
Durham E-Theses

A software maintenance method based on the software

con�guration management discipline

Capretz, Miriam Akemi Manabe

How to cite:

Capretz, Miriam Akemi Manabe (1992) A software maintenance method based on the software

con�guration management discipline, Durham theses, Durham University. Available at Durham
E-Theses Online: http://etheses.dur.ac.uk/6017/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6017/
 http://etheses.dur.ac.uk/6017/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

A Software Maintenance Method

Based on the Software

Configuration Management Discipline

Miriam Akemi Manabe Capretz

Ph.D. Thesis

University of Durham

School of Engineering and Computer Science

Computer Science

October 13, 1992

2 DEC 1992

Miriam Akemi Manabe Capretz

A Softw£ire Maintenance Method Based on the

Software Configuration Management Discipline

Abstract

Software maintenance has until recently been the neglected phase in the software en­

gineering process, despite the fact that maintenance of existing software systems may

account for over half of all efforts expended by a software organization. Research into

software maintenance, compared to other phases of the software engineering process

is rare. Moreover, it is widely accepted that current software maintenance meth­

ods and techniques are unable to cope with the complexity inherent in maintaining

software systems.

This thesis is concerned with the development of a method, named Configuration

Management Formalization for Maintenance (COMFORM), designed for the mainte­

nance of existing software systems. COMFORM provides guideUnes and procedures

for carrying out a variety of activities performed during software maintenance. It ac­

commodates a change control framework, around which the Software Configuration

Management discipline is appHed. Redocumentation is another problem tackled by

COMFORM, which gathers together the documentation necessary to improve the

maintainabihty and quality of existing software systems. This is achieved by the use

of forms representing the output of each phase of a proposed software maintenance

model. The information obtained by filling in forms is formalized according to a

data model, which provides a common basis for the representation of the method's

functionality. Finally, a prototype of COMFORM has been implemented, so that

the procedures and guidelines set up by the method can be enforced and followed

by its users.

Acknowledgements

Firstly I would like to thank my supervisor, Malcolm Munro, who has guided me to

form many of the ideas reported in this thesis, and encouraged me throughout their

development. I am also grateful to him for his comments upon the numerous drafts

of this thesis.

I owe special gratitude to my husband Fernando for his constant support, assistance

and patience throughout the course of this research.

Financial support for this research has been provided by grant from CAPES (Brazil­

ian Federal Agency for Postgraduate Education).

Contents

1 Introduction 1

1.1 Purpose of the Research 1

1.2 Thesis Aims 5

1.3 Thesis Outhne 6

2 Softw^are Maintenance of Existing Software Systems 10

2.1 The Software Maintenance Process 10

2.2 Supporting Maintenance Technology 15

2.2.1 Reverse Engineering Research Environments 17

2.3 Documentation for Software Maintenance 22

2.3.1 Redocumentation 25

2.3.1.1 Increniental Documentation 26

2.3.2 Support Available for Software Documentation 27

2.3.3 Documentation Tools for Software Maintenance 29

2.4 Software Configuration Management 30

2.4.1 The Functions of SCM 32

2.4.2 Automation of SCM 34

2.4.3 Application of SCM to Software Maintenance 38

2.5 Summary 40

3 Software Maintenance Models 43

3.1 Managing the Software Life-Cycle 44

3.2 Existing Software Maintenance Models 45

3.2.1 Early Software Maintenance Models 46

3.2.2 Middle Software Maintenance Models 50

3.2.3 Recent Software Maintenance Models 54

3.3 Software Process ModeUing 59

u

3.4 Characteristics of Software Maintenance Modelling 63

3.5 Summary 65

4 Modelling Techniques 67

4.1 The Relational Data Model 68

4.2 Semantic Data Models 70

4.2.1 The Entity-Relationship Model 70

4.3 Object-Oriented Models 72

4.4 The Object Representation Model 75

4.4.1 The Cluster Mechanism Concept 77

4.4.2 Graphical Representation of ORM 80

4.4.3 Advantages of ORM 81

4.5 Summary 82

5 C O M F O R M - A New Method for Software Maintenance 84

5.1 The Objectives of COMFORM 85

5.2 The Software Maintenance Model 87

m

5.2.1 Change Request 91

5.2.2 Change Evaluation 93

5.2.3 Maintenance Design Specification 97

5.2.4 Maintenance Design Redocumentation 100

5.2.5 Maintenance Implementation 102

5.2.6 System Release 103

5.3 The SCM Discipline Applied to COMFORM 105

5.3.1 Software Configuration Identification 106

5.3.2 Software Configuration Control 106

5.3.3 Software Configuration Status Accounting 107

5.3.4 Software Configuration Auditing 109

5.3.4.1 Initial Evaluation 110

5.3.4.2 The Establishment of Baselines in COMFORM . . . 1 1 2

5.4 The Version Control in COMFORM 114

5.5 Final Remarks on COMFORM .118

IV

6 Formalization of C O M F O R M 120

6.1 The Modelling of COMFORM using ORM 121

6.1.1 The COMFORM Model 122

6.1.2 Consistency and Traceabihty in COMFORM 124

6.2 The Cluster Mechanism in COMFORM 127

6.2.1 The System Form 130

6.2.2 Scheduled Releases 131

6.3 Version Control 131

6.3.1 The Modelling of Version Control for COMFORM 132

6.3.2 The Modelling of Revisions and Variations 135

6.4 An Illustrative Example 136

6.5 Comments on the Formalization of COMFORM 139

7 The C O M F O R M Prototype 141

7.1 Implementation Issues 141

7.2 The COMFORM Kernel 142

7.3 The COMFORM Framework 143

7.3.1 The CREATE operation 144

7.3.2 The GET operation 145

7.3.3 The MODIFY operation 146

7.3.4 The DELETE operation 146

7.3.5 The EFFECTUATE operation 146

7.3.6 The ESTABLISH BASELINE operation 147

7.3.7 The UNDO EFFECTUATE operation 148

7.4 The Report Generator Tool 149

7.5 Version Control 150

7.6 COMFORM in the Unix Environment 152

7.7 Summary 154

8 Use of the C O M F O R M Prototype 156

8.1 The COMFORM Steps 156

8.2 Example of COMFORM Use 161

VI

8.3 Comments on the COMFORM prototype 178

9 Conclusions 182

9.1 Review of Work 182

9.2 The Assessment of COMFORM 184

9.3 Directions for Further Research 188

References

vu

List of Figures

4.1 The Cluster Hierarchy for the Structured System Analysis 79

4.2 Example of use of ORM 81

5.1 The Software Maintenance Model 89

5.2 The Pattern of SMM Forms 90

5.3 The Change Proposal form 92

5.4 The Change Approval form 94

5.5 The Maintenance Specification form 98

5.6 The Module Design form 101

5.7 The Module Source Code form 103

5.8 The Configuration Release form 104

vui

5.9 The Versioned SMM Form 116

6.1 The COMFORM Model 123

6.2 The Cluster Hierarchy of COMFORM 128

6.3 The System Form 130

6.4 The ModelUng of Version Control for COMFORM 133

6.5 The Modelling of Revisions and Variations 135

6.6 An Illustrative Example of the ModelUng 138

8.1 Initial information in the COMFORM object base 162

8.2 Software components in the COMFORM object base 164

8.3 A Change Proposal form 165

8.4 A Change Approval form 166

8.5 A Maintenance Specification form 168

8.6 A Module Design form 169

8.7 A Module Source Code form and an alternative 171

8.8 A Configuration Release form 172

IX

8.9 A managerial report 173

8.10 The forms of a Configuration Release 175

8.11 The Module Design and Module Source Code forms of the PXR systeml77

8.12 The maintenance history of the PXR system 179

List of Tables

7.1 Parameters and options of the report generator 150

8.1 Parameters of a managerial report 174

8.2 Parameters to report the forms of a Configuration Release 174

XI

Chapter 1

Introduction

1.1 Purpose of the Research

The last two decades have seen the promotion of software development as an en­

gineering activity, encouraging the use of more rigorously defined software devel­

opment methodologies based on sound engineering principles. Such methodologies

have often emerged in response to new ideas about how to cope with complexity

in software systems. So far, most research into software engineering has focused

mainly on the development phases of the software hfe-cycle; that is, analysis, design

and implementation. Until recently, however, software maintenance has been the

neglected phase in the software engineering process. The literature on maintenance

contains very few entries when compared to the analysis and design phases. Little

research has been conducted into the subject, and few techniques and methods have

been proposed. Additionally, software maintenance has been commonly performed

on the executable code, which means that after several modifications, the initial de­

sign is out of date. Consequently, later maintenance has required an extra amount

of time from maintainers.

The maintenance of existing software systems may account for over sixty per cent of

all efforts expended by a software development organization [16, 75], The percentage

continues to rise as more software systems are produced. As software systems age,

more effort is likely to be expended on maintenance. Although most old software

systems should be retired or periodically rewritten, this is not always feasible. Since

most organizations are gradually becoming more dependent on existing software

systems, software maintenance is crucial.

An inherent threat to maintaining a constant quahty in existing software systems

lies in the fact that they are prone to changes. Besides, every change to software

carries with it the potential for introducing errors, or creating side eff'ects which

propagate errors. Since changes in software systems are inevitable, mechanisms for

making, evaluating and controlling modifications must be considered. In order to be

cost-effective, a better approach to software maintenance is imperative; the software

maintenance process must be made simpler and more productive. To simplify the

maintenance process, software change must be controllable, so that software systems

avoid falling into chaos. A more productive process can undoubtedly be obtained

by taking an organized and structured approach to maintenance.

Despite increasing recognition that maintenance is a major problem during the Hfe-

cycle of software systems, and the acknowledgement of the high costs of maintaining

software systems, there are clearly gaps in the field of software maintenance. So far,

there is no generally accepted method which systematizes the software maintenance

process; neither is there an integrated set of tools which would help to tackle the

problem of controlUng software changes under a systematic scheme.

This research is aimed at the creation of a method named Configuration Management

Formalization for Maintenance (COMFORM). This method provides guidehnes and

procedures for carrying out the maintenance process, while establishing a system­

atic approach for the support of existing software systems. COMFORM takes the

Software Configuration Management (SCM) discipUne into account, since this dis­

cipline imposes a set of procedures and standards for managing evolving software

systems. The application of the SCM discipline contributes directly to software

quality by identifying and controlling change, assuring the change is being properly

implemented, and reporting the change to others who may have an interest. A

change control framework has been established in COMFORM in order to preserve

software quality. The Software Maintenance Model (SMM) institutes this frame­

work, which aims to systematize the software maintenance process by specifying the

chain of events and the order of stages that a change has to go through.

Redocumentation is another problem tackled by COMFORM, which gathers to­

gether the documentation necessary to improve the maintainability of existing soft­

ware systems. During software maintenance, documentation should provide an ab­

stract representation of the operational software system, which guides the decisions

that affect the system's evolution [15]. In order to obtain the documentation required

for the method, the following imperatives have been stated: standardization of the

information to be stored, in order to guarantee its completeness and preciseness;

and the uniformity of document structures of the software systems to be maintained

must be upheld. To satisfy these demands, information is obtained by filling in

forms. The intention of creating forms is to make the maintainers' task one of f i l l ­

ing in forms for documentation, instead of defining their own document structures.

The forms represent the results of SMM phases, which allow a methodical approach

to be taken towards the establishment and control of traceability throughout the

maintenance process.

The information obtained by fiUing in forms has been formalized according to a

data model, which provides a common basis for the representation of the method's

functionality. The conceptual model for COMFORM has been defined using the

data model termed Object Representation Model (ORM) [111]. ORM has been

used because of its enhanced semantic capabilities, which provide the necessary

generality and standardization for software representation.

Experience with software development has shown that effective use of a particular

method is achieved by computer-aided support. In the last few years, therefore,

environments and tools supporting (and enhancing) software development methods

and procedures have emerged. This technology, known as CASE (Computer-Aided

Software Engineering), allows system analysts to document and model a software

system from its initial user requirements through the design and implementation

stages. Moreover, by using an integrated set of tools, CASE environments encour­

age both conformance to an underlying method and the apphcation of tests for

consistency and completeness. Given that a reasonable solution for the problems of

software maintenance is to extend good software development practice into main­

tenance activities, the ultimate aim of COMFORM is to provide support within a

software maintenance environment. By these means, the procedures and guidelines

set up by COMFORM can be enforced and followed by maintainers, and software

quality will not deteriorate.

1.2 Thesis Aims

The novel contribution to software maintenance of the approach taken by COM­

FORM is its systematic support of existing software systems through the use of

the SCM discipUne, whilst incrementally documenting them. A survey of current

literature failed to reveal any other work which tackles this problem as COMFORM

does. The main aims of this thesis are:

• The development of a new method - COMFORM - which provides guidehnes

and procedures for the maintenance process by applying the SCM discipline.

This method improves the balance between code and higher level abstractions

after any change in the software system has been made. As a result, a rehable

and easily understandable documentation of an existing software system can

be incrementally obtained whilst it is being maintained.

• The definition of a Software Maintenance Model (SMM), the phases of which

institute a change control framework to monitor changes. The SMM aims

at systematizing the software maintenance process by specifying the chain of

events and the order of stages that a change has to go through.

• The creation of forms to reflect each of the SMM phases. These forms con­

stitute a methodical approach to software maintenance driving towards the

establishment and control of traceability throughout the SMM phases.

• The production of a number of reports to aid project managers and maintain­

ers, by providing updated information about the software system's current

status, as well as about maintenance history.

• The formaUzation of COMFORM by the use of ORM. This formalization pro­

vides the representation of information and semantic characteristics, faciUtat-

ing the method's realization.

• The implementation of a prototype which forms the foundation of a soft­

ware maintenance environment, consisting of a framework which provides au­

tomated support for the concepts and capabilities of COMFORM.

1.3 Thesis Outline

The remainder of this thesis is organized as follows.

Chapter 2 expands on the general background of software maintenance and the

necessary documentation, as well as introduces the SCM discipHne to maintain ex­

isting software systems. The first section introduces the concepts, problems and

categories of software maintenance. Section 2 concentrates on the supporting main­

tenance technology. In Section 3, the documentation necessary to maintain existing

software systems and the approach of incremental documentation are presented.

Section 4 looks at the SCM disciphne, which has been appHed mainly to the soft­

ware development process, as another important factor in helping the maintenance

of existing software systems. A summary of this chapter can be found in Section 5.

The conclusion which can be drawn from this chapter is that up to the present

time, there has been no method for maintaining existing software systems similar

to the one proposed by this thesis, i.e., incrementally documenting existing software

systems while maintaining them under SCM control.

Chapter 3 describes existing software development models. Section 1 examines the

use of models to manage the software life-cycle. In the second section, a series of

software maintenance models, aimed solely at maintaining existing software systems,

is presented and compared. The third section introduces the notions and desirable

characteristics of software process modelling for software development and mainte­

nance, so as to provide a basis for the comparison of the research in this thesis with

previous investigations. Section 4 identifies specific points of the software mainte­

nance modelling concept considered in this thesis. A summary of this chapter is

presented in the fifth section.

Chapter 4 provides a description of various modelling techniques. The traditional

modeUing techniques are reviewed, along with their characteristics and apphcations

to model software systems. These data models are presented so as to introduce

the Object Representation Model (ORM), putting it in the context of data models.

Section 1 describes the relational data model. Semantic data models are reviewed

in Section 2, with emphasis given to the well-known Entity-Relationship model.

Section 3 looks at the main characteristics of object-oriented models. ORM is then

described in Section 4, along with its main characteristics, which contributed to the

modeUing of the method proposed in this thesis. The last section concludes with a

summary of the chapter.

Chapter 5 contains a detailed description of the proposed method (COMFORM)

for the maintenance of existing software systems. Section 1 examines the objectives

of COMFORM. In Section 2, the Software Maintenance Model (SMM), together

with its phases and corresponding forms, is described. The role of the SCM dis­

cipline, and the application of each SCM function to COMFORM are discussed in

Section 3. Section 4 details the version control applied to the forms. Lastly, the

chapter concludes with observations on the proposed method.

Chapter 6 examines the process of formahzing the method (presented in Chapter 5)

using ORM. Section 1 details the formalization of the method. In Section 2, the

application of the cluster mechanism of ORM is discussed in order to clarify its use

and to help in the implementation of some basic concepts of COMFORM. Section 3

describes the modelling of version control for COMFORM. An illustrative example

is given in Section 4, which helps to visualize the formahzation of COMFORM. The

chapter ends with a summary of the formahzation of the method.

Chapter 7 describes the implementation of the COMFORM prototype. The main

purpose of the prototype is to provide an automated framework into which other

tools can be incorporated, so that this framework represents the basis of a software

maintenance environment, supporting the method described in Chapter 5. The

first section discusses the overall issues related to the implementation of the pro­

totype. Section 2 outlines the COMFORM kernel, which is central to integrating

tools into the framework. In the third section, the implementation of the COM­

FORM framework, along with its operations are described. Section 4 presents the

report generator tool, which provides a number of reports for project managers and

maintainers. Section 5 outlines the basic features of version control implemented

within the prototype. Section 6 then goes over the issues of linking the COMFORM

prototype with other tools in the UNIX environment. The chapter concludes by

pointing out the performance of the quality assurance checks in the COMFORM

prototype.

Chapter 8 discusses the results of applying COMFORM with the purpose of main­

taining an existing software system. In the first section, the steps to be followed

when applying COMFORM for the purpose of maintciining existing software sys­

tems are outlined. Section 2 gives an example of COMFORM use by maintaining

an existing software system named PXR (a context-sensitive cross-reference tool).

The chapter ends with observations about the COMFORM prototype.

Chapter 9 presents the conclusions of this thesis. In Section 1, a review of the work

is described, reiterating the aims of this research. Section 2 provides an assessment

of COMFORM, analysing the work which has been carried out in this thesis. The

last section of the chapter discusses possible directions and ideas for future research,

and concludes with some final observations.

Chapter 2

Software Maintenance of Existing

Software Systems

This chapter contextualizes the research of this thesis by describing the software

maintenance process, the supporting maintenance technology, documentation for

software maintenance, and the software configuration management disciphne.

2.1 The Software Maintenance Process

Software maintenance has been defined by the IEEE [57] as:

10

The modification of a software product after delivery to correct faults,

to improve performance or other attributes, or to adapt the product to a

changed environment.

Software maintenance consists of a series of activities required to keep a software

system operational and responsive after it is accepted and placed into production. In

between, a variety of activities involving maintainers, quality assurance and configu­

ration management personnel must be planned for, coordinated and implemented [4 .

The current concern about software maintenance is that it is recognized as the most

expensive phase of the software life-cycle [75]. In addition, the quality of code repairs

and updates is often poor and this compromises the software system rehability and

performance. Although many activities related to the maintenance and development

of software systems are similar, software maintenance has unique characteristics of

its own [4, 8, 106], as detailed below:

• Software maintenance is performed on an existing software system. Any

changes introduced to a software system must conform to or be compatible

with its architecture, design and code constraints.

• Software maintenance typically requires that a programmer spend a significant

proportion of his or her time attempting to understand how the program is

constructed and how it functions.

Software maintenance is usually open-ended, continuing for many years (as

long as it is economically possible), in contrast to software development, which

is undertaken within a timescale and to a budget.

11

• During software development, test data is created from scratch. Software

maintenance can use this existing test data and perform regression tests, or

alternatively, create new data to test only the changes and their impact on the

rest of the software system adequately.

Software maintenance activities are commonly classified into four categories [10, 81,

88], based on the areas first defined by Swanson [107]. These categories are:

• Perfective Maintenance: enhancing the software system by altering its

functional behaviour, which resulted from a change in the original intent or

requirements.

• Adaptive Maintenance: changing the software system in response to a

change in the data environment (system input and output formats), or in the

processing environment (either hardware or support software).

• Corrective Maintenance: diagnosing and correcting errors which cause in­

correct output or abnormal termination of the software system.

• Preventive Maintenance: updating the software system to anticipate fu­

ture problems; this entails improving the quality of the software and docu­

mentation, or other software quality factors. Modifications in this activity do

not affect the functional behaviour of the software system. Aspects of reverse

engineering can be considered as part of this category.

Not all modifications strictly belong to one category or another. For instance, cor­

rective maintenance may also require enhancement (perfective maintenance) of a

sub-system. Similarly, a sub-system, because of an inability to correct a persistent

fault in i t , may be re-designed to improve maintainability (preventive maintenance).

12

Although this research seems to be directed towards preventive maintenance, (i.e.,

it aims to improve the documentation and maintainability of existing software sys­

tems), it is also very much related to the other maintenance categories (adaptive,

corrective and perfective maintenance).

Many problems associated with software maintenance can be traced to deficiencies

in the way software systems have been defined and developed. Lack of control and

discipline in the initial phases of software development nearly always translates into

problems during the maintenance phase. As this lack of control and disciphne per­

sists in the course of maintaining software systems, the structure and maintainability

of such systems tend to deteriorate, often making them more complex and difficult to

maintain next time. The cost of faihng to design software systems for maintenance

is very high. Such systems become so fragile that maintainers and their managers

are reluctant to change them. Any change may have unforeseen consequences, of­

ten causing problems in other parts of the system, annoying users and consuming

precious software personnel time [80 .

The necessity of performing software maintenance activities on a software system

that has not been designed with maintenance in mind is arduous. These software

systems are usually, for example, poorly documented, with an uncomprehensible

structure, and with the data representation embedded in the program code. One

consequence of this lack of maintainability during software development is loss of

traceability, i.e., the abihty to identify technical information which relates to a soft­

ware error detected [98]. Moreover, to make changed to a software system, maintain­

ers normally need to understand the components of such a system, e.g., the contents

and purpose of modules in the software system, and the historical context in which

the modules were developed. In old existing software systems, such information is

13

usually unavailable or out of date, and this situation deteriorates even more after

maintenance is performed on those systems.

The net result of continual changes is that software tends to increase in size, and its

structure tends to degrade with time. For example, Harrison and Magel [53] show

that the average program grows by 10% every year, doubling in size every seven

years. Therefore, it is important to increase the maintainability of software in order

to cope with its increasing lifespan.

I t has been argued that new development techniques will reduce maintenance costs

in the future. However, it has also been shown that software systems must evolve if

they are to continue to be useful, and thus, perfective maintenance work will always

be a vital activity. Lientz and Swanson claim that user enhancements account

for 42% of all maintenance work, and that only 20% is corrective maintenance.

Furthermore, user demands for enhancements and extensions were identified as the

most important management problem area. Therefore, whilst new development

techniques might reduce corrective maintenance, they will have little effect on the

most expensive sub-task, perfective maintenance. Another interesting observation

shown by this survey is that most corrective and adaptive maintenance work is

considered obligatory, while the other two types of maintenance are mostly optional.

Therefore, nearly half of all maintenance work is optional. From this, it follows that

one way of minimizing the cost of software maintenance is to investigate perfective

and preventive maintenance activities more carefully. Martin and McClure [80]

suggest schemes such as change request logs and formal change procedures, so that

fewer and more thoughtful change requests can be generated.

14

Currently, research into software maintenance tools and environments is being un­

dertaken, but it is far less common than research into software development. Hith­

erto, no environment or tools have succeeded in integrating the diversity of mainte­

nance tasks in a coherent way. Automated support is usually restricted to a single

task of the maintenance process. There is a lack of automated maintenance support

that could help maintainers during the whole software maintenance process, from

change request to system release.

I t is interesting to note that many projects concerned with software development

claim that they will also assist maintenance. This is debatable as environments

devoted to software maintenance have particular characteristics of their own. One

such characteristic, for instance, is the capacity to capture the information of existing

software systems into the environment. The various approaches of tackling such a

problem are discussed in the next section.

2.2 Supporting Maintenance Technology

Old software systems have not usually benefited from modern software technology

such as CASE (Computer Aided Software Engineering). Therefore, the use of soft­

ware maintenance techniques, such as re-engineering, has been promoted as the

answer to many of the problems of maintaining existing software systems. The ba­

sic idea underlying re-engineering [8] is that design and specification information

is extracted from the source code, so that i t may be used to gain insight into the

purpose of the software system, or to replace part or all of the software system with

modern software technology.

15

Software re-engineering may also be used for restructuring systems, extracting reusable

parts and providing new views of software and its documentation. The hope is that

the maintainability and adaptability of existing software systems can be improved.

The basis of all approaches to re-engineering is to try to make existing software sys­

tems easier to maintain. Unfortunately, re-engineering lacks a standard terminology

and as such, different people often use different terms to cover the same basic con­

cepts (and sometimes, the same names for different concepts). Chikofsky and Cross

I I [29] have attempted to clarify terms such as reverse engineering, redocumentation,

design recovery and restructuring, as they are described below.

Reverse Engineering

Reverse engineering is the process of analysing a software system to identify its com­

ponents and their inter-relationships creating representations of the software system

in another form or at a higher level of abstraction. I t is the part of the mainte­

nance process which improves understanding of software systems and its structure,

by giving a sufficient design-level view to aid maintenance, strengthen enhancement,

or support replacement, given at worst the source codes. Two sub-areas of reverse

engineering widely referred to are redocumentation and design recovery.

Redocumentation aims to recover the documentation of a software system. It involves

experienced programmers creating documentation by analysis of the source code and

the recovery of useful documentation from the original documentation.

Design recovery [14] recreates design abstractions from a combination of code, ex­

isting design documentation (if available), personal experience and general knowl­

edge about problem and appHcation domains. I t should reproduce the information

required in order for a person to fully understand a program; namely, what the

16

program does, and how and why i t does i t .

Restructuring

Restructuring is the transformation of one representation form to another at the

same relative abstraction level, while preserving the software system's external be­

haviour (functionality and semantics). I t is often used as a form of preventive

maintenance to improve the physical state of an existing software system, with re­

spect to some preferred standard. It may also involve adjusting the software system

to meet new environmental constraints that do not involve reassessment at higher

abstraction levels.

2.2.1 Reverse Engineering Research Environments

Currently the number of available stand-alone tools, such as static analysers and

control flow restructurers, are increasing in number. However, these tools do not

support any method for reverse engineering and are not designed to be integrated

with other tools. Some projects, however, have the objectives of supporting meth­

ods and tools for reverse engineering, rather than simple restructuring operations.

Nevertheless, the approaches adopted by the projects differ significantly. The ASU

software maintenance environment [33], for instance, is being developed to support

both managerial and technical maintenance tasks. It operates on the Pascal code

and provides some facihties to understand, document and analyse the code for ripple

effects.

Lane and Haughton [72] developed a method based upon the language Z + + to

17

support the use of formal methods in software maintenance. The method is cen­

tered on the maintenance of the specifications and not upon the source code. Such

formal specifications can be created, either from user requirements (forward engi­

neering), or by reverse engineering an application. The abstraction transformations

are recorded during the reverse engineering process, building up the documentation.

Change requests are translated and implemented into change requests to the spec­

ification, so that the application implementation can be generated together with

revised documentation.

SOFTMAN [30, 31] takes a different approach. Although it is designed to support

forward engineering, it also provides support to existing software systems by using

reverse engineering. A noteworthy characteristic of SOFTMAN is that it supports

incremental verification and validation of software correctness across all life-cycle

activities. In SOFTMAN, a software system is correct if all of its life-cycle descrip­

tions are traceable, consistent and complete. Its method of maintaining existing

software systems consists of importing them into the SOFTMAN environment to

provide reverse engineering and subsequent forward engineering support. This ap­

proach to reverse engineering is also being taken by other large projects in the area

of software maintenance. Some of these projects are further discussed below. They

aim to provide method and tool support for reverse engineering, and they place

considerable emphasis on a single integrated representation of the original system

in a system database.

R E D O

The aim of REDO [8] is to assist software engineers in the maintenance, restruc­

turing and vaHdation of large software systems and their transportation between

18

different environments. The objective is to articulate a theoretical framework for

doing this and to develop the necessary methods and prototype tools. REDO is

aimed, in the first instance, at the maintenance of Cobol data processing systems

and scientific appHcations wri t ten in Fortran. The major focus and contribution of

the REDO project is to provide a tool set and environment for the reconstruction of

software. The purpose of reconstruction is to take the software as i t stands, and then

to produce a more maintainable version. The REDO tools are integrated around a

central database containing the application itself and all related information, includ­

ing documentation and test data. A uniform user-interface to the toolkit has been

developed. Applications are translated into an internal intermediate language, upon

which the tools operate. The tools and methods are thus independent of the target

language, and may be applied to other languages by building suitable intermediate

language translators.

MACS (Maintenance Assistance Capability for Software)

The strategy of MACS [8, 35] is to provide a maintenance assistance system, in

the fo rm of a tool set which comprises expert system tools that provide the as­

sistance to a maintainer. MACS covers the phases of reverse engineering, impact

analysis and change management. I t is intended to recover design specifications,

given only source codes, so that functional specifications of the software can be

recreated. From these, a new implementation of the application program can be

achieved using modern software engineering methods. The MACS approach to soft­

ware maintenance has three main characteristics. First, the design and structure of

an existing software system is extracted using reverse engineering and is represented

in a language-independent formalism called dimensional design. Second, the way

in which software maintenance is undertaken is addressed by integrated front-end

19

tools holding knowledge about the maintenance process and expert maintenance

behaviour. The design of the user interface is strongly influenced by human factor

analysis. Finally, the MACS system also attempts to capture design decisions and

their rationale.

ReForm (Reverse Engineering using Formed Transformations)

The aim of the ReForm project [44, 113, 114] is to develop a tool called the Main-

tainer's Assistant. The main objective of this tool is to develop a formal specification

f r o m old code. I t is concerned specifically wi th reverse engineering existing software

systems in order to bring them to a state in which modern software engineering

techniques can be applied. The objective is to enable software, wri t ten in low-level

procedural languages (in particular, the code for CICS wri t ten in I B M assembler),

to be expressed in terms of non-procedural abstract specifications (e.g. Z) via a

process of applying formal transformations. The key feature of this is the transfor­

mational approach: using a wide-spectrum language and verified transformations,

in order to s implify and abstract the low level code.

A l l three projects (REDO, MACS and ReForm) use a common structure of a single

repository in which all software items are stored, and where they are then accessed

for manipulation by tools. A l l three share the same presupposition, namely that a

completely automatic approach to reverse engineering is impossible, though simple

automatic tools can help at the tactical level.

Al though the REDO project provides a contribution to the task of maintaining

existing software systems, i t lacks a discipline to control the reconstruction process of

the software. REDO takes a top-down procedure to reverse engineering, by focusing

the process and method, and then implementing an environment and tool set to on

20

support the method. Its key aspect is the integration of the tool set through the

central repository.

The approach of the MACS project differs f rom REDO and ReForm, as i t provides

automation through an expert system style, and aims to provide an assistant, instead

of a fu l ly automatic tool set. I t encapsulates knowledge about both the application

domain and implementation, and the expertise of software maintainers. In this

sense, similar work which can be related to MACS includes SOFTM [83, 84], which

is l imited to error localization and treatment, and the Desire system [14]. MACS

provides some control for the reverse engineering process, since one of the layers

presented in its architecture comprises a comprehensive configuration management

system. Such functionali ty supports the changes during the maintenance process.

The approach of ReForm project is also different f rom the others, in that i t con­

sists of an interactive system for maintaining programs, which is based on program

transformations. The transformations derive the specification of a program section,

presenting the program in a different but equivalent form as an aid to program

analysis and for general restructuring functions.

From the projects discussed in this section, i t can be seen that the objective of the

software maintenance environments is mainly reverse engineering existing software

systems, to subsequently handing them over to forward engineering support. While

reverse engineering may increase the maintainability of these systems, i t may also

incur unacceptable expenditure. When dealing wi th software systems having a pre­

dicted long maintenance life, this technique may be economically viable, but i t seems

unlikely to be appropriate for every kind of existing software systems. Therefore,

alternative techniques to software maintenance need to be explored, so that less

21

expensive methods of maintaining existing software systems can be developed.

2.3 Documentation for Software Maintenance

Documentation is a critical and controversial issue in software maintenance. The

Lientz and Swanson survey [75] identifies quality of software documentation as the

most significant technical problem. A survey by Chapin [26] of personnel close to

software maintenance work showed that they perceived poor documentation as the

biggest problem in this field.

Maintenance documentation provided by developers is, or should be, the major

source of system information for maintainers. I f the documentation is inadequate,

the maintainer must use less convenient sources, or sacrifice the quality of the mod­

ification. This increases the risk of introducing an error by the modification, and

causes system maintainability to deteriorate. The documentation should be ac­

curate, usable and trusted by the maintainers. Outdated documentation is not

only useless, but may also complicate and confuse the already difficult maintenance

task [80 .

Documentation has always been given a low priori ty status, compared to other ac­

tivities in software development. Documentation is nearly always left to the end of a

project, and as projects invariably run late, the amount of documentation originally

planned is reduced, or even completely cancelled. I t is not unusual to find that the

only documentation concerned wi th the design of the software system are comments

w i th in the source code itself. Moreover, software documentation is usually writ ten

22

by developers who do not understand the maintenance process. Therefore, document

structure does not always provide enough visibili ty for maintenance concerns [52 .

The controversy over software documentation is really concerned w i t h the type of

documentation that is needed, rather than the question of whether or not any doc­

umentation is needed at all . Not only the source code of software systems, but also

their documentation, must be maintainable. Producing voluminous amounts of de­

tailed software documentation, requiring a major update effort each time a software

component is modified, can only compound the maintenance burden.

Unlike the documentation that should be generated during software development,

documentation during software maintenance does not mean the generation of a

complete set of documents of a software system [15]. As far as documentation is

concerned, there are several differences between the processes of ini t ia l software

development and software maintenance. In the in i t ia l software development, there

is more freedom in making implementation decisions. During most of this period,

no source code is available, and there may be an imperfect understanding of how the

software system should operate. In this case, the primary function of documentation

is to make concepts clear and to communicate decisions. In the case of maintenance,

there is considerably less flexibiUty. A l l design decisions must be integrated wi th

the existing (and evolving) software system; both designers and users have a better

understanding of their needs. Thus, at this stage, the documentation provides an

abstract representation of the operational software system, which guides the design

decisions that affect its evolution.

The most significant information required for maintenance is a description of what

the software system does, and which software components cause i t to do this. This

23

depends heavily on a high-level description of the structure of the software system

which assists in locating specific information. Documentation should also explain

why the users want the software system to do what i t does, so maintainers can serve

the real needs of users.

I n addition, knowing how a software system has evolved during its development

and maintenance is very useful information to the maintainer. Because the value

of historic software development information has not been recognized, i t is rarely

kept. However, i t can greatly simplify the maintenance task. As well as clarifying

user needs and development principles, this practice can help indicate the portion of

the software system affected by particular decisions [82]. Understanding the original

design intention may guide the maintainer in the process of choosing ways to modify

the code that do not jeopardize system integrity. Also, knowing the parts of the

system that developers considered the most difficult may give the maintainer a first

clue to where an error might lie [80].

Even wi th in the maintenance process, documentation is not often produced, despite

the maintainers' view that i t is useful. Thus, the documentation, when carried out

after the maintenance activity, is often inadequate i n relation to the magnitude of

the system change. The documentation of software evolution is an important aspect

of software maintenance. Problem tracking and reporting is central to documenting

software evolution [50]. They are key aspects of recording changes to large software

systems. Large software systems which evolve over a long period of time magnify

the need for organized change tracking, due to the number and extent of the changes

made. Change histories provide important information about the reasons behind the

changes to software systems. In a study conducted by CoUofello and Buck [34], i t was

found that more than 50% of errors or faults were introduced by previous changes;

24

the record of pa^t changes is clearly a major contributor to software maintenance.

Using these records, the original cause of errors can be traced, allowing the re-design

of the original change, or at least, a better understanding of the cause of the problem.

In a more immediate sense, collection of data about the maintenance of a software

system increases the visibil i ty of the maintenance process and provides information

to the senior management. A record of changes, and the reasons for their insti tution,

forms a permanent history of experience gained by maintainers.

2.3.1 Redocumentation

I t is not always convenient to completely reproduce the design documentation from

the source code, as i t has not yet been established whether or not this is the most

suitable documentation for software maintenance. I n general, high-level documen­

tat ion explaining the overall purpose of the software system and describing the

relationship of its various components is the most useful [80]. Redocumentation

for existing software systems can be a cheap yet effective productivity aid, espe­

cially when the process is undertaken incrementally and under a quahty assurance

procedure.

Many maintenance teams are forced into redocumentation because the documenta­

t ion that is supplied wi th the software system they have to maintain is inadequate

or nonexistent. One way of undertaking redocumentation is to reproduce the design

documentation f rom the source code. Unstructured and inadequately documented

software systems, which prove diff icult to maintain, can be redesigned using modern

programming practices. This technique is usually considered uneconomic on all but

25

the smallest software systems. However, i f this path is taken, i t would be advan­

tageous to use a documentation-support environment that managed the fife-cycle

documentation set i n order to have f u l l control of the process [40]. These envi­

ronments are pr imari ly aimed at those designing new software systems, but they

would also be of use in this approach to redocumentation. They enforce standards

on the documentation and allow all the development documentation to be centrally

located, providing easy access and updates.

2.3.1.1 Incremental Documentation

Since i t may not be economically viable to reproduce the whole design documen­

tat ion, i t is important to t r y to identify techniques that allow redocumentation to

take place gradually during the maintenance activity itself. A system for incremen­

tal ly redocumenting old software systems in this way has already been described by

Fletton and Munro [41]. Foster and Munro [43] argue that redocumentation of this

type encapsulates some of the knowledge acquired by maintainers of a large software

system, which could otherwise be lost when staff leave.

I f a redocumentation system for capturing the knowledge gained by maintainers

while analysing source code is to be set up, a number of key requirements, as de­

scribed by Fletton [40], have been stipulated. One of these requirements is incremen­

ta l documentation, i.e., the ability to build up documentation of a software system

over a period of time in an incremental manner, without the need to document the

complete system in one step. This is an important requirement of a redocumen­

tat ion system, as i t allows the documentation to be produced as code is examined

during the day to day software maintenance process, and not as an activity in its

26

own right.

Another benefit is that only the code which is analysed by maintainers is docu­

mented. No time should be spent documenting code that is in a stable state and

may never be examined or modified. I t has often been said that the 80/20 rule

applies to software maintenance; 80 per cent of the time is spent on 20 per cent of

the code [43]. Therefore, i t is unproductive to document a complete system during

software maintenance. The maintenance personnel play a key role in this process

by providing information about the existing software system. The information they

provide includes the various assumptions that are made during software implemen­

tat ion, and other semantic information that has not been recorded and is difficult,

i f not impossible to obtain automatically wi th tools. By adopting this method, the

maintenance staff should be able to enter those details they judge to be important

for the maintenance of a particular software system.

2.3.2 Support Available for Software Documentation

Over the past years a number of software documentation environments which sup­

port the production, management and use of textual and graphical documentation

during all phases of the software life-cycle have been discussed in the literature of

this field of study. Most of these documentation environments provide facilities to

support traceability, central storage of all project documentation, easy access and

update, and the enforcement of project-wide standards on the structure of docu­

mentation. The SODOS [55, 56] and D I F [47, 48, 49] systems are examples of such

environments; they concentrate on the production of conventional Hfe-cycle docu­

mentation during the development of a software system. Thus, they are of httle

27

use to maintainers faced wi th a completed software system which has l i t t le or no

existing documentation.

SODOS (Software Documentation Support)

SODOS [55, 56] supports the definition and manipulation of documents used during

software development. I t enforces standards on the documentation and allows all

the development documentation to be centrally located, providing easy access and

updates. The SODOS system maintains a relationship between code and its descrip­

t ion , so that i t is easy to go back and for th between them. Documentation provided

in this fo rm is likely to be a major factor i n reducing the cost of software mainte­

nance. Nevertheless, SODOS is of Umited use for the retrospective documentation

of existing software systems during software maintenance. I t would be necessary to

redocument the whole system before any gains could be achieved in the maintenance

phase. This is usually prohibitively expensive.

D I F (Document Integration Facility)

D I F [47, 48, 49] is a software hypertext system for integrating and managing the

documents produced and used throughout a software Hfe-cycle. D I F departs shghtly

f rom the other environments in that i t has the additional aim of integrating doc­

uments wi th in and across several projects into a single environment. Hypertext is

used to provide traceability between life-cycle objects (such as requirement analy­

sis, design code and tests). Like SODOS, D I F manages life-cycle documents in an

object-oriented fashion. Its revision mechanism is Hmited to letting the user define

the revision numbers for part of the documents stored.

I n order to ensure that all the projects have a standard document structure, each

28

document produced by D I F is defined as a form, which has a tree-structured or­

ganization of basic templates to be instantiated wi th project-specific information.

Such forms provide a rudimentary way of defining the software process which is to

be followed by the projects. The concept of forms, used to develop the research

described in this thesis, is similar to the concept of forms and basic templates in

D I F . However, D I F does not provide support to the maintenance process or to re­

documentation in the same way as the work proposed in this thesis does, as wi l l be

seen in Chapter 5.

2.3.3 Documentation Tools for Software Maintenance

There are a number of tools available which claim to satisfy the documentation needs

of software maintenance. The advantages of these tools are that they are inexpensive

to operate and the documentation produced is easily kept up-to-date. Most take

the form of static analysis tools, producing a series of reports [27, 71, 99, 103 .

Examples of the documents produced are: control/data flow charts, cross-reference

listings, metric reports, call graphs and module hierarchy charts. A l l this information

is of significant use to the maintainer when becoming famihar wi th the structure

of a software system and in navigating around its components during maintenance

investigations. What they fai l to do is to provide any insight into why particular

structures are used, or why certain design routes were taken. This knowledge can

only be recovered by ehciting information f rom the original designers, or by detailed

examination of the source code by maintainers.

A t present, the number of choices available to a maintenance team faced wi th redoc-

umenting large software systems is l imited. A documentation system for recording

29

the knowledge obtained f rom the source code along wi th the cross-reference in­

formation has been described by Foster and Munro [43]. Contributions to support

redocumentation during software maintenance (in the form of incremental documen­

tat ion but also involving hypertext technology) can be seen in the works described

in Fletton [40], Fletton and Munro [41], and Kenning and Munro [63, 64 .

2.4 Software Configuration Management

Software Configuration Management (SCM) [5, 13, 22] is an important element of

software quality assurance. The purpose of the SCM discipHne is to manage change

throughout the software development and maintenance processes. Its primary re­

sponsibility is the control of change. However, SCM is also responsible for the

identification of individual software configuration items and various versions of the

software, the auditing of the software configuration to ensure that i t has been prop­

erly developed, and the reporting of all changes applied to the configuration [88 .

I t is a useful discipHne to the project manager, allowing this complex task to be

executed in a well-organized way, and maximizing productivity by minimizing mis­

takes [5 .

The SCM discipUne has been defined by Bersoff, Henderson and Siegel [13] as;

The discipline of identifying the configuration of a system at discrete

points in time for purposes of systematically controlling changes to this

configuration and maintaining the integrity and traceability of this con­

figuration throughout the system life-cycle.

30

I n the SCM context, a component of a software system is called a Software Con­

figuration I tem (SCI). A SCI is a part of the software system which is treated as a

unit for the purpose of SCM. SCIs may be decomposed into other SCIs; they may

also be modified, thus creating versions of the original SCIs. The range of SCIs

which SCM must manage is very wide and includes source code, executable code,

user and system documentation, test data, support software, libraries, specifications

and project plans.

To provide management control, the concept of baselines is introduced. A base-

Hne [12] is the foundation of the SCM discipHne. I t is a defined state which SCIs

pass at a specific time during their Hfe-cycle. The estabhshment of a basehne is gen­

erally carried out to indicate that the associated SCIs conform to some requirements

or exhibit some characteristics [105]. Before a SCI becomes a baseUne, change may

be made quickly and informally. However, once a baseline has been established,

changes can be made, but a specific, formal procedure must be applied to evaluate

and verify each change.

According to the STARTS Guide [105], SCM is considered to cover:

• Version and Variant Control, which identifies the SCIs and records the history

of their evolution through successive versions.

• Configuration Control, which is concerned wi th the building of appropriately

structured systems f rom their constituent parts.

• Change Control, the operation of applying changes, to estabhsh new states

through which the project passes.

Although the SCM discipline is essential throughout the software life-cycle, i t is even

31

more important during the maintenance phase. Software maintenance is concerned

w i t h changing existing software systems; SCM provides precisely the framework that

is needed to manage such changes. Indeed, most software systems problems are often

more acute during the maintenance phase when the largest number of SCIs, which

exist in many versions and which are highly dependent upon each other, must be

managed.

2.4.1 The Functions of SCM

SCM does not provide a design method or life-cycle model, nor does i t define how

the quafity of items is to be judged. I t does, however, provide a solid foundation

for all other software engineering activities. This achievement is accompUshed by

the four main functions of the discipUne which are: identification, control, status

accounting and auditing.

Software Configuration Identification Function

Software configuration identification is a process that ensures meaningful and con­

sistent naming for all items in the software configuration. This function exposes the

constituent parts of a software representation in a manner which explicitly manifests

the relationship among these parts. I t is the process by which any piece of software

is transformed into a structured entity. This SCM function provides the mechanism

for obtaining visibil i ty and establishing traceability of the SCIs which comprise a

baseline.

32

Software Configuration Control Function

This function is designed to respond to the need for change, but i t also serves a

more general purpose in the effective management of the system evolution. I t is a

framework by which the software port ion of a system can achieve and maintain vis­

ib i l i ty throughout the life-cycle. I t provides the procedures necessary for proposing,

evaluating, reviewing, approving and implementing changes to a baseUne. Without

these procedures, uncontrolled changes might cause more problems than they solve.

A l l changes to a SCI should be controlled by using a formal procedure to obtain

authorization to make the change. The body which authorizes change is usually

known as a Configuration Control Board (CCB). The CCB must be seen to have

the authori ty to evaluate proposals and authorize the implementation of changes to

the software system. I t is also a role of the software configuration control function

to establish the standards for software development and maintenance, in order to

prepare new baselines for review by configuration auditors.

Software Configuration Status Accounting Function

This function provides the mechanism and tools for recording and reporting the

current status and evolution of a software system throughout its life-cycle. This

SCM function is satisfied when the outputs of the SCM identification, control and

auditing functions are recorded, stored and can be reported.

Software Configuration Auditing Function

The purpose of this function is to increase the visibihty of the software system and

to establish traceability throughout the life-cycle of the software system. A suc­

cessful auditing should result in a baseline which checks that each to-be-estabUshed

33

baseUne possesses the appropriate technical relationship to existing baselines. The

two fundamental processes wi th in software configuration auditing are verification

and validation [21]. The verification process is largely an administrative function,

while the validation process involves a technical assessment of the baseline. Verifica­

tion entails evaluating software during each life-cycle phase to ensure that i t meets

the requirements set for th in the previous phase. I t ensures that the correct and

current versions of all product parts are included in the basehne, that traceabihty

to the previous formal baseUne is included, and that the product parts have the

correct logical identification. Validation entails the evaluation of software at the

end of each development effort, to ensure that i t meets its ini t ia l requirements. The

maintenance validation involves regression tests, which help confirm the absence of

unanticipated side-effects in functions not related to those being modified. I t may

also involve auditing software for adherence to design principles, coding standards

and other quality standards.

2.4.2 Automation of S C M

The SCM discipline has been widely employed and automated in recent years. The

application of SCM throughout software development has shown to be an efficient

method of improving the rehability and the quahty of software produced. As recently

as ten years ago, the discipline of SCM was considered of httle value, mainly because

i t was performed manually. Therefore, project managers could not usually rely on

the SCM organization, because its performance was too slow and the work was

error-prone.

In recent years, systems have been developed to automate the SCM process. Some

34

of the first systems, such as SCCS [93] and RCS [108, 109] deal primarily with source

code versioning and storage. These systems provide good support for keeping track

of versions of files in a software system, but provide only marginal support for

understanding the structure of a large software system consisting of many modules,

and for keeping track of relations between documents, source code and test cases.

Other tools, such as make [39], emphasized the system-building aspects of SCM.

However, make builds the system using the latest versions of the files, with little

regard for the previous versions. Several solutions have been proposed to integrate

a version control system with a configuration management system, so that it would

be relatively easy to identify and generate a specific version of a system, consisting

of many modules. The work described by Shigo et al [101] is an early attempt in

this direction. The more powerful systems, such as Cedar System Modeller [69], and

DSEE [73, 74] also provide the integration of source-versioning and system-building.

This integration is essential for the large and complex software systems currently

being developed and maintained.

In small projects, the dominant aspect of SCM is the detailed recording of the

who, what and when of each change made. To accomphsh this, most projects use

source-versioning systems. In larger software developments, however, communica­

tion and control become the dominant factors in managing change. There must be

a set of well-defined procedures for reporting problems with the product, recom­

mending changes or enhancements to the product, ensuring that all parties with an

interest in a change are consulted prior to the decision being made to incorporate

it , and ensuring that all affected parties are informed of the schedules associated

with each change to the product. As a result, automated systems are considering

the need to record, track and analyse volumes of data, and to maintain complex

35

cross-references between large documents. Online systems have greatly reduced the

amount of paper necessary. They enable SCM personnel to report accurate and

timely information about the status of any requested change to any baseUne to the

project managers [11].

Ambriola et al [2] presents an interesting classification of the evolution of systems

for configuration management and version control, from simple stand-alone tools,

such as make and SCCS, based on an underlying file system towards more integrated

systems based on a project database. They have distinguished three generations of

the evolution of tools and environments.

The first generation tackled the problem of having two separate tools for performing

the related tasks of SCM and version control. Although these tasks are integrated,

they are not part of a software development environment. Moreover, these tools were

working over unstructured text files. An example this generation's tools is RCS,

working together with make. RCS, which is primarily a tool for version control,

provides a simple interface to make, in a naive attempt at integrating the activities

of SCM and version control.

In the second generation, tools performing the related tasks of SCM and version

control were integrated with the rest of the software development environment. The

systems of this generation moved away from the file system point of view, introducing

the notion of a database. One weakness presented by systems of this generation

derives from the assumption that the employed programming languages have no

constructs for intermodular type-checking, and therefore have no means of expressing

module interconnection. The consequence of this assumption is that these systems

require an external description of each component in terms of its import/export

36

features and of the other components it uses.

This approach is convenient when different languages are used for different com­

ponents, but it becomes an overhead in environments supporting languages which

actually contain such constructs. This overhead consists of a lot of redundant in­

formation which has to be manually provided by the users. Systems classified into

this category are the Cedar [69] and Gandalf [51, 59] environments. The Domain

Software Engineering Environment (DSEE) [73, 74] is another system which can be

categorized as belonging to this generation, and overcomes many of the limitations

of SCCS and make. The DSEE system, which runs on ApoUos, has a rich set of

facilities for version management and keeping track of source configurations using

configuration threads. The Shape system [79] also integrates SCM with version con­

trol, by extending makefiles of make to include rules of selecting specific versions of

objects. However, it does not provide relationships between specifications, design

and code.

The third generation systems are oriented towards high-level languages. These

systems take advantage of an underlying database, which provides a rich set of

attributes that can be used for choosing the components needed to instantiate a

system. Another advantage of having a database as central repository is that the

integration among different tools can be made very strong. The EcHpse Environ­

ment (with the SCM facilities more extensively covered in its first version) [1, 18],

is an example of system of this generation. Adele [7, 37, 38] is another example;

it is a database management system for program modules, supporting multiversion

software, relationships among software components, configuration management, and

access control and protection. The automated software engineering framework de­

veloped by the Planning Research Corporation (PRC) [91] can also be categorized

37

as belonging to this generation. This framework aims to develop and maintain ADA

software systems. It supplies the mechanisms to enforce SCM policies, and auto­

mates the labour intensive clerical aspects of SCM, such as tracking and maintaining

the historical information necessary for SCM status reporting and auditing.

From this brief analysis of the evolution of the appHcation of SCM and version

control, it can be seen that SCM and version control should be performed within an

environment, so that they can be integrated with the other maintenance activities. A

key aspect of this integration would be a database as the central repository of system

knowledge and information, so that SCM and version control can be performed with

reference to the conceptual schema underlying the environment.

2.4.3 Application of S C M to Software Maintenance

The SCM discipline has been used to improve the software development process with

great success. Experience has shown that good management can make the difference

between project success and failure. By following sound management practices,

development projects can be kept on schedule, resulting in increased reliabifity,

improving the quality of systems produced and increasing job satisfaction. However,

these same practices have not been applied to managing maintenance activities of

existing software systems.

Traditionally, software maintenance has been treated differently from new devel­

opment. Because it has been viewed as less difficult and less important, mainte­

nance has been performed by less experienced personnel under less management

supervision. The result is that management problems often outweigh the technical

38

problems of performing software maintenance. Therefore, a management disciphne

which guides the maintainer through the maintenance process is required.

The SCM discipline which is used to control software development can and must be

used to control software maintenance [80], so that the task of maintenance does not

cause the software systems to deteriorate after changes are introduced to them, and

maintenance becomes more cost effective and reUable.

The automated support for the SCM disciphne discussed in this chapter so far

mainly deals with its application during software development. As far as software

maintenance is concerned, few projects have been related to SCM. The Evolution

Support Environment (ESE) [89] provides integrated support for the management

of software architecture configuration, life-cycle configuration and version control.

Software architecture configuration management allows tracking of interconnections

among the software components which make up a system. Life-cycle management

allows traceability among specifications, design, code and test cases during software

development. Version control allows specific versions of software objects and their

associated objects, such as specifications and test cases, to be retrieved.

One project being carried out at the University of Durham deals explicitly with

configuration management within the maintenance process. Inverse Software Con­

figuration Management [63, 64] aims at identifying and documenting configurations

of existing systems in order to bring these software systems under configuration con­

trol. Therefore, this project is concerned with the configuration identification func­

tion, and performs the first step aimed at regaining control over an existing system.

Proforma Identification Scheme for Configurations of Existing Systems (PISCES) is

a tool under development, designed to help in this area. However, to improve the

39

reliability of an existing system during its maintenance, traceability and consistency

among the set of documents and source code should not only be established, but

should also be preserved when changes to the code are made.

2.5 Summary

This chapter lays a foundation for the research carried out in this thesis by giving

an overview of the concepts of the software maintenance process, documentation for

software maintenance and software configuration management. Additionally, this

chapter has briefly surveyed a number of related automated support environments,

and has outlined their oversights and weaknesses.

The discussions in the previous sections have shown inadequacies in the current ways

of tackling software maintenance. Based on the survey, it is evident that further

research on software maintenance is required in order to overcome the deficiencies

and limitations of existing software maintenance techniques. Good management of

software maintenance is an achievable objective, but there is inadequate technical

support from methods and tools. Many tools in current use derive from the initial

development phase, and are not well suited to the needs of maintainers. Work

is needed on methods in order to solve the problems of configuration control and

release, and for developing maintenance methods for existing software systems with

associated quality assurance procedures.

The prominent software maintenance environments available are taking the approach

of reverse-engineering existing software systems, aiming at applying modern software

40

development techniques to control their evolution. In this sense, the work proposed

in this thesis differs from them. The proposed method aims to provide an alter­

native solution for software maintenance problems by incrementally recovering the

documentation while maintaining the software systems. Incremental documenta­

tion, as discussed in this chapter, seems to be a viable strategy, concentrating only

on those parts of the system which require modification, leaving the remainder alone.

Furthermore, the software maintenance process is performed under the control of

the SCM discipline. Hitherto, there have been no projects which tackle software

maintenance from this point of view.

Some similarities with the arguments posited by this thesis, as far as providing sup­

port for maintenance is concerned, can be found in the ASU software maintenance

environment [33] and ESE [89]. However, the ASU environment does not deal with

SCM control in the maintenance process. Although ESE applies SCM to control the

process, this environment does not deal specifically with the maintenance process;

therefore, it lacks the support necessary to import the existing software systems into

the environment.

The similarity between the approach proposed by this work and large projects such

as REDO, MACS and ReForm is that the proposed method (COMFORM) also aims

to provide a method for software maintenance and places considerable emphasis on

a single integrated representation of the original system in an object base. These

environments, however, aim to reverse engineer the software systems and hand them

over to current software engineering techniques in order to carry on their mainte­

nance.

The novelty of the COMFORM method is that, unlike the approach to software

41

maintenance taken by these large projects, it takes a less drastic approach to the

incrementally-recovered documentation of existing software systems while the main­

tenance process is being performed. Therefore, COMFORM is not only a reverse-

engineering method. I t tackles the problem of incremental documentation, and at

the same time, it provides guidance to carry on maintenance in a controlled way by

applying SCM. Consequently, control over software systems is improved as main­

tenance is performed. The benefit of this technique is that it is a less expensive

method, by which the maintainability and documentation of software systems in­

crease as they are maintained. Moreover, the method can be routinely used to

control the inevitable process of change.

The next chapter discusses existing software maintenance models, and introduces

the characteristics of the modelHng developed in this thesis. The aspects of creating

a single integrated representation of the original system is expected to achieve by

formaUzing the method. This is obtained through the modelling of the method using

ORM discussed in Chapter 4.

42

Chapter 3

Software Maintenance Models

As the size and complexity of software systems grows, so too will the maintenance

burden unless active measures are taken to plan for it and migration to software

environments designed to minimize maintenance occurs. Imposing a structure onto

the maintenance process of existing software systems may reduce the difficulty of

the whole task by refining it to a number of tasks of reduced complexity. In order

to structure the maintenance process, it is necessary to model it as in the software

development process.

In this chapter, several models for improving software maintenance are analysed,

along with their strengths and weaknesses. Additionally, desirable capabihties of

software process modelhng are discussed in order to introduce the characteristics of

software maintenance modelling.

43

3.1 Managing the Software Life-Cycle

Because of the intangible nature of software systems, effective management rehes on

adopting models which make the software process visible by means of documents,

reports and reviews [104]. This has resulted in the adoption of software models

where the software process is split into a number of phases and each phase is deemed

to be complete when some deliverable document has been produced, reviewed and

accepted.

For sometime, the software process has played a major role in the field of software

engineering [78]. During this period, the study of software processes has led to the

development of various life-cycle approaches that can be employed in engineering

software. The basic function of a life-cycle model in the development of a software

system is to describe the chain of events required to create and maintain a particular

software product.

The waterfall model is by far the most widely adopted software Hfe-cycle model [104 .

This model is typically high-level and does not address detailed activities of the

software life-cycle. Although it suffers from inadequacies, it continues to be widely

used as i t provides benefits as summarized by Sommerville [104]: "it simplifies

management of the software process", and by Pressman [88]: "it is significantly

better than a haphazard approach to software development". Among the benefits

of life-cycle models are the facts that they help us to become aware of, and gain

an increased understanding of, the software process, and to determine the order of

global activities involved in the production of software. These benefits may result

in improved product quality, increased effectiveness of methods and tools, reduced

software development and maintenance costs, and increased customer and developer

44

satisfaction [78].

Despite some variations, the main phases of a traditional software life-cycle model

are: analysis (requirements and specifications), design, implementation and main­

tenance, with possible feedback loops between phases. The current view of the

software life-cycle, however, mainly emphasizes the development phases. It does not

portray the system life, i.e., it does not show the evolutionary development which is

characteristic of most software systems, only showing the creation and development

of a software system. The traditional software life-cycle model has always shown

the software maintenance activity as a single phase at the end of the cycle. This

final phase needs to be replaced by a model which reflects this aspect of software

evolution [9]. What is required is a new, broader perspective of the software life-

cycle, emphasizing change, maintenance and migration to new technologies. On the

basis of the discussion so far, this final phase should also break the work to be done

into tasks or stages which can be performed in such a way that the quality cycle

concept can be used to control the quality of the software maintenance stages and

the individual tasks; progress can then be reviewed at the end of each stage.

3.2 Existing Software Maintenance Models

It is now quite common to divide the software development process into separate

phases. Similar models have been proposed for software maintenance. A mainte­

nance model describes the individual steps necessary to satisfy an individual main­

tenance request. Different types of maintenance requests, environments character­

istics, and/or budgetary constraints may require different models [94].

45

One of the causes of many maintenance problems is the lack of good maintenance

models. Practical software maintenance models tend to be more ad hoc and are

performed without easy access to the necessary information. In addition, the main­

tenance technology level (i.e., methods for design and code reading, and automated

tools) is much lower than during development. The result of all the above is unpro­

ductive and error-prone maintenance.

A number of authors have proposed models for software maintenance. The software

maintenance models described in this section outline basic guideUnes (phases) which,

the authors suggest, are to be followed during the maintenance of software systems.

These models have been proposed in the last two decades and have slightly evolved to

keep up with new technologies that have emerged. These models have been divided

into three separate sections to show their evolution, reflecting the chronological

order in which they were developed. Accordingly, the first models are typically

high level, giving only general guidance, and not addressing detailed activities of

the maintenance process. The recent ones, though also high-level, introduce more

advanced software engineering concepts and ideas.

3.2.1 Early Software Maintenance Models

The early models of software maintenance were very simplistic. They provided the

order of phases to be followed, without addressing the details of how they should be

performed.

46

Boehm Model

Boehm [16] outhnes three major phases of a maintenance effort in his model. How­

ever, he does not detail the exact maintenance tasks within each phase. The three

phases of the Boehm model are:

1. Understanding the existing software.

2. Modifying the existing software.

3. Revalidating the modified software.

Liu Model

The significance of the existing software system is highlighted in the model devised

by Liu [76]. Unfortunately, he does not provide any details regarding the tasks

within each of the phases of his model. The Liu model consists of a high-level,

general model which comprises three phases:

1. Understanding of the capacity, function and logic of the existing software sys­

tem.

2. Designing of new logic to reflect the new request or additional feature.

3. Merging new logic with existing logic so that the new logic is integrated into

the existing software system.

Liu puts forward some suggestions to improve the documentation of software systems

and stresses its importance for software maintenance. The documentation, however,

47

is not part of any of the phases of his model. Liu also emphasizes that strict testing

procedures should be followed, although a testing phase is not itemized in his model.

Sharpley Model

The Sharpley model [100] focuses more specifically on the process of correcting errors

in existing software systems (corrective maintenance). The phases of the Sharpley

model are:

1. Problem verification. Identify cause, reproduce trouble situations and verify

reported symptoms.

2. Problem diagnosis. Isolate the software components which are in error, evalu­

ate problem severity and estimate cost to fix.

3. Re-programming. Modify code and generate a new system version.

4. Baseline verification/re-verification. Ensure the correctness of the modified

software system.

Sharpley emphasizes that all phases of the software maintenance process involve

some sort of testing, which consists of verifying key states and major transitions on

a selective basis.

Yau and Collofello Model

Yau and Collofello [115] identified four basic phases in managing the software main­

tenance process. Their model focuses on software stability through analysis of the

ripple effect of software changes. These activities can be accomplished in the four

following phases:

48

1. Understand the program. Consists of analysing the program in order to un­

derstand i t .

2. Generate a maintenance proposal. Consists of generating a particular mainte­

nance proposal to accomplish the implementation of the maintenance objec­

tive. This requires a clear understanding of both the maintenance objective

and the program to be modified.

3. Account for ripple effect. Consists of accounting for all of the ripple effects as

a consequence of program modifications.

4. Testing. Consists of testing the modified program to ensure that it has at least

the same reliability level as before.

Each of the four phases are associated with software quality attributes. The first

phase is associated with complexity, documentation and self-descriptiveness at­

tributes, which contribute to the easy the understanding of a program. In the

second phase, the ease of generating maintenance proposals for a program is af­

fected by the attribute extensibility. Yau and Collofello state that one of the most

important quahty attributes is the stability of the program (in phase three), because

if the stability of a program is poor, the impact of any modification on the program

is large. In the fourth phase, the primary factor contributing to the development of

cost-effective testing techniques is the testability of the program.

49

3.2.2 Middle Software Maintenance Models

The models described in this subsection are more elaborate than those in the pre­

vious one. Martin and McClure's model, for instance, provides further details on

how to perform the task of maintenance; while Patkau's model provides detailed

functions to be performed according to the maintenance category. Arthur's model

is more comprehensive, providing guidelines for the change request to system release

phases.

Martin and McClure Model

The high-level breakdown of the tasks offered by the Martin and McClure model is

similar to that offered by other investigators. The three basic functions are:

1. Understand program. This entails understanding the functional objective, in­

ternal structure and operational requirements of a program. This function is

subdivided in three subfunctions:

• Top-down understanding. A top-down approach should be used to be­

come familiar with a program at a general level of understanding, then

at detail level.

• Improve documentation. During the understanding of the program, doc­

ument what is learnt, concentrating on improving high-level program

documentation.

• Development participation. When possible, participate in the program

development process to learn about the program.

2. Modify program. This involves creating new program logic to correct an error

50

or to implement a change, incorporating that logic into the existing program.

It necessitates the following steps:

• Devise a plan for changing the program. A top-down approach is rec­

ommended to review the program. First, the modules and data struc­

tures to be changed are isolated. Next, the internals of each module and

data structure to be changed are studied in detail. The change is then

designed, specifying the new logic and any existing logic that must be

altered.

• Alter the program code to incorporate the change. The objective of

this step is twofold: to correctly and efficiently code the change, and to

eUminate any unwanted side effects from the change.

3. Revalidate program. The maintainer should perform selective retesting to

demonstrate that not only is the new logic correct, but also that the un­

modified portions of the program remain intact and the program as a whole

still functions correctly. The maintainer should:

• Test for program failure by performing system tests to be certain that

the entire system is still operating correctly as a whole.

• Test the unmodified portions of the program by performing regression

tests, to determine if those parts still operate correctly.

• Test the modified portions of the program to determine if the changes

were designed and implemented correctly.

Patkau Model

A more comprehensive approach to software maintenance is presented by Patkau [82].

51

Patkau first presents a generalized high-level model which identifies five basic mainte­

nance phases. His model is then further refined, and four versions of the generalized

model are presented. Each of these versions models the four categories of software

maintenance: corrective, perfective, adaptive and preventive maintenance. An im­

portant feature of this model is its emphasis on specification and locaHzation of the

change. The five phases of the generaUzed model are:

1. Identification and specification of the maintenance requirements.

2. Diagnosis and change localization.

3. Design of the modification.

4. Implementation of the modification.

5. Validation of the new system.

The refined versions of the generalized model differ in the first two phases. The

remaining phases of the model are similar among each of the four categories of soft­

ware maintenance. Although Patkau provides a further refinement of these phases,

they will not be discussed further as they are similar to those of previous models.

For perfective maintenance, the two initial phases are:

• Identify new or altered requirements, and specify operation of the enhanced

system.

• Locate affected elements.

For adaptive maintenance, the two phases are:

52

• Identify a change in the environment. Describe the change and revise specifi­

cations to reflect i t .

• Locate the elements affected by the change.

For corrective maintenance, the first two phases are described as:

• Identify repeatable error symptoms and specify correct operation of the sys­

tem.

• Locate the part of the system responsible for the error.

For preventive maintenance, the two first phases are refined to:

• Identify a deficiency in performance, maintainability, etc., and specify desired

performance or quality standard.

• Locate the source of the deficiency.

Arthur Model

Arthur [4] proposes a more elaborate and comprehensive model for software main­

tenance. His model presents phases to deal with the request for changes until they

are implemented, tested and released to the users. The seven phases of his approach

to tackling the software maintenance process are:

1. Managing change. The basic objective of change management is to identify,

describe and track the status of each requested change. In this phase, change

requests are generated and analysed.

53

2. Analysing change. The overall objective of impact analysis is to determine

the scope of the requested change as a basis for planning and implementing

it . Change requests are evaluated for potential impact on existing systems,

other systems, documentation, hardware, data structures and humans (users,

maintainers, and operators). A preliminary resource estimate is developed.

3. Planning system releases. The principle objective of system release planning

is to determine the contents and timing of system releases. Change requests

are ranked and selected for the next release. Changes are batched by work

product, and the work is scheduled.

4. Designing changes. The major objective of the design phase is to develop a

revised logical and physical design for the approved changes. Logical design

relates to the system level, and physical design relates to the program level.

5. Coding changes. The objective of coding is to change the software to reflect the

approved changes represented in the system (logical) and program (physical)

designs.

6. Testing changes. The primary objective of testing is to ensure comphance with

the original requirements and the approved changes.

7. Releasing the system. The objective of system release is to deliver the software

system and update documentation to users for installation and operation.

3.2.3 Recent Software Maintenance Models

The most recent models dedicated to software maintenance are illustrated in this

section by the Foster, Pfleeger and request-driven models. While Foster's model

54

tries to approach maintenance from the organizational viewpoint, Pfleeger's model

is an attempt to improve the maintenance process by managing it through metrics.

The request-driven model attempts to portray the activities of software maintenance

as dictated by user requests for change involving strict control from management.

Foster Model

Foster et al [42] argue that the organization of software maintenance is of critical

importance to the success of the activity itself. Their model is derived from the

observations made by actual maintenance teams and covers technical and managerial

issues. This model differs from others discussed in this chapter in that it does not

dictate the phases to be followed during the maintenance process, but refers to the

functions (duties) performed by people involved.

The model specifies the four following functions which are triggered by queries,

problem reports and change requests sent by customers.

1. Front desk receives these communications from customers and retains records

of them. It is the responsibility of the front desk to provide answers/solutions,

either directly or by passing on the request to a more speciaHzed duty within

the team.

2. Request store receives the requests which require new solutions. The request is

queued until efl̂ "ort becomes available. This queue is represented as the request

store, which contains a backlog of unactioned requests. The management of

the request store is an important function. Priorities are assigned among its

contents, and preliminary investigations and impact analyses are performed

in order to plan future work. If the preUminary investigations reveal that

55

the team does not have the resources or capability to provide the answer to

a problem, a request must be made to some other team for a solution to be

provided. I f that team can cope with the request, it will be dealt with as one

of a repeated series of actions, in which the highest priority request is taken

from the store and the software change designed.

3. Change store accumulates changes and solutions received from other teams.

From time to time, the decision is taken to build a new release of the software,

incorporating all new changes available.

4. Solution store provides a set of known answers/solutions which are accessed

by the front desk. This represents information in a variety of forms, such as

versions of software products and paper records of answers to frequently asked

questions. If the solution is in the store or can be quickly generated, then it is

immediately solved and issued back to the customer. New solutions are also

lodged in the solution store, from where they are available for distribution to

the original customers.

Pfleeger Model

Pfleeger [86] describes a model for software maintenance which emphasizes impact

analysis and forms a framework for software maintenance metric support. The

model incorporates metrics for assessing and controlling change. Pfleeger's model

can be seen as an improvement on that of Yau and CoUofello, as the software quality

attributes are associated to the phases so as to monitor product quaUty. The major

activities of this model are:

1. Manage software maintenance. This controls the sequence of activities by

56

receiving feedback with metrics and determining the next appropriate action.

2. Analyse software change impact. It evaluates the effects of a proposed change.

If the impact of change is too large, or if traceability is severely affected by

the change, management may choose not to implement the change.

3. Understand software under change. Source code and related product analysis

are needed to understand the software system and the proposed change. The

likely degradation of system characteristics, such as complexity of the system,

self-descriptiveness of the source code and documentation quality helps to

decide if the change will be implemented or not.

4. Implement maintenance change. This generates the proposed change. Adapt­

ability of the system is analysed to perceive the difficulty of implementing the

change.

5. Account for ripple effect. This analyses the propagation of changes to other

code modules as a result of the change just implemented. Stability, couphng

and cohesion of affected modules serve to check the original impact analysis

effectiveness.

6. Retest affected software. The modifications are tested to meet new require­

ments, and the overall system is subject to regression testing to meet existing

ones. Testabihty, completeness and verifiabihty are observed in this activity.

Request-driven Model

The request-driven model [9] attempts to portray the activities of software mainte­

nance as dictated by user requests for change. The model consists of the following

three major processes, which involve strict control from management:

57

1. Request control.

2. Change control.

3. Release control.

The request control process deals with the user's requests for change. The major

activities which take place during this process are:

• Collection of information about each request.

• Setting up of mechanisms to categorize requests.

• Use of impact analysis to evaluate each request in terms of cost/benefit.

• Assignment of a priority to each request.

Change control is often seen as a key process, the most expensive activity being the

analysis of the existing code. The activities involved in this process are:

• Selection of changes from top of priority list.

• Reproduction of the problem (if any).

• Analysis of code, documentation and specification.

• Design of changes and tests.

• Quality assurance.

It is during the release control process that requests which are to be included in a

new release of the software system are decided and the necessary changes to the

source code made. The activities which take place during this process are:

58

• Release determination.

t Building of a new release by editing source, archival and configuration man­

agement, and quality assurance.

• Confidence testing.

• Distribution.

• Acceptance testing.

The software maintenance models discussed in this section provide a means of com­

munication between the people involved in the maintenance task, assistance in the

management, and some may provide a foundation for building maintenance-driven

tools. However, because these models provide mainly high-level guidelines, they do

not present sufficient details of actions and events necessary to ensure the quality

and maintainability of software systems which should precede each new release. Ex­

isting maintenance models lack a framework with rigid guidelines, in order to make

certain that software systems are improved rather than impaired after each change

is introduced.

3.3 Software Process Modelling

Models for software development, as is the case for most of the software mainte­

nance models described in the previous section, represent the software process in

terms of phases. Additionally, software maintenance models only characterize the

maintenance process from the maintainer's perspective. The structuring of mainte­

nance activities provides a useful mechanism for improving the process. However,

59

the application of these models has been of limited benefit in actually aiding the

maintenance process. Moreover, existing models do not describe the actual pro­

cesses which occur during software maintenance; they may only provide a means

of visuaUzing the process in terms of interim products. Phase milestones could be

associated with these products, thus providing a mechanism by which management

satisfaction could be assessed with respect to general requirements, budgets and

schedule.

Moreover, software maintenance models, like software development models, should

provide wider aid to fully encompass the whole process. Kellner [62] defines software

process modelling as a methodology that encompasses a representation approach,

comprehensive analysis capabilities and the ability to make predictions regarding

the eflFects of changes to a process.

Several diverse goals and objectives have been cited as motivation for the devel­

opment and application of software process models. These include support for au­

tomated execution and control, human interaction (such as execution guidance),

various management responsibilities, process understanding and analysis of pro­

cesses [61 .

Gallagher [45] defines a software maintenance process model as the specification

of a systematic approach to the maintenance of software. With the purpose of

extending the experience and technology of software development process to software

maintenance, the four primary objectives for the development of software process

models, described in [62], should be taken into account:

1. Enable effective communications, regarding the process to others (workers,

60

managers and customers).

2. Facilitate reuse of the process by enabling a specific software process to be in­

stantiated and executed in a reliably repetitive fashion across multiple software

projects.

3. Support evolution of the process by serving as a repository for modifications,

lessons learnt, and tailoring, and by analysing the effectiveness of changes in

a laboratory of simulated environments before actually implementing them.

Successful tailoring decisions should then be formalized and stored as part of

the model, so that they can be consistently applied in the future.

4. Facilitate eff"ective planning, control and operational management of the pro­

cess. This is accomplished through increased understanding, training, confor­

mity to process definitions, quantitative simulation and analysis capabihties,

and definitions and use of measurements and metrics.

In order to accomphsh these objectives, software process models must possess capa­

bilities in three major categories:

• A powerful representation formalism is required to cope with the complexities

of actual organizational processes.

• Comprehensive analysis capabilities, including a wide variety of tests in the

areas of consistency, completeness and correctness. They are critical in deter­

mining the validity of the model itself, and of the actual process the model

represents.

• Forecasting capabilities which can be provided through simulation that is

tightly integrated with the model representation and analysis features.

61

From these observations, Kellner and Hansen [62] summarize the requirements for

an ideal approach to software process modelling. Similar lists have been presented

elsewhere. For example, a summary of the capabilities discussed at the 4th Interna­

tional Software Process Workshop [58] is presented in [92]. Rombach and Mark [95]

also list numerous desired capabilities. These characteristics are described below.

1. Use a highly visual approach to information representation, such as diagrams.

2. Enable compendious descriptions, i.e., comprehensive in scope, yet concise in

presentation.

3. Support multiple, complementary perspectives of a process, such as functional,

behavioural, organizational and conceptual data modelling.

4. Support multiple levels of abstraction (e.g. hierarchical decomposition) for

each perspective.

5. Offer a formally defined syntax and semantics, so that the constructs are

computable.

6. Provide comprehensive analysis capabilities. This would involve tests in cate­

gories such as consistency, completeness and correctness.

7. Facilitate the simulation of process behaviour directly from the representation.

8. Support the creation and management of variants, versions and reusable com­

ponents of process models.

9. Support the representation and analysis of constraints on the process, such as

regulations, standards and so on.

10. Enable the representation of purposes, goals, rationales, and so forth, for pro­

cess components and the overall process.

62

11. Integrate easily with other approaches which may be deemed useful.

12. Take an active role in process execution.

13. Ofi"er automated tools supporting the approach.

Techniques for software process modelling are still under development and the avail­

ability of even a portion of the requirements described above is expected to bring

substantial benefits to the software development and maintenance processes. Be­

sides, these requirements may in the future, facilitate the evolution of software

processes in a methodical and disciplined fashion.

3.4 Chctracteristics of Software Maintenance Mod­

elling

Hinley and Bennett [54] argue that process models need to have the following char­

acteristics in order to provide real benefits for maintenance management:

• A comprehensive coverage of the software maintenance process, but avoiding

complexity.

• A large scope addressing organizational, behavioural and functional aspects.

• Recognition of real-world objects by the model (change requests, fault log).

• Recognition of explicit roles of the people (manager, customer, user) who

interface with the maintenance process.

63

• A suitable diagrammatic form so that measurement and control points can be

established.

• Recognition of the process communication pathways, which may not reflect

an activity sequence or organizational hierarchy, e.g. management control

mechanisms.

• A framework which guides managers in their use; for instance, how they can

measure process performance against stated goals, with the aid of a model.

• Reusable features i.e., provide process modules or templates which can be

refined or tailored to suit individual maintenance project circumstances, such

as the change request control process and the change release process.

• Flexibility, so that models can be quickly adapted to cater for real process

transformations and changing relationships.

The requirements for software process modelling, in addition to the characteris­

tics for maintenance management described above, have been analysed in order to

provide a basis for comparison with the proposed software maintenance modelling.

Although the modelling supporting the proposed method is simple, it provides most

of the desirable capabilities necessary to generate a supportive maintenance process.

In addition, it provides aid for maintenance management, as detailed below;

• It covers each maintenance activity from change request to its release to users.

• It addresses a number of different aspects of the maintenance process, such as

functional and conceptual data modelling aspects.

64

• The objects of the formalization are real-world elements such as change pro­

posal, maintenance specification and configuration release.

• It considers the people involved in the maintenance process and their roles.

• The functional process model provides a diagrammatic form of representation

which allows measurement and control points to be estabHshed.

A relevant aid for the management of the maintenance process is the functional

process model, which defines the framework necessary to systematize the software

maintenance process, by specifying the chain of events and the order of stages that

a change has to go through. This model:

• Comprises ways of coping with the need and justification for changes.

• Improves the flow of maintenance activities by providing guidance throughout

the maintenance process.

• Provides a formal change control procedure to monitor changes and protect

software quality.

• Determines the organization and content of the information needed to support

the maintenance activities.

3.5 Summary

In this chapter, a survey of software maintenance models has been presented. Al­

though there are a relatively large number of software maintenance models, they

65

have displayed oversights which require further research into this field. Relevant

characteristics of software maintenance modeUing have also been discussed, in or­

der to introduce the necessity of generating alternative approaches to improve the

maintenance of existing software systems.

This research intends to develop a software maintenance method, aiming to provide

a consistent and structured approach to software maintenance, overcoming disas­

trous documentation, reducing dependencies on experts and dehvering productivity

in maintenance. Some characteristics of software process modelHng are employed

in order to provide the necessary guidehnes for the proposed method. Chapter 5

provides details of the functional software maintenance model proposed in this the­

sis. The next chapter explains the background of data modelling techniques so as

to introduce the conceptual data modelling aspects of the proposed method.

66

Chapter 4

Modelling Techniques

Models, i n general, are abstractions designed to understand a problem before im­

plementing a solution. Because a model omits non-essential details, i t is easier

to manipulate than the original entity. To build a complex system, the developer

should abstract different views of the system, build models using precise notations,

verify that the models satisfy the requirements of the system, and gradually add

detail to transform the models into an implementation. Moreover, models are use­

f u l for communicating w i t h appHcation experts, modelling enterprises, preparing

documentation and designing systems and databases.

The approach to modelling and formaUzing the software development process has

recently been receiving attention, since such a strategy provides great benefits to

clear expression of abstract concepts. Additionally, i t may provide both an insight

into the development process and the necessary means to design more supportive

67

software engineering environments.

Effective configuration management requires the application of knowledge f rom the

underlying software process, which can adequately represent software and express

semantics capabilities [96]. Therefore, software modelhng and formalization are

important steps in applying and automating the SCM discipUne in a software envi­

ronment.

This chapter provides a description of various approaches to model software sys­

tems. In the following sections, tradit ional modeUing techniques, such as the rela­

tional, entity-relationship and object-oriented models, are reviewed along wi th their

characteristics and apphcations to model software systems. These data models are

presented so as to introduce the Object Representation Model (ORM) , and to put

i t in the context of data models. The O R M , wi th its main characteristics, is then

described, along w i t h its contribution to the modelling of the method proposed in

this thesis.

4.1 The Relational Data Model

In the 1970s, the relational data model [32] was the focus of much research in

the database area; i t spawned considerable theoretical, as well as implementation

activity. Relational database technology is now well understood, and a number of

relational database systems are commercially available; they support the majori ty

of business applications relatively well. The relational model is accepted as the

state-of-the-art model in the commercial database field.

68

A relational database consists of a collection of relations, or tables, and a speci­

fication of underlying domains for the entries in the table. The table entries are

atomic values. Each table may be viewed as having a fixed number of columns and

a variable number of rows, the order of which is unimportant. Data in several tables

is related through matching column values, rather than through the specification

of explicit links. A major advantage of the relational model is that i t has a formal

mathematical basis, whereas prior to its introduction, the entire database field could

be viewed as a large collection of ad hoc methodologies. I n particular, the relational

theory provided a formal basis for assessing the quality of a specific database design.

However, i t has been recognized that this simple conceptual data model, however

elegant, is of Umited use in modeUing appHcations, where the data is confined to

a small number of different types, related in well-defined ways. This restriction

may not have been a problem in many of the applications for which i t was originally

intended, such as banking transactions and inventory management. Nevertheless, its

usefulness has been l imited when applied to complex, highly structured appUcation

domains, such as some recent application areas in need of database management

support, like Software Engineering Environments (SEE). These applications place

demands on database systems which exceed the capabilities of relational systems. I n

other words, the basic relational data model has been proven incapable of capturing

and controUing much of the semantics of complex applications wi th such a simple

framework.

The deficiency of expressive power in the relational data model leads to seman­

tic overloading, when a single data model construct represents different abstract

concepts. For example, the primitive data construct relation (table) is used to rep­

resent both objects and relationships. Moreover, the simple record structure, where

69

attributes are atomic, has also been considered as a major disadvantage of relational

systems, because i t is difficult to express the semantics of complex objects in this

fashion.

Given the inadequacies of the relational model, new data models have been defined,

often as extensions of the relational data model, which are more expressive and can

capture more of the semantics of the application domain. Such models are termed

semantic data models.

4.2 Semantic Data Models

The emergence of semantic data models was mainly due to the necessity of mech­

anisms for improving the representation of data. Semantic data models usually

include a rich set of structural abstractions which can be used by the data mod­

eller [68]. I n this way, semantic data models may provide facilities for differentiating

between kinds of data entity, related through various kinds of relationships. By dis­

tinguishing the many kinds of entity and relationship types which can exist, these

models can be more expressive when representing the semantics of the apphcation

domain.

4.2.1 The Entity-Relationship Model

The Entity-Relationship (E-R) model [28] is the most well-known semantic data

model. I t was originally conceived of to support the data representation of software

70

systems which were unable to have the necessary semantic capabilities represented

by previous models.

The design representation scheme of the E-R approach contains three classes of

elements: entities, relationships and attributes. Entities are elements which can

be uniquely identified. Groups of entities may constitute an entity type, such as

employee or project. Relationships are conceptual links which exist between or

among entities. Relationships can also be classified into different types, such as

marriage or project-employee. Attr ibutes are properties possessed by entities or

relationships, and have corresponding values. For example, age is an attribute or

property of all employees. Relationships may also have values. For example, the

relationship marriage has the attr ibute anniversary date.

The popularity of the E-R model is due to its economy of concepts and the widespread

belief in entities and relationships as natural modeUing concepts. Nevertheless, i t

should be noted that in non-conventional applications (where this model tends to be

used), modifications or extensions to the original model are usually made to increase

its representational capabilities. Several extensions have been proposed to overcome

the deficiencies of the E-R model. Accordingly, the E-R model can be considered

as an axis, around and on which new implementations add extensions or impose

restrictions. A large number of examples of models w i th extensions, which adopted

the E-R model to represent software, can be found in the literature; for example:

GENESIS [90], A L M A [70] and V I P E G [66]. More directly related to model con­

figuration management aspects of software are: D M M [77], PACT C M [102] and

C M A [87 .

Although semantic data models, and in particular the E-R model, have proved to

71

be excellent ways of modelhng data, notably absent f rom these models is a better

support for manipulation of data [68]. That is, their extended data structuring

mechanisms are usually accompanied by the same general set of operators (i.e. cre­

ate entity, delete entity and update entity) [20]. Data would be better accessed and

updated by a fixed set of data-type specific operators. Hence, the next stage in se­

mantic data modelling is the integration of operation definition wi th the data struc­

tur ing facilities, so that operator definitions are entity-type specific. The object-

oriented paradigm has been seen as one way to attempt this integration, providing

a mechanism for progressing f rom a purely structural model of data towards a more

behavioural model, and combining facilities for both the representation and manip­

ulation of data wi th in the same model.

4.3 Object-Oriented Models

I n object-oriented models, the entities of interest are called objects. Much confu­

sion surrounds the definition of the object-oriented models because objects emerged

as programming concepts and were therefore driven by implementation considera­

tions [112]. The increasing interest in object-oriented approaches in the last few years

has led to a proliferation of definitions and interpretations of this much-employed

term.

King [68], in an attempt to define the object-oriented model, compares object-

oriented and semantic data models. Semantic data models provide constructors

for creating complex types, whereas behavioural issues are often left undefined. In

contrast, object-oriented models take an abstract data-type approach to gathering

72

together operations and data-types. In this way, a data-type is dependent on its

own behaviour. Since there is much confusion regarding the definition of what is

object-oriented in the literature, the distinction between the two sorts of modelling

is not always well defined.

Objects of object-oriented models are uniquely identifiable, may have a number of

data properties associated wi th them, which record the current state of the object,

and can be manipulated through a well-defined set of operations (or methods). In

object-oriented systems, a distinction is made between an object's identity and its

properties. As a way of organizing objects in a more manageable way, objects which

have the same kinds of properties, and can be manipulated using similar operations,

are classified to form a class. Hence, each object is said to be an instance of a class.

A class acts as a template for creating instances of that class (objects). The objects

in a class share a common semantic purpose, above and beyond the requirements of

common data properties and a set of operations.

Because of the considerable disagreement concerning the definition of object-oriented,

the elements of object-oriented models vary f rom author to author. For instance,

Booch [17] considers abstraction, encapsulation, modularity, hierarchy, typing, con­

currency and persistence as the important elements of an object-oriented approach.

Khoshafian and Abnous [67], however, define object-orientation as abstract data­

types added to inheritance and object identity. Further, Rumbaugh et al. [97

identify the following four characteristics as part of an object-oriented approach:

identity, classification, polymorphism and inheritance. Despite having no generally

accepted terms and definitions, the most common elements usually referred to and

associated w i t h object-orientation are as follows:

73

• Identi ty means that data is encompassed into a discrete, distinguishable en­

t i t y called an object. Each object is uniquely identified by an object identifier.

The identity of an object has an existence independent of its value. The notion

of an object identifier is different f rom the concept of key in the relational data

model. A key is defined by the value of one or more attributes and can there­

fore undergo modifications; but two objects are different i f they have different

object identifiers, even i f all their attributes have the same values.

• Abs trac t ion denotes the essential characteristics of an object which distin­

guish i t f rom all other kinds of objects, thus providing crisply defined concep­

tual boundaries, relative to the perspective of the viewer. Abstract data-types

describe a set of objects w i t h the same representation and behaviour. In most

object-oriented programming languages, classes represent the implementation

of abstract data-types.

• Encapsu la t ion is the process of hiding all of the details of an object which

do not contribute to its essential characteristics. I t is usually the formal term

which describes the bundling of data properties and operations (methods)

together wi th in an object, so that access to data is permitted only through

the object's own operations. In this way, the concept of object is more closely

in tune w i t h the way real-world entities behave; i.e., the concept of what an

entity represents is rarely separated f rom what can be done wi th i t in actuality.

• Inher i tance is the most important mechanism in arranging classes into hier­

archies. I t defines a relationship among classes, allowing a class to inherit the

representation and behaviour f rom existing classes. Inheriting representation

enables data structure sharing among objects. Inheriting behaviour enables

code-sharing (and hence reusabihty) among software modules. The combi-

74

nation of these two inheritance factors provides a very powerful strategy for

software modelhng, development and reuse. Inheritance is achieved by spe­

cializing existing classes. Classes can be speciahzed by extending or restricting

their representation (data structures) and/or behaviour (operations) to classes

down the hierarchy.

Examples of models which adopted the object-oriented approach to represent soft­

ware are not easy to find, since this concept is closely related to the implementation

aspects of software. Another reason is that the object-oriented paradigm does not

provide a "standard" graphical representation for models. As a result, i t is usually

easier to find conceptual modelling for the representation of data using the E-R

model, extended wi th some concepts of object-orientation, the resulting implemen­

tat ion using an object-oriented language or approach.

Some authors exphcitly claim to be using the object-oriented paradigm for modeUing

software [3]. Others specify that their modeUing is E-R model-like, extended wi th

operations and active data to provide the behavioural aspects of the modeUing [85];

or that the static aspects are defined by a model based on the E-R model, wi th an

additional formaUsm to provide the modelling of behavioural aspects of software [6 .

4.4 The Object Representation Model

This section describes the Object Representation Model (ORM) [111] formahsm.

Although O R M provides further capabilities, this section emphasizes only those

features which are employed in this research.

75

Some of the fundamental concepts of O R M have the same features as semantic

models. For example, real-world aspects are modelled through objects (entities in

semantic models), which may, in tu rn , be associated wi th other objects by relation­

ships. Both objects and relationships may have attributes, which have an associated

characteristic. Every element of O R M can be classified according to pre-defined stan­

dards, i.e., the types of the elements. The concept of type is equivalent to the set

of entities and relationships of semantic models. However, this concept is also the

same as that of object-oriented models which assign a type to each object, aiming

at characterizing the properties and operations of the objects.

Concepts wi th in O R M , such as individuali ty of objects, comply w i t h the object-

oriented approach; i.e., objects are handled individually. Therefore, access to a set

of objects is a particular case, where the set should be previously identified as an

object. Moreover, in O R M every object has a type and comprises an identifier,

which can be its principal name defined by the user, or a unique internal identifier,

assigned automatically.

The conceptual support of O R M consists of modelling data through objects and

information associated wi th objects. This information may be the specification of

some object characteristic (at t r ibute) , or the indication of a possible l ink wi th other

objects (relationship); the latter may also have several attributes.

The mathematical basis for the model is the graph theory. Therefore in ORM, the

nodes of a digraph represent the objects of the real world; the arcs represent the

associations (relationships) which exist among them.

In general, object-oriented models name all objects of the same type as a class

and the occurrence of each object as an object instance. Associations of objects

76

are made through stored properties of each class, and the association is seldom

expUcitly stated. I n O R M , associations of objects are made explicitly and, therefore,

a clarification of terms to designate objects and relationships must be provided.

Consequently, the term object is used to designate an object instance, and the term

relationship is used to designate a unique relationship between two given objects.

Analogously, the term object type is used to designate all objects having the same

properties; relationship type is used to designate all relationships having the same

properties and Unking the same object types.

4.4.1 The Cluster Mechanism Concept

The cluster mechanism is an important concept wi th in O R M . I t aims to provide a

structure for organizing object types. The description of an object can be refined

through a set of other objects. Each object of a set depends on (in terms of existence

and identification), and is constrained by the object which refines them. The set

of objects constrained by an object is termed a cluster of objects. A cluster of

objects also owns a type, and therefore, objects of a particular type belong to the

same particular cluster type. In other words, the set of cluster types establishes a

part i t ion on the set of object types, in as much as the set of aU clusters of objects

establishes a par t i t ion on the set of objects of an object base.

I n this way, simUar to other terms in O R M , cluster type is used to designate the

constraint on a set of object types; cluster of objects is used to designate an instance

of a cluster type. A cluster type may have several object types associated wi th

i t as the designer establishes that they represent a particular focus of interest and

thus should be manipulated as a particular set. This concept, however, provides not

77

only the constraint on a set of objects, but also the mechanism which facilitates the

manipulation of such sets for generation of versions wi th in an object base.

Since a cluster type may comprise of other cluster types, they can be organized

hierarchically so that detailed system information can be obtained as far down as one

goes into the cluster hierarchy. One cluster of objects is permanently available and

is named the global cluster. The objects of the global cluster are always accessible.

In addition, the global cluster type is the most generic one, and comprises all other

cluster types which are modelled in a particular software system. Therefore, all

system users must have access to i t in order to enable other system cluster types to

be accessed.

Init ial ly, f rom the global viewpoint few information of an object base can be accessed.

When interest is focused on one of the global sub-clusters, only details of this sub-

cluster (either objects or other clusters) can be obtained, keeping the same level

of details for the remaining system information. Whenever other available clusters

of objects become accessible, the level of system detail increases. However, not all

objects of the same level become available, but only those which are made up by

the cluster of objects chosen to be accessible.

For instance, consider the modelling of the Structured System Analysis methodol­

ogy [46] using O R M , the cluster hierarchy of which is depicted in Figure 4.1. In the

uppermost level, only target systems and users can be recognized. When an indi­

vidual system is chosen to become accessible (for example si), only the data flow

diagrams {dfd) which specify that particular system become available. I f the user

chooses one of these diagrams to become accessible (say dfdS), only the functions,

data flows, etc. of the chosen diagram wi l l become available.

78

0

functi © © functi

0 functio

©
Figure 4.1: The Cluster Hierarchy for the Structured System Analysis

79

I t should be noted that though any given aspect of a system may be refined, other

aspects, which have not automatically been refined, continue to exist. In the above

example, when the user chooses a particular system to become accessible (for exam­

ple si), information f rom other systems (sS) is not lost, but only detailed information

of the chosen system becomes available. Only one cluster of objects of each cluster

type is accessible at any one time.

4.4.2 Graphical Representation of O R M

Object types in O R M diagrams are represented by divided circles. The upper half

of the circle is used to write the name of the object type, whUe the name of the host

cluster associated w i t h the object type is wri t ten in the lower half (see Figure 4.2).

Relationships always Unk two objects, termed the source object and target object of

the relationship. A relationship is represented by an arc linking object types which

are associated through the relationship type. In O R M , every relationship type has

its correspondingly opposite relationship type. Thus, each relationship type is joined

to its opposite relationship type by an obUque line; the name of the relationship is

wr i t ten close to the corresponding arc in the side, forming an acute angle wi th the

oblique line. Every relationship type contains a maximum and minimum mapping,

which characterize the quantity of relationships of a particular type in which the

source object may be involved.

Figure 4.2 shows an example of O R M usage. I t models two object types (author and

book), which are related to each other by the relationship type writes, whose opposite

relationship type is written by. These object types are wi th in the library cluster type.

80

Author has the attr ibute types address author and number published books, and 600^

has the attr ibute types published date and publisher. In this example, as far as

mappings of relationships are concerned, there should be at least one author who

has wr i t ten a book (1-m), and at least one book in a library which has been wri t ten

by a particular author (l - n) .

Author writes

Library / 1 - m / wnttenby Library

Address author

Number pubhshed books

Published date

Pubhsher

Figure 4.2: Example of use of O R M

4.4.3 Advantages of O R M

I n this research work, O R M has been employed in order to analyse the requirements

of the software maintenance process and to design a solution to this problem. I t

has been chosen as i t provides some desirable and appropriate characteristics for the

task. These characteristics yield benefits such as:

• The provision of a visual approach to information representation (diagram),

which is able to convey a considerable amount of information.

• A mechanism which enables the grouping of the real-world entities into smaller

clusters, facil i tating the implementation of version control and the notion of

scheduled releases.

81

• The implementation of the model can easily provide comprehensive analysis

capabilities, which include traceabUity, consistency and completeness checks.

A n example of formalization using O R M is given by Traina et al [110]. In their work,

the methodologies which were automated and integrated into a software develop­

ment environment named SIPS (Integrated System for Software Production) were

formalized using O R M . Additionally, in the Capretz's work [25] the SCM discipUne

was formaUzed in order to be automated and integrated into SIPS. The formaUzation

involved the creation of a generic model of SCM using O R M . Since SIPS is an en­

vironment for software production, i t mainly provides support for the development

phases of the life-cycle. Therefore, the SCM discipUne appUed to this environment

aimed to provide support for the control of the generation of new SCIs and changes

appUed to these SCIs. However, the work did not deal w i th the particular problems

of software maintenance, as has been done in this thesis.

4.5 Summary

In this chapter, some well-known data modelling techniques, along wi th their merits

and deficiencies, were briefly surveyed so as to iUustrate the work being carried

out in this area and to provide a basis of comparison wi th the model used in this

thesis. The conceptual model for the proposed method wi l l be defined using ORM.

The O R M formalism was described, w i t h particular emphasis laid upon the features

employed by this work.

Having compared O R M to other models described in this chapter, i t can be con-

82

eluded that the former is an enhanced semantic model. O R M cannot be ful ly clas­

sified as an object-oriented model because, according to some authors [17, 68], the

behaviour capabilities must be inherent in the model, which is not its case. ORM

provides capabilities for deahng w i t h the representation of data, ignoring the be­

havioural aspects. Nonetheless, as claimed by some authors, the latter characteristic

is very much an implementation aspect of which O R M is capable of distinguishing.

Therefore, O R M is independent of implementation aspects, and can be seen as a

mechanism to aid the formalization of the method. In the object-oriented approach,

the operations are closely associated w i t h each object type; i.e., each object type is

connected w i t h its specific operations, which represent the activities to be performed

on objects of that type. O R M , however, does not enforce this characteristic. More­

over, inheritance is another characteristic found in object-oriented models which

O R M also does not take into account.

The next chapter details the proposed method; its formalization using ORM is

described in Chapter 6.

83

Chapter 5

C O M F O R M - A New Method for

Software Maintenance

The previous chapters presented some aspects of the maintenance of existing soft­

ware systems. Various existing models of software maintenance have been discussed

and their strengths and weaknesses have been pointed out. Despite increasing recog­

nit ion that maintenance is a major problem during the life-cycle of software systems,

there are st i l l diverging opinions about how to tackle this problem. This chapter

presents a new method for software maintenance called C O M F O R M (Configuration

Management FORmalization for Maintenance).

84

5.1 The Objectives of C O M F O R M

C O M F O R M [23, 24] aims to provide guidelines and procedures for carrying out a

variety of activities during the maintenance process by estabUshing a systematic

approach to the support of existing software systems. The proposed method ac­

commodates a change control framework around which the Software Configuration

Management (SCM) discipline is applied. I t aims to exert control over an existing

software system whilst simultaneously incrementally redocumenting i t .

The major activities carried out by C O M F O R M are:

• Acceptance of change proposals and analysis of their viabihty for implemen­

tat ion.

• Enforcement of evaluation of approved changes in terms of costs and resources.

• Promotion of scheduled system releases, so that the maintenance process can

be planned and organized.

• Specification of the maintenance task by grouping together the modifications

of a system release.

• Provision of managerial and technical reports.

• Enforcement of documentation of software components which require modifi­

cation.

• Enforcement of the application of software quality by assuring completeness,

consistency and traceabihty of existing software systems.

• Provision of audit trails, historic and current status of changes.

85

• Provision of guidelines for revalidating existing software systems.

• Provision of input to project management and quality assurance systems.

A change control framework has been established in C O M F O R M in order to pre­

serve software quality. The Software Maintenance Model (SMM) institutes this

framework, which aims to systematize the software maintenance process by speci­

fy ing the chain of events and the order of stages that a change has to go through.

The output of the S M M phases are represented by forms which allow a methodi­

cal approach towards the establishment and control of traceability throughout the

maintenance process. These forms are the source of documentation of maintenance

history and system redocumentation. The use of the SMM forms results in consid­

erable advantages, such as:

• Providing a uniform structure of documents of software systems under COM­

F O R M , since forms are pre-defined. Such a uniformity of information avoids

inconsistency and unnecessary differences.

• Facilitating the apphcation of SCM techniques, since i t is easier to control

pre-defined documents.

• Easing completeness checks, by ensuring that no essential details are omitted.

• Easing consistency checks, by ensuring that the information required by a form

is provided by other forms in the configuration.

• Facilitating traceabihty between phases by estabhshing the relationships be­

tween components of different phases in the forms.

86

The SCM discipline is central to the development of C O M F O R M since i t is con­

cerned w i t h the development of a set of procedures and standards for managing

evolving software systems. I n essence, i t is concerned w i t h change: how to control

change, how to manage software systems which have been subject to change, and

how to release these changed software systems to the users. Moreover, the objective

of C O M F O R M is not just to develop a method to change programs in order to f ix

an error or to implement a modification, but also to improve the future maintain­

abi l i ty of the software systems being maintained. Wi thout the application of such

a discipline, i t is easy to send out a wrong or bad version of a software component.

A pr imary goal of applying this discipline to the method is to improve the ease

w i t h which changes can be accommodated, thereby reducing the amount of effort

expended on maintenance.

This chapter concentrates on the method underlying C O M F O R M . In consequence,

the S M M framework is presented, followed by the forms which represent the outcome

of the phases. The role of the SCM discipline, and each of the SCM functions, as

they relate to C O M F O R M , are also discussed.

5.2 The Software Maintenance Model

The Software Maintenance Model (SMM) aims at improving the flow of maintenance

activities by providing guidance throughout the maintenance process, and determin­

ing the organization and content of the information needed to support these activities

in C O M F O R M . The SMM diifers f rom other models for the software maintenance

process, as already discussed in Chapter 3, because i t is approached f rom the SCM

87

viewpoint.

The S M M identifies the activities undertaken during software maintenance and the

information needed or produced by these activities. The model is based on the

tradit ional waterfall life-cycle model of software development. This is a convenient

approach, because i t allows the process to be represented in a graphical and logical

form, providing a framework around which quality assurance activities can be buUt

in a purposeful and disciplined manner.

Being a maintenance model, the S M M highhghts the considerable influence of the

existing software system on this whole process. The outcome of each SMM phase

is a completed form which represents a point in the maintenance process. These

completed forms are, therefore, the natural milestones, i.e. the baselines of the

software maintenance process, and offer objective visualization of the evolution of

that process.

The following phases comprise the SMM:

1. Change Request

2. Change Evaluation

3. Maintenance Design Specification

4. Maintenance Design Redocumentation

5. Maintenance Implementation

6. System Release

Figure 5.1 represents the S M M . I n this Figure, the rectangles represent the SMM

88

phases and the ovals represent the baseUnes formed f rom the output of the phases.

Being a software maintenance model, i t is essential that the influence of the existing

software system on the process should be considered. For this reason, the change

evaluation phase has been introduced, during which modifications are considered

in relation to the existing software system. The need to understand the existing

software system is motivated by the information required by the incremental redoc­

umentation process. Understanding w i l l be facilitated by the information contained

in the diff"erent forms as changes take place.

Change
Request

- » ^ C ^ g e P r o p o s ^

Change
Evaluation » ^ ^ ^ m g e Approv^

Maintenance
Design

Specification -<1 Maintenance
Specification

Maintenance
Design

Redocumentation
»^Module D e s ^ ^ ^

Key:

flow of phases

->• milestone for phase

Maintenance
Implementation

Module
S^Source Code J

System
Release

/^onf igurat ionN
Release

Figure 5.1: The Software Maintenance Model

Al though there is no explicit re-verification phase in the model, all the activities

89

associated w i t h this phase are incorporated in the method for establishing the base­

lines. For example, the Configuration Release form has the fields Integration tests

outcome and System tests outcome, which have to be completed before the Config­

uration Release baseline can be estabUshed.

As w i t h models of software development, S M M phases may overlap. Also, i t may be

necessary to repeat one or more phases before a modification is completed. However,

the products which represent the output of the phases must constitute a baseline,

and cycling must be controlled. The output of SMM phases is a number of pre­

defined forms which consist of three sections (identification, status and information),

as depicted in Figure 5.2.

SMM Form

Form identification:

Form author:

Date:

Form status: Status date:

Form baseline established by:

Form field 1:

Form field 2:

Form field 3:

Identification
"Section

Status
Section

Information
Section

Figure 5.2: The Pattern of SMM Forms

The identification section contains the basic information about a particular SMM

form: the fo rm identification (to allow every single form to be traced throughout

the maintenance process), the date of its creation, and the author who created that

particular form.

90

The baselines of S M M forms are estabhshed by the satisfactory outcome of a qual­

i ty assurance process on the completed forms (described in greater detail in Subsec­

t ion 5.3.4.2) for each of the phases. The control of baseUne establishment is common

to all forms and documented in the status section of each form. The first field of this

section is an indicator of the current status of the form. The possible values for this

field are: in development, effective and frozen. The ini t ia l status of the forms is in

development. The status changes to effective after its ini t ia l evaluation (described

in greater detail in Subsection 5.3.4.1). The final status of a form is frozen, when

its basehne is established. The second field records the date on which the current

status has been assigned to the form. When the status of the form is frozen, the

last field records the author who established the baseline.

The information section is specific to each SMM form and contains data concerned

w i t h particular phases of the model. The fields of this section wi l l be detailed

subsequently, as the following subsections give further details of each particular

phase.

5.2.1 Change Request

A l l requests for software maintenance wi l l be presented in a standardized manner.

The Change Proposal (CP) form is the form associated wi th this SMM phase. The

fiUing-in of a Change Proposal fo rm triggers the process of maintenance in COM­

F O R M . The form contains the basic information necessary for the evaluation of the

proposed change. I f the proposed change is for corrective maintenance, then a com­

plete description of the circumstances leading to the error must be included. For

the other types of maintenance, an abbreviated requirements specification must be

91

submitted. Figure 5.3 shows the basic information for any type of change proposal.

Change Proposal

CP identification:

CP proposed by:

Date:

CP status: Status date:

CP baseline estabUshed by:

(Reason for abandoning:)

1. CP description:

2. Reason for change:

Figure 5.3: The Change Proposal form

While the information contained in the identification section of this form is as de­

scribed above, the status section for this particular form incorporates one additional

field: Reason for abandoning. The CP status field is an indicator of the status of the

proposed change in the maintenance process. The ini t ia l status is in development

when the change is assigned for evaluation. That status changes to effective after

its in i t i a l evaluation. The final status is frozen when the change proposal may have

been approved and a corresponding Change Approval form has been generated in

order to carry on the change evaluation. The proposed change may also be rejected

(which wi l l also be frozen), and is then followed by filling in the field Reason for

abandoning. The field Status date shows the date the current status was assigned to

the form. Where the status of the form is frozen, the author is associated wi th the

CP baseline established by field.

I n the information section, the field CP description provides a short functional or

92

technical description of the proposed change so that i t can be evaluated and then

approved or rejected. The field Reason for change is a brief description of the

benefits of carrying out the change. This is used to help the maintenance staff in

ranking and approving the proposed change. The justification for corrective changes

is straightforward. Usually, the change wi l l be made on the justification that the

program must funct ion correctly. However, in some cases, the cost of the change or

its effect on the rest of the software system may be so enormous compared to the

minor inconvenience resulting f rom the failure, that the user may choose to tolerate

the failure rather than risk introducing new problems or modifying present operating

procedures. The justif ication for adaptive, perfective and preventive changes may

be more complicated, since the benefits may be difficult to evaluate compared to

the cost of implementing and the risk of degrading quality.

5.2.2 Change Evaluation

I n the change evaluation phase, the maintainer is primarily concerned wi th under­

standing the change, and its effect wi th in the software system. A n accurate change

diagnosis is performed to assess the feasibility of the proposed change in terms

of cost, resources, and schedule, resulting in approval or rejection. The rejected

proposed change is then abandoned. I f the proposed change is approved, a corre­

sponding Change Approval (CA) fo rm is created and its evaluation continued. The

inadequacies, or unfulf i l led requirements described in the Change Proposal form are

identified in the existing software system. In addition, every software component

involved in the proposed change must be known. I f the information contained in

the Change Approval fo rm is comprehensive then the maintainers are able to react

93

quickly to problems, analyse enhancements properly, evaluate impacts and estimate

resources. In this phase, the approved changes are ranked and selected for the next

system release. The changes are batched by system releases and the work is sched­

uled. The result of this phase is the Change Approval form depicted in Figure 5.4.

C A identification: Date:

C A authorized by:

C A status: Status date:

C A baseline estabhshed by:

Change Approval

1. Related CP:

2. Type of change:

3. Identification of change:

4. Involved sw components id.:

5. Resource estimates for change (design):

6. Resource estimates for change (coding):

7. Resource estimates for change (testing):

8. Priority of implementation:

9. Consequences if not implemented:

Figure 5.4: The Change Approval form

The Change Approval fo rm is one of the documents used as the basis for planning

the system release. I t is a vehicle for recording information about a system defect,

a requested enhancement and quahty improvements. The Change Approval form,

along w i t h its corresponding Change Proposal form, is the basic tool of a change

management system. By documenting new software requirements or requirements

that are not being met, these forms become the contract between the person re-

94

questing the change and the maintainers who work on the change. The field Related

CP ties the Change Proposal form to its corresponding Change Approval form.

The field Type of change classifies the work as perfective, adaptive, corrective, or

preventive maintenance. The information contained in the field Identification of

change shows the maintainer something about the nature of the work, and indicates

to management how maintenance time is going to be spent. This field provides a

more elaborate functional and technical description of the approved change, which

is dependent on the type of maintenance as outlined below:

• Perfective Maintenance - Identify new or altered requirements.

• Adaptive Maintenance - Identify the change in the environment.

• Corrective Maintenance - Ident i fy repeatable error symptoms.

• Preventive Maintenance - Ident ify the deficiency in performance, maintain­

ability, etc.

The field Involved sw components id. provides information about which software

components are directly involved in a change. The ripple effect of a proposed change

is necessary to estimate accurately the scope of work and the resources required.

Once the impact and ripple effect of a change are determined, preliminary resources

estimates can be developed. These estimates are approximations of the work re­

quired to accompHsh the changes in all the involved parts of the software system.

Estimates can be expressed in any unit of measurement meaningful to the organiza­

t ion, such as hours, days or weeks. The fields Resource estimates for change, which

apply to design, coding and testing, record these resource estimates for a proposed

95

change. These estimates are important to project management and can also be used

as references for similar work on other projects, or future system releases.

The field Priority of Implementation indicates the time frame necessary for com­

pletion of the task. This classification is important as i t highlights the magnitude,

criticality, or complexity of change proposals. The priorities are classified as:

1. Critical - Where repairs should receive immediate attention ahead of any cur­

rently scheduled system release.

2. Important - When the software system is operational and can be manually

overriden or ignored unt i l a specific date. The proposed changes may upgrade

to critical pr ior i ty i f the problem is not fixed by the date required.

3. Minor changes - When the proposed repairs and enhancements can be deferred

un t i l the next system release, but time and resources permitt ing, should be

performed for this release.

4. Optional - Includes slight repairs or enhancements that may be worked out in

the next system release, as resources and time allow.

Cri t ical approved changes should be attended to immediately by the maintenance

staff. Other changes may be collected for periodic review by a Change Control

Board. This board includes user representatives as well as members of the main­

tenance organization. The responsibilities of the board include deciding the fate of

change proposals based on long-term goals of the organization, user needs, cost con­

siderations and the batching of approved changes by system releases. Before being

reviewed by the board, change proposals are studied by the maintenance staff to

determine the resources (effort and time) needed to make each change, the impact

96

of the change on other software components, and the cost of the change. The field

Consequences if not implemented is then filled in by the maintenance staff during

this preview analysis, in order to provide more information to the board.

5.2.3 Maintenance Design Specification

This phase is characterized by the structure of the modification, which is in the

fo rm of a complete, consistent and comprehensible common specification of all the

changes which should be made. In addition, how the software components have

to be modified is clarified. A l l the related approved changes selected for the next

system release w i l l be in the same maintenance specification. The design of a modi­

fication requires an examination of the side eff'ects of changes. The maintainer must

consider the software components affected, and ensure that component properties

are kept consistent. The integration and system tests (to be performed during the

revalidation process in the system release phase) need to be planned or updated.

I n addition, i f the change requires a new logic or new features to be added to the

system, then these have to be specified and incorporated. In this phase, the activi­

ties to be performed are detailed, in order to work out the alterations necessary to

implement all the related approved changes (which have been batched for the next

system release).

The boundary between the change evaluation and the maintenance design specifica­

tion phases may at times seems blurred, because the analysis and review performed

in the change evaluation phase sometimes overlaps wi th the specification of the

change. Nevertheless, this phase is more concerned wi th generating a common spec­

ification for all the changes proposed and approved for a planned schedule release.

97

The resultant form for the maintenance design specification phase is the Maintenance

Specification (MS) form, represented in Figure 5.5.

MS status: Status date:

MS baseline established by:

Maintenance Specification

MS identification:

MS formulated by:

Date:

1. Related CAs:

2. Specification of change:

3. Affected sw components id.:

4. Consequences of change:

5. Other necessary changes:

6. Integration tests:

7. System tests:

Figure 5.5: The Maintenance Specification form

The Maintenance Specification fo rm is generated after the approved changes for the

next system release have been selected. The relationship between these selected

changes and their corresponding specifications are detailed in the field Related CAs

of the created Maintenance Specification form.

In the specification of the proposed change, the different types of maintenance re­

quire different ways of specifying the change. The field Specification of change should

take these differences into account as described below:

• Perfective Maintenance - Specify operation of the enhanced system.

98

• Adaptive Maintenance - Revise the specification to reflect the change and adapt

the original specification to the new system environment.

• Corrective Maintenance - Specify correct operation of the software system.

• Preventive Maintenance - Specify the desired performance or quahty standard

and/or redesign a distinct subsystem to satisfy the same specification, so that

i t uses less resources, or is better structured and maintainable.

The field Affected sw components id. provides information about which software

components are indirectly affected by a proposed change. Such components often

come up during the impact analysis of the proposed changes. In the case where

several software components are affected by the change, resources estimates may

have to be reviewed and the schedule for the next system release be updated.

The field Consequences of change reports the side effects encountered during the im­

pact analysis of the proposed changes. The optional field Other necessary changes

may have to be filled i n if , during the specification of the approved changes, unpre-

dicted changes have to be performed in the software system in order to fu l f i l the

original proposed changes. For instance, i f during the impact analysis, the proposed

change affects software components not predicted in the analysis and review, new

change proposals have to be elaborated and introduced to the formal change con­

t ro l procedures established by C O M F O R M . In such instances, this field is filled in

by establishing the relationship between the current maintenance specification wi th

new Change Proposal forms.

Tests plans should be elaborated at this stage. They should be based on impact

analysis and describe how and when the software system should be tested. The

99

fields Integration tests and System tests should contain the tests to be carried out

in the software system in order to complete the next system release. For instance,

during the integration tests (wi th unit test completed) only the interfaces between

the modified software components need to be examined, whereas during the system

tests, only the interfaces between users and the modified software components need

to be examined.

5.2.4 Maintenance Design Redocumentation

This phase, along w i t h the next S M M phase, facilitates system comprehension by

incremental redocumentation, as proposed by the method. The forms associated

w i t h these two phases aim at documenting the software components of an existing

software system under C O M F O R M . Therefore, the forms wiU be fiUed in when the

corresponding software component has to be modified. The software components

that should be changed are re-defined and the new components which might appear

must be specified.

The algorithms and the behaviour of procedures for both normal and exceptional

cases are also explained by this phase. In addition, the tests for each of the changed

or implemented software components are planned. The form associated wi th this

phase is named Module Design (M D) form, as depicted in Figure 5.6. The infor­

mation contained in this fo rm is independent of the maintenance category being

performed.

C O M F O R M proposes a one-to-one relationship between a Module Design form and

an existing software component. The purpose of such a relationship is to capture a

100

Module Design

MD identification: Date:

MD designed by:

MD status: Status date:

MD baseline established by:

1. Module purpose:

2. Algorithms outline:

3. Interface definitions:

4. Test plans:

V J
Figure 5.6: The Module Design form

higher level documentation of these components, while maintaining them. The aim

of the Module Design fo rm is to provide some documentation to enhance readabUity

and to convey more clearly the software component meaning. Thus, the field Module

purpose contains an outUne of the purpose of the software component associated

w i t h that Module Design form. I n the Algorithms outline field, the hmitations,

restrictions and algorithmic idiosyncrasies of a software component are recorded.

The current input and output interfaces of a software component are kept in the

field Interface definitions. Unit test plans should be elaborated in this phase and

kept in the field Test plans. During unit test, only the revised software component

and the specific changes need to be examined.

101

5.2.5 Maintenance Implementation

The purpose of C O M F O R M is mainly concerned wi th building up maintenance his­

tory and devising an abstraction of the operational system. Therefore, the proposed

method does not deal directly w i t h the source code itself. In this phase, SMM forms

have a l ink w i t h the components of an existing software system. This is the phase

in which the system source code should be actually changed and new components

implemented. The coding standards and other conventions specified for this phase

should be followed. The implementation should exploit programming language fea­

tures (such as structuring facilities, user-defined types and assertion statements) to

state properties and dependencies, and encourage modularity and encapsulation.

The S M M form associated w i t h this phase is the Module Source Code (SC) form,

and like the Module Design form, its information is independent of the maintenance

category being performed. A Module Source Code form is depicted in Figure 5.7.

There is one Module Source Code form related to each software component and a

one-to-one relationship between each Module Source Code and Module Design form.

The information contained in each of these forms complements the other. The first

field of the Module Source Code fo rm (Corresponding MD) formally links the forms

of these two phases. While the Module Design form is aimed at keeping general and

stable information for a software component, its corresponding Module Source Code

form aims at keeping the information pertaining to modifications performed in these

components. Hence, the field Tests outcome records the result of the unit test per­

formed after a software component has been modified. Further, the field Comments

may contain any remark detected during the implementation of the modification

which is worth documenting. The last field, SC understood by, records the name of

102

the maintainer who has some knowledge about that particular software component.

Module Source Code

SC identification: Date:

SC implemented by:

SC status: Status date:

SC baseline established by:

1. Corresponding MD:

2. Tests outcome:

3. Comments:

4. SC understood by:

Figure 5.7: The Module Source Code form

5.2.6 System Release

System release is the last phase of the S M M before a new configuration containing

the approved changes is released to the users. Validation of the overall system is

achieved by performing the integration and system testings on the system.

Once modifications on the system have been performed under the configuration

control function, the task at this stage is to certify that all basehnes have been es­

tablished. The release of the new configuration should be followed by informing the

interested and/or related members of the group (users, managers and maintainers)

about the requested changes completed in the configuration. The Configuration Re­

lease (CR) form, represented in Figure 5.8, contains details of the new configuration.

103

CR identification: Date:

CR created by:

CR stams: Status date:

CR baseline established by:

Configuration Release

Comprises:

CPs:

CAs:

MSs:

Is composed of:

1. Integration tests outcome:

2. System tests outcome:

3. Configuration distributed to:

Figure 5.8: The Configuration Release form

104

A Configuration Release form is the system release planning document, which aims

to keep the information pertaining to the history of a maintenance phase. The fields

Comprises CPs, CAs and MSs are concerned w i t h retaining the connection wi th

the Change Proposal, Change Approval and Maintenance Specification forms which

constitute that particular system release. A Configuration Release form also shows

the Module Design and Module Source Code forms that have been modified during

that particular system release. Such finks are displayed in the field Is composed

o/at the end of the development of the corresponding Configuration Release form.

Additionally, in order to release the system to users, the integration and system tests

must be performed. The outcome of such tests must be documented in the fields

Integration tests outcome and System tests outcome respectively. The successful

outcome of these tests enables the Configuration Release form to have its basehne

established. Those users who are to receive the current system release are registered

in the field Configuration distributed to.

5.3 The SCM Discipline Applied to COMFORM

I n the previous section, S M M phases have been described. The emphasis was on

the description of each type of form and their fields, together wi th their respective

meanings and functions in the proposed method.

The specific functions which the SCM disciphne plays in the whole process are

detailed in this section. The SCM discipUne provides the formal mechanism to

establish the baselines of the method. Such baselines can only be changed through

the formal change control procedure. In the following subsections, details of the

105

application and guidance provided by the four functions of the SCM discipUne on

C O M F O R M are described.

5.3.1 Software Configuration Identification

The purpose of this function is to highlight the constituent parts of a software system

in a manner that makes explicit the relationship between these parts. I t is the

process by which the pieces of an existing system are transformed into a structured

entity, thus identifying the Software Configuration Items (SCIs) [13]. Therefore,

this is the first funct ion which should be carried out in C O M F O R M so that the

SCM discipline can be apphed to the whole maintenance process determined by the

proposed method. The SCIs in C O M F O R M have already been identified and defined

as the S M M forms. The effect of this function is to provide the structure of hnks

and dependencies between the forms. This also helps during the task of obtaining

the components involved in , and affected by, a required change. As a result, the

SCM discipUne is able to control the release and changes in the forms throughout

their existence, record and report their status, and verify their completeness and

correctness.

5.3.2 Software Configuration Control

The software configuration control function in C O M F O R M is concerned wi th the

control of changes made in an existing software system, f rom the change proposal,

evaluation, approval and implementation, to its release. I t is also concerned wi th

106

the establishment of standards for software maintenance. Therefore, in the context

of this work, its role is to ensure that any change required in a software system is

defined and implemented by following S M M phases, which institute a change con­

t ro l procedure to monitor changes. I n so doing, change information is gradually

recorded by the filling in of forms. This procedure ensures that all work performed

to implement a change is traceable to change proposal and that changes to a soft­

ware system can only be made by properly authorized maintainers. I t also prevents

unauthorized changes f rom being made, since no implementation can proceed wi th­

out authorization. Since the changes are traceable to the original change proposal,

the auditing process can check that only the approved requested changes have been

made in the software components. This SCM function also controls the versions of

S M M forms. The version control in C O M F O R M is further detailed in Section 5.4.

5.3.3 Software Configuration Status Accounting

The configuration status accounting function aims at recording and reporting the

current status, as well as the evolution of the existing software systems. The in­

formation necessary to perform this function is incrementally obtained as the SMM

forms are filled i n as a result of changes to the software system. The implementation

and effective use of this function in C O M F O R M is achieved by its automation and

by the supporting information contained in the SMM forms.

A number of reports can be obtained so that answers can be provided for a variety

of queries about the existing software systems kept under C O M F O R M . Such reports

can be of help either to project managers or maintainers, by showing information

such as productivity, or providing the history and current status of software systems.

107

Typical queries about the system's managerial aspects might be:

1. Which software systems are under COMFORM?

2. How many system releases of a particular software system have been created?

3. What is the number of change proposals made per software component?

4. Wha t is the number of change proposals made per maintenance category?

5. How many and which software components are being modified per maintainer?

6. What are the tota l resources spent on incorporating a particular change pro­

posal in a system release?

7. What are the tota l resources spent on designing, coding and testing each

maintenance category of a particular software system?

8. Which Module Design forms have been documented by a particular main­

tainer?

9. For each Module Source Code form, which maintainers understood the soft­

ware component?

10. What are the change proposals requested by a particular user?

11. Which users have taken delivery of a particular system release of the software

system?

12. How many change proposals are outstanding on a particular software system?

Typical queries involving technical aspects which can provide help to maintainers

are:

108

1. How many change proposals are grouped in a particular system release?

2. What are the creation and release dates, and the status of a system release?

3. Which change proposals are related to a particular software component?

4. Which Module Design forms are incomplete (not frozen) in a particular system

release?

5. How many times has a software component been changed (number of versions)

and what are the reasons for these changes?

6. Which forms are related to a particular system release?

7. What is the current status of the system configuration to be released?

8. Which change proposals of a particular software system have been rejected?

9. Which maintenance specifications are related to a particular software compo­

nent?

10. What is the system configuration released on a particular date?

11. Wha t are the versions of a particular software component?

5.3.4 Software Configuration Auditing

The tradit ional SCM auditing function comprises the processes of verification and

vaUdation [21]. The verification process is largely administrative, basically consisting

of performing checks on the outcome of phases, in terms of correspondence and

traceability to the previous baseline. I t also ensures that the correct and current

versions of all product parts are included in the baseUne. The validation process

109

involves a technical assessment of the basehne, i.e., validating i t against the change

proposal requirements. I t may also involve regression tests to help confirm the

absence of unanticipated side efi'ects in functions not related to those being modified.

The auditing function wi th in C O M F O R M is the process which determines the over­

all acceptability of the proposed baseUne at the end of each SMM phase. This

process aims to establish the basehnes of S M M forms. I t uses the related product

assurance disciphnes of test and evaluation, completeness, consistency and quahty

assurance.

The auditing process in C O M F O R M can be divided into two separate stages. The

first stage basically consists of performing checks on S M M forms for the completeness

and correctness of the information. The checks are specific to each S M M form, and

consequently differ f rom one S M M form to another. The outcome of the software

tests which have been performed are also checked at this stage. The specific checks

to be performed in each S M M phase are detailed in Subsection 5.3.4.1. The second

stage aims at establishing the baselines of all the forms involved in a system release;

thus, consistency and traceability between S M M forms are checked. Further details

of this stage are given in Subsection 5.3.4.2.

5.3.4.1 Initieil Evaluation

The basic checks performed during the first stage are dependent on each SMM form.

The result of this stage alters the status of the forms f rom in development to the

intermediate status effective. I n order to upgrade the Change Proposal form, the

proposed change should be evaluated and the decision, whether or not i t should be

implemented or abandoned, must be taken.

110

The checks appUed to the Change Approval form require that the proposed change

must be clearly understood and identified by specifying the software components

involved in the modification, as well as stating the resources estimates, schedule and

prior i ty of implementation.

I n the maintenance design specification phase, a Maintenance Specification form

should provide a complete, unambiguous and comprehensible specification of all the

changes of a system release. I n addition, the integration and system tests must be

elaborated and the other necessary changes (if any) should also be included in the

Maintenance Specification form.

A t this stage, the Module Design forms must be filled in , thus assuring that the

documentation of the software components, which have undergone modifications, is

improved. Additionally, the individual tests of those software components should

be specified. This phase may also involve the simulation of the software design, in

order to vahdate the software system w i t h the end users or to check for requirements

which are not covered by the current change design.

During the maintenance implementation phase, i t must be assured that individual

tests of the modified and/or newly implemented software components are performed

to check their functionali ty and interface standards. Futhermore, checks that the

coding standards are i n compliance w i t h the standards defined by the software con­

figuration control funct ion must be made.

In the system release phase, checks should ensure that the integration tests which

exercise the modified functions or subsystems have been performed. These tests

should be carried out independently and in controlled combinations. Checks should

also make certain that system tests have been performed, to verify that the software

111

system meets its specified requirements. Additionally, the use of correct versions

included in the system release to be completed must Ukewise be verified.

5.3.4.2 The Establishment of Baselines in COMFORM

The establishment of basehnes is the most important step to be carried out at the

end of each S M M phase. Baselines are established f rom the successful outcome of

the application of quality assurance procedures to the SMM forms. The result of this

stage alters the status of the forms f rom effective to the permanent status frozen.

Establishment of baselines is performed after the in i t ia l evaluation of the auditing

process, and represents the moment when all the consistency and traceabihty checks

have been performed. The essence of this stage is to perform checks, not on the

individual forms, but on the set of S M M forms, which represents a system release.

Therefore, this process has a sequence which should be followed, in order to make

certain that the specified forms are in accordance w i t h each other, and to assure the

integrity of data being manipulated during a system release.

The first stage of the process of estabhshing the baselines is represented by the

Module Source Code form, since i t is the nearest form which hnks the software

component to C O M F O R M . Therefore, to have their baseHnes estabUshed, the forms

of this category must be documented and be in accordance w i t h the corresponding

software component. The second stage of establishing the baselines involves the

Module Design forms, which represent a higher level of documentation of those

software components.

The documentation of the maintenance process is obtained f rom the Configuration

112

Release, Change Proposal, Change Approval, and Maintenance Specification forms.

As a result, the sequence by which the baselines are established should follow the

sequence of S M M phases. Hence, the Change Proposal form is the first one to have

its basehne established, which means either the Change Proposal fo rm has been

approved and the maintenance process should be carried on, or the proposed change

should be abandoned after having been rejected. The consistency check enforces

the one-to-one relationship between an approved Change Proposal form and its

corresponding Change Approval form.

The Change Approval form and the Maintenance Specification form should be filled

in independently of each other, but obviously the Change Approval form has its

baseline estabhshed first. Such events only happen i f the corresponding forms of

the involved and affected software components have already had their basehnes

estabhshed. Af te r this point, i t is presumed that the implementation has already

been carried out, so the next step involves the final evaluation of the system release.

I n this case, the Configuration Release form should be filled in wi th the results of

the testing and have its basehne established.

A t this point, the new system release is ready to be made available to the users, wi th

the assurance that all the software components required for maintenance activity

have been documented, and that the maintenance apphed to the software system

has been monitored and controlled.

113

5.4 The Version Control in COMFORM

Software systems usually have many different versions and consist of several software

components, which in t u rn may have many different versions. I t is useful to keep

track of different versions of these systems, as well as the versions of the software

components which make up a particular release of a software system. COMFORM

aims to supply this capability by providing a mechanism to manipulate versions of

S M M forms, and to enforce restrictions on the evolution of such forms, so that this

evolution process is observable and controllable.

Babich [5] distinguishes between two types of versions: revisions and variations.

C O M F O R M adopts both these concepts, but a version (revision or variation) of

a fo rm is only created after undergoing the quality assurance process (defined to

establish the baseline) of the corresponding S M M phase. Hence, a version of a form

is under SCM control, and i t can no longer be changed. I f other changes to this

version are required, a new version should be created.

A revision of a fo rm is a new version, created to supplement previous ones. A

fo rm may have many revisions, reflecting its evolution. Each successive revision

should denote the removal of existing software errors (corrective maintenance) or in

some other way, the improvement of earher revisions by either adding functionahty

(perfective maintenance) or improving the quality of the software being maintained

(preventive maintenance). Consequently, revisions are in a Unear order, being related

to the time sequence in which they are created.

A variation of a fo rm fulfi ls a similar function for sHghtly different situations and

therefore acts as distinct versions for the same form. Multiple variations of a form

114

may coexist as equal alternatives. Unlike revisions, there is no meaningful linear

order among variations. The intent of creating variations is to support coexistent

alternatives, such as different types of hardware (adaptive maintenance) and alter­

native functionalities (adaptive and perfective maintenance).

A l l versions of a fo rm are related to each other by being either revisions or varia­

tions. There may be both variations and revisions of a single form, as a variation

may require software error corrections and performance improvements, resulting in

multiple revisions of a variation.

Since versions represent the satisfactory outcome of the quality assurance process

of S M M forms, other ways of controlling their evolution before they are under SCM

control need to be adopted. For this reason, as in [60], S M M forms can be in

one of the three status groups: in development, effective or frozen. A version of

a form (revision or variation) is obtained when its status is frozen. Therefore,

before reaching the frozen status and being under SCM control, they are called

alternatives. Alternatives have to be developed and audited in order to reach the

frozen status. When alternatives are being developed, their status is in development.

A t this stage, maintainers can make as many modifications as required to the fields

of the alternatives. Once the development or modification of an alternative has been

finished, its status becomes effective. A t this point, modifications to this alternative

cannot be made and the quahty assurance procedures are applied in order to perform

the SCM auditing funct ion. The successful outcome of the application of such

procedures generates a version of a form; whereas, its failure returns the alternative

to in development status, in order to allow the necessary changes to be performed.

The S M M forms which are first created during a system release are called original

115

S M M forms. These are created as a result of the formal procedures established by

C O M F O R M , having their baselines established at the end of a system release. Once

baselines have been established, the forms representing them cannot be changed.

I f modifications are required, alternatives should be created and controlled. Such

alternatives are created according to the versioned SMM form, which is depicted

in Figure 5.9. A versioned fo rm (like an original form) also contains three sections

termed identification, status, and information.

Versioned SMM Form

Form version identification:

Form version author:

Date:

Form version status: Status date:

Form version baseline established by:

0. Description of modification:

Form field 1:

Form field 2:

Form field 3:

Identification
'Section

Status
Section

Information
Section

Figure 5.9: The Versioned SMM Form

The identification and status sections of a versioned form are very similar to the

original form, except for the fact that they contain information about an alterna­

tive/version.

Every versioned fo rm for all types of S M M forms has an additional field in the

information section. This field is called Description of modification, and its content

documents the purpose of generating an alternative for a particular frozen form.

116

The remaining fields of the information section for every versioned form are the

same as those for the corresponding original SMM forms.

The necessity to create versions of forms is demanded by modifications required to

be applied to them after they have been frozen. In C O M F O R M , SMM forms do not

receive the same treatment, as far as version is concerned, since their purpose in the

method is different. The Change Proposal, Change Approval, Maintenance Spec­

ification and Configuration Release forms are aimed at documenting maintenance

history, whereas the Module Design and Module Source Code forms are aimed at

providing an abstraction of the operational product. Thus, the concepts of revision

and variation are more suitably applied to the latter forms.

The Change Proposal form may have versions i f i t was once abandoned. In this

case, the generation of a version allows abandoned change proposals to be put back

into the software system. A Change Proposal fo rm may also have a version in the

case of discrepancies being found during its evaluation; consequently, corrections are

required to be undertaken by the person who proposed the change.

Configuration Release forms may also have versions. A version of a Configuration

Release fo rm aims at l inking configuration releases together, which are either depen­

dent on each other or part of the same context. This concept allows, for instance,

the creation of a version of a Configuration Release form to correct errors in the

previous releases. In doing so, the set of versions of Configuration Release forms

provides the history of system release evolution.

Versions of Change Approval and Maintenance Specification forms should only be

created to correct inconsistencies generated during their implementation. There­

fore, versions of Change Approval and Maintenance Specification forms wi l l only

117

exist w i th in a system release. Once a Configuration Release basehne has been es-

tabUshed, versions of its Change Proposal, Change Approval and Maintenance Spec­

ification forms can no longer be generated. New modifications to them mean the

creation of a new Change Proposal form, w i th its corresponding Change Approval

and Maintenance Specification forms generating a new Configuration Release form.

On the other hand, as Module Design and Module Source Code forms are the means

of documenting the software components, they may have various revisions and vari­

ations to reflect the system evolution. The semantics of the required change deter­

mines whether a revision or a variation of Module Design and Module Source Code

forms should be created. I t is during the change evaluation phase that such a deci­

sion has to be made. I n the case where a proposed change requires the replacement

of Module Design and Module Source Code forms, a revision of them should be cre­

ated. On the other hand, i f the proposed change is intended to act as an alternative

to the existing Module Design and Module Source Code forms, a variation of them

should be created.

5.5 Final Remarks on COMFORM

A n informal model for software maintenance has been presented, init ial ly without

reference to versions. The relationship of the model to the SCM discipline was

discussed and then the issue of versions was introduced.

I n broad terms, the application of C O M F O R M starts when a change is proposed

to an existing software system, and finishes wi th a new system release to the users.

118

Between these two stages there are phases which guide the maintainer throughout

the software maintenance process. These phases are supplied by the SMM, wi th

the addition of the corresponding forms for each of its phases. The SMM has been

developed to improve the flow of maintenance activities.

The SCM discipline applied to C O M F O R M provides the mechanism for maintaining

and controlling the various basehnes throughout the development of the forms which

constitute a system release. In essence, the SCM discipline embraces the whole

change process. Hence, the application of this discipline contributes directly to

software quality by identifying and controlhng change, assuring the change is being

properly implemented, and reporting change to others who may have an interest.

The proposed method can be used manually, but is very amenable to automation.

A prototype environment which provides automated support for C O M F O R M is

described in Chapter 7.

The next chapter deals w i t h the formalization of C O M F O R M , using the O R M con­

cepts detailed in Chapter 4.

119

Chapter 6

Formalization of C O M F O R M

This chapter demonstrates how the concepts of C O M F O R M (described in the pre­

vious chapter) are modelled using O R M . The model presented in this chapter is

relevant to C O M F O R M , since i t formalizes the method underlying COMFORM.

Such a formalization facilitates the visualization of the method, and supports the

automation of the activities performed during the method's process. The formaliza­

t ion also allows C O M F O R M to provide a uniform set of services to create, retrieve

and manipulate instances of forms in a persistent object base. Moreover, the cluster

mechanism of O R M enables the implementation of the scheduled release concept and

the version control discussed in the previous chapter. I t also allows the storage of

information belonging to several existing software systems in the same object base.

Furthermore, the implementation of the model can easily provide comprehensive

analysis capabilities, which include completeness, consistency and traceability.

120

6.1 The Modelling of COMFORM using ORM

The modelling of the C O M F O R M method was an evolutionary process which en­

tailed the inclusion of diflferent types of objects in the model. Some of these object

types were subsequently removed f rom the model. SMM forms have been chosen as

the basic object types of the model because they represent the main and essential

entities wi th in C O M F O R M . I n addition, SMM forms are the software configuration

items that have to be under the control of the SCM discipHne. Other entities in

the method have also been tried out in the model. For example, people involved

in the maintenance process (maintainers, users and managers) were included as

object types in an earlier model, but were rejected because they made the model

too cumbersome and made i t diff icult to visualize the main points of the method's

formalization.

The fields of S M M forms are the attributes and relationships of the objects in the

model. Like most of the fields of S M M forms, people involved in the maintenance

process are at tr ibute types associated w i t h the forms and are not object types in the

model. The at tr ibute types of the model provide additional features associated wi th

the forms. Each of the relationship types chosen for the model represents a check of

consistency or traceabihty that can be obtained wi th in the model. The attribute,

together w i t h the relationship types are the contents of the forms which have to be

specified, in order to enable them to go through the completeness checks.

The definition of cluster hierarchy, discussed in Section 6.2, has also gone through

a series of evolutionary changes to find a more convenient structure which fits the

method, so that C O M F O R M could benefit f rom the cluster mechanism in ORM.

121

The modelling of C O M F O R M is presented in two stages, consisting of the main

model and the modeUing of version control. The process has been so divided for

the sake of clarity, because of the different purposes of these two stages. The main

model primari ly aims at presenting the object types (forms) and their relationship,

as well as at tr ibute types. The relationship types represented in the main model

are intended to provide the capabiUties for checking consistency and traceability

between forms. The modelling of version control, detailed in Section 6.3, shows

the intrinsic and essential relationship types, which enable the proper associations

between the diff'erent types of forms and their versions, created during subsequent

system releases, to be established.

6.1.1 The C O M F O R M Model

The C O M F O R M model using the most important features of O R M is depicted

in Figure 6.1. I t illustrates the forms which are the phase products of the SMM,

through the object, relationship and attribute types.

The object types in this model are the following S M M forms: Change Proposal,

Change Approval, Maintenance Specification, Module Design and Module Source

Code. The fields of the forms are either relationship or attribute types of the model.

The relationship types l ink object types, providing a natural strategy for checking

consistency and traceability between the forms. Every relationship type is followed

by a minimum and maximum mapping, which characterizes the quantity of the

relationship of a particular type in which the source object may be involved. The

at t r ibute types related to each object type (form) are the remaining fields of the

forms, excluding the relationship types as described.

122

version control
.Reason for change
_CP descript ion
_CP baseline established by
.(Reason for abandoning)
.Status date
_CP status
.CP proposed by
_CP date
_CP ident i f ica t ion

version control
—System tests
—Integration tests
—Consequences of change
—Specif ication of change
—MS baseline established by
—Status date
_J1S status
—MS formulated by
-MS date
-MS ident i f icat ion

Change
Proposal

is
required

by
0-1 y requires

Maintenance
S p p r i f i r a l - i n n
Maintenance

Design
Specific

Change
Request

specif ies

is
specif ied

by

Module
Source Code

Module
Design

Change
Approval i n v o l v e s l - m

is
1 -n y involved i

correspond
to / has a

corresponde
mih

Maintenance
Implement.

Maintenance
Design
Redoc.

Change
Evaluation

version control
_SC understood by
—Comments

Tests outcome
,SC baseline established by

—Status date
—SC status
_SC implemented by

SC date
|_SC ident i f icat ion

—CA ident i f i ca t ion
_CA date
—CA authorized by
—CA status
—Status date
—CA baseline established by
—Type of change
—Ident i f icat ion of change
—Resource est imates for change(design)
—Resource est imates for change(coding)
—Resource est imates for change(testing)
—Priori ty of implementation
—Consequences if not implemented

version control

MD ident i f icat ion
J M D date
_MD designed by
_MD status

Status date
_MD baseline established by
_Module purpose
_A lgor i thms outl ine

.Interface def in i t ions
Test plans
* version control

^ version control

version ident i f icat ion
version date
version author
version status
status date
version baseline established by
descript ion of modi f icat ion

Figure 6.1: The C O M F O R M Model

123

6.1.2 Consistency and Traceability in C O M F O R M

The formalization of C O M F O R M can provide several benefits to help in the imple­

mentation of the method. The traceability and consistency of forms can be easily

obtained by following the relationship types defined between them.

A Change Proposal fo rm is traceable in the Change Approval form, through the

relationship is approved to give/has been approved from which links them. This

relationship w i l l be generated after a proposed change is approved.

The Change Approval form is traceable in the Maintenance Specification form,

through the relationship is specified by/specifies which exists between them. Since

one specification can incorporate various approved changes, this relationship is rep­

resented in the Maintenance Specification form by the field Related CAs.

I n order to establish the traceability of Module Design forms (in either Change

Approval or Maintenance Specification forms), the fields Involved and Affected sw

components id. represent the relationship types involves/is involved in between

Change Approval and Module Design, and affects/is affected by between Mainte­

nance Specification and Module Design forms respectively.

For every Module Source Code form, there must be a corresponding Module Design

form and vice versa. In the model, this is represented by the relationship corresponds

to/has a correspondence with-which, exists between them.

The relationship requires/is required by between a Maintenance Specification form

and a Change Proposal form conveys the other changes (i f any) which are necessary

in order to f u l f i l the maintenance specification. The field Other necessary changes

124

i n the Maintenance Specification fo rm represents this relationship.

I n C O M F O R M , a Change Proposal fo rm characterizes the start of a maintenance

activi ty and contains summary details of a proposed change in order to carry out

its prehminary evaluation. Thus, the main evaluation information about a proposed

change is contained in a Change Approval form. Consequently, the software compo­

nents to be modified or created, (expressed in the model by the Module Design forms

and Module Source Code forms), are associated mainly wi th the Change Approval

fo rm by the relationship involves/is involved in. The software components may also

be associated w i t h Maintenance Specification forms, since during the specification

of the change, modifications to other software components may be required.

The Module Source Code forms are the nearest forms which Unk the software com­

ponents to C O M F O R M . Their connection w i t h the change specification, and the

proposed change involving them, can be obtained indirectly through the relation­

ship types defined in the model. There is a one-to-one relationship between a Module

Source Code fo rm and a Module Design form, which represents a higher level of soft­

ware component documentation. On the one hand, a Module Source Code form is

not directly associated w i t h any other form than its corresponding Module Design

form. The Module Design forms, on the other hand, may be associated wi th a

Maintenance Specification form or a Change Approval form.

As far as mappings of relationships are concerned, there should be at least one

Module Design fo rm involved w i t h a Change Approval form, though i t may be that

no Module Design form is affected by a Maintenance Specification form during the

specification of the changes. Not all Module Design forms are necessarily involved

w i t h a Change Approval fo rm or affected by a Maintenance Specification form.

125

However, a particular Change Approval form or Maintenance Specification form

may involve or aff^ect several Module Design forms at the same time.

A Configuration Release fo rm may comprise several change proposals. For each

approved Change Proposal form, there should be one and only one corresponding

Change Approval form. A l l the approved change proposals of a particular system

release should be specified in a single Maintenance Specification form. Because

Change Approval forms are specified by a Maintenance Specification form in the

model, the Change Proposal forms can be indirectly traced to their corresponding

Maintenance Specification form.

Since i t is not always the case that during the specification of a maintenance activity

there w i l l be Other necessary changes to be made, the mapping fields in this instance

show that a Maintenance Specification form may require zero to several Change

Proposal forms, and the Change Proposal form is required by only one (if any)

Maintenance Specification form.

Constructing the relationship types as defined in this subsection allows one to nav­

igate through all the associated forms in a particular system release. The current

model has shown that not all object type need to be directly associated wi th each

other to obtain the traceability and consistency checks among them. Moreover, the

use of more relationship types would generate redundant information, which in turn

could lead to more checks and increase the UkeHhood of generating inconsistencies.

I t is worth drawing attention to the fact that the Configuration Release form is not

represented in the main model of C O M F O R M . This is not due to the fact that such

a fo rm is irrelevant to the method, but because of its particular characteristic i t

requires no particular relationship type to l ink i t w i th any other SMM form. The

126

importance of the Configuration Release form is unique in the model; i t is detailed

and discussed along w i t h the modelling of version control in Section 6.3.

The cluster mechanism, detailed in the next section, provides further capabilities to

aid C O M F O R M to define the scope of a system release, of a particular form and its

versions, as well as positioning them in the whole structure defined by the method.

6.2 The Cluster Mechanism in COMFORM

The cluster mechanism is an additional concept of O R M , which encourages the

grouping of forms i n clusters, so that they can be organized in such a way that

both the dependency and hierarchy can be established. This mechanism plays an

important role in the modelling of C O M F O R M , since i t provides the capabihties

to implement various C O M F O R M concepts. The use of clusters enables the imple­

mentation of scheduled releases, and also facilitates the implementation of version

control. I n addition, the cluster mechanism allows the storage of information of

several existing software systems in the same object base; i t also helps in the task

of establishing baseUnes, since every form belongs to its respective cluster, which in

t u rn comprises all the necessary information for the task.

I n the model of C O M F O R M , every cluster type comprises only one object type

(form). This procedure affords a more precise version control, by which each form,

rather than a set of forms, is controlled by the SCM discipline. The cluster types of

the model are named after S M M phases. I n addition, the object types they consist

of are the products, i.e. the forms, which correspond to the result of these phases.

127

Although the cluster types represent diff'erent levels of abstraction, some of them

may be at the same level i n the hierarchy. The cluster hierarchy of C O M F O R M is

depicted in Figure 6.2.

Global

System

Maintenance
Design

Redocumentation
System
Release

Change
Request

Maintenance
Implementation

Change
Evaluation

Maintenance
Design

Specification

Figure 6.2: The Cluster Hierarchy of C O M F O R M

The ^/o6a/cluster type at the top of the hierarchy, is the most generic one. This clus­

ter type is necessary to the enclosure of all other cluster types of the model. Tracing

the hierarchy downwards, the next cluster type is named system, and envelopes all

the information pertaining to a specific software system being maintained. In so do­

ing, the model permits C O M F O R M to maintain several existing software systems,

wi thout the information in one interfering w i t h that in another.

The t h i r d level in the hierarchy, comprises three cluster types at the same level

named system release, maintenance design redocumentation and maintenance im­

plementation. The system release cluster type comprises the information concerned

w i t h every system release. Therefore, i t also includes the change request, change

evaluation and maintenance design specification cluster types. On the same level

128

as the system release cluster type are the maintenance design redocumentation and

maintenance implementation cluster types, which keep the system information of

Module Design and Module Source Code forms respectively. As a result, when a

cluster of objects in the system type becomes accessible, the maintainer can obtain

fur ther system information, which can be one of a particular Configuration Release,

Module Design or Module Source Code form.

The change request, change evaluation and maintenance design specification cluster

types contain the documentation of the maintenance required in a particular sys­

tem release; therefore, they keep information about the Change Proposal, Change

Approval and Maintenance Specification forms respectively. These three cluster

types are under the system release cluster type, to enable the grouping of all forms

documenting a particular system release in a single cluster.

Al though the Module Design and Module Source Code forms are components of a

Configuration Release, the maintenance design redocumentation and maintenance

implementation cluster types are designed at the same hierarchical level as the sys­

tem release cluster type. This is because Module Design and Module Source Code

forms might be present in more than one Configuration Release form. Nevertheless,

i t is this characteristic which allows the software components be documented as they

are being requested to undergo modification. Moreover, the incremental redocumen­

tat ion in C O M F O R M is only possible because of the way the cluster hierarchy has

been designed. I n this way, software components are free to have their documenta­

t ion improved at any time, since they are not part of any particular Configuration

Release of the system. However, i f they are requested to undergo modification in a

particular Configuration Release, they wi l l necessarily have to be documented.

129

6.2.1 The System Form

The level system has been created in the cluster hierarchy so that the implementa­

t ion of the model can allow the storage of information about several existing software

systems in the same object base. Following the model of C O M F O R M , (where ev­

ery cluster type has an object type related to i t) , a System object type (form) is

needed to keep the information concerned w i t h every particular software system

being maintained under C O M F O R M .

The System form depicted in Figure 6.3 presents the standard structure of SMM

forms. I t therefore contains the three sections: identification, status and information.

While the identification and status sections include the standard information of

forms, the information section includes all the Configuration Release, Module Design

and Module Source Code forms that are part of a particular software system.

System

SR identification:

SR originated by:

Date:

SR stams: Status date:

SR baseline established by:

Comprises:

CRs:

MDs:

SCs:

Figure 6.3: The System Form

130

6.2.2 Scheduled Releases

One of the goals of using the cluster mechanism in COMFORM is the implementa­

tion of scheduled releases, and determination of the contents of each system release.

The main advantage of scheduled releases is that changes are not introduced to

the system at random. Change proposals should be organized and planned to be

included in different system releases. This approach enables the optimization of

maintenance tasks by grouping together those approved changes which involve the

same software components, or have similar changes to be performed.

The design of the cluster hierarchy emphasizes the concept of scheduled releases. The

change request, change evaluation and maintenance design specification cluster types

are organized one level below the system release cluster type in such a way as to show

that the Change Proposal, Change Approval and Maintenance Specification forms of

a particular system release are part of a Configuration Release form. Therefore, all

the Change Proposal forms associated with a particular system release must be fuUy

developed in order to enable the release of a system configuration to the users. This

means that the baseline associated with a Configuration Release form can only be

established when all the forms associated with this form had their baselines already

established.

6.3 Version Control

COMFORM aims to supply the capabiUty of version control by providing a mech­

anism to manipulate versions of SMM forms, and to enforce restrictions on the

131

evolution of these forms, so that evolution is observable and controllable. To do so,

the cluster mechanism concept of ORM has been employed. Within the model of

COMFORM, each cluster type provides the structure to hold the information and

all versions of a particular form, so that versions of a form are kept together and

can be easily retrieved.

6.3.1 The Modelling of Version Control for C O M F O R M

Figure 6.4 depicts the relationship types between the object types (forms) included

in a Configuration Release form. These relationship types are essential to the model

in that they Unk the correct (version of) forms to their (version of) Configuration

Release form. This figure also shows the relationship types which connect the Con­

figuration Release, Module Design and Module Source Code forms to a particular

System form. The attribute types associated with the Configuration Release and

System forms are also shown in the same figure.

Since maintenance design redocumentation and maintenance implementation are not

subcluster types of the system release, the model of version control requires that the

relationship between them must be explicitly represented so as to associate the

modified Module Design and Module Source Code forms with a Configuration Re­

lease form. Thus, the relationship type is composed of/is a component 0/represents

the link between the Configuration Release and Module Design, and between the

Configuration Release and Module Source Code forms.

The relationship type comprises/is part of identifies the forms which are part of a

cluster type. As the change request, change evaluation and maintenance design spec-

132

* version control
5R baseline established by
Status date
,SR status
5R originated by
,SR date
,SR ident i f icat ion

System

System

I -m

comprises comprises

is part of
IS part 0

nodule
Source Code

Module
Design

IS
composed 0 ^ i-n

is a
omponent o

IS a
component o Configuration

is
composed Maintenance

Implement
Maintenance

Design
Redoc

System
Release

comprises comprises

IS part of IS part of

Change
Approval

Change
Proposal Maintenance

^ppr i f i f r i t lon
Maintenance

Design
Specific

Change
Evaluation

Change
Request

_CR Ident i f icat ior
_£R date
_CR created by
_CR status

tatus date
^ R baseline established by
—Integration tests outcome
--System tests outcome
_Xonf igurat ion dist r ibuted to

version control
* version control

version ident i f icat ion
version date
version author
version status •
status date
version baseline established by
descript ion of modif icat ion

Figure 6.4: The Modelling of Version Control for COMFORM

133

ification are subcluster types of the system release cluster type, the Configuration

Release form is associated with Change Proposal, Change Approval and Mainte­

nance Specification forms through the relationship type comprises/is part of. This

relationship type is not an explicit one (since it is part of the cluster mechanism

concept), but is represented in the model in order to clearly show that the Change

Proposal, Change Approval and Maintenance Specification forms are part of a par­

ticular Configuration Release form.

In the same way as the system release, maintenance design redocumentation and

maintenance implementation are sub-cluster types of the system cluster type, the

System form is associated with Configuration Release, Module Design and Module

Source Code forms by the relationship type comprises/is part of

As far as mappings of relationship types are concerned, a Configuration Release

form may comprise one or more Change Proposal and Change Approval forms, but

only one Maintenance Specification form which specifies all the changes approved

for that particular system release. On the other hand, Change Proposal, Change

Approval and Maintenance Specification forms are part of only one Configuration

Release. The software components (represented by the Module Design and Module

Source Code forms) which have been involved in an approved change, or aff'ected by a

maintenance specification of a particular Configuration Release, are the components

of a Configuration Release form. Therefore, there should be at least one Module

Design and Module Source Code form associated with a Configuration Release form.

The existing software system being maintained using COMFORM comprises at least

one Module Design, Module Source Code and Configuration Release form, since

there is at least one software component to be maintained, which in turn has to be

134

developed by generating a Configuration Release form. On the other hand, every

Module Design, Module Source Code and Configuration Release form is part of only

one System form.

6.3.2 The Modelling of Revisions and Variations

The generation of versions from a particular form demands the creation of specific

relationship types to control them. Therefore, the relationship types, is a revision

of/generates revision and is a variation of/generates variation, between an original

and a versioned object type represent the concepts of revision and variation for the

method (described in Section 5.4). This is depicted in Figure 6.5.

IS a vanation of

0-1
IS a revision of

0-1

SMM Form/

version

generates variation
0-n

generates revision
0-ra

Figure 6.5: The Modelling of Revisions and Variations

The relationship types, is a variation of/generates variation a,nd is a revision of/generates

revision, provide the mechanism to follow all the versions of a particular form

throughout its existence, by providing the history as well as the current status

of its evolution. These relationship types are created within a cluster of objects,

and link two versions of the same object.

The relationship type, is a variation of/generates variation iimplements the concept

135

of variation, allowing the visualization of the sequence in which variations of a form

have been created.

The relationship type, is a revision of/generates revision, shows the sequence in

which revisions of a particular form have been created. This relationship type allows

the history associated with each form of an existing software system to be obtained.

A form or its version may generate zero to several revisions or variations; however,

a version (revision or variation) is generated by only one (if any) form or version.

6.4 An Illustrative Example

In order to clarify the COMFORM model described in this chapter, consider a simple

example given in Figure 6.6. This figure shows the clusters of objects (ovals) and

forms (rectangles) with their versions, and illustrates the notion of cluster hierarchy.

For the sake of simplicity, the name of the cluster types will be omitted, since each

SMM form is associated with its respective cluster type named after the SMM phase.

The different cluster types are illustrated in the figure by the different patterns of

the ovals.

Systeml is the form associated with the cluster type system, representing an existing

software system being maintained by COMFORM. In this example, Systeml has

two clusters of objects of the system release type depicted by the forms CRl and

CR2. CR2 is being developed so that it contains one form in each of the cluster of

objects enveloped by i t . A Change Proposal form CPS has been approved and has a

Change Approval form CA2 associated with it . The approved change is specified in a

136

Maintenance Specification form MS2. Furthermore, the approved change modifies a

software component whose Module Design and Module Source Code forms are MD3

and SC3 respectively. These forms are components of the Configuration Release

form CR2, whose relationships are depicted in that figure by arrows.

The Configuration Release form CRl has already been developed. In its original

version, a Change Proposal form CPl was proposed and abandoned. This same

Change Proposal was later approved (CPl-l.l) and its modification carried out.

The Change Approval form CAl was created in response to the approval of the

change. The Maintenance Specification form MSI contains the specification of the

approved change. The CPl-l.l has proposed a modification to an existing software

component, whose Module Design and Module Source Code forms are named MDl

and SCI respectively. As a result of the proposed change, a version of these forms

has been created (MDl-1.1 and SCl-1.1) and associated with the Configuration

Release form CRl.

However, the proposed change {CPl-l.l) was not carried out properly. Once the

forms associated with CRl had been frozen by the SCM control, they could no

longer be modified, so that a version of the Configuration Release form CRl had to be

created (CRl-1.1) in order to amend it . As a result, a new Change Proposal form has

filled in (CPf) so as to have the problem properly documented. Its approval created

the Change Approval form CAT. The specification of the change was documented in

the Maintenance Specification form MST. The latest version (1.1) of the software

component (whose Module Design and Module Source Code forms are the MDl-

1.1 and SCI-1.1 respectively) were then modified and the corresponding versions

{MDl-1.2 axvd SCl-1.2) of the forms were created. The specification of the change,

however, also required modifications to another software component, represented by

137

System 1

SC1-1.2

SC1-1.1
CR1-1.1

SC2-1.1

System Release

MalntenancB Design Redocumenlation

Maintenance Implementation

[•:':] Maintenance Design Specification

III Change Evaluation

• Change Request • Syste

Figure 6.6: An Illustrative Example of the Modelling

138

the forms MD2 and SC2, which in turn led to the creation of new versions {MD2-1.1

and SC2-1.1 respectively).

I t is clear from this example that the information for a particular software system

being maintained by COMFORM can be kept separate in an object base. Once

a particular software system is instantiated, information about its system releases

and software components (Module Design and Module Source Code forms) can be

obtained. I f details of a particular system release are required, the cluster of ob­

jects which comprises its corresponding Configuration Release form provide all the

required information.

6.5 Comments on the Formalization of COM­

F O R M

The formalization of COMFORM has been presented in this chapter using the basic

concepts of ORM. The model covers the basic features of the method proposed in

Chapter 5.

The current model has not dealt with aspects of software project management.

Therefore, people involved in the whole process (maintainers, managers and users)

have not been represented as object types in order that they might be given closer

attention as software configuration items. This has not been developed in the current

model, since it was not the objective of this research to perform any sort of statistics

or metrics involving information about each of the maintenance team members.

139

The current hierarchy of clusters has been designed in such a way that each cluster

type comprises all versions of a specific form. In addition, the cluster hierarchy

allows the division of forms into distinct hierarchical levels, so that traceabUity

between forms can be obtained by distinguishing the levels that the maintenance

process goes through. Therefore, this hierarchy shows how the different types of

forms interact with each other. Since the system release cluster type is the focus of

a maintenance process, it is this cluster which envelopes the cluster types of change

request, change evaluation and maintenance design specification. The maintenance

design redocumentation and maintenance implementation cluster types are at the

same level as the system release, since the Module Design and Module Source Code

forms do not belong to any specific system release.

Finally, the formalization of COMFORM is an important step towards the imple­

mentation of an automated support, required for the method. The implementation

of a framework capable of supporting such a model provides users with a better

understanding of the method. In addition, the quality assurance checks can be au­

tomated so that a more reliable and robust software maintenance environment can

be obtained. The next chapter discusses the details of the implementation carried

out in this research in order to automate COMFORM.

140

Chapter 7

The COMFORM Prototype

The previous chapters described the method underlying COMFORM and its formal­

ization. This chapter discusses some important issues encountered when developing

a prototype for COMFORM. The prototype forms the foundation of a software

maintenance environment, into which are incorporated the capabiHties and ideas

that have been investigated, in order to create COMFORM. The prototype focuses

on the implementation of the main concepts introduced by COMFORM.

7.1 Implementation Issues

The main purpose of the prototype is to provide an automated framework into

which other tools can be incorporated, so that this framework represents the ba-

141

sis of a software maintenance environment, supporting the method described in

Chapter 5. Hence, the prototype aims to provide automated support for change

request, change release, version control, configuration management and incremental

redocumentation. A major feature of the prototype is that maintenance and system

information is stored in a unified object base, making it easy for people involved in

the maintenance process (maintainers, users and managers) to query and analyse

the software system being maintained.

The implementation of this prototype involves the COMFORM kernel (which repre­

sents automation of the model described in Chapter 6), the COMFORM framework

(which allows the incorporation of other tools), and a Report Generator tool. The

prototype was implemented in the Unix environment using the C programming

language [65] and consisted of about 8000 lines of C source. The COMFORM pro­

totype enforces the characteristics of the method, such as completeness, consistency,

traceability and version control.

The following sections of this chapter describe the COMFORM kernel, the COM­

FORM framework and its operations, the report generator, the implementation of

the basic features of version control in greater detail, and discuss ways to integrate

COMFORM into the Unix environment.

7.2 The C O M F O R M Kernel

The COMFORM kernel consists of a set of primitives which store, recover and

update the system information that semantically represents the SMM forms and

142

their fields. These primitives manipulate objects, relationships and attributes of the

modelling described in Chapter 6.

The primitives of the COMFORM kernel are at the lowest level of implementation,

representing the uniform mechanism with which to manipulate the COMFORM

object base, assuring its integrity. Such primitives not only perform the required

tasks, but also perform consistency and integrity checks on data being added to

the object base. For instance, if a request is made to establish a relationship by

calling the insert relationship primitive, the COMFORM kernel first checks if that

relationship is allowed between the requested object types. If valid, a check is then

made to see if the fink is redundant, and if not, a new entry is automatically inserted

in the object base for the established relationship.

The primitives that have been implemented take into account the cluster hierarchy,

as described in Chapter 6. The forms can be grouped in clusters so that they are

organized in such a way that dependency, as well as levels of hierarchy among them

can be established.

The COMFORM kernel also provides specific primitives for the version control, in

order to keep track of modifications to the forms. Details of the version control

approach taken by the prototype are discussed later in Section 7.5.

7.3 The C O M F O R M Framework

In order to automate the method effectively, tools should be implemented and added

to the COMFORM framework. This framework is the primary means by which SMM

143

forms are made to interact with people involved in the maintenance process. The

implementation of tools involves calling several primitives from the COMFORM

kernel, in order to manipulate the information in the object base.

The COMFORM framework is the main part of the prototype, representing the

basis of a software maintenance environment, where other specific-purpose tools can

be added. In the prototype, it consists of operations to manipulate the Change

Proposal, Change Approval, Maintenance Specification, Module Design, Module

Source Code, Configuration Release and System forms. The fields of the forms are

interpreted according to their specific functions, such as attribute and relationship

types of the model, described in Chapter 6.

The following operations manipulate the forms in the COMFORM framework: cre­

ate, get, modify, delete, effectuate, establish baseline and undo effectuate. The op­

erations have been designed in such a way that they automate the important basic

functions of COMFORM. The operations of the COMFORM framework are de­

scribed in more detail in the following subsections. Such operations manipulate

either the forms or the alternatives of these forms (but for the sake of simplicity,

only the forms are referred to in the description of the operations).

7.3.1 The C R E A T E operation

The create operation allows the user to create any SMM form. Forms can only be

created if they comply with the cluster hierarchy as defined during the formalization

of the method. In particular, a Change Approval form is only created if there is

at least one Change Proposal form whose status is effective, so that the new form

144

can be associated with a specific and approved Change Proposal form. Change

Proposal forms, Change Approval forms and Maintenance Specification forms can

only be created in a system release cluster of objects whose status is in development.

Furthermore, a Configuration Release form has to be created first for each new

system release.

7.3.2 The G E T operation

The get operation displays the information of a specific form. The three sections

of the forms (identification, status and information) are displayed. In addition, if

a form contains alternatives, they are all displayed along with their current status.

System and Configuration Release forms also displays those other forms which are

part of them, thus providing the information contained from that level and down­

wards in the cluster hierarchy. Therefore, a System form displays the Configuration

Release, Module Design and Module Source Code forms, which are part of the clus­

ter of objects associated with that particular form; and a Configuration Release

form displays the Change Proposal, Change Approval and Maintenance Specifica­

tion forms, which are part of the cluster of objects associated with that particular

form. A Configuration Release form also displays the Module Design and Module

Source Code forms, which are components of that particular form.

145

7.3.3 The M O D I F Y operation

The modify operation allows the user to modify or fill in the fields of any existing

form whose current status is in development.

7.3.4 The D E L E T E operation

The delete operation removes a specified form from the COMFORM object base.

Initially, a check to determine whether or not the specified form is in development

is carried out.

7.3.5 The E F F E C T U A T E operation

The effectuate operation is responsible for checking the completeness of a form. This

operation brings the specified form to an intermediate status so that it cannot be

modified or deleted. The specified form has to be in development and all of its fields

have to be filled in. The only exception to this rule is the Maintenance Specification

form, where the Other necessary changes field does not always have to be filled in

to meet a specification. The intermediate status (effective) is the first step towards

the estabHshment of a form baseUne.

146

7.3.6 The E S T A B L I S H B A S E L I N E operation

The establish baseline operation is the point at consistency and traceabihty checks

are performed. This operation represents the next step, after the effectuate operation

has been completed. Here, checks are performed not on the forms individually, but

on the set of forms which are part of the cluster of objects associated wi th the form

whose baseline is to be estabhshed. This operation changes the form status f rom

effective, to the permanent frozen status. The necessity for following a sequence in

this operation, and the reasons for i t , have already been detailed in Chapter 5.

The lowest stage of this process is represented by the Module Source Code forms,

where the only requirement for establishment of a baseHne is that the specified form

has one, and only one has a correspondence with relationship wi th a Module Design

form, whose status is effective.

The next stage is the establishment of basehnes of the Module Design forms, since

they are linked and have a one-to-one relationship wi th the Module Source Code

forms. Since the Module Design forms and Module Source Code forms are not

part of a particular system release, because they are part of a system only, they

can be treated independently. Consequently, these forms can be documented at

any time, thus adding to the system documentation. These two types of forms can

also have their baselines established at any time, as long as they have their correct

corresponding relationships. There must be only one relationship between a Module

Design fo rm and a Module Source Code form. Nevertheless, these forms do have to

be fu l ly documented i f they are components of a system configuration to be released.

As far as the documentation of the maintenance process is concerned, the Change

147

Proposal fo rm is the first one to have its baseUne established by approving or reject­

ing a proposed change. The Change Approval forms and the Maintenance Specifica­

t ion fo rm are the next ones, as long as the software components (Module Design and

Module Source Code forms) involved in and affected by those forms have already

had their baselines established. The implementation of modification having been

carried out already, the next step involves the final evaluation of that maintenance

process, which requires the filling i n of the Configuration Release form in order to

have its baseline established.

7.3.7 The U N D O E F F E C T U A T E operation

The undo effectuate operation acts as a safety valve, bringing an effective form back

to in development status, so that modifications can again be carried out on that

form. The situation of having to return to in development status is sometimes

required, since, during the establishment of baselines of forms, there may be some

inconsistencies which can only be amended i f modifications to some fields of forms

are performed. For instance, i f during the implementation of a Change Proposal the

development of a new software component is required, such information has to be

documented in the corresponding Change Approval form. I f i t is the case that this

Change Approval fo rm has already been effectuated, the undo effectuate operation

has to be performed in order to establish the baselines of the forms related to this

change.

148

7.4 The Report Generator Tool

The Report Generator tool plays a key role in the C O M F O R M prototype as far as

the SCM function of Software Configuration Status Accounting is concerned. I t is

this tool which retrieves the information stored in the object base, and presents i t in

its various ways to those people involved in the maintenance process (maintainers,

users and managers).

Different types of reports can be generated by choosing parameters and options

which represent the information that is required to be displayed. In so doing, the

prototype generates either managerial or technical reports, such as those described

in Subsection 5.3.3.

Table 7.1 depicts the parameters and options of the report generator. The user can

define particular reports, by choosing particular parameters and options:

1. Whether or not the name of the current cluster is to be displayed.

2. Whether or not the form totals in a report are to be displayed.

3. Information to be displayed in a report can be selected from:

• fo rm name

• creation date

• author of creation

• current status

• status date

• author of baseline.

149

1. Name of current cluster display (Y/N)
2. Total of forms display (Y/N)

3. Information to be displayed
3.1 Form name 3.2 Creation date 3.3 Author of creation
3.4 Current status 3.5 Status date 3.6 Author of baseline

4. 1 ̂ ype of forms to be displayec
4.1 Configuration Release 1 4.2 Module Design 4.3 Module Source Code
4.4 Maintenance Specification 1 4.5 Change Approval 4.6 Change Proposal

5. Optional parameters to be mate led
5.1 Form name 5.2 Creation date 5.3 Author of creation
5.4 Current status 5.5 Status date 5.6 Author of baseline

Table 7.1: Parameters and options of the report generator

4. Types of forms to be displayed in a particular report. For instance, the Change

Proposal forms of an existing software system.

5. Optional parameters to be matched, so that forms wi th specific characteristics

can be displayed. Such an option allows, for instance, the generation of a report

containing the forms whose status is in development or the forms created by

a particular author.

7.5 Version Control

A simple fo rm of version control has been implemented in the C O M F O R M proto­

type. A l l types of S M M forms can be brought under version control, although the

main use of versions are for the Module Design and Module Source Code forms.

Alternatives of any form can be created, as long as the form has been frozen. Ad­

ditionally, alternatives are only allowed to be added to in development clusters of

objects. Alternatives are identified by the identifier of the original form, and by

150

a version number. For instance, an alternative for the msl form could be named

msl-1.1, representing a further step in the development of the msl form.

In the current prototype (just to illustrate this concept), a simple structure has

been implemented so that alternatives are always generated f rom the original form.

A more reasonable way of generating alternatives would be f rom the last version

of a form, or by allowing the maintainer to choose f rom which version of a form

the alternative should be generated. Thus, to generate an alternative, the content

of fields of the original fo rm are copied. I n addition, a new field. Description of

modification, has been introduced, where the reasons for generating a new alternative

must be documented. The other fields of the form may remain the same, i f changes

to them are not required. However, the fields which are represented by relationships

in the model are not copied f rom the original form, making the maintainer check i f

those forms related to the one being modified, require the generation of new versions

or not. For instance, i n the Module Source Code form, the field Corresponding MDoi

which the information required is the identifier of the corresponding Module Design

form, is not duplicated f rom the original form.

A l l checks performed on an original form are also performed on alternatives, so that

to efl["ectuate an alternative, all of its fields must be filled in . Furthermore, to have its

baseUne established, an alternative must comply wi th the same requirements applied

to the original form. Moreover, alternatives are treated as independent forms when

they are referred to in the fields of other forms. For instance, in a Change Approval

fo rm and Maintenance Specification form, the names of the Module Design forms

are required in the fields Involved sw components id. and Affected sw components

id. respectively. I f the name of an alternative were to be given, only when that

particular alternative has had its baseline established (becomes a version) could

151

those former forms have their basehnes established.

7.6 C O M F O R M in the Unix Environment

Since there are already established tools in the Unix environment to control source

code, (for example RCS [108, 109] and make [39]), the main purpose of COM­

F O R M has been to generate incremental documentation to existing software sys­

tems. Hence, C O M F O R M does not control the software components directly. In­

stead, a l ink can be established wi th such tools, extending COMFORM's capabihties

to ensure that not only the documentation generated by C O M F O R M , but also the

source code being maintained by RCS and make are consistent and under control.

In the current implementation of the C O M F O R M prototype, the tools RCS and

make have been used. The l ink estabhshed between C O M F O R M and these tools

are such that the components of existing software systems can be maintained using

RCS to keep their versions under control, and make to assure that the executable

code is being generated using the updated versions of the software system.

To provide the l ink between C O M F O R M and other tools, a program called checker

has been wri t ten . The checker program looks at RCS and make information and

converts i t into the format expected by C O M F O R M . The first step towards hav­

ing these Unix tools working together wi th C O M F O R M is the introduction of the

software components of an existing software system to RCS, using its ci and co

commands. A t the same time, a makefile file should be created in order to give the

dependency information about the existing system to the make uti l i ty. From the in-

152

formation contained in the makefile file, the checker program is able to recognize the

software components of the existing system and introduce them to the C O M F O R M

object base.

Since the introduction of an existing software system to the RCS tool generates

the revision 1.1 to all software components, C O M F O R M also accepts the first al­

ternative of all introduced software components as 1.1. Therefore, the Description

of modification field of the corresponding Module Source Code form is Initial revi­

sion as automatically created by the RCS tool. Any other new revision created by

using RCS can be detected by the checker program. Additionally, the RCS log mes­

sage inserted during the creation of that revision can be automatically transferred

to C O M F O R M as the Description of the modification field of the corresponding

Module Source Code form.

The way that RCS/make and C O M F O R M can be kept i n step is by always running

the checker program before releasing a new system configuration, i.e., before the

establishment of baselines process. The checker program is then able to point out

the new software components and the new versions of existing software components

s t i l l not included into the C O M F O R M object base. These new software components

are then automatically inserted to the C O M F O R M object base. Only after the

successful running of the checker program can the basehnes of the software system

be established and, therefore, have a new configuration released to the users.

To sum up, the checker program is vi ta l in the process of Unking Unix tools and

C O M F O R M . A t the introduction of the existing software system to C O M F O R M ,

the role of this program is to transfer all the software components inserted in the

makefile file to the C O M F O R M object base. During the maintenance process of

153

the introduced software system, the checker should be run before establishing the

baselines (to release a system configuration), so that all the new software components

and new versions of existing software components can be detected and transferred

to the C O M F O R M object base.

7.7 Summary

Although the implementation of C O M F O R M described in this chapter does not

represent a software maintenance environment on its own, the prototype contains the

essential characteristics of the method as discussed in Chapter 5. The prototype has

been shown to be capable of performing such fundamental quality assurance checks

as completeness, consistency and traceabihty while incrementally recovering the

documentation of software systems, consequently improving their maintainabihty.

Moreover, the C O M F O R M kernel, as the only interface to access the information

f r o m the object base, ensures the integrity of the data.

The completeness of forms is obtained through the effectuate operation by upgrad­

ing the forms' status only i f all their fields are filled in . The traceability check is

performed during the establish baseline operation. During this operation, the set of

forms that is part of a cluster of objects associated wi th a Configuration Release

form is traced, in order to ensure that those forms are in agreement wi th each other.

Basic consistency checks have also been implemented in the C O M F O R M prototype

as described below:

t Change Approval forms are only created f rom Change Proposal forms that

154

have just been approved.

• The redocumentation of a software component consists of completing the two

correlated forms. Module Design and Module Source Code.

• A system release can only be delivered to users i f all the change proposals

associated wi th i t are sorted out, i.e., the change proposals have been imple­

mented.

• A Maintenance Specification form and Change Approval forms can only have

their baselines established i f the affected and involved software components

have been documented, and have therefore had their baselines established.

The C O M F O R M prototype has been developed in order to provide the automated

support necessary to evaluate the underlying method. Such a support facilitates

project management, status reporting, auditing and quahty assurance. I t can also

be easily used to control and track changes and forms being manipulated. As a re­

sult, the C O M F O R M prototype is able to provide a complete audit t ra i l f rom change

proposal to change release. In addition, C O M F O R M improves change control, be­

cause personnel are unable to introduce a change to a software system without a

valid approved change proposal.

The next chapter describes an example of C O M F O R M use, in order to illustrate its

applicabiUty and to clarify the points of implementation described in this chapter.

155

Chapter 8

Use of the C O M F O R M Prototype

This chapter describes the use of the C O M F O R M prototype for maintenance of

an existing software system. The first section describes the steps that should be

followed during C O M F O R M use. Section 2 details the appHcation of C O M F O R M to

an existing software system called PXR, which is a context-sensitive cross-reference

tool . I n the last section, general comments and conclusions are made.

8.1 The C O M F O R M Steps

The C O M F O R M prototype supports the method for the maintenance process, as

presented in Chapter 5. Hence, the way of using the C O M F O R M prototype is in ac­

cordance w i t h the guideUnes and procedures established by that method. Although

156

the level of complexity may vary according to the type of maintenance being per­

formed in existing software systems, the most important steps of the C O M F O R M

prototype are as follows.

Step 1. Create the C O M F O R M object base.

This step should be performed only once to create the files which comprise the

C O M F O R M object base. This object base wi l l store all information related to the

maintenance of any existing software system supported by COMFORM.

Step 2. Introduce an existing system to C O M F O R M .

Since the method requires no previous complete documentation of an existing soft­

ware system in order to start operating, the Software Configuration Identification

function must be the first step taken when using C O M F O R M . In fact, the only

knowledge of existing software systems required by C O M F O R M is of their software

components. For each software component, there wiU be a corresponding Mod­

ule Source Code form in the C O M F O R M object base. In this way, the software

components w i l l be known to C O M F O R M . As a software system is being main­

tained, the knowledge obtained during the understanding and modifications of the

software components is kept. Consequently, only modified software components are

compulsorily documented before a new system configuration (using those software

components) is released.

157

Step 3. Introduce change proposals to C O M F O R M .

On reaching this step, C O M F O R M is ready to act in the maintenance process of

the introduced existing software system. This step is triggered by change proposals

which should be grouped into configuration releases, so that the maintenance process

can be scheduled and improved.

Step 4. Evaluate change proposals.

The proposed changes are evaluated by the maintenance staff and may be approved

or rejected. The automatic procedure for the approval of change proposals triggers

the creation of their corresponding Change Approval forms. The approved changes

are fur ther reviewed by a Change Control Board, and are then classified and prior­

itized. There w i l l be a reason for the rejection of certain change proposals, which

is explained and kept in the C O M F O R M object base, adding to software system

history.

Step 5. Document the maintenance process itself.

During the evaluation of the approved changes, the Change Approval forms are filled

in . Correspondingly, the Maintenance Specification form is also fiUed in , along wi th

the specification of all the selected approved changes for a particular system release.

The maintenance process is documented and the system evolution history is kept in

the C O M F O R M object base.

158

Step 6. Document the software components to be modi­

fied.

During evaluation and documentation of the approved changes, those software com­

ponents that need to be modified wi l l emerge. Therefore, as the Maintenance Spec­

ification fo rm and Change Approval forms are filled in , the information about those

software components is discovered and kept by filling in their corresponding Module

Design and Module Source Code forms.

Step 7. Implement and test the changes on the software

components.

A t this point, the required modifications to the software components should be im­

plemented. Af te r that, the individual tests planned for each software component

(documented in the Module Design form) should be carried out, and the results

recorded in the corresponding Module Source Code form. Af ter the successful com­

pletion of individual tests, the integration and system tests should be carried out,

and the results recorded in the Configuration Release form.

Step 8. Initial evaluation of forms.

Once the changes have been implemented on the affected and involved software

components and the tests have been carried out successfully, all forms of the system

release should have their baselines established, in order to have them released to the

users. The in i t ia l evaluation of the auditing process includes checking the complete­

ness of the forms, i.e., the forms should be fu l ly completed, in order to have their

baselines established. The checker program should be run to ensure that the modi-

159

fications performed in the source code are updated in the C O M F O R M object base.

This program detects all versions of the existing software components and the new

software components that have been created but not updated in the COMFORM

object base.

Step 9. EstabHsh the baselines of forms.

The function of establishing baselines is an important step wi th in the method, since

i t is at this point that the quality of the software system being maintained is assured.

The successful outcome of the integration and system tests (performed at the end of

the implementation of the required modifications) is transcribed into the Configura­

t ion Release form, enabling the corresponding system configuration to be released.

Establishment of baseUnes is performed after the ini t ia l evaluation of the auditing

process, and involves checking the consistency of the forms, (i.e., the correlated

forms must be i n accordance w i t h each other), and also checking the traceabihty

between the difi"erent types of forms. Such a process starts at the lowest level, i.e.,

at the Module Source Code forms. Af te r the Module Source Code baseline has been

established, the corresponding Module Design baseline should be estabhshed. A t

this stage, the Change Approval baseUne of this configuration release should also be

established. Af t e r that , the Maintenance Specification baseUne can be estabUshed.

Step 10. Release the system configuration to the users.

Once the baselines of all the forms of the system release have been established, the

baseUne of the Configuration Release can be estabUshed and made available to the

users.

160

Step 11. Generate reports.

A number of reports can be obtained to provide answers to a variety of queries

about the software systems kept under C O M F O R M . Reports such as those Usted

in Subsection 5.3.3 help the people involved in the maintenance process to perform

their tasks.

8.2 Example of C O M F O R M Use

Although the C O M F O R M object base accepts the storage of information of more

than one existing software system, the example of C O M F O R M use described here

deals w i t h only one software system. The C O M F O R M prototype has been apphed

to the maintenance of a context-sensitive cross-reference tool named PXR [19], de­

veloped at the University of Durham. This tool is an 8000 line 29 module program,

wr i t ten in Pascal. Although the size of this software system is not large compared

w i t h the major i ty of existing software systems being maintained in industry, i t is

believed to be of sufficient size for the evaluation of the C O M F O R M prototype's

performance in maintaining existing software systems. Its simple functions, as well

as its compact size, allow a clearer il lustration of the concepts of C O M F O R M (pre­

sented in Chapter 5) to be made.

The P X R system produces two types of cross-reference listings of Pascal programs.

The first one, called block-structured cross-reference, is a structured cross-reference

listing, i n which each identifier occurring wi th in a program block is listed alpha­

betically wi th in that program block. The second one is more like the conventional

161

cross-reference Usting, producing an alphabetical listing of identifiers indicating re­

gion, line declared, class of object represented and the Unes on which the identifier

is used in each way.

The rest of this section describes the employment of C O M F O R M to maintain the

P X R system, following the steps described in the previous section.

Step 1. Create the C O M F O R M object base.

After creating the C O M F O R M object base, the name of the software system is

added. Figure 8.1 shows the in i t ia l information put in the C O M F O R M object base.

SR i d e n t i f i c a t i o n : PXR date: 28/01/92
SR originated by: desSmmc

SR status; in_development status date: 28/01/92

Comprises:
CRs:
MDs:
SCs:

Figure 8.1: In i t i a l information in the C O M F O R M object base

which consists of the name of the software system, the date and the author of its

creation. Since the P X R system has just been introduced to the C O M F O R M object

base, its current status is in development and Configuration Release, Module Design,

and Module Source Code forms have not yet been created to document the system.

162

Step 2. Introduce an existing system to COMFORM.

I n the implementation of C O M F O R M carried out for this thesis, the source code

of the existing software system is assumed to be maintained using the RCS tool,

together w i t h make. A t first, C O M F O R M must know the names of the existing

software components being introduced. In the C O M F O R M prototype, a software

component is assumed to be a single file. C O M F O R M makes use of the makefile

information to bring all the existing software components under COMFORM, thus

performing the Software Configuration Identification function of the SCM disciphne.

Figure 8.2 shows the System form containing the Module Source Code forms as­

sociated w i t h the P X R software components, which have been introduced into the

C O M F O R M object base. The insertion of these Module Source Code forms is

achieved by the checker program, which links all the software components f rom the

makefile file w i th a corresponding Module Source Code form in the COMFORM

object base.

Step 3. Introduce change proposals to COMFORM.

I n order to illustrate the use of C O M F O R M , five change proposals were elaborated so

as to introduce changes into the P X R system. Most of these changes were enhance­

ments (perfective maintenance), whose implementation priorities were important or

minor changes. The proposed changes could thus be organized and planned to be

implemented in different scheduled system releases. This approach was taken in

order to improve the maintenance process, by grouping together those change pro­

posals which involved the same software components, or had similar changes to be

performed.

163

SR i d e n t i f i c a t i o n : PXR date: 28/01/92
SR originated by: desSmmc

SR status: in.development status date: 28/01/92

Comprises:
CRs:
MDs:
SCs:

cLrguments.p
error.p
expression.p
getconstant.p
gettoken.i
gettoken.p
gettype.p
idstack.p
includestack.p
linenumber.p
l i t e r a l . p
paramiiSt.p
print.p
pxr.p
readblock.p
readconst.p
r e a d f i l e . i
r e a d f i l e . p
readlabel.p
readprogram.p
readroutine.p
readtype.p
readvax.p
statement.p
stripzeroes.p
symbol.i
symbol.p
symbolstack.p
variable.p

Figure 8.2: Software components in the C O M F O R M object base

164

Consequently, two Configuration Release forms have been created. The first one

(pxr-1.1) containing two Change Proposal forms {cp-1 and cp-2), and the second

one (pxr-1.2) containing three Change Proposal forms {cp-3, cp-4 and cp-5). The

first two change proposals have been grouped in pxr-1.1 because they are modifying

the same software component [arguments.p). In the second system release, cp-3,

cp-4 and cp-5 are together because they do not require immediate attention. For

simplicity, in this example only pxr-1.1 has been further developed. Figure 8.3 shows

the cp-1 fo rm of pxr-1.1., as an example of a Change Proposal form.

CP i d e n t i f i c a t i o n : cp-1 date: 28/01/92
CP proposed by: des3mmc

CP status: frozen status date: 28/01/92
CP baseline established by: desSmmc

1. CP description: To parse f option
2. Reason for change: Extend to allow f u l l alphabetic and

structured l i s t i n g s

Figure 8.3: A Change Proposal form

Step 4. Evaluate change proposals.

These proposed changes have been evaluated and approved. The approval of the

changes automatically generated the corresponding Change Approval forms. Fig­

ure 8.4 shows the change approval ca_cjo-i, after i t has been completed. The field

Related CP ties the form ca.cp-1 w i t h its corresponding form cp-1. The analysis

and review of cp-1 identified the proposed change as being perfective maintenance,

its work being recorded in the field Identification of change. The impact analysis

165

CA i d e n t i f i c a t i o n : ca_cp-l date: 28/01/92
CA authorized by: desSmmc

CA status: in_development status date: 28/01/92

1. Related CP:
cp-1

2. Type of change: per f e c t i v e
3. I d e n t i f i c a t i o n of change: Modify procedures Usage and

Three_char_param.
4. Involved sw components i d . :

arguments-design
5. Resource estimates for change (design): 1 hour
6. Resource estimates for change (coding): 15 minutes
7. Resource estimates for change (t e s t i n g) : 30 minutes
8. P r i o r i t y of implementation: importeint
9. Consequences i f not implemented: Options not available

Figure 8.4: A Change Approval form

166

carried out shows that the software component arguments.p requires modification.

Such information is shown in the form, where the field Involved sw components

id. records the name of the corresponding Module Design form (arguments-design).

The resources estimates for designing, coding and testing have been developed and

recorded in the form. Since the proposed change aims to allow more flexibility in

the P X R system, its implementation priori ty has been ranked as important, and i t

w i l l be developed for the next system release.

Step 5. Document the maintenance process itself.

Once evaluation of the approved changes has been carried out, their specification is

started and documented using the Maintenance Specification form. Figure 8.5 shows

the fo rm ms-1, which has been developed to specify the approved changes ca.cp-

1 and ca.cp-2. The field Specification of change contains the specification of the

enhanced system operations. Additionally, the fields Integration tests and System

tests specify the tests which have to be carried out in order to complete the system

release.

Step 6. Document the software components to be modi­

fied.

During evaluation of the approved changes, the software components that need to

be modified have been detected and linked to the Change Approval forms. Since

the software component arguments.p is involved in the proposed change, i t has to

be documented, adding to the system documentation. The corresponding Module

Design fo rm for arguments.p is called arguments-design. Therefore, the Module

Design fo rm arguments-design, and Module Source Code form arguments.p, have to

167

MS i d e n t i f i c a t i o n : ms-1 date: 28/01/92
MS formulated by: desSimnc

MS status: in_development status date: 28/01/92

1. Related CAs:
ca_cp-l
ca_cp-2

2. S p e c i f i c a t i o n of change: Procedure Usage: change write command to
writelnCusage: pxr [[-1] [- { t | i | f } { a | s }]] filename');.
Procedure Three_char_param accepts f option by scanning for ' f .
Chcmge procedure GetArguments to set up defaults eind check
for before options.

3. Affected sw components i d . :
arguments-design

4. Consequences of change: None
5. Other necessary changes:
6. Integration t e s t s : commands:'pxr - f s test.p' amd 'pxr - f a test.p'
7. System t e s t s : commemds:'pxr' and 'pxr test.p'

Figure 8.5: A Maintenance Specification form

168

be fu l ly developed so as to complete the system release. Figure 8.6 displays the

Module Design fo rm arguments-design.

MD i d e n t i f i c a t i o n : arguments-design date: 28/01/92
MD designed by: desSmmc

MD status: frozen status date: 28/01/92
MD baseline established by: desSmmc

1. Module purpose: Get and parse parameters from command l i n e
2. Algorithms outline: None
S. Interface d e f i n i t i o n s : Uses Unix argc and argv through

the nonstcin interface
4. Test plcins: None

Figure 8.6: A Module Design form

Step 7. Implement and test the changes on the software

components.

The software component arguments.p has been modified using RCS and make in

order to generate the first release of the software system. The planned tests in

the Module Design and Maintenance Specification forms have been performed and

recorded in the Module Source Code form and Configuration Release form.

169

Step 8. Initial evaluation of forms.

The in i t ia l evaluation of the auditing process is then carried out by effectuating

the forms of the system release. The in i t ia l evaluation ensures the completeness

of the forms. I n addition, the tests which have to be performed are checked. The

checker program is run to ensure that all the modified software components have

been updated in the C O M F O R M object base. In order to illustrate the version

control applied to the forms. Figure 8.7 shows the Module Source Code form argu­

ments.p, along w i t h its alternative. The original arguments.p form has been frozen

and contains one version and one alternative, as displayed in the status section.

The alternative has been completed and effectuated. The Description of modifica­

tion field of the first version of the Module Source Code form {arguments.p-1.1) is

Initial revision as automatically created by the RCS tool. In the arguments.p-1.2,

the additional field Description of modification describes that i t has been created in

response to the changes required by the change proposals cp-1 and cp-2.

Step 9. Establish the baselines of forms.

Establishment of the basehnes is carried out assuring the consistency and traceabihty

of the configuration to be released. A t this stage, all the forms of the system release

have already been effectuated. The Module Source Code form arguments.p is the first

to have its baseline established, followed by its corresponding Module Design form,

arguments-design. The Change Approval forms ca-cp-1 and ca-cp-2, foUowed by the

Maintenance Specification fo rm ms-1 have their baselines established subsequently.

170

SC i d e n t i f i c a t i o n : arguments.p date: 28/01/92
SC implemented by: desSmmc

SC status: frozen status date: 28/01/92
Alternatives/versions:

arguments.p-1.1 (frozen)
arguments.p-1.2 (e f f e c t i v e)

SC baseline established by: desSmmc

1. Corresponding MD:
arguments-design

2. Tests outcome: OK
S. Comments: This should be independent of OS (must be l i k e

Unix?!?)
4. SC understood by: mm

SC version i d e n t i f i c a t i o n : arguments.p-1.2 date: 28/01/92
SC version author: desSmmc

SC version status: e f f e c t i v e status date: 28/01/92

0. Description of modification: Added code to deal with f
option and to l e t the program have default options.

1. Corresponding MD:
argument s-de s ign

2. Tests outcome: OK
S. Comments: None
4. SC understood by: mm

Figure 8.7: A Module Source Code form and an alternative

171

Step 10. Release the system configuration to the users.

A t last the Configuration Release baseline has been established and released to the

users. Figure 8.8 shows the Configuration Release form wi th its fields completed,

CR i d e n t i f i c a t i o n : pxr-1.1 date: 28/01/92
CR created by: desSmmc

CR status: frozen status date: 28/01/92
CR baseline established by: desSmmc

Comprises:
CPs:

CAs:

MSs:

cp-1
cp-2

ca_cp-l
ca_cp-2

ms-1
I s composed of:

arguments-design
arguments.p-1.2

1. Integration t e s t s outcome: Ok
2. System t e s t s outcome: Ok
S. Configuration d i s t r i b u t e d to: Andrew, Thomas and Joan

Figure 8.8: A Configuration Release form

enabling the first system release be available to the users. When the system release

reaches this stage, C O M F O R M ensures that the maintenance process has been doc­

umented and controlled. Furthermore, the involved software components have had

their documentation improved. The auditing process ensures that the necessary

tests have been performed, and that the completeness, consistency and traceabihty

checks in the forms have been accomplished.

172

Step 11. Generate reports.

The report generator tool can be run at any time to obtain reports w i th specific

information f rom the C O M F O R M object base. Figure 8.9 shows a report displaying

useful information to the project manager. This report displays the Module Design

forms created by a particular author. I t shows that the author desSmmc has created

two Module Design forms, arguments-design and paramlist-design, to improve the

documentation of the P X R system.

System: PXR

Author: des3mmc

Module Design

arguments-design
paramlist-design

Total Module Design = 2

Figure 8.9: A managerial report

The parameters chosen to obtain this report are shown in Table 8.1. According

to the chosen parameters, the name of the current software system and the total of

forms presented in the report should be displayed (parameters 1 and 2). I n addition,

the only information to be displayed about the chosen type of form, that is, Module

Design (parameter 4.2), is the fo rm name (parameter 3.1). Nevertheless, not all the

Module Design forms should be displayed, but only those created by a particular

author (parameter 5.3).

173

1. Name of current cluster display (Y/N) Y
2. Total of forms display (Y/N) Y

3. Information to be displayed
3.1 Form name X 3.2 Creation date 3.3 Author of creation
3.4 Current status 3.5 Status date 3.6 Author of basehne

4. Type of forms to be displayed
4.1 Configuration Release 4.2 Module Design X 4.3 Module Source Code
4.4 Maintenance Specification 4.5 Change Approval 4.6 Change Proposed

5. Optional parameters to be mate led
5.1 Form name 5.2 Creation date 5.3 Author of creation X

5.4 Current status 5.5 Status date 5.6 Author of basehne

Table 8.1: Parameters of a managerial report

1. Name of current cluster display (Y/N) Y
2. Total of forms display (Y/N) N

3. Information to be displayed
3.1 Form name X 3.2 Creation date X 3.3 Author of creation X

3.4 Current status X 3.5 Status date X 3.6 Author of baseline
4. Type of forms to be displayed

4.1 Configuration Release 4.2 Module Design 4.3 Module Source Code
4.4 Maintenance Specification X 4.5 Change Approval X 4.6 Change Proposal X

5. Optional parameters to be mate led
5.1 Form name 5.2 Creation date 5.3 Author of creation
5.4 Current status 5.5 Status date 5.6 Author of basehne

Table 8.2: Parameters to report the forms of a Configuration Release

Figure 8.10 shows a report, w i t h information for the maintainer, containing the

forms which have already been created in a particular configuration release. In

this report, i t shows that two Change Proposal forms cp-1 and cp-2, associated

w i t h the Configuration Release form pxr-1.1, have been approved [frozen status)

and have generated two Change Approval forms ca.cp-1 and ca-cp-2, which are in

development. I n addition, ms-1 is the Maintenance Specification form which contains

the specification of the proposed changes.

The parameters to create this report are displayed in Table 8.2. In this report, the

174

Configuration Release: pxr-1.1

Change Proposal Creation Date Author Status Status Date

cp-1
cp-2

28/01/92
28/01/92

des3mmc frozen
desSmmc frozen

Change Approval Creation Date Author Status

28/01/92
28/01/92

Status Date

ca_cp-l
ca_cp-2

Maintenemce
S p e c i f i c a t i o n

28/01/92 desSmmc in_development 28/01/92
28/01/92 desSmmc in_development 28/01/92

Creation Date Author Status Status Date

ms-1 28/01/92 desSmmc in.development 28/01/92

Figure 8.10: The forms of a Configuration Release

175

name of the chosen configuration release is displayed (parameter 1), but the total of

forms has not been required (parameter 2). The forms of a particular configuration

release may be Change Proposal, Change Approval or Maintenance Specification

forms, represented by the parameters 4.6, 4.5 and 4.4 respectively. In addition,

the information to be displayed about the chosen types of forms consists of the

fo rm name, creation date, author of creation, current status, and status date, as

represented by the parameters 3.1, 3.2, 3.3, 3.4 and 3.5 respectively.

Since C O M F O R M allows the incremental redocumentation of the software system,

a useful report to be obtained is the one displaying the software components which

have been modified and documented. Figure 8.11 shows such a report, displaying

all the Module Design and Module Source Code forms of the P X R system. I n this

report, aU the software components of the system are represented by a Module Source

Code form. Additionally, as the arguments.p and paramlist.p are being modified,

their corresponding Module Design forms arguments-design and paramlist-design

have been generated in order to improve their documentation. Furthermore, the

status of these forms evolves f rom in development to effective and frozen, as they

are documented.

The current implementation of the report generator tool has one restriction; that

is, i t only allows the display of information of a single cluster of objects at a time.

Therefore, larger reports cannot be obtained directly. One way to overcome such

a l imi ta t ion is to combine one or more reports, so that the final one is larger and

contains more information. Consequently, all the forms associated wi th a particular

software system can only be obtained by grouping together reports, so that the

first report displays the more generic information associated wi th the system; for

instance. Configuration Release, Module Design and Module Source Code forms.

176

Module Design

arguments-design
paramlist-design

System: PXR

Creation Date Author Status Status Date

28/01/92 desSmmc e f f e c t i v e 28/01/92
28/01/92 desSmmc in.development 28/01/92

Module Source Code Creation Date Author Status Status Date

arguments.p
error.p
expression.p
getconstcmt.p
gettoken.i
gettoken.p
gettype.p
idstack.p
includestack.p
linenumber.p
l i t e r a l . p
paramlist.p
print.p
pxr.p
readblock.p
readconst.p
r e a d f i l e . i
r e a d f i l e . p
readlabel.p
readprogram.p
readroutine.p
readtype.p
readvar.p
statement.p
stripzeroes.p
symbol.i
symbol.p
symbolstack.p
variable.p

28/01/92 desSmmc ef f e c t i v e 28/01/92
28/01/92 desSmmc in. .development 28/01/92
28/01/92 desSmmc in. .development 28/01/92
28/01/92 desSmmc in. .development 28/01/92
28/01/92 desSmmc in. .development 28/01/92
28/01/92 desSmmc in. .development 28/01/92
28/01/92 desSnunc in. .development 28/01/92
28/01/92 desSmmc in. .development 28/01/92
28/01/92 desSmmc in. .development 28/01/92
28/01/92 desSmmc in. .development 28/01/92
28/01/92 desSmmc in. .development 28/01/92
28/01/92 desSmmc in. .development 28/01/92
28/01/92 desSmmc in. .development 28/01/92
28/01/92 desSimnc in. .development 28/01/92
28/01/92 desSmmc in. .development 28/01/92
28/01/92 desSmmc in. .development 28/01/92
28/01/92 desSmmc in. .development 28/01/92
28/01/92 desSmmc in. .development 28/01/92
28/01/92 desSmmc in. .development 28/01/92
28/01/92 desSmmc in. .development 28/01/92
28/01/92 desSmmc in. .development 28/01/92
28/01/92 desSmmc in. .development 28/01/92
28/01/92 desSmmc in. .development 28/01/92
28/01/92 desSmmc in. .development 28/01/92
28/01/92 desSmmc in. .development 28/01/92
28/01/92 desSmmc in. .development 28/01/92
28/01/92 desSmmc in. .development 28/01/92
28/01/92 desSmmc in. .development 28/01/92
28/01/92 desSmmc in. .development 28/01/92

Figure 8.11: The Module Design and Module Source Code forms of the PXR system

177

The following reports would then display the information contained in each of the

System Release cluster of objects of the software system, so that forms related to each

Configuration Release can be obtained. Figure 8.12 shows a final report obtained

f rom the combination of three reports. The first one contains the Configuration

Release forms of the P X R system (pxr-1.1 and pxr-1.2), whereas the second and th i rd

reports contain information about the forms associated wi th these two Configuration

Release forms.

8.3 Comments on the COMFORM prototype

The C O M F O R M prototype has been developed in order to provide automated sup­

port necessary to evaluate the underlying method. Since i t is a prototype tool, i t

contains some shortcomings as described below.

Time constraints made i t impossible to develop an environment which shared the

features of generalized CASE technology; for instance, the user friendly interface,

used to manipulate and browse through the documentation produced.

The user interface of the C O M F O R M prototype is not graphical, because i t has not

been the objective of this thesis to develop the prototype using windows and pop-up

menus. A n improvement which should be made to the prototype is that the user

interface could be made more user-friendly and driven intuitively by mouse, icons

and menus, rather than being driven by an old-fashioned, text-based command

structure.

The current implementation of the report generator tool does not allow the user

178

System: PXR

Configuration Release Creation Date Author Status Status Date

pxr-1.1 28/01/92 desSmmc in.development 28/01/92
pxr-1.2 28/01/92 desSmmc in.development 28/01/92

Configuration Release: pxr-1.1

Change Proposal Creation Date Author Status Status Date Author Baseline

cp-1 28/01/92 desSmmc frozen 28/01/92 desSmmc
cp-2 28/01/92 desSmmc frozen 28/01/92 desSnmc

Change Approval Creation Date Author Status Status Date Author Baseline

ca_cp-l 28/01/92 desSmmc in.development 28/01/92
ca_cp-2 28/01/92 desSmmc in_development 28/01/92

Maintencince Creation Date Author Status Status Date Author Baseline
S p e c i f i c a t i o n

ms-1 28/01/92 desSmmc in.development 28/01/92

Configuration Release: pxr-1.2

Change Proposal Creation Date Author Status Status Date Author Baseline

cp-3 28/01/92 desSnunc frozen 28/01/92 desSmmc
cp-4 28/01/92 desSmmc in.development 28/01/92
cp-5 28/01/92 desSmmc in.development 28/01/92

Change Approval Creation Date Author Status Status Date Author Baseline

ca_cp-3 28/01/92 desSmmc in.development 28/01/92

Maintenance Creation Date Author Status Status Date Author Baseline
S p e c i f i c a t i o n

ms-2 28/01/92 desSmmc in_development 28/01/92

Figure 8.12: The maintenance history of the PXR system

179

to generate reports containing all the information in the COMFORM object base.

Information can only be obtained by choosing the parameters available in the report

generator tool. Moreover, the presentation of the contents of the reports could be

improved by sorting out the information according to the users requests.

The version control implemented in the COMFORM prototype is such that versions

are always generated from the initial form. The concepts of revisions and variations,

discussed in Chapter 5, have not been implemented. Such concepts are of great usage

to Module Design and Module Source Code forms.

Additional features could be incorporated into the COMFORM prototype in order

to produce a more automated system. As far as the validation process is concerned,

tests which should be carried out during the maintenance process have no automated

support, so that the prototype rehes on the maintainers input in order to ensure

that the modifications have gone through the testing process correctly.

The change approval process also lacks automated help; the resources spent on

system changes need to be estimated. Again, COMFORM has to rely on the main-

tainer's manual help to fill in these fields. An automated tool could also be incor­

porated into the prototype, so that a more rehable response could be obtained.

Although a considerable amount of work remains to be done, the development of

a prototype capable of showing how COMFORM could support a software mainte­

nance environment has been implemented. In view of the aim of COMFORM is to

generate a method applying the SCM discipline, its automation should consist of

a framework representing the support for the management of tasks required by the

maintenance process. Consequently, features which could be implemented, as some

have been suggested in this section, are not part of the method, since SCM aims to

180

manage and control the maintenance activities and not perform them; but the au­

tomation of such features would certainly improve the reliability of the automation

of COMFORM.

From this brief experience of employing COMFORM, it can be concluded that it con­

tains some characteristics which might be considered inexpedient by some. However,

i t is beUeved that the advantages of using COMFORM outweigh the drawbacks, as

can be seen in the next chapter.

181

Chapter 9

Conclusions

This chapter summarizes the research which has been carried out in this thesis, and

suggests possible directions and ideas for future research related to this work.

9.1 Review of Work

With an ever increasing body of software to maintain, the aim of this thesis was

the development of a method for maintaining existing software systems and which

would generally improve the software maintenance process. To develop ideas for

this method, several areas were surveyed. The initial chapters of this thesis cov­

ered the required background to the introduction and development of COMFORM.

These chapters described: software maintenance concepts and techniques, the SCM

182

discipline, existing software maintenance models and modelhng techniques for the

formalization of the proposed method.

The goal of COMFORM is to provide a consistent and structured approach to soft­

ware maintenance. I t aims to exert control over an existing software system, whilst

simultaneously incrementally redocumenting i t . Accordingly, the major achieve­

ments of this research are:

• The development of a new method - COMFORM - which provides guidelines

and procedures for the software maintenance process, by applying the SCM

discipline (Chapter 5).

• The formalization of COMFORM by the use of ORM. A benefit of this for­

malization is the provision of easy visualization of information representation.

In addition, the cluster mechanism enabled the representation of different lev­

els of abstraction, which eventually facilitated the method implementation

(Chapter 6).

• The implementation of a prototype, which forms the foundation of a soft­

ware maintenance environment, consisting of a framework which provides au­

tomated support for the concepts and capabilities of COMFORM (Chapter 7).

In order to develop the method, the maintenance process was formally structured

into a sequence of phases, with an auditing process at the end of each phase. SMM

institutes this structural model of COMFORM, and is the backbone of this work.

By determining the SMM phases, the steps which a change should follow during

maintenance were clearly defined. The forms, which are the products of each phase,

represent maintenance history and an abstraction of the operational product neces-

183

sary to improve the documentation of a poorly-documented existing software system.

The notion of incremental redocumentation was achieved in the method, as the soft­

ware components, which undergo modifications, need to have their corresponding

Module Design and Module Source Code forms documented in order to complete a

system release.

9.2 The Assessment of C O M F O R M

The idea of using forms associated with each SMM phase provides a number of

benefits, as detailed below:

• This approach strengthens the application of the SCM disciphne, as the forms

represent the products of each SMM phase. As a result, the performance of

the SCM functions in pre-defined documents is facilitated.

• The following of SMM phases institutes a change control procedure to monitor

changes.

• The completeness checks are assured by the use of forms, since no essential

details are omitted.

• The consistency checks are also ensured by the use of forms, as the information

required by forms are provided by other forms in the system.

• The traceability between phases is facilitated by establishing the relationships

between components of different phases in the forms.

184

• The uniformity of information is guaranteed, as forms are pre-defined, avoiding

inconsistency and unnecessary differences.

The SCM discipline was central to the development of COMFORM, because in

essence, this discipline is concerned with change; in particular, how to control

change, how to manage software systems subject to change and how to release

these changed software systems to users. To address these issues, the four SCM

functions (identification, control, status accounting and auditing) were considered

and integrated into COMFORM.

During the software configuration identification function, SCIs are identified, with

Unks and dependencies between them established by the method. The new forms

generated during COMFORM use are identified as SCIs. Additionally, new software

components (or versions of existing ones) of an existing software system are identified

as SCIs during their introduction as Module Source Code forms to COMFORM.

The software configuration control function is accomplished by following the SMM

phases, which starts with a change proposal and ends with a system release. The

procedures controlled by this function for proposing, evaluating, reviewing, approv­

ing and implementing changes to a baseline, are performed in order to fill in the

required forms to generate a system release. The automation of the method en­

forced the correct realization of this function.

The software configuration status accounting function is accomplished by storing

the information in a reliable way, by filling in SMM forms. The retrieval of system

information is obtained by a number of reports, which aid project managers and

maintainers.

185

The software configuration auditing function within COMFORM is the process

which determines the overall acceptability of the proposed basehne at the end of

each SMM phase. It aims to estabhsh the baseUnes of SMM forms, and entails the

performance of checks such as completeness, correctness, consistency and traceabil­

ity on the forms. Without the establishment of the basehne of all forms of a system

release (which ends with the estabhshment of the baseline of the Configuration Re­

lease form), the modifications cannot be released to the users.

The formalization of COMFORM proved to be an effective strategy for the devel­

opment of the method. The representation of SMM forms as object types outhned

another perspective of the software maintenance process. Moreover, the use of the

cluster mechanism provided a further aid, in that SMM forms could be represented

at different levels of abstraction. The use of the cluster mechanism also enabled the

performance of version control on the forms. Additionally, in order to apply the

scheduled release notion, change proposals were grouped in system releases so that

they have to be more carefully investigated before being introduced to COMFORM.

As a result, the Change Proposal, Change Approval and Maintenance Specification

forms were grouped in such a way that they express the history of each system

release; while the Module Design and Module Source Code forms represent the doc­

umentation of the software components, making up the incremental documentation

of the method.

In Chapter 3, the concept of software process modelling, along with the desirable

characteristics of a suitable modelling methodology, were described. In view of these

characteristics of the software development process, the capabihties of COMFORM

were further analysed, in order to evaluate the approach taken by the proposed

method. A large number of COMFORM characteristics emphasized the coverage

186

that i t gives to the software maintenance process, as shown below.

• The maintenance process of COMFORM supports a number of perspectives.

Functional perspective is obtained through SMM phases, which represent the

activities being performed, along with their corresponding forms containing

information pertaining to each involved task. Conceptual data modelhng per­

spective is achieved by the formahzation of information using ORM. These

perspectives employ diagrams for information representation. Additionally,

they support different levels of abstraction. SMM phases alone represent the

different levels of abstraction. These phases in the formalization are repre­

sented by the cluster hierarchy reflecting the levels of abstraction.

• COMFORM makes use of pre-defined forms for system documentation, en­

abling compendious descriptions. With the use of forms, quahty assurance

checks such as consistency, completeness, traceability and correctness are eas­

ily obtained and automated. The forms also provide the means for defining

the syntax of documentation. Moreover, form fields semantically represent the

objects, attributes and relationships of the conceptual data model. Therefore,

the forms, as proposed in this work, are the constructs which ease the method's

automation.

• The COMFORM prototype provides the basic automated support for the

method, affording the capabilities of automatically recording the data about

the maintenance process through the manipulation of forms.

187

9.3 Directions for Further Research

Following on from the work reported in this thesis, there is scope for additional

research in a number of directions which could be usefully undertaken.

In a very recent reference, Edelstein and Mamone [36] report on the development

of a standard for software maintenance by the IEEE P1219 Working Group. This

standard aims to provide a framework, containing precise terminology and processes

for the consistent application of technology (tools, techniques and methods) in order

to solve software maintenance problems. This standard comprises three sections,

in which the first section delineates the steps involved in software maintenance,

including the input and output required for the steps. The other two sections are

appendices to the first one, and consist of maintenance guidehnes and supporting

maintenance technology.

I t is interesting to note that in one way or another, COMFORM tackles most of the

capabilities defined by the software maintenance process model suggested by this

standard. In line with the proposed standard, however, COMFORM seems to need

improvement in the area of testing, as it only requires that integration and system

testings be developed and/or modified during the specification of changes, and a

system release only being made available when these tests have been performed.

In order to emphasize testing in COMFORM, this could be achieved by an additional

phase which would be a pre-requisite of the system release phase. The input of this

phase could be the Maintenance Specification form and the forms associated with

the changed software components. The output would be a report confirming that:

188

• The software system executes correctly.

• Al l software components affected by the change have been tested.

• The implemented changes correspond to those in the Maintenance Specifica­

tion form.

• Software components, unrelated to the changes, have not been altered.

• The existing standards have been adhered to.

Another interesting area for further research would be that of COMFORM support­

ing the behavioural perspective of the software maintenance process. This perspec­

tive would describe when the activities of COMFORM should be accompHshed. The

formalism for this perspective would represent aspects such as iteration among SMM

phases, complex decision-making conditions, entry criteria and exit criteria for the

phases. It could also represent and convey parallelism and address the concept of

synchronization. For example, integration testing could only begin when all software

components have passed unit testing. The development of the behavioural perspec­

tive in COMFORM would enable the simulation of process behaviour directly from

the representation.

An important question is how the described method suits every type of existing

software system which needs to be maintained? Form fields in COMFORM have

been created in such a way as to attempt covering all maintenance needs. However,

these fields may differ dramatically from one type of software system to another.

I t would be better i f more flexible implementation could be carried out, so that

customizable fields could be easily incorporated into COMFORM. In order to achieve

this flexibiUty, the COMFORM data model should be implemented in a meta-system

189

approach, where the fields of forms (attribute types) could be easily changed and

added to suit the particular software systems being maintained.

Finally, new experiments with COMFORM will provide additional results in order

to fully evaluate its capabilities, which can only be truly tested when applied to the

task of maintaining substantial existing software systems.

While this thesis has not had the last word as far as software maintenance research

goes in tackling the maintenance problem, it has made a positive contribution to

this field; other related topics could also be put forward to further maintenance

research.

190

Bibliography

1] Alderson, A., Bott, M. F. and Falla, M. E., "The Eclipse Object Manage­

ment System", Software Engineering Journal, 1(1), Jan. 1986, pp. 39-42

2] Ambriola, V., Bendix, L. and Ciancarini, P., "The Evolution of Configura­

tion Management and Version Control", Software Engineering Journal,

Nov. 1990, pp. 303-310

[3] Ambriola, V. and Bendix, L. , "Object-Oriented Configuration Control",

Software Engineering Notes, U (7), Nov. 1989, pp. 133-136

4] Arthur, L. J., Software Evolution - The Software Maintenance Chal­

lenge, John Wiley & Sons, 1988

[5] Babich, W. A., Software Configuration Management - Coordination for

Team Productivity, Addison-Wesley, 1986

6] Belkatir, N., Melo, W. L., Estublier, J. and Nacer, M. A., "Supporting Soft­

ware Maintenance Evolution Process in the Adele System", Proc. of

the 30th Annual ACM Southeast Conference, Raleigh, NC, Apr. 8-10, 1992

191

7] Belkatir, N. and EstubUer, J., "Experience with a Data Base of Pro­

grams", Proc. of the ACM SIGSOFT/SIGPLAN Software Engineering Sym­

posium on Practical Software Development Environments, Dec. 1986, pp. 84-91

8] Bennett, K. H., "Automated Support of Software Maintenance", Infor­

mation and Software Technology, 33 (l), Jan./Feb. 1991, pp. 74-85

9] Bennett, K. H., Cornelius, B., Munro, M. and Robson, D., "Software Main­

tenance", Software Engineer's Reference Book, edited by J. A. McDermid,

Butterworth-Heinemann, 1991, Section 20

10] Bennett, K. H., "The Software Maintenance of Large Software Systems:

Management, Methods and Tools", Software Engineering for Large Soft­

ware Systems, edited by B. A. Kitchenham, Elsevier Science Publishers Ltd,

1990, pp. 1-26

11] Bersoff, E. H. and Davis, A. M., "Impacts of Life Cycle Models on Soft­

ware Configuration Management", Communications of the ACM, 34 (8),

Aug. 1991, pp. 104-118

12] Bersoff, E. H., "Elements of Software Configuration Management",

IEEE Transactions on Software Engineering, 10 (1), 1984, pp. 79-87

13] Bersoff, E. H., Henderson, V. D. and Siegel, S. G., SoftwEire Configuration

Management - A n Investment in Product Integrity, Prentice-Hall, 1980

14] Biggerstaff, T. J., "Design Recovery for Maintenance and Reuse", Com­

puter, Jul. 1989, pp. 36-49

15] Blum, B. I . , "Documentation for Maintenance: A Hypertext Design",

Proc. of Conference on Software Maintenance-1988, Phoenix, Arizona, Oct.

24-27, 1988, pp. 23-31

192

16] Boehm, B. W., "Software Engineering", IEEE Trans. Computer, 25 (12),

Dec. 1976, pp. 1226-1241

17] Booch, G., Object-Oriented Design with Applications, The Ben­

jamin/Cummings Publishing Company, Inc., 1991

18] Bott, F. (Ed.), Eclipse - A n Integrated Project Support Environment,

Peter Peregrinus Ltd., 1989

19] Broadey K. M. , Colbrook, A., Munro, M. and Robson, D. J., "Block-

structured Cross-referencers for Pascal and C " , University Computing,

11 (3), Sep. 1989, pp. 121-128

20] Brown, A., Object-Oriented Databases - Application in Software E n ­

gineering, The McGraw-Hill Book Company (UK) Limited, 1991

[21] Bryan, W. L., Siegel, S. G. and Whiteleather, G. L., "Auditing Throughout

the Software Life Cycle: A Primer", Computer, Mar. 1982, pp. 57-67

22] Buckle, J. K., Software Configuration Management, Macmillan Educa­

tion, 1982

23] Capretz, M. A. M. and Munro, M., "Software Configuration Management

Issues in the Maintenance of Existing Systems", Journal of Software

Maintenance: Research and Practice, 1992, Accepted for PubUcation

24] Capretz, M. A. M. and Munro, M.,. " C O M F O R M - A Software Mainte­

nance Method Based on the Software Configuration Management

Discipline", Proc. of Conference on Software Maintenance-1992, Orlando,

Florida, Nov. 9-12, 1992, Accepted for the Conference

193

25] Capretz, M. A. M., Automation of Software Configuration Manage­

ment, MSc thesis, FEC-UNICAMP, Campinas, Sao Paulo, Brazil, (in Por­

tuguese), Aug. 1988

26] Chapin, N., "Software Maintenance: A Different View", AFIPS Conf

Proc. 54 National Computer Conference, 1985, pp. 509-513

27] Chen, Y-F. and Ramamoorthy, C. V., "The C Information Abstractor",

Proc. of IEEE COMPSAC, 1986, pp. 291-298

28] Chen, R P-S., "The Entity-Relationship Model - Toward a Unified

View of Data", ACM Transactions on Database Systems, 1(1), Mar. 1976,

pp. 9-36

29] Chikofsky, E. J. and Cross I I , J. H., "Reverse Engineering and Design

Recovery: A Taxonomy", IEEE Software, 1 (1), Jan. 1990, pp. 13-17

30] Choi, S. C. and Scacchi, W., " S O F T M A N : Environment for Forward and

Reverse C A S E " , Information and Software Technology, 33 (9), Nov. 1991,

pp. 664-674

31] Choi, S. C. and Scacchi, W., "Assuring the Correctness of Configured

Software Descriptions", Proc. of the 2nd. International Workshop on Soft­

ware Configuration Management, Princeton, New Jersey, Oct. 24, 1989, pp.

66-75

32] Codd, E. F., "A Relational Model of Data for Large Shared Data

Banks", Communications of the ACM, 13 (6), Jun. 1970, pp. 377-387

33] CoUofello, J. S. and Orn, M. , "A Practical Software Maintenance E n ­

vironment", Proc. of Conference on Software Maintenance-1988, Phoenix,

Arizona, Oct. 24-27, 1988, pp. 45-51

194

34] CoUofello, J. S. and Buck, J. J.., "Software Quality Assurance for Main­

tenance", IEEE Software, Sep. 1987, pp. 46-51

[35] Desclaux, C. and Ribault, M. , " M A C S : Maintenance Assistance Ca­

pability for Software A K . A . D . M . E . " , Proc. of Conference on Software

Maintenance-1991, Sorrento, Italy, Oct. 15-17, 1991, pp. 2-12

36] Edelstein, D. V. and Mamone, S., "A Standard for Software Mainte­

nance", Computer, Jun. 1992, pp. 82-83

37] Estublier, J., "A Configuration Manager: The Adele Data Base of

Programs", Proc. of Workshop on Software Engineering Environments for

Programming-in-the-large, Jun. 1985, pp. 140-147

38] Estublier, J., Ghoul, S. and Krakowiak, S., "Preliminary Experience with

a Configuration Control System for Modular Programs", Proc. of

the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical

Software Development Environments, Apr. 1984, pp. 149-156

[39] Feldman, S. I . , "Make - A Program for Maintaining Computer Pro­

grams", Software Practice and Experience, 9, 1979, pp. 255-265

40] Fletton, N. T., Documentation for Software Maintenance and the Re-

documentation of Existing Systems, MSc thesis, SEAS (Computer Sci­

ence), University of Durham, Durham, England, Sep. 1988

41] Fletton, N. T. and Munro, M. , "Redocumenting Software Systems us­

ing Hypertext Technology", Proc. of Conference on Software Maintenance-

1988, Phoenix, Arizona, Oct. 24-27, 1988, pp. 54-59

195

42] Foster, J. R., Jolly, A. E. P. and Norris, M. T., "An Overview of Software

Maintenance", British Telecom Technology Journal, 7 (4), Oct. 1989, pp.

37-46

43] Foster, J. R. and Munro, M., "A Documentation Method Based on Cross-

Referencing", Proc. of Conference on Software Maintenance-1987, Austin,

Texas, Sep. 21-24, 1987, pp. 181-185

44] Gadd, R. J., "ReForm - FYom Assembler to Z Using Formal Transfor­

mations", Fourth Software Maintenance Workshop, Durham, Sep. 1990

45] Gallagher, K. B., "Using Program Slicing in Software Maintenance",

PhD Thesis, University of Maryland, Faculty of the Graduate School (TR CS-

90-05), Jan. 1990

46] Gane, C. and Sarson, T., Structured System Anzdysis: Tools and Tech­

niques, Prentice Hall, Englewood Cliffs, New Jersey, 1979

47] Garg, P. K. and Scacchi, W., "A Hypertext System to Manage Software

Life-Cycle Documents", IEEE Software, 7 (3), May 1990, pp. 90-98

48] Garg, P. K. and Scacchi, W., "Ishys Designing an Intelligent Software

Hypertext System", IEEE Expert, 4 (3), Fall 1989, pp. 52-63

49] Garg, P. K. and Scacchi, W., "A Software Hypertext Environment for

Configured Software Descriptions", Proc. of International Workshop on

Software Version and Configuration Control, Grassau, W. Germany, Jan. 1988,

pp. 326-343

50] Garland, J. K. and CaHiss, F. W., "Improved Change Tracking for Soft­

ware Maintenance", Proc. of Conference on Software Maintenance-1991,

Sorrento, Italy, Oct. 15-17, 1991, pp. 32-41

196

51] Habermann, A. N. and Notkin, D., "Gandalf Software Development E n ­

vironments", IEEE Trans, on Software Engineering, 12 (12), Dec. 1986, pp.

1117-1127

52] Hager, J., "Developing Maintainable Systems: A Full Life Cycle Ap­

proach", Proc. of Conference on Software Maintenance-1989, Miami, Florida,

October 16-19, 1989, pp. 271-278

[53] Harrison, W. and Magel, K. I . , "A Complexity Measure Based on Nesting

Level", ACM SIGPLAN Notices, 1981, pp. 63-74

54] Hinley, D. S. and Bennett, K. H., "Using a Model to Manage the Software

Maintenance Process", Proc. of Conference on Software Maintenance-1992,

Orlando, Florida, Nov. 9-12, 1992, Accepted for the Conference

55] Horowitz, E. and Williamson, R. C , "SODOS: A Software Documenta­

tion Support Environment - Its Definition", IEEE Trans, on Software

Engineering, 12 (8), Aug. 1986, pp. 849-859

56] Horowitz, E. and Williamson, R. C , "SODOS: A Software Documentation

Support Environment - Its Use", IEEE Trans, on Software Engineering,

12 (11), Nov. 1986, pp. 1076-1087

57] ANSI/IEEE Standard 729, I E E E Standard Glossary of Software Engi­

neering Terminology, IEEE, 1983

58] Held at Moretonhampstead, Devon, UK, Proc. of the 4th International

Software Process Workshop: Representing and Enacting the Softwzire

Process, 1988, published as ACM Software Engineering Notes, 14 (4), Jun.

1989

197

[59] Kaiser, G. E. and Habermann, A. N., "An Environment for System Ver­

sion Control", Compcon'83 IEEE Computer Society, San Francisco, Feb.

1983, pp. 415-420

60] Katz, R. H. and Lehman, T. J., "Database Support for Versions and

Alternatives of Large Design Files", IEEE Transactions on Software En­

gineering, 10 (2), Mar. 1984, pp. 191-200

61] Kellner, M. I . , "Multiple-Paradigm Approaches for Software Process

Modeling", Proc. of the 7th International Software Process Workshop: Com­

munication and Coordination in the Software Process, Oct. 15-18, 1991

62] Kellner, M. I . and Hansen, G. A., "Software Process Modeling: A Case

Study", Proc. of the Twenty-Second Annual Hawaii International Conference

on System Sciences, Vol. II - Software Track, edited by Shriver, B. D., IEEE,

Jan 3-6, 1989, pp. 175-188

63] Kenning, R. J. and Munro, M., "Understanding the Configurations of

Operational Systems", Proc. of Conference of Software Maintenance-1990,

San Diego, California, Nov. 26-29, 1990, pp. 20-27

64] Kenning, R. J. and Munro, M., " P I S C E S - A n Inverse Configuration

Management System", Software Reuse and Reverse Engineering in Practice,

edited by D. A. V. Hall, Chapman & Hall, 1992, pp. 489-501

65] Kernighan, B. W. and Ritchie, D. M., The C Programming Language,

Prentice-Hall, Inc., 1978

66] Khorshid, W. and Rajlich, V., " V I P E G : A Generator of Environments

for Software Maintenance", Proc. of 14th Annual International Computer

198

Software and Applications Conference (COMPSAC) 1990, Chicago, USA, 1990,

pp. 471-476

67] Khoshafian, S. and Abnous, R., Object-Orientation - Concepts, Lan­

guages, Databases, and User Interfaces, John Wiley & Sons, Inc., 1990

68] King R., "My Cat is Object-Oriented", Object-Oriented Concepts,

Databases, and Applications, ed. by W. Kim and F. H. Lochovsky, Addison-

Wesley Publishing Company, 1989, pp. 23-30

69] Lampson, B. W. and Schmidt, E. E., "Organizing Software in a Dis­

tributed Environment", SIGPLAN Notices, ACM, 18 (6), Jun. 1983, pp.

1-13

70] Lamsweerde, A., Buyse, M., Delcourt, B., Delor, E., Ervier, M., Schayes, M. C ,

Bouquelle, J. R, Champagne, R., Nisole, P. and Seldeslachts, J., "The Kernel

of a Generic Software Development Environment", Proc. of the ACM

SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software

Development Environments, Dec. 1986, pp. 208-217

71] Landis, L. D., Hyland, R M. , Gilbert, A. L. and Fine, A. J., "Documenta­

tion in a Software Maintenance Environment", Proc. of Conference on

Software Maintenance - 1988, Phoenix, Arizona, Oct. 24-27, 1988, pp. 66-73

72] Lano, K. and Haughton, H., "A Specification-based Approach to Mcun-

tenance", Journal of Software Maintenance: Research and Practice, 3, Dec.

1991, pp. 193-213

[73] Leblang, D. B., Chase, R. R Jr. and Spilke, H., "Increasing Productivity

with a Parallel Configuration Manager", Proc. of International Workshop

on Software Version and Configuration Control, Grassau, Jan. 1988, pp. 21-37

199

74] Leblang, D. B. and McLean, G. D. Jr, "Configuration Management for

Large-Scale Software Development Efforts", Proc. of Workshop on Soft­

ware Engineering Environments for Programming-in-the-large, Jun. 1985, pp.

122-127

[75] Lientz, B. P. and Swanson, E . F . , SoftwEire Maintenance Management,

Addis on-Wesley, 1980

76] Liu, C., "A Look at Software Maintenance", Datamation, 22 (11), Nov.

1976, pp. 51-55

77] Lundholm, P., "Design Management in B a s e / O P E N " , Software Engineer­

ing Notes, 14 (7), Nov. 1989, pp. 38-41

78] Madhavji, N. H., "The Process Cycle", Software Engineering Journal, 6 (5),

Sep. 1991, pp. 234-242

[79] Mahler, A. and Lampen, A., "An Integrated Toolset for Engineering

Software Configurations", Proc. ACM SIGSOFT/SIGPLAN Software En­

gineering Symposium Practical Software Development Environments, Boston,

MA, Nov. 1988, pp. 191-200

[80] Martin, J. and McClure, C., Software Maintenance - The Problem and

Its Solutions, Prentice Hall, 1983

81] Munro, M. , "Software Maintenance, Reuse, and Reverse Engineering",

Software Reuse and Reverse Engineering in Practice, edited by D. A. V. Hall,

Chapman & Hall, 1992, pp. 573-584

82] Patkau, B. H., A Foundation for SoftwEire Maintenance, MSc Thesis,

University of Toronto, Canada, Dec. 1983

200

[83] Pau, L. and Kristinsson, J. B., " S O F T M : A Software Maintenance Expert

System in Prolog", Journal of Software Maintenance: Research and Practice,

2 , Jun. 1990, pp. 87-111

84] Pau, L. and Negret, J. M., " S O F T M : A Software Maintenance Expert

System in Prolog", Proc. of Conference on Software Maintenance - 1988,

Phoenix, Arizona, Oct. 24-27, 1988, pp. 306-311

85] Penedo, M. H. and Shu, C , "Acquiring Experiences with the Modelling

and Implementation of the Project Life-Cycle Process: the P M D B

Work", Software Engineering Journal, 6 (5), Sep. 1991, pp. 259-274

86] Pfleeger, S. L. and Bohner, S. A., "A Framework for Software Mainte­

nance Metrics", Proc. of Conference on Software Maintenance-1990, San

Diego, California, Nov. 26-29, 1990, pp. 320-327

[87] Ploedereder, E. and Fergany, A., "The Data Model of the Configuration

Management Assistant", Software Engineering Notes, 14 (7), Nov. 1989,

pp. 5-14

88] Pressman, R. S., Software Engineering - A Practitioner's Approach,

3rd Edition, McGraw-Hill International Editions, 1992

89] Ramamoorthy, C. V., Usuda, Y., Prakash, A. and Tsai, W. T., "The Evo­

lution Support Environment System", IEEE Transactions on Software

Engineering, 16 (11), Nov. 1990, pp. 1225-1234

90] Ramamoorthy, C. V., Usuda, Y., Tsai, W-T. and Prakash, A., " G E N E S I S :

A n Integrated Environment for Developing and Evolution of Soft­

ware", Proc. IEEE COMPSAC, 1985, pp. 472-479

201

91] Reedy, A., Stephenson, D., Dudar, E. and Blumberg, F. C , "Software

Configuration Management Issues in the Maintenance of Ada Soft­

ware Systems", Proc. of Conference on Software Maintenance-1989, Miami,

Florida, October 16-19, 1989, pp. 234-245

[92] Riddle, W. E., "Session Summary - Opening Session", Proc. of the 4th

International Software Process Workshop: Representing and Enacting the Soft­

ware Process, published in ACM Software Engineering Notes, I 4 (4), Jun. 1989,

pp. 5-10

93] Rochkind, M. J., "The Source Code Control System", IEEE Transactions

on Software Engineering, 1 (4), Dec. 1975, pp. 364-370

94] Rombach, H. D., "Software Reuse: A Key to the Mcuntenance Prob­

lem", Information and Software Technology, Jan./Feb. 1991, pp. 86-92

95] Rombach, H. D. and Mark, L., "Software Process & Product Specifi­

cations: A Basis for Generating Customized Software Engineering

Information Bases", Proc. of the 22nd Annual Hawaii International Confer­

ence on System Sciences, Vol. II - Software Track, 1989, pp. 165-174

96] Rose, T. and Jarke, M. , "A Decision-Based Configuration Process

Model", Proc. of 12th International Conference on Software Engineering,

Nice, France, 1990, pp. 316-325

97] Rumbaugh, J., Blaha, M., Premerlani, W. Eddy, F. and Lorensen, W., Object-

Oriented Modeling and Design, Prentice Hall, 1991

98] Schneidewind, N. F., "The State of Software Maintenance", IEEE Trans­

actions on Software Engineering, 13 (3), Mar. 1987, pp. 303-310

202

99] Schwanke, R. W. and PlatofF, M. A., "Cross References Eire Features",

Proc. of the 2nd. International Workshop on Software Configuration Manage­

ment, Princeton, New Jersey, Oct. 24, 1989, pp. 86-95

100] Sharpley, W. K., "Software Maintenance Planning for Embedded

Computer Systems", Proc. IEEE COMPSAC 77, Nov. 1977, pp. 520-526

101] Shigo 0., Wada, Y., Terashima, Y., Iwamoto, K., and Nishimura, T., "Con­

figuration Control for Evolutionzd Software Products", Proc. of 6th

International Conference on Software Engineering, Tokyo, Japan, Sep. 1982,

pp. 68-75

102] Simmonds, I . , "Configuration Management in the P A C T Software E n ­

gineering Environment", Software Engineering Notes, 14 (7), Nov. 1989,

pp. 118-121

[103] Sneed, H. M. and Jandrasics, G., "Inverse Transformation of Software

from Code to Specification", Proc. of Conference on Software Maintenance-

1988, Phoenix, Arizona, Oct. 24-27, 1988, pp. 102-109

[104] Sommerville, 1., Software Engineering - Fourth Edition, Addison-Wesley

Publishing Company, 1992

105] Prepared by industry with the support of the D T I and NCC, The Starts

Guide, 2nd edition, 1987

106] Swanson, E. B. and Beath, C. M., Maintaining Information Systems in

Organizations, John Wiley & Sons, 1987

107] Swanson, E. B., "The Dimensions of Mciintenance", Proc. of 2nd Inter­

national Conference on Software Engineering, San Francisco, 13-15, Oct. 1976,

pp. 492-497

203

108] Tichy, W. F., " R C S - A System for Version Control", Software Practice

and Experience, 15 (7), Jul. 1985, pp. 637-654

109] Tichy, W. F., "Design, Implementation and Evaluation of a Revision

Control System", Proc. of 6th International Conference on Software Engi­

neering, Tokyo, Japan, Sep. 1982, pp. 58-67

110] Traina Jr, C., Akhras, F. N., Capretz, L. F., Carvalho, M. B., Jino, M., and

Capretz, M. A. M., "SIPS - Current State", Proc. of XIX Brazilian Confer­

ence on Informatics (SUCESU), Rio de Janeiro, RJ, Brazil, (in Portuguese),

Aug. 1986, pp. 297-305

111] Traina Jr, C , Data Model and Machine Dedicated to Engineering Ap­

plications , PhD Thesis, IFQSC-USP, University of Sao Paulo, Sao Carlos-

SP, Brazil, (in Portuguese), Dec. 1986

112] Wand, Y., "A Proposal for a Formal Model of Objects", Object-Oriented

Concepts, Databases, and Applications, ed. by W. Kim and F. H. Lochovsky,

Addis on-Wesley Publishing Company, 1989, pp. 537-559

113] Ward, M., Calliss, F. W. and Munro, M., "The Maintainer's Assistant",

Proc. of Conference on Software Maintenance-1989, Miami, Florida, October

16-19, 1989, pp. 307-315

114] Yang, H., "The Supporting Environment for a Reverse Engineering

System - The Maintainer's Assistant", Proc. of Conference on Software

Maintenance-1991, Sorrento, Italy, Oct. 15-17, 1991, pp. 13-22

115] Yau, S. S. and CoUofello, J. S., "Some Stability Measures for Software

Maintenance", IEEE Transactions on Software Engineering, 6 (6), Nov. 1980,

pp. 545-552

204

