
Durham E-Theses

A program slicing method for a wide spectrum

language

Carrancà i Vilanova, Joan

How to cite:

Carrancà i Vilanova, Joan (1992) A program slicing method for a wide spectrum language, Durham
theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6016/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6016/
 http://etheses.dur.ac.uk/6016/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

A Program Slicing Method

for a Wide Spectrum Language

Joan Carranca i Vilanova

Thesis submitted for the requirements of the

degree of Master of Science

School of Engineering and Computer Science

Faculty of Science

University of Durham

September 1992

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

Supported by a grant from Fundacio Credit Andorra

Acknowledgements

I should like to thank the Fundacio Credit Andorra for their financial backing, and partic­

ularly Josep M"̂ Perez-Gramunt for his kind work on my behalf. I also wish to express my

gratitude to my supervisor, Keith H. Bennett, for his patient help and advice; to my friends

and companions at Shincliffe Hall for keeping me sane against the odds; to my parents for

their unfailing encouragement; and most of all to Silvia for her support from afar, largely in

the form of delicious bars of nougat.

Abstract

This thesis describes the implementation of a program slicer for WSL —a Wide Spectrum

Language— which is a language that allows different levels of abstraction to coexist in the

same program. WSL contains constructs not found in conventional languages, e.g. action

systems (which model a segment of code with GOTOs and labels) and non deterministic

constructs. Program slicing is a method for restricting a program to a specified behaviour

of interest. Usually this beha.viour of interest is expressed in terms of a variable or a set of

variables. The method used in the thesis to slice a program is different from the classical

ones in that slices do not need to be computed from an output statement, and in that slices

are computed on a wide spectrum language closer to a functional language, instead of being

computed on a more conventional, procedural language.

A slicer for a subset of WSL has been designed and implemented based on the data flow

analysis techniques for while-programs of Bergeretti and Carre [10]. It has been necessary

to modify the algorithm to permit incremental slicing. Modifications of their algorithm were

also needed to accomodate the specific WSL constructs mentioned above. The implementa­

tion has been developed using a rapid prototyping approach. The prototype has provided

new ideas and enhancements for a more comprehensive slicer which could be implemented

in the future. The slicer has assisted the maintainer using ReForm —a reverse engineer­

ing project developed at Durham University— in understanding and debugging a program

by decomposing i t . At the end of this thesis results showing how slicing has helped the

maintainer are presented. Conclusions on the method used, the validity of the tool, and its

engineering are also summarized.

Contents

List of Figures iv

List of Tables v

1 Introduction 1

1.1 Historical review 1

1.2 Definitions 2

1.3 ReForm a.nd WSL 5

1.4 Slicer 8

1.5 Problems with ReForm 8

1.6 Outline of chapters 9

2 Literature Survey 10

2.1 Software Engineering 10

2.1.1 Software Process Models 11

ii i

2.1.2 Software Engineering Environments 14

2.1.3 Metrics - Maintainability 21

2.2 Software Maintenance 22

2.2.1 Models for Software Maintenance 24

2.2.2 Laws of Software Evolution 32

2.2.3 Program Comprehension 33

2.2.4 Tools for Maintenance 34

2.2.5 Software Maintenance Environments 36

2.2.6 Metrics for Maintenance 38

2.3 Reverse Engineering 39

2.3.1 ReForm 40

2.3.2 REDO 42

2.3.3 MACS 44

2.3.4 Evaluation of MACS and REDO 45

2.4 Summary 46

3 Slicing 47

3.1 Static Analysis 47

3.2 Data Flow Analysis 49

iv

3.3 Slicing 52

3.3.1 Motivation 52

3.3.2 Original Studies 52

3.3.3 Decompositional Program Slicing 53

3.3.4 Slicing in C 54

3.3.5 Slices and Module Cohesion 54

3.3.6 Program Dependence Graphs 55

3.3.7 Program Dependence Relations 55

3.3.8 Dynamic Slicing 56

3.3.9 Chunks 56

4 Definition of Problem 58

4.1 The Problems 58

4.2 The Solution 59

4.3 Design Decisions 60

4.4 The WSL Langua,ge 60

4.4.1 Kernel Language 61

4.4.2 The First Level Language 62

5 Method of Solution 66

5.1 The Choice 66

5.2 The Method 67

5.2.1 Notation 67

5.2.2 Definitions 69

5.3 Examples 69

5.4 SHcing 72

5.5 Ineffective Statements '̂ '̂

5.6 Modifications 78

5.6.1 Intera.ctive 78

5.6.2 New constructs 80

6 Solution 82

6.1 Prototyping 82

6.2 Architecture 82

6.3 LISP 83

6.4 Data Structures 85

6.5 Matrices 86

6.6 Implementation details 87

7 Results - Test cases 90

vi

7.1 Small 91

7.2 Sequential vs Parallel 91

7.3 For Loop 93

7.4 CCD 94

7.5 Word Counter 94

7.6 Action Systems 96

7.7 Conclusions 102

8 Conclusions 104

8.1 Method 104

8.2 Future Directions 105

A W S L Syntax 10"̂

References

V l l

List of Figures

1.1 Relationships between terms in software maintenance 6

1.2 Translation process in the ReForm tool 7

2.1 Phases and outputs of the ' V hfe cycle 15

2.2 Architecture of the Maintainer's Assistant 43

4.1 Examples of Action Systems 64

5.1 Extended Euclidean algorithm 71

5.2 Information-flow relations for the body of the while-statement 73

5.3 Information-flow relations for the while-statement 74

5.4 Information-flow relations for the complete algorithm 75

5.5 Slices of the extended Euclidean algorithm of Figure 5.1 76

5.6 relation for the modified algorithm 77

5.7 Types of traversal 80

viii

6.1 Architecture of the data flow tool in the Maintainer's Assistant 84

6.2 Positions of node X with respect to nodes A-D 86

6.3 Examples in LISP 89

7.1 Simple assign instruction 91

7.2 Differences between parallel and sequential assignments in WSL 92

7.3 For loop 93

7.4 Algorithm for CCD and its slices 95

7.5 Unix utility wc (word counter) in WSL 96

7.6 Slices of the algorithm in Figure 7.5 97

7.7 Action Systems of WSL 98

7.8 Action Systems of WSL (cont) 99

I X

List of Tables

2.1 Detailed description of outputs from the phases of the ' V life cycle 16

5.1 Definitions of the Information-Flow Relations 70

Chapter 1

Introduction

1.1 Historical review

To understand why slicing, a method for decomposing a program, is important to computer

science, we have to go back to the late 1950s. At that time the cost of software was negligible

compared with that of hardware, so writing new programs with the same requirements

as already existing programs was a normal practice, partly due to incompatible computer

architectures and the use of assembler language. Since then hardware has standardised

and programs can often run on different computers without major modifications, mainly

due to the use of high-level languages and the existence of common operating systems such

as DOS or UNIX. As a result the cost of software has been increasing because new and

more complex applications have been developed for more powerful computers. The cost of

hardware has been decreasing owing to the large introduction of computers which enables

them to be mass-produced based on large scale integration. Meanwhile the funds dedicated

to the modification or adaption of software (software maintenance) have grown because it

is believed that is more expensive to write a new program than to modify or adapt an old

one that is already working. The result of all these practices is that in the 1990s less than

15% of the overall hardware-software cost is spent on hardware, and of the remaining 85%

more than 60% is dedicated to the maintenance of software [11] [59]. There is an excellent

article by Brooks [13] that explains what has happened in the last twenty years from his

experienced personal point of view.

1.2 Definitions

Due to the large expenditure made by industry and commerce on software maintenance,

improvements made are likely to be cost-effective. The improvements can come from two

sources:

• improving the maintainability of new or existing software by applying modern software

engineering techniques to i t .

• making software maintenance easier by applying better methods, techniques and tools.

We have introduced three concepts that require definitions, namely maintainability, softviare

enf/ineering and softtiiare mainienance.

One definition of maintainability by Martin and McCIure [61] is:

The ease with which a software system can be corrected when errors or deficiencies

occur, a.nd. can be expanded or contra.cted to satisfy new requirements.

Software engineering was conceived as a means of overcoming the problems involved in

building large programs. The application of engineering techniques to the development and

maintenance of software systems has improved documentation, reliability and completion

time, and has decreased costs. A definition of Software Engineering by Boehm [11] that

clarifies the term is:

The practical application of scientific knoiuledge in the design and construction of

computer programs and the associated documentation required to develop, operate

and maintain them.

This definition introduces the concept of maintenance of software systems because as Lehman

56] pointed out in his first law of program evolution:

A program that is used in a real-world environment necessarily must change or

become less and less useful in that environment (the law of continuing change).

The ANSI/IEEE [5] definition of software maintenance is:

The modification of a software product after delivery to correct faults, to improve

performance or other attributes, or to adapt the product to a changed environ­

ment.

There is diversity between the tasks performed in maintenance and the following types of

maintenance are usually recognised [36] [90 .

Corrective in order to fix a fault in a program, informally known as bug-fixing.

Adaptive due to a change in the environment, e.g. operating system, hardware.

Perfective due to a change in the requirements of the software, usually enhancement of

already existing functions but also the incorporation of new ones.

Preventive in order to anticipate problems, redesign for better understanding, performance

or maintainability, e.g. rewrite a whole piece of code that is error-prone.

There are several key terms used in software maintenance; a taxonomy by Chikofsky and

Cross [20] is as follows.

Forward Engineering is a new term for an old activity. It is the traditional development from

high level abstractions to the executable implementation of a system. The adjective

'forward' is used to distinguish the term from reverse engineering.

Reverse Engineering is the process of analyzing a subject system to identify its components

and their interrelationships and to create representations of the system in another

form or at a higher level of abstraction. It is worth noting that reverse engineering is

a process of examination (and possibly recording the results of this examination), not

a process of change. Two of the activities usually performed in reverse engineering are

redocum,enta,tion and design recovery.

Redocumentatio7i is the creation or revision of a semantically equivalent representation

within the same abstraction level. These representations can be, for instance, data

flow, data structure or control flow views of the system.

Design Recovery is the identifica,tion of meaningful higher level abstractions beyond

those obtained directly by examining the system itself.

Inverse Engineering although not mentioned in [20] is a term that is widely used and for

some authors equivalent to reverse engineering. If we want to differentiate between

them, then we could say that reverse engineering extracts design information and

inverse engineering tries to extract functional specifications from the system. Often it

is difficult to say whether an activity belongs to one or the other, because the two are

closely related.

Restructuring is the transformation from one representation form to another at the same

relative abstraction level, while preserving the subject system's external behaviour.

R.eengineering is the examination and alteration of a subject system to reconstitute it in

a new form and the subsecpient implementation of the new form. Software reengi-

neering usually includes some form of reverse engineering followed by some form of

forward engineering or restructuring. Some authors use the term reconstruction to

mean reengineering.

All of the above are definitions of terms widely used in software maintenance. See Figure 1.1

for the relationships between them. Some of these terms describe methods currently used to

perform software maintenance.

1.3 ReForm and W S L

This thesis describes the implementation of an incremental static data flow analysis tool in

a reverse engineering environment called ReForm for the purpose of extracting slices from

programs written in a Wide Spectrum Language (WSL). The ReForm project is concerned

with the reengineering of old programs written in low-level langua.ges, usually without the

application of software engineering techniques. The aim is to express these programs in

terms of a formal specification language such as Z [31]. To accomplish this, the program

is first tra.nslated to WSL a.nd i t then undergoes transformations which ha.ve been formally

mathematically proven to be correct. These transformations are based on a formal system

developed by Ward [95]. By means of this theory it is possible to prove that two versions

of a program are ecjuivaJent. Wide spectrum languages allow difl"erent levels of abstraction

to coexist in the same program, so some parts of the program can be represented by low-

level machine-oriented constructs, some parts can be expressed as high-level abstractions

(e.g. predicate calculus) and some other paxts can be expressed in a level of abstraction

somewhere in between. The use of WSL allows great flexibility in dealing with the transfor­

mations performed on a program a.nd allows the system to cope with programs written in

any language, provided a translator is built to translate that language into WSL.

The typical translation process begins with an assembler source code program that has to

be inverse engineered. This code is translated to WSL so transformations can be applied to

it . When the maintainer is satisfied with the WSL code, the WSL-to-Z translator is invoked

and Z-specifications produced. See Figure 1.2 (extracted from [105]) for a graphical view of

this translation process.

R
E
Q
u
I

R
E
M
E
N
T
S

Forward
Engineering

Reverse
Engineering

Design
Recovery

Reengineering

Restructuring

D
E
S
I

G
N

Forward
Engineering

Restructuring

R,everse I
Engineering M

P
L
E

Design M
Recovery E

N
T
A
T
I
O

^R,eengineering N

Restructuring
R,edocumentation

Key: S T A G E

Term

Figure 1.1: Relationships between terms in software maintenance

ASS-TO-WSL

TRANSLATOR

ASS

SOURCE

CODE

CODE

DATABASE

BROWSER

INTERFACE

X

FRONT END

HUMAN

MAINTAINER

WSL-TO-Z

TRANSLATOR

Z
SPECIFI­

CATIONS

Key: SYSTEM

COMPONENTS

DATA
REPRESEN

TATIONS

CONTROL OR DATA FLOW

Figure 1.2: Translation process in the ReForm tool

1.4 Slicer

Program slicing [103] is a technique for restricting the behaviour of a program to some

specified set of interest. A slice S(v,n) of program P on variable v, or set of variables,

at statement n yields the portions of the program that contributed to the value of v just

before statement n is executed. S(v,n) is called a slicing criterion. Slices can be computed

automatically on source programs by analyzing data and control flow. A program slice has

the added advantage of being an executable program.

Data flow information consists of the relationships between variables, basically assign and

reference usages of a variable. Control flow information consists of determining the order in

which statements wi l l be performed during the execution of a program. The static analyser

described in this thesis to compute the data and control flow information is of the incre­

mental type because the program is continually modified by the transformation system, so

a fast method of recomputing global data and control flow information is needed. W i t h the

incremental analyser we can do this without recalculating the information that has already

been calculated for other parts of the program.

1.5 Problems with ReForm

ReForm is concerned w i t h reengineering large programs, but this presents some problems:

• The programs can be very large (thousands or tens of thousands of lines).

• The control flow of a program is difficult to follow if i t has some GOTOs or very small

routines.

• I t is diff icul t to deduce what the program w i l l do i f the operations are performed on

memory locations or registers.

These problems are usually solved in ReForm wi th the application of transformations that

restructure the code and convert memory locations to variables, but some of the trans­

formations are not automatic and human interaction is needed in order to choose which

transformation has to be applied.

A slicer is useful for ReForm because i t assists the maintainer in the comprehension and

understanding of a program by decomposing i t and showing only the statements relevant

to the computation of the value of a variable or a set of variables. We suggest that i t may

provide some assistance, perhaps aided by a modulariser, in recognising abstract data types

and hence helping to cross levels of abstraction in WSL.

Slicers have been used also in :

• understanding the program while doing debugging [102

• excluding dead code f rom the program [32

1.6 Outline of chapters

This chapter has provided an introduction to the thesis and a presentation of the objectives

that are intended to achieve. The next two chapters are literature surveys. Chapter 2 surveys

three topics, namely software engineering, software maintenance and reverse engineering

that put slicing into perspective. Chapter 3 surveys techniques for static analysis, data flow

analysis and slicing. The following chapter provides a more precise definition of the problem

that we want to solve, i.e. comprehension of large and complex WSL programs. Chapter 5

and 6 explain which method of solution has been chosen (i.e. static analysis and slicing, using

techniques devised by Bergeretti and Carre for information-flow and da.ta-flow analysis of

while-programs) , why i t has been chosen, and the implementation of the solution. In the last

two chapters the results and conclusions of applying slicing techniques for the maintenance

of programs wri t ten in WSL are presented. A n appendix wi th the WSL syntax is included.

Chapter 2

Literature Survey

The purpose of this chapter is to present the context in which program slicing can contribute

to software engineering and software maintenance. A survey of current state of research in

three topics, namely software engineering, software maintenance and reverse engineering is

presented. Models, environments, tools and metrics are described for the first two sections:

software engineering a,nd software maintenance. The last section on reverse engineering

presents three current projects in this very active area.

2.1 Software Engineering

According to Buxton, there are three main aspects to computing [17]:

Com,puter science is the face turned to mathematics, f rom which we seek laws of behaviour

for programs.

Computer architecture is the face turned to electronics, f rom which we build our computers.

Software engineering is the face turned towards the users, whose applications we implement.

10

In the early days of computing the th i rd aspect did not exist as such and the general divi­

sion in computing was that between hardware and software, building computers and writ ing

programs for them. In the late 1960s people in computing were concerned about the 'soft­

ware crisis' because software was late, over budget and unreliable [17]. The NATO Science

Committee arranged the first conference on Software Engineering in 1968 to discuss all these

problems and t ry to find a solution by means of engineering techniques.

The reason for using engineering techniques was that programs were becoming bigger and

more complex and the usual techniques oriented to the design, development, debugging and

maintenance of a small program by a single person were no longer applicable. A change of

approach was needed and as pointed out by Sommerville [89]:

Software Engineering is concerned xtiith softvxire systems which are built by teams

rather than individual programmers, uses engineering principles in the develop­

ment of these systems, and, is m,ade up of both technical and non-technical aspects.

2.1.1 Software Process IVIodels

In the engineering sciences processes and process models have been used for a long time

because they allow standardisation and a way to measure progress in a project. When

engineering techniques were introduced in software development, the definition and use of

processes and models started.

Before giving a definition of what a software process is, the generic notion of process by

Osterweil [68] is presented:

... [A process is] a systematic approach to the creation of a product or the ac­

complishment of some task.

The set of instructions tha.t has to be followed to accomplish a task is a process description

(or a process model):

11

. . . while a process is a vehicle for doing a job, a process description is a specifi­

cation of hoxo the job is to he done [68].

Process descriptions help in improving the implementation of a process because they provide

a way to reason about the underlying process:

... processes are hard to comprehend and reason about, while process descriptions

as static objects, are far easier to comprehend [68].

From all these generic definitions is possible to deduce the following definitions

Software engineering process: a systematic approach to the construction of software.

Software engineering process model: the specification of how software is to be constructed.

The first software engineering process model was suggested by Royce [84]. His model was

mainly concerned wi th development activities, and later on operation and maintenance ac­

tivities were incorporated and further refinements made by other authors. This model is

known as the waterfall model and i t is very useful for project management as i t differenti­

ates separate stages in the development process wi th explicit deliverables. I t is stil l arguably

the most popular model today. The following stages are executed linearly in the waterfall

model, and most of them are recognised in other models.

B,equi.rements analysis and defi,nition The services that the system has to provide are dis­

cussed wi th the users. Once these are established, they are defined in a way that both

users and developers can understand.

System and Software design Using the requirements definition of the preceding stage, a con­

ceptual solution is envisaged. System design consists of deciding which of the require­

ments w i l l be solved wi th hardware and which ones wi th software. Software design

consists of deciding which modules, language, functions and data structure wi l l be

needed.

12

Implem,entation a.nd unit testing The software design is realized by wri t ing the program

units in some executable language. Units are tested or verified to accomplish with

their specification.

System testing The system is tested as a whole once all the units have been integrated.

Operation and maintenance The system is installed and used. The process of maintenance

consists of correcting errors, improving the implementation or enhancing the services

the system provides.

I n the original waterfall model, the last stage, maintenance, did not exist, and in its later

refinements, maintenance was seen as a post-delivery activity that did not need too much

attention and relatively unqualified staff were allocated to i t . The waterfall model is too

simplistic because is very unlikely that once one stage is completed i t wi l l not be modified.

Flaws and errors are discovered in all the stages, to solve them, modifications are made

in the appropriate stage, but these modifications can affect previous stages (i.e. system

requirements, design) that should be modified as well.

To overcome these problems, other alternative models have been proposed, and a list follows.

Boehm's model [11]: a refinement of the waterfall model, because modifications have to be

done in all the stages. Hence a process of iteration in the development activities is

needed, which was not considered in the original waterfall model. The maintenance

stage is recognised, considered crucial, and added to the life cycle. Boehm also added

risk analysis to his model.

'V model [67]: i t has basically the same phases as the waterfall model, but they are organ­

ised in a ' V shape, relating the outputs produced by each of the stages (see Figure 2.1).

Three of the main features of the ' V model, which are vi ta l for a good management

practice, are:

• I t focusses on the outputs not the activities occurring in the phase, thus providing

a more objective way to assess the results of a sta,ge.

13

• A testing/validation procedure is performed in each stage.

• The maintenance stage is seen as equivalent to the development cycle, performing

all the activities of the previous stages: analysis, design, implementation and

testing.

To give a more detailed description of what is involved in each stage of the life cycle,

the outputs produced by the phases of this model are presented in Table 2.1.

Exploratory programming: a working system is developed as quickly as possible for the user

to examine, i t is then modified according to new specifications. This is useful when the

requirements are not known in f u l l , or when they may change when the user sees the

system.

Prototyping: largely as above, but once the requirements are set, a new;, more efficient and

reliable system is implemented wi th the same specifications.

Formal transform,ations: a formal specification of the system is developed and transformed

by correctness-preserving transformations. The ReForm project uses the same tech­

nique but applied in the reverse order to reverse engineer programs.

System assembly from, reusahle components: systems are buil t f rom already existing compo­

nents, so the development consists only of assembling them.

2.1.2 Software Engineering Environments

Boehm [12] showed tha.t, for a particular experiment he did, the use of a software engineering

environment reduced development effort by a figure in the range f rom 28% to 41%. Several

environments have been created wi th the aim of providing a collection of tools to the software

engineer. Although these environments should not be dependent on any model and thus

provide more flexibility to the software engineer, this is not usually the case. A definition of

software engineering environment is [89]:

14

Project

biitiation

R E Q U I R E M E N T S

S P E C I F I C A T I O N S

Project
E V O L U T I O N E V O L U T I O N

Phaseout

Specifi-

caiioii

Tested System (Including Acceptance and Handover)
Verified

System

A R C H I T E C T U R A L
S Y S T E M

I N T E G R A T I O N

A N D T E S T

Design
Tested Software Integrated

Software

D E T A I L E D

S O F T W A R E

D E S I G N

S O F T W A R E

I N T E G R A T I O N

A N D T E S T

Module
Designs

TVjsted Software Modules

C O D E A N D

U N I T T E S T

Debugged
Modules

Key:

Output

Figure 2.1: Phases and outputs of the ' V life cycle

Validat iou

15

• Initiation
- a verified and/or validated system architecture, founded on a design study with basic

hardware/software allocations and an approved concept of operation, including the allo­
cation of tasks to people and machines

- a top-level project plan with milestones, resources, responsibihties, schedules and major
activities

- an outhne quality plan with ful l detail for the requirement specification.

• Requirements specification
- a complete, vahdated specification of the requirements, both functional and non­

functional, which the product must satisfy

- a detailed project plan
- a complete qiiality pla,n.

• Architectural design
- a complete, verified specification of the overall architecture, control structure and data

structure for the product
- draft user manuals and training plans
- test plans for integra,tion testing.

• Detailed software design
- a complete, verified specification of the control structure, data structures, interface rela­

tions, sizing, key algorithms and assumptions for each software component in the system

- test plans for each module.

• Code and unit testing

- a complete, verified set of software components

- a complete set of unit test results
- complete documentation at the imit level
- user manuals and training plans.

• Software integration and test
- a fully functioning, validated operational system with program and data conversion,

installation a,nd training completed.

This phase includes acceptance testing and handover to the customer.

• Evolution and Maintenance

- a fully functioning, validated update of the system.

This sub-goal is repeated for each update, all of which follow the complete development
sequence of the above steps.

• Phaseout

- a clean transfer, to its successors (if any), of the functions performed by the product.

Table 2.1: Detailed description of outputs f rom the phases of the ' V life cycle.

16

... all of the automated facilities that the software engineer has available to assist

with the task of software development.

To be a proper definition for a software engineering environment, this definition lacks 'and

maintenance' in the end, because this is what should differentiate software engineering envi­

ronments f r o m software development environments. The facilities mentioned in the definition

consist typically of tools like diagram editors, data dictionaries, documentation support sys­

tems, electronic mail , etc.

The concept of integration is used throughout to describe software engineering environments,

so we shall define integration as 'The combination of different parts into a whole, with the

aim to get something of better qualities than the ones provided by the parts separately'.

These qualities can be: ease of use, efficiency, standardisation, etc. The ANSI / IEEE [5

definition of integration is:

The process of comMning software elements into an overall system.

This definition is simplistic and does not explain how the integration is achieved. Brown

and McDermid [14] have defined the key aspects of integration:

Interface integration Each tool has the same set of constructs at the interface, where there

is common functionality.

Process integration The environment supports a single coherent software-development method­

ology. Tools work together w i th a common understanding of the software-development

l ife cycle, and each development stage supports a single view of the system's structure.

Tool integration Tools share data via a common data format, which can be defined for a

particular purpose.

Team integration The environment fosters group work by ensuring effective communication

and information dissemination and by keeping users f rom corrupting each other's work.

17

Management integration The environment helps managers control actual development. Man­

agement information is derived f rom the technical information software engineers pro­

duce, rather than f rom fictitious reports.

As Brown and McDermid explain, none of these different aspects alone captures the complete

notion of integration, and a proper software engineering environment should provide all these

integration levels to meet its basic requirements.

There are four major types of software engineering environments: CASE environments, lan­

guage independent programming environments, language specific environments and IPSEs.

C A S E Environments

CASE—Computer Aided Software Engineering—tools have been available for a long time,

e.g. compilers, debuggers, link-editors, etc, but now they usually include diagram editors,

report generators, and some other graphic tools. When these tools are integrated into a

common environment they are called CASE workbenches. Most of these workbenches are

oriented to the analysis and design of the software process and they use graphical notations.

The drawback of the first generation of CASE workbenches was that they lacked

• support for the maintenance stage of the software process.

• support for configuration management. Configuration management tools allow difi^er-

ent versions of program units to coexist and permit the retrieval of a specific version

of the system which might not be the current one.

• tighter integration wi th the implementation stage, i.e. links wi th code generators, test

data suites, compilers, etc.

• some standards for information interchange between different CASE tools.

For a survey on CASE tools see [47 .

18

Language-independent programming environments

These environments are usually file and character oriented, and they use the operating

system to integrate the tools. This integration is not very tight but the tools are simpler

to create. A classical example is the U N I X Programmer's Workbench [49]. An unusual

language-independent programming environment is P E C A N [78] [79]; i t uses a new approach

called 'Graphical Program Development'. Programs are developed by means of graphics that

model the different constructions found in other languages, such as conditional and iterative

statements and sequences of statements. The constructions can then be translated to a

programming language for implementation purposes.

Language-specific programming environments

These environments a,re usually aimed at the exploratory programming and prototyping soft­

ware process models. They are t ight ly integrated and have windowed interfaces. Examples

include environments for LISP such as C E D A R [92] and Interlisp [93] and environments for

Smalltalk [37 .

I P S E s

The only environments that deserve to be called software engineering environments are the

so-called IPSEs—Integrated Project Support Environments. The key words in this term are

integrated and project.

They are called integrated because all the tools have to interface wi th a common database

system and sometimes w i t h a common front end, to form part of the environment. Although

IPSEs should provide all the integration levels mentioned above, most of them have only

tool integration, and is only i n this context that the word integrated is commonly used.

The term uses the word project instead of development because IPSEs are designed to sup-

19

port all the stages of the software process: f rom ini t ia l feasibility studies to operation and

maintenance.

Some of the tools found in IPSEs are the same as the ones found in CASE workbenches and

in programming environments, but usually wi th added advantages. The advantages of using

IPSEs instead of CASE tools stem f rom the use of a database system, an object management

system and a common user interface. The database system allows a tighter integration of

tools than the simpler file system provided by an operating system. The object management

system moves a step further, because i t allows objects to be named, to exist in different

versions and to be related to other objects. The common user interface facilitates the task

of the user in obviating the need to learn a different interface for each of the tools used.

Examples of IPSEs include [4] [24]. Surveys on software engineering environments include

21] [101 .

I C A S E vs I P S E s

CASE tools have evolved since their first generation appeared, and now some of these envi­

ronments are called ICASE —the ' I ' standing for integrated. As a result of this evolution the

distinctions between CASE tools and IPSEs are becoming less apparent. To help differentiate

between them. Brown and McDermid [14] recognise these three differences:

• IPSEs are intended to support multiple methods and be open, while CASE tools sup­

port single methods a.nd are not readily extensible.

• IPSEs are aimed at group work, while CASE tools are designed primarily for individual

support.

• IPSEs have been used primari ly in scientific and engineering applications, while CASE

tools have been developed in more mainstream data processing applications.

20

2.1.3 Metrics - Maintainability

In all of the engineering sciences, metrics are developed and tested to measure all sorts of

aspects. In software engineering the same has happened, but the measures are difficult to

validate and standardise due to the intrinsic nature of software. Early software metrics were

proposed by Halstead [39] and McCabe [63]. More recently, new experiments have been

conducted to improve these old metrics or to create new ones. For instance, Felician and

Zalateu [26] have proposed a correction of the length metric by Halstead for long programs

in Pascal; Ramamoortliy and Melton [76] have proposed an hybrid metric f rom Halstead's

and McCabe's metrics; and Mehndiratta and Grover [64] have compared the applicability of

several metrics to different languages and ha,ve proposed a new set of metrics. The current

trend in metrics seems to be to associate measures wi th the nodes of the abstract syntax

tree, examples include the books by Ejiogu [25] a.nd Fenton [27]. For an introduction to and

a survey on the theory of software measurement, see Fenton [27] and Ince [48 .

The metrics we are interested in are maintainability metrics that t ry to predict how easy

a program can be maintained [41]. One of the classical measures for maintainability is

to provide a value that reflects how well structured a software system is. Rombach [82]

conducted an experiment to determine the influence of software structure on maintainability.

His conclusions are that, in general, the use of more structured languages has a positive effect

on maintainability.

I n a recent article by Schneidewind [88], a method for testing the validity of software metrics

is described. His 'comprehensive metrics validation methodology' consists of six validity cri­

teria: associa.tivity, consistency, discriminative power, tracking, predictability a,nd repeata­

bi l i ty . This approa.ch is interesting because is the first time tha.t a system for validating

metrics is proposed and illustrated wi th case studies.

21

2.2 Software Maintenance

A l t h o u g h , as men t ioned before , sof tware maintenance o f t e n represents more than 50% of

the t o t a l cost of sof tware , management has been t r a d i t i o n a l l y unconcerned by this p rob lem.

T h i s tendency is changing according t o the conclusions of the survey by Lientz and Swanson

59]:

• Ma in t enance and enhancement consume m u c h of the t o t a l resources of systems and

p r o g r a m m i n g groups.

• Ma in t enance and enhancement t end to be v iewed by management as at least somewhat

more i m p o r t a n t t h a n new app l i ca t ion sof tware development .

• I n main tenance and enhancement , problems of a management o r i en ta t ion tend to be

more s ign i f i can t t h a n those of a technical o r i en ta t ion .

• User demands f o r enhancements and extension cons t i tu te the most i m p o r t a n t manage­

m e n t p r o b l e m area.

The cost of software maintenance

I m p r o v e m e n t s i n the sof tware maintenance process have been t r a d i t i o n a l l y measured i n terms

of t he r a t i o between the f u n d s dedicated to maintenance and development . Th i s measure

ha,s been used because, as exp la ined by Foster [30]:

• i t can be cap tu red as a,n instant measure in a single survey, w i t h o u t the complicat ions

of r ecord ing da ta over a long per iod before a measurement can be called complete.

• t he r a t i o has been r epor t ed by m a n y au thor i t i es , and i n several surveys. A n organi­

sa t ion t h a t measures i t on ly once thus has an i m m e d i a t e sources of compara t ive da ta

avai lable .

22

T h i s r a t i o is bel ieved t o be increasing over t i m e , see [11] [12] fo r the p red ic t ion of i ts increase

i n the S-curve. I t is i n t u i t i v e l y appeal ing t o t h i n k t h a t improvements i n the maintenance

process should , o ther th ings be ing equal , reduce or at least con t ro l the value of this ra t io .

T h e fac tors t h a t de t e rmine the value of the deve lopment /main tenance ra t io are [30]:

• t he r e l a t ive demands f o r sof tware f u n c t i o n a l i t y del ivered v i a the development or main­

tenance processes.

• t he p r o d u c t i v i t y of the main tenance process expressed i n terms of f u n c t i o n a l i t y del iv­

ered per u n i t cost.

• the p r o d u c t i v i t y of the development process, expressed i n the same terms.

• t he l i f e t i m e of the a.vera.ge p rog ram.

These fac tors e x p l a i n w h y the main tenance costs compared t o the development ones are

always increasing:

• M o r e sof tware f u n c t i o n a l i t y is be ing del ivered v i a the maintenance process. Surveys

by B e n A r f a et al [8] a,nd by L ien tz and Swanson [59] [60] always show t h a t at least

50% of t he e f f o r t i n main tenance is dedicated to per fec t ive ac t iv i t i es .

• T h e p r o d u c t i v i t y of the development process is higher t h a n the one of the maintenance

process because new sof tware technologies affect developers sooner t han i t does main-

ta iners , w h o have t o w a i t u n t i l the sof tware developed w i t h these new technologies is

t o be m a i n t a i n e d to reap the benefi ts of t h e m .

• I f m o r e f u n c t i o n a l i t y is del ivered by the maintenance process, the l i f e t i m e of the average

sof tware sys tem is increased and hence t o t a l maintenance costs w i l l increase w i t h o u t

a cor responding rise i n development costs.

Foster [30] argues t h a t the c o m m o n intuitive v iew of " Improvements should reduce the

spending i n sof tware main tenance" has to be revised and t h a t the l i f e t i m e of a p rogram

cou ld be a more adequa,te measure of the improvements i n sof tware maintenance.

23

Even i f the fac tors men t ioned above can exp la in the increase i n sof tware maintenance costs,

i t is no t clear t h a t t he apocalyptic prophecies of B o e h m [11] and others w i l l become t rue .

Recent surveys [8] [65] show t h a t sof tware maintenance costs m a y ac tua l ly be decreasing.

Effort distribution

A c c o r d i n g t o t w o surveys by L ien t z and Swanson [59] [60], the d i s t r i b u t i o n of the ef for t

ded ica ted t o the d i f f e r en t tasks p e r f o r m e d i n maintenance (see Section 1.2) is as fol lows.

• Pe r fec t ive 50%-60%

• A d a p t i v e 18%-25%

• Cor rec t ive 1 7 % - 2 1 %

• P reven t ive 4 % - 5 %

2.2.1 IVIodels for Software Maintenance

T h e usefulness of a m o d e l has been already been presented i n Section 2 .1 .1 . A mode l fo r the

sof tware main tenance process w i l l be even more useful because maintenance seems to be more

af fec ted by ma,na.gement issues t h a n development . Several models fo r maintenance have been

created, b u t no t a l l of t h e m contempla te the f o u r types of maintenance. A descr ipt ion of

five models (a lphabe t i ca l ly sorted) t h a t take i n t o account a l l types of maintenance act ivi t ies

fo l lows .

Boehm model

A c c o r d i n g t o B o e h m [11] main tenance can be decomposed i n t o three phases.

24

Understanding G o o d d o c u m e n t a t i o n and t r aceab i l i t y between requirements and code are

needed, w i t h we l l s t r u c t u r e d and we l l f o r m a t t e d code.

Modification Sof tware and hardware and da ta s t ructures should be easy to expand and

shou ld m i n i m i s e the side effects of changes; easy-to-update documen ta t ion is needed.

R.evalidation Sof tware s t ructures should f a c i l i t a t e selective re tes t ing, and aids for mak ing

re tes t ing more t h o r o u g h and ef f ic ient are needed.

T h i s is n o t a de ta i led decompos i t ion b u t is generally accepted as a f i r s t step requi r ing

f u r t h e r r e f inement . B o e h m does not exp la in how to proceed i f the requirements needed are

no t present.

Chapin Model

I n t he C h a p i n m o d e l [19] phases are named steps and a more deta i led v iew is presented. Th i s

m o d e l is s i m i l a r t o the development cycle i n sharing the m i d d l e steps of analysis, design,

i m p l e m e n t a t i o n and test .

Understand existing system Personnel review any ex i s t ing documen ta t i on and access rele­

van t mate r ia l s and personnel who m a y possess relevant knowledge.

Define the objectives for the modifications T h e main ta ine r seeks t o c l a r i f y the aspirations of

t he user i n request ing the change t o the p rogram.

Analyse the requirem,ents T h e consequences of exp lo r ing a l te rnate paths i n sa t i s fy ing the

main tenance request are considered and evaluated w i t h an accompanying cost-benefit

analysis.

Specify m,od.ifi.cations to he made A s u m m a r y of the analysis results f r o m the previous step

produces a spec i f ica t ion f o r the proposed m o d i f i c a t i o n .

Design modifi.ca.tions

25

Program modifications

Code and compile

Debug and test T h e t e s t ing aims t o prove t h a t the appropr ia te change has been correct ly

i m p l e m e n t e d .

Revalidate T h i s a t t e m p t s t o c o n f i r m the s t a b i l i t y of the system, i.e. no r ipp le effects are

observed.

Train users prior to release of new software As soon as the speci f ica t ion step is completed

the users are t r a ined t o use the m o d i f i e d system to gain f a m i l i a r i t y p r io r to i ts release.

Convert from previous version of software and release

Document

Quality assurance review

T h e last t w o steps are p e r f o r m e d concur ren t ly w i t h the other steps and provide the basis

f o r inspect ions , wa lk th roughs and technica l and management reviews. Some i t e ra t ion is

expec ted i n the m i d d l e steps as a resul t of t es t ing and reva l ida t ion .

Martin and McCIure model

T h i s m o d e l [61] is based on Boehm's mode l , b u t m u c h more de ta i l is p rov ided fo r each stage.

• Understanding

— Top-down comprehension

* Become f a m i l i a r w i t h the overal l p rog ram purpose and the overal l flow of

c o n t r o l .

* I d e n t i f y the basic p r o g r a m st ructures as we l l as the processing components.

* I f the p r o g r a m is pa r t of a larger system, then delineate i ts role.

26

* I d e n t i f y w h a t each component does and how th i s is imp lemen ted i n the code.

— Improvement of documentation

As unders t and ing of the p r o g r a m is gained, document i t i n a h igh level fashion.

T h i s makes f u t u r e main tenance easier.

— Participation in program development

T h e main ta ine r - to -be should take pa r t i n the development of the p rogram.

• Modification

— Design the change and debug

I f the change is an error then th is is rec t i f i ed by changing the p rogram logic. I f

the change is an enhancement then new logic is developed and incorpora ted in to

the p r o g r a m .

T h e design of the new logic is t op -down :

* Rev iew en t i re p r o g r a m at general level by s t u d y i n g modules , the i r interface

and the database.

* T h e n isolate the modules and the da ta s t ructures w h i c h are to be changed

and those modules and da ta s t ructures w h i c h are to be affected by the change.

* De ta i l ed s tudy of modu le and da ta s t ructures , design change, speci fy ing new

logic and changes (i f any) to ex i s t ing logic.

— Alter code

Changes should be i m p l e m e n t e d as s i m p l y as possible, exercising caut ion and

preserv ing cod ing style.

— Minimise side effects

* Search a l l modules w h i c h share g lobal variables or rout ines w i t h the changed

modu le .

* W h e n m u l t i p l e changes are envisaged the changes should be grouped by mod­

ule. T h e sequence of changes should f o l l o w a top -down approach, changing

the m a i n d r ive r first, t hen i ts d i rect descendants and so on .

27

* Change one m o d u l e at a t i m e , d e t e r m i n i n g po t en t i a l r i pp l e effects, before

changing the nex t modu le i n the sequence.

• Revalidation

R e v a l i d a t i o n is necessary t o ensure t h a t the mod i f i ca t ions carr ied ou t to the p rogram

have no t adversely af fec ted the p r o g r a m . Reva l ida t ion is achieved by ca r ry ing out

t e s t ing , each t y p e of t es t ing hav ing i ts o w n pa r t i cu la r goal .

— System testing

Does the p r o g r a m w o r k as before ?

— B.egression testing

Have the changes affected how the rest of the p r o g r a m works ?

— Change testing

Have the changes been designed and i m p l e m e n t e d cor rec t ly ?

Patkau model

F i v e basic main tenance tasks are i d e n t i f i e d i n a h igh level manner i n the Patkau model [72].

• I d e n t i f i c a t i o n and speci f ica t ion of the maintenance requirements .

• Diagnose and change loca t ion .

• Design of the m o d i f i c a t i o n .

• I m p l e m e n t a t i o n of the m o d i f i c a t i o n .

• V a l i d a t i o n of the new system.

T h e o r i g i n a l i t y of th i s m o d e l is t h a t the first three tasks d i f f e r according to the type of

ma in tenance t h a t has t o be pe r fo rmed . T h e types of maintenance recognised are corrective,

pe r f ec t ive (t e r m e d ' enhancement ' by Pa tka i i) , adapt ive and prevent ive (ac tua l ly te rmed

28

' p e r f e c t i v e ' by Pa tkau , b u t p revent ive according t o the def in i t ions used i n th is thesis). T h e

last t w o tasks are equivalent t o the last t w o phases of the M a r t i n and M c C l u r e model .

• Corrective

- I d e n t i f y repeatable error s y m p t o m s and specify the correct opera t ion of the sys­

t e m , a test sys tem and test da t a are needed.

- Loca te the p a r t of the sys tem responsible fo r the error .

- Design the desired proper t ies of the system, a f te r dec id ing wha t they should be.

D e t e r m i n e the side effects of the changes i n these proper t ies .

• Perfective

- I d e n t i f y new or a l tered requirements and speci f ica t ion of the opera t ion of the

enhanced system.

- Loca te the ex i s t i ng elements affected by the enhancements.

- Design is sp l i t i n t o the f o l l o w i n g sub-tasks.

* Assess how new requirements cou ld be me t by m o d i f y i n g ex is t ing components.

* Decide w h a t new components are requi red .

* Deve lop the specif icat ions of the new components a n d / o r revise the specifi­

ca t i on of ex i s t ing components .

* E x a m i n e the side eff"ects of the a d d i t i o n of new components and /o r the revised

specifica,tions.

* Design new components and /o r re-design ex i s t ing components .

• Adaptive

- I d e n t i f y the t y p e of change i n the processing or da t a env i ronment , describe the

change and revise a l l specif icat ions to ref lect the change.

- Loca te a l l sof tware elements affected by the change. W h e n there is a change in

the da.ta env i ronmen t locate the parts of the system w h i c h use or set the data

be ing changed. Use a da ta d i c t i o n a r y to store the system inpu t s and ou tpu t s ,

where they are used and the i r propert ies .

29

— Design can be accomplished by e m p l o y i n g techniques used fo r corrections or en­

hancements i n t he processing env i ronmen t .

• Preventive

— I d e n t i f y a def ic iency i n the per formance , qua l i ty , s tandards, m a i n t a i n a b i l i t y , spec­

i f y t he change i n pe r fo rmance or q u a l i t y standards.

— Loca te the sources of the deficiencies.

— Design entai ls some re-design of a p o r t i o n of the sof tware such t h a t i t s t i l l satisfies

t he o r i g i n a l requi rements , b u t the new sof tware ei ther:

* Uses less resources.

* Is be t te r s t r uc tu r ed .

* Is more ma in t a inab le .

Yau model

T h i s m o d e l [106] [107] represents i n f o r m a t i o n about the development and maintenance of

so f tware systems, emphasis ing re la t ionships between d i f fe ren t phases of the software l i fe

cycle , and provides the basis f o r au toma ted tools t o assist maintenance personnel i n m a k i n g

changes t o ex i s t i ng sof tware systems. T h e f o l l o w i n g phases are recognised.

• Determining the maintenance objectives

C o m m o n objec t ives are:

— Cor r ec t i on of p r o g r a m errors.

— A d d i t i o n of new capabi l i t ies .

— D e l e t i o n of obsolete features.

— O p t i m i s a t i o n .

• Understanding the program

T h e ease of unde r s t and ing is af fected by

30

- C o m p l e x i t y w h i c h measures the e f fo r t requi red to unders tand the p rogram.

- D o c u m e n t a t i o n .

- Self-descriptiveness t h a t measures how clear is to read, unders tand and use the

p r o g r a m .

• Generating m.aintenance proposals

T h e proposed a l te ra t ions to the system are affected by the ex t ens ib i l i t y of the p rogram.

E x t e n s i b i l i t y measures how we l l the p r o g r a m supports extensions of c r i t i c a l func t ions .

• Accounting for ripple effect

T h i s is af fected by the s t a b i l i t y of the p r o g r a m w h i c h Y a u defines as ' T h e resistance

t o the a m p l i f i c a t i o n of changes i n the p r o g r a m ' .

• Testing

T h i s is a f fec ted by the t e s t a b i l i t y of the p r o g r a m w h i c h is def ined as ' T h e e f fo r t required

t o adequate ly test the p r o g r a m according to some wel l def ined tes t ing c r i t e r i on ' . I f the

t e s t ing of the p r o g r a m is not succesful then the maintenance process is pe r fo rmed

i tera, t ively.

Evaluation of the models

T h e m o d e l b y B o e h m is not rea l ly a mode l because i t needs f u r t h e r re f inement , b u t i t

provides a general v iew of the three m a i n stages usual ly accepted i n maintenance.

T h e C h a p i n m o d e l is more a sequence of steps t h a n a proper mode l . His idea was to enhance

the deve lopment mode l w i t h ac t iv i t i e s t o be pe r fo rmed before and af te r the development

steps. T h i s v i ew was shared by Glass and Noiseux [36] b u t i t looks s impl i s t i c nowadays.

M a r t i n and M c C l u r e ref ined Boehm's mode l and p rov ided a lo t of de ta i l on wha t has to be

done t o p e r f o r m good main tenance and how to do i t . T h i s is a very comple te model and is

p r o b a b l y one of the best ' t r a d i t i o n a l ' maintenance models.

31

Patkau 's m o d e l d i f fe ren t ia tes between types of maintenance. A l t h o u g h other models take this

i n t o account , Pa tkau makes the differences e x p l i c i t . Pa tkau uses a non-s tandard te rminology

t o classify types of main tenance , th is has been ment ioned before w h i l e i n t r o d u c i n g his model .

T h i s m o d e l is described w i t h great de ta i l and is a rguably (a long w i t h the M a r t i n and M c C l u r e

m o d e l) one o f the most used i n maintenance.

Y a u m o d e l was proposed a f te r a series of s t a b i l i t y measures and reflects the impor tance given

by the au thors t o t he r i p p l e effect (where most of the mode l is based).

2.2.2 Laws of Software Evolution

A m o r e theo re t i ca l approach t o sof tware maintenance is done by L e h m a n and Belady [56]

[57]. T h e i r t heo ry of program evolution dynamics is based on the s tudy of system change,

i.e. how sof tware systems evolve d u r i n g the i r l i f e . A f t e r observing a number of software

systems, t h e y der ived these e m p i r i c a l laws:

Laxii of continuing change A p r o g r a m t h a t is used i n a rea l -wor ld env i ronment necessarily

mus t cha.nge or become less and less useful i n t h a t env i ronment .

Law of increasing complexity As an evo lv ing p r o g r a m changes, i ts s t ruc tu re becomes more

complex unless ac t ive ef for ts are made to avoid th is phenomenon.

Law of large program evolution P r o g r a m evo lu t i on is a se l f - regulat ing process and measure­

m e n t of sys tem a t t r i bu t e s such as size, t i m e between releases, number of reported

errors , etc, reveals s t a t i s t i ca l ly s igni f icant t rends and invariances.

Law of organiza.tional stability Over the l i f e t i m e of a p rogram, the rate of development of

t h a t p r o g r a m is approxima. te ly constant and independent of the resources devoted to

sys tem deve lopment .

Law of conservation of familiarity Over the l i f e t i m e of a system, the incrementa l system

change i n each release is a p p r o x i m a t e l y constant .

32

A n exp l ana t i on of w h a t the laws mean fo l lows . T h e first law says, basically, t ha t mainte­

nance is unavoidable . T h e second impl ies t h a t the s t ruc tu re of a p rog ram is degraded when

m a i n t a i n i n g and needs r e s t r u c t u r i n g . T h e t h i r d is a controversial law, i t proposes tha t the

d y n a m i c o f a p r o g r a m is established d u r i n g the early development phases, and i t is d i f f i c u l t

t o change i t d u r i n g the main tenance . T h e f o u r t h says t h a t large development teams do not

increase p r o d u c t i v i t y because of c o m m u n i c a t i o n overhead. T h e fifth law deals w i t h config­

u r a t i o n management . I f a large n u m b e r of changes are made t o one release, a new release

fo l lows q u i c k l y t o repair f a u l t s i n the changes. T h i s is a se l f - regula t ing process.

2.2.3 Program Comprehension

As seen before the first stages of the maintenance cycle are c ruc ia l , and the very first one

is unde r s t and ing the sys tem a,s i t is. T h i s can be done by carefu l examina t ion of a l l the

d o c u m e n t a t i o n a,vailable or by asking personnel who may have worked on the development

of the sys tem. Sometimes ne i ther of t h e m is accessible or t r u s t w o r t h y and more direct

methods have t o be used.

These d i rec t me thods i m p l y the use of source code as the basis fo r the comprehension of the

sof tware system. A descr ip t ion of three methods , f r o m low level t o h igh level , t ha t use the

code t o ga in knowledge about a sof tware system fo l lows:

Code reading T h e crudest m e t h o d , ef fec t ive f o r smal l programs, b u t d i f f i c u l t to use when the

size and c o m p l e x i t y of the p r o g r a m grow. T h e readab i l i ty of a p r o g r a m is a,ffected by

the design m e t h o d (i .e . t op -down , da ta s t ruc tu red , da ta flow, ob jec t or iented , abstract

d a t a types) and the s tyle (i .e . i n d e n t a t i o n , comments , m e a n i n g f u l ident i f ie rs) i n which

is w r i t t e n .

Program analysis T h i s is au toma ted code reading; i t has an advanta,ge over human code

read ing when m a i n t a i n i n g a large system and /o r when the main ta iners are not the

developers. T h e techniques used are d i v i d e d between s ta t ic and d y n ami c analysis.

S ta t i c analysis is the analysis of a p r o g r a m w i t h o u t i ts execut ion , and d y n ami c analysis

33

is t he analysis of a p r o g r a m w h i l e i t is be ing executed. A deta i led l i s t of d i f ferent tools,

i n c l u d i n g s l ic ing , f o r p r o g r a m analysis is presented i n Section 2.2.4. For a survey on

P r o g r a m comprehension see [9].

Inverse or Reverse Engineering I n Section 1.2 def in i t ions f o r these terms have been pro­

v i d e d . Tools t h a t be long t o th is category are high- level aids because they t r y to

recover the o r i g i n a l design f r o m the source code. A l t h o u g h th is is impossible because

i n f o r m a t i o n is lost i n the process of t r ans l a t ion f r o m design t o code, these methods

do t h e i r best t o present the ma in ta ine r w i t h a more abstract v iew of the system. A

s t u d y of three methods f o r reverse engineering, namely R e F o r m , R E D O and M A C S is

presented i n Sect ion 2.3.

2.2.4 Tools for Maintenance

T o i m p l e m e n t the models f o r sof tware maintenance or to help i n p r o g r a m comprehension

several tools ha.ve been produced . These tools can come as separate ent i t ies or can be

i n t eg ra t ed i n an e n v i r o n m e n t . A br ie f descr ip t ion of tools useful fo r maintenance fol lows.

pretty-printers t o d i sp lay a code l i s t i n g i n an i m p r o v e d f o r m . Provides i nden ta t i on , h igh-

Hghts comments and the s t ruc tu re of blocks i n the p rog ram. For an example see [85].

version com.para.tors to d isplay the differences between t w o d i f fe ren t versions of the same

p r o g r a m .

diagmm generators to d isp lay several k inds of i n f o r m a t i o n , l i ke ca l l -graph, da t a dependency,

flow-chart, etc.

language converters to p e r f o r m t ransla t ions between languages of the same re la t ive level of

abs t rac t ion . For an example see [66 .

restru.ctu.rers or code-to-code transform,a,tors t o enhance or p rov ide s t ruc tu re to a p rogram,

e.g. r e m o v i n g G O T O s , t r a n s f o r m i n g nested IFs i n t o C A S E statements.

34

testing utilities t o au toma te or f a c i l i t a t e the tes t ing task, t y p i c a l tools inc lude tracers, test

d a t a generators, w h i c h p rov ide large number of test i npu t s , and s imulators , which

i m i t a t e t he act ions of another p r o g r a m or more c o m m o n l y a hardware device not

avai lable or one t h a t cou ld be damaged by f a u l t y sof tware.

configuration management utilities t o help i n the management of system change. A con­

figuration database is used t o record i n f o r m a t i o n about change requests and system

changes.

version controllers to d raw up an i d e n t i f i c a t i o n scheme fo r d i f fe ren t versions of a system,

and ensure tlia,t th i s scheme is used when c rea t ing new system versions. For an example

see sees [81 .

debuggers or dynamic analysers to analyse a p r o g r a m w h i l e i t is be ing executed w i t h some

d a t a g iven by the ma in t a ine r and to present h i m / h e r w i t h the results.

static analysers t o a,nalyse a p r o g r a m w i t h o u t execut ing i t ; the i n f o r m a t i o n is always po­

t e n t i a l i n f o r m a t i o n as opposed to actual i n f o r m a t i o n . T h i s t y p e of analyser is used in

some tools l i ke cross-reference generators, r ipp le effect analysers, da ta flow and control

flow analysers. Some analysers are cal led incremental analysers because they do not

have t o re-a,nalyse the ent i re system i n response t o a change, they use i n f o r m a t i o n

a l ready s tored.

ripple effect analysers t o ref lect how the m o d i f i c a t i o n of the value of a var iable can affect

t h e values o f o the r variables. These tools are c o m m o n l y used i n regression tes t ing.

data fl,ou) analysers t o ref lect how the variables i n a p r o g r a m are re la ted to each other,

bas ica l ly assign and reference usages of the variable. Such analysis techniques are wel l

k n o w n i n compi le r o p t i m i z a t i o n .

slicers t o decompose a p r o g r a m according to one variable or a set of variables. They use

i n f o r m a t i o n p roduced by the da ta flow analyser. T h e s tatements tha,t f o r m the slice

are those ones relevant to the c o m p u t a t i o n of the (f i na l) values of the variables.

35

See Chap te r 3 f o r a more de ta i led presenta t ion of s ta t ic analysers, da ta flow analysis and

s l i c ing .

2.2.5 Software Maintenance Environments

Some sof tware engineer ing env i ronments have already been presented i n Section 2.1.2. Some

of t h e m a l ready inco rpora t e suppor t f o r maintenance. T h e envi ronments presented here are

m o r e sof tware maintena,nce or ien ted , t h o u g h a l l of t h e m on ly i m p l e m e n t p rogram compre­

hension (the first sta,ge of sof tware maintenance) and they do not bother about management

or vers ion c o n t r o l . Sof tware maintenance envi ronments are very l i m i t e d and they do not

i m p l e m e n t any p a r t i c u l a r m o d e l . T h e y are closer to 'enhanced tools ' t h an to ' t rue environ­

men t s ' because they usual ly a,re closed systems, not suppo r t i ng the i nco rpo ra t ion of other

tools .

V I F O R

V I F O R [7 4] — V i s u a l I n t e r ac t i ve F O R t r a n — is a langua.ge-specific p r o g r a m m i n g environ­

m e n t . I n V I F O R programs are represented i n two fo rms : as a t ex t (source code) or as a

g r aph consis t ing of icons and lines between icons. T h e da ta mode l of V I F O R contains four

d i f f e r en t classes of ent i t ies and three relat ions.

T h e e n t i t y classes are:

• modules i.e. files of source code.

• declarations w h i c h a.re d i v i d e d i n to :

- processes i.e. m a i n p r o g r a m , subroutines and func t i ons .

— commons i.e. g lobal da,ta elements.

T h e re la t ions are:

36

• T h e belong to rela.tion tha,t specifies whether any ent i t ies are parts of another ent i ty .

I n p a r t i c u l a r declarat ions belong t o modules .

• T h e call r e l a t i on in terconnects processes. T h e processes and the i r cal l relations con­

s t i t u t e a call-graph.

• T h e reference r e l a t i on interconnects processes and commons. T h e y define which pro­

cesses have access t o w h i c h commons.

T h e re la t ions s tored i n the V I F O R database help the p rogrammer to unders tand the code

and t o f o l l o w the r i p p l e effects of the mod i f i ca t ions .

T h e same authors t h a t developed V I F O R have created V I P E G [75]—Visua l In te rac t ive Pro­

g r a m m i n g E n v i r o n m e n t Genera tor— w h i c h provides a f r a m e w o r k fo r c rea t ing environments

w h i c h w o r k i n o ther languages w i t h func t iona l i t i e s s imi la r to V I F O R .

Surgeon's Assistant

T h i s t o o l [33] was cons t ruc ted t o va l ida te decompos i t ion s l ic ing as a maintenance technique;

see Sect ion 3.3.3 f o r an exp lana t ion of the decompos i t ion technique. Surgeon's Assistant

works w i t h C language code and i ts in ter face uses the Sunview windows env i ronment .

I n a t y p i c a l session the user loads a p rog ram and selects decomposi t ion variables. T h e tool

t h e n slices t he p r o g r a m and the ma ln t a ine r is presented w i t h a w i n d o w conta in ing the or ig ina l

p r o g r a m w i t h independent s ta tements (w h i c h are needed on ly fo r the c o m p u t a t i o n of the

slice) i n n o r m a l v ideo and dependent s tatements (w h i c h are necessary t o the compu ta t ion

of t he complemen t of the slice) i n reverse video. T h e ma in ta ine r can m o d i f y the program,

b u t o n l y the s ta tements w h i c h are independent , dependent s tatements are not modi f iab le .

Once the e d i t i n g is finished, a file con ta in ing the m o d i f i e d slice is saved, compi led and tested.

W h e n the m o d i f i e d code is accepted, surgeon's assistant merges i t back to the complement ,

v e r i f y i n g t h a t any added con t ro l flow does not con t ro l a,ny dependent statements, this mea.ns

t h a t changes can be done w i t h o u t a f fec t ing the complement and hence avo id ing regression

37

testing.

Surgeon's Assistant was also implemented as an evaluation test for a new software main­

tenance process model. In this model the revalidation phase of the classical models is not

needed because of the use of decomposition slices. Changes are tested in the decomposition

slice and cannot ripple out into the complement, making regression testing and revalidation

of the whole program unnecessary. There is still some testing performed, but this is done on

the decomposition slice where no side effect changes are allowed.

S P A D E

SPADE —Southampton Program Analysis and Development Environment— is based around

a functional description language —FDL. Program analysis and verification tools can be

applied to a program written in FDL. Translators to FDL have been developed, from Pascal

and from M6800 assembly code.

2.2.6 Metrics for Maintenance

Some metrics for software maintenance have been proposed by Leach [55] and by Yau and

CoUofello [106]. Kafura and Reddy [51] performed a study of different complexity metrics

on a medium-sized software system, and their conclusions were:

• The metrics were able to determine improper integration of enhancements to the sys­

tem.

• The metrics agreed with the subjective evaluations of the system by people familiar

with i t .

• The growth in system complexity agreed with the chaxacter of the tasks.

38

• The metrics demonstrated their usefulness by revealing poorly structured components

of the design of a new version.

Schneidewind [87] describes how two of the criteria —discriminative power and tracking—

from his metric validation method can be used in maintenance to

• establish quality control objectives.

• prioritize software components and allocate resources to maintain them.

Essentially, what is proposed is that these two criteria ought to be applied to validate any

metrics used during the maintenance of software. The results should be equivalent as when

the validation was applied to the metrics during the development of software.

2.3 Reverse Engineering

In Section 1.2 a definition of reverse engineering was given and the importance of reverse en­

gineering in program comprehension has been outlined in Section 2.2.3. Reverse engineering

tools help the maintainer to understand the system that is going to be maintained in the

following ways:

• by extracting design documentation, useful when migrating systems between environ­

ments.

• by bringing old systems into a more modern structured method of maintenance.

Three reverse engineering projects are described in the next sections. ReForm is an inverse

engineering project because the aim is to extract specification requirements while MACS

and REDO a,re 'traditional' reverse engineering projects. MACS assists the maintainer

using expert system technology, whereas REDO provides an environment where to integrate

several maintenance tools.

39

2.3.1 ReForm

ReForm and WSL were introduced in Section 1.3. The theoretical basis for ReForm is a

theory of program refinement and equivalence by Martin Ward [95] [96]. This theory has

been used to create a set of mathematical program transformations which can derive a

specification from a segment of code or can transform a segment of code into a logically

equivalent form. A tool named Maintainer's Assistant [98] [105] was created to implement

these transformations.

W S L

WSL is the internal la.nguage used in the Maintainer's Assistant, and this new language was

created because:

• a language with very simple semantics was needed to simplify equivalence proofs and

no current langua,ge was designed with such semantics in mind.

• a language tha.t could express both low-level operations and high-level specifications

was needed. Programming la.nguages cannot express non executable specifications and

specification languages would require important changes to express low-level opera­

tions.

• a common language allows systems that have modules written in different languages

to be expressed in only one way. If programs written in a new langua.ge are to be

maintained, only a new transla.tor has to be built.

For a brief description of the syntax of WSL see Appendix A.

40

Browser interface

The tools provided to the maintainer using the Maintainer's Assistant are invoked from the

Broioser Interface which maintains the coherence between what the program is becoming

because of the transformations applied to i t , and what appears on the screen which is a

pretty-printed Pascal-like version of the program.

The maintainer can manipulate the source code in three ways:

• by directly modifying the source in WSL form using editing commands.

• by selecting a particulax transformation from the library of transformations.

• by requesting the knowledge-base system to search for a sequence of transformations

that will achieve a given effect.

These three methods are described below. See Figure 2.2 for a graphical view of the archi­

tecture of the Maintainer's Assistant.

Structure editor

This is a syntax-ba,sed editor a,nd is the only way the maintainer can directly manipulate the

source code in WSL. Because this can change the effects of the program, the editor records

these editing actions for future reference.

Transformation library

The maintainer selects a section of code or a single statement and sends a select transforma­

tion command which is received by the library that tests the applicability conditions of the

transformation to these paiticular section of code. If the conditions hold, the transformation

is performed by sending a sequence of editing commands to the structure editor.

41

Knowledge base

This will work (is not implemented yet) in the following way: the maintainer will send a

request for changing a section of code and the knowledge base will select an appropriate set

of transformations to apply to the code, then it will send select transformation commands

to the transformation library, which will in turn send editing commands to the editor.

2.3.2 R E D O

This project [94] is concerned with the development of techniques and tools for the improved

maintenance of software. The aim of REDO —REngineering, validation a,nd Documenta­

tion of systems— is to provide a coherent integrated toolkit for software maintenance on

a single representation of an application. The REDO model is formed by three activities:

triggering, assessment and decision. The triggering activity determines when an assessment

of an already existing software system has to be undertaken. The assessment decides what

is the best thing to do with the software. If the decision is to reconstruct the system, REDO

provides the method, which consists of bringing the software system to one or more standard

representations:

• original source code in the system database.

• its translation to a common intermediate language called UNIFORM.

• its transformation to a graph representation.

• the representation of the documentation.

Trigger activity

This can be anything, common examples include:

42

WSL
PROG.

DATA
BASE

TRANSFORM.

LIBRARY

STRUCTURE

EDITOR

PROGRAM

TRANSFORMER

PROGRAM

MODULARISER

] [
BROWSER

INTERFACE

PROGRAM

INTEGRATOR

FRONT END
Key:

SYSTEM
COMPONENTS

HUMAN
MAINTAINER DATA

REPS

CONTROL OR DATA FLOW

Figure 2.2: Architecture of the Maintainer's Assistant

43

• request for a cha,nge so large that makes it infeasible on the actual system.

• management wants some statistics about the system.

• reimplementation of the system in another computer.

Assessment activity

The subactivities are:

• identification of the software system.

• decision of the assessment criteria.

• assessment based on the above criteria.

Decision activity

Decisions taken on the software include:

• replace with vendor packa.ge.

• rebuild from scratch.

• discard software.

• reconstruct using REDO, making it more maintainable.

2.3.3 M A C S

The aim of the MACS —Maintenance Assistance Capability for Software— project [23

35] is to provide a,n expert system toolset to assist the maintainer, but it is not an expert

44

system as such. MACS, as in R.EDO, has reengineering capabiHties: recover design specifica­

tions, create functional specifications of the software, reimplement application using modern

software engineering techniques. MACS uses a graphical representation of the structure of

both the code and data in the system, called dimensional design. The MACS architecture

comprises four layers:

Object layer where all the objects are stored, is implemented using Eclipse, an OODBS

(object oriented data base system).

Toolbox layer containing several tools:

C M S configuration management system

A B R abstraction recovery support

D S G design state graph

R W reasoning world representation

Context layer that holds knowledge about different kinds of maintenance, about mainte­

nance tools, and about the context in which the maintenance is being done.

Domain and method layer based on the context layer, tools can identify a method layer best

suited to the application domain and language used.

2.3.4 Evaluation of M A C S and R E D O

It is very difficult to make any criticism of these research projects because they are still

prototypes and there is no practical experience. MACS looks more like a CASE tool for

maintenance beca,use it has a graphical environment (based around the design state graph)

and a toolbox approach. While it is more difficult to incorporate external tools in MACS,

REDO is more flexible and adaptable to external tools. Although it is not fully populated

with internal tools yet, REDO should be able to work using external tools. The main

contribution of REDO at this stage is that provides a well defined method; the one of MACS

45

is the design state graph that allows the representation of a wide range of entities during

maintenance.

2.4 Summary

In this chapter the context in which slicing takes place has been reviewed. Firstly software

engineering was surveyed; which techniques and models have been created and which en­

vironments and metrics are in use. The importance of software maintenance was revealed

and the same topics surveyed. Finally the assistance that reverse engineering can provide

in a maintenance environment was highlighted and three projects presented. A particular

interest was focused on WSL and ReForm.

The rationale for slicing has now been estabhshed and attention is turned to the detailed

technical approaches used in slicing. Slicing is a technique that needs some dataflow infor­

mation to decompose a program. This information is calculated by a data flow analyser

which is a tool widely used in static analysis. Static analysis is a technique that provides

very useful information for the maintainer as it reveals the underlying structure of the code

and the use of variables by the program. In almost all the environments and methods of

maintenance and reverse engineering static analysers are used. The focus of research in this

thesis is a slicer for WSL, the need for this language in the ReForm tool has been explained in

Section 2.3.1. One of the low-level constructions in the syntax of WSL is the action system,

which is used to model sections of code with GOTO's and labels. As a result the original

data flow analysis algorithm in which this thesis is based, had to be enhanced to include this

construction. This is one of the major achievements in the thesis.

46

Chapter 3

Slicing

In this chapter a survey of the current trends in two very active areas is presented. The

topics covered are daia fl.ow analysis and slicing. A brief introduction to static analysis is

presented first.

3.1 Static Analysis

Static analysers were introduced in Section 2.2.4 as useful tools for maintenance. They have

been used as part of the verifica,tion process of a program, complementing the syntax-checking

functions of compilers; for a.n example see Rosen [83 .

The faults and anomalies a static analyser can check include [89]:

• Unreachable code

• Unconditional branches into loops

• Undeclared variables

47

• Parameter type mismatches

• Parameter number mismatches

• Uncalled functions and procedures

• Variables used before initialization

• Non-usage of function results

• Possible array bound violations

• Misuse of pointers

Although the anomalies listed above can be detected in recent compilers, it was unusual for

a FORTRAN or C compiler to check on these anomalies. Static analysers for FORTRAN

are DAVE [70] and FACES [77] while the 'standard' static analyser for C is LINT [22] [80].

Wilde et al [104] use the concept of program entities and program dependencies to define a

dependency graph that helps understanding the relationships between software. Static anal­

ysers are used in software maintenance to analyse program dependencies between program

entities. Program entities are divided into:

Program modules: procedures, functions, complete programs, etc.

Data objects: variables, data types, files, data structures, etc.

These program dependencies have been classified by Wilde as follows:

Definition dependencies where one program entity is used to define another. Type dependen­

cies] where one data type is used to define another belong to these category.

Calling dependencies where one program module calls another. This is typically a procedure

or function call.

48

Functional dependencies between program modules and data objects created or updated by

the module.

Data Flow dependencies between data objects where the value held by one object may be

used to calculate or set the value of another.

The focus in this chapter will be on data flow dependencies and their application to software

maintenance and reverse engineering.

3.2 Data Flow Analysis

According to Aho et al [2], a definition of data flow analysis is:

Given a control fl.ow structure, data floxo analysis is the process of collecting

inform.ation about the flow of data throughout the corresponding code segment.

Data flow analysis is the gathering of information on uses and definitions of variables and

the transmission of this information to where it can be of use.

Data flow analysis wa.s originally conceived as a method for performing optimisations in

compilers, and its evolution was confined to the construction of optimising compilers for a

long time; see Alio et al [2] or Fischer and LeBlanc [29]. Some of the analysis techniques

developed in compiler writing have been used as the foundation for da.ta flow analysis meth­

ods in software maintenance. One of the first systematic studies on data flow analysis was

done by Allen and Cocke [3]; a survey on this topic can be found in Kennedy [53]. There is

currently increasing interest in extending the data flow methods to enable them to detect a

much wider class of errors; see Osterweil [69].

There are three (at least) orthogonal classifications of data flow analysis methods:

49

• According to the use they make of the control flow graph, methods can be classified

into iterative analysis and interval analysis (also termed elimination analysis).

• Another classification divides analysis methods into incremental and exhaustive de­

pending on what they do after a modification of the program.

• Finally they can be divided into interprocedural and intraprocedural (also termed

global) whether they use information of other procedures in the analysis of the current

one.

Iterative analysis

This method consists of traversing the nodes in the control flow graph of a program, propa­

gating the data flow information as the nodes are visited. This procedure iterates until the

da,ta flow information identified with each node does not change. One of the first iterative

methods was devised by Hecht and Ullman [40]. More recent methods include Pollock and

Sofia [73] and Keables et al [52 .

Interval analysis

This analysis takes pla.ce in two steps: the elimination phase and the propagation phase;

and defines intervals as subgraphs of the control flow graph of a program. The elimination

phase consists of combining these intervals (and their data flow information), a series of

increasingly simpler flow graphs results in the collection of all of the data flow relations

for the program. The propagation phase propagates the information back to the initial

intervals. There is a subclassification of methods according to which type of intervals are

used to perform the analysis. One of the methods that uses Allen-Cocke intervals [3] is

Ryder [86]. Tarjan intervals [91] are used in Burke [15].

High-level analysis

A different approach to data flow analysis is presented in Rosen [83]; in his method the

control flow graph is not used, instead the syntax parse tree of the program is traversed

50

to collect the data flow information. Another method that uses a similar technique is by

Bergeretti and Carre [10 .

Exhaustive

If there is a change in a part of a program, all the data flow information for the whole

program has to be recalculated from scratch again. This has been the traditional approach

because of the compiler culture, where all the program is usually recompiled regardless of

the magnitude of the changes. Recently, compilers teamed with syntax-directed editors, are

implementing an incremental method of updating the data flow information.

Incremental

Incremental methods appeared as a criticism to the exhaustive method: why does all the

information have to be recalculated if the change is confined to a part of the program? In the

incremental methods, when a segment of the program is changed, the data flow information

is updated with the information of the change. Not all the different types of changes are

supported in most of the algorithms. The structural changes, involving change of control

flow, axe the most difficult to implement. Most of the methods cited above are incremental

methods to some extent. For a survey on incremental algorithms see Burke and Ryder [16 .

Intraprocedural

The data flow information is calculated for only one procedure or function at a time. When

a call to a procedure appears, it is assumed that the procedure can modify and/or use any

(global) varia,ble. This results in a very conservative approach.

Interprocedural

The analysis takes into account the data flow information of the procedures. For each pro­

cedure summary information is calculated and exported. This information usually consists

of which variables may be modified, used, and preserved. The summary information is then

used a.t the point of call of a procedure, and the usual intraprocedural analysis can be used to

51

calculate the data flow information of the program. The classical interprocedural algorithm

is by Barth [7 .

3.3 Slicing

A definition of slice has already been given in Section 1.4. Slicing is a source to source

transformation of a program [6], and is a useful technique for restricting the behaviour

of a program to some specified set of interest. This set of interest is usually a variable

or a collection of variables. Slices can be computed automatically on source programs by

analyzing data and control flow.

3.3.1 Motivation

Weiser [102] conducted an experiment to determine if slicing was useful in debugging. The

results obtained were evidence that programmers use slices when debugging, and they do

not necessarily look at the programs iri a textual or modular way:

... debugging programmers, working backwards from the variables and the state­

ment of a bug's appearance, use that variable and statement as a slicing criterion

to construct mentally the corresponding slice.

3.3.2 Original Studies

Weiser [103] formally defined slice, presented the first algorithm (which was corrected by

Leung and Reghbati [58]), and provided some experience in slicing. According to him the

advantages of slices are:

52

1. they can be found automatically

2. slices are generally smaller than the program from which they originated

3. they execute independently of one another

4. each reproduces exactly a projection of the original program's behaviour.

The disadvantges can be summarised as:

1. they can be expensive to find

2. a program may have no significant slices

3. their total independence may cause additional complexity in each slice that could be

cleaned up if simple dependencies could be represented.

Weiser's program slices are taken with respect to a program point and an arbitrary variable

(both forming the slicing criterion).

3.3.3 Decompositional Program Slicing

Gallagher and Lyle [34] ha.ve extended the notion of a program slice to a decomposition slice.

This slice is independent of fine numbers (i.e. the slicing criterion is reduced to a variable).

The decomposition slice of a variable is the union of a collection of program slices. The

program slices selected have as a program point an output statement or the last statement.

Decomposition slices ha.ve been defined by Ciallagher [32] as:

Let Outp'at(P/v) be the set of statem,ents in program P thai output variable v,

let l a s t be the last statement of P, and let N = Oxi.tput{P,v) U { l a s t } . The

statements in [J S{v,n) form the decomposition slice on v, denoted S{v).

53

This new type of slice has been implemented in a tool named Surgeon's Assistant (see

Section 2.2.5) which also reflects a new software maintenance model with no regression

testing involved.

3.3.4 Slicing in C

The standard techniques of Weiser [103] work only in a Hmited subset of the possible con­

structions found in modern languages. .Jiang et al [50] have enhanced the original algorithm

to deal with:

• the presence of array a.nd pointer variables (the original algorithm did not produce

correct results for these constructs).

• goto, brea.k and continue statements (these statements have effects on the behaviour

of the slice).

Although the algorithm they present is for use in C constructs, it should be easily adaptable

to other languages with similar constructs.

3.3.5 Slices and Module Cohesion

Ott and Thuss [71] demonstrate a relationship between the slices of a module and the notions

of module cohesion. Cohesion levels a,nd their relationship with slices are as follows.

Lov) cohesion (coincidental and temporal) corresponds to non-intersecting slices.

Control cohesion (loijicol and •procedural) corresponds to slices having only common control

structures.

Daia cohesion (communicntional) corresponds to data flow relations between slices.

54

High cohesion (sequential and functional) corresponds to a slice being properly contained in

another.

Low cohesion occurs when the slices are independent (i.e. they do not share any statement).

Control cohesion happens when they share the structure of the program (e.g. same while

and i f constructs). Data cohesion occurs when two slices share assignments or uses of

variables. Finally high cohesion is present when the statements that form one slice are a

subset of the statements of another slice.

3.3.6 Program Dependence Graphs

Ferrante et al [28] ha,ve devised an intermediate program representation called the program

dependence graph that makes explicit the data and control dependences for each operation

in a program. Usually only data dependences were used to represent the dependences in

a program. With the incorporation of control dependences (extracted from the control

flow graph) to the program dependence graph, better optimizations and static analysis of a

program can be performed. Horwitz et al [42] have enhanced the program dependence graph,

and created the system dependence graph, which incorporates information about procedures

and procedure calls. They present an interprocedural slicing algorithm that works with the

system dependence graph. This algorithm has a restriction: a slice has to be taken with

respect to a variable that is defined or used at the program point where the slice is to be

taken. This restricts the original definition of slicing criterion given by Weiser where the

variable was arbitrary.

3.3.7 Program Dependence Relations

Bergeretti and Carre [10] have introduced a relation-based information-flow (effectively data

and control) analysis of while-programs (i.e. GOTO-less programs). One of their relations

provides partial statements which are equivalent to slices. This method will be presented

55

in great detail in Section 5.2. Gopal [38] has created another set of program dependence

relations; rather than analysing the static behaviour of a program, the new relations model

the dynamic behaviour of the program.

3.3.8 Dynamic Slicing

Gopal [38] explains the difference between dynamic and static slices:

Using dynamic analysis techniques is possible to define a dynamic slice thai con­

tains only those statements that actually affect the value of a variable at the

specifi.ed program location. A static slice includes all staiements thai may affect

the value of a variable at the specified location.

Dynamic slicing was originally proposed by Korel and Laski [54] for producing more precise

slices by using the program runtime information. The new dynamic dependence relations

are defined with respect to a specific program execution, the actual values of the variables

being taken into account for calculating the statements that will form the slice. This slice

does not have to be necessarily an executable subset of the program (unlike it happened

with the static dependence relations).

3.3.9 Chunks

A chunk is a new concept described by Samuel Hsieh [43] as:

A chunk intuitively corresponds to the range of impact of a program change, and

is defined as the union of those program .slices impacted by the change. Given a

chunk 'with respect to a program change, a maintenance programmer can consider

the im,pact vntlioui examining the entire program.

56

As noticed by Hsieh, once a maintainer has found an error (perhaps aided with a slicer) and

a change is made to correct i t , a new question arises: "Can the change cause new troubles,

possibly in other parts of the program ?" This question is usually answered with the use

of a ripple effect analyser, but the construction of a chunk can be useful too. A chunk is a

small subset of a program (like a slice), so it provides a better focus in which to analyse the

change than the whole program.

57

Chapter 4

Definition of Problem

The main problems found while performing maintenance with ReForm have been described

in Section 1.5. In this chapter a more detailed definition of the problem that the static

analyser and the slicer will solve is presented.

4.1 The Problems

Programs that are maintained or transformed by ReForm are usually very large (the order of

ma,gnitude is thousands of lines) and complex (control flow difficult to follow); this is mainly

due to two reasons:

• Although programs are written in WSL, the initial level of abstraction used is very

low because the programs have been translated from assembler (although in the future

this could be COBOL, C, etc). This low level of abstraction results in

— large number of instructions for all but the most simple operations

— many labels a.nd GOTOs due to lack of iterative constructions

58

- large number of very small routines that implement simple operations.

• The ReForm user needs to reverse engineer real programs and not toy-like programs

only used in demonstrations. The emphasis is focused on commercial and business

applications that are currently being used. This means that programs are typically

very badly structured, huge, non modular, heavily altered, etc.

The maintainer is faced by a rather large and complex program written in WSL and there

are no tools available to facilitate the understanding of the source code. It is important to

notice the use of the term source code, because even if some documentation is available, it is

usually not complete or cannot be trusted. See Section 2.2.3 for a discussion on this topic.

Other maintenajice or reverse eiigineering projects have overcome, at least partially, these

problems by using a static analyser or tools based on static analysis; see Section 2.2.5.

4.2 The Solution

In the ReForm project it was decided to follow a similar approach and build a static analysis

tool that will provide the foundation for a cross-referencer, modulariser, call-graph displayer

and slicer. Although this thesis only describes the work performed to implement the static

analyser and the slicer, the other tools could be easily implemented. These tools will assist

the maintainer in:

Decomposing a program, The modulariser breaks the program in a horizontal fashion sepa­

rating logical functions. The slicer breaks the program in a vertical fashion separating

the statements involved in the computation of the value of a variable or set of variables.

Debugging a program The slicer can show the part of the WSL program relevant to one or a

set of variables. The cross-referencer can show only the statements that use or assign

a value to a variable. The call-graph displayer shows the possible paths the program

can follow.

59

Excluding dead code from a program Static analysers can detect parts of a program that will

never be executed given any combination of values for the variables.

4.3 Design Decisions

It was decided that the static analysis tool should be implemented within the Maintainer's

Assistant and not as a stand-alone tool, though it should not interfere with the already

existing tools. The Maintainer's Assistant will become, after the incorporation of the static

analyser, an integrated tool that will help the user to swap interactively between analysis

and reverse engineering. The concept of interaction is a crucial one; the analyser will perform

its functions interacting with the other tools of the Maintainer's Assistant, this means that

after the program is modified by the application of transformations, the maintainer will not

have to run a 'batch' procedure to update the data flow information; this information will

be updated by the analyser as needed. The design of the Maintainer's Assistant did not

commit the design of the sheer to any particular method of data flow analysis. The modular

design of the ReForm tool assures that the sheer (and other analysis tools) can be interfaced

easily with Xma (X-windows front-end of the Maintainer's Assistant) in the future.

If C or another programming language had been used as the internal language to ReForm,

it could have been possible to use a commercially available static analysis tool. The use of

WSL implied that a new implementation was needed for reasons explained below. Although

ideally all the constructs in WSL should be analysed, it was decided that only the low-level

ones will be dealt with.

4.4 The W S L Language

The mathematical foundations of WSL are first order logic and set theory. The denotational

semantics of the kernel statements are described in terms of mathematical objects called

60

"state transformations". The details on how to interpret statements as state transformations

are bypassed in this thesis but can be found in [97], which is the definitive source for the

syntax and semantics of WSL. Most of the following information has been extracted from

there.

4.4.1 Kernel Language

The syntax (and a non-formal semantic definition) of the kernel language is as follows:

• Two primitive statements:

- Atomic specification, written x/y.Q

- Guard statement, written [P

where P and Q are formulae of first order logic and x and y are sequences of variables.

The effect of the atomic specification statement is to add the variables in x to the state

space, assign new values to them such that Q is satisfied, remove the variables in y

from the state and terminate. A state is a collection of variables with values assigned

to them. The collection of all possible states is called the state space. The guard

statement always terminates; it enforces P to be true at this point in the program,

and it has the effect of restricting previous nondeterminism to those cases which leave

P true at this point. The guard statement cannot be implemented directly because it

can force determinism on previous non deterministic constructs.

• A set of statement variables, which are symbols used to represent recursive calls of

recursive statements.

• Three compounds:

- Sequential composition: {S^;S.^)

First 5i is executed and then S^.

61

Choice: (S, • S^)

One of the statements or 52 is chosen for execution.

Recursive procedure: {nX.S^)

Within the body S^, occurrences of the statement variable X represent recursive

calls to the procedure.

4.4.2 The First Level Language

The kernel language is very compact and has a sound mathematical foundation, allowing

transformations of the code be proved, but it is not very useful for writing programs or

for use as the target language for a translator. Extensions to the language are built in a

series of language levels, with each level defined in terms of the previous one. The first-level

language has constructs usually found in other languages (e.g. assignment, deterministic

choice, deterministic iteration, procedure call) and some other constructs which are not new,

but rarely found in programming languages (e.g. nondeterministic choice, nondeterministic

iteration, action system). High levels are concerned with specification issues, but those

remain to be implemented in ReForm. A complete definition of the syntax of WSL is given

in Appendix A.

The slicer will eventually work upon all the constructs in the first level (and perhaps will be

extended to other levels), but the implementation is being carried out in incremental stages

because this allows the assessment of the prototype, and because the algorithms utilised to

analyse some of the constructs can be written in terms of other constructs' algorithms (in the

same way that one language level can be implemented in terms of the previous one). In the

last two stages an interprocedural analyser will be needed, and the information that it will

provide will be used in the construction of a library of procedures which is being designed

for the Maintainer's Assistant.

The stages are divided as follows (the figures in square brackets refer to the index of the

Table in Appendix A):

62

1. Basic statements:

Abort [30] , A s s e r t [33] , Comment [36] , Skip [46] , Assignment [8,34]

D e t e r m i n i s t i c C hoice [37] , N o n d e t e r m i n i s t i c Choice [38] , While [49]

2. Loop statements:

F o r loop [42] , N o n d e t e r m i n i s t i c do loop [39]

M u l t i p l e - l e v e l e x i t l oops [40,41]

All these can be expressed in terms of while loops, but the last one is more difficult to

implement.

3. A c t i o n systems [31,35]

These will be discussed below.

4. Enhanced facilities to deal with variables:

A r r a y s [29,32] , L o c a l v a r i a b l e s [47]

5. WSL procedures a.nd functions:

B l o c k w i t h l o c a l procedure [48] , Procedure d e f i n i t i o n s [50,51,52]

C a l l s [45,63,87]

6. E x t e r n a l p r o c e d u r e s , f u n c t i o n s and c o n d i t i o n s : [43,44,64,88]

These are effectively calls to procedures which are not written in WSL or belong to

another module.

In practice, constructs of the first three groups (with the exception of the multiple-level

exit loops) are supported by the analyser. The main problems of WSL for static analysis

compared with 'more conventional' programming languages are: action systems and non

determinism.

Action Systems

An action system is a set of parameterless mutually recursive procedures [97]. They are

used to model programs written using labels and jumps (GOTOs). The main difference

with 'actions' found in other languages is explained by Ward [97]:

63

Actions (A)
A = x:=3; call B; x:=x+7;
B = x:=x+5;

end;
{x = 15}

Actions (A)
A = x:=3; call B; x:=x+7;
B = x:=x+5; call Z;

end;
{x = 8}

Figure 4.1: Examples of Action Systems

... if the end of the body of an action is reached, then control is passed to the

action which called it (or the statement following the action system) rather than

"falling through" to the next label. The exception, to this is a special action

called the term.ina.ting action, usually denoted Z, luhich when called results in the

immediate termination of the xohole action system.

The behaviour of an action is very similar to the one of a procedure, except when the action

Z is included in the action system. The small example of Figure 4.1 should clarify this.

There is a characteristic that classifies action systems: an action is regular if every execution

of the action leads to an action call. An action system is regulax if every action in the

system is regular. Any algorithm defined by a flowchart, or a program which contains labels

and GOTOs but no procedure calls in non-terminal positions, can be expressed as a regular

action system [97]. The first example in Figure 4.1 is non-regular because it has an action

which is not regular (B) and hence makes the whole system non-regular; the second example

is regular.

Non determinism

There are two non deterministic constructs: the nondeterministic choice and the nondeter­

ministic iteration. The second ca.n be rewritten in terms of a deterministic iteration and

a nondeterministic choice. The nondeterministic choice is equivalent to the "guarded com­

mand" of Dijkstra; it is like a multiple (deterministic) choice but it aborts if there is no

64

condition that evaluates true.

65

Chapter 5

Method of Solution

In this chapter the choice of Bergeretti and Caxre's static analysis techniques is explained

and justified, and the method itself is presented. The key issues addressed in this thesis that

are novel are:

• The non-deterministic constructs in WSL and the action systems.

• The engineering need for an interactive integrated tool.

5.1 The Choice

This method was chosen because it is not compiler oriented. Most of the traditional methods

for static analysis were designed for optimising compilers and their analysis is based in call-

graphs a.nd basic blocks; see for example Aho et al [2] or Fischer and LeBlanc [29].

Bergeretti and Carre [10] have devised a method to perform static analysis on a syntax-tree

representation of a program, which is a representation closer to the source language than

the one provided by basic blocks which is more object language oriented.

66

Another key advantage of Bergeretti and Carre's method is that once the data flow infor­

mation has been calculated for a program, slices can be obtained in linear time. This is not

the case in other methods (e.g. the original (Weiser) and derived (Gallagher) decomposition

methods) where data flow information has to be recalculated if the slice has to be built for

another variable or set of variables.

5.2 The Method

The data flow analysis method used collects syntactic information, which implies a "con­

servative" a,pproa.ch. This mea.ns tha.t some data dependencies will be indicated even if

the program semantics do not allow them. This also means that the word 'may' appears

throughout the definitions to describe the dependencies between variables and statements. A

formal definition of the method extracted from Bergeretti and Carre [10] is presented below.

5.2.1 Notation

Basic sets

• V set of all variables in a program.

• E set of all instances of an expression in a program (this is usually associated with

statement numbers or labels).

• r{e) set of all va.ria,bles that appear in e for each e G -£'.

• S statement (or compound statement).

• Ds set of varialDles which S may define: v G Dg if S contains at least one assignment

to V.

67

• P 5 set of variables which S may preserve: v E P s S contains at least one path from

entry to exit which is definition clear for v (i.e. which has no assignments to v).

Relations

The analysis of a program is performed by constructing three binary relations:

\:V ^ E , fi: E , p:V

The informal meaning of these relations is

• •uA5e the value of v on entry to S may be used in evaluating e

• efisv a. value in e may be used in obtaining the value of v on exit from S

• vpsv' the value of v on entry to S may be used in obtaining the value of v' on exit

from S

This last relation looks very much as a combination of the first two, and in fact it can be

expressed as:

ps = ^sUs U Us where Us = {iv,v) ^ V x V \ v E Ps}

which informally means that:

1. the value of v on entry to 5* may be used in obtaining e which in turn m.ay be used in

obtaining the value of v' on exit from S, or

2. V = v' and S may preserve v.

Another useful definition is the equality relation on V:

I, — {{v,w) E V X V \ V = u)]

68

Operations

Finally the elemental operations on matrices and sets will be denoted as follows:

product of two matrices, represented with no space between them

X cartesian product of two sets to form a matrix

* transitive closure as in p*g.

U union of sets or sum of matrices

n intersection of sets

5.2.2 Definitions

Once all the notation has been established, it is possible to give the definitions for the

relations A 5 , and ps for each type of statement. The building of these definitions can

be found in Section 2.2 of the article by Bergeretti and Carre [10]. A summary of these

definitions is presented in Table 5.1, which has been copied from Table 1 of [10 .

5.3 Examples

To clarify how the method works and to understand the result of analysing different sections

of a program, an example extracted from [10] is presented. The extended Euclidean algorithm

to calculate the greatest common denominator (x) of two integers (m and n) and their

multipliers (y and z) is presented in Figure 5.1.

Three sets of information-flow relations referring to the implementation of these algorithm

are displayed in Figures 5.2-5.4. Figure 5.2 contains the relations for the body of the while-

statement (i.e. statements 8-19), the relations for the while-statement (i.e. statements 7-19)

69

Empty Statements. For an empty (or "skip") statement S,

Ds = <l> (T l) Ps = V (T2)
As = <̂ (T3) fis = 4> (T4)
PS = i (T5)

Assignment Statements. For an assignment statement S, which assigns a value to i ;
and whose expression part is e: w:=e,

Ds = {v} (T6) P5 = F - { t ; } (T7)
As = r (e) x { e } (T8) ^is ^ {{e,v)] (T9)
/,5 = (r (e) x M) U (. - { K T ;) }) (TIO)

Sequences of Statements. For a sequence S of two statements: {A\B),

DS = DAUDB (T i l) PS = PA^PB (T12)

A5 = A^U/>^As (T13) /is =/M/>s U (T 1 4)
/Js = PAPB (T15)

Conditional Statements. For a statement S of the form: i f e then A else B,

DS = DAUDB (T16) P5 = P ^ U P B (T17)

A5 = (r(e) X {e}) U A^ U A B (T18) ps = ({e} x (DA U Z^B)) U / M U //-B (T19)
PS = (r(e) X (i?^ U DB)) UpAUpB (T20)

For a statement S of the form: i f e then A,

Ds = DA (T21) Ps = V (T22)
A5 = (Tie) X {e}) U A^ (T23) us = ({e} x DA) U / M (T24)
/>5 = (r (e) x £) ^) U / J ^ U . (T25)

B.epetitive statements. For a statement S of the form: whi le e do A,

Ds = DA (T26) Ps = V (T27)
A5 = p ^ ((r (e) x { e }) U A ^) (T28) us ^ {{e} X DA)IJ

^,AP*Ame)xDA)UL) (T29)
Ps^p'AiimxDA)UL) (T30)

Table 5.1: Definitions of the Information-Flow Relations

70

Expression
Number

procedure GCD(m, n: integer; var x, y, z : in t eger) ;
var a l , a2, b l , b2 , c, d , q, r : i n t e g e r ; { m > 0 , n > 0}
begin {Greatest Common Divisor x of m and n , Extended Euclid's Algori thm}

1-4 a l : = 0 ; a 2 : = l ; b l : = l ; b2 :=0;
5, 6 c:=m; d:=n;
7 whi le (d o o) do

begin {d = a l * 77̂ + ?d * n , c = a2 * m + b2 * n, gcd(c, d) = gcd(m, n)}
8,9 q: = (c div d) ; r : = (c mod d) ;

10,11 a 2 : = (a 2 - (q * a l)) ; b 2 : = (b 2 - (q * b l)) ;
12, 13 c : = d ; d :=r;
14-16 r : = a l ; a l : = a 2 ; a2:=r;
17-19 r : = b l ; b l : = b 2 ; b2:=r

end;
20-22 x:=c; y :=a2 ; z :=b2

{.'c = gcd(m, n) — y * m + z * n}
end

Figure 5.1: Extended Euclidean algorithm

71

appear i n Figure 5.3, and finally the relations for the whole procedure (i.e. statements 1-22)

are given i n Figure 5.4. Each relation is represented by its boolean matrix, wi th empty rows

and columns removed.

The results shown in Figures 5.2-5.4 have been corrected f rom the original paper by Berg-

eretti and Carre; there was one mistake in each of the three matrices for the // relation (this

fi is imconnected w i t h the recursive function in WSL) , and the corrections were made in

positions (19, r) , (8 , r) , and (11, r) , respectively.

5.4 Slicing

Bergeretti and Carre define the new concept of "Partial Statements", which is very similar

to the concept of program slice. Given any program variable v and for any statement 5" let

Eg be the set of expressions

El= {e^E\ e//,5v}

which informally means that Eg is the set of expressions in S whose values may be used

i n obtaining the value of v on exit f rom S. Now let 5"" be the program derived f rom S

by replacing every statement wi th in S which does not contain some member of Eg by an

empty statement. The program 5*" is equivalent to S in the sense that, for any set of input

values, the values of v on exit f rom 5' and 5" are identical. The set of expressions 5" is

described as the partial statement of S associated wi th v. Again, an example wi l l clarify this

concei^t; Figure 5.5 shows the slices (or partial statements) of the program in Figure 5.1 for

the variables x, y, and z. The slices can be easily obtained f rom the matrix //5 in Figure 5.4

by looking at the columns .T, jy, and z; the statements relevant to the slice for a variable have

a ' 1 ' in the column of that variable.

72

8 9 10 11 12 13 14 15 16 17 18 19
a l /O 0 1 0 0 0 1 1 1 0 0 0 \
a2 0 0 1 0 0 0 0 1 0 0 0 0
bl 0 0 0 1 0 0 0 0 0 1 1 1
b2 0 0 0 1 0 0 0 0 0 0 1 0
c 1 1 1 1 0 1 0 1 0 0 1 0
d 1 1 1 1 1 0 1 0 0 1

PA -

a l 0.2 61 62 c d 1 r

8 / 1 0 1 0 0 0 1 0 \
9 0 0 0 0 0 1 0 0

10 1 0 0 0 0 0 0 0
11 0 0 1 0 0 0 0 0
12 0 0 0 0 1 0 0 0
13 0 0 0 0 0 1 0 0
14 0 1 0 0 0 0 0 0
15 1 0 0 0 0 0 0 0
16 0 1 0 0 0 0 0 0
17 0 0 0 1 0 0 0 1
18 0 0 1 0 0 0 0 0
19 0 0 1 0 0 0 0 /

a l rt2 61 62 c d m n 9 r X y z

a l / 1 1 0 0 0 0 0 0 0 0 0 0 0 \
a2 1 0 0 0 0 0 0 0 0 0 0 0 0
61 0 0 1 1 0 0 0 0 0 1 0 0 0
62 0 0 1 0 0 0 0 0 0 0 0 0 0
c 1 0 1 0 0 1 0 0 1 0 0 0 0
d 1 0 1 0 1 1 0 0 1 0 0 0 0

PA = m 0 0 0 0 0 0 1 0 0 0 0 0 0
n 0 0 0 0 0 0 0 1 0 0 0 0 0

<l 0 0 0 0 0 0 0 0 0 0 0 0 0
r 0 0 0 0 0 0 0 0 0 0 0 0 0
X 0 0 0 0 0 0 0 0 0 0 1 0 0

y 0 0 0 0 0 0 0 0 0 0 0 1 0
z ^ 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5.2: Information-flow relations for the body of the while-statement

73

7 8 9 10 11 12 13 14 15 16 17 18 19
ol / O 0 0 1 0 0 0 1 1 1 0 0 0 \
a2 0 0 0 1 0 0 0 1 1 1 0 0 0
61 0 0 0 0 1 0 0 0 0 0 1 1 1
62 0 0 0 0 1 0 0 0 0 0 1 1 1
c 1 1 1 1 1 1 1 1 1 1 1 1 1
d 1 1 1 1 1 1 1 1 1 1 1 1 /

a l o2 61 62 c d q r
7 / 1 1 1 1 1 1 1 l \
8 1 1 1 0 0 1 1
9 1 1 1 1 1 1 1

10 1 0 0 0 0 0 0
11 1 1 0 0 0 1
12 1 1 1 1 1 1 1

I's 13 1 1 1 1 1 1 1
14 1 0 0 0 0 0 0
15 1 0 0 0 0 0 0
16 1 0 0 0 0 0 0
17 0 0 1 1 0 0 0 1
18 0 0 1 1 0 0 0 1
19 0 1 1 0 0 0

ol a2 61 62 c d m n 9 r X y z

a l / 1 1 0 0 0 0 0 0 0 0 0 0 0 \
a2 1 1 0 0 0 0 0 0 0 0 0 0 0
61 0 0 1 1 0 0 0 0 0 1 0 0 0
62 0 0 1 1 0 0 0 0 0 1 0 0 0
c 1 1 1 1 1 1 0 0 1 1 0 0 0
d 1 1 1 1 1 1 0 0 1 1 0 0 0

PS = m 0 0 0 0 0 0 1 0 0 0 0 0 0
n 0 0 0 0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1 0 0 0 0
r 0 0 0 0 0 0 0 0 0 1 0 0 0
X 0 0 0 0 0 0 0 0 0 0 1 0 0
V 0 0 0 0 0 0 0 0 0 0 0 1 0
z I 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5.3: Information-flow relations for the while-statement

74

A5 =

5 6 7 8 9 1 0 11 12 13 14 15 16 17 18 19 20 21 22

m f I 0 1 1 1] L 1 1 1 1 1 1 1 1 1 1 1 1
n \0 1 1 1 1] L 1 1 1 1 1 1 1 1 1 1 1 1

/'5

a2 61 62 c d 1 r X y z

1 / 1 0 0 0 0 0 0 0 1 o\
2 1 0 0 0 0 0 0 0 1 0
3 0 1 1 0 0 0 1 0 0 1
4 0 1 1 0 0 0 1 0 0 1
5 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1
8 1 1 1 0 0 1 1 0 1 1
9 1 1 1 1 1 1 1 1 1 1

10 1 0 0 0 0 0 0 0 1 0
11 0 1 1 0 0 0 1 0 0 1
12 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1 1
14 1 0 0 0 0 0 0 0 1 0
15 1 0 0 0 0 0 0 0 1 0
16 1 0 0 0 0 0 0 0 1 0
17 0 0 1 1 0 0 0 1 0 0 1
18 0 0 1 1 0 0 0 1 0 0 1
19 0 0 1 1 0 0 0 1 0 0 1
20 0 0 0 0 0 0 0 0 1 0 0
21 0 0 0 0 0 0 0 0 0 1 0
22 I 0 0 0 0 0 0 0 0 0 0 1 /

Ps =

al a2 61 62 c d m n 9 r X y z

m (1 1 1 1 1 1 1 0 1 1 1 1 l \

n ^ 1 1 1 1 1 1 0 1 1 1 1 1 1

<1 , 0 0 0 0 0 0 0 0 1 0 0 0 0
r V o 0 0 0 0 0 0 0 0 1 0 0 0^

Figure 5.4: Information-flow relations for the complete algorithm

75

Expression Expression
Number Number

begin begin
1,2 a l : = 0 ; a2:=l ; 3,4 b l : = l ; b2 :=0;
5, 6 c:=m; d:=n; 5, 6 c:=m; d:=n;

7 while (dOO) do 7 while (doO) do
begin begin

8 q:=(c div d) ; 8 q:=(c div d) ;
9 r : = (c mod d) ; 9 r : = (c mod d) ;
10 a2: = (a 2 - (q * a l)) ; 11 b2:=(b2-(q*bl)) ;

12, 13 c:=d; d:=r; 12, 13 c:=d; d:=r;
14-16 r : = a l ; a l :=a2; a2:=r; 17-19 r : = b l ; bl:=b2; b2

end; end;
21 y:=a2 22 z:=b2

end end
Slice on y Slice on z

Expression
Number

5, 6
7

9

12, 13

20

Slice on x

begin
c:=m; d:=n;
while (d o O) do
begin

r : = (c mod d) ;
c:=d; d:=r;

end;
x:=c
end

The slice on x is equivalent to
a simplified algorithm to calculate
the gcd only, without the multipliers.

Figure 5.5: Slices of the extended Euclidean algorithm of Figure 5.1

76

lis

a l o2 61 62 c d 9 r X y z

1 / 1 1 1 1 0 0 0 0 0 1 1\
2 1 1 1 1 0 0 0 0 0 1 1
3 0 0 1 0 0 0 0 0 0 0
4 0 0 1 1 0 0 0 0 0 0 1
5 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 0 0 1 1 0 1 1
9 1 1 1 1 1 1 1 1 1 1 1

10 1 1 1 1 0 0 0 1 0 1 1
11 0 0 1 0 0 0 0 0 0 0
12 1 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1 1 1
14 1 1 1 1 0 0 0 1 0 1 1
15 1 1 1 1 0 0 0 1 0 1 1
16 1 1 1 1 0 0 0 1 0 1 1
17 0 0 1 1 0 0 0 1 0 0 1
18 0 0 1 0 0 0 0 0 0 0 0
19 0 0 1 1 0 0 0 0 0 0 1
20 0 0 0 0 0 0 0 0 1 0 0
21 0 0 0 0 0 0 0 0 0 1 0
22 ^0 0 0 0 0 0 0 0 0 0 1 /

Figure 5.6: //. relation for the modified algorithm

5.5 Ineffective Statements

Relation //. can also be used to detect "ineffective statements", which are statements that do

not contribute to the final values of the exported variables. The exported variables are the

ones which are alive (i.e. their value is used outside the procedure, usually result parameters)

at the end of a procedure. Following wi th the example in Figure 5.1, the exported variables

are .T, y, and z, a,nd there are no inefi"ective statements. However i f statement number 17 is

modified to r : = a l (i t was originally r : = b l) then the relation //, for the complete algorithm

would become that shown in Figure 5.6.

Statements 3, 11, and 18 have their rows empty for the exported variables x, y, and z so

they would be ineffective statements. The elimination of ineffective statements is equivalent

to excluding dead code.

77

5.6 Modifications

Table 5.1 had to be modified to adapt the different syntax and semantics of WSL, as explained

in Section 4.4, and to include other features of the language such as action systems and non-

deterministic constructs.

The method used by Bergeretti and Carre to compute the information-flow relations of a

program is based on a postorder traversal of the syntax tree; see [1] for several algorithms

on tree traversals. The information needed to obtain the information-flow relations for a

node can be found in the node itself and in its most direct descendants (i.e. sons). Once the

traversal of the tree has finished the only data flow information saved is the information-

flow relations for the root node. I t is a global method: although information has not to be

recalculated i f a slice is needed for a different variable and the same sta,tement, i f the slice is

needed for a different position, information has to be computed f rom scratch. This way of

working suggests that the analyser is used in a 'batch' manner. Programs a,re only analysed

once i t is not likely they w i l l be modified.

5.6.1 Interactive

I t was essential to modify this method because a more interactive use of the analyser is

required. Three major differences wi th the original method were designed:

1. Type of tree tra,versal used to analyse the program. In the new method a preorder

traversal of the program tree is performed to check whether the da,ta flow information

for a node has to be computed or not. I f this is the case, the information for the

descendants is recursively calculated first (like in a postorder traversal) and then the

information for the node itself is computed and stored in the database.

2. The information obtained for each node (and not only for the root) is kept in the

database.

78

3. The original method assumes that all the variables are known in any node of the tree

(this is needed to compute L in the assignment, i f and while statements), but in the new

method, no assumption is made and the set of variables is computed by the algorithm

itself.

These modifications to the original algorithm provide more flexibility and allow a much

quicker recalculation of the data flow information i f this is needed, because they imply an

incremental update of the information, avoiding a global computation each time the program

is modifled.

For instance, i f a slice is wanted for a node of the tree which is a descendant of a node for

which the data flow information has already been computed, then no extra computation is

needed; i t is just a matter of reading the database, extracting the information from the //,

relation and displaying the slice. The reciprocal case is also possible: i f a slice is wanted

for a node of the tree which is an ascendant of a node for which the data flow information

has already been computed, then computation is needed only on the part of the tree where

database information is not existent (or is no longer valid due to modifications).

A n example based on Figure 5.7 w i l l clarify this last point: Assume that node 5 has been

modified, and the da.ta flow information (dfi) has to be calculated for node 9. The current

validity of the data flow information is stored in the boolean variable fl.ag. On an exhaustive

postorder traversal of the tree, all the nodes wi l l be visited (and updated!) in the order f rom

1 to 9 because there is no information kept in the nodes. On the new method's traversal,

the nodes w i l l be visited as follows:

9 test flag n i l

5 test flag n i l

3 test flag ok

4 test flag ok

5 update df i set fla.g:= ok

79

Figure 5.7: Types of traversal

8 test flag ok

9 update df i set flag:=ok

5.6.2 New constructs

The method used to analyse action systems is as follows:

1. For each action: collect data flow information, assuming that an embedded call state­

ment is equivalent to a skip statement.

2. Whi le there has been a change on the global data flow information do steps 3-5

3. For each a.ction do steps 4-5

4. Substitute the information of a,ny call statement wi th the information of the action

called.

5. R.ecalculate the new information for the action.

80

I t is an iterative method that converges to a fixed point which is a solution of the data flow

analysis problem.

Non determinism was treated as determinism f rom the syntactical point of view. In both

deterministic and non deterministic choice statements, all paths are potentially executable,

and that is the only thing relevant for the static analysis which is not concerned wi th the

actual path executed. The non deterministic iteration can be rewritten as a non deterministic

choice statement enclosed in a deterministic iteration, so no special treatment is required.

81

Chapter 6

Solution

6.1 Prototyping

The advantages of using a prototyping model for the development of software have been

demonstrated in the article by Carey [18] and in the book by Maude and Wil l is [62]. The use

of prototyping causes a very quick development, and hence the system can be implemented

rapidly. Once the implementation is finished, an assessment whether the prototype reflects

what was expected can be made. Changes and minor modifications can be done very quickly

and the system retested again in a very short period of time (the choice of language is also

responsible for this). Hence a prototype model was used for this implementation.

6.2 Architecture

The overall architecture of the Maintainer's Assistant has already been shown in Figure 2.2.

This architecture w i l l be enhanced wi th the incorporation of the data flow analyser, slicer

82

and other static tools, as shown in Figure 6.1. A t the present moment the interface with the

maintainer is not very user friendly, and all the commands to the tool have to be typed in

the LISP interpreter. In the future the user interface w i l l be through the already existing

browser and the X front-end; some experiments have shown that this is a simple matter, and

the relevant screen design has been incorporated into ReForm.

6.3 L I S P

Although the author did not have any previous experience in LISP, i t was chosen as the

implementation language because:

• A l l the code for the Maintainer's Assistant is wri t ten in LISP (except the user interface

which is wr i t t en in C because of X-Windows). This provides a library of code which

can be reused wi th no modification and without the problems (e.g. external calls,

parameter passing conventions, return of values, etc.) inherent when more than one

programming language is used.

• LISP is a functional language wi th facilities to perform operations on symbols; there

is no need for 'strings'. This is very useful because objects like variables a,nd positions

of statements have to be treated during the analysis.

• I t is an interpreted language which results in benefits for a rapid prototyping (i.e.

programming driven by testing). Debugging facilities are buil t into the interpreter, so

there is no need for special compilations and external debuggers.

• I t is possible to compile Common Lisp (which is the LISP used in ReForm) to give

C source code, which can be in turn compiled producing an executable that runs

faster than the interpreted langua,ge. This is convenient once the development stage is

finished and when a more efflcient code is important.

83

OTHER
STATIC ANAL.

TOOLS

DATABASE

WSL

CODE

SLICER

DATA-FLOW

ANALYSER

OTHER
STATIC ANAL.

TOOLS

BROWSER

INTERFACE

T
i _

FRONT END

T
J L

HUMAN

MAINTAINER

Key: SYSTEM

COMPONENTS

DATA
REPRESEN
TATIONS

FUTURE CONTROL FLOW CONTROL OR DATA FLOW

Figure 6.1: Architecture of the data flow tool in the Maintainer's Assistant

84

6.4 Data Structures

The database used was the one already present in the Maintainer's Assistant (see Figure 2.2),

which holds various types of information needed to perform the transformations. Some of

this information was also used in the data flow analyser and new information was added too.

Two types of information specific to static analysis are saved in the database for each node

of the syntax tree:

• A flag to specify whether the present information is correct or has to be updated.

• The actual data flow information; this consists of:

n name of this action

c actions (and positions of calls) called by this one

v all the variables at this position

a assigned variables in this position

g r used variables, only for conditions

1 A relation

m // relation, used to compute slices

r p relation

Positions are usually associated wi th statement numbers or labels, but to be coherent wi th

the syntax tree representation used in WSL, the position of statement in a node n wi l l be

represented as the path f rom the node acting as reference system and the node n itselL When

a node is being analysed its own position is n i l , but i f this same node is being referenced

by one of its ascendants, its position is represented by a list containing the path from the

ascendant to the node. A n example of the different values of positions for the same node is

shown in Figure 6.2.

85

A: Positioii(X)=(2 1 3 1)

B: Position(X)=(l 3 1)

C: Position(X)=(3 1)

D: Position(X)=(l)

X: Position(X)=nil

Figure 6.2: Positions of node X wi th respect to nodes A - D

6.5 Matrices

Matrices are the very basic data structure of the algorithm, so an abstract data type was

created for them. The physical implementation of matrices, containing data structures and

operations, is held in a separate file. The operations needed are identity and cartesian product

to create matrices and sum,,product aiultransitive closure to combine matrices. Although the

transitive closure could have been implemented using the method of Warshall [100] or the

improved method of Warren [99], a more straightforward implementation in terms of product

and sum was used.

86

The LISP representation of a matr ix is a list of dotted lists, for example:

1

2

3

4

5

6

X y z

0 0 0 / \
0 1 0

1 0 0

0 0 0

0 0 1

V 0 0 0 y

is represented as {{2.y) (3.x) (5.z))

This has some advantages:

• The actual dimensions of the matrix are not needed neither to save the data nor to

perform the operations on i t .

• I t is a much more compact representation i f the matrices are very sparse, and this is

the case in almost all programs (except very small programs of few lines or so).

• I t simplifies the implementation of some matr ix operations, for example the sum can

be implemented as a merge of lists. In some operations this also means a speed-up.

The reason why these matrices are very spaxse is because of the data they represent. I f all

the elements of column x in the matrix above were set to ' 1 ' , this would mean that all the

statements (f rom 1 to 6) are relevant to the computation of the final value of .T , which is

unlikely i n a normal program.

6.6 Implementation details

The already existing database provided two simple functions that returned the assigned and

used variables of a sta.tement. Although these functions were not used for all the statements.

87

they proved very useful for calculating the used variables of an expression without having

to go into great detail analysing the expression.

The lack of experience in LISP proved very hard sometimes, particularly wi th the functions

equalp, sort, setq. To cut a long story short:

o equalp is the funct ion to use to compare structures; such comparison does not work

w i t h eq or equal

o sort destroys its argument

0 setq does not copy lists, though it copies simple variables

The combination of the last two proved particularly annoying, as shown in the examples of

Figure 6.3 which (for the first two cases) shows the pitfalls of misunderstanding the above

points.

The construct action system has been implemented in f u l l for non-regular action systems,

and implemented for non-recursive regular action systems.

A n abstract data type implementing matrices and their operations was created on a separate

file. Once the matr ix operations were reliable this file was compiled. This meant that the

analysis was somewhat faster and that each modification of the main file containing the

analyser did not imply a recompilation.

88

>(setq X ' (f i s c h e r)) ; set the value of x
(F I S C HER)

>(setq y x) ; copy the value of x (Wrong!)
(F I S c HER)

>(sort X #'string<) ; sort x (Wrong!)
(C E F H I R S)

>x ; print value of x (!I !)
(F H I R S)

>y ; print value of y (!! !)
(F H I R S)

>(setq X ' (f i s c h e r)) ; set the value of x
(F I S C HER)

>(setq y x) ; copy the value of x (Wrong!)
(F I S c HER)

>(setq X (sort X #'string<)) ; sort X (OK!)
(C E F H I R S)

>x ; print value of x (OK !)
(C E F H I R S)

>y ; print value of y (!! !)
(F H I R S)

>(setq X ' (f i s c h e r)) ; set the value of x
(F I S C HER)

>(setq y (copy-tree x)) ; copy the value of x (OK!)
(F I S c HER)

>(setq X (sort X #'string<)) ; sort X (OK!)
(C E F H I R S)

>x ; print value of x (OK !)
(C E F H IR S)

>y ; print value of y (OK !)
(F I S C H E R)

Figure 6.3: Examples in LISP

89

,er 7

Lesiilts = Test cases

Testing the algorithm has presented a challenge. This was achieved by testing small examples

whose results ca,n be checked by hand. Two larger examples were tested by comparing the

actual results w i th results given in published papers. A selection of small examples together

w i t h the two larger examples are shown in this chapter.

The example provided by Bergeretti and Carre's paper is an algorithm to calculate the great

common divisor (and the two multipliers) of two integers, i t has already been presented in

Section 5.3. The example discussed in Gallagher's dissertation [32] is the unix u t i l i ty wc

(actually i t is a simplified version, but this does not affect the validity of the results in any

way).

The analyser commands tha,t appear in these listings are:

0 (nwp prog) the WSL program prog becomes the current program, the information

about the last program loaded is lost.

o (prpr) a pretty-printed format of the WSL program is displayed,

o (dfa_upd[ate pos) updates the data flow information of the program at position pos;

90

>(prpr)

((ASSIGN (X Y)))

>(dfa_slice n i l ' (x))

((ASSIGN (X Y)))

>(dfa_slice n i l ' (y))

NIL

Figure 7.1: Simple assign instruction

usually this position is n i l (i.e. the whole program).

• (dfa_slice pes l i s t .vars) a WSL pretty-printed format of the slice at position pos for

the variables list.vars is displayed.

The programs shown on the text are displayed in a Pascal-like syntax for the benefit of

readers unfamiliar w i th WSL.

7.1 Small

In Figure 7.1 the simplest program in WSL is presented (actually a program consisting of

one skip statement is even simpler, but i t is of no use). This simple program consists of only

one assignment: x :=y The slice for x is obviously the same assignment; i t has to be noted

that the slice for y is not the same assignment because no value is assigned to y.

7.2 Sequential vs Parallel

91

>(nwp'((assign (x y)) (assign (z x))))
NIL

>(dfa_slice n i l '(z))

((ASSIGN (X Y)) (ASSIGN (Z X)))

>(nwp'((assign (x y) (z x))))
NIL

>(dfa_slice n i l '(z))

((ASSIGN (Z X)))

Figure 7.2: Differences between parallel and sequential assignments in WSL

This second example (Figure 7.2) illustrates the differences between parallel and sequential

assignments.

The first part of the figure shows the program

x:=y;
z:=x;

We then slice on z giving the result

x:=y;
z:=x;

This is as expected because of the dependency of the x on the second assignment over the

first assignment, showing the data flow dependency.

In the second part of the figure we now show there is no dependency. We start wi th a parallel

assignment

92

>(prpr)

((ASSIGN (SUM 0) (PROD 1))
(FOR 1 1 5 2 (ASSIGN (SUM (+ SUM I))) (ASSIGN (PROD (* PROD I)))))

>(dfa_slice n i l '(sum))

((ASSIGN (SUM 0)) (FOR 1 1 5 2 (ASSIGN (SUM (+ SUM I)))))

>(dfa_slice n i l '(prod))

((ASSIGN (PROD 1)) (FOR 1 1 5 2 (ASSIGN (PROD (* PROD I)))))

Figure 7.3: For loop

< x:=y; z:=x; >

and then slice on z giving

z:=x;

There is no data flow dependency now because both assignments are executed at the same

time. The slice shows clearly the differences between programs.

7.3 For Loop

Figure 7.3 shows a very simple for loop that calculates the sum and product of the first three

odd numbers. We first show the program:

< sum:=0; prod:=l >
for i : = l to 5 step 2 do

93

suia:=sum+i;
prod:=prod*i;

od

Then the slices are presented. The slice for sum is

sura:=0;

for i : = l to 5 step 2 do
sum:=sum+i;

od

The slice for prod is

prod:=l;

for i : = l to 5 step 2 do
prod:=prod*i;

od

7.4 G C D

The algori thm already presented in Section 5.3 is presented in Figure 7.4 in WSL format. The

slices for this algorithm are given in Figure 7.4. Comparing the two sets of results provided

a way of debugging the slicer and also showed the mistakes highlighted in Section 5.3.

7.5 Word Counter

The algori thm shown in Figure 7.5 has been extracted f rom Gallagher's thesis and has been

used as a test for the slicer. Its slices a.re shown in Figure 7.6. Assignments of the type

94

>(prpr)

((ASSIGN (Al 0) (A2 1) (Bl 1) (B2 0) (C M) (D N))
(WHILE (<> D 0)
(ASSIGN (Q (DIV CD)))
(ASSIGN (R (MOD CD)))
(ASSIGN (A2 (- A2 (* Q Al))))
(ASSIGN (B2 (- B2 (* Q Bl))))
(ASSIGN (C D)) (ASSIGN (D R))
(ASSIGN (R Al)) (ASSIGN (Al A2)) (ASSIGN (A2 R))
(ASSIGN (R Bl)) (ASSIGN (Bl B2)) (ASSIGN (B2 R)))

(ASSIGN (X O) (ASSIGN (Y A2)) (ASSIGN (Z B2)))

>(dfa_slice n i l '(x))

((ASSIGN (C M) (D N))
(WHILE (<> D 0) (ASSIGN (R (MOD CD))) (ASSIGN (C D)) (ASSIGN (D R)))
(ASSIGN (X C)))

>(dfa_slice n i l '(y))

((ASSIGN (Al 0) (A2 1) (C M) (D N))
(WHILE (<> D 0) (ASSIGN (Q (DIV CD))) (ASSIGN (R (MOD CD)))

(ASSIGN (A2 (- A2 (* Q Al)))) (ASSIGN (C D)) (ASSIGN (D R))
(ASSIGN (R A D) (ASSIGN (Al A2)) (ASSIGN (A2 R)))

(ASSIGN (Y A2)))

>(dfa_slice m l ' (z))

((ASSIGN (Bl 1) (B2 0) (C M) (D N))
(WHILE (<> D 0) (ASSIGN (Q (DIV CD))) (ASSIGN (R (MOD CD)))

(ASSIGN (B2 (- B2 (* Q Bl)))) (ASSIGN (C D)) (ASSIGN (D R))
(ASSIGN (R Bl)) (ASSIGN (Bl B2)) (ASSIGN (B2 R)))

(ASSIGN (Z B2)))

Figure 7.4: Algor i thm for GCD and its slices

95

((ASSIGN (YES 1) (NO 0)) (ASSIGN (INWORD NO) (NL 0) (NW 0) (NC 0))
(ASSIGN (C GETCHAR))
(WHILE (<> C EOF) (ASSIGN (NC (+ NC 1)))

(COND ((= C "n") (ASSIGN (NL (+ NL 1)))))
(COND

((OR (OR (= C " ") (= C "n")) (= C " t "))
(ASSIGN (INWORD NO)))
((ELSE)
(COND

((= INWORD NO) (ASSIGN (INWORD YES))
(ASSIGN (NW (+ NW 1)))))))

(ASSIGN (C GETCHAR)))
(ASSIGN (NL NL) (NW NW) (NC NC)))

Figure 7.5: Unix u t i l i t y wc (word counter) in WSL

x: =x

are used to represent the print sta,tement

7o6 Act ion Systems

The Figures 7.7-7.8 show an example on slicing action systems and elimination of dead code.

I t also doubles as an example on non determinism. The program is

< x:=0; y:=0; z:=0; >
Actions: (A B)
A
B
C

end

< x:=l; z:=l; > c a l l C
< x:=2; y:=z; z:=x; >
< x :=3 ; z:=y; >

The program starts by resetting the values of x, y and z; and then the action system is

96

>(dfa_slice n i l '(nl))

((ASSIGN (NL 0)) (ASSIGN (C GETCHAR))
(WHILE (<> C EOF) (COND ((= C "n") (ASSIGN (NL (+ NL 1)))))

(ASSIGN (C GETCHAR)))
(ASSIGN (NL NL)))

>(dfa_slice n i l '(nw))

((ASSIGN (YES 1) (NO 0)) (ASSIGN (INWORD NO) (NW 0))
(ASSIGN (C GETCHAR))
(WHILE (<> C EOF)

(COND
((OR (OR (= C " ") (= C "n")) (= C " t "))
(ASSIGN (INWORD NO)))
((ELSE)
(COND

((= INWORD NO) (ASSIGN (INWORD YES))
(ASSIGN (NW (+ NW 1)))))))

(ASSIGN (C GETCHAR)))
(ASSIGN (NW NW)))

>(dfa_slice n i l '(nc))

((ASSIGN (NC 0)) (ASSIGN (C GETCHAR))
(WHILE (<> C EOF) (ASSIGN (NC (+ NC 1))) (ASSIGN (C GETCHAR)))
(ASSIGN (NC NC)))

>(dfa_slice n i l '(inword))

((ASSIGN (YES 1) (NO 0)) (ASSIGN (INWORD NO)) (ASSIGN (C GETCHAR))
(WHILE (<> C EOF)

(COND
((OR (OR (= C " ") (= C "n")) (= C " t "))
(ASSIGN (INWORD NO)))

((ELSE) (COND ((= INWORD NO) (ASSIGN (INWORD YES))))))
(ASSIGN (C GETCHAR))))

>(dfa.slice n i l '(c))

((ASSIGN (C GETCHAR)) (WHILE (<> C EOF) (ASSIGN (C GETCHAR))))

Figure 7.6: Slices of the algorithm in Figure 7.5

97

>(prpr)

((ASSIGN (X 0) (Y 0) (Z 0))
(ACTIONS (A B) (A (ASSIGN (X 1) (Z 1)) (CALL C 0))

(B (ASSIGN (X 2) (Y Z) (Z X)) (CALL Z 0))
(C (ASSIGN (X 3) (Z Y)) (CALL Z 0))))

>(dfa_slice n i l '(x))

((ACTIONS (A B) (A (CALL CO)) (B (ASSIGN (X 2)) (CALL Z 0))
(C (ASSIGN (X 3)) (CALL Z 0))))

>(dfa_slice n i l '(y))

((ASSIGN (Y 0) (Z 0))
(ACTIONS (A B) (A (CALL CO)) (B (ASSIGN (Y Z)) (CALL Z 0))

(C (CALL Z 0))))

>(dfa_slice n i l '(z))

((ASSIGN (X 0) (Y 0))
(ACTIONS (A B) (A (CALL CO)) (B (ASSIGN (Z X)) (CALL Z 0))

(C (ASSIGN (Z Y)) (CALL Z 0))))

Figure 7.7: Act ion Systems of WSL

98

>(dfa_slice n i l '(x y))

((ASSIGN (Y 0) (Z 0))
(ACTIONS (A B) (A (CALL CO)) (B (ASSIGN (X 2) (Y Z)) (CALL Z 0))

(C (ASSIGN (X 3)) (CALL Z 0))))

>(dfa_slice n i l '(x z))

((ASSIGN (X 0) (Y 0))
(ACTIONS (A B) (A (CALL CO)) (B (ASSIGN (X 2) (Z X)) (CALL Z 0))

(C (ASSIGN (X 3) (Z Y)) (CALL Z 0))))

>(dfa_slice n i l '(y z))

((ASSIGN (X 0) (Y 0) (Z 0))
(ACTIONS (A B) (A (CALL CO)) (B (ASSIGN (Y Z) (Z X)) (CALL Z 0))

(C (ASSIGN (Z Y)) (CALL Z 0))))

>(dfa_slice n i l '(x y z))

((ASSIGN (X 0) (Y 0) (Z 0))
(ACTIONS (A B) (A (CALL CO)) (B (ASSIGN (X 2) (Y Z) (Z X)) (CALL Z 0))

(C (ASSIGN (X 3) (Z Y)) (CALL Z 0))))

Figure 7.8: Action Systems of WSL (cont).

99

executed. This action system is non deterministic because i t can execute either action A or

B as the first action. Act ion A calls C which in turn calls Z and finishes the execution of the

action system. Act ion B eventually calls Z and also finishes execution of the action system.

The slice on x is

Actions: (A B)
A
B
C

end

c a l l C
x:=2;
x:=3;

This shows tha.t the assignment to x in the action A does not contribute to the final value

of x. The assignments to x on actions B and C wi l l be the last ones to be executed so they

have to be included on the slice.

The slice on y is

< y:=0; z:=0; >
Actions: (A B)
B: y:=z;

end

The assignment z:=0 appears in the slice because if the first action chosen to execute is

action B , we w i l l need the value of z to calculate y; on the other hand if action A is chosen,

then the value of y before the action system is needed because neither A nor C have any

assignment to y.

The slice on z is

< x:=0; y:=0; >

100

Actions: (A B)
A: c a l l C
B: z:=x;
C: z:=y;

end

The in i t i a l assignments to x or y are needed to compute z, depending on whether the chosen

action is A or B , respectively.

The slice on x and y is

< y:=0; z:=0; >
Actions: (A B)
A
B
C

end

c a l l C
< x:=2; y:=z; >
x:=3;

This slice results f rom the merging of the two slices.

The slice on x and z is

< x:=0; y:=0; >
Actions: (A B)
A: c a l l C
B: < x:=2; z:=x; >
G: < x:=3; z:=y; >

end

This slice results f r o m the merging of the two slices.

The slice on y and z is

101

< x:=0; y:=0; z:=0; >

Actions: (A B)

A: c a l l C

B: < y:=z; z:=x; >

C: < z:=y; >

end

This slice results f r o m the merging of the two slices too.

The slice on all the variables

< x:=0; y:=0; z:=0; >

Actions: (A B)

A: c a l l C

B: < x:=2; y:=z; z:=x; >

C: < x:=3; z:=y; >

end

Finally the slice taken for all the variables should be the entire program, unless there is

some 'inefficient statements' or dead code. In this program the assignments in action A are

inefficient statements because there is always a call to C which executes some assignments

to the same variables.

7.7 Conclusions

The result of testing the tool on these and other examples have provided confidence that i t

behaves as expected. Examples that include different types statatements have been presented

(e.g. while, for, assignment, if , action systems . . .) . The incremental part of the slicer has not

been shown because i t would yield the same result, a.nd the grea.t strength of the incremental

102

methods lies in speed and amount of recalculation, both of which have not been measured

empirically yet.

103

Chapter 8

Conclusions

The sheer has been tested on some small programs and has worked successfully, as shown in

Chapter 7. This means that there is no experience wi th real (i.e. large wi th complex control

flow) programs yet. Some demonstrations have been given to other people involved in the

ReForm project a,nd the suggestions, comments and technical discussions have been most

useful to solve problems, enhance facilities or modify other technical aspects.

I t is considered tha.t i t wi l l be a simple activity to add the sheer to the ReForm system. The

interlace w i t h the R.eForm da,taba,se has been explored and works satisfactorily. I t remains

to add suitable 'buttons' to the Xma user interface to invoke the slicer. The slicer features

an incremental algorithm which provides the necessary performance to the Xma user.

8.1 Method

There were several methods to choose f rom and Bergeretti and Carre was selected for the

reasons outlined in Section 5.1. Due to the use of a prototyping development method, had the

analysis method not worked adequately, i t could have been possible to change i t for another

104

one. The prototype showed that the first two stages in the development (see Section 4.4.2)

were reasonably easy to implement (this was expected owing to the characteristics of the

method).

Act ion systems took most of the implementation time, and in fact there are some special

cases (i.e. recursion for regular action systems) which have to be implemented yet. I t was

found that action systems are not a construct well suited for a parse tree analyser because

i t expects to be able to calculate the information for the current node f rom its sons and the

node itself only. I f this is not the case, a.nd information has to be gathered f rom other places

in the tree, the general pattern of traversal doesn't work and a different algorithm has to be

used. When a method to perform interprocedural analysis for constructs like procedures is

added for the next stage, action systems w i l l be reconsidered because actions are recursive

parameterless procedures and a solution which accommodates both actions and procedures

w i l l be required.

8.2 Future Directions

The implementa.tion of the static analyser has not finished yet, and there is wide scope for

fur ther enha,ncements:

• Analyse the rest of the low-level WSL constructs according to the stages described in

Section 4.4. An importa.nt investigation has to be carried out in order to decide how

to perform the interprocedural analysis of WSL. The techniques suggested at the end

of Bergeretti and Caire's paper [10] may prove useful.

• Devise a method for analysing high-level WSL constructs when they ha,ve been defined.

• Perform tests on large programs to measure the efficiency of the implementation. If

necessary fine-tune some sections and create a compiled version. I t may be necessary

to remove the data flow information on the leaves and on the nodes of the lower levels

of the parsing tree i f more memory is needed. Of course this wi l l imply that slicing

105

on some statements w i l l take a longer time than usual because of the recalculation for

these nodes.

• Implement the rest of the tools i.e. cross-referencer, modulariser, call-graph displayer,

using the same data flow information already stored in the database.

• Integrate the slicer w i th the more user-friendly browser interface and use the pretty-

printer to display the slice. This should be very simple because the protocol used in

other parts of the Maintainer's Assistant to communicate wi th the X front-end can be

used wi th almost no modifications on the code of the slicer.

106

Appendix A

W S L Syntax

In the following tables the WSL synta,x is presented, they include all the constructions which

are been used by the Maintainer's Assistant. The data flow analyser and slicer can only work,

at the present moment, w i th a reduced subset of all the different statements.

The meaning of the entries is as follows:

Number This is the number of the type number that is passed to the pretty-printer as a

more efficient alternative to passing the actual type of the object. This both reduces

the amount of information which needs to be passed, and also speeds up the process of

finding the fo rm of the pretty-printed version. I t is also used as an index in Section 4.4

to reference the entries of the Table.

Name This is the name of the i tem.

Generic Type This is the "parent" type of the given type. For example, "Skip" is a type of

statement antl "Number" is a type of expression.

Lending Token This is either "yes" or "no" i f and only i f the type of the item is the first

part of the printed form. For example, an "Assign" statement begins wi th the word

107

"Assign", but an assignment does not begin wi th the word "Assignment" (or any other

word).

Minimum Size This is the least number of components that the type can have. Examples

are an assignment which must have at least two (in fact only two) components and a

"For" loop which must have at least five components, whereas a list of variables can

have any number.

Component Types This holds the types of components of the given type (if there are any).

For example, the components of an assignment are a variable and and expression. I f

there is an unlimited number of components for a given i tem, any additional compo­

nents must have the same type as the last component. For example, a "For" loop must

have a (loop) variable, three expressions (for the in i t ia l , final and step values of the

loop) and i t can have any number of statements in i t . There ca,n be more than one

i tem of the last type i f the entry "Component Types" finishes wi th For example,

a "Call" statement can only have a single name and a single number as its components,

whereas a "For" loop can ha.ve any number of statements in i t .

108

Num Name Generic Leading Min Component

Type Token Size Types

1 Thing — No 0

2 A.List Thing No 0 Thing ...

3 Symbol Thing No 0

4 Name Thing No 0

5 Statement Thing Yes 0

6 Expression Thing Yes 0 Expression ...

7 Condition Thing Yes 0 Condition ...

8 Assignment, Thing No 2 Assd.Var Expression

9 Guarded Thing No 2 Condition Statement ...

10 Action Thing No 2 Name Statement ...

11 Definition Thing Yes 0 Name Variables Variables Statement ...

12 $St.atement.$ Statement Yes 0

13 $Expn$ Expression Yes 0 —

14 Var Expression Yes 0 —

15 $Condition$ Condition Yes 0 —

16 $Name$ Name No 0

17 Statements A_List No 1 Statement ...

18 Expressions A_List No 0 Expression ...

19 Variables A_List No 0 Variable ...

20 Assd.Vars A_List No 0 Assd.Var ...

21 Assignments A.List No 1 Assignment ...

22 Gnardeds A_List No 1 Guarded ...

23 Names A_List, No 1 Name ...

24 !L Expression Yes 1 A.List

25 Number Expression No 0 —

26 String Expression No 0 —

27 Variable Expression No 0 —

28 Assd.Var Variable No 0 —

29 Aref Variable Yes 2 Variable Expression

30 Abort Statement Yes 0

109

Num Name Generic Leading Min Component

Type Token Size Types

31 Actions Statement Yes 2 Names Action ...

32 Array Statement Yes 2 Assd.Var Expression

33 Assert Statement Yes 1 Condition

34 Assign Statement Yes 1 Assignment ...

35 Call Statement Yes Name Number

36 Comment Statement Yes 1 String

37 Cond Statement Yes 1 Guarded ...

38 D J f Statement Yes 1 Guarded ...

39 DJDo Statement Yes 1 Guarded ...

40 Exit Statement Yes 1 Number

41 Floop Statement Yes 1 Statement ...

42 For Statement Yes 5 Assd.Var Expr. Expr. Expr. Statement ...

43 !Xp Statement Yes 2 Name Expre,ssions

44 !P Statement Yes 3 Name Expressions Assd.Vars

45 Proc.Call Statement Yes 3 Name Expressions Variables

46 Skip Statement Yes 0

47 Var Statement Yes 2 Assignments Statement ...

48 Where Statement Yes 2 Statements Definition ...

49 While Statement Yes 2 Condition Statement ...

50 Proc Definition Yes 4 Name Variables Variables Statement ...

51 Funct Definition Yes 3 Name Variables Expression

52 B_Funct Definition Yes 3 Name Variables Condition

53 + Expression Yes 2 Expression ...

54 - Expre.ssion Yes 2 Expression

55 • Expression Yes 2 Expression ...

56 / Expression Yes 2 Expression

57 ** Expression Yes 2 Expression

58 Min Expression Yes 2 Expression ...

59 Max Expression Yes 2 Expression ...

60 Div Expre.ssion Yes 2 Expression

110

Num Name Generic Leading Min Component

Type Token Size Types

61 Mod Expression Yes 2 Expression

62 If Expression Yes 3 Condition Expression

63 Funct.Call Expression Yes 2 Name Expressions

64 !F Expression Yes 2 Name Expressions

65 Gen.Expr Expression Yes 3 Assignments Statements Expression

66 Int Expie.ssion Yes 1 Expression

67 Frac Expression Yes 1 Expression

68 Abs Expression Yes 1 Expression

69 Sgn Expression Yes 1 Expression

70 True Condition No 0 —

71 False Condition No 0 —

72 Else Condition Yes 0 —

73 = Condition Yes 2 Expression

74 <> Condition Yes 2 Expression

75 < Condition Yes 2 Expression

76 > Condition Yes 2 Expression

77 <= Condition Yes 2 Expression

78 >= Condition Yes 2 Exprejssion

79 == Condition Yes 2 Expression

80 Even? Condition Yes 1 Expression

81 Odd? Condition Yes 1 Expression

82 True? Condition Yes 1 Expression

83 False? Condition Yes 1 Expression

84 And Condition Yes 1 Condition ...

85 Or Condition Yes 1 Condition ...

86 Not Condition Yes 1 Condition

87 B.Funct.Call Condition Yes 2 Name Expressions

88 !C Condition Yes 2 Name Expressions

89 Gen.Cond Condition Yes 3 A.ssignments Statements Condition

90 Empty Expression Yes 0 —

I l l

Num Name Generic Leading Min Component

Type Token Size Types

91 Cons Expression Yes 2 Expression

92 Append Expression Yes 2 Expression

93 Intersection Expression Yes 2 Expression ...

94 Union Expression Yes 2 Expression ...

95 SetJDiff Expression Yes 2 Expression

96 List Expression Yes 1 Expression ...

97 Hd Expression Yes 1 Expression

98 T l Expression Yes 1 Expression

99 Length Expression Yes 1 Expression

100 Reverse Expression Yes 1 Expression

101 Empty? Condition Yes 1 Expression

102 NonJEmpty? Condition Yes 1 Expression

103 Member? Condition Yes 2 Expre.ssion

104 Some3Iember? Condition Yes 2 Expression

105 AnyJVIember? Condition Yes 2 Expression

106 Subset? Condition Yes 2 Expression

107 Same? Condition Yes 2 Expression

108 Push Statement Yes 2 Expression Assd.Var

109 Pop Expression Yes 1 Assd.Var

110 A^Size Expre.ssion Yes 1 Variable

111 [^+-] Expression Yes 2 Expre.ssion ...

112 Spec Statement Yes 3 Assd.Vars Assd.Vars Condition

113 AssnJSpec Statement Yes 2 Assd.Vars Condition

114 Old Variable Yes 1 Variable

115 %N Expression Yes 0 —

116 %Z Expression Yes 0 —

117 %Q Expression Yes 0 —

118 %R Expression Yes 0 —

119 Map Expression Yes 4 Name Name Variable Expression

120 Reduce Expression Yes 4 Name Name Variable Expression

121 Set Expression Yes 2 Expre.ssion Condition

122 For_All Condition Yes 2 Variable Condition

123 Exists Condition Yes 2 Variables Condition

112

References

1] Aho, A. v . , Hopcroft, J. E., and Ulhnan, J. D. D a t a structures and algorithms,

chapter 3, pp. 75-106. Addison-Wesley, Reading, Massachusetts, 1983.

2] Aho, A. v . , Sethi, R., and Ullman, J. D. Compilers: Principles , Techniques, and

Tools, chapter 10, pp. 585-722. Addison-Wesley, Reading, Massachusetts, 1986.

m-3] Al len, F. E. and Cocke, J. A program data flow analysis procedure. Commu

cations of the ACM, vol. 19, num. 3, pp. 137-147, March 1976.

4] Ambras, J. and O'Day, V . MicroScope: a knowledge-based programming en­

vironment . IEEE Software, vol. 5, num. 3, pp. 50-58, March 1988.

[5] A N S I / I E E E . I E E E S tandard Glossary of Software Engineer ing Terminology.

A N S I / I E E E Sta.ndard 729, 1983.

6] Arsac, J. .1. Syntact ic source to source transformations and program manip­

ulation. Commnnicaiions of the ACM, vol. 22, num. 1, pp. 43-53, January 1979.

[7] Bar th , J. M . A pract ical interprocedural data flow analysis algorithm. Com­

munications of the ACM, vol. 21, nrun. 9, pp. 724-736, September 1978.

8] Ben Arfa , L . , MiH, A. , and Sekhri, L. A n empirical s tudy of software mainte­

nance. In Proceedings Conference on Software Maintenance 1991 [46], pp. 52-58.

113

[9] Bennett, K . H . , Cornehus, B. J., Munro, M . , and Robson, D. J. Approaches to

program comprehension. Journal of Systems and Software, vol. 14, num. 1, pp.

79-84, 1991.

10] Bergeretti, J.-F. and Carre, B . A. Information-flow and data-flow analysis of

while-programs. ACM Transactions on Programming Languages and Systems, vol.

7, num. 1, pp. 37-61, January 1985.

11] Boehm, B . W . Software Engineering. IEEE Transactions on Computers, vol. 25,

num. 12, pp. 1226-1241, December 1976.

[12] Boehm, B. W . Software Engineer ing Economics . Prentice-Hall, Englewood Cliffs,

New Jersey, 1981.

[13] Brooks, F. P. No silver bullet: Essence and accidents of Software Engineering.

Computer, vol. 20, num. 4, pp. 10-19, 1987.

[14] Brown, A. W. and McDermid, J. A. Learn ing from I P S E ' s mistakes. IEEE

Soft/ware, vol . 9, num. 3, pp. 23-28, Maixh 1992.

15] Burke, M . G. A n interval-based approach to exhaustive and incremental in­

terprocedural data-flow analysis. ACM Transactions on Programming Languages

and System,s, vol. 12, num. 3, pp. 341-395, July 1990.

16] Burke, M . G. and Ryder, B . G. A cri t ical analysis of incremental iterative data

flow analysis algorithms. IEEE Transactions on Software Engineering, vol. 16,

num. 7, pp. 723-728, July 1990.

[17] Buxton, J. N . Software engineering — 20 years on and 20 years back. Journal

of System.s and Software, vol. 13, num. 2, pp. 153-155, 1990.

[18] Carey, J. M . Prototyping: alternative systems development methodology.

Inform.ation & Software Technology, vol. 32, num. 3, 1990.

19] Chapin, N . Software maintenance life cycle. In Proceedings Conference on Software

Maintenance 1988 [44], pp. 6-13.

114

20] Chikofsky, E. J. and Cross, J. H . Reverse engineering and Design recovery: a

Taxonomy. IEEE Software, vol. 7, num. 1, pp. 13-18, 1990.

[21] Dart , S. A . , Ellison, R. J., Feiler, P. H . , and Habermann, A. N . Software develop­

ment environments. IEEE Computer, vol. 20, num. 11, pp. 18-28, 1987.

[22] Darwin, I . F. C h e c k i n g C programs with L I N T . O'Reilly & Associates, Sebastopol,

California, 1988.

23] Desclaux, C. and Ribault , M . M A C S : A K . A . D . M . E . In Proceedings Conference

on Software Maintenance 1991 [46], pp. 2-12.

24] Dowson, M . Integrated project support with I S T A R . IEEE Software, vol. 4,

num. 6, pp. 6-15, 1987.

25] Ejiogu, L . 0 . Software Engineer ing with Formal Metr ics . McGraw-Hil l , Maid­

enhead, Berkshire, U K , 1991.

[26] Fehcian, L . and Zalateu, G. Val idat ing Halstead's theory for Pascal programs.

IEEE Transactions on. Software Engineering, vol. 15, num. 12, pp. 1630-1632, Decem­

ber 1989.

27] Fenton, N . E. Software Metr ics — A Rigorous Approach. Chapman k Hall,

London,1991.

28] Ferrante, J., Ottenstein, K . , and Warren, J. T h e program dependence graph

and its use in optimization. ACM Transactions on Programming Languages and

Systems, vol. 9, num. 3, pp. 319-349, March 1987.

[29] Fischer, C. N . and LeBlanc, Jr., R. J. Craf t ing A Compi ler , chapter 16, pp. 609-680.

Benjamin/Cummings, Menlo Park, California, 1988.

30] Foster, J. P r o g r a m lifetime: a v i ta l statistic for maintenance. In Proceedings

Conference on Software Maintenance 1991 [46], pp. 98-103.

31] Gadd, R. J. R e F o r m — from assembler to Z using formal transformations.

In Proceedings of the Fourth Software Maintenance Workshop, Durham, UK,

September 1990.

115

[32] Gallagher, K . B. Us ing program slicing in software maintenance. PhD thesis,

Univ. Maryland, Baltimore, December 1989.

[33] Gallagher, K . B. Surgeon's Assistant l imits side effects. IEEE Software, vol. 7,

num. 5, pp. 64, May 1990.

34] Gallagher, K . B. and Lyle, J. R. Us ing program slicing in software maintenance.

IEEE Transactions on Software Engineering, vol. 17, num. 8, pp. 751-761, August

1991.

35] Georges, M . M A C S : Maintenance Assistance Capabi l i ty for Software. In

Proceedings of the Fourth Software Maintenance Workshop, Durham, U K ,

September 1990.

36] Glass, R. and Noiseux, R. Software Maintenance Guidebook. Prentice-Hall,

Englewood Cliffs, New Jersey, 1981.

37] Goldberg, A. Smal l ta lk -80 — T h e Interactive Programming Environment .

Addison-Wesley, R.eading, Massachusetts, 1984.

38] Gopal, R. D y n a m i c program slicing based on dependence relations. In Pro­

ceedings Conference on Software Maintenance 1991 [46], pp. 191-200.

39] Halstead, M . H . E l ements of Software Science. Elsevier North-Holland, New York,

1979.

40] Hecht, M . S. and Ullman, J. D. A simple algorithm for global data flow analysis

problems. SIAM Journal of Computing, vol. 4, num. 4, pp. 519-532, December 1975.

41] Henry, S. and Wake, S. Pred ic t ing maintainabil i ty with software quality met­

rics. Software Maintenance: B.esearch & Practice, vol. 3, num. 3, pp. 129-143, 1991.

42] Horwitz, S., Reps, T. , and Binkley, D. Interprocedural slicing using dependence

graphs. ACM Transactions on Programming Languages a,nd Systems, vol. 12, num.

1, pp. 26-60, Ja.nua,ry 1990.

116

43] Hsieh, C. S. Sl ice, chunk, and dataflow anomaly as Datalog rules. Journal of

Systems and Software, vol. 16, pp. 197-203, 1991.

44] IEEE. Proceedings Conference on Software Maintenance 1988, Phoenix, A r i ­

zona, October 24-27.

45] IEEE. Proceedings Conference on Software Maintenance 1989, Miami , Florida,

October 16-19.

[46] IEEE. Proceedings Conference on Software Maintenance 1991, Sorrento, Italy,

October 15-17.

47] IEEE. Special number dedicated to Software Engineer ing Environments .

IEEE Software, vol. 5, num. 2, March 1988.

[48] Ince, D. Software metrics: introduction. Inform.ation & Soft/ware Technology, vol.

32, num. 4, pp. 297-303, 1990.

49] Ivie, E. L . T h e Programmers Workbench — a machine for software devel­

opment. Communications of the ACM, vol. 20, num. 10, pp. 746-753, 1977.

[50] Jiang, J., Zhou, X . , and Robson, D. J. Program slicing for C — T h e problems

in implementat ion. In Proceedings Conference on Soft,ware Maintenance 1991 [46],

pp. 82-190.

51] Kafura, D. and Reddy, G. R. T h e use of software complexity metrics in software

maintenance. IEEE Transactions on Software Engineering, vol. 13, num. 3, pp. 335-

343, March 1987.

52] Keables, J., Roberson, K . , and von Maryhau.ser, A. D a t a flow analysis and its

application to software maintenance. In Proceedings Conference on Software

Maintenance 1988 [44], pp. 335-347.

[53] Kennedy, K . A survey of data flow analysis techniques. In Muchnick, S. and

Jones, N . , editors. P r o g r a m Flow Analys is : T h e o r y and Applicat ions, pp. 5-54.

Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

117

54] Korel, B. and Laski, J. Dynamic program slicing. Information Processing Letters,

vol. 29, num. 10, pp. 155-163, October 1988.

[55] Leach. Software metrics and software maintenance. Journal of Software Main­

tenance, vol. 2, num. 2, June 1990.

[56] Lehman, M. M. Programs, life cycles, and laws of software evolution. Proceed­

ings IEEE, vol. 68, num. 9, pp. 1060-1076, 1980.

57] Lehman, M . M. and Belady, L. Program Evolution. Processes of software

Change. Academic Press, London, UK, 1985.

[58] Leung, H. K. N. and Reghbati, H. K. Comments on 'Program Slicing'. IEEE

Transactions on SoftAuare Engineering, vol. 13, num. 12, pp. 1370-1371, December

1987. This is a correction to the article by Weiser, see [103 .

59] Lientz, B. and Swanson, E. B. Software Maintenance Management. Addison-

Wesley, Reading, Massachusetts, 1980.

60] Lientz, B., Swanson, E. B., and Tompkins, G. E. Characteristics of application

software maintenance. Communications of the ACM, vol. 21, num. 6, pp. 466-471,

June 1978.

[61] Martin, J. and McClure, C. Software Maintenance: The Problem and its So­

lutions. Prentice-Hall, Englewood ChfFs, New Jersey, 1983.

32] Maude, T. and Willis, G. Rapid prototyping: the management of software

risk. Pitman, London, 1991.

33] McCabe, T. J. A complexity measure. IEEE Transactions on Software Engineering,

vol. 2, num. 4, pp. 308-320, December 1976.

S4] Mehndiratta, B. and Grover, P. S. Software metrics — an experiment analysis.

ACM SIGPLAN Notices, vol. 25, num. 2, pp. 35-41, 1990.

35] Moreton, R. Analysis and results from a maintenance survey. In Proceedings

of the Second Software Maintenance Workshop, Durham, UK, September 1988.

118

S] Moynihan, V. D. and Wallis, P. J. L. The design and implementation of a high-

level language converter. Software: Practice & Experience, vol. 21, num. 4, pp.

391-400, April 1991.

67] National Computing Centre, editor. The S T A R T S Guide, volume 1. NCC Publica­

tions, Oxford Road, Manchester M l TED, UK, second edition, 1987.

58] Osterweil, L. Software processes are software too. In Proceedings of the

Ninth International Conference on Software Engineering, pp. 2-13, Monterey,

California, March 30 - April 2 1987.

69] Osterweil, L. .1. Using data flow tools in software engineering. In Muchnick, S.

and Jones, N. , editors, Program Flow Analysis: Theory and Applications, pp.

237-263. Prentice-Hall, Englewood CliiTs, New Jersey, 1981.

70] Osterweil, L. J. and Fosdick, L. D. D A V E — a validation, error detection and

documentation system for F O R T R A N programs. Software: Practice & Experi­

ence, vol. 6, num. 3, pp. 473-486, 1976.

71] Ott, L. and Thuss, J. The relationship between slices and module cohesion.

In International Conference on Software Engineering, May 1989.

72] Patkau, B. H. A foundation for software maintenance. Master's thesis, Univ. of

Toronto, Canada, December 1983.

[73] Pollock, L. L. and Soffa, M. L. An incremental version of iterative data flow

analysis. IEEE Transactions on Software Enfjineerinr/, vol. 15, num. 12, pp. 1537-

1549, December 1989.

[74] Rajlich, V., Damaskinos, N. , Linos, P., and Khorshid, W. V I F O R : A tool for

software maintenance. Software: Practice & Experience, vol. 20, num. 1, pp. 67-77,

January 1990.

75] Rajlich, V. and Khorshid, W. V I P E G : A generator of environments for software

maintenance. In Proceedings Fourteenth Annual International Computer

119

Software &L Applications Conference, pp. 471-475. IEEE Computer Society Press,

October 29 - November 2 1990.

[76] Ramamoorthy, B. and Melton, A. A sysnthesis of software science measures

and the cyclomatic number. IEEE Transactions on Software Engineering, vol. 14,

num. 8, pp. 1116-1121, August 1988.

77] Ramamoorthy, C. V. and Ho, S. F. Testing large software with automated

software evaluation systems. IEEE Transactions on Software Engineering, vol. 1,

num. 1, pp. 46-58, 1975.

78] Reiss, S. P. Graphical program development with P E C A N Program Devel­

opment Systems. ACM SIGPLAN Notices, vol. 19, num. 5, pp. 30-41, 1984.

79] Reiss, S. P. P E C A N : Program Development Systems that support multiple

views. IEEE Transactions on. SoftAt>a.re Engineering, vol. 11, num. 3, pp. 276-285,

1985.

80] Ritchie, D. M. , Johnson, S. C., Lesk, M. E., and Kernighan, B. W. The C program­

ming language. Bell Systems Technical Journal, vol. 57, num. 6, pp. 1991-2020,

1978.

[81] Rochkind, M . J. The Source Code Control System. IEEE Transactions on Soft.-

ware Engineering, vol. 1, num. 4, pp. 255-265, 1975.

[82] Rombach, H. D. A controlled experiment on the impact of software structure

on maintainability. IEEE Tra.nsa.ctions on Software Engineering, vol. 13, num. 3,

pp. 344-354, March 1987.

[83] Rosen, B. K. High level data flow analysis. Commiunications of the ACM, vol. 20,

num. 10, pp. 712-724, October 1977.

84] Royce, W. W. Managing the development of large software systems: concepts

and techniques. In Proceedings W E S T C O N , pp. 113-121. IEEE Computer So­

ciety Press, 1970.

120

85] Rubin, L. F. Syntax-directed pretty printing. IEEE Tra.nsactions on Software

Engineering, vol. 9, num. 2, pp. 119-127, 1983.

[86] Ryder, B. G. and PauU, M. C. Incremental data flow analysis algorithms. ACM

Transactions on Programming Languages and Systems, vol. 10, num. 1, pp. 1-50, 1988.

[87] Schneidewind, N. F. Setting maintenance quality objectives and prioritizing

maintenance work by using quality metrics. In Proceedings Conference on Soft­

ware Maintenance 1991 [46], pp. 240-249.

88] Schneidewind, N. F. Validating software metrics: producing quality discrimi­

nators. In Proceedings of International Symposium on Software Reliability

Engineering, pp. 225-232, May 17-18 1991.

89] Sommerville, I . Software Engineering. Addison-Wesley, Reading, Massachusetts,

third edition, 1989.

90] Swanson, E. F. The dimensions of maintenance. In Proceedings of the Second

International Conference on Software Engineering, pp. 492-497, October 1976.

91] Tarjan, R. E. Testing flow graph reducibility. Journal of Computer System Sci­

ence, vol. 9, num. 3, pp. 355-365, December 1974.

92] Teitelman, W. A tour through Cedar. IEEE Transactions on Software Engineering,

vol. 11, num. 3, pp. 285-302, 1985.

93] Teitelman, W. and Masinter, L. The Interlisp programming environment. IEEE

Com,puter, vol. 14, num. 4, pp. 25-34, 1981.

[94] van Zuylen, H., editor. The R E D O Handbook. John Wiley & sons, Chichester,

UK, 1992.

95] Ward, M . Proving Program Refinements and Transformations. PhD thesis,

Oxford University, 1988.

96] Ward, M. Transforming a program into a specification. Computer Science

Technical Report 88-1, Durham University, January 1988.

121

97] Ward, M. The syntax and semantics of the wide spectrum language W S L .

Computer science technical report, Durham University, December 1991.

98] Ward, M. , Munro, M. , and Calliss, F. W. The Maintainer's Assistant. In Proceed­

ings Conference on Software Maintenance 1989 [45], pp. 307-315.

[99] Warren Jr, H. S. A modification of Warshall's algorithm for the transitive

closure of binary relations. Communications of the ACM, vol. 18, num. 4, pp.

218-220, April 1975.

100] Warshall, S. A theorem on boolean matrices. Journal of the ACM, vol. 9, num.

1, pp. 11-12, January 1962.

101] Wasserman, A. I . Software engineering environments. Ad.va.nces In Computers,

vol. 22, 1983.

[102] Weiser, M . Programmers use slices when debugging. Comm.u.nica.tions of the

ACM, vol. 25, num. 7, pp. 446-452, July 1982.

103] Weiser, M. Program Slicing. IEEE Transactions on Software Engineering, vol. 10,

num. 4, pp. 352-357, July 1984. See [58] for a correction.

104] Wilde, N. , Huitt, R., and Huitt, S. Dependency analysis tools — reusable com­

ponents for software maintenance. In Proceedings Conference on Software Main­

tenance 1989 [45].

105] Yang, H. The supporting environment for a reverse engineering system —

The Maintainer's Assistant. In Proceedin,gs Conference on Software Maintenance

1991 [46], pp. 13-22.

106] Yau, S. S. and CoUofello, J. S. Some stability measures for software mainte­

nance. IEEE Transactions on Software Engineering, vol. 6, num. 6, pp. 545-552,

November 1980.

[107] Yau, S. S., NichoU, R. A., Tsai, J. J.-P., and Liu, S. S. An integrated life-cycle

model for software maintenance. IEEE Transactions on Softwa.re Engineering,

vol. 14, num. 8, pp. 1128-1144, Augu.st 1988.

122

