W Durham
University

AR

Durham E-Theses

A documentation paradigm for an integrated software
maintenance support environment

Bittlestone, David

How to cite:

Bittlestone, David (1992) A documentation paradigm for an integrated software maintenance support
environment, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk,/6020/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6020/
 http://etheses.dur.ac.uk/6020/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The copyright of this thesis rests with the author.
No quotation from it should be published without
his prior written consent and information derived

from it should be acknowledged.

University of Durham

School of Engineering and Computer Science

A Documentation Paradigm for an Integrated Software

Maintenance Support Environment

David Bittlestone

Thesis submitted for the requirements of the degree

of

Doctor of Philosophy

1992

27 JUL 1394 ,

Abstract

Recent advances in computer hardware have not been matched by comparable advances in
computer software. inhibiting the production of reliable software at greater levels of produc-
t1vity.

Development of software is restricted by the so-called "maintenance backlog™. Productivity
in the maintenance sector has not kept pace with increasing annual labour costs. making the
maintenance of software the major item in the budget of organisations responsible for the
development and maintenance of software.

Gains in productivity can bhe anticipated by the exploitation of software-maintenance tools,
within the framework of an Integrated Software Maintenance Support Environment (ISMSE).
for which a high-level design has been proposed in this thesis. offering comprehensive support
for all phases of the software life-cycle. particularly the maintenance phase.

A key factor in the reliable modification of software 1s the time taken to gain the prerequi-
site understanding. by a study of the system’s documentation. This documentation degrades
over a period of time. becoming unreliable. inhibiting maintenance of the software. which
may be a large capital assct. PIIinuml‘el_y. the software may become mpossible to maintain,
requiring replacement.

Understanding gained during maintenance is wide-ranging and at various levels of abstrac-
tion. but is often NOT well-recorded. since no effective documentation system exists for
recording the maintenance history of large software systems.

The documentation paradigm in this thesis. used within the framework of an ISMSE, aims
to provide a means of recording the knowledge gained during maintenance, facilitating eas-
ler future maintenance. and preserving the reliability of the documentation, so reducing the
time required to gain an understanding of the software being maintained. This provides a
powerful means ol increasing productivity, while simultaneously preserving a valuable capital
asset.

Acknowledgements

[would like to thank my supervisors. David Robson and Malcolm Munro, for their help
and encouragement. and for their comments upon numerous drafts of this thesis. I would
also like to thank Colin Walter. Stephen Eldridge. and Greg O’Hare of UMIST for helpful
discussions.

Financial support for this work was provided by a studentship from the Science and Engi-
neering Research C'ouncil.

Copyright

The copyright of this thesis rests with the author. No quotation from it should be published
without his prior written consent and information derived from it should be acknowledged.

Contents

1 Introduction to the Problem Area

1.1 The software maintenance problem

1.2 Thesis objectives and outline

2 Maintenance models

2.1 The role of the maintenance model

o
o

Literature survey of maintenance models

2.2.1 Introduction

222 Themodels 0000000
2221 Boehmmodel 0000
2222 Liumodel
2.2.23 - Sharpley model oL
2224 Mellormodel .. . 0000000 oo
2.2.25 Parikh model . 0 00 000000
2226 Cartermodel L

1

10

o

("hapin model .

Martin-McClure model .

Patkau model .

Oshorne model

Yau mocel

Other contributions to modelling the maintenance process

(R

(R

~

2

Discussion

2.3.1

3.1

Introduction

Fieldstad and Hamlen's contribution

Littman et al’s countribution

Brooks™ contribution

Schneiderman and Mever's contribution

Letovsky's contribution

Letovsky and Solowayv's contribution

Linger, Mills and Witt’s contribution

("haracterisation of software maintenarnce .

2.3.2 Assessment of the the maintenance models surveved . . .

o

Establishing a generalised maintenance process-model .

Discussion of the generalised maintenance model . . .

L8

[
()}

(]
~1

o
(02]

[}
(o7]

30

31

31

33

36

39

45

2.3 Problem verilication

2.3.4.2 Understanding the program

2.3.4.3 MNodification

2344 Validation .

Sunimary

3 Integrated Software Engineering Environments (ISE)

3.1

3.2

3.3

Introduction

3.1

The advent of Integrated Software Engineering Environments

Overview of Integrated Software Engineering Environments (ISE)

3.2.1

Environment Architecture

Environment mnterfaces .

3220 User interface .
3.2.2.2 Tools interface
3.2.2.3 Database interface

('lassification of Integrated Software Engineering Environments
O o o

3.3.1

Dart (lassification

3.3.1.1 Language-centred environments .

3.3.1.2 Structure-oriented environments .

3.3.1.3 Toolkit environmerts .

46

47

49

51

(o
4]

60

60

60

61

61

63

3314 Method-based environments

3.3.2 Houghton Classification,
3.3.2.1 Progrm'm;ling environments
3.3.2.2 Traming environments
3.3.2.3 General environments L.

3.3.3 Comparison of Dart et al’s and Houghton et al’s classifications . . . |
3.34 The European Alvey Integrated Project Support Environment (IPSE)
3.3.4.1 Overall objective of the [IPSE
3342 Dvolution of the IPSE o 0 0000000000

3.4 The Suitability of an IPSE as an lntegrated Software Maintenance Support

Environmento
3.4.1 Introductiono
342 IPSE support for maintenanceo
3020 Object management 00000000

3.4.22 Tool integrationo

3.4.3 Problems associated with [PSEs 0L

3.5 Summary ..o

4 Literature Survey of Current ISEs

4.1 Introduction

vi

~1

[[

-1

-1
Ut

4.2

The Survey

4.2.1 Euvironments providing eaplicit support for maintenance

4.2.1.1 Microscope

.,_‘
~
(R

Arizona State University (ASU) Practical Software Mainte-

nance Environment . .

4.2.1.3 University of Colorado, Boulder - (prototype environment) .

4.2.1.4 Genesis

4.2.1.5 United States of America General Service Administration’s
‘Programmers” Work Bench.” (PWB)

4.2.2 Fovironments providing implicit support for the maintenance process

4.2.3 Non-hypertext environments . .

4.2.3.1 Marvel . .

12,32 Aspect . ..
4233 Echpse. o

4.2.4 Hypertext Environments

4201 KMS - Knowledge Management System

42402 Dynamic Design
Discussion . . 0 .. .0 e
4.3.1 The role of the process model
4.3.2 Support offered for the generalised maintenance model

vil

86

oo
oo

90

90

90

93

94

95

99

1.3.2.1 Verification of need for maintenance 105

EEs
T
6%

Understancding 105

4.3.2.3 Support for abstraction, views. and the creation of informa-
tion structures 107

4.3.3 Modification oS
4.3.4 Revalidation108

4.4 Summary ... 10y

The information requirements of a maintenance organisation 113

Introduction113

n
—

3.2 The role of the 1\«‘ia.inl.ena.nce Model . . . 0 o000 4
5.2.1 The structure ol the Maintenance Organisation. 114
5.2.2 Verifving the need tor maintenance lI7

5.2.2.1 Information requirements for the front-desk 119
5.2.3 Understanding the program 121
5.2.4 Modification of Software 0oL 12T

5.2.5 Revalhidation 130

o

T
~

251+ Regression Testing 130

ot
{
t

2520 lesting Strategies L0013

5.2.5.3 Test-suite maintenance.o o132

viii

5.2.5.4 Revalidation strategies 0000000 134

5.3 Summary ... 134
A high-level design for an ISMSE 135
6.1 Introduction 135
6.2 Choosing a Software Development Model for the ISMSE 136
6.2.1 The Spiral model.o 138
6.2.1.1 A typical cycle of the spivalo o000 139
6.2.2 Software Process Maturity Model (SPMM) 141
6.3 The design process Lo 144
6.3.1 The role of abstractiono Lo 145
6.3.2 An Outline Software Requirements Specification (OSRS) 143
6.3.2.1 Obtainiug the OSRSo 0. 150
6.3.2.1.1 Expressing the OSRS 150
6.3.2.1.2 The conceptual modelo 153
6.3.2.1.3 The objectives of the ISMSE 154

6.3.2.1.3.1 Increasing the productivity of a maintenance
organisation 155
6.3.2.1.3.2 Research into the maintenance process . . . 156

6.3.2.1.4 The role of the ISMSE 157

6.3.2.1.5 The Maintenance Organisation 159
6.3.3 The OSRS document 162
6.3.3.1 Introduction 163
6.3.3.2 Functional Requirements 164
6.3.3.2.1 Overview of functional requirements for an ISMSE 164
6.3.3.2.2 Requivements for object base . . .0 000000 166
6.3.3.2.3 Requivements for toolset0 .00 163
6.3.3.2.3.1 Introduction e 163
6.3.3.2.3.2 Problems with tools in available support en-
vironments L 169
6.3.3.2.4 Requirements for user-interface 170
6.3.3.2.5 Design of user-interface 171
6.3.3.3 A High-level Architecture for an ISMSE. 172
6.3.3.3.1 Design and prototyping 174
6.4 Summary ... 176
An Information Structure for an ISMSE 177
7.1 Information Capture and Processing Cee 177
7.2 What information to captureo 173

7.2.1 Analysis of tool classes and tool functions for information capture and
PLrOCESSING . .« v« v v e 181

-1
o

7.2.1.1 Transformation tools .

72,12 Static analvsis tools

.2.1.3 Dynamic analysis tools

Choice of information structure used to store the captured information

A Maintenance History for a Software System

The Maimtenance History as an ADT

7.5.1 Database Management Svstem Architecture

7.5.1.1 Introduction e
7.5.1.2 [xternal schema
5. 03 Conceptual schema © 0 00 00000000000

7.5.04 Internal schema . .

-1
Ut
U
o

Summary of Database Architecture .

5.2 Description of the Conceptual Schema as an ADT . . .

7.5.2.1 Description of the structure of the ADT Tree
7.5.2.1.1 Graphical descriptiono 000
1.5.2.1.2 Natural language description
75.2.1.3 Formal description

7.5.2.2 Description of the structure of the ADT Linl{€d List
7.5.2.2.1 Graphical description

Xl

199

199

.5.2.2.2 Natural language description 204

. -9.2.233 0 Pormal description o000 0L 204

7.6 Summary ... 206

8 Formal Specification of the ADT Maintenance-History 208
8.1 Introduction 208

8.2 The benefits provided by the use of tormal techniques for specification 209
8.3 The tormal specification of data abstractions 211
3.3.1 Operational approach e 212
8.3.2 Definitional approach oL, 212
8.4 Completeness of Algebraic Specifications e 214
8.5 Consistency of Algebraic Specifications e 217
8.6 The operations on the ADT Maintenance-History e 217
8.6.1 The operations on the ADT Anthology 213
3.6.2 Natural language description of axioms for ADT Anthologv. 226
8.6.3 The Operations on the ADT Book 223
8.6.4 Natural language description of the axioms specifying the operations
onthe ADT Book L 245
ST Summary ... 248
| 9 Implementation of the Documentation Paradigm 249

Xil

9.1 Choice ol language for the implementation 249

9.2 Protolyping the ADT Maintenance_History 2

(W]
—

9.2.1 Strategy for testing 25
9.2.2 The operations 25

9.3 Summary ... L 255

10 Evaluation of the Documentation Paradigm 259
10.1 Introduction 259
10.2 Applying the documentation paradigm 260

1021 Introduction . . o . .0 260
10.2.2 Placing the documentation paradigm in context 26l

10.:

[

The maintenance ol a Pascal cross-veferencer "pxr™ 270

10.2.3.0 Introduction70

10.2.1 Produetion of a Maintenance History for pxr 27l

N
=1
[

L0241 Chapter 1 - Verification ol the need for maintenance

(S
-1
-1

10.2.4.2 Chapter 2 - Understanding

10.2.4.3 Chapter 3 - Modification .

o
o
77

10.2.4.1 Chapter 4

[
(o)
[

Revalidation .

10.2.4.5 Chapter 5 - Executive Summary 291

10.2.5 T[uture maintenance of "pxr” 293

Xiii

10.2.6 Other attributes of the documentation paradigm| 295

10.2.7 Weaknesses associated with the documentation paradigm 296

10.3 The effect of incomplete use of the toolset by maintainers 296
10.3.1 Reasons for using the complete toolset 297

10.4 The scope for reuse of experience within the proposed ISMSE 300
10.5 How managers could incorporate "milestones™ 30!
10.6 The scope for using the ISMSE to document its own development 301
LOUT Swmmary ..o 302
11 Conclusions and Further Work 305
1.1 Reviewol the work 0 . . coo oo 305
11.2 Have the objectives been achieved 306
11.3 Further Work . . 0 0 0 000 310

List of Figures

3.3

4.1

6.3

6.4

6.6

A Generic Maintenance Organisation Hierarchy and Associated [nformation

Types . 41
Modelling of Fnvironment nterfaces .. 000000000 33

Generic Architecture of a Software Engineering Environment based on the
Unix operating svstem 39

The Architecture of the Ada Programming Support Environment (APSE) . . 67

Linked nodes in a hvpertext 93
Structure of Maintenance Organisation00 L. 115
The Waterlall Model of the Software Development Life Cvele . 0 000 L. 136
The Spiral Model of the Software Development Lite Cyvele 140
The Software Process Maturity Model (SPMM) 143
Abstraction of the Design Process L. 146
Structure for an OSRS 149

A Generic Maintenance Organisation Hierarchy and Associated Information

6.3

6.9

6.10

-1
—

-1
~

-1
W

n

-1
[@x]

-1
~1I

-1
[0 4]

o
—

Conceptual View of a Maintenance Organisation 161
Requirements Definition for an ISMSE 163
A High-Level Design for an ISMSE 173
Prototype Life-Cycle Model 174

Generic Tool Types to support the Maintenance Model 132
The role of the Maintainer - schematic 187
The Book Format as a Data Model for the Organisation ol Information Con-

cerning a Software System 188
The ANSI/SPARC DBMS Three-Level Architecture. 191
The Book Structure as a Divected Graph. 200
Backus-Naur description of Book Structure 000000 202
Table of Contents showing Hierarchical Nature of the Book Format 202
The Linked-List structure as a directed graph 205
The ADT Maintenance_History constructed from the ADT Linked-List and

the ADT Tree 0 0 0 0 oo 207
Algebraic specification of ADT Anthology 221
Algebraic specification of ADT Anthology (contd.). 222
Algebraic specification of ADT Anthology (contd.). 223
Algebraic specification of ADT Anthology (contd.). 224

Algebraic specification of ADT Anthology (contd.). 225

(JJ
<

Conversion of m-ary tree to Knuth ordered binary tree 232

3.7 Relationships between nodes in the Knuth ordered binary tree 234
8.8 Algebraic specification of ADT Book 235
8.9 Algebraic specification of ADT Book (contd.) 236
8.10 Algebraic specification of ADT Book (contd.) 237
S.11 Algebraic specification of ADT Book (contd.) 233
8.12 Algebraic specification of ADT Book (contd.y 239
3.13 Algebraic specification of ADT Book (coutd.) 240
.14 Algebraic specification of ADT Book (contd.) 241
8.15 Algebraic specification of ADT Book (contd.) 242
8.16 Algebraic specification of ADT Book {(contd.) 243
3.17 Algebraic specitication of ADT Book (contd.) 244
10.1 The Maintenance History of a software system| 262
10.2 Project structure of maintenance of pxvo 264
10.3 Book structure of a version ol pxv . . 0 .00 266
10.4 The Maintenance Historv ol pxr L, 275
10.5 The Maintenance History of pxr 276
10.6 New priority for change requests 276
10.7 The Maintenance History of pxr 277

XVl

10.8 The Maintenance Historvof pxv o0 0 0 0 0. 278

10.9 The Maintenance Historv of pxr . . 0 . 0 0 ... 280

(O]
[0 8]
—

10.10 The Maintenance History of pxr

10.11 The Maintenance History of pxr

O
(o]
34

10.12 The Maintenance History of pxv 28
10.13 The Maintenance Historv ol pxr . 0 0 . 0 0 285
10.14 Module hierarchy ol a structured program 2387
10.15 Modified module hierarchy of a structured program 287
10.16 The Maintenance Historv ol pxe 292
10.17 Output [rom the “path” operation 294

L0.13 Output from the ~abstract” operation 295

XViil

List of Tables

2.1 Summary ol Maintenance models. 0 037

4.1 Summary of Euvironments” Features 110

9.1 The operations for the ADT Anthology 257
9.2 The operations for the ADT Book . 258
10.1 Operations and activities associated with the documentation paradigm . . . 299

Chapter 1

Introduction to the Problem Area

1.1 The software maintenance problem

In recent vears great advances have been made in computer hardware, but these have not
been matched with advances in the productivity of reliable computer software; thus reducing
the effectiveness of computer hardware. This state of affairs is due. in part. to the ‘software
maintenance backlog™ from this point onwards the term ‘maintenance’ is used in place of

the term “software maintenance’.

A definition of software maintenance is needed since it is the precursor to the establishment
of a model of the maintenznce process. the subject of the next chapter. Several definitions
have appeared in the literature. each has its own merits: typical are those of [EEE [57]
and Glass [46]. The [EEE [57] defines software maintenance as: *Modification of a software
product. after delivery to correct faults, to improve performance or other attributes, or to
adapt the product to a changed environment.” Glass defines software maintenance as: “The
act of taking a software product that has already been delivered 1o a customer and is in use
by him. and keeping it functioning in a satisfactory way. [t is the process of being responsive
to user needs, fixing errors. making user-specified modifications. honing the program to be

more useful’.

The productivity of the maimtenance programmer has not kept pace with increasing annual
labour-cost. therefore the overall cost of maintaining software has grown to become. by far.
the major item in the computing budget of most commercial organisations [70]. This means,
in turn, that the development of new software has been restricted. exacerbating the growth
in the gap between advances in computer hardware and the production of reliable software.

This gap is veferved to as the “hardware-software gap’ in the remainder of this thesis.

The traditional role of the maintenance programmer is concerned with manually scanning
large amounts of printed material, seeking to assemble enough knowledge of a software
system with the ob.iect.i\;'e of making reliable modifications to it. This approach to software
maintenance has proved inadequate in dealing with the maintenance problem and as software
systemis become larger and more complex with a greater anticipated lifespan (concomitant

with the cost of development). automation of some aspects of the maintenance process offers

a means of decreasing the cost ol maintenance through the increased productivity of the

maintenance programmer.

Before any modification can be made to a software system a thorough understanding of the

relevant part of the soltware is necessary because:

1. the place where the modification is to he made must be found

2. the change must be made without adversely affecting the software - i.e. the ‘ripple

effect” must be avoided.

Understanding is wide-ranging and at various levels of abstraction - a general understanding
of the high level design may be needed to identify the modules which need to be modified.
Partial knowledge of the control and data flows may be required to identify potential side-
effects elsewhere in the application. A detailed knowledge of the implementation details in

the vicinity of the change(s) is essential.

Program-understanding is the kevstone ol software maintenance. all other activities are sub-
ordinate. since without the necessary understanding of the software. the other maintenance
phases cannot begin. The understanding of any system usually begins with a survey of the
available supporting documentation. whose reliability for large complex software systems
reduces with the increasing age of the soltware. For this reason. maintainers are often forced
to rely on the source listing as the only reliable documentation of the software; however,
the source listing ouly provides a low-level documentation aid. whereas the documentation

which is most valuable to a maintainer is high-level documentation. such as design strategy

and functional specifications. The understanding that the maintainer seeks from the source

listing has been referved 1o as the plans in the code by Letovsky et al. [67] and is initiated

by the process of information-capture.

Traditionally, much of this information capture has been carried out by maintainers without
the use of software tools: a labour-intensive task made even more difficult with a software
system which has been in service for a considerable length of time. since the structure
and readability of ageing software degrades with time. [t has been shown [104] that a
maintenance programmer spends most of his time in the analvsis of code (about 47% of his
time in total) and this labour-intensive activity reduces the productivity and effectiveness

of the maintenance programmer because:

L. such a manual process is very time-consuming and error-prone

2. the onset ol fatigue brought about by the drudgery of the task of manually scan-
ning code to establish data and control flow. hinders the maintenance programmer in

achieving the prerequisite understanding of the software

3. the knowledge gained during this analyvsis phase is often NO'l' recorded for the benefit
of future maintainers because this aspect of software maintenance is not well-supported.

This means that much time will be wasted in repetition of this understanding activity.

As a first step in reducing the maintenance backlog and narrowing the ‘hardware-software
o o
gap’, productivity-gains in the maintenance sector are of paramount importance. These gains

in productivity can only be achieved by the introduction of automation. i.e. software tools,

and the adoption of a strategyv for making use of automation. within the confines of a software

maintenance support environment. thus releasing resources for software development.

Boehm [17] showed that the use of a software engineering environment can reduce devel-
opment effort by 23 to 41%; since software maintenance is in some ways a microcosm of
software development, it is hoped that a similar advantage will accrue through using a soft-
ware maintenance environment. The GSA’s Programmers’ Workbench (PWB) [49] was the
first initiative which attempted 1o achieve this increase in productivity and provided the
impetus tor the development of the Integrated Software Maintenance Support Environment

(ISMSE), the basis of this research topic.

Although the environment is primarily intended to offer technical support to the maintenance
programmer. through the creation and management of a repository of information needed
to maintain software effectivelv. spin-off henefits are that the quality of maintenance will be
raised and the management of maintenance will be made easier and more effective. The long-
term goal of the I[SMSE is to provide a maintenance team with an interactive environment.
which will consist ol an integrated comprehensive set of software maintenance tools and will

make use of the latest database technology.

Before a maintenance environment can be created, it is necessary to have a comprehensive
description of what activities take place within the maintenance phase and so the mainte-
nance process must be accurately modelled: a maintenance model supplies knowledge about

the role of the maintainer and the actions of the maintainer when maintaining software.

1.2 Thesis objectives and outline

. To examine the need for a maintenance support environment and the need for a strategy

for software maintenance

o

To investigate currently-available support environments for their support for software

maintenance

3. To develop a strategy ftor the maintenance process and a high level design for an

integrated maintenance support environment

4. To define formally and implement a paradigm for the documentation of maintenance

and demonstrate and analvse its use

This chapter introduces the reader to the problem area. Chapter two surveys the mainte-
nance models in the literature to see if there are any gaps. The design of an environment is
based on a model of the process it is to support. and so the description of the maintenance

process must be a comprehensive one.

Chapter three considers integrated software engineering environments to see whether a dis-
ciplined application of software engineering techniques is likely to be of help in the mainte-
nance of softwarc. particularly with regard to improving the productivity of a maintenance

organisation.

Chapter four surveys some integrated software engineering environments and evaluates their

support for the maintenance of software.

6

Chapter five sets the scene lor the remainder of the thesis, indicating specifically where
the ISMSE can be of help to a hypothetical generalised maintenance organisation, using the
maintenance model derived in an earlier chapter. Deciding the role of the [SMSE determines

the direction of the research.

Chapter six is concerned with the high-level design of a software maintenance support en-
vironment. highlighting the essential differences between the proposed ISMSE and current

Integrated Project Support Environments (I1PSEs).

Chapter seven is concerned with the information structure which is designed to hold in-
formation concerning the maintenance of a software svstem. Attention is focussed on the
toolset and the role that the toolset plays in the ISMSE. i.e. capiure of information, and
the processing ol wnformation into knowledge. 1o aid in the understanding ol software, prior
to its maintenance. Lo aid in the fufure maintenance of software. particularly as regards the
understanding of the software. and the associated improvement in productivity, a documen-
tation paradigm is proposed for a maintenance history. which gives a suggested direction for

a partial implementation ol the ISMSE.

Chapter eight is concerned with the formal specification of the Information Structure as an

ADT, using algebraic axioms.

Chapter nine prototypes a subset of the ISMSE. describing a Prolog implementation of the

documentation paradigm.

Chapter ten is concerned with the testing of the validity of these specifications and the sim-

ulation of the environment and its maintenance strategy, mapping the Maiutenance History

and its associated editing lunctions onto the Unix file structure and toolset.

Chapter eleven relates to the success of the work. discusses the results of the thesis, and

makes suggestions for further work.

Summary

Because of the software maintenance backlog. increases in productivity are of urgent and

immediate priovity and may be facilitated by:

L.

o

The partial automation of the maintenance process. in particular to make the task of
’

program-understanding easier through the capture of information and its subsequent

ma,na‘gement .

The provision of an environment in which the best use is made of automation: al-
though it may be thought that an increase in productivity is a natural consequence of
automation. the output from some tools is copious. Without controls, the volume of
information theyv produce may even have a negative effect on productivity, highlight-
ing the need for abstraction. At present the task of interpreting information output
from tools 1s largely a manual one. and scanning large amounts of printed matter is a

time—-consuming and potentially error-prone process.

Structuring the recording of the maintenance process brings the maintenance process

under control and in addition makes it easier Lo keep track of the progress of a main-

tenance assignment, thus saving time and increasing productivity.

4. Studying current methods. leading to suggestions for improvements to these methods.

It 1s to be hoped that. in addition to providing gains in productivity. an ISMSE can point
the way to the establishment ol a strategy for the maintenance of software and act as a

test-bed for future initiatives in software maintenance research.

Chapter 2

Maintenance models

2.1 The role of the maintenance model

The maintenance process model is a description ol the activities of a maintainer or main-
tenance organisation. from the receipt of the change request until the release of the new
version of the software. The process model is a prerequisite for obtaining a high-level view
of the overall requirements for the ISMSE, since, as pointed out by Stenning [120], the role
of an environment is to support the effective use of an effective process. The high-level

requirements for the ISMSE are the subject of chapter six.

Lo

2.2 Literature survey of maintenance models

2.2.1 Introduction

A number of maintenance process models have appeared in the literature; these are now
surveved and the chapter is concluded by a discussion of the models. An assessment of
the strengths and weaknesses of the models is used to suggest a generalised model of the

maintenance process which can be used to derive the high level requirements for the ISMSE.

The development of models of the software maintenance process is examined from a historical
perspective: the models discussed are subdivided into two classes. those which provide a high-
level view of the software maintenance process. and those which provide a more detailed.
lower-level view: within each class the models of the maintenance process are examined in

order of their chronology.

Models due to Boehm (1976) [15]. Liu (1976) [76]. Sharpley (1977) [116]. Mellor (1986) [33]
offer a high level view of maintenance: others due to Belady (1976) [3]. Parikh (1932) [100].
Yau (1982) {130]. Martin (1933) [79]. Patkau (1983) [102], Osborne (1983) [96]. Carter (1936)

[24]. An [3] and Chapin (1933) [25] offer a more detailed lower-level view.

The models due to Belady [3]. and An et al [3] are derived from code-level views of software
systems. The model due to Belady and Lehman (1976) [8], is based on empirical observations

of several large software systems and is concerned with the evolution of software. An et al [5]

11

propose a model of the maintenance process based on the changes that occur in software as it
is maintained, a pattern of changes being used to distinguish between tvpes of maintenance.

These models lie outside the scope of this survey.

2.2.2 The models

2.2.2.1 Boehm model

According to Boehm [16] maintenance can be decomposed into three phases, and this de-

composition is now generally accepted. These phases are:

1. Understanding
Good documentation and traceability between requirements and code are needed, with

well-structured and well-formatted code.

o

Modification
Software and hardware and data structures should be easv to expand and should

minimise the side-effects of changes; easy-to-update documentation is needed.

3. Validation
Software structures should facilitate selective retesting, and aids for making retesting

more thorough and efficient arve needed.

12

Boehm offers no further refinement of the model. In particular, no further guidance is offered

as to how to proceed should these desirable characteristics of software be absent.

2.2.2.2 Liu model

Liu does not refer to a model as such but describes the ‘maintenance function’, as follows.

|SV]

- The capacity. function and logic of the existing program or systein tust be thoroughly

understood.
New logic is developed to reflect the new request or additional feature.
The new logic must be incorporated into the existing one.

Eusure that the new logic is functionally correct. and that the unmodified portions of
the svstem are not inadvertently affected or disturbed. This last point is concerned
with the ripple effect and Liu emphasises the need for testing.

(a) Test tor system failure first

(b) Test the unmodified portion of the system

(¢) Test the modified portion »W-ltl'l all imaginable conditions

(d) Aim at the few most representative situations which constitute a major portion

of the system

(e) Test the documentation of the changes made to the program. as well as the pro-

gram itself.

13

Liu offers no help in deciding how the understanding and modification phases should be
carried out, but his last point. (e), has important consequences for the increasing complexity
of ageing software. and its subsequent degradation. This is referred to again, in the discussion

at the end of this chapter.

2.2.2.3 Sharpley model

Sharpley [116] restricts his model to the area of corrective maintenance which he decomposes

into four discrete phases:

L. Verification of the problem - reproduction of error svmptoms and attribution of the

error to software. hardware, or the interface between the two.

SV

Di'd“'ll()SiS of problem and isolation of the part of the svstem responsible for the error.
o l o
3. R.E‘- brogramnning and regeneration of the svstem.

le] (¢} S

4. Baseline validation - establishment ol correct operation.

The scenario here is that of a team of highly-skilled people, on standby, completely familiar
with the embedded software-system. in a *high-technologv’. *high-risk™ industry. cast in the
role of ‘firefighters’. iu case ol abnormal behaviour of the program. There is no "learning
curve’ here, and so there is not the same emphasis on the understanding phase as in a typical

. maintenance assignment in the commercial sector.

2.2.2.4 DMellor model

Mellor [83] defines a [ailure as ‘Non-conformance between actual product behaviour and
the specified behavionr’. and notes that ... ‘failures in a product are often user-specific, since
they are specific to a customer’s usage and different customers use different parts of the same
product. and to different extents. A priority is assigned to fixes, a fault which has trivial
effects and is difficult to fix. is assigned a low priority. and vice-versa.” Mellor concentrates on
the problem-verification phase of corrective maintenance and how a maintenance departiment
can best be structired 1o cope with maintenance requests from users. No other model looks
at this aspect of maintenance at the same level of detail.

Mellor classifies two types of problems with software:

L. Usability problems: These are due to a error in the original requireiments definition.
the product conforms to specification. but there is a feature which causes problems in
use. A usability problem may be irveparable. and the only remedy is an “avoidance

action .

2. Problems due to errors in the code which mean that the specifications have not been
met. He also makes the point that a fault in the user manual is also a fault in the

product.

2.2.2.5 Parikh model

The maintenance task is decomposed into four phases:

1. ldentification of objects
The specifications or enhancements of the maintenance request are reviewed. All per-

sonnel concerned with the request are consulted.

o

Understanding the software
An inventory of the affected program is taken with the associated documentation. The

affected program is investigated.

3. Modification ol code
The areas in the code where the modification is to be made are located. Possible ripple
effects are checked for as the result of the new design. The new changes are coded and

implemented.

4. Validation of the modified program
A walkthrough of the changes in the modified program is made and then the modified
program is tested. Review the test results and put the program into production.

Update the relevant documentation and conduct post-test reviews.

Parikh’s model is offered i the context of time estimates and the model seems to be restricted

to enhancements. since the modification of the code is to cope with a new design.

2.2.2.6 Carter model

Carter's model of corrective maintenance contains seven phases.

16

O

Problem detection
Detection of significant difference between expected output and actual output. usually

by the user.

Problem determination
Recognition of symptoms which constitute abnormal behaviour ou the part of the

systemn.

Diagnosis (Understanding)
The maintainer ingests svstem data and produces more data of his own. assimilates
documentation and determines which part of the system is causing the problem.

This stage also produces information about the scope of the effects of the problem.

Correction and testing
Code i1s added or changed (rarelv deleted). or data is patched or deleted. Testing of
g ;) | g

the correction occurs here.

Recovery
Corrected code or data is installed. files are rolled back or updated to cover the effects

of the problem. and the production stream is restarted at whatever point is necessary.

Reporting
Maintenance managers. users and their management need to be informed as to what
the problem was. and why it occurred - its symptoms, characteristics, its resolution,

and any analysis the maintainer can produce must be archived for future reference.

Review
The diagnosis ol the problem and the solution is reviewed critically in an attempt to

L7

validate. by expertise. individual and collective standards and techniques. Experience
. . 4 . 1 .
can be shared between more and less experienced personnel, and harmful or ineffective

techniques can be corrected in a technically valid setting.

Carter restricts his view of solftware maintenance to that of ‘response maintenance’. i.e.
corrective maintenance. This is the only aspect of maintenance that he considers. perfective
and adaptive maintenance are not addressed. In common with Parikh. Carter emphasises

the need tor a post-test review.

2.2.2.7 Chapin model

He subdivides the phases of maintenance into a series of steps as shown below.

L. Understand existing svstem
Personnel review any existing documentation and access relevant materials and per-

sonnel who may possess relevant knowledge.

2. Define the objectives for the modifications
The maintainer seeks to clarify the aspirations of the user in requesting the change to

the program.

3. Analyze the requirements
The consequences of exploring alternate paths in satisfying the maintenance request

are considered and evaluated with an accompanying cost-benefit analysis.

IS

6.

-1

9.

10.

Il

Specity modiflication(s) to be made

A summary of the analysis results from the previous step produces a specification for

the proposed modification.

Design modification(s)

Program modification(s)

Code and compile

Debug and test

The testing aims to prove that the appropriate change has been correctly implemented.

Revalidate
This attempts to confirm the stability of the system. i.e. those parts of the svstem

which were not intended to change have not done so.

Train users prior to release of new software
As soon as the specification step is completed the users are trained to use the modified

svstem to gain familiarity prior to its release

Convert from previous version of software and release

The author does not specify this anyv further.

Document. and perforin Quality Assurance review
This process is performed concurrently with the above steps and provides the basis for

inspections. walkthroughs. technical and management reviews.

19

Presumably steps 5-7 follow an iterative process, although the anthor does not specify fur-
ther. Ounly Chapin explicitly refers to retraining users in the use of the updated system.
Chapin’s model [25] lacks a problem-verification phase and it is not clear whether his model

applies to all types of maintenance.

2.2.2.8 Martin-McClure model

In common with other models the high-level tasks are:

1. Understanding
2. Modification

3. Revalidation

Each of these three phases is further decomposed [T9] as described below.

l. Understanding

This is broken down into:

(a) Top-down comprehension
1. The need to become familiar with the overall program purpose and the overall
How ol control.
ii. Identify the basic program structures as well as the processing components.
nt. Hf the program is part of a larger system then delineate its role.

20

iv. Identily what each component does and how this is implemented in the code.

(b) Improvement ol docuimentation.
i. As understanding of the program is gained, document it in a high level fash-
101

1. Participation in program development

The maintainer-to-be should take part in the development of the program.

2. Modification

(a) Design the change and debug
It the change is an ervor then this is rectified by changing the program logic. Tf
the change is an enhancement then new logic is developed and incorporated into
the program
The design of the new logic is top-down:
1. Review eutire program at a general level by studyving modules, their interfaces
and the database.
ii. Then isolate the modules and the data structures which are to be changed
and those modules and data structures which are affected by the change.
i, Detailed study of module and data structures. design change. specifving new
logic and changes (if anv) to existing logic.
(b) Alter code
Changes should be implemented as simply as possible. exercising caution and
preserving existing coding stvle.

(c) Minimise side-effects

1. Search all modules which share global variables or routines with the changed
module.

. When multiple changes are envisaged the changes should be grouped by mod-
ule. The sequence of changes should follow a top-down approach, changing
the main driver first. then its direct descendants and so on.

. Change one module at a time, determining potential ripple effects. before

changing the next module in the sequence.

3. Revalidation

Revalidation is necessary to ensure that the modifications carried out to the program

have not adversely affected the program. Revalidation is achieved by carrying out

testing. each type of testing having its own particular goal.

(a) Svstem testing

Does the program work as before ?
(b) Regression testing
Have the changes affected how the rest of the program works 7

(¢) Chauge testing

Have the changes been designed and implemented correctly ?

Martin’s model is a compreliensive oue and offers detailed guidaunce for all phases of the

maintenance process.

o
=~

2.2.2.9 Patkau model

The five basic maintenance tasks are identified in a high-level manner.

L. Identification and specification of the maintenance requirements.

2. Diagnose and change location

3. Design of the modification

4. Implementation of the modification

5. Validation ol the new syvstem

There are four possible tvpes of maintenance modification:

1. Corrective

2. Enhancement

3. Adaptive

4. Perfective

Steps 1-3 differ according to the type of modification. steps 4-5 are as for Parikh and Martin-

McClure models. Patkau identifies four possible kinds of maintenance modification.

1. Corrective

(a) ldentity repeatable error svmptoms and specity the correct operation of the system
- for this a test svstem and test data are needed.

(b) Locate the part of the svstem responsible for the error.

(c) Design the desived properties of the system, after deciding what they should be.

Determine the side-effects of the changes in these properties.
2. Enhancement
(a) Identify new or altered requirements and specification of the operation of the
enhanced svstem.
(b) Locate the existing elements affected by the enhancements.
{¢) Designis split into the following sub-tasks.
1. Assess how new requirements could be met by moditving existing components.
1. Decide what new components are required
iii. Develop the specifications of the new components and/or revise the specifi-
calions of existing components.

iv. Lxamine the side-effects of the revised specifications and/or the addition of

NEew compounents
3. Adaptive
(a) [dentify the type of change in the processing or data environment. describe the
change and revise all specifications to reflect the change.

(b) Locate all software elements affected by the change. When there is a change in

the data environment locate the parts of the system which use or set the data

24

heing changed. Use a data dictionary to store the svstem inputs and outputs,
o o o .

where they are used and their properties.

(c) Design can he accomplished by employing techniques used for corrections or en-
hancements. for changes in the data environment and minor changes in the pro-
[}

cessing environment.
4. Pefective

{a) Identifv a deficiency in the performance. quality, standards. maintainability. spec-
ity the change in performance or quality standards,

(b) Locate the sources of the deficiencies.

(¢) Design entails some re-design of a portion of the software such that it still satisties
the original requirements. but the new soltware either:

1. Uses less resonrces

1. s coded or structured better

i1, Is more maintainable

iv. Is a combination of all three.

Patkau's model is a comprehensive one and offers detailed guidance for all phases of the

maintenance process.

2.2.2.10 Osborne model

Osborne [96] models the maintenance process as:

[
n

I. Determination ol need for change

2. Submission ol change request.

3. Requirements analvsis

4. Approval/rejection of change request

5. Scheduling of task

6. Design analvsis

Design review

o

Code changes and debugging

Y. Review of code charrges

10. Testing

11. Update documentation

12. Standards audit

13. User acceptance

14. Post installation review of changes and their impact on the system

15. Completion of task

There are a number of iterative steps within the model, for example the change request may

be referred back to the user for clarification.

2.2.2.11 Yau model

Yau models the maintenance process as distinct phases:

L. Determining the maintenance objectives

(a) Correct program errors

(b) Add new capabilities

(c) Delete obsolete leatures

(d) Optimisation
2. Understanding the program

The ease ol understanding is affected by:

(a) Complexity

(b} Documentation

() Self-descriptiveness

3. Generating maintenance proposals

The proposed alterations 16 the system ave affected by the extensibility of the program.

4. Accounting for ripple effect
This is affected by the stability of the program which Yau defines as ‘The resistance

to the amplification of changes in the program.’

5. Testing

This i1s affected by the testability of the program - testability is not defined. If the

o
-1

testing ol the program is not successful then the maintenance process is performed

iterativelv.

The model represents information about the development and maintenance of software sys-
tems, emphasising relationships between different phases of the software life cvcle, and pro-
vides the basis for automated tools to assist maintenance personnel in making changes to

existing software systems.

2.2.3 Other contributions to modelling the maintenance process

2.2.3.1 Introduction

The description of maintenance process models would not be complete without a reference

to the underlying psychology, particularly with respect to program understanding.

2.2.3.2 Fjeldstad and Hamlen’s contribution

Fjeldstad and Hamlen [39] found that in a study concerning program enhancement. expert
maintenance progranmers spent as much time understanding the program as they did con-
structing the enhancement. [n additiou, the same programmers studied the original program
about three and a hall times as long as they studied the associated documentation. These

facts demonstrate the importance of program understanding and suggest that maintenance

Q]
[o72]

programmers regard the source code itsell as the most reliable documentation concerning

the program.

2.2.3.3 Littman et al’s contribution

Littman et al [75] showed that. commonly. there are two strategies adopted by maintenance
programmers for program understanding; the ‘as-needed’ strategy, where the maintainer
studies and understands only as much of the program as is necessary to carry out the
maintenance task. aud the “systematic-strategy . where the maiutainer seeks to develop a
global understanding of the program. For small programs. the "svstematic-strategy’ was

found to be superior. but for large programs maintainers were forced to adopt the "as-needed’

strategy. since the complexity of large programs exceeds the mind’s capacity to understand

them. in a reasonable time-scale.

2.2.3.4 Brooks’ contribution

Brooks [20] asserts that understanding a program concerns:

l. What each statement means

2. How flow of control passes from one statement to another

3. What algorithms have been employed

4. How information is vepreseuted and transformed in data structures

5. Which programs invoke other sub-programs

6. How the program interacts with its environment.

The above has been described by Brooks as a succession of knowledge domains that bridge
between the problem domain and the executing program [20]. A knowledge domain is a
collection of information about objects of some sort and relationships between those ob-
jects. The process ol understanding a program is one of constructing or reconstructing the
knowledge domains and relations among them from the code. comments and whatever other
documentation is available. Brooks™ model makes inferences about documentation - e.g.
languages like FORTRAN require more explanation of their code than languages like Pas-
cal. which allow direct mz-\..nipn]at‘ion of higher-level abstractions. The lavered structures of

knowledge of a program is provided by abstraction.

2.2.3.5 Schneiderman and Meyer’s contribution

Scheiderman and Mever [TH] propose a syntactic/scmantic model of program behaviour; the
model assumes that semantic and syntactic knowledge is stored in long-term memory and
manipulated in short-term and working memory. They suggest that program comprehension
is mainly building up a hierarchy of semantic knowledge about what the program does at the
top of the hierarchy. and lower-level information about statemeuts and algorithms below.

The representation is in terms of abstractions, e.g. representing the function groups of

statements. derived from the text.

2.2.3.6 Letovsky’s contribution

Letovsky [66] suggests that when a reader has a complete understanding of a program he
possesses a description of the goals of the program, the actions and data structures of the
implementation. and an explanation of how goals or sub-goals are accomplished by the

components of the implementation. The reader’s hierarchy is one of goals and sub-goals.

2.2.3.7 Letovsky and Soloway’s contribution

The work of Letovsky and Soloway [67] on delocalised plans and program comprehension, -

defined the following terms:

L. Algorithm - conceptually different from a plan
2. Goal - denotes intentions.

3. Plan - denotes techniques for realising intentions.

The conclusions of Letovsky and co-workers were:

I. Program understanding is recognising plans in the code. If the lines which implement

a plan are delocalised then the plan is difficult to follow.

2. Programmers often guess the intention of a plan from the first few remote lines of code

without bothering to read ahead in the program - false assumptions are often made,

31

which usually means that a program becomes incorrectly modified (this is most likely
to happen when verification is difficult, the plausibility of the assumption is high and
the perceived importance of the assumption is small); this can be reduced by the use

of program-analyvsis tools.
3. The goal of a variable is different tfrom its role.

4. Programs become more complex with each modification because maintainers are reluc-
tant to delete any existing code on the basis that their understanding of the program

may be incomplete,

5. Each plan in the program requires a documentation entry which indicates the purpose
of the plan and the proposed implementation. The entry should contain pointers to

the relevant lines ol code.

All of the preceding models involve lavers ol knowledge that becomes progressively more

abstract and that are ultimately tied 1o larger and larger [ragments of the program.

2.2.3.8 Linger, Mills and Witt’s contribution

Two characteristics of a program have a dominant influence on reading approaches that may
be available - the degreg ol documentation and whether the program is structured. Linger,
Mills and Witt [T1] point out that poorly-documented code generally must be read bottom-
up. as the lack of documentation can make it nearly impossible to devised hypotheses about

what various sections of code accomplish, without examiniug those sections of code in detail

32

- well-documented code can usually be read top-down

Models ot program understanding may offer guidance in the choice of software tools fur an
[SMSE. or may be instrumental in producing ideas for new tools. or in suggesting new uses
for existing tools. e.g. understanding plans in the code may be facilitated by tools such as

Weiser's [127] program slicer.

2.3 Discussion

2.3.1 Characterisation of software maintenance

Swanson's [121] and Bochin's [15] characterisatious (1976) of soltware maintenance were
partly responsible for refocusing the spotlight on this subject area. which hitherto had been
somewhat neglected. This followed Boelim's report (1973) [l4] that almost 40% of the

software effort went into maintenance.

Boehm [16] characterised software maintenance into two main types.

1. Software update - functional specification is updated (Enhancement).

2. Software repair - functional specification is unchanged (Corrective).

33

Swanson (1976) characterised maintenance as being of three main types.

N

Corrective

In this category he includes "bugs” in the software, failure to meet performance criteria
as regards functional specifications. failure to meet programming standards set by the
organisation, or inconsistencies or incompleteness in the detailed design. derived from

the functional specifications.

Adaptive
This is in response to a change in the data environment or the change in the processing

environment.

Perfective
This is “Maintenance performed to eliminate processing inefficiencies, enhance perfor-
mance. or improve maintainability. Its aim is to make the program a more perfect

design mmplementation.”

Swanson’s characterisation ol maintenance has received wide acceptance, but there is some

disharmony as regards major enhancements to software. which accounts for 60% [70] of

software maintenance. A major enhancement to software is generally accepted as belonging

to the category of perfective maintenance.

Some authors describe perfective maintenance as “fine-tuning” which is in broad agreement

with Swanson’s definition above. but other authors e.g. Patkau [102], Belady [8] regard

major enhancements to software as being distinct from perfective maintenance, as defined

34

by Swanson. This divergence appears to be in response to scale. A major enhancement
is not concerned with "a more perfect design implementation’, or “fine tuning’; rather it is
concerned with substantial alterations to the original design to take into consideration the
changing needs of an organisation (and therefore changing requirements of the software):
major enhancements to software take software maintenance back into the realm of software
development. It seems. however, 1o be accepted by many software practitioners that since
enhancement is a post development activity. i.e. it comes after the release of the software.
then it is maintenance. Furthermore since enhancement clearly does not belong to either
category of corrective or adaptive maintenance as defined by Swanson. then it must belong

to the third category. i.e. perfective maintenance.

This is inherently unsatisfactory. since as Swanson [121] points out ... “Without making
some important distinctions between tyvpes of maintenance activity undertaken. it will be
impossible to discuss the effective allocation of these activities toward organisational ends.”
No distinetion has consciously been made as to where to place major enhancements to

software. it seems to have found its niche by default.

The IEEE (1987) [57] glossary of software engineering terminology defines perfective mainte-
nance as ‘Maintenance perforimed to improve performance, maintainability. or other software
attributes” (attributes are not specified). Performance is delined as “"T'he ability of a computer
system to perform its functions. e.g. vesponse time. throughput, number of transactions.’
Again, this would seem to exclude major enhancements of software from Swanson's cate-
gory of perfective maintenance. the [EEL definition is more redolent of “fine tuning.” This

suggests that another category of software maintenaunce is required, perhaps redevelopment 7

35

Another type of software maintenance which has recently come to the fore is ‘preventive
maintenance’ [9. 105]. which may be defined as ‘maintenance performed on a scheduled
basis before the manifestation ol any deficiency in the working of the software’. The aim
of preventive maintenance is to reduce the future maintenance effort, by the introduction of
forward planning with regard to the work of the maintenance organisation, instead of relying
on ‘crisis management as a substitute for strategy. However. preventive maintenance has

not yet gained universal acceptance. neither has its efficacy bheen established.

2.3.2 Assessment of the the maintenance models surveyed

Those models which attempt to provide a {ull description ol the technical aspect of the
maintenance process. due to Boehm (1976) [15]. Liu (1976) [76]. Sharpley (1977) [L16],
Parikh (1932) [100] Yau (1932) [130]. Martin (1983) [79]. Patkau (1983) [102]. Osborne
(1983) [96]. Carter (1936) [24]. and Chapin (1938) [25] take the same high-level view. i.e.

they all identify three phases:

I. Understanding

o

. Modification

3. Revalidation

Only Mellor [33] eaplicitly focuses on the area of problem-verification. which may preclude
the need for maintenance, since solutions may already have been provided for ‘new’ problems.

36

("ategory of Mamtenance

Corrective Adaptive Perfective Enhancement
VIUIM]T]V]IUIM]T]V][U[M][TJV][UIM][T
Boehm [1/ [[/]/ [1/ |/
Liu / |/
Sharplev || / 1/ |/

Ry N L

Parikh RYRYEY
Yau [A L
Martin [1/ |/ /[1/ |/ /[1/ 1/ [1] 1/
Patkau ||/ |/ |/ VW /0 LA WA AL
Osborne /| / 4/ t/ W/ \V/ V7 {7 W/ U7 1] |/

Carter f 1/ 1] 1/

Chapin /[1/ 1/ / 1/]/ /1 [1/ |/
Mellor / / / /

Key

V | Verifving need for maintenance

U | Understanding
M | Modifving
T | Testing

Table 2.1: Summary ol Maintenance models.
These models are summarised in table 2.1 above. The particular phase of the technical aspect
of maintenance dealt with by each author is denoted by a diagonal line in the appropriate
box.

In general. the models surveved fall naturally into two categories.

1. From the viewpoint of people. i.e. those things which are done by people to software.

2. From the viewpoint of the software, 1.e. those things which are done to the software

by people. and how this alfects the soltware.

From the point of view of designing a maintenance environment. the models from the first
category are most useful. The reason for this is that when designing a maintenance environ-
ment the designer must imagine himself in the position of a maintainer. A maintainer asks

37

himself questions such as “What must I know before 1 can alter this code 7", and *What else
must [change il I make this change to the program ?° The maintaiuer instigates change.
and feels actively involved. The second category of model places the maintainer in a passive

role.

Modelling relies heavily on the process of abstraction. removing unwanted detail that ob-
scures the underlving fundamental principles involved. and postponing those judgements
concerning the nature of a process that cannot be veritied until the basic principles concern-
ing that process are better understood. Examples of such fundamental principles include
those relating to the technical aspects of maintenance which involve creativity; these are the
most difficult to model. which may account for the fact that most of the models surveyed do
not describe in detail the understanding and modification phases of software maintenance.
These are the phases ol maintenance where relinement of the model leads o divergence of
approach. since here no two maintainers will use exactly the same model, because of the
human factor involved. By contrast, the verification and validation phases are most inde-
pendent of the human factor, since well-established procedures exist for establishing the
veracity of. for example. functional specifications. or the response of the program to test
cases. Perhaps with this is mind. some of the earlier attempts at deriving a maintenance
model limited themselves to a high-level view, and this view has received general acceptance

n the academic and DP communities.

This approach of using abstraction 1o establish a generalised maintenance model will enable
maintainers to assemble and combine tools in ways which are not as yet predictable. On the

other hand, more refined views of the maintenance model are useful because they indicate

o
o

the type of software tools that will be needed to automate partially the maintenance process
and the type of information councerning software that needs to be stored. There exists an
‘abstraction-threshold’ bevond which important model-infrastructure is lost, so a balance
must be struck which makes it possible to reconcile the conflicting demands of abstraction

and refinement.

2.3.3 Establishing a generalised maintenance process-model

The exact description of the maintenance process is a function of the age of the software. since
software (especially documentation) degrades with increasing age. Lor example, Beladyv’s
work [8] shows that a program’s structure tends to degrade because of "patches’ inserted
to fix bugs. In an extreme case, the understanding phase. which takes up most of the
time i a maintenance assignment and relies heavily on documentation. will assume an even
greater importance. As an example consider the case ol an old software system where the
only reliable documentation is the source code. The use of tools to automate partially
the gathering of information from the listing of the source code and the conversion of this
information into knowledge contrasts starkly with the case where reliable documentation
exists and the information-gathering is mainly manual. that is. the maiutainer veads the

documentation to establish his conceptual model of the system.

Current descriptions of maintenance offer the highest-level view of maintenance, the start-

tng point for a top-down refiuement. culminating in the establishiment of a more detailed

39

maintenance model. All the maintenance models surveyed were found to be compatible with
the definition of maintenance given iu chapter 1. The generalised model of the maintenance
process can not be viewed in isolation however; the model implicitly admits of the existence
of an organisation which will implement the model. The author envisages a maintenance

organisation whose structure is a hierarchical one, consisting of three main levels:

L. Managerial level

2. Supervisory level

3. Technical level

Associated with each level of the organisation is a different type ol information. The relation-
ship existing between a particular level within the hicrarchy ol the maintenance orgauisation,
and the type of information utilised by that level is shown below in Figure 2.1. The type of
information that each level of the organisation utilises has iimportant implications for objects

stored in the object base of a maintenance support environment:

. The vange of granularity of the objects requires that appropriate tools are available to

manipulate. store and retrieve these objects.

2. The types of information utilised by the organisation can be used to produce type
classes. so enabling the “typing” of objects in the ohject base. by means of an attribute
which indicates the category ol information stored in the object. ln this way a tool is
prevented from accessing an inappropriate object. or accessing an object in a way that
is incompatible with its format and/or content.

40

LEVEL IN MAINTENANCE TYPE O INFORMATION
ORGANISATION HIERARCHY ' FLOW
TECHNICAL OPERATIONAL
SUPERVISORY TACTICAL
MANAGERIAL STRATEGIC

Figure 2.1: A Generic Maintenauce Organisation Hierarchy and Associated Information
Types

41

In addition. these types of information indicate the desired functionality of a software engi-
neering object management system. discussed in chapter three. As an example of function-
ality, a highest level grouping in the object base is required. i.e. the partition level. This
1s needed. primarily for the operation of a management information system. regarding the
tactical and strategic information used by a maintenance organisation. The purpose of such

Information is discussed helow.

Information Hows within each level and between levels are determined by the hierarchy of
the maintenance organisation. There are two vital functions performed by management. i.e.
communication and coutrol. which depend on the capture. interpretation. utilisation and
distribution of information. The managerial level of the maintenance organisation delegates
to the supervisory level. whiclh implements the long-term strategy of the organisation. The
supervisory level also delegates to the technical level of the organisation those tasks necessary
to fulfil the maintenance objectives determined by the managerial level: the information flows

are bi-directional.

[t is not possible to specity more precisely the nature of the lierarchy of a maintenance
organisation since 1l is. ol necessity, organisation-specilic. This also applies to the model of
the maintenance process. since it is subject to the constraints imposed by management phi-
losophy: in addition the maintenance model is likely to be application-dependent. The type
of information utilised by each level within the hierarchy of the maintenance organisation is

outlined bhelow.

1. Operational

This is the lowest level. and the information here is very detailed and is specific to the
Junction of the maintenance organisation. Operational information may not even be
communicated. if the person having the information does not feel that it needs to be.
This information could be the understanding that a maintainer achieves of software
but does not record. making the work of future maintainers more difficult. When
operational information is communicated, it may not be actually documented but may

instead be communicated orally. or by electronic mail when:

(a) The emphasis is on speed and accuracy. and the production of hard-copy may

introduce inaccuracies.

(b) The quality of presentation ol the information is not a critical factor.

This type of information is mainly concerned with the technical aspects of maintenance,

and is concerned directly with software.

Tactical

The information at this level is used 1o monitor the resources. (men and machine),
used in achieving the strategic objectives of the maintenance organisation and includes
the application of access and financial control to large collections of information asso-
ciated with maintenance projects. In the context of a maintenance organisation this
information is concerned with the economics of maintenance. particularly with regard
to the productivity of the organisation. This kind of information tends to be presented

in the form of reports and summaries drawn up monthly or quarterly.

Strategic

This type ol information is used by senior management for long-term planning and

+3

its structure is not as predictable as that of tactical information. since a strategy is
often formed in response to external factors, such as changing trends or new results
from research initiatives. The information does not need to be highlv-detailed or
excessively accurate. since the long term forecasts produced at this level may be subject

to distortions due to factors bevond the control of the organisation.

The generalised maintenance model adopted as a basis for the ISMSE is shown below. Its
high-level view summarises the main activities undertaken during the course of a maiute-
nance assignment: the model pertains mainly to the technical and managerial aspects of the

maintenance process.

L. Verification of need to modity the software i.e. the program and its associated docu-

mettation
2. Understand the software
3. Modity the software. including the documentation

4. Validation of the soltware (i.e. the functional specifications) and regression testing

This high-level view or generalised model of the maintenance process should not be regarded
as immutable. since research will cause the model of the maintenance process to evolve.
Since, as mentioned earlier. the role of the environment must support the effective use of an
effective process. it is apparent that the environment must be capable of evolving in response
to the evolution of the maintenance model. As pointed out by Kaiser [61] the crucial test of
any environment is whether it can support its own maintenance.

4d

2.3.4 Discussion of the generalised maintenance model

Each of the categories from this generalised maintenance model are now discussed.

2.3.4.1 Problem verification

The earliest phase of the maintenance process is the receipt of a maintenance request (often
from users): this may be an error-condition report or a request for the enhancement of the
program. However a need for maintenaunce may arise through evolution of the maintenance
organisation, and/or the evolution of the organisation. of which the maintenance organisa-
tion is a part.

Preliminary work is then undertaken to verify that maintenance is necessary. This prelim-
inary work is greatly facilitated if there exists a database containing information regarding
the history of the software system under scrutiny. which avoids repeating maintenance which
has already been performed on a svstem. Typical information might include enhancements
resulting in a ne\\-" version of the software. or known "bugs™ and the corrections made to the
software to remove these. If attention is not given to this vital area. it may mean that a
maintenance department becomes overloaded through having to "re-invent the wheel.” Mel-
lor [83] suggests that “the approach to dealing with failure in a software product should be
a hierarchical one. each level of the hicrarchy acting as a filter for the level above and that
simple queries due to known faults should be answered on the first level.” According to
Mellor the highest level of the hierarchy is the design authority for the product. who devises

repairs to code and incorporates changes into future releases of the product.

2.3.4.2 Understanding the program

As already mentioned a maintenance assignment contains an understanding phase. and the
environment must provide support for this vital aspect of software maintenance. If the
maintainer’s understanding of the system is incomplete, then it is not possible for him to
sately modify the software - (note that this implies safely modifying the documentation as
well as the program.). There are two facets to the understanding ol a program.

L. A local understanding of the program. where the changes are to made. specifically, how

the program does what it does.

2. A more global understanding of the program so that the modifications do not ad-
versely affect the other parts of the program. (It should be pointed out that a total

understanding of the program is unrealistic).
< .

When a maintainer seeks to achieve an understanding of a software system his first recourse
is to the documentation of the system. If he finds that related parts of the documentation
are not. i agreement then he is forced to scek his understanding of the system from the
only reliable documentation. i.e. the source code. The elements of a software configuration
(other than the machine code representation of the software system) are together known as
the documentation, when they are in a human-readable form. Examples of such elements
are requirements. specifications, design, source code, test cases. test results. The older the
software. the more likely that some of these elements are either missing or are unreliable, i.e.

they do not reflect the current state of the system. This is of crucial importance since, as

40

mentioned earlier. the starting point for gaining an understanding ol software begins with a

reference to the documentation of the svstem.

2.3.4.3 Modification

Only the models due to Martin and Patkau give any detailed guidance in this area. None of
the models explicitly address the probleins associated with the integration of software, in the
context ol software modifications. When uew software is written and is to be incorporated
into an existing software system. the problem ol integration of this software arises. Using
a top-down strategv. or a bottom-up strategyv. or a combination of the two, are the choices
available to the maintenance programmer. Which strategy is adopted depends on the prel-
erence ol the maintainer. and also depends on the testing strategy adopted. for example,
when is interface testing carried out in relation to the other elements of software testing ?
Configuration management is concerned with the interrelation of software components. such
as requirements. specification. source code. and docimentation which are the products of the
respective phases ol the sofltware lile-cycle. as well as dealing with the traceability between
the products of these phases. I a large software system. this is a major task. This topic is
referred to in chapter 3 in the context of object management.

Version control is concerned with choosing the correct version of each component which
15 part of a particular .\:()I't ware system. Failure to ensure this will almost certainly com-
promise the functional integrity of the system. In the context of medium-to-large software
systems which have a lifespan measured in years, and which are periodically updated to

reflect changes in the problem or application domain, users may seek changes to any of these

versions. Ieeping track of which changes have been made to each version requires that a
complete version history of the soltware be kept. This topic is referred to in chapter 3 in the

context of object. management.

2.3.4.4 Validation

Following a modification to a software system. when changes have been made to the source
code, only one element of the documentation of the program usually remains a true repre-
sentation: the listing ol the source code. It is generally accepted that the documentation of
programs is a much neglected activity.

Liu [76] emphasises the need to test the remainder of the documentation relating to the
modification, so that redocumentation of the system following a modification preserves the
compatibility and consistency ol the elements of the soltware couliguration.

Failure to test the whole of the documentation relating to the modification may mean that
if this part of a software system is prone to modification (e.g. part of an accountancy appli-
cation program which deals with tax thresholds,), failure to test the redocumentation may
mean that this part of the program is redocumented incorrectly. A future maintainer. not
regarding the docuwmentation as reliable may redocument this part of the svstem and so
layers’ of documentation build np making the software larger. more complex and more con-
fusing for any future maintainer. Unless the compatibility and consistency of the software
configuration is preserved. following a modification. the end-result is increased complexity
and therefore degradation of the svstem.

When a maintainer seeks to achieve an understanding of a software system his first recourse

43

is to the documentation ol the syvstem. If he finds that related parts of the documentation
are not in agreement theun he is {orced to seek his understanding of the system from the only
reliable documentation. i.e. the source code.

During the validation phase none of the maintenance models emphasises the course of action
to be taken when there are elements ol the software configuration missing, e.g. when there
are no test cases or test results included in the documentation of an ageing software system.
[n the absence of test cases or test results it is impossible to carry outl regression testing
after a modification has been made to the source code and so the proposed modification will
have to be postponed until test cases have beén devised and test results obtained for these
cases; only then can the program modification be said to be free from any ‘ripple effect’. i.e.
the modification does not adversely affect the remainder of the software.

Only Carter [24] mentions any recovery from the result of the failure of the software, i.e.

rollback™ and file update.

2.3.5 Summary

A maintenance support environment must actively support the maintenance organisation
using a generalised model of maintenance. The techuical aspect of the maintenance model is
something which clepen(!s on the context in which maintenance is being performed. and so is
flexible, and can be refined to suit the type of maintenance being carried out, e.g. perfective

change. adaptive change.

19

The maintenance models due to Boehm (1976) [15]. Liu (1976) [76]. Sharpley (1977) [116],
Parikh (1982) [100] Yau (1982) [130]. Carter (1986) [24], and Chapin (1988) [25] concentrate
mainly on the technical aspects of maintenance. Martin (1983) [79]. Patkau (1933) [102].

give a more comprehensive deseription of the maintenance process.

In the context of the creation ol a maintenance support environment it is insufficient to
view the technical aspect of maintenance in isolation of other aspects of maintenance. such
as the managerial and organisational aspects. To [(acilitate the evolution of the technical
aspect of the maintenance model and the consequent evolution of the support environment.
management must be able to access information concerning maintenance assignments quickly
and easily. Hence the maintenance model must integrate all aspects of the maintenance

process.

are

Chapter 3

Integrated Software Engineering

Environments (ISE)

3.1 Introduction

An integrated software engineering environment is a generic term for a collection of software
tools, available to the software engineer via a command language or a svstem of menus. The
nucleus of such an integrated soltware engincering environmeut is a database or knowledge

base which may also act as the interface between the tools. The meaning and importance of

51

the term “integrated’ is expanded upon below.

[deally an ISE should be both language-independent and method-independent: its area of

applicability being dictated by the tools which are integrated into it.

3.1.1 The advent of Integrated Software Engineering Environ-

ments

The perceived need for Integrated Software Engineering Environments (ISEs) has arisen

because:

L. Software systems are becoming larger and more complex than was ever envisaged. ow-
ing to the evolution of ever more powerful computers. through advances in computer
hardware. Integrated Software Environments were conceived as a means of improving
the productivity and quality of software through the use of a fullv-integrated compati-
ble set of software tools. and incorporating modern software engineering techniques into
software design and development. a spin -off henefit being the freeing of programmers

for more creative activities.

2. ISEs are used for development of software and 60% [70] of software maintenance is
enhancement - it is thercfore apparent that an ISE offers support {or the maintenance
phase of the software life cycle. From the development standpoint. the development

of software is being restricted by the maintenance backlog - increasing maintenance

52

productivity will release human and non-human resources for software development.

One of the first environments to provide true integration was CADES (81, 117); many en-
vironments which claimed to be integrated were loose assemblages of tools. methods. and
practices. The notion of environment integration is developed further in the remainder of

this chapter.

3.2 Overview of Integrated Software Engineering En-

vironments (ISE)

The important features of an environment are:

L. its architecture - bhecause it is the implementation of the design ol the envirouwment.

2. its interfaces - because. as will be explained below. the integration of the environment

takes place at these interfaces.

These features are described helow.

3.2.1 Environment Architecture

Most publications concerning integrated environments give little indication of what is meant
by the term “integrated’. but instead rely on a tacit understanding of the term: exceptions
are Delisle [33] Houghton [53] and Lewerentz [69]. Delisle [32] views integration of an envi-
ronment as:

“...something which causes the environment to appear as a single tool to the user.

so the user does not hiave the problem of performing mental context switches when

using various functions within the environment.’
Houghton [53] defines integration as:

“The close unification of the major functions or processes of an environment ...

and points out:

*that wherever an interface occurs in an environment. there is a need for

imtegration.

Lewerentz [69] defines integration as:

‘...the smooth interaction of tools, all tools having a uniform user interface.’

54

The IEEE Standard Glossary ol Software Engineering Terminology [57] defines integration

as:

‘The process of combining software elements into an overall system.’

This definition has generality but requires amplification according to the context in which

1t 1s being used.

The author defines integration as “T'he incorporation of soltware tools into a coherent unit for
the generation and management of information concerning a software svstem.” The purpose
served by an integration mechanism is to ‘dovetail’ the components of the environment
so that they may work “in concert’. One of the main features of an integrated software
engineering environment is that information collected using one tool can be made use of by

other tools.

Many software engineering environments claim to be integrated but this claimed integration

of tools is disputed by some authors. e.g. Dart [31] aud Hansen [53],

[f the integration issues in Integrated Software Engineering environments are not clearly
specified. it is not possible to see whether effective integration of the environment has been
achieved; the concept of environment iutegration must be clearly and explicitly stated so
that the architectural principles underlyving the design of an integration mechanism can be

established.

ot
O

3.2.2 Environment interfaces

In order that the main interrelated components of the environment may be incorporated into
a coherent unit. it is first necessary to identify the intertaces where these components meet.
As an analogy. the integration ol the interrelated components of a motor vehicle powered by

an internal combustion engine serves to illustrate this assertion.

The chemical energy which supplies the motive power for the vehicle is locked up in the
fuel as chemical energy. A trigger is uecessary to release this energy and this is supplied by
an electrical spark. Au integration mechanism is necessary across the interlace between the
fuel and the electrical spark - the integration mechanism is the carburettor. which ensures
vaporisation of the fuel and mixing of tuel vapour and air in the correct proportions prior to

ignition.

The power generated by the energy in the fuel needs to be converted into motive power
which can be applied to the wheels. Integration across this interface is achieved by means

of a transmission system whose main components are the gearbox and clutch.

Each of these main components of the motive power system can be subdivided to reveal
more interfaces with their accompanying integration mechanisms. e.g. the reciprocal motion
of the pistons needs to be converted into rotary motion. so that the transmission system
can impatrt motive power to the wheels. Integration is required between the engine and the

transmission system: integration across this interface is facilitated by the crankshaft.

Since there are many interfaces in an environment. then there are many instances of in-
tegration, so that the architecture of an ISE is inextricably linked to the integration of
its functions. notably through the integration of its main components. the toolset and the
database. Houghton et al [33] observed that the integration of an environment requires the

integration of at least three interfaces.

l. user interface

1O

database interface (tools comumunicate through here)

3. machine interface

Houghton et al also showed [53] that the user interface and database interface are the most
important interfaces. and that the interfaces can be viewed by modelling the svstem as a

series ol abstract levels. as shown in Figure 3.1,

1}
-1

Top-Level

User
Interface
Software Engineering Intermediate-Level
Environment Interface

‘ Bottow-Level
Machine

Interface

Figure 3.1: Modelling of Environment Interfaces

Many such environments have layvered architectures which shield the user rom the underlying
operating system. and may even use eristing environments as an intermediate level. for
example Unix. Here the Unix interface may be used to invoke the Unix tools. the Unix
tools communicating with the underlving Unix primitives, The avchitecture of a software

engineering environtent based on [nix is shown below in Figure 3.2.

3.2.2.1 User interface

An integrated software engineering environment supports the co-ordination and management

of tools via a high-level user-interface. The usual type of user-interface is:

L. WIMPS (Windows. Icons. Pull-down Menus)

Ny
oL

Top Level
(Users)

User Interface

Overlying

Environment

Unix Interface

Software Engineering
T <
[‘ nix TOOl\

Environment

Procedure Calls Unix Environment

Unix Primitives

Machine Interface

Bottom lLevel

(Machine)

Figure 3.2: Generic Architecture of a Software Engineering Environment based on the Unix
operating system

59

2. Command language

3.2.2.2 Tools interface

Integrated software engineering environments which claim to be extensible and tailorable to
the users’ requirements must be able to incorporate third party tools. The definition of a
tools interface 1o allow the incorporation of “third-party” tools must determine the degree of
control a tool has over the uperating svstem and database: and also take 1uto account the

facilities needed for an eflective user-interface.

3.2.2.3 Database interface

The interface to the database may be environment-specific or may be {from a DBMS package.
Apart from being a repository for information. the database can be viewed as a tool that is

used by other tools. and therefore acts as an interface between Lools.

3.3 Classification of Integrated Software Engineering

Environments

The two most complete attempts to classify [SEs are due to Dart et al [31] and Houghton
et al [55].

60

3.3.1 Dart Classification

Dart et al [31] classify ISEs as:

1. Language-centred.

2. Structure-oriented.

3. Toolkit.

4. Method-based.

3.3.1.1 Language-centred environments

These are built to support the coding phase of a particular language. whose toolset is tailored
to that language. These environments are highlv-interactive and offer limited support for

large scale programming efforts. Their most important features are:

1. They offer support for prototyping. since the development environment and the run-
time environment are the same. Small changes to code can be made executable very

quickly. allowing programs to be incrementally built.

2. Semantic information from svimbol tables is recorded by the environment and is avail-
able to the progranminer via tools such as browsers. [n this way the programmer may
achieve a deeper understanding of the software under construction or when the pro-
grammer is engaged in maintenance.

61

3. Support is provided lor configuration management and version control. but no support

is provided for project management.
. 2

3.3.1.2 Structure-oriented environments

These environments support the coding phase of a particular language: the user deals directly
with program constructs. thus avoiding the tedium ol having to remember details of the

syntax. enabling the manipulation of program structures in a language-independent manner.

Semantic information can be attached to program structures and made available to the user.

Structure-oriented environments have as their main component a svitax -directed editor
through which all structures are manipulated. and is also the interface through which the

user mteracts with the environment.

Programs can be viewed at different levels ol abstraction and detail. multiple views of pro-
(o]
grams can be generated from the program structure. and browsing of these views is supported

through the use of windows.

Structure-oriented environments have the ability to formally describe the syntax and static
semantics of a language from which an instance of a structure editor can be generated. The
structure editor r(:.*porl..\" svutax and static semantic errors as soon as they arise. making
possible the incremental checking of semantics. The user interacts directly with program

- constructs and avoids the tedium or remembering details of the syutax.

62

Generation of structure-oriented environments is made possible through encapsulation of

the syntactic and semantic properties of a language in a grammar-.

3.3.1.3 Toolkit environments

These environments are language-independent and mainly support the coding phase of the
software development life-cvele, Thev consist of a collection of small tools which are not
controlled or managed by the environment. Facilities are provided for version control and
configuration management. but little support is provided in terms of consistently and auto-
matically managing user activities. since the toolset is only loosely coupled to the environ-

ment.

A high-level interface needs to be placed on top of the normal user-command interface. thus
increasing control over tool usage. Toolkit environments such as Unix. allow the user a
high degree of tailoring. but such cnvironments provide little in the way of environment-
defined management or control techniques for using the toolkit. In addition. little support

1s provided for the maintenance of large software systems.

3.3.1.4 Method-based environments

Support is provided for a broad range of software development activities, such as team and
project management. Tools {or particular specification and design methods are incorporated

mto the environment. These environments either support:

63

1. A particular development method.
The development method may include any of the following:
(a) Specifications
(b) Design
(c) Verification and validation
(d) Re-use.

Different methods exhibit different degrees of formality. i.e. informal. (text), semi-

formal (textual and graphical descriptions with limited checking facilities). formal (with

an underlying theoretical model against which a description can be verified). Examples
of formal methods for specification are Petri nets. state machines and specification

languages.

2. Methods for managing the development process.
Facilities are provided for version. couliguration and release management along with

procedures and standards for performing these tasks consistently.

3.3.2 Houghton Classification

The classification of [SEs by Houghton et al [55] is related to the phase(s) of the software

life-cycle supported. The classes are:

1. Progranuning.

6l

2. Framing.

3. General.

3.3.2.1 Programming environments

These provide support for the coding, debugging and testing of programs, which are written

using a high-level programming language.

3.3.2.2 Framing environments

These concentrate on the earlier phases of the software life-cvcle. where the svstem is framed
by its requirements and design. Implicit looping in the life-cycle means that all phases of the
life-cycle are supported: Tor example changes in requirements resulting from ervors detected
during operation of the software means that the operation and maintenance phases are being

supported. though this does not include all activities within each of these phases.

3.3.2.3 General environments

These environments coutain basic tools which support all phases of the software life-cvcle,
and usually support more than one programming language. They often contain advanced
special-purpose tools. for certain phases and can be adapted 1o most methodologies. An

example of a general type ol ISE is the [PSE. whose impact on software engineering in recent

65

years has been considerable.

3.3.3 Comparison of Dart et al’s and Houghton et al’s classifica-

tions

Dart et al’s classification is deeper and more detailed. taking Houghton's classification of
programming enviromments further by breaking it down into Language-centred. Structure-
oriented. Toolkit. and Method-based environments. Houghton's framing environments is
included in Dart’s method-based environments. and Houghton's general environments is

equivalent to Dart’s toolkit environment.

3.3.4 The European Alvey Integrated Project Support Environ-

ment (IPSE)

The torerunner of the IPSE was the Ada Programming Support Environment (APSE), many
features of the APSL are present in the [PSE. It is useful. therefore. to examine briefly the
architecture of the APSE and some of its functions. The Stoneman document [23] sumumnarises
the objectives of the APSEL the main objective being the provision of cost-effective support
to all functions in a project team engaged in the development, maintenance and management

of a software project.

66

The APSE is comparable with early generations of [PSEs; since it only supports the pro-
gramming phase. it can be thought of as a sub-set of an IPSF. its architecture is shown

below in Figure 3.3.

MAPSE

minimal tools

NAPSE
database
and
operating
system

Other tools

Figure 3.3: The Avchitecture of the Ada Programming Support Environment (APSE)

The APSE is a coordinated set of tools around a common database. The central item is
a kernel presenting an interface to the tools outside. The kernel acts as a bridge between
the tools and the operating system, it is implemented on top of the host machine. The
intertace is host-independent. and since the tools, compiler, editor, etc., operate on top of
this intertace they are also host independent. i.e. the complete tool set is portable. To move

it to a new host. only a new kernel is necded.

The single most importaut feature of the kernel is its database - it is through this database

67

and its built-in constraints and structures that a consistent and reliable set of interfaces can
be presented to the tool builder and user - this particularly applies to recovery mechanisms
where individual tools cannot have adequate information to cope with situations outside
their control. The database is typed. i.e. it has knowledge of certain properties of the
objects that it contains. and can prevent their misuse by incorrect tools; this simplifies tool

development by providing the tool writer with an appropriate framework.

3.3.4.1 Overall objective of the IPSE

An IPSE has been defined [78] as: “An integrated compatible set of tools based on a method-

ology for all parts of system development and operation. sharing a common database.’

As pointed out by Stenning [120]. the soltware industry is essentially a manufacturing in-
dustry. Manulacturing industries have much experience and knowledge gained in tackling
large-scale engineering projects. and rely heavily on tools and techniques which are the fruits
of disciplines such as operational research. Building a large soltware system is essentially a
large-scale engineering project: this philosophy was adopted by the Alvey directorate. Three
generations of [PSI were envisaged. leading to the establishment of the Information Systems
Factory (ISF). The goal of the [SI" is the provision of a set of tools for producing IT systems

on a ‘one-off” basis, using sound software engineering techniques.

In outline, an IPSE is developed by integrating software engineering tools into a common
database structure, that is. the tools share a database, which is the nucleus of the environ-

ment. This is a disciplined engineering approach, enabling project management information

(o]
04

to be extracted easily and efficiently, making effective project management and support pos-
sible: the aim is for the IPSFE to be language-independent and method-independent. the tools

which are integrated into the [PSE dictating its area of applicability.

3.3.4.2 Evolution of the IPSE

The main distinction between each generation is the level of integration achieved for the
o o

various tools within the IPSE. Integration means that information collected using one tool

can be made use of by other tools. that is. tools know about each other. Mair [78] summarises

this evolution as occurring in three generations.

First-generation

A typical first-generation [PSE has a Unix-like file-based database combining off-the-shelf
management and software support tools. which are normally presented to the user by means
of an enhanced user-interface. rather than the cruder Unix command interface. The tools
are incorporated with little. if anv. modification. and the tool is used within the IPSE as it
would be on its own. Invocation of the tool is usually controlled by the IPSE. using standard
Unix call procedures. Any read/write files used by the tool are generally under the control of
some form of configuration manager built into the architecture of the IPSE. The structures
of the files themselves remain unaltered {rom the stand-alone version of the tool but form

part of the overall filebase.

69

Second-generation

Some second-generation [PSFs are commeraiallv-available now. These are closed IPSEs.
They have a relatively limited tool set. offer no tool interfaces, and therefore cannot host
‘third-party” tools. This means that they are in danger of becoming obsolete, through being
unable to keep up with advances in tool design. These IPSEs have more of a true database
structure, rather than a simple filebase. Entity-relational database models are used to hold
the information of the [PSE. The primary element is the entity. an object within the database;
each entity can have attributes assigned to it - these are its properties. This aspect of an

IPSE is discussed in move detail. later in this chapter.

Second-generation [PSEs integrate tools at a much lower level than simply holding them in a
database as an isolated component. I[nstead tools are held in the database as entities, having
traceable links to their files. also held as entities. All information relating to the operation
of the [PSE. as well as the data produced by it. resides in the database as different tvpes of

entities.

Because of the level of the integration required by second-generation [PSEs, many of the tools
present will have been purposely developed for that IPSE; a large number of these purpose-
built tools are due to the result of research undertaken specifically tfor [PSE development. It
15 envisaged that tools will be used seriallv. when one tool has completed its task, the next

tool is invoked.

Third-generation

[ntegration will extend the database concept into a knowledge-based system. Instead of using

tools serially, fullv-integrated tool sets will allow the user to freely interchange between one
task and another. The success or failure of an IPSE depends on its ability to incorporate

“third-party’ tools into its structure. i.e. its architecture must be open.

3.4 The Suitability of an IPSE as an Integrated Soft-

ware Maintenance Support Environment

3.4.1 Introduction

[t has been pointed out [53] that it is infeasible for any one environment to provide complete
support for all software engineering activities that may be carried out during one revolution
of the software life—cvcle: however. Integrated Project Support Environments (IPSE) are the

most complete attempt to achieve precisely this,

The role of an IPSE is 1o provide support for the software engineering process. Software
Engineering is defined by IEEE [57] as ‘The svstematic approach to the development, op-
eration, maintenance. and retirement of software.” It is apparent that if an ISE is able to
provide support for these activities. it must be able to provide support for the respective
underlying process models. Current [PSEs are ISEs whose intended goal is the provision of

fully-integrated support for the software process.

Glass [46] 1s of the opinion that software maintenance can be regarded as the entire range
l g

ot software development. in microcnsm. This notion should be tempered with caution since
software maintenance differs from software development in one very important respect. in
that it must be performed within the constraints of eaisting software. whereas a software

developer begins with a *clean sheet’ when developing a new software svstem.

3.4.2 IPSE support for maintenance

The suitability of an IPSE {or providing assistance {or the maintenance of software, and in
improving the productivity of a maintenance organisation can be illustrated by reference to

the two main features of an IPSE. i.e. object management and tool integration.

3.4.2.1 Object management

The database 1s the unifyving element in the architecture of an [PSE and also acts as a central
repository for all information associated with a project. The advantage of using a database,
instead of a file based storage svstem. is that centralised control can be exercised over the
data, enabling safeguards to be emploved in recording. querying. and manipulating the data.
Implicitly. this means thzat a higher degree of data integrity is possible than can be obtained

when using a simple file-based system as the basis for a persistent data store.

IPSE databases store objects: an object is a name given to a collection of information which

has a unique identity. An object has attributes, which describe the nature ol the object: the
list of possible attributes is open-ended. but those attributes which record history. catego-
rization and access rights are essential for the management of such objects. For this reason
the database is often referred to as an object base, and the term Database Management Svs-
tem (DBMS) is replaced by Object Management System (OMS). Examples of objects are
natural language text, source code. requirements specification, test data and configurations:
such objects are large-grained and require the use of large-grained tools. This approach
contrasts with. e.g. toolkit environments such as Unix. whose tools communicate through
‘pipes’. which enable single files of textual information. to be passed from one tool to an-
other. This view of the complexity ol the data objects and structures which tools must. of

necessity, create and communicate to each other in an IPSE is inadequate.

The concept of an object has great importauce for the maintenance ol soltware as regards:

l. Understanding of software
Linked with the notion ol an object is the notion of a view. which has important
implications for the understanding of software. A view is a data management term
defined [37] as *\ cross-section ol a soltware systen which contaius objects relevant
to a particular task.” It should be noted that a view can also be a single object, e.g.
a configuration. Other examples of views are versions. call-graphs. Understanding of
a program is achieved by examining different wiews of a program. no one view being
sufficient to permit this understanding. Some views of a program come readily to hand.
e.g. a linear view of a program is represented by the program text, but a hierarchical
view of the program requires the use of a tool to produce. for example. the call-graph

3

structure. Similarly, other views ol a program. such as the statements referencing a
variable or the procedures using a particular module require the use of appropriate

tools.

Version control

A version is defined [57] as *The latest instantiation of a software system which has
superseded all other instantiations.” A later version of a software system may have
been produced to correct errors in. or to add enhancements to. an earlier version.
Control of versions makes possible their correct use. possibly by restriction of access
Lo existing versions. and the creation ol new versions. Lhe attributes possessed by an
object in a database make it uniquely identifiable: a group of related versions, each of
which meets some specified criteria can be regarded as different versions of the same
abstract-object. Within such a group a particular version can be assigned to be the

default version. which can be useful in reducing access times.

Configuration management and control

A software configuration is defined as a collection of software elements or objects, (also
known as a configuration item). that performs some well-defined function. e.g. the
modules which together constitute a computer program.

A soltware conliguration can itsell be regarded as an object. The aim of configuration
management 1s to ensure. that a software configuration is properly constituted to
perform its function throughout its lifetime, through the selection of the appropriate
version of each individual component, new versions of components being the result
of maintenance activity. Configuration management is sometimes performed as an
integral part of the software clevelopfnent process, retaining control over the evolving

IE

software. sometimes it is a discrete activity. being triggered by each new revision of
the software.

A software configuration may have a long lifespan. e.g. a new release ol a software
svstem or a short lifespan. c.g. a svstem prototype. produced during the development
of an enhancement to software. Software configurations are themselves objects and may
therefore exist in version groups, the relationships between such objects are often very
complex. and may be related in time. such as consecutive releases: others mayv co-exist

In time. e.g. separate prototvpe models. An object management system must concern

itself with the generation. velease and subsequent control of configurations. and must

be able to [urnish details concerning the components of any configuration as regards
their history and antecedents. through the use of historv attributes. In particular.
in-built constraints of the object management system as regards its operations are
necessary 1o preserve the vahidity of an object’s history atiributes. e.g. which compiler

option was used to produce the object file.

3.4.2.2 Tool integration

In general soltware tools increase the productivity and power of the software engineer. In
the context of software maintenance they remove much of the drudgery of searching for
information, but can provide an embarrassment of riches. i.e. they can provide too much

information. Tool integration in an [PSE means that:

I. Tools can communicate with one another. permitting abstraction of the information
at the desired level of detail. The adoption of such a strategy for making use of
automation. in conjunction with an object management system to provide views ot the

software provides a powerful tool for maintenance.

o

The ability to incorporate "third-party” tools from tool vendors, using the tools interface

provided by an [PSE means that a maintenance organisation can keep up with the

.

latest advauces in software tool technology.

3.4.3 Problems associated with IPSEs

I. They consume large amounts of machine resources.

2. The definition ol a tools interface to allow the incorporation of “third- partyv’ tools.
i.e. tool integration. which must determine the degree ol control a tool has over the
operating svstem and database: and also take imo account the facilivies needed for an
effective user-interface. The arguments centre on the complerity of a tools interface.

there being two main issues:

(a) The degree ol control a specific tool has over the operating system and database.

(b) The facilities provided for an effective tools interface.

No international standard for interfacing tools to an [PSE has been specified but there are

two contenders, PCTE [T8] and C'ALS [78]. The standardisation is important for two reasons:

10

1. Tool developers either align themselves with one IPSE or produce several versions for

different IPSEs.

[S]

From a user’s standpoint. will choosing an IPSE tie them to that system for years,

causing thenm to miss ont on uew developments 7

3.5 Summary

The reasons for the advent ol integrated soltware engineering environments have been given,
and the meaning and importance of environment integration have been described in terms
of environment interfaces. A review of initiatives in the classification of software engineer-
ing environment fypes has been made and an overview of available software engineering

O

environment types has been given.

A description ol the classification ol software engineering environments has been given, to-
gether with the reasous for their advent. The architecture of a generic software engineering

o

environment has been described.

The evolving nature of the Furopean Alvey [IPSEL with respect to its architecture. has been
described; particularly with regard to its public tools interface (PT1), and the influence of

the level of tool integration on productity gains.

The suitability of the IPSE as a maintenance environment has been outlined in terms of

its main features. its object management system (OMS) and its public tools interface. and
the aspects of maintenance supported by them. i.e. program understanding. version control.
and configuration management and control. The problems associated with [PSEs have been

briefly described.

Chapter 4

Literature Survey of Current ISEs

4.1 Introduction

To improve the productivity of the maintenance organisation. automated support is required
for the maintenance of large software systems. To achieve this end a software engineering
environment must be able to provide facilities to support the technical, managerial and or-
ganisational aspects of software engineering. including re-use. over the complete software
life-cycle, from requirements definition to maintenance. In particular, support must be of-

fered for the managenent of the maintenance process, exerting control over the maintenance

B

process and enabling the accurate monitoring of its progress. It must be possible to extract

information from that system. showing the stare of that system. at any time.

In chapter two a generalised maintenance model was proposed: in this chapter a literature
survey of software engineering environments is undertaken. The purpose of this survey is to
determine whether existing integrated software engineering environments contain features
that could be useful in an ISMSFE: the resnlts of this literature survev form the basis for the

high-level design tor a maintenance support envivonment. which is the subject of chapter 6.

4.2 The Survey

Introduction

Environments which only provide support for small subsets of the maintenance process. such
as version management. have not been included in the survev, Even though the Software
Engineering Environments surveved have widely different objectives. theyv satistied at least

one of two important criteria. each of which. in isolation. would provide support for the

kevstone of software maintenance, which is program understanding. These criteria are:

L. They contain an integrated toolset. to aid in information capture

2. They have the capability to manage information. supporting abstraction. views, and

the creation ol information structures

The approach adopted in this literature survey was:

L. To ascertain the compatibility of those software engineering environments which explic-
itly support the maintenance process, with the generalised maintenance model proposed

in chapter 2.

2. To evaluate other integrated software engineering environments. to ascertain the sup-
port they amplicitly provide for the maintenance process. This part of the survey

divides Integrated Soltware Engineering Environments into:

(a) Non-hypertext environments

(b) Hvpertext environments

In the following literature survey the environments were evaluated under the following head-

Ings.
1. Objectives
2. Architecture

3. Functionality

4.2.1 Environments providing ezplicit support for maintenance

4.2.1.1 Microscope

Objectives

Microscope [4] aims to help programmers understand and modify complex programs. pro-
viding support for evolutionary development. and the means to estimate the effects of a
proposed change. i.e. the ripple effect. Microscope’s aim is to provide the programmer with
the view of the program that the programmer wants.

Architecture

Microscope has a lavered architecture. built on top of the host operating svstem. The knowl-
edge base and user iuterface are shaved by the tools.

Functionality

Microscope is a knowledge-based programming environment that includes tools to statically
analyse source code. storing the results in the knowledge base. providing support for abstrac-
tion, and for obtaining views of a program. It is language specific. targeting CommonLisp
and CommonObjects. Microscope is windows-based, each window having items that have
annotalions associated with them: an annotation is a piece of related program information
in addition to documentation. Items mayv be nodes in a graph. svimbols in code. stationary

menus, or words or a phrase in a document. Associated annotations may include:

1. documentation

2. source code

R

-~

3. constraints

4. delects

external view

(W3]

6. revision history

An annotations menu lists links between items. for example. in a graph of a program’s
module structure. each node may be an active region representing a module. and have an
associated menu. for example. the data-flow and control-fow between the two connected

modules.

Microscope can display a progrant with anyv desired annotations: small amounts of informa-
tion may be displaved directlv in the program browser. [or example. the number of times a
function is called and its execution time can be displaved next to each node name. Other
annotations, such as source code which are too large to fit in the program browser, are
displayed in separate windows. Microscope supports a special class of annotations, called
constraints, which are records ol implied relationships between different parts of the pro-
gram.

Dynamic Analysis

Microscope offers support for understanding by allowing the programmer to monitor exe-
cution, displaying changes in data structures and control flow dyvnamically. also saving the
execution history. A programmer can bhecome overloaded by too much information so, for
~example, Microscope allows the execution history to be analysed and filtered, providing the

means for abstraction. The cause of ruu-time errors can be ascertained by examination of

0]
s

state information and execution history, using flow analysis and the nature of the error to
narrow down the possibilities. Monitoring-requests can also be made hv the programmer.
specifying for example. which events to look for and what subsequent action should be taken.
Microscope can monitor the values held in a variable. or check the logic flow in conditional
statements, record all {unction calls defined in a module, or provide program slices, for ex-
ample recording all the loops that use a particular variable in their exit tests.

User interface

The user-interface is a graphical one to show the structural view ol a program.

4.2.1.2 Arizona State University (ASU) Practical Software Maintenance Envi-

ronment

Objectives

The environment [29] aims to support:

L. understanding soltware

2. changing software

3. tracing ripple effect

4. retesting changed software

5. documenting acquired knowledge

6. planning and schednlineg maintenance tasks
O [l

Architecture

The tools share a database. no orher information is given.

Functionality

The environment is language-specific. it operates on Pascal code which has compiled free of
errors. The compouents of the environment include the personnel, the maintenance tools,
and the software syntactic and semantic databases. The existing environment provides

facilities to understand code. document code. and analvze code for ripple effects.

4.2.1.3 University of Colorado, Boulder - (prototype environment)

Objectives

The environment [99] is to be capable ol supporting the interpretation of explicit maintenance
processes. by coordinating the efflorts of tools and persounel.

Architecture

No information is given except that the environment is to be open, to incorporate third-party
tools.

Functionality

A common framework is suggested lor understanding maintenance and the structure of an
environment for supporting maintenance. The requirements for the environment include

that:

1. the environment should be flexible

2. the environment should incorporate explicit process representations

3. users can alter tools and the process itsell, as needed

The environment is not vet operational, but the support for maintenance provided by the
environment is achieved by designing the environment around the notion of process program-
ming. Process programming has. as its application. the domain ol software engineering. A
process program is defined as “I'he static description of how a process could be carried out.
incorporating the appropriate and necessary tools and object base.” Process programming
was developed by Osterweil [99]. its aim being to support. the construction of a family of
environments. each with its own view ol the appropriate process model. In particular. the
intent is to produce a software development environmment kernel that can be parameterised
by a process program: the environment is used in different modes according to which tvpe
of maintenance is to be performed on an applications program. The analogy of a process
program and its effect on an environment is the cassette recorder - the recorder functions
using the same set of components every time but the output depends on what is on the cas-
sette - the cassette parameterises the program which operates inside the cassette recorder.
Process programming regards the process model as malleable. i.e. it is software and should
be capable of adapting to changing circumstances. The notion of process programming is

amplified in the discussion at the end of this chapter.

4.2.1.4 Genesis

Objectives

The main objective of Genesis [107] is to provide facilities to improve the productivity of

software developers. particularly in the evolution phase of the software life-cycle. Genesis
is tule-based and particularly aims to support the evolution phase through its resource
manager. using software libraries and version control.

Architecture

No information is provided concerning the architecture of the environment.
Functionality

The main components of Genesis are:

L. Resource manager (also called the Fvolution Support Environment (ESE))
This provides versiou control. traceability between software resources and methods for
accessing these resources.
2. Activity manager
This regards a project as successive invocations of software 10ols to manipulate a
software resource. A rule-based protection mechanism provides the means for:
(a) Pointing out potential inconsistencies
(b) Automating certain activities for the user
(¢) Ensuring protection

(d) Defining the software development methodology

3. Information abstractor
This extracts relational information among the software entities of programs. stores
the information in a database and makes it available to users via a high-level access

utility, that displays the information in a form that can be easily understood.

4. Metric-guided methodology

This indicates the complexity of the software at each phase. and suggests wavs to
reduce the complexity at that phase. as well as how to proceed to the next phase. so

as to achieve the desired goals for the project.

4.2.1.5 United States of America General Service Administration’s ‘Program-

mers’ Work Bench.” (PWB)

Objectives

The aim of the PWB [49] is o guide Cobol programmers through maintenance, testing,
conversion and other activities. The PWB framework is intended to enhance the productivity
of every member of the software management team. this software engineering environment
is intended for the commercial sector.

Architecture

The workbench infrastructure is a framework for integrating software tools and controlling
access to them. There is no enforced linkage between the tools. the environment is, in effect,

a loosely-coupled toolset. Its structures include:

l. Architecture and systems management

[AV]

. Tutorials and information interchange
3. Reusable pattern program generation

4. Automatic JC'I, generation

L
94

5. Change control tracking

The main feature of this open-ended software management architecture is a table-driven
sequence of screens to guide the programmer through specific development. or maintenance
tasks, using specific tools.

Functionality

The series ol menu-driven workbenches enables the user to customise his own workbench
and toolset environments. including the addition of existing tools. while at the same time

providing access Lo all other products in the PWRB which provides:

1. The mechanism for enforcing installation standards and procedures. at the same time

ensuring the integrity of the installation’s software engineering environment.

2. The means dor the setting-up of a library of reusable COBOL applications.

The PWB framework can be configured to include tools and facilities for operation in a

cla}ta.bavse environiment.

39

4.2.2 Environments providing implicit support for the mainte-

namnce process

4.2.3 Non-hypertext environments

4.2.3.1 Marvel

Objectives

Marvel [61] aims to support two aspects ol an intelligent assistant. insight and opportunistic
processing.

Architecture

No detailed intformation is given concerning the architecture.

Functionality

Marvel is able to:

L. provide a fileless environment to its users.
2. answer queries
3. coordinate the activities of multiple programmers and

4. automatically invoke tools.

The knowledge of the assistant is described in a model. and intelligence is achieved by inter-
preting the model. providing insight into a system and actively participating in development

90

through opportunistcc processing. The concepts of insight and opportunistic processing are
briefly discussed below.

Insight

The environment is able to anticipate the consequences of the user’s activities, based on an
understanding of the development process and the resulting software. The means that indi-
vidual programmers can grasp more readily the structure and relationships in the software
product. permitting a deeper understanding of their tasks. The environment is able to guide
the programmer in changing a svstem. returning it to a consistent state. and also to help
coordinate the activities of mmltiple progranimers. enabling them to work individually, vet
co-operatively. dovetailing their efforts.

Opportunistic processing

This means the automation ol simple development activities. such as monitoring changes to
the source code. ivoking the compiler. and recording compilation errors. triggered by the
user’s action.

Components of Marvel

The main components are:

. Object base
This stores data as objects. in the object-oricuted sense. the object base maintaining
all the entities that are part of the evolving system. for example. information about
the history and the status of the project. and the tools used in its development and
maintenance. The object base defines the object classes and the relationships among

objects. for example. one object is a component of another and when applied to another

91

object will produce a thivd. The object base is active. and accessing objects may trigger

action.
2. Process model
The model of the development process imposes a structure on programming activities:
it 1s an extensible collection of rules specifving the conditions existing for the appli-
cation ol particular tools to particular objects. Some rules apply only when a user
invokes a tool. others apply when the environment initiates tool processing and others
apply to both cases. All the intelligence is encapsulated in the environment, instead
of in individual tools.
Summary

The model embodied in the Marvel environment formalises the concepts of insight and

opportunistic processing. which are two aspects of an intelligent assistant. by:

L. Maintaining all knowledge about both the specific development effort and the general

development process in the object base,

2. Making multiple views ol the object base available both to users and tools.

3. Modelling the development process as rules that define the pre-conditions and post

conditions of development activities.

4. Gathering collections of rules into strategies.

The above rules allow Marvel to provide software engineering envivouments that intelligently

assist development and maintenance efforts. by individuals. and by teams of users through

controlled automation. using available development tools. Marvel does not iuclude any

mention of tools for maintenance or of any assistance for the understandine of exristin

programs.

4.2.3.2 Aspect

This IPSE [52] is a collaborative venture between Systems Designers. ICL. MARI and the
Universities of Neweastle and York.
Objectives

There are two key objectives.

L. An open environment allowing integration of third-party tools

2. The provision ol a traly tegrated set ol tools sharing a conumon database structure.

presenting the user with a consistent and coherent working enviroument

Architecture
Aspect is a distribured IPSE and has a lavered architecture. built on top ol the host oper-
ating system. which is a distributed Unix systenm. The public tools interface integrates the

tools with the object hase.

" Functionality
Aspect allows a project to be divided among small teams of programmers via a hierarchical

93

directory svstemn: these teams can work independently to develop parts of the system. using
configuration control mechanisims to assist in the building of these sub-svstems. Aspect is a
multi-language distributed-host. distributed-target [PSE which aims to support all phases of
the Software Development Life Cyvcle (SLDC), from specification through design and imple-
mentation, to testing and maintenance. [t will also support project management, planning
and control. The prototype was designed to demonstrate the feasibility and practicality of
using a fullv-integrated environment tor real-time development. i.e. embedded systems. As-
pect 1s being developed as an [PSE framework into which tools can be integrated, a minimal

toolset s included for program development (Ada. Pascal and (' compilers, and linkers.)

4.2.3.3 Eclipse

This [PSE [56] is a collaborative venture between Software Sciences. CAP. Learmouth and
Birchett Management Svstems. Lancaster and Strathelvde Universities and University Col-
lege of Wales. Aberyvstwyth.

Objectives

Eclipse 1s an engineering prototype. a vehicle for trving out ideas and assessing their use-
fulness. The aim is to demonstrate the [PSE concept by building a practical system within
the constraints ol time scales and budgets. and to provide support for large-scale long-term
projects. possibly geographically dispersed.

Architecture

| Eclipse is a distributed [PSE. the central host computer is connected to workstations over an

Ethernet Local Area Network. the host computer holding the central IPSE object base. The

94

public tools interface integrates the tools with the object base and the IPSE has a layered
architecture, built on top of the host operating system.

Functionality

The process of system development is regarded as a series of transformations from one rep-
resentation to another, with each stage introducing greater precision and rigour than the
preceding one. Iclipse is a distributed IPSE but the tools are designed to run on the work-
station itself. The nucleus of an IPSIE is the database: objects in the database are produced
by executing transformations (themselves stored as objects). which are defined in terms of

UNIX commands. Problems encountered [Tx] with FCLIPSLE include:

I. Complexity and control

13}

. Communications and management

3. Communcations hetween computers

4.2.4 Hypertext Environments

Before surveying hypertext environments to assess their compatibility for software mainte-
nance it is informative 1o examine the role of hypertext in software engineering.

The term ‘hypertext” was first coined by Nelson [91] but the original concept is due to Bush
(22]. Hypertext has been defined by several authors. for example [95] as non-sequential read-
ing and writing. A good introduction to hypertext is provided by Conklin [30]. The main
areas ol software engineering in which hypertext can offer assistance are:

95

I. Program understanding
2. Information management
3. Abstraction

4. Documentation

The idea of using a hypertext system in conjunction with software engineering tools to form
an integrated soltware engincering environment has been ascribed 1o Heunderson {54]; the
obvious advantage of this combination is that softiwvare tools can introduce automation to the
extraction of information from the system and hypertext can provide the means of storing
and retrieving this information. as well as allowing the maintainer Lo ereate information
structures through the linking of objects in the database. The utility of hypertext systems
for information management in large-scale software engineering through the diverse types of
information permitted in hypertext nodes. c.g. text and graphics. has been demonstrated

by Biggerstaff [13]

When the maintainer is presented with information from various sources he is faced with the

task of organising this information so that he may be able to:

1. Use his veasoning powers to process the information into knowledge. thus gaining an

understanding ol the software, so that it may be salely modified.

2. Update the documentation of the software in order to make future modifications easier.

96

Hypertext offers support for information structuring. enabling the aggregation of objects.
produced by tools. into structures which may have hierarchical and non-hierarchical organi-

sations, which are derived views ol a software system.

The following brief exposition based on an example from [L1] is intended to serve as an
illustration of the part that hyvpertext plays in relating information contained in the database
of a software engineering environment. The basic components of a hvpertext database are
nodes. links and contexts. The nodes are a means ol storing data and information and the
links between the nodes are forged using rolationships between nodes. the implementation
of these links is via pointers in the database. Items of information describing a software
system entered by the maintainer or produced by a software tool may be stored in the
nodes of a hypertext database. The nodes containing information about the software system
are linked to forni a divected graph. known as the hyvperdocument. Within the graph. the
concept of contexts is used to partition [L1] the data within the graph. providing support
tfor configurations and version trees. C'ontexts. nodes and links all have attributes. and can
assume values ol strings. integers. veals or user-defined tyvpes. The function of attributes is
to label the tvpes of nodes. links and contexts. The attributes and their values are known

as attribute/value pairs and effectively classify nodes. links and contexts.

A simple example of a link relating two nodes appears below. in Figure 4.1, The context has
the attribute of “software component” and its value is "source code’: node | has the attribute
‘module” and its value is “initialisation”: node 2 has the attribute "paragraph’ and its value is
‘input-routine’. The link has the attribute “relation” and its value is "uses”. The arrowhead

at each end ol the arc indicates that the link may be followed in either direction.

97

[nitialisation [nput Routine

Node 1 Node 2

Figure 4.1: Linked nodes in a hyvpertext

A graphecal hrowser can help the user 1o avoid disorientation. a common problem with large
hypertexts. by permitting the traversal of the links between the nodes. the current position
in the network heing highlighted. using. e.g. inverse video. The author conceives a graphical
browser which can operate at two levels. the upper level showing the hierarchy of modules in
the software svstem. and the lower level showing the network of nodes containing information

concerning a particular module.

The information in the nodes ol a hypertext can be accessed by the usual way by the
use of a mouse. clicking on the node of interest. A traversal history can be maintained.
e, a trail of the links through the hyperdocument. so that. e.g. an audit trail may be
implemented. Hypertest provides an casy means ol tracing relevences: machine-support for
all link tracing means that all references are cqually easy to follow. either forward to their
referent or backwards to their relerence. In addition new references can easily be created.
Networks can he built by nsers either by starting (rom scratchi. or aun existing network can
be enhanced by annotating with commeunts. without changing the referenced document. The

user is supported in having several paths of inquiry active aud displayed on the screen at

O
[0 4]

the same time. such that any given path can be retraced to the original task.

4.2.4.1 KMS - Knowledge Management System

Objectives

KMS [1] is a large scale hypermedia system for collaborative work. [t aims to help organi-
sations manage knowledge by reducing the effort required to build and maintain corporate
databases, since these activities are often the principal bottlenecks 1 many uses of comput-
ers.

Architecture

KMS relies on a wide-area networks of workstations. No other information is given concern-
ing the architecture.

Functionality

The KMS database consists of a set ol interlinked screen-sized workspaces called frames -
these contain any combination of text and graphics. each of which mav be linked to another
frame, or used to invoke a program. Conventions exist for the format of frames: the layout

of the frame is the data model.

99

Features of KMS

Navigation

Achieved using mouse - a linked frame is displayved in the same window.

Editing frames

This can be done at any time.

Invoking programs

Large conventional programs can be run from the operating system shell.

Context-sensitive cursor

Operations avatlable depend on whether the cursor is within the text or in free space.

Unified command set
C'ut and paste operations (a set ol related commands) are unified into a move command
- text can be picked up aund repositioned within a frame or can be dragged from one

window to another.

4.2.4.2 Dynamic Design

Overview

DynamicDesign [11] is a CASE environment. based on hypertext. Information structures

are used for storing source code and the environment has utilities {or manipulating the

“information; the role of hypertest is as the data model.

Objectives

100

[t aims 1o help in manipulating sonree code.

Architecture

[t has a lavered system architectire which allows for extreme modularity and independence

of software components.

Functionality

The environment possesses the following features.

6.

9.

[t uses the Hypertext Abstract Machine (HAM) i a lavered svstem architecture

[t stores source code. requirenments. docimentation in a hyvpertext database. using

information structures

[t allows arbitrary structuring of information and keeps a complete version history of

information and structure

Nodes in hypertext database contain project components

Links relate nodes

Nodes and links have attributes

Node attribnte is Project-Component (Identifies fype of Project Component contained

in node)

Link attribute is Relation (Shows the type of relation the link provides)

Utilities in Dynamic design deal with information structures in the source code context,

for example a sonrce code tree

(a) Source browser
The browser is the part of the environment that helps in understanding and
maintaining the source code and its auxiliary documentation

(b} Graphbuild

A hypertext source graph is assembled using the program’s call tree.

4.3 Discussion

4.3.1 The role of the process model

Riddle [110] has showu the value of a process model is that it is concerned with rigorously
defining. analysing. and predicting the impact ol soltware processes with respect to organ-
isational or project-related needs and takes the view that software process models make

possible:

L. Effective communication abont soltware processes. involving people and resources

o

Use/reuse of a software process in different situations. since the process model is dif-

ferent for different tyvpes of maintenance

3. Maturation and evolution of a software process. by mapping the process to a conceptual

schema

4. Management o a software process, through the use ol people and resources

Stenning [120] views an environment as the effective means of supporting an effective process:
the importance of process models is that the quality of the product is determined by the
process producing it. and so there is a need to understand and compare software processes
and to evaluate and reason about them, so that better ones may be designed and produced.
thus improving the quality of the product. The extension of this line of reasoning is that
processes should be enactable and therefore should take the form ol programs. i.e. process

programs. Tully [125] describes process progranuning as:

Lo A powerlul new form of progranmiming

2. A way of treating existing software systems as programmable resources or virtual
machines - in the same way as for example. operating svstems or compilers model

lower-level programmable resources as virtual machines.

Tully’s view is that modelling and programming the software process becomes an experi-
mental test-bed for modelling and programming the human-computer activity in general.
for introducing a new and porentially mneh more highly productive way of programming or
system building. Lehman [65] thinks that process programs imply a deterministic develop-
ment process. which exc»ludes the creative element in producing software. It is the author’s
view that the development process is probabilistic. but deterministic to a limited extent -
it is deterministic in the sense that a software product will emerge but probabilistic in the

sense that it will almost certainly be deficient in some way. i.e. it is not possible to predict

103

with certarnty what the soltware product can and cannot do.

Lehman doubts that process programs vield more insight into the software development pro-
cess, or produce better understanding of that process. and offer no significant improvement
in the process. According to Lehman, [65] process programming is one approach to process
modelling - the models so produced being machine interpretable and so can be used as a
process control mechanism. e.g. a program-driven mechanism can be used to select and
invoke a sequence ol IPSLE tools. The [PSE could then be tuned to the needs of a particular
application of the process. by preparing and loading an appropriate process program or by
adjusting parameters ina program which has already been loaded. Lehiman asserts [63] that

real-time considerations preclude the adoption of this approach.

Notkin's criticisim [93] of process progranmming addresses the argument that since no commer-
cially successtul instances of software development envivonments exist. then it is not possible
to construct useful envivonments through parameterisation. using process programs. Notkin

argues that two requirements are necessary before instances can be generated:

L. Experience in building many instances

2. The existence of enough formal notations for the actual parameterisation

Since neither of the two requirements above exist then it follows that instantiations are
not. possible. There are no instances of generalised maintenance support environments so a
" maintenance process program cannot be used to parameterise an instantiation of such an
environment.

104

4.3.2 Support offered for the generalised maintenance model

Introduction

The only environments which deal explicitly with the phases of the generalised maintenance
model. described in chapter 2. are those which explicitly provide support for a maintenance
process. The support provided by the environments surveved for the phases of the generalised

maintenance model is discussed below under the respective headings.

4.3.2.1 Verification of need for maintenance

None of the environments surveved provided any explicit support for this phase of the main-
tenance model. but those environments which support database queries offer the potential for
verifying the need for mamntenance. since the maintenance performed on a software system

can be stored in a database.

4.3.2.2 Understanding

There are two prerequisites for program understanding: tools to aid in information-capture,
and support for abstraction. views. and the creation of information structures. The organisa-
tion of information is \'it.:a‘l to the process of nnderstanding. since it permits the organisation
of information into knowledge. For example. source code fragments and their associated
documentation need to be juxtaposed. for easier understanding, and a suitable information

structure would make this possible.

Tools to aid in information-capture
The analysis of the generic tool classes and functions for information capture and processing
is undertaken in chapter seven. Here the author is simply concerned with the presence of a

toolset in an environment which could be used to aid information-capture.

Non-hypertext environments

Aspect and Eclipse are open environments. built ‘on top’ of the host operaling system, so
they are able 1o use the tools of the host operating system and can also incorporate third-
party tools. Marvelis able to nse the tools of the host operating svstem. but does not aim to
incorporate third-party tools. Microscope and the University of Arizona’s environment have
their own static and dyvnamic analvsis tools. Genesis has as its main tool the information
abstractor. which extracts relational information among the software entities of programs.
The GSA's envivonment has a comprehensive range of static and dyvuanmic analysis tools for
program analysis.

Hypertext environments

Hypertext environments have addressed the ereation and browsing of information structures,
but these environments have a very limited toolset - most of the inlormation comes from a

cross-referencer: no support is offered Tor dynamic analysis tools. or {or versioning.

106

4.3.2.3 Support for abstraction, views, and the creation of information struc-

tures

This is aided by the incorporation of a query facility, which can establish relationships be-
tween objects. The organisation of captured information a vital part of the conversion of
information into knowledge. and an information structure is a pre-requisite to this organisa-
ton.

Non-hypertext environments

Aspect and Eclipse have object management svstems. which support abstraction, views and
queries. Microscope provides a filtering mechanism to support abstraction. and its knowl-
edge base provides the means of obtaining views of software. The University ol Arizona’s
environment provides no mention of facilities for obtaining different views ol software. The
GSA's environment provides no support lor the creation of information structures. or the
filtering of the output from the tools. using anyvthing other than is possessed by the tools
themselves: no provision is made to support abstraction or views. and no query mechanism
is provided.

Marvel provides a query Tacility and makes possible the structuring of iuformation through
1ts process model, and its OMS. Marvel's OMS is object-oriented and the active object base
defines the object classes and the relationship between objects.

Geunesis is rule-based and provides the means lor defining a software a software development
methodology. 1.c. a process model. which makes possible the structuring of information.
Hypertext environments

Dynamic Design allows queries can be made based on cross-reference information. IKMS

107

nmentions no support for queries,

4.3.3 Modification

Modification of software embraces changes to the source code and the documentation of the
system. All the enviromments surveved provided support for the modification of the source

code, through the use of an editor. and a compiler. and those environments which were not

language-specific were open and so could make use of Lthe appropriate svntax-directed editor.

Modification of the documentation. e.g. requirements, specification. and design documents.
could be achicved through the use of an environment s OMS. The OMS is necessary 10 select
those documents which need to he changed. and to specifv any new relationships which exist
between them after the modification has been made to the software. Those environments
which have access to an nnderlying operating system, e.g. [Unix. which possesses tools
for version and configuration management, e.g. MAKE. RCS. can support this aspect of

maintenance.

4.3.4 Revalidation

Only those environments which explicitly support the maintenance process, provide support

for this phase of maintenance.

The main activity during the revalidation phase of maintenance is regression testing which
makes use of a suite of test cases. An OMS helps to maintain this suite ol test cases which

was assembled during the development of the software.

4.4 Summary

The role of a soltware engineering environment in achieving gains in productivity, through
the provision of antomated support for the maintenance process. has been brieflv described.
The features possessed by the envivonments surveved are sunimarised in Table 4.1. The
literature survey revealed that some soltware engineering environments provide support for
a particular facet of the maintenance process. for example. program understanding or con-
figuration management. but none offer comprehensive support for the complete maintenance
process. The environments surveved have no common purpose as regards their aims and
objectives. and only the prototyvpe enviromment of the University of Colorado. Marvel. Gen-
esis, and Eclipse have an underlying process model. In addition. some environments are

language-specific and have no underlyving process model.

Those software engineering environments which claim to offer support for the complete
software life-cxcle only offer partial support for the maintenance phase of the software life-

cycle, that is. they offer support for the enhancement of software, which involves an iteration

109

Summary of Environments Surveyed
Name Type Architecture | Interface | Process | Prototyping
Model Support
Microscope | Language-centred Lavered WIMPS No Yes
ASU Language-centred Lavered WIMPS No Yes
C'u Method-based 7 ? Yes Yes
Genesis Language-centred Lavered WIMPS No Yes
GSA Language-centred Layered WIMPS No Yes
Marvel Method-based ? WIMPS Yes Yes
Aspect Method-based Lavered WIMPS Yes Yes
Eclipse Method-based Layered WIMPS Yes Yes
KMS Method-based Lavered WIMPS No Yes
Dynamic Method-based Lavered WIMPS No Yes
Design
Key
? no information
ASU Arizona State University
cu Colorado University at Boulder

Table 1.1: Summary of Environments™ Features

110

of the overall software life-cvcle. Other environments offer support for the correction of bugs
which occur during the development ol software. An example ol such an environment is
the IPSE. While it is apparent. that an IPSE can offer support for the managerial aspects
of maintenance. current [PSEs offer little in the way of technical support for maintenance:
in particular they offers no support for the maintenance programmer. when he is faced
with the task of achieving the pre-requisite understanding of poorly-structured and poorly-
documented "alien” code. lacking the high-level design decisions made during the inception
of the software project. The "maintenance’ for which IPSEs provide support is not true
maintenance. since it is carvied out prior to release of the software: maintenance is defined
[57] as a post release activity. IPSEs do not address the problem of extracting information
from the documentation of a soltware system. e.g. the source code. prior to its collation and

deposition in the database.

The object management system of an [PSE does. however. offer powerful support for the
extraction of information from a database concerning the source code of a program under
investigation, providing a query facility which can provide different views of software. The
facility to manage and maunipulate information, providing multiple levels of abstraction and
different views of the software. is more important than the toolset possessed by that envi-
ronment, since “open environments can incorporate third-party tools suitable for software

maintenarnce.

Most nou-IPSE environments only offer incomplete support for a particular facet of the
- maintenance process. for example, support may be offered for the extraction of information

from the source code. but these environments have not solved the problem of the extraction of

L1

the in-line documentation linked with the section of source code under investigation. This is
important. since alterations 1o the original source code often mean that the juxtaposition of
a segment of code and its associated in-line documentation is not preserved. Attempts to link
source code and associated documentation have been made by Garg [42]. using a hypertext
environment: the primary function of Garg’s hypertext environment is the documentation

of the software process.

[t is clear from this literature survey that there is a need for an integrated software engineer-

ing environment Lo support the maintenance of software, starting from the change request

and culminating with the new release of the software.

Chapter 5

The information requirements of a

maintenance organisation

5.1 Introduction

The purpose of this chapter is to indicate specifically where the ISMSE can bhe of help to a
hypothetical generalised maintenance organisation. using the maintenance model derived in
an earlier chapter. The keeping of a log of the activities of a maiutenance organisation during

a maintenance assignment provides the means for the archival of information concerning the

113

assignment. The keeping of a log of «ll the maintenance assignments carried out on a software
system during A~ lifeline generates an archive which the author terus a “marntenance-

history’ (analogous to a ‘medical history’).

5.2 The role of the Maintenance Model

5.2.1 The structure of the Maintenance Organisation.

As pointed out by Foster [H0] a model of the maintenance organisation vefers to roles which
are performed by people and as such is a useful abstraction. since it makes it possible to
apply the model to teams of disparate sizes: since no assumptions are made about mapping
of duties to actual people. The maintenance organisation may consist of a team. in the case
of a targe maintenance task. or may onlyv be one person. in the case ol a small maintenance
task: in this latter case this one person must perforn the functions of each of the different
team members since the maintenance model is independent of the size of the maintenance

task.

The structure of a maintenance organisation is designed to [ullil its vole. The strategy
adopted tor dealing with users” requests for program maintenance is ultimately based on
the model of the maintenance process derived in chapter 2; the basis for the strategy is

the adoption of a hierarchical structure, shown below in Figure 5.1. In deciding what the

114

(hange Control
Board

Maintenance
Team

e
Levels of
Organisation
Hierarchy

Front Desk

Team

Figure 3.1 Structure of Maintenance Organisation

information requirements ol a maintenance organisation are. it is informative to consider the
role of the maintenance organisation in determining a mechanism for making a change to
operational software. The following is intended to serve as an illustration of the separate
contributions to this mechanism by the component parts of such an organisation. when
users perceive the need for maintenance on software. The information requirements of the
component parts of the maintenance organisation differ according to the context in which
they function. i.e. the phase ol maintenance currently being undertaken. In an earlier

chapter a maintenance model was derived which identified four phases:

L. Verifving the need for maintenance
2. Understanding the program
3. Moditying the software. i.e. the program and its associated documentation

4. Testing the modified program
Before a strategy can be devised lor the storage of captured information. the type of informa-

tion that the environment will process needs to be elucidated. In the following sections the

information requirements [or each phase of maintenance are amplified. to aid in this process.

116

5.2.2 Verifying the need for maintenance

As mentioned earlier one ol the main aims of the ISMSE is to increase the productivity of
the maintenance personnel: a maintainer will be effectively more productive it he does not
have to perform unnecessary work on software whose shortcomings are well-known and for
which solutions have already been found. Existing environments which provide support for
the maintenance process do not attempt to deal with verifving the need for maintenance.
Maintenance is essentiallv a nser-driven activity, apart [rom preventive maintenance. which
is initiated by the maintenance organisation itself: because of this. requests for maintenance
from users must be submitted in a lorm that facilitates a quick iuterpretation of the users’
wishes. Any ambiguity in this respect will mean time-consuming delays in clarifving with
the user exactly what is required. and will adverselyv affect the productivity of the mainte-
nance orgamsation. The design of the mechanisin by which users may request a change to

operational soltware is a crucial lacet ol the working of the maintenance organisation.

The request for maintenance should ideally be submitted in a form that can serve as an
agenda for discussion by the maintenance organisation. and should be submitted on a form
whose desigu is the responsibility of the maintenance team. This formalisation of the change
request will make it easicr to devise a strategy for the maintenance assignment including
the resources required (men. tools. lacilities) and a schedule for its completion. The change

request should classify the tyvpe of maintenance required and the information appropriate to

each type. as described below.

1. Corrective maintenance

Apparent deficiencies apparent in the working of the software which make the modifi-
cation necessary. including. if possible. a fault report detailing the malfunction of the
software. together with hard-copy showing the inputs and the faulty output from the

software.

Adaptive maintenance

Details of the type of change iu the data or processiug environment.

Perfective maintenance
Description of the deficiency in the performance, quality, standards, or maintainability

of the software.

Enhancement

When an enhancement is required to software. then the following is required:
(a) Requirements analvsis

(b) Functional specification

(c) Task scheduling

(d) Design analvsis

(e) Design review

(f) Review of proposed code changes

5.2.2.1 Information requirements for the front-desk

The information requirements are determined by the role of the front-desk personnel. who

function as the interface between the users and the maintenance organisation.

One of the obvious benefits ol a hierarchical type of structure is the ability of one level in
the hierarchy to act as a filter for the level above. This is a useful strategy with organi-
sations which have dealings with customers (users). especially when verifving the need for

maintenance.

The idea of a "lront-desk” in a maintenance organisation which acts as a filter for maintenance
requests has been suggested by several authors. e.g. [83. 40]. This *front-desk’ is responsible

for the first action taken on receipt of a request for maintenance. and so the information

needs of the front-desk™ personnel differ markedly from that of the rest ol the organisation,

As well as having answers to known problems concerning a software system. the “tront-desk’
personnel need to have access to a svnopsis ol the "maintenance-history’ of the software,
including all known versions. variants and impending releases. (A version is defined [57] as
the latest instantiation of a software svsten which has superseded all other instantiations. a
variant is defined as an instantiation ol a software svstem which temporallv co-exists with

other instantiations of a-soltware svstem.)

Users can then be referred by ‘front-desk’ personnel to solutions for problems, or informed

of new releases. that have alleviated or solved such problems. In the situation where a

1Y

maintenance organisation is conlronted with an old soltware system. which has suffered
degradation. lacking reliable docimentation and a “maintenance-history™. the front desk
1s unable to tunction in this way since the ‘maintenance-historv’ commences after reverse
engi.neering and re-engineering have been performed on it. The software system then begins
a new lease of life with a "clean sheet”. Those requests that cannot be filtered out are referred
to the next level in the hierarchy of the maintenance organisation. User manuals concerning
software which is still being supported would enable the [ront desk team to decide whether
the user’s perception of a problem is in lact real, or is a result of misinterpreting how the

software will behave under a given set of conditions.

Mellor’s idea [33] of wusers being able to interrogate a database containing information con-
cerning versions and variants of a software svstem would ¢ffectively turther enhance the pro-
ductivity of the maintenance organisation as a whole. Typical of the information required

by “front-desk™ personnel are answers to questions such as:

1. Has this bug bheen corrected on a previous vccasion
1<) |
2. Are therve problem reports concerning a particular syvstem already on file 7
3. Is therve a subsequent version of the software in a new release ?
{
4. What is currently being maintained 7

5. If the fault can not be easily rectified. e.g. when the specification is correct and matches
the code hut the requirements are incorrect then an “avoidance” action for software with

a usability problem should be investigated, to prevent the manifestation of the bug.

Requests for maintenance must be assigned a priority by the maintenance organisation, which
implies that a queueing svstem is necessary. [f the vequest concerns a problem which has a
trivial effect on the working of the software and is difficult to fix, it is assigned a low priority
and vice-versa. Having submitted a request for maintenance the user naturally wishes to
monitor the progress ol his request, in view of this the information concerning the priority
assigned to a maintenance request. including the results of preliminary investigations. needs
to be kept available so that front desk personnel can give mcaningful answers in response
to queries from users. The maintenance organisation must be able to change the priority of

jobs in the queue and have the means of updating the queue.

5.2.3 Understanding the program

Understanding source coce was discussed in chapter two in the context of the maintenance
model. This understanding is on two levels: the maintainer must understand what the
prograi is doing as it produces the incorrect output. this may be possible from the fault
report as cdocumented in the change request. If this information is not available then the
maintainer must attempt to duplicate the conditions which gave rise to the apparent abnor-
mal behaviour. The maintainer must also understand how the program should work when

producing the correct output.

To maintain software. it is necessary to know what it does. how it does it, and how it

can be sately modified. The backbone of maintenance is program-understanding; much of
the information collected is to be used to achieve this primary goal but the wse of this
understanding to modifyv the software is the secondary goal. Understanding is the kev to

knowledge. and the acquisition of knowledge is aided by:

1. A storage schema that allows fast retrieval of the captured information.

2. Organisation and management of that information. so that it may be processed into

knowledge. the processing heing achieved by human intervention.

Although program-understanding can be achieved from a study of the source code alone, in
the first instance. the enviconment must support the input of supple mentary information from

the maintainer which may have been gained manually or deduced from other information.

[n the coutext of the time taken to complete a maintenance assignment. program-understanding
is the rate-determining step. since the understanding of a software system occupies most of
the time spent on a maintenance assignment [104]. The time taken to gain this understand-
ing is directly related 1o the gnality of the docnmentation. being aided by good quality

documentation and vice-versa.

The strategy for developing an understanding of alien code rests with the maintenance team
and cannot be imposed by the environment. instead the environment must offer support for

the execution of this strategy. The ultimate goal of program understanding is three-fold:

1. To establish a high-level understanding of the program, from its structure

122

2. To discover how each module of the program plays its part in achieving the objectives

of the program

3. To obtain a detailed understanding of the program, within a module. at Lhie statement
level. i.e. a “local” understanding of the code which is of immediate concern to the

proposed modification.

A query factlity offers great utilivy since it ollers the means for the maintainer to build

information structures thus converting data into information: information is something that
enables us to increase our knowledge: this is an iterative cycle. The kind of tool which
can act as a query facility is dependent upon the conceptual schema chosen for the data
structure which is deposited in the database. The acquisition of information for the purpose
of understanding software lollows a cyele analogous to the software life-cvele. This provides
the opportunity tor refinement of the model of the understanding of the hehaviour of the
program: iteration of this cvele with generation of successive hypotheses and their subsequent
testing offers the surest route to understanding. The stages in this information-acquisition

cycle are shown below:

1. What needs to be understood 7 (Requirements)

N

What information is needed 7 (Specifications)
3. Design an information structure to hold the information (Design)
4. Issue high-level instructions to obtain the information (Coding)

5. Does the information structure aid in understanding 7 (Testing)

123

At present the task of gathering this information is largely a manual one. and unless the
core of the environment. i.e. the database and the toolset. can he fullv-integrated. the
environment will not be able to [unction as effectively as it otherwise could. Integration will
not be addressed i detail in this thesis. There are software tools available from vendors
which can provide the maintainer with valuable information about a piece of software, these

are discussed in the next chapter.

The maintainer must be able 1o manage and interpret this information in such a way as to
improve his understanding ol the program: this understanding of the software is determined
by the quality of the information available to the maintainer. Developing an understanding
of software is an iterative process: in the domain of program-understanding a hypothesis
is generated and this must be rested: when the boolean condition (predicted behaviour =
actual behaviour) evaluates as true. the cycle is terminated. When testing a hypothesis, for

a given input to the program the maintenance programmer must be able to predict:

L. modules. routines invoked
2. changes in values held in variables

3. the output of the program

These predictions must be coufirmed either through the use of an execution-flow-trace tool
and a debugger. or by running the program to verify that it behaves as predicted. Hf the cycle
is not terminated. the hypothesis must be corrected and the process described immediately

above must be repeated. The environment must support this method of working, i.e. the

[24

environment database minst bhe able to store successive versions of understanding leading to

a ‘complete’” understanding ol the soltware. The environment must enable the maintainer

to find answers 1o his questions and must facilitate the rapid testing of hypotheses since

‘feedback’ is the key to learning. (i.e. increasing understanding). and “leedback-inhibition”

hinders the learning process. Typical information gathered and stored to facilitate program

understanding includes:

L.

2.

High-level documentation containing relevant information pertaining to the develop-
ment of the software which requires maintenance. .. requirements. specifications.
high-level design-decisions and. il available. the underlving philosophical goals. Often

high-level information can he very important. for the following reasons.
(a) The original requircments document would help 1o decide whether the users’
expectations of the software are realistic. oo is there a need for maintenance 7

(b) The time required to achieve the necessary understanding of the software can be

considerably shortened.

(c) High-level information concerning the original development of the software can
be very usctul when attempting to gain an understanding of the program at the

statement level.

(d) High-level functional specifications can help to decide whether the code is "correct’.

A call-graph showing the current program structure with respect to the calling relation

between rontines. and the intended structure of the amended program.

3. The source code itself, both the structured and unstructured versions, if a re-structuring

125

tool has operated on “monolithic’ code,

4. The results of analysis ol a database object (cross-reference listings. etc.), or objects
produced by transformation tools. e.g. the recovery of the design from a re-engineering

o

tool. as well as a high-level description of what each module does.

5. In-line documentation regarding the code, containing information concerning the de-
sign of the software strmeturve. I this is in a separate file then an editor can help with

finding information - however. "in-line” comments embedded in the code may not be so

easy to find - there is a need for a tool that can help with this.

6. There are four main kinds of lower-level documentation.

(a) User documentation - how to use the program

(b) Operations documentation - used 1o divect the execution of the program

(c) Program documentation - how the program works

(d) Data documentation - data model and data dictionary

Since variables are used in hooleans. which are used to determine the How of control

within the program. it must be possible to specify that links should be made between

information about data flow and control fow.

-1

Tools available to the maintenance programmer and their functions; this should include

a precise summary containing:

(a) which version ol the tool is heing used

(b) how the tool is invoked

() description of a tool’s function - including switches which can function as filters.
so that abstractions can be obtained

(d) limitations of the tool and any known “bugs’

(e) which tools can be used together and how they can be used together (as in Unix)

The provision of the means of organising information gained about a system is vital because,
for example. ol the existence of defocalised plans in the code [67]. Storing the related parts
of a plan in the environment’s database. enables the maintainer to build the most suitable
information structure to facilitate this understanding. In essence the information is processed
into knowledge by making it part ol an information structure. and is required regardless of

the type of maintenance bheing carried out.

5.2.4 Modification of Software

The maintenance ol software. including documentation. is often carvied out under great time
constraints. and olten there s livtle time lelt after a modilication has been made to source
code, because of pressure on the maintenance organisation to tackle other assignments. This
often means that there is a failure to redocument the software fully and accurately, as a
result of this there is a “knock-on’ effect, which has profound implications for the future

maintenance of the software: the mechanism for this is now briefly described.

If redocumentation has been done badly then when the software has to be maintained again

127

the documentation will bhe seen as unreliable and the whole process of gaining an under-
standing of the softwarc system from the source code has 1o be repeated. The hindering of
program-understanding in this way causes the maintenance team to be placed under time
pressure, which again means that it is more likely that redocumentation will not be done as
well as it should. since it is usually done after the modifications to the source code. The cycle
1s completed and 1s destined to be repeated. establishing a “vicious circle’; to break out of
this cycle requires that redocimentation is not a neglected activity. but assunes paramount
importance before and during the modilication activity. as it does during maintenance of.
e.g. salety critical systems. This desirable state of affairs is more likely to come to pass if
the productivity of the maintenance teain can be improved. since more time will then be
available to carvv out redocimentation. One of the aims of the work in this chapter is to

suggest tools and methods which will help to achicve this improvement.

[t should be pointed out that good quality maintenance of documentation is more likelyv
to be achieved by making it easy to do. rather than by the use ol coercion, or merely by
providing time for this activity. Good quality maintenance ol documentation is likelv to
safeguard the gain in productivity. achieved by using software tools. and will assist the
efficiency of future maintenance efforts. Poor gnality redocumentation will nean that the
use of tools and methods to increase productivity will have been largely wasted. As part of
the documentation reflecting the changes made to the program the original source code and
the modified source code should be placed side by side” with a mapping to show the changes

in the program hicrarchy.

The formalisation of the approach to the documentation of the maintenance process, in

—_—
1]
0.4]

conjunction with the use ol tools and methods provides a framework. within which the
maintenance activities. and the information associated with them are recorded; the type of
recording is discussed in the next section. Documentation of maintenance is more likely to
be of good quality by adopting a rigorous approach. and by carryving it out us maintenance
15 being performed. so that it is a by-product of the maintenance activity. Information

requirements for program modification include:

L. The language and version in which the source code is written. is needed to ensure a

clean compile when changes are made to the sonrce code.
2. The source code.

3. The new requivements and associated functional specifications together with the pro-

gram desigu.

4. The place in the program where the change(s) are to be made must be decided, using.

e.g. the techuiques ol inspection and walkthrough.

- 5. The results ol impact analyvsis must show that any changes made to the software are
free from adverse side-effects. To aid in this respect a library of potential causes of

side-effects can be stored in the database [41].

5.2.5 Revalidation

For all types of maintenance. belore the modification can be implemented by the maintenance
programmer, the change approval board must have indicated its approval ol the proposed
change(s) and information concerned with quality assurance must be to hand, such as con-
tinuity of programming style. documentation update and audit trails.

The technique used to ensure that no adverse changes have been made to software during

maintenance is known as regression testing.

5.2.5.1 Regression Testing

[EEE [57] define regression Lesting as:

‘Selective retesting to detect faults introduced during modification of a system or system
component. to verify that modifications have not caused unintended adverse effects. or to

verify that a modified syvstem or svstem component still meets its specified requirements.’

[ncluded under the heading of regression testing are:

1. System testing
The tests and their descriptions together with the corresponding expected results
should be entered into the ISMSE database. The tests should be carried out in con-
Junction with the users ol the program. and their comments concerning the changes

should be archived in the ISMSE database. along with information concerning the

130

change(s) to the user manual. This is part of the redocumentation process.

2. Unit testing

Each modified unit should frst be tested in isolation.

3. Integration testing
Any enhancements that have been made to the software should be incorporated using
the appropriate integration strategy. e.g. ‘top-down’ or "bottom-up™ and the results

associated with cach phase of the strategy stored in the ISMSE database.

Test cases. either those included as part ol the documentation when the software was devel-
oped or those produced by the maintenance team. (where alien code lacks documentation).
must be run to establish as [ar as possible. the absence ol any undesivable side-effects. using

appropriate testing strategies.

5.2.5.2 Testing Strategies
There are two types of testing strategies:
L. Structural testing
This uses knowledge of the program’s construction. e.g. branch testing ensures that a

test-data set executes the outcomes of all branches in the system. If the source code

15 available then this strategy can always be used.

131

2. Functional testing
This uses the system’s requirements to derive the test data. [f the requirements doc-
umentation associated with the source code is deemed not to be reliable then this

strategy cannot be used.

Corrective maintenance requires that an error condition be reproduced to confirm the exis-
tence of a deficiency in the software. This s achieved by devising an appropriate test-case.
which must then be added to the test-suite to ensure the absence of the error, after the
modification to the source code. If the maintenance on the system requires that a change
1s made to the requirements. i.e. perfective. adaptive. preventive maintenance. then new
functional tests will be needed. Corrective modifications do not change the svstem’s require-
ments and so no new lunctional tests are required. The two major problems in regression

testing concern iest-suite maintenance and revalidation strategies.

5.2.5.3 Test-suite maintenance.

Corrective or perfective maintenance on source code will probably cause structural changes.,
necessitating new structural tests to be devised. In addition. existing tests may become
redundant and mayv need to be eliminated from the test suite. Identification of these re-
dundant test-cases is problematical. Regression testing uses a test-suite. which includes
test input data and the resulting test output: current regression techniques use a functional
strategy, i.e. every system modification is accompanied by a re-run of the test-suite, with a

comparison of the corresponding outputs.

[n a file-based system. the results of excenting the test cases. or test scripts are represented
as output files. Any output file whose content differs from the expected output is flagged
to see if it represents an error condition. The maintenance test-suite should be based on
that devised during the development process. In addition, those new tests devised during
maintenance should he added to the test-suite. reflecting the updated systen specification
and those test-cases which have become redundant then eliminated. To achieve this means
that the entire test-suite must be executed: {or structural tests this involves constructing a
table that associates test-cases with a program’s structural elements. Those test-cases which
execute identical structures are reduced to one instance: a “spin-ofl " benefit associated with

this approach is that structures which are not executed by any test-cases are revealed.

An alternative approach [63] is the selective analysis of those changes made since the last
analysis: only those structural tests which execute the changed structures. or the routines
containing those structures are re-executed and analysed: this indicates those tests which
were associated with those sections of code since modified. and which are now obsolete. An
automatic approach to the identification of obsolete functional tests is only possible where
a formal specification language has been used. which permits the analysis of the changes in
the specification. The use ol a [unction table has been proposed [63] listing all the functions

with the numbers of the functional test cases that execute thens.

133

5.2.5.4 Revalidation strategies

Executing an entire test-suite after a modification involves many people. is inefficient and
consumes large amounts of time and computational resources. On the other hand testing
a system by selecting test-cases intuitively or randomly is unreliable. A strategy for the
revalidation of software is required o systematically select those test-cases to re-run after a
modification, using control flow and dataflow information as a basis for the selection process,

which needs to be stored i the database of the [SMSE.

5.3 Summary

The work in this chapter has presented a coherent strategy tor the management ol informa-
tion, in support of the maintenance process. The establishment of a link between produc-
tivity, program understanding and documentation lias pointed the way towards achieving
the main goal of a maintenance organisation. that of an increase in productivity. Keeping
a log of the maintenance process means that redocumentation is not done on an ‘ad hoc’
basis. but is done concurrently with the changes to the code. The documentation is therefore
more likely to accurately reflect the changes made to the code. thereby making the future
understanding of the soltware easier. safeguarding the gains in productivity achieved by the

partial automation of the maintenance process.

Chapter 6

A high-level design for an ISMSE

6.1 Introduction

The s;ubject, of this chapter is the production of a high-level design for the ISMSE, ie. a
design within whose framework a documentation paradigm. the subject of this thesis, can
be rigorously specified (iu chapter eight), with a view to prototvping this part of the [SMSE
(in chapter nine). to demonstrate the feasibility and utility of this paradigm, as a means of

increasing the productivity of a maintenance organisation.

6.2 Choosing a Software Development Model for the

ISMSE

In terms of the traditional software life-cycle model, shown below in Figure 6.1, the design

of a software system velies on a requirements specification of that system. Typically, the

Requirements -
Analysis
1.
Functional |
Specification
2.
Design)
3.
Coding —
4.
Test]
5.
Maintenance
6.

Figure 6.1: The Waterlall Model of the Software Development Life Cycle

time span in building a complex sofltware svstem such as the ISMSFE may be of the order of
several years. During that thne the requirements may change. and the development life-cycle
model must be able to take account of this, so must therefore incorporate some prototyping

capability, in order that the users of the system can verify the software system’s continued

136

adherence to their requirements.

The traditional waterfall life-cycle model due to Royce [113] shown in Figure 6.1 is a devel-
opment of the stagewise model due to Benington [10], which advocated the development of
software as a sequence of successive stages. lacking iteration. Royce’s waterfall model intro-
duced feedback loops between successive stages, to preclude the expensive revisions needed
if feedback were to occur across several stages. and made prototyping part of the software

life-cvcle. operating in tandem with requirements analvsis and design.
A g { A 5

There followed many other variations of the waterfall inodel. enumerated by Boehm [18]. and
elaborated here in order of their chronology. A variation of Rovee’s model due to Mills [85].
adopted a top-down structured approach and produced a variant of the waterfall model which
embraced the concept ol “risk-management’; each stage ol the waterfall model includiug a
validation and verification activity to cover high-risk elements. re-use considerations and pro-
totyping. The waterfall model does not support versioning and making software amenable
to change: Parnas’ concept of encapsulation. through modularisation and information hiding
[101] did much to rectily this shortcoming. though this approach does not explicitly support
prototyping and reuse. Distaso [33] incorporated incremental development into the waterfall
model. Balser [7] provided a conceptual means of incorporating automatic programming.
program transformation and knowledge-hased soltware assistant capabilities into the water-
fall model. but this model does not offer explicit support for versioning. The advent of fourth
generation languages and rapid prototyping capabilities gave rise to evolutionary versions of
~the watertall model. e.g. that of McCracken [30]. and mixed versions. e.g. that of Giddings

[44]. Lehhman made use of abstraction. leading to a formal specification. followed by a set of

137

formal deductive reification steps [64] proceeding through design and into code. rather than
using a uniform progression. implicit in the waterfall model. The approach has not been
evaluated with respect to versioning or reuse. The models which are generally accepted as
being most acceptable for the development of large software systems are the spiral model
due to Boehm [18]. and the Software Process Maturity Model (SPMM) developed at the
Software Engineering Institute at Carnegie Mellon University in Pittsburgh. U.S.A. These

models are discussed below.

6.2.1 The Spiral model.

The spiral model of software developmeut and enhancement shown in Figure 6.2 due to
Boehm [138] favours a risk-driven approach to the software process. rather than a strictly
specification-driven or prototype-driven process. being based on the strengths of other mod-
els. while at the same time minimising their shortcomings: Boelim'’s spiral model includes
most of the previous models discussed as special cases. and provides guidance as to which

of these previous models best hits a given software situation.

Referring to Figure 6.2 the radial dimension represents the cumulative cost in accomplishing

the steps to date. The angular dimension represents the progress made in completing each

successive cycle ol the spiral.

The model holds that each cvele of the spiral involves a progression through the same

sequence of steps. [or each portion of the product and for each of its levels of elaboration, trom

133

an overall concept ol operation document down to the coding of each individual program.

6.2.1.1 A typical cycle of the spiral

Bach cycle of the spiral begins with the identification of the objectives of the portion of
the product being elaborated (performance. functionality. ability to accommodate change),
and the alternative means ol implementing this portion of the product {desigu A. design B.
re-use). together with the constraints imposed on the application of the alternative (cost.

schedule. interface).

A

—

1 important feature of the spiral model is that each cycle is completed by a review involving
the primary people or organisations concerned with the product. This review covers all of
the products developed during the previous cycle. including the plans for the next cvcle. and
the resources requived to carry them out. The major objective of the review is to ensure
that all concerned parties are mutually connnitted to the approach to be taken for the next

phase. Only in this way can the risk. and ultimately the cost. of the project. be minimised.

The plans for succeeding phases mayv also include a partition of the product into increnients
g1 A | !
for successive development. or components to be developed by individual organisations or
| | I A
persons. Thus. the review and commitment step may range from an individual walkthrough
of the design of a single programmer component, to a major requirements review involving

developer. customer. user. and maintenance organisations.

Boehni's spiral model advocates keeping the spiral as tight as possible. so that if a mistake

139

Determine ob jectives.

and

Plan next phases

-

constraints

Proto
l__'_f.\’P L

aud of
Life-cvcle | operat
plans -ion

Development
plan validat

—]

lmpleme

-ation

Requirements | Concept

Requirements

[megration Design validation
and test and verification

Cumulative Cost

Progress
through Evaluate alternatives.

steps

[dentify and resolve risks

Risk Analysis

Risk Analysis

- N\ Operational

Prototyvpe

Prototvpe 3

al Commitment

Partition

Software =

product /

- design A mcr--------
A0n E

Unit Code

:

: Integration ;
Acceptance | and |

nt test ! test

¥

]

]

t

I

t

t

Develop. verify
next-level
product

Figure 6.2: The Spiral Model of the Software Developmeut Life Cycle

140

does become apparent. during the review at the end of the spiral. then not as much back-
tracking needs to be done. and so the expense is minimised. The spiral model applies equally

well to development or enhancement effort.

Commonality between the Spiral Model and SPMM

The SPMM framework shares with the Spiral model the goal ol aiding the management
of the software process. embracing the concept of “risk’. its analvsis. and a mechanism for
incorporating software quality objectives into software product development. The main rea-
son for this risk-driven approach is that mistakes become much more expeusive to rectify at
lower levels. e.g. during the coding phase. than at higher levels. e.g. during the requirements
phase. Unlike the Spiral model the SPNM provides a “vardstick” for an organisation to assess

the degree of precision with which it manages its soltware process.

6.2.2 Software Process Maturity Model (SPMM)

Assessments of the capability of a process in producing a high-quality software product are
often based on the Software Process Maturity Model (SPMM), developed at the Software
Engineering Institute of Caruegie Mellon University in Pittsburgh. The model is shown
in Figure 6.3 below. According to Arthur [6] this model is gaining widespread acceptance
by the Software Lngineering Community. and is under consideration as an [SO standard.

The model aims to guide organisations responsible for the production of software. through

[41

increased control of the process used for developing and maintaining software. and through
the controlled evolution ol the software engineering environment. by cultivating software

engineering excellence.

The main benefit of using the SPMM is in the narrowing of the scope of improvement
activities: the SPMM identifies five levels of maturity which make possible continuous process
improvement. [Zach level has “characteristics” and ‘challenges’. *Characteristics” describe the
current nature of the process which is responsible for the product. and "challenges’ describe
the necessary improvement to take the process up to the next level. The main weaknesses

of the SPMM are that:

L. No indication is offered as 1o how to progress from one maturity level in the model to

the one above.

2. No account is made of the needs and goals peculiar to an organisation. which may not

map onto SPMML

3. No guidance is offered as 1o how 1o assess the quality of any resulting products from a

process, or the suitability of any process model chosen to execute a particular task.

The productivity of the organisation and the quality of the software increase with increasing
level, while the risk of producing defective software decreases. Most organisations can only
aspire to level 3 in the SPNMNLL since the financial commitment needed to fund the model

further than this is prohibitive: any organisation considering embarking on the production

of an ISMSE would certainly need to be at this level.

142

Level 5 Characteristics Challenges
[mprovement feeding Optimisatlion at
o back into process. o
Productivity o * [the organisational
and Optimising
. level.
Quality
increase
Level 4 Characteristics Challenges
Quantitative. ("hanging technology.
Measured process. Problem analvsis
Managed roblem analyvsis.

Data eatherineg and i
o o B)

' Problem prevention.

analyvsis.

Level 3 (‘haracteristics Challenges
S
Qualitative. Process management.
Process defined and ,
) L . Process analysis.
Defined istitutionalised. x
Control over software Quantitative quality
Process. plans.
Level 2 ("haracteristics Challenges
Intuitive.

Training.
Processes depending . : :
, l ® lechnical practice.
- Repeatable | on individnals. _

. . _ Process focns.
Using prior experience

in doing similar work.

Level 1 ("haracteristics Challenges
Ad hoc, Project management.
Initial Project planning.

Risks decrease
C'M and QA.

Figure 6.3: The Software Process Maturity Model (SPMM)

143

6.3 The design process

Introduction

There are two distinct types of design activity, those of external design and internal design.

l. External design
The relationship between requirements and design is not straightforward since the
boundary between requirements analysis and external design is not well-defined. Dur-
ing requirements definition a design abstraction permits separation of the conceptual

aspects of the system from the implementation details. and determines:
(a) functional characteristics
(b) data streains
(c) data stores
2. Internal design

This concerns the relationships between software components, e.g. modules. Eventu-

ally procedures and algorithmic detail are determined.

6.3.1 The role of abstraction

Abstraction mechanisms, i.e. functional abstraction, data abstraction and control abstrac-
tion, control the amount ol complexity that must be dealt with at any particular point in the
design process. by systematically proceeding from the abstract to the concrete. as shown in
Figure 6.4 below. The high-level design process involves describing the system at a number
of different levels of abstraction. proceeding through a number of stages and is an iterative
process. This design paradigm is used as a basis for produciug a high-level design for the
[SMSE: the first stage in this process is obtaining the high-level requirements. as a basis
for the design. The terminology used to describe this aspect of software engineering is not
standardised. the author has adopted the terminology used by IEEE. i.e. the high-level
requirements specification as a basis for the high-level design in this chapter is termed the
Outline Software Requirements Specilication {OSRS). As pointed out by Somumerville, [118]
there is a distinction between needs and requirements: needs are very high-level. but require-
ments are much more detailed. Starting from the premise that there is a need. information
about a problem is collected and analysed. leading to a comprehensive problem specitication.
from which a softwarc solution is designed and implemented. Sommerville [113] has shown

that the requirements for a soltware system exist at different levels of abstraction:

1. Requirements definition
This corresponds to an Quiline Software Requirements Specification (OSRS). which
will be used to describe the software requirements at a cery high level; a software

requirement is a property that a software system must satisfy. The purpose of an

Conceptual

View

Requirements

Abstraction

High-level

Design

Detailed

Design

Figure 6.4: Abstraction of the Design Process

146

OSRS [58] is to define and document a software system with respect to:

(a) tunctionality, 1.e. what the soltware is to do, not how it is to do it

(b) performance. in terms ol e.g. its response time

(c) the design constraints imposed on the implementation, e.g. implementation lan-
guage

(d) attributes. e.g. portability. maintainabilitv

(e) external interfaces. e.g. interactions with people. and other software. e.g. third-

party tools

The requirements definition describes the services to be provided for the user by the
system. These high-level requireents are refined using. e.g. prototyping, to give the

=

requirements specification and software specification described below.

Software Requirements Specification

This is a precise description of the requirements for a software svstem. defined bv Yeh
and Zave [131] ax ~\ =ct of precisely stated properties or constraints which a software
system must satisfv’. An SRS is somcetimes veferved to as a functional specification
and allows a design to be validated using an explicit. formallv-specified svstem model
as an aid to understanding the system. Here the notatiou is more formal since this
document may function as a contract between client and user. The services provided

by the svstem are described in more detail.

Software Specification
Otherwise known as a design specification, this is an abstract description of the software
design. and is intended to serve as a basis for the design and implementation of the

147

software. The use of formal specification techniques is appropriate since this document

is for software designers. not system users or managers.

A structure f‘or‘a.n OSRS has been suggested by IEEE [58] and is regarded as an industry
standard. This document has a hierarchical structure. and is shown in Figure 6.5 below. It
has been pointed out by Zahniser [132] that the [EEE standard for an OSRS requires that
Inputs, Processing and Outputs are defined prematurely. since thev are concerned with data.
which is not considered as being part of requirements analysis. Considering these aspects
at the requirements definition phase means that a complete data analvsis and data-oriented
design is undertaken be fore the requirements specification is completed. Moreover. the IEEE
OSRS implicitly assumes that the soltware development method will be the conventional one,
using the “waterfall” model of the software life-cvcle.i.e. it will be top-down” in nature. Since
the aim in this chapter is to produce a high-level design for an ISMSE. a much-simplified

version of the [ELL OSRS will be used.

6.3.2 An Outline Software Requirements Specification (OSRS)

This chapter is concerned with a high-level design. which requires only an Outline Software
Requirements Specification. enabling a prototype to be built. which can be used to validate

and refine the OSRS.

[1S

IEEE Prototype 0SRS
Table of Contents

1. Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions, Acronyms, and Abbreviations
1.4 References
1.5 Overview

2. General Description
2.1 Product Perspective
2.2 Product Functions
2.3 User Characteristics
2.4 General Constraints

2.5 Assumptions and Dependencies
3 Specific Requirements
3.1 Functional Requirement
3.1.1 Introduction

3.1.2 Inputs

3.1.3 Processing

3.1.4 Outputs

3.1.5 External Interfaces
3.1.5.1 User Interfaces
3.1.5.2 Hardware Interfaces
3.1.5.3 Software Interfaces
3.1.5.4 Communication Interfaces

3.1.6 Performance Requirements

3.1.7 Design Constraints

3.1.8 Attributes
3.1.8.1 Security
3.1.8.2 Maintainability

3.1 Other Requirements

.1.9.1 Data Base
.1.9.2 Operations
.1.9.3 Site Adaption

W oW W W

3.2 Functional Requirement 2

3.n Functional Requirement n
Appendices
Index

Figure 6.3: Structure for an OSRS

119

6.3.2.1 Obtaining the OSRS

The technique used for deducing the OSRS for an ISMSE is from the point of view of the
data. since. as will be demonstrated later in this chapter. the ISMSE is an information
sub-system and data/information is its raw material. There exist several methods [58] of

capturing and expressing the requirements for a software system:

L. input/output specifications

2. using a set ol representative examples

3. the specification of models

4. natural language

3. data How diagrams

6. structured text

data modelling

6.3.2.1.1 Expressing the OSRS

The most common method of specifving an OSRS is to use numbered paragraphs of prose
text, i.e. expressed in natural language. within numbered sections, with each paragraph
specifving or qualifying some requirement. This should be capable of being understood by

non-specialist stafl. including the potential users of the svstem.

There are good reasons for not using unstructured natural language as a means of expressing
the requirements for a software svstem. The inherent ambiguity ol unstructured natural
language and the complexity of prose description means that it is unsuitable for expressing
requirements clearly and unambiguously. Moreover it is difficult. if not unpossible to verify
if requirements are complete and non-conflicting, because the length and complexity of prose
specifications make them difficult to understand. However, there are two overpowering rea-
sons for using natural language for an OSRS. The first reason is concerned with the high-level
nature of the concepts which are embodied inan OSRS @ no “closed” formal language. such as

a programming language can ver adequately express such high-level software requirements.
(o] O o O . . o

The second reason is due to the imprecise nature of the requirements for a complex software

system which are likelyv to evolve. since:

L. In the early stages the understanding of a complex system is likely to be flawed. and

at a later stage the deficiencies of the requirements become apparent.

2. The high-level requirements lor the ISMSE are based on the maintenance model derived
i chapter two. Here it was pointed out that the maintenaunce model adopted was
a generalised one. not only because a detailed model ol the maintenance process is
organisation-specific. but also because the phases of maintenance that involve creativity
and understanding are not well-understood. This means. implicitly, that the model
of the maintenance process is an evolving entity. This does not preclude basing the
ISMSE on a generalised maintenance model. since prototvping has an important role

to play in building the [SMSE. discussed later in the section on design.

151

3. Users will assemble and combine tools in ways which are not as vet predictable.

This highlights the role that prototyping plays in the design process. discussed later in
the chapter. When it is not possible to formulate system requirements precisely because a
system under development is completely new. and not amenable to detailed analysis, then
an imprecise statement of the requirements must be formulated and subsequently refined as

their shortcomings become apparent.

Natural language is the only vealistic means of specilving imprecise requirenments, tormal no-
tations can not be used to describe something which is imprecise. The specification should
be structured hierarchically. with different levels of detail, with each entity described in pro-
gressively more derail. presenting a clear. complete concise statement of the requirements.
Those notations which have been developed to specily requirements are all based on natural
language. imposing some strncture on the specification. and limiting the natural language
expressions which may be used: they also enhance the natural language specification, by
means of graphics. Languages which have been used to express software requirenents in-
clude PSL/PSA [122]. SADT [L12]. and RSL [3]. Notations used to specify external design
characteristics include data flow diagrams. structure charts and HIPO (Hierarchy Input Pro-
cess Output) diagrams. Data flow diagrams are a powerful tool for requirements analysis.
and for representing external and top-level internal design specifications. since they can be
used at any level of abstraction. The requirements in this chapter will therefore be expressed

using a combination ol natural language and data flow diagrams.

An OSRS should specify any clianges anticipated when the requirements are originally for-

mulated. and give reasons for high-level design decisions made in the light of knowledge of
the problem domain. providing an invaluable aid to future maintainers of the software: in

addition the document should be easy to change.

6.3.2.1.2 The conceptual model

The highest-level view of a system’s functionality concerns the goal of the system. e.g. im-
proving the maintenance process. A goal can not easilv he validated. and so a refinement
of the goal into objectircs is nccessary. sinee there are roquircimcnts which accompany the
objectives. The highest level in the abstraction ol the design process, corresponding to the
goal of the system is the conceptual model of the software. The conceptual model is produced
from a critical examination of the system’s objectives. and the role the system performs in
achieving these objectives. This conceptual model determines the type of svstem to be built.

and is comprised of two main parts:

. Svstem Model
This establishes the entities of the problem domain. their functional characteristics,

and the wayv they are combined to produce an overall system structure.

2. Process Model
This defines the requirements of the system. i.e. the [SMSE. in terms of the operations

performed by it. covered in chapter 2.

"~ The model of the design process places design chronologically after the requirements speci-
fication. but, in practice it is not possible [37] to perform a requirements definition without

153

doing some preliminary external desigu. which begins during the analysis phase and contin-
ues into the design phase: at first the conceptual model is somewhat vague. (the conceptual
model for the ISMSE is discussed later in section 6.2.2.1.5). Initially. external design in-
volves refining the OSRS using prototyping as a requirements validation tool, establishing
a high-level structural view of the system. with a description of all externally observable
characteristics. e.g. user displayvs. external data sources and sinks. The functional charac-
teristics. and high-level process structure. i.e. the maintenance model. are also determined
at this stage. showing the overlap of requirements and design phases. Using the conceptual
model, the OSRS for the ISMSE can be derived by considering the outputs of each of the
major functions of the [SMSLE. i.e. [rom a study of the external behaviour of the [SMSE.
The generalised nature of the maintenance model means that the conceptual model may be
incomplete and so the OSRS for the [SMSE. derived from such a model is inevitably impre-
cise; more precise requirements can be formulated only alter prototyping experiments have
been carried out. The results of these experiments are led back to allow a more complete

conceptual model to be established: this is one of the aims ol prototyping.

6.3.2.1.3 The objectives of the ISMSE
These determine the characteristics of the ISMSE: the pranary objective of the ISMSE is
to increase the productivity ol the maintenance organisation. its secondary objective is to

assist In researching the maintenance process.

Much of software maintenance concerns enhancements to existing software: the [ISMSE will

therefore possess some of the characteristics of a software development environment, but it

will offer complete support to the maintenance organisation t'o;' all phases of the sofrware life
cvele. To s intended that the [SMSE will be able to cope with the "worst-case” scenario. that
of implementiug cuhancements 1o an ageing. large. complex. unstructured software svstem.
with one or more elements of the software configuration, (e.g. documentation), either miss-
ing or deemed to be unreliable. To achieve this, comprehensive support for the complete
maintenance process must be offered. starting from the change request and culminating with
the new release: providing the maintenance programmer with the means of coherently relat-
ing the separate picces ol information gathered by software tools. thus facilitating program

understanding.

The ISMSE will actieely aid the maintainer in deciding the best strategy for achieving an un-
derstanding of the relevant portion of the software system. prior to performing maintenance

on that software. This is particularly iinportant in the case ol novice personnel.

The ISMSE will provide the means of unifving the separate activities which make up the
maintenance process. increasing the effectiveness of automated tools through their disci-
plined application. In addition. the ISMSE will provide the micans {or easier mouitoring of
the maintenance process. serving as a tool for the administration of maintenance. i.e. it
will support the handling of the "paperwork™ information concerning the progress of the
maintenance assignment. e.g. whether modules are under construction. completed. tested

will be available.

16.3.2.1.3.1 Increasing the productivity of a maintenance organisation
The main objective of the ISMSE is the improvement of the productivity of the maintenance

155

organisation. by partially automating the maintenance process. and the provision ol the
means of safeguarding the gains in productivity, using a documentation paradigm. which
is the subject of this thesis. In geuneral terms, productivity can be defined as the quantity
of work produced per unit time. A gain in productivity can mean that the time taken to
complete a given task has been reduced. or that more work can be completed in a given time
interval. In the context of a maintenance organisation, the definition becomes more difficult:

it could be expressed as the number ol lines of code maintained per unit time; or the number

of requests tor maintenance dealt with per unit time. There are many imponderables involved
in these definitions. such as the difficulty in achieving an understanding of the program. and

the human factor involved. The factors aflecting productivity include:

1. Understanding ol the software svstem prior to maintaining it.

2. Being able to obtain the required information to lacilitate understanding.

3. Having a good set of easv-to-use tools to aid the maintenance process.

4. The facility for the component parts ol the maintenance organisation to engage in
meaningful dialogues - clarification of aspects of a change request can occupy a lot of

time during a maintenance assigniment.
[l o

5. Support offered for re-use. since the "maintenance-history” contains both descriptions

of problems and their solutions.

6.3.2.1.3.2 Research into the maintenance process
To continue in existence the ISMSE must he able to evolve in response to changes within

156

itself. e.g.

g. the evaluation of cristing tools may suggest ideas for new tools: and also within its

[elelig

environment. so it must provide support for the maintenance organisation to evolve, without
the capacity to evolve. the ISMSIE would become obsolete. Implicitly this means that the
[SMSE must provide support for metrication when functioning as a test-bed for its own

evaluation, the parameter of most interest being that of productivity. since as pointed out

by Stenning [120] ...

“...the role of an cuvironment is to support the effective use ol an effective pro-
cess. the effectiveness in supporting a given process being measured in terms of

convenience - the environment being the vehicle for achieving this convenience.’

6.3.2.1.4 The role of the ISMSE

The role of the ISMSL can be summarised as the provision of support tor the maintenance
process: and can best be described in the context of svstems: in general terms a system is
a collection of interrelated components which perforims a function. i.e. it exhibits dvnamic
behaviour. observable in terms of its output. which characterises the svstem. In the context
of computer science. a maintenance organisation is a svstem which performs the maintenance
function: as such it is a sell-regulating entity. interacting with its environment. It is both
a deterministic and a probabilistic system: deterministic in the sense that the type and
content of the information emerging from it will be predictable, to some extent, as a result
of the input of data of an appropriate tvpe. and probabilistic in the sense that the type of

information input to the system can varv. and so the output can also vary,

Within a system. integration has a special part to play. since mntegration of the functions
of the component parts of the svstem means that in the holistic sense the system is more
than just the sum of its component parts. A system which exists as part of another system
is usually described as a sub-system. with respect to the system in which it is contained:
thus a sub-system can also be a system at the same time. il it contains a syvstem within
it. The elements ol a system which are a prerequisite for its existence are its enwvironment
and its boundarics. In the context ol computer science. the environment of an ISMSE is the
data processing environment and the boundaries ave the aspivations. goals and purposes.
determined by its creator(s): these determine the scope of the ISMSE. The boundaries are
obtained by modelling that part of the organisation which the ISMSE is to serve, i.e. its
environnent: this results in a model of the maintenance organisation. For such an organi-
sation to be effective. there are three main prerequisites. The first is the understanding of
the system’s environment. i.e. the problem domain: Borgida et al [19] have shown that the
majority of effort in deriving system requirements is spent in finding out and documenting

knowledge about the environment in which the system is to operate.

The second is understanding the factors which govern the operation of the system, and how
they are related. The thivd is the provision of adegnate channels ol information-exchange
between its coustituent parts. providing the means for communication and control. A sys-
tem interacts with its environment by means of inputs and outputs. which are regulated by
its boundaries. which act as filters for the system. The ISMSE is an open system, and has
interfaces with its environment: this has implications for the requirements for the ISMSE,

since its behaviour must be capable of adaption. in order to meet the changing demands

for information. which means that communication and coutrol within the maintenance or-
ganisation are of vital importance. Changes within the organisation must be monitored.
interpreted and evaluated. and appropriated responses devised: the [SMSE must provide

support for this vital activity.

[n chapter two it was pointed ont that the generalised model of the maintenance process can
not be viewed in isolation since it implicitly admits the existence of an organisation which
witl implement the model. The anthor envisaged a maintenance organisation whose structure
is a hierarchical one. consisting ol three main levels: managerial. supervisory and technical.
[n chapter two it was also pointed out that associated with each level of the organisation is
a different type of information. The relationship existing between a particular level within
the hierarchy of the maintenance organisation. and the tvpe of information utilised by that

level. deduced in chapter two. is reprodiced below in Figure 6.6 for the benefit of the reader.

6.3.2.1.5 The Maintenance Organisation

To describe the various operations of a maintenance organisation. and the interrelationships
existing between them. requires an abstraction of the organisation. so that an analysis of
its information requirements can be undertaken. leading to decisions which will lead to an
improvement iu the performance. i.e. productivity ol the organisation. The maintenance
organisation is conceptually modelled as three interacting sub-systems. as shown in Figure 6.7

below.

159

Level in Maintenance

L _ Type of Information Flow
Organisation Hierarchy

Operational

Technical
Supervisory ~ - Tactical
Managerial Strategic

Figure 6.6: A Generic Maintenance Organisation Hierarchy and Associated Information
Tvpes
The interrvelationships between these sub-svstems is determined by the information needs of

the maintenance organtsation. The functions ol these three sub-svsteins arve described below.

Management sub-system
This corresponds to the managerial level of the maintenance organisation. and consists of
people and activities related to the planning. controlling and decision-making aspects of the

operations sub-svstem,

Operations sub-system
This corresponds to the supervisory and technical levels. and consists of activities. informa-
tion flow. and people divectly related to performing the primary function of the organisation.

i.e. the processing ol a change request for maintenance.

160

Query
on
Resource

Management Requirements Operations

Sub-system

Sub-system Statement

ol
Resource
Requirements

Answer
to Query

Nunowledge

\ Progress

Query

. Information
Information

about
Changes Sub-system Software
Change Miai 't“ _ (ISMSE)
0] ;m enance Progress
Corporate Strategy : .
Ctrmt poy Report Change
Strategy g
Request
Query Answer
on to
Software Query

Outside
Environment

(Users)

Figure 6.7: Conceptual View of a Maintenance Organisation

161

Information sub-system

With respect to the maintenance ovganisation. the ISMSE is a sub-system which itself con-
tains sub-systems. e.g. database. user-interface. The common entity exchanged within the
ISMSE, between these sub-systems is information. It is important to understand the na-
ture of the ISMSE's sub-systems and the information flows which enable its components
to perform synchronously. The information sub-system receives data from the operations
and management sub-systems of the maintenance organisation and from the outside envi-
ronment. i.e. users ol the soltware. the maintenance of which is the responsibility of the
maintenance organisation. These inpnts are transformed into some meaningful information
by the operations sub-system. using the [SMSE. which is then transmitted to the appro-
priate sub-system. The purpose of the information sub-system is to satistv the information
requirements of the maintenance organisation. of which it is a part and to make possible
meaningful dialogues between the other sub-systems. This role-abstraction serves to under-
line the fact that the [SMSL is a tool. which interacts with its envivomnent. and must be
capable of adapting to a changing environment. otherwise it will become obsolete. i.e. the

[SMSE must at all times be complementary to the maintenance organisation.

6.3.3 The OSRS document

The OSRS can be partitioned into two classes: functional requirements, which state the
actual functions which the syvstem must implement, and non-functional requirements, which

express practical coustraints such as performance specifications and memory requirements.

162

Since prototyping is to be used to refine the tunctional requirements definition. and proto-
typing is not concerncd with performance constraints. this aspect of the requirenients for an
ISMSE will not be pursued here. The requirements given here constitute the highest level
in the hierarchy of the IEEL OSRS document, and as such constitute a slice through the
hierarchy, since the complete requirements for a software system as complex as the [SMSE
are beyoud the scope ol this thesis. The format of the requirements definition for the [ISMSL

is shown below in Figure 6.3.

An Qutline Software Requiremnents Definition for an ISMSE

Introduction

Functional Requirements

High-Level Architecture

Figure 6.3: Requirements Definition for an [SMSE

6.3.3.1 Introduction

Software maintenance needs to he placed on a firm foundation. in the same way as software
development was in the 1970s. through the adoption of a disciplined engineering approach.
Other research initiatives aimed at partially automating the maintenance process by the

163

use of software tools have concentrated on particular aspects of the maintenance process,
e.g. [48]: none have attempted to improve the approach to maintenance in a comprehensive

manner. .

6.3.3.2 Functional Requirements

6.3.3.2.1 Overview of functional requirements for an ISMSE
From the conceptual model. e, the highest level ol abstraction. the requirements can be
stated as the extraction of information [rom soltware. and the management of this infornia-

tion, to increase the understanding ol the software.

The maintenance model. derived in chapter two is the product of the analysis phase. and the
high-level requirements for the ISMSE are based on the model. which is reproduced below

for the benefit of the reader:

L. Verification of need to modily the soltware. i.e. the program and its associated docu-

meltation.
2. Understand the soltware.
3. Modify the software, including documentation.

4. Validation of the software (i.e. the functional specifications) and regression testing.

The maintenance model expresses the highest-level requirements of the ISMSE, the analysis
of the objectives of the [SMSE results in the refinement of this model, giving the conceptual

164

model. Provision ol support for the actions of the ISMSE is through the use of software
tools to extract information from a software svstem. and to provide the means of managing
this information. i.c. a software engineering database. to increase the understanding of a

software system. The ISMSE will therelore provide:

L. Basic run-time support facilities for the phases of maintenance, giving continuous and
effective support for maintenance. addressing all aspects of software maintenance and
offering complete support to the maintenance organisation for all the phases of the

software life cycle. particularly for the nnderstanding phase ol the maintenance process.

2. Effective management and control through the provision of support for the administra-
tion of maintenance. particularly the storage ol information produced by the [ISMSE.
concerning the progress ol the maintenance assignient. and the subsequent use of that
mformation. inclnding the ability 1o ascertain the current position with regard to. e.g.

whether modules are under construction. completed. or tested.

3. The provision of a set of tools covering the whole software. life-cycle

4. Support for the integration of tools.
Many traditional software enginecring environments comprise an operating svstem and
filing system. together with an ad hoe collection of tools to cover some parts of the
maintenance process. Individual tools are used to automate at least some part of the
maintenance process. the level of support provided by a tool is a function of the degree
of sophistication of the environment hosting the tool. e.g. the APSE contains rules

9]

which a tool makes nse ol to check information concerning a software system under

development or maintenance. Since the ISMSE’s architecture will be open, it will be

able to integrate third-party tools including those of tool vendors.

5. The ability to re-use soltware components. e.g. programming cliches.

6. Support for multitanguage developments.

The functional requirements are now discussed in more detail.

6.3.3.2.2 Requirements for object base

Introduction
The object base is the nuclens of the environment. its primary role being that of a repository
of information concerning the software that is being maintained. its secondary role is to act

as an integration mechanism for the environment.

Requirements for information repository.

The database will allow the maintainer 1o perform queries and updates on stored items
of information. using e.g. a relational query language as a tool to provide the maintainer
with different views of a software syvstem. The database must be tvped, i.e. it must have
knowledge of certain properties of the objects that it contains. and can prevent their misuse
by incorrect tools. This simplifies tool development since it provides the tool writer with an
appropriate framework: this approach contrasts with. e.g. some programming environments

where no central structure is imposed and the interface management varies according to

1G6

which tool is being used. Fach object in the database will be date and time stamped with

a locking mechanism to prevent more than one user from accessing an object at the same

time.

Requirements for integration mechanism
The ISMSE must integrate the tools that are associated with the three phases of the main-
tenance process. [n general terms the need for integration occurs whenever two or more in-

terrelated components have a commmon interface [55]. Identiication of the interfaces present
in the ISMSE will indicate where integration is requived. The obvious interfaces are the user
interface and the tool-tool interface. The author defines integration in the context of this
research topic as "The incorporation of tools into a coherent unit for the capture, generation

and management of information concerning a software syvstem.” The desirable properties

bestowed upon the enviconment as a rvesult ol integration include:

I. Synergic sequential invocation of 1tools. with concomitant siooth transmission of func-
tion. so that the repository of information concerning the svstem under investigation
(e.g. structure charts. syimbol tables). can be managed by the coordination of tools

Sll('h as ('l'US.\'-l‘(‘lv(‘I'(‘ll('(‘l',\'. restructurers.

o

The ability to retrieve information from the database and present it to the maintainer.
in a way specified by the maintainer, i.e. provide the maintainer with different views

of the software.

3. Flexibility and extensibility,

167

The overall effect of an integration mechanisin will be to serve as a unifving influence on the
environment: such that it becomes the embodiment of a number of closelyv-linked interrelated

functions resulting in its manifestation as a single tool.

It has been observed by Glass [46] that some software tools produce information that could
prove to be of considerable value to the maintainer. but these tools do not output this

information: examples of such tools are the compiler and the restructurer. The integration

mechanism should therelore offer an interface to these tools.

6.3.3.2.3 Requirements for toolset

6.3.3.2.3.1 Introduction
[t is envisaged that the ISMSIEs tools will have a “knowledge™ of the functions performed
by each other and also of the information processed and produced by each other. This

knowledge includes:

L. the transformations performed by tools on objects in the database

2. the format ol the data required by other tools

3. how a tool is invoked

4. values held in variables, constants. via parameters

163

The toolset will be capable of providing support lor all phases of maintenance. but will be

biased towards program nnderstanding: tools for verification and validation of program:

(943
-
=
oty
o

also be included. The toolset will be minimised by examination of tool-function to determine,
e.g. whether any usclul information is generated by a tool. but is not output. The criteria
for the selection of the toolset will need to be established. using the adopted maintenance
model. Knowledge of the types of tools to be used will aid in drawing up the requirements
for the proposed ISMSI: most commerciallv-available tools combine many functions into one

tool.

6.3.3.2.3.2 Problems with tools in available support environments
Existing software environiments have encountered problems with regard to the tools thev

contain. Donahoo [36] sununarises these problems:

L. Tools lack uniformity. completeness and compatibility.
2. No systern has a complete set of tools.

3. Many tools are system-dependent. and language-dependent - even tools designed for a

given system and a given language may be incompatible.

These problems underline the need for a complete set of tools which are compatible. However,
the amount of output the maintainer is faced with increases proportionately with the number
of tools being used: the reduction of the number of tools to a minimum requires that strict
criteria for ool selection be drawn up. One approach 1o reducing the amount of information
is to make tools function interactively, another approach is intertool communication. one tool

16Y

accepting the output of another as its input. as Unix tools do. Another important aspect of
tool usage is how best to present the captured information to the maintainer: this is covered

in detail in chapter 7.

6.3.3.2.4 Requirements for user-interface
Introduction
These requirements embrace the non-functional aspects of the 1SMSE. The ISMSE is an

“in-house” tool lor an organisation and the users outside of the ISMSE use both the [SMSE

and its products. As well as their obvions ability to perform arithmetic. computers facilitate
communication and control. The diverse user-community makes necessary the construction
of a view mechauism. so that each category of user has access to that subset of the data
which is appropriate to his needs. and also prevent access from the user which may affect
the integrity of the ISMSE and its facilities. Users can also use the ISMSE for retraining
purposes. when enhancements are made to soltware: for this veason the ISMSE should include
facilities for Computer Assisted Learning (CAL). The user interface will need to be enhanced.
in relation with current environment interfaces. to cope with the diverse community who will
use the ISMSE.

The user interface shownld:

1. be a WIMPS interface, independent of any host machine.

2. make it possible for tools to be invoked individually. and/or seriallv. When tools are
used interactively. the user must be able to exert control over the tool. It must also be

possible to use tools i batch mode. [t must not be possible to misuse a tool.

170

3. allow access to the host operating system. e.g. for initial connection to the ISMSE. and
A]

for access to any tools which are part of the host operating svstem. using the command

language of the host operating system.

4. permit the suspension or termination of the current function or program, and the return

to the command language interpreter, resuming the current function or program

6.3.3.2.5 Design of user-interface

User interface design is concerned with the mteraction of humans and complex computer
systems. The main function of the user-interface is to reduce the cognitive overhead associ-
ated with complex tasks. making possible the abstraction from task details. allowing the user
to concentrate on high-level issues. therefore increasing his productivity. Integration of an
ISE such as the [SMSI can be achieved at the user-interface: the design of the user-interface
combining the disciplines of Computer Science and Psychology. The main dilemma is the
decision as to whether to base the interface on a command language. which is powerful and
complex. suited to expert users. but difficult to learn. or to base the interface on a system of
hierarchical menus. suited to novice users. which an expert may find tedious and cumbersome
to use. Hierarchical menus could be used to operate the windows part of the cuvironment.

with a command langnage operating inside those windows.

171

6.3.3.3 A High-level Architecture for an ISMSE.

The high-level design ol the ISMSE comprises its observable external characteristics. e.g.
the user-interface. and its high-level architecture. i.e. the structure of the [SMSE. The
components of the [SMSE and the way they relate to each other describe its architecture.
which will be a layered one. as shown in Fig 6.9 below, to simplify the design and maximise
application program independence. The maintenance environment must be flexible and
extensible. i.e. it must possess an open architecture so that the tools belouging to the host
operating system. and third-party tools can he incorporated into the environment, and so
that any development method can be supported. The [SMSE consists of a collection of
interconnected modules. the design of the [SMSE is concerned with the interaction of these

modules. due to their configuration and structure. The modules are:

L. mmput and mput modules
These correspond to the user-interface of the ISMSLE. The input module is concerned
with the handling of input data from tools, or from the maintenance organisation, or
from users: the output moditle is concerned with the type and volume of information

required from the information syvstem. i.e. views of soltware

o

control and procedures modules
These correspond to the toolset of the ISMSE and are concerned with how data aund
information are handled. from input stage through processing to output. Tools convert

data into information through tool-tool interaction.

Enhanced
User Interface

Maint.
Tools

Programming
Tools

Object
Management
System

Reqts.
Tools

CAL

Tools

Database
System

Doc.

Tools

\

AN

Design
Tools
Pubtic
Tools
Interface

Kev
Doc. Documentation
Maint. Maintenance
Regmts. Requirements

Figure 6.9: A High-Level Design for an ISMSE

173

3. data repository module

This corresponds to the object base of the ISMSE.

6.3.3.3.1 Design and prototyping

The design method adopted is that of rapid prototyping, to highlight any weaknesses in the
requirements definition. early in the development of the software. Prototvping may be used
as a means ol learning about a problem domain or as a means ol incremental development
of a software system. as indicated below in Figure 6.10.

Prototyping is a process that enables a developer Lo create a model of the software that

Requirements |
Analysis
1.
High-Level
Design
2.
Develop/Refine
Prototype
3.
Evaluate Software
Prototype Life-Cycle
4.
Detailed
Design

Figure 6.10: Prototype Life-Cycle Model

must be built. The model or prototype may be designed to depict one or more aspects of

174

e.g. a human-machine imterlace. or a set ol tunctional or performance requirements that are
questionable. The aim is to construct a working prototype. which constitutes a subset of
the function of the ISMSE. i.e. automated support for the documentation paradigm. The

sequence of events for the prototyping paradigm is:

L. identify whatever requirements are known and outline areas whose further definition

15 mandatory

o

‘quick’ design is done leading to the construction of a prototyvpe: this focuses on a
representation of those aspects ol the software which will be visible to the user. e.g

By

user-interface.

3. evaluation of prototype is used 1o refine the requirements lor the software to be devel-
oped. [teration occurs as the prototype is tuned to satisfv the customers’ requirements.
Ideally the prototype serves as a mechanism for precisely identifving the software re-

quirements.

Evaluation of the prototvpe leads 1o a detailed desigu specification. describing control flow,

data representation and other algorithmic details. within the modules.

6.4 Summary

A design process has been proposed for an [SMSE. highlighting the relationship between
requirements and design and describing the role that abstraction plays in obtaining a high-

level requirements definition for an ISMSE.

The purpose of the software requirements specification has been described and a method
given for expressing and gathering the SRS, The vequirements delinition was developed by
examining the objectives of the [SMSE and using a deseription of its role to produce a

conceptual model.

The tunctional requirements for the components of the [SMSE have been described and a
high-level architecture snggested: together with a strategy for validating the requirements

definition. using prototyping.

176

Chapter 7

An Information Structure for an

ISMSE

7.1 Information Capture and Processing

The crucial aspect of improving the productivity of a maintenance organisation is the re-
duction in the time needed to gain an understanding of a software system. through partial
automation of this aspect of the maintenance process. In order to achieve this aim there are

two vital requirements: the capture and processing of information to further understanding,

177

using an integrated set of suitable soltware tools. and good quality redocumentation. to
preserve the maintainability of a software system. (described in chapter two) so that future
maintainers can achieve an understanding of the software more easily. Both these require-
ments can be satisfied by providing the necessary mechanisms for the capture. management.
analysis and subsequent archival of information generated during the course of a maintenance
assignment, using a documentation paradigm which provides facilities for abstraction. The

task of satisfying the above requirements can be decomposed into the following subtasks:

—

. What information to capture.

[N]

Choice of information structure used to store the captured information.

3. Where to put the captured information within the information structure.

7.2 What information to capture

Typical of the information needed by a maintainer which is captured during the course of a

maintenance assignment and stored in the database is shown helow:

1. Which software is currently being maintained

o

. A record of the change-request

3. Whether problem reports are on file

,__
=1
v 4]

4. Requirements for change to software

5. Specifications of changes to software

6. Design documentation

-1

Program source code

o9}

Program documentation

9. Test data

10. Results of analysis ol a database object (cross-reference listings. call graphs etc.). i.e.

views of the soltware being maintained.

[l. Objects produced by transformation tools. e.g. structured code from unstructured

code
12. The language in which program code is written

13. The wersion of the langnage in which the program code is written

There is a need for a toolset to automate partially the information-capture and subsequent
storage 1t the environment database. Software tools and the associated technology are
currently available from vendors: however. introducing tools into software engineering en-
vironments has attendant support problems. summarised by Dounahoo et al [36] and listed

below.

L. A single tool or technique is insufficient: a combination of consistent and complemen-

tary tools should be selected.

179

2. Automated tools must be supported with sound management. and organisational con-

cepts and procedures.

3. Tools require the interaction of human experience and judgement and can only assist

the user. not replace him.

4. Tools must be reviewed periodically for enhancement. utilisation of new technologies.

or retirement.

The generalised maintenance model (devived in chapter two) has made possible the selection
of a combination of consistent and complementary tools. shown in Figure 7.1 below, and its
associated concepltual view ol a maintenance organisation. (derived in chapter six) provides
the framework for sound management and organisational concepts and procedures. required
for the support of automated tools. This chapter provides a documentation paradigm to
be used within this [ramework. to maximise the effectiveness of software tools, particularly
with regard to program understanding. providing an information structure to support the
interaction of human experience and judgement. Finally. the documentation paradigm aims
to provide a basis for the archival of information. including that concerning the version of a
software tool being used. which will enable the performance of a tool to be monitored and

evaluated. to help i deciding whether a tool needs to be retired or enhianced.

7.2.1 Analysis of tool classes and tool functions for information

capture and processing

[t is apparent that some tools produce much data and little information, and the maintainer
is again faced with a manual task of scanning large amounts of printed matter: highlighting
again the need for abstraction. A database query facility can provide help for abstraction
and so i1s important in the understanding phase of the maintenance model, as well as in
the verifving phasc. but cannot be used until other program-understanding tools have been
used to put information /nfo the database. The database query facility can extract views
of software which can lead to an increased understanding. in turn this can result in new
information or knowledge being added to the database. The United States National Bureau
of Standards [90] has provided a raxonomy of tool-types which recognises three classes of

software maintenance tools.

l. Transformation tools.

[AV]

. Static analysis tools.

3. Dynamic analysis tools.

The environment will utilise these tool classes. using the generic tool types which are enu-
merated for each phase of maintenance. as shown in Figure 7.1 below. A short description
of these generic tool types now follows. to illustrate the complementary nature of the toolset
chosen to support the maintenance model. and to show the different types of information
produced by these tools.

81

Phase of Maintenance | Generic Tool Type

Verifving request Database Query (T)
Understanding Cross-referencer (S)

Structure-charter (S)
Reformatter (T)
Documentor (T)
Restructurer (1)

Reverse Engineering (T)
Database Query (1)
Execution flow tracer (D)

Moditying Cross-referencer (5)
Structure-charter (S)
Execution flow tracer (D)
Documentor {T)

Lditor (T)

Translator (T)

Revalidation (‘ross-referencer (5)
Test data generator (D)
File comparator (5)

Debugger (D)

Kev
T | Transformation Tool
S | Static Analvsis Tool
D | Dvnamic Analysis Tool

Figure 7.1: Generic Tool Types to support the Maintenance Model

7.2.1.1 Transformation tools

These tools operate on strings of input producing modified output; some examples are given

below.

. Database Query
The main function of this tool is to enable a maintainer Lo increase his understanding
of the software by providing views of the software and converting information into
knowledge, discussed i chapter three. The kind of tool which can act as a query
facility is dependent upon the couceptual schema chosen for the data structure. which

1s deposited in the database.

2. Reformatter
This tool is sometimes known as a prettyprinter and operates on a file of source code

with a view to enhancing its readability. and therefore understanding. by:

(a) sequencing statement numbers

(b) indenting statements

3. Documentor

The aim of this tool aims to make possible changes to all the different kinds of docu-

mentation contained within a large software system. both textual and graphical.

4. Restructurer
This tool takes as input unstructured source code and as output produces structured

source code. which is logically equivalent to the original.

183

Reverse Engineering

(@]

This tool aims to analyse source code to capture design information.

6. Editor

The main function of the editor is 1o make changes to the source code.

=1

Translator

Examples of its use include:

(a) Language converter.
Converts one language to another.
(b) File converter.

Converts one file format to another.

7.2.1.2 Static analysis tools

These provide information about a program. without actually running the program: some

examples are given below.

L. Cross-referencer
This tool reveals logical relationships between entities within a program or between
programs. Cross-references for variables or ol calls. help to establish the structure
of a program or sub-routine. Cross-referencers can be used in debugging and impact

analysis, and can be interfaced with:

(a) Documentation tools to provide automatic documentation of source code.

(b) Graphical tools to give a pictorial represeutation of the program.

2. Structure Charter
This tool graphically produces the relationships between the various components of

the software. at the level of procedures and functions.

3. File Comparator
Supplies instances of similarities and differences betweeu text or data files and assists
in version control and maintenance of source code. File comparators can assist in

comparing the actual output of programs with the idealised output of the program

when functioning as laid down iu the functional specification - this is an important

tool for verification and valicdatlion.

7.2.1.3 Dynamic analysis tools

These provide information about how a proeram executes. and are of hielp in detectine errors.
o e}

some examples are given below.

_ 1. Execution Flow Tracer
This shows the sequence of actions carried. out on a statement by statement basis. or
Just those statements which alver the flow of control. or which change the value of a

specific variable.

2. Debugger

This tool enables the maintainer to step through the program. at a chosen pace. mon-

,._..
[V
1}

itoring values held in variables and evaluating boolean conditions.

In most software engineering environments the operand for a software tool is the file; different
tools have different requirements as regards file formats and the output of one tool is often

the operand for another tool. i.e. these software tools produce objects of different types.

highlighting the need for tool integration.

7.3 Choice of information structure used to store the

captured information

The information structure to be used as a basis for the documentation paradigm must
be able to store the diverse tvpes of information. both textual and graphical. produced
by the generic tool-types described earlier. and also provide the means of organising this
information prior to converting it into knowledge. The form of the maintenance log to
be kept by a maintenance organisation is determined by an examination of the support
provided by an ISMSE. described in chapter six. The acquisition of knowledge is facilitated
by the organisation and management of information, the processing of this information into
knowledge being achieved by human intervention. The role of the maintainer is to act as
inference engine. producing inlormation. then knowledge from raw data. and entering this

knowledge into the object base. as shown in Figure 7.2 below. The knowledge, and the

ensuing understanding stemming from the generated information. need to be documented.

136

and an information structure is required that can also provide support for this activity.

/ | Data m

Tocls : Database

Data Information U

Maintainer

Knowledge
/' Inference >
Engine

/

i

Knowledge

Refining

Figure 7.2: The role of the Maintainer - schematic

The recognition of the importance of the part played by abstraction in the domain of pro-
gram understanding resulted in the choice of a hierarchical information structure for the
maintenance log. ltems ol information describing a sofiware svstem eutered by the main-
tainer. or produced by a software tool. may be linked and stored as a book format. shown
below in Figure 7.3. The literature reveals other initiatives concerning the “book paradigm’,
in the domain of software engineering. but of these only one is concerned with the mainte-
nance of software. that of Oman and Cook [941]: the remainder are concerned with software
development. Omaun and Cook [94] proposed a method of formatting programs consistent
with programmer comprehension strategies and maintenance activities, i.e. the book format
is only used as a code-viewing paradigm. McKissick and Price [32] proposed the use of the

"book paradigm’ in conunection with the progress of software development activities. This

Book
Title
Table of Contents
Abstract
Preface Phases 2,3,4
of the
Chapters Maintenance
Summary Model
Appendix _/
Index
Understand Modify Revalidate
Program/ Requir(zments Testing
Understanding |
Tools e / ¢ \ 4
Spectification Unit System Integration
Information
§ / }
S Design
. Test
Information Management ¢ Documentation

by Maintainer .
using Tools Coding

_ |

Documentation

Figure 7.3: The Book Format as a Data Model for the Organisation of Information Con-
cerning a Software Svstem

,_
99
oL

was a paper-based systeni. and L:li(l not develop the potential of the "book paradigm’ beyond
that of the keeping of a simple notebook. Kempe [62] proposed the use of a ‘book paradigm’
for developing a data management kernel for the management of structured documents,
concerning an object management svstem based on Aypertext principles. The approach in
this thesis is not based on hypertext principles. Koenig [63] proposed the use of the “book
paradigm’ in connection with software development activities. and uses an enhanced elec-
tronic version of the software development notebook idea proposed by McKissick [82]. The
use of the ‘book paradigm’ in this thesis is concerned with the maintenance of software. and

proposes a much wider application of the "book paradigm™ than other initiatives.

7.4 A Maintenance History for a Software System

An anthology of hierarchical maintenance logs. i.e. books. comprises the “Maintenance His-
tory of the software aud forms the basis of a documentation paradigm for the ISMSE, the
aim of this thesis. Each book of the anthology encompasses a version of the software system.
Each time a maintenance assignment is carried out it should be written up in book-form; the
"book™ will contain a data dictionary, holding information about variables, constants, and

routines - available from a cross-referencer.

7.5 The Maintenance History as an ADT

The work eatlier in the chapter described the tools which are used o capture information
during software maintenance. and gave an informal description of the structure used to
store this information. leading to the establishiment of a Maintenance History tor a software
system. One of the aims of the work in this chapter is to describe this information structure
in a more formal way. as an abstract data type, which will be referred to as the ADT

Maintenance_History.

lu computer science the term abstract data type or data abstraction is usually associated
with a computer program. and only exists during the time of the invocation of a program.
able only to access objects at the file level. The information strucrure described in this
chapter is actually a database view which is a persisteut object and must exist beyond
the invocation of a program which manipulates it: nevertheless it can be regarded as a
data abstraction or an abstract data tvpe. since this permits the definition of the view. as
described below and implicitly nits the update operations performed by tools. which are
allowed on the view. The information contained in a database is accessed and updated using
a Data Base Management System (DBMS). The DBMS provides independence between the
physical representation of data and the user’s view of it [124]. this is made possible through

the design of a three level architecture for a database. described below.

190

7.5.1 Database Management System Architecture

7.5.1.1 Introduction

A data view specified in a language which the database management svstem software can
understand is known as a schema. The database management syvstem architecture has three
levels, consisting of three related schemas viz: the external schema., the conceptual schema,

and the internal schema. as shown in Figure 7.4 below.

Tool 1 Tool 2 Tool n External
View View View Level
/
_/
//
Logical Counceptual
Data Le\-'el
Structure
Physical [nternal
Data
Structure Level

Figure 7.4: The ANSI/SPARC DBMS Three-Level Architecture.

191

7.5.1.2 External schema

The information structure comprising the Maintenance History is to be held in a database.
and since no one view ol a software svstem is sufficient to permit effective software main-
tenance, maintainers need to extract different views of software. by using different software
tools. This is made possible using an external schema which provides one or more programs
e.g. a software maintenance tool. with a local view, which can be derived from the concep-
tual schema. Programs requiring identical local views may share the same external schema.
Properties of the data. such as the format of the data items or the sequence in which data is
seen. may be specified by an external schema. but it cannot override any of the constraints

imposed by the conceptual schema.

7.5.1.3 Conceptual schema

Formally. a conceptual schema is a neutral integrated view of a data resource and acts
“ o

as a bridge between the internal and external schemas as described by the ANSI/SPARC

three-level database architecture.

[nformally. a conceptual schema is a description of the data structure of interest to the
maintenance organisation which is to be stored in the database. The schema must be com-
prehensive. since database management systems differ in their degree of comprehensiveness.

and ease of use of their conceptual schema facilities.

The conceptual schema is of great importance and performs a vital role in that it:

192

L. specifies the logical data content of the database. i.e. the Maintenance History. whose
data structure forms the basis of the documentation paradigm for the ISMSE, and de-
termines the constraints which apply to this data structure. i.e. the update operations
allowed on it. This largely determines the scope of the ISMSE and directly reflects
the level of tailoring to a particular process, i.e. the maintenance model. derived in

chapter two.

2. provides the basis for integration. since the various tools and facilities must all operate

to a single common data structure as defined by the conceptual schema.

The documentation paradigm serves as an initial conceptual schema for the environment
database and is a portable information sub-system for the management of information con-
cerning the maintenance of software. The conceptual schema is stored as a graph, and
detecmines the structure of the database. establishing fixed rules regarding the way infor-

madtion is held iu the database.

The documentation pavadigm was derived by examining the information requirements for
the information sub-system and the applications. i.e. the environment's toolset, which ac-
cesses data. and updates the data held there. The sub-systeni description is given by the

maintenance model used within the framework of a maintenance organisation.

The Maintenance History describes data controlled by the maintenance organisation. and is
extensible and consistent, enabliug the data resource to evolve. functioning as an integration
mechanism. by absorbing disparate pieces of information concerning the software system.
making them part of a coherent information structure.

193

The evolution of the maintenance organisation, means that the nature of the information
used by that orgamisation will also evolve and so the conceptual schema describing that
information will I‘m\v’f' to he changed. It the conceptual schema is an accurate model of the
organisation, then any change seen by the organisation as being a simple change should imply
a similar change in the conceptual schema. and vice-versa. The conceptual schema can be

regarded as a relatively stable, long—term view of the data, which is capable of evolving with

the organisation.

7.5.1.4 Internal schema

This describes how the conceptual schema is physically implemented: at the level of stored
records. stored record formats. indexes. hashing algorithms. pointers. block sizes for con-
sistency (e.g. that each leivmavl schema 1s capable of being derived from the conceptual
schema) and must use the information in the schemas to map between external schema and

the internal schema via the conceptual schema.

7.5.1.5 Summary of Database Architecture

Individual tools or groups of tools may have their own local view of the conceptual schema,
i.e. the output from the tools which are used to gather information concerning the software
and are used to update the information held in the database must conform to this data
structure, which maps to the conceptual schema. These views may provide mappings be-

tween the data structure within the database and the data structure within the tool; but

194

these different views st all be compatible with the conceptual schema. The conceptual
schema is the hub of the database architecture. Each external schema provides one or more

programs with a local view which can be derived from the conceptual schema; the internal

schema describes how the conceptual schema is physically implemented.

7.5.2 Description of the Conceptual Schema as an ADT

The conceptual schema for the environment database is expressed as an abstract data type

for the following reasous:

L. Abstract data type is a fundamental and unifying concept in computer science. enabling
the separation of the “what™ [vom the “how’™: which enables implementation decisions
to be postponed as late as possible. ADTs are used iy almost all stages of software

development. particularly in specification. design and implementation.

2. The separation ol the specification ol a piece of software from its design and subsequent
implementation - specifying software in terms of the data to be processed and the
operations that must be performed on it. e, as an ADT. has proved to be an excellent

way of producing reliable software and ol veducing costs.

3. The idea of an ADI" can be used in program development in conjunction with estab-

lished techniques. such as stepwise refinement.

195

An ADT is an abstract model of a problem domain, or part of a problem domain, considered
and defined purely in terms of the sets ol values that variables of the tvpe may take. and is
bound to a set of operations which may be performed on the type withoul consideration as
to the implementation of these operations. An ADT attempts to model as closely as possible
the problem domain and is a concept which is usually associated with computer science, but
actually predates it. Strictly. an ADT is a triple (D,M,A). consisting of a set of domains
D. a set of operations M. each with range and domain in D. and a set of axioms A, which
together specify the properties of the operations in M. By distinguishing one of the domains
d in D, a precise characterisation is obtained of the data structure that the ADT imposes

on d. As an example the natural numbers comprise an ADT. whose domain is:

0.1.2...

. and there is an auxiliary domain ..

TRUE.FALSE

The operations on the type are ZERO. ISZERO, SUCC. and ADD and the relationships

between these operations are specilied by the axioms below:

[SZERO(0) =TRUE
[SZERO(SIUCC(r)) = FALSE
ADD(0.y) =y

ADDISUCC () g) = SUCCAD D)

196

These axioms comprise a precise specification of the semantics of the ADT known as the set

of natural numbers. Without the associated operations the sequence of symbols

O.1.2...

has no meaning, since by themselves they provide no semantic description of the abstract

data type.

There are problem domains which require the nse of more complex abstract data types, than
that illustrated in the previous example. These can be constructed from simpler ones. which
allows the definition of a hierarchy of ADTs. the highest being the nearest to the problem
domain: note that this also implicitly means the creation of new operators to manipulate
the new ADTs. this is known as procedural abstraction. The kev role that computer
science has played concerning ADTs is the enforcement of the type. ie. the type can
only be manipulated using the operations provided. this is achieved through the concept of
information hiding. This means that in the context of software development a program
can be split up into separate tasks using “top-down’ design. and the task of constructing an
ADT can be separated from the vest of the application program. The users of the ADT can
only manipulate it using the provided operations. through a well-defined and well-controlled
intertace, since the implementation of the ADl" remains hidden from the user. and is therefore
inaccessible to him. It can then be changed. if necessary, without affecting the rest of the

application.

N

There are three main methods of describing the structure of an ADT. each has its own

strengths and weaknesses. described below:

1. Graphics

The graph is easy to understand. but cannot easily be manipulated using a computer.

2. Natural language
This method has great power ol expression. but is cumbersome 1o use and does not

facihtate manipulation: ambiguity can also result.

3. A tormal definition using mathematical notation
This method has the virtue of precision. economy of expression, avoiding ambiguity and

providing ease of manipulation. but readability and interpretation can be a problem.

The three methods are complementary. and so all three have been used to fully describe the
structure of the ADT Maintenance_History. The Maintenance History is an Anthology of
Books: in terms of ADTs. the anthology corresponds to an ADT which is constructed trom
the ADT Linked-List and the ADT Tree. The structure of the Book. i.e. ADT Tree. will
be described first. followed by a description of the stenctnre of the Anthology. i.e. the ADT
Linked-List. A complete description of an ADT must also include the semantics of the ADT,
which is obtained by formally specifyving the set of operations on it, befove it can be regarded

as fully-defined: this forms the subject of the next chapter.

7.5.2.1 Description of the structure of the ADT Tree

7.5.2.1.1 Graphical description

A graph is a pictorial representation of an information structure, i.e. it shows the relation-
ships existing between the objects in the database of the ISMSE. A Tree is a special kind
of graph, known as a connected. acyclic. divected. graph, containing a finite set of elements
called points, nodes or vertices. representing these objects. The term connected means that
it is possible to reach any node from any other node: the term acvelic means that distinct
nodes are connected by ouly one path and the term directed means that the graph is an
ordered set ol nodes and arcs. An arc is a line joining two nodes. the joining implies that
a relationship exists between the nodes. Geometrically. the nodes are represented by dots.
which may be labelled for identification purposes. and the arcs are represented by lines.
joining the nodes. Novmally. in a graph. arcs carry arrows to indicate direction. but by
convention these arvows are omitted when representing a tree as a directed graph. The Book

structure is shown below as a graph in Figure 7.5.

7.5.2.1.2 Natural language description
A book structure is a hicrarchy. usually called a tree structure or stimply tree; the terms
hierarchy and tree can be considered equivalent. A tree is a dvonamic data structure. i.e.

both the structure and the data within the structure can change. The terminology concerning

199

BOOK
TITLE

e

/ _
Chapter 1 Chapter 2 O O Chapter N

f\/ O Section X

Section |

O

Subsection 1.1 Subsection 1.N

Figure 7.5: The Book Structure as a Directed Graph.

trees is drawn from botany. e.g. forest. root. branch. leal: from genealogy (family trees). e.g.
parvent. child. sibling: aud [rom graph theoryv. e.g. node. arc. Typically. the main elements

ol a Book are:

1. Title

2. Abstract or Preface

3. Lable of Coutents

4. Chapters

5. Appendix

6. Index

The natural language description ol a Book caun be rendered more succinet using a notation
provided by a meta-language. such as Backus-Naur. since it acts as a defining mechanism
for a language. through a precise description of its syntax. thus reducing the possibility of
ambiguity. The production riles for the components of a book are given below in Figure 7.6.
This notatiou shows the decomposition ol the fundamental components of the Book into
their sub-components. but does not give a clear indication of the hierarchy; however the
hierarchical structure of a book is evident [von the table of contents shown in Figure 7.7
below. the indentation indicating the hierarchy.

Regarding the Book as the root of the tree. represented by its title. the Book is the parent
of n children. each of which is a subtree of the root T. denoted by the label v(T). represented

by chapters | to N, and each of these subtrees has its own root denoted by the labels r(T1)

201

<
<
<

<
<
<
<
<
<
<

book >::=< prologuepart >< body >< epiloguepart >

prologuepart >:=< fitle >< author(s) >< date >< pre face >< tableofcontents
body >::= [< chapters >|

epiloguepart >::= [< appendiv =] < index >

chapter >::= [< section >

section >1:= [< subscction >]3

subsection >:= (< texlpart >|) [< diagrampart >

textpart >u= (< paragraph >}

paragraph >:= (< subparagraph >\ |[< lines >]N
subparagraph >:= [< lines >|

Figure 7.6: Backus-Naur description of Book Structure

Table of Contents Node Label
BOOK TITLE r(T)
Chapter 1 r(T1)
Section 1.1 r(T11)
Subsection 1.1.1 r(T111)
Subsection 1.1.m r(Tiim)
Section 1.mv ... o .. r(Tin)
Chapter N r(TN)

Figure 7.7: Table of Contents showing Hierarchical Nature of the Book Format

[
o
SN

to r(TN). Chapter | is the parent of n children. each of which is a subtree ol the root r(T1).
represented by sections .1 to L and cach of these subtrees has its own root. denoted by
the labels r(T11) to r(Tln). Section 1.1 is the parent ol m children, each of which is a subtree
of the root r(T11), represented by subsections L.1.1 to 1.1.m. and each of these subtrees has
its own rool denoted by the labels o(TI1) to r(T1lm). Two nodes which are the children of
the same parent node are termed siblings: except for the root T, which has no parent, each
node has just one parent. lixcept for the voot T, any node may have siblings. For any r(1)

the next sibling is denoted by r(Ti+1).

7.5.2.1.3 Formal description
[rom the above description of a book. which possesses a tree structure. the ADT Tree is
defined here as a set of zero or more elements called nodes arranged in a hierarchical manner

such that:

I. Except when empty there is one node at the highest level, called the root.

2. The remaining nodes are partitioned into zero or more disjoint sets. T1. T2, ... Tn.
where each of these sets is itself a tree. The tree is denoted T = (v. T1. T2, T ... Tj)

and each tree Ti is an immediate subtree of T. The subtrees of T are T itself and the

subtrees of its immediate subtrees.

3. The sets T, 12, ... Tn are called the subtrees of the root. If the ordering of these
trees is significant. then the tree is called an ordered tree. which means that the path

from the root of the tree to any node is unique.

4. Every node except the root is joined Lo just one other node at the next higher level.

(W1}

Information of a predeflined 1vpe is associated with each node.

6. A predefined relationship exists between nodes on adjacent levels.

7.5.2.2 Description of the structure of the ADT Linked List

7.5.2.2.1 Graphical description
The terminology and conventions concerning graphs was covered when describing the ADT
Tree. The ADT Linked-List can be represented as an ordered graph as shown below in

Figure 7.8.

7.5.2.2.2 Natural language description
The linked list is a dynamic data structure. i.e. both the information in the structure and
the structure itself can change. The data structure contains elements. each element in the

list contains a piece of information.

7.5.2.2.3 Formal description
A sequential list is either cimpty or is a linite ordered tuple (a,. ay. ay...a,) where

1

the a;. 1 </ < n ave nodes.

204

Book 1 O

Book 2 <>

Book 3 Q

Book (n-2) @

Book (n-1) ()

Book n O

Figure 7.8: The Linked-List structure as a directed graph

N
=
Ot

7.6 Summary

Some problems encountered in software engineering envivonments in providing support for
automation have been described. as has the role plaved by the [ISMSE in helping to solve
these problems. A complementary and complete set of generic tool-types Lo support the
maintenance model has been described and an information structure has been proposed to
store information and knowledge concerning the maintenance of software. providing the ba-
sis for a documentation paradigm to record a Maintenance History of a software svstem.
The structure of the ADT Maintenance-History has been [ully described in terms of its
constituent ADTs. the ADT Linked-List and the ADT Tree. using a graphical method. a
natural language method and a formal method. its structure is shown in Figure 7.9 below.
The ADT Maintenance_History permits a precise description of the database view for the
[SMSE, providing the conceptual schema in a three-level database architecture. enabling a
bridge to be built between the soltware tools” views ol the inlormation structure, {(a pre-
requisite for accessing and updating the information structure). and the underlying internal

schema used for its phvsical storage.

200

First
Book — —*

ADT Maintenance.History

Last
Book

N R 2 R N 2 B N 2

Figure 7.9: The ADT Maintenance_History constructed from the ADT Linked-List and the
ADT Tree

[SV]
)
-1

Chapter 8

Formal Specification of the ADT

Maintenance-History

8.1 Introduction

The problems associated with natural-language specification were discussed in chapter six;
briefly. these were concerned with ambiguity. context-sensitivity and possible differences of
interpretation. In this chapter a tormal approach is used to capture the semantics of the

ADT Maintenance-History. through the specification of the operations which define it. The

208

tormal specification of the ADT Maintenance-History is. in essence. a formal definition of
each operation on the AT Formal specification techniques have a sound theoretical basis
and provide a basis for precise reasoning about the behavioural aspects of an ADT. The

term ‘formal specification” implies that:

L. A specification is expressed using a notation which has, as its foundation. rigorous

mathematics.

o

There is a need for both the syntax and the semantics of the specification-language.
used to express the formal specification. to be formally defined. so that the meaning of

a specification can be determined by reference to the specification-langnage definition.

8.2 The benefits provided by the use of formal tech-

niques for specification

These are:

I. An aid to improving the quality of natural language specifications
The formal technigne acts as a tool for refining natural language specifications. through

the exposure ol ambignities and contradictions. Algebraic specifications are easy to

read and understand, facilitating informal and formal verification.

2. The provision of an intermediate step between requirements and design
Specification is concerned with the precise definition of the tasks to be performed by a
system. [t was the author’s experience that the greatest benefit in applying a formal

method accrued through the process of formalising,

making possible the gaining of a
deeper understanding of the svstem being specified, by being abstract and meticulous

concerning the desired properties ol the system.

3. The provision of a framework for verifying a system in a systematic manner
According to Meyer [84] semantic analysis of formal specifications can be assisted by
software tools. making possible machine analysis aud manipulation. but this is not

possible with inlormal specitications. e those written nxing natural language.

Wing states [123] that some proof-checking tools e.g. Larch. Prover, OBJ, enable al-
gebraic specifications to be treated as re-write rules.

Guttag [50] has shown that aleebraic specifications of data tyvpes can plav a significant

g g 1 v :
role in program verification. permitting factorisation of proots into distinct manage-
able stages. He also showed [50] that the use of pure functions and equations as the
form of specification permits prools to be constructed. in large part. as sequences of
[) |

substitutions. using the equations as rewrite rules.

4. Support for re-use
Mever states that [S4] an essential requirement of a good specification formalism is that
it should favour reuse of previously written elements ol specitications. The documen-
tation paradigm is specified as an ordered binary tree and therefore supports binary

search.

5. Communication
Wing points out [128] that a specification may serve as a contract. which is a valuable
piece of documentation, and a means of communication between a client, a specifier

and an implementor.

§. Automatic update of test-suite
As mentioned in chapter six. an automatic approach to the identification of obsolete
functional tests is only possible where a formal specification language has been used,

which permits the analysis of changes in the specification.

8.3 The formal specification of data abstractions

As pointed out by Gutrag [31] there are many possible methods of specifving the semantics
ol an abstract data type: most of these can be classified as operational or definitional. The
operational method provides a comparatively easy means of constructing the type but forces
the overspecification of the abstraction. whereas the definitional method. although more

difficult. avoids this problen.

8.3.1 Operational approach

The operational approach defines the ADT operations in terms of some other known set
of operations that are nof those characterising the ADT. These other operations form a
general underlying model. upon which the definition of the ADT is constructed. This model
can then be used as the basis [or the constructive specification of a range ol related ADTs.
This underlying model needs to be defined either implicitly, by means of a mathematical
technique, such as set theory. or explicitly. using a formal language such as Meta IV [39], Z

[L19]. or algebraic axioms. described below. which is itself a formal language.

8.3.2 Definitional approach

An example of the Definitional approach is an algebraic technique developed by Zilles [133].

Guttag [51]. and Goguen et al [17]: it has 1wo parts:

L. An interface part which names the allowed operations and specifies the tyvpes of their

parameters

2. An axioms part which defines the behaviour of these operations.

An object is specified in terms of the relationships between the operations that act on the
object, and therefore fits in well with the concept of ADTs. The algebraic approach to

specitfving ADTs is the definition of its properties as a set of axioms. This approach re-

o
(8]

quires that each operation acting on the ADT should have axioms associated with it, which
state what may be asserted after execution of that operation; the assertions being made in
terms of what was true before execution. A small set of axioms is sufficient to totally define
an ADT: often these axioms enable the deduction of further properties of the object. A
formal-specification of an ADT using the algebraic approach involves a specification of the
syntax and the semantics of the operations. The algebraic approach is a fundamental one.
since it defines the operations of an ADT by relating their meanings to one another. without

reference to any operations other than those characterising the ADT.

Discussion.

According to Sommerville [113] the model-based approach to formal specification is not vet
mature and is not vet widely usable as a software engineering tool. since it does not lend
itself to the structuring of specifications at the architectural level. Liskov and Berzius [T4],
are also of the opinion that the algebraic approach is by far the better-developed of the two

specification techuiques.

The importance of constructing specifications incrementally is well known. and is a natural
way of producing a specification. using the technique of enrichment. which allows algebraic
specifications to be strnctured and built out of existing specifications. The new ADT pro-
duced by enrichment inherits the operations and axioms defined over the old ADT. so that
these apply to the new ADT. Eurichment of algebraic specifications is a powerful abstraction
tool for building a formal specification. since it allows higher-level operations on an ADT

to be devised. which can then be defined in terms of lower-level operations. whose algebraic

213

axioms are well-known. In contrast. enrichment cannot easily be used with the constructive

approach. For these reasons the algebraic approach has been adopted in this thesis.

8.4 Completeness of Algebraic Specifications

An ADT can be viewed as a store of information plus the collection ol related operations
that can be carried out on it; each operation has three components associated with it; source
data. results and the relationship existing between them. The word related is important
since the meanings of the "atomic” operations that characterise an ADT are not independent
of one another. The behaviour of an ADT can only be seen by observing the results of the
manipulations on it. e, by applving the set of operations which deline it. and so the first
stage 1n the formal specification of an ADT is i1s definition. via the identification of these
allowed operations. This is important. since capturing the semantics of the data tvpe helps
to ensure that its formal specification is complete. The complete capture of the semantics of
an ADT can only be achieved if the axioms define operations which allow the construction
of all possible instances of the ADT. (an ADT is the set ol all possible values of the tvpe),
and which also define the result of all permissible operations on the ADT. The completeness
of the specification draws upon the work of Guttag [50]. and Fairley [37]. The complete set
of operations defining an ADT is ADT-dependent, but if the total set of operations possible
on the ADT Maintenance-History is represented by pl.....pn. and the minimum subset

necessary to capture its semantics as ¢l.....qgr.r < n. then this subset 1 can be partitioned

mto three subsets:

1. Constructor set (x)

2. Behaviour set (v)

3. Modifier set (z)

A sufficiently complete set of axioms necessary to capture the semantics of the ADT is
compiled by providing axioms for each member of these three subsets. of the form:
Behaviour(Constructor()) =7

Modi frer(Constructor()) =7

From this it can be seen that the total number of axioms which define the ADT is:

(Card(z) > Card(w)) + (Card(y)~ Card(ax))
The definition of axioms setting out the behaviour of ADT operations begins by identifving

these "Coustructor’. “Modifier'. and “Behaviour” operations.

Common to all dynamic data structures are two classes of operation: Transformation, whereby
the structure and/or content of the information structure is changed. and Navigation. whereby
the structure and/or content of the information structure is unchanged. These two classes of
operation may be partitioned into three sub-classes. each of which contains a set of generic
lower-level operations. enumerated below. Facl generic operation is labelled as a ~Construc-

tor’ ('), "Modifier” (M). or "Behaviour’ (B).

|. Transformation

(a) Initialisation (C)

Creates a new instance ol the ADT.

o
—_—
U

(b)

Assignment (M)
Changes the value held in an existing element of the ADT or can be used to copy

all or part of the structure into another structure.

Rearrangement (M)

Re-orders the items within the ADT. This may be done manuallyv. as a “Prune
and Gralt” operation or may be automatic, for example Sorting.

Deletion (M)

Reduces the size ol the ADT.

Insertion (C)

[ncreases the size ol the ADY.

2. Navigation

(a)

Accessing (B)

Identification of the required element by virtue of its posction in the ADT.
Searching (B)

[dentification of the required element by virtue of its contents. a given field in the

element acting as the search keyv.

Retrieval (B)
Obtains information previously stored in an element of the ADT using Search
and Copy operations. or provides information about the ADT itself. e.g. where

to find information within the ADT.
Browsing (B)
Moving backwards and forwards within the ADT - this uses the Write operation.

216

which is concerned with Retrieval. and begins with a Search operation and ends
with a Write operation to standard output or a printer.
(e) Comparison (B)

Compares information content of elements of the ADT.

8.5 Consistency of Algebraic Specifications

If any two axioms arc contradictory then an algebraic specification is inconsistent: however
the fact that such a specitication ix written formally. e makes use of rigorous mathemat-
ics, means that it can be denonstrated that the axioms are not contradictory. Guttag has
shown that a recognisably complete axiomatisation caun be viewed as a set of replacement
rules. and its consistency demonstrated by proving that the set of replacement rules ex-
hibits the Church-Rosser property [26]. Machine verification is also possible for axiomatic

specifications: an interactive svsten is described by Guttag in [H0].

8.6 The operations on the ADT Maintenance-History

Informally, the ADT Maintenance-History is an information-structure designed to store in-
formation, and to record the relationships between items of information, as well as providing

the means of using and changing the information held in it; this is a summary of the require-

[
~1

ments for an ADT. Formallv. the ADT Maintenance-History is of a certain type: each of
its components i1s ann ADT. and also has a type associated with it. The ADT Maintenance-
History can be regarded as a collection of ADTs. and so the operations can be subdivided
into those tor the Anthology. and those for each Book. contained within the Anthology. Some
of the generic operations mav not be meaningful for a particular ADT, and some may only be
performed conditionally. The complete set of operations on the ADT Maintenance-History
is Intended to reflect the maintenance model adopted for an [SMSE, and in addition it is
intended, as far as is practicable. to mirror all the manual ways in which it is possible to use

a “hard-copy™ counterpart of the ADT.

8.6.1 The operations on the ADT Anthology

l. Transformation

(a) Initialisation
A new empty instance of the ADT Authology can be created using the Create

operation.

(b) Assignment
A soltware svsteny evolves during its Hifetime. giving rise to successive versions. It
may be decided during the litetime of the software that support for early versions
of the software is no longer a viable proposition. The earliest version for which
support 1s to be provided is known as the ‘baseline’ version, and this ‘baseline’

15 moved forward to a later version as successive versions ol the software are

produced. The element of the ADT Anthology which is to serve as this "baseline’
version can be designated using the Assign operation.
(c) Rearrangement
The order of the elements in the Anthology can be changed using the operations
below.
1. Deletion
An element. i.e. a Book with a given version number can be removed from

the Anthology using the Delete operation.

11. Insertion

An element. i.e. a Book with a given version number can be inserted at a

given position into the Anthology using the Insert operation.

Initialisation. Assignment and Rearrangement conld be nsed for updating a table of
fe? f o

contents and a master indexs for the Anthology,

2. Navigation

(a) Accessing
Evaluation ol a particular Book version number corresponding to its position in
the Anthology. using the Evaluate operation.

(b) Searching
Find the position of a given element in the Anthology using its version number,
which acts as the search keyv. using the Position operation.

(c) Retrieval
Retrieve the latest element in the Anthology, using the Latest operation. The

219

latest book in the Anthology is designated as the one which corresponds to the
latest version of the software. If it is required to insert a Book with a given
version number into the Anthology then it must be ascertained whether that

version number alveady exists: using the operation Isin_Anthology.

Browsing

Given the position of an element in the Anthology, find the next or previous
element in the Anthology. using the Next and Previous operations. and Display
the resulting version number. This makes possible moving from Book to Book.
Le. browsing. with the ability to retarn to the index or table ol contents at any

time from anyv Book.

(S
[
<

ANTHOLOGY (Fflen: [Unde fined — Elem])

sort: Ordered-List
imports: integer. boolean

Description of sort and operations

This specification defines the ADT Anthology. which is an enrichment
of the sort Ordeved_list. with its members arvanged in ascending order.
[t inherits the operations of the ADT Ovdered_list. but the operations
to construct the Ovdered_list and to add a member to the list are
hidden. 1.e. would not be accessible in any implementatiou. to ensure
that the ordering of the Anthology cannot be compromised.

The constructor operation produces an Anthology containiug one item.
The ordering of the list is maintained using the insert operation.

SETS

g

= {a:
N = {n: uis a Book title}
={zzz>1}

a1s an Anthology}

Nz

Syntax:
ConAnthology - — A
Semantics:

Con_Anthologyv(n.z.a) = append(make{n.z).a)

Figure 8.1 Algebraic specification of ADI” Anthology

[£
I~
—

ANTHOLOGY (Flenc: [Unde fined — Elem])

SETS

A = {a: ais an Anthologv}
N = {l nis a Book tit l(}
B = {true. /u/w}
Z=Az2>1}

M = {m. Br)o/v nol present. Qut of range, Book already presend.
Nexl Book does not erist. Previous Book does not evist}
F = {f: fisan output file}

Syntax:

Create_Anthology « — A
[sn_Anthology - Z x A — B
Delete - Vx4 — AU M
Inseri: Zx N x A — d4UM
Posittion : V¥V x A = ZuU M
Lvaluate : 7 x 4 = NU M
Worite - 4 —

Assign A4 — A

Neol: /x4 —= NU M
Previous : Z x A — NU M
Latest : 4 — N UM
Earliest : 4 — NU M

Figure 8.2: Algebraie specification of ADT Authology (contd.)

S
(A
"

ANTHOLOGY (£Llem [nde fried — E/c'm])

Semantics:
Ya € A,Vb.ne NVh.z e 2.
[sin_Anthology(b.Create_Anthology) = false ...(A1)

IsinAnthologyv(h.Con_Anthologvinz.a)) = it b = n
then
true
else
it b <n
then
false

else

IsincAnthology(b.a) ...(A2)

Delete(b.Create_Anthologyv) = “Book not present” ...(A3)

Delete(b,Con_Anthologv(n.z.a)) = if b = n
then
a
else
ith < n
then
"Book not present’

else

(‘on_Anthology(n.z.Delete(b.a)) ...

Insert(b.Create_Anthology) = Con_Authology(b.Create_Anthology) ...(A5)

Figure 830 Algebraic specification of ADT Anthology (contd.)

N
L\
(V]

ANTHOLOGY (Elcin = ['nde fined — [Elem])

Semantics:
Va € A Vb.ne N Vk.z € Z:

Insert(b,Con_Anthologyv(n.z.a)) = if b = n
then
"Book exists’
r_‘l.,\'(‘

Con_Anthology(n.z.lnsert(b.a)) ...(A6)

Position(bh.Create_Anthology) = "Book not present” ...(A7)

Position(h.Con_Antholoevinza) = il'h = n
then
z
('].\1\

Pusiﬁun(l».a,) (AS)
Evaluate(k.Create_Anthology) = “Book not present’ ...(A9)

Evaluate(k.Con_Anthologv(n.z.a)) = it k = z
then
n
(:‘lfﬁ.(‘)
ik >0
then

Evaluate(k.a) ...(A10)

Figure 8.4: Algebraic specification of ADT Anthology (contd.)

ANTHOLOGY (/e : [nde fined — Elem])

Semantics:
Ya€ ANVb.ne NV.V:-¢e Z:
Write(Create_Anthology) = Create_Anthology ...(A11)
Write(Con_Anthologv(n.z.a)) = Write(n): Write(a) ...(A12)
Assign(b.Create_Anthology) = Create_Anthology ...(A13)
Assign(b.Con_Anthologv(n.z.a)) = (Con_Anthologv(n.z.a))...(A14)
Next(Create_Anthology) = "Book not present” . (A15)
Next(Con_Anthology(n.z.a)) =
if not{a = Create_Anthology) then
Evaluate(succ(Position(n.Con_Anthologv(n.z.a))).Con_Anthology(n.z.a))
..(A16)
Previous(Create_Anthology) = "Book not preseut” ...(A17)
Previous(Cou_Nuthologyv(n.z.a)) =
if not(z = 1)
then
Evaluare{pred(Position(n.Con_Anthologyv(n.z.a))).Con_Anthologyv(n.z.a))
...(A18)
Earliest(Create_Anthology) = "Book not present” ...(A19)
Earliest(Con_Anthologyvin.z.a)) = n ...(A20)
Latest(Create_Anthology) = "Book not present” ...(A21)
Latest(Con_Anthology(n.z.a)) = if (a = Create_Anthology)
then
1

else

Latest(a) ...(A22)

Figure 8.5 Mgebraic specification of ADT Anthology (coutd.)

225

8.6.2 Natural language description of axioms for ADT Anthol-

ogy.

(A1) simply states that the empty Anthology contains no Books.

(A2) makes use of the fact that the Books in the Anthology are strictly ordered according
to version code. which is an alphanumeric key. used as the title of the Book. and also the key
for all search operations: the first. Book in the list having the smallest version number. The
operation Con_Anthology acts as a deconstructor. so that the Anthology can be regarded
as being comprised of the first Book. followed by the remainder of the Anthology. If the
remainder of the Anthology s empty then axiom (Al) can be applied. 1 the Anthology
contains more than one Book then the list is searched recursivelyv. termination occurring
either by a successful search or by the kev for the search being out of range. or by there
being no more Books with which to compare kevs. whereupon axiom (A1) applies.

(A3) states that a Book cannot be deleted from an empty Authology.

(A4) states that a Book can only be deleted il its kev is within the range of kevs present
in the Anthology. [the Book is not the first in the Anthology. then the remainder of the
Anthology must be searched recursivelv. termination occurring either by a successful search.
or by the key for the search heing ont of range. or by there being no more Books with which
to compare kevs. when axiom (A3) applies.

(A5) states that insertion of a Book into an empty Anthology is achieved by constructing
an Anthology coutaining just one Book.

(AB) states that if the Anthology is not empty then the insertion of the book into the

Anthology 1s ouly possible il the title does not already exist within the Authology. otherwise

220

an error message is output. The correct position in the Anthology is found using a recursive
search of the kevs of the other Books in the Anthology. If the position for insertion is at the
end of the Anthology then (AS) applies,

(AT) states that Position i an etnpiv Anthology is undefined. and so an error message is
output to this effect.

(A8) states that if the kev of the Book sought is not equal to the kev of the current book
in the Anthology, the search keyv is compared recursively with those of the remaining Books
in the Anthology. Termination of the search occurs, either because a match is lound, or all
Books have been compared without a match. whereupon (A7) applies.

(A9) states that version code is undefined for an empty Anthology and so a message is
output to this effect.

(A10) states that the result ol attempting to recover a version code at a given position in
the Anthology is undefined if the position is not a member of the set ol natural numbers
greater than zero. or is greater than the cardinality of the set of Books in the Anthology
(A11) states that writing an empty Anthology produces an empty file. (A12) states that
writing an Anthology containing Books produces a file in which the kev of the latest member
is written first. followed by those ol the vemainder. in order ol their version codes.

(A13) states that attempting to assign a version code to an empty Anthology has no effect.
(A14) states that assigning a version code to a Book in the Anthology does uot affect the
structure of the Anthology.

(A15) states that searching an empty Anthology for a version code ol the next element in
the Anthology is undefined and a message is output to this effect.

(A16) states that the version code returned by this operation is that of the element whose

S
I~
-1

position is the one following the current position. except. when the current position is the
last position in the Anthology.

(A17) states that searching an empty Anthology for a version code of the previous element
1s undefined and a imessage is ontpul (o this effect.

(A18) states that the position passed as a paramneter to the operation is the predecessor to
the current position. except when the current position is the first position in the Anthology.
(A19) states that an attempt 1o find the earliest Book in an empty Anthology is undefined
and a message is output to this effect.

(A20) states that the carliest Book in an Anthology which is not empty is simply that
produced by the deconstructor operation.

(A21) states that an attempt to find the latest Book in an empty Authology is undefined
and a message 1s output to this effect.

(A22) states that the latest Book in an Anthology which contains more than one Book is

found by applyving the operation recursively 1o the Anthology.

8.6.3 The Operations on the ADT Book

l. Transformation

(a) Initialisation
This operation enables the construction of the book: this is achieved via the
Create operation. I'rom the change request the Anthology must be searched to

see whether the change request is tvalid™. e the problem mayv be on file. and

Mmaintenance may be ongoing or a solution may have been found to the problem
which is contained in another version of the software.

(b) Assignment
An item of nlormation is placed into an element of the book. using the Assign
operation.

(c) Rearrangement

i. Deletion
A picce of mtormation can be removed from the book using the Delete
operalion.

i1. Insertion

The Insert operation can be used to insert the components of the book.

. Editing
The Book format can be edited using the Graft and Prune operations to
reflect copying. moving and deleting pieces ol information to simulate “cut
and paste” operations - this enables partitioning or repartitioning a Book

mto chapters. and sections.
2. Navigation

(a) Accessing
A particular component. of the Book can be accessed by virtue of its unique
alphanumeric key. using the Evaluate operation.

(b) Searching

A pattern-matching operation is used for content-search. i.e. searching text; a

component. of the book s the subject of the search. the string to be searched

for is the paramerer supplied to the Cross_reference operation. Traceability

between phases ol the soltware life-cycle can be verified, by finding references to

a variable 1 e.g. requirements. specification, design and source code. using the

Evaluate operation.

(c) Retrieval

1.

This operation could be used to map inputs and outputs from source code

modules to the data dictionary to aid in documentation.

[nformation about a particular aspect of the ADT Book. e.g. chapter headings
or table of contents. can be obtained using the Write operation.

Change requests can be listed. displayed. or printed. using the Write opera-
LTI,

Re-use ol modules and associated documentation can be accomplished using
the Copy operation.

The Evaluate operation provides a means of recording which parts of the
Authology have heen visited. If a number of books have been perused during
the conrse ol a maintenance assignment. then recording these books and the
commponents ol cach Book which have been ol interest enables the maintainer
to veuse this “virtual” Book. when continuing the maintenance assignment. by

using the Trail operation.

(d) Browsing

The following modes of access must be supported.

i The ability to get o the index or table of contents at any time [rom anvwhere
= made possible using the Home operation. Then any part of any Book
can be accessed from any other part ol any other Book. I'he Bookmark
operation makes it possibie to keep the current place in the Book.

(e) Comparison

i. Comparing the module structure chart of wersions of source code. using the

Equal operation to reveal the differences in their structures.

. A documentation-maodnle strneture can be constructed using the Copy oper-
ation to mirror the call-graph structure vl the source code. Then a comparison
of the keys associated with each node in each tree using the Equal opera-
tion provides a means ol ensuring that the documentation structure has been

modified to reflect any change to the source code’s call-graph structure.

The Book structure is that of an m-ary tree. and because the operations on such a tree are
dependent on the order of the tree. thev are complicated and non-standardised. For this
reason the m-ary tree is transformed into a Knuth ordered binary tree. as shown in Figure 3.6
below. prior to specilving the axioms for the operations on the Book. The resulting Knuth
ordered binary tree is logically equivalent to the original m-ary tree. there being no loss of
information during the transformation. The velationships between the nodes in the Knuth
ordered binary tree are shown in Figure 3.7 below. The advantages of specifyving the axioms

on the Knuth ordeved hinary tree are described below.

TITLE OF BOOK

N
\

Chapter 1 Chapter 2 Q Chapter N

Section 1 ‘ b Section N

Mapping to
Knuth Binary
Subsection 1 Subsection N Tree

TITLE OF BOOK

/O

4
VN

)
N
N
N
N N

N N\
~ AN

G O 1N O «~

O 11N

Figure 3.6: C'onversion of m-ary tree to Knuth ordered binary tree

232

L. The structure ol a binary tree is completely recursive. allowing a recursive definition
of the axioms specifving the operations: the transformation from m-ary to binary is.

therefore. a powerlul abstraction tool.

2. Searching
Searching in a binary tree is rapid and since the key of the node is related to the

contents of the node. then the search can be content-controlled.

3. Traversals
The traversal ol a binary tree produces a list. whose structure depends on the structure
of the tree. and the type of traversal employed. providing information councerning the

structure of the trec. e.g. table of contents.

7
7
e
7
e
d
7
7
(Parent(k)
\,
/_/\
N
N
N
N
AN

Previous-Sibling(i)

S
First-Child(i) Q O Next Sibling(i)
(:) Last-Sibling(i)

Figure 8.7 Relationships between nodes in the Knuth ordered binary tree

BOOKX (Lher: [Unde fined — Flemnl)

sort: Knuth Binary Search Tree
imports: integer, boolean

Description of sort and operations

This specification defines the ADT Book. which is, predominantly, an enrichment of
the sort Binary Search Tree. [t inherits some of the operations of the ADT Binary
Search Tree, and also of the ADT Queue. The operations for the Queue are consid-
ered first.

An operation Get_INext is required which returns the item at the front of the queue,
and then deletes this item. The output {rom this function is specified as a tuple.
Displaying the contents of the Queue makes use of the Write operation. The last
item in the queue is returned using the Last operation.

SETS

[= set of items
Q = set of quenes
F' = set of files

Syntax:
Gel_Newl(Queue): Q — I x()

Woirite(Queue) . () — IF
Last(Queue): () — [

Fignre 830 Algebraie specification ol ADT Book

[N
(N
Ut

BOOK (£l [nde [rred — Flcin])

Semantics:

Viel Vqge@:

Get_Next(Create_Queue) = ("The queue is empty’,Create_Queue)
Get_Next{Addto_Quene(i.q)) = (Front(q).Delete_From_Queue(q))
Write(Create_Queue) = "Empty Queue’
Write(Add_To_Queue(i.q)) = Write(Get_Next(Add_to_Queue(i.q)))
Last(Create_Queue) = "Empty Queue’

Last(Add_To_Queue(i.q)) = i

The operations relating to the enrichment of the Binary Search lree are now consid-
ered. The operation to construct the Binary Search Tree and to add an item to the
Binary Search Tree are hidden. i.e. would not be accessible in any implementation.
to ensure that the orvdering of the Binary Search Tree cannot be compromised. The
ordering of the Binary Search Tree is maintained using the Insert operation.

SETS

B = {/I‘M,r;. Jalsc}

T = {t: tis a Knuth binary scarch tree}

M = {m: Ewply Book. Nol cqual. ROOT not present}
N = {n: nisatitle}

Z = {z: z is a node key }

[={i: 1is an item }

F = {f: fis an output file}

Q

K = {k: Kk is a search kev}

Il

{q: qis a queue}

E = {e: e is a search string}

N ={n:u>0}

Figure 8.9: Algebraice specification of AT Book (contd.)

236

BOOK (/[len : [Unde fined — Elem))

Syntax:

Create_Book + — T

Make _Book : T'x [xT — T
Assign : A x Nx T =T
Table_of Contenls: T — F
Path T —

Insert: T'"x N x T —=TUM
Graft: TxT —T

Prune: T =T xT
Fealuate : Z xT — (NUM) x Q. x F,
[sin_Book: N xT — B
Cross_re ference : T — N, .V,
Abstract - T — NN,

Copy 1" —= T x 1T

Trad : N x No.ox N — N A,
Home o1 — N

Bookmark : T — N

Parent : N x 1T — N

Newvt Sibling : N x T — N
Previous_Sibling : N xT — N
Last_Sibling : N xT — N
Forst_Child N x T — N
Fgual 0 T x T — [3

Figure 8.10: Algebraic specification of ADT Book (contd.)

BOOK (Elem : [Unde fincd — 10m])

Semantics

Vikel, YeneN Vee ., VIireT,VPe@:

Assign(Create_Bookj = "Empty Book™ ...(B1)

Assign(k.Make_Book(l.i.r)) = Make_Book(l,i.r}) ...(B2)

Table_of_Contents(Create_Book) = "Empty Book’ ...(B3)

Table_of_Contents(Make_Book(Li.rjj = Write(PreOrder(Make_Book(l.i.r))) ...(B4)

Path(k.Create_Book) = "LLmpty Book™ ...(B5)

Path(k.Make_Book(l.i.r)} = il Isin_Book(k.Make_Book(l.i.r))
then
itk &N
then
Write(ROOT)
else

Write(k.Path(Parent(k).Make_Book(l.i.r))) ...(B6)

Figure 8.11: Algebraic specification of ADT Book (coutd.)

238

BOOK (Elem : [[/nde fined — Elem])

Semantics

Vikel,VeneX.Vee L.VIrel,VPeQ:
Insert(k,Create_Book) = Make_Book({Create_Book.k.Create_Book) ...(BT)
[nsert(k,.Make_Book(l.i.,r) = it k =i

then

Make_Book(lL.i,r))

else
it Isin_.Book(ROOT.Make_Book(l.i.r))
then
it Isin_Book(Parent (k). Make_Book(l.i.1))
or [sin_Book(Previous_Sibling(k).Make_Book(l,i.r))
then
il k <
then
Make_Book(Insert(k.1).i.1)
else
il k >
then
Make_Book(l.1.Insert(k.r))
clse
Make_Book(l.i.1)
else

"ROOT not present” ...(B8)

Figure 8.12: Algebraic specification of ADT Book (contd.)

BOOK (Elem : [[/nde fined — Flem])

Semantics
Vihk€l. VeneX Vee . VIirel , VPeQ:
Graft(T,Create_Book) = 1 ...(B9)
Graft(PreOrder(T),Make_Book(l.i.r)) =
If not(Is_Empty(PreOrder(T))
then
Insert(Iront(PreOvder(T)),Make_Book(l,i,r),
Graft(Delete_from_Queue(PreOrvder(T). Make_Book(l.i.r)))) ...(B10)

Prune(Create_Book) = "Empiy Book™ ... (B11)

Prune(k,Make_Book(Li.r)) = if Is_in{k.Make_Book(L.i.r))

then
il = Dara(right(Make_Book(l.Previous_Sibling(k).r)))
theu
right{ Make_Book(l.Previons_Sibling(k).r))
= (reate_Book
else

ih 1 = Data(Lelt(Make_Book(l.Parent(k).r))
then
Left{Make_Book(l.Parent{k).r)) = Create_Book
..(B12)

Fignre 8.13: Algebraic specification of ADT" Book {contd.)

24()

BOOK (Elem : [l'nde fined — Elem])

Semantics
Vikel, VeneR Vee E.VIreT, VPeQ:
Evaluate(k.Create_Book) = "Empiy Book™ ...(B13)

Evaluate(k.Make_Book(l.i.r)) = if k =i

then
Write(Add_to_Queue(Data{ Make _Book(l.i.r).Q).))):
else
ik <
then
Evaluate(k.l)
else

Evaluate(k.r) ...(B14)
Isin_Book(k.Create_Book) = "Empty Book™ ...(B15)

[sin_Book(k,Make_Book(l.i.r) = if k =1
then
true
else
itk <
then
[sin_Book(k.(1))
else

[sin_Book(k.(r)) ...(B16)

Cross_reference(e.(reate_Book) = (reate_queue ... (B17)

Figure 8. 1L Algebraic specification of ADT Book (contd.)

BOOK (Elem : [('ndefined — Flem])

Semantics
YVihkel, VeeneR, Vee E.VIrelT,.VPeQ:

Cross_reference(e.Make_Book(l.i.r) =

if e € Data{Make_Book(l.1.r)) then

Appendqueue(Appendquene(Addtoquene(i.Create_queue).C'ross_reference(l)),
('ross_reference(r)) ...(B18)

Abstract(k.Create_Book) = "Empty Book™ ...(B19)

Abstract{k.Make_Book(l.ir))y =il (1 <K)
then
(Write(1). Abstract(k.1))
else

Abstract(k.l) ...(B20)
Copy(Create_Book) = ((reate_Book.('reate_Book) ...(B21)
Copy(Make_Book(lLi.r)) = (Make_Book(l.i.r).
Graft{PreOrder(Make_Book(Li.r).Create_Book))) ...(B22)
Trail(Create_Book) = "Empty Book™ ...(B23)
Trail(Make_Book(l.i.r)) = Il not IsEmpty(Q),)

then

Write(Q.) ...(B24)

Figure 8.13: Algebraic specification of ADT Book (contd.)

N
[
8

BOOK (Elem : [nde fined — Elem])

Semantics
Vihkel. VeneR Vee ,VIirel.YPe(Q:
Home(('reate_Book) = ~Impty Book™ ...(B25)

Home(Make_Book(li.r) =i ...(B26)

Bookmark(Create_Book) = "Empty Book™ ...(B27)

Bookmark(Make_Book(li.r) = Last(Q,) ...(B28)

Parent(k.Create_Book) = "Empty Book™ ...(B29)

Parent(k.Make_Book(l.i.r)) = if (Isin_Book(k.Make_Book(1.i.r)))
then

itk =c.l

then
-

else
itk =1
then

ROOT ...(B30)

Next_Sibling(k.u.Create.Book) = (‘reate_Book ...(B31)

Next_Sibhing(k.n.Make_Book(Li.r)) = it Isin_Book({k.n.Make_Book(l.i.r))
then
i not(Right(Make_Book(l.i,r))
= (‘reate_Book)
then

k.suce(n) ...(B32)

Figure 3.16: Algebraic specification of ADT Book (contd.)

BOOK (Ftlem : [Undefined — Flem])

Semantics

Vikel . VeneR Vee E.VIreT,VPe(@:
Previous_Sibling(k.n.Create_Book) = Create_Book ...(B33)
Previous_Sibling(Next_Sibling{k. Make_Book(l.i.r)) = k ...(B34)
Last_Sibling(k.Create_Book) = ('reate_Book...(B35)

Last _Sibling(k.Make_Book(l.i.r)) =
if Isin. Book(k.Make_Book(l.i.t))
then
it Right(Make_Book(l.i.r)
= ("reate_Book)
then
]
else

Last_Sibling(k.r)...(B36)

First_Child(k.Create_Book) = ("reate_Book ...(B37T)

Fiest_Child(k.Make_Book(l.i.r)) = if Isin_Book(k.Make_Book(l.i.r))
then
ik = ROOYT
then
I
else

k.1..(B38)

Equal{Create_Book) = "Empty Book™ ...(B39)

Equal(Make_Book('T.1.'17) = if not{Inorder(Left(Make_Book('1.i."['7))) _
= Inorder(Right(Make_Book('1.1.T7)})))
then

“Not equal” ...(B40)

Figure S.17: Algebraic specification of ADT Book (contd.)

244

8.6.4 Natural language description of the axioms specifying the

operations on the ADT Book

B1 states that an attempt to assign a value to a non-existent node fails and a message is
output.

B2 states that assigning a value to the heading of a node has no effect on the structure of
the binary tree.

B3 states that an attempt to produce a Table_of_Contents from an empty Book fails and a
message 1s output.

B4 states that a Table_of_Contents is a list of nodes in depth-first order. which is produced
by a Pre-order traversal ol the hinaryv tree. The Write operation sends the list of nodes to a
file.

B5 states that an attempt to produce a list of nodes in a file from an empty Book fails and
a message 1s output.

B6 states that a Path is a list of nodes in an output file. the first node in the file is the
target node and the last node is the ROOT node.

B7 states that inserting a node into an empty subtree produces a subtree rooted at that
node.

B8 States that inserting a node into a non-empty binary tree is only possible if ROOT is
present in the binary tree. and either the Parent or the Previous_Sibling of the node is also
present in the binary tree.

B9 states that grafting the nodes ol a binary tree into an empty binary tree. produces a new

binary tree, whose root is the root node of the inserted binary tree.

B10 states that gralting the nodes ol a binary tree into a non-empty binary tree. succeeds
it the node to be grafted does not alveady exist in the tree. each node being inserted as a
leat node.

B11 states that an attempt to prune a binary tree which is empty fails. and a message is
output.

B12 states that the result of pruning a node is that all the nodes which are attached to that
node are also deleted.

B13 states that an attempt to display the contents of a node which does not exist fails and
an message is output.

B14 states that displaving the contents of a node is accompanied by the addition of the
node key to a queue. as well as its contents being sent to a file.

B15 states that the vesult of scarching for a given node in an empty ree is false.

B16 states that the result of searching lor a given node in an non-empty binary tree is true
if the node is found and false if it is not found.

B17 states that an attempt 1o display a cross-reference for a search string in an empty
binary tree fails and a message is output.

B18 states that an attcimpt to display a cross-reference for a scarch string succeeds if the
string is found in a node of the binary tree: the contents ol the node are then written to a
file.

B19 states that an attempt to produce an abstract from an empty binary tree fails and a
message is output.

B20 states that those nodes which comprise an abstract of a given node include that node

and all other nodes which are subordinate to the given node.

B21 states that copyiug an empty tree produces another empty tree.

B22 states that copying a non-empty binary tree is the same as grafting this tree into an
empty binary tree.

B23 states that an attempt to output a Trail for an empty Book fails and a message is
output.

B24 states that if the binary tree is not empty the contents of the queue are written to a
file.

B25 states that an attempt to label the root node of an empty tree fails and a message is
output.

B26 states that the label of the root node of a non-empty binary tree is the data item which
15 used 1 the operation 1o construct a binary tree.

B27 states that an attempt to output the key of the last node to be accessed in an empty
Book fails and a message is output.

B28 states that the last node to be accessed is the same as the last node inserted into the
queue by the Evaluate operation.

B29 states that the Parent of a node is undefined for an empty Book and a message is
output.

B30 states that the Parent of a node depends on the type of the node kev.

B31 states that the root of the right subtree of a given node is undefined for an empty tree
and a message is output.

B32 states that the key of the next sibling of a given node is the root of the right subtree
of the binary tree. unless this is an empty tree.

B33 states that the previous sibling of a given node is undefined for an empty binary tree

I~
—
-1

and a message is output.

B34 states that the operation to return the previous sibling of a node is the inverse of the
operation to return the next sibling of a node.

B35 states that last sibling ot a node is undefined for an empty tree and a message is output.
B36 states that the last sibling ol a node is that node whose right subtree is empty.

B37 states that the first child of a node is undefined for an empty tree and a message is
output.

B38 states that the first child of a node is dependent on the type of the node.

B39 states that an attempt 1o compare the subtrees of an empty Book fails and a message
15 output.

BA40 states that the comparison of two binary trees can be effected by combining them into

one binary tree and comparing the left and right subtrees by traversal of the subtrees.

The reasous for a formal specification of an ADT have been given. and alternative ap-
proaches to formal specilication have been outlined. A generic set of operations for the ADT
Maintenance_History which underlies the documentation paradigin for the ISMSE has been
described. and instantiations of these operations have been specified for this ADT. thus

capturing its semantics.

Chapter 9

Implementation of the

Documentation Paradigm

9.1 Choice of language for the implementation

The obvious candidates for a language to animate the formal specification of the ADT
Maintenance History were the functional programming languages, such as LISP, Miranda,

~ Prolog, OBJ. Larch.

249

There are three maiu criteria to be borne in mind when choosing a language for an imple-
g guag I

mentation of a specificaiion:

1. The size of the data structure

o

The efficiency of the operations on that structure

3. The complexity of the programs

The first two criteria can be ignored since the implementation was effected using a small
problem. The axioms defining the semantics of the ADT were. for the most part. simple and
a language was required which could reflect this simplicity. This required. in turn. that the

language itsell shonld be axiomatic.

As pointed out by Clocksin. [28] Prolog is based on the idea of a theorem prover, and the
basis of a theorem is a set of axioms. Prolog is therefore complementary in this respect
to the axiomatic specification used to define the semantics of the documentation paradigm,
because ol the declarative nature ol the language. Prolog also provides a rapid prototvping

capability.

Prolog programs are like hypotheses about a known *world’, and questions asked are like
theorems which need to be proved or disproved. Prolog is based on first-order predicate
calculus. and the Horn clause which expresses a fact or rule in the Prolog database is a
statement of independent truth. i.e. an ariom. which is independent of what other facts and

rules there may be in the database.

9.2 Prototyping the ADT Maintenance_History

Prolog is a declarative language. but it is also possible to write Prolog in a procedural way,

as for a block-structured procedural langnage like Ada, or Pascal.

The Prolog used in this implementation was Edinburgh Prolog, and “pure’ Prolog. i.e. Prolog
without “not™ and “cut’. was used to prototype the axiomatic specification. In essence. a
program written in “pure’ Prolog is a specification of the solution to a problem. -Pure’
Prolog, as used in this animation is a sub-set of Prolog, and is totally declarative in nature,
since it does not make use of the cut’. which prevents ‘backtracking™. an essential feature of
the language. when Prolog seeks 1o prove or disprove an assertion or "goal”. The use of "not’
and “cut” detract from the declarative nature of the language. being mainly concerned with

efficiency.

9.2.1 Strategy for testing

The data structure underlying the *Book™ part of the ADT Maintenance_History, is a Iknuth
Binary Search Tree (BST). and that underlving the Anthology is a linked-list. The linked-list

was tested first. then the Knuth BST.

Axioms can be viewed as a tool for refining natural language. The natural language descrip-

tion of a specification. without recourse to an axiomatic specification would probably suffer

A7
o
—_—

from ambiguity and context sensitivity. However, a natural language description of an axiom
is a ‘refined’ natural language description. which does not suffer the same disadvantages as

unrefined natural language.

The Prolog code was written so that its natural language description matched the natural

language description of the axiom.

An animation of a specification. using a prototyping language means that there is possibility
that the specification may be transformed by the language being used to animate it. since
the language is translating one representation into another. [t was therefore important to

write a procedure that mirrored. as closely as possible. the axiom being tested.

As an illustration of this point. consider the following stack axioun:

top(push(i.S)) =

There are at least two wavs to capture the semantics of this axiom using Prolog, written in

a declarative manner.

top(X,Y,[X—Y]).

(where: X = top of stack. Y = rest of stack. [X—Y] = list. X = head of list.)

8%
(W3]
[V

[n this example the predicate “top” has an arity of three. i.e. it has three arguments.

A natural language description ol this predicate 150 X is the item at the top of a stack. the
remainder of the stack being Y. if X is the head of a list, whose tail is Y.

Consider the following stack of integers:

Stack = [3.5,1]

The prolog query and the response are shown below:

— 7- top(X,Y,[3.5,1]). (where: X = top of stack, Y = rest of stack. [3,5.1] = stack)

X=3

Another prolog procedure which accomplishes the same thing is shown below:

top(X.S) :- push(X.S5.51).

push(X.Y.[X--Y]).

In this example the predicate “top” has an arity of two. i.e. it only has two arguments.

The prolog query and the response are shown below:

— 2-top(X,[3.5.1]). (where: X = top of stack, [3.5.1] = stack)

X=3

An algebraic axiom is expressed as one operation applied to the result of another. and

while the first prolog procedive Luplicitly suggests that the stack has beeu produced from a
push operation. the second prolog procedure explicitly states this. This secoud example also
illustrates how this style of capturing the semantics allows an abstraction to a higher level,

since it permits a query which returns only the item of interest, the item at the top of the

stack.

9.2.2 The operations

The operation was deemed to be correctly specified if the Prolog translation of the axiom
achieved its objective. i.e. il the actnal output was the same as the expected output. defined
by the natural language description ol the axiom. and the operation preserved the strict

hierarchy of the Knuth Binary Search Tree (BST).

The Prolog procedures used to perform operations on the Iknuth BST. i.e. to animate
the specification. were assigned the same names as the axioms being prototyped, to avoid
confusion. and can be classilied into two distinet types. primitive or complex. Complex
operations are generalisations of primitives, operating on sets of nodes instead of on single
nodes, as primitives do. In addition utility operations were written to provide input/output
routines. and a means of inputting the data had to be devised. so that the information
concerning the data structure could be manipulated by Prolog procedures. Often these
operations were. o necessity. procedural in nature. but did not compronse the validity of

the animation, since thev were used for reading from and writing to files, including standard

mput and output, and for tormatting these data streams.

The axioms tested first were those corresponding to primitive and utility operations. since
these underly the complex operations. These operations were Parent, First_child. Next_sibling.
Previous_sibling. This in turn meant that some way had to be found of giving meaning to the
infix operators “greater” and ‘less” since the normal integer comparison provided by Prolog’s

built-in operators had no validity. for node keys of the tvpe a.b.c, where a.b.c are integers.

The operations can also be classified according to their role concerning the data structure.
i.e. whether they are used i1 connection with Initialisation. Re-arrangement or Navigation.
Primitive operations are concerned with luitialisation. or Navigatiou. and complex operations
are concerned with re-arrangement of the data structure. The operations for the ADT
Anthology are shown below in Table 9.1. and the operations for the ADT Book are shown

below in Table 9.2.

9.3 Summary

A rationale has heen given for the choice of Prolog as the language for the implementation.
and a strategy for testing the implementation has been devised. The importance of coding
style has been discussed. The operations have been listed aund the criteria given for a correct

specification of an axiom.

Q%
e
Ut

Prolog offers little in the way of procedures to handle input and output. and. of necessity.
the user-interface for the prototype is somewhat primitive, but this was not intended to
be a model for the fully-fledged [SMSE. The user-interface would need to be much more

sophisticated, to minimise cognitive overhead and is a research topic in its own right.

The primitive interface was sufficient for the author to prototype the specification of the
documentation paradigm. Prolog is quite verbose in the way it outputs its results, and some
kind of filter needs 1o be incorporated to reduce this. to make Prolog a better prototyping
tool. Building the data structures using Prolog is cumbersome and involves much repetition,
including temporary storage of the data structure in a file. The design of suitable macros

could do much to alleviate this.

[RV]
Ut
(@)

Anthology

Predicate Arguments Purpose
assign In_L.Kev.Name.Out L | Give name to member

create_Anthology

None

Create empty Anthlology

delete In_L.KNey.Out_L Remove a member of Anthlogy
earliest In_L. Kev Return earliest member
evaluate In_L,Key Display name of Book

msert [n_L.kev.Out_L [nsert a book into Anthology

isin_Anthologv

In_L.kev

Test for membership of Anthology

latest

[n_L.Kev

Return latest version in Anthology

next

In_L.Kev.Next ey

Return the next version

position

ln_L.Key.Number

R.f-‘[.lll'l'l version llLlll'll)(“l'

previous In_L.Key.Prev_KNey Return previous version

write [n_L. Display identifier of member
Abbreviations

[n_L Input Anthlogy

Out_L Updated Anthlogy

Keyv Alphanumeric identifier

Prev_ ey

Previons Key

Number

Ovdinal position in Anthology

Table 9.1: The operations for the ADT Anthology

[E]
ot
~1

Book

Predicate Arguments Purpose
abstract (In_T.Start.End.List) Return portion of chapter
assign (In_T.Reyv.data) Give name to node
bookmark (List.Item) Mark last node perused

(

copysubtree

Il Kev.Out_T)

Make copy of subtree

create_Book

None

Create empty Book

cross_rel I Kev List) List all nodes coutaining Keyword
equal T1.12) Test equality of portions of Book
evaluate n_T.Kev) Display contents of a node
first_Child In_T,Kev) Display subordinate node Key
graft In_T.Key.Subtree) Insert subset of the Book

home In_T) Return to title node

insert_node

It Kev.Outl)

[nsert node into the Book

1s_empty Book

In_1)

Test for empty Book

1s_inBook

Test for presence of a node in Book

tast _Sibling

In_T.INewv)

Return last node in a list

(
(
(
(
(
(
(
(
(Kev.InT)
(
(
(
(
(
(
(
{
{

move o N p g DircOut 1) | Re-position portion of the Book

next_Sibling In_T.Neyv) Return next node in list

parent In_T. Keyv) Display superordinate node Key

path [n_T.Kev.List) Display path from root to target node

prev_sib In_T.Key) Return previous member of the list

prune In_T.Kev.Out_T) Remove portion of the Book

“table h.T) A Display contents of Book

trail ey List) Display list of nodes visited
Abbreviations

In.T Input. Book

Out_T Output Book

Start Commencement node for Search

End Termination node for Search

Kp Root of subtree to be pruned

kg Node where Gralt of pruned subtree is to occur

Dir Root of subtree grafted as First_Child or Next_Sibling

Table 9.2:

SV}
Ot

o74]

The operations for the ADT" Book

Chapter 10

Evaluation of the Documentation

Paradigm

10.1 Introduction

The preferred test of the utility of the documentation paradigin. to determine its efficacy.
1e. in terms of its performance and ease ol use. would be its application to a maintenance
~ project of reasonable size and complexity. Unfortunately. this is infeasible. for two main

reasons. Firstly. the [SMSE which would host the documentation paradigm has not yet

259

been built, and in addition. the time scale appropriate to this thesis does not permit such an
investigation. To provide an examination of the capabilities of the documentation paradigm,
its analysis and evaluation rest instead on its application to the maintenance of “pxr’. a
cross-reterencer for the Pascal programming language. which is a component of an [ISMSE’s
toolset. The documentation paradigm is used to store information about the cross-referencer.
this information is produced by the cross-referencer itself. The documentation paradigm
1s a prototype, and as such its evaluation constitutes a feasibility study. The operations
used to interrogate and maunipulate the Maintenance History for the maintenance of the
cross-referencer. are analvsed. and the results of the analvsis are used to extrapolate [rom
this scenario. making an inlerence as to the probable functionality of the documentation

paradigm. when used in the maintenance ol a large. complex. soltware systein.

10.2 Applying the documentation paradigm

10.2.1 Introduction

The database is the nucleus of an environment and is responsible to a large extent in shaping
its character and functionality. This section demonstrates how the adoption of the docu-
mentation paradigm as the conceptual schema for the environment database will provide

the ISMSE with some of those features of an environment which Magel [77] showed to be

desirable. Later iu this chapter a description is given of the support provided by the envi-

260

ronment for its underlying maintenance process model, this support being a prerequisite to
the provision of these desirable features. In this section an analysis of the utility of the doc-
umentation paradigm is undertaken, using the operations carried out on the book structure
during the maintenance of "pxr’. and from this base extrapolating to the maintenance of a

large complex soltware svstem.

10.2.2 Placing the documentation paradigm in context

An anthology of hierarchical maintenance logs. i.e. books. comprises the *Maintenance His-
tory’ of the software. and forms the basis of a documentation paradigm for the ISMSE,
the aim of this thesis. Each book of the anthology encompasses a version or variant of the

software system. as shown below in Migure 10.1.

The technology underlying integrated software engineering support environments is not yet
mature enough to permit their wide-scale use. Consequently. in the forseeable future much
maintenance will be supported using toolkit environments. for example. Unix. Such envi-
ronments do uot make use of sophisticated database management systems. but instead rely
on the host computer’s filing svstem. which is usually a hierarchical one. To demonstrate
the utility of the documentation paradigm the operations will be referred to a hierarchical
file system and typical operating system conunands used to maunipulate the file structure,
for example the addition and deletion of files. and the movement of files from one directory

to another. the renaming of files. and so on. The node key gives the location of the file

N

Software '

\ System)

Implementation

l

Book (1)
of

Maintenance

Assignment

(1)

Book (2)
of

Maintenance

Evolution

/

[of
Maintenance

Assignment

(n-1)

Book (n)
of

Maintenance

Assignment

(n)

l

Retirement

I

Maintenance

History

Figure 10.1: The Maintenance History ol a software system

(]
(@)
N

in the hierarchical file system. the length of the key indicating the level iu the hierarchy
corresponding to the file’s location. This means that filenames can still be meaningtul, the
documentation paracligm serving as an indexing system for the filestore. The documentation
paradigm serves as a conceptual schema for a database. which is based on the host system’s
filestore, the nodes of the Maintenance History corresponding to files. A well-established
practice in software engineering is for a project to be mapped to a hierarchical directory
structure. with each component of the project existing as a document. The Maintenance
History corresponds to an open-ended project which lasts until the retirernent of the software.
The Maintenance History has been described as an Anthology of books. the structure of the
Anthology is mirrored by having within the root directory of the hierarchical file system. a
directory containing the first book of the Anthology. and another directory containing the
remainder of the Anthology. which contains the next Book in the Anthology, and the remain-
der of the Anthology. This decomposition is repeated throughout the hierarchical directory
structure, as shown in the diagram below. and implements a list of books, each book having
a tree structure. Together the list and the tree comprise the ADT Maintenance_History. The
position in the hierarchical file structure of each book is indicated by "Level” in Figure 10.2
below. Level 0 corresponding to the root of the directory structure containing the first book

of the Anthology.

Title Anthology of pxr

{book1 version 1.1

{book?2 version 1.2

{book3 version 1.3
Anthology’’’}

bookN version n

Figure 10.2: Project structure of maintenance of pxr

The hierarchical structuve of the book maps to the hierarchical file structure. each component
of the book structure corresponding to a file in the file system. The node-keyv “title’ is the
root of the hierarchical directory structure, which contains the book. The book documenting
the maintenance of “pxr’is shown below in Figure 10.3 below. mapped to a hierarchical file
structure. The position in the hierarchical file structure of each book component is indicated
by ‘Level’ in the figure, Level 0 corresponding to the root of the directory containing the

title of a book. The book is shown incomplete for reasous of clarity.

In the root directory called title. there ave the chapter directories. Contained in each chapter
directory, is a file called chapter and a directory called section. The file called chapter will
contain an introduction to the chapter. The directory called section contains the section
directories. each section dire(;r,m'_\' contains one file which contains information. and a dirvec-
tory called sub-section. This decomposition is repeated throughout the hierarchical directory

structure. Lo reflect the structure ol the book.

2065

Title Version 1.1 pxr

””” Level O
chapter 1 The change requests
chapter 2 Understanding the software
{chapter 4 Revalidation of the software
section}
””” Level 1
section 4.1 Integration testing
{section 4.2 Regression testing
subsection}
section 4.4 Documentation of changes made to ‘pxr’ source code
”” Level 2
{subsection 4.2.1 Test Cases
subsubsection}
””” Level 3
subsubsection 4.2.1.1 Test Results
”” Level 4

Figure 10.3: Book structure of a version of pxr

Much of software mainenance ix concerned with the enhancement of software. which is
software developiment. The documentation paradigm is compatible with the Software De-
velopment Life-Cycle model. since software maintenance is an iteration of this Life-Cycle.
There is a relation between the hierarchical data model of the documentation paradigm and
the Software Life-Cycle. in that the early stages of the Software Life-Cycle map to high-level
abstractions (or views) of the software svstem and the later stages of design. testing and cod-
ing map to lower-level abstractions. The document set is partitioned. so that. for instance,
source code modules are placed in a separate directory, from the documentation concerning
these modules. In addition. the organisation of the project team is a hierarchical one, the
constituent parts of the team hierarchy being delegated responsibility for a particular por-
tion ol the document hicrarchvo which makes possible a simple mapping. The maintenance
team will be available to work as individuals on a particular chapter of the log and their
efforts pooled. using operations to assemble the components of the chapter into its final form.

Overall. the documentation paradigm provides support tor grouping of resources.

The Maintenance History is a hicvarchical archive of information. and understanding is partly
concerned with retrieval of information from this archive. The granularity of the objects
to be stored in the information structure will vary greatly. and the relationships between
them may be complex: to cope with this complexity requires that support is provided for
abstraction. Inlormation is usually documented at various levels of abstraction. and program
understanding depends on access to up-to-date information concerning the source code. In-
line comments iu the source code (known as internal documentation) are usually too low-

_level, being concerned with descriptions of algorithms and properties of data items. There

o
(@]
-1

are two avenues ol approach for accessing information concerning the source code. Static
and dynamic program-analysis tools can be used. which operate on the source code itself.
which means that the output of these tools has to be interpreted by the maintainer. In
view of this it 15 advantageous to be able to have access to the high-level information from
its documentation concerning the system’s function. how it functions, including the system
components needed to express its functionality. The documentation paradigm supports this

strategy.

Detailed information can act as a barrier to understanding. This link between understand-
ing and abstraction is well-accepted. A hierarchical organisation of information relates to
the human mind’s problem-solving capability - that of rough tormulation of a solution to a
problem. followed by stepwise vefinement of the model through hypothesis and the testing
of this hypothesis, resulting in a hierarchical decomposition. This often requires the design
of an experiment to be used as a tool {or testing the hvpothesis. which can also be stored in
the information structure. A hierarchical information structure for the documentation of the
maintenance of software enables the organisation of levels ol abstraction. which will make
understanding of the program casier for fuluwre maintainers. Incorporation of the strategy of
abstraction within the overall hierarchical structure ol a book format of the documentation
ts consistent and easily achieved. The documentation paradigm supports the recording of
information at dilferent levels of abstraction. by the provision of a hierarchical information
structure, 1.e. an acyclic directed graph, the table of contents operation providing a con-

ceptual map of the documentation concerning the maintenance ol a software system. This

operation can also serve as a management tool. when monitoring the maintenance process,

[
(o))
[0.9]

the table of contents at anyv one time displays the structure of the book and so can show
the current position with regard to the stage of completion of the maintenance assignment.
The large body of documentation associated with a software system often possesses a strong
amorphous character. containing inlormation associated with every phase of the Software
Development Life Cycle. The documents comprising the documentation of a software sys-
tem are written in a diversity of styles and formats. and it is therefore to be expected that
difficulties will arise when attempting to gain an understanding of the svstem from a study
of the documentation. Failure to bring this documentation under control by imposing some
structure on it. when performing maintenance on the system. will ensure that the existing

situation is perpetuated.

The utility of having a large body of information concerning a software system can onlv
be realised it a strategy exists for the subsequent rapid retrieval of information from the
information-structure used to store these diverse types ol information. Without this rapid
retrieval the process of reaching an understanding of the software svstem will be hindered.
increasing the time taken to achieve the necessary understanding for modification of the
program. and its associated documentation 1o begin. thus reducing the productivity of a
maintenance organisation. Binary search is possible wheun the book structure is that of an

ordered binary tree, making possible the desired rapid retrieval of information.

An information structure is designed to record the relationships between pieces of information
and to provide ways of using. changing. and managing it. The adoption of a book format
for the information structure ensures that the documentation of a software system has a

standard organisation. the importance of which has been shown by Selig [115]. Anyone

269

imvolved with the software svstem can find an item of information. without needing to learn
any new concepts associated with an unfamiliar information-structure. i.e. the book format
offers an information-structure which is natural and totally familiar. making it easier to gain
an understanding of large complex system. This model of information-presentation has stood
the test of time. showing that it possesses great utility and durabilitv: it provides several
ways to access the information held there, e.g. table of contents, index. glossary, chapter.

section. and provides facilities for cross-relerencing.

10.2.3 The maintenance of a Pascal cross-referencer ‘pxr’

10.2.3.1 Introduction

The Pascal cross referencer "pxi’ resembles the “front-end” of a compiler. lacking only its code
generation capability. and contains lexical analysis. syntax analysis. and symbol table manip-
ulation routines. rom standard input “pxr’ reads in a Pascal program and generates either
an alphabetic or structural cross-refcrence listing. of the identifiers used in the program,
along with the lines on which they appear. The cross-referencer consists of approximately

8,000 lines of Pascal code in thirty modules.

Cross-referencers can output copious amounts of information. which often means that their
contribution to understanding a program is less than predicted. because of the time-consuming

and error-prone task ol sifting through this information. For this reason pxr” offers options

(8]
it
(e

as regards the type ol output listing. Pascal is a block-structured language, and the user
can opt for a structured listing. which alphabetically lists identifiers within the scope of each
block; the detail ot the listing corresponding to terse. full, or intermediate. reflecting the
degree of detail given for each identifier. In the terse option no distinction is made between
appearances of each identifier, whereas. when using the full option, information is given as to
where the identifier is used, set, and called. The user enters a command with the appropriate
t(terse), £ (full). or i (inlermediate). flag [vom within an operating system shell. and this

command causes "pxr’ to output the desired listing.

10.2.4 Production of a Maintenance History for pxr

Operationus on the Maintenance History can be classified as primitive or complex. Primitive
operations often are concerned with single nodes. so that in the context of the file system the
mimmum granularity of the operand for the operation is the file. Complex operations are
generalisations of primitives. operating on selsof nodes instead of single nodes. corresponding
to a subtree, or even the whole tree. i.e. the operand is an objecl. In the context of the file

svstem this corresponds to a collection ol files, perhaps a directory.

The complex operations express the utility ol the documentation paradigm. and are at a
higher semantic level than some ol the primitive operations which are used to create and
build the Maintenance History: these primitive operations contribute little to the illustration

of the utility of the paradigm. so they have not been shown. Some of the complex operations

S
=1

possess the ability to retrieve information 1 a way specified by the maintainer. and provide
the maintainer with different views of the software, through the ability to parameterise
these operations. which provides a powerful tool for procedural abstraction. Each operation
illustrated below s used 1o describe one of the benefits of using the documentation paradigm
in the maintenance of a large software svstem. these operations together contribute to the

definition ol its overall semantics.

The maintenance model derived in chapter 2 was used in the maintenance of "pxr’, and is

reproduced below.

L. Verification ol the need for maintenance

2. Understanding

3. Modification

4. Revalidation

It was mentioned earlier in this chapter that the environment should provide good support for
its underlyving maintepance process model. the hierarchical topology of the book ensures that
the maintenance model adopted for the envivonment is supported. the book structure being
partitioned into contexts. these contexts corresponding to the phases of the maintenance

model.

This partitioning is achieved by using the notion of chapters. Within each chapter the infor-
mation is again partitioned. into sectious and subsections, paragraphs. and subparagraphs

272

as in a book. e.g. different views ol the software can be preseuted as sections within chapters
of the book of the maintenance assignment. cach component ol the book structure having

an information type associated with it.

Adopting this approach means that the documentation of the maintenance activity is a
‘by-product” of that activity. When a future maintenance team comes to read the book
concerning the past maintenance performed on the software. the use of the change request
as a template for the structure of the book provides a useful beginning to understanding

how the maintenance performed on the system relates to that change request.

The operations which define the semantics of the ADT Maintenaunce_History are now illus-
trated by reference to the mamtenance of “pxr’. The Maintenance History. was produced
using the operations listed in chapter Y. The operations undertaken during the maintenance
of "pxrare used in the execution of a realistic selection of tasks. from each of the phases
of the maintenance model. The documentation paradigm is not intended to be used in the
performance of maintenance. nor is it intended that it is to be used in isolation in recording,
monitoring and managing maintenance. It is envisaged that it will rely heavily on supporting
automation such as configuration management tools. e.g. RCS [123] and Make [38]. and a

text editor, if it is to achieve the desired functionality.

10.2.4.1 Chapter 1 - Verification of the need for maintenance

Problem reports revealed deficiencies in the operation of pxr, and evaluation of these reports

gave rise to change requests. which identify those features of the cross-referencer which make

maintenance necessary: these requests appear below.

1. Output on screen is confusing due to output of tab characters. and sometimes the

screen 1s cleared inappropriately.

2. The program doesn’t distinguish between Var. Value. Procedure and Function param-

eters.

3. Self-referencing tvpes are not output.

4. The cross reference listing should not include standard Pascal types.

5. The structured listing has not been implemented.

6. The terse/intermediate listings do not work as specified.

The tull alphabetic listing is not implemented.

Since "pxr’ is new software it has no Maintenance History and so no search is necessary
to establish whether the change requests have been previously satisfied. If a Maintenance
History did exist for “pxr’ then a content search could have been used to verify the need for
maintenance, by searching the Anthology for a keyword contained in the change request,
using the cross_reference operation. The utility of this operation is illustrated later in the

ordering ol the change requests.

Before embarking on a search of the documentation. to find which parts of the program
require attention, the requests were submitted to a change-control authority and following
its approval, access to the source code was given.

274

After creating the Anthology. using the create_Anthology operation, and within it the
book, using the create_Book operation. the name and the version of the software system
being created was adopted as the title of the book. A skeleton book was constructed.
comprising six chapters. using the insert operation. The first four chapters concern the four
phases of the maintenance model. chapter five summarises the maintenance assignment
and chapter six functions as a "Scratchpad’, so that the maintenance team have somewhere
to test ideas concerning the working of the software. before writing up the appropriate
compounent of the book. This Scratchpad can be partitioned to refect the structure of the
maintenance team. At this stage the table operation shows the book structure to be as

shown in Figure 10.4 below.

Title Version 1.1 pxr

1 The Change requests

2 Understanding the software

3 Mcdification of the software
4 Revalidation of the software
5 Executive Summary
6 Scratchpad

Figure 10.1: The Maintenance History ol pxr

The change requests were then entered into the book structure as they appeared on the
change request document. using the insert operation. to give the structure as shown below,

in Figure 10.5 below.

Title Version 1.1 pxr
1 The Change requests

1.1 Screen output confusing
Program doesn’t distinguish types of parameter
Self-referencing types not output
Output of standard Pascal types not required
Structured listing not yet implemented

= e e e
A 0 WN

Terse/intermediate listings do not work as specified
1.7 Full alphabetic listing not yet implemented

2 Understanding the software

3 Modification of the software

‘4 Revalidation of the software

5 Executive Summary

6 Scratchpad

Figure 10.5: The Maintenance History of pxr
The maintenance team assigned a priority to each request. firstly according to the type
of maintenance hlvolved.gorNﬁwive1najntenance having the greatest priority. and secondly
according to the module currently being maintained. as will be illustrated below. Corrective
maintenance was required to enable pxr’ to distinguish between tyvpes of parameter. and to
output self-referencing types. Accordingly. in descending order. the new priority becomes as
shown in Figure 10.6 below.

This new ordering was copied to the scratchpad area of the book. using an iteration of the

Program doesn’t distinguish types of parameter
Self-referencing types not output

Screen output confusing

Output of standard Pascal types not required
Structured listing not yet implemented
Terse/intermediate listings do not work as specified

~N OO WD

Full alphabetic listing not yet implemented

Figure 10.6: New priority for change requests

copy-tree operation. and the new book structure was as shown by the table operation in

276

[Figure 10.7 below.

The five remaining change requests were concerned with perfective maintenance, and since

Title
1 The

1.

1.

e s
DU W N

7

Version 1.1 pxr

Change requests

Screen output confusing

Program doesn’t distinguish types of parameter
Self-referencing types not output

Output of standard Pascal types not required
Structured listing not yet implemented
Terse/intermediate listings do not work as specified
Full alphabetic listing not yet implemented

2 Understanding the software

3 Modification of the software
4 Revalidation of the software
5 Executive Summary
6 Scratchpad
6.1 Ordering the change requests

it was not vet known which modules ol "pxr’ were involved in the change requests. the

remainder of the ordering was postponed until the

6.
6.

1 Program doesn’t distinguish types of parameter
2 Self-referencing types not output

[igure 10.7: The Maintenance History ol pxr

understanding phase.

10.2.4.2 Chapter 2 - Understanding

The external documentation produced during the development of the software. was used
to further a global understanding of the program. relevant source code modules associated
with the change requests were identified. and were entered into the Scratchpad area of the

book structure, using the insert operation. The table operation shows the new state of the

207

next phase of maintenance. i.e.

book in Figure 10.8 below. Since the modules concerned with all the change requests were

Title Version 1.1 pxr
1 The Change requests
1.1 Screen output confusing
1.2 Program doesn’t distinguish types of parameter
1.3 Self-referencing types not output
1.4 Output of standard Pascal types not required
1.5 Structured listing not yet implemented
1.6 Terse/intermediate listings do not work as specified
1.7 Full alphabetic listing not yet implemented
2 Understanding the software
3 Modification of the software
4 Revalidation of the software
5 Executive Summary
6 Scratchpad
6.1 Ordering the change requests
6.1 Distinguishing parameter types
6.2 Self-referencing types not output
6.2 Modules associated with change requests
6.2.1 Distinguishing parameter types: paramlist.p, print.p, symbol.p
6.2.2 Self-referencing types: readtype.p
6.2.3 Screen output: gettoken.p
6.2.4 Standard Pascal types: symbol.p
6.2.5 Structured listing: print.p
6.2.6 Terse/intermediate listings: print.p
6.2.7 Full alphabetic listing: arguments.p, print.p
Figure 1080 The Maintenance History of pxr
: now known it is possible to complete the ordering ol the change requests. for the purpose of

drawing up a maintenance plan. by examining which of the five remaining change requests

are concerned with the modules involved with the first item in the change request queue,

e, distinguishing parameter types

The cross_reference operation was used to find which of the remaining change requests

were concerned with the paramlist.p. print.p. and symbol.p modules.

[
-1
/‘J

The operation Cross-reference implements a content scarch and produces a list of compo-
nents of the book structure which contain a common word in the data associated with the
component. These components are concerned with the same topic, and thus are grouped
together, for perusal. giving the opportunity for ‘cross-fertilization’, acting as a catalyst for

understanding.

The output from the cross reference operation for each of the modules in the first item of
the change request document was entered into the Scratchpad area of the book for each
module. using the insert operation. and according to the number of occurrences the insert
operation was used to insert the remaining change requests into their appropriate position

in the change request guene.

The graft operation unifies two subtrees into a single tree. The node where the graft is
to occur and the root of the gralted subtree are specified. Graft can be used to unity the

contributions of the maintenance team. within the Scratchpad.

The state of the book is shown in Figure 10.9 below using the table operation.

The original order of the change requests in chapter 1 was then deleted using the prune
) & | 1)
operation, and the final order of the change requests was transferred from the Scratchpad

chapter using the move operation.

Attention was now focused on understanding the software, which is in the domain of chapter
2. The section 2.1 ‘Global Understanding’ was inserted using the insert operation, then

subsections 6.2.1 to 6.2.7 inclusive were transferred to section 2.1 of chapter 2 using the

279

Title

1

[T ¢ LI - S UV I

Version 1.1 pxr

The Change requests
1.1 Screen output confusing
1.2 Program doesn’t distinguish types of parameter
1.3 Self-referencing types not output
1.4 Output of standard Pascal types not required
1.5 Structured listing not yet implemented
1.6 Terse/intermediate listings do not work as specified
1.7 Full alphabetic listing not yet implemented
Understanding the software
Modification of the software
Revalidation of the software
Executive Summary
Scratchpad
6.1 Ordering the change requests
6.1 Program doesn’t distinguish types of parameter
6.2 Self-referencing types not output
6.3 Structured listing not yet implemented
6.4 Terse/intermediate listings do not work as specified
6.5 Full alphabetic listing not yet implemented
6.6 Output of standard Pascal types not required
6.7 Screen output confusing
6.2 Modules associated with each change request
6.2.1 Program doesn’t distinguish types of parameter: paramlist.p,
print.p, symbol.p
6.2.2 Self-referencing types not output: readtype.p
6.2.3 Screen output confusing: gettoken.p
6.2.4 Output of standard Pascal types: symbol.p
6.2.5 Structured listing: print.p
6.2.6 Terse/intermediate listings do not work: print.p
6.2.7 Full alphabetic listing not yet implemented: arguments.p, print.p
6.3 Requests linked with paramlist.p, print.p, symbol.p
6.3.1 Requests linked with paramlist.p
6.3.1.1 Distinguishing parameter types: paramlist.p, print.p, symbol.p
6.3.2 Requests linked with print.p
6.3.2.1 Distinguishing parameter types: paramlist.p, print.p, symbol.p
6.3.2.2 Structured listing: print.p
6.3.2.3 Terse/intermediate listings: print.p
6.3.2.4 Full alphabetic listing: arguments.p, print.p
6.3.3 Requests linked with symbol.p
6.3.3.1 Distinguishing parameter types: paramlist.p, print.p, symbol.p
6.3.3.2 Standard Pascal types: symbol.p

Figure 10.9: The Maintenance History of pxr

[
7]
o

move operation. The table operation now reveals the structure of the book to be as shown

in Figure 10.10 below. A local understanding of the program was achieved by a perusal

Title Version 1.1 pxr
1 The Change requests
Program doesn’t distinguish types of parameter
Self-referencing types not output
Structured listing not yet implemented
Terse/intermediate listings do not work as specified
Full alphabetic listing not yet implemented
Output of standard Pascal types not required
.7 Screen output confusing
2 Understanding the software

2.1 Global Understanding

2.1.1 Program doesn’t distinguish types of parameter: paramlist.p,
print.p, symbol.p
Self-referencing types not output: readtype.p
Structured listing: print.p
Terse/intermediate listings do not work: print.p
Full alphabetic listing not yet implemented: arguments.p, print.p
Output of standard Pascal types: symbol.p
2.1.7 Screen output confusing: gettoken.p

3 Modification of the software
4 Revalidation of the software
5 Executive Summary
6 Scratchpad

6.1 Ordering the change requests

[N S
D U W N

NN NN
L N i
D N bW N

6.2 Modules associated with each change request
6.3 Requests linked with paramlist.p, print.p, symbol.p

Figure 10.10: The Maintenance History of pxr

of the change request and a detailed study of the relevant modules of the source code, in
conjunction with a study of the output from "pxr’. to obtain a design for the changes to the
source coce, in preparation for the next phase of maintenance. i.e. the modification phase.
The insert operation was used to insert section 2.2 ‘Local Understanding’ into Chapter 2
and also the subsections detailing the function of each of the modules involved, as shown in

Figure 10.11 below.

[
v/ 9]
—

Title Version 1.1 pxr
1 The Change requests

Program doesn’t distinguish types of parameter
Self-referencing types not ocutput

Structured listing not yet implemented
Terse/intermediate listings do not work as specified
Full alphabetic listing not yet implemented

Qutput of standard Pascal types not required

[
D N D W N

.7 Screen output confusing

2 Understanding the software

D kW

2.1 Global Understanding from external documentation
2.1.1 Program doesn’t distinguish types of parameter: paramlist.p,
print.p, symbol.p
Self-referencing types not output: readtype.p
Structured listing: print.p
Terse/intermediate listings do not work: print.p
Full alphabetic listing not yet implemented: arguments.p, print.p
OQutput of standard Pascal types: symbol.p
.7 Screen output. confusing: gettoken.p

[L
D U W N

Local Understanding

.1 gettoken.p: lexical analysis of command line.
paramlist.p: parsing formal and actual parameters.
print.p: printing cross-reference listing.
symbol.p: processing symbol table.

N

NN N RN
N W W N

readtype.p: parsing declarations in the program.
2.2.6 arguments.p: processing arguments in the command line parsing.
Modification of the software
Revalidation of the software
Executive Summary
Scratchpad
6.1 Ordering the change requests
6.2 Modules associated with each change request
6.3 Requests linked with paramlist.p, print.p, symbol.p

Figure 10.11: The Maintenance History of pxr

[N
9.4
8N

10.2.4.3 Chapter 3 - Modification

The changes to the source code modules to implement the change requests were designed
for each module. and inserted as sub-sections into chapter 3 of the book using the insert
operation, to produce the book structure shown in Figure 10.12 below by the table opera-
tion. The source code was amended as indicated above to ensure that the cross-referencer
performed according to specification. Testing the changes made to the software was then

carvied out in the revalidation phase.

10.2.4.4 Chapter 4 - Revalidation

Integration testing was carried out using a test file which contained all the features of Pascal
and this testing confirmed that the new version of pxr functioned as required by the change
request. Regression testing was carried out using a test suite to verify that the changes made
had no adverse side-effects on the program. The test. file. the test suite and the test results
were included in the chapter using the insert operation. The amended book structure is
shown below in Figure 10.13 below. and was produced using the table operation. The
external documentation relating to the program was updated to reflect the changes made.
Approval from the change control anthority was followed by incorporation of the modified
modules into a new version of pxr. using RCS [123] and Make [33]. T'he support offered by
the documentation parvadigm for erfensibility is now illustrated by reference to the support

oftered for documentation and configuration management.

[N
oL
o

Title Version 1.1 pxr

1 The Change requests
1.1 Program doesn’t distinguish types of parameter

Self-referencing types not output

Structured listing not yet implemented

Terse/intermediate listings do not work as specified

Full alphabetic listing not yet implemented

Output of standard Pascal types not required

.7 Screen output confusing

T =
D U bW N

2 Understanding the software

2.1 Global Understanding from external documentation

2.1.1 Program doesn’t distinguish types of parameter: paramlist.p,

print.p, symbol.p
Self-referencing types not output: readtype.p
Structured listing: print.p
Terse/intermediate listings do not work: print.p
Full alphabetic listing not yet implemented: arguments.p, print.p
Qutput of standard Pascal types: symbol.p
.7 Screen output confusing: gettoken.p
Local Understanding
.1 gettoken.p: lexical analysis of command line.
paramlist.p: parsing formal and actual parameters.

O =
(o BN 2NN NN FVIRE O]

print.p: printing cross-reference listing.
symbol.p: processing symbol table.
readtype.p: parsing declarations in the program.

NN RN NDRNNDRNDN NN

NN N NN
[S2 N~ N OV]

2.2.6 arguments.p: processing arguments 1n the command line parsing.
3 Modification of the software
3.1 arguments.p: code added to parse ‘f’ and ‘F’ options
3.2 gettoken.p: no tab characters output, call to ‘page’ removed
3.3 paramlist.p: parameters distinguished
3.4 print.p: parameters distinguished; parameter information updated;
alphabetic and intermediate/terse listings implemented
3.5 readtype.p: type-name inserted into symbol table before processing
3.6 symbol.p: parameters distinguished; no output of standard names
4 Revalidation of the software
Executive Summary
6 Scratchpad
6.1 Ordering the change requests
6.2 Modules associated with each change request
6.3 Requests linked with paramlist.p, print.p, symbol.p

¢4}

Figure 10.12: The Maintenance History of pxr

I
.

Title
1 The

1.

D U W~

1
1
1
1.
1
1

7

Versicn 1.1 pxr

Change requests

Program doesn’t distinguish types of parameter
Self-referencing types not output

Structured listing not yet implemented
Terse/intermediate listings do not work as specified
Full alphabetic listing not yet implemented

OQutput of standard Pascal types not required

Screen output confusing

2 Understanding the software
2.1 Global Understanding from external documentation

2.

NN
[S2 I~ TR VI V)

2.

1.1 Program doesn’t distinguish types of parameter: paramlist.p,
print.p, symbol.p

Self-referencing types not output: readtype.p

Structured listing: print.p

Terse/intermediate listings do not work: print.p

Full alphabetic listing not yet implemented: arguments.p, print.p
OQutput of standard Pascal types: symbol.p

.7 Screen output confusing: gettoken.p

Local Understanding

.1 gettoken.p: lexical analysis of command line.

e e
D b W N

paramlist.p: parsing formal and actual parameters.

print.p: printing cross-reference listing.

symbol.p: processing symbol table.

readtype.p: parsing declarations in the program.

2.6 arguments.p: processing arguments in the command line parsing.

3 Modification of the software

3.
3.

W www

2
.3
4

.1

5
6

arguments.p: code added to parse ‘f’ and ‘F’ options

gettoken.p: no tab characters output, call to ‘page’ removed
paramlist.p: parameters distinguished

print.p: parameters distinguished; parameter information updated;
alphabetic and- intermediate/terse listings implemented

readtype.p: type-name inserted into symbol table before processing
symbol.p: parameters distinguished; no output of standard names

4 Revalidation of the software

4.1 Integration testing
4.2 Regression testing

4

.2.1 Test Cases

4.2.1.1 Test Results

5 Executive Summary
6 Scratchpad
6.1 Ordering the change requests

6.2 Modules associated with each change request
6.3 Requests linked with paramlist.p, print.p, symbol.p

Figure 10.13: The Maintenance History of pxr

[
.
<

Support for completeness and consistency of documentation

Primarily. the documentation paradigm is a tool to assist in maintaining the completeness
and consistency ol the documentation of 1maintenance of large, complex. soltware systems.
Consequently, this support is analvsed in the context of the revalidation phase of software
maintenance, but it is equally relevant to the understanding and modification phases of

maintenance.

The Maintenance llistory s an ADT which is made up ol a hst ol hierarchical structures.
1.e. books. This hierarchical concept means that the documentation paradigm supports the
concept of extensibility. one of the desivable characteristics of environments listed by Magel

77].

An tllustration of this extensibility is the provision of an enlorced linkage between the source
code and its external documentation. The operation equal used in the maintenance of “pxr’
implements a structure search and tests two trees for equality: the trees may be subtrees
within the structure of the Book. or the trees mayv be Books themselves. In the context
of extensibility. the trees are the structural hierarchy of the source code and the structural
hierarchy of the documentation of this source code. The test for equality is in respect of
their structure and the values of their node kevs. A structured program has its modules,
procedures, functions. generically known as components, arranged in a hierarchical manner,
as shown in Figure 10. 11 below. The letters A.B etc represent the component identifiers. It is
good programming practice to give these component identifiers meaningful names, but these

names alone do not reflect a hicrarchical program structure. To make the hierarchy explicit,

[\
03]
(@]

/1N

/\

Figure 10.14: Module hierarchy of a structured program
the component identifier should carrvy two "labels’. a prefix and asuffix. The prefix veflects the
place of the componcut in the hicrarchy ol the source code. and a numerical suftfix indicates
the version number of the component. incremented each time the component is modified.
The modified hierarchical program compouent identifiers would then appear as shown in

Figure 10.15 below. The hierarchical structure of the program is now explicit. and the place

1 0

/
/

\
\
/ \
/ \
1.1.B_0 1.2.C.0 1.3.D_0
/\
1.1.1.D_0 1.1.2_E_0

A
/1N
|
|
I
I

Figure 10.15: Modified module hierarchy of a structured program

of a component within the hierarchy can be seen {rom its identitier. The documentation of
source code can mirror the hierarchy of the program. the problem of ewisting code without
these prefixes and suffixes could be solved by interfacing with a cross-referencer. the source
code and the documentation file could then be revised to carry these identifiers. Manually
scanning the software would be less of a chore. through enhanced readability of the source

code, and of the cross-reference output.

Q]
v
-1

Documentation is move likely to be done well if there exists an easy means of updating it.
and if there exists an audit process to check whether documentation has been written in
compliance with the standavds in force at the time of writing. This is a vital issue. since
failure to maintain documentation devalues the software. which is a capital asset. Update
of documentation is required to reflect changes made to the source code. An organisation
may decide that ‘free-format” documentation is allowable. but auditing procedures may tind
it difficult to verify this type of documentation. so “form-fill” mav be the standard method

for documentation ol maimtcnance. Whatever method is used. the documentation paradigm

is flexible and abstracts away from this low-level aspect of documentation.

Two types of modification to the source code can be envisaged. the structure of the hierarchy
could be changed. e.g. by the addition or removal of components. which coucerns the role of
the prefix. or internal modifications conld be made to a component. which concerns the role
of the suffix. Suppose another module had been inserted between modules whose identifier
prefixes are 1.1.1 and 1.1.2. respectively. This inserted module would then have its identifier
prefix as 1.1.2 and the module with a prefix of 1.1.2 would have its prefix incremented to
1.1.3. Each time a sonrce code module is modified. its identifier suffix is incremented by one.,
so that if two module identifiers only differ in the value of their suffixes. then the module

identifier with the greater value of its suffix is the later version.

All components could carry the suffix value 0 initially and this could be incremented by one
each time an internal modification is carried out: the componeuts in the documentation file
would be likewise incremented. A comparison of the modified source code structure with

the corresponding documentation structure indicates where in the documentation structure

[\]
04]
o4]

the maintainer needs to insert documentation concerning the change made to the source
code. i.e. the place(s) in the structure of the documentation where it needs to be updated
15 given by a failure in a pattern match. either because the remainder of the identifier does
not match. e.g. 1.1.21dentifier-X with 1.1.2_identifier Y, or because the sequence of num-
bers does not match. e.g. 1.1.3 follows 1.1.2 instead of the expected 1.2 as in the original
hierarchy. Correlation of the identifiers of the modules in the source code hierarchy and
in the documentation hierarchy is made possible by the unique prefix-suffix combination of
the identifiers. and this indicates whether the documentation has heen updated to reflect
any modifications to the structure of the source code. Each time the documentation file is
updated it is kept as a new version with the name ol the persou(s) responsible for its last
update. 5o a check can be made on the quality of the documentation.

Both the source code and its associated docnmentation concerning the maintenance assign-
ment can be stored within the Book. as subtrees within its structure. providing an efficient
means of testing the equality of these subtrees. as regards their structures and the values of

the identifiers within those strnctures.

Applying the documentation paradigim to the maintenance of large software svstems means
that the Maintenance History can be used as a means of revising the original documentation
without actually updating all its constituent parts. i.e. the paradigm provides a means of
traceability between maintenance assignments. For example. instead of having to find every
place in the documentation that makes reference to a variable, and listing the changes made.
the use of new variables and the discontinuance of other variables could be kept centrally

in a data dictionary. which is inherited by successive maintenance books: the same can

be done for the call-grapl strnctnre. This method functions in much the same way as an
errata’ insertion in a book. The data dictionary and call-graph structure will be updated
and annotated to show which changes have taken place. from their "baselines” i.e. as they

were at the commencement of the maintenance assignment.

Support for configuration management

Another example ol the support offered by the documentation paradigm for extensibility
is the domain of conliguration management. here are two strands to configuration man-
agement. that ol the soltware system being maintained and that of the project structure

1tself.

A particular version ol sonree code is comprised of particular versions ol the source code
modules. The suffix i the module identifier gives the version of the module to be included
i a configuration of the software for a "customer’. each different configuration can be repre-
sented by a book in the Maintenance History. The figure shows all the values of the module

suffixes as zero. this hook would represent a “hase release” ol the software.

The adoption of a hierarchical project structure means that the relationship between doc-
uments is made explicit since. when stored as the components of a book. for example, the
relationship may be that of chapter and section, or section and subsection. Establishing a
relationship between documents is essential for configuration management. in this respect
the documentation paradigm is an crpression of the maintenance model. Although the

maintenance model is capable of evolution. this must be carefully controlled since it both

provides a standavd conliguration for the project structure and a familiar organisation of
information so that members of the malntenance organisation know where to look in the
book for particular kinds ol imformation. In addition the project structure makes possible

allocation of duties to the members of the project team.

The insert operation was used to include the changes made to the documentation. and
the configuration of the new version of the software: the Scratchpad was removed from the
book using the prune operation. 1o give the book structure as showu by the operation in

Figure 10.16 below.

10.2.4.5 Chapter 5 - Executive Summary

After the documentation of the soltware an Executive Summary needs to be prepared. The
importance of providing this type of information flow is that the management team have
access to an overview of the maintenance assignment. which can aid them in their strate-
gic planning. An example of the tvpe of information included in the Executive Summary
would be a statistical cvalnation of the types of source code components which are most
often changed (corrective maintenance) and would indicate the type of code that most often
causes problems. selecting candidate modules for preventive (scheduled) maintenance. This
information could be obtained from the suffixes of the source code component identifiers,
using the cross-reference operation. Information may also be included in the Executive

Summary to enable the management team to evaluate the toolset of the environment.

291

Title Version 1.1 pxr

1 The Change requests

Program doesn’t distinguish types of parameter
Self-referencing types not output

Structured listing not yet implemented
Terse/intermediate listings do not work as specified
Full alphabetic listing not yet implemented

Output of standard Pascal types not required

e
D W

.7 Screen output confusing
2 Understanding the software

2.1 Global Understanding from external documentation

2.1.1 Program doesn’t distinguish types of parameter: paramlist.p,

print.p, symbol.p
Self-referencing types not cutput: readtype.p
Structured listing: print.p
Terse/intermediate listings do not work: print.p
Full alphabetic listing not yet implemented: arguments.p, print.p
Output of standard Pascal types: symbol.p

[e = e
D U W N

.7 Screen output confusing: gettoken.p

Local Understanding

.1 gettoken.p: lexical analysis of command line.
paramlist.p: parsing formal and actual parameters.
print.p: printing cross-reference listing.

N
BN RN RN NN N NDNDNNDDN

N N NN

2
3
.4 symbol.p: processing symbol table.
5 readtype.p: parsing declarations 1n the program.
2.2.6 arguments.p: processing arguments in the command line parsing.
3 Modification of the software
3.1 arguments.p: code added to parse ‘f’ and ‘F’ options
3.2 gettoken.p: no tab characters output, call to ‘page’ removed
3.3 paramlist.p: parameters distinguished
3.4 print.p: parameters distinguished; parameter information updated;
alphabetic and intermediate/terse listings implemented
3.5 readtype.p: type-name inserted 1into symbol table before processing
3.6 symbol.p: parameters distinguished; no output of standard names
4 Revalidation of the software
4.1 Integration testing
4.2 Regression testing
4.2.1 Test Cases
4.2.1.1 Test Results
4.3 Documentation of changes made to ‘pxr’ source code
4.4 Configuration management and Version Control
- 5 Executive Summary

Figure 10.16: The Maintenance History of pxr

292

10.2.5 Future maintenance of ‘pxr’

.

In the construction of the book to produce version l.1 of ‘pxr’. the editing operations as-
sumed greater importance than the operations associated with navigation and retrieval of

information. In this part ol the maintenance assignment the reverse is true. as described

below.

Future maintainers of "pxr’ may need to acquire an understanding ol the current maintenance
assignment in order to perform their maintenance assignment. Browsing is one way of
achieving such an understanding. using a conceptual map. The conceptual map of the book
documenting the maintenance of "pxr’ has been shown as an indented table of contents so

reflecting its hierarchical structure. which helps to ovient the user when browsing.

This conceptual map is itself an abstraction. a well-known example of such an abstraction
is a road map, with towns as nodes in the directed graph. One of the problems associated
with navigation within a large data structure is disorientation. An obvious benefit of a
hierarchical topology is in combatting this disorientation. the operation which most obviously
characterises the book structure as a conceptual map. 1s path which prints out the node
keys from the root of the tree. to a nominated node. thus giving the co-ordinates of the
node. orienting the user in his/her perception of their position on the conceptual map, and

providing valuable traceability information.

As an example ol the use of path. the path from the title of the book to the node 2.2.1

gettoken.p is shown by Figure 10.17 below:

293

The path operation places the module paramlist.p in its right{ul context, orienting the

Title Version 1.1 pxr

2 Understanding the software

2.2 Local Understanding

2.2.2 paramlist.p: parsing formal and actual parameters.

Figure 10.17: Output from the "path’ operation

maintenance programier.

To turther understanding, the evaluate operation can be used to display the contents of
node. During a browsing session manyv nodes may be visited. the collection of nodes consti-
tuting a “virtual” book. Sometimes ideas are half-formed and then the tenuous thread which
holds the idea together breaks. and the idea is lost. The evaluate operation also keeps a
record of which nodes have been visited during a browsing session. storing the nodes in a list,
and this list can be displaved using the trail operation. By this means it may be possible

to recapture the idea which was lost.

An additional means of aiding understanding is provided by the abstract operation which
15 a ‘slicing” operation offering a ricw ol the documentation. Abstract produces a list of
nodes concerned with the same topic. the nodes being the components of a hierarchy. e.g.
sections. subsections. ete. luformation is made available at greater levels of detail by the
hierarchical decomposition. and can be utilised in the same wayv as texts in programmed

learning. In Figure 10.13 below the operation is used to provide information concerning the

revalidation of the software.

294

4 Revalidation of the software
4.1 Regression testing

4.1.1 Test Cases

4.1.1.1 Test Results

[igure 10.18: Output from the "abstract’™ operation

Support for traceability

An identifier, e.g. L.2.1.1_.XYZ_.0 provides a path which can be traced backwards through
the tree of called components. to show where the component was called from. The call tree

could also be displayed in graphical form.

10.2.6 Other attributes of the documentation paradigm

Relational aspect

Storing the information concerning source code as a hierarchy of tables with one of the nodes
containing the information produced by, e.g. program analyvsis tools. means that queries of
a relational nature can also be supported. The relational model offers more flexibility than
other data models. an important consideration since there is no basis for determining in

advance which type of questions will be most frequently asked. by maintainers.

10.2.7 Weaknesses associated with the documentation paradigm

The main disadvantage of hierarchical information structures is concerned with their update,
which is difficult when the node to be inserted or removed is not a leaf node. depending on
the granularity of the object.

There is no automatic provision of facilities for versioning of understanding. It is to be
expected that understanding of a program is achieved in an incremental fashion, and an
interface would need to be provided to a tool such as RCS [123].

The documentation paradigm does not support a rule-based query language. as it lacks a

sophisticated database management svstem.

10.3 The effect of incomplete use of the toolset by

maintainers

The incomplete use of the toolset will degrade its effectiveness. It is not possible to quantity

this. but the consequences of its incomplete use are set out below.

During the use of the documentation paradigm there are various activities carried out by the
members of the maintenaunce organisation. Some of these activities depend on one particular
tool. If the toolset is used incompletely, then it is not possible to say quantitatively what

effect this would have on the maintenance activity. unless it is also known what approach

296

is to be used in tandem with the documentation paradigm, in lieu of relying solely on the

toolset.

The toolset makes it possible to express the documentation paradigm; failure to use certain

tools may render invalid any attempt to use other tools.

10.3.1 Reasons for using the complete toolset

The operations which comprise the paradigim are a minimal set, and the importance of this

fact 1s described helow.

l. Process Structuring
The documentation paradigm acts as the conceptual schema tor the ISMSE, and en-
capsulates the process model underlying it: i.e. the anthologyv’s structure reflects the
conceptual schema for the ISMSIL Evolution of the process model underlyving the
ISMSE requires that the ISNISE must be able o support its own evolution. It is there-
fore vital to ensure that the environment is always able to support the evolution of this
process model through the activity of process-structuring, utilising the indispensable
operations which make it possible to build and edit the anthology structure. Without
the tools to build and cdit the process model underlving the conceptual schema, the

evolution of the process model would not be possible.

2. Effect on the technical aspect of maintenance
Some of the operations have a one-to-many mapping to the activities performed dur-
ing the maintenance of software. as can be seen from the table below in table 10.1.
Removal of a particular operation {rom the set may have a deleterious effect on the
effective performance of these activities, or may render them impossible to perform.
The operations that could possibly be dispensed with are those which make it possi-
ble to extract information from the book structure. for the purpose of understanding.
[t 1s possible to nimic these operations manually, but this would mean that these
tasks are very time-consuming. aud since understanding is the rate-determining step
in the maintenance activity. this approach would be counter-productive. In this con-
text perhaps the most crucial operation is the Cross-reference operation, since it has

the greatest potential to aid in understanding the software system being maintained.

3. Management
The operations which extract information from the book structure are vital to the
management function - without them it is difficult to bring maintenance under man-
agement control. Management is closely linked to organising, monitoring and auditing,
and without the use ol the Table. Abstract and Evaluate operations. it is impossible
to monitor the progress ol the maintenance assignment. In addition. the absence of
the operation C'ross-reference makes it impossible to extract information concerning
the maintenance assignment. for the purposes of auditing. The absence of the Cross-
reference operation makes impossible the analysis of the change requests with a view
to batching some of them. using the seratchpad facility: batching being an activity

concerned with organising.

4. Desirable characteristics of the ISMSE lost as a result of incomplete use of
the toolset
A summary of the activities supported by the complete toolset 1s shown below in
Table 10.1. Perhaps the best way of describing the effect of the incomplete use of the
toolset is to look at the desirable characteristics conferred upon the ISMSE by the
toolset - and how some ol these properties would be “lost’, if certain operations were

not used. making some activities impossible.

Activity Operations involved

Build and Edit

(‘ross-reference. Trail

Documenting

Browsing

Searching (‘ross-reference, Trail

Understanding ("voss-relerence. Trail

Authoring

Build and Edit

Editing

Build and Edit

Versioning

Build and Ldit

. Equal

Tracing (‘ross-reference. Trail

Auditing ("ross-reference. Trail

Table. Cross-reference, Abstract, Evaluate
Build and Edit

Managing

Process Structuring

Table 10.1: Operations and activities associated with the documentation paradigm

Abstraction - directly supported by an operation of the same name.

Extensibility - support for configuration management and versioning. using, e.g. the Equal
operation.

Grouping of Resources - pooling of efforts which makes use of the (ross-reference oper-
ation, and Build and Iiit operations.

Adaptability - achicved through incremental implementation. making possible incremental
integration, to reflect evolution of the process model. The operations involved are Build and

299

Edit operations and those operations which facilitate understanding.

Tailorability - integrating maintenance process and maintenance organisation. Evolution
of the framework which makes integration possible requires. at least. the use of Build and
Edit operations.

Unification - facilitates communication and co-ordination between component parts of

maintenance organisation. requiring operations to support monitoring and auditing.

10.4 The scope for reuse of experience within the pro-

posed ISMSE

The ensuing knowledge stenuning from the information collected during a maintenance as-
signment can provide a record of the expericnce gained during the assignment, which can
be of use in future maintenance assignments. In time the maintenance-history becomes a
resource, containing much information concerning maintenance strategies, providing a tool
for the advancement ol knowledge concerning software maintenance. and serving to advance
software maintenance research. An example of this is in the area of re-use; previous assign-
ments can be studied to see how particular problems were solved. which can aid in achieving
an increase in productivity. A failure to learn from the past often means that the mistakes of
the past are destined to be repeated. which will reduce the productivity of the organisation.
The establishment of reusable processes is the most effective way of providing for reuse in an

environment. Mapping the chapter concerning the change request to the succeeding chapters
) | g g |

300

which execute this change request provides the reader with a means of re-using parts of the

maintenance process.

10.5 How managers could incorporate ‘milestones’

The software development life-cyvcle 1s separated into phases for the purpose of incorporating
‘milestones” for managers associated with the project. Similarly the maintenance of software
is similarly partitioned. hierarchically. using phases. The maintenance model maps directly
onto the hook structure and the degree of completion of each chapter is an indicator of the
progress of the maintenance assigniment. Apart from the first phase. no phase of maintenance
can begin until the previous phase is completed, and so the table of contents operation

provides managers with a means of monitoring the progress of the assignment.

10.6 The scope for using the ISMSE to document its

own development

The documentation paradigm in this thesis enables the documentation of the maintenance
process. which s a hierarchical one. Any process having a hierarchical nature is capable

of being documented using the documentation paradigm promulgated in this thesis, since

301

the book structure is itself a hierarchical one. Furthermore, maintenance is a microcosm of
software development and it has been demonstrated that it can be documented using the
documentation paradigm. By induction, the software development process is also capable of
being documented using the same paradigm. If, say. an [PSE was used to build an [SMSE.
the documentation paradigm could be hosted on the IPSE. The only other alternative is to
record the development on paper. and then at some later stage make the transition to the

electronic version ot the documentation paradigm.

10.7 Summary

The use of the documentation paradigm in a toolkit environment, has been described, using
the host computer's hierarchical file structure to mirror the structure of the ADT Main-
tenance_History. and operating svstem commands to mirror the operations which define
the Maintenance_History as an ADL. The book structure is more ordered than a normal
acyclic directed graph. because a relationship exists between the nodes. the relationship
being stronger than the simple inequality relation existing between nodes in many binary
search trees. Furthermore. the operations which characterise the documentation paradigm
enable the maintainer to abstract away [rom the underlving file representation. and view the
information as collections of entities. or objects. In this way the ADT Maintenance_History is
mapped to the underlying file system, the minimum granularity of the operand for its opera-
tions being the file. the relationships between files which are logically related are maintained.

The editing functions which help define the ADT Maintenance_History. help to underline

302

the fact that the documentation paradigm provides the basis for an authoring system. which
is essential to achieve the desired level of productivity when implementing computer-aided
learning (CAL), one of the functions of the ISMSE. CAL applies to understanding the soft-
ware system being maintained. and to learning to use a complex tool. i.e. the [SMSE itself.
The documentation paradigm provides a means ol integrating these two functions of the

ISMSE, within a single data structure.

The Maintenance History provides a log of maintenance activities. and the inclusion in the
maintenance log of explanatory sectious detailing why sommething was done in the way it
was provides an insight into the strategy adopted dnring software maintenance and can aid
the understanding of the lower-level activities. including the coding phase. performed by

‘current” maintainers. by fulure maintainers.

The documentation paradigm confers several of the desirable characteristics enumerated by
Magel [77] upon the ISMSIL It has been shown that the paradigm supports abstraction.
extensibility. and grouping of resources. The documentation paradigm is indepen-
dent of any programming language or process model. and confers generality upon the
[SMSE. Evolution of the process model will not invalidate the use of the paradigm; since
the paradigm is the conceptual schema for the [SMSE. and supports incremental imple-
mentation. through incremental integration. and therefore confers adaptability upon the
ISMSE. Moreover the documentation paradigm fosters a disciplined approach to the docu-
mentation of software. and provides the framework for integrating the maintenance process
and the maintenance organisation into a single unifving structure. so the paradigm con-

fers tailorability upon the ISMSLE. This also simplifies communication and coordination

303

between the component parts of the organisation. particularly the technical members and
management members of the maintenance organisation, so conferring unification upon the

[SMSE.

The application of the documentation paradigm to the maintenance of a software tool. has
been used to assist in its evaluation and to extrapolate its use to a larger software svstem.
In particular. the analysis of the paradigm highlighted the support it offers for abstracting,
documenting. browsing. searching. understanding. authoring. editing. versioning, tracing.

auditing. managing. and process structuring.

From this evaluation of the documentation paradigm. it can be inferred that it would provide
adequate functionality. when used to document the maintenance of a large software system,
particularly as regards safeguarding the completeness and consistency of the system'’s doc-
umentation: aund supporting couliguration management. version management. and project

management.

304

Chapter 11

Conclusions and Further Work

11.1 Review of the work

The work in this thesis is reviewed here and suggestions made as to how the work can be

extended in the {utnre.

The original objectives of this thesis were to provide a maintenance organisation with the
means of reducing the maintenance backlog and narrowing the “hardware-software gap’. A

means of increasing productivity. by the use of an Integrated Software Maintenance Support

Environment, has been outlined. using a documentation paradigm within the framework of

this environment. to provide an effective strategy for the maintenance of software. Specifi-

cally the thesis aimed to:

L. examine the need lor a maintenance support environment and the need for a strategy

for software maintenance

2. nvestigate currentlyv-available support environments for their support for software

maintenance

3. develop a strategy for the maintenance process. and a high level design for a mainte-

nance support environiment

4. formally define and implement a maintenance strategy and demonstrate and analyse

1ts use

11.2 Have the objectives been achieved

The ever-increasing complexity of software systems. and the size and complexity of the
their associated documentation. revealed the need for an integrated support environment
for software maintenance. This need defined the main objective of the research, that of
devising a strategy for providing automated support for software maintenance, particularly

with regard to the use of software tools to gather information concerning the source code.

306

and its associated external documentation, and a means of recording the documentation of

maintenance performed on the svstem.

A basis for a disciplined approach to providing automated support software maintenance is an
underlying process model. Devising such a model refined the main objective of the research.
The literature was surveved to see how existing software maintenance process models served
as a means of providing the basis for a disciplined approach. paying particular attention to
those models which focused on the role of understanding in the maintenance of software.
It was found that the main deficiency in existing maintenance process models for software
maintenance was their vestriction 1o the technical aspects ol soltware maitenance. The
process model devised f{or soltware maintenance in this thesis acknowledges the importance
of the maintenance organisation, particularly with regard to its information requirements.
and the bearing this has on the planning and monitoring of software maintenance. These
particular aspects of soltware maintenance had an important bearing on the design of the
[SMSE. and on the formulation of a strategy for software maintenance. resulting in the

documentation paradigm. adopted to support this strategy.

Having devised a process model for the maintenance of software it was then necessary to
find an environment which could host this model, so that automation could play its part in
increasing the productivity ol a maintenance organisation. An overview of integrated soft-
ware engineering support environments was undertaken to examine those characteristics of

the environments which provide support for a disciplined approach to software maintenance.

This literature survey revealed that it is the architecture and interfaces which are the dom-

307

inant characteristics of integrated soltware engineering support environmeunts. since the ar-
chitecture is the implementation of the environment’s design and the interface plays a vital

part in the integration of the environment’s functions.

Existing integrated software engineering support environments were surveved. those that
were commercially-available. and also academic research environments. [t was found that
most of these environments were not truly integrated. true integration was found to exist only
in Integrated Project Support Environments (IPSEs). These environments aim to support
the complete software development life cvcle. but most of their support is aimed at software
development. since they do not provide support for the understanding of software. their
toolset lacking the necessary tools to support analysis of source code. The literature survey
revealed a need for an lutegrated Software Maintenance Support Environment (ISMSLE).

together with the need for a disciplined engineering approach to software maintenance.

Having establishied the need for an ISMSLEL and the implicit link between the software main-
tenance process model and a maintenance organisation. the next objective was to propose a
high-level design for the [SMSE. based largelyv on the information requirements of a main-
tenance organisation. Within the framework of a high-level design the conceptual schema
for an environment database has been devised to provide a documentation paradigm to
support a strategy lor the maintenance of software. This strategy aims to make the future
understanding of software casier. while at the same time safeguarding the consistency and
completeness ol its documentation; a vital requirement since the understanding of source

code is most easily achieved from its high-level external documentation.

A high-level design for an ISMSID has heen proposed. based largely on the information
requirements of a maintenance organisation. and a study of the mechanisms necessary to
capture information, and provide reliable documentation of changes to source code. Within
this framework a conceptual schema for an environment database has been devised to pro-
vide a documentation paradigm to support a strategy for the maintenance of software. This
strategy aims to make the future understanding of software easier. while at the same time
safeguarding the consistency and completeness ol its documentation, a vital requirement

since the understanding of source code is most easily achieved from its high-level documen-

tation.

A study of the mechanisims necessary to capture information. and provide reliable documen-
tation ot changes to source code made 1t possible to establish the information requirements
of a maintenance organisation. since an environment is primarily concerned with informa-
tion. and in particular the hink between information and knowledge. Knowledge implies
understanding. and achieving this understanding is the ‘rate determining step” in the main-
tenance of software. Factors which aid knowledge-capture arve the easy storage. retrieval
and processing of information. This led 1o the conclusion that the database in the ISMSE
has a vital role to play in the understanding of software. providing an additional impetus
to devising a conceptual schema for the database, so that the information in the database

could be structured, providing support for abstraction to aid understanding.

The conceptual schema for the environment database. which is central to the documentation
paradigm, has been formally defined as an abstract data type, and the evaluation of the

prototype has confirmed its utility and efficacy, ignoring performance considerations.

309

Summary

The primary objectives of the research have been achieved. but in the long term, n the wider
sphere of support environments. much work remains to be done to make the ISMSE a viable
system for the maintenance of large soltware systems: the next section describes some of the

further work required to achieve this aim.

11.3 Further Work

Central to the working of the [SMSL is its integration mechanism. which unifies the func-
tions of the environment so that it functions as a single tool. ln addition. the [SMSE needs
to be made active, suggesting approaches and tools to the maintainer, for the maintenance
of software. rather than simply functioning passively: this could be achieved by making
the change-vequest machine-interpretable. Thus. it could then be ascertained whether the
change request has previously been satisfied. avoiding the needless repetition of work. and
secondly. the change request can also serve as a template for the structure of the book, defin-
ing the contents of the chapters within which the maintenance organisation will conduct the
maintenance assignment. This approach has great utility if the template is capable of pa-
rameterisation. for a particular type of maintenance. e.g. corrective maintenance, providing
a standardised approach to the maintenance of software. leaving the maintenance team to
concentrate on the content of the book. without having to be concerned with its structure,
avoiding a ‘cognitive overliead’. Parameterisation of the template also offers support for

user-enhanceable systems, so that tailoring of the documentation paradigm is possible. In

310

support of the above. the design ol a suitable object management system (OMS) for the

ISMSE. is paramount. for the following reasons:

N

An OMS reflects the complexity and granularity of the objects dealt with during the
course of a maintenance assignment, at a higher semantic level than classical file svs-
tems or DBMS. through the enforcement of constraints, using ADTs. This has impli-
cations tor the understanding phase of maintenance. which is the rate-determining step
in a maintenance assignment. Moreover. an OMS offers better services for the storage

and retrieval of these complex data structures than classical file svstems or DBMS.

An interface between the OMS and software tools is required. so that information can
be entered into the book structure. without manual intervention by the maintainer. if
desired. This requires the automatic invocation of one tool by another tool, to extract
information concerning the software: i.e. the OMS facilitates rool-tool communication.
and so 1ts design must include an abstract interface so that evolution of the conceptual
schema can proceed. reflecting the evolution of the maintenance process. without the

need to alter the [SMSE's toolset.

Collaborative authoring by members of the maintenaunce team must be supported,
which, in turn. means that a view mechanism must be devised. so that different cat-
egories of user can access the data structure simultaneously. without the need for
complex locking mechanisms, often an integral part of commercial DBMS. and unac-

ceptable in this context. because of the long time-spans involved in many transactions.

311

As pointed out in chapter 10. the technology underlying ISEs is immature and so in the short
term the documentation paradigm must be implemented using available technologyv. using,
e.g. an available software engineering environment, so that the documentation paradigm can
be mapped onto an underlying hierarchical file structure, the operating system’s tools being
used to implement some of the operations which underhe the documentation paradigm. The
ficst priority is the design of a suitable implementation of the documentation paradigm using
an appropriate high-level language. which is able to interface with the operating system. for
the purpose of creating and editing a divectory structure. and also able to interface with
a DBMS which is compatible with a lierarchical file structure. A selection of appropriate
commercially-available softwarve tools for imaintenance then needs to be integrated with the
prototvpe ISMSE. and interfaced with the DBMS. The set of operations underlying the
documentation paradigin could be expanded to offer the facilities of a sophisticated authoring

svsten.

In the area of re-use an indexing systenm needs to be devised so that reusable processes. e.g.

designs. algorithms. specifications. code fragments. can easily be found.

Bibliography

Akscyn RM. et al. ‘KMS: A distributed hypermedia system for managing

knowledge in organisations’. Comms. ACM. Vol. 31 No. 7. July 1988

Alderson A et al. *‘An overview of the Eclipse Project’. in [ntegrated Project

Support Envivonments. ed. J. McDermid. Peter Pevegrinus Lid.. 1985

Alford M.. ‘A Requirements Engineering Methodology for Real-Time Pro-

cessing Requirements’. Trans. Software Eng.. Vol. SE-3. No. [, Junuary 1977

Ambras J.. O'Day V.. ‘Microscope: A program analysis system’. Proc. 20th An-

nuel Hawae International Confercuce on System Sciences. 1987

An K.H.. Gustalson D.A.. Melton A.C. ‘A model for software maintenance’, Proc.

[EEE Conference on Software Maintenance [987. Austin, Texas

Arthur Lo, ‘Improving Software Quality’. Wileyv. 1993

Balser R.. Cheatham T.L., Green (., ‘Software Technology in the 1990s : Using

a New Paradigm’. I[IF'EE Computer. November 1983, p39-45

313

[10]

[11]

14

15]

[16]

Belady L.A.. Lehman M.M.. ‘A model of large program development’, /[BM Sys-

tem Jowrnal. Vol. 15, No. 3. 1976

Bennett K.H.. ‘The Software Maintenance of Large Software Systems: Man-
agement, Methods and Tools’, in Software Engineering for Large Software Systems.

ed. B.A. Kitchenaum, Elsevier Science Publishers Litd., 1990

Benington H.D.. ‘Production of Large Computer Programs’. Proc. ONR Sympo-

stum on Advanced Programming Methods for Digital Computers. June 1956, p350-361

Bigelow J.. ‘Manipulating Source Code in DynamicDesign’. Hypertext 87. [EEE

1987

Bigelow J. ‘Hypertext and CASE’. [EFEE Software. March [198¥

Biggerstaff T'.. Ellis (.. Halasz FF.. Kellog (.. Richter (.. Webster D. ‘Information
Management Challenges in the Software Design Process’. Technical Report

STP-039-87. MCC. Software Technology Program. January [987

Boehm B.W.. ‘The high cost of software’. Proc. Symp. on High Cost of Software,

Monterey. California. 1975

Boehm B.W.. ‘Software Engineering’. [EEE Transactions on Computers Vol C-25.

No. 12 December (976

Boehmi B.W.. Brown J.R.. Lipow M. ‘Quantitative evaluation of software quality’,

Proc LEEE/ACM Sccond [ul. Conf. Software Eng.. October 1970

Boehim B.W., ‘Software Engineering Economics’, Prentice Hall 19381.

314

—
(v)

[19]

(3]
it

Boehm B.W. ‘A Spiral Model of Software Development and Enhancement’.

ACM Sigsoft Software Enginecring Notes. Vol. 11, No. {. August 1986

Borgida A.. et al. ‘Knowledge Representation as a Basis for Requirements

Specification’, [EEE Computer, Vol. 18, No. /, 1985

Brooks R.. ‘Towards a Theory of the Comprehension of Computer Programs’.

Int. J. Man-Machine Studies. Vol 8. 5/3-55/. 1983

Brooks F.P.. ‘Essence and accidents of software engineering’. [EEE Computer,

Apral 1987

21 Bush V.. ‘As we may think’. Atlantic Monthly. July 1945

| Buxton N.. ‘Requirements for Ada Programming Support Environments’,

Stoneman. DOD. February 1950

i Carter G.W.. ‘Seven Stages of Maintenance’, Software Maintenance News, pl{,

1950

I Chapin N.. ‘Software Maintenance with Fourth Generation Languages’ 4CM

Sigsoft Software Enginering Notes, Vol 9. No. [, January 1954

)] Church A.. Rosser J.. ‘Some properties of Conversion’. Trans Amer. Math. Soc.

39, [712-482. 1996

Clemm G.M.. ‘The Odin Environment Integration Mechanism’. Technical Report

CU-C8-323-86. Universily of Colorado. Boulder. Colorado. Aprid 1986

Clocksin W.F., Mellish (".S.. ‘Programming in Prolog’, Pub. Springer-Verlag 1981

315

[20]

30]

[36]

Collolello .J.. Orn M., ‘A Practical Software Maintenance Environment’. Proc.

[EEE Conference on Softaware Maintenance, 1958

Conklin J.. ‘Hypertext: An Introduction and Survey’, [EFE Computer, Septem-

ber (987

Dart S.. Carnegie Mellon University. ‘Software Development Environments’. [EEFE

Computer. November 1987

Delisle N.M.. Menicosy D.E.. Schwartz M.D. ‘Viewing a programming environ-

ment as a single tool’. {CM Sigplan Notices. May 1954. Vol. 19. No. 5

Delisle N.M.. Schwartz M., ‘Neptune: A hypertext system for CAD applica-

tions’. Proceedings ACM Sigmod "86. New York

DeMarco T.. ‘Structured Specification and Systems Analysis’. Yourdon Press

1981

Distaso J.R.. ‘Software Management - A Survey of the Practice 1980°, [FFE

Procecdings. September 19800 pl103-1119

Donahoo J. D.. Swearinger D.. Rome Air Development Centre. Grifiss AFB, New York,
‘A review of Software Maintenance Technology’, RADC-TR-80-13, February

1980

Fairlev R.. ‘Software engineering concepts’, Pub. McGraw-Hill. 1985

Feldman J., ‘Make: A Program for Maintaining Computer Programs’, Software

Practice and Frperience. Aprid 1979

316

(39]

[40)

[41]

43]

44

45]

[46]

Fjeldstad R.N.. Hamlen W.T.. ‘Application program maintenance study’. in Tu-
torial on Software Mamtenance. Silver Spring, MD: [EEE Computer Society Press,

1983

Foster J.R.. Jollv A.E.P.. Norris M.T., ‘An overview of software maintenance’. Br

Telecom Technol J. Vol. 7. No. 4. October 1989

Freedman D.P.. Weinherg GG.M.. ‘A checklist for potential side-effects of a mainte-
nance change’. in Techniques of Program and System Maimtenance. ed. Girish Parikh,

Ethotech,. fne.. 1980, pp 61-0&

Garg P.IN., Scacchi W.. ‘On Designing Intelligent Hypertext Systems for Infor-
mation Management in Software Engineering’. Hypertext 87 TR88-013, Univer-

sity of Novth Carolina. November 1987

Garg P.K.. ¢ Abstraction mechanisms in Hypertext’. Commens. ACM, Vol. 31,

No. 7. July 198X

Giddings R.V.. ‘Accommodating Uncertainty in Software Design’, Comms.

ACM. May 1984, pg28-43

Glagowski T.G.. *‘Using a relational query language as a software maintenance

tool’, Proc IFEE Compsac (985

Glass R.L., Noiseaux R.A.. ‘Software Maintenance Guidebook’, Pub. Prentice-

317

[47]

[49]

Goguen J.A. et al. *‘Abstract Data Types as Initial Algebras and Correctness
of Data Representations’. Proc. Conference on Computer Giaphics, Pattern Recog-

nition and Dala Structure, May 1975

U.S.A. GSA. ‘A Software Tools Project: A means of capturing technology and
improving engineering’. Reporl OSD-82-101. Office of Software Development. and

Information Technology. Federal Software Testing Centre, 1982

U.S.A. GSAL Report OSD-82-101. Officc of Software Development, and Information

Technology. Federal Software Testing Centre. 1984

Guttag J.. Horowitz 1. Musser D.R.. ‘Abstract Data Types and software valida-

tion’. USC Information Sciences Institute Technical Report. ISI/RR-76-48, 1976

Guttag J.. ‘Abstract Data Types and the Development of Data Structures’,

Comms., ACM. Vol 20 No 6. June 1977

Hall J.A. et al. *‘An overview of the Aspect Architecture’ in [ntegrated Project

Support Environments. od.). McDermid. Peter Peregrinus Ltd.. 1935

Hansen G.. “Who says there have been no advances in Software Maintenance

Tools 7’ in Software Maintenance News, Vol. 5. No. 12 p6, December 1987

Henderson P.B.. Procecdings of the ACM Sigsoft /Sigplan Software Engineering Sympo-
stum on Practical Software Development Environments - ACM, Sigplan Notices, Vol.

22, No. | Palo Alto. California, December 9-11, 1956

it

(61]

(63]

Honghton R.C.. *Characteristics and Functions of Software Engineering Envi-
ronments: An Overview’ A"V Sigsoft Software Engineering Notes. Vol [2 No. [,

Januvary 1987

Hutchison D.. Walpole J.. ‘Eclipse - a distributed software development envi-

ronment’. [KL Software Engineering Journal, March 1986

‘IEEE Standard Glossary of Software Engineering Terminology’. [EEFE 1983

‘IEEE Guide to Software Requirements Specifications’. [FEE 198/

Jones (".B.. ‘Systematic Software Development Using VDM’. Pub. Prentice-Hall.

1936

Naiser G.. Feiler P.. ‘Intelligent assistance without artificial intelligence’, Proc
32nd [EFE Compuler Socicly Internalional Conference on Software Engineering, Febru-

ary 1987

Kaiser G. et al. ‘Intelligent assistance for software development and mainte-

nance’. [EEL Software. May 988

Kempe M.. ‘Hyperbook: an experiment with PCTE’. ACM Sigsoft Software En-

gineering Notes, Vol 14. No. 5. July 1989

Koenig S.. ‘ISEF - An Industrial Strength Software Engineering Framework’.

ACM Sigsoft S8: 3rd Symposium on Software Development Environments (SDE3)

Lehman M.\.. ‘A Further Model of Coherent Programming Processes’. Pro-

ceedings of Software Process Workshop., IEEE. February 1984, p27-33

319

[65]

[66]

[67]

1691

[70]

Leliman NLALL Turski WV *Essential properties of IPSEs’. A('M Sigsoft software

engineerung notes, Vol 12 No. [January 1987

Letovsky S.. ‘Cognitive Processes in Program Comprehension’. Proceedings of

the Conference on Empirical Studies of Programmers 1986

Letovsky S. and Solowayv [1.. ‘Delocalised plans and program comprehension’.

[EEE Software. May 1986

Leung H.K.N.. White L.. ‘Insights into Regression Testing’. Proc. I[EEE Conf. on

Software Mamicnance., Miami. 1939

Lewerentz (".. ‘Extended Programming in the large in a software engineering

environment’. 1M Software Engineering Notes. Vol 14, No. 5. November 1988

Lientz E.B., Swanson .. *Characteristics of Application Software Maintenance’,

Commens. ACM Vol 12, pf66-471. June 1978

Linger R.CNHHs HLD.O Wit B ‘Structured Programming: Theory and Prac-

tice’. Pub. Addison-Weslev 1979

Linger R.C.. ‘Software Maintenance as an Engineering Discipline’. Proc. [EEE

Conference on Software Maintenance [958

Linton M.A.. ‘Implementing relational views of programs’. 4(C'M SE Notes. Vol.

9. No. 3. May 19584

Liskov B.H.. Berzins V.. *‘An appraisal of program specifications’ in Research

Directions in Software Technology. ed. P. Wegner 1979, Cambridge. Mass. MIT Press..

79]

Littman D. et al. ‘Mental models and software maintenance’. The Journal of

Systems and Software. Vol 7. 1937

Liu C., ‘A look at software maintenance’, Datamation. November (976

Magel k.. ‘Principles for Software Environments’. ACM Software Engineering

Notes. Vol. 9. No. [. January 1954, 32

Mair P.. ‘Integrated Project Support Environments - State of the Art Report’.

NCC 1986

Mavtin J.. McClure (.. ‘Software maintenance, the problem and its solutions’.

Prentice Hall. London 1983

McCracken D.D.. Jackson M.A.. ‘Life-Cycle Concept Considered Harmful’, 4}/

Software Engineering Notes, Aprid 1982, p29-372

McGuffin RW .. Elliston AL Tranter B.R. and Westmacott P.M. ‘CADES - Soft-
ware Engineering in Practice’. Proc. fth [nt. Conf. on Software Engineering, Mu-

nich 1979

McKissick J M. Price R.AL ‘The Software Development Notebook’, Proc. 1979

[EEE Annual Reliabidity and Maintainability Symposium

Mellor P., ‘Field Monitoring of Software Maintenance’. Software Engineering

Journal, Januwary 1986

Meyer B.. ‘On Formalism in Specifications’. [L'EE Software. January [985

321

o

190]

[91]

(93]

Mills H.D.. ‘Top-Down Programming in Large Systems’ in Debugging Techniques

wn Large Systemns. R Rusking (ed). Prentice-Hall, 1971 p41-35

Narayanaswamy K. and Scacchi W. ‘An environment for the development and
maintenance of large software systems’, in Proc 2nd SOFTFAIR. [EEE Comput.

Soc.. 1985

Narayanaswamy IN.. ‘A framework to support software system evolution’. Ph.D.

Dissertation. Univ. Soulhern California. May (9835

Narayanaswamy .. Scacchi W. ‘A database foundation to support software sys-

tem evolution’. .J.Syst. Software. 1987

Narayvanaswamy .. Scacchi W.. ‘Maintaining Configurations of Evolving Sys-

tems’. [LLL Trans. Soft. Euyg.. Vol SE-15. No. 3, March 1987

NBS. ‘Features of software development tools, special publication’. 300-7/.

U.S. National Bureauw of Standards. [980

Nelson T.H.. ‘Getting it out of our system’, [uformation Retrieval. A Critical

Review. G. Schecter Id.. Thompson Books. Washington D.C'.. 1967

Notkin D., ‘The Gandalf Project’. Journal of Systems and Software. Vol. 5. No. 2,

May 1985

Notkin D.. ‘The Relationship Between Software Development Environments
and the Software Process’. A('M Sigsoft ‘88 3rd Symposium on Software Develop-

ment Environments. Boston Muass., 1988

[94]

[95]

[96]

97]

(93]

[99]

Oman P. W.. Cook (. R.. “The book paradigm for improved software mainte-

nance’, [ELE Software. Jan 1990

Oren T.. ‘The architecture of Static Hypertexts’. Hypertect 87. TR88-013, Uni-

versity of North Carolina. March [985

Osborne W.NM.. Martin R.J.. ‘Guidance of Software Maintenance’. Nat. Bureau of

Standards, NBS Special Publication. 500-106. December [983

Osterweil L.J.. ‘Software Environment Research Directions for the next Five

Years’. Computer 1. p 35-43. April 1981

Osterweil J. et al. ‘ODIN: An integration mechanism for an software engineer-

ing environment’. { nivcrsity of Colorado Technical Report. 1989

Osterwell L.. ‘Software processes are software too’. Proc 9th Int. Conf. Soft. Eng.

Monterey. March 1987

[100] Parikh G.. ‘Some tips, techniques, and guidelines for program and system

maintenance’. in [cchniques of program and system maintenance. Winthrop Publish-

ers, Cambridge MA.. 1982, 65-70

[101] Parnas D.L.. ‘Designing Software for Ease of Extension and Contraction’.

[EEL Trans. Soft. Fng.. March 1979, pl128-137

[102] Patkau B.H.. ‘A foundation for software maintenance’. M.Sc. Thesis. Department

of Computer Science. University of Toronto. December 1983

- [103] Penedo M.. ‘Prototyping a Project Master Database for Software Engineering

Environments’. ACM Sigplan Notices, Vol. 22 No. | Jan (987

323

[104] Petzold K. “The COBOL maintenance crisis’. Firs! Software Maintenance Work-

shop, Unwersity of Durham. England. September 1987

[105] Pressman R.S.. ‘Software Engineering - A Practitioner’s Approach’. Third

Edition. Pub. McGraw-Hill, 1992

[106] Ramamoorthy (V.. ‘Genesis - an Integrated environment for supporting de-

velopment and evolution of software’. Proc. [EEE Compsac 1985

(107] Ramamoorthy C.V.. Usada Y.. Tsai W., Prakash A.. ‘Genesis: An Integrated
Environment for Supporting Development and Evolution of Software ’. Proc.

[EEE Compsac. 1985

[108] Raskin J.. ‘The hype in hypertext: A critique’. Hypertext 87. TR8S8-013. Uni-

versity of North Carolina. March 19588

[109] Riddle W.E. et al. “‘The stars program - overview and rationale’. [EEE Com-

puter. Novenmber [983

[110] Riddle W.I.. ‘The Evolutionary Approach to Building the Joseph Software
Development Environment’. [’roc [LFLE Softfuir - Software Development Tools,

Techniques and Alternatives, p 317-325, 1983

[111] Riddle W.E.. ‘Improving the Software Process’. Proc 9th Int. Conf. Soft. Eng.

Monterey, March [9X7

[112] Ross D., ‘Structured Analysis (SA): A Language for Communicating Ideas’,

Trans. Software Eng., Vol SE-3. No. [, January 1977

[113] Royee W.W. ‘Managing the Development of Large Software Sys-

tems:Concepts and Techniques’. Proceedings, WESCON, August (970

[114] Schneiderman B.. Maver R.. ‘Syntactic/Semantic Interactions in Programming
Behaviour: A Model’. /nt. .J. Computer and Information Science. Vol. 8 No. 3.

1979

[115] Selig I.. ‘Documentation Standards’. in Software Engineering, Proc. of meeting,

Garmisch, Germany. October 1968

[L16] Sharpley W.K.. ‘Software maintenance planning for embedded computer sys-

tems’. FProc. L Compsae 77 November (977
!

[117] Snowdon R.A.. ‘CADES and software system development’, Software Engineer-

eng Enveronments. ed Hunke. H.. page S1-96. Novth-Holland June 1980
[118] Sommerville .. ‘Software Engineering’. Third Edition. Pub: Addison Wesley 1989

[L19} Spivey J.M.. ‘Introducing Z: A specification language and its formal seman-

tics’. Pub. Cambridge University Press. 1938
(120] Stenning V.. *‘On the role of an environment’. Proceedings of the 9th International

Conference on Software Engineering, ACM. 1987

[121] Swanson L.B.. ‘The dimensions of maintenance’, Proc [EEE/ACM Second [nt.

Conf. Software Eng.. October [976

[122] Teichrow D., Hershey. E.. ‘PSL/PSA: A Computer-Aided Technique for Struc-
tured Documentation and Analysis of Information Processing Systems’,

Trans. Software Lng.. Vol. SE-3. No. [. January 1977

[123] Tichy W.. ‘Design, Implementation, and Evaluation of a Revision Control

System’. Proc. 6th [CSE. Tokyo. Jupan. 1982

(124] Tsichritzis D.C.. Klug A.. ‘The ANSI/X3/SPARC DBMS Framework Report
of the Study Group on Database Management Systems’, Information Systems,

Vol. 3. pp 173-191. 1978

[125] Tully C.J.. ‘Prospects for Future Environments’. Proc. 9th Int. Conf. Soft. Eng.

Monterey. March 1987

(126] Weidermann N.H.. Habermann A.N.. Borger M.W., Kklien M.H.. ‘A methodology
for evaluating Environments’. ACA Sigplan Notices. Vol. 224 No. [, December

[980

[127] Weiser M.. ‘Programmers use Slices when Debugging’. Comms. of the ACM.

Vol. 25. No. 7 July 1982

[128]) Wing J.. ‘A Specifier’s Introduction to Formal Methods’. [EEE Computer,

Septewmber 1990

[129] Yau S.. Collotello J.S. and McGregor T.. ‘Ripple Effect Analysis of Software

Maintenance’, Proc. [EEE COMPSAC 78, Chicago, IL., November 1978, 60-65

[130] Yau S.S. et al. ‘A methodology for software maintenance’. in Proc. Intern. Com-

put. Symp.. J47-438 December 1982

[131] Yeh R.T.. Zave P.. ‘Specifying Software Requirements’, Proc. [FEE, Vol. 65. No.

9 September 1980

326

(132] Zahnizer R\ ‘The perils of top-down design’. 4V SE notes. Vol (3. No. 2.

Aprid 1958

[133]) Zilles S.N.. ‘Abstract Specifications for Data Types’. [BM Res. Lab.. San Jose.

Californea. 1975

