcrocosm of

software development, it is hoped that a similar advantage will accrue through using a soft­

ware maintenance environment. The GSA's Programmers' Workbench (PvVB) [49] was the

first initiative wlticlt atl<'lllpted to <-tchie,·<c· tltis increase iu productivit.y aliCI prm·ided the

impetus for tlw developnwnt oft he Integrated Software lV[aintenance Support Em-ironment

(ISiviSE), the basis of this research topic.

Although the environment is primarily intended to offer technical support to the maintenance

progranunt-'r. thro1rgh tlw creatio11 d.trd rna11agernent of a repository of information needed

to maintai11 soft.w<H<' ('ffecti,·el\. spin-off' lwnehts are that the quality of mainterwnce will be

raised and the 11/JliiJl!]Cment of maintenance \\'ill be made easier and more effective. The long­

term goal of the ISl'viSE is to prm·ide ;-1 nlairJtetJdllCE' team witl1 an interactive environment.

which will consist ol' an integrc-1tcd cornprehensive set of soft \\·are Jlli-lillteuanc<:' tools and will

make use of the latest ddt.abc-1se technology.

Before a maintenance envirolllll<~IJL c<uJ be created, it is necessary to have a. comprehensive

description of what activities take place "·it hir1 the ma.inLellatlcc phase and so the mainte­

nance process must. he accurat.ely rnodelled: a maintenance Illodel supplies knowledge about

the role of the tll<tillt.ainer a.ncl t.he actions of the maintainer wheu maintaining software.

:)

1.2 Thesis objectives and outline

l. To examine the need for a maintenance support environment and the need for a strategy

for software maintenance

2. To investigate currently-available support environments for their support for software

maintenance

:3. To develop a strat.eg_y for the maintenance process and a high level design for an

integrated lll<linkll<lllce support enviroument

4. To define formally a.nd i1nple111ent a paraclign1 for the doctlllleutatiou of maintenance

and demonstrate and analvse its usP

This chapt.er int rodun·s the reader to the problem area. C'ha.pt.Pr two surveys the ma.inte­

nance models in t.he literature to see if there are any gaps. The design of an environment is

based on a model of the process it is t.o sr1pport. and so the descriptio11 of the maintenance

process must be a comprPhensivP one.

Chapter three considers integrated software engineering environnwnts to see whether a dis­

ciplined application of software engineering techniques is likely to be of help in the mainte-

nance of software. particularly with r(~garcl t.o imprm·ing tilt' pruducti\·ity uf a twtiut.euauce

orga.nisa.t ion.

Chapter four sun·<"ys some integrated software engineering environments and evaluates their

support for the maintenance of software.

Chapter five sets the scene for the remainder of the thesis, indicating specifically where

thf' IS~:fSE can he of help to a hypothetical generalised maintenance organisation, using the

maintenance model derived in an earlier chapter. Deciding the role of the ISMS£ determines

the direction of the research.

Chapter six is concerned with the high-level design of a software maintenance support eu­

vironment. highlighting the essential differences between the proposed ISMSE and current

Integrated Project Support Environments (IPSEs).

Chapter seven is concemed with the information structure which is designed to hold in-

formation conceming tlw nlaint.en<\llCe of <t software system . .-\ttention is focussed on the

toolset and the role that t.he toolset. plays iu the ISMS£. i.e. capture of information, and

the processing of illfcmnaJiOII i11t0 knowledge. to aiel in the undersl.d.ildiiig of soft\vare, prior

to its maint.enaiiC<'. To <1id i11 thi' futurr rnaintenauce of software. p<:nticularly as regards the

understanding of the software. a1td the associated improvemeuL in productivity. a clocumen-

tation paradigm is proposed for a maintenance history. which gives a. suggested direction for

a partial implrttl<'lllat iutt ol" tlw IS\!SL.

Chapter eight is con cenwcl wit II the formal speci fica.t ion of the [n formation Structure as an

ADT, using algebraic axion1s.

Chapter ninP prototypes a subset of tlw IS\ISE. describing <-l Prolog implementation of the

documentation parae! igttt.

Chapter ten is concerrwd with the testing of the validity of these specifications and the sim-

ulation of the enviroiiillPIII and it.s maintenance strategy. mapping the ~vla.iuteuance Hi:;tory

and its as:-:ociatecl editing fullct.ions onto the Unix file structure and toolset.

Chapter eleven relates to the success of the work. discusses the results of the thesis. and

makes suggestions for further work.

Summary

Because of the software maint.enancP backlog. Increases In producti,·ity are of urgent and

immediate priority <1ncl may be facilitated lw:

l. The partial aut.oinaLion of the maintenance process. in particular to make the task of

program-understanding easier through the capture of informatiou and its sub:;equent

mana.geme11 t.

2. The prov1s1on of ;w Pnvironttlf:'lll 111 which the bul use is Ill<~de of automation: al-

though it tttay lw thought that at1 increase in productivity is a natural consequence of

auLO!llatiol!. the uut.put from soitw tools is copious. \Vit.lwut cuntrols. the volume of

information thev producP rnav even have a negative effect on productivity. highlight­

ing the need for abstraction .. -\t prc·sct!L th<' task of interpreting information output

from tools is largely a llliU!ua.l one. and scanning large <ttnounts of printed matter is a

time--consuming and potentially error-prone process.

:3. Structuring the recording of the maintenance process brings the maintenance process

under control <wd in addit.iott makes it easier to keep track of the progress of a main-

tenance assignment. thus saving tinw a.nd increasing productivity.

8

4. StLtdving current methods. leading to suggestions for improvements to these methods.

It is to be hoped that. in acldiLiort to providing gains in productivity. au ISMS£ can point

the way to the establishment of a strat.eg_y for the maintenance of software and act as a

test-bed for future initiatives in software maintenance research.

9

Chapter 2

Maintenance models

2.1 The role of the maintenance model

The maintenaitCP procC'ss Inoclel is a description of the activities of a maiutainer or main-

teuance organisation. from the receipt of the change request until the release of the new

version of the soft.W<lre. The process tnodel is a prerequisite for obtaining a. high-level view

of the overall requirements for the IS!VISE, since, as pointed out by Stenning [120], the role

of an environment. is t.o support t.he effective use of an effective process. The high-level

requirements for t.lw IS\IS[are t.lte subject. of chapter six.

LO

2.2 Literature survey of maintenance models

2.2.1 Introduction

A number of maintenance process models have appeared in the literature: these are nmv

surveyed and the chapter is concluded by a discussion of the models. An assessment of

the strengths and wt>aknesses of the models is used to suggest a generalised model of the

maintena11Ce proet'S.'-' wlticlt can lw used r.o cleri ve the high level requirements for the ISMS£.

The development. of models of the software Inaint.Pnance process is e:--:amined from a historical

perspective: the rnoclf'ls discussed are subdiviclecl into two cla:-;scs. llto:-;e ll·iticlt jJt'OI·icle a high­

level view of tlw soft ware maintenance process. and those which provide a more detailed.

lower-level vie11·: ll'it.hitt <~<1ch class tlw 1110clels of the maintenance process are examined in

order of their chronology.

Models due to Boehm (1976) [I.'S]. Liu (1976) [76], Sharpley (1977) [116]. Mt>llor (1986) [8:3]

offer a high levPI vit'll' of InainL<:ItallcP.: others due to Belady (1916) [8]. Parikh (1982) [100].

Yau (198:2) [1:30]. ;\,[artin (19s:n [19], Patkau (1l)8:3) [102]. Osborne (198:3) [%].Carter (1986)

[24]. An [5] and Chapin (1~)88) [2:i] offer a more detailed lower-level view.

The models cluP. to Belady [8]. and An et. al [.3] are derived frotll code-level views of software

systems. The mod('! cluP to Bela.cly and Lehman (1976) [8], is based 011 empirical observations

of several large soft.\\'are systems and is concerned with the evolution of software. An et al [.5]

11

propose a model of the maintenance process based on the changes that occur iu software as it

is maintained, a. pattern of cha.ngPs being used to distinguish between types of maintenance.

These models lie outside the scope of this survey.

2.2.2 The models

2.2.2.1 Boehm model

According to Boehm [l6]maiutenance can be decomposed into three phases, and this de-

composition Is uow generally accepted. These phases are:

l. Understanding

Cood documentation and traceability between requirements and code are needed, with

well-struct.ured and well-formatted code.

2. lVIodifica.t io11

Software and hardware and data structures should lw easy to expand and should

minimise the side-effects of changes; easy-to-update documentation is needed.

:3. \ia.lidatiou

Software structures should facilitate selective retesting. and aids for makiug retestiug

more thorough and efficient are needed.

12

Boehm offers no further refinement of the model. ln particular, no further guidance is offered

as to how to proceed should these desirable characteristics of software be absent.

2.2.2.2 Liu model

Liu does not refer to a model as such but describes the ·maintenance function', as follows.

l. The Cct.pdCity. futiCI iutt d.llll logic or Llw !"'.\istiug progra!ll ur sysle!ll lllllSt be tlwroughly

understood.

2. New logic is developed to refiect the tl!"'\\' request. or d.clditional feature.

:3. The new logic must be incorporated into the e.\isting one.

-!. Ensure tli;H t.lw tww logic is fuuctio1tally correct. a.wl that tlw Ul11110dihed portions of

the syste111 ar<' 1101 itlad\'('J'\(·'IILiy afl'ect.ed or clisturbecl. This last poiut is concerned

with the ripple effect a.nd Liu emphasises t.he need for testing.

(a.) Test for system failure first

(b) Test th<' lllltllodified portion of the system

(c) Test t.lw rnodifiecl portio11 1vith all imaginable condit.ions

(d) Aim at the few most represent.a.tive situations which constitute a. major portion

of the system

(e) Test tlte rlonwuntrtfion of the changes made to the program. as well as the pro­

gram i t.sPl f.

Liu offers no help in deciding how t!tt• ttndersta.nding and modification phases should be

carried out, but his last poinL (e), ha.s important consequences for the increasing complexity

of ageing software. and its subsequent degradation. This is referred to again, in the discussion

at the end of this chapter.

2.2.2.3 Sharpley model

Sharpley [116] restricts his model to the area of corrective maintenance which he decomposes

into four discrete phases:

l. Verification of the problem - reproduction of error sympt.ottts and attribution of the

error to sofl\\'i-lre. h<lrcl\\'i:lr<'. or the interface between the two.

2. Diagnosis of problem and isolation of the part of the system responsible for the error.

:3. Re-prograllliiling <llld n:'.f.!/'Il<'r<tl io11 of tlte s.vst.em.

4. Baseline va.liclatiou - est.ablisll!nettt. of correct operation.

The scenario here is that of a tea.m of highly-skilled people. on standby. completely familiar

\Vith the embeddt>cl software-svstern. in a 'high-technolog.v'. ·high-risk' industry. cast in the

role of 'firefighters·. ill case of abLiormal behaviour of the program. There is no ·learning

curve' here, and so there is not tht> same emphasis on the understanding phase as in a typical

maintenance assignment in the commercial sector.

1-l

2.2.2.4 l\llellor model

Mellor [8:3] defines a failure as 'Non-conformance between actual product behaviour and

the specified behcwiom'. and notes that ... 'failures in a product are often user-specific since

they are specific to a customer's usage and different customers use different parts of the same

product. and to different extents. A priority is assigned to fixes. a fault which has trivial

effects a.nd is difficult. to fix. is assigned a low priority. and vice-versa.· [Vlellor concentrates on

the problf:'m-verificat.ioJJ pliclse of COJTPctive ma.intenanu' and hm\· illllaiuteua!lce department

cau best lw structJJred t.o cope \\·it.l1 Jllcl.iJJtenance requests frorn u~:wrs. No other model looks

at this aspect of JllaiJJI.<'JldiiU' at. tlw saJI\P 1<:'\TI of deta.il.

Mellor classifies two ty·pes of problems with software:

l. l;sabilit\· prohl<'ms: These are dtJ<' to d error in the original n·quin'tllf'Jtts deiinitiotJ.

the product conforms t.o sjwcificat.ion. but there is a feature which causes problems in

use .. -\ usdbi!it\· problt.'ltt tlli:l_\' lw irrepar<lble. and Lite <mh· remedy is an ·avoidance

action·.

2. Problellh clue t.o PtTors 111 the code which mean that tltP speci~ications have not been

nwt. He also Jtl<tkcs the point. that a fault 111 the user rna.nual IS also a fault 111 the

product.

2.2.2.5 Parikh model

The maintenance task is decomposed into four phases:

15

1. Identification of objects

The specifications or enhaiiCTilWitts of the maintenance request. are re,·iewed. All per-

sonnel concerned wir.h tlw request are consulted.

2. Understanding the software

An inventory of the affected program is taken with the associated documentation. The

affected program is investigated.

:3. lVIodificat.ion of code

The areas in the code \\'here the modification is to be made are located. Possible ripple

effects are clwcked for as t.he re~mlt of the new design. The IH-'W changes are coded and

implemented.

4. Validation of the modified progrc-1111

A walkt.hrougii of t.lte changes in the modified program is made and tlten the modified

program is tested. Revie\\· t.lw test results and put. tlw program into production.

Update the relevant clocumeittation and conduct post-test reviews.

Parikh's ltlodel is offcr('d iii th(' ('OIItext of time estimates and the model seeuts to be restricted

to enhancements. since the modification of the code is to cope with a new design.

2.2.2.6 Carter model

Carter's model of corrective maintenance contains seven phases.

l(i

l. Problem clet<-~ctiott

Detection of significant difference between expected output and actual output. usuallv

bv the user.

·) Problf'!ll cl<·krtllittation

Recognition of symptoms which constitute abnormal behaviour ou the part of the

system.

:3. Diagnosis (l 'nclerst;wding)

Tlw rnaillt aitwr ingests s\·st.ettl data and produces tnore data of his owtl. assimilates

documentation and detennines which part of the system is causing the problem.

This stage a.lso produces informatiott about tlw scope of the effects of the problem.

4. Correction iltHI !.<·sting

Cock· is <Hided or chang<><! (rnrel\· delet.ecl). or data ts patched or deleted. Testing of

the correct.iott occurs her<' .

.). Recovery

Corrected code or data is installed. files are rolled back or updated to cover the effects

of the problem. and tlw production stream is restarted at whatever point is necessary.

6. Reporting

Maintenattce Jlli-IJJagers. users a11d their managetnent need to be iuforrnecl as to what

the problem was. and why it occurred - its symptoms, characteristics, its resolution,

and an_y analysis the maintainer can produce must be archived for future reference.

The diagnosis of the problem and the solution IS re\·iewecl critically Ill an attempt to

II

validate. by expertise. incliviclua.l and collective standards and techniques. Experience

catl be shared bcLweeu more ami less experienced personnel, and hanuful C:r ineffective

techniques can l~w corrected in a. technically valid setting.

Carter restricts his \"lew of software maintenance to that of "response maintenance'. t.e.

corrective maintenance. This is the only aspect of maintenance that he considers. perfective

and adaptinc' tnaintetl<lllCe are not addressed. In cornmotl with Parikh. Carter emphasises

the need for a post.-t.est re,·ie,,·.

2.2.2.7 Chapin model

He subcli,·ides t.lw pltdses of maitll.Ptlattce into a series of steps as showu belo\\".

l. rnderstal!d exist ittg S_\"Sil'lll

Personnel reviP\\. atty t'Xtsttttg dontttt<'ttt.ation and accPss relev<:\.llt materials and per-

sonnel who rnay possess relevant knowledge.

:2. Define the objectives for the rnodificat.ions

The maintoiner sef'ks to clnrit\ the aspirations of tlw user 111 requesting the change to

the program.

:3. Analyze the requirements

The consequences of exploring alternate paths in satisfying the maintenance request

are considerPcl and evalu<ltecl with an accompanying cost-benefit analysis.

I~

4. Specify IIJOdifica.tio!l(:.;) to lw tnade

A summary of the analysis results from the previous step produces a. specification for

the proposed modificnt.ion .

.-). Design modificat.iOit(-.;)

6. Program modification(s)

t. Code and compile

8. Dehttg and l<'sl.

The testing aittts to pron· that t lw appropriate clli·1.11ge has be<:'II correctly implemented.

9. Revalidate

This attempts to confirm the stabilit\· of the system. I.e. those parts of the system

which werf' not int.ettcled to change haYe not done so.

10. Train users prtor to release of ttell' softwarf'

As soon as tltt' spccific<ltiott :-;tep is cotttpleted t.lw users dH' Lraiued to use the modified

svstem to gain familiarity prior to its release

II. Coni·Prt frotn prevtous 1·ers1on of soft11·are and rf'lease

The author docs not speed\ this ctll\. further.

1:2. Document and perform Quality AssuraJIC<' revww

This process is performed concurrently with the above steps and provides the basis for

inspections. walkthroughs. technical and management reviews.

19

Presumably steps -i-1 follmv an iterative process. although the aut.hor does not specify fur­

ther. Only Chapin explicitly refers to retraining users in the use of the updated system.

Cbapin"s model [:2:)]lack:-; a problern-\erification phase and it is not clear whether his model

applies to all types of tnd intenance.

2.2.2.8 Martin-McClure model

In common with otlwr models the high-level tasks are:

1. U nclerstandi ng

:2. Moclificatiott

:3. Revalidation

Each of these thrPe phases is further decomposed [llJ] <1S described below.

1. Understanding

This is broken do\\'n into:

(a) Top-clown comprehetrsion

1. The IH'!'d to lwcottw fa111ilia.r with tbe overall prugr<utt purpose aud the overall

flmv of control.

11. Identify the basic program structures as well as the processing components.

111. If the program ts part of a larger system then delineate its role.

:.W

JV. ldcJ!Iil'_\ wiJ<ll each component does and how this is implemented in the code.

(b) Improvement of documentation.

1. As underst.ancliJig of the program is gained, document it 111 a high level fa.sh-

1011.

ii. Participation in program development

The maintainer-to-be should take part in the development of the program.

·) .Modification

(a) Desig11 t.hc ch<-wgc <111d deb11g

If the change is a11 error tllf'n this is rectified by changing the program logic. If

the change is an enhancement then ne\V logic is developed a.nd incorporated into

the program

The desig11 of I lw Jlf'\\" logic is top-clown:

1. H.e\·iew entire progralll <:11 <l getwrallevel by studying modules. their interfaces

and the database.

ii. Then isolate the modules and the data structures which are to be changed

and those modules and data structures which are affected by the change.

Jtl. Detailed stl!(ly of module and da.ta struct 11res. design clta.11ge. specifying new

logic and changes (if <wy) tu <'Xisti11g logic.

(b) Alter code

Changes should be implemented as simply as possible. exerctstug caution a.nd

preservi11g f'Xisting coding style.

(c) Mini1nise sidf'-Pffects

1. Search all module:; \vhich share global variables or routines with the changed

tnoclllle.

ii. Wlwn multiple changes are envisaged the changes should be grouped b.v mod­

ule. The sequence of changes should follow a top-clown a.pproach. changing

the main driver first. then its direct descendants and so on.

111. Change one module at a time, determining potential ripple effects, before

cltangi 11g t.he twxt. module in tlw sequence.

:3. Revalidation

Revalidation is ttecf'ssarv t.o ensure I hi-lt tlw modifications carried out to the program

have not adversely a.fFectecl the program. Revalidation is achieved by carrying out

testing. each typ<' of testing havittg its own particular goa.!.

(a) System testing

Does the progratll \\'ork as before ·;

(b) Regression testing

1-laYP I lw cltdiJges ;.dTected how the rest of tlte progratll \\·orb '~

(c) Chang<' test.ittg

Have the changes been designed and implemented correctly ?

Martin's model is a coulprPhensi \'t' otw <:utd offers det.ailed guidauce for all phases of the

maintenance process.

2.2.2.9 Patkau model

The five basic mai ntf'niuJce tasks are identified in a high-level manner.

l. Iclentifica.tion and specification of the maintenance requirements.

2. Diagnose and change location

:3. Df'sign oft lw Jnodilica.t io11

-1. lmplenwJJlat.ioJJ oft lw IJHJdilicnt iu11

.s. Validation of tlw new svslJ'lll

There are four possible types of maintenattce modification:

1. Corrective

2. Enhancement

:3. Adaptive

4. Perfective

Steps 1-:3 differ according to the type of modification, steps 4-.5 are as for Parikh and Martin­

McClure models. Pat.kau identifies four possible kinds of maintenance modification.

1. Corrective

(a.) Identify repeatable error ~ymptoms and specify the correct operation of the ~ystem

- for this <t test svsl.f'In <lllcl te~t data are needed.

(b) Local(' t.he part nl· t.lw ~yst.ern responsible for the error.

(c) Design the desired properties of the system, after deciding what they should be.

Determine the side-effects of the changes in these properties.

·J Enhancement

(a.) !dent i!\ IW\\' or <~.ltered requirements and spec:ificat.iotr of the operation of the

enhanced system.

(b) Locate t.he existing elements affected by the enlutncetJWtrt.s.

(c) DPsig11 is split i11to the follo\\'ing strh-tasks.

1. Assess ho\\' liP\\' requirements could be met by modifying existing components.

11. Decide what new components a.re required

111. Develop the spF?cifications of the ne\\' components aud/or rev1se the specifi-

edt ioiiS of (':\ist ing compo11ents.

tv. E:-:amine the side-efFects of the revised specifications and/or the addition of

new cotu pot ret! t.s

:3. Adaptive

(a) Identify the t,ype of chang<' in the processtng or data environment. describe the

change and re,·isP all specifications to reAect the change.

(b) Locate all soft. ware elements affected by the change. vVhen there is a change in

the data envirolltllf'llt. locate the parts of the system which use or set the data

:24

!wing <hanged. \ 1sP a data dictionary to store t.lw svstf'm inputs and outputs,

where they are used and their properties.

(c) Design can he <iccomplishecl bv employing techniques used for corrections or en-

hatJceiiWIJls. for clulllg;es Ill t.lw data environment aucl minor changes in the pro-

cessing environment.

4. Pefective

(a) Identify a deficiency in the performance. quality, standards. maintainability. spec-

(b) Locate the sources of the cleficieucies.

(c) Desigil t··nt;tils some re-design of a portion of the software such that it still satisfies

the origii1al rcquin·uwtJI.s. but the uew software either:

I. (. SI'S less rt'SOIIITt·'S

11. Is coded or structured lwtl<'r

Ill. Is more maintainable

IV. Is a cornbiiJation of all t.hree.

Pa.tkau's model is a contpr<-'lwttsivc otw and offers detailed gtticlancP for all phases of the

maintenance process.

2.2.2.10 Osborne model

Osborne [~l6] models the maiut.euaiJce process a.s:

2.5

l. Determination or rwed for change

2. Submission of chang<" rf:'(j\Wst

:3. Requirenwnts attalysis

4. Approval/rejection of change request

-5. Scheduling of task

6. Design analysis

1. Design revtew

8. Code changes ancl debugging

10. Testing

11. U pel ate doc umen tat. ion

12. Standards audit

14. Post installation review of changes and their impact on the system

1-5. Completion of task

There a.re a number of iterative steps within the modeL for example the change request may

be referred back t.o t.he user for clarification.

26

2.2.2.11 Yau model

Ya.u models the rnaint.enance process as distinct phases:

l. Determining the maintenance objectives

(a) Correct progra.m errors

(b) Aclcl new capabilities

(c) Delete· obsoi<·t.e featllr<:'s

(d) Optiutisatio11

2. linclerstancliJJg t.he program

The ease of llllclerstanding is affected bv:

(a) Comple~it\·

(b) Documentation

(c) Sel f-clf'scri pti vcness

:3. Genera.ti11g J11ai rJt(:'llilllce proposals

The proposed r1lterat io11S tot l1c systf'nl are a.ffectf'cl hy t lw (-·~ten::'ibility of the program.

4. Accounting for ripple eff'ect

This is affected by the stability of the program which Ya.u clehnes as 'The resistance

to the amplification of changes in the program.'

-5. Testing

This IS affected bv the testability of tl1e program - testability 1s not defined. If the

testing of tlw progralll 1s 1101 ;;uccessful then the rnaiutenance process 1s performed

iteratively.

The model represents infonJlatioll about the development and maintenance of software sys-

tems, emphasising relationships between different phases of the software life c,v·cle, and pro-

vicles the basis for automated tools to assist maintenance personnel in making changes to

existing soft.ware svsf.('lllS.

2.2.3 Other contributions to modelling the maintenance process

2.2.3.1 Intt·oduction

The description of maintenance process mock·ls would not be complete without a reference

to the underlying psychology, particularly with respect t.o program understanding.

2.2.3.2 Fjeldstad and Hamlen's contribution

Fjelclstacl and Hamlen [:39] found that i11 a study concemiug program enhancement. expert

maintenance progranlillPrs spent as much time understanding the prograu1 as they did con-

structing the enhancenwnt. In additiou. tlw same programmers studied the original program

about three and <1 half tillles as long <ls they studied the a.ssocia.tecl documentation. These

facts demonstrate the importance of program understanding and suggest that maintenance

28

programmers rcg<1rd the source code itself ;c~.s the most relia.ble documentation concenuug

the progrMn.

2.2.3.3 Littman et al 's contribution

Littman et al [7.5] showed that. commonly. there are two strategies adopted by maintenance

programmers for prograrn underst.anding; the 'as-needed· strategy, where the maintainer

studies and undf'rstancls only as much of tlw program as 1s 11ecessarv to carry out the

maintenance task. <wd the ·s\·c;tf'IIJa.tic-st.rdl<'g.' ·. II'IIcl'<' till' IJtaiut.aiuer seeks to develop a

global understanding of the program. For small programs. the ·systematic-strategy was

found to be sujwrior. hut l'or largfc' programs ma.intainers were forced to adopt the ·as-needed'

strategy. since t lw comple:.:ity of large programs exceeds the mind's capacity to understand

them. in a reasonable t.inw-scd.le.

2.2.3.4 Brooks' contribution

Brooks [20] asserts t.hat uuclerst<wding a program concems:

1. \Vha.t each statement means

2. How flow of control passes from one statement to another

:3. vVha.t a.lgorit.luns have been employed

4. How infomw.t.io11 1s repwscuted a.ud traiJsfol'llted 111 data structures

29

-J. \Vhicl1 progralllS ill\·oke other sub-programs

6. How t.he proQrarn inter<lct.s wit l1 it.s environment

The above has been described by Brooks as a succession of knowledge domains that bridge

between the problem domain and the executing program [20]. A knowledge domain is a

collection of informa.t.ion about objects of some sort and relationships between those ob-

jects. The pron·ss ol' lllld('rst<llHiing <l progralll is om· ol' constrtlct ing or reconstructiug the

knowledge dorna.ins i-lnd r<-·lat.ioJJs ;-urHlllg t.IJelll !'rom the code. COllllltellt.s and whatever other

documentation is available. Brooks· model rnakes inferences about documentation - e.g.

languages like FORTRA\i require more explanation of their code than languages like Pas­

cal. which allow direct lll<lniptll<ll.ion of higlwr-IPvel abstract.ioJJS. Tlw la.vered structures of

knowledge of <1 progr<tlll is provided b\· <-1bstraction.

2.2.3.5 Schneiderman and Meyer's contribution

Sclwidcrlllitll i-llld .\1<'\.<T [III]IJlupus<' d s_\ltld<·tic/sc'llldlllic llludt·l uf 1nograul l)elta\·iuur: the

model assumes th;-11 seJlldllt.ic illld s\·ntactic knowlf'dge is storf-'cl in long-term memory and

manipulated in short-term and working llJeillOry. They suggest that program comprehension

is mainly building up a hierarchy of semantic knowledge about what the program does at the

top of the hierarchy. and lower-level information about. statements and algorithms below.

The representation 1s 111 t-enus of abstractions. e.g. represeittiug the function groups of

statements. clerivt-·d froJtl the t.('Xt.

:30

2.2.3.6 Letovsky's contribution

Letovskv [66] suggests that when a reader has a complete understanding of a program he

possesses a description of the goals of the program, the actions and data structures of the

implementa.tion, and an explanation of how goals or sub-goals are accomplished by the

components of the implementation. The reader's hierarchy is one of goals and sub-goals.

2.2.3.7 Letovsky and Soloway's contribution

The work of Letovsky a.nd ~olo\\'ay [61] on clelocalised plans and program comprehension,­

defined the following terms:

l. Algorithm - conceptually cliffereJll from a plan

:2. Goal - denotes int<'JltioJJs.

:3. Plan - denotes techniques for realising iiiLCJltions.

The conclusions of Letovsky and co-workers were:

l. Program unclerstancliug is recognising plans in the code. If the lines v-.:hich implement

a plan are clelocalised then the plan is dif-ficult to follow.

:2. Programmers often guess the intention of a plan from the first few remote lines of code

without bothering to n·;-td ahead in the program - false assumptions are often made,

:31

which usually means that a program becomes incorrectly modified (this is most likely

to happen when verification is difficult, the plausibility of the assumption is high and

the perce1ved importance of the assumption is small): this can be reduced bv the use

of prograiJH\.JJalysis tools.

:3. The goal of a variable is difFerent from its role.

4. Programs become more complex with each modification bec~use maintainers are reluc­

tant to delete any existing code on the basis that their understa.ncling of the program

may lw incomplete.

-5. Each plan iu t hP progralll requires a documentation entry which indicates the purpose

of the plan and the proposed implemeutation. The entry should contain pointers to

the relevant lines of code.

All of the preced i llg lllodels ill\ nl ve layers of kno\v ledge that beco!lles progressively more

abstract. and that dl'<·' ultirrJct.tC'ly t.icd to larger and larger fragJJWJit.s of the program.

2.2.3.8 Linger, Mills and Witt's contribution

Two characteristics of a program havP a dominant influence on reading approaches that may

be available - t. he clegr<':'e of doc umen tat. ion and whet her tlw p rogra.m is structured. Linger,

Mills and 'vVi t t [ll] point out that poorly-clocumen ted code generally· must be read bot tom­

up. as the lack of documelltatioll can rna.ke it. nearly impossibiP to devised hypotheses about

what various sections of code accomplish, without examining those sections of code in detail

:32

- well-documented code can usually be read top-clown

:\Iodels of progrzt.m lliicler:otancling rllay offer g\~;d;:!f}•_:e in the choice of soft11 etre toub fur cUi

ISMS E. or ma.v be inst rtllllf'llt al in producing ideas for new tools. or in suggesting new uses

for a/sting tools. e.g. understanding plans in the code mav be facilita.tecl bv tools such as

Weiser's [127] program slicer.

2.3 Discussion

2.3.1 Characterisation of software maintenance

Swa.nson·s [1:21] ;-wd 13ot'llill·.~ [I:)] cl!a.ra.cterisations (1916) of software maiutenauce were

partly responsible for refocusing the spotlight on this subject area. ,,·hid! hitherto had been

somewhat neglected. This followed Boeliiii·s report. (19/:3) [l-l] that almost -!Oo/c of the

software effort went. into InaintenaiJce.

Boehm [I G] charact.erised ::;oft ware ma.int.enance into two main typPs.

l. Software upcla.t.P- fuuctional specification is updated (Enhancement).

2. Software r<'pair- fu11ctional spccifica.t.ion is uncha.nged (Corrective).

33

Swanson (1976) characterised maintenance as being of three main types.

l. Corrective

In this category he includes ·bugs· in the software, failure to meet performance criteria

as regards functional specifications. failure to meet programmiug standards set by the

organisation, or ittconsist.encies or incompleteness in the detailed clesigu. derived from

the functiollal specificatiotts.

2. Adaptive

This is in response to <-t chat~ge in the data environment or the change in the processing

environntettt.

:3. Perfective

This is 'i'vlaint.ettance performed to eliminate processing inefficiencies, enhance perfor-

mance. or improve maintaittahility. Its aim is lo rnake the program a more perfect

design irnplt'lltellt at ion.·

Swanson's characterisat io11 of Jlta.intcttilltce has received wide acceptanct:'. but there is some

disharmony as regards major enhancements to software. which accounts for 60% [70] of

software maintenance. A major enhancement to software is generally accepted as belonging

to the category of perf('ct.iw' JWlilltettallcP.

Some authors describe perfecti\·e Jttaintenance as ·fine-tunillg· which is in broad agreement

with Swanson's definition above. but otlwr authors e.g. Pa.t.kau [102], Belady [8] regard

major enhancements to software as being distinct from perfective lltaiuteuauce, as defined

by Swanson. Tl1 is di ,·ergence appears to be in response to scale. A maJor enhancement

IS not concerned with ·a more perfect design implementation', or ·fine tuning'; rather it is

concerned with substantia.! alterations to the original design to take into consideration the

changing needs of a11 organisation (and therefore changing requirements of the software):

major enhancements to software take soft\vare maintenance back into the realm of software

develop1nent. 11. see111s. however, to be accepted by many software practitiouers that siuce

enhancenwn1 is d JHisl de,·elop11Wil1 art ivity. i.e. it comes a.flt ,. tlw release of the software.

then it is maintenance. Furthermore since enhancement clearly does not belong to either

category of corrective or adaptive maintenance as defined bv Swa.usoJJ. then it must belong

to the third category. r.e. perfective 1naintena11Ce.

This IS i1dwrentl\· tlllsatisfac1ory. SlliCt' <ls Swanso11 [l:!l] poi11t.s out ... ·\\.ithout. n1aking

some important distinctions lwtween types of nJaintt:>na11ce activity undertaken. it will be

impossible to discuss the effect. in· allocatio11 of these act.i,·it.ies toward organisational ends.·

No disi{Hcfloll li<ls colls<iollsh· bcr·n mack as to wherrJ to place lll<ljor enhancements to

software. it seern~ t.o lu:lH' found it.s niche bv default.

The IEEE (1981) [.SI] glossan· of soft\\·arr· Pngineering terminology defines perfective mainte-

nance as 'Maintenance perfonnecl to improve performauce. 111ai1tLa.inability. or other software

attributes' (attrihut.Ps are 1101 specified). Performance is clefi1H:'cl as ·Tlit-' ability of a computer

system to perform its functions. e.g. response time. throughput, number of transactions.'

Again, this woul cl scent t.o exclude major enhancements of software from Swan sou 's cate­

gory of pcrfect.iH· nwili1f'll<llll"t'. 1 he 11-:1·:1-: dPfinition is more redolent. of ·fine tuning.' This

suggests that another category of soft\\'are maintenauce is required, perhaps ndevelopment?

:3.5

Another type of software maintenance which has recently come to the fore is 'preventive

maintenance' [9. 105]. which lllii.\. be defined as 'maintenance performed on a scheduled

basis before the manifest.ation of a1w deficiency in the working of the software·. The ain1

of preventive maintenance is to reduce the future maintenance effort. by the introduction of

forward planning with regard to the work of the maintenance organisation, instead of relying

on ·crisis management· as a substitute for strategy. However. preventive maintenance has

not yet gained lllJi\·ersal acceptaJJC<'. JJ<'it lwr has its efficacy lw!'IJ established.

2.3.2 Assessment of the the maintenance models surveyed

Those models \\'lJicl! at t.t'lttpt Lt> prm·id<' <t full dt·snipt iu11 of tlw t.l'cll!lic<:d dspect of the

maintenance process. due to Boehm (UJIG) [1::5]. Liu (1916) [IG], Sharpley (1977) [116],

Parikh (198:2) [100] Ya.u (198:2) [1:30]. ~·lartin (198:3) [llJ]. Patkau (198:3) [10:2]. Osborne

(198:3) [96]. Carter (1!)86) [:2cl]. and Chapin (1988) [:2.1] tak<' the s<une high-le\·el view. i.f'.

they all identify tlm'e phases:

1. U nders ta.nd i ng

:2. Modification

:3. Revalidation

Only Mellor [8:3] ct:plicitly focuses on the area of problem-verification. which may preclude

the need for maintenance, since solutions may already have been provided for 'new' problems.

C';t t.egory of :Vla.i nte11<wcc

Corrective Adaptive Perfective Enhancement
v (l i\'l T v· r \[T v u M T v u M T

Boehm I I I I I I I I I I I I I I
Liu I I I
Sharpley I I I I
Parikh I I I I
Ya.u I I I I I I I I I I I I I I I I
Martin I I I I I I I I I I I I
Patka.u I I I I I I I I I I I I I I I I
Osborne I I I I I I I I I I I I
Carter I I I I
Chapin I I I I I I I I I I I I
Mellor I I I I

1\ev

v Verifying need for main I. en an ce

ll U nclersta.ncl i ng

M Modil\ino .. 0

T Tcst.i11g

Tcthle 2.1: Sllllllllary of l'v"Ia.intenallCf' lllodds.

These models are summarised i11 table 2.1 above. The particular phase of the technical aspect

of maintenance dealt. with by each author is denoted by ii diagonal Iilli:' in the appropriate

box.

In general. t.he models surveyed fall !laturallv into two categories.

1. From the vie\\'j)()illl of pwplr. 1.<'. those things which are clone by people to software.

·) From the viewpoint of t lw .-.oft Lean:, i.e. those thing::; wiiich are done to the software

From the point of view of designing a maintenance environment. the models from the first

category are most. useful. Tlw reason for this is that. when designing a maintenance environ-

ment the clesig1wr nllJst i1nagillt' himself in the position of a Inaint.ainer. A maintainer asks

:37

himself questiotJc; such as ·\VI1<1t tllltsl I know before I can <~Iter t.his cociP ?'. a.ncl '\Vhat. else

must I change if I tnak<~' this clta.ngc to the program ?' The maintainer ittstigates change.

and feels actively involved. The second category of model places the maintainer in a passive

role.

i'vlodelling relies heavily on the process of abstraction, removmg unwanted detail that ob­

scures the underlying fundamental principles involved. and postponing those judgements

concerning the nature of a pnlc<Jss tltdt cal\llut lw HTilied lll\l.iltlw basic principles concern-

ing that process are better understood. Examples of such fundamental principles include

those relating to the technical aspects of 111aintenance \\'hich iu,·olve creativity: these are the

most difficult to modeL whicl1 tlla\· account for the fact that most of the models surveyed do

not describe in det<lil tlte underslatJdittg and rnodificatiott pltdsec; of software maintenance.

These are tlte piias<·s of ttt<tiiiL<'IIillln' ,,·lwr<' l·<·lill<.'tll<'lll ()f t lw lllu<i<-1 l<'dtb to divergeuce of

approach. since ltt•n• 110 two maittLainers will use exactly the satne modeL because of the

human factor involved. By contrast., the verification and validation phases are most inde-

pendent of the humatt factor. si ttu· well-established procedures exist for establishing the

veracity of. for exan1plf'. funct.iotJ<ll specifications. or the rPsponse of tl1f' program to test

cases. Perhaps with this is rnind. some of the earlier a.t t.empt.s a.t deriving a maintenance

model limited tiicrnselvPs to a. high-level view, and this vie\\' has recei,·ecl general acceptance

in the academic and DP cornmutJit.ies.

This approach of usittg d.hstractioll to t•st.ablislt a getwralist>d maittt.etta.uce model will enable

maintainers to assemble and combine tools in ways which are not as yet predictable. On the

other hallCL more refined views of the maintenance model are useful because they indicate

:38

the type of ~oft.w;H(' tools th;-11 11·ill he JWt-'cled to <UJt.oJnat.e p<-trtia.lly t lw JIJ<lintenance process

and the type of inforlllation co!lcerning software that needs to be stored. There exists an

'abstraction-threshold: beyond which important model-infrastructure is lost, so a balance

must be struck which makes it. possible to reconcile the conflicting demands of a.bstractiou

and refinement.

2.3.3 Establishing a generalised maintenance process-model

The exact dPscriptioJJ oft l1e JJl<t.iJJkJJ<'~Jtce pron•ss is a fu11ctiott of t.ltt' d.gt~ of the software. since

software (especio.lly docuJJWJII.ation) degrades with increasing age. For example, Belady's

work [8] shows that a program's structure tends to degrade because of ·patches' inserted

to fix bugs. In an ext.relll<' casP, the understanding phase. wlticlt t.a.kes up mo::;t of the

time in a. ma.int.ettancP as~ignment and rPlies heavily on docurnentat.ioJJ. will as~ume an even

greater intport;tJtce .. \s <lit exa111ple coJtsicler the case of <lit old soflwdr<' system where the

only reliablP cloctiilH'Iltat.ioJt is t!Jt' source code. The use of tools to automate partially

the gathering of information from the listing of the source code and the conversion of this

information into knowledge contrasts starkly with the case where reliable documentation

exists and the iJt!'orJnat ioJJ-gat lwri11g is mai1dy lllalltial. that is. t lw InaiiJia.iuer reads the

documentation to establish his concept.ua.l model of the system.

Current descriptions or maintFn<UlCe offer the highest-level view of maintenance, the .start­

ing point for a top-down refinement. cuhninating iu the eslablishuwuL of a more detailed

:39

maintenance model. All t.he maintenance models surve_yecl were found to be compatible with

the definition of maintenance given iu chapter 1. The generalised model of the maintenance

process can not be viewed in isolation however: the model implicitly admits of the existence

of an organisation which will implement the model. The author envisages a maintenance

organisation whose structure is <l hierarchical one, consisting of three main levels:

1. Managerial level

:2. Supervisory leH·I

:3. Technical [e,·r·l

Associated with e<Kh le,·el oft he organisation is a cliffererrl type of irrforma.tion. The relation-

ship existing bet.\\·eerJ et particular leu"! \\·it l1itl t.lw !Ji('l'arclty of the ruaiutenauce organisation,

and the type of infornJatiotl utilised b_y that level is shown below in Figure 2.1. The type of

information that t~ach lcu,•l of tire organisation utilises has important implications for objects

stored in the object hClsc· of <t rnaintenance support environnwrrt:

1. The ra.nge uf grdtltrlaril\ ul' tlw ul1jc·cts r·t·qJJirt·s tlt<tl <tpprupriatc· Lvvls a.rt· <Lvailable to

manipulate. store and retrieve these objects.

2. The types or infonnatil)t} utilised by the organisation can be used to produce type

classes. so enabling the ·typing' of objects in the object base. bv means of an attribute

which iudicat.es the cat.egory or itll'ortllat iorr stored in t.he object. lu this way a tool is

prevented from accessing an inappropriate object. or accessiug an object in a way that

is incompatible with its format and/or content.

40

LEVEL IN iVI.-\1\TL\.\\i('l-: T'{ P 1-: 0 I·' INFO R1VlAT10N

ORGANISA't'ION HIERARCHY FLOvV

TECHNICAl. OPERATIONAL

S l! P E H VIS 0 RY TACTICAL

!vi.\ N .-\ G I:: H I.-\ L STHATECIC

Figure :2.1: A Generic [\'laint(:'ll<lllU:' Org<wisntioit HiPrarchy allCI Associated Information
Types

41

In addition. these types of information indicate the desired functionality of a software engi­

neering object rnanagelllent system. discussed in chapter three .. -'\s au example of function­

ality, a highest level grottping in the object base is required. i.e. the partition level. This

is needed. primarily for the operation of a. management informar.ion system. regarding the

tactical and strategic information used by a maintenance organisation. The purpose of such

information is discussed below.

Information tlows witl1it1 Pacl1 l(·vt-·1 a11d lwt\\'f-'t'll lt-·vels are dt-•lt->l'ltlim·d bv tlw hierarchy of

the maintenance organisat.iort. There a.re two vital functions performed by management. i.e.

communication <wd cortLrol. which depend on the capture. interpretation. utilisation and

distribution of informat.iort. TllP managerial level of the maintenance organisation delegates

to the supen·isory le,·el. wl,icll intplernent.s the long-terrn strategy of the organisation. The

supervisory lew'! also delegates t.o the tecltrtic<d level of the organisation those tasks necessary

to fulfil the maintf'nancP objectives determined by the managerial level: the information flows

are bi-directional.

It rs not possible t.o specify 111ore pret·isdy the nature of the lriera.rchv of a maintenance

organisatiun ::;irtct• it rs. uf Itt'!'t'ssity. urg<ttli::;;-Jt iu11-spt'!'ilic. llti,; ;-dsu applies tu the mudel of

the maintenance process. since it is subject to the constraints illlposecl by rnauagement phi-

losophy: in addition the maintena.nce model is likely to be application-dependent. The type

of information utilised by each level \\'ithin the hierarchy of the maiuteuauce organisation is

outlined belo\\'.

l. OperaLiollal

-12

This is the lowest level. a.nd the information here is very detailed and is specific to the

}1w.ction of the maintenance organisation. Operational information may not even be

communicated. if the person having the information does not feel that. it ueeds to be.

This information could be the understanding that a maintainer achieves of software

but does not. record. making the work of future mainta.iners more difficult. \A/hen

operational information is communicated, it may not be actually documented but may

instead be comlllllllicated oral!:·. or by electronic mail whe11:

(a) The emphasis is 011 speed aud a.ccuracy. and the procluctiou of hard-copy mav

introduce i1taccuracics.

(b) The qu;-dity of pr<'S<'IILatiutl ul· tlw iiifunitaLiuri rs IIot a. critical factor.

This t,vpe of i11forntarion is mninly concemecl with the technical aspects of maintenance,

and is concerned directly with software.

2. Tactical

The information at this !t·,·el is used to Ittonit.or tlw resources. (men and machine),

used in achieving the strategic objectives of the maintenance organisation and includes

the application of access and financial control to large collections of information asso-

ciated with maintenance projects. In the context of a maintenance organisation this

iuformat.ior1 is cotl('t•rtwd \\'it. It t lit' <'l'OIIOiltics of rwtinL<"IIi1Itn-·. particularly with regard

to the productivity of thf• organisation. 'l'bis kind of information tends to be presented

in the form of reports a.nd summaries drawn up monthly or quarterly.

:3. Strategic

This type of iuformation IS used by semor management for long-term planning and

its structurf' 1s not as predictable as that of tactical information. smce a strategy IS

often fornwd in respo11se to external factors, such as changing trends or new results

from research i11i1 iat ives. Tlw information does not need to bo::· highl.v-detailed or

excessively accurate. since the long term forecasts produced at this levelma.y be subject

to distortions due to factors beyond the control of the organisation.

The generalised ltJaintenaitcc model adopted as a basis for the IS:'viSE 1s shown below. Its

high-level Vlf'\1" Sllllllll<Hises the lll<lllt <tct.ivit.it>s Ul!clertakt>lt durittg tlw course of d tllaiutf'-

nance assignment: til<' tnodel pertai11s 1nainlv to the techuica.l and manageria.l aspects of the

maintenance process.

1. Verifica.tio11 of llt'f'd to modify the software I.e. the progralll and its associated docu-

n tetlt.a.t.iotl

·) l: nderst<wd tlw soft ware

:3. Modify the software. includillg t.he documentation

4. Validat.io11 of t.h1· softwnrE' (i.P. the functional specifications) and regresswn testing

This high-level vie\1· or g<'Jl('ralised ntoclel of the rna.intPnann· process should not be regarded

as immutable. since research ll"ill cause t.lw n10dcl of the ma.ittLenauce process to evolve.

Since, a.s mentioned earl~er. the role of t.he environment must support. the effective use of an

effectin' process. it is <lpparcnt that the r-~ltvironment. must be capaiJie of evolviug in response

to the evolut.ion of t.lw nlaintellance model. As pointed out by Kaiser [61] the crucial test of

any environment 1s whether it can support its own ma.intena.nn·.

2.3.4 Discussion of the generalised maintenance model

Each of t.he ca.t.egorics from this generalised maintenance model are 110\\' discussed.

2.3.4.1 Problem verification

The earliest phase of t.he n1ait1tetlance process is the receipt of a rnaintena.nce request (often

from users): this may lw <-1.11 error-condition report or a. request. for the enhaucemeut. of the

program. However a l!eed for maint.nl<lliC(-' rna.y arise through evolution of t.hP maintenance

organisation, a.ud/or t.he evolution of tlw org<-utisat.ion. of which the maintenance organisa.-

tion is a part.

Preliminan· work 1s tl1en uuderl<lkctl to u'rify that. maiutt-_'lliltte<' ts twcessa.ry. This prelim-

tnarv work is grea.t.h· facilitated if t.l-wre exists a. database containing inl'orrnation regarding

the history oft lw ,.;oft ll'ill'l' s\·st.r·111 tllld('r senti iny. which cl\·oids l'f'jlt'dl ing lllilitllt'lli:l!lcc 11·hid1

has already been perfonncd on <t sysll'lll. T-'·pical infonm1t ion tnight include enhancements

resulting in a. uew ,·ersion of t.he software. or known ·bugs' and the corrections made to the

soft ware to retno\·e t.l wse. If at 1 ention is not given to this vi tal area. it may mean that a

maintenance departnwnt becomes overloaded through having to ·re-invent the wheel.' Mel­

lor [8:3] suggests that ·the a.pproiich t.o dealing vvith failure in a soft\\'are product should be

a hierarchical out'. each level of the ltinarcll\ clctill,(!; as a tilter for the level above and that

simple queries clue to kno,vn fiiults should be answered on the first level.' According to

Mellor the highest level of the hierarch.v is the design authority for the product. who devises

repairs to code a11d i1Icorporat.es changes into future releases of the product..

2.3.4.2 Understanding the program

As already mentioned a maintenance assignment contains an understanding phase. and the

environment must. pro\·irle support for this vital aspect of software maintenance. lf the

maintainer's understanding of t.he system is incomplete, then it is not possible for him to

safely modify the software - (note that this implies safely modifying the documentation as

well as the program.). There <He two facets to the Ulldersl.aJldiug or a program.

l. A local unclerstarHlirtg uf tlw prograriL where the changes are to rnacle. specifically·, how

the program does wlt<tl it does.

2. A more global llnclerst<lllcling of the program so that the lllodifications do not ad-

verse!~· a.ffect. the other parts of the program. (It should be pointed out that a total

underst.andirtg of t.lw pmgr<tllt is urtrealist.ic).

vVhen a maintainer seeks to achie\·e an unclerst.ancling of a software system his first recourse

is to the documentation of tlw system. If he finds that. related parts of the documentation

are not. in agn·'!'IW'Itl t.h<'lt ltr· is forced t.o seek his understa.nditig of t.IH:' systern from the

only reliable document.a.tion. i.e. tire source code. The elements of a software configuration

(other than th<:' ll!dchirw code rcpn··se11tation of the soft\\'dl'<' systet11) are together known as

the documentation, when they are in a hurnan-reaclable form. Examples of such elements

are requirements, specifications, design, source code, test cases. test results. The older the

softvvare. the more lik1{v t.hat sornc of these elements are either missing or are umeliable. i.e.

they do not reflect the current state of the system. This is of crucial importance since, as

. ~ ; ":

mentioned earlier. tit(' st<trt.ing point. for gattllllg an uiiderst<:wcling of software begins with a

referencT lo the docuttlf'ltl<tt.ion of tlw system.

2.3.4.3 lVIodification

Only the models due to i'dartin and Patkau give any detailed guidance in this area. None of

the models explicitly ddclress the problems associated with tlte integration of software, in the

context of soft.w<tH' tnodificat.ions. \Vhen lie\\. software is written and is to be incorporated

into an existing .-;oft.wdre syste11t. the proble111 of ittt.egraLiott of this soft\vare arises. l 'sing

a top-clown strategy. or a bot.t.otn-up st r<ltegy. or <I. colllhina.t.iolt of the two, are the choices

available to L!tt' III<tint.t•ll<tlllT jJI'ugrdllllll<:r. \\'lticlt sLr<tL<~gy is ddoptcd depe11ds 011 the pref­

erence of LltP maitt1.<tilwr. a11d also depends on the testing strategy adopted. for example.

when is interface testillg carried out in relation to the other elements of software testing ?

Configuration llldnag<-'lll<-'111. is col!cerucd with the interrelatio11 of software co!llponents. such

as requirements. specilicctt.ion. source code. illid docJIIrwntdt ion \\·hich <HP the products of the

respective phases of the software life-cycle. a.s well a.s dealing with the traceability between

the products of these pltases. l11 <t large software systern. this is a rrwjor task. This topic is

referred to in chapter :l in t.lw co11text. of object management.

Version control is concerned with choosing the correct VPrsiun of Pach component which

is part. of a particlllitr softwar<' svst.<·'ttl. hiillll'<' to <'1\SIIr<' this will <:tiiiJOSt certaitdy com-

promise the functional integrity of t.he system. In the context of medium-to-large software

systems which have a lifespan mea.surecl in years, and which are periodically updated to

reflect changes in the probiPrn or application domain, users may seek changes to any of these

II

versions. 1\eepilJ.lj t.rack of which changes have been nw.de to each verslOll reqLllres that a

complete version history of the software be kept. This topic is referred to in chapter :3 iu the

context. of object rnall<lgenwnt.

2.3.4.4 Validation

Following a 1nodilicatio11 to a software syst.er11. when changes hav<-' been ma.clf' to the source

code, only one element. of the clocume11t.ation of the program usually remains a. true repre-

selltation: the listi11g of t.lw sol!J"C<' ccH..lt·. lt. is generally accepted that. the documentation of

programs IS a much neglected activitv.

Liu [76] emphasises the Jleed to test the rcmaindr:t· of tlw cloc\lmentation relating to the

moclificat.ioiL so t h<-11 redoculliCnLC\t.ioll of tlw systel!l follo11·ing <l 111odifica.t.iou preserves the

C0111pat ibilih· it11d nmsislt'IJC\ oft lw t'I<'JJWI!Is of the softi\"M<' co1digurat.io1I.

Failure to t.est t.IJ(' whole or t.IJt' docltllWilt<l.t.ic)!] relating t.o rlw llloclificat.ion rna_v mean that

if this part of a software system is prone to lnoclifica.tion (e.g. part of a.n accountancy appli­

cation program which clea.ls \\"ith tax thresholds.), failure to test the reclocumenta.tion may

mean that. this part of t.he program is redocumented incorrectly. A future maintainer. not

regarding the doctllll<'llt.atioll as n·liablc llld_\" redocu111ent this p<t.rt of tlte systeru a11d so

'layers' of dorunienta.t.io11 build 11p lllaking tile software larger. more complex and more con-

fusing for any future maintainer. {:nless the compatibility and consistency of the software

configuration is preserved. following a modification. the end-result. is increased complexity

and therefore d<'gn1dat.io11 of the systf,lll.

\A/hen a maintainer seeks to achieve a.n understanding of a software system his first recourse

IS to the documentation of t.he system. Ir lte fiuds thaL related parts of the documentation

are not in agreenwr1t tlwu lw is forced to seek his understanding of the sysl.elll from the ouly

reliable documentation. i.e. the source code.

During tlw validation phase none of the maintenance models emphasises the course of action

to be taken when there are elements of the software configuration missing. e.g. when there

are no test cases or test results included in the documentation of an ageing software system.

[u the abs<:'llC<' of Lest ca.ses or Lest results it is irnpossible to carry out regressiou testing

after a. lllodificat.ioll l1as lwc11 tttade to t.he so1trce code aud so tlw proposed tuodificatiou will

have to be postponed until test. cases hat'f been de\·ised and t.est results obtained for these

cases; only then can the program moclihc<~t.icm lw said to be free from any ·ripple effect'. i.e.

the modification cloPs not aclverseh· a!TPct ti"w remaiuder of tlte software.

Only Carter [:2-q tlletltiolls <:wv recover.v fron1 the result of the fa.ilme of the soft\vare, 1.e.

·rollback' and fil<' upd;ll.e.

2.3.5 Summary

A maintenance support environment must actively support the maintenance organisation

using a generalised model of rr1aintenance. The technical aspect of the maintenance model is

something which depends 011 the cor1te:-.:t it1 wllicl1 ttt<tinL<'tlaltC<' is being performed. and so is

flexible, a.ncl can be refined to suit the type of maintenance being carried out, e.g. perfective

change. adapt.iv(' cha11ge.

-1 ~)

The maint.cnattce models due lo Boelttll (1916) [l:)]. Liu (19/G) [16]. Sharpley (1977) [116],

Parikh (1982) [100] Yau (l982) [1:30], Carter (1986) [24], and Chapin (1988) [2.5] concentrate

mainly on the technical aspects of rnaintenance. Martin (198:3) [19], Patkau (198:3) [10:2].

gtve a more cornprclt(-'Jisiv<' d('sniptiott of the maintenance process.

In the context of the creatio11 of a ma.iutena.nce support environment it ts iusufficient to

vre\v the technical aspPrt of maintenance in isolation of other aspPcts of maintenance. such

as the manageri<d <wei org<wis<ll.ion<-tl aspects. To facilitate the e\·olution of tlw technical

aspect of I he lllaitllt'lld.ll(T lllu<ll'l dtid tlw cotts<'qtwttl ('\·olut io11 of t.he sup pori eu,·iroument.

management. tuust be dl>i<-· to access itlfortllatiott cotwerning tnaintenauce assignments quickly

and easilv. Hence the maintenance model must integrate all aspects of the maintenance

process.

:)0

.....

Chapter 3

Integrated Software Engineering

Environments (ISE)

3.1 Introduction

An integrated software engineering environment is a generic term for a collection of software

tools, available to I lw soft \\·are engi Itef'r via il command langua.ge or a. system of menus. The

nucleus of such an illtegrat.ecl software ei1giueeriug envirouineut is a database or knowledge

base which may also act as the interface between the tools. The meaning and importance of

.s1

the term ·integrated' is expanded upon below.

Ideally an !SE should bt' hoth Llngua.ge-inclependent and rnetltod-independeut: it:-i arei:t. of

applicability being dictated by the tools which are integrated into it.

3.1.1 The advent of Integrated Software Engineering Environ-

ments

The perceived need for Integrated Software Engineering Environments (ISEs) has ansen

because:

l. Software systems a.re becoming larger and more complex than was ever envisaged. ow-

ing to the evolution of ever more powerful computers. through advances in computer

hardware. lnt.egrat.ed Software Ertvironments were concei,·ed as a meaiJS of improviug

the procluct.i,·it\· and qualit.y of soft\\·<nf' through t.lw llSP of a fullv-integrated compati-

ble set of soft.,,·are tools. arrcl i1rcorporating modem soft\\'ar<-' engineering techniques into

software design and clt>H'Iopment. a spin off benefit being the freeing of programmers

for more creative activities.

2. ISEs are used for development of software and 60% [70] of software maintenance IS

enhauceillellt - it is t.lwrdotT apparent that a.n ISE offers support for the maintenance

phase of tlw software life cycle. from the development standpoint. the development

of software is being restricted bv t.he maintf'tJance backlog - increasing maintenance

.52

productivity will relt>ase httma.n a.nd non-human resources for software development.

One of the first environments to provide true integration was CADES [81, 117]; many en-

vironments which claimed to lw integrated were loose assemblages of tools. methods. and

practices. The notion of environment integration 1s developed further 111 the remainder of

this chapter.

3.2 Overview of Integrated Software Engineering En-

vironments (ISE)

The important features of an environment are:

l. it.s ctrcltil<'<lttrt'- lw<·itUS<' it is tlw itltplctllt'IIIation uf tlw cksigtt uf Llw c!t\·irotllllt'lii.

:2. its illterfaces- lwcdl!S<'. <is will he explained below. tlw integration of the environment

takes place at these interfaces.

These features ar<' descri hed lwluw.

3.2.1 Environment Architecture

Most publications conceming integrated environments give little indication of what is meant

by the term ·integrated·. hut instead rely on a tacit understanding of the term: exceptious

are Delisle [:3:3] Houghton [.3.3] and Lewerentz [69]. Delisle [:32] views integration of an envi-

ronment as:

· ... something which causes the environment to appear as a single tool to the user.

SO t.Jte USer do<'S !Jut Jta\.l' ill<' prul>l<'lll or JWrrOrlllillg lll<'ltl.;-t.J C(Jille."-;1 Sl\"ilclws wlwu

using various functions ll'ithin the eJ!\·ironmcJ!t .·

Houghton [.5.5] def-ines integration as:

'The close Llltificat.ion or t l1e lllil.JOr rll!tctions or processes of an em·iroument

and points out:

· ... t.ltat wlwn·1·<T <Ill iJJiiTf<let' occurs 111 a11 f'ltviroJIIII<"IIt. t ltt-·re 1s a ueed for

integration.

Lewerentz [69] defines integration as:

' ... the smooth interact ion of t.ools. all tools having a uniform user interface.'

The IEEE Standard Clossary of Software Engineering Terminology [.57] defines integratiou

as:

'The process of combining software elements into an overall systelll. ·

This definition has generality but requtres amplification according to the context m which

it IS being used.

The author defitws intcp;rat iotJ C~c; ·The itJcorporation of software toob iuto a. coherent unit for

the generation ami tnartagenwnt of information concerning a software system.' The purpose

served by a.n integration mechanism is to ·dovetail' the components of the environment

so tha.t the.v may work ·in concert·. One of the matn features of an integrated software

engineering enviromnent IS th<-1t irtformation collected using one tool can be made use of b.v

other tools.

Many software engineering environments claim to bP integrated but this claimed integration

of tools is disputed by sottw autl10rs. e.g. Dart [:31] aud Hans<-'tl [:):J].

If the itJtegratio11 rsc;IJ<'c; 111 lt1tcgral<'d Software EtJgitJ<'<'rirJg <'11\·iruiJIJWtJt.s are uut clearly

specified. it ts not possihlP to see whether effective integration of the environment has been

achieved; the concept of environment integration tnust be clearly and explicitly stated so

that the architect.ura.l principles unclerl.ving the design of a.n integration mechanism can be

established.

.55

3.2.2 Environment interfaces

In order that the main interrelated components of the environment may be incorporated into

a coherent unit. it is first necessary to identify the interfaces where these components meet.

As an analog_v, the integration of the interrelated components of a motor vehicle powered by

an internal combustion engine serves to illustrate this assertion.

The chemical energy which supplies the motive power for the vehicle is locked up in the

fuel as chemical energy. A trigg(~r is uecessary to release this energy and this is supplied by

a.11 electrical spa.t·k .. \11 intcgr<il iutl ttwcli<tnistll is Jwu:ssi:lr_\ i:lnuss Ll1c iuterLtce between the

fuel and the elect.rical spark - t.lw integrat.iott lllecltanism is the carburettor. which ensures

vaporisation of t.lw fuel and mixing of fuel vapour and air in the correct proportions prior to

ignition.

The power generdted h-'· tit(' em·rgy 111 t.lw fuel needs to lw cottH'l"tecl ittto motive power

which can be applied to the 11·heels. l11t.egratiott across this interface is achieved by means

of a. transmission system whose main components are t.he gt·arbox allCI clutch.

Each of these ma.tn components of the motive power system can be subdivided to reveal

more interfaet-•s with their accOiltpa.nyi11g integration mecha.nisnts. e.g. tlte reciprocal motiou

of the pistons tw(·ds to lw coltl·crtnl i 111 () rotary tnotiotl. so tltat the tra.usmissiou system

can impart motive power to the wheels. Integration is required between the engine and the

transmission system: intf'grat ion across this interface is fa.cilitat.ecl by the crankshaft.

-~6

Since there are nla.nv in t.erl'aces i 11 an environ n1en I. then t here a.re many instances of in-

tegration, so that. the architecture of an ISE is inextricably linked to the integration of

its functions. notably through the integration of its ma1n components. the toolset aud the

database. Houghton et al [:):)] observed that the integration of arr Pnvironrnent requires t.he

integration of at lea::;t t.ltre<" interfaces.

l. user interface

:2. database i nt.erf<tce (tools comrnunica.te through here)

:). machine ir1t.erface

Houghton et al also showed r.j:)] tha.t the user interface and claLctbase interface are the most

important. interfau~s. <tnd that tlw interfaces can be vie\\·ecl by rnodclling the system as a

.)(

User

I
Soft,,·art' Engineerill).;

En vi ron men t:

I
\lachine

Top- Level

Inter face

l
lnternJediate-Level

Interface

j
Bottotu- Le1·el

Interface

Figure :1.1: \lodelling of Environment lilt.erface~

l\Ia.ny such environ11Wnt.s I1<1H.' lc-tyered architectures which shield the user from the underlying

operating syste1n. and n1c-n· c•w•n usc r.risfinq environments as an intermediate level. for

example {inix. Here the ,-,,ix interfacp m<w be used to invoke the linix tools. the Unix

tools communicat.ing 11·it II tlw lliiderlvillg ('nix prin1itiH·s. Tlw c-JrciJitt-'cture of a software

engineeriug envirOIIllWIIt. bc-lst·d 011 !·nix is shnwll below ill hgme :L:!.

3.2.2.1 User interface

An integrated software t.•ngitwering em·irollllll'lll supports the co-ordination a.nd managernent

of tools via a. high-level user-int.erface. The usual type of user-interface is:

l. \A/IMPS (Windows. Icons. Ptdl--down Menus)

Top Level

(Users)

j
User In terfa.ce

j
Overlvi11° . ,':)

En vi ro lllll('ll1

J
Unix lnterfacP

j
Unix Tools

j
Proced urP ('all,.

j
Unix PritnitiH·::;

j
Machine In t C'rfacp

J
Bott.0111 Level

(rvlaclti Ill')

['II j X [II\" j 1'0 lllll e II (

J

Software Engineering

EnvironmeHt

Figure :3.2: Generic Architecture of a Software Engineering Environment based on the Unix
operating system

2. Command language

3.2.2.2 Tools interface

Integrated software engineering environments which claim to be extensible and tailorable to

the users' requirements must lw able to incorporate third party tools. The defiuitiou of a

tools intt>rface to allow t.llP irtcorporation of ·third-party· tools must determiue the degree of

control a tool has 0\('1" tlw uper;-ttirtg s_vsLt•rrr and database: oud also take iuto account the

facilities needed for <-Ill efl"ecti\·(-' us<'r-irtlerf;-u:e.

3.2.2.3 Database interface

The interface to tlw dat.c->bas<' rna_,. be ell\·ironment-specific or may be frorn a DBlVlS package.

Apart from being a repository for infornral iorr. the database can be viewed as a tool that is

used bv other toob. n.rrd tlrerefor(' dCis <ts a.n interface bet \\'<-'f-'11 tuuls.

3.3 Classification of Integrated Software Engineering

Environments

The two most complete attempts to classify lSEs are due to Dart et a] [31] and Houghton

et a] [.5.5].

GO

3.3.1 Dart Classification

Dart et al [:31] classifv ISEs cts:

l. Language-centred.

2. Structure-oriented.

:3. Toolkit.

-!. i\·lethod-lwsPd.

3.3.1.1 Language-centred environments

These are built to sttpport tlw coding phctse of a particular lattguage. whose toolset is tailored

to that languagP. These <c'ttvironmcnts are highl.v-interacti,·e and offer limited support for

large scale prograiJillling efforts. Their most. important. r('<ltures arc:

1. They offer support for prototvping. since the development environment and the run­

time environment are the sa.]]]e. Small changes to code can be ntade executable very

quickly. allowing programs to be incrementally built.

2. Sema.utic information frottl s\·tnbol t.ahles is rPcorcled hy the f'nvironment and is avail­

able to the progranun<'r ,·ia tools sttclt <ts browsers. In this way the programmer may

achieve a deeper understanding of thP software under construction or when the pro-

grammer is engaged in maintenance.

61

:3. Support is provid<'d for configuration management and versicm cont.rol. but no support

is provided for project rnanagemen!.

3.3.1.2 Structure-oriented environments

These environments support the coding phase of a particular language: the user deals directly

with program constructs. thus avoiding the kdiuttl of having to rentember details of the

syntax, enabling the IIIClllipulat.ioll of program structures in alanguagt>-indepeudent manner.

Sentantic inforlllalioll caJJ lw al.t;-tclied to program structures and tnade available to the user.

StructurP-orient.cd t·'JI\'iroJlllll'Jih il<ln' <1s their main t'OIIlpOlWIII a synt.ax -directed Pciitor

through which all structures <HP manipulated. a!lcl is also the interface through \\·hich the

user interacts with I hf' f'JI\·iroJIJlH'Jll.

Programs can lw vit'\\'<'d at diff"erent levels of abstraction and detail. multiple \·iews of pro­

grams can be genernt.ed frotn the program structure. and browsillg of these views is supported

through the use of windows.

Structure-oriellt.ed cnvirottliWIILs have the ability to formally describe the s_yntax and static

semantics of a language from which an i1tstance of a structure editor can be generated. The

structure editor repurt.s syut.ax dlld static semantic errors as suuu as tlte.v arise. making

possible the incremental checking of seJnaJrt.ics. The user interact:; directly \Vith program

constructs and avoids the Lediutn or reJucrnlwri11g details of the syntax.

62

Generation of structlll'e-oriented environments ts made possible through encapsula.tiou of

the syntactic a.ncl semantic properties of a language in a grammar.

3.3.1.3 Toolkit environments

These environments a.re language-independent and mainly support the coding phase of the

software developtllCitl lil.<'-n·cl('. Tltey consist of a collectiotl of stttall tools \vhich are not

controlled or managed by the environment. Facilities are provided for version control and

configuration management. but little support. is provided in terms of consistently and auto-

matically managing us<'r act.i,·iti<"s. since the toolset is onh· loosely coupled to the el1\·iron-

ment.

A high-level intP.rface needs to lw placed 011 top of t.lw nornt<:d user-comma.ud interface. thus

increasing control over tool usage. Toolkit environments such as l;nix. allow the user a

high degree of t.ailorittg. IJut such <'11\·irottllWilts pro,·ide lit.LI<· itt tlw way of enviroumeut-

defined management or cottlrol techniques for using the toolkit. In addition.)ittle support

is provided for the tnainl<·nancf' of large software systems.

3.3.1.4 Method- based environments

Support is provided for a broad range of software development activities. such as team and

project ma.nagcnH'Itl. Tools for p<1rt.icular specification aud desigtt ttwtltods are iucorporated

into the euvironment. Tltese euvirotllll<:'ltts <~it.lter support:

l. A particular development method.

The developnwn1. method may include any of the following:

(a) Specifications

(b) Design

(c) Verification and validation .

(d) Re-ttse.

Different methods e:--:hibit different degrees of formality. i.e. informal. (text). serm­

formal (textual and graphical descriptions with limited clwckingfacilities). formal (with

an underlying theoretical model against which a description can be verified). Examples

of formal methods for specification are Petri nets. state machines and specification

languages.

:2. lVlethocls for rn<tnagi tlg the developmetlt process.

Facilities are provided for vcrsiott. cott!igura.t.iotl a.ml release tllaHa.gement aloug with

procedures and standa.rcls for performing these tasks consistent!\·.

3.3.2 Houghton Classification

The cla.ssifica.tiou of lSEs by Houghton et a.! [-55] ts related to the pha.se(s) of the software

life-cycle supported. The classes are:

l. Progranulling.

2. Framing.

:3. General.

3.3.2.1 Programming environments

These provide support. for the coding, debugging and testing of programs, which are written

USIJ1 0°' a hi nil -le\·(•1 j)rO"TClllllllill". !a.JJ<rttil<re.
b """' 0 b b

3.3.2.2 Framing environments

These concent.r<1t eon the earlier phases of the software life-cycle. where the system is framed

by its requirerne11ts and desigt1. Implicit. looping in the life-cycle means that all phases of the

life-cydP <1re support.l·<i: J'(lr l'\cllllj)IC' l·lt<lllg('s i11 reqllin'llll'lll.s l'l'SIIIt i11g frOIII errors detected

during operation of the software tlWiUIS that til(' operation and maintenance phases are being

supported. though this does not include all activities within each of these phases.

3.3.2.3 General environments

These environments contain basic tools which support. all phases of the software life-cycle,

and usually support more th<m one programming language. They often contain advanced

special-purpose tools. for certain phases and can be adapted to most methodologies. An

example of <l general typ(' of !SF is t.lw IPSE. whose impact on software eugiueering in recent

years has been collsider<~.hlt,.

3.3.3 Comparison of Dart et al's and Houghton et al's classifica­

tions

Dart et al"s classification is deeper and more detailed. taking Hought.oll·s classification of

programming f'll\·iroiiiiH'Ilt.s f"11rtlwr by breaking it down iuto La.ngua.ge-centrecl. Structure-

oriented. Toolkit. and ~·lethocl-basccl en,·ironment.s. Houghton's framing environments ts

included in Dart."s method-based environments. and Houghton's general environments IS

equivalent t.o Di'lrt ·s toolkit f'll\·irollll1Pilt.

3.3.4 The European Alvey Integrated Project Support Environ­

ment (IPSE)

The forerullner oft h<' I PSI:: ,,·as the Ad<l Programming Support Environment (APSE), many

features of the APSl·: ar<' pres<'llt ill tii<' IPSE. It is useful. tlwn·-fon'. to exa.mitH::.' briefly the

architecture of the APSE a11d sonw of its fuitcl iolls. The Stottt'tll<:l.ll clocutnent [:2:3] sununa.rises

the objectives of th<' APSE. the ntain objective being the provisiou of cost-effective support

to all functions ill a project team engaged in t.he development, maintenance and management

of a software project.

66

The APSE is cornparable vvith early generations of IPSEs; smce it only supports the pro-

grammmg phase. it can lw t.ho11ght of as <1 sub-sPt of an TPSE. its ;-trrhiterturP Is shown

below in Figure :3.:3.

APSE

~·/lAPSE

lll in i Ill al tools

!--:APSE
database

and
operating

s_vst.em

Ot.lter tools

Figure J.:3: The ,\rchitecture of the :\cia Programming Support Euvironment (APSE)

The APSE is a coorclinat.ecl sPt of tools aroliii(I cl common database. The central item is

a kernel presenting an interface t.o the tools outside. The kemel acts as a bridge between

the tools and the operating s_ystem, it is implemented on top of the host machine. The

interface is host-independent. and since the tools, compiler, editor, etc., operate on top of

this interface they are also host indepeitdeut. i.e. the con1plete tool set is portable. To move

it to a new host. only a liP\\" kernel is IW<'d<'d.

The single most i111portant feature of the kernel is its database - it is through this database

67

and its built-in constraints and structures that a consistent and reliable set of interfaces can

be presented to the tool builder and usr~r- thi!" pa.rticularly applies to recovery mechanisms

where individual tools cannot have adequate information to cope with situations outside

their control. The database is typed. i.e. it has knowledge of certain properties of the

objects that it contains. and can prevent their misuse by incorrect tools; this simplifies tool

development by providing the tool writer with an appropriate framework.

3.3.4.1 Overall objective of the IPSE

An IPSE has lwett defined [I~] ds: ·.-\n integrated compatible set of tools based on a method­

ology for all parts of system developnwttt. <'Ute! operat.iou. sharing a common database.·

As pointed out by Slt'llltittg [l:20]. tlw software industry is essct1tiaii1 <t ttli:IIILifacturing i11-

dustry. i'vla.nufacturing industries have much experience and knowledge gained in tackling

large-scale enginceri11g projects. <ind rely heavily on tools and techniques wbich are the fruits

of disciplines such <ts op<Tat ioli<Ii r<'S<'<trclt. Brtilcliiig" large soft11·are syste111 is essentially a

large-scale engineering project: this philosoph:;· was adopted by the Alvey directorate. Three

generations of !PSI:: 1vere t'ttl·i~aged. lc"ding to t.he establislltlWtll of t.he lnfonnatiou S_vstems

Factory (!SF). The g(MI of the !SF is tlw provision of a set of tools for producing IT systems

on a. 'one-off' basis, using sound software engineering techniques.

In outline, an IPSE is developed by itit.egrating software engineering tools into a common

database structure, that is. the tools share a database, which is the nucleus of the environ­

ment. This is a. disciplined engineering approach, enabling project management information

68

to be extracted easily <:1.11d efficieiiLly, making effective project management aud support pos-

sible: the aim is for t.lw IPSF t.o IH· l;lltgu<-tge-independent and rnethod-it~clependent. the tools

which are integrated into tlw IPSE dictating its area of applicability.

3.3.4.2 Evolution of the IPSE

The main disLinct.ioii lwt\\'C'I'II each geii<"rat.ion IS the lPn·l of integration achieved for the

various tools within the IPSE. lnt.egra.t.ion means that information collected using one tool

can be made use of by other tools. that is. tools know about each other. Mair [78] summarises

this evolution as occlirriiig i11 tim··(' .l!,l'll<'ri-ltioiiS.

First-generation

A typical first.-generat.ion IPSE has a !"nix-like file-based cla.ta.basP combining off-the-shelf

management and software support tools. which are normally presented to the user by means

of an enhanced user-interface. rat her tl1a11 the crudPr l: nix COI1111Wlld interface. The tools

are incorporated 11·ith lit.tle. if a11y. 111odificatio11. awl tlw t.ool is used within the IPSE as it

would be on its own. Invocation of the tool is usually controlled by the IPSE. using standard

Unix call procPdurf's. Any read/write files used by the tool a.re generally under the control of

some form of configuration manager built into the architecture of the IPSE. The structures

of the files themselves remain unaltered from the st.and-alone version of the tool but form

part of the overall filebase.

69

Second-generation

They have a relativel.v limited tool set. offer no tool interfaces, and therefore cannot host

'third-party' tools. This means that they are in danger of becoming obsolete, through being

unable to keep up with advances in tool design. These IPSEs have more of a true database

structure. rather t.harr a simple filebase. Entity-relational database rrrodels art.' used to hold

the information of the l PSE. The prim<try elernent is the entity. an object within the database;

each entity can !rave attributes clssignecl to it - these are its properties. This aspect of an

IPSE is discussed irr rrrnu· c!Ptail. later irr t.his chapter.

Senmd-gt·rwrat iurr JJH)Ls irrl<'gr;.rlt' lonls at cl rrnrclr lu11·er lt'\'t•ltlr;.ur sirrrplv holding them in a

database as an isolated comporrent. lrrstead tools <liT held in tlw database as entities, having

traceable links to their files. also held as entities. All information relating to the operation

of the IPSE. as \\'ell as tltt' data produced b,· it. resides in tlw database as different tvpes of

entities.

Because of the levt'·l of t.lre integr;.\1 iorr required bv second-generation IPSEs, many of the tools

present will have been purposely de,·elopecl for that IPSE: a. large number of these purpose­

built tools are clue to tire result of research undertaken specifi.cally for IPSE development. lt

is envisagf'd that tools will be usPd seriallY. when one tool has complPt.ed its task. the next

tool is invoked.

Third-generation

integration will extend the database concept. into a knowledge-based system. Instead of using

70

tools serially, fully-integrated tool sets will allow the user to freely· interchange between one

task and anotlwr. The success or failure of an IPSE depends on its ability to incorp<)l'dt<"

·third-party' tools i11to its structure. 1.e. its architecture must be open.

3.4 The Suitability of an IPSE as an Integrated Soft-

ware Maintenance Support Environment

3.4.1 Introduction

It lta.s !wen pointed 011t [:):)]that it is infeasibiP for any one ell\·iroJIIIWIIt to provide complttt

support for all sothvare engineering activities that may be carried out during one revolution

of the software life-cycle: howe\·er. Integrated Project Support Environments (IPSE) are the

most complet.e dllt'lllpt t u dc!Ji<'H' precis('!.\· this.

ThP rolf' of dll II~SI-: is To prm·idc· support. for tlw software engi1wering process. Software

Engineering is defined by IEEE [-57] as 'Tlw systematic approach to the development, op-

eration, maintenance. and retirement of software.· It is apparent that if an lSE is able to

provide support for these acti,·ities. it must. be able to providt> support for the respective

underlying process lllOclels. Current IPSEs are ISEs whose intended goal is the provision of

fully-integrat.c-'d support for tl~t' softwan' process.

71

Glass [4:6] is of the opinion that software maintenance can be regarded as the entire range

of software clevr-:lopment. ir: mi,~ro•·nc;;rL This notion should be tempe!·ed with caution :oince

software maintenance differs from software development in one very important respect. in

that it must lw performed ,,·ithi11 the constraints of existing soft.w;-ue. whereas a software

developer begins with a ·clean sheet' when developing a new software system.

3.4.2 IPSE support for maintenance

The suitability of an IPSE for pro,·iding assistance for the maintenance of software, and in

improving the productivity of a maintenance organisation can be illustrated by reference to

the two main features of an IPSE. i.e. object management and tool integration.

3.4.2.1 Object management

The database is the L111ifying element in the architecture of an IPSE and also acts as a central

repository for a.ll inforlll<it.ion <1ssociatecl ,,·ith a project. Tlw a(h·c-wt.a.ge of using a da.tabase,

instead of a file ha.sed storagt· system. is that centralised control can be exercised over the

data. enabling safeguards to lw employed i11 recording. queryittg. and manipulating the data.

Implicitly. this means that a. higher degree of data integrity is possible than can be obtained

when using a. simple file-based system as the basis for a persistent data store.

IPSE databases store objects: an object is a. name given to a collectiou of information which

has a unique identity. An object has attributes, which describe the nature of the object: the

list of possible attributes is open-ended. but. those attributes \vhich record history. catego­

rization and access rights are essential for the management of such objects. For this reason

the database is oft.e11 referred to <l:c> 2111 object base. and the term Di-lt.ahasP Manage111ent S\·s-

tem (DBMS) is replaced by Object ~[anagement System (OMS). Examples of objects are

natural language text. source code. requirements specification, test data and configurations:

such objects i-lre large-grained aucl require the use of large-grained tools. This approach

contrasts witl1. e.g. toolkit (·'IJ\·irOIJIIWIIIs such as (;nix. whose tools coniiiiUnicate through

'pipes·. \vhich (·'IJabll· si11gl<' fill·s of ll'XItl<-11 information. to he p<~ssed fron1 o1w tool to a.11-

other. This view of the con1plexit.y of Lll<' cla.t.a objects a.llCl structures which tools must. of

necessity. create and communicate to each other in an IPSE is inadequate.

l. Understanding of software

Linked \Vith the notion of an objf'ct. is the notion of <1 vww. which has important

implications for the understanding of soft\vare. A new 1s a data m<:wagement term

to a part.icula.r task.· It slioltlcl lw uotecl that a v1ew cau also lw a .-.iuglt object, e.g.

a configuration. Other examples of views are versJolls. call-graphs. Understanding of

a. program ts achieved bv examining different views of a program. no one vtew being

sufficient t.o permit this understaudi1Ig. Some views of a. program collie readily to hand.

e.g. a linear view of a program is represented by the program text, but a. hierarchical

view of the progran1 requires the use of a tool to produce. for example. the call-graph

structure. Similarly, ot.her ,·wws of a progra.rn. such a:; the statements referencing a

,-,uiablf' or the procedures us:nf.l 2 particular module requt re the U:OI" of apprnpriat.1'

tools.

2. Version control

A versiOn 1s defined [.57] as 'The latest instantiation of a software system which has

superseded all other instantiations.' A later version of a software system may have

been produced t.o correct errors 111. or to add enhancements to. au earlier version.

Control of versions makes possible their correct use. possibly by restriction of access

to e:-.;isting versiotts. aud tilt' ni-'dt.iuu of new ,·crsiotts. l he aLLributes possessed by au

object in a clat.ahase 11lctk<' it unique!_,. irl<'ttt.ifiahiP: a _lji"OIIfJ of related versions, each of

which meets some speci fiecl criteria can be regarded as different versions of the same

abstract-object. \Vi thin such a group a particular version can lw assigned t.o be t.he

default version. which can be useful in reducing access times.

:3. Configuration management and control

A software configmatiott is ddittcd as <1 collectiott of soft" ari' elements or objects, (also

kno\\"n as a configurat.ion it.em). that performs somP \\·PII-defined function. e.g. the

modules \\"hich together constitute a computer program.

A software co111iguratiott can it.self be regarded as an object. The aim of configuration

matta.gemettt is to ettsUIT. t !tat a soft \\"<ll"i' co11figurat iott is properly constituted to

perform its function throughout its lifetime, through thP. selection of the appropriate

vPrsion of <'<lclt indi\·idrtal component, new vPrsions of components being the result

of maintena.nce activity. Configuration management is sometimes performed as an

integral part of the software development process, retaining control over the evolving

71

software. sor1wtinws it 1s d discrete activity. being triggered bv each new rev1s1on of

the software.

A software configuratio11 mav have a. long lifespan. e.g. a. new release of a software

syste>Ill or a sl1ort lifcsp<lll. ('.g. a system protot.vpe. produced duri11g t lw de1·elopmeut

of a.n enhancement to soft.11·<ue. Soft\\'arP configurations are themselves objects and may

therefore exist in version groups, the relationships between such objects are often very

complex. nlld may he related in time. such as consecutive releases: others mav co-exist

In time. e.g. separate proto! ype models. An object. management ::;ystem must. concern

it.self wit.!, t.l11' gt·rwrnli(Jil. n·ll'ilSl' a11d sltbsPquPnt colltrol of corthgurot.iolls. and must

be able to furnish c!Ptails corle<-'lltirtg tlw coltlpollei!Ls of any configuratiou as regards

their history and antecedents. through the use of history attributes. In particular.

in-built cor 1st raints of t.lw object. man;-1gernent system as regards its operations are

llf'Cl'Ssdn· to lm'Sl'IH' tlw ld!iditl of <Ill ohject·s histon· CltTril)lltes. e.g. 11·hich L.Oiltpiler

opt. ion Wets 11sed to prud11n' t lw object file.

3.4.2.2 Tool integration

ln general soft.wdiT tools irlLT<'dS<-' tlJt' productivity and power of the software eugmeer. lu

the context of soft wan· lllailll ('lldiJn' t he1 n·move Illlich of the drudgery of searching for

information, but can pr'ovide au embarrassnwnt of riches. I.e. thev can provide too much

information. Tool integration 111 an IPSE means that:

1. Tools ca11 commtmicat.e with one attot.her. perrnitting abst.racl.ion of the information

automation. in conjunction with an object management system to provide views of the

software prO\·icles a powerful tool for maintenance.

2. The ability to incorpora.t.e ·third-party" tools from tool vendors, using the tools interface

provided by an IPSE nwans that. a maintenance organisation can keep up 11·itb the

latest adv;-wces 111 softw;tre tool lt•cllllology.

3.4.3 Problems associated with IPSEs

l. Tlwv consunw large <!mounts of n1achinP resourcE's.

2. The definition ol" a tools itJI<-'rran-· to allow the iucorpor<tl.iull or •third- parly tools.

I.e. tool iutegra.t.iOll. ll'hicJI 1\lllSI d('ll'l"lllille tJw degree or t'UllLroJ a too] has over the

operat.i ng S.\ s Lt.' III d 11 d d <tld.!Mst··: <til d also takt:• i 111 o <HTOUJJ I tl w facilities needed for i:tll

effectivP l\S('r-int.erface. TIJ(-' arguill<-'IlLS centre on the r·om.ph.rily of a tools interface.

there being t11·o IIWin issues:

(a) The degree of control <1 specific tool has over the opcrat.ittg syste111 and database.

(b) The facilities prm·idt•d for an d!"l'ctin· louis interface.

No international standard for interfacing tools to an IPSE has been specified but there are

two conLcuders. P< 'TE [I<S] ami ('.-\IS [18]. The stauda.rdisatiotl is itllporta.ul for two reasons:

/(i

1. Tool developers either aligtt themselves with one IPSE or produce several versious for

different IPS Es.

2. From a ttser s slatHipt;inr .. will choosing an IPSE tie them to that system for years,

causJug thclll to tniss OltL utt ttc\\" cle\·elopments?

3.5 Summary

The reasons for the adu•tJI of inLt·grat<·cl soft w;uc· t'Jtgineering eJt\·iroumeuts have been given,

and the mea.ning and imporl<lnce of euviromnent integratiott ltave been described in terrns

of environment itJierfa("('S .. ·\ rf·\·iew of initiatives in the classification of software engineer·

ing environment llJfJf-~ has been made and an overview of available soft\\·a.re engmeerlllg

environrnetJI. lYJW" h<ts ht·t·tt g1 \"t'tl.

A description of the clrtssilicrlt.ion of software engineering environnwnts has been g1ven, to-

gether with tlw reaso1t;; for their <lclvent. Tlw a.rchitt->cture of a gem·ric software engineering

environment ha.s been described.

The evolving lldt ure oft lw 1-:mopt'<-lll .\lu·\· IPSF. vvith respect to its Mchitt>cture. has been

described; particularly with regard to its public tools interface (PTI), and the influence of

the level of tool integration on procluctity gains.

The suit.abilit_\· of tlw IPSE as a maintenance environment IMs been outlined 111 terms of

I I

its matn features. its object. ma11<1gement system (O!VIS) and its public tools interface. and

the a.Sj)ects of maiJJtPJlcliJCf" suuj>orkd bv thern. i.e. nro.gram lillderst.;.Jnding_ vPrsioll co!ltrol.
I ._• !_.,

and configuration management and control. The problems associated with IPSEs have been

briefly described.

Chapter 4

Literature Survey of Current ISEs

4.1 Introduction

To improve the productivity of the maintenance organisation. autotnatecl support is required

for the maintenance of large software s.vstems. To achieve this end a software engineering

environment must be able to provide facilities to support the technicaL managerial and or-

ga.nisa.tionnl aspects t>f softw<-H<' ('ltgin<·eritlg. including r<-'-l!Sf'. OH'r tlw complete software

life-cycle, from requirements ddillitioll to lttaintenauce. ln particular, support must be of-

fered for the mallll!Jf:lltr nl oft he maintenance process, exerting control over the maintenance

proce:;:; and enabling the <lccuri'lte monitoring of its progress. It must be possible to extract

information from that. c;\·:-;t.Pm. -howing ihe st,clte of that svstem. at a.nv time.

In chapter two a generalised maintenance model was proposed: in this chapter a. literature

survey of software engineering environments is undertaken. The purpose of this survey is to

determine whether exist.i11g integrated software engineering environments conta.in features

that could be useful in an IS.'v!SF:: the n-·stdts of this literature surve\· form the basis for the

high-level design for a ttlaittlt-'lldttct· suppun t'lt\irurtrtwrtL \\·lticlt is tlw subject of chapter 6.

4.2 The Survey

Introduction

Environments which only pro,·ide support for small subsets of the maintenance process. such

as version managemt'lll. l1a\e 1101 lwer1 included in the sttrve\·. En:'ll though the Software

Eugitwf•ritlg Fll\irurtlll<'IJis '-'llnt·n·<llld\"t' "·i<leh· diiTn<'IJI ohjt·cti\·t·s. tlw\- satisfied at least

one of tvvo important. criteria. <-'<lclt of ,,-lticll. ir1 isolation. would provide support for the

keystone of soft,,v;-lre n1aintet1ance. which is program uuderstaudiug. These criteria are:

1. They cont.ain an integrated toolset. to aid tn information capture

:2. They have the ca.pa.IJilit.y to IIUtnuyr infonna.l.iott. supporting abstractiou. news, and

tlw creation or informatiotl sl.ruct.ures

80

The approach adopted 111 this lit.erature survey was:

l. To ascertain the compatibility of those software engineering environments which e:rplic­

itly support the maintenance process, with the generalised maintenance model proposed

in chapter 2.

·) To evaluate other integrated software engineering environments, to ascertain the sup­

port they implicitly pro,·idCc' for the maintenance process. This part of the sun·e,·

divides Integrat.ecl Soft.\\'are [11gineering Environments into:

(a) Non-hyperte:-:t. eu\·JrOillllt'Jlb

(b) Hypt-•rt.<':\1 <·'ll\·ironJnents

In the following literature survey the environments were evaluated under the following head-

mgs.

1. Objectives

2. Architecture

:3. Funct.ionalit\·

~I

4.2.1 Environments providing e:r.phcit support for maintenance

4.2.1.1 Microscope

Objectives

Microscope [4] aims to help programmers understand and modify complex programs. pro­

viding support for ('\·olutiottary cJp,·eloprnent. and the means to estimate the effects of a

proposed change. i.1J. the ripple effect. [V[icroscope's aim is to provide the programmer with

the view of the progralll that tlw progran1nwr wa.nt.s.

Architecture

Microscope has a l;-t_vered archi1.ect un·. built 011 top of the host operating system. The knowl­

edge base and US(' I' i 111<'rface arc c.IIi1Tecl by the tools.

Functionality

fVlicroscope is a ktiOII"It-·clgc-based prograrnrning environmettl that ittclucles tools to statically

analyse source code. storittg 1 lw l'!'Sttlls i11 the kttOII"if'dge b<tsc. pro1·idiug support for abstrac-

tion, and for obtaining views of a program. It. is language specific. targeting CommonLisp

and CommonObjech. :\licroscope is windows-based, each window having items that have

aunotaLiotts associd1ed witl1 1 lwtn: <til aJJIIOLation is a piece of related progra111 iufon11atiou

in addition to docutiwril.a1ioti. lt!'IIJs Jll<tY be nodes i11 <1 p;raph. svlllbols iu code. stationary

menus, or words or a phrase in a clocunwiil. Associated aunotations may include:

1. documentation

2. source code

:3. constraints

4. defects

-5. external vww

6. revtstotl hist.on·

An annotations menu lists links betwe(c'll it<'tlls. for exalllple. in a graph of a program's

module structure. each 11ode tll<lX he ctll active region reprcsetitiug a Inodule. and have au

associated menu. for (·'xample. the data-flow and control-flow between the two connected

modules.

Microscope cau clispl<:l\. e1 progratJt witlt <ttl\. clesirPcl attttOLi:ltio11s: sttti:lll amounts of infonua­

tion may be clisp!d\·(·d direct.!.'· i11 the program browser. for ('X<ltltple. t.lw ttllntber of times a

function ts called ;,wei it.s execution time cat! be displayed ttext. t.o eaclt node name. Other

annotatio1ts. suclt <lS sot.trc<-' code \\'hich <:HP too large t.o fit itt the program browser, are

displa_ved in separ<tl.(-' 11·imlows . .\licroscope supports a special class of annotations, called

constraints, which arc records of irnpli<·d rel<lliollships lwt.we<'ll difrereut pe1rts of the pro-

gram.

Dynamic Analysis

Microscope ofrers support for understanding by allowing the programmer to monitor exe­

cution, displaying ch<Htgf's in data st.riiCt ures and control flow dynamically. also saving the

execution history . .-\ progrCJrttltwr C<llt IH·colll<' m·crllladed hy too much information so, for

example, Microscope allows the t"Xecut.ion history to be analysed and filtered. providing the

means for a.bst. ract. ion. The cause of ru tt· time errors can be ascertained by examination of

state inforrnation and execution history, us1ng flow analysis and the nature of the error to

narrow clown tlw poc;sibilitics. i\lonitoring-requests can also be tn2de hv the progrnmmer.

specifying for example. which e1·ents to look for and what subsequent action should be taken .

. Microscope can rnonir.or t.he va!tws held in c-1 variable. or check the logic flow in conclitioual

statements. record all fui\ction calls defined in a rnodule, or provide program slices, for ex­

ample recording all the loops t.hat. use a particular variable in their exit tests.

User interface

The user-interfac<' is <1 graphiu1! Oil<' t.o sl1o\\· the structural vie\\· of a program.

4.2.1.2 Arizona State University (ASU) Practical Software Maintenance Envi-

eonn1ent

Objectives

The environment [lll] <:litl\S to s11ppurt:

l. understandiiig sol't.\\'<:lr<-'

2. changing soft 11'<11'('

:3. tracing ripple <··frect

4. retesting changed software

.). documenting acquired knowledge

6. pl<lllllillg ami sclwdiiling Inai!ll.enanc<' tasks

84

Architecture

The tools share a ch1;;h,1se. 110 orlwr information IS given.

Functionality

The environment. is l<1nguagc-specific. it operates on Pascal code which has compiled free of

errors. The components of the environment include the personneL the maintenance tools,

and the software syntactic and sem<:1ntic databases. The existing environment provides

facilities to unci<:Tsl.<lllri code. docutnent code. <:1ncl an<:1lyze code for ripple effects.

4.2.1.3 University of Colot·ado, Boulder- (prototype environment)

Objectives

The environnWIIt [lJl)] is to I)(• c·apdhle of Stlpporting the interpret at ion or PXplicit l!Iaintel!ClllCT

processes. by coordi11dt i11g Llw elrorts of tools and perscmnel.

Architecture

No information is give11 except that the eii\·ironmenL is to be open, to incorporate third-party

tools.

Functionality

.-\ common fraiiH'\\·ork is suggcst(·d for tii!clerst.ancliilg maiiJL('ll<Jnce and the structure of au

environment for suppurti11g In<J.intenailce. The requirenwnts for the environment include

that:

1. the cnviroiiiiit'IIt should lw Oexible

2. the envirol!IliCIIt should iitcorporalt' explicit process rcpreseutatious

:3. users Cilll <tiL('!' tuul:-; d!Jcl t lw pmu·s:o itsdL <l.S 1wrxlcd

The environme1Jt 1s not yet OJWrationaL but the support for maintenance provided by the

environment is achiPvPcl by dcsiglling t.he environment around the notion of process program­

ming. Process programming has. as its application. the domain of software engineering. A

process program is defined as ·'fhe static description of hmv a process could be carried out.

incorporati11g t lw dppropriat.c d!ld 11ecessary tools and object b<tse. · Process programming

wa.s developed hy Osterweil [IJ!J]. its airn being to support. the construction of a farmly of

environrnenls. f'<tc!J ,,·itll its O\\'ll 'ic11· of tlw <tppropri<tl(-' process n1mlel. ln particular. the

intent is to prodtJn· d softll'itr(' d<'u·lopllWJlt ('Ji\·iroJJIIH'llt kenwl that can lw parameterised

by a process progr<1111: t lw ('Jl\·iroJIIIJPlll is used in different modes a1cording to which type

of maintcn<wcc is to lw perfomlt'd 011 <l.ll applications prograltl. T!tt-· dllct.logy of a process

program and it.s eff'ect on <lll ('Jl\·ironlllent is the cassette recorder - t.he recorder functions

using the sal11f:' set of cOJll!JOilCIJts ('UTI t i11W hut. the Otilput depends 011 what. is on the cas­

sette- the cassette p<trarlwteri;;(•s tlw prograr11 IV!Iiclr operdtes iiiside tlw cassette recorder.

Process programming regards lhe process model as malleable. i.e. it is software and should

be capable of adapting to cha11ging circumslances. The notion of process programmmg ts

amplified 111 t.hc discussioll at t lw ('lid of t.his chapter.

4.2.1.4 Genesis

Objectives

The main objPct.ive of Cencsis [101] 1s to provide facilities to rmprove the productivity of

soft\vare developers. particul<-trly itt the evolution phase of the software life-cycle. Genesis

is rule-based and p<-trticularly rtitns to support the evolution phase through it:o resource

manager. using soft\\·are lihr;-nit:'~ and version control.

Architecture

No information ts prm·idecl concerning the architecture of the environment.

Functionality

The main compottf'ttts of Gew'sic- ;-ue:

1. Resource tnanager (a.lsu udled the h·olution Support E:uvirottmettt (ESE))

This provides vcrsiou cntltrol. traceability between software resources and methods for

accessing these rc'sou rn'~.

software resource . .-\ rulc-b;-tsed prukct iott tll<'cltauisttt provides tlte meaus for:

(a) Pointing out potenri;-d inconsistencies

(b) Autotnatitt!l cert.aitt Mt.i\·iti('S for the user

(c) Ensttring protection

(d) Defining the soft\\"<He development methodology

:3. Information abstractor

This n:tri-lcts relation;-tl ittfonuatiott atwlltg the soft\\'are ettt.ities of programs. stores

tlte infonuatiott itt a cl<ttilbils<' and makes it available to usPrs na a high-level access

utility. th<-lt displays tltc ittformation ttt a form that ca11 lw easily understood.

87

-+. !viet ric-guided Jtwi!Jodology

Thi~ indicates the comple:-:ity of the software at each phase. and suggests ways to

reduce the cotTlplt·:-:ity at t.ltat. phase. as well as how to proceed to the next phase, so

a.s to achieve the de~ired goal~ for the project.

4.2.1.5 United States of America General Service Administration's 'Program-

mers' vVork Bench.' (PvVB)

Objectives

The aim of the P\\-' B [-llJ] is to !!;Iii de ('obol prograttltlters tliroug!J tnainteuance, testing,

conversion and other <l<"li,·ities. Tllf' P\\'8 frattwwork is intended to enhance the productivity

of every· member of t.he soft war<· nta!Jagenwnt team. this software engineering environment

is intendt_•d for till' cottllll<T<-i<tl s<'d(Jr_

Architecture

The workbench iufrastrunurc is <I fra1ncwork for integrating software tools and controlling

access to t.hetn. Tlwr<' is 110 rnfo1nd linkage between the tools. the ell\--ironment is, iu effect,

a loosely-coupled t.oolset. Its structures include:

l. Architecture and ~\'st.(-'lllS tlli-lllag<'tli<'IJI

2. Tutorials and information interchange

:3. Reusable p<ll t.f'l'll program gem·ra.tion

4. Automatic .J('L gctH'rat.iott

88

:). Change control tracking

The ma111 ft'?at.11re of this opr'll-f'IJdecl software management <Hchite<"lttn-' is <t t<:tble-driw~n

sequence of screens to guide the programmer through specific development. or maintenance

tasks, using specific tools.

Functionality

The series of IIWIIU-drin·n 1\'orki)('!Jclws (-'nallles t.lw user to cusLOJilise his 0\\-ll workbe11Ch

providing access to all otlter products 111 tilt' IJ\VH 11·hich provides:

1. The mechanism for enforci11g inst.a.II<1Jion standards and procedures. at the same time

ensuring tl1c int.<'grity of the iiiSL<lii<Jt.i<lll·s software enginecrittg ettl·irOI!tnt>llt.

:2. The rne<1Jis fort lw set tiJ1g-11p <ll" ii lihr;ny of r<'tJsdble ('OIJOL applicatious.

The P'vVB framework c;-uJ he configmed to incluclf' tools and facilities for operation Ill a

database environJIWllt.

4.2.2 Environments providing implicit support for the mainte-

nance process

4.2.3 Non-hypertext environments

4.2.3.1 Marvel

Objectives

!Vlarvel [Gl] airns llJ support t II.<J <ISIH'Ch of clll i11telligellt cts:--istallt. i11sigltt aud opportunistic

process mg.

Architecture

No detailed inforlllal io11 is gi1·<'ll corJe<'rllillg I lw arc!titPct url'.

Functionality

l'vla.rvel is able t.o:

l. provide a filPiess pm·ironnwnt to it.:-; users.

·) C\.llS\\"<:'1" qti<-TI<'S

:). coordinate t lw CJC! ivit i<'s of rnult iple prograrn11wrs ;.urd

4. a.utoma.ticall1· ill\·oke tools.

The knowledge of th<' a.ssist;.1nt is clescrilwcl in a model. and intPlligenn· is achieved by inter­

preting the model. providing iusiqh! into a svst.<·'lll and activPly participating in development

90

through OfJfJOI'iun/.~1 '' p1·ocu,,.,,nr;. The concepts of insight and opportunistic processmg are

briefly· discussed be loll'.

Insight

The environment is able t.o nnticipat.e the consequences of the user's activities. based on an

understanding of the development process and the resulting sothvn.re. The means that indi-

vidual programmers can grasp more readily the structure and relationships in the software

product. permitting a deeper unclerst.ancling of their tasks. The ett\·iromuellt is able to guide

the progratntiWI' i11 ciJattgiitg d c-;\,.,ll'lll. l'<'llil'llitlg it lu <-1 n!ll:-;isll'lil c-;l.;ll.e. <llld also to help

coordinate the act.ivities of multiple prograiiiiiWI's. <-'IInhling them to work individually. yet

co-operatively. dovetailing their elf'orts.

Opportunistic processing

This means the <llli.OIIl<ltioii or sitnplt• cleveloprnent dctivities. such dS monitoring changes to

user's action.

Components of Marvel

The main components ;ne:

l. Object. bas<'

This stores dat.a as objt·cts. in till' objcct.-orif'nt.ed seiise. t.he object base maintaining

all the entities tha.t an-.· part. of the evolving s.ystem, for example. information about

the history <wd the status of the project. and the tools used in its development and

tll<tiiilr•tldiH'<'. Tlw ohjl'l·t h<lS<' ddi1ws the object class<·s and the rt·lationships among

ohj<.'<·ts. for exaitipl<'. o1w ohj(•ct is a coittpouellt of a11other a11d \\'lWII applied to another

91

action.

·) Process mode I

The model of the developnwut process imposes a structure on programming activities:

it IS an extensible collection of rules specifying the conditions existing for the appli-

cation of particular tools to particular objects. Some rules apply only when a user

invokes rl tool. otlwrs <~pply II'IH'Il the en1·ironmenl. initiates tool processing and others

apply to both cases . .\11 the intelligence is encapsulated in the environment. instead

of in individual took

Summary

The modt-·1 Pmbodinl 111 t.lw \larvcl f'III·imllment fornln.lises tlw concepts of insight and

opportunistic processiiig. wl1irh are 1 1\'0 ;-tspects of an intelligeiii assist.ant. b1·:

l. i'vlaintaiiiiitg <~II kitOII'It'dgt• dhu11t both the specific dt'\t'luplli<'IIL effort. and the general

developnWIII proc<'ss i11 tlw object briSf-'.

:2. Making rnultipk vie11·s of t.lw object base available both to users and tools.

:3. lVIodelling the clcl·dopiiif'IIL process dS rult-·s that ddiuc the pre-couditions and post

conditions of dcH·IopiiH'nt acti1·itics.

4. Cathering collectioiis of ruiPs i1If.o strategies.

The abol't' rules <IIlt!l\' \lan·l'l I\J prul·idt· softll'a.re engiuecriiig Citl·iruiJIIIC'IILs that iutelligeuLly

assist development and maintenance efforts. by individuals. and by tea.ms of users through

•

controllt:·d ;wto!Jldl io11. IISill~ d\-;-lihbl<-' clcvelopiiWIIL toob. :\/lan·cl dues !tot iuclude au\·

mention of tools for lllaiiiienance or of anv assistance for the understanding of uisfiniJ

programs.

4.2.3.2 Aspect

This IPSE: [.5:!] is <1 co!Ldlor;ll.iu-· H'lll ure hetween Svstems Designers. IC'L. MARl and the

Objectives

There are two key ohjc·cli\'l'~s.

1. An open cn\·irolllli<'IIL ;-dJo,,·ing integration of third-part\· tools

·) The prov!slull ul a l ntl\ illlt'gr;-tt t•cl st'l ol t.nols slJ<-triltg <-t co!ltlllOtl database structun·.

presenting the ust-.'1' \\'it.ll <-t CO!Isistcrtt <-llld cohert>!tt worki11g tc'IIViroument

Architecture

ating system. which is cl dist.ributed l'tli.\ syslt-'111. Tlw public t.uols interface integrates the

tools with the object bas<'.

Functionality

Aspect allows a project to lw divided al!lO!lg sinal! teams of progrannners via a hierarchical

directory syst.e111: tlwsl' il'itlliS < dll \\'urk i1Jciependently to dt-·\·elop parts of I he systeriL using

confil!:llr<Hioll crmt rot lltl't ltc~Jtisnt-; lo <Issi-;t. in t.he building of these sub-s,·st.,rrrs. Asuect is a
<..._! '---' • I

multi-language clistrihutecl-host.. distribut.ed-target IPSE which aims to support all phases of

the Software Development Life Cycle (SLDC), from specification through design and imple-

mentation, to testing and maintenance. It will also support project management, planning

and control. The prototype \\"as designed to demonstrate the feasibility and practicality· of

using a fully-integr<lled I'JI\·iroJIJIWIII for real-t inw developnwlll. i.e. ernheclded systems. As-

peel is being de\·C'Iop1'd <Is <Jil !PSI·: fri1llWWork i11to which tools can he integrated, a minima.!

toolset is included for progra111 developl!WIIt. (.-\cia. JJascal <1.11d ('compilers, and linkers.)

4.2.3.3 Eclipse

This IPSE [.'"ifi] is a coii;JIJoriili\·1' V<'Jit JJI"I' lwt.ween Soft,,·an· Scienu-'s. C'.\ P. Learmouth and

Birchett i\IanagenH"IIL SystelllS. LaJIC<ISter cllld Stre~thclycle l."uiversities a.ncl university Col-

lege of Wales. A bervst\\·vth.

Objectives

Eclipse is an eJIP,IIWI'l"lllg prolotype. a ,·chicle for trying out ideas a.J1cl assessmg their use-

fulness. The aim is t.o deJnonstratc I he l PSE concept by \)llildiJig a practical system within

the constraints of time scales clllcl bridget:-;. iilld lo prm·iclP support for large-scale long-term

projects. possibly geogr;.1phic;-1llv dispersed.

Architecture

Eclipse is a. distrihutecl IJJSF. llw central host computer is connected to worksta.tious over an

Ethernet. Local Area \iet\\"ork. the host cotuputer holding the central IPSE object base. The

94

public tools intrrLtn· illt<~g;t·;-tt.c·s tll<' tools ,,·ith the object b<t:><: a11d tlw IP~E has a la._yered

architecture. built 011 top of the host. opPratiug system.

Functionality

The process of system developlll<'ttt is reg;Mcled as a series of Lr<wsforma.tions frorn one rep-

resenta.tion to another, with each stage introducing greater precision and rigour than the

preceding otte. E:clipse is <l di::;tributecl IPSE but the tools are designed to run on the work­

station itself. The nuckus of ctn IPSE is the cla.ta.ba.se: objects in the cla.ta.ba.se a.re produced

by executittg transfortttat io11s (tlt<-'lltsPlves stort-'d a.s ohjPc:ts). which are defined in terms of

UNIX commands. Prol>i<'llts <'ttcottllt<'l'<'d [7-") ,,-illt H'I.IPSL·: il!clude:

l. Cornplexit_v a11d control

2. Communicatio11s alt<l nt<-tl1<-i,l!;<-'ll1ellt

:J. ('ollllllttlli<·ilt itJtt,; Ill'! \\'t't'JI t tJIII!JIIIt't·:--

4.2.4 Hypertext Environments

Before surveyi11g hy[wrtext. t-'ll\-irolllllt:'ll1s 1\J <-iss<'ss their c<)fllpatibilit.v for software mainte-

na.nce it IS informal ive to exarnitw t.lw role of hypertext in soft ware engineering.

The term 'hypert.ext.· was first coined by Nelson [91] but the original concept is due to Bush

[22]. Hyp<-'rtext. has hec11 ddi11ed by several authors. for exalllple [9:)] as non-sequential read-

ing and wriLi11g .. \ .~uud i11t rod II< I io11 lo lt\'IH'l'LPXI is prm·idl'd In· ('o11kli11 [:W]. The tna.iu

areas of software engitweri11g i11 which ii}IWrtext can offer assistance are:

1. Prograttl Ulldcrsldilding

:2. Informatio11 lllilltdgf''II\Ctll

:3. Abstraction

4. Document.ation

The idea of using a ltvperte\t s\·st.<'lll 111 ('Olljlll}('t.iotl with soft.ware engineering tools to form

a.n itttegrated sol'twdr(' <'ll_l!,ill<'<'rillp; <'11\·imtlllWill bas lwe11 <tscrilwcl t.o Heudersou [.54]: the

obvious advantage of this combination is rhat softwarP tools can introduce automation to the

extraction of infortwtt.iott frotn t.he syst.ern <Hld hypertext. call pro,·ide the rnea.ns of storing

and retrie,·ing t lti.'-' itlfortll<tt io11. ds W<'ll <h allowing tlw tllaitllilittc'r to cruJ.l.t informatiou

struct.urP.s througl1 tile littki11g of ohjecls in the database. The ut.ilit.\· of hypertext systems

for inforntatiott llldltag<'llteltt i11 ICirgc-scdle software engitweri11g tllluugh the diverse types of

information permit.tccl in hypert.('xt nudf's. <'.g. Lr'Xt <wrl graphics. has been demonstrated

by Biggerstaff [1:3]

\Vhen t.lw mailltaitt('\' is pr<'Sf'llt<-·d \Vitlt infortlldtion from ,.<Hious sumn·s lw is faced with the

task of orgnnisi11g t.his itlfornlatioll so that he mav be able t.o:

l. Use his reasontng powers to process t.he information into J.·nowlr:dgc. thus ga.mmg an

U!Jderst.andi11g of t.he software. so that. it may be safely tnodified.

:2. t: pdat.e t h<' doclltll<-'llt.atiotJ oft lw software in order to make future !llodifications easier.

l-lyperte:-;t oll<'r~ "''!J!Jorl for illforlllili io11 st.runur111g. enabli11g tlw aggregation of objects.

produced by tools. into structures which may have hierarchical and non-hierarchical organi-

sations, which <He deri ,-eel Yie,,·s of <1 software svstem.

The following brief e:-;position based on an example from [ll] is intended to serve as an

illustration of the part that hyperte:-;t plays in relating information contained in the database

of a softwa.rr> enginr>ering environment. The basic components of a hypertext database are

nodes. links and ('(Jill<':\1.~. Tlw ll<Hil''-i dr<·' d nwans of st.oring d<llcl <lllri illformat.ion and the

links between the IJOd<-''-i <t.re forg<·d ""ill.!!, ,., lu!toll.'<friv" lwt \\'('<'11 11odes. t.lw inlplernenta.tion

of these links 1s v1a pointers 111 the dat.abase. Items of inforlllation describing a software

svstem entered I>\ 1.lw II1aintai1wr or produced by a software tool Jnay be stored iu the

nodes of a hyperte:-;t da.t.a.ba.se. The nodes containing information about the software system

are linked t.o for111 ,., direct(-'<! gr<lph. known as tlw hvperdoCIIIIWIII. Vvithin the graph. the

concept of contf':\ts is used to pdrt.it.ioii [II] ill(' data wit.l1ill the graph. providillg support

for configurations and versiOII trees. ('ont.e:-;t.s. nodes and links <1.11 have attributes. and can

assume values of strings. integers. re<ds or user-defined types. The function of attributes is

to label t.be typ<-''-i of 11udes. li11ks all(! conte:-;ts. The at.t.ribut<·'s ;wd their values are known

A simple e:-;ample of a link rel;lt.ing two nodes appears belo\\'. in hgme 4.1. The context has

the attribute of ·software component· and its value is ·source code·: node 1 has the attribute

'module' and it.s valuf' is ·initi;Jlisation·: node 2 has the attribute ·paragraph. and its value is

·input-rout in('·. Tlw li11k has I II<' cl.lt rib11t<·' ·n,lat ion· a11d its ,.,.dllt' is ·ust<. The arrowhead

at each end of the arc imlicates that til(' link lll<IY lw followed in either direction.

97

lT ses
Input Houtin<'

Node 1 Node :2

Figure -1.1: Linked nodes rna hypertext

A graphical brows<'r CCIII lwlp I lw 11s<'r t.o il\oid clisorient.al io11. i"l <"OIIIIIIOII problem with large

hypertexts. b_v permitting th<' tro,·ers<:d of tlw links lwt,,·een the 11odes. the current position

in the network being highligltt.ed. using. e.g. inverse video. The author conceives a graphical

browsPr which C<-111 op<-Tdl<' iii t\\·o leH'Is. I lw 11pper le\·el showing I he hierarchy of rnodules iu

the software sysl.<'ill. ;wd tlw lo\\-cr [e,·<:'l siH)Wing the network of 11odes containing information

COI1CE'I"IIIng d j)<Ht.iculcll· llll>dltit'.

The information in tlw 11odes l)f a hypert.ext can be <1ccessed h,· I he usual w<:n· bv the

use of a nlouse. clickitlg on tlw node of interc'SI .. -\ tri"lH'rsal lrist.on· ca11 lw maintained.

r.e. a trail uf the links through the hyperdocument. so that. (..l ()'
·"b" an au eli t trail may be

impleme11l.ed. Hyp<'rl<':\t prm id<'S dlt <'asy llWans of t.raci11g refn<'llC<'s: rnachirw-support for

a.ll link tracing means that all referenc<'s are <'qualh· easy to folio\\". Pither forward to their

referent or backwards to their rPf<"rence. In addition llf'\\" wferencPs can easily be created.

Networks can I)(' huilt by IIS<'rs <'itlwr b\· st<trl i11g frorn scratclt. or <111 existing 11etwork can

be enhanced by <lllllolatillg \\"ith cornnwrtts. without cha.ngi~tg the referellced document. The

user is support<:'d in ha,·illg se\·eral poths of inquiry a.cti\·e a.11d displayed on the screen at

98

the same time. Sll!·l, illiil il.ll\ g1v<'ll pall! can lw relracecl to the original task.

4.2.4.1 KMS - Knowledge Management System

Objectives

KMS [1] is a large sc<de hypernwdia system for collaborative work. It a.1ms to help orgaHi-

sations manage k11owledge hv reducing the effort required t.o build and maintain corporate

databases, since these <~cli1·i1ies are uft<'ll the principal bott.IPn('cks i11 many uses of comput-

ers.

Architecture

hJvlS relies on a wide-c-H<'d Itelll'orks of workstations. No other infor111at.ion IS g1ven concern-

ing the arcltiteclllr(·'.

Functionality

The Ki'vlS clatab<~se co1tsis1s ul·" sd ul· iiiL<·'rlinked screen-sized 11·orkspaces called frames -

these conl.aitl <-HJ\' colllbinatioJJ of text and graphics. each of which llli-1\' be linked to another

frame, or used to invoke a progr<un. Conventions exist for the format of frames: the laymtl

of the frame Is t.he da1 a Jllodel.

99

Features of KMS

l. Navigation

Achieved usmg mouse - a linked frame is displayed 111 the same window.

2. Eel it i ng frames

This can be clone at an\· time.

:3. Invoking progr<tlllS

Large conventioJJ<l.l programs catt lw ru11 front the operating system shell.

4. Context-sensitive cursor

Operatiotts ClYdi!;t.IJI<· dept-'1111 011 ,,·Jwtlwr the cursor is withitt t.he text or til free :;pace.

!J. {: nificd CO!Illlldiid St·'l

Cut and paste upcn1t.iolls (;1 :;et ol" relat.ed conllllands) are lllliliecl into a move command

-text can be picked up ami r<'J)()SitioJwd 11·ithin a fra11W or cc-1n he dragged from one

window t.o ii!JOI!wr.

4.2.4.2 Dynamic Design

Overview

DynamicDesign [ll]1s a C'.\SI·: <-'Jll·iroJJlllelJI. based 011 hypcrt.<·xL. lnforlllat.iou structures

are used for storing source code and the environment has utilit.ies for manipulating the

information; the ro!t· of hypert.cxt 1s as the da.La model.

Objectives

100

It. <1Jllb to lwlp itt l!t<-tllipul<~l i11g "'>tilT<' cod,•.

Architecture

It has a layered s\·stcm archit.ect11r<-: which allows for extreme modularity and independence

of soft\vare components.

Functionality

The environment possesses the following features.

1. lt uses t.lw !h·p<-·rl<·xt .\hst r<tct \!<~cit ill<' (HA:\·!) 111 il i<tl<'r<·d svsten1 architecture

:2. It stores SOIII'C<-' ,·ode. f'('qttin•f!t<'tlh. du<'lllll(-'fll<tl io11 i11 d lt\'jH··rt.Pxt dat<-tbdse. ltslng

infornla.tiott slrlt<'tttrcs

:3. It allows arbitrary structuring of information and keeps a complete version history of

inforn1atiott attd st.l'ltclttn·

c[. \"odes Ill hl'jWI't<'XI dalclbds<' COJIL<liJt project COillj)Olll-'nt.s

.). Links reldl<' IHHI<·s

6. \odes aJl(l!iJtks !Jal<' ;-lftribi!I<'S

1. \ode at.tril)IJi<' is]>rojcct-('oJllj>OIIl'Jtl (!d<'nl ifies fiJpr of Project Component contained

m node)

8. Link at.trib11t.e Js !{elation (Shows the type of relation the link provides)

9. {)tilities in Dyn<unic desig11 deal ll'it.h information structures in the source code context,

for P:\a.Jnpk a sOIJf'('(' code In'<'

101

(a) Source bro\\·ser

The browser is the part ot· the en\·ironment t.hat. helps in un•lerst.anding and

maintaining the source code and its auxiliary documentation

(b) Craphbuild

A hypertext. source graph is assembled using the program s ca.ll tree.

4.3 Discussion

4.3.1 The role of the process model

Riddle [llO] h<ls sllo\\'11 tlw \·dltit' ol' ;-1 process model is that it is cottCt'riH·'d with rigorously

defining. analysittg. ;-wei prt:·dict.ittg Llw itll!Ji-11 t uf sul.l\\'rlrt' proc<·sses \\·ith respect to organ-

isa.tiona.l or project-rt'la.t.t·d rweds and t.akes the view that software process models make

possible:

l. Elfect.i\·t· t'OIIIIIItiilic;-11 i()II <ilH>III soft \\·etrt· pn>n•sst•s. iti\()[\-itlg JH'()plt-· <t.IId resources

2. Use/reuse of a soft.\\'dH? process in diff't~rent situations. since the process model is dif­

ferent for different types of maintenance

3. l'vla.turat.ion and evolution of a software process. by mapping the process to a. conceptual

schetml

101

4. ;\Ianagcmenl or a soft.ware process. through the use of people and resources

Stenning [120] vie11·s <tn Pnvironnwnt as the effective means of supporting an effective process:

the importance of process models is that the quality of the product is determined by the

process producing it. and so there is a need to understand and compare software processes

and to evaluate and reaso11 about them, so that better ones may be designed and produced,

thus improving the qu<1lity oft llf' product. The extension of this line of reasoning is that

processes should lw <·'ltilct a hie <wei t.lwrdore should t.ake t.he t'orm of proymms. 1.e. process

programs. Tully [1:2:1] describe" pron·ss pmgrctllllll!Itg as:

l. A powerful 11<'11' forlll of progralllilling

·) A waY of t r<'<1t.i11g e'\ist.i11g software systems as prograu1ma.ble resources or virtual

machines - i11 the sanw ll"<n· <ts for <''\<llllj)lf'. oper;-1ting s\·st.ems or compilers modPI

lower-level progr<~.Illlll<tble resotiiTt-'S as 1·inual l!la.chi1ws.

Tully's v1ew 1s that modelling and programrnmg the softwa.re process becomes an expert-

mental test-lwei for II!Od<'lli11g i'liicl prograrnn1111g tlw htiiiiarl-comput.er a.ctivitv Ill general.

for introducing c-1 11<'11. <titd poi<'IIt ially 111111'11 llll!l"<' l1igldy productive way of programming or

system building. Lehman [():)] thi11ks that process programs impl_v a deterministic develop­

ment process. which excludes t.lw creative element in producing software. It is the author's

vievv that the development. process is probabilistic. but deterministic to a limited extent -

it is deterministic in the sense t.l1iiJ <1 software product will ernerge but probabilistic in the

sense that it. will aln1ost. ct'rtainh· be ddici('IIt 111 so1ne wav. 1.e. it 1s not possible to predict

l0:3

with certainly what. tlw software product can and cannot do.

Lehman doubts that. process progr<Hns yield more insight into the software development pro-

cess, or produce better llllderst<uldill)2; of that. process. a.ncl offer no signific21.nt improvement

in the process. According to Lehman. [6:3] process programming is one approach to process

modelling - the models so produced being machine interpretable a.nd so can be used as a

process cont.rol nwchartism. e.g. a program-driven mechanism can be used to select aud

invoke a sequence or [I)S 1~: tools. Tlw [PS F COl tid then lw tutwd to the needs of a particular

application of the pmcess. 1>.\ prq><tring <wei loa.ding an d!Jpropriate process program or by

a.djustiug p<1rar1wt('rs i11 d prog;rcun which has alread.Y been loaded. Lehwi:l.u asserts [6.3] that

real-time considerat.ions precl111le the adoption of this approach.

l\otkin ·s crit.icistll [tJ:l]lif pro<TS'-' pmgr<utttttittg <tddress('S t.l}(' <trgurncnt t.h<tl. since no commer-

cially successful insi<Hiccs of soft,,·ilr(' dew·loptucnt en,·irontnenh exist. then it is not possible

t.o construct useful CII\·irurtrlWIIIS tltrough pa.rameterisatiotl. using process programs. Notkin

argues that two requirements are necessary before instances can be generated:

1. Experience in huildit1g lllilll\ iiiStdlln's

2. The existence of encmgh formal notations for the a.ctua.l paranwterisation

Since neither of t.lw two requiremettt.s above exist then iL follows that instantiations are

not. possible. There dl"f' nn illsl<lltn·s of .r;rnrmJisrrl rnaintetliitlce support f'nvironments so a

maintenance procc•ss progra111 can11ot be us<'d t.o para.met.erise an insta.ntia.tion of such an

environment.

104

4.3.2 Support offered for the generalised maintenance model

Introduction

The only environment.s which de<-li explicitly with the phases of the generalised maintenance

model. described in chapter :2. <:m· those which explicitly provide support for a maintenance

process. The support provided hy t.he environments surveyed for the phases of the geiwra.lised

111aintemwce model is dis<.IJSs<'d lwlo11· II!Jder the rt->spenive he<-tdings.

4.3.2.1 Verification of need for maintenance

None of the Cll\·irollllJ('llls sJJr\'<'.\<'d pro\·iclcd i-111_\' explicit support for tl1is phds<· of the main-

tendnce model. h11t t.hos<-' <'ll\·irolJlll<'JJh II'!Jic!J support dr:it<-d)i-!S<' C[llni<·s otfer the potentia.! for

verifying the need for nJaintenaJJce. sine<-· the maintenance performed on a software system

can be stored in d cl<-ll<-ibase.

4.3.2.2 Understanding

There a.re t1vo prerequisites for program unclersta.ncling: tools t.o aid in information-capture.

and support. for abstract io11. vif'ws. and the creation of information structures. The orga.nisa.-

tion of information is 1·ital t.o t.lw procf'ss of llllclerst.ancling. sinu· it per111its the orgrwisalion

of information int.o kno11·ledg<'. For example. source code fragJlWJJts and their associated

documentation need t.o be juxtaposed. for f'asier und~rsta.uding, and a suitable information

structure would ma.ke this possible.

[Q:)

Tools to aid in infoemation-capture

The analvsis of the generic tool cbss<es and functions f.:)r information capture n.nd process!llg

IS undertaken Ill chapter severL Here the author rs simply concemed with the presence of a

toolset Ill an envirortntent wlticlt could lw used to aid information-capture.

Non-hypertext environments

Aspect and EclipsP i-lrf' opt-'ll ett,·ironnwnts. built 'on top of tfw host operating system, so

they are able t.o usc tlw tools ol" tlw ltust npr·rating systent dllll cau a.lso incorporate third-

party tools. !\l<ll'V<'I is iiiJI<· t.u <1St' tlw tools uf tlte ltoc;t op<T<tl ittg "'·"'<'Ill. bttl doPs not ctinl to

incorporate t.hircl-party tools. \·licroscope and the L'niversity of .-\rizona's environment have

their own static <wei d\·tl<tlllic <:wa.lvsis tools. Genesis has as its matn tool the information

abstractor. whicl1 t-•:-:t ri-lct.s rt:·lat.iottdl information <unong tlw soft.\\"a.re entities of programs.

The GSA's ell\ironnwrtt h<ls <t cuttl]Ht'lt<'ll:'i\<' r<-utg(' of static attd dyJIC\.Iltic a.ua.lvsis tools for

program analysis.

Hypertext environments

Hyperte:-:1 environt!Will.s have addressed the creation and bro\\·sing of information structures,

but these <'ll\·irotllll<'Ill-; ltrt\<' i-1 \·t·n· litnitcd toolset- tllOst of tlw illfortllnliotl comE's from a

cross-rderencer: ttu support is uiTtT<'<I l"ur tl_,·llilllli<· dlldl\·sis tuol::.. nr for n.·rsJorung.

106

4.3.2.3 Support for abstraction, vtews, and the creation of information struc­

tures

This is aided by the incorporation of a query facility, which can establish relationships be­

tvveen objects. The orgrwisallon of captured information a vital part of the conversion of

information into knowledge. and an information structure is a pre-requisite to this organisa­

tion.

Non-hypertext environments

Aspect and Eclipse han~ object llli1t1agenwnt. systems. which support. abstraction, views and

queries. :\licroscopc prO\ ides a filtering rnechanism to support abstraction. ami its know!-

environnwril pru,·idt·s 11u JJJt'JJt iutt uf fdcilit.ies for ohtaitting diff.t-•rt•ttt 1 it·ws of suftware. The

GSA's en,·irolltllf'nt prcAidcs 110 :,;upport l'or tlw creation of information structures. or the

filtering of the output frotn the tools. using anything other tlrart is possessed by the tools

themselves: no provision is made ro support abst.n1ctiot1 or views. and no query mechanism

is provided.

Marvel pro1·idcs ii qtwr\ filcility ilttd Illdkt•s possible t.lw strrrctttri11g of irrfonuation through

its process model. and its O!VIS. \lan·el"s 0\IS is obj(~ct-orient.ecl and the ({cfivE object base

defines the object classes c-1nd tlw r(~lationship betwe(~ll objects.

Genesis is rule-hasl'd c-ntd pro1·ides tlw Illt'<-tns for defirtittg c-1 soft.wan~ a softwart> development

methodolog_y, i.e. <1 proccss Jnodel. which rna.kes possible the structuring of information.

Hypertext environments

Dynamic Design clllo\\"S quPries can be made based on cross-reference information. 1\MS

107

mf'nt.ions 110 support for que1·ws.

4.3.3 Modification

l\Ioclification of software embraces changes to the source code and the documentation of the

system . .-\11 the <'n'·irOliiiWrtls s11ru·\·ed provided support for the modification of the source

code, through the use of a11 editor. c111d i-l <"Oillpiler. and those P11vironments which were not

language-specific \\Tre open dlld su < uuld llldke use of the appropri<-tt.c syntax-directed editor.

l\Iodificat.ioit of the docurnentatio11. e.g. requirements, specification. and design documents.

could be achieved t l1ruuglt ill<' liS<' <if dll l'll\ iroiJIIJelll ·s 0\IS. Tlw 0\lS is 1wcessary to select

those docunwnts \\·hicl1 need to lw clt<-illl!:C'd. <-11111 to specit\- CHI_\" IW\\" relationships which exist

between them aftPr the lliodili<"<llion h<:\S been made t.o the soft\\·i-lre. Those environments

\\"hich ltci\"C acc<·ss to a.11 lll!derlying operating s_vstem. e.g. ("nix. which possesses tools

for version a.ncl configurat.ion management. e.g. lVIAKE. RCS. can support this aspect of

ma.i ntena.nce.

4.3.4 Revalidation

Only those environnwnts whiclt <'\plicit I\· support t.lw n1ai11Lenance process. provide support

for this phase of maint.ena11ce.

108

The main activity during the r<c'\·aliclation phase of maintenance IS regression testing which

makes use of a suit.e of lest cases . .-\11 0\lS helps t.o maintain this suite of test cases which

was assembled during the de,·elopment. of the software.

4.4 Summary

The role of a soft,,·arc eugineeri11g euvironment in achieving gains in productivity, through

the provision of atitOiliill<'d :-;tlpporl fort he ll1aintPnance process. has been briefly described.

The features possessed h1· tlw <'ll\"li"OllllWllls sun·t-'yed arc Sllllllll<lrisPd iu Table -!.1. The

literature :-;mvey r<-'H'<lierl tl1a1 so111<' solt\\·;.m' <'llgiiwering environrne11t.s pro,·icle support for

a particulnr facet. of t.lw lll<tinteil<lllCP process. for example. program understanding or con­

figuration management. but. none oFfer comprehensive support for the complete maintenance

process. The en vi mnillCIIts surveyed have no common purpose as regards their aims and

objectives. <wd oiily tlw prot.ntyp<' r'll\·ir·ollllll'lll \lf til<' l.lli~"<'rsit ,. of Colorado . .Vlarvel. Gen-

esis, and Eclipse have an underlying process model. lu addition. some environments are

langua.ge-sp<xific a11d liit\·e 110 ltllderlyiitg process model.

Those software englll<'eriilg en,·irollilWllts which claim to offer support for the complete

soft.ware life-n·ci<' u11h· ull"<'r Jlllrliul s11pport for tlw llldillt<'lldlln' pitaS<' uf the software life-

cycle, that is. they offer support for t.he cnlwnNIIlf n.l of software, which involves an iteration

109

Summary of Environments Surveyed

Name Type Architecture Interface Process Prototyping
Model Support

Microscope Ltttgttag<'-C<'Itlrcd LaH·n·d \Y ll'vlPS \u \'es

AS I" L<wgttnge-C<'Illlnl Lau·rc·d \-Vl\IPS :\o '{es

Cli i\·let.l10d- based ·) •) Yes Yes
Genesis Language-cell Lrcd Layered WIMPS No Yes
GSA La.ngu age- ce11 t red Lave red 'vVIJVIPS No Yes
rviarvel fvlethod- based ? 'vVIMPS Yes Yes
Aspect [\t[ethod- based Lave red WEdPS Yes Yes
Eclipse i\·lethod- based La.vered 'vVEviPS 'r'es Yes
K[lv1S i\let.hocl- based Lave red WIMPS No Yes
Dynamic !VI0t hod- basPd Layered 'vVIMPS No Yes
Design

Key

·> no information

ASU Arizona State University
C'(T Colorado University at Boulder

T<-liiiP 1.1: Stllllllt<U'\' of Environments" Features

110

of the overall softw;-tre life-cycle. Other ell\·ironments offer support for the correction of bugs

which occur during the dcoflo;)/nenl of software. An exarnple of such an environment is

the IPSE. \Vhile it is apparer1t. that an IPSE can offer support for the m.rwageri!ll aspects

of rnaintenance. current IPSEs offer little in the way of tech.nicol support for maintenance:

1n particular the:.· offers no support for the maintenance programmer. when he is faced

with the task of achieving the pre-requisite understanding of poorly-structured and poorly­

documented ·alien· code. lacking the high-level design decisions made during the inception

of the soft.wi-l.rP project. Tlw ·niaintendllCf'. for which IPSEs prm·icle support is not true-.·

maintenance. sir1n• it is ('itrried Olll prior to release of t.he softl\'dl'r-•: r1rainteuance is defined

[57] as a post releast:> <-ict.ivil\. IPSLs do rtot address the problem of extracting information

from the documenti-ltion of d sol't.ware :;ystern. e.g. the source code. prior to its collation and

deposition in tlw di-ltcihds('.

The object m;-wagenw11t systern of i-ill IPSE does. howevPr. offer powerful support for the

extraction of information from a datilbase concerning the source code of a program under

investigation, providing a query fa.cilitv which call pro1·ide different views of software. The

facility to manage <Urcl lll<lllip1rlate inl'omwtion, providing nurltipl(' levels of abstraction and

difFerent views of the sol'twc-He. is more important than the toolset possessed by that envi-

ronment.. since ·operl· <'11\·irorlllWIIt.s can incorporate third-party tools suitable for software

maintenance.

Most non-IPSE en,·irollllH'IIls ordy offer inco111pltlt support. l'or a particular facet of the

maintenance process, !'or ('X<-llllple, support may be offered for the extraction of information

from the source code. but t.lwse environments have not solved the problem of the extraction of

lll

the ill-line docurnt' nl1Jiion lird.;ecl 11·it l1 t IJ<' Sl'<"l io11 ol" sol!!'<"<-' code under investigation. This is

important. since alterations to the original source code ot"ten mean th<lt the juxtaposition of

a segment of code and its associated in-line documentation is not preserved. Attempts to link

source code and associat<·'d document.;~tion have been made by Ga.rg ['12], using a. hypertext

environment: the primary t"unction ol" Ca.rg's hypertext environment is the documentation

of the software process.

It is clear from this I i tera.t u re survey that there is a need for an integrated software engineer­

ing environment to support the ma.inter1ance of software. starting from the change request

and culmi11at.ing \\·it !1 tlw 11!'\1. releiise <ll" t lw soft war('.

112

Chapter 5

The information requirements of a

maintenance organisation

5.1 Introduction

The purpose oft !tis clt<lpt(·r is to indicat t' specifically wlwrP tlw ISfviSE ca.u be of help to a

hypothetical genf'ralist-•d lll<lintt'll<lllU' organisation. using tlte lltailltellattce model derived in

an earlier chapter. The keeping of a log of t.hf' nct.ivit.ies of a maintenance organisation du·ring

a maintenance assignment provides the means for the archival of information concerning the

assignment.. The keeping of a log of all the maintenance assignments cnrried out on a software

histoT!/ (analogous to a ·medical history').

5.2 The role of the Maintenance Model

5.2.1 The structure of the Maintenance Organisation.

As point.Pd out by Fustt•r [-l!l] ct lllOdel of the lllCJint.ellauce orga11isat io11 rders to ro/u, which

are performed by people attcl as such is " Wit·'flil abstraction. since it makes it possible to

apply the model to teams of disparate sizes: since no assumptions are made about mappmg

of duties to actual people. The maintenance organisation may comist of a team, in the case

of a large maintt'llclttce task. or tnay o11ly lw otw persott. i11 the cast-' of a small maintenance

task: in this latter c;-1se t l1is one pt'I'SOII must pPrfonn the fltllct io11s of each of the different

team members since the maintenance modPI is tnrlrprndenl of the size of the maintenance

task.

The .-;t.rudnn of <-1 lll<-lillli'lli-J.lln' org<:wisatioll 1s desiguecl Lo fulfil it.s role. The strategy

adopted for dealillg wiLI1 users' requests for progratu tllainLetlatln' 1s ultiltlately based on

the model of the maintenance process derived 111 chapter :2: t.he basi:; for the strategy ts

the adoption of a hierarchical structure, shown belmv m Figure .).!. In deciding what the

114

Change Control
Board

\·laiutenance
TP<llll

&

L0vels of
0 rgan isa.tion

Hiera.rrh.v

Front Desk
TP<I.lll

Figttr<'· :).l: Struct.un· or Maintenance Organisation

information requin·nw11Ls of e~ 111<-tillt<'n<-lllCt' organisaticm are. it is inforrnatin, to consider the

role of the m<-lint.enann' org:anic;;1tin11 in determining a mechanism for making a chang!" t,o

operational software. The following is intended to serve as an illustration of the separate

contributions to t.his mechanism by the component parts of such an organisation. when

users perceive the need for n1aint.enance on software. The information requirements of the

component parts of the maintenance organisation differ according to the context in which

thev fuuct.iou. i.e. t.lw pllaSt' of 11Jai11tenance currently being uudertaken. ln an earlier

chapter a maintenance model was dt-·rivecl \vhich identified four phases:

l. Verifying tlw llt't'd for tll<lilllt'JidiHt'

:2. {.. nclerst<tncl i 11g the progr<-llll

:3. I\'Iodifying the soft\\'are. 1.e. the program and its associated documentation

4. TPsting thl' lliOdifit·d progr<~lll

Before a strategy can lw cle\ ised for tlw storage of captured in fonnatio11. the type of informa­

tion that the environment will process needs to be elucidated. In the following sections the

information requin'JIJPII!s for P<lch tJhrtsr of rna.intenance arP amplified. to aid in this process.

1!6

5.2.2 Verifying the need for maintenance

As mentioned earlier onf' of the main aims of the ISl'vlSE is to increase the productivity of

the maintenance personrwl: a maintainer will be e.ffechvely more proclticti,·e if he clews not

have to perform nnneet.'<sat·y work on software whose shortcomings are well-known and for

which solutions have a.lrea.dy been found. Existing environments which provide support for

the maintenance process do not attempt to deal with verifying the need for maintenance.

1Vla.int.enance is <'SSf'JJ1 iall\· a IIS<'r-clriv<'JJ <tcti,·it.y. ap<trt froiii pr<'H'II1.iu· Iliiiilltemwu·. \\·ltic!I

is initiated by tlw JllainteJtdtln' org<tnis;tJiott itself: becaus<· of this. requ<'.'sts for ma.iuteuauce

from users must. lw subinittt·d i11 a fom1 th<lt facilit;tt.cs a quick interpretation of the users'

wishes. Any a.mbiguit.\· in this respect will mean time-consuming delavs in clarifying with

the user exactly ,,·hal is required. and will <1dversely affect t lw producti\·it\· of the mainte-

operatiOJld.J sufl.WdT<' IS i-1 <Tll<"iitJ rdcd or t!Je:-• working or tJw lllitiJtl.<'llcl.li\T organisation.

The request for ma.intenanct-> should ideally be submitted in o form that can serve as an

agenda for cliscussiou by the maintenance organisation. and should be submitted on a. form

whose desigu is tlw r<'sportsihility of tlw llli-lilltena.nc<' t.e<-tlll. Tlris forui<-discllioJI of tlw cltaug<'

request will m<-1kc it t'<l:,;in to d<·,·ise a strateg_v for t.he tnaillt('lli-lllet-' assigtmwnt includiug

the resources required (llH'll. tools. facilities) and a schedule for its cotnpletion. The change

request should classify the t.ype of maintenance required a.ncl the information appropriate to

Pach type. as desnihcd below.

117

.-\pparent deficiencies apparent i11 t.he worki11g of tlw software which make the modifi-

cation IWCPssary. including. if !"lOs~ible. a fault rPport det;-1iling tlw nFllfunction of the

software. togf'tlwr with hard-copy showing the inputs and the faulty output from the

software.

·) .-\da.pLive niaiiiLen<ulce

Details of the type of ch;-wge i11 tlte data or processing environment.

:3. Perfect.ive llldillll:'lldiH't'

Description of t.he deficienc\· in the performance, quality, standards. or maintainability

of the soft11·art'.

c!. Enha.ncelllenl

\Vhen au enh<1ncenw11t. 1s required to software. then the following is required:

(a) Requirements analysis

(b) 1-'uncti\!llal sp<'ci lied! iu11

(c) Task sclwduli11g

(cl) Design <Ulalysis

(e) Design rc\'le\\'

(f) Revie\\' of proposf'd code cl1angE's

II~

5.2.2.1 Information requirements for the front-desk

The information requirements are determined by the role of the front-desk personnel. who

function as the inlrrfar:f bet.\VP<c'll tlw users and the maintenance organisation.

One of the obvious benefits of ;-1. hier<lrchical t_vpe of structure is the ability of one level in

the hierarchv to act as a filter for the level above. This is a useful strategy with organi-

sations which havf' ciP<dings with c11stomers (users). especially when verifying the need for

tn<ti n ten ;-u 1 c<'.

The idea of a ·froJlt-desk· in <1 Jllaint.eJJ<-lJI<"<' (JJ"p;dllisat io11 \\·hic!J acts as a filter for maintenance

requests has been suggested by several authors. e.g. [::n. 40]. This ·front-desk' is responsible

for the first action taken ou receipt of a request. for maintenance. <1.nd so the information

needs of tlte ·froJJt-d<·sk' pcrsoJJJJ('I differ· llJCI.rknlly fro11l t!Jdt of tlw r<·st uf tlw orgauisa.Liu11.

As well as ltavi11g <lJJS\\Trs to kJJo\\·11 prohleJns conn·rrliJlg a soft ware system. the ·front-desk·

personnel need to l1au" access to a synopsis of the ·mainten<lnce-history' of the software,

including all knowJJ \·ersions. varia.tlts and intpencling releases. (:\ versiou is defined [57] as

the lat.est inst<-lJJt.iat.ioJJ of d soft W<t.r<·' svst.<'lll wl1ich has superseded all otlwr iust.ant.iations. a

variant is defined as <-Ill illsl.;-wti;-tlioJl of a soft.warf' svstPm which t.Pmpora.IIv co-exists with

other inst.a.ntiatiollS of a software systclll.)

Users can then be referred by ·front-desk' personnel to solutions for problems, or informed

of new n··leases. that I1<-1V<' all<·via.ted or solved such problems. lu the situation where a

llY

maintenance orgc\llis<-~1 iu11 1s etJitl.roi!Lt·d ,,·itlt ill! uld sol"l\\'itn· sysLc11t. which has suffered

clegradatioll. lacking rt•liahle do• Ullltc'lltation and a ·mailll.el!d.I!Ctj-ltisl.on ·. tlw front desk

is unable to function in thi::; ,,·ay since the ·maintenance-history' commences after reverse

engineering and n,·-engineering have been performed on it. The software system then begins

a new lease of life witlt a ·clean sheet·. Those requests that cannot be filtered out are referred

to the next level in the hierarch.Y of the maintenance organisation. User manuals concerning

software which is still lwi11g st1pportecl \\'Ollld e11ab\P t.lw fro111 c!Psk l.ea111 to dPcide whether

the user's percl-~ptioll of <1 problelll is i11 fa.ct reaL or is a result of misinterpreting how the

softwarP will behave t111rler a g1ven .-;et of conditions.

Mellor's idea [8:~] of 11sr rs lwi1tg able t(J iltlt'tT•J_l!;<lt.r' e1 dat<1base containing information con-

cerning versions all(\ ,.<nidttls of cl sol.i.ware systt~m would t.lJr:cllotly further euhauce the pro-

cluctivity of t.lw tn<li!ltf'lli-lttce organisation as i-1 whole. Typical of the information required

by ·front-desk· personnel are answers to questions such as:

l. Has this bug lwe11 cotT<'ct.t·d 011 a prt'\·iulls uccetsiull .,

:2. ArP there prohlt•ttt rPports COIICertllllg a particular system already 011 file '?

:3. Is there a suhseqtw11t \Trsion of the software m a new release ?

-l. \V hat is c ll r W n t h lw i II,!!; Ill <1 i II 1<1 i I wcl . J

.5. If the fault cau not be easily rf'ctifiecl. e.g. wheu the specification is correct and matches

the code h11t t lw rPquirerne11t.s are incorrect. then an ·avoidance' action for software with

a usability problt'm should be investigated, to prevent the manifestation of the bug.

1:20

Requests for rna.intena!lce must be assigned a priority by the maintenance orga.nisation, which

implies that a. queueing s\·stem is necessary. If the request concerns a problem which has a

trivial effect on the working of the software and is difficult to fix, it is assigued a low priority

and vice-versa. Having submitted a. request for maintenance the user naturally wishes to

monitor the progress of his request, in view of this the information conceruiug the priority

assigned to a maintenance request. including the results of prelimii1a.ry investigations. needs

to be kept available so tit;-lt fnm1 desk personnel catt gi\'(' 11/Uiningfu./ answers iu response

to queries frotu users. The tttaittlt'It<tiiC<' urg<lllisatiuiJ IJJUsL lw a.ble Lu cltauge the priority of

jobs in the queue and h;lve the Illt'atts of updating the queue.

5.2.3 Understanding the program

Understanding source code was discussed iu chapter two in thf' conl.t"\1 of tlw maintenance

modeL 'T'his undersLtndi11g is 011 l\\·o lcn·ls: the lltaittl<tincr llttisl tlllderst.and what the

program ts doiitg cts it produces 1 II<' itt(uri'('(1 ottl p111. tl1is tlld,\" bt· possible from the fault

report as documented 111 tlw change request. lf this inforrna.tion is not available then the

maintainer must at tempt to duplicate the conditions which gave rise to the apparent abnor­

mal behaviour. Tlw ma.i11tailler ntust also understattd ho\\' the program should work when

producing the cotTt'cl o1il p111.

To maintain software. it Is necessary to k11ow what it does. how it does it, and how it

121

can be safely modified. The backbone of maintenance is program-understanding; much of

the inforrnatiou collected ic; to be used to achieve this primary goal but. the u .. c.;,, uf this

understanding to modify the software is the secondary goal. Understanding is the key to

knowledge. and the acquisition of knO\vleclge is aided by:

1. A storage schema. that. allows fast. retrieval of the captured information.

2. Organisation <wd l1l<llli:lgcJlleut of that illl'orlllatiou. so that it mav be processed into

Although progranl-ullClerstanding can be achieved from a study of the source code alone, in

the first instance. the f'Il\·irol!Illt'nt Jllllst support. the input of -"11-jJfJicnl.tllilli'.IJ information from

the maintainer which may have bee-'ll gai1wd Jll<llllJallv or c!Pci\Jcecl from other information.

In the context oft l1e tinlf' t <~.kCJI to colllplete a maintenance assiglltliCIII.. prugra.m-understaudiug

is the rate-determining st.ep. since the understanding of a software systern occupies most of

the time spent 011 d lll<lintc'Jl<IIln' a.ssigttilWI\1 [104]. The tinw taken to gaitt this understand­

ing is clirf'ctly n'I;'Jled to t lw <Jil<dit-'· of tlw rloclli\I('JII<ll i()l\. lwit1g cticlecl by good quality

documentation and viu'-\·f'rsa.

The strategy for de,·eloping an understanding of alien code rests with the maintenance team

and cannot be imposed bv the environment. instead the environment must offer support for

the execution of tlti:< str<llcgy. Tlw 1tltitlidk goal of progratti umlcrstanding is three-fold:

l. To establish a high-level understanding of the program. from its structure

122

2. To discover how edch module of the program plays its part Ill achieving the objectives

of the program

3. To obtain a detailed underst.anclittg of t.he program, within a l!lodule. aL tile sLatemeut

leveL i.e. a ·local· understanding of the code which is of immediate coucern to the

proposed modification.

A query facility ufl"<Ts great lltility Sill<"(' it ulr<'rs ill<' lll<'itll:-- !"or tlw llli:l.iutaiuer to build

information structurPs tl1us converting data into information: inforrna.tion is something that

enables us to i11crease our knowledge: this is an iterative cycle. The kind of tool which

can act as a query facilit.y is dependent upon the conceptual schema chosen for the data

structure which is deposited in the dnl ab<1se. The acquisition of information for the purpose

of understanding 'iOfl\\'clre l"ollows ;-1 <·ycl<· d.lliilogol!s to tlw soft\\'<ln~ life-cycle. This provides

the opportunity for refitWIIWIIt of tlw ll!odel of the understa.nditlg of the behaviour of the

program: iteratioti of this cycle wit.h generation of successive hypotheses and their subsequent

testing offers t.IH· surest route to Ut!derstauding. The stages iu tbis iuformatiou-acquisition

1. \Vba.t. 1weds to lw understood ·> (Requirements)

2. 'vVha.t infonn<1.t.ion 1s needed? (Specifications)

:3. Design an information ;;t l"ltct ur<' to hold t.he inform<ll ion (D<'sip,ti)

4. Issue high-level instructions to obtain the information (Coding)

-5. Does the information structure aiel in understanding ? (Testing)

core of t.he environme11L i.e. tl1e cl;cllnh<-tse and t.lw toolset. can bt-? fully-integrated. tl1f'

environment will not be able to function as effectively as it otherwise could. Integration will

not be addressed in detail in this thesis. There a.re software tools available from vendors

which can provide the maintainer with valuable information about a piece of software. these

are discussed in the next <h<tptf'r.

The maintainer must be able to 11/II.JUIIJf diHl i11t.erpret. this information in such a way as to

improve his unclersta11ding; of the progr;.un: this unclerst.anding of tl1f' softwarP is determined

b_y the qu.a.lity of 1 he inforn1ation available to the ma.iutaiuer. De,·doping an understauding

of softwdre is dll itc'l"dt i\-c process: i11 tlw dolllai11 of prugraltl-UIIclerst.alldiug a hypothesis

IS generat.ed nllcl t !Ji:-; llltJst IH' tested: wl~t'JJ tlw boolean <"onclit io11 (predicted behaviour =

actual behaviour) evaluates as true. the cycle is t.ermi11at.ecl. \\"hen testing a h_ypothesis, for

a given input to the program the maintenance progranuner lllusl be able to predict:

l. modules. routines invoked

:3. the output. of the program

These predictions must be confirmed either through the use of an execution-flow-trace tool

and a debugger. or ll\ rtllllling tl1e progran1 to verify that it lwltaves as predicted. lf the cycle

is not termi11ated. t.lw hypothesis must be corrected and the process described immediately

above must be repeated. The environment must support this method of working, i.e. the

environment d;-lt;-thcls<' JJJII:-;1 !w ;1hle t.o :-;torf' successivP versions of unclerstandiug leading to

a 'complete' understanding of the soft.wa.re. The environment must enable the maintainer

to find answers to his cpwst iolls <utd tnust facilitate the rapid testing of hypotheses siuce

·feedback· is the kcv to learnit1g. (i.<'. JIICreastug understandiug). ami ·feedba.ck-iuhibition·

hinders the learning process. Typica.l information gathered and stored to facilitate program

understanding includes:

l. High-level docunH:'!llat ion cont.aittittg relevant information pertaining to the develop-

lll.enl of tlw .'>oft \I'd.!'<' II'!Jiclt n·qttirec; IJJ<tilll.t'tld.JJU'. J.e. l'<:'qutr<:'lllt'Jits. specifications.

high-len·! d<·sigtJ-decisintts d!ld. il' <JV<tilable. the underlying philosophical goals. Oheu

high-level information ca11 be very important. for the following reasons.

(a.) The urigi11dl rc·quir<'IIWI11s docutllt'Jll. wcHtlcl lwlp tu dcJcide whether the users

expennt ioJJS or t IJ(' .~oft 1\'(-)J'(' ()J'(' \'('()list ic. J.('. IS t\J('J"(' () need ror maintP!l()fl('(·' ·)

(b) The tint<-' rec1t1ired to achieve the uecessary understanding of the software can be

considen1bly shortened.

(c) High-level information cnncernmg the original development of the software can

be H'n usdttl 11·lw11 dl t.<'Jllpt it1g 1() gattJ <lit tJIJ<lc·rsl<tJJdillg of t.lw program at the

statement lvvel.

(d) High-level functional specifications can help to decide whether the code is ·correct'.

2. A call-graph showing the current program structure with respect to the calling relation

lwt W<'f'JI rottl itt<'s. dlicl tiJ(' ittlc'ticlc·d st rudur(' of 1 h<' dJJH'JJcl<'d progratll.

:3. The source code itself, both the structured and unstructured versions, if a re-structuring

12.5

tool lws op<-T<ltcd on ·JJIOJJOiithic· code .

.:1. 'The results of itJJa.l_,·sis uf d dat.abase object (cross-referene<-' listiJJgs. etc.), or objects

produced by t.ransformilt.iotJ tools. e.g. the recovery of the clesigu from a. re-engineering

tool. as well as a high-level description of what each module does .

.). In-line documentation regarding the code, containing information concernmg the de­

stgn of t.lte soft ll'i1J'i' ..;t.J'IlCt lli'P. ff t!Jis is in (I SPpMate file 1 hen an editor can lwlp with

finding informdt.iotJ- IJO\It'l<"r. ·iJJ-IilJ(-: cotnnwnts E'tllbeddt'd iu the code may uot be so

easy to find - therE' is d ueecl for a tool that can help with this.

6. There nre four ma1n kinds of lower-level documentation.

(a) { iser clonJtllt'lJt <11 iotJ - he!\\' to use the program

(b) OpentliotJs docJillH-'lltalioJJ- used to direct tlw <·'xecutiott of the program

(c) Program docunJCtJLi1t.ion- hm1· the program 11·orb

(d) D<1ta docunwnt.;-Jtion- cl;-11.<1 model and dat.a dictionary

Since variabl<'s <UT IJscd 111 booleans. which are used to clet.ennine the fiow of control

withitt Llw progr<ltll. it ttlust. lw pussihk t.o specify thdt links should be made betweeu

information about data Aow and control flow.

1. Tools available to t.he ruaint.enance programmer and their functions; this should include

a prectsc Sllllllll<J.n· cont.aitting:

(a) wltich \'('J'SiOll oJ' t Jw tool IS bei11g used

(b) how the tool ts i 11 vokecl

12()

(c) descriptio11 (JI' <l tool"s fut!ct.ion- including switches \\·hich can function as filters.

so that abstract.iot!S c;w be obtained

(d) limitations of the tool and any known ·bugs·

(e) which tools can be used t.ogether and how they can be used together (as 111 !_'nix)

The provision of the means of organising information gained about a system is vital because,

of a plan in t.he environme11t ·s database. PliClbl<'s t.h<' lllainta.iner to build the most suitable

information stntcltlrP to facili!iltP t.his understanding. ln essence the information is processed

into kno\\'leclge by maki11g it part. of a11 informatiotl structure. <:l.llcl is required regardless of

the type of maintenance being carried out ..

5.2.4 Modification of Software

The ma.int.t·n<wce of suft \\'d.l't'. inl'iudiny donttll<-'tlt.<~.t io11. is oft<'ll ('dtTi<·d out ullCler great. t.inre

constraints. dlld oft<'ll t lwr<· is lit tit· t i11w lel't <~ft.er a lliOdificatioll h<ts bee11 made to source

code, because of pressure on tlw mairlt.etl<lllCe organisation t.o tackle other assignments. This

often means that there is a failure to redocurnent the sofhvare fully and accurately, as a

result of this there is a 'knock-on' effect, which has profound implications for the future

maintenance of tlw soft\\'are: the mechanism for this is now briefiv described.

If redocumenta.tion has been dolle badl.v th<-'ll whe11 tlw software has t.o be maintained again

l ·r ~I

the docUIIJCI!Lc-lliull 11i\l \)(' s<'<'ll <t:-. UIJr<'ii<ilJI<' ;-wd the whole proces:; uf g<:u!llllg at! uuder-

standing of thf' soft II"<Jt'(' s\·sl.<'lll fuuu lllf c;ouru cod.t lii·ts t.o IH' t'('IH'al<·d. Tlw lti!tderiug uf

program-understanding in this 11·ay causes t.he maintenance team to be placed under time

pressure, which again means that it is more likely that redocumentation will not be clone as

well as it should. since it is usually done after the modifications to the source code. The cycle

is completed and is destined to be repeated. establishing a ·vicious circle': to break out of

this cycle require·:-. t I !ill n·dor·lt!IH'IJI <~I io11 is nol a 1wglect.ed acl i,·it\·. b1tl asSUIIlt'S paralllOLillt

importance before and clmit1g tlw llludific<~lioiJ <-tcti,·it.y. dS i1 does during mainteuauce of.

e.g. safet.v critical sy:;t.ems. This clesirahle state of affairs is more likely to come to pass if

the procluct.i,·it\· of t.l1e lll<lilllctldll<T team can be imprO\·ed. siuu~ ltlore ti111e will theu be

available t.o cat-r\· IJJII rc·doctltll<'tltiltioll. Om· of the ai111s of tlw work in this cha.ptPr ts to

sugg<"st. toob <111<1 IIH'IIiuds ,,Jticlt ll·i\lll<'lp tu achi<'\T t.his itllpruH'Ill<'IJI.

It should be pointed out that good quality maintenance of documentation 1s more likely

to be achieved b,· ITtakiltg it easy to do. rather than by the use of coercion, or merely by

providing tinw for tlti;; clcti,·it\·. C:ood qti<ility n!aintcna!IU' of docull)('lttiition is likely to

safeguard tlif' gait! i11 prodwtivit\. <ichieved by usittg software t.ools. <:we! will assist the

efficiency of futuw llliiitttc•ttdiJ<<' ~·!forts. Pl)or qttdlity rc·donlttiC'tlli:ILion will tneau that the

use of tools and metltocls to increase productivity will have been largely· wasted. As part of

the documentation ref-lect.ing the changes made to the program the original source code and

the modified sottiT<' cod(' sltottld lw placC'd ·sid(' by sidr" 11·it l1 <i llldppiltg to show the changPs

in tlte program hi<'r<lrcli\·.

The formalisation of thf? approach to the documentation of the maintenance process, Ill

128

COI1jUIICt.ion \l'ith III<' IJS(' or tools cWd met hods providf's d frctlllf'WOrk. wit.hin which the

maintenance activities. <wei the inrornvttion associated with them are recorded; the type of

recording is cliscu::;sed iti t.hc next. sect.iotJ. Documentc1tion of maintetta.nce is tuore likely to

be of good quality by adopting <l rigorous approach. and by carrying it out as m.azntenance

is being pe1jorm.cd. so thctt it is a by-product of the maintenance activitv. Information

requirements for program modification include:

l. The language and verstotl 111 which the source code is written. ts needed to ensure a

clean col1lpile 11·hei1 cltctltg;r·s ill't' tlti-ldt• to tlw sotti'C<' codt•.

·J The source· code.

:3. The new requin'tlH'tils a1HI <lssociat.ed functional spt-·cifice~tiolts together with the pro-

gram desigtt.

-L The place i11 the prup;r<llll 11'111'1'!' t.lw clt<l.llge(s) are Lu IJe III<tde IIIUsl lw decided. usiug.

e.g. t.lw t.cchttiques or inspection and walkthrough .

. 5. The results of impact ana.lysis must show that any changes made to the software are

free from adverse sidc·-eff'ects. To <lid itt this respect a libr<:lry of potential causes of

side-effects ca11 be st.ored in t.l w cid 1 <dMsc· [-ll].

129

5.2.5 Revalidation

For all types of maintPnance. before t.hc modification can be implemented by the maintenance

programmer, the c!Jange a.pprm·<:tl board lllust have indicated its a.pprova.l of the proposed

change(s) and information concerned with quality assurance must be to hand. such as con­

tinuity of prograrnming st._yle. documentation update and audit trails.

The technique usPcl to f'nsur(' tllilt no advE'rse changes havE' bePn rna.cle to software during

maintena.11ce is kno\VIl ils rE'gressioJJ t.est.ing.

5.2.5.1 Regression Testing

IEEE [51] defim· r<'gr<'ssillll !<'still!..'. ds:

·Selective retesting to det.ect faults introduced during !llodifica.tion of a system or sy·stem

component. to verify thilt modific<llions havE' not caused unintended adverse effects. or to

verify that a modified S\'Sklll or svstem component still meets its specified requirements.'

Included undPr the heading of regressio11 testing arE':

l. System testing

The tests and their descriptions together with the corresponding expected results

shordd be <'rltcred int.o t.h<' IS:\ISE database. The Lt>st.s should lw carried out iu cou-

juiJCtion wit.l1 t.hC' us<'rs of tlw progr<tlll. allCI their C'Oilllll<'llt.s coltcenuug the cha.uges

should be arrl1ived 111 t.he IS!\ISL database. along with information concerning the

130

change(s) to the user manual. This IS part of the reclocumentation process.

2. tfnit testing

Each rnoclihed llllit .shollld first be tested m isolation.

:3. Integration testing

Any enhancements that have been made to the software should be incorporated usmg

the appropriatP intPgration strat.f'g.v. P.g. 'top-down' or ·bottom-up· and the results

.associa.ted wit l1 each phd.se of thr· strategy stored 111 the ISMSE database.

Test cases. either those incl11d<~d <ts part of the doculrlt'l!latioll whc11 the software was devel-

oped or those produced by the maint.en<tllCP t.eam. (wlwrP alien coclP lacks documentation).

must be run to tc'stablisl1 itS LH dS pussihlt·. the abse11CP uf <-Ill\. umlesirable side-effects. us!llg

appropriate testing st rit tt·•gies.

5.2.5.2 Testing Strategies

There are two typc·s of tr·sti11g strategies:

1. Structural t.Pstilll!,

This uses kno\vledge of the progra111·s construction. e.g. branch testing ensures that a

test-data set executes the outcomes of all branches 111 the s_ystem. lf the source code

is availahl<" t.he11 this st r<1tegy ca11 alwavs be used.

·) Functiottal testittg

This uses the syst.ern 's requirements to derive the test data. If the requirements doc-

umenta.tion associated with the source code is deemed not to be reliable then this

strateg_v can not be used.

Corrective maintenance requires that an error condition be reproduced to confirm the exis-

tence of a. deficiettc\· itt the softll.dl.<'. Tltis is achieved by dt·\·ising att a.pprorria.te test-case.

which must then be added to the t.est-suite to ensure the absence of the error, after the

modifica.tion t.o tlw sotti"CC code. If the maintenance on the s_vstem requires that a change

is made to the rPcptirenwnt.s. i.e. perfective. adaptive. prevent.in" maintenance. theu ne>v

functional tests \\·illlw lleeclecl. Corrective lllorlificat.ions do not change the system's require-

ments and so nu lit'\\' i"ltltct.iottal t.cst.s an· required. TIJ(' t \\'o Jltajor problerns iu regressiOn

testing concer11 test-suit<-' JltdittL<-'JJ<l.JJCe <wd revalidation st.rat<-·gies.

5.2.5.3 Test-suite maintenance.

Corrective or perfective JJJ<littlctt<IIICe 011 source code will probablY cause structural changes,

necessitating new structural l.t'sts to be devised. In addition. existing tests may become

redundant and tna.v need to be eliminated from the test suite. Identification of these re­

dundant. test-cases is problenJat.iud. Regression testing uses a test-suite. which includes

test input data and the result ittg test. outp11t: CIIJT<'Jtl regn·ssion techniques use a functional

strateg_v, i.e. e\·ery system JlHHiirication is accompanied bv a re-run of the test-suite. with a

comparison of thc-> corresponding outputs.

In a file-betsed S\St<'lll. tiJ(' J"('Sidts or('~('llllillg tlte test ('(lS('S. ur tt·'St scripts dre represented

as output files. Any output file whose conte1tt dif[ers from the expected output IS flagged

to see if it represents an error condition. The maintenance test-suite should be based on

that devised during the development process. In addition, those ne1v tests devised dlll·ing

maintenance should he added t.o the test-suite. reflecting the updated syste!1l specifica.Liou

and those test-cases \\'hich have become redundant then eliminated. To achieve this means

that the entire test-suite must lw tc'W'cuted: for structural l.<>sts this involves constructing a

table that associat.es t.est-<<IS<·'s with a progr<un·s st.ruct.ural eiPnwnts. Those test-cases which

execute identical st ruct.urcs dre reducecl t.o o1w illst.<t!IC<': d ·spi11-off' beuefit associated with

this approa.c!J is thdt st.J'IJclun·s ,,-l,ic!J d['(' lJOI t·~ecut.ed hy dill' Lt·.·st-cases are revealed.

An alternative approach [68] is the selective at1alysis of those changes made since the last

analysis: only those stnidural t.ests w!Jich e~ecute the changed structures. or the routines

containing those st.ructures <HP re-ext>cutecl and analysed: this indicates those tests which

were associated with L!Jos(-' scctio11s of cocle siiJce modified. c-wd which are ltv\\' obsolete. An

automatic approach t.o tlw idt'itl.ili<·dt io11 uf obsolete functiondl t.est.s is uuly possible where

a formal specification language has beeiJ used. which permits the anal.vsis of the changes in

the specifica.tion. Tlw usf' of <l fu11ct.ion table has been propos<'d [6.'\]listing all the functions

with the llllJlliwrs uf tlw ftt!JCI iotl<ll test cases that e.'\PC\1!.<' I hen1.

1:3:3

5.2.5.4 Revalidation strategies

Executing an entire t.est-suite after a. modification involves many people. is inefficient and

consumes large amounts of time and computational resources. On the other hand testing

a system by selecting test.-cc1ses intuitively or randomly is unreliablt:·. A strategy for the

revalidation of soft.wdre is requirt-·d to systernatically select. those Lest-cases to re-ruu after a

modification, using cont.rol flow <utcl dataflo,,· information as a. basis for the selection process,

which needs t.o be st.cm-·cl itt t.lw clat.ctbase of the ISl\'ISE.

5.3 Summary

The work in tltis clt<tptt-'1' hds pr<'s<"tttPd <l coherPnt st.rategy for the tltaitagemPnt of informa-

tion. in support of t Itt' Ittctiiitc:'ItiltiU' process. The establishment. of a link betweeu procluc-

the main goal of a. mainteil<titCP organisation. that of an increase in productivity. Keeping

a log of the maint.en;-utce process means t.ha.t. redocument.ation is 110!. clotw on an ·ad hoc'

basis. but is dot!<' con<·tirwttl ly \\·it It t IJ(' ch;-utges t.o t.he codt•. Tlw docu!lwnt.at.iou is therefore

more likely t.o accttrat.ely reflect. t.he changes made to the code. tlwreb.Y making the future

understanding of Lite software easier. safeguarding the gains in productivity achieved by the

partial automation of the maintenance process.

Chapter 6

A high-level design for an ISMSE

6.1 Introduction

The subject of this chapter is the· prodlicl.ioJt of a high-level clesig1t for the ISiviSE, i.e. a

design within whose framework a documentation paradigm. the subject of this thesis, can

be rigorously specified (i11 chapter eight), with a. view to prot.otyping this part of the ISMSE

(in chapter nine). t.o dt'lliOitsLrate the feasibility and utility of this paradigm, as a means of

increasing the producti,·ity of a. maintenance organisation.

l :j;)

6.2 Choosing a Software Development Model for the

ISMSE

In terms of the traditional software life-cycle model, shown below in Figure 6.1, the design

of a software system t·elies on a reqttirements specification of that svstern. Typically, the

Requirements
Analysis

1.

Functional
Specification

2.

3.

Design 1--

Coding r---

4.

Test t--

5.

Maintenance

6.

Figure 6.l: Tilt-· \Vat.erfall \Jude! of the Software Development Life Cycle

time span 111 buildiug a co111plr·x soft \\.ell"<' syste111 suclt as th<' IS\! SF II Jay I)(·' of the order of

several years. Durittg that. Li11w tht· n·quin•tti<'Jtts Jlld_\" dtattgt'. a.ttd tl)(' developlllent life-cycle

model must lw a hit' l.o t <tkc· account of t.his. so must therefore incorporate some prototypiug

capability, in order t.ha.t the users of the system can verify the software system's continued

adherence to their requirelllellt.s.

The traditional waterfall life-cycle model due to Royce [11:3] showu iu Figure 6.1 is a devel-

opment of the st.age11·ise rnodel due to Benington [10], which advocated the development. of

software as a sequence of successive stages. lacking iteration. Royce's waterfall model intro­

duced feedback loops between successive stages, to preclude the expensive revisions needed

if feedback wen·· to ocrur MToss several stages. and made protot.vping part. of the software

life-cycle. opPrat.ing i11 1;-tndein 11·it.h requirements analysis and design.

There followed ma.ll\" other \"i-lri<il io11s nf tlw Wi-llerhllmodel. euuJiwrated bv Boehm [18]. and

elaborated here in order of tlwir chronology .. -\ 1·ariation of Ron:e's model due to Mills [8.5].

adopted a top-dm1·11 sf rll<"l ured "i>Jlroach a1!d produced a \"i-trii-llll of t.lw 1\·at.erfallmodel which

embraced the concept of ·risk-management": each stage of t.he wat~·rfall model including a.

validation and verihcation clctivit.y to cover high-risk elements. re-use considerations and pro-

totyping. The walt:'rfa.ll 11\Udt·l dues uot suppurt versicllliug ;.wd IJiakiug software amenable

to change: Parnas" concept of encapsulat.iotl. through moclularisation a.nd information hiding

[101] did much to rectify this shortcoming. though this approach does Jtot explicitly support

prototvping and reus<·. Dist;-1so [:):)] incorporat.f'd inrrf'rnent.al development into the waterfall

model. Balser [I] prm·ided ;.1 coiJcept ual means of in corporal i ng clut.omat.ic programming.

program tra.nsforlll<lf icm a11d ktlolvlcdgc·-IMs<'d sol"t.wa.n· assist.a11l capabilities iuto the water-

fall model. but this model does nnl offer explicit support for versio11iug. The advent of fourth

generation languages and rapid prot.otyping capabilities gave rise to evolutionary versions of

the waterfall model. e.g. that of !\lcCra.cken [80]. a.nd mixed versions. e.g. that of Giddings

[44]. Lehman mad<' I!S<' of abstract iotl. I Pad i ng to a formal speri ficat. ion. followed by a set of

forma.! deductive reinc<:llirm st.eps [6-t] proceeding through design and into code~. rather than

using a. uniform progressiott. intplicit in the waterfall model. The approach has not been

evaluated with respect to versioning or reuse. The models \\'hich are generally accepted as

being most acceptable for the dcn'lopmf·nt of large soft,,·are systems are the spiral model

clue to Boehm [lS]. and the Software Process 1\la.turity \lode! (SPMM) developed at the

Soft\vare Engineering Institute at Carnegie l\Iellon University in Pittsburgh. L.S.A. These

models are cliscttssPd helm\·.

6.2.1 The Spiral model.

The spiral moclc•l of suftwdre d<'velopttwttt <tttd e!l!taucetm•ttL slwwu iu Figure 6.:.2 due to

Boehm [18] faYottrs <1 t·isk-driu·tt itppronch to the soft\\"i1rf' pro<·ess. r<1tlwr than <1 stricti\·

specifica.tion-clri\·en or protot_vpc·-driv!'!l jH<J<"\'Ss. heittg based 011 tlte strengths of other mod-

els. while at the s<:une tinw tllillitnising their shortcomings: Bodl!ll·s spiral lllodel includes

most of the previous models discussed as special cases. and provides guidance as to which

of these previous llloclels best ht.s a given software situation.

Referring to Figure 6.:.2 t.lw radial ditrwnsiotl reprPsPnt.s the ctmlldative cost in accomplishing

the steps to elate. The a.ttguL·t.r dinw11siott represe11ts t.li<' prugtTss made iu cornpleting each

successive cyc!P of t.lw spiral.

The model holds t !tat c~;u·lt cycle- uf t lte spir<1.l i11volves a propp·sstott til rough tlw sa.tllt'

sequence of steps. for each port iott of t.he prodttct and for each of its levels of elaboration, from

an overall CO!JCept. o[" Oj)<'r<ll icm docunwnt. down to I he coding of each individual program.

6.2.1.1 A typical cycle of the spiral

Each cycle of the spiral begins 11·ith the identification of the objectives of the portion of

the product being elaborated (performance. functionality. ability to accommodate change),

and the alternat.in" Jllt'diiS uf iJliplcJtttc'Jtl.iJtg t.!tis porticm of the product. (desigu .-\. desigu B.

re-use). toget.lwr ll'it.lt I Itt' cottsl r;.tittls i1nposed on the iipplication of tlte alternative (cost.

schedule. interfM<').

An important fe;-1ture of the spiral model is that each cycle is completed by a review involving

the primary people or organisa.tions concerned with the product. This review covers all of

the products de,·eloped dming the pre,·ious cycle. including the plans for the next cycle. a.ud

the resources required to c<t.tT\ t !will Oltl. Tlw 111<1jor object.i,·e of tlw re,·iew is to ensure

that all concerttecl partic~s <tre 1\tutua.lly t·ultttttittc·d l.u tlw ctp[HO<tch to be takeu for the next

phase. Onl.v in this way C<UJ the risk. and ultimately the cost.. of the project. be minimised.

The platts for sti\T<'t'cliJJg p!tdsc·s lllil\' d!so iJJc!Jtck ;-1 pMI!ltult of tlw pruduct iuto iucrements

for successive clevc·lop!ltt"ttl. ur coJ!tpotJt'IJI.s to be de,·elopt•d hy iJf(.li,·idual organisations or

persons. Thus. the n"view and commit.mPIII skp rnay range from a.n individual walkthrough

of the design of a single programmer component, to a major requirements review involving

developer. custom<-:'L user, and maintenance organisations.

Boehm's spiral Jllodel adn)('at.<·s kc•c•ping the spiral as tight as possible. so that if a mistake

1:39

Determine objectives.

and constraints

Hequirements
;wd

Li fe-rycle
plans

D('velopttH'llt
pl<l II

lnt.q?;ratiou

and test.

Plan next phases

Cttmulative Cost

Progress
t.ltrough
steps

Evaluate a.lterna.tin,•.,_

Identi f.\ and resolve risks

Risk Analysis

Risk Analysis

Ana.lvsis

Bisk
.-\ na.l,vsis
-l>rc)to- -

1-: _ _t.V P!_l
Concept.

of
opera.t
-lOll

P rol.ot\· pe :!.

Req 11 i l'f'l 11e11 t.s
\·alida.t.iou

Design validation
and H'ri ficatiuu

: Acceptance
I

linplelnellt 1 test.

-at. ion

Prototype

Commitment

Partition

de~igu ~------r--------

Integration:
and
t.est

next-level

prod II<' I

l'nit Code

test.

Figure 6.:2: The Spiral \lode! of the Software Dt·vcluprnertl Life Cycle

140

does become apparent. during t.he review at the end of the spiral. then not a.s much back-

tracking needs to lw clone. and so the expense is minimised. The spira.l modrl ap:)lies equally

well to development or enhancement effort.

Commonality between the Spiral Model and SPMM

The SPMM franw\vork sl1o.res with the Spiral model tlw goal of aid in!! r he mauagement

of the soft\\'are process. emhracing the conn-·pt of ·risk'. its analysis. and a mechanism for

incorporating software quality objectives into software product development. The main rea-

son for this risk-driven approach is that. 111ista.kes become much more expeu::;i veto rectify at

lower levels. e.g. dming the coding phasP. t.han at higher levels. e.g. during the requirements

phase. h1like the Spired llludelt.llt-' SP\1\1 provides a ·_\ardstic-k' for atJ organisation to assess

the degree of precision witiJ whicl1 it llta11ag!'S it.s software process.

6.2.2 Software Process Maturity Model (SPMM)

Assessments of the capability of a. process iu producing a. high-quality soft\\'are product are

often based ou the Software Process 1\la.turity Model (SPi'vB'l), developed at the Software

Engineering lnst.itut.(:' of C'anwgie !'vlellon University in Pittsburgh. The model is shown

in Figure 6.:3 below .. -\ccordiug t.o Arthur [6] this model is gaining widespread acceptance

by the Software Engi11!'<'ri11g ('ollllllllllity. a.nd is ttlldf'r considc·rat ion a;-; a11 ISO standard.

The model aims to gttide orgauisat.io11s responsible for the production of software. through

Ill

increased control of the process used for developing and maintaining software. and through

the controlled evolul.ion of the soft.wa.re engineering environment. b,· cultivating software

engineering excellence.

The mam benefit of using the SPMM is in the narrowmg of the scope of improvement

activities: the SP~\Hv! identifies fiH' levels of maturity \vhich make possible continuous process

improvement. Each level has ·characteristics' and 'challenges·. ·(:ha.ra.cteristics· describe the

current nature of the process which is resp<lllsible for the product. and ·challenges' describe

the necessary improvement to take the process up to t.he next level. The main weaknesses

of the SPNll\l are that:

l. ~o indicatio11 is off'n<·d <t:-. 10 Ito\\· to progress froill uli<' !ltaturit\· le,·el in the model to

the one above.

2. No account is ll!dde of tlw 1wecls and goals peculi<tr to <lit organisat.ioll. ,,·hich llld_\" not

map on Lo S [> l\ 1.\1.

:3. No gtlicla!l<"<' is ollf'recl its to Ito\\. to <1ssess tlw Ci'Ia.lit\· of <Ill\. resulting products fro!ll a

process, or the suitability of any process !llodel chosen to execute a particular task.

The productivity of the organisation and t.lw qua.lity of the software increase with increasing

leveL while the risk of producing defective software decreases. ?vlost organisations can only

aspire to lf'\·el :~ in tlw SP\1 \I. sill<c' the financial cotlllllillll<'lll ltc<'lkd to fuud the model

further than this is prohibitivP: any organisa.t.ion considering f•mba.rking on the production

of an ISMSE would certa.inlv need to be at this level.

I-ll

Level :) Characteristics Challenges

1 lmpro•;ement feeding OptiinisaLion at

Productivity
and

Quality

back into process.
the organisational

Optimising
level.

Ill crease

Level -l Characteristics C ha.llenges

Qtiantitative. f'h<HI oj 11 !.'..
,'""") ~ -'

technolooT. a ..

.\I ('(I.S ll j"('(I p run··s.-.;.
Proble111 analysis. c\•1 i:lii aged

I) ii t.;-1 <f i-1 I I If' 1· j I l 0
() <:-"l

i-1 I I cl
l_)roblt>Ill prevent.ion.

c\11 al \"S j S.

Level :J Characteristics Challenges

Qualit<tt.ive. Process management.
Pro< ·<··ss cl e fi m·cl and

Process a.It al .Y sis.
Defined institutional isecl.

Control cn-er :'tift 11· (I I\' Qua.IItita.tive q ua.li ty

pron··ss. plaits.

Lf'vel ·) C'h<tr<-lct.erist ics Challenges

Intuitive. Training.

p J"()C('SSf'S depending Tt·cllltical pr<tdin·.
H cpeat.a hI<' 0 II i ml i 1 · i < It I a! s.

I) ["()("('SS fo< ·11s.
!"sill.!!, JHIOI" ('\jWI"J<-'IIC!'

Ill cloi 11""
"

silllilar ll·nrk.

Level l C' Ita rae t.erist i cs C ha.llenges

Ad hoc. Project management.

!

1
Initial Project planning.

Risks decrease
c~r and QA.

Figure 6.:L The Software Process l'vlaturity Model (SP M!\l)

6.3 The design process

Introduction

There are two distinct types of design activity, those of external design and internal design.

1. External design

The relat.ionship between requirements and design is not str<1ightforward smce the

boundary hetwt't'Il requirements a.nalysis and external design is not well-defined. Our-

mg requirenwnt.s definition a design abstraction permits separation of the conceptual

aspects oft lit• systern from the impk•tJWilt<ltion detaib. all(! d(·termines:

(a) functional charact.erist ics

(b) data s t re<uns

(c) datil ston·s

This concerns the relaticmships lwtw(·•etl software cotnpoueuts, e.g. modules. Eventu­

ally procedures and algorithmic detail are determined.

6.3.1 The role of abstraction

Abstraction mechanisms, i.e. functional abstraction, data abstraction and control abstrac­

tion, control the antount. of comple:-:itv that must be dealt with at any particular point in the

design process. by systernaticall_y proceeding from the abstract to the concrete. as showu in

Figure 6.4 below. The high-level design process involves describing the system at a number

of different levels of ahsl.t"ciCliOII~ JHOC('('dittp; lltroup;lt a IIUilliwr of st.ages a.nd is an lttmhvt

process. This desigtt parMlig111 is used dS d basis for produci11g a high-level design for the

ISlVISE: the first stage itt t !tis pron'ss is obtaining the high-level requirements. as a basis

for the design. The tcr111inology used to describe this aspect of software engineering is not

standardised. t.lw author has adopted the terminology used h1· IEEE. i.e. the high-level

requirements specihcat.ion as a basis for the high-le1f'l design 111 this chapter is termed the

Outline SoftwarP Hequirf'IIH'ttts_'"ijwcificatiott (OSHS) .. \s pointed out by Sommerville, [118]

there is a clistinctiotl lwtll"t:'C'll tteeds and rf'quirernents: needs are HT\" high-level. but require-

ments are much n1onJ detailed. Starting from the premise that therf' is a. need. information

about a prohlc'Jll is coll('(·lc'd <utd dltdl_v~Pr_l. leading to a cotttpn•lt('lt:-.il(·' probleJJt specihca.t.iou.

from which a soi"tll"rt!"(' solttt io11 is d('sigtwd a11d itnplc'tlwtttc·d. '-iotllllterville [118] has shown

tha.t the requirements for <1 software systern exist a.t. different. le1·els of abstraction:

1. Rf'quirement.s clefiuition

This corresponds to a11 Oullinf Software Requirernent.s Specifica.tio!l (OSRS), which

will be used to ck·scrilw tlw soft.ll.cll"(' requin'tlH:'tlt.s at a cuy /u:yh levtl: a. software

requirenwnt is a property that. a software syst.ern must satisfy. The purpose of an

Conceptual

View

j

Requirements

j

High-level

Design

j

Detailed

Design

Abstraction

Figure Ci.-l: .\ bstra.ction of the Design Process

1-Hi

OSRS [.S8]1s to define ;-wd document a. software system with respect to:

(a.) funcLion<i.lir.y, i.e:. what the :ouftware is to do. not how it IS to do it

(b) perfonna.11ee. 111 terms of e.g. its response time

(c) the design co11st rclillts irnposecl on the implementation, e.g. implementa.tion lan-

gua.ge

(d) attributes. ~.g. port.abilit.y. maint.ainahilitv

(e) extemal int.erLtcPs. e.g. illtera.ctiolls with people. and other software. e.g. third-

part\· tools

The requireniCIIl.s definition describes the services to be provided for the user by the

system. These lligll-level rPquirt'IJWIIl.s are refined using. e.g. protot_yping. to give the

requirements 'OJWcihuit.ion cllld software-· specification descrilwd below.

·) SoftwarE' Reqllirt'IIWnh Specification

This is a prFci.~(de~cript.ion of the recp1irements for a soft.w<HP system. defined bv '{eh

and Zci\'t' [I:~ I] dS ·.\ .~t'l of prt•ciseh· stated proJwrt ies or nillst ri-lillt s whit·h a softwarP

systt'lll lllUSt Sell is!\·· .. \11 SnS is SOIIH'I illH'S referred to as (1 fu.nr-fiOIIJL.f 8pecification

and allows ci clesig11 to he validat.ed using an explicit. fortnally-specihed s_ystem model

as an aid to umlerst<i n cling the sys tent. Here the no tat ion is more formal since this

document may f11uct.ion as a contract between client and user. The sen·ices provided

by the svstem are desc ri h<'d i 11 more det.ai l.

:3. Software Specifio1t ion

Otherwise knmv11 as a ck·sign specifio1tion, this is a.n abstract. description of the software

design. and is intended t.o serve as a. basis for the design and implementation of the

software. The use of formed specificat.io11 techniques is appropriate since this document

is for software desigtters. tlot system users or managers.

A structure for a.n OS HS has been suggested by IEEE [.SS] and is regarded as an industry

standard. This docunwnt has <I hierarchical structure. a.nd is shO\vu in figure 6 .. S below. It

has been pointed out lw Zahniser [1:3:2] that the IEEE standard for an OSRS requires that

Inputs, Processing <uld Out put.s are defined prematurely. sittcc the\· are concerned with data.

which is not considered as being part of requirements analysis. Considering these aspects

at the requiretnetth df'iitlit i<m pltiiC'<' tll<'d!ls that a cotltplete dat c-1 n.ttc-d\·sis nml data-oriented

design is unclertak<'ll lnfou till' n·q11ir<·'llH'tlts specificatio11 is contplet.ecl. :\loreover. the IEEE

OSRS implicitly assttnws t.hi-\t t.h<' soft,,·an-· de,·elopnwnt nwt.hocl ,,·ill be the conventional one,

using the ·\\·at.erf<dl' model of rite softwc-1n' life-cycle. i.e. it willlw ·t.up-clown· inuature. Siuce

the aim in this chapter is to produce a high-level design for an ISi"vlSE. a. much-simplified

version of t.he IEEE OSHS "·ill lw used.

6.3.2 An Outline Software Requirements Specification (OSRS)

This chapter is cottC<'rllcd ,,·itlt d !tip;lt-l<·u·l d<-'sigtt. which r<-·quir<-'s ott!y a11 Outliut• Software

Requirements Specificatio11. <-'tt<lblillg <l prototype to be built. which cau be used to validate

and refine the OSRS.

I 1-"

IEEE Prototype OSRS

Table of Contents

1. Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions, Acronyms, and Abbreviations
1.4 References
1. 5 Overview

2. General Description
2.1 Product Perspective
2.2 Product Functions
2.3 User Characteristics
2.4 General Constraints
2.5 Assumptions and Dependencies

3 Specific Requirements
3.1 Functional Requirement

3.1.1 Introduction
3.1.2 Inputs
3.1.3 Processing
3.1.4 Outputs
3.1.5 External Interfaces

3.1.5.1 User Interfaces
3.1.5.2 Hardware Interfaces
3.1.5.3 Software Interfaces
3.1.5.4 Communication Interfaces

3.1.6 Performance Requirements
3.1.7 Design Constraints
3.1.8 Attributes

3.1.8.1 Security
3.1.8.2 Maintainability

3.1.9. Other Requirements
3.1.9.1 Data Base
3.1.9.2 Operations
3.1.9.3 Site Adaption

3.2 Functional Requirement 2

3.n Functional Requirement n
Appendices
Index

Fig1m' 6 .. '): Structure for an OSRS

j.[q

6.3.2.1 Obtaining the OSRS

The technique used for deducing the OSH.S for an ISMSE is from the point of view of the

data. smce. ns 11 ill lw ci<'IIIOII~t r<lt.t>d Inter 111 this chapter. the ISi'viSE i~ <til iuformatiott

sub-system and data/information is its raw material. There exist several methods [58] of

capturing and expressing the requirernents for a software system:

l. input/output ~pecihcatioii~

·) USlllg a:-;('(of !'('!J!'(·'S('III iii i\<' f''\dlllpi<'S

:3. the specificat.ion of models

-L natured language

1. dat.a flo11· di<Igraiiis

6. structured t.ext.

1. data modelling

6.3.2.1.1 Expressing the OSRS

The most COlllllll)ll nwt.liod or specifyiilg dll osns is to liSf' llllllllwred paragraphs of prose

text, i.e. expressed in natural language. within numbered sections, with each paragraph

specifying or qualifying some requirement. This should be capable of being understood by

non-specialist staff. iiicluding the potPnt.ial usPrs of the sYslelll.

1!)0

There are good rea~ons for not using unstr-uctured natural language as a means of expressing

the requirements for cl softw<Ht' system. The inherent ambiguity of unstructured natural

language and the complexit.y of prose description means that it is unsuitable for expressing

requirements clearly allCl uttambigltousl_v. i\'[oreover it is difficult. if ttot illlpossible to verify

if requirements are complete and non-conflicting, because the length and complexit_v of prose

specifications make them difficult lo understand. However, there are two overpowering rea-

sons for using nat 11ral l<utgu<-Jge for an 0Sl1S. The first. reasott is cottcerned 11·ith the high-Levtl

nature of tlw cottcPpls ,,-J1icl1 e-m· <'111huclied ill <-lll O~HS: 110 ·closed. forrual lauguage. such as

a prograrnmirtg langu<l_!!,(' cc-111 \TI <l,l<'quntelv exprPss such high-lf'\el software requirements.

The second reason is due to t.hP inlfll"f.CISf nature of the requirements for a cornplex software

system which are likelY to evoln". since:

l. In t.he early _-;tag(',; tlte llilder·c-;tdilditlg or i1 complex ci\"Sit'l\1 i,; like!\· to be flawed. and

at a later stage t.lw deficiencies of tlw requirements become apparent.

2. The high-len'l rcquiremf'tlts !"or the lS:'v!SE are basf'd on tlw lnaintenattce ll!oclel derived

111 clli-l[)t.cr I 11·u. llt·r<' it 11·<1s poirii.ed out that the Illaitttf'ttattn· tllodel adopted was

a. generalised one. ltot. cml1· because a detailed model of the maintenance process 1s

organisation-specific. but also lwcattse t lw phases of rm1intenance that involve creativity·

and understanding are not well-understood. This means. implicitly, that the model

of the maintenancf' process is an evolving entity. This clof's not preclude basing the

IS~\!SE on a ?/'II<'rdlised Ill<ti11tenance Inoclel. since prototyping has an important role

to play in building the 1Si11'!SL discussed later in the section 011 design.

[.'j l

:3. Users will assemble a1lcl combine tools in \vays which are not as vet preclicta.ble.

This highlights the role that prototvping plays in the design process. discussed later in

the chapter. \\.hell it is 1101 possible to formulate system requirenw11ts jJI'eCI.'>ely because a

system under development is completely new. and not amenable to detailed analysis, then

an imprecise statement of the requirements must be formulated and subsequently refined as

their shortcomings lwconw apparent.

Natural language is t lw o1tl\· r<·<tlist i< IIW<IIIS of "lwcif,·illg illljJI'<-'('ise l'<•quirelllt~ill.s. formal 110-

tations can not be used t.o describe solllethi11g \\'hicl1 is illlprecise. Tlw specification should

be structured hierarchically. wit.h different levels of detaiL with each entity described in pro-

gressively more c!Ptail. presenting a clear. complete concise statement of the requirements.

Those not.a.t.ions \\-lli<·l, hi1\'(' lw<'ll cl<·,elorwd t.o specify r<-·quir<'IIWI!t.s <-~re all based ou uatural

language. imposing so11w st r1wt I liT 011 t li<' specific<1t io11. and lilllitillg the natura.! language

expressions which may be used: they <dso <'llhauce the ua.Lural lauguage specification, by

means of graphics. Lwgunges which have been used to express software requirements 111-

elude PSL/PS.-\ [1:2:2]. ~.\DT [ll2]. and RSL [:3]. \iot.ations used to speed·~· external design

characteristics i11clttd<' ddtCl fluw diagr<tllls. structun· clJClrt.s ami HIPO (Hierarchy Input Pro-

cess Output.) di<tgrallls. DClt.a flow di<tgr;-uns MP a powerful tool for requirements analysis.

and for representing extemal and top-level internal design specifications. since they can be

used a.t any level of abstraction. The requirements in this chapter will therefore be expressed

using a combinat iotl of nat. ural languag<" and data A ow diagrams.

An OSR~ should sp<"cify <:1.11\. clii-lli.!-',CS anticipated w!Jell t.lw r<JquitTtllf'tlts are originally for-

1-52

mulated. and gtve reasons fc!l· high-level design decisions made in the light of knowledge of

the problem domain. prm·iding an invnluable aid to future mainta.iners of the software: 111

addition the clocumettl shortlcl lw easv t.o change.

6.3.2.1.2 The conceptual model

The highest-level ,-iew of a :-;ystem's functionality concerns the goal of the system. e.g. irn-

proving tlw maintPtli11lC<' process .. -\ god! C<lll not e<rsily he ,.<llidat.ecl. and so a refinPnwnt

of the goal int.o ohp dtrr ·' i- II<'<"<'Ssdr_\". sirl!·<· there ar(' ,.rr,uu·t 1111 n/."" ,,·hid1 accOIII.pany the

objectives. The highest le\el ir1 tlw aiJstractiorJ of the desigr1 proces:-:;, corresponding to the

goal of the system is the conu pftut.l model of the software. The conceptual model is produced

from a critical e:-:amirration of the system's objectives. and the role the system performs in

achie,·ing these object i\·t·s. Tlti:-, UlJIC<-·pt Jt<ti JJ!odel det.errnirws t lw t\·!w uf s\·sterll t.o be built.

and is comprised of l\\'o IltdiJr p<trts:

l. System !'vloclel

This establishes I he ('Ill rl res of the problem domain. 1 heir functioual characteristics,

and the W<JY t lw\· cH(' C\II!Ihined to produce an overall svstern structure.

2. Process Model

This defines the requirements of the system. i.e. the ISMS£. in terms of the operations

performed by it.. covered in cha.pter 2.

The model of the desigll prun·ss places design chronologically after tlw requirernents speci­

fication, but, rn practic<' it 1:-; r1ot possible [:rl] to perfonn a requirements definition without

doing some prclittlitt<H\ c:\kttlill desigtt. 11·hiclt begitts during tlw <:llt<dysis phase aud contin-

ues into t.he design ph<~.se: <~l first the conceptual model is somewhat vague. (the couceptua.l

model for the IS!\>ISE is discussed later in section 6.2.2.1..)). Initially. external design in­

volves refining the O~HS using protot.yping as a requirements validation tool, establishing

a high-le1·e! structural vie11· of the system. with a description of all t~:\ternally observable

characteristics. e.g. user displays. external data sources and sinks. The functional charac-

teristics. and ltiglt-k'l'(-'1 pron·~~ structure. i.e. Lhe nlaint.etlauce model. are also determined

at this stagf'. slttJII'illg t lw tJit·rl<q> ol· n·qJtitt'tllf'ttts dttd de~if!;tt pltdS<'s. { ·sittg tlw conceptual

modeL the OSR~ for the !~.\1St: catt he <k·ri~C'd b1 considering the ontputs of each of the

major functions of the lS\·ISL. i.t'. frottl d study or Llw exLerttal lwhaviom of the ISM~£.

The getwralised nature oft he tlldittten<tttce model means that the conceptual model may be

incomplete and so the OSRS for the ISJ'viSE. derived from such a model is inevitably impre-

cise: more precise' rc·qttirt·ttwtth Ciilt lw i'nrrrtulated only ;t.ftt:·r· protutyping CXJWrituenls haxe

been carried ouL. The rPsttlt~ of these <':\lwrinwrrt~ dH' l'ed hack to allow a more complete

conceptual model to be estaiJiislwcl: this is one of the aims of prot.otypiug.

6.3.2.1.3 The objectives of the ISMSE

These cletermirw tIt(' cltar<tcterist ics uf t lw IS!\,ISE: t lte Jli'IIIIIII'IJ ohjt·ct.il·e of the lSM~E is

to increase the producti1·itY ol tire tnaitrt.<'tratte<-' org<-\llisat.iuti. its stumdary objective is to

assist in researching tlw rnaintf'tlartu' process.

Much of software maint.PnancP concNns enhancements to Pxisting software: the ISMSE will

thereforf:' possess sonH' of the clu-HactPrist ics of a software development. ell\·ironment, but it

[.)4

will offer colllpl<'t(' :-;rtpport tu tlw titilittktl<tllCP org<iltisat.ioll for i:!ll phases uf t lte softwan· life

cycle. It is inteu:_!t·d Lhat tlw !S\!Sl will be able to cope with t.he ·,vorst-case· scellctrio. that

of implementing t'llltallcPtlH'ltls to ctll ngei11g. large. complex. unstructured software system.

with one or more elements of the soft11·are configuration, (e.g. documentation). either miss­

ing or deemed to be unreliable. To achieve this, comprehensive support for the complete

maintenance process must be offered. starting from the change request and culminating with

the new releasP: pro1·iding the tllc1inte!lattce prograrntnPr with thf' means of coherently relat-

ing the sepnrate piet't's ol illforlltdl ion p;dl lwrecl hy softwart-' tools. thus facilitating program

unders tan eli ng.

The IS!'dSE will (fr-/tt•rl;; aid rite lltdintain(or in dPcicling the ht•st strategy for achieving a11 ttn-

clerstancling of th(' rC"icl·<1rtl pnrt iott uf t lw softl\'<trt' syslt'lll. prior tu jWrfortttittg ttld.illtelldllll'

on that soft\\·an-·. Tit is is pdrt icttliul1· ittlpurLatlt in Lite casr.' of ttol·ice personl!el.

The IS~viSE will provide the means ol' unifying the separate activities which make up the

maintenance process. incrC"asing tlw effectiveness of automated tools through their disci­

plined applicat.ior1. lr1 d,Jditiotl. tlw IS\ISI·: \\·ill pro1·ide t lw tiH'dlls fur l'asit-T !llO!lit.uriug of

the maintenance proc<'ss. s<'nitlg cts <I tool for the aclministrntiorr of rnainteuance. i.e. it

will support the halldlitlg of t lw ·pcljl!'l'\l·ork': inforrnat.io11 conceming the progress of the

maintenance assignment. f'.g. 11·lwt her rnodules are under umstrtrction. completed. tested

will be available.

6.3.2.1.3.1 Increasing the productivity of a maintenance organisation

The main objective of the ISi\TSE is the im[HOH·nwnt. of the productivity of the maintenance

1.5.5

organisation. hy p<trt i<llh· <ttttotlliltittg I he tnainten<wcc proc<-'ss. attd tlw prO\'lSIOll of the

means of ::;ofegurtrdinrJ the !!;<-tillS 111 productivity, using a documentation paradigm. 1vhich

1s the subject of this t.lwsis. l11 gettcr<1l terms, productivity can be defined as the quantity

of work produced per Uillt time .. -\ gain 111 productivity can mea11 that the time taken to

complete a give11 task liits lw<'Il reduced. or that more work can be completed in a given time

interval. In the context of n maintenance orga.nisation. the definition becomes more difficult:

it could be expressed as tlte Ilumber of lint's of code maintained per unit time: or the number

of requests for maint.eiiilllC<-' dealt ,,·it h per unit. t.irne. Tlwre are mall\' irnponderables involved

in these definitions. such as the difficult\· in achiPving an understanding of the program. and

the human fact.or irt\'Cll\·<'d. Tit(' L·tclors iif!'ecting proclucti1·it.y ittclude:

l. Unclerst.ailding of the softll'<lre svst.em prior to maint.<1ini11g it..

2. Being able to obtai11 tlw Injltir<'d ittl'ortJJdtioJJ t.o L·lcilit.dl.<' UJtder~t.audiug.

:3. Hoving n goocl set of <'as\·-to-tJse tools to aiel the Inaintc'Jt<wre process.

4. The facility for t.lw comp(HWnt parts of the maintenance organisation to engage m

meaningful dialogues - clari!1catiou of aspects of a change request can occupy a lot of

time duriug a Jmti itl.<c'll<Ule<-' <lssigllllWI!I .

. 5. Support offered for re-LISf'. :-;ince the ·maiutena.uce-ltist.or_v· contains both descriptious

of problems d.IJ(l t.lwi r solution:-;.

6.3.2.1.3.2 Research into the maintenance process

To continue in existence the IS.\ISE lllllsl lw al)l<' to c\·ulH' 111 response to changes withiu

156

itself. e.g. the ev;du<1tio11 of tri.-.1/ng tools may suggest ideas for new tools: and also within its

environment. so it 11lllst prm·ide snpport. for the rnaintenance organisation to evolve, without

the capacity to <'lohe. t.lw IS\ISI:: \\'oulcl become obsolete. Implicitly this lllf'iillS that the

ISMSE must provide support for tuetrication when functioning a.s a test-bed for its own

evaluation, the paramet.er of most interest being that of productivity. since as pointed out

by Stenning [1:20] ...

· ... the role ol i:\11 <'III ir()lli!Wilt Is I<> support t.lw elf'<,ctiH' usc of an effective pro-

cess. the effectiveness in supporting a g1v<,n process being measured in terms of

convenience- t.he enviroltlllt:'nt being t.he vehicle for achieviug this couvenience.'

6.3.2.1.4 The role of the ISJ\1SE

The role of the IS\ISI~ C<-111 lw sultllll<Hised <Js the pronstull of support for the maintenance

process: and can best. be described in tlw context of syste111s: 111 gellt'l'dl terms a system is

a collection of illtf'IT<'Idtecl <·o1npo1Witls which jWrfortils <1 functiotl. I.f'. it exhibits dynamic

behaviour. obse1·1·;-thlt- i11 I<'I'IIIs of its out jllll. 11·ltic!J cltardcterises tlw syst\-'111. In the coutext

of computer scienn:. <t llti-liltl<'ltd!IU' iJrgattisa.t.iou is a s.l·str'lll wlticlt 1wrfonn:-. the mainteuauce

function: as such it. is a self-regulating e11t.it_v. interacting with its environment. It is both

a deterministic and a probabilistic system: deterministic in the sense that the type and

content of the information ernerging from it will be predictable, to some extent, as a result

of the input. of data of i-111 appropri;-llr typ<". and probabilistic itt the se1tse that the type of

information inpttt tot lw sysfrltl Ulll ,.;-1r_v. and so tlw out put C<-\ll also vary.

1!)7

\Vithin 0 systr-'tll. inkgr<ltiotJ lids <I sp<'ci;-il p<trt to plc-1y. SlllC<' integr<ttion of the functions

of the componf'nt parts of the s\·srem means that 111 the holistic sense the system IS more

than just the sum of it.s cornpotJetlt parts. A system which exists as part of another system

is usually described as a sub-system, with respect to the system in which it is contained:

thus a sub-svstern ca11 also lw <l svstern at the same time. if it co11tains a s\·stem within

it. The elemenl.' of a system vvhich are a prerequisite for its existence are its environment

and its /){)/11/daril.-<. Ill I lw COIJI.<':\1 or ("l)lllputcr sciettce. t.he en\·irOIIlllellt of an ISMSE is the

data processittg <'ll\·iro!IIIWIJI dtld t lw hoitt}(l<lries dl"<' tlw aspirell iotts. goa.ls and purposes.

determined by it.s creator(sJ: these detertllll\e the SCOJW or t.he lS\lSE. The boundaries are

obtained by mod<'liillg t !tetl p<HI of t.lw urg<111is0t.icm whiclr tlw IS.\ IS[is to serve, i.e. its

envirolli11Cilt; this !"<'Stilts ill d lllOdel or the maintelli-\tlC(J orga.tJisaLiou. For such all organi-

sation to be efFective. there are three matn prerequisites. The first is the understanding of

the systern"s em·irotJtll<'tii. i.<'. t lw pr·()l,l('tJI dotlleliti: f3orgidii <'t eli [l()] have s!Juwu that the

majority of effort in deriving systPIIt requirement.s i::- spent i11 fit1ding out a.nd documenting

knowledge about t.hc cn\·irotJtJWilt in which the svstetn is to operate.

The second is understanding 1 he factors ,,·hich govern the operation of the system, and how

the_v are rclat.ed. Tlw tltird is tlw pr()\·isiull of dd<'(jlli1.1<' cltdllll<'ls ul" ittfonJwt.iuu-exchauge

bet\veen its constituent parts. JHm·iditJg tlw llll'<lll~ for cotlllllllnicat.ion and control. A sys-

tem interacts \\'ith its <'tl\·irontll<-'llt by llleans of input.s and outputs. which are regulated by

its boundaries. which act. as lilt.ers for the system. The ISMSE is an open system, and has

interfaces with its e1wironuwnt: this has implications for the requirements for the ISMSE,

since its b(C'haviour must lw capable of ada.ption. in order to meet the changing demands

l-58

for infornJi1tioiJ. w!JiciJ IJl<'ilJiei Lildt COI!llllllllication cwcl cotttrol withi11 the mainte!lauce or-

ga.nisa.r.ion are of 1·it<~l ilnpurt.<-tJice. Changes within the orgcwisatio11 lllUst lw rwmitorecl.

interpreted and f'Vcllllctfcd. cl!Id <~ppr\Jpri<tt.ed n~spo!tses ciPvised: t.hP 1~:\~l~r: must. provide

support for this vital activitv.

In chapter two it was pointed out that the generalised model of the maintenance process can

not be viewed in isolation since it implicitly admits the existence of an organisation which

\\'ill impletnenl tlw IIJO!k·l. Tlw <LIIll!!li. <'JII·isdged Cl JIJCJiJJI <'!lett II"<' urgettJisCJt ion whose structure

is a hierarchica.l Ollf'. cotJsist i 11g of t lm-'e nt<-t.i 11 le1·els: JllaJtagerial. supPrvisory and technical.

In chapter t:\\'O it was <-Jiso poiu1ed out that associated with each level of the organisation is

a different 1\"[W of iJJforJlldt io11. Tlw J"<-'lctt.ioJJship e:.:ist.ing lwLw<-'<'ti Ct J>Ct.l'ticular le1·el witlliil

the hierarchy of the lltdilttetiCll!CP organisation. and the type of information utilised by that

level. deduced iii ch<~pt.er I 1\"(J. is J"('[Jr<Hill<<'d below in Figun-· G.(i for t.lw lwJJefit of the reader.

6.3.2.1.5 The Maintenance Organisation

To clescribP th<' vetrious OJHTatiotls of <-t Jtiaiitl<'nCJJtce orgnllisatioti. CJ!Id the int.errelatiouships

existing between t h<-'111. requires <-HI ahst ract ion of the organisation. so that an analysis of

its information requirements ow be undertaken. leading to decisions which will lead to an

improvemelll iu the perfornJ<t.tll"<'. i.P. product.ivit~· of t.lw organis<-11 iuii. The maiuteuance

organisation is conceptually modf'lled as tltwf' interacting sub-systf'ms. as shown in Figure 6.7

below.

1.59

Level Ill ivlaittteuance Type of Information Plow
Organisatio11 Hierarch 1·

Technical
Operational

Supervisory Tactical

\latta,g~'ri<tl St ra1L'gic

Figure 6.6: A Ceneric \laintenance Organisation l-Iierarch1· and Associated Information

Types

The interrehtionships lwt\\·eett these sllh-systems is detPrmitwd hy t.lw information needs of

the ma.iJitt'IlillHT org<titi.-><tl i<lll. Tlw l"tll\<"1 iot1s of t.lw:.;<' t hrc<' -illiJ-s.vsl.t'ltis a1·e described below.

Managen1ent sub-system

This corresponds to t.he rnaJtagerial !Pvel of the maintenance organisation. and consists of

people a11d acti1·iti('.'i wlatt·d 1-t> !I)(' pl<tlltliiig. <"OIILrollill.l!; <llid dt·cisiUII-IIlaking aspects of the

operation.-> :,;ub-sys\('111.

Operations sub-system

This corn~spcmds to t!J(' stqwrvisorv a.ud tech11ica.l lPvels. and e<msist.s of activities. informa-

tion flow. and peop!P directly rel<1ted to performing the primarY function of the organisation.

i.e. the processing of a clliinge rcq11cst for lll<tintenauce.

160

Management

Sub-system

\

Change
Ill

Corporate
Strategy

Prugn•ss
Q!l('l'\

Ch_a.nges
111

Ivla.i ntenance

Query
on

Resource
Req ui rem en ts

S l.a.telllen t
of

Resource
HequirPments

/Information

Sub-system

(ISMS E)

Quer.v

on
Soft.\\·are

.-\nswer
to

Quer.\

Outside

Environment

(Users)

about
Software

Progress

Report

Operations

Sub-system

Change

Request

Figure G. I: ('ollt'l'plllal View or a. l'vlaintenCIIICt' Org<Uiisatioll

161

Information sub-system

vVith respect to the maintenance organisation. the ISMSE is a sub-system whid1 itself con-

tains sub-systems. e.g. database. user-interface. The common entity exchanged within the

ISMSE, between these sub-systems is information. It is important to understand the na-

ture of the ISi\fSE"s sub-sysi.<'ms and the information Rows which enable its contponenb

to perform synchronously. The information sub-system receives data from the operations

and management sub-s.vstetns of tlw lltaintcnance orga.nisatio11 a.ml front the outside euvi-

ronment. i.e. usrrs ol· t lw soft ll'd.l'f'. the lll<t.intenanc(· of which is t.he respon:;ibilit.y of the

maintenance organisat.iotl. These inpttts <He t.r<msforrnecl into so!lle meaningful information

by the operations sub-systcnl. ttsmg the !Sfv!SE. which is then transmitted to the appro­

priate sub-system. The purpose of the information sub-svstem ts to satisfy the information

requirements of tlw maintenance organisation. of which it is a part and to make possible

me<:wingful dial\)gtws lwt 11"<'<'11 t lw ot lwr suh-s\·sterns. Tl1is role-i:ihstrdc tioll sen·es to uucler-

line the fact t.hat t.lw lS\lSL is <1 tool. which interacts \\'ith it.s eltl·ironutent. ami rnust be

capable of adapting to a r-lw.nrpnq en,·ironnwnt. otherwise it will becotue ob:;olete. i.e. the

ISMSE must al all t.inws be complrntrnlon; to t lw tm1intell<li1CP organisation.

6.3.3 The OSRS document

The OSRS can be partitioned into two classPs: functional requirements, which state the

actual funct.ions ,,·ltich tl1c syst.etll tnust. implcrnent. and tton-funct.io11a.l requiremeuts, which

express practical coustrai11ts such as perfonnance specificatious and rnemory requirements.

I (i:2

Since prototyping is to lw used t.o refine the functional requirements clefiniLion. a.tlCl proto-

typing is not concf:TJJccl ,,·it.ll performance constraints. this aspect of the requin"lllf:'IJLs fUl' <til

ISMS£ will not be pursued here. The requirements given here constitute the highest level

in the hierarchy of t.llP IEEE OSRS document, and as such constitute a slice through the

hierarchy, since the complete requirements for a software system as complex as the ISMS£

are beyond the scope of this thesis. The format of the requirements definition for Lhf' lSMSE

is shown belcl\\' i 11 Fip;u !'<' (i.~ .

.-\n Ollt.linP SoftwarP Reqllirelllent.s Definitio11 for ctiJ !Siv!SE

Introduction

Functional Requirements

High-Level Architecture

Figu]'(' b.~: n<'quirerm'nts Definition for a11 lS.\·lSE

6.3.3.1 Introduction

Software maintc:'JliUlU' JW<'ds t.o lw placed 011 a firm founda.tior1. in tlw same way as software

development was in the L~/Os. through the adoption of a disciplined engineering approach.

Other research initiatives aimed at partially automating the maintenance process by the

use of software tools have CO!!centratecl on particular aspects of the maintenance process,

e.g. [48]: none h<J'-.(' attempted to irnprove the approach to maintenance in a contprehen~ivt'

manner.

6.3.3.2 Functional Requirements

6.3.3.2.1 Overview of functional requirements for an ISMSE

From the concept.u<tl mock·!. i.<·'. tilt' IIighcsl level of ctl)stractio!J. the requirements can be

stated as the extraction of inforJIJ<lt.io!J fwin sol"t 11"<11"<'. <lild the llldllagellwnt of this inforrna-

tion, to increase the I!Jiderst<lnding of the software.

The maintenance II!Od<·l. deri1·e•l i11 cha.pter t11·o is the product of the aH<:dysis phase. and the

high-level requirclllCI!h for Llw IS\ISE <HI:' based on the model. 11·hich is reproduced below

for the benefit of the reader:

l. Verifica.t.iOII of tJ('cd to I!Iodil.\ Llw software. I.e. the progra111 tlnd its associated docu-

mentatio11.

2. l.i nclerstand t h<' ,.;oft 1\"MI'.

:3. Modify the software, including documentation.

4. Validation of the softwa.re (i.e. the functional specifications) and regression testing.

The maintenance modC'l expresses tlw higlwst-lcvel requirements of t.lw ISMSE, the analysis

of the objectives of the ISJ\TSE results in the refinenwnt. of this model, giving the conceptual

model. Prm·isio11 ul" s11pplirl for the adio11" of the ISiviSE is through the use of software

tools to e~:t.ract inforii!iitioii l'roin ;:1 sn!"tw<ne svstem. and to provide the means of mana~ing

this informntion. i.<'. d sofl\\'iH<' <'IIgineering databn.se. to illn<·'itS<' tlw UIId<·rsl.aiidiiig uf i:1

software system. Tlw LSi\lSE ,,·ill therefor<· provide:

l. Basic run-time support facilities for the phases of maintenance, giving continuous and

effective support. for maintenance. addressing all aspects of software rnaintenance and

offering coinplet.<· support to t.lw rnaintenancP organisation for all the phases of the

software life eye!('. part.iciiii-lTh· fort II(' IIIId<'rst allciillg phase of the maintenance process.

:2. Effective lllanag<'lll<'lli i11Hi coiJt.rol through the prm·ision of support for thf' administra-

tion of Inaintciiancc. Jl<lrt iculn.rly the storage of information produced by the ISMSE.

concerui11g t.lw prugrcs:-; of t.lw lllitillt<'lli:lli<'C assigniilf'lll. aJ1d t.lw sJtbsPqttettL use of that

whether modules arc under construction. completed. or tested.

3. The provision of a set of tools covering the whole software. life-cycle

4. Support. for the iitlegration of tools.

:'vla.Il,V t.r<tdit iuiidi .-.;oft \\'dl'<' t'II,l!;iiit'<'I i11g t'lt\·irOIIIll<'ltl s culltprist· <til opt-'rating system and

filing system. together ,,·ith <Ill ad hoc rol!Pctiott of tools to cover some parts of the

maintenance process. lnclividua.l tools are used to automate at least some part of the

maint.enanc<' process. t.he if'u'l of support pro1·idf'd by a t.uol is d 1\t!Iclion of tllt:' degree

of sophistication of t.he en\'ironment. hosting the tool. e.g. the APSE contains rules

\l·l!ich a 1 tH>i 111<-tk<·s ItS<' ol' lu ciJ('ck illl'onnat.ioii COII<"<'I'llillg <l software system uuder

165

clenc.lopnwnt or maintenance. Since the ISl'vlSE's architecture will be open, it will be

able to integrate t.IIircl-party t.ools including those of tool vendor:;.

·). The abilit\· to rP-IIS<' soft ware COIIIJH111PIIts. e.g. progr<1mllli11g cliches.

6. Support for multil<wguage developments.

The functional requirenwJJts Cire no\\" discussed Ill more clet.ail.

6.3.3.2.2 Requirements for object base

Introduction

The object base is t lw IJIJC!('JJS or tlw ('JJ\"iJ"OIIlllellt.. its prilll<H\" role heiJig that. of a repository

of information concerning the sol"t\\"are tl,;-11 is lwiJlg nlaiJJtainPd. its secondarv role is to act

as an integration mechclllisJll rm till' ('li\"iJ"OilJl)('llt ..

Requirements for information repository.

The database will dllu1\· t.lw JJJainLaincr to perform querws a.ml updates on stored items

of information. usmg f' ()' ··o· a relational qtwry language as a tool t.o provide the maintainer

with different view:; of a software system. The database must be t_vped, i.e. it must have

knowledge of certain propert.ies of t.he objects that. it contains. and can prevent. their misuse

by incorrect tools. Tl1is simplifies tool development since it provides the tool writer with au

appropriate frarne\\"ork: t l1is <lpproach cont rast.s with. e.g. sonH' programming environments

where no central strudtll"<' is illlposed <1J1d t II(' i1J1nface lll<UJag<'lll<'IJI varies accorcliug to

166

which tool is being; tts<'d. Faclt object. 111 tlw datah<lse will lw dille all(l time stamped 11·ith

a locking '11echanism !<I pre\·ront morF> rhan one u~er frorn accessmg a.n object at the s;:u:Le

time.

Requirements for integration mechanism

The IS!vlSE must. integrate the tools that are associated with the three phases of the tt\allt-

tenance process. ltl _l!/'I!Pri-ll t.f'l'lllS the twed for integration oc\tlrs \\'henever two or more in-

terrelatecl COill]JUIIt'ltl.'i hi!\(''' nJIIIIllull illll'l'fdcl' [:Yi]. ld('lll il1cdtio11 of Lilt' iut.erfaces pres<'llt

in the IS:\ISE will illclic;tll' 11·!ww illll'gniliull i." l'l'ljtlit·('<l. Til<' ol!\'iotts interfaces are the user

interface and the tool-tool ittlerL·1ce. Tlw aulltor dcfittes i11Legration i11 the context of this

research topic CIS ·T!tt' it1corporc-ltion of tools into a coherent unit for the capture, geueration

and mann.genlPnt of inforrnation concerning a software system.· The desirable properties

bestowed upo11 tlw <'11\·irutllll<'tll ds i"l r<:'sult of integr<-ll.iolt iuclude:

I. S.vnergic sf'CJ!tentic-ll invocc-lliotl of tools. with concomitdlll s1nooth transmission of func­

tion. so that t h(' repository of information concerning t.lw s,vstern under investigation

(e.g. struct ur<' <·lt<lrt:-. ~~ 111hul t.ables). cart lw lll<llt<lgt·d hy t!te cuordittatiou of tools

2. The ability t.o rctric·u' infonnation from the database and present it to the maintainer.

10 a way specified bv the maintainer, t.e. provide the maintainer with different vtews

of the software.

:3. Fle~ihilit.\· <-lltd <'~l.t'nsibilit \.

167

The overall err('("! or clll ittl.ep;rcll inti lliP<"ItnlliStll will lw t.o S<-'l\"(' ciS cl llllil\itlg iltfluence Oil t.lw

environment: such that it becomes the embodiment of a nurnber of closdy-!inkecl interrela.tt-:d

functions result.illg i11 its 111cillifcst.ation ciS a single tool.

It has been observed by Glass H6J that some software tools produce information that could

prove to be of considerable value to the maintainer. but these tools do not output this

information: examples of such tools are the compiler and the restructurer. The integration

mechanism should tlt<Teron· offer a11 itlterran· t.o thcs<' tools.

6.3.3.2.3 Requirements for toolset

6.3.3.2.3.1 Introduction

It is envisaged Lltctl tit<· IS\ISI-:·s tool-.: ,,·ill have <1 ·ktto\\·ledge· llf Llw fitttctions performed

by each other and also of the information processed and produced bv each other. This

knowledge includes:

l. the transformations perfonned bv tools on objects tn the clcll.abase

:2. the format of the data l<'(jllirPd b,· ot.lwr tools

:3. how a tool is invoked

-!. val1ws held 111 \"ctlioiJics. cottsl.a!lls. \·ta par<~IllCLcrs

168

The tools(:'t will lw <·<-tpahl(· of J>r<Aidittg sttpport for all pildses of tltaintetli:ltlce. but will be

biased towards progt·;Jill tt!ld<"rSI<1ndi!lg: tools for verifiu,tion n.nd Vi1.lidntion nf program::: will

also be included. The toolset. will be minimised by examination of tool-function to determine,

e.g. w·hether ati\. usd11l itJforlll<-tliott is gettCTc1t.ed b.v i:l tool. but is lllil out.put. Tlw criUTia

for the selection of the toolset will need to be established. using the adopted maintenance

model. h:nowledge of t lw types of tools to be used will aid in drawing up the requirements

for the proposed IS~·ISI·:: 1110st cOillltwrciallv-a,ailable tools combine 111any functions into one

tool.

6.3.3.2.3.2 Problems with tools 1n available support environments

Existing soft.\vare envirolltllt'llh h<~n' encottJtlerecl problems with regard to the tools thev

contain. Dond.hoo [:JG] sutlllllartses these problems:

l. Tools lack u11ifonnit.\·. <'UIIIJ!I<'l<'tws:-; dtl(l cotnpatibility.

:2. No svstern liils a conlpiet.e set of tools.

:3. l\'la11y tools <1rr-· system-clepPtldellt. and languagP-clepe!ldent -even tools designed for a

given system a11cl a given language may be incompatible.

These problems unclnlitte t lw llt_'f'd for (1 COII!jil<·t (' S<'t or t.ools wlticlt (/J't compatible. However,

the amount of outp11t the maintainer is fdced with increases proportionate!::·· with the number

of tools being used: the reduct ion or the number of tools to a. minimum requires that strict

criteria. for tool ::i<'i<'<'l.ioll lw dr<tWII tip. Or!<-' approach to rcducinp; the a.l!lount of iufurmatiuu

is to make tools fltlwl io11 itltnCJct i\·ch·. <UJOt Iter approach is itlll'rtonl <'utlllllllllicd.L.ion. one tool

l6!J

accepting the output. of anot.lwr e1s its input. as Unix tools do. Another important aspect of

tool usage is how best. to lii'F.c;enl the ca.t)tured informn.tion to the maintainer: this is cov<ered
v '

in detail in chapter I.

6.3.3.2.4 Requirements for user-interface

Introduction

These requirenlPIJ1s e!llbrace tlw JIOII-functioJJal aspects of the l~i'dSE. The ISMS£ is an

·in-house· tool l'or ill! urg<~JJis<~l io11 <t!Jd I he IIsers outside of the 1~\1~1~ use hoth the l~MSE

and its products .. \s 11·cll <IS 1lwir ul>,·inJI:-> clhility to perl.orill cHiLhllletic. computers facilitate

communication and control. The diverse user-community makes necessar.Y the construction

of a view mecha11ism. so that each category of user has access to that subset of the data

which is appropriate· l.o his 1weds. c11HI dlso prevent c1Cet'ss fron1 t lw user 11·hich lll<lY <:dfect

the integrity of tlw 1~\I~L CIJJd its f<H·ilit ies. lisers can also liSP the ISMSE for retraining

purposes. when eiil1i:llln'IIWIJts il!'t' Illdd<' tu soft 1\diT: l'tll' t l1is IT<lSOil tlw ISivlSE should iuclude

facilities for Computer Assisted Lc<1rni1Ig (C'.-\ L). The user interface· 11·ill need to be enhanced.

in relation with current f'Ilvironnwi!I interfaces. to cope with t.lw diverse cornrnunity who will

use the IS\ISE.

The user i11Lerfrtn' sii(>iiitl:

1. be a WI\IPS interface, independent of any host machine.

·) lllcd-\e it possibl" for tuols to be it1voked inclividua.ll.y. r\.llcl/or serially. 'vVhen tools are

used int.Prclct i vely. t hP II :'if'!' Illlist be able to exert control over t.hf' tool. It must also be

possible to liS!' lliuls i11 l>alcll IIlud!'. It. !!lUSt 110\ be possible to 111isuse a tool.

110

:3. allow access tot lw ltu::;t UjWtilt ittg ::;yslcttl. e.g. fur iuiti<d cuJutcctiuJt Lu tlw lSMSE. and

for access t.o any tools which arc part. of the host operating system. using the comrn<tnd

language of the host operating system.

4. permit the suspension or termination of the current function or program, and the return

to the command l;wguage interpreter, resuming the current function or program

6.3.3.2.5 Design of usee-interface

Cser interface d<'sigtt is (o11n·rtwd \\ itlt tlw i11ter;icl io11 of lttllll<tlts a.wl colttplex cotttputer

systems. The ma1n fu1tction of the ttser-iltti'rfa(·e is to redttr-P the cognitive overhead associ­

ated with comple>: tasks. llt<:tkiltg pos::;ihlc t lw abstraction fro111 task details. allowing the user

to concentrate 011 higlt-l<·,·cl issues. therefore increasing his procluct.ivit.y. Integration of an

ISE such as tlw IS!V!SE can be achiP,·ecl at the user-iltterfa.Cf·: the design of the user-interface

combining the disciplim·s of C'o1npt11n SciencE' and Psycltology. The maiu dilemma. is the

decision as to whether t.o base lite iltl<'rL-tn· on a cottllllillid langttagt". which is powerful and

complex. suited to expert users. hut difficult to learn. or to base tlw interf<:tce ou a system of

hierarchical nwltus. suited to IIO\·ice users. which a11 (~:\pert may find tedious and cumbersome

to use. 1-Iierarchical lllt'lltls nlltld lw us<'d to opPralt' t.h<' \\·indo\\·s part of the euvirolllllt'tlt.

\Vith a conumtnd langtl<igt· opcr;tt i11g ittsidt' those wittdO\\·s.

171

6.3.3.3 A High-level Aechit.ectu1·e for an ISl\IISE.

The high-level desigrr of tire IS\ISF co111prrses its ohservable e:--;terl!ii.l characteristics. e.g.

the user-interface. and its high-level <-trchitPctitre. r.e. the structure of the ISMSE. The

components of the ISMSE and the way they· relate to each other describe its architecture.

which will be a layered one. as shown in Fig 6.9 below, to simplify the design and maximise

application program inclepend!"nce. The maintenance em·ironment must be flexible and

e:-:teusible. l.f'. it llll!st poss<·ss dll up<'ll Mchit(•cture so tliclt tlw tools lwluugiug to the host

operating system. c-wd tllird-party tool::; <'CIIl lw i!lcurp<lrdted i11Lo the <:'uvironment, and so

that an.y development. method ca11 bt• supported. The IS\ISE consists of a collection of

interconriPcted rnod11les. tlw desig11 of tlw IS:\ISE is col!cemed with tlw interaction of these

modules. d1w t.o their configm<-11 ion <111<1 structure. The lllodules Me:

1. input and input modules

These correspond tn t.lw user-ir1terface of the !Sfv!SL. The input module is concerned

with the hilndliug of input cL1tc1 from tools. or from the maintenance organisation, or

from users: t lw outpitt rnodlli<' is concf'rllf'd 11·it.h t.he typt-> Clll(l volurne of infonna.tiou

required frotll til<' i11forn1<~t io11 s\·'-'U'Ill. i.e. ,·iews of soft \\'ill'<'

2. control and procedures modules

These corr('SjHIIHI t.o tlw toolset of tlw IS\1SF and <H<' co!lctTti<'d 1\·ith how data. a.ucl

iufonnc-tt.iull i-II"<' h<111dl<·ll. frorn i11put st.agc through prucessittg to output. Toob couvert

data. into infortuat.ioll through tool-tool interaction.

1 ~.) ,_

Enhanced
User Interface

Object

Maint.
Tools

.'vl an age men t
Svst.em

(

0pPI'clting)

Sv~t.Cill

~ /
\" ~

Desig11
Tool,;

Doc.

:-.Iai nt..

fl P<j II I h.

(\C.\'

Documentation

:Vla.intenance

Reqniremcnt.s

Reqts.
Tool,;

Tool,;

/

FigurP 6.9: .-\ l-Iigh-LevPI Design for an lSl\ISJ::

II:~

:3. data repository module

This corresponds to 1 he object. hase of the ISMS E.

6.3.3.3.1 Design and prototyping

The design method adopted is tl1al. of rapid prototyping, to highlight. any weak11esses in the

requirements definition. early in the development of the software. Protot_vping mav be used

as a means of lcamittg <li)OIJI <-t prulJI<'JII doJtta.in or dS it JtH'dJJs uf inn<'JtH:'tllcd de\"l~lopttlt:'llt

of a software syst.ctlt. as iiJdicctlt·'d lwlo1\· i11 1.-igtlt"t' (i.IO.

Prototvping is a prucess tl1<tl l'Jldbles a developer t.o creaLtj a llJodel of the software that

Requirements
Analysis

1.

t--

High-Level
Design

I--

2.

Develop/Refine
Prototype

3.

Evaluate
Prototype

4.

Detailed
Design

Figure 6.10: Prototype Life-Cycle Model

Software
Life-Cycle

must be built. The model or protot._vpe LllRY be designed to depict one or more aspects of

l/4

e.g. a huillilll-Ill<lciliiH' i11terl'an·. lira set of t'uuctional or pert'onnai1n· requirements that are

questionable. Tlw aim is t.o <onst.riiCt a working prototype. which constitutes a subset of

the function of the ISiVISE. i.e. automated support for the documentation paradigm. The

sequence of events for the prototvping paradigm is:

L. identifv whatever requirf•nwnts are known and outline areas 11·hose further definition

is mandatorv

:2. ·quick' design 1s clone lc<ldillg to the coiistruction of a prototype: this focuses on a

represent.at.ion nf t.ho:o<· dspects ol' the software which 11·ill lw 1·isihle to the user. e.g.

user-in terL-1n·.

:3. evalu<ll.ioii of prot.ol\ 1w is tis<·d to r<··fiiw t.he requir<'IIl<-'lits fort lw soft 1van:' to be clevel-

oped. Iteration occurs <-1st lw prototvpe is tuned to s<~tisfv the customers' requirements.

Ideally the protot.ype s<:"rves as <~ mechanism for precisely ident ifving the software re-

quireiiJe!I1-'-'.

Evaluation of the pwtoli'JW i<'<td'-' to a det.ailed desigii speciliccttioii. describiug control fiow,

data representation and other <•lgoritliiiiic d<'l.di!s. 11·i1 hi11 tlw II!odtdes.

l/.5

6.4 Summary

A design proc:ess has hee11 proposed for nn TS!v!SE. highlighting the relationship betwee11

requirements and design and describing the role that abstraction plays in obtaining a high-

level requirements definition for an ISi\ISE.

The purpose of the software requirements specification has been described and a method

given for exprcssittg <lltd g<-lllwri11g ill<' SI<S. Tltc r<·quin•ttt('flLc; dt·lillitiutt was developed by

examining the objectives of tlw lS\lSL dttd 1tsi11g <1 d<"sniption of its role to produce a

conceptual model.

The functional requirements for tlw compom-'nts of t.lw !Si\-ISE have been described and a

high-level architeclur<' sltggest<·d: tog<'t her 11·ith a strntegy for validi-lt.ittg the requirements

definition, using prototyping.

116

Chapter 7

An Information Structure for an

ISMSE

7.1 Information Capture and Processing

The crucial aspect of impro,·ing the productivity of a maintenance organi::;ation is the re­

duction in the time rweclecl t.o g<lin an ttnclerst.anding of a software system. through partial

automation of this aspect. of t.he Jllaint.ena.nce process. fn order to achieve this aim there are

two vital requirement.s: the capture and processing of information to further understanding,

Ill

us111g an integrated set of suitdhle software tools. and good quality redocurnentation. to

preserve the maintrl.ill<l.hilit.y of c-1 softwa.re system. (described in chapter two) so that future

maintainers can achieve an understanding of the software more easily. Both these require-

ments can be satisfied hy providing the necessary mechanisms for the capture. ma.nagerrretJL.

analysis and subsequent archival of inforrnation generated during the course of a maintenance

assignment, using a documentatior1 para.cligm which provides facilities for abstraction. The

task of sa.tisf.ying the <l.hove requir<'IlJellts car1 be clecOJnposed into tlw follmving subtasks:

l. 'vVhat information to capture.

2. Choice of informal ion c;t ruct tm· used to storP t.he <apt.urecl information.

:3. \Vhere to put. t.lw e<lpt ur('d itlfortlt<-l.t ior1 11·it.hir1 tlw ir1forrnat ior1 structure.

7.2 What information to capture

Typical of the informatior1 needed by a maintainer 11·hich is captured during the course of a

maintenance assignment and stored in the database is shown below:

1. 'vVhich softw;-ue is cuiT<'tltll lwirrg Ill<-l.intainf'd

2. A record of the change-request

:3. 'vVhether problem reports are on file

L78

4. Requirements for change t.o software

o. Specifications of changes to software

6. Design documentation

7. Program source code

S. Program documentation

9. Test data.

10. Results of analysis ol" a datahasc ohj('<t (nos-;-r<·l"ercttce listings. call graphs etc.). i.e.

views of t.he soft wan· heittg rnait1tait1ed.

11. Objects produn·d h:,. trartsfornic-ltion tools. e.g. structured code from unstructured

code

12. The language i11 which program cock· i." 1nitt.err

1:3. The nuswn of the l<utgti<l_!.'/' itt wlrich t lw progrc-un code ts 1nit ten

There is a need for c-1 toolset to automate partia.ll_v the information-capture a.nd subsequent

storage III tlw <·'tl\·iruttlllt'JII cl<tt ctll<t."<'. Suft ll.dl"<' L,HJis dttd tlw assu<i<ll<·d teclutulogy <:tre

currently available frorn vendors: however. i ttl roducing tools into software engmeenng en­

vironments has attendant sttpport prohlerns. sununaris<-'d hy Doriahuo et. a.l [:36] and listed

below.

1. A single tool or t.f'chniqu(' is insufficient: a combination of consistent and complemen-

tary tools should be selected.

179

2. Automated tools must lw supported with sound management.. <~nd orgauisational co11-

cepts and procedures.

:3. Tools require the interaction of human experience and judgement and can onlv assist

the user, not. replace him.

4. Tools must be reviewed periodically for enhancement.. utilisation of 1\e\V technologies.

or retirement ..

The generalised lll<lilll<'ll<llli<' lll!!d<'l (clnil<'d i11 cll<lpln tmJ) l1<1s lllMie possible the selt-'ction

of a combination of consistent and coinpl<'llWilli-l.ry tuols. showu in Figure /.1 below, and its

associated concept.tldl 1·ie11' ol" i-1 IlldiJII.<-'IIiliiC<' orgdnisdtiull. (derived i11 chapter six) provides

the framework for soiJIJd Ill<lllagenwnt and organisational concepts and procedures. required

for the support of automated tools. This chapter provides a documentation paradigm to

be used withiu this fra1rwwork. to rw1:-;irnisc the efrecti,·ellcss of softwa.re tools, particularly

with regard t.o program 1tnderstandir1g. prmidi11g dll ir1formation structure to support the

interaction of humaii experif•nce <utd judgement. Finally. tilt' docunwntation paradigm aims

to prm·id<~ i-1 basis l"or t.lw ill'<"ilil-al uf iiiforilli-11 ion. iticluding t IIdl <-onc(·'rlling t.he versio11 of a

software tool being used. which will enable t.he performance of a tool t.o be monitored and

eva.luat.ecl. t.o help i11 deciding 11·lwtlwr i-t tool !leeds to lw r<'lir<·d ur t-'ldldll<"t'd.

1~0

7.2.1 Analysis of tool classes and tool functions for information

capture and processing

It is apparent that some tools produce much data. and little information, and the maintainer

is again faced wit.h Cl tn<lllll<il ti'\sk of sci'\nning large amounts of printed m<~tter: highlighting

again the need for abstraction .. ~\ da.ta.h<~se qucr.v facility can provide help for abstraction

and so is important in the understanding phase of the maintenance modeL as well as in

the verifying pll<iS<'. b111 Ci:illllOI he used Ullt.il other program~unclersta.nding tools have beeu

used to put infornliltion inlo the database. The database query fi:icility can extract v1ews

of software which can k·<lcl to a11 i11Creasecl unclerst.ancling. m turn this can result. in new

information or kilO\\'k·dge lwi11g ildd(·d to tlw d<~tilh<is('. llw l.11it.ed St.ates :\iational Bureau

of Standards [90] has provided i:i taxonomy of tool-types which recogn1ses three classes of

software ma.intelli:i.tlce tuols.

l. Transformat.iotl tools.

2. Static analysis tools.

:3. Dynamic ana.lysis tools.

The environment will utilisP thesP tool classes. using the generic tool types which are enu­

merated for each phase of tlldiiJl('lli:lllC<'. ns siJoWII i11 1-'igur<· 1.1 ht'low. A short description

of these generic tool types now follows. to i !Ius t. rate the com p Iemen t.ary nature of the toolset

chosen to support the m?Jintcnauce model. and to show the different types of information

produced by these tnols.

1~1

Phase of Nlaintenance Generic Tool Type

Verifying reqii<.'Sl Database Query (T)

Understanding Cross-referencer (S)
Structure-charter (S)

Reformatter (T)
Documentor (T)

l'dodif.yiug

Revalidation

Rest ruct u rer (T)
Reverse Engineering (T)
Database Query (T)
Execution !loll' t retcer (1))

Cross- referencer (S)
Structure-charter (S)
Execution flo\\' tracer (D)
Documentor (T)

Editor (T)
Translator (T)

Cross-referencer (S)
Test data generator (D)
File cornpa.ra.tor (S)
Debugger (D)

I\ev

T Transformation Tool

S Static Analysis Tool

D Dvna.mic Analysis Tool

Figure 7.1: Ceueric Tool Types to support the l'vla.inteua.uce Model

7.2.1.1 Transformation tools

These tools operate on strings of ittput producing modified output: some examples are given

below.

l. Database Quen

The main function of this tool is t.o enable a maintainer t.o increase his uuderstanding

of the software by providing views of the software and converting information into

knowledge, discussed in chapter three. The kind of t.ool which cau act. as a query

facility is clepf'udettl upou the couceptual schema chose11 for the clat.a -;tructure. which

is deposited itt t.he d<-ttahdse.

:2. Reformat ter

This tool is sometimes known as a prett.yprinter and operates on a file of source code

with a view to enhancing its readabilit.y. <Uld therefore understanding. by:

(a) sequencing st.atetrH:'tt1 rtundwrs

(b) indenting statements

:3. Documentor

The aim of this tool <:l!Ills t.o make possible changes to all the different kinds of docu­

mentation contained within a large software system. both te:-.:tual and graphical.

4. Restructurer

This tool takes as input unstructured source code and as output produces structured

source code. which is logically equivalent to the original.

5. Reverse Engineering

This tool aims to anc1.lysf:' soutTP code to capture design information.

6. Editor

The main function or tlte Pditor IS ll) make changes to the source code.

1. Translator

Examples of its use include:

(a) Language con 1·ert(c'r.

Converts otw la.nguage to another.

(b) File converter.

Converts one file fonna.t to anotlwr.

7 .2.1.2 Static analysis tools

These provide information about <t prograr11. 11·ithnut <1ctualh· runrung the program: some

examples are given belo11·.

l. Cross- referen cer

This tool revea.b logica.l relatiousltips betweeu entities within a program or between

programs. Cross-references for variab!Ps or of calls. help to establish the structure

of a program or sub-routine. Cross-referencers can be used in debugging and impact

a.na.l_jisis. and cau be interfaced with:

(a) DocuttH:'ttLat.iott tools t.o provide automatic clocumentatiou of source code.

184

(b) Craphic<:d tools to gtve i:l pictorial rt•prest~ttLatiott uf the program.

2. Structure Charter

Tltis tool gretpltically produces the relationships between the vanous components of

the software. at the level of procedures and functions.

:3. File Comparat.or

Supplies instances of simila.rit ies allCI differences betweeu te:-.:t or data files and assists

111 versiOn control and rna.itttenance of source code. File comparators can assist in

companng the actual output of programs with the idealised output of the program

when tullctiolliug ii~ !did dull. II i11 t lw futtctiOlli:d SjWriliutt iu11 t hi:-' 1~ au imporla.!lt

tool for 1·erificatio11 d1td lcdiclcil iu11.

7.2.1.3 Dynamic analysis tools

These provide infor1lli:ltilltt <thout ltUII d progr;.ttlt e:-:ecute:-'. i:lttrl M<' tJf lwlp iu detecting errors.

some examples are gi ve11 belo11·.

l. Execution Flow Tracer

This sho11·s the s<'qtwnn· of ilt·t iulls carried. out 011 a st.a\.t'llH:'llt l)1· state11tent basis. or

just tlwse sLaL<'lllt'ltls ,,.lticlt i11Ln till' flo11· of cottLrol. ur 11·hiclt clt<:wge the value of a

specific variable.

2. Debugger

This tool enables t lte maintainer to step through the program. at a chosen pace. mon-

1~.)

itoring values held In va.ri<-tbles and evaluating boolean conditions.

In most soft\\'a.re engineering eit\·i ronilll:'t!Ls tlw operand for a soft\\'i:lre tool is the file; different

tools have different requirements as rega.rds file formats and the output of one tool is often

the operand for another tool. i.e. these software tools produce objects of different types.

highlighting the need for tool integration.

7.3 Choice of information structure used to store the

captured information

The information structure to be used as a basis for the documentation paradigm must

be able to store the diverse types of information. both textual a.nd graphical. produced

bv the generic tool-types described ecHiier. and also provide the means of organising this

iuforrnatioll prior to cot!VI'rt i11g it iiito kitowledge. The for!ll of the Iua.iuteuauce log to

be kept by i:\. utaiuteuaitce orgct.IIisa.t io11 is detemtiued by au ex;uuiuatiou of the support

provided by an ISivH3E. described i11 clict.pter six. The acquisition of knowledge is facilitated

by the organisation and management of information, the processing of this information into

knowledge being achieved hy human intervention. The role of the maintainer is to act as

inference engine. produciiig infor1nation. then knowledge from ra\\' data. and euteriug this

knmvledge into the object base. as slto\\'tl in Figure 1.:2 below. The knowledge, and the

ensuing understanding stemming from the generated information. need to be documented.

186

and an information structure is required tha.t can also provide support for this activity.

~ ('
! ·Tools '

Knowledge

Refining

Data

Maintainer

(Inference)
\ Engine

Figure 1.2: The role of the \laintainer- schematic

Databa:=e

The recognition of the illlJ)l)rtattce of the pi:irl played by ab:;tractiott itt the domai11 of pro-

grant under:;tanding r<>sttlkd itt tlw choice of a hierarchical i11fortttatiou structure for the

maintenance log. Items of infonltatiott dcscrihittg d soft 11·are s.1 stettt eutered by the main-

tainer. or produced by a software tool. ma1· be linked r~nd stored as a book format. shown

below in Figure 1.:3. The literature rt-.·veals other initiati1·es concerning the ·book paradigm',

in the domain of softw<trt-' t'ttgineering. but of these onl\· otte is cottcemed witlt the mainte-

ttance of software. that \lf OtJtatt ilttd ('ook [9·1]: the relttaimler are cotiCerned with software

development. Oman and Cook [~J4] proposed <-~ nwtltod of formatting programs consistent

with programmer comprehension :;trategies and maintenance activities, i.e. the book format

is onlv used as a cocle-1·iewing paradigm. l'dcl~issick and Price [8:2] proposed the use of the

·book paracligtn' itt cottllt't'1 io11 ll'it h tlw progrc~s of softii·Me dt·l·t·lopnwut activities. This

181

Book

Title

Table of Contents

Abstract

Preface

Chapters

Summary

Appendix /

Index
.._____

Understand

/
Program

Understanding
Tools
~

Information
~
~

Information Management
by Maintainer

using Tools

Phases 2 ,3 ,4
of the

ivlaintenance
Model

Modify

Requirements

t
Specification

t
Design

t
Coding

t
Documentation

Unit

Revalidate

!
Testing

System Integration

Test
Documentation

Figure 7.:3: The Book Fumtdt. as <t Da.La \loclt·l for Lltc Orgauisatiou of lllformcttiou Con­
cerning a Software Systern

was a paper-based syst.etJI. and did 1101 d~:·1·t-Jop the potential of the ·book para.digm· beyond

that of the keeping of a simple notebook. Kempe [62] proposed the use of a 'book paradigm'

for developing a data manageme11t kemel for the management of structmed documents,

conceming a.n objt-'ct malldgeiJWIIl svst.ent based on h.yperte:rt principles. 'flte a.pproa.ch in

this thesis is [JOt b<1sed on ill jWr\.(:'':1 pri11ciples. Koenig [6:3] proposed the use of the ·book

paradigm' in connection \\'ith softl\'are development activities. and uses an enhanced elec­

tronic version of the software development []Otebook idea. proposed by McKissick [82]. The

use of the 'book paradigm' in this thesis is concerned with the maintuwnct of software. and

proposes a tuuch 11·ider appliccll iu11 of tlw ·i,uuk paradignt· thau utlwr init.id.tives.

7.4 A Maintenance History for a Software System

.-\n <wtholog.' of hierdrcl1ical lltdiiiL('Ililttc(' logs. i.e. bouks. cotttprts(·'s tlw ·.'vla.int.etJ<:tHCe His-

ton:· of the software ;wei forttts tlw b"sis uf a documenta.tiott paradigm for the ISi'viSE, the

aim of this thesis. Each book of the atttlwlogy <'IICUtttpasscs a 1·ersion of the software system.

Each time a maintenance' <lssigtltl](-'tlt is <"<UTied out it should lw \\Tit let1 up in book-form: the

·book' will contaiu a data clict.ionarv, holding information about. variables, constants, and

routiues- a.vaila.blc front d cross-ref!'r('ttC<-'r.

7.5 The Maintenance History as an ADT

The work earlier in the chapter described the tools which are used to capture information

during software mdillktt<ln<~e. and gave nil informal description of rhe structure used to

store this infonndtiotl. leadittg to t.lw l:'St<lblishment of d ~-Iaintenance History for a software

systern. One of the airns of the work i11 1 his chapter is to describe tltis ittfonnation structure

in a more formal way. as an abstract data type, which will be referred to as the ADT

l'vlain tenance_H is tor\.

lu cornputer scre!lu· tlw t.t->rtu dbstr<:lct data type or data abstractioll is usually a:;sociated

with a computer progr<:ltiJ. <-llld em[_, exists during the Lime of the in,ucat.iou of a program.

able only to access objects at the file level. The information structure described in this

chapter is actually a database view ,,·hich ts a persistent object. attd lllUst exist beyond

the invocation of a program which mani pul<-1t.es it: nevertheless it can be regarded as a

data abstraction or <ltt abst.rac·t. dett.d type. si1tce this permits the clehuition of the view. a.s

described below aucl it!tplicitly li11tits tlw ttpcl<-lte oper<:tlio11s pnf(mm·rl hy tools. which <:tre

allmvecl on the vie11·. T!te infomt<-ttiou cuntaiited iu d di:ltabi:lse is acce:-secl and Ltpdatecl using

a. Data. Base i'vlanagement System (DBMS). The 081\,lS provides independence between the

physical representa.tiOII of data dilcl t.he user's ,·iew of it [12-t]. this is made possible through

the design of a threP levPl archit.ecture for a database. described belo''-.

190

7.5.1 Database Management System Architecture

7.5.1.1 Introduction

A data view specihnl in '' idrlgtrdg<· 11·hi<·lr the databdse lll<Hl<lgemellt ,.;y~tern ,.;oftware CCLII

understand is known as a schen1a. The database management system architecture has three

levels, consisting of three related scilerwts viz: the external schema, the COIJceptual schema,

a.ncl the internal schema, as showll i11 Figure 7.4 below.

Tool 1 Tool 2
View View

Logical
Data

Structure

Physical
Data

Structure

/

Tool n

View

Extemal

Level

Conceptual

Level

lH temal

Level

Figure 1.4: The A:\SI/SP:\RC DB!VIS Three-LPvel Architecture.

7.5.1.2 External schema

The information structure comprisiug the .\laintenance History is to be held iu a database.

and smce no oue vit'W tit' <1 software sy.c;rem is sufficient to permit effective soft\vare main-

tenance, maintainers need to e\t.t'<1ct dillerent. views of soft\\·are. by ttsittg different :;oftware

tools. This is made possible usiug att external schema which prm·icles otw or !llore programs

e.g. a software maintenance tool. with a local view, which can be derived from the concep­

tual schema. Programs requiring identical local views may share the same external schema.

Properties of the d<ll.d. sttch dS tlw l'omwt of the dat0 items or the sequettce in which data is

seen. may be specihecl h1· an <-'\lt'mal schema. but it cannot rwerride am· of the constraints

imposed by the conceptual schettw.

7.5.1.3 Conceptual schema

Formally. <t •:unceplttil.l sclwttlil is d tWill t·dl itttcgrated \'It-'ll <Jf i-t dclld rt-'sout-ce aud acts

as a bridge between the iuternal and extertt<-d schen1as as described bv the ANSI/SPARC

three-level database architecture.

Iuformally. a concept.ual sdwma is a description of the data "tructure of interest to the

maintenance organisation \\'lticlt is t.o lw stored in the datah<1Se. Tlw schema. must be com-

prehensive. since database managenlettl ,;y.,ttc'llts di!Tt-'r in their degree of comprehensi\·eness.

and ease of use of their conceptual schema facilities.

The conceptual schema is of great importance and performs a vital role in that it:

l. specifies the logica.l data Cl)IJLellt of the database, i.e. the :VlaiuteuancP Histor.y. whose

data structure forms tilt' h<tsls of the documentation paradigm for the lS?vlSE, and de-

termines the constraints which <t.pply to t.his data structure. i.e. the update operations

allo\\"ed on it. This Luge[\ detennines the scope of the IS~ISE and directh· reflects

the level of tailoring to a particnl<H process, i.e. the maintenance modeL derived in

chapter two.

:2. provides the basis for i11tegration. since the various tools and facilities must all operate

to a single common date~. ::-tn1ct.un' <:1s defined b.Y the conceptual ::-chema.

The docurnentation paradigm -;erves as an initial concept.ual schema for t.he environment

database ami 1s a portct.ble inforrttation sub-system for the management of information con-

cernmg the maint.enancp of soft.wa.rP. The conceptual schema is stored as a graph, and

determines the struct.ur(· of tlw d<-11<-il)ase. t'st ,,h!ishing fixed rult·s regarding the way infor-

mation is held iu the database.

The documentation p<:Hi:idignJ \\"<is derived by exam1rung the it1formation requirements for

the information sub-s.\·st.em and the applications. i.e. the envircmment's toolset, which ac-

cesses data. and upd<iles Llw d<tt<l !wid there. The stt-h-svsktll dt··sniption is giveu bv the

maintenance model used witJiill tJw fr<HIIf'\\'()rk of <I lllililllen;-IJII't' organisCltiOtl.

The Maintenance History describes data cotlt.rollecl by the m<~intelta.nce organisation. and is

extensible and consistent, enabliug the data. resource to evolve. functioning as an integration

mechanism. by a.bsorhi11g disp<-Hate pieces of information concerning the software svstem.

making the111 part of a colwreiJI i11fun11at io11 struct lll'<'.

The evolution of the tmlint.r'tlance organi~ation, means that the nature of the information

u~ed by that organisatiu11 11·i II abu en)h·e ;.wd ::;o tlw conceptual schema describing that

infortll<l.t.iotl will !til\·c· to lw c·ltdttged. II' t lw cotJn•pt.u;d sciW!lli:l is <UI accurate model of the

organisation, then auy dJi:l.llge see11 hv t l1e organisation as being a simple change should imply

a similar change in the cotlcept.uCJI scltetlld. allCI ,·ice-versa. The conceptua.l schema can be

regarded as a relatively stable, long-t.enn view of the data, which is capable of evolving with

the organisation.

7.5.1.4 Internal schema

This describes ho\\' t.he UJJJceptual schema is phy~ically irnplemeuted: at the level of stored

records. stored record fonrli·l.ts. iJJdPxes. hCJshing a.lgorithtns. pointers. block sizes for con­

sisteucv (e.g. th<ll each e:;tc'rll<li .~c·lwnlii is capable of !wing derived from the conceptual

schema) and must use thc·' infortltdt.iotJ in t lw sclwtJl<ls to Illctp lwt.\Vc·'<Jll extem<:d schema and

the internal schema via the conceptual schem<1.

7.5.1.5 Summary of Database Architecture

Individual tools or groups of tools may ha.\e their owtl local view of the conceptual schema,

i.e. the output from t.lw tools which are used to gather information concerning the software

and are used to updat.e tlw infortlliltiotJ held in ti1P database must conform to this data

structure, which maps to tlw conceptual schema. These views may provide mappings be­

tween the data structure "·itl1it1 tlw dntase and the data st.rud.ure within the tool; but

194

these different. vie\\'s rrrust d.ll he <·urrlp<lt.ible with the couceplu<tl sclwttld. The couceptual

schema i::; tlw hub of tlw dat<tba,.;c architecture. Each e.\lern;-d schetna provides one or more

programs 11·itlt a loc<tl 1 i('\1' ,,·hiclr catr IJc derived from the conceptual schema: the internal

schema. describes how tilt' corrccpt.u;-d sclrema is physically inrplemented.

7.5.2 Description of the Conceptual Schema as an ADT

The conceptual sclwtll<l for the Pnl·ironrn<·'trt d;-11 d hdsf' is e:-;pressPd as an abstract data type

for the following re<lsorrs:

l. Abstract data t\·l;e is a full(lanwrrtal dud unifving concept iu computer science. enabling

the separat.iorr ul r lw .,,·lr;-11. frorrr tlw ·hml··: 11·hich t'lt<tiJ[e,; itnpletm'tlla.tion decisions

to be postponed (),.; lat.<·.' ds pos::;ibk· .. \ DT" dT<' used it1 almost d.ll stages of software

clen·lopment. p<Hl icularl.1· in '-'lWei fic;ll iorr. desigrr and irnplenwrrLtt ion.

1. The separation oft lw specilic<-tt.iorr of" pice<·' of softll'are from its desigu and subsequent

implementat.iorr - specifying software in terms of the data to be processed and the

operations th;ctl lllllst b(' perforilwd orr it. i.e. <Is <Ill .-\Dl. lras prul·f:d to be au excellent

way· of producing reliable sol't.wc-ne ;.urd of reducirrg costs.

:3. The idea of <III .-\ DT can be used in program development rn conjunction with estab­

lished techniques. such as stepwise refinement.

1%

An ADT is an abstract model of a problem domain, or part of a problem domain, considered

and defined purely i11 tem1s of tlw -;d:-; of ,·aluec; that variables of the type tll<t\· take. and is

bound to a. set of operations whicl1 lltax be performed on the type without collsideration as

to the implementa.r.ion of rlwst' operdt io11s . .-\11 ADT attempts to model as closely as possible

the problem domain and is a concept 11·l1ich is usually associated with colnputer science, but

actually predates it. Strictly. <:lll .-\DT is a triple (D,M,A). consisting of a set of domains

D. a. set of operations ['d. each with ra11ge d.ncl domain in D. and a set of axioms A, which

together specify the properties oft lw operations in l'l'f. By distinguishillg one of the domains

d in D, a precise characterisat.ioiJ is ol)t<liued of the data st.ruct ure that the ADT trnposes

on d. As an example the uatural llUtnhers COI1lprise a11 .-\DT. \\"hose dotnaiu 1s:

0. L. :2

.. and there is an auxilian do111<1in ..

The operations 011 the type are ZERO. ISZERO, SI'C'C. and .-\DD <llld the relationships

between these O[Wrations <-tr<-' spt·cilinl IJ, tlw <lXiOillS lwlow:

ISZ ERO(O) = T Rl" E

IS ZERO (.'-.· f . C C (.r)) = FA L s· E

ADD(O, y) =!I

. I f) f) (_,..,. t (' (. (.r J. y) = . .:...· l . (' (' (.·1 J) JJ (.r. y))

1%

These axioms comprise a precis<-~ specifica.tion of the semantics of the A DT known as the set

of natural numbers. \Vithoul tlw ds:-;ocia.tecl operations the sequence of svmbols

0. l. L ...

has no meanmg, since b,· tlwrnsel\l-'s t.lte,· provide no semantic description of the a.bstra.ct.

data type.

There are proble111 clomai11s 1\'hich require t.hc use of tnore comple:\ abstract data types, than

that illustrated in the previous e:\ample. These can be constructed from simpler ones. which

allows the clefinitiou of a hierarch\ of .\ DTs. the highest being the uearest Lo the problem

domain: note that this dlso implicitly lllPans the creation of new operators t.o manipulate

the nevv ADTs. this Is ktlO\Vll CIS procedural abstraction. The key role that cornputer

science has played COllet'rlllllg .\ L)j",.; is t.lw enforcement of t.ltc L\'jW. i.e. the type Ci:Lll

only be ma.nipulat.ed usi11g thE' operat.iotls pnAided. this is achieved through the concept of

inforn1ation hiding. This llWilltS that. in t.he conte:\t of software development a program

ca.n lw split. up int.o sep<H<tL<' t.d,.;b using ·top-dol\'11' design. and the til:-;k of coustructing au

ADT can be separ<lted from the re'-t of the application program. The users of tlte ADT can

only manipulate it u:-;iug tlw [Jl'O\·idnl upcr<JI ion:-;. through a \\·ell-defiiH:'d aHd well-coutrollecl

interface, since the irnplementa.t.ion of the A DT rf'Ill<tins hidden from the user. and is therefore

inaccessible to him. It ca11 then be changed. if necessary. without afrecting the rest of the

application.

There are three ma111 methods of describing the s!l'u.cture of an AD'T. each has its own

strengths and weaknesses. described below:

l. Graphics

The graph is ea.sv to utHir·rsta!lcl. but cannot easily be manipulated using a computer.

·) Natura.! language

This method has greilL J>OII'<'I' of (':\JJI'ession. but. is cutnbersottW to us<:' a.ud does uot

facilitate manipulation: <:Unbiguitv can also result.

:3. A formal deli 11 it io11 us i 1 1g n J<-tl lwn 1<1Ji c a I not at ion

This method has tlw virtue of precisiotJ. ecotlomy of expression, avoiding ambiguity and

providing ea::;e of JJli:lltipulatioiJ. IJtll readability and iuterpreta.tiou can be a problem.

The three methods are cornpleiJWtltarv. a11d so all thref:' bave been used to full.v describe the

struct.ure of tlw .\DT :"vlaitiit'lliiJHc_l-list.ory. The !vlaint.euattu· History is an Anthology of

Books: in terms of ADTs. the anthology corresponds to all ADT which is constructed from

the ADT Liuked-List alld tlw .-\Dllree. Tlw structure of tlw Hook. i.e .. \DT Tree. will

be described first. foll(l\\'ed h1 ;-1 clc·snipt iu11 ()f t lw st rll<'t Ill'<' oft lw .\lithology. i.e. the ADT

Linked-List. A com.plett description of an .-\DT must also include the semantics of the ADT,

which is obtained by fornwii,· SJWcifving the set of operations on it, before it. can be regarded

as fully-defined: this fort11s t.lw subject. of the tJe:\t. chapter.

198

7.5.2.1 Description of the structuee of the ADT Tree

7.5.2.1.1 Graphical desniption

A graph is a pictorial repr<':seutatiott of an information structure, i.e. it shows the relation­

ships existing bel.\,·c·c•JI tit(' ohjcTh i11 tlw database of the fSJ'dSE .. -\ Tree· is a ::;pecial kind

of graph, known as a coJluected. acvclic. directed. graph, containing a finite set of elements

called points. nodes or vertices. representing these objects. The term connected means that

it is possible to r<"<1ch all\ IJode from any other node: the t.Prm acyclic means that distinct

nodes are con nect.ed h\· em ly 01 w path ;-w cl the term cl i rected means that the graph is an

ordered set of nodes <~lid dJTs .. \11 ;uc is d litw joiuillg t.wo t1odes. t.he joit1i11g implies that

<1 relationship exists lwt\\·c·~<JII tlw ll<Hics. Cc·uJtwtricnlh·. tltc ll<H.ks are represented by dots.

vvhich may be labelled for identification purposes. and the arcs are represented by lines.

joining the nodes. \iomt<JI\y. i11 i-1 gr<-1ph. arcs carry i'1.rrows to inclicatf' direction. but by

convention these C\.1'1'0\\'S arc· Olltiltt·d \\·hell represeutiug a tree i'1S il directed grapl!. The Book

structure is sltoWJI Lwlu\\· ds <1 grctpli in Figure I.'J.

7.5.2.1.2 Natural language description

A book structure· ts d iti<'rarciJ_, .. ltsu<dh· called a tree st.ructuw or simply tree: the terms

l1ierarchy a.nd tree catl lw uJIIsidcrcd equivale11t. A tree is a dyua.lllic cla.La structure. i.e.

both the structure and the data. within the structure can change. The terminology concerning

Sectiou 1

0
Sulr · :oectiOll l.l

BOOK

TITLE

' '

~
'""'

/
Chapter 1 /

/~""'"'2
0

~ 0 Chapter N

0 Section \

Su hsectinll l .:\'

Figun' 1 :- .. [. ..). Itt' B ook Sl.rucLIIre as i1

200

D i rec Led (' .. oldph.

trees is drawn from but.aJI\·. e.g. forest. root. branch. leaf: from genealogy (family trees). e.g.

parent. child. sibling: <1nd i'i'<)nl gr;tph t.lwory.

of a 1:3ook ilre:

1. Title

:2. Abstract or Preface

:). Table of C\mt.t•nts

4. Chapters

:). Appendix

6. Index

e tr -·c· tiode. arc. Typic<1.lly. the lllcti11 elernents

The natura.l language descriptioJJ of a Bot)k (·;1n lw r<·11dered n1ore succinct us1ng a uotation

provided by a met;-1-language. such as Backus-Naur. smce it. acts as a defining mechanism

for a language. througl1 C1 prPcise description of its syntax. tl1us reduciJ1g tlw possibilitv of

a!llhiguity. The pi'Odlil'l iun rlill·s for tlw <"OIIIJlOIWilts of ;1 huok dl'<' gil'<'ll helo\\· in figure 1.6.

This notatiou slio\\·s tlw decuJllJH>sit.iotJ of t.IJ<:' fundaJJwnt.al <·otttpulwnt.s of the Book into

their sub-components. but does not. give " cl<'dl' indic;Hillll of the hierarchy: however the

hierarchical structure of a book is evident from the table of contents shown in Figure 7.7

below. the iuclent.at.ion indicating the hierarchy.

Rega.rdittg I lw Book <ts t IJ(' root of I he t r<'<'. r<·pr<'sented by its 1 it le. tlw Book is tlw parent

of n children. each of ,,.[,ich is <1 s1Jbt r<'<' of t!-w root T. denoted by the label r(T). represented

by chapters 1 to N, and eacl1 of these subtrees has its own root denoted by the labels r(Tl)

:201

<boo~~>::=< prologuepart ><body>< ep'/logv.epart >
< prologuepal't >::=< litfe ><author(.~)>< date>< preface>< tableofcontents >
<body>::=[< chapters >L'
< epiloguepart >::= [< upflt.n(Lt.r >Ji:> < inde.r >
< chapte·r >::= [< .~eclloll >L\"
< ::;ectiun >:: = [< ·' uhs(ell on > L\
< b I . [I I I jv[;· I]'11 .,u .-ec.Hm. >::= < f.r fl(ll' > u < uOJJramJiar > 0
< te.z:tparl >::= [< JHI.ror;,·o.ph >L\"
<paragraph>::=[< suhpo.!·a,r;,·u.f!h >] 1\l[< lines >W

< subparagntph >::= [< li.nt.s >] 1v

Figure 7.6: Bnckus-:\iaur description of Book Structure

Table of Contents Node Label

BOOK TITLE . r(T)
Chapter 1 r(T1)

Section 1.1 r(T11)
Subsection 1.1.1 r(T111)

Subsection 1.1.rn r(T11rn)

Section l.n r(T1n)

Chapter N r(TN)

Figun·· 7.1: lal1le uf (\JilL<"llls showing Hierarchical Nature of the Book Format

:20:2

to r(TN). Chapter I is t lw paretJI. of 11 children, each of which is a subtree or the root r(T l).

reprt-~sented by SPctil)liS 1.1 tu l.11. ii!HI r·;Klt of these subtrees has its m1·n root. denoted by

the labels r(Tll) tor(T ln). SectioJI l.l is the parent or m children, each of which is a. subtree

of the root r(T 11), represeutcd by subsections l.l.l to l.l.rn. and each of these subtrees has

its own root. denot.<·'d lw the l<llwls r(T I I I) t.o r(T ll m). Two nodes which art• the children of

the same parent !lOde are termed siblings: except for the root T, which has no parent, each

node has just one pare11t. L-..:cPpl lor the root T, any node may l1ave siblings. For any r(Ti)

the next sibling is denoted by r(Ti + 1).

7.5.2.1.3 Formal description

Fro1n the aho1·e d<'snipt io11 of'' h(Jok. 11·hich posst-•s:ws a tree st.rudur<-'. the .-\DT Tree is

defined here as a set of zero or more eletll<'!IIs ~·;tiled nodes ilrrauged iu a hierarchical manner

such that:

l. Except when empty there is otw Jtode at the highest leveL called the root.

:2. The retllilllllng nodes an:· part itiotwd into zero or more disjoint sets. Tl. T2, ... Tn.

where each of thesP sets is itsell· d tree. Tlw tr<.T is denoted T = (r. Tl. T:Z, T ... Tj)

and each tree Ti is dll immediate subtree ofT. The subtrees ofT a.re T itself and the

subtrees of its inutwdialt' subtrees.

:). The sets T I. TL ... Ttt <trt· cdllecl the subtrees of the root. If the ordering of these

trees is significant. th<:'ll tlw t rt-e is called an orden~cl tre<-'. which means that the path

from the root of the tree to any node is uuique.

20:3

4. Every node except t.lw t'ool. is _joitwd l.o just one other node at the uext bighet' level.

.5. Information llf a preclditlf'd I\ JW is <1ssociatecl \\'ith ea<h node.

6. A predefined relationship exists between nodes on adjacent levels.

7.5.2.2 Description of the structure of the ADT Linked List

7.5.2.2.1 Graphical description

The terminology and convent.iotts cottcertting graphs was covered wheu describing the ADT

Tree. The ADT Littked-l.isl cdtl lw r<'Jm'sf-'nled as an orcler("d graph as shown below in

Figure 1.8.

7.5.2.2.2 Natural language description

The linked list is a d_ynamic clara structure. i.e. both the information in the structure and

the structun-· itself can chi1ttge. ·rhf• dat.a st.ruct ure contains elelltellts. each element. in the

list cottt<:tins a pieu· of ittfonttat iutJ.

7.5.2.2.3 Formal description

A sequent.iallist is <'it.lter ('Jilfll\ or ts <liinik ordered tuple (a 1.a1 .us ... ll
11

) where

thP a,. l < I < 11 an-· nofl<·s.

Book l

Book 2

Book :3 0

Book (11-l) 0

Book (n-1) 0

Book 11

Figure/.~: Tlw Lillkeci-List structure as a directed graph

20.5

7.6 Summary

Some problems encountered itt software eng11teenng environments 111 providit~g support for

automation have been described. as has the role played by the ISMS£ tn helping to solve

these problems. .4. complem<'ttLa.n· <wei complete set of genenc tool-types to support the

maintenance model has been d<~scribed and an information structure has been proposed to

store information and knowledge concerning the maintenance of software, providing the ba­

sis for a documentation paradigrn to record a l'daintenance History of a. software system.

The structure of the .-\DT :'vlail!t.etta.l!n·-llist.ory has bt~ett fully described in terms of its

constituent AD'Is. the .-\DT Lillkt'ci-List and the ADT Tree. using a graphical method. a

natural language lllethod attcl a l'ormal tnethod. its struct.ure is shown in Figure 1.9 below.

The ADT ~vlaintenat~t·e_l-liston· permit.s <-1 precise clescript.io11 of t.he database view for the

ISMS£, providing the conceptual schema. in cl three-len~! databcise architecture. enabling a

bridge to be built \)t't.ween tlw software tools· views oft lw information structure, (a pre-

requisite for <iccessing c111d ltpchtittg the information st.ruct.ure). and the underlying internal

schema used for its physical storage.

206

First
Book

Last
Book

!

.--\DT Maintenance_History

Figure 7.9: The .-\DT \'lainktl<Htce_Hist.ory constructed fro111 the ADT Linked-List and the
.-\DT Tree

207

Chapter 8

Formal Specification of the ADT

Maintenance-History

8.1 Introduction

The problems associated \\'itb ttat ural-l<:utguage specificatiou were discussed in chapter six;

briefly, these were concerued with ambiguit._v. context-sensitivity and possible differences of

interpretation. In this cha.pter a formal approach is used to capture the semantics of the

ADT \:laint.enance-History. through the specification of the operations which define it. The

20~

formal specification of the ADT Maintenance-History is. in essence. a. formal definition of

each operat.ion 011 tlw .-\])']. l:tlrtttiil s1wcificat.ion techniques lta\!:' a suuml tl!eoretical basis

and provide a basis for precise reasoning nbOltt. t.he behavioural aspects of a.n ADT. The

term 'formal specification' implies that:

l. A specifica.tiott IS expressed usmg a. notation which has, as its foullCla.tion. ngorous

ma.thema.t i cs.

2. There is a need for both t.he syntax and the semantics of the specification-language,

used to express the formal :;pecifica.tion. to be formally defined. so that the meaning of

a. specification ca1t b(' dett'l'IItilted bv reference to the specifi.ca.t.iou-la.ngua.ge dejindion ..

8.2 The benefits provided by the use of formal tech-

niques for specification

These are:

1. An aid to improving the quality of natural language specifications

Tlw forllla.l t(·chltiqm· iit'ls <-ts a tool for relining nat.ural language s1wcihca.tions. through

the exposun-· of <IIJtiJigttit.i('s <-wd coltLradictions .. -\lgebraic specifications are easy to

read and understand, facilitating informal and formal verification.

·) The provisiOn of an intermediate step between requirements and design

Specification is concf'rned with the precise definition of the tasks to be performed by a

system. It was the dllthor's e~perience that the greatest benefit in a.pplying a formal

method accrued through the procr:ss of formalising, making possible the gaining of a

deeper understanding of the svsteru being specified, by being abstract and meticulous

concerning the desired pro[Wl'ties ul' the system.

:3. The provision of a framework foe verifying a system. in a systematic manner

According to Mf'_ver [84] semantic analysis of formal specifications can be assisted bv

software Luols. lllilking possible lll<tcltiue ana.lysis aucl lll<lllipulation. but this is not

possible 11·it h illl'orttlill ·"i><'<·ilic;1t il!IIS. i.('. t l1osf' written 11sing n<tll!r<d laJtguagf'.

\Ving states [L28]t.h<:tt some proof-cll<'<kiJJg tools <·'.g. Lm~h. Prover. OB.J, enable al­

gebraic specifications to be treated as re-write rules.

Gutta.g [.SO] ha.s sholl'n that algebr<~ic specifications of data types can plav a significant

role in fJ/'O.fJ/'11111 H'l'ific;ltioJJ. pel'lnitt.iJJg factorisation of proof:-; into distinct manage-

able stages. 1-l<· also sl1ull'ed [:)()] tliii1 t.lw use of pure 1'1111<'1 io11s i:liid equations as the

form of specification perlllils proofs to lw co11sl ruct.cd. in ldrge part. as sequences of

substitutions. using the equations as re\vrite rules.

-!. Support for ee-use

1\lleyer states I IJ<II [;-;.[]<Ill ('SS<'lll i<il n•quin'llH'Ilf ol' a goocl spe<·ihcat ion furmalislll is that

it should l'aYour r<'l!S<' ol' pre,·iuusl\· 1ni1 t,('ll elerrH-'llt.s ol' specitical ions. The documen-

tation paradigm is specified as an ordered binary· tree and therefore supports binary

search.

:210

.5. Communication

\Ving points out [l:?S] that. a specitication may serve as a contract. \\·hidt is a valuable

piece of documentation, ;wd a means of communication between a client, a specifier

and an implement.or.

6. Automatic update of test-suite

8.3

As mentioned in chapter six. an automatic approach to the identification of obsolete

functional tests is only possible where a formal specification language has been used,

which permits the analysis of changes in the specification.

The formal specification of data abstractions

:\s pointed out by Cut tag [.)!]there <~re rnan\ possibiP methods of specifying the semantics

of art abstract ddt.i:l L\·1w: tttosl ol· 1 hese cart be classified as opf'ratiott<ll or clehuitional. The

operational method prO\ ides d cotllpi:iri:tl i \·ely eas\· nwatts of cottst.ructillg the typf' but forces

the overspecification of tlw abstractio11. whereas the definitional method. although more

difficult. avoids this probletll.

:21 I

8.3.1 Operational approach

The operational approach defines tlw ADT operations 111 terms of some other known set

of operations that a.r<-' not those dtaracterising the ADT. These other operations fonu a

general unclPrlyittg; tllod('l. upo11 II"IIich t lw definition of the ADT is construcLed. This model

can then be used as tlte has is for t.lw co1tst ructi 1·e specificaLiOil of a range of related ADTs.

This underlying model needs to be defined either implicitly, b.v means of a. mathematical

technique, such as set theory. or e:-.:plicitly. using a formal language such as :\'lela IV [5~], Z

[l LtJ]. or algebraic d.\iuiiiS. d(-'snibed hel011·. wltich is itself a forr11al]d!lgua.ge.

8.3.2 Definitional approach

.-\n example of tlw DefiiJition;-tl apjnuac!J is a.n r~lgebraic technique de1eloped bv Zilles [1:3:3].

Cut.tag [:)L]. a.nd CugiJ('Ji ,,, ill [II]: it ltiis t11·o Jldl"ls:

l. An interface pa.rt 11·!Jich nanws the al]m,·ecl operat.ioJlS aJJci specifies the types of their

pa.ran\et.crs

·) An a:-.:io1ns JMrl ll·!tic!J ddi1ws tlw lwhaviour of t!J('S<-' opera! io1Js.

An object is specified 111 terms of the relationships between the operations that act on the

object, and therefore fits Ill well with the concept of ADTs. The algebraic approach to

specifying .-\.DTs 1s t.be ddittition of its properties as a set of axioms. This approach re-

2l2

quires that each oper<ll.ion acl.ing urr tlw .-\DT should have a::-:ionrs associ<t.t.ed with it, which

state what may be asserted after e::-:ecut.ion of that operation: the assertions being made in

terms of what was true before execution. A small set of axioms is sufficient to totally define

an ADT: often these a::-:ioms <'llilble the deduction of furtlttT properties of the object. A

formal-specificatio11 of art ADT usirtg the algebraic approach involves a -opecification of the

s.vntax and the seinautics of Llw op<:'!'d.tions. The algebraic approach is a fuudamental one,

since it defines the operations of ar1 A. DT by relating their meanings to on~ another. without

reference to any operations other tlwn those characterising tlu: ADT.

Discussion.

According to Sommerville [11;:)] the model-based approach to formal specification is not yet

mature and is not yet widely ltsa.ble <ls a soh\\·a.rf' f'ngineeri11g tool. since it does not lend

itself to the st.ruct.uri1tg of spe<"ificaJiotts at t.lw architectund level. Li:·d~o\· i:Utd Berzius [1-1],

are a.lso of the opitliOtl tllii.t t.lw r~lgdlr<li<" <1ppro<:1ch is by far the lwtt.(T-de~.elupecl of the two

specificatiort techniques.

The importancP of <"OIIst.ructi11g specific<·ltions increnwntall\· i" \\'ell krt0\111. <ntd is a natural

vvay of producing a specifin1tion. using t.he technique of enrichment. \\'hich allows algebraic

specificat.iolls tu lw st l'llctured <Lml built out. of e::-:ist.ittg specihcat.io11s. The lit'\\' ADT pro-

ducecl by enrichnwllt inherits tlt<• ojwratiolls a11cl axioms defined ou-·r the old ADT. so that

these apply to the new ADT. Emichmeut of algebraic specificat.iolls is a powerful abstraction

tool for building a formal specification. sincE' it allows higlwr-level operations on an ADT

t.o be cle,·iscd. whidt <"<111 t.he11 be defined in terms of lower-le,·el operations. whose algebraic

axioms are well-known. In contrast. enrichment cannot easily be used with the constructive

approach. For these l'<:'asolt:> the nlgebraic approach has been adopted in this thesis.

8.4 Completeness of Algebraic Specifications

An ADT can be viewed n.S a store of information ph1s the collection of related operations

that can be carried out on it; each operation ha.s three components associated with it; source

data. results and the relatiolls!tip existing between them. The word ,.efated is irnportaut

siuce the meaning~ of tl1e ·atoltlir' operatio11s thnt characterise an ADT are not independent

of one another. The beh<wiour of <111 .-\ DT can only be seen by observing the results of the

manipulations 011 it. i.<'. hy <~pph·ill)!, til(' :·wl uf operat io11s \\·!Jicl1 deli1w it. a.!ld so the first

stage in the formal specification of a11 .\ IYI is its clefi1tit ion. ,.i<l t.he icif'nt.ification of these

a.llowed operations. This is ilnport<wt. since capturing the semantics of the data type helps

to ensure tha.t its for1w1l s1wcificat.i(m is colltplf!t. The complete capture of the semantics of

an ADT can only be achieved if the axioms define operations \vhich allo\V the construction

of all possible instarrc('S of the .\DT. (a.11 .-\DT Is the set of all possible values of the type),

and which also define t.he result of all per1nis~ible o1wrations 011 t.he .-\IJT. The completeness

of t.he specification draws upo11 tlw work of Guttag [.50]. and Fairley [:37]. The complete set

of operations clefini11g an .-\DT is ADT-clependenL but if the total set. of operations possible

on the ADT l'.1laililf'IJC111et'-Histon· is represented b.v pl pn. and the minimum subset

necessary to capture its sent<lll1 ics as q I qr. r :S n. 1 hen this subsPt. ,. can be partitioned

into three subsets:

1. Const ruct.or set (x)

2. Behaviour set (y)

:3. Modifier set (z)

A sufficiently complete set. of axiOillS twcess<u.v to capture the semantics of the ADT ts

compiled by providing axioms for each member of these three subsets. of the forrn:

Behaviour(Cunslt·u.cfor()) =?

i'vfodifier(Constructor()) ="?

From this it can be seen t.hat the tota.l number of axioms which define the ADT ts:

(Card(::)* Canl(.r)) + (Caul(y) * Card(.r))

The definition of axio11ts setting out tlw heha\ iour of ADT operatiotts begins by identifying

these ·Constructor·. · .\lodili<:·r·. <t!id · Lkli<t\·iour· operat.ioJJs.

Common to all clyuamic claL:i structures are t\\"O classes of operatio11: ']\dn:·iforrnation, whereby

the structure and/or contP!lt of the informatio11 structure i:; changed. and :"-iaviga.tion. whereby

the structure and/or cont.<:'llt of t.lw information structure is unchanged. These two classes of

operation rna.y be part.itic!lled iiJ!o thre<' sub-classes. each of which contains a set of generic

lower-level operations. euuuwratt·cl belm\·. Ltcl1 g<'lwric up<:·ratioll is labelled as a ·Construe-

t.or' (C). "Nlodifier· (~'vl). or ·Behaviour' (13).

l. Transformation

(a) Initialisation (C)

Creates a new instance of the ADT.

21.)

(b) Assignment (M)

Changes the value held in an existing element of the ADT or can be used to copy

all or part of t.lw structure iJJto another structure.

(c) Rearrangement (M)

Re-orders the items 11·itl1in the ADT. This may be done IllilJIUil.llv. as a ·Prune

and Craft.. operation or may be automatic, for example Sorting.

(d) Deletion (M)

Reduces the size of the .-\ DT.

(e) Insertion (C)

Increases t.lw size of tlw .\DT.

~- Navigation

(a) Accessing (B)

Identification of t.lw req11ired eleiJH'IJI by 1·irt.1w of it.s po.~ition in the ADT.

(b) Searching (B)

ldentificdtiuii of tlw r<'quired elelllel!l by virtue of its coultu!.•-. a gi1eu field in the

element act.ing as the search key.

(c) Retrieval (B)

Obtains information j)l'i'\ iously stored in a11 elellwllt of the ADT using Search

and Cop\· u1wrat.ions. or provides information about the ADT itself. e.g. where

t.o find infonnation within the ADT.

(d) Browsing (B)

!\·loving hdckll'cl!'ds diHI fonl'<trds II' it !Jill I lw ,\ DT- 1 his uses t lw Write opera.t.ion.

:216

8.5

which is concerrwcl with Hr>trie,·al. and begins with a Search operatiott and eucls

with a Write operation r.o standard output or a printer.

(e) Comparison (B)

Compares information content of elements of the ADT.

Consistency of Algebraic Specifications

If i:t.l1\' two <txiouts ;m· t'(!ltii'<Hiicton tlwtt art <ligt•br<lic specificat.iutt is ittcottsistent: however

the fact that such a sp<Tihcdt iott is \I'J'itt<'II forttt<lih. i.t'. ttt<t.kt·s ttst' tll' rigorous mathernat.-

ics. means that it can be clemonstrdted that. tlte a.xiorm are ttot corttradictor.v. Guttag has

shown that i:t recogttisably COIItplete iixiurnatis<tt.ion cart be ,.it-·wed as <-t set of n-·placement

rules. and its consistencv demonstrated hy prm·ing that. the set. of replacement rules ex-

hibits the Clturclt-Hosst·r properl\ [:!6] . .\lachirw verificatiott is <:tlso possible for axiomatic

specifications: a.n inlt'rdctin· :-;\·:-;tt'ttt j:-; dt·snil!('d h\ (;ttl.ldp; itt [.cJlJ].

8.6 The operations on the ADT Maintenance-History

Informally. the ADT ivlaint.enance-History is att information-structure designed to store in­

formation, and to record the rela.tionships between items of information, a.s well as providing

the means of using and cha.ttging the information held in it: this is a summary of the require-

:217

ments for an .-\DT. Formcdl1·. tlw .\DT \L·l.int.en<Ht<P-1-Iist.ory is of a u·naill t.ype: each of

its components rs an A DT. and also has a type associated with it. The A O'T [Vlaintenance­

History ca.11 be regarded as a collection of ADTs. and so the operations ca.n be subdi,·icled

into those for the Anthology. and those [or each Book, contained within the .-\nthology. Some

of the generic operatio11:-; lllci\. 1101 \,<. tlleallingful for a particular ADT, ami sottte rnay cmly be

performed conditionally. Tlte con1plet.e ,.;et of OJWratiotls on t.he ADT ~vlainteua.nce-History

is intended to reflect the main ten a nee model adopted for an ISMS E, and in ad eli tion it is

intended, as far as is practicable. t.o mirror all the manual ways in which it is possible to use

a. ·hard-copy· COlli! t.fTJldrt of t he .-\ DT.

8.6.1 The operations on the ADT Anthology

l. Transformation

(a.) Initialisation

A new ernptv instance of the .-\ DT .-\ 11t.holog1· can be created using the Create

operation.

(b) Assignment

may be decided durillg t lw lifet illle of tlw soft W<ll'<' that support. for early versions

of the software is no longer a viable proposition. The earliest version for which

support is to be provided is known as the 'baseline' version, and this 'baseline'

is moved forward Lo a later versioll as successive versions of the software are

produced. The element of the ADT Anthology which is to serve as this ·baseline'

version can be designated using the Assign operation.

(c) Rearrangement

The order of the elerrwnts in t.he Anthology ca.n be changed ustng the operations

below.

1. Deletion

An element. i.e. a Book with a grven verston number ca.n be removed from

the Anthology using the Delete operation.

ii. Insertion

.-\n Plenwnt. i.e. <"~ Book wit.h a grven version number ca.n be inserted at a

gl\·ert posit.iurt irll o tlw Anthology using the Insert operation.

lnit.ialisatiutJ. .\ssigrrtllf'lll dti<l l{e<llTC\Il!.>J'IlWnl n)lllcl lw lts<··d for updating a. table of

conteuts illtd d lltilst.,·r i11d<·.\ l·or 1lw .\till1olo~.:y.

·) Navigation

(a.) Accessing

Evaluatiull or d pci.rl.i··,,[;u Bouk versron l1UI1lber corresponding to its position Ill

the Artthulug_,. 1tsi11g tlw Evaluate OJWrat.ioll.

(b) Searching

Find the position of a grven element. in the Anthology usmg its version number,

which acts as tlw search kev. using the Position operation.

(c) Retrieval

Retrieve tlw lat~:·st elenwnt ttl t II\' .\111 holog_v. us rug the Latest operation. The

2EJ

latest book 111 the .-\nthology is designated as the onP which corresponds to the

latest version of the software. If it IS required to insert a Book with a g1ven

version llllilllwr into t.lw .-\lithology then it must lw ascertaitwcl whether that

version numlwr iilrecH:l\· exist'-': using the operation Isin_Anthology.

(d) Browsing

Given t.he posit.iou of au element in the Anthology, find the next or previOus

element in the Anthology. using the Next and Previous operations. and Display

the resulting version lliirnber. This makes possible moving from Book to Book.

t.e. browsi11g. 11·ith t lw dbilit\ tu r<'l.lll"ll tot he ii!Ciex or t.a.blt~ of contents at anv

time from a.1w Book.

ANTHOLOGY (l·~·ft,,, [/ ud1 flw-d ____, Eft:,n])

sort: Ordered-List
in1ports: inLt~ger. booka11

Description of sort and operations

This Sj>t-'(ilicat i(!JI dclittt·s tlw .\ DT .-\nt.holog\·. \Vhicll ts att elll'ichmellt
of the sor1 Ordt~recUist. witlt its ttwtttlwrs atT<-lllgecl III asceucliug order.
It inherits the operations of the .-\ DT OrclerecUist. but the operations
to construct. the OrclerecUist and to add a member to the list are
hidden. t.e. would not be accessible tn any implemenLa.tiotJ. t.o ensure
that. the urderi11g of tlt<' Atttbology cannot. he comprotnised.
The cottstruct.or oper<-1t.ion produces i1It Anthology containittg one item.
'l'he orclerittg t)f t.lw list 1s tlli:lint<titwd ustng t.l1f' insert. operat.iotJ.

SETS

A = {a.: d ts a11 .-\ Ittlwlogy l
N = {n: 11 ts a. Hook titlt-·l
z = { z: z > l }

Syntax:

(' uu _A nl h ol ()_(j .'I ~ ·I

Semantics:

Con_Anthology(n.z.a) = Cl.ppettd(tn<lke(II./,).i-1.)

Figurt' ~-l: .-\lgebraic specification of A DT Anthology

ANTHOLOGY (Firm [t"ndrf11ro/__, Elun])

SETS

A= {a.: a 1s a11 ,\ntltology}
N = {n: n 1s <t Book title}
B = { lrut . .fid~c}

Z = {z: z > l }
!VI = {Ill: Book no/ p,.(;Sf nl. On! of rnngt, Book already pn:.'>t nl.

Ne:rl Boo/,: rlors no/ c.c/sl. Preulntl-" Book does not e:rlst}
F = { f: f IS <ill out.pttt fik l

Syntax:

Creal t __ -l nl. hoi o_qy ___, .-l
I si!L.-lnllwlur;y Z X A--. B
Deldt .\ x .-l ~ AU ,\[
fnsul Z x .\· x .·1 ___, AU .H
Position .\ x .-l ---> Z U .1-/
Eculuo/1 I x .I---".\ U .\1
H·,./lr .I~ /-"
As.,lqu I ~ I
.\.ul ;: x .I~ \ U \/

Pn.Ttou., ;: x -1 ~ .\ U .\/
Latest A ~ .\ U .\/

E a ,. I u _, l .l ~ . \ u . \1

Fig11re ~.:.:!: .\lgelm1ic specificatiotJ of ADT Anthology (cot1td.)

ANTHOLOGY (Elt11t: [I ur/1 f11nd-----+ Elt:rn])

Sen1antics:

Va E A,Vb,n E N.VL:: E Z:

lsiru\nthology(b.CrcaLe_.-\rtt.!tology) = false ... (Al)

lsirL.-\uthology(ld'urr_.\rrl!tulug\·(rt.l..a)) =if b = 11

then

true

else

if b < n

then

fa! se
els<·

lsirL.-\ tit lwlogy(h.a) ... (A2)

Delete(b.Creal<:'_Ant.holugy) =·Hook rtol present ... (A3)

Delete(b,Con_Anthology(Jl.Z.d)) = if b = 11

then

Insert(b, C\eate_An tltology)

else

if h < II

t [It' II

·Book 1101 presellt

<'Is<·
('otL.-\ n t.hology(n .!..D<-·Iet.t-·(b.a)) ... (A4)

('on_.-\ tttltology (b, Create_.-\ ttthology) ... (A5)

Figur<· ~.:1: .\lg<·IJI·<tic sp<·cilicatiott of ADT .\ntlwlog_\ (nmLd.)

:22:3

ANTHOLOGY (E/r 111 : [f n.rlr: fn1ul -----+ Elenr])

Semantics:

Ya E A, Yh. n E :V. Yk. _:- E l:

lnsert(b,Con_AJJtlwlogy(n.z.a)) = if b = n

then

·Hook <·:-:ists"
(-+:i('

C'on_A nthology (Jl.Z.lnsert(b.a)) ... (A6)

Positiou(b.C're;-tt<~_.-\Jilhology) =·Book nol preseJtt. _ .. (A7)

Positiott(b.C'uii __ -\iilltolu~\(II.Z.d) =if b = 11

till' II

!

Evaluate(k.Crt-'<-tt(·_AJlt.holog\) = ·Book not presPnt.· ... (A9)

Evaluat.e(k.CoJi_:\nthology(ll.Z.a)) =if k = z
the11

n
else

ifk > ()
I lw11

Ev;-tlua.t.e(k.i-1) ... (AlO)

Figure ~.-l: Algebraic specification of ADT Anthology (contcl.)

:2:2-l

ANTHOLOGY (i'.'hm: [t uJhfr111d __, Eltm])

Sernantics:

Va E A. Vh. 11 E .\·. V:: E Z:

\Vrit.e(Create_:\ntholog\·) = Create_:\nthology ... (All)

Write(Con_.-\nthology(n.z.a)) = Write(n): Write(a) ... (Al2)

Assign(b.C'rr·at.e_.\ntholo).!.\) = C'reat.t• __ -\nt.hology ... (Al3)

Assign (h. Co1L.\ 11 I holog\ (1!.1.<1)) = (C'otL.:\ n I hology(n.7.a)) ... (A 14)

Next(C'reat.e_.-\nthology) = ·Hook ItO! pr<'S<'III (Al5)

Next(CotLAnthology(n.z.a)) =

if not(a = Create_.-\11thology) tlwn

Evaluate(s ucc(Posi I io11 (n .CotLA n tho logy (n.z.a))). CorL.:\ nt hology(n.z.a))

... (Al6)

Previous(C'It'illt' __ \ltlltolog\) =·nook 1101 preseut· ... (Al7)

Previous(('utt_.\ ltllt()ltlgy(11./.il.)) =

ifnot(z = lJ

then

Evaluate(pred(Posit ic!!l(11.C'OIL.-\nt!IO!ogy(n.z.a))).{'oiL.-\ 11t hology(n.z,a))

... (Al8)

Llrli<·st(C'rt'illt'_.-\lttllology) = ·Uook not presetJI (Al9)

Earli<··st({'tilt_.\ltlltolug\(11./..il)) = 11 ... (A20)

Latest(Create __ \nthulogy) = ·!Jook ttol prese11t (A21)

Latest(Con_.-\nt hology(tl.z.a)) = if (a. = CreaU:•_A nthology)

then

n

else

La.test(a.) ... (A22)

Figur<' ~.:): .\lg<·'l)l·ai< spccilicat.io1t of ADT Allt.lwlogy (contd.)

8.6.2 Nat ural language description of axioms for ADT Anthol-

ogy.

(Al) simply states that the <~tnptv Antl10logy co11U1ins no Books.

(A2) ma.kes use of the f<td tll<tl t.lw Books i11 the Anthology are strictly ordered accordi11g

to version code. which is an alphilnunwric key. used as the title of the Book. and also the key

for all search operat.icms: the first Uook in the list having the smallest versio11 ttumber. The

operation C:oii_Anthology <lct.s ilS d d<'<'Utlstruct.or. so that the Anthology cati he r<J,gardecl

as being comprisf'd of tlw lire;! Hook. l'ollo\\'('d h\· t II<' t't:'llldill(ler of tlw .~nthology. If the

remainder of the .-\111 !tulog\ ic; <'lllpl\ tlw11 <t'\iottl (.-\ l) cau bt' applied. lf tlw .-\nthology

contains more t ha11 Oil<' Book t hell t lw list is searched recursiw,Iv. termiua.tion occurnng

either b.Y a successful s<~<lrch or h\· the key for the search bei11g out of range. or b\· there

being uo more Books ,,·ith ,,-Jli<·li to nltllp<tl'f~ keys. ,,·lwrcupoti d.\iUtll (.-\l) applies.

(A3) states that a Book tilllll<!l lw d<'i<'lnl i'Wiil dll t'llljll\ .\tiiiiulugy.

(A4) states that a Book Citll tmh l)(' deleted if its key is within the r<tnge of keys present

in the Anthology. lf t h<' Book is not ti1P first i11 the .-\uthology. then the retuainder of the

Anthology must lw s<'dtTiwd recursively. termination occurring either b\· d successful search.

or by the key for tlw s<'iHclt lwittg otrt of rail!.!;<'. orb\· t il<'l'<' lwit1g II() 111or<' Buuks witl1 which

to compare keys. wlwn d'\IOIIl (.-\:1) dppli<·s.

(A5) states that. iusertio1t of d Book int.o <UI empty Anthologv is achieved by constructing

a.n Anthology cont.aining just otte Book.

(A6) states that if Llw .-\ntltology is not t-'lllpt.y then the iusert.iou of the book into the

Anthology is otdy pos:.;il>i<' if t II<' t.itl<' dot's twl c-dreacl\ <''\ist 11·it !titl tlw .-\ttl !tology. otherwise

au error message is output. Tlw corn-~ct. posit.i(m 111 the .-\ut.hology is fouud using a recursive

search of the keys ol" t.ll<' ot lwr l~uoks i11 the A11t IJc:dogy. If the positio11 for insertion is at the

(A7) sta.tes t.i1at. l)osit.i<)JJ 111 ill! ('JJJ[)I\ .\nthology is Uitde!iued. aud so dll error message ts

output to this eff"ect..

(A8) states that if the key of the Book sought is not equal to the key of the current book

in the Anthology. the search key is cornparecl recursively with those of the remaining Books

in the Antholog_y. TnminaLioJt oft lw search occurs, either because a match is found. or all

Books have bee11 coJJlf>dJ"(•d witlJuiJt d tll(ltch. 11·lwrPupot1 (.-\/)applies.

(A9) states that version code is utHk'fitwd for an elllpt.y Autholog:· and so a. message ts

output to this effect..

(AlO) states that. t.lw result. ol· at.t.(c'lllpLiug to recover a verstou code a.L a g1ven position 111

the .'\iltholog_,. is tllld<"lill\'rl il" t lw posit io11 ts J\Ot <l lll<'lllhcr oft lw s<'l uf 11at ural l!Ulllb<-.'rs

greater that\ zero. nr is gr<'<ti<T tl1<111 tlw ,.<JrciiJI<tlit ,. oft h(' S<'l of 11ooks 111 the ...-\lithology

(All) states that writiug an empty .-\ntholog\· produces an empty file. (Al2) states that

1niting an Anthology contdilling Books produces <1. file in which the kc_,. of the latest member

is written first. followed l1\· t hust' of tlw r<:'Jmtillder. i11 order oft heir versio11 codes.

(Al3) states tlwt dtL<·'illpl i11g tu c-1ssigJI c-1 \·ersioJJ code t.o a11 Pillpt.y .\ut.holog~v ha.s 110 effect.

(A14) states that assJgJJill.!!, <I \<TsiuJJ cud<· l.u d Hook i11 tlw .\Jithvlogy dues uol affect the

structure of the Anthology.

(Al5) stales that s(•archill.!!, <Ill t'lltply Authology for il versiUll code uf tlw llt'.\l ele!lleut Ill

the Anthology is UJJddi11ed <:U1d a Jlless(lge is output t.o this effect.

(Al6) states that t.lw ltTsinJJ cudt• rt'tLmwd by this operatiou is tltat of the element whose

position IS t.lw OIW l'olloll.iiiP, tlw <IIIT<·'Jtt position. e\:n•pt. 1dw11 tlw currct1t posit.ion 1s the

I as t posit. ion i 11 t lw .~\ 11 t l1 'l I ()g_\.

(A17) slates t.be1t '-'<'ilrcllill.!!, illl eiii!Jty .\11Lliology for a version code of the previous element

is undefined ;u1d d ilws::;;Jg<· is U111 !Jill to this effect..

(Al8) states that the posit.io11 pdssecl <-Is a pari'\.meter to tlw operation is the predecessor lo

the current positio11. e'\cept 11·lwi1 tlw Cli!T<-'Ilt. positioit is the first positioii in the Anthology·.

(A19) states that <HJ attempt to fi11cl the earliest Book in an empty Antholog_v is undefined

and a message is output to this effect..

(A20) states that l he <'<-trliest H<!ok i11 i\11 .\11t.hology 11·hicl1 is not. <Jitlpty IS simply that

produced by the deconstructor OJHT<il ion.

(A21) states that illl at l<'lttpt to lind t.!It' latest Book 111 an f:'lllpt.y A11thology is undefined

and a message is out pul to tl1is dl"ect..

(A22) stat.es t.hat the l<il<·st !look in <-~II .~\Jtt.hology which COIIL<tills 11/0I"f thau one Book IS

found b1· applyi11g 1lw up<'riltiull I"<'< ursii·,.J_~· tn tlw .\1Jt l1olo.e;\.

8.6.3 The Operations on the ADT Book

l. Transformation

(a) Initialisation

This OJWrnt iu11 f'lli-l.hles the construct-ion of the book: t.liis IS achieved VIC\ the

Create OJWr<-~.tion. Frmn t.he change request the Anthology must lw searched to

S!'t' wh('t il<'r til(' clldii,L';<' l"<'<jllt'st is ·valid'. i.e. t lw prohl<'lll llli-1\. be on filt·. and

mainterr<LIIC<' Illil\ bt· ongoirtg or a solution Ill<ty havP been found t.o the problem

,,·hicl1 is cCJIJiairwd ir1 ii.!Jutlwr \'tcTsioir of the software.

(b) Assignment

:\n item of inforJJJaliLm is pi<HTcl into an element of the book. using the Assign

operation.

(c) Rearrangement

1. Deletion

.\ pi<'<"<' of iiJh!I'I!Jiil io11 c;n1 lw removed from tilt' hook U:-iiilg tlw Delete

O[Wrat.iOJ!.

ii. Insertion

The Insert oper<ttioJJ can I)(' used to insert the components of the book.

III. Editing

Tlw 13ook furJJJ<Jl c;w ht• edited tisrng the Graft dltcl Prune operations to

rellect cop_nng. rttovrng CJJJd deleting pieces of infonna.Liou to simulate ·cut

and p<~:-;t.e· uperat.ioJJ:-i - this enables p<l.rtit.ioning or r<Jpartitioning a Book

into chapters. <lllcl sect.ioib.

·> Navigation

(a) Accessing

:\ particular colllponeut of the Book can be accessed b,· virtue of its umque

alphanuirwric key. usmg t.he Evaluate operation.

(b) Searching

.-\ pat lt'l'JI-JJJdlciJiiJg tlJWrdtJuiJ 1:-; tt:-;<·d for conl.t'IJt-se<JrciJ. l.t'. sea.rching text: a.

e<JllljlOI!t'!ll of t lw IH)()k is tlw suhjl'cl of t lie se<trcl!. t.lw st.ri11g to be sc<:trclted

f,JI' is t.lw i><•rdiiH'It'l supplil'd to tlw Cross_reference opera.tio11. Traceability

lwtl\'<c'CII pltilscs uf ill(' suit \I'<Lrc lik-cycle carr be 1·crified, h_v fillCling references to

lt variabk- in e.g. t·t~quirertlt'llh. specificatiorL design and source code. using the

Evaluate operatiorr.

(c) Retrieval

r. This operat io11 could lw used t.o ma.p inputs and outputs frorn source code

modules to the clat.a dict.ionarv to a.id 111 documentation.

ii. lnforrnation aht)III d JMrticulitr <tSJH't·t of tlw .\D l Uook. e.g. chapter headings

or l<lhle of colllt'lll'-'. r·dll he ohtairwd ltstng the Write UJWratiorr.

tJr. Clrdtlgt· rt't.llll'st.s r·a11 lw list-ed. displayed. or printed. us1ng the Write opera-

[. IU II.

1\·. Re-us1·' of tiJodttles <tl!d dssuciat.ed docunil't!lat io11 cctn lw <tccomplishecl usrng

the Copy OJWr<ltiul!.

\ Tlw Evaluate OJwratiotl prm·icles a nwans of rf:'corcling ll'hicl! parts of t.lw

.-\11tholog\ lrct\'l' !wen visit~·cl. If a number of books have been perused during

the COIII'SI' of d tnaitlkndnce assignment. then recording t.hese books and the

to rf·use t.l1is ·1·irt uCJI. Uook. 1\·h1·n cot1tinuing tIre lll<:tint.el!allce assignment, by

using t.lw Trail oper<lt ion.

(d) Browsing

The follo\\'illg lnodt•s of access nnrst. lw supported.

no

1. Tl1c ahilit_~· t.o g<·t to tlw index or table of contents at anv tirue from a.nyvv·here

I" lll<ult· JH!:-;sil>le IISIII!l, t.lw Home operd.t.iou. 'lhc-'11 ;wy part of any 13ook

can lw dC! ~·:-;st·d t'ro111 d.ll\. other part l)f <wy utlter Book. The Booklnark

\)j)Cr<-lt io11 lllilkcs it pussihit' t.o kt·cp the UJIT<:'III plan-· itt I lw Hook.

(e) Comparison

1. Comparing the module structure chart of versions of source code. us1ng the

Equal oper;-1t.ion to ren'<ll the differences in their structures.

11. .-\ docJtrnentatinll-lllodlde qrltct.tlrP can lw ronstnwt.ed ltsing the Copy oper­

atiotl to 111irror the call-gr<lpll st ntcl ure \)f the source code. Then a comparison

of the keys associated with each node in each tree using the Equal opera.-

tic)() J>rovides a llwans of !:'llStlriug that the clocumentaticm structure ltas been

111odified to 1·dlecl il.ll\. chc-lllge to I he -;ourcf' codt-.'s call-graph st.ructurP.

The Book structure is tlt;-1!. of illl 111-<u·\· tree. <111d l>t'CdUSP the operat.iuns on such a tree arc

dependent on tlw order ot· the tree. they are complicated and non-stancla.rclisecl. For this

reason the 111-ary Lrci' i;; I r<lllsfol'llwd i11W a l\nuth ordered bitl<HY tret•. as shown in Figure 8.6

belO\v. prior to specil'\i11g tiH' <1:\i()llls l'or tlw operat.ions 011 the Hook. Tlw rf'sulting l\uuth

ordered biuary tret• is logicnll\ <'lJili\·alt·lil tu I lw origin;d nHtry tree. there being no luss of

information cluriug the t.ransformatiotl. Tlw relatiouships beL\veen the nodes in the I\nuth

ordered binary I rec <~re sliOI\'11 i11 Figure 8.1 below. The advantages of specifying the axioms

on the I\nuth ordered billdl'\. I ree are c!t-·scrilwcl belo\\·.

:2:31

Sectio11 l

Subsection I

'o l.l.N

TITLE OF BOOI\

Mapping to
Knuth Binary

Tree

TITLE OF BOO!\

•)

0 \

Figure 8.6: C'otlversion of m-ary tree to Knuth ordered bina.ry tree

Chapter N

l. The .c;tructurt of a binary tret' is completely recursive, allowing a recursive definition

of the axJOms spccifviiig the operations: the transformation from m-arv Lo hiuar.v 1s.

therefore. a po\\'erful abst.raction tool.

2. Searching

Searching in a bina.r.Y tree is r;tpicl and Since the key of the nodP 1s rela.ted to the

contents of the node. then the search can be content-controlled.

:3. Traversals

The travers;-d uf <t bi1tary t.rc<· prodtlr·<·s i1 li;;~. 11·hose struct.tlr<" depends on the structure

of the tree. and tlw type of LriliTrsal employed. providing iltfornliHiou concerniug the

structure of t.lw tree. e.g. table of conreut.s.

Previous-Sibling(i)

First-Child(i)

/

/

/

~ext-Sibling(i)

'('\ J La,;t-Sibling(i)

B 0 0 K (E I (Ill [I II t! (I i II ul -----" n (Ill])

sort: Knuth Bina.ry Searcl1 'l'r<'i'
in1ports: integer, boolean

Description of sort and opeeations

This specificatioJJ ckfiites the .\ DT Book. which Is, predominantly. an eurichment of

the sort Binary Se;uch Tree. It inherits some of the operations of the ADT Bina.rv
Search Tree, and also of the .\ DT Queue. The operations for the Queue are ccmsicl­

ered first.

An operation GeLNext 1s required wiiiciJ t·cturiJs tlw item at the front of the queue,
and then deletes this item. The output from this function IS specified as a tuple.

Displaying the COIJtf'nts of tlw Queue Imt.kes usP of t.he \Vrite operation. The last

item 111 the queue 1s retunwd ustllg tlw Last operatio11.

SETS

I = sf'! of ite1ns

Q = set of qu<'II<'s

F = set of files

Syntax:

C'tL.Vcci.(Qvcul) Q- I x (j
l+'rilt(Qunu) (j _, F'
Lw;t(Qut ut) Q ---t I

l·'igiiJ'(' ~.:-1: .\lgelm1ic specifica.tioJt of .-\DT Book

BOOK (E/(111: [f ucl!fuud- L/uu])

Semantics:

\1 i E f. \1 q E Q:

GeLNext(Create_QueueJ =(·The queue is empty'.C:rea.te_Queue)

GeLNext(AdcLto_QI~eiw(i .r1)) = (Fro11t (q) .Delete_From_QuPue(q))

\Vrite(Create_Queue) = · Empt.y Queue·

Write(A deL To_Queue(i .q)) = \\"rite(GeL:\ ext(AclcLt o_Queue(i ,q)))

Last(Create_Queue) = · Emptv Queue·

Last(A.dd_To_Queue(i.q)j = i

The operatious relati11g tu tilt' eiiriciiiJWJII of the Binary Search Tree an" now consid­

ered. The operat.io11 tu C"OJislruct the Bi1t<1ry Searcl1 Tree a!lcl to add an item to the

Binary Search Tree a.re ltiddeJJ. i.e. would ttot lw accessible in a.uy impleuteuta.tion,

to ensure that the ordering of the Binary Search Tree cannot be compromised. The

ordering of the Binan· Search Tree is maintained using the Insert operation.

SETS

B = {I 1"1/t . .Jid~c l
T = {t: 1 is <-t t..,:IIUIII IJimt.n· -i<'MCII t.r<'('}

lVI = { m: L'wply Hoof.· .. \of Uflllt.l. fl()() r 1101 flrt.-;1 nil

N = {n: n is a title}

Z = { z: z is a node key }

I = { i: i is an item }

F = {f: f is an output file}

Q = {q: q is a queue}

r...: = { k: k is a search key}

E = {e: e is a search string}

N = { n: u>O }

Figm<' :-i.lJ: .\lg<'hrctic sp<-'cification of ADT Book (cout.d.)

BOOK (l·.'lr:ut: [Undefined--+ Eiem])

Syntax:

CrutJr:_Buol.: : --+ T
.II ol.:t _Boo/,: : T X f X T --+ T
A ·' ' llj II : ;: X .\" X T --+ T
l'u.hlt_of_C 'unl.inl.s : T--+ F
Path : T --+ F
insert : r X .V X T --+ T u M
Ora lt : T x T ---+ T
?nun : T --+ T x T
Eualuo.te: Z x T--+ (N U M) x QF x 1~
f,/n_Bool.: : [\. x T --+ B
(' /"O.':'S_/"1· fi 1"1' /{("(- : T --+ .VI \

A h.' I rue/ : T --+ .\1 •••. V,
('Ofilf : F --+ "/' X "/'

"I'm il : .\ X \ ... X .V --+ V1 V;
/-/o/11(: r ~ \
f3tJoknw.rk : T --+ .V
Po.nnt : ,V x 1' --+ :V
Ne:rL:::.;Ihllng: .V x T--+ :'\'
Pn t·iou.':'_ . .:::;;Minr; : V x T --+ :'V
LosL'>'ihllng: .V x T---+ :V
/-. i ,. ·'I_('/u/ d : . \ X 7' ---+ .\"

r.·~ 1 uul: r x r--+ u

Figure 8.10: Algebraic specific:-Clt.ion of_.\ DT 13ook (contcl.)

BOOK (Elcm: [t .nd1fin(d--;. f-."/, 111])

Semantics

Vi, k E /, V c, n E \\. V t E £, V /. ,. E T, V P E Q:

Assign(Crea.teJ3ookj = ·[mpt.\· B<)Ok (Bl)

Assign(k,Ma.ke_Boolq l.i .r)) = !Vlcd,e_Book(l,i.r) ... (B2)

Ta.ble_oLContents(Create_Book) =·Empty Book' ... (B3)

Table_oLContenLs(\la.ke_Book(l.i.r i i = \·'/rit.e(PreOrcler(?vlake_Book(l,i.r))) ... (B4)

Path(k.C'reat.f-·_Book) = · Li!!pt\· Book· ... (B5)

Path(k.~vlakeJ3ook(l.i.r)) = il' lsiii_Book(k.\li1kt"_Book(l.i.r))
then

if k E \\

then
Write(ROOT)

\\'ri r.e(k. Path(Parent(k) .:VL-1kcBook(l.i .r))) ... (B6)

Figure ~.II: .-\lgehraic specificc1tion of ADT Book (cont.cl.)

:t38

BOOK (Ele.m: [Undefined__, Ele.m])

Semantics

\;f i, k E 1, \;f c, n E C\. \;f t E E. \;f I. ,. E T \;f P E Q :

Insert(k,C\ea.te_Book) = i\L\ke_Book(C rea.Le_Book,k, Crea.te_Book) ... (B7)

lnsert(k,Make_Book(l.i,r) = if k = i
then

else
i\1lake_Book(l.i ,r))

if fsi n_Book(ROOT .\'lakP _Book(l.i .r))
til('! I

else

if Is i 1 Ll3ook (Par<-' II t.(k). :VI a.ke_Book (l. i .r))
tlr lsi It_Book(Previous_Si bl i 11g(k). \Ja.ke_l3ook(l ,i ,r))

tlw11

if k < i
theu

else

;\lake_Book(Insert(k,l).i.r)

il' k > i
tlwn

fvlake_Book(l.i .liist-·rt (k.r))

_\ L-1kc·_Houk (l. i. r)

·ROOT not present.' ... (B8)

FigurP (_) :2: A lgehraic specification of ADT Book (con tel.)

BOOK (£/ern: [Undeft·ncd---. Elun])

Semantics

Vi, k E /. V c, n E ~. V t E E. V /. ,. E T. V P E Q:

Graft(TCreateJ3ook) = T ... (B9)

Graft(PreOrder(T),Ma.ke_Book(l.i .r)) =
If not(Is_Empty(PreOrder(T))
then

Insert(Front(PreO rder(T)), :'vlake_Book(I ,i ,r),

Graft(Delete _frorn_Qm'IIP(PreOrder(T). :vr ake_Book(l. i. r)))) ... (B 10)

Pruue(Creat.e_Book) = ·L:IIIj)!\ Hook· ... (Bll)

Prune(k,lVIa.ke_Book(l.i.r)) = if [s_in(k.\lakeJ3ook(l.i.r))

then

if i = Data(right(Make_Book(l.Pre\·ious_Sibling(k).r)))
I] tell

else

right.(\lakeJ3ook(l. Previo11s_Si bl i ng(k). r))

= Crent.e_Book

if i = D<tt.a(Left(~vlake_Book(I.P<trent(k).r)J

t Jw II
Left.(i\·lake_Hook(l.Parellt(k).r)) = Create_Book

... (B12)

Fig111'f' ,'\.J:L .-\lgeh1·<ti1· sjwcifir<ttion of ADT Hook (cont.d.)

:240

BOOK (Elern: [Cnlltflntd- Eltm])

Semantics

Vi, k E !, V c, n E ~, VeE£. V l, rET, V P E Q:

E \·aluate(k.C'reaL(c'_HocJk) = · LrnpL\ Book· ... (B 13)

Evaluate(k.NL-tke_Book(l.i.r)) = if k = i

tlwtt

\Vri te(Aclc'-to_Queue(Data(Nlake _Book(L i. r) .Qc))):

if k < i
then

Evaluate(k.l)

Evaluate(k.r) ... (B14)

lsin_Book(k.Cr('di<'_Book) = · Entpl\' Book· ... (B 15)

IsirLBook(k,i'vLlke_iiook(l.i.r) =if k = i
III !'II

t.r ue
else

if k <
then

lsi n_Book(k .(1))

lsin_Book(k.(r)) ... (B16)

Cross_reference(e.C'r(-'<lle_Hook) = ('reate_queue ... (B17)

Figure 8.1-k .-\ lg(:·braic specification of ADT Book (con tel.)

241

BOOK (Elrom: [Cndefinul-----+ Elem])

Semantics

V i, 1.: E 1, V c, n E ~, V t E E. V I. r E T, V P E Q :

Cross_reference(e .Ma.ke_Book (l.i .r) =
if e E Da.t.a(?vlake_Book(l.i.r)) then

Appendqueue(A ppendq ueue(.-\del toq ueue(i. Create_queue) .C'ross_reference(l)),
Cross_reference(r)) ... (B18)

Abst.ract.(k.Crent.e_Houk) = · Ernpt.v Book· ... (B19)

.-\bstract.(k.:\lake_Huok(l.i.r)) =if (i :S k)
t I w ,,

(\\rite(i).,\IJstracL(k.l))

.-\bstract(k.l) ... (B20)

Copy(Creat.e _Book) = ((' reat.e_Hook. Create _Book) ... (B 21)

Copy(?vlake_l:3ook(l.i.r)) = (\lake_Hook(l.i.r).
C r21.ft.(ljreO rder(Ma.ke_Book(l. i. r). Crt·a.te_Book))) ... (B22)

Tra.il(Crea.te_Book) =·Empty Book· ... (B23)

Tra.il(~'vla.keJ-3ook(l.i.r)) =If !lOt ls[rnpty(Q~)

then

\Vrit.e(Qe) ... (B24)

Figure 8.l?J: Algebraic specification of ADT Book (co!ltcl.)

BOOK (ELem.: [Cndtfi.nul-----+ Elem])

Semantics

\:1 i,k E /. \:1 c.n E t\. '\/tEE','\/ l.r E T. \:1 P E Q:

Home(('reatP_Book) = ·Ernpty Book' ... (B25)

Home(P.lake_Book(l.i.r) = i ... (B26)

Bookmark(Crea.tc-d3ook) = ·Empty Book· ... (B27)

Bookllla.rk(\l<d.;e_Buok(l.i.r) = Last(q"J ... (B28)

ParPttt(1.;.('re<tt t'_Huok) = ·i·:mpt\· Book· ... (B29)

Parent(k. \L1 kt·_Buok (I. i. r)) = i r· (lsi II_Book(k. ~'lakP _Book(I. i. r)))

tlwil

it" k =c. j
then

else

c

if k =

t he11
ROOT ... (B30)

NexLSibling(k. n.C'rea.Le_Book) = ('reatc_l3ook ... (B31)

N ex LSi bl i ng(k.11. ;'v[ake _f3ook(I. i. r)) = if lsi IL8ook (k.11.!'vl ake_Book(l.i. r))
then

if not(Right(!\'[a.ke_Book(l.i ,r))
= Crea.te_Book)

then
k.succ(n) ... (B32)

Figure b.IG: .\lgebraic specificatioll of ADT Book (contd.)

BOOK (t'lcm: [t_.ndcfwr:d ___, L'/rm])

Semantics

'v' i,k E /.·'v' c.n E l'\. 'v' e E £. 'v' l.r E T, 'v' P E Q:

Previous_Sibling(k.tt.C'reate_Book) = Create_Book ... (B33)

Prt'vious_Sil>iiJI.t!;(\<':-;LSildiJI!..';(k . .\L·llt•_l3ook(l.i.r)) = k ... (B34) . .

LasLSibling(k.Creat.e_Book) = Creat.e_Book ... (B35)

LasLS i bli11g(k. !\•! akeJ3ook (I. i .r)) =

if lsin.Book(k.:\1lake_Book(Li .r))
theu

if Ri~ht.(!\.'lake_Book(Li.r)
= ('reat.e_Book)

the11

else
Last_Si bling(k.r) ... (B36)

FirsLC'hild(ld'wat.<·_Bookl = C'reate_Book ... (B37)

FirsLChild(k . .\L-lkt·_Hook(l.i .r)) = if lsitLBook(k.Ma.ke_Book(l.i.r))
tlw11

if k = l{OOT
I llf:'JI

else
k.l ... (B38)

Equa.I(Creat.eJ3ook) =·Empty Book" ... (B39)

Equal (i\lak<·_Hook (T. i .TI) = i r not.(Ill order(LPft.(!\la.l..:e _Book(T. i. Tl)))
= lnorcler(Hight(MakcBook(T,i.TI))))

then

. .\ot <'qu<ll (B40)

Figure 8. ll: Algebraic specification of ADT Book (contd.)

244

8.6.4 Nat ural language description of the axioms specifying the

operations on the ADT Book

Bl states that an attempt. to asstgn a value to a non-existent node fails and a message ts

output.

B2 states that asstgt1111g <t ,-,due t.o t.lte heading of a node has no effect 011 the .-,lruc/un: of

the bina.n: tree.

B3 states that an attempt. to produce a Table_oLC'ottt.ents from an empt_v Book fails and a

message is output.

B4 states that a TablP_oLC'ontents is a list of nodes in depth-first order. which is produced

lw a Pre-order t l"d\.('rs<d of lite hittiH\. t re<'. The \\"rite operat io11 settds t.he list of uodes to a

file.

B5 states that an attempt to produce a list of nodes 111 a file from an empty Book fails and

a message is output..

B6 states that a Patlt ts <1 list of nodes in an output file. the first uocle Ill the file IS the

target uodc <:utd t II<' l<tst JHJ(I<· i:-. til<' 1{00T 110dc.

B7 states that ittsertitlg a Jtud<· ittlu a11 etllpt.y sttbtn-·e product's a subtree rooted at that

node.

B8 States that inserting <l uode iuto a non-empty binary tree is only possible if ROOT is

present tn the binarv tree. aud either the Parent or the Previous_Sibling of the node is also

present tn the bitt<ln· Ln't'.

B9 states that gr<iJt.itJg tlw ttodes of a bitt<try Lree illt.o <ttl etnpt.y biuary tree. produces a new

binary tree, whose root. is the root node of the inserted binary tree.

BlO states that grafting tlw nodes of a. binary tree into a non-empty biuary tree. succeeds

if the node to be gr;1fted doe~ 110t alreaclv exist in the tree, each node beittg insPrt.ed as a

leaf node.

Bll states that an attempt to prune a binary tree which IS empty fails. and a message IS

output.

Bl2 states that the result of pruning a node is that all the nodes which are attached to that

node are nlso df'lcll'd ..

B13 states that nn at ten1pt to displ;t\ Lll<' coJJtt'IIts of a IJode which does not exist fails and

an message is output..

B14 states that displaying the contents of a node 1s accompanied bv the addition of the

node key to a queue. as well as its contents being sent to a file.

B15 states that thl' rt'slllt uf st'<Irciiiiig fur ;1 gi\-<'11 JJode i11 ill! eJilpt.y tree Is false.

B16 states that the result of searching for ;-1 ,U;I\.<'11 uode 111 <lll notl-empty bina.rv tree is true

if the node is found nnd false if it. is not found.

B17 states that a11 at.t.empt to display a cross-reference for a search string Ill an empty

binarv tree fails and n nwssage is output.

B18 st.C\ks th;-11 <-Ill dllt'II!pt tu displ<l.\" il noss-rek·r<'I!Cf' f()r <l s<'drch striug succeecb if the

string 1s found in a tJOcle of the binary trc<': til<' collt<-'llLs of tlw node are then written to a.

file.

B19 states that. <UJ at.t.e111pt. to produce an hbstract from <:1.11 e!llpty binary tree fails aud a

message is out. put.

B20 stdtes that. t.hos<' nodes \\'llich comprise an abstract of a g1veu node include that node

and all other nodes which are subordinate tu the gi vet! node.

246

B21 states that copyillg an einpl\ I r(c'C produces another empty tree.

B22 states that. copying <l nou-('tnpty binary tree is the same as grafting this tree into an

empty binary tree.

B23 states that an at.t.empt. to output a Trail for a.n empty Book fails and a. message IS

output.

B24 states that if t.he binary tree Is not empty the contents of the queue are written to a

file.

B25 states that dil att.eiiipl to label the root node of an empty tree fails and a message IS

output.

B26 states th<tl tlw I;Liwl or tlw 1"001 ll()rl(' of(-\ I\011-(·'IllJ>l\' hili<i.l"\ I["('(' is the data item which

is used in the operat.ion to cons! rue! c-1 hiil<In 1 r<'t'.

B27 states that an attempt to output the kev of the last node to be accessed Ill a.n ernpt_y

Book fails and d message is output.

B28 states that I lw I<Ist. llocle to lw accessed 1s tlw same as the l<Ist liOdf' insf'rtecl into the

queue by the E'alu<li<' up('!"dl i()ll.

B29 states that the Parent of <I Iiode ts unclclirwd for c-w empty Book and a message 1s

output.

B30 states that the Pareilt of d IIode clepeuds on the type of the uode key.

B31 stat.es tltdt t.lw rout of tlw rigl1t slthlr<'<' of a gi\'f'II 11ud(' is IIIIdt-'fiiwd for an empty tree

allC! a nwssage is uutptii.

B32 states that the key of the ne:--;t sibling of a gtven node IS the root of the right subtree

of the binary tre<~. u1dess this is <lll empty tree.

B33 stat~s that the previous sibling of a given node ts undefined for an empty binary· tree

and a message is output.

B34 states that the operation to retum the previous sibling of a node is the inverse of tlw

operation to return the next sib I i ng of a node.

B35 states that last sibling of a. node is undefined for an empty tree and a message is output.

B36 states that the last. sibling of d node is that node whose right subtree is empty.

B37 states that the first child of a node is undefined for an empty tree and a. message IS

output.

B38 states that the first child of d node is dependent on the type of the node.

B39 statPs that illl ill V'lllpt to cnmpare t.he subtrees of an f~mptv Book fails a.nd a. message

is output.

B40 states that the comparisor1 of two billdl\ t r·<'<'s <"i:ill lw d!"ectr-·d by combining them into

one bina.rv tree and comparing the left and right subtrees by traversal of the subtrees.

8.7 Sum-mary

The rea.sous for it fn,.,nol SJwcificatioll of a11 ADT hau-' been grven. and alterna.ti,·e ap­

proaches to f~mmtl sp<'<·ilicc-tt iu11 l1i-l\<' bef'n out lined. A generic set of operations for the ADT

Ma.intena.nce_Histor.v which underlies the documentation paradigm for the ISMSE has been

described. i-lnd inst;-wt i<~tion:- of these operations ha.ve been specified for this ADT. thus

capturing its s<-~llldtll ics.

Chapter 9

Implementation of the

Documentation Paradigm

9.1 Choice of language for the implementation

The obvious ca11didat.cs for a language to animate the formal specification of the ADT

Maintenance Histon werf' the functional programming languages, such as LISP, Miranda,

Prolog, OB.J. Larch.

There are three lllillll criteria lo be borne 111 mind when choosing a language for an imple-

mentation of a specific;ii.i\l!l:

l. The size of the data structure

:2. The efficiency of the operations on that structure

:3. Tlw complexirv of t lw program~

The first two criteria CCHJ be ignored SlllcP t lw illlplementat.ion was effected usmg a small

problem. The axioms defining the semantics of the ADT were. for the most part. simple and

a language was required \\·hich could reflect this simplicity. This required. in turn. that the

As pointed out by C'locksi11. [:!()] Prolog is bnsed on the idea of a theorem prover, and the

basis of a theorem is a set. of axioms. Prolog is therefore complementary in this respect

to the axiomatic specific<ltioii ust'cl to define the semantics of the documentation paradigm,

because of the deci<Irat.i\·e Ililtiirr· of the lclll_!?lti1ge. Prolog also prm ides <1 rapid proLotyping

capability.

Prolog programs art" like hypotheses about i1 knowu "world', and questions asked are like

theorems which nePd to bP proved or disproved. Prolog is based on first-order predicate

calculus. and tlw Horii claust.' \vhich express<'s a fact or rule in the Prolog database is a.

statenlf'nt \lf ind<'JWIIcleitt t rut l1. i.<'. <lli ano111. which is illdepPncknt of what other facts and

rules there may be in the dat.ahasc.

2-50

9.2 Prototyping the ADT Maintenance_History

Prolog is a declarative language. but it is also possible to write Prolog 111 a procedural way.

as for a block-structured procedural language like Ada, or Pascal.

The Prolog used in this implementation was Edinburgh Prolog, and ·pure' Prolog. i.e. Prolog

without ·uot' and ·cut·. was 11sed to prototype t.he axiotttat ic spf'cifica.tion. In essence. a

program written in ·purr:,· Prolog is il ::;pecificatiou of the solution to a problem. ·Pure·

Prolog, as used in this anintatiott is a sub-set of Prolog, and is t.otally declarative in nature,

since it does not rtwkP liSe of the ·cut·. which prevents ·backtracking·. an essential feature of

the language. wheu Prolog seeks co pro,·e or disprove a.n assertion or ·goa.!". The use of ·not·

and ·cut· detract fruttl tlw d<-Tl<-HntiH' lldtuno of Lbf' la.r1guage. lwiug llla.inly concerned with

efficiency.

9.2.1 Strategy for testing

The data structure underlying the ·Bouk· part of the .-\DT ~vlaiutenailce_History, is a Knuth

Binary Search Tree (BST). <:1ncl t h<-11 underlying the Anthology is a linked-list. The linked-list

was tested first. tht'tl the l~nut.h BST.

Axioms can be viewed as a tool for refining natural language. The natural language descrip­

tion of a specification. without recourse t.o <HI axioillCltic specification would probably suffer

:2.51

from ambiguity and context, sensitivity. However, a natural language description of an axiom

is a 'refined' natura.! langu<1ge description. which does not suffer the sa.rne disadvantages as

unrefined natural language.

The Prolog code was written so that its natural language description matched the natural

language description of the o.xio!ll.

An animation of il sJwcilicati(Jil. usi11g a prot.otyping language Jllea.us that. there is possibility

that. the specificatioJI lllil.\. be t.r<:lllstomwd by t.he lc\llgua.ge lwiug used to animate it .. siuce

the language is traJJ:·d;-ll.ing UJW rcpresentatioJJ into another. It was tl1erefore important to

write a procedure that 111irrored. ds cluscl\ ds possilde. t.l1e d.\iotn beiug tested.

As an illustratio11 of tl!i;; pOiltL consider the following stack i:l.\IO!Jl:

There are at l<'<lst I\\'O ,,.;,vs to c;-1pture the seJJiant.ics of t.his axioJll liSJllg Prolog, written 111

a decla.ra.t.i,·e maJIIIf'l'.

top(X,Y,[X-Y]).

(where: X = top of stack. Y rest of stack. [X-Y] list. X head of list.)

252

[n this example tlw prt>di('<ti<' ·ttip. itCJ:-; an arit.y of three. i.e. it has thn·?(·_' argu1uents.

A natural language dt~e>criptiuJI ,,[· tlti~ predicate i:o: X is the it.em at the top of .'1 stack. the

remainder of the stack being Y, if X is the head of a list, whose tail is Y.

Consider the following stack of integers:

Stack = [:3,.5,1]

The prolog query and the response are shown below:

- ?- top(X,YJ3,5,l]l. (where: .\. = t.op of stack, Y =rest of stack. [:3,5,1] =stack)

X= :3

y = [.5.1]

Another prolog procedure wlticlt accomplislws the sCJ.me thing is shO\\'Il below:

top(X.S) :- pusll(X.S.SL).

push(X.Y.[X- \']).

In this example the predicate ·top· has illl arity of t.wo. i.e. it ouh· has two arguments.

The prolog query and the response are shown below:

- ?- top(X,[:3.:).lj). (where: X= top of stack, [:3 .. 5.1] =stack)

X= :3

An algebraic ax1om IS expressed as one operation applied to the result of another. and

while the first prolog ptoc<·dJtr<' i"'l'/11 lily s1tggest.s that t.he stack has been produced from a

push operation. t.hc sl'coud prolog pruu·d1tr~· e:rph:cilly states this. Tl1is second example also

illustrates how this style of capturing the semantics allows an abstraction to a higher level.

since it permits a query which returns only the item of interest, the item at the top of the

stack.

9.2.2 The operations

The operation was deemed to be correctly specihecl if the Prolog translation of the axwm

achieved its objectiu·. i.('. il' tlw dCIIt<li output we-ts tlw satne as the <··:o.:pected output. dehued

by the uat.ural lattguc-Jgt· desnipt io11 ul" t II(' <J.\;iOIIl. unt! tlw uperal iou preserved the strict

hierarchy of the Knuth Binary Search Tree (BST).

The Prolog procedures used to perform operations on the 1\nuth BST. i.e. to animate

the specification. were <t:>sigiwcl tl1c s<UIW names as the axiollls !wing prototyped, to avoid

confusion. and ccttJ lw cldssifi<'d iJIIo I\\'() dist iitcl typ('s. prittiitiu· or coinplex. Complex

operations are generalisations of primitives. operating on sets of nodes instead of on single

nodes, as primitivf's do. In addition utility operations were written to provide input/output

routines. and a tiWaiis of illpuUitig the data had to be cle\·ised. so that the information

concerning tlw dat<~ structlll'e could be rnanipulated by Prolog procedures. Often these

Operations \Vert>. of ll<'C('SSit\·. pi'OCC'dlll'cti i11 lldl Ur<'. but did 1101 COillj)WilllSE' the validity of

the animation. since they were used for reading from alld writing to files, including standard

:254

input and output, and for fortndtLing these data streams.

The axtoms tested first were those corresponding to primitive and utility operations, smce

these underly the complex operat iotls. These operations were Parent, FirsLchilcl. Next_sibling.

Previous_sibling. This in turn lll<'<-tnL that some way had to lw found of giviug 111eaning to the

infix operators ·greater· and ·Jess· si11Ce tlw 11ormal integer comparison provided by Prolog's

built-in operators had no valiclitv. for node keys of the type a.b.c, where a.b.c are integers.

The operations ow also be cl<lssified according to their role concerning the data structure.

i.e. whether they dr<' used i11 CCJ!lllt'ct.ioll \\·ith Initialisation. He-atTallgement or \aviga.tion.

Primitive operations are concerned ,,·ith lniti;-disat io11. or .\;txigatiou. allCI complex operations

are concerned with re-aiTiiilgement. of the data structure. The operations for the ADT

Anthology are shown belo\\. in lahle 1).1. and the operations for the ADT Book are shown

below ill Table CJ.:!.

9.3 Summary

A ration ;-de h Cl s I)('('II P;I \"<'II fur r I!(' (hoi("(. () r ~) ro log (Is t.lw I i-lllgu age for t h (:' i Ill p le 111<-'11 tat ion.

and a strategy for testing the impieiJJeiilat.ioii has been devised. The importa.11ce of coding

style has been discussed. The operations have been listed and the criteria given for a correct

specification of an axiom.

1.5.5

Prolog of!'ers little in the way ot' procedures to handle input and output. and. of necessitv.

the user-interL-1ce ror the prototype is somewhat primitive, but this was not intended to

be a model for the full_y-fleclged IS~ISL The user-interface would need to be much more

sophisticated, to minimise cognitive overhead and is a research topic in its own righL

The primitive interface was sufficient for the author to prototype the specification of the

documentation paradigm_ Prolog is quite verbose in the way it outputs its results. and some

kind of filter needs to he incorporated lo reduce this. to rna.ke Prolog a better prototyping

tool. Building the data st ruct Lm-·s using Prolog is curnhersonw and involves much repetition.

including temporary ;;tora.ge of the data structure in a file. The design of suitable macros

could do rnuch to ctlle\·iate this_

:2-56

Anthology

Predicate Arguments Purpose

a.ss1gn lii_L.l-..:ev. :\dill<:'. 0 III_L Ci Vt:' lii:llllt' Lo 1nember
create_.-\nthology None Create empty Anthlology
delete IILL.I\ey.OuLL Remove a. member of Anthlogy
earliest l n_L. 1\ev Return earliest member
evaluate In_L.I\ey Displa.v name of Book
insert In_L.key.OuLL Insert a book into Anthology
is in __ \ n t holog_, IILL.kf'V Test for nWilllwrship of Anthology
latest lid .. 1\e,· Return latest version 111 Anthology
next III_L [\('\. \ C'X t _[\n Ret. urn t.lw IW :-;I nc•rsiOll . .

position III _ L.l \ e y. :\i UII tlw r Ret. II rn H'l"SIO!l II umber
pre\-!OUS In_L,I\ey, Prev _1\cy Rct.uru preVIOUS vers1on
write I n_L. Display identif-ier of member

Abbreviations
In_L Input. Anthlog~y
Out _L l- pcLtted A nth logy

he." .-\I p l1 <t.n u nwri c idPnt.ifier
pre\ _I\<'.\ P r(.,. iu11:-- [\('_\

N undwr Ordiii<-II posit iu11 Ill .\ 11! liology

Ta.ble 9.1: Tlw operatioiiS for the ADT Anthology

2-57

Book

Predicate Arguments Purpose

abstract (liLT .Start. Encl.List) Return portion of chapter

assign (In_T. Key.cla.ta) Give name to node

bookmark (List. Item) l\hrk last node perused
copy _subtree (ln_T.l\ey.Out._T)]V[ake copy of subtreP

create_Book :\Jo1w Create empty Book
cross_ref (lll_T.I\e\ .List) List ;dl 11odes contaiuing [\eyworcl

equa.l (T!.T:2) TPst. equality of portions of Book

evaluate (In_T.l\ey) Display contents of a node

firsLChild (In_T,l\ey) Display subordinate node Key

graft (I n_T .1\ey.Su bt.ree) Insert subset of the Book

home (ln_T) Return to ti tie node
i llSPI'l _]JO,~lP (lll_T.l\e_, .OuLT) II Isert no elf' into the Book

is_en 1 pt y Book (liLT) Test for empt._,- Book

is_inBook (1\ey.lii_T) Test for presence of a node ll1 Book
lasLSibling (lll_T.l\ey I RPt.UI'II L-tst 11ode Ill (I I ist

move (IIL Ll\p.l\g.Dir.Out_T) Re-positio11 port.io11 of the Book
nexLSibling (In_ T ,I\ey) Return next node in list

parent (ln_TJ\ey) Display superordinate node Key

path (In_T,l\ey. List) Display path from root to target node

prev_sib (IILT.I\ey) Return prev1ous rnember of the list

prune (l n_T.l\ey.Out._T) RemO\·e portion of the Book

table (llt~T) Display contents of Book

trail (l\ey. List) Display· list of nodes visited

Abbreviations
In_T Input Book

OuLT Ou t.pu t. Book

Start Commencement node for Search

End Term in a.t ion node for Search

Kp Hoot of subtree to lw pruned

Kg \ode wlwr<' Craft of pru11ed subtree IS to occur

Dir Root of subtree grafted as FirsLChild or NexLSibling

Tahlt' ()_:_!: Th<' operations for the A DT Book

2-58

Chapter 10

Evaluation of the Documentation

Paradigm

10.1 Introduction

The preferred test of the utility of the documentation paradigm. t.o determine its efficacy.

i.e. in terms of its performance aud ease of ust:'. would be its application to a maintenance

project of reasonable size <wei co!!lple:-:ity. llnfortunately. this is infeasible, for two main

reasons. Firstl.v. t.lw IS:\!SE which would host. tlw documentat.iou paradigm has not yet

2.59

been built, and in addition. the time scale appropriate to this thesis does not permit such an

investigation. To provide an examination of the capabilities of the documentation paradigm,

its analysis and evaluation rest in~teacl on its application to the maintettaace of ·pxr'. a

cross-referencer for the Pascal programming language. \\'hich is a component of an ISMSE's

toolset. The documentation paradigm is used to store information about the cross-referencer.

this information is produced by thE' cross-referencer itself. The documentation paradigm

IS a prototype, and as such its evaluation constitutes a feasibility study·. The operations

used to iitterrog<H<' ami Illdliipltlilti' tl1<· :\laintenaucP History for t.lw maintewwce of the

cro~s-refere11n'r. <-m' atlctl\·scd. clllcl the results of the ana I\ .~is are used to extrapolate from

this scenario. making <lll inference <ls to r.he probable functiona.lit.y uf the documentation

paradigm. when used i11 tlw llld.intelldiiC<' llf d l;uge. coillplt·x. software system.

10.2 Applying the documentation paradigm

10.2.1 Introduction

The database is the tlucleus of an P!lvironment and is responsible to a large extent in shaping

its character and functionality. T!tis section demonstrates how the adoption of the docu­

mentation paradigm as the concept.ua.l schema for t.he en,·ironment database will provide

the IS\ISE with sonw nf those features of an environment which Magel [77] showed to be

desirable. Later in this chapter a description is given of the support provided by the envi-

:260

ronment for its underlying nwint.enance process model, this support being a prerequisite to

the provision of these desirable features. [n this section an analysis of the utility of the doc-

umentation paradigm is undertaken, using the operations carried out on the book structure

during the maintenance of ·pxr·. ;-wd from this base extrapolating to t.he maintenance of a

large complex software system.

10.2.2 Placing the documentation paradigm In context

An anthology of hierarchiccli lllaintt'llance logs. i.e. books. co1nprises the ·Maintenance His­

tory' of the software. and forms the basis of <l docurnentatiou paradigm for the ISMSE,

the aim of this thesis. Each book of the anthology encompa.sses a version or variant of the

software svstern. as sli0\\'11 lwlo\\' i11 Figure lO.I.

The technology uttdcrlyittg itttegratecl soft.ware enginet-?ring support cn\·ironments is not yet

mature enough Lo permit tlwir \\·idP-scalc 11s<·. C'onseqttentlv. in t.ht' forseea.ble future much

maintenance will be supported using toolkit environnWIIts. for Pxample. {Tnix. Such envi-

ro11ments do not 111ake 11se of sopltist.icated dat<~basP ntanagement. systems. but instead rely

on the host computer's filing systern. \Vhiclt is usually a hierarchical 01w. To demonstrate

the utilit_y of tlw clocurnent.atioll paradigm the operations will be referred to a hierarchical

file system and t.y pica! operating sys t.ciJI colltillancls used to mau i p ulate the file structure,

for example the addition and deletion of files. and the movenwnt of files from one directory

to another.. the renaming of files. and so on. The node key gives the location of the file

:261

/
//

/

/

Implementation

Book (1)
of

Maintenance
Assignment

(1)

Book (2)
of

/ Maintenance
/ 1 /!' Assignment

~/ (~)
\ } Evolution :
\ System Y

~~~ 
' 1 of 1 

Maintenance 
Assignment 

( n-1) 

Book (n) 
of 

l\llaintenance 
Assignment 

(n) 

Retirement 
/ 

Maintenance 

History 

Figurl' 10.1: Tlw \laintenaJJC<' Histor.v of a software system 

26:2 



tn the hierarchical file system. the length of the key indicating the level ill the hierarchy 

corresponding to tlte file"s locat.iotl. This means that filenames can still be meaningful, the 

documentation paradigm serving clS an indexing system for the filestore. The documentation 

paradigm serves as a conceptual schema for a. database. which is based on the host system's 

filestore, the nodes of the i\hintenance History corresponding to files. A well-established 

practice in software engineering is for a project to be mapped to a hierarchical directory 

structure. with e;.1ch cotnpotwttt of the projPct Pxisting as a document. The lVlaintenance 

History correspotiC!s to all opell-ellcled project which lasts until th.c: retirement of the software. 

The Maintenance History has beeu described ds <Ht .-\nthology of books. the structure of the 

Anthology is mirrored by hc1ving wit !tin the root directory of the hierarchical file system. a 

directory cont.aitting the first book of the Anthology. and another directory containing tlw 

remainder of tlw \ttl I!Oiogy. whic!t cont <:!ills the next Book ill the Anthology, and the remain­

der of the Anthology. Tltis decotnposit.ion is repeated t!troughoul the hierarchical directory 

structure, as showu in the diagram helm,·. <:utd implements a h.'<f of books, each book having 

a tree structure. Together 1 he list <lttd 1 he tree comprise the .-\DT \lcli!l1f:'!lance_History. The 

position in the hiPrarchical file structure of each book is indicated by ·Level' in Figure 10.2 

below, Le,·el 0 correspottdillg t.o t!tc root of t!te directory structure cottt.aiuiug the first book 

of the Authology. 



Title Anthology of pxr 

-------------------------------------------------------------Level 0 

{book1 
Anthology'} 

{book2 
Anthology' '} 

version 1.1 

version 1.2 

-------------------------------------------------------------Level 2 

{book3 
Anthology'''} 

bookN 

version 1.3 

vers1on n 

Figure I 0.:2: Project ::;tructure of rnaintenance of pxr 



The hierarchical structure of the book maps to the hierarchical file structure. each component 

of the book structme corresponding to a. file in the file system. The node-key ·title' is the 

root of the hierarchical directory structure, which contains the book. The book documenting 

the maintenance of · p:-.:r' is shown below in Figure 10.3 below. mapped to a hierarchical file 

structure. The position in the hierarchical file structure of each book component is indicated 

by 'Level' in the figure, Level 0 corresponding to the root of the directory containing the 

title of a book. The hook is sho11·rr incortlplete for reasotts of clarity. 

ln the root director\ called title. tlwre <HP the chapter directoriPs. Contained in each chapter 

directory, is a file called dtclpter dlld d directory called section. The file called chapter will 

contain a.n introduction to tire chapter·. Tire directury called section contains the section 

directories. each section directon· contaius orte file which contains information. and a direc-

tory called sub-sectiotr. This decomposition is repea.ted throughout the hierarchical directory 

structure. to reflect I lw stntdure of the book. 

:26.1 



Title Version 1.1 pxr 

-------------------------------------------------------------Level 0 

chapter 1 

chapter 2 

{chapter 4 
section} 

The change requests 

Understanding the software 

Revalidation of the software 

--------------------------------------------------------------Level 1 

section 4.1 

{section 4.2 
subsection} 

section 4.4 

Integration testing 

Regression testing 

Documentation of changes made to 'pxr' source code 

--------------------------------------------------------------Level 2 

{subsection 4.2.1 
subsubsection} 

Test Cases 

--------------------------------------------------------------Level 3 

subsubsection 4.2.1.1 Test Results 

--------------------------------------------------------------Level 4 

Figurt-' 10.:3: Book slrliCIUI"<' or a versiou of pxr 

266 



Much of ,;oftll.<tr<-' ttldllti<'Jidttc<· ts <"OJJC<Ttwd with the enll<liiC<-'IliPJJI of soft11·a.re. which is 

software development. Tlw docuineiJiatioit paradigm is compatible vvith tht:· Software De­

velopment Life-Cycle model. since software maintenance is an iteration of this Life-Cycle. 

There is a relation between the hierarchical data model of the documentation paradigm and 

the Software Life-Cycle. in that. the early stages of the Software Life-Cycle map to high-level 

abstrncllons (or 1·iews) of tlw softll'are s\·st.em and the later stages of design. testing aHcl cod-

ing map to lower-level abstractions. The doclltlH'Iil set. is pa.rt.itionecL so that. for instance, 

source code modules are placed iiJ a separate directory, from the documentation concerning 

these modules. In addition. the organisation of the project team is a hierarchical one, the 

constituent parts of tlw tenJn hierarchy being delegated responsibilitv for a particular por-

lion of Lite clocttlll<'ttl !tin<-11"< l11. 11·lticlt Itt<ti-:<-'s possihle d -;iittpl<' Ill<tppi11g. The rnaittLenance 

team will be available to 11·ork as ittdil·idttd!s u11 <1 particul<~r chapter of the log and their 

efforts pooled. using operations to assemble the components of the chapter into its final form. 

Overall. the docurnentMioJJ par;-tdigm proviciPs sltpport for groupin!J of t"fSOIII'Cf:.'<. 

The !'l'lai n tetJa II((' His tun i :-: a !1 ic'l"d IT hi C.'1.l arch i U:' of in fort lld t ioiJ. ami understanding is partly 

concerned with ret rie1·<1i ot· iitfortlld.tioJJ t"ro111 t.ltis <l.rchivf'. The granul<:u-ity of the objects 

to be stored in the in format ion structure will vary greatly. and the relationships between 

them may be complex: to cupc with this complexity requires that support is provided for 

abstraction. lnromw.t io11 i" usually clocUillt:'ri!Pd at. various levels of abstraction. and program 

uuclerstandiug d<:'!J<"iJds 011 <~<"n'ss to up-to-elate iuforma.t.iotl cottceruing the source code. In-

line comments in the sourcP code (knoll" II <:ts int<'rtJ<d documentation) are usually too low­

level, being concerned with descriptions of algorithms and properties of data items. There 

267 



are two ill"<"tttws ol" <lppt·niiclt !"or dCtl_'ssttlg ittformal-iotl cu11centtllg tlte source code. Static 

and d_yna.mic program-<w<dv.-;is tools catt be used. which operate on the source code itself. 

which means that the output of these tools has to be interpreted by the maintainer. In 

view of this it is advantageous to he ahle to have access to the high-level information from 

its documentation concerning the system's function. how it functions. including the system 

components needed to express its functionalitv. The documentation paradigm supports this 

strategy. 

Detailed informa.tion catt act <Is d harrier t.o understanding. This link between understand-

ing and abstractiott is ll·cll-accepted .. \ ltiera.rchical organisa.tiou of iuformatiou relates to 

the huma.u mind's prohletn-soh·ing C<lpnbilit\·- that of rough formulation of a solution to a. 

problem. followed by step11·is<:' r<·linf-'llWttl of t.lw model through hypothesis and the testing 

of this hypothesi::;, resulting i11 d hierarchic<Li deco11tposit.io11. This often requires the design 

of an experinlettf to lw tt."ed ds <t lnul for t.t•stiug the h_vpot.lwsis. wltich cau also be stored in 

the information structure .. -\ hi<·rarchical information structure for the documentation of the 

maintenance of softwa.tT enables tlw organisation of levels of abstraction. which will make 

understanding oft he prograttl c<tsi<'-1' for fnln-l'f tnaint.ainers. lllcorpora.tion of the strategy of 

abstraction within the overall hiernrchicdl structure of a book format of the documentation 

is consistent. and easilv <lchievecl. The documentation paradigm supports the recording of 

information at different ie\·els of ilbstract.ion. bv the provtston of a hierarchical information 

structure, i.e. an acyclic directed graph, the table of contents operation providing a. con­

ceptnal map of tlte cloctllllf'llt.at ion cottCf'l'Iting the tnaitlt.ettatlce of a. software system. This 

operation can also serve as a tli<1.11agemellt- tool. wlwn monitoring the maintenance process, 

268 



the table of contt'llts <It dll\ u1w t i1tw di:,;plays the structure of the book <wd so can show 

the current position 11·ith r(c'g;<inl to tlw stage of completion of the llla.intett<l.llce assignment. 

The large body of document.ation associated with a software system often possesses a strong 

amorphous character. cont;1ining information associated 1\'ith every· phase of the Software 

Development Life Cycle. The documents comprising the documentation of a. software sys-

tem are IVritten ill a diversity of styles and formats, and it is therefore to be expected that 

difficulties will c-1rise 11·lwt1 ill t.('tllpt i11g tu g<lill dll lt!lderstc-lllditlg of the s\·stenl from a study 

of the documenta.tiott. Failure t.o bring this documentation under control by imposing some 

structure on it. when performing maintenance on the system. will ensure that the existing 

situation ts peqwtua.t.ed. 

The utilitv of il<~Yitlg d l;-irg<' hod1 ul' itd'orJll<-lLiotl culln't'tlltlg a soft11·are svstem can only 

be realised if a strategy exists for the subsequent rapid retriev;1l of information from the 

information-structurP used to st.ore these diverse types of information. \.Yithout this rapid 

retrieval the process of reaching illl LitHlerstartding of the solhva.re system will be hindered. 

increasing t.he tinw t;,kt'tl t() ;-,clti<'H' tlw necessary uttdersta.uding for rnoclification of the 

program. and its associated docrtrll<'trt;,t iott t.o hegitl. thu:;; reclur.i}tg the pro.ductivity of a 

maintenance organisation. Binary search is possible 11·hett the book structure is that of an 

ordered binary tree. rnaking possible the desired rapid retrieval of information. 

An informC~tiotl structure is desigllf'd t.o record t.he relatiOttships hetwet'l1 pieces of informa.tiou 

and to provide 11·ays of using. changing. and managing it. The adoption of a. book format 

for the infor!llation structure etJsures that t.he documenta.tiou of a. software system has a 

standard organisation. the importance of which has been shown by Selig [11.5]. Anyone 

269 



iii\·oh·ed with til<' sol"t\\'ilT<' s\sl<'JII <<Ill h11d <111 irem of informatio11. "·ithout needing to learn 

any new concepts associated with 2111 unfamiliar information-structure. i.e. the book formal 

offers an information-structure "·hich is nntural and tota.lly familiar. making it easier to gain 

an unclerst.andiil,l!; of large coinple:-; s\·stern. This model of information-presentation has stood 

the test of time. sho\\'ing t.hat it possesses great utility and durability: it provides several 

ways to access the inforrnat.ion IIcld there, e.g. table of contents, index. glossary, chapter. 

section, a.ncl provides facilities for cross-r<'fcwrl<'ill,!.!;. 

10.2.3 The maintenance of a Pascal cross-referencer 'pxr' 

10.2.3.1 Introduction 

The Pascal cross rekrencer ·p:-;r· resembles tlw ·front.-encl' of a compiler. lacking only its code 

generatio11 capability. and coJJtains lexical analysis. syntax ana.lysis. and s.vrnbol table manip­

ulation routines. FroiJI st.<liiCI<Hd inp11t ·pxr· reads in a Pascal program and generates either 

an a.lphabetic or st rue!. ural cross-refcreJJn' list i11g. of the iclentihers used in the program, 

along \\'it.h the liiH's 011 whicl1 I lwy appe<H. The cross-refE'rencer consists of approximately 

8,000 lines of Pascal code in t.hirt.\· modules. 

Cross-referencers can output copious amounts of information. which often means that their 

contribution to tinderst.anrling a progran1 is IE'ss 1 han predickd. because of the time-consuming 

and error-prone task nf sift.ing through this information. For this reason ·pxr· offers options 

270 



as regards t.lw typt' of <lllliml list i11g. Pascal is a block-structured lnnguage, and the user 

can opt for a stmctured lisii11g. 11·hich ;.\lphahet.ically lists identifiers within the scope of each 

block; the detail of the listing corresponding to terse, full, or intermerhate. reflecting the 

degree of detail given for each identifier. In the terse option no distinction is made between 

appearances of each identifier, whereas. when using the full option, information is given as to 

where the identifier is used, seL and called. The user enters a. command with the appropriate 

t ( te-rs1:), f (full). or i ( wlumulialr .1. ll·1g l'rolll wit l1in an OjH-'rating system shell. and this 

command causes ·p:..:r· to output 1 he desired listing. 

10.2.4 Production of a Maintenance History for pxr 

Operations on the \!dint.enance History can be classified as primiti,·e or complex. Primitive 

operations often are concerned with single nodes. so that in the context of the file system the 

minimum granularit\· of Llw l)per;-wcl for tlw operation is the file. C'ornple:..: operatious are 

generalisations of prirlrit.iu-'s. O!Wrilt i11g 011 sfl;;of nodes instead of si11glt-> 11odes. corresponding 

to a subtree, or ever1 the whole tree. i.e. tlw operand is a11 objr::cl. [n the context of the file 

system this correspo11cls t.o ct collect ion of files, perhaps a directory. 

The complex operat ior1s express t.he ut.ilit.y of the clocumentatio11 paradigm, and are at a 

higher semantic len·l I ha11 so111<' ol' t lr(' prirnitive operat.ions which are used to create and 

build the I\lainteu<wce 1-Iist.orv: tlre;;e prirnitin· op('ratious contribute little to the illustration 

of the utility of the paradigm. so they have not been shown. Sorne of the complex operations 

271 



possess tlw dbilit\· lo rr•ltil'\r' itd.llrllldliun i11 <J way specified lw tlw llldintainer. and provide 

the maintainer wit.h different ,·iews of the software, through the ability to parameterise 

these operations. which provides a powerful tool for procedural abstraction. Each operation 

illustrated below is used t.o descri he one of the benefits of using the documentation p<uacligm 

in the maintenatlcc of a large softw;1re S.'·stem. these operations together contribute to the 

definition of its overall S(:'lll<Jnlics. 

The maintenance model derived 111 chapter ·J was used tn the maintenance of ·pxr', and 1s 

reproduced belo,,·. 

L. Veriticatio11 of !lw tter·d for Jll<Jittletlance 

2. Understanding 

:3. lVlodification 

4. Re,·a!idatioll 

It was mentioned earlier in this chapter that the environrnent should provide good support for 

its underlying mainteuance pron~ss llloclel. the hierarchical topology of the book ensures that 

the maintelta.nce nwdel adop!r·d for the environment is supported. the book structure being 

partitioned into contexts. tlwse conte:·\1 s corresponding to the phases of the maintenance 

model. 

This partitioning is achieved h_,. using the not.ion of chapters. \~Vithin each chapter the infor-

ma.tion is again p<trLitiotwd. ittto sectious and subsections, paragraphs. and subparagraphs 



as Ill a book. e.g. dill<T<'IJI ,-i<'l\·:-; tJt' t\Je sot't 11·are can lw pres<-'llted as sections within chapters 

of the book of the maint.ennnce as.-;ignnwnt.. each component of the book c;tructure having 

an information type associated with it. 

Adopting this approach means that the documentation of the maintenance activity Js a 

'by-product· of that. act.i 1·it.1·. \\"hen a future maintenance team comes to read the book 

concernmg the past. maintena!IC<' perfornwd on the soft1va.re. the use of the change request 

as a template for the structure of the book prm·ides a useful beginning to understanding 

how tlw !IJa.intetJillln' 1wrfu1'11wd u11 tl1e syc;teill rela.Les t.o t.hal chaugt> request. 

The operations whicl1 clefitJ<' tii<' :-;elllant.ics of Lhe .-\ DT ~laintettatice_History are uow illus-

trated bv referenc<-' t.o t lw JII<tillt<-'II<IIIce uf ·pxr·. Tlw :'l'laintPJJ<tllC<-' History. was produced 

using the operations lisr.ed in chapter <J. The uperations undertaken during the maintenance 

of ·pxr· are used i11 the <·'X<c'CJJtion tlf d realistic selection of tasks. front each of the phases 

of the maintenance model. Tl1e doctttnent.cltion paradigm is not intended to be used in the 

pe1formanu of IW1i!lt<'tldtlc<'. 110r is it intettclecl that it is to be ust'd in isolation in recording, 

monitori11g a.t1cl Ill<lliil_!.!,itig IJtililltt'IIiliiC<'. It i:-; <'Ill isag<·d t.hat it \l·ill rely lteaYily on supporting 

automation such <1s configuration ntaJiagenwtit tools. e.g. RCS [1:2:3] and \Iake [38]. and a 

text editor, if it is to Clchie\·e t.ile desired functionality. 

10.2.4.1 Chapter 1 - Verification of the need for maintenance 

Problem reports revealed deficiencies i11 the operation of pxr, and evaluation of these reports 

gave rise to changE' requests. which identify those features of the cross-referencer which make 



1. Output on screen is confusing due to output. of tab characters. and sometimes the 

screen is cleared inappropriately. 

2. The program doesn't distinguish between Var. Value. Procedure and Function para.rn-

eters. 

:3. Self-referencing types are not output. 

cJ. The cross rderen('(' listing should not incluc!P stnnclard Pascal types . 

. J. The stntcl.ttred listittg lt<ls not lwen irnpiPnwnted. 

6. The tersP/intennediat.e listings do 110t ,,·ork as specihed. 

1. The full alphalwtic listing is not implementPd. 

Since ·pxr· is new soft\\';ue it. has 110 .\laintenance History and so no search is necessary 

to establish whether t lw cltiiltge reqm·st.s ltan· been pre,·ioush· sat ishecl. If a :'da.intenance 

Histm'y did exist for ·pxr· tlwtt <t content se~:lrch could ha,·p been used to verify the need for 

ma.intena.nce, by searching the Anthology for a key,,·orcl contained in the change request, 

using t.hr· cross_reference up\Tilt.ion. Tlw tttility of this O[Wrat.iott ts illust.ra.teclla.t.er in the 

ordering of tlte cltaJJ~!}' rt'qtwst "· 

Before embarking on a search of t.he docu!llt'tttation. to find which parts of the program 

require attention, the requests were submitted to a change-control authority and following 

its approvaL access to t.lw source code was gtven. 

214 



After creating the Anthology. usmg the create_Anthology operation, and within it the 

book, using the create_Book operc1tion. the na.me and the version of the software system 

being created was adopted as the title of the book. A skeleton book was constructed. 

comprising six ch<tpters. using the insert operation. The first four chapt.ers concern tlw four 

phases of the maintenance model. chapter five summarises the maintenance assignment. 

and chapter six functions as a ·Scratchpacl', so that the maintenance team have somewhere 

to test ideas concerning the working of the software. before \vriting up the appropriate 

compoueiit of the book. Tl1is ~(Tcttclq><ld ca11 be partitioned to reflect the structure of the 

maintenance tenJil. .-\t thi~ '-'lctge 1lw table operation shows tlw book structure to be as 

shown in Figure 10.-l below. 

Title Version 1.1 pxr 
1 The Change requests 
2 Understanding the software 
3 Modification of the software 
4 Revalidation of the software 
5 Executive Summary 
6 Scratchpad 

Figure 10.1: The l'daintenance History of pxr 

The change requests were tlwii entered into the book structure as they appeared on the 

change request docuiiWIIL using the insert operation. to give the structure as shown below, 

in Figure 10 .. 5 below. 



Version 1.1 pxr 
Change requests 
Screen output confusing 

Title 
1 The 

1.1 

1. 2 

1. 3 

1. 4 

1.5 

1.6 

1.7 

Program doesn't distinguish types of parameter 
Self-referencing types not output 
Output of standard Pascal types not required 
Structured listing not yet implemented 
Terse/intermediate listings do not work as specified 
Full alphabetic listing not yet implemented 

2 Understanding the software 
3 Modification of the software 
~ Revalidation of the software 
5 Executive Summary 
6 Scratchpad 

Figure 10.1: The iV[aintenance History of pxr 

The maiutenance team assigned e1 priorit.y to t-'i-lclt requf'st. firstly according to the type 

of maintenance involved. correcti\'C, llt<tint.f:'ltanu' h<l\·ing the greatest. priority. and secondly 

according to the module cutT<:'IItly being maintained. as willlw illustrated below. Corrective 

maintenance was required t.o <'nable ·pxr' to distinguish betwer~n types of parameter. and to 

output self-refPr<:'ltciltg t.ypes .. \ccordi11glv. in descending order. the new priority becomes as 

shown in Figure 10.6 below. 

This new ordering was copit'd to t lte scratch pad area of the book. usmg an iteration of the 

1. Program doesn't distinguish types of parameter 
2. Self-referencing types not output 
3. Screen output confusing 
4. Output of standard Pascal types not required 
5. Structured listing not yet implemented 
6. Terse/intermediate listings do not work as specified 
7. Full alphabetic listing not yet implemented 

Figure 10.6: New priority for change requests 

copy_tree open1tio11. a11d t.hc IW\\' book structure \\·as as shown by the table operation tn 

:216 



Figure 10.7 below. 

The five remaining change request.s were concerned with perfective maintenance, and smce 

Title Version 1.1 pxr 
1 The Change requests 

1.1 Screen output confusing 
1.2 Program doesn't distinguish types of parameter 
1.3 Self-referencing types not output 
1.4 Output of standard Pascal types not required 
1.5 Structured listing not yet implemented 
1.6 Terse/intermediate listings do not work as specified 
1.7 Full alphabetic listing not yet implemented 

2 Understanding the software 
3 Modification of the software 
4 Revalidation of the software 
5 Executive Summary 
6 Scratchpad 

6.1 Ordering the change requests 
6.1 Program doesn't distinguish types of parameter 
6.2 Self-referencing types not output 

Figme 10./: The i'vfninrenance Histon· of p:\r 

it wns not yet. kttowtt which lllodules nf ·p:\r· were involved in the change requests. the 

remainder of the ordcrittg \\'(lc; puc;tpOJwcl until t.he tlt':\t phase of tua.intenance. I.e. the 

understanding phase. 

10.2.4.2 Chapter 2 - Understanding 

The e:\t.ernal dontttl!'tllatiott pmdu('ecl during the cleveloptlWttl. of the soft\\·are. was used 

to further a global understanding of the program. relevant source code modules associated 

with the change requt•st.s were identified. and were entered into the Scratchpad area of the 

book structure. using tltc insert operation. The table operation shO\\·s the ne\\. state of the 



book m Figure 10.8 below. Since the modules concerned with all the change requests were 

Title Version 1.1 pxr 
1 The Change requests 

1.1 Screen output confusing 
1.2 Program doesn't distinguish types of parameter 
1.3 Self-referencing types not output 
1.4 Output of standard Pascal types not required 
1.5 Structured listing not yet implemented 
1.6 Terse/intermediate listings do not work as specified 
1.7 Full alphabetic listing not yet implemented 

2 Understanding the software 
3 Modification of the software 
4 Revalidation of the software 
5 Executive Summary 
6 Scratchpad 

6.1 Ordering the change requests 
6.1 Distinguishing parameter types 
6.2 Self-referencing types not output 

6.2 Modules associated with change requests 
6.2.1 Distinguishing parameter types: paramlist.p, print.p, symbol.p 
6.2.2 Self-referencing types: readtype.p 
6.2.3 Screen output: gettoken.p 
6.2.4 Standard Pascal types: symbol.p 
6.2.5 Structured listing: print.p 
6.2.6 Terse/intermediate listings: print.p 
6.2.7 Full alphabetic listing: arguments.p, print.p 

1-'igtir<' lll.~: Tlw .\[;.Iiiitenailce History ol· p:-:r 

110\V known it is possibl<' to complete thl' orclt·ring of the cl!iHig<-' n·quests. for the purpose of 

drawing up a IlJaiiJtl'IICI.IlC<' plaJJ. by examiuing which of the five remaiuing change requests 

are concerned with the modules involved with the first item Ill the change request queue, 

1.e. distinguishing p<-HiJill<'ter typ<'s. 

The cross_reference operation was used to find which of the remaiillllg change requests 

were concemed with t.he parallllist.p. print..p. and symbol.p modules. 

:278 



The Ojwr;~.t.iull Cross-reference illlpl~·~~wllt." <1 ("(Jiil.t'ltt "t'dl"! J, <111d produces o list of compo-

nents of the book structure which contain a common word m the data associated with th~ 

component. These components are concerned with the same topic, and thus are grouped 

together, for perusal. giving the opportunit_y for 'cross-fertilization', acting as a. catalyst for 

understanding. 

The output from the cross refer<-'ttce opcra.tio11 for each of the modules in the first item of 

the change request docutttent was entered into the Scratchpacl area of the book for each 

module. using the insert operation. aucl according to the number of occurrences the insert 

opera.tion was usf:'cl to i11sert the remaining change requesrs into their appropriate position 

iu t.lw ch<utgc r('<jllt'sl Cjllt'll<'. 

The graft operation uuifies two subtrees into a single tree. The node where the graft is 

to occur and the root of the grafted subtree are specified. Craft can be used to unify the 

contributions of the mai11tetta.nce t.eattl. within the Scratchpacl. 

The state of the hook is shown 111 Fig11n' llUJ below using the table operation. 

The original order of t.he change requests in chapter \\'as then deleted usmg the prune 

operation, and the final order of the change requests was transferred from the Scratch pad 

chapter usi ug the 1nove npc•r;-1 t io11. 

Attention was no\V focused on understanding the software, \vhich is in the domain of chapter 

2. The section :2.1 'Ciobal Understanding' was inserted using the insert operation, then 

subsections 6.2.1 to 6.2.1 inclusive \\"ere transferred to section 2.1 of chapter 2 using the 



Title Version 1.1 pxr 
1 The Change requests 

2 

3 

4 

5 
6 

1.1 Screen output confusing 
1.2 Program doesn't distinguish types of parameter 
1.3 Self-referencing types not output 
1.4 Output of standard Pascal types not required 
1.5 Structured listing not yet implemented 
1.6 Terse/intermediate listings do not work as specified 
1.7 Full alphabetic listing not yet implemented 
Understanding the software 
Modification of the software 
Revalidation of the software 
Executive Summary 
Scratchpad 
6.1 Ordering the change requests 

6.1 Program doesn't distinguish types of parameter 
6.2 Self-referencing types not output 
6.3 Structured listing not yet implemented 
6.4 Terse/intermediate listings do not work as specified 
6.5 Full alphabetic listing not yet implemented 
6.6 Output of standard Pascal types not required 
6.7 Screen output confusing 

6.2 Modules associated with each change request 
6.2.1 Program doesn't distinguish types of parameter: paramlist.p, 

print.p, symbol.p 
6.2.2 Self-referencing types not output: readtype.p 
6.2.3 Screen output confusing: gettoken.p 
6.2.4 Output of standard Pascal types: symbol.p 
6.2.5 Structured listing: print.p 
6.2.6 Terse/intermediate listings do not work: print.p 
6.2.7 Full alphabetic listing not yet implemented: arguments.p, print.p 

6. 3 Requests linked with paramiist. p, print. p, symbol. p 
6.3.1 Requests linked with paramlist.p 

6.3.1.1 Distinguishing parameter types: paramlist.p, print.p, symbol.p 
6.3.2 Requests linked with print.p 

6.3.2.1 Distinguishing parameter types: paramlist.p, print.p, symbol.p 
6.3.2.2 Structured listing: print.p 
6.3.2.3 Terse/intermediate listings: print.p 
6.3.2.4 Full alphabetic listing: arguments.p, print.p 

6.3.3 Requests linked with symbol.p 
6.3.3.1 Distinguishing parameter types: paramlist.p, print.p, symbol.p 
6.3.3.2 Standard Pascal types: symbol.p 

1-"ig;ur<' lO.<J: The l\'[aint.ena.nce History of pxr 

280 



n1ove operat.io1r. Tlw table ()p('!"dl i()ll II\)\\. 1"('\.t';·,[;; t!J(' c;t l"llctrrrf-' oft he bouk to be as shown 

m Figure 10.10 below. -\ local rrnderst.anding of the program was achieved hv a perusal 

Title Version 1.1 pxr 
1 The Change requests 

1.1 Program doesn't distinguish types of parameter 
1.2 Self-referencing types not output 
1.3 Structured listing not yet implemented 
1.4 Terse/intermediate listings do not work as specified 
1.5 Full alphabetic listing not yet implemented 
1.6 Output of standard Pascal types not required 
1.7 Screen output confusing 

2 Understanding the software 
2.1 Global Understanding 

2.1.1 Program doesn't distinguish types of parameter: paramlist.p, 
print.p, symbol.p 

2.1.2 Self-referencing types not output: readtype.p 
2.1.3 Structured listing: print.p 
2.1.4 Terse/intermediate listings do not work: print.p 
2.1.5 Full alphabetic listing not yet implemented: arguments.p, print.p 
2.1.6 Output of standard Pascal types: symbol.p 
2.1.7 Screen output confusing: gettoken.p 

3 Modification of the software 
4 Revalidation of the software 
5 Executive Summary 
6 Scratchpad 

6.1 Ordering the change requests 
6.2 Modules associated with each change request 
6.3 Requests linked with paramlist.p, print.p, symbol.p 

Figure 10.10: The !\laintenance History of pxr 

of the change request all(! a cletailecl study of the relevant modules of the source code, in 

conjunction wit.h <1 st.udy oft lw output frorn ·pxr·. to obtain a. design for the changes to the 

source code. in pn'panlt i\)11 fur t lw rwxt pl1<1se of ma.int.enann'. i.e. the modification phase. 

The insert opera.tion \\'CIS used t.o insert sect iorr :2.2 . Local r: ndersta.nding' into Chapter 2 

and also the subsections detailing the function of each of the modules involved, as shown in 

Figure 10.11 below. 

281 



Title Version 1.1 pxr 
1 The Change requests 

1.1 Program doesn't distinguish types of parameter 
1.2 Self-referencing types not output 
1.3 Structured listing not yet implemented 
1.4 Terse/intermediate listings do not work as specified 
1.5 Full alphabetic listing not yet implemented 
1.6 Output of standard Pascal types not required 
1.7 Screen output confusing 

2 Understanding the software 
2.1 Global Understanding from external documentation 

2.1.1 Program doesn't distinguish types of parameter: paramlist.p, 
print.p, symbol.p 

2.1.2 Self-referencing types not output: readtype.p 
2.1.3 Structured listing: print.p 
2.1.4 Terse/intermediate listings do not work: print.p 
2.1.5 Full alphabetic listing not yet implemented: arguments.p, print.p 
2.1.6 Output of standard Pascal types: symbol.p 
2.1.7 Screen output confusing: gettoken.p 

2.2 Local Understanding 
2.2.1 gettoken.p: lexical analysis of command line. 
2.2.2 paramlist.p: parsing formal and actual parameters. 
2.2.3 print.p: printing cross-reference listing. 
2.2.4 symbol.p: processing symbol table. 
2.2.5 readtype.p: parsing declarations in the program. 
2.2.6 arguments.p: processing arguments in the command line parsing. 

3 Modification of the software 
4 Revalidation of the software 
5 Executive Summary 
6 Scratchpad 

6.1 Ordering the change requests 
6.2 Modules associated with each change request 
6.3 Requests linked with paramlist.p, print.p, symbol.p 

Figure lU.Il: Til<' \L-lilltenance Hist.orv of p:-:r 



10.2.4.3 Chapter 3 - l\1odification 

The changes to the sourcP code modules to implement the change requests were designed 

for each module. and inserted as sub-sections into chapter :3 of the book using the insert 

operation, to prodttce the hook structure shown in figure 10.1:2 below by the table opera-

tion. The source code \\·as amended as indicated above to ensure that the cross-referencer 

performed according to specil1ca..tiotJ. Testing the changes made to the software was then 

carried out in t.he re,alilhtiort pltasc. 

10.2.4.4 Chapter 4 - Revalidation 

Integration testing \\·as C<trrieclnut usrng <l test file which cotttaillecl all the features of Pascal 

and this testing cort!imwd tlr<ll t.lw lW\\' version of p~r funct.i01wd as required by the change 

request. Regression testir1g ,,.Cls C<lrriecl out using a test suir.e to verify that the changes made 

had no adverse side-dl.ect:-. u11 t !It' progr<llll. The tPst. file. the t~·st suite and t.he test results 

were included in the chapter usi11g tlw insert l)jWrCl!ion. The amended book structure is 

shown below in Figure IU.l :) lwlo,,·. <lll(l was produced using t.he table operation. The 

e~ternal docunw11tatiort relati11g t.o tht' prograrn was updated t.o reflect the changes made. 

Approval from tlw cha11ge coni rol authority was followed by incorporation of the modified 

modules into a liP\\. u•rsion of p~r. 11sir1g RCS [1:2:3] and l\Inke [:~8]. The support offered by 

the documentation paradign1 for r-.rlrnsihilitu is now illustrated by reference to the support 

ofFered for docunwnt<1tioti one! conhguratiott management. 



Title Version 1.1 pxr 
1 The Change requests 

1.1 Program doesn't distinguish types of parameter 
1.2 Self-referencing types not output 
1.3 Structured listing not yet implemented 
1.4 Terse/intermediate listings do not ~ork as specified 
1.5 Full alphabetic listing not yet implemented 
1.6 Output of standard Pascal types not required 
1.7 Screen output confusing 

2 Understanding the software 
2.1 Global Understanding from external documentation 

2.1.1 Program doesn't distinguish types of parameter: paramlist.p, 
print.p, symbol.p 

2.1.2 Self-referencing types not output: readtype.p 
2.1.3 Structured listing: print.p 
2.1.4 Terse/intermediate listings do not work: print.p 
2.1.5 Full alphabetic listing not yet implemented: arguments.p, print.p 
2.1.6 Output of standard Pascal types: symbol.p 
2.1.7 Screen output confusing: gettoken.p 

2.2 Local Understanding 
2.2.1 gettoken.p: lexical analysis of command line. 
2.2.2 paramlist.p: parsing formal and actual parameters. 
2.2.3 print.p: printing cross-reference listing. 
2.2.4 symbol.p: processing symbol table. 
2.2.5 readtype.p: parsing declarations in the program. 
2.2.6 arguments.p: processing arguments in the command line parsing. 

3 Modification of the soft~are 
3.1 arguments.p: code added to parse 'f' and 'F' options 
3.2 gettoken.p: no tab characters output, call to 'page' removed 
3.3 paramlist.p: parameters distinguished 
3.4 print.p: parameters distinguished; parameter information updated; 

alphabetic and intermediate/terse listings implemented 
3.5 readtype.p: type-name inserted into symbol table before processing 
3.6 symbol.p: parameters distinguished; no output of standard names 

4 Revalidation of the software 
5 Executive Summary 
6 Scratchpad 

6.1 Ordering the change requests 
6.2 Modules associated with each change request 
6.3 Requests linked ~ith paramlist.p, print.p, symbol.p 

Figure 10.12: The Maintenance History of pxr 



Title Version 1.1 pxr 
1 The Change requests 

1.1 Program doesn't distinguish types of parameter 
1.2 Self-referencing types not output 
1.3 Structured listing not yet implemented 
1.4 Terse/intermediate listings do not work as specified 
1.5 Full alphabetic listing not yet implemented 
1.6 Output of standard Pascal types not required 
1.7 Screen output confusing 

2 Understanding the software 
2.1 Global Understanding from external documentation 

2.1.1 Program doesn't distinguish types of parameter: paramlist.p, 
print.p, symbol.p 

2.1.2 Self-referencing types not output: readtype.p 
2.1.3 Structured listing: print.p 
2.1.4 Terse/intermediate listings do not work: print.p 
2.1.5 Full alphabetic listing not yet implemented: arguments.p, print.p 
2.1.6 Output of standard Pascal types: symbol.p 
2.1.7 Screen output confusing: gettoken.p 

2.2 Local Understanding 
2.2.1 gettoken.p: lexical analysis of command line. 
2.2.2 paramlist.p: parsing formal and actual parameters. 
2.2.3 print.p: printing cross-reference listing. 
2.2.4 symbol.p: processing symbol table. 
2.2.5 readtype.p: parsing declarations in the program. 
2.2.6 arguments.p: processing arguments in the command line parsing. 

3 Modification of the software 
3.1 arguments.p: code added to parse 'f' and 'F' options 
3.2 gettoken.p: no tab characters output, call to 'page' removed 
3.3 paramlist.p: parameters distinguished 
3.4 print.p: parameters distinguished; parameter information updated; 

alphabetic and- intermediate/-terse listings implemented 
3.5 readtype.p: type-name inserted into symbol table before processing 
3.6 symbol.p: parameters distinguished; no output of standard names 

4 Revalidation of the software 
4.1 Integration testing 
4.2 Regression testing 

4.2.1 Test Cases 
4.2.1.1 Test Results 

5 Executive Summary 
6 Scratchpad 

6.1 Ordering the change requests 
6.2 Modules associated with each change request 
6.3 Requests linked with paramlist.p, print.p, symbol.p 

Figmc 10.1:~: The i\'i<1intenance History of pxr 



Support for completeness and consistency of documentation 

Primarily. the docuill<'III <ltioii pMadigm is a tool to assist In maintaining the completeness 

and consistency ot' t.ll<' do<"IIII\f'IIl at i<>ll of maintenance of large, colllple\:. :;oft.wa.re systems. 

Consequently, this support Is aiia.lysecl in the context of the revalidation phase of software 

maintenance, but it is equally rele\·ant to the understanding and modification phases of 

maintenance. 

The !VIaiiilt:'II<IIIC<' llist.un is dll .\1) l \\'lliclt is Inacle lip o[' <-~ list ul' liierarcltical structures. 

i.e. books. This hierarchical concept IlWdll:-> tlt<ll the doculllPlll<l.tion paradigm supports the 

concept of cz:tensibllillj. OllP of the desirabiP characteristics of ellvironments listed by Magel 

[II"]. 

:\II illustration o[ t l1i:-> <'.\1<'11:->ihilit\ i:- til<' prm isioii o[ <-~II <'nforc<'d li1tkage between the source 

code and its external clocum<·ttlat ion. Tl1e oper<1t ioii equal nsed in the maintenance of ·pxr' 

implements a struct1tre search and test.:-; two tree:-; for equality: the trees may be subtrees 

within the structure of tlw Book. or the trees may be Books themselves. In the context 

of extensibility. t.lw trees are the structural hierarch.v of the ~ource code a11d the structural 

hierarchy of t.ll<' d{)<'IIIli<'IIl <ll iu11 oi' tl1i:-; ~Oiti'C(:' code. The test for equality i:o in re:opect of 

their structure aile! t.he value~ ur their nod<' ke\·s. :\ structured program has its modules, 

procedures, function:-;. generically kno\1'11 <lS components, arranged in a hierarchical manner, 

as shown in Figure lO.II below. 1'lw let.ters A.B etc represent the component identifiers. It is 

good programnting practin· to gi1·<· tlwse conipotwnt identifiers nwaningful names, but these 

names alone do not n-·flect a lli<·rar<·ltical program structure. To make the hierarchy explicit, 

286 



A 

II\ 
B C D 

I \ 
D E 

Figure LO.l-1:: ~lodule hierarchy of a structured program 

the component identifier should unrv t.11·o ·labels·. a prefix and a. suffix. The prefix reflects the 

place oft he cOIIIJJOIWIJI i11 t hi' lticr;t.rchy uf the source code. and a nunwrical suf-fix indicates 

the version numlwr of tlw cuiiiJlOIICJtl. incremented each t.ime the component is modified. 

The modified hierarc!Iicctl progra111 cnlllpUIWII1 ideiitifit~rs would then appear as shown in 

Figure 10.15 be\011". Tlw hierarchical structure of r.lw program is no11· explicit. and the place 

1_A_O 

II\ 
I I \ 

I I \ 
I I \ 

I I \ 
1.1_8_0 1.2_C_O 1.3_0_0 

1\ 
1.1.1_0_0 1.1.2_E_O 

Figure 10.1 :""J: \lodified tnoclule hierarchy of a structured program 

of a component within the hierarchy c<tll lw s<'t'll fro11I its iclentiher. The documentation of 

source code can mirror the hierarchy of tlw program. t.he problem of e;risting code without 

these prefixes and suffixf·'s could be solved by interfacing with a cross-referencer. the source 

code and the clocunH'Illation file could the11 be rf'Vised to carry these identifiers. Manually 

scanning t.he soft ll"i-11"<' II"Oilld I)(' less of <l cl1ore. through t-'tdiallcecl rf'acla.bility of the source 

code, and of the cross-reference output. 

:281 



Documentatiott is more likely to be done well if there exists an ea.sy means of updating it. 

and if there exists 011 <wdit pron,·ss t.o check whether documentation has been written in 

compliance with the sl.<tlldrtrds i11 force at the time of 1niting. This is a vital issue. since 

failure to maintain documentation devalues the softvvare. which is a capital asset. Update 

of documentation is required to reflect changes made to the source code. An organisation 

may decide that 'free-format· documentation is allowable. but auditing procedures may find 

it difficult to verify tl1is L1 JW uf doc·tlllWIJtC\tiotl. so ·form-fill" mav be the standard method 

for documellt.at.iotJ of JJiitiiii<'Ildl~<'<'. \\"ildl<'lc'r JJwt.lllHl is usc·cl. t lw donrtlteiJt.a.t.ion paradigrn 

is flexible and abstrans aw<1Y from this lm1·-levpl aspect of documelltation. 

Two types of modification to the source code can be et11·isaged. the structure of the hierarchy 

could be changed. c-·.g. i>y t lw CJcicliti(lll or removal of compoii<"IIls. whidt concerns the role of 

the prefix. or iiJlc'rJidi JJH>dilic·<Jt i<>JJs co1Ild he· Jlladf• tu <l colliJ>OIJc'Jit. "·hicl1 concerns the role 

of the suffix. Suppo:;e dtiotlrer ilJ(!dule il<~d lwe11 i11:;ert.ed bec11·eeu modules whose identifier 

prefixes are 1.l.l allCl l.l.:2. respect.ively. This inserted module would thell have its identifier 

prefix as l.l.2 ancl the Jtlodule 11·ith 0 prefix of 1.1.:2 ll'ould haYe its prefix incremented to 

1. 1.:3. Each time n sOli IT<' code JJl()(lule is modified. its iclent ifier suHix is incremented by one. 

so tllilt if two IIIUllulc· id<'JJtili('J." uJiil dilf'cr i11 the ,.diU<· u!' tlwir sullixe:;. then the module 

identifier with the greatcJr valtw of its suffix is tiH· lat<'r version. 

All components could carry the :;uffix valu<" 0 initially and this could be incremented by one 

each time an iuter11a.l modific<lt in11 is carried out: the compotwnts in the documentation file 

would lw likewise iJ)(T!'JlWJil<'d .. \ c:otnparison of tlw Iltodified :;outTc code :;tructure with 

the corresponding clocunwnt<tt ion st.ruct.un· i11dicates where in the documentation structure 

288 



code. i.e. the plac<J(s) 111 tile struct.11re of the document;.ltion where it neecb to be updated 

IS g1ven by a failure i11 a p<tt.lerll nwt(·h. t'ither because the remainder of the identifier does 

not match. e.g. l.l.Lidentifier_\ with l.l.:2jdentifier_'{, or because the sequence of num-

bers does not match. e.g. l. 1.:3 follows 1.1.:2 instead of the expected 1.:2 as in the original 

hierarchv. Correlation of the icl<·~ntifiers of the modules in the source code hierarchv and .J - . ..., 

in the clocurnent.at io11 liierMcll\ is lllade possiblP b,,· the unique prefix-suffix combination of 

the identifiers. ;.wd tl1is ii1dicat(·s wlwtlwr tlw cloculll!"llt.atioii has been updated to reflect 

any modifications to the st.ruct.ure of t.ht' source code-'. Each time the documentation file is 

updated it is kept dS <l m·11· \Trsiotl \\'itii the tlarne of the persou(s) respoti:-iible for it.s last 

update. so a clH.·ck ccttl lw IIIa.dc u11 tlw qtii:ilitv of the doculllentatiotl. 

Both th<·' sotiru-· n1dt· illld ih associCJ.tl'd clouttnettLation l'OIIUTIIiiig the nlaintell<UlCe assign-

ment can be stored ,,·it.hin the Hook. as suhtrees within it.s st.ructure. pro,·icling an efficient 

means of testing t.he equality l)f these subtrees. as regards their structures and the values of 

the identifiers wit.hin those strJtclures. 

Applyi11g the clocltllWIIIatioll p<1radig1n to the maintenance of large soft\\'are systems means 

that the iV[aint.etld.tice 1-l ist.nn· nut lw used <ls a I neat Is of re\ ising tlw origiual documentation 

without actually updating all its const.ituettl parts. i.e. the paradigm provides a means of 

traceability bet.wee11 Illaint.eii<l.llCf·' dSsigltliWtlts. For example. inste;.tcl of haYing to find every 

place in tlw clocumf'uta.tiotl that makes referf'nce to a V<tria.ble, and listing the changes made, 

the use of new variables and t.he cliscoutinuance of other variables could be kept centrally 

in a data. dictionarv. \\'l1ich is i1Jiwrit.ed h\· successive maint.en<HICt:' books: the same can 

:289 



be done for the c<-tll-grdplt ,.;t tttcl.ttr<'. Thi:; method functions iu muclt the :-ii:il1le \\·ay as au 

·errata' insertion in a book. ·r-lw dat<-~ dictionary and call-graph structure \\·ill be updated 

and annotated t.o sho\\' which ch<-1nges haH' taken place. from their ·baselines· i.e. as they 

were at the commencement of the maintenance assignment. 

Support for configuration management 

Another exa.mple of tlw :-;uppmt olferf'd by the document.aLiott paradigm for extensibility 

is the domain of conliguratio11 tl\d.lldg<'l\WIII. Tlwn· <-~r<' two strands to configuration man-

agement. that. of the software system being maintained and that of the project structure 

itself. 

A p<nt.icular verstott of sutttT<·' c·ode is con1prisPd of particular verstotts of rhe ~ource code 

modules. The sul-lix itt t.!w Il!\Jdul<· idc•ttl ilic·r gin·,.; tlw \'f-rstutt of tlte module to be included 

in a configura.tio11 of the soft\\"i:tre for Cl- ·customer'. each different cott11guration can be repre-

sented by a book in t.he \laintenance Histor.v. The figure shows all the values of the module 

suffixes as zero. t.his holJk wott!d represent <l ·base relea~e· of the soft,,·are. 

The adoption of <t hier;Jrc!Jic<li projt'ct. st rttct Jtrr·' nwatts that t.he ,.tfalionsl11p between doc­

uments IS made e.rplir:d since. whetJ stored as the cornponents of a book. for e:--:ample, the 

relationship may he that of chapter and section, or section and subsectiou. Establishing a. 

relationship between docutl\c:·nts ts essential for configuration ma.ILagemeut. 111 this respect 

the docutlll:'nt.<ll iotJ j>ill'<ldigtJI is ill! t.rpn.~ . ..;wn of the tnaintetJance model. Although the 

maintenance model is capablt' of evolut.iotJ. this must be carefully· controlled since it both 

290 



provides d c;t.aiidetrd <oiiiigtiriltiuii J'or t!J,· project -;tructure and <1 f<uniliar orga.IIisatiou of 

information so that IIH'Illbers of t.l!c maiiitena.nce organisation know 1vlwn:' to look in the 

book for particular kinds of iiifnrni<ttion. !n addition the project structure makes possible 

allocation of duties to the nwmlwrs of the project team. 

The insert operation was used to include the changes made to t.hP docurnentation. and 

the configuration of t.he nf'w version of t.he software: the Scra.tchpad was removed from the 

book using the prune OJWnlt.ioii. to gi,·c t.lw book structure as shown bv the operation Ill 

Figure 10.16 below. 

10.2.4.5 Chapter .5 - Executive Summary 

After the docunwuL·ltioii of tlw c;oftll'ai'<' <lit 1:::-.:ecut.i ve ~llillll!ary twecls t.o be prepared. The 

importance of pro,·iding t.his type of iitforrnat.ion f'low is thill the management team ha,·e 

access to an on·'n·ie11· of t.lw Illilint.(-'Jl<~ItU' assignment. which catt aid them in their strate-

gic planning. An r:'X<tmple of t.lw tvpe of information included in the E:-:ecutive Summary 

would be a st.atist.ic<:li <'\·a!Itdt ioii of t lw t._vpes of source code cotnpoueuts which are most 

often changed (corrective tllilintettaiiCe) a.nd ll'oitlcl indicate the type of code that most often 

causes probletns. select.iug catlclidat(' modules for preventive (scheduled) maintenance. This 

information could be obt<liiwd frotn the sufrixes of the source code component icleutihers, 

using the cross-reference OJWra.tion. Information may also be included in the Executive 

Summa.rv to enablr-· the Illilttdl.!:t'Itlt'Ilt team to evaluate the toolset of the environment. 
J " 

:291 



Title Version 1.1 pxr 
1 The Change requests 

1.1 Program doesn't distinguish types of parameter 
1.2 Self-referencing types not output 
1.3 Structured listing not yet implemented 
1.4 Terse/intermediate listings do not work as specified 
1.5 Full alphabetic listing not yet implemented 
1.6 Output of standard Pascal types not required 
1.7 Screen output confusing 

2 Understanding the software 
2.1 Global Understanding from external documentation 

2.1.1 Program doesn't distinguish types of parameter: paramlist.p, 
print.p, symbol.p 

2.1.2 Self-referencing types not output: readtype.p 
2.1.3 Structured listing: print.p 
2.1.4 Terse/intermediate listings do not work: print.p 
2.1.5 Full alphabetic listing not yet implemented: arguments.p, print.p 
2.1.6 Output of standard Pascal types: symbol.p 
2.1.7 Screen output confusing: gettoken.p 

2.2 Local Understanding 
2.2.1 gettoken.p: lexical analysis of command line. 
2.2.2 paramlist.p: parsing formal and actual parameters. 
2.2.3 print.p: printing cross-reference listing. 
2.2.4 symbol.p: processing symbol table. 
2.2.5 readtype.p: parsing declarations In the program. 
2.2.6 arguments.p: processing arguments in the command line parsing. 

3 Modification of the software 
3.1 arguments.p: code added to parse 'f' and 'F' options 
3.2 gettoken.p: no tab characters output, call to 'page' removed 
3.3 para~list.p: parameters distinguished 
3.4 print.p: parameters distinguished; parameter information updated; 

alphabetic and intermediate/terse listings implemented 
3.5 readtype.p: type-name inserted into symbol table before processing 
3.6 symbol.p: parameters distinguished; no output of standard names 

4 Revalidation of the software 
4.1 Integration testing 
4.2 Regression testing 

4.2.1 Test Cases 
4.2.1.1 Test Results 

4.3 Documentation of changes made to 'pxr' source code 
4.4 Configuration management and Version Control 

5 Executive Summary 

figme I 0.16: The i\la.iutenance History of pxr 

:292 



10.2.5 Future maintenance of 'pxr' 

In the construction of t.he book to producE' version 1.1 of 'pxr', the editing operations as­

sumed greater importance than the operations associated \vith navigation and retrieval of 

information. In this part of the ma.intenance assignment the reverse is true. as described 

below. 

Future m<:tintaiiiers of ·p.\r· Ilia\· ll<"<'d lo <lcquin· an UIHI!-'rst<-ll!diiig of tlw current rnaiutena.nce 

assignment in order to perform their lllainlena.nce assignment. Browsing is one way of 

achieving such a.n understa.Ilcling. using a conceptual mllp. Tlw conceptual map of the book 

documenting the mninlenance of ·pxr· I1<1S heen shown as an indented table of contents so 

reflecting its hierarchical sl rucl-llr<'. \\·hich helps to orient the usPr wheu browsing. 

This conceptual map is itself ilii ob.slmr-1/on. 11 \\·c-11-kno\\'n example of such an abstraction 

is a road map, with t.O\\"!IS as nodes in the directed graph. 0IIC of the problems associated 

with navigation \vithin a large data sf.ntcture is disorientation. An obvious benefit of a 

hierarchical topology is in comhi-lttittg this clisorientatiotl. the operation w.hich most obviously 

charactf'riscs tlw l1uuk st rl!<"lltr<' <~;; <I !"(J!I<"l.'plltd.l 11/f/.fJ. ts path \Vhich priuts out the node 

keys from the root of t.he t.ref'. t.o a tiOIItin<lkd 11odP. thus gtvtng the co-ordinates of the 

node. orienting the user 111 his/her perception of their position on the conceptual map, and 

providing valuable t.mceabilit.y information . 

. -\s an example of t lw u;;i' of path. the path from the t.it le of I he book to the node :2.:2.1 

gettoken.p is shown b_v Figure 10.11 belo\\": 



The path operation placPs 1 he module paramlist.p 111 its rightful cont.ext. orienting the 

Title Version 1.1 pxr 

2 Understanding the software 

2.2 Local Understanding 

2.2.2 paramlist.p: parsing formal and actual parameters. 

Figure 10.11: Output from the ·path' operation 

n1aintenance prograllllllf'r. 

To further unclerst.<LJiding, the evaluate opera.tion can be used to display the contents of 

node. During a hrmn;ing s12ssin11 l!lany nodes ma.y be visited. the collection of nodes consti-

tuting a ·virtual' hook. Soiiwt.iiilt'S idt'i-lS <ll"l' half-fornwd a11cl tlwu the tettuous thread which 

holds the idea together breaks. and the idea i:-; lost.. The evaluate operation also keeps a 

record of ,,·hich nodes l!in·e lwe11 ,·isitecl during a browsing sessiott. storing the nodes in a list. 

and this list C<UI lw displ<~.\·ed using the trail operation. By this means it ma_y be possible 

to recapt.urP t.lw iden "·hiclt \\'as lost. 

An additional rueaus of <tidilll:', undcrsLtllllillg is provided by the abstract operation which 

1s a 'slicing· operatio11 offering <-~ ,.,r U' of tlw documentation. Abstract produces a list of 

nodes concPrned with t.lw samt> topic. the nodes being the components of a hierarchy. e.g. 

sections. suhst·ctioi!S. etc. lufl)rl1\rllion ts Illadf' available at greater levPls of detail by the 

hierarchical decolllpositioll. <wd Cr\.11 lw utilised tn the same wa\· as texts tn programmed 

learning. In Figure 10.18 lwlow the operat io11 1s usf'd to provide information concerning the 

revalidation of the soft.waw'. 

294 



4 Revalidation of the software 

4.1 Regression testing 

4.1.1 Test Cases 

4.1.1.1 Test Results 

Figure lO.lS: Output from the ·abstract' operation 

Support for traceability 

An identifier, e.g. l J l.l_\ 'y"Z_O provides <-1 pat.lt \\·hich can be traced backwards through 

the tree of called cotnporwnts. to show where the cotnponent was called from. The call tree 

could also be displayed itt grapltical form. 

10.2.6 Other attributes of the documentation paradigm 

Relational aspect 

Storing tlw illform;-ltiotl cutwernitlg sotm:e code as a hierarchy of tables with one of the nodes 

containing the it1forrnntiu11 produced IJ\·. (·'.g. progratn atlcd\·sis toob. means that queries of 

a relational nature catt also lw supported. The relational model offers more flexibility than 

other cla.ta models. an important consideration since there is no basis for determining tn 

advance which type of quest.iotls will he most. frequently asked. by maintainers. 

:295 



10.2. 7 Weaknesses associated with the documentation paradigm 

The main disa.clva.ntage of hierarchical information structures is concerned with their update, 

which is difficult wh~n the node to be inserted or removed is not a leaf node. depending on 

the granularity of tlw obi('Ct .. 

There is no automatic provisio11 of facilities for vers10nmg of understanding. It is to be 

expected that understanding of a program ts achieved in an incremental fashion, and an 

interface would twed to be provided to a tool such as RCS [12:3]. 

The clocumentatiott paradigm does not support a rule-based query language. as it lacks a 

sophist.icatcd dat.d hds<· tlldlld!l/'IJH'JJI -;\·.-;t <'Ill. 

10.3 The effect of incomplete use of the toolset by 

maintainers 

The incomplete use of tlw toolset. will degrade its effectiveness. It is not possible to quantify 

this. but the cons~:·quetJC<'s of its i11complete use are set out below. 

During t lte use uf t lw ductttllt'ltl dl iun pill'adigrn there are various a.ct.ivities carried out by the 

members of the tnaint.ett<wcc orga11isation. SotJle oft hese activities depend on one particular 

tool. If the toolset is used incompletely, then it is not possible to say quantitatively what 

effect this would han' on t.he maintenance activit.v. unless it is also known \vhat approach 



IS to be used 1 n tandem \\·i tli tlw clocumenta.tion paradigm, 10 lieu of relying solely on the 

toolset. 

The toolset makes it possible to e:-:press the documentation paradigm; failure to use certain 

tools may render invalid any attempt to use other tools. 

10.3.1 Reasons for using the complete toolset 

The operations which co1npris<~ the paradigm are a m.lnim.al set, and the importance of this 

fact is de;;cri bed h1Jiow. 

l. Process Structuring 

The documentation paraclign1 act.;; as the conceptual schema for the lSMSE, and en-

ca.psulatP;; the process tnocld uuderlying it: i.e. t.he anthology\ structure reflects the 

conc:eptu<ll -.;cllf'Illi-1 fur llw lS\'lSE. Evolution of the prou'ss Itloclel underlying the 

ISiviSE requires !lw!. t.h(' lS.\lSL 11111.-<l fJ, oblr lo snpporl il.':' own f:tJOLufton. It is there­

fore vital to ensure that the en\·ironment is always able to support the evolution of this 

process model through t.he activit.v of process-struct.uring, utilising the indispensable 

operations which ma.kP it. possible to build and edit the anthology structure. Without 

the l1lols to !JJlild dtld ~·dil I lw prun-'ss 111ocl<'l lttHierlyittg the cottCeptua.l schema, the 

evolution of !.he process model \\'OJtld not lw possible. 

:297 



·) Effect on the technical aspect of maintenance 

Sonw of t.he operatio11s ha.u': a. nne-to-many mapping to the activities performed d ur-

ing t.he rnaintPnance of soft.\\·are. as can be seen from the table below in table 10.1. 

Removal of a. pan.icttlar op<Tilticm from the set may have a. deleterious effect on the 

effective performance of these activities, or ma.y render them impossible to perform. 

The operations that could possibly be dispensed with are those which make it possi­

ble to e:--,:t.r<lct. i11format.ioit frot11 the book structure. for the purpose of understanding. 

It is possible t.u tltitni(· tiJ('s!' op<-'riltioll::; lllC\Illlaiiv. but this would tuean that. these 

tasks are very tillte-collslltllillg. a!!d sillcT Ulldf'rsta.ncling is tlw ra.te-detennining step 

in the maintenance activity. this approach vvoulcl be counter-productive. In this con-

te:--,:t perhaps the most cruciil.l operation is the Cross-refereuce operation, since it has 

the greatest pote11tictl t.o aiel in umlerstancling the software systern being maintained. 

:_L l\!Ianagement 

The operations \\·hich e:-:t.ract infortllill iott front the book structure a.re vital to the 

management function - without them it is difficult to bring maintenance under man-

a.gement. co11trol. :\ltinagemel!t. is closely linked to organising, rrto11itoring a.tLd auditing, 

and without tlw liS!' or t.lw T<ll)le .. \l)Sl!"c\Ct i-lllcl 1~\·a.luate oper<ttions. it is impossible 

to lllOllitor t.ltt' progrt-'SS ur t II(' llli-lilltt'll<l.nce a.ssiglltllt'llt.. In i'\.cldition. the absence of 

the operation C'ross-rt'retTilC<' nta.kes it. impossible to extract information concerning 

the maintenance assignment. for the purposes of auditing. The absence of the Cross­

reference operiltiott lllcl.kes impossible the analysis of the change requests with a. view 

to brtl.cltillg SOIII!' or 111!'111. ltsillg t[w scratchpa.cl fa.ci[it\·: ba.tching being an activity 

:298 



4. Desirable chaeacterist.ics of the ISMSE lost as a result of incomplete use of 

the toolset 

A summary of the activities supported by the complete toolset is shown below in 

Table lO.l. Perhaps t.lw best way of describing the effect of the incomplete use of the 

toolset is to look at the desirable characteristics conferred upon the ISMS£ by the 

toolset - and how sollle o!' these properties would be ·lost', if certain operations were 

not. used. 111akirlg so!ll<' ilcti,·it.ies it11possible. 

Activity Operations involved 

Documenting Build and Edit 
Browsing C' ross- reference. Trail 

Searching ('ross-reference. Trail 

U n dersli-lll d i r1g (' ross-rP!'eren ce. Trail 

Authoring Build and Edit 

Editing Build <tllcl Ecli L 

\'tc'rsi<)l) i 11g Huild a11d Edit. Equal 

Tr;1cing Cross- reference. Trail 

A. ucli t.i ng ( 'ross-referencP. Trail 

lVIa.na.gi ng Table. Cross- reference, Abstract, Evaluate 

ProcPss Structuring Build and Edit 

Table lO.l: OpPrations and activities associated with the documentation paradigm 

Abstraction - clirPct.ly suppor·t t>d by <lll operation of the same name. 

Extensibility- support for coJiligur;-Jtioll lliClllngertH'llt and vf'rsiotling. using, e.g. the Equal 

operation. 

Grouping of Resources - pooling of efforts which makes use of the Cross-reference oper-

ation. and Build and t·:dit operations. 

Adaptability- <iclti<·\·(·d tltrtHtgh incremental implementation. making possible incremental 

integration, to refit-ct. ('\·olut ion of tll(' process model. The operations involved are Build and 

:29~) 



Edit operations and thosl:' uper<ltious which facilitate understanding. 

Tailorability- ittt.egr<-lting m;-linr.r~nance process a.nd m;_tintenance organisation. Evolution 

of the framework which ntakes i nt.egration possible requires. at least. the use of Build and 

Edit operations. 

Unification - facilitates comntunica.tion and co-ordination between component parts of 

maintenance organisation. requiring operations to support monitoring and auditing. 

10.4 The scope for reuse of experience within the pro-

posed ISMSE 

The ensuing klloll"ledgc ;;temJttitJg front tlw informatiou collected duriug a maintenance as-

signment can pro,·iclt-· d record uf the l'XJWricuce gained during the assignment. which can 

be of use 111 future maintenaJtce assignments. In time the rnaintettance-historv becomes a 

resource. contai1tiug muclt information concerning maintenance strategies, providing a tool 

for the ach·ancentcJJI of kttm\·ltc·dgl' concerning soft,vare ma.intenauce. and serving to advance 

software ma.intenance research .. -\11 t:'Xdltlple of this is in the area of re-use; previous assign-

ments can be studied t.o s<'e how particular problems were solved. which can aiel in achieving 

an increase in producti,·ity. :\ failurP to learn from the past often means that the mistakes of 

the past are destined t.o he repeated. which will reduce the productivity of the organisation. 

The establishment of rt··us<thl<' processes is t.he most. effectivP \Vay of providing for reuse in an 

environment. l'vlappiug the cllrl.pt.er collccrniltg t lw clla.tJge request to the succeeding chapters 

:300 



which execute this change reqttest prO\·icles the reader with a means of re-using parts of the 

rnaintenance process. 

10.5 How managers could incorporate 'milestones' 

The software cleveloptllent life-cycle is separated into phases for the purpose of incorporating 

·milestones' for t11anagers associated with the project. Similarly the maintenance of software 

is similarly pa.rt.it.iolled. ltier<1rchicalh·. using phases. ThP maintenance model maps directly 

onto the book st.ruct.11re ancl t lw degree of cotnpiPt.ion of each chapter is an indicator of the 

progress of the maintena11ce assignment. :\part from the first. phase. no phase of maintenance 

ca.n begin until the pre,·ious pbase is completed, and so the table of contents operation 

provides managers with a means of !llOilit.oring the progress of the as::;ignment. 

10.6 The scope for using the ISMSE to document its 

own development 

The documentation paradigm in this thesis enables the documentation of the maintenance 

process. \\·ltich is a hierarchical one. .-\ny process having a hierarchical nature is capable 

of being document.ecl using the documentation paradigm promulgated in this thesis, since 

:301 



the book structure is itself a hierarchical onE'. Furthermore, maintenance ic; a microcosm of 

software development. and it has been demonstrated that it can be documented using the 

documentation paradigm. By induction, the software development process is also capable of 

being documented using the same paradigm. IL say. an IPSE was used to build an ISMSE. 

the documentation paradigm could be hosted on the IPSE. The only other alternative is to 

record the development on paper, and then at some later stage make the transition to the 

electronic version of the documentation paradigm. 

10.7 Summary 

The use of the documentation paradigm in a toolkit environment. has been described, using 

the host conlputer·s l1ierarchical file structure to mirror the structure of the ADT Main-

t.enance_History. c-wd up<'rc-tl i11g :-;\·st.clll cOI1lllli:l!lds lo mirror tlw o1wrat.ions vvhich define 

the Maintenance_History as ct.! I A DT. Tlw book st rurt ure is !!lore ordered than a normal 

acyclic directed graph. because a relationship exisrs between the nodes. the relationship 

being stronger than the simple inequality relation existing between nodes in many binary 

search trees. Furthermore. the operations which characterise the documentation paradigm 

enable the lllnilll.aill<'l" to ill>st !"del illl"i-l_\" l"ro!ll the U!Hierlyill!J; file I"PIHf'Sf'llt.ation. and view the 

information as collections of entities. or ohjC'cls. In I his way the ADT Ma.intenance_History is 

mapped to the underlying file system, the minimum granularity of the operand for its opera­

tions being the file. the relationships between files which are logicalLy related are maintained. 

The editing functions which help define t.lw ADT .Maintena.nce_Historv. help to underline 



the fact that the docltnwntatiotl parMiign1 provides the basis for an authoring system, which 

is essential to achieve the desired level of productivity when implementing computer-aided 

learning (CAL), one of the functions of the ISMS E. CAL applies to understanding the soft-

ware system being maintained. and to learning to use a complex tool. i.e. the ISlVISE itself. 

The documenta.tion paradigm prm·ides a means of integrating these two functions of the 

ISMSE, within a. single data structure. 

The Maintenance 1-Iistor.v prm·ides a log of maintenance activities. and the inclusion in the 

maintenance log of explallitl.ory sectious detailing u:hy something was clone in the way it 

was provides a11 it1sight i1Jto 1 lw -;tr<lteg\· a.clopted dnring software maintenance and can aid 

the understanding of the lo11·er-le1·el i-lctivit.ws. incl11ditlg the coding phase, performed bv 

'current' ma.intainers. bv fu.lu.1·r maiut.ainers. 

The documentation paradigm confers several of the cle~irable characteristics enumerated by 

Magel [71] upon 1 he IS\ISI::. It li<ls lwen shown that the paradiglll supports abstraction. 

extensibility. <wei grouping of resources. The docunwtltation paradigm is indepen­

dent of an.Y programn}ing language or process model. and confers generality upon the 

ISMSE. Evolution of the process model will not invalidate the use of the paradigm; since 

the paradigm is tlw conceptual schema for the ISMSE. and supports incremental imple-

mentation. through illcn-·tll<'tlt<ll i11tegrat.ion. and tlwrefore confers adaptability upon the 

ISMSE. Moreover the cloclllllf'llt<ll.iotl paradigm fost.ers a disciplined approach to the docu­

mentation of software. and provides the framework for integrating the maintenance process 

and the maintenann· org<lllisation into a single unifying structure. so the paradigm con-

fers tailorability upo11 t.he IS\ISE. This also simplifies communication and coordination 

:30:3 



between the component. parts of t.he organisation. particularly the technical members and 

management nwrnbers of the maintenance organisation, so conferring unification upon the 

ISJ\iiSE. 

The application of the documentation paradigm to the maintenance of a software tooL has 

been used to assist in i t.s evaluation and to extrapolate its use to a larger software system. 

In particular. the analysis of the paradigm highlighted the support it offers for abstracting, 

documenting. brm\·sing. se<-Hclting. ttttderst.;-Jnding. authoring. editing. versioning, tracing. 

auditing. ma.nagtng. <-lltcl pron·ss st.ruct ttri11g. 

From this evaluation of the documentation paradigm. it can be inferred that it would provide 

adequate functiotta.lity. when used to document the maintenance of a large software system, 

part.icularlv as regards s<lfeguarding the completeness and consistency of the system's doc-

umentatiott: and supporting cottligrtrdliott lll<-ttliigr'llwnt. \·ersiott IIIdJtagetuent. a.nJ project 

management. 

304 



Chapter 11 

Conclusions and Further Work 

11.1 Review of the work 

The work in this thesis IS reviewed here and suggestions made as to how the work can be 

exteuclecl i11 t.he l'ut11r<·'-

The original objectives of this thesis were to pro\·ide a maiutenance organisation with the 

means of reducing the maintenance backlog and narrowing the ·hardware-software gap'. A 

means of iucreasing procluctivitv. by the use of an Integrated Software Maintenance Support 

:30-5 



Em·ironment, has bee11 outlined. u;otng <1 documentation paradigm within the framework of 

this environment. to pro,·ide an effective strategy for the mait1tenance of softwa..re. Specifi-

cally the thesis ai mecl to: 

1. examine the need ford maintenance support environment and the need for a strategy 

for software maintenance 

·) investigatP currently-available support environments for their support for software 

maintenance 

:3. develop a strnt<'g_, fort lw IJiaitti<>JJilllCf' process. and a high level design for a mainte-

nance support <-'IJVJrOJJllll'JJI 

4. formallv define and irnplemenr a maintenance strategy and demonstrate and analyse 

its use 

11.2 Have the objectives been achieved 

The ever-ittcrPasittg cotnplexity of software systems. and the s1ze aud complexity of the 

their associated doctJJlteiili·ttioti. re,·eakcl tlw need for an integrated support environment 

for software maintenance. This need defined the main objective of the research, that of 

devising a strategy for pro,·icling autornated support for softvvare maintenance, particularly 

with regard to the us<? of software tools to gather informatiou co11centiug the source code. 

:306 



and its associated external clocument.at.ion, a11d a means of recording the documentation of 

maintenance performf'cl on the s\·stern. 

A basis for a disciplined approach to providing automated support software maintenance is an 

underlying process model. Devising such a. model refined the main objective of the research. 

The literature was surveyed to see how existing software maintenance process models served 

as a means of providing the basis for a disciplined approach. paying particular attention to 

those models which focused 011 the role of understanding in the maintenance of soft\vare. 

It was found that the 1naiu deficiency in existing maintenance process models for software 

maintell<liiCP \\'<IS ilt<'ir r(·slriclio11 to tlw technical aspects of software maintenance. The 

process model devised for sol'tw<tl'f·' lllilini.enar1cf' in this thesis ctcknowledges the importance 

of the maintenance organisation, particularly with regard to its information requirements. 

and the bearing Litis has on the planning and monitoring of software maintenance. These 

particular aspects of soi'twa.re mainte11ance had an important bearing on the design of the 

ISl\,ISE. and 011 thf' foriiiUlc-tiioii of i-\. straLPgy for softwarP maint.(-'llollCP. resulting !11 the 

documentation paracligrn. adopted to support this strategy. 

Having devised c-1 process model for the maintenance of software it was then necessary to 

find an environrnent \\·hich could host this model, so that automation could play its part in 

increasing the prud11ct i\ ity of tt lll<lilllcn<-tnce organisation .. -\11 o1·ervie1\· of integrated soft­

ware engineering support environiiiC!lLs was t111dertaken to ex<-uniue those characteristics of 

the environments \vhich provide support for a disciplined approach to soft\va.re ma.intena.nce. 

This literature sun·cy 1'('\'t·'c-ded that it 1s the architecture and interfaces ll'hich are the dom-

:307 



inant characteristi<"s nf integrcttt·d sofi\\'Mf' Pngineering support. environnlt'Ith. :;ince the ar-

chit.ecture is the implement<tl ion of the environment's design and the interfctce play:; a vita.! 

part in the integration of the environment's functions. 

Existing integrated software engmeenng support environments were surve.yed. those that 

were cornmercially-ax<tilahlc. a.nd also academic research environments. lt \\"as found that 

most of these environments were 110t truly inre~ratPd. true integration was found to exist only 

in Integrated Project Support. E11\·iro11ments (IPSEs). These environments aim to support 

the con1plete soft\\'<H<' de,·elopnWilt life cycle. but most of their support is aimed at software 

development. since tlwy do 1101 provide support for the understanding of software. their 

toolset lackiug the tlt'!TSSill'\ tools to supJh>rt <t.n<:dysis of source code. The literature survey 

revealed a need for an liii.egrated Sol't\\'ctl'(' \laint.enance Support t:nvironment (ISiVISE). 

together with the need for a disciplined engineering approach to software maintenance. 

Ha\ ing established tlw Iwt·d ['or a11 lS:\lSE. and the implicit liuk bet.w~e11 the software main-

teuance process llloclt·l nwl il IIIailltPnilllCe organisation. the nP:--:1 ohjecti,·e ,,·as to propose a 

high-level clesigu for t lw lS_\,lSL based largel\· on th<? i11-fonHat.ion requirements of a m:ain­

tenance organisation. \Vithin the fran1ework of a high-level design the conceptual schema 

for an environment database has been devised to provide a. documentation paradigm to 

support a st.ratcgy fur t lw IIIaintcnaiiCc of soft ware. This strategy aims to make the futu.n 

understanding of soft ,,·ar(• <'asier. 1vhile at the same time sa.fegua.rding the consistency and 

completeness ol' its documentation: a vita.! requirement since the understanding of source 

code is most easily achieved from its high-level external documentation. 

:308 



.-\ high-level dec;igll for <til 1~\!SL l1<1.-; het·'ll propos<·'d. based l<u·gelv on the information 

requirements of a. ma.intenance org;wis;trion. <tnd a study of the mechanisms necessary to 

capture information. a.nd provide reliable documentation of changes to source code. vVithin 

this framework a conceptual schema for an environment database has been devised to pro­

vide a documentation paradigm to support a strategy for the maintenance of soft\vare. This 

strategy aims to make the future understanding of software easier. while at the same time 

safeguarding the consistcncv and conlpleielwss of it.s documentation. a vital requirement 

since the understanding of somce code 1s most easilv achieved from its high-level documen-

tat ion. 

A study of the llleclrallisms IWC<'ss;tr.'' to capture informatiott. and provide reliable documen-

tation of changes to source code ll!itcle it possihk· to establish the information requirements 

of a maintenance orga11isatio1l. sillr<" <Ill <-'II\·ironilJetlt is primarily concerned with informa-

tion. and i11 p;nt ic11LH tlw link IJet.\\'et-'It information and knowledge. Knowledge implies 

understancli ng. and acl1 ic\· i 11g t.his u nders tanding is the ·rate det.ermi ning step· in the main­

tenance of soft \\·Me. F<JCI or:-; ,,-j, icl1 <1icl kt~owleclgP-capt.ure <t.re the easy stora.ge. retrieval 

and processing of i11forinatio11. This led tot lw conclusion that tlw database in the ISMSE 

has a vital role to play ill the tiii(Ierstaltciiitg of software. providing an additional impetus 

to devising a collcept u<ll schellla for the dat.abase, so that the information in the database 

could be structured. providing support for abstraction to aid understanding. 

The conceptual scheina for the CII\·irollitWitt database. which is central to the documentation 

paradigm, has been fonttally cldiited a.s an abstract data type. and the evaluation of the 

prototype has C\)1 di mwd its uti I i t.y and efficacy. ignori 11g performauce cousiderations. 

:309 



Sun1n1ary 

The primary objectives of the research have been achieved. but in the long term; in the wider 

sphere of support environments. much \Vork remains to be done to make the ISiviSE a ,-iable 

system for the maintena.uce of large software systems: the next section describes some of the 

further work required to achieve this aim. 

11.3 Further Work 

Central to the ,,·orki11g oft lw IS\·ISL is its integration mecll<llli~m. which unifies the func­

tions of the envirOitllWIIt su tli<J.t it funct.icms as a single tool. ln addition. the ISMSE needs 

to be made active, suggesting <-lpproacltes and tools to the maintainer, for the maintenance 

of soft.wart•. ratlwr th<-tll sin1ply t't111Ctioning passively: this could be achieved b_v making 

the change-request n1achinc-interpretable. Thus. it could then be a:ocertained whether the 

change n~quest has pn·,·i()llsl\· lwe11 s;1JishPcl. avoiding the nePdless repetition of work. and 

secondly. the d1ange request. uu1 <liso sen·<· ds <l ternplate for t.he structtlt'e of the book, defin­

ing the contents of the chapters within which the maintenance organisation will conduct the 

maintenance assiglllll<'ltl. This approach has great utility if the template is capable of pa-

rameterisation. for a particular tvpP of maintena.ncf'. e.g. corrective maintenance, providing 

a standardised approach to t.lw rnaint.f'nance of software. leaving tlw maintenance team to 

concentrate on the content of the book. wit l10t1t h<-tYing t.o lw concemed with its structure, 

avoiding a ·cognitive overhead·. Pararneterisation of the template also offers support for 

user-enhanceable systems, so that tailoring of the documentation paradigm is possible. In 

:310 



support of the above. the design of a suitable object management system (OMS) for the 

lSi'vlSE. is parrtlllOilllt. for t.he following reasons: 

l. An OJ\·IS reflects the comple:-\it.y and granularity of the objects dealt. with during the 

course of a maintenance assignment, at a higher semantic level than classical file sys-

tems or DBl'vfS. through the enforcement of constraints, using ADTs. This has impli-

cations for tlw llllclcrstalHiillg phase or maintenance. which is the rate-determining step 

111 a maintellelnce ()ssigtliiH'Iil. \•loreover. an 0~\'IS offers better services for the storage 

and retrit'l·al or t lwse comple:-\ della structures than classical hie svstems or DBMS. 

2. An interface betwt:'etl the OJ\•IS and software tools is required. so that information can 

be entered itilo the hook st.ructure. without manual interventiotl by the maintainer. if 

desired. This requires t.he automatic irwocation of one tool bv another tooL to extract 

infol'll\()tinll co!Jn•mill!j tlw :::oft.ll'elre: i.e. the 0\!S facilit.ate:- rool-t.ool communication. 

and so it:' design must. include <111 elhstract interfnce so thi1t e1·olution of the conceptual 

schema can proceed. re!lecting the evolution of the maintenance process. without the 

need to alter tlw IS\ISE's toolset. 

:3. Collaboreltii'C-' authoring by members of the mainten<:wce team must be supported, 

which. 111 turn. lllt.'illls tlt;1t. a I'WII' nwchanism must be dP1·ised. so that different cat-

egories of user Ci1II access the della structure sirnult.a.neously. without the need for 

complex locking nH·cha11isrns, ofte11 an integral part of commercial DBMS, a.nd unac-

ceptable in this context. beca.use of the long time-spans involved in many transactions. 

:311 



As pointed Ollt in chapter I 0. the technology underlying ISEs is immature and so in the short 

term the documentation p<H<1digrn must be implemented using available technology. using, 

e.g. an available software engineering el1\·ironment, so that the documentation paradigm can 

be mapped onto an underlying hierarchical file structure, the operating system's tools being 

used to implement some of the operations which underlie the documentation paradigm. The 

first priority is the design of a suitable implementation of the documentation paradigm using 

an appropriate ltigh-l<'vel l<ntguilge. 1rhich is able to interface with the operating s.vstem. for 

the purpose of creatittg dlld editing a direcr.orv structure. and also able to interface with 

a DBMS which is cotttJHLible ll'ith a lticrarchical file structure .. -\ selection of appropriate 

commercially-available software t.ools for tuaintenance then needs to be integrated with the 

prototype IS!\,ISE. and itlkrfacecl 11·ith tlw DBMS. The set of operations underlying the 

documentation paraclign1 could be expanded to offer the facilities of a sophisticated authoring 

sys l.elll. 

ln the area of re-use <111 ittclexing syc;tent llct·ds to be devised so that reusable processes. e.g. 

designs. a.lgorithllls. specilici1ticJtts. code fragments. can easily be found. 



Bibliography 

[1] Akscyn R.\1. et aL 'KMS: A distributed hypermedia systen1 for managmg 

knowledge in organisations', Comms. A C'M. Vol .. "] 1 No. 7. July 1.988 

[:!] Alderscm .\. <'l <d. 'An overvtew of the Eclipse Project'. 111 ln.tegmttd Project 

Support En 1'/mumen/8. ul . .J. :\IcDf:l·mid. Ptter Pen:qrtnu..;; Ltd .. 1.985 

[3] Alford \I.. 'A Requirements Engineering Methodology for Real-Time Pro­

cessing Requirements'. Trans. Softu:are Eng .. \·rJI. SE-.J .. \"o. I . .fulllWI'!J 1.911 

[ci] Ambn1s .J .. o·o,,\ V .. 'Microscope: A program analysis system'. Proc. 20th . .:l.n-

mud Hawa11 hlltrn.rJ.tional Confcn:nu on Sy8lt111 Science8. 1.981 

[.5] An 1-.:.H .. Gust.aJsorr D.A .. \[elton A.C. 'A model for software maintenance'. Proc. 

IEEE Conj[ rr:ncr: on S'o.ftwr1.n .H a-lnte nance 1.987. A us tin. l'uas 

[6] Arthur L .. J .. 'Improving Software Quality'. \Vilt-'Y· l ~HJ:3 

[7] Balser R .. Cheatham T.E., Green C.. 'Software Technology in the 1990s Using 

a New Paradigm', IEEE C'omputer. Nove·mber 1.988. p.'3.9-45 



[8] Be lady L.A .. Leh mau iV!. i\-1.. 'A model of large program development', IBM Sys-

tem Jo,u·,w./. Vol. !,), Vo . .J 19?6 

[9] Bennett K.I-1.. 'The Software Maintenance of Large Software Systems: :Man-

agement, l\!Iethods and Tools'. in Software Engineering for Large Softwan: System.s. 

ed. B.A. I\-itchenaum. Elsevier Science Publishers Ltd .. 1990 

[10] Benington H.D .. 'Production of Large Computer Programs'. Proc. ONR Sympo-

siwn on Advancul Pmymnuniny .\hthod.~ for Digital Computers. June 1.956, p350-361 

[ ll] Bigelo\1· .J.. 'Manipulating Source Code in DynamicDesign'. Hypel'lut '87, IEEE 

1.987 

[1:2] Bigelow .J. 'Hypertext and CASE'. IEEE Softwnrr:. March 1988 

[1:3] Biggerstaff T .. Elli~ C .. Halasz F .. h:ellog C .. Richter C .. \Yebster D. 'Information 

Management Challenges in the Software Design Process'. Technzcal Report 

STP-()3.9-87. MCC. So.ftu:are Technology Program . .Janltary 1.987 

[14] Boehm B.\\" .. 'The high cost of software'. Proc. Sy111p. on High Cost of Software. 

\1 . . ( ' l'j" . (I'• ) : · onftJfl). _ r1 . .1_ or1urr. /.y f.J 

[1.5] Boehm B. \V .. 'Software Engineering'. IEEE Tmnsactlons on Computers Vol. C-25. 

No.1:} DF:am.bu 1 .rJ76 

[16] Boehm B.\V .. Brown .J.H .. Lipow i\l. 'Quantitative evaluation of software quality', 

Proc /EEL:j.-\C.\1 .',·ti.Oiu! Int. ('ou.{ Sojiu•rtn Fny .. Ociobu 1976 

[17] Boehm B.W., 'Software Engineering Economics', Prentice Hall 1981. 



[18] Boehm 8.\\" .. 'A Spiral Model of Software Development and Enhancement'. 

ACMSiysoft So/iu•are Enyinuruuj Votes. Vol. 11, No.4- Anyust 1.986 

[19] Borgida A .. et. a.L 'Knowledge Representation as a Basis for Requirements 

Specification'. IEEE Computer, Vol. 18, No. 4, 1.985 

[20] Brooks R .. 'Towards a Theory of the Comprehension of Computer Programs'. 

Int. I }fnn-Machinc Studir . .:.;. \'of. /8 . .543-.554. 1.988 

[21] Brooks F.P .. 'Essence and accidents of software engineering'. IEEE Computer, 

.-l pril 1.987 

[22] Bush V .. 'As we may think' . .-\1/a.nlir: .\lon.thly. Ju.ly 19,)5 

[2:3] Buxton \ .. 'Requirements for Ada Programming Support Environments', 

Stonfman. DOD. Ftbrtutry /980 

[2-t] Carter G.\\" .. 'Seven Stages of Maintenance', Software Maintenance News, p14, 

1.986 

[2:3] Chapill N .. 'Software Maintenance with Fourth Generation Languages' ACM 

Siysoft Softwru·f t'ngincriny .Ynlts. l'o/. 9. :Vo. 1. Janrwry 1.984 

[26] Church A .. R.o::-:ser .J.. 'Some properties of Conversion'. Trans A mer. i\llath. Soc. 

:3.9 .. {72-48::!. 19:]6 

[21] Clenltll C.\1.. 'The Odin Environment Integration Mechanism'. technical REport 

CU-CS-82.'3-86. Unit 1cr . .;;//y of Colorado. Uouldr r. Colorado. April 1.986 

[28] Clocks in vV. F .• Mf'!lish C.S .. 'Programming in Prolog'. Pub. Springer- Verlag 1981 

:31.5 



[:29] Collofello .J .. Om \1 .. 'A Pt·actical Software Maintenance Environment'. Pmc. 

IEEE Confr:rrc11r:r 1111 Sofln·arr :\flilnluwnce. 1988 

[30] Conklin J .. 'Hypertext: An Introduction and Survey', IEEE Computer, Septem­

ber 1.981 

[:31] Dart S .. Carnegie !Vlellon li niversity. 'Software Development Environments'. IEEE 

Com.pu!F.r. tVoNmhe,· 1987 

[:32] Delisle :"J .J\L Menicosv D. E .. Schwart.z !VI. D. 'Viewing a programmmg environ­

ment as a single tool'. ACM Sl.qplrm Notices. May 1.984- Vol. 1.9. :Yo . .5 

[:3:3] Delisle :"J. i'vl.. Schwartz \L 'Neptune: A hypertext system for CAD applica-

tions'. P1·ouulinqs .·1 ( '.\1 Siquwd ilfi . .Vcw }'ork 

[:34] De!V[arco T .. 'Structured Specification and Systems Analysis'. Yourdon Press 

1981 

[:3.5] Distaso .J.H .. 'Software Management - A Survey of the Practice 1980', IEEE 

Procurlinys. Srplr 111i)(,. 1980. p II O.J-1 I 19 

[:36] Donahoo .J.D .. Swearinger D .. RomP .-\ir l)pvelopment C'e11tre. Grifiss AFR Ne\V York, 

'A review of Software Maintenance Technology'. RADC-TR-80-13, February 

1.980 

[:37] Fairle,· R .. 'Software engineering concepts', Pub. McCra.w-HilL 1985 

[38] Feldman .J ., 'Make: A Program for Maintaining Computer Programs', Software 

Pracfiet and Etperir:nce. April 197.9 

:316 



[:39] Fjelclstad H.k. Hamlt'll \V.T .. 'Application program maintenance study', in Tu-

tnrird on Soj1u·orr: Jfninfr:llanr·r. Silrrr Spring. MD: IEEE CompuJr::r Socir:!y Press. 

1.988 

[40] Foster .J.R .. .Jolly A.E.P .. Norris i\l.T., 'An overview of software maintenance'. Br 

Telecom. Techno! .!. I ·nl. 1. Vo .. ; . Octo be,. 1.989 

[41] Freedman 0. P .. \Vf'i n berg C:. !VI .. 'A checklist for potential side-effects of a mainte-

nance change'. in Fu·hn.itf/1.1:'· of fJror;m/11 o.nr/ s_lj$/fl/1 .\lrunlr!UIIICf. uL. Girish Parikh, 

Ethotech,. !11c .. l.fJ,...:(). pp 6/-6'8 

[42] Ga.rg P.l\ .. Scacchi \\' .. 'On Designing Intelligent Hypertext Systems for Infor­

mation Management in Software Engineering'. Hyperte;r/ '87 TR88-U1 :J, Univer-

sd!) of North ( 'umli11r1. .Vrn'r t11bu 1987 

[4:3] Ga.rg P.K .. ' Abstraction mechanisms 111 Hypertext'. Co11tnu:ns. ACl\11. Vol. :31, 

No. 7. July 1.988 

[L14] Giddings R..V .. 'Accommodating Uncertainty 111 Software Design', Comms. 

A CM. :1-fay 198.{. ,~.; l8-.f.J.{ 

[4.5] Glagowski T.C .. 'Using a relational query language as a software maintenance 

tool', Proc IEEE C'rJinp8oc 1985 

[46] Glass R..L .. Noiseaux R.A .. 'Software Maintenance Guidebook', Pub. Prentice­

Hall. 1981 

:317 



[41] Cog1wn .I .. -\. <'I ill. 'Abstract Data Types as Initial Algebras and Correctness 

of Data Representations'. Pmc. Confer-en.ce on Comvtlfer Graphic<, Pattern Reco!J-

niti.on and Data Stru ct u n . . II ay 1975 

[48] U.S.A. CSA. 'A Sofbvare Tools Project: A means of capturing technology and 

improving engineering'. Report OSD-82-101. O.f!Zce of Softwan Dtvtlopm.ent. and 

Info nnation Techno/ ogy. Ful urtl Softwnre Testing Centre. 1.982 

[49] U.S.A. CS.-\. Rr:porl ())D-8-l-101. Of/in of S'ojlwrm Drur:lopn!Dil, and Information 

Technology, Frrhnt! Sojf IL'(//'f hslin r; C'r:nlre. 1.984 

[:30] Cut.tag .J .. Hor<mitz F .. \l11sser D.IL 'Abstract Data Types and software valida­

tion'. CSC' lnforl/ui.IIOn '!ci~ncr:s lnstllate Technical Rtport. IS/jRR-76-48. 1976 

[51] Guttag .J .. 'Abstract Data Types and the Development of Data Structures', 

Comms. ACM. Vol. lO .. \·o.6. Junr 1971 

[.5:2] Hall .I.A. et al. 'An o\·erview of the Aspect Architecture' in Integrated Project 

Support Encil·onllnnl.'. •"d .. ). i\·lcDermid. Peter Peregrinus Ltd .. 198:) 

[5:3] Hansen C .. 'Who says thet·e have been no advances in Software Maintenance 

Tools?' in Soflwrl.l'f .\lrunltnanu .Vrws. Vol . .:}, No. l:l. p6, December 1.987 

[.54] Henderson P. 1:.3 .. /)ron ullnr;s of lht .-1 C:H Sigso.Jf/Sigp/an Software Engineering Sym.po­

sium on Practical So.ffl.l'UI'f DFPelopment Environments - ACM, Sigplan Notices, Vol. 

::!2, i\fo. I Palo Alto. C 'ol/forni.a. Dram.ber .9-11. 1.986 

:3l8 



[;j:)] I-lougiiton 1\.( · .. 'Cha1·act.eristics and Functions of Software Engineering Envi­

ronments: An Overview' -1 ('.\{ Sir;so/1 Sojl1crzrF Enginurinr; Vote~. \'ol. 12 No. 1. 

Jnmtary 1987 

[56] Hutchison 0 .. \ValpoiP .J .. 'Eclipse - a distributed software development envi-

ronment'. ! EE Sojflua1·f Engineering .] ournal, !\I arch 1.986 

[57] 'IEEE Standard Glossary of Software Engineering Terminology'. fEE£ 1.98."3 

[58] 'IEEE Guide to Software Requirements Specifications'. ! EEE 1984 

[.59] .Jones C.B .. 'Systematic Software Development Using VDM'. Pub. Prentice-Ha.ll. 

1986 

[60] l~aiser C .. Feikr )J .. 'Intelligent assistance without artificial intelligence', Proc 

32nd fEEE Compu.lr I' Socirly fnltrllrrltonrtl ('on/r-rr:nu on Sojiwarr: Eng·ineering, Febru­

rLry I 987 

[61] l~aiser C. eL a.l. 'Intelligent assistance for software development and mainte­

nance'. !EEE S'ojltrnn . .\loy !988 

[6:2] KempE' .\L 'Hyperbook: an experiment with PCTE' . . -\C'i\1 Si!]soft Softwan En­

gineen:ng !Volf8, Vol. I { :'Vo . .5. July 1.98.9 

[6:3] KoenigS .. 'ISEF- An Industrial Strength Software Engineering Framework'. 

AC:\1 Sig:,;oft '88: .lrrl Sympo . .:;itun 011 Software Deuelopm[n/ f.'nl'tronm.ents (SDE.J) 

[6"1] Lehman \'1. \I.. 'A Further Model of Coherent Programming Processes'. Pro­

ceedings of Software Process l+.orkshop. IEEE, February 1.984. p':!7-3:] 

:319 



[6:)] Lehrn<111 ~~-~!.. l1tr~ki \\ .. \L 'Essential properties ofiPSEs' .. -lC':ll Siq.-;oft so.flwnrf 

eng·interingnofb. \d. 1:! .\o. ! . .l11nll.nry 1987 

[66] Letovsky S .. 'Cognitive Processes in Program Comprehension'. Proceerhngs of 

lhe Conferenu: on Elllpirtwl Sturlies of Pmgrarn.me·rs 1.986 

[67] Let.ovsky S. and SolcJ\\";n· E.. 'Delocalised plans and program comprehension'. 

IEEE Software .. \lay 1986 

[68] Leung H.I\..N .. W"hite L., 'Insights into Regression Testing'. Proc. IEEE Conf on 

SoftiLHI.T"(: ;\.falnlcnrtncc .. \Iion11. 198.9 

[69] Le1vereutz ( ' .. 'Extended Programming in the large in a software engineering 

enviromnent' . . \( '.\l Sofiu·ltl"l l:'n.rJinunnr; :Vo!rs. \"of. II Vo . . "J . . ·Vovembe1· 1.98i'J 

[70] Lientz E.B., Sll'anson l\ .. 'Characteristics of Application Software Maintenance', 

Commcns. AC:\1 Vol. !'.!. fl466-f/l . .lunt 1978 

[11] LingPr R.C' .. \!ill~ II.D .. \\"itt B.l.. 'Structured Programming: Theory and Prac­

tice'. Pub .. \cldi~otl- \\'es[c,· I \)j() 

[72] Linger R.C.. 'Software l\tlaintenance as an Engineering Discipline'. Proc. IEEE 

Conference on Sojiwarr: .\laintenance 1.9,\8 

[7:3] Lint.or1 ~·I.A .. 'Implementing relational views of programs' . . -lCM SE .Votes, Vol. 

9. ,Vo. :]. May 1.984 

[74] Liskov B.H .. Berzius V .. 'An appraisal of program specifications' in Research 

Directions in SoftwMe Technology. ed. P. H/egner 1.97.9, Cambridge. 1\!Iass. MIT Press .. 



[7Pi] Littntdll D. d <tl. 'l\1ental models and software maintenance'. The Jmtrnal of 

Systems and Sojlwa1·f. \ "of. '/. 198 7 

[76] Liu C., 'A look at softwat·e maintenance', Datnmolion. !Vouunbu 1976 

[77] lVIagel h:., 'Principles for Software Environments'. ACM Software Engineuiny 

!Votes. \,of. 9 .. Vo. 1. Januury 1984. 32 

[78] i'vlair P .. 'Integrated Project Support Environments- State of the Art Report'. 

NCC 1986 

[79] !'dartitt .J .. :'de( 'lure C .. 'Software maintenance, the problem and its solutions'. 

Prentice Hall. London 19<:n 

[SO] i'vlcC'ri:tckett U.D ... Je1cksou \I.A .. 'Life-Cycle Concept Considered Harmful', ACAI 

Softwart Enylnunnq .Yole5 . . ·1 prl! I 98:!. p:!9-J:.! 

[SL] ivlcCuffin H.\\" .. Ulist.ott .-\.1:: .. Tranter B.R. and \\'estmacott P .. \1. 'CADES- Soft-

ware Engineering in Practice'. Fmc. 4th Int. Conf on Sojllcri.I't Engineering, Mu-

nlch 19 79 

[8:2] l\'fcl(issick .l. \1.. Price IL\ .. 'The Software Development Notebook', Proc. 1.91'.9 

IEEE AnnunJ RF!iabdlty and :\In.infainabdity Symposinm 

[8:3] .rvlellor P., 'Field Monitoring of Software Maintenance', Software Engineering 

Journal . .fan1w.ry 1986 

[84] i\-leyer B .. 'On Formalism in Specifications'. /FU:' S'oji.wru·F. January 1.985 

:321 



[~')] i\ilills I-I.D .. 'Top-Down Programming in Lat·ge Systems' itt Dt &ug!)utg Techniques 

in Large S:tp!tm.-.. n. l~.u"kittg (ed). [Jrentice-Ha.ll. 1911 p.fl-.3:) 

[86] N a.ra.yanaswa.m.v I\.. and Scacch i \V. 'An environment for the development and 

maintenance of large software systems', in Proc 2nd SOFTFA.IR. IEEE Com)Wl. 

Soc.. 1985 

[87] Na.ra.ya.na.swa.mv 1\ .. 'A framework to support software system evolution'. Ph.D. 

Dissertation. {'nlu. S'outhrtn Callfornlu . .1/uy 1985 

[88] Narayanas\\·anl\' 1\ .. Scacchi \V. 'A database foundation to support software sys­

tem evolution' . .l.Sijsl. Sojfu:arr. 1.981 

[8lJ] Naraxam1s\\'C1tll\ 1\ .. Su~<clti \\ .. 'lVIaintaining Configurations of Evolving Sys­

tems'. IEEE Trun.-; . .)'oft. En!J .. Vol. .)'/-.·-II .\o. I :\Iorch 1981 

[90] NBS. 'Features of software development tools, special publication'. 500-14. 

U.S .. Votional Bunr111 of Stanrlonls. !.98(} 

[!:ll] Nelsott T.H .. 'Getting it out of our system', lnfornwllon Rtfntval. A Critical 

Review. G . .)'chtclrJ L'r/ .. I'honw,on f3oof...'<. I·Voshlnqfon IJ.C .. 196/ 

[9:2] Notkin D., 'The Gandalf Project'. Journal of Systems and Software. Vol . . J. :Vo. 2, 

May 1985 

[9:3] Not.kitt D .. 'The Relationship Between Software Development Environments 

and the Software Process'. A ( ':\/ S'igsoft '88 .Jnl Symposium on Software Develop­

ment Envimnments. Boston Mass., 1988 



[94] Otn<ttt F) \\ ... < 't1•Jk ( '. !L 'The book paradigm for improved software mainte­

nance', IEEE .'3o.flwart. Jan 1990 

[9.5] Oren T .. 'The architecture of Static Hypertexts'. Hyperle:cl '87. TR88-0 13, Unl-

versify of North Camlinu. Jlarch 1988 

[%] Osborne W.f'vl.. Martin R .. J .. 'Guidance of Software Maintenance'. !Vat. Bureau of 

Standards. NBS Special Pnhlicatwn. 500-106. DPcem.ber 1.988 

[97] Osterweil L..J .. 'Software Environment Research Directions for the next Five 

Years'. ColllfJIIIr,. !{.I' J)-{.J. .-lpr/1 1981 

[98] Osterweil .J. et al. 'ODIN: An integration mechanism for an software engineer­

ing environn1ent'. { ·nu;t rsily of ( 'o/omdo Tr:chnlco./ Report. !989 

[99] Osterweil L., 'Software processes are software too'. Proc 9th lnt. Conf Soft. Eng. 

Monlu·eu. J/orch /9,'1/ 

[100] Parikh C .. 'Some tips, techniques, and guidelines for program and system 

n1aintenance'. in Tcchniqtus of pm,r;rrtm and 8.1)Siem nw.lntenance. H/inth.rop Publish-

er.s. Cambmlgc :\l.-1.. 198:!. 6.5- 10 

[101] Parnas D.L .. 'Designing Software for Ease of Extension and Contraction'. 

IEEE Tran.'. So.fl. E11g .. :\larch 197.9. p128-187 

[ 102] Patkau B.H .. 'A foundation for software maintenance'. i\t/.Sc. Thesis. DepaTtment 

of Computu Sr·lr11cr. l"llil'fl"-"ily of Tomnfo. Decrmlwr 198.] 

[10:3] Peneclo i\L 'Prototyping a Project Master Database for Software Engineering 

Environments'. :IC'JI Si.IJJ'lan :Voticr8. Vol. 22 No. I Jan 1.987 



[104] Peti~old I\. 'The COBOL maintenance crisis'. F'u·:-;/ Sof/H·un }fruniF!Wnu frVork­

shop, Untvf:rslly of Durhu111. Ent;lr111d. Sr:pltmbf·,· 1981 

[10.5] Pressman l~.S .. 'Software Engineering - A Practitioner's Approach'. Third 

Edition. Pub. ~lcGra.w-1-!ill. 199:2 

[106] Ramamoorthy C. V .. 'Genesis - an integrated environment for supporting de­

velopment and evolution of software'. Pmc. !EEE Compsac 1985 

[107] Rama.moorthy C. V .. I: sad a Y .. Ts<li W., Prakash A .. 'Genesis: An Integrated 

Environment for Supporting Development and Evolution of Software ', Pmc. 

!EEE Comp.-,;11.r:. L 98.5 

[10()] Raskitt .J .. 'The hype in hypertext: A critique'. HIJt'ufcrl '81. TR88-013. Cni-

uersity of .Vorl/, Com!! no . .\larch I ()88 

[109] Riddle \\'.E. et i11. 'The stars pmgram- overview and rationale'. IEEE Com-

puftr. Notxn1br,· !98.) 

[lLO] Riddle \V.L .. 'The Evolutionary Approach to Building the Joseph Software 

Development Environment'. fJ,.o1· /l~'/-.'1.:' S'o.fifair - Software Deuelopment Tools, 

Technirru.es and .-llternatlcu,, p 311-325, 1.988 

[111] Riddle \V.E: .. 'Improving the Software Process'. Proc 9th Int. Conf. Soft. Eng. 

!\1 ontrrey. March I 98/ 

[112] Ross D., 'Structured Analysis (SA): A Language for Communicating Ideas', 

Tmns. Softu:(/f'f Eng., \/of. S£-3. Xo. 1. January 1911 



[ 11 :)] Hoyc•· \·\·. \\ .. 'I\Ianaging the Development of Large Software Sys­

tems: Concepts and Techniques'. Proceedings. WESCON, Augu.st 1.970 

[114] Schneiderman B .. \ [ayer n .. 'Syntactic/Semantic Interactions in Programming 

Behaviour: A Model'. Int. I C'om.puter nnd Information Science. Vol. 8. :Vo . .'3. 

1.97.9 

[115] Selig F., 'Documentation Standards'. in Software Engineering, Proc. of meeting, 

Garmisch. C:t.rlltrt.ny. Octolnt· 1968 

[ 116] Sharp it'_,. \\".I\ .. 'Software maintenance planning for embedded computer sys-

ten1s'. Pmr-. !I:LL' Coll/.fJ-'<ItC /'? . . Vo!'CIItlwr 1.977 

[111] Snowdon n .. \ .. 'CADES and software system development', Software Engineer­

ing Environment.-::;. ul 1/nnl.-r. H.. flll_l}r 8/-96 .. Vorfll-flollanrl June 1980 

[118] Somrnen·iJJ,, !.. 'Software Engineering'. Third Edition. Puh: Addison vVesley 1989 

[119] SpiH'Y .J.!\l.. 'Introducing Z: A specification language and its formal seman-

tics'. Puh. ('<unbridge l·rti\·ersity Press. 1988 

[120] Stenning V., 'On the role of an environment'. Pmceeding:-3 of the .9th International 

Conference on .')ofill'lt.rc t.'n,r]incU"III.'J. ACM. 1987 

[1:21] Swanson t~:.B .. 'The dimensions of maintenance', Proc IEEtjAC!Vl Second Int. 

Conf. Softwarr: Eng .. October 1976 

[122] Teichrow D .. Hershey. E .. 'PSL/PSA: A Computer-Aided Technique for Struc­

tured Documentation and Analysis of Information Processing Systems', 

Trat/8. Sojlll'O.!'f t.'ng .. Vol. SF-.J. .Vo. I. Jan1wry 1.977 

:32.5 



[t:.n] Ticlt\· \\" .. 'Design, Implementation, and Evaluation of a Revision Control 

System'. f-Jror-. Uth IC.'Jt.'. Fo/,·_IJO . ./upan. 1.98:.! 

[124] Tsichrit.zis D.C .. !\lug-\ .. 'The ANSI/X3/SPARC DBMS Framework Report 

of the Study Group on Database Management Systerns', Information Systems, 

Vol. :J. pp 173-1 () 1. 191'8 

[12-5] Tully C' . .J .. 'Prospects for Future Environments'. Proc . .9th Int.. Conf Soft. Eng. 

Monterey. March 1981' 

[1:26] \Veidermann N.H .. Habennann A.N .. Borger i'd.\V., l\lien i'd.H .. 'A methodology 

for evaluating Environments'. ACJI Slgplan .Votlces. Vol. 22A No. 1 , Decunber 

!.98ri 

[1:27] \Veiser iV!.. 'Programmers use Slices when Debugging'. Conun.s. of the . ..J.Ci\1. 

Vol. :25. No. I' Ju.!y 1982 

[1:28] \Ving .J.. 'A Specifier's Introduction to Formal Methods'. IEEE Computer, 

StfJitlll.hrr /_{}{)() 

[1:29] '{au S .. Collofello .J.S. ami ~-lcCregor T .. 'Ripple Effect Analysis of Software 

Maintenance', Pmr-. IEEE COMPSAC 78, Chicago, fL., !Vouember 1978, 60-65 

[1:30] Yau S.S. et al. 'A methodology for software maintenance'. in Proc. Intern. Com-

put. Symp ... f,f/-f.)r''i.'. /)r-r-t/11/n,· 1.98':! 

[1:31] Yeh R.T .. Zave P .. 'Specifying Software Requirements', fJ,.oc. IEEE. ~·ot. 68. No . 

.9 September 1.980 

:326 



[t:L!] Z<1iJJJi:-:t'l' lL\ .. 'The peeils of top-down design' .. H'.\/ '->'E nolts. Vol. II No. J 

A.pril 1988 

[1:3:3] Zilles S.N .. 'Abstract Specifications for Data Types'. !BM Res. Lab .. San Jose. 

Califof"nia. I CJ7.) 

:327 




