
Durham E-Theses

Carabid beetle communities of Northern heath: their

response to management practices

Bunney, Andrew David

How to cite:

Bunney, Andrew David (1992) Carabid beetle communities of Northern heath: their response to

management practices, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/6013/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6013/
 http://etheses.dur.ac.uk/6013/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


C A R A B I D B E E T L E C O M M U N I T I E S O F N O R T H E R N 
H E A T H : 

T H E I R R E S P O N S E T O M A N A G E M E N T P1M.CTICES. 

• / 
A S U M M I T E D BY A N D R E W D A V I D BUNNEY BSc I N 

ACCORTDANCE W I T H T H E REQUIREMENTS FOR ^ 
T H E DEGREE OF M A S T E R OF SCIENCE A D V A N C E D 

COURSE I N ECOLOGY. 

D E P A R T M E N T OF B I O L O G Y 
U N I V E R S I T Y OF D U R H A M 

SEPTEMBER 1992. 

The copyright of this thesis rests with the author. 

No quotation from it should be published without 

his prior written consent and information derived 

from it should be acknowledged. 



T A B L E OF CONTENTS 

L I S T O F T A B L E S " i 
L I S T OF FIGURES iv 
SUMMARY 1 
A C K N O W L E D G E M E N T S 2 

1. INTRODUCTION 3 

1.1. T H E UPLANDS 3 

1.1 .1 . T H E C : O N S E K V A H O N I M l ' O K l ANCK OF ' H I I C H K I T I S H U l ' E A N D S 3 
1.1.2. T H E O K I C I N OF THE Dl 'LANI) HIO 1 A 5 

1.2 T H E UPLAND FORMATIONS 5 

1.2.1 . THE HKA I H L A N I ) J O H M A ' l ' l O N 6 
1.2.2. THE H F : A ' I HLANI) C O M M U N H I F S 7 

1.2.3. N O K I HERN HEA I H 7 
1.2.3.1. C A L U I N A - V A C C I N I U M M Y U T L L U S IIlll/VTII 9 

I'liysiognoiiiy 9 
Habitat 9 
Zonatioii and siictession 9 
Management 1 0 

1.3. COMMUNITY DYNAMICS 12 
1.3.1. T H E H E A I HEU CYCLE 12 
1.3.2. T H E E N V n < O N M F N 1 A L CHANGES 15 

1.4. T H E FAUNA O F T H E UPLANDS 17 
1.4.1. T H E FAUNA OF l l l ' L A N I ) DVVAKF-SHKUH HEATH 17 
1.4.2. T H E EFFECrS OF Ul 'EANI) LAN!) MANAGEMENT 19 

1.4.2.1. nuKNiNc; 19 
1.4.2.2. ( ; U A / I N ( ; HY i H ) i M i : s ri(: I.IVKS TOI K 19 
1.4.2.3. C u i T i N i ; 19 
1.4.2.4. D I M INI N(; 20 

1.5. COMMUNITIES AND T H E NICHE 20 

1.6. ANALYSIS OF COMMUNITY ENVIRONMENT 23 
RELATIONSHH*S 

1.7. CARABID B E E T L E S AS ENVIRONMENTAL INDICATORS 24 
AND T H E I R A P P L I C A B I L I T Y TO T H E STUDY OF 
NORTHERN HEATH. 

1.8. AIMS 25 

2. METHODS 26 

2.1 STUDY A R E A AND SAMPLE SITES 26 

2.2. P I T F A L L TRAPPING 26 



2.3. ENVIRONMENT SAMPLING 26 
2.3.1. VEGETA' l ION SAMI 'LING 26 
2.3.2. SOIL SAMPLING 27 

2.4. DATA ANALYSIS 29 
2.4.1. SPECIES D I S T K I I U r n O N 29 
2.4.2. ANALYSIS OE C O M M D N r i Y ENVIRONMENT 29 
RELATIONSHIPS. 

2.4.2.1. R l ' G K l S S I O N A N A L Y S I S 29 
2.4.2.2. C l . U . S T I i U A N A L Y S I S 30 
2.4.3.3. OuDiNA'i iON 31 

Tniii.sroniuitioii ot'data 31 
Iiulii'i'ct oixliiiation 32 
Dii i'ct oidiiiiition 33 

3. RESULTS 

3.1. SPECIES ABUNDANCE 36 

3.2. SPECIES RICHNESS AND DIVERSITY 38 

3.3. ENVIRONMENTAL VARIATION 42 

3.4. COMMUNITY ENVIRONMENT RELATIONSHIP ANALYSIS 45 
3.4.1. REGRESSION ANALYSIS 4.5 
3.4.2. CLUS I ER ANALYSIS 45 
3.4.3. ORDINA'i lON 47 

3.4.3.L I N D I U I O C T O U D I N A I I O N 47 
3.4.3.2. Diui'Xn o u D i N A i iON 54 

4. DISCUSSION 60 

4.1. P I T F A L L C A T C H E S AND I HEIR R E L E V A N C E TO (0 
COMMUNITY STUDIES 

4.1.1. TRAP A T l R l lUl ' l ES 60 
4.1.2. IJ IOLOGICAL ASPEC I S OE PI l EALL I'RAPPING 61 

4.2. ANALYSIS OF COMMUNITY HABITAT RELATIONSHIPS 64 
4.2.1. M U L T I V A R I A T E ANALYSIS 64 

4.3. T H E COMMUNITIES OF CARABID B E E T L E S IN 66 
NORTHERN HEATH 

4.3.1. C O M M U N I T Y STRUC I URE 66 
4.3.2. C O M M U N I TY AEEINITY 66 
4.3.3. COMMUNI ' I Y ENVIRONMEN 1 RELA I IONSHIPS 69 

4.3.4. SIGNIFICANCE EOR CONSERVATION MANAGEMEN T 70 

APPENDIX 1 72 

Al 'PENDIX 2 72A 

B I B L I O G R A l ' l I Y 73 



L I S T OF T A B L E S 

Table 3.1. Niiiiibeis ol ciinibids captiiicd in piUiiiis at 14 sample sites. 35 

Tabic 3.2. Tlic observed species distiibiition expected distiibiilion according to 36 

Fishers model and Ibr 11 abundance classes. 

Table 3.3. Species richness, the number of individuals trapped and diversity 40 

for the catches from 14 sample sites. 

Table 3.4. Comparison of diversity measures. 39 

Table 3.5. Average (weighted) values of the environmental variables for the 14 42 

sample sites. 

Table 3.6. Intcr-set correlation (Pearson's product moment) of environmental 43 

variables. 

Table 3.7. Intcr-set correlations (weiglilwl) of environmental variables. 44 

Table 3.8. Inter set correlalions of environmental "ariablcs with DCA site axes. 52 

Table 3.9 interset correlation of environmental variables after deletion of outlying 53 

species. 

Table 3.10. Inter-sct correlations of environmental variables with site axes CCA. 58 

Table 3.11. T-values of regression coefficients of environmental variables. 59 

Table 4.1. Comparison of carabid community classifications. 69 

I I I 



LIST OF FIGURES 

Figure 1.1. Allaiilic ;ind b(>rc;il Irciids in the Iicillicr moors of llic norllierii 

and weslcni iipliiiids. 

Figure 1.2. The licallict cycle. 

Figure 1.3. Characlcrislics of the iiiiciocliiiialc bcncalli the vegetation in the 

different growth phases of a Calliina healli in Scotland 

Figure 1.4. Heather growth following Iniiniiig. 

Figure 1.5. Rate of litter production over 50 years. 

Figure 1.6. Summary of changes within the hea thiand ecosystem in the years 

following a fire 

Figure 1.7. The niche. 

Figure 2.1 The approximate locations of the 14 sanijilc sites. 

Figure 3.1. Secies abundance distrilnition. 

Figure 3.2. Species abundance distribution, logarithmic scale. 

Figure 3.3. Regression of logarithmic sjiecics abundance distribution. 

Figure 3.4. The relationship between the number of species and individuals 

trapped per sample site. 

Figure 3.5. TWINSPAN dendrogram. 

Figure 3.6. TWINSPAN table. 

Figure 3.7. Delrended correspondence analysis species diagram. 

Figure 3.8. Detrended correspondence analysis site diagram. 

Figure 3.9. Detrended correspondence analysis bi-plol diagram. 

Figure 3.10. Canonical correspondence analysis species diagram. 

Figure 3.11. Canonical corresponiknce analysis site tliagraiii. 

Figure 3. 12 . Canonical correspondence analysis environment. 

Figure 3.13. Percentage of variance explained by (he I'irsI four axes 

14 

15 

15 

16 

16 

22 

28 

37 

37 

38 

41 

46 

46 

48 

49 

50 

55 

56 

57 

541) 



1. INTRODUCTION 

This introduction will explore llie nature of the upland biota, its origins and conservation imporumce. 

Witliin this framework the ecology of the northern heath, and in particular the vegetation of the present 

study site, Calluna-Vaccinium, heath will be explored in terms of its geographical distribution, 

physiognomy, succession, zonation and management. The life cycle of the dominant plant of this 

vegetation community, Calluna vulgaris, together with the associated ecosystem dynamics will be 

addressed. The associated invertebrate fauna and its response to the ecosystem dynamics will tlien be 

explored. Subsequently the concept of the niche as it relates to community environment studies will be 

explored. Methods to elucidate these in a quantitative manner will be introduced and the suitability of 

carabid beedes as envirormiental indicators will be considered. 

1.1. T H E UPLANDS 

The uplands, embracing the hills, moors and mountains above 123m, form the largest extent of 

undeveloped wildlife habitat remaining in Britain. They are typically above the limits of enclosed 

farmland and are composed predominantly of dwarf shrub heaths, grasslands and peat bogs. Their area, 

about 6.5 million ha, is almost 30 per cent of Britain. 

Although relatively small in area and altitudinal range compared with the great alpine ranges of the 

world, the British uplands contain a great variety of landscapes and dependant biotic communities. 

These arise from marked differences in climate, geology, topography, soils and past land use, and 

complex interactions between these factors are such that no two upland districts are alike (Ratcliffe and 

Thompson, 1988). 

1.1.1. THE CONSERVATION IMPORTANCE OF THE BRITISH UPLANDS. 

Many facets of the uplands of Britain are of international importance. When compared to the great 

mountain .systems of the worid, the British uplands are insignificant in extent. However they are unique 

in nature due to the hyper-oceanic climate at the most insular, western Atlantic edge of Europe 

combined witli widespread anthroprogenic perturbations which has produced a distinctive landscape and 

range of ecosystems. 

Many of the soils of the uplands are believed to unique and support a wide range of plant communities 

that aie of great importance. Foremost among these are the ombrotrophic bogs which are a localised 

global type, the largest extent of wliich occurs in the uplands Britain. The extensive development of 

acidophiious dwarf-shrub heatlis and grasslands iu-e diverse in nature. The communities dominated by 



Ericaceae occur only in a fragmentary form in Europe and is regarded as an oceanic plant formation. 

Calluna heath is the best developed type which represents a unique ecosystem managed for red grouse. 

Two species of Ulex, gallii and europaeus contribute to a number of communities which form extensive 

stands which have a restricted world distribution. The sub-montane grassland communities reflect a 

greater degree of anthroprogenic influence than the cricoid heaths. Juncus squarrostis is widespread in 

the upland fringes of western Britain, yet elsewhere in the European mountains it is fairly localised. The 

upland grasslands are excellent examples of succession occurring under man-induced changes. Their 

species complement are widely distributed in continental Europe, but with different community 

relationships. The montane plant communities of the British uplands represent southern and oceanic 

outliers of Arctic-alpine fellfield and mountain tundra. Although they only cover a small area the British 

examples show considerable diversity and include several types which are eitlier highly local or 

apparendy absent elsewhere. The humid climate and varied topography of Britain are favourable for 

bryophylcs and ptcridiophytes. Britain has a richer Allanlic bryophyle flora than anywhere eLsc in 

Europe. It is becoming increasingly apparent that most of Britain's upland plant communities are 

peculiar to this country in tenns of species composition. For example, of the 82 British upland 

communities recognised in the National Vegetation Classification"! The northern and montane vascular 

flora of Britain is drawn from at least seven phytogeogrephical elements and many species show such 

different ecological relationships, compared with continental Europe, that different ecotypes are 

evidently involved (Ratcliffe and Thompson, 1988). 

There is probably a greater mixture of boreal, low-, mid- and high-artic, temperate and continenul 

species of breeding birds in the British uplands than in any other comparably sized part of Europe, the 

species composition of at least two habitats is particularly distinctive. First the boreal-arctic peadand 

combination (widi its often relatively large continental element) has no counterjwt elsewhere. The 

second important element belongs to the montane plateaux and corries; it contains obvious outliers of 

Arctic Eurasia e.g. Cluiradrius morinellus and the circumpolar boreal to Arclic-alpine Uifiopits muliis. 

On an international scale five species are significant in having main strongholds or very high population 

densities in Britain: Falco peregrinus, Aquila chrysaetos, luigopus mutus, LagopiLS lagopus scoticus 

and Corvus corax. Others, reaching almost greater numbers, at least locally, in upland Britain than 

elsewhere in Europe, include Circus cyaneus, Falco columharius, Tringa totanus, Vanellus vanellus, 

Calidris alpina, Numenius arquata and Pluvialis apricaria. The British upland aviefauna is of 

considerable zoogeographical interest as their southern and/or western fringe populations may be 

important for the evolution of novel adaptations to changing environmental conditions (Ratcliffe and 

Thompson, 1988). 

/ 



1.1.2. THE ORIGIN OF T H E UPLAND BIOTA. 

During the height of the last glaciation (50,000-15,000 BP) the uplands were glaciated and part of the 

continental ice sheet. Un glaciated south-east Britain held a transition from permanent ice through 

tundra and steppe to open scrub. Land bridges allowed subsequent migrations by plants and animals, but 

sea-level changes ended further immigrations thus causing a limitation in species diversity. Some native 

races of species began to diverge as a consequence, but isolation has been far too short for a significant 

degree of endemism to develop in the British biota. 

An ameliorating climate since the last glaciation combijied with widespread human influence has 

further impoverished or severely modified tlie upland llora and fauna. The climate became milder since 

deglaciation around 10000 BP. From around 4000 BP the climate became more oceanic. The influence 

of man on vegetJi t ion dates from at least 5000BP (Turner, 1965) imd became significant from around 

3900-3000 BP. Ensuing deforestation, burning and agricultural intensification in the uplands have 

produced mainly sheepwalk, deer forest and grouse moor with notable anthroprogenic vegetation. 

"Natural" vegetation is found only on the least productive ground in certain areas of the montane zone 

(the lower boundary corresponding with the climatic tree line), in the wettest bogs and inaccessible 

situations such as cliffs or lake islands. Many areas of the remaining uplands have "semi-natural" 

vegetation (sensu, Tansley 1939), and dominated by native plants which, although much changed in 

abundance, have been present since early Holocene times. 

1.2. T H E UPLAND FORMATIONS 

The biotic communities of the uplands consists of two main types. At the highest levels and the more 

mountainous types of surface montane communities which are usually most prominent from altitudes of 

6 I l i n and upwards; below this level there are various types of sub-montane communities, readily 

distinguished by the form and mode of life of the principal plants as well as by their relation to the main 

topographic features, and hence to the trends of the surface and soil. Thus on the steeper slopes and 

better drained areas there are grasslands and woodlands. Wherever the slopes are gentle the dwarf shrub 

communities occupy the leached and waterlogged surfaces (Pearsall, 1950). 

Altitudinal deterioration in climate is matched by parallel changes in the vegetation and dependant 

animal communities, reflecting a fall in temperature and an increase in wind speed, rainfall and cloud 

cover. The resulting ecological zonation has been greatly modified in Britain by man. From tlie 

remaining fragments of natural vegetation it seems fair to compare this altitudinal zonation to that 

observable today in the mountains of extreme south-west Norway, l i is noteworthy that such zonaiion is 

a small scale and local representation of the large-scale latitudinal zonation of vegetation formations 



which occur from northern Eurasia from the temperate zones to the polar regions . 

In Britain, the lower mountain slopes were covered naturally by forest, except where the ground was too 

rocky or wet. In lower latitudes this was usually of Querciis patraea sometimes mixed with other / 

broadleaves. Further north Piniis sylvestris with considerable amounts of BeiiiUi pubescens and B. 

pendiila on more fertile soils. The difference corresponds to the transition from cool temperate broadlcaf 

(nemoral) to boreal coniferous and Betuln forest (taiga). With altitude there is a decline in stature of 

these species until they are reduced to tall shrubs and subsequently disappear. Atove this there is 

naturally a zone of medium shrubs, mostly Salix spp., low Jiinipenis comimmis and taller forms of 

Betida nana. In Scandinavia this zone of natural birch woodlands and medium shrubs is distinguished 

as the sub-alpine zone, though little of this vegetation remains in Britain today. O n lop of this arc 

successive zones of dwarf shrubs (low-alpinc), high level grasslands, and moss and lichen heaths. This 

climatic sequence is complicated iiy tojiograpliical delerniincd factors. 

The sub-alpine zone o[ BeiiiUi woodland and medium shrubs has largely been eradicated in Britain. 

Patches of Betiila and Jiinipenis scrub survive but are not generally of the climax type, and Salu scrub 

exists only on cliff ledges. This vegetation together with the woodland of the lower slopes has been 

subjected to anthroprogenic effects largely eradicating the original pattern of vegetation, replacing it 

with a complex pattern of dwarf-shrub conmiuiiilics (Ratcliffe and Thompson, I98<S). 

1.2.1. THE H E A T H L A N I ) EORMA I ION 

There are several parts of the world where soils and climate are suitable for the development of dwarf 

shrub connnunilies, but the type locality for heatliland, as we know it, is north-west Europe - the irre area 

where this vegetation formation was I'irsI described. The autecology of the dominant plant of the 

European hcalhlands, conmioii heather {Callunn viilf^iiris), is an important component in our 

understanding of healhland connnunities. 

Dwarf-shrub communities dominated by Calluna occur principally in llic lands borderi/ig the North Sea, 

the English Channel and the Atlantic coasts. This area extends from the north coast of Spain, 

northwards along the west coa.sl of France , continuing into Belgium, through (he Netherlands and across 

the north German plain. The healhland zone then extends into Jutland in Denmark and there were 

further areas of heathland in the southern provinces of NoiAvay and Sweden. The whole of the British 

Isles falls within the zone suitable for healhland formation. 

Within this area, the optimum conditions for Calliina are found in eastern England, the Netherlands, 

Northern Germany and Jutland. 



Biejerinck (Webb, 19S5) specified that Calhina required the following conditions: 

1. Soils with small quantities of assimilable plant nutrients (oligotrophy) 

2. Soil acidity in the range pH 3.5 to pH 6.7 

3. Small seasonal fluctuations in the humidity of the soil and air 

4. Protection from low temperatures by snow cover at high altitudes or on mountains 

5. Adequate levels of light 

These factors fall into two types: those dependant on soil conditions and those dependant on climate. 

However, open, dwarf-shrub communities only develop where there are factors which prevent the 

regeneration of woodland; thus Beijerinck added a further factor lo include Ibe aclivilics of Man, 

grazing, or exposure. 

1.2.2. H E A T H I ^ N D COMMUNI ' l IES 

Gimingham (1972) divides European heathlands into three main categories: 

a. mountain hcallis, 

b. dry heaths and 

c. humid and wcl heaths. 

A l l three categories occur in the uplands of Britain, though the first is confined to the montane zone. 

The latter two categories combine in the sub montane zone lo form what is often termed "moorland". 

Within "moorland", there is a series of soil types and associated plant communities. On high rainfall 

areas blanket bog occurs, with ]ieat u]i lo 2 m deep. Such areas differ in many ways from the drier dwarf 

shrub communities, termed "northern heaths" l)y Gimiugliam (1972), which occur extensively at lower 

altitudes than blanket bog. The soils underlying the northern heatlis are formed mainly over base-poor 

rock and there is often a high organic content in the top 5Umm (Rodwcll, 1991). 

1.2.3. NORTHERN HEA 1 H 

Northern heath occurs around the upland fringes of northern and western Britain. However, at the more 

moderate altitudes where heaths continue to provide a biotically derived replacement for forest, the 

prevalence of heavy pasturing often severely restricts their conlribulioii to llie landscape or gives (hem a 

distinctly grassy aspect , particularly on somewhat better or marginally imi)roved soils. Moreover, the 

continuing use of periodic burning to renew sub-shrub growth for cither stock or grouse has favoured a 

widespread floristic iiiipovcrisliment and coiivergeiue into a generalised Calliina dominated vegetation. 



Nonetheless, it is still possible to detect some broad climate-related patterns among the communities. In 

the cool oceanic conditions of the upland margins of western and north-western Britain Calluna-Erica 

cinerea heath predominates, in the so called "Atlantic heather moor". Generally with the shift to a colder 

environment on somewhat higher ground through the hills of the north and west, and especially away 

from oiu- more oceanic uplands (Figure 1.1.), this community is replaced by the Calluna-Vaccinium 

myrtillus heath. This is our most widespread and extensive Northern heath community, although its 

floristics and structure are often controlled not by climatic or soil variation across its range, but by 

response to burning, for it is a major component of sheep ranges and grouse moors, often occurring in 

patchworks of stands whose composition reflects particular combinations and timing of treatments. In 

broad terms, the Calluna-Vaccinium heath can be regarded as the British "Boreal heather moor". Two 

other less extensive communities of Northern heath occur. Calluna-Vaccinium-Sphagnum heath in 

situations of cool but equitable climate enhanced by shade and shelter of crags, and where there is relief 

from burning. Calluna-Arctostaphylos uva-ursi heath is centred on the east-central Highlands of 

Scodand, where the climate is much drier than to the north west and has greater extremes of 

temjferature variation (Rodwell, 1991). 
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Figure 1.1. Atlantic and boreal trends in the heather moors of the northern and western uplands. 



1.2.3.1. CALLUNA-VACCINIUM MYRTILLUS H E A T H . 

Physiognomy 

The Calluna-Vaccinium myriillus Heath is generally dominated by Calluna vulgaris, often 

overwhelming so: encompassing the majority of the Calluna dominated vegetation described from die 

less oceanic parts of the sub-montane zone. Throughout these areas the regular burning of grouse moor 

and hill grazings that encourages a predominance of species-poor building phase heather is commonly 

practised. However older stands, with a more open cover of degenerate Calluna, can often be foimd and 

there is structural variety also, in response to differences in grazing intensity and local climate, both of 

which can affect the height and extent of the sub-shrub canopy. More distincUy , when there is an 

opportunity for a contribution lo the cover from other cricoids, capitalising upon the more open ground 

in the early or late stages of the Calluna growth cycle, or persisting among the developing Calluna, the 

potential diversity of this component of the vegetation is quite high (Rodwell, 1991). 

Habitat 

The Calluna-Vaccinium myrlillus Heath is the typical sub-shrub community of acidic to circumneutral, 

free-draining mineral soils throughout the cold and wet sub-montane zone. Climatic and edaphic 

variability across tliis range play some part in determining variation within the community but it is 

generally burning and grazing that exert the major influences on floristics and structure and, 

consequentiy, prevent succession to woodland. 

The community can be found, predominantly between 200 and 600m, through-out the western and 

northern regions of the British Isles wherever the mean annual maximum temperature falls bellow 26°C. 

However, within this broadly-defined zone, the community is strongly concentrated in areas where die 

climate, and particularly the winter climate, is more severe, occurring most extensively in the central 

and north-east Highlands of Scotland, the central reaches of the Southern Uplands and the Northern 

Pennines, where, in the main, mean annual maxima rate less than 24°C, and in February the minima 

usually more than half a degree of so below freezing. Throughout these areas there are from 1000 to 

1600mm of precipitation annually with usually 160-180 wet days yr"'. In general the conditions are wet 

and cloudy and, in the harsh winters, there can be more than 40 days widi snow lying (Rodwell, 1991). 

Zoiiation and succession 

The Calluna-Vaccinium myrtillus heath occurs in a wide variety of vegetation patterns with otlier dwarf 

shrub communities, mires and grasslands, where lloristic differences are controlled primarily by 

variations in soils, climate and management treatments. Serai developments are usually held in check by 



burning and grazing and without these most stands would eventually progress to scrub and woodland, 

fragments of which can be found in association with the community at some sites. 

The clearest soil dependant sequences occur where the free-draining soils which typically underiie 

Calluna-Vaccinium heath give way to soils with seasonally impeded drainage. In such situations the 

passage is typically marked by a transition to Erica telralix wet heath and ultimately through to 

Calluna-Eriphorum mire where ombrogenous peats have formed. Where management treatments have 

been especially frequent or severe there is a progressive deterioration with a spread of Juncus squarrosus 

amongst a much reduced cover of dwarf shrubs. This is sometimes the prelude to the development of wet 

Juncus-Festuca grassland. In many sites, however, continuous heavy grazing has favoured a progressive 

loss of dwarf-shrub vegetation to grassland. The constant danger in such situations is the spread of 

Pteridum aquilinum particularly where the vigour of Calluna is reduced by burning and grazing. 

Pteridum aquilinum is likely to invade vigorously producing dense stands of the Pteridium-Galium 

community. Widespread interactions between these vaiiubles on less fertile peaty podzols involve 

transitions to Nardus-Galium grasslands, which are especially likely to develop were there has been 

grazing in the early stages of post-bum recovery. 

Management. 

As with all plagioclimax communities management is required to retard serai development. Two 

methods have been primarily used, often in combination, namely; burning and grazing. A third, 

mowing, has been employed in recent years where burning has been deemed unacceptable. 

The need for a judicious programme of burning to maintain high and healthy grouse stocks was 

established early (Lovat, 1911) and has since been confirmed in the continuing work on the bird and its 

habitat The reasons for tliis rcspon.se are well understood. The red grouse prefer to eal heather thai is 2-3 

years in age. Older or younger shoots are rejected. Thus red grouse are responding to nutritional factors 

in the heather that change due to burning or as a result of aging of the heather populations. Cover and 

nesting sites are provided by heather more than 10 years of age. In addition, opening or tliinnings are 

necessary i f grouse are to move freely through the headier. Thus, heatlier managed for grouse must 

contain a range of developmental phases (e.g. Miller et al., 1970). 

In Scodand, burning can legally take place between 1 October and 15 April (exceptionally to the end of 

April in a wet season or to 15 May beyond 457m) in England the legal period is reduced. Although 

research has shown that regeneration is better after autumn rather than spring bums March and Early 

April have been the traditionally favoured times. Usual practice is to bum with tlie wind, although 

slower fires can be maintained by back-burning and, of course, the moisture content of the vegetation 

and the soil can also affect the fire intensity. The size of the bum is also important since wider fires tend 
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to have greater intensities. The crucial element is to aim for a ground temperature of less than 200"'C if 

possible, though certainly below 4(X)°C as even short exposures of temperatures above Uiis level can be 

lethal to heather stem bases, while keeping the canopy temperature high enough to bum off die bulk of 

the above-ground material but not so high that the loss of inorganic nutrients in smoke is too high: 

500°C seems to be an optimum temperature to satisfy these requirements (Rodwell, 1991). 

When normal weather conditions prevail, it is the quantity and disposition of the fuel that is critical in 

the control of bum temperatures. Both the maxima and duration of high temperatures increase widi the 

age of the vegetation. The biomass per unit area increases until at least 20 years since tlie last bum and 

the material becomes more woody with age. The vegetative regeneration post-bum is considerably 

impaired in plants which are more than 15 years old. Ideally, buming is timed lo coincided witli the end 

of the building phase, when the regrowth is between 12-15 years old. Longer rotations are employed in 

expo.sed situations and shorter ones in sheltered sites: an average canopy height of 30-38 cm appears to 

be a good upper limit. Many small bums are preferred, tlic optimum area being perhaps 0.5-lha, witJi 

2ha as an upper limit, and long thin strips c. 30m wide being preferred to rounded of squarish areas to 

maximise the interface of the bum widi mature Calluna (Rodwell, 1991). Thus well managed grouse 

moors consist of a mosaic of different aged patches of more or less even aged Calluna produced by 

regular buming to maximise the extent of relatively nutritious pioneer and building regrowth. On many 

sites the stmctural and floristic differences can be related to this treatment. 

Very frequeiit^the post fire development are subject to die additional and immediate influence of 

grazing. Most bumed stands are open to stock and wild herbivores and diough moors are primarily 

managed either for grouse rearing or pasturing the two activities are frequentiy combined. Even where 

stock-rearing predominates, regular burning is often practised because aldiough prudent moderate 

grazing alone ought to be sufficient to maintain a productive cover of Calluna, and thus of red grouse, 

this is hardly ever possible to achieve. It was perhaps possible before die clearances when small .scale 

mixed farming predominated, with catUe being pastured instead of or along side sheep. But the shift 

towards heavy and more selective breeds of sheep the productivity declined and the occasional fires that 

had long been employed to retard tree invasion were replaced in many areas by more regular buming, 

often on a ten-year rotation. 

Light grazing in the early stages of regeneration can facilitate early canopy closure, though widi marked 

effects on die vegetation composition. Though Calluna is palatable, grazing often induces a 

plagiotrophic semi-prostrate habit wliich gives it an advantage over Vaccinium myrtillus or other less 

common species. In some situations preferential grazing of Calluna may^allow the spread of the less 

palatable Empelrum nigrum. On less peaty soils grazing often favours the maintenance of grassy 

composition this kind of Calluna-Vaccinuirn heath can also include mosaics of sub-shrubs and sward 

well on their way towards becoming Nardus-Galium grasslands in a grazing-mediated succession. 
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Where heavy follows buming on less fertile soils Juncus squarrosus tend to increase its cover. 

1.3. COMMUNI l Y DYNAMICS 

1.3.1, T H E H E A T H E R C Y C L E 

Heathland commimities dominated by Calluna \ j ' u l g a r i s were among the examples Watt (1947) 

described in the first thorough treatment of cyclical processes in plant communities. He described a 

number of vegetational cycles in communities which were assumed to be "relatively stable over a 

reasonable period of time". Common to these examples was the development of gaps in the cover of a 

dominant species, which could be formed tlirough the death of individuals or through some intrinsic 

feature of the plants' growth and morphology. Studies indicated that the dominant seldom recognised) 

gaps immediately. Instead, a sequence of other sî ecies usually occupied the patch for a period before the 

dominant re-established. Where the population of the dominant was uneven-aged, gaps appeared 

irregularly in the canopy and the community stmcture took the form of a mosaic of patches of limited 

area, each at a different stage in the cycle. Thus, at a given time the patch composition reflects a series 

of phases which are "dynamically related to each other". 

Watt (1955) developed his ideas of cyclic processes in heathland vegetation, distinguishing four phases 

in the morphological life-history of Calluna namely: pioneer, building, mature, and degenerate. Though 

not sharply differentiated these phases have been readily separated by subsequent workers (Gimingham, 

1988) as follows: 

1. Pioneer. Early stages in the establishment and growth. Regular branching from the axis of a 

single leading shoot, at first. Height up to c. 6 cm, shape pyramidal, cover incomplete. Up to 6 

years of age. 

2. Building. Becoming bushy, branches radiating from the centre, productivity of peripheral shoots 

high and flowering vigorously. Height up to c. 0.5 m (or more), shape hemispherical, canopy 

dense, cover approaching 100%. Up to about 15 years of age (depending on habitat). 

3. Mature. Extension growth declining, though green shoot production and flowering still high. 

Shape still hemispherical, but central branches inclined to spread sideways, initialing gap 

formation ; cover slightly reduced. Up to 20 years of age (or more). 

4. Degenerate. Central branches dying, creating gap. Some other branches which have become 

partially buried in litter etc. may remain alive (because of adventitious rooting), sustaining a ring 

of foliage-bearing twigs. Cover much reduced. Eventually whole plant may die. Death at 30-40 
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years of age. 

These phases are presented diagrammatically in figiu'e 1.2. 

The behaviour of individual Calluna phmts results in canopy gap formation in the mature degenerate 

phases. Watt's studies in soudi east England indicated Uiat die accumulated litter and mor humus 

beneatii the gap was normally colonised by cryptograms, but that eventually the mor would decay or 

become dispersed, leaving a humus-stained mineral soil surface. In addition to cryptograms, a limited 

number of vascular plant species were noted as capable of occupying the gap. Watt noted "Seedling 

Calluna may become established on the mor but its chances of survival are greater on the mineral soil. 

Even then a number of years may elapse before an effective colonization initiates a new cycle. A new 

cycle may also be initiated by vegetative lateral spread from neighbouring bushes". 

The cyclic nature of Calluna as originally proposed by Watt has been disputed by a number of 

researchers (Gimingham, 1988). However the observation that Calluna individuals pass dirough die 

sequence of phases as originally described is accepted, tiiough it does not in itself constimte evidence of 

a cyclical process. 

Records from permanent quadrats in the Netherlands suggested that mosaic pattems were caused not by 

cyclical processes, but by periodic catastrophic events such as severe drought or attacks of headier beedc, 

Lochmaea suturalis Thompson, leading to the death of individuals (Prentice et al. 1987). Odier studies 

foimd that Calluna, instead of maintaining repeated cycles, has been replaced eidier by trees or by 

bracken (Marrs, 1986; Miles, 1981; Gong & Gimingham 1984). In cases like this, Watt's assumption of 

relative stability over a reasonable period of time docs not apply, and the heath vegetation is evidently 

serai. Hence, the theory of cyclical process may only be invoked only when there is no potential for 

invasion by a more permanent and long-lived species. In addition to these chiuiges pollution and 

management induced serai changes have occurred. Sufficiently grazed Calluna stands would thus be 

expected to exhibit cyclic processes i f the cycle was not prematurely curtailed by buming or catasu^ophic 

events. Heather beetie is largely inhibited by the cold temperatures in the uplands of Britain in all but 

the warmest summers md snow cover provides insulation from damaging sharp frosts and rapid thaws. 

The suggestion diat Calluna was cyclic in nature provided a strong stimulus to the investigation of 

pattem in plant communities, by offering an explanation to be considered where habitat heterogeneity 

was insufficient to account for the mosaic. It provided a framework on which to base detailed research 

on the dynamics of even-aged stands of Calliina created by buming. In so far as it concerns die 

morphological life-history of Calluna it has been enomiously valuable in interpretating the associated 

environmental changes and the varj'ing respon.ses of Galium to environmental influences. 
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Figure 1.2. The heather cycle 
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1.32. T H E ENVIRONMENTAL CHANGES 

The structural changes which occur in heathland vegatation undergoing cyclical or successional change 

profoundly affect the climate near the ground. In turn, the occurrence and distribution of many species 

of animal may be affected, and so may the germination and establishment of seedlings beneath the 

canopy. Figure 1.3. summerises the characteristics of the micro climate beneth the vegetation in the 

different growth phases of a Calluna heath in Scotland (after: Barclay-Estrup,1971). 
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Figure 1.3. Characteristics of the micro climate beneth the'vegetation in the different growth phases of a 

Calluna heath in Scotland (after: Barclay-Estrup,1971) 

The rate at which the standing crop of Calluna increases declines with age until the standing crop 

reaches a maximum at about fifty years if age, see figure 1.4. Litter fall from young plants is negligible 

untill the third or fourth growing season, but then increses to rates of 200 to 250g m ' at about 20 years 

of age. The composition of the litter also changes; at first, it is mostly short shoots, flowers and seed 

capsules, but during the building and degenerate phases, the woody component inaeases (Webb, 1986), 

see figure 1.5. 
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Figure 1.4. Heather growth following burning. 
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Figure 1.6. Sununary of changes within the heathland ecosystem in the years following a fire 
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1.4. T H E F A U N A O F T H E U P L A N D S . 

Coulson and Whittaker (1978), quoting Pearsa]], write "one of the most noticeable features of upland life 

is the apparent sinallness of the animal population". These authors suggest that this opinion is 

inaccurate as it is coloured by the general anthropocentric viewpoints of financial and aesthetic interest, 

They suggest that the invertebrates of are a highly important group in the uplands and that Pearsall 

writing in 1950 had neglected them because of the lack of work, at that time, on the phylum in the 

uplands as a result of their general inconspicuous nature and the difficulties of working with them, 

namely; quantification and taxonomy. Since 1950 much work has been undertaken on upland and, 

especially, moorland invertebrates making them probably the most studied community of invertebrates 

in Great Britain. A number of individual species have been studied in detail and consequently the upland 

invertebrates are the best studied group of invertebrates after those of agricultural / horticultural 

importance and single orders of high intrinsic / conservation iniporfance such as l^pidoplera and 

Odonata. 

Much of the earlier work (e.g. that summarised in Coulson and Whittaker (1978)) investigated the 

composition and distribution of species between habitats, their phenology and the sUTictural, 

physiological and life-history adaptations to their environment. 

Subsequently classifications of invertebrates from dwarf shrub communities and grasslands have been 

undertaken by Butterfield and Coulson (1983) and Coulson and Butterfield (1985, 1986) using similarity 

indices. The latter work was amplified upon by Coulson (1988) where the five communities, four from 

the uplands, identified were investigated in terms of invertebrate density, the number of species, their 

phonological distribution and the standing crop. These studies have established tJiat northern healh has a 

chtUracteristic invertebrate community. 

More recently, techniques of classification based on the ordination of species by site matrices, have been 

used to characterise species communities associated with particular habitats in regional scale studies 

(Luff, Eyre and Rushton, 1989). This studied also identified northern heath as having a characteristic 

fauna. The dwarf shrub habitats of nordiem Europe have been examined by Eyre and Luff (1990) with 

regard to their carabid communides, northern heath exhibited a characteristic community. 

1.4.1. T H E FAUNA O F UPLAND DWARF-SHRUB H E A T H . 

The dominance of ericaceous dwarf shrubs is a key factor in shaping the faunal community. Watts 

Calluna growtli phases provide a useful framework in which to examine the development of the 

heathland fauna. Changes in micro climate as the phases progress, for example, will be of direct 
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relevance to tiie establishment of populations on the ground-dwelling, litter and soil animals, though this 

aspect has mostly been studied on lowland rather than upland heaths in Britain (Usher and Gardner, 

1988). 

As tlie Calluna life cycle proceeds, changes occur in the nutrient content of the foliage, which may in 

turn determine the pattern of utilisation by herbivores (Usher and Gardener, 1988). Similar changes 

occur in the production of litter; with the maximum occurring towards the end of the mature phase and 

the quality can influence the development of the soil and litter-dwelling fauna. There is little 

information on the development of other dwarf-shrub species, e.g. Vaccinium myrtillus. Similarly, the is ^ 

little information on the associated influence on the faunal community, particularly during the pioneer 

and degenerate phases of the Calluna cycle when Calluna occupies less than 50 per cent ground cover 

(Usher and Gardner, 1988). The heathland fauna may have a profound effect on the vegetational 

development. This has been dramaiically demonstrated where infestations of Lochmaea suturalis have 

severely restricted regeneration oi'Calluna in years when die temperature has be been sufficiently warm. 

Usher and Gardner (1988) state that "the development of a soil fauna is primarily influenced by the 

growth phase of Calluna. During the pioneer phase the microclimate is harsh because much of the litter 

is blown away. As die canopy begins to close towards the end of the building phase, the microclimate 

beneath the plants stabilises and the developing litter layer retains more moisture. Under these 

conditions the soil and litter faunas develop rapidly. Litter production begins to decline as the plants 

reach the degenerate phase; the canopy opens out and the microclimate beneath the plants becomes less 

humid. Sufficient moisture is, however, retained by the existing litter and mosses to enable tlie soil fauna 

to retain its diversity". 

Some of the soil fauna has been demonstrated to have seasonal migrations from the surface zone to 

deeper zones during the winter when the surface zone is subject to freezing (Usher and Gardner, 1988). 

A feature of management is the successional patterns associated with the growtli phases Calluna. The 

ground-dwelling and ground-feeding taxa, such as Carabidae, Collembola and some Acarina and 

Araneae, were particularly abundaiu in upland pioneer stands, while the building and mature phases 

were dominated by shoot and sap feeders such as the Cercopidae, Psyllidae and Curculionidae 

(Gimingham, 1985). 

Habitat heterogeneity is a key factor in governing diversity of the invertebrate fauna. Those phases with 

a more open canopy, i.e. pioneer and degenerate stands of Calluna, which exhibit greater floristic and 

microclimatic diversity when compared to building and mature phases, showed greater invertebrate 

diversity (Gimingham 1985). Further evidence was provided by the comparison of the invertebrate 

faunas of burnt and unbumt stands. Unmanaged stands including bushes of all ages unlike those that / 



had been burnt and consequenUy many taxa were more numerous in unmanaged stands (Gimingham, 

1985). In contrast to other habitats relatively little work has been undertaken on the quantitative 

response of invertebrates to the dynamic changes associated with management practices. 

1.4.1. T H E E F F E C T S O F U P L A N D L A N D M A N A G E M E N T . 

Northern Heath has been U-adiUonally managed by burning and grazing and more recently by cutting 

and drainage. This section examines the impacts of such management upon the invertebrate fauna. 

1.4.2.1. BURNING. 

Regular burning on an approximately 15-year cycle reduces the diversity of the invertebrate fauna 

(Giminghain, 1985), but initially the soil fauna is nol adversely affected as little heal penetrates Ihe soil 

surface. The subsequent removal of litter by die wind has been demonstrated to cause a decrease in soil 

invertebrate populations (Chapman and Webb, 1978). 

During the post-bum phase faunal diversity may be quite high as the developing stand of pioneer 

heather provides a wide variety of niches for ground- and plant-dwelling species. Littie is known about 

the rate of recolonisation though Usher & Smart (1989) and Gardner and Usher (1989) suggest that 

recolonisation may be quite rapid. The effects of surrounding habitats is known but in lowland 

heathlands die proximity and diversity of surrounding habitats enhances diversity of the recolonising 

species (Webb, 1986). The interactions of the typical fauna and that from surrounding habitats is not 

known. Rotational burning of northern heath may well reduce the overall diversity because much of the 

area wil l be dominated by building and mature stands, which although supporting high populations of 

some herbivorous species, lack the diversity of the other phases and that of unburn! stands (Usher and 

Gardner, 1988). 

Fishpool and Usher (1989) found differences in the carabid community between pioneer and later phase 

stands, the former being more diverse than the latter, consisting of species in addition to that found in 

the stands with a higher Calluna cover. 

1.4.2.2. G R A Z I N G BY DOMESTIC L I V E S T O C K 

The selectivity of grazing animals is likely to have a positive effect on invertebrates of unpalatable 

plants. Light grazing favours Calluna and prolongs the pioneer phase. This would have the positive 

effect on maintaining die associated invertebrate diversity. Heavy grazing stimulates graminoids and 

forbs (Welch 1984) and could thus stimulate die replacement of heathland species by diose associated 

with grassland. The problem remains as to how to balance the requirements of domestic stock widi the 
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feeding and habitat preferences of the heathland fauna (Usher and Gardner, 1988). The grazing and 

burning interaction may be important since the congregation of grazing animals in recently brijnt areas 

can significantly reduce Calluna regeneration and thus retard recolonisation of heatliland species. 

Conversely the lengthening of the pioneer phase, once Calluna has re-established might have a positive 

effect on invertebrate diversity. 

1.4.2.3. C U T T I N G 

Heather cutting is used particularly where there are extensive stands of degenerate Calluna which can 

prove hazardous to bum due to the high fuel load, provided the terrain is not too steep or boggy. 

Preliminary work Gardner and U,sher (1989) and Usher and Smart (1989) indicate that the invertebrate 

fauna may be impoverished compared to diat of die pioneer phase subsequent to burning due to die 

retention of the litter layer in greater quantities. , ^ • 

1.4.2.4. DRAINING 

Moor-draining or "gripping" has been employed on a number of soils. The immediate purpose is to 

increase the runoff and to lower the water-table to improve the vegetation and consequently livestock 

and game production (Usher and Gardner, 1988). The impacts of moor-draining on plant and animals 

appear to be very localised (Coulson, 1988). Coulson, Butterfield and Henderson (1990) found 

significant increases in a number of groups below the grip namely; Hemipiera, Diptera, Elateridae and 

Staphylinidae on an area adjacent to the present study site. They considered that the main effect was to 

drain pockets of deep wet peat and thus reduce the heterogeneity and consequently the diversity. In 

addition the loss of such areas restricts the spring emergence of invertebrates. These from a major 

contribution to food of young grouse (Butterfield and Coulson, 1975) and therefore drainage is unlikely 

to enhance grouse Ciurying capacity. 

1.5. C O M M U N I T I E S AND T H E N I C H E 

A community is defined by (Krebs, 1985) as "any assemblage of populations of living organisms in a 

prescribed area or habitat ", and having "one or more of the following attributes: 1. co-occurrence of 

species, 2. recurrence of groups of the simie species, and 3. homeostasis or self-regulation ". 

The study of community ecology is pervaded by an important controversy over the nature of a 

community. Is the community an organised .system of recurrent species or a haphazard collection of 

populations with minimal integration? Most of the argument about the nature of the community can be 

centred on two statements: 
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1. Associations are / are not discontinuous with one another. 

2. Species are / are not organised into discrete groups corresponding to associations. 

Two opposing schools have developed in ecology over the question of the nature of communities. The 

organismic school holds that communities are integrated units with discrete boundaries. The 

individualistic school holds that communities are not integrated units but collections of populations that 

require the same environmental conditions. The information available leans more towards the 

individualistic interpretation of the community. Communities are not descijte but grade continuously in 

space and time, and species groups are not consistent from place to place. However, in spite of this 

continuous variation, communities can be classified on the basis of the balance of probabilities with 

some species groups having a greater probability of occurring together than others. A community could 

therefore be vieweti as a group of s(x;cies which form a "ntxie" of enhanced probabiliiy of co-occurrence 

upon a continuum. 

Key to the concept of a community is the concept of the niche. An organism has a response, admittedly 

of varying magnitiides, to all environmental gradients related to its tolerance to that environmental 

variable. If we consider just two environmental gradients, such as temperature and humidity, and 

determine for each the range of values that allow the species to survive and multiply. This illustrated in 

figure 1.7.a. The area in which the species can survive contains its niche. If die concept of fitness, i.e. 

the degree of suitability (measured by a population parameter) is introduced an environmental gradient 

has a fitness distribution, a resixinse curve, with an optimum. Most species have one optimum along the 

environmental gradient and decline to either side; most response curves are approximately bell shaped 

or Gaussian Figure 1.7.b.. Two curves combine to form a response surface. Figure l.7.c. If another 

environmental gradient is introduced then the niche, as defined by the given variables, takes die fonn of 

a volume with the centre corresponding to the optimum. Figure 1.7.d. Now introduce other 

environmental gradients until all the ecological factors relevant to the species have been measured, 

ultimately we arrive at a n-dimensional hypervolume, which is termed the fundamental niche of die 

species. I f two .species have regions of co-occurrence in their hypervolumes of their fundamental niche 

then there is a competitive interaction resulting in the contraction of one or other or botii niche volumes 

to form the realised niche. Odier factors such as predator avoidance can also result in a contraction of 

the volume. It is the degree of niche overlap in a number of dimensions that detennines the degree and 

probabUity of co-occurrences of a group of species. If the realised niche ranges / volumes and the 

optimum, in a limited number of important dimensions, of a species are determined it allows die 

investigation of a species response to an environmental gradient and its relationship to other species to 

be investigated. I f these parameters of ,̂  

compared it enables the investigation of the properties of die community in relation to die environment. 
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Figure 1.7 The Niche, a) The tolerances of two species with respect to moisture and temperature, b) The 

Gaussian unimodal response curve displaying the relationship between abundance value (y) of a species 

and an environmental variable (X). (U=optimum or mode; t= tolerance; c= maximum). C) a Gaussian 

response surface displays a unimodal relationship between the abundance value (Y) of a species and two 

environmental variables (xl and x2). D) a 3 dimensional niche volume with the centre corresponding to 

the optima. 
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Techniques based upon regression and ordination have been developed to allow the investigation of 

species and community relationships both in hypothetical geometric terms exploring the spatial 

relationship between sites and by direct means whereby environmentjd gradients are explored These are 

introduced in the following section and those employed in the present study are discussed in detail in the 

methods. 

1.6. A N A L Y S I S O F C O M M U N I T Y E N V I R O N M E N T R E L A T I O N S H I P 

Problems in community ecology often require the inference of species-environment relationships from 

community composition data and associated habitat measurements. Typical data consist of two sets: data 

on the occurrence or abundance of a number of species at a series of sites, and data on a number of 

environmental variables measured at the same sites. When the data arc collcclcd over a sufficient habiuit 

range for species to show non-linear, non-monotonic relationships with environmental variables, it is 

inappropriate to summarise these relationships by techniques that are based on linear correlation 

coefficients, such as canonical correlation analysis. An alternative two-step approach has resulted, 

employing the following steps : (1) extract from the species data the dominant pattern of variation in die 

community composition by an ordination technique, and (2) attempt to relate this pattern (i.e., the first 

few ordination axes) to die environmental variables. 

After having fitted a particular environmental variable to the species data by regression, we might ask if 

anotiier environmental variable would provide a better fit. For certain species one variable may fit better, 

and for otiier species another variable. The question then arises: what is the best possible obtainable fit 

from the species data that is theoretically obtainable from the model of die equation. 

This question defines an ordination problem, i.e. lo construct the single "hypothetical environmental 

variable" that gives the best fit to the species data according to the model equation. This hypodietical 

environmental variable is termed the latent variable, or simply the (first) ordination axis. Subsequent 

axes can then be extracted from the residual variation (Ter Braak and Prentice, 1988). 

The term "ordination" derives from early attempts to order a group of objects, for example in time or 

along an enviromnental gradient. Nowadays, the term is used more generally and refers to an "ordering" 

in any number of dimensions (preferably few) that approximates some pattern of the response of die set 

objects. The usual objective of ordination is to help generate hypodieses about die relationship between 

the species composition at a site and the underlying environmental factors. In indirect ordination 

methods organise die data solely on die pattern of object responses and use any additional information 

on environmental variables only at a later stage to aid interjiretation. Widi direct meUiods of ordination 

the environmental factors of interest must be .specified with an independent value at each site for each 
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factor (for a species ordination) or the species responses to each factor (for a site ordination) thus direct 

ordination extracts axes based on known environmental variables rather than the latent variable. 

Indirect gradient analysis has its drawbacks. I f the measured environmental variables relate strongly to 

the first few ordination iixes, "they can account for" (i.e., they are sufficient to predict) the majority of 

the variation in the species composition. If the environmental variables do not relate strongly to the first 

few axes, they cannot account for much of die variation, but they may still account for some of the 

remaining variation which may be substantial. The.se limitations can only be overcome by methods of 

direct gradient analysis (Digby and Kempton, 1987 and Ter Braak and Prentice, 1988). 

1.7. C A R A B I D B E E T L E S AS E N V I R O N M E N T A L I N D I C A T O R S AND T H E I R 

A P P L I C A B I L I T Y T O T H E S T U D Y O F N O R T H E R N H E A T H . 

"Ground beedes are a group of insects that serve as useful models to explore many facets of ecology... 

The British fauna is readily identifiable, and exhibits a range of feeding habits from specialist predators 

through generalist predator / scavengers to a few exclusive plant feeders (Rushton et a!, 1991). They 

form a important proportion of die invertebrate communities of upland areas, in terms of species, 

numbers and standing crop (Coulson and Whittaker, 1978 and Coulson 1988). 

Ground beedes have proved to be useful ecological indicators to habitats, both at the formation level 

(Luff et al, 1989) and Community level (Butterfield and Coulson, 1983). They also refiect the overall 

invertebrate communities in the uplands (Coulson and Butterfield, 1985). Numerous studies (E.g. many 

papers in Stork (1990), Rushton et al, 1990, Morris and Rispin, 1988 and Webb 1989) show that c;u-abid 

beetle communities are particularly responsive to habitat manipulations. 

Fishpool and Usher (1989) and Gardner and Usher (1989) have demonstrated differences between 

species composition of patches within managed upland heath. Gardener (1991) has shown differences 

between carabid communities between sites in relation to die flora and diree other variables, diough does 

not state them all or give any indication of their statistical significance. 

However, ground beedes often reflect aspects of their habitats other than vegetation composition (Eyre 

and Rushton, 1989). These have yet to be studied except in the broadest sense with between site 

comparisons E.g. rainfall (Gardner, 1991). 

Ground beedes exhibit relatively poor powers of dispersal as many, ca. 90% in mooriands (Bauer, 1989), 

are flighdess. They thus exhibit basic compliance, at the community level, with island biogeography 

theory widi respect to: island size (Bauer, 1989 and Webb, 1989); distance (Bauer, 1989), time (Terrell-
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Nield, 1990); .md habitat complexity / development (Gardner, 1991). 

These attributes of carabid conununities coupled with their usefulness in die quantification of 

conservation criteria (Eyre and Rushton, 1989) make ground beeties an ideal group in which to study die 

community response to moorland management. 

1.8. A I M S 

The aims of this investigation were to investigate the response of invertebrates of Calluna-Vaccinium 

headi, using the carabid beeties as indicators, to the effects of burning and grazing in concert using 

floristic attributes of the vegetation, structural measures and microclimatic! as a framework to quantify 

the habitat response to the interaction of management practices. 

25 



2. METHODS. 

2.1. S T U D Y A R E A AND S A M P L E S I T E S . 

The .sUidy was carried out on Wa.skeriy Moor in Weardale, County Durham, England (National Grid 

Reference NZ 04). Fourteen sample sites were used distributed within NZ 0044, NZ 0045, NZ 0145 and 

NZ 0245, see figure 2.1. for the approximate locations of each sample site. The study areas vegetation 

was comprised of Calluna vulgaris-Vaccinium myrtillus heath, Cailuna vulgaris sub community 

(National Vegetation Classification community H12a). The study area is managed for bodi grouse and 

sheep and is thus managed by burning. The vegetation is therefore comprised of a patchwork of 

variously aged stands of Calluna. The majority of the patches were comprised of mature to degenerate 

phase Calluna, the remaining were predominandy post-bum or pioneer phase Calluna. This pattem 

appears to reflect a management history whcic burning was reintroduced after a (Tcriod of cessation of 

this practice for a period. 

The stocking rate of sheep was relatively high and on the lower areas of the moor, though not in the 

vicinity of the sample sites, this is reflected in the vegetation in the form of invasion by Pteridium 

aquilinum. 

Sample sites A, C, D, J and N. where pioneer phase sites, L, E and H where post-bum sites, M . F, G, K 

and B where mature to mature / degenerate phase sites and I was a building phase site. Appendix 1 gives 

details of the vegetation cover and structure. 

2.2. P I T F A L L T R A P P I N G 

Ten pitfall traps were set at each sampling site, in a row with 3m intervals between them. They consisted 

of 200inl polystyrene cups widi a neck diameter of 6 cm containing 2% formalin with a small quantity of 

detergent added to lower the surface tension and dius act as a wetting agent. Catches were collected al 2-

3 weekly intervals between 9th of April and 12th July. The carabid beetles were identified using 

Lindroth (1974) and nomenclature follows this author. 

2.3. E N V I R O N M E N T S A M P L I N G 

2.3.1. V E G E T A T I O N SAMPLING. 

The percentage cover of each vascular plant species was assessed using a point quadrat to sample 100 

points from widiin a Im^ horizontal quadrat. This was repeated ten times per sample site. The 
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vegetation height was Measured using a drop disk of lOOg and 20cni diameter. The height was 

measured in 25 locations widiin each of the 14 sampling sites. 

2.3.2. S O I L SAMPLING 

Five 5cm diameter soil cores were taken from each site. The percentage water content of the soil was 

determined by drying the cores at 50°C to constant weight and calculating the water loss and 

subsequently the percentage. The organic matter content was determined by ashing die soil in a muffle 

furnace at 450°C and calculating the loss due to combustion. 

2.3.3. M I C R O - T O P O G R A P H Y 

The micro topograohy was determined by measuring die variation in the soil surface in relation to a 

horizontal plane, determined by a spirit level. 
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Figure 2.1. The approximate location of the 14 sample sites. 
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2.4. D A T A A N A L Y S I S 

2.4.1, S P E C I E S D I S T R I B U T I O N . 

Visual inspection of species abundance plots suggested that die data fitted Fisher et al. (1943) log series 

model. The log series model was fitted to the species data as per (Magurran, 1988). The observed species 

abundance's were put into abimdance classes in log^. 0.5 was added to the upper boundary of each class 

so that it would be unambiguous to assign the observed .species abundance's to each class. 

The log series takes the fonn; 

ax, , a x ' . . . or 

2 3 / 1 

where cu is the number of species with one individual, ax^ll the number of species widi two 

individuals, etc. 

To fit the series it was necessary to calculate die number of species that were expected to have one 

individual, two individuals and so on. These expected abundance's were then put into the same 

abundance classes used for the observed distributions and a test is applied to statistically coinpcue die 

two distributions. 

The two parameters needed to fit the series are x and a. x is estimated by iterating the following temi 

S / N = |()-x)/r](-ln(]-x)] 

Where S = total number of species and N = total number of individuals. 

When a and x had been obtained die number of species expected to have 1, 2, 3,...n individuals were 

calculated. These values were summed for the appropriate abundance classes and used as the observed 

values. 

2.4.2. A N A L Y S I S O F C O M M U N I T Y E N V I R O N M E N T R E L A T I O N S H I P S 

2,4.2.1. R E G R E S S I O N ANALYSIS 

Linear, least squares, regression analysis was perfomied on the whole data set to investigate the species 

envirormient relationship and die relationship between environmental variables using SPSS-PC. 
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Weighted average regression using CANOCO (Ter Braak, 1987) was used to investigate the 

relationships between environmental variables. 

2.4.2.2. CLUSTER ANALYSIS 

TWfNSPAN is a polythetic divisive method of classification and thus has considerable benefits over 

agglomerative methods based upon similarity measures as the outcomes of the higher levels of the 

hierarchy are not strongly dependant on the way in which the samples are clustered at the lower levels 

but instead base their classification upon the overall structure of the data at the outset. Thus the higher 

levels of the hierarchy are relatively insensitive to the details of the clustering at the lower (Digby and 

Kempton, 1987). 

The stages of a TWINSPAN analysis are as follows (Hill, 1979); 

1. Identification of a direction of variation in the sample data by ordinating the samples in a 

primary ordination using the method of correspondence analysis (Hill, 1973). 

2. Division of tlie ordination through its middle to obtain a crude dichotomy of the samples. 

3. Identification of differential species that are preferential to one or the other side of the crude 

dichotomy. 

4. Construction of a refined ordination, using the differential species as a basis. 

5. Division of the refined ordination at an appropriate point to derive ihe desired dichotomy. 

6. Construction of a simplified ordination, the "indicator" ordination, based on a few of the 

most highly preferential species. This ordination is then evaluated to see whether the 

dichotomy suggested by the refined ordination can be reproduced by a division of the , 

indicator ordination. 

With the exception of borderline cases, tlie refined ordination is used to detemiine Ihe dichotomy. The 

indicator ordination is essentially an appendage, in order to provide a succinct characterisation of the 

dichotomy. 

The idea of differential species is essentially qualitative, and to be effective with quantitative data must 

be replaced by a quantitative equivalent. This equivalent is tlie "pseudo species" (Hill , 1979). The 
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essential idea is that much of the quantitative infonnation can be retained by expressing it on a relatively 

crude scale. The levels of abundance that are used to define the crude scale are termed "pseudo species 

cut levels. The method of pseudo species allows quantitative values to be used as differential species and 

as indicators, thus samples with many of species A cim be separated from samples witli only a few 

individuals of species A by defining the sample with many individuals as having two or more pseudo 

species (Hil l , 1979). 

2 .4 .3J . ORDINATION 

Transformation of data. 

Transfonnalion of species abundance's are necessary for a number reasons: 

At one extreme, abundance values may have an enormous range, over orders of magnitude. General 

experience suggests a preference for abundance values with an intermediate range of approximately 0 -

10 (Gauch, 1982 and Digby and Kempton, 1987).This range allows both quantitative and qualitative 

infonnation to be expressed without either dominating the other. A number of reasons bear upon die 

recommendation to use an intermediate range. 

1. Biological processes responsible for the abundance's are of an exponential nature leading to 

an enormous range of abundance's. Consequently, only the few dominant species rather than 

the entire species composition, conu-ol the results of many analysis's unless a transformation 

is applied to put the species on a more equitable footing. 

2. Sampling limitations and spatial and temporal fluctuations in species populations imply that 

for most community data the reliable information can be carried by one digit. 

3. The results of multivariate analysis are affected liltle by finer differences in the input data. 

4. Minimise of scale dependence. 

The logarithmic transformation , ln(Y+c), has a predominant place in quantitative ecology: it has the 

effect of compressing large values relative to small values in the data matrix (Digby and Kempton, 

1987). The constant c is usually chosen to take a small positive value so as to reduce differences between 

small data values and particularly , to cope with zero values. This form of transformation is particularly 

relevant, as in this study, where the data conforms to the underling log series diversity model. The value 

of c used was 1. 
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Indirect ordination 

The method of ordination vaiies with the underlying regression model. The latent variable can be 

obtained by an alternating sequence of regressions and calibrations, the methods used depending upon 

the model selected: 

1. Start with some (arbitrary) initial site scores [x_.) with zero mean. 

2. Calculate new species scores ( b j by the regression model chosen'. 

3. Calculate new site scores (x, ) by the corresponding calibration method. 

4. Remove the arbitrariness in scale by standardising the site scores using the metliod appropriate to 

the regression model. 

5. Stop on convergence, i.e. when the newly obtained site scores are close to the site scores of the 

previous cycle of iteration, else repeat from step 2. 

The final scores do not depend on the initial scores (Ter Braak and Prentice, 1988). 

Ordination can provide latent variables in any number of dimensions; one latent variable is derived first, 

and the second latent variable can be obtained by applying the same process again but with one extra 

step - after step 3 the trial .scores are made uncorrected with the first latent variable by 

orth ogonal i zati on. 

The resultant axes cim be thought of as hypothetical environmental gradients, which cu-e subsequently 

interpreted in terms of measured environmental variables in the second step of the analysis by regressing 

the site scores for a given axes against the environmental variable for that site. 

The melliod of ordination used was dcircnded corcspoiulance analysis (DCA). DCA is a dcriviiive of 

Corespondence Analysis (CA) (Hill 1973) an ordination method which employs weighted averages as a 

heuristic alternative to Gaussian -type models. Ter Braak and Looman (1986) showed by simulation of 

presence-absence data that weighted average estimation estimates the optimum of a Gaussian logit curve 

as effciently as the maximum likelihood technique of Gaussian logit regression given certain conditions. 

However there is a problem with second and higher axes in CA. The problem is the well known but not 

well-understood "arch effect". I f the species data come from an underling one-dimentional Gaussian 

model the scores of the second ordination axis show a parabolic ("arch") relationship with tliose of the 

first axis; i f the species data come from a two-dimentional Gaussian model in which the true site and 

species scores are located homogeneously in a rectangular region in two-dimentional space, the scores of 

the secondordination axis lie not in a rectangle but in an arched band (Hill and Gauch, 1980). The arch 

effect arises because the axes are extracted sequentially in order of decresing "varicnce". (Ter Braak and 

Prentice, 1988). As a result of the arch effect, the two-dimenlional CA solution is gererally not a good 
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approximation to the two-dimentional Gaussian ordination. Hill and Gauch (1980) developed DCA as a 

heuristic modsification of CA designed to remove both tlie edge effect and the arch effect. The method 

emploed in this study was detrending by polynomials as implemented by CANOCO (Ter Braak, 1987), 

as less "zealous" method of detrending than originally employed by Hill and Gauch (1980) (Ter Braak 

and Prentice, 1988). It has been shown that DCA often works remarkably well in practice and gives a 

good approximation to Maximum likelihood Gauissian ordination in simulated data sets were the 

species have identically shaped Gaussian surfaces (Ter Braak and Prentice, 1988). 

Direct ordination. 

Canonical correspondence analysis (CCA) is a constraint ordination technique, the results of which are 

based on species presence or abundance and values of environmental variables simultaneously. CCA 

differs from CA in that the ordination axes are constrained lo optimise their relationship with a set of 

environmental variables, the direction in which they operate can be indicated in the ordination diagram 

by arrows, i.e. a biplot. Before calculation of the biplot co-ordinates the environmental variables are 

standardised to zero mean and unit variance. This is necessary when using environmental data which 

are on different, and often arbitrary, scales of measurement. The co-ordinate of the head of the arrow on 

axis s must be [Xs (1 -XsV^ limes the intraset correlation of the environmental variable with axis s, 

where Xs is the eigenvalue of axis s and it is assumed that the species scores are standardised. By 

connecting tlie origin of the plot (the centroid of the site points) with each of the arrowheads, we obtain 

the arrows representing the variables, with their lengths proportional lo their rate of change in the 

weighted average as inferred from the biplot. Their length is therefore a measure of how much die 

species distributions differ along that environmental variable. Important environmental variables 

therefore tend to be represented by longer arrows than less important ones. Only the direction and 

relative lengths convey infonnation. By inspection of die angles between arrows, one may visualise the 

association (conelation) between species presence or abundance and increasing values of the 

environmental variables. Species are represented by points in the ordination diagram. These points 

represent approximate values of the weighted averages of the species with respect to enviromnental 

variables. The word "approximate" means that the ordination diagram does not explain the exact values 

and, therefore, does not "explain" the total variance in all the.se weighted averages, but a fraction (ki + X 

2)/(sum of all canonical eigenvalues), whereXi and Xi are the first and second canonical eigenvalues. 

Statistical validity of the resulting environmental axes can be evaluated by an unrestricted Monte Carlo 

permutation test (Ter Braak, 1986 and 1987). The test is carried out by randomly permuting the sample 

numbers in the environmental data. For each random data set generated in this way, tlie first eigenvalue 

and the sum of all eigenvalues (trace) are calculated. If the species occurrences or abundance's are 

significantiy related to die examined environmental variables, then these values calculated from the 

original data are among the 5% highest values calculated from at least 100 random data sets. The first 
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eigenvalue is used for testing the importance of the first ordination axis. The trace is used as an overall 

test of the effect of the environmental variables on tlie species. 
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3. R E S U L T S 

A total of 32 species of c;ir;ibid licctlcs, rcprcseiiling 16 guncra, were identified from the 14 sample sites. 

Some 4433 individuals were collected with the va.st majority belonging to just 3 genera, namely 

Carabus, Pterosticluis and Trecluis, will i 11.5% , 36.5% and 23% of the catch respectively totalling 

over 70%; of the catch. Six (iliier genera each contrihulcd over 1% of the catch namely Notiophiliis, 

Nebria, Cahitlius, Tricliacclliis, Bnidycclliis and Bembidion with 2.39%, 6.72%, 7.56%, 4.22%,1.62% 

and 6.29% respectively. The seven remaining genera being represented by a few individuals only. Table 

3.1 shows the nniuhcr of each s|iccies caught at Waskcrly. Appendix 2 shows the species numbers for 

each of the sampling sites. 

T A B L E 3.1. NuniiH'.i>i of carabids captured in pitfalls at 14 sites on 

Waskcrly Mooi and llie miriibcr ol'sile occuireiu cs. 

Species 
niiinbcr 

Species name Number of 
Sites 

Number of 
individuals 

1 Canibiis (irwnsis 2 2 
2 Carabiis iicniortilis 12 74 
3 Cdrabiis riilens 6 18 
4 Cnrabus problemaiicus 14 355 
5 Caridius viohiceits 12 53 
6 Plerosuclnis sircniiiis 14 133 
7 Pitroslicliiis (idslriciiis 11 1320 
,S Plcrosiiclms d 'dii^cns 12 93 
9 Piciosi id HIS n it^er 6 17 
10 Pleroslicliiis nii^riht 2 2 
1 1 PlerosUchiis niudidiis 7 42 
12 NoiiopliHiis bif^iiiliiiiis 7 43 
13 NoliophUus f^emufiyi 11 63 
14 Miscodeni arctica 4 15 
15 Nebriii siditui 10 293 
16 Neb rid b re \ nco 1 lis 2 5 
17 Cidiilliiis- ndcropienis 14 250 
IS Ctiltilliiis nicUinoccphidiis 12 85 
19 Pdlrobiis scptcntrionis 1 I 
20 L oriceni p Hi corn is 3 5 
21 Anuira liinicollis 6 7 
22 Lcisliis riifcsceiis 3 9 
23 Hnrjndtis iieneiis 1 1 
24 Trccliiis obiiisiis 14 1004 
25 Trccliiis (iiiiidrisiriiiliis 2 3 
26 Tricliocclliis coi;n(iliis 14 187 
27 Bnidycclliis liiirp<diriiis 5 6 
28 Bradycclliis riificodis 10 58 
29 Bradycclliis ccdlnris 6 8 
30 Aiiiiirid fdinilidris 1 1 
31 Bembidion nnicolor 14 278 
32 Bembidion sp 1 1 
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3 . 1 . S P E C I E S A B U N D A N C E 

Visual examination of Figure. 3.1., rank of species (ascending order) against abundance suggested that 

the Carabidae of the Study site fitted Fisher's logarithmic series model of species diversity (Fisher et al, 

1943). Figure. 3.2 shows the same data but with a logaridimic plot of abundance. This shows an 

approximately linear relationship after plotting on a logariduriic scale. 

Regression and correlation of this) data, using log transformed abundance data, is displayed in Figure 

3.3. This shows a highly significant correlation (r =0.9933; p <0.001; df = 31). 

The observed species distribution, expected distribution according to Fisher's model and % ^ for the 11 

abundance classes necessary to fit the model to die data are given in Table 3.2. No statistical difference 

was detected between observed species distribution and the expected distribution of the log series model 

(Ex' =6.32; P > 0 . 7 0 ; d f = 10). 

T A B L E 3.2. The obser\'ed species distribution, expected distribution according to Fisher's 
model and % ^ for 11 abundance classes 

Class Upper boundary Observed Expected 

1 2.5 1 6.6 0.02 
2 4.5 2 2.6 0.14 
3 8.5 4 2.8 0.51 
4 16.5 2 2.9 0.28 
5 32.5 2 2.9 0.28 
6 64.5 5 2.9 1.52 
7 128.5 3 2.9 0.00 
8 256.5 5 2.7 1.52 
9 512.5 1 2.5 0.90 

10 1024.5 1 2.2 0.65 
11 1 2.0 0.50 

Number of species 33 33 I X ' = 6.32 
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Figure 3.2. Species abundance distribution, logarithmic scale. 
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Figure 3.3. Regression of logarithmic species abundance distribution. 

3.2. SPECIES RICHNESS AND DIVERSITY INDICES 

Table 3.3. shows the number of species, the number of individuals trapped and diversity indices for the 

catches from the 14 individual sampling sites. 

The recent post bum sites, E , H & L , had the highest number of species with over 20 species each. The 

late pioneer sites. A, C, D, J & N, have 17 to 22 species and the building to degenerate phase sites, B, F, 

G, I, K & M, have the lowest number of species with 13 to 15 species. 

The same pattern is reflected in the number of individuals caught at each sites. Sites E , H, & L trapped 

on average 466 individuals, 31 % of the total. Sites A, C , D, J & N trapped on average 326 individuals, 

37% of the total and sites B, F , G, I, K & M trapped on average 233 individuals, 32% of the total. Figure 

3.4. illustrates the relationship between the number of individuals trapped and the number of species 

trapped, it shows a highly significant relationship (r = 0.7290; p < 0.01 ; df = 12). 

The diversity indices are somewhat inconsistent in their ranking of the sites, table 3.4. Though the 
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results of Spciirnuin's rniik correlations which are presented in table 3.5. show that the ranks of all the 

indicies, bar the Margalcf, are sigiiiricaiitly correlated with each other (p<0.01; df 12) Therefore the results 

of these indicies are comparable and need not be considered individually. Some of the difference in the 

Margalcf index can he allrilniled lo ils diflcreiit sciisilivily to sample size. However the general pattern 

suggests that the sites in the late pioneer phase, C, D, J & N, have the highest diversities. The post-bum 

sites, E, H & L , have inlermediate divei-sities and the post pioneer sites, B, F, G, K & M , have lower 

diversities. Two sites, A & 1 (pioneer and building phase respectively), do not fit this trend.. Site A has low 

scores for most of the indices, a refieclion of the relatively high species richness (Margalef = 3.070) with an 

uneven (J evenness = 0.536; Var. H' = 0.007) species structure. Site I has a consistently high diversity score, 

a reflection of its intermediate species richness (Margalef = 2.219) and even conununity structure (J 

evenness = 0.780; Var. H' = 0.003).Some of the variation in the diversity idiccs could therefore be related to 

the relationship between tiie number of individuals caught and the number of species caught.^^ 

TABLE 3.4. Comparison of diversity measures 

D Y D,„, HB J H' 

J * * * 1 * * * 0 . 1 7 o.ys*** 0.94*'* 0 . 9 S * * * D 
J +•** 0 . 1 5 0 . ^ 6 * * * 0.96*** 0 . 9 7 * » * Y 

0.2."; - 0 . 0 4 * " 0 . 2 0 Ding 
J *** o.sy*** 0.99*** HB 

0 . 8 9 * * * J 
!•'* H' 

*** p < 0.001 
D = Simpson index, Y = Yule index, D,iig=MargairfiiidM, HB = Brillioun index, 
J = Lloyd and Ghelardi's index and H' = Shannon index. 
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Figure 3.4. The relationship between the number of species and individuals trapped per sample site. 
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3 . 3 . E N V I R O N M E N T A L V A R I A T I O N 

Average (weighted) values of the cnvironmenlal variables for the 14 sample sites (Table 3.5.). The high 

standard error on some of the environmental variables indicate that there was considerable variation 

between sampling sites reflecting the considerable between sample site heterogeneity of the study site. 

Indicate that the main differences between the sites concern the degree oiiCalluna cover and vegetation 

height and to a le.sscr extent the organic content of the soil, though the variance measures are difficult to 

interpret. 

Inter-correlations of the environineiilal variables are explored in tables 3.6. & 3.7., Pearson product-

moment correlations and weighted lorrelalinns respectively. The significance of these correlation's are 

also given in tables 3.6 and 3.7 respectively. A strong set of significant inter-correlations exists between 

the various environmenla! variables, particularly between the percentage cover ofCalluna with the other 

environmental variables indicating that the percentage cover o[' CulliirHi is the dominant and governing 

factor for the variation between sampling sites. 

Table 3.5. Average (Weighted) values of the environmental variables from the 14 sample sites. 

NO. ENVIRONMENTAL WEIGHTED STANDARD 
VARIABLE MEAN DEVIATION 

1 Micro-topdgiapliy 10.11 9.43 
2 Micro-topography variance 654.07 422.92 
3 Bare Ground 47.78 35.37 
4 Bare ground variance 306.06 410.56 
5 Calliitni cover 39.37 38.64 
6 Cdllitini cover variance 126.93 169.82 
7 Moss cover •1: * 

8 Moss cover variance 126.93 168.85 
9 Sorrel cover 1.13 2.39 
10 Sonel cover Vjiiiaiice 15.55 33.63 
11 li. iciidli.y cover i.LS 3.15 
12 E. Iclnilix cover variance 21.57 56.82 
13 Woody debris 35.40 32.80 
14 Woody debris variance 1.87 1.86 
15 % water content of soil 29.90 9.52 
16 Vegetation height 13.08 13.44 
17 Vegetation height variance 32.42 64.68 
18 % Organic content of soil 86.42 10.62 

high co-variability with another variable therefore not calculated. 

42 



c 
o 

a. 

o o 

I (N O 
\0 

d d o 

o o o o 

vo r~- o ro 
-O CO O 
d d d d d 

DO O 00 rn 
Q , ^ „ „ ^ 
d d d d d ' 

o o o o o o o 

o o o o o o o o 

o o o o 
*n 00 

r i r-l o 
d d d d d 

d d d d d d d d p d 

o o o o o o o o o o o 

o o o o o o o o o o o o 

^ 1"^ I 0\ \0 ("̂  O rO O CO rn 
VT) r l r i O O r-i en "̂ f »o cO r-i 

d d d d o o o o o o o ' 

I -rf vo '-' w"( M:> *o r-~ m m o 
f O O ^ O ' - ' T ' ^ ' - ' ' - ' C ? \ ' 0 » ' ' ) 0 ^ » r i O 
d d d d d d d d d d d d d d 

•-« »rt |-~- O "T r i cr> CO t-' O « Q> Q> r~ O \0 
O ro — O O >0 r i O O O ^ r l 
d d d d d d d d d d d d d d d 

- T O o o » ^ ) c o c o o o r - i ' ^ v O ' ^ r ^ o o o \ r - o \ 
oo-— O O O O ' — O ' - l ' ^ l ' ^ l f l ^ O ' - ' O 
d d d d d d d d d d d d d d d d 

- - R S 
•o -o 

i> o o 

P c c o 

5 _ _ g 

S g cS m 
^ J 

•j O ̂  
fc 
o o , . . 

W (/I k ) Uj 

i ; XI XI 
(J y O O 

a S S a, 

— r-l m -t V I vo 00 Ov 

o 
-a o 

•c 

I s 

-a . -
• S o 

o 

f<1 



t r^ 
w-> O 
d p 

O O O O 

Vi -T O 
»o >n 00 o 
d d d d d 

m o r^i 
o ^ ^ m 
d d d d d d 

o o o o o o o 

d d d o I 

I a* 1 ^ 00 w) r i n r-- m t~-
Ch »- ^ r i « r-i CO r-l O 
d d d d d d d d d 

o u o 

—< r i o r l 
O O O O 
d d d c) o o o o o o 

lo 
1^ 

O Q o o o 

CO r̂ I ^ n 0\ fO vo 
O — -H CO r l ^ r l 

d d d d d 
3 
O 

o o o o o o o o o o o o 2 
a 

J 3 

O O O O O O O O O C D C I C D O 

r j iri ^ ^ t~- O 1 ^ (̂ I r l r l r l 
r l O N O O f l rn " —< ON vo i/"i C^ »o O 
d d d d d d d d d d d d d d 

-a 

o 

J 3 

« . H | - - 0 ^ - T O I ^ v O 0 0 ^ P ^ 0 f > 2 O ^ • Q N O ^ 
" r n O - ^ - T - H O O O r l O - H C i O r l 
d d d d d d d d d d d d d d d 

^ o w r-
O O O p 
d d d d d d 

o o o o o o o o 

> N 

o 
p 
d 
V 

OH 

O 

o 

co 
o 

o o b c 
t i C = =1 
o 2 P o Q 8 

^ S! t i- -

H w u o 

• ^ 2 f2 tJj 
re Q> ci 
i c(j CO O 

'.5 
T 3 

1 3 

.— r l fO -r Wl U3 CO O' > 

in o 
d 
V 

OH 



3.4 . COMMUNITY ENVIRONMENT RELATIONSHIP ANALYSIS 

3.4.L R E G R E S S I O N ANALYSIS 

Few of the linear (least .squares) correlation coefficients of individual species against the environmental 

variables where significant therefore die method was inappropriate and die results are not presented. 

3.4.2. C L U S T E R ANALYSIS 

The results of die TWINSPAN analysis are presented in Fig 3.5. and 3.6. The classification of the sites 

is slightly unstable depending upon the psuo speicel cut levels used and upon the cut level of omission of 

rare species used. However in the majority of the analysis's the samples were separated into two main 

classes at the first division, one, site group 1, with mature or virtually no Calluna the other, site group 2, 

with Pioneer Calluna. Al l analysis's suggest three main ecologically meaningful groupings at die second 

division with Carabidae assemblages corresponding to diree stages of headier development, namely: 

post-bum / early pioneer, late pioneer and building to degenerate. At subsequent divisions the groupings 

can be interpreted in relation to die developmental phases of Calluna diough whedier this is justifiable, 

given the size of the end groupings. 

In general the TWINSPAN analysis was characterised by five species groupings, see figure3.6., they 

were as follows: 

Species group A is comprised of: Pterostichus madidus, Carahus arvensis, Harpalus aeneus, Amara 

familiaris, Pterostichus niger, Leistus rufecens, Bradycellus collaris, Carabus violaceus, Bradycellus 

harpalinus and Bradycellus ruficollis. 

Species group B. is comprised of: Trechus obtusus, Calatlius micropterus, Pterostichus strenuus, 

Calatlius melanocephalus, Trichocellus cognatus, Carabus nemoralis and Carabus problematicus 

Species group C. is comprised of -.Notiophilus germinyi, Pterostichus adstrictus, Pterostichus diligens 

and Bembidion unicolor. 

Species group D. is comprised of: Notiophilus biguttatus, Amara lunicollis, Loricera pilicornis, 

Miscodera arctica and Nebria salina. 

Species group E. is comprised of: Carabus nitens, Pterostichus nigrita, Nebria brevicollis, Patrobus 

septentrionis, Trechus quadristriatus and Bembidion sp.. 

Species group A chiu-acterises the sample sites with higher Calluna cover, site group la. The species of 

which group A is comprised also occur in more open sites but at lower frequencies or are less constant 

in site group 2. Characteristic species are Carabus violaceus, Pterostichus niger, P. madidus and 

Bradycellus ruficollis. 
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Figure 3. 5. TWINSPAN analysis of 14 carabid sample sites on Waskerly Moor; the indicator species at 
each division are given Psudospecies level in brackets. Sites are coded A-N. Details of the endgroups are 
given in figure 3.6. and in the text. 

M F I G K a H L E D J C N A 

Pieroslichus madidus 
Carabus arvensis 
Harpalus aeneus 
Amara familiaris 
Plerostichus niger 
Leistus rufecens 
Bradycellus collaris 
Carabus violaceus 
Bradycellus harpatinus 
Bradycellus ruficoltis 
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Notiophllus biguttatus 
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Miscodera arctica 
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Carabus nitens 
Pterosticlms nigrita 
Nebrla brevicollis 
Palrobus septentrionis 
Trechus quadrislriatus 
Bembidion sp. 
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Figure 3.6. TWINSPAN output for the 14 carabid catches together with the psudospecies level. The 

species groups are coded A-E and site groups 1, la and 2. The individual sample sites are coded A-N. 
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Species group B. is comprised of ubiquitous species with a similar numerical distribution, witliin the 

confines imposed by the use of pseudo species, between the two site groups. Carabus problermticiis is 

particularly characteristic. Other preferential include C. nemoralis, and Trichocetlus cognatus. 

Species group C. is comprised of species which although ubiquitous show a stronger preference for post 

bum and pioneerpha.se sites, characteristic species include.- N. genninyi P. adstrictus, P. diligens. 

Species group D. strongly characterises the post-bum and pioneer phase sites, site groups lb and 2. The 

group is comprised of species with a higher p.seudo species level. Characteristic species include N. scilina 

and A', biguttatus. 

Species group E. also characterises site group 2. It is comprised of the less common species, namely e.g. 

C. nitens 

Three site groups are recognised by the analysis: la characterised by species group A, B and C and 

comprised of sites M , F, I , G, K and B and building the degenerate phase Calluna sites. Site group lb 

is characterised by species groups A, B, C, and D and is comprised of the three post bum sites, H, L and 

E. Site group 2 is characterised by species groups B, C, D and E. It is comprised of the pioneer phase 

sites D, J, C, N , and A. 

3.4.3. O R D I N A T I O N . 

3.4.3.1. I N D I R E C T ORDINATION 

Ordination diagrams of the results of a Detrended Correspondence Analysis (DCA), using log (ln(Y+l)) 

transformed species abundance values, are presented in Figures 3.7. 3.8. and 3.9.for species, sites and 

envirormiental variables respectively. 

DCA explores the maximum amount of variation in the species data. The axes can be interpreted as 

hypothetical environmental variables with the maximum discriminate ability. There is relatively little 

variation in the species data reflected in the low eigenvalues, 0.215, 0.064, 0.045 and 0.026 for axes 1-4 

respectively. The majority of the community variation is displayed in axis 1, eigenvalue = 0.215, which 

has a considerable higher value than all the remaining axes , eigenvalues < 0.077. This suggests that one 

variable, or a set of co-variables, dominates the variation displayed by the species data. 

The plot of the first two axes of the DCA data for each of the sites is shown in figure 3.8. Lines join the 

positions of the sites in each TWINSPAN cluster on the plot. The most obvious feature is the 

arrangement of the sites in each group along the first axis; the mature Calluna sites having much lower 

axis one scores than the pioneer sites and the post-bum sites with scores midway between the two. The 

closest sites to the origin (the point of average community composition) on axis one are sites H, E, & L, 
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See Fig. 3 .9 for key 

Figure 3 .7. Detrended correspondence analysis species diagram. X: CD=Carabus nemoralis: 

Cm = Carabus nitens: Cp = Carabus problematicus; Cv = Carabus violaceus; Ps^Pterostichus sirenuus; 

Pa = Pterostichus adstrictuus; Pd = Pterostichus eUUgens; Pn = Pterostichus niger; Pm s Pterostichus madidus; 

Nb=Notiophilus biguttatus; Ng = Notiophilus germinyi; Mi = Miscodera arctica; Ns = AfeAria ja//na,- O n = Calathus micropterus; 

Cms = Calathus melanocephalus; Lp = Loricera pilicornis; Al = Amara lunicoUis; hi = Leistus nrfescens; To = Trechus obtusus; 

lc = Trichocellus cognatus; Bli = Bradycellus harpalinus; Bt = Bradycellus n^oUis; Be = Bradycellus collaris and Bu = 

Berhbidion unicolor. 
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Figure 3.8. Detrended correspondence analysis diagram of the sample sites, 
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Figure 3.9. Detrended correspondence analysis diagram of the environment variable biplots 

1 Micro-topography 
2 Micro-topography variance 
3 Bare Ground 
4 Bare groimd variance 
5 Calluna cover 
6 Calluna cover variance 
7 Moss cover 
8 Moss cover variance 
9 Sorrel cover 

10 Sorrel cover variance 
11 E. tetralix cover 
12 E. tetralix cover variance 
13 Woody debris 
14 Woody debris variance 
15 % water content of soil 
16 Vegetation height 
17 Vegetation height variance 
18 % Organic content of soil 
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the three youngest sites, illustrating the preponderance of the more ubiquitous species , i.e. those near 

the origin on the species plot figure 3.7. The first axis appears to be directly related to the successional 

status of the vegetation to some degree, though in a complex manner. 

The ordination which is related to that used in the TWINSPAN analysis shows that in fact the 

dichotomy produced by TWINSPAN is in fact comprised of three clusters with the central one spanning 

the origin and not an artificial division imposed upon the data. The sites were therefore split into two at 

the first division of TWINSPAN, however the ordination suggests that splitting into three would be more 

appropriate. 

The ordination displays no direct evidence for a cyclic change in die carabid community paralleling that 

in the plant community. However the polarisation of the axis with the post-bum sites in the centre 

necessitiites a reversal of the direction of community change at some point. However this need not be a 

steady transition from one state to another but may occur as a jump. The second axis shows no clear 

discrimination between sites. 

The ordination of species shows a number of outlying species, all of which are rare, namely; Harpalus 

aeneus, Amara familiaris, Patrobus septentrionis, Carabus arvensis, Pterostichus nigrita and Nebria 

brevicollis. These are all outliers on the second axis and their status as outliers can be attributed to their 

rarity. Therefore axis 2 has less real variation than that displayed in the ordination diagram. The species 

ordination diagram shows a gradual gradation along both axes, outliers excepted, indicating that there is 

no major separation of the species into separate groupings. However tlie groupings imposed by 

TWINSPAN can be discerned, though there is considerable overlap. 

Figure 3.9. is a DCA biplot diagram of the environmental variables. The length of the arrows relative to 

each other is indicative of the amount of variation in the species and thus site data explained by the 

variable in question. It shows that the environmental variables can be divided into three types, the first 

group, that displayed in the lower right hand quadrant of figure 3.9., is indicative of environmental 

heterogeneity and is comprised of either those environmental variables that measure this directly i.e. the 

variance measures, namely: variance of bare-ground, variance of woody debris, variance in Calluna 

cover, variance in Rumex cover, variance in E. tetralix cover and micro-topographic variation, or tliey 

are variables which show very considerable between site variation namely Rumex, moss and E. tetralLt 

cover. 

The second group, that displayed in the upper right hand quadrant is that indicative of the openness of 

the sample site. This group is comprised of three variables namely: bare ground cover, woody debris 

cover and moss cover variance. 
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The third group, in the lower left quadrant is that associated with Calluna development. The group 

comprises of four variables namely: Calluna cover, Calluna height, Calluna height variance and water 

content of the soil. 

The lengths of the biplot arrows are indicative of the corresponding environmental variables relative 

importance in explaining the variation displayed by the species data. 

Results of weighted correlation's coefficients of site axis values correlated against the respective site 

environmental values, without and with the deletion of outling species are presented in Table 3.8 and 

3.9. respectively, together with their significance. These tables show that of the eighteen environmental 

variables only eight could be significantly correlated to the community at each site, namely: bare ground, 

bare ground variance, Calluna cover, moss cover variance, woody debris, woody debris variance, % 

water content of soil, vegetation height and vegetation height viu-iance. 

Table 3.8. Inter set correlations of environmental variables with axes (r x 

1000). 

NO. ENVIRONMENTAL Axis Axis 
VARIABLE 1 2 

1 Micro-topography 22 -499 
2 Micro-topography variance 242 -544 
3 Bare Ground 658 * 453 
4 Bare ground variance 7J4 ** -304 
5 Calluna cover -841 *** -279 
6 Calluna cover variance 417 -425 
7 Moss cover ~ ~ 
8 Moss cover variance 624 * -220 
9 Sorrel cover 324 -107 
10 Sorrel cover variance 303 -67 
11 E. tetralix cover 320 -174 
12 E. tetralix cover variance 323 -179 
13 Woody debris 540 * 622 * 
14 Woody debris variance 665 ** -7 
15 % water content of soil -509 -342 
16 Vegetation height -833 **• -258 
17 Vegetation height variance -545 * -171 
18 % Organic content of soil 143 132 

~ high co-variability with another variable therefore not calculated by 
CANOCO. 
* P<.0.05; **P< 0.01; *** P<0.001 
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Table 3.9. Inter set correlations of environmental variables with axes after 
deletion of ouUing species (r x 1000). 

NO. ENVIRONMENTAL Axis Axis 
VARIABLE 1 2 

1 Micro-topography -11 -12 
2 Micro-topography variance 212 -86 
3 Bare Ground 673 ** 250 
4 Bare ground variance 691 *+ -170 
5 Calluna cover -851 **• -137 
6 Calluna cover variance 402 -246 
7 Moss cover ~ ~ 
8 Moss cover variance 615 * -123 
9 Sorrel cover 312 -153 
10 Sorrel cover variance 296 -155 
11 E. tetralix cover 345 -143 
12 E. tetralix cover variance 349 -145 
13 Woody debris 562 * 330 
14 Woody debris variance 695 ** 83 
15 % water content of soil -514 * -121 
16 Vegetation height -842 *** -117 
17 Vegetation height variance -550 * 100 
18 % Organic content of soil 125 -225 

~ high co-variability with another variable therefore not calculated by 
CANOCO. 
* P<.0.05; **P< 0.01; *** P<0.001 
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3.4.3.2. D I R E C T ORDINATION 

Only those environmental variables found to be significantly related to their respective site scores were 

used in direct gradient analysis as the number of environmental variables exceeded the number of 

sampling sites, the variables used were: bare Ground, bare ground variance, Calluna cover, moss cover, 

moss cover variance, woody debris, woody debris variance, vegetation height and vegetation height 

variance. After die first analysis some of these were omitted due to their high co-variability with others 

as indicated by their variable inflation factor (Ter Braak, 1987) these were moss cover, moss cover 

variance and woody debris. 

Ordination diagrams of the results of a canonical correspondence analysis, using log (ln(Y+l)) 

transformed species abundance values, are presented in Figures 3.10., 3.11. & 3.12. for species, sites and 

environmental variables respectively. Figure 3.13. shows the cumulative percentage of the variiincc 

displayed by the data which is explained by tlie selected environmental variables. 

The first thing to note about the CCA ordinations are their remarkable similarity with those produced by 

DCA. However they are "mirror" images due to a reflection about the origin on the first axis since the 

sign of a gradient produced by an ordination is arbitrary (Digby and Kempton, 1987). A Spearman's 

rank correlation of the site scores of axis 1, i.e. that axis displaying most of the variation in both 

ordinations, shows a highly significant relationship. This suggests that the environmental variables used 

in the CCA ordination are approximate to the hypothetical latent variable displayed by the species data. 

Figure 3.13. shows the cumulative percentage of the variance explained by successive axes of the CCA 

ordination. It shows that a high percentage, 92.4%, of tlie vaiiation displayed in the species data are 

accounted for by the first four axes of the ordination. The majority, 62.2% is displayed by the first axis 

with relatively little being displayed by axes 3&4 , just 15%; in total. In interpreting percentages of 

variance accounted for, it must be kept in mind that the goal is not 100%, because part of the total 

variance is due to noise in the data. 
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Figure 3.10. Canonical correspondence analysis diagram for caribidae. X: Cam Carabus nemoralis; 

Cai = Carabus nitens; Cp" Carabus problematicus; Cv = Carabus violaceus; fs Pterostichus strenuus; 

= Pterostichus adstrictuus; f<i = Pterostichus diligens; t t f Pterostichus niger; fm = Pterostichus matiidus; 

Nb " Notiophilus biguttatus; Ng •» Notiophilus germinyi; M i » Miscodera arctica; Ns » Nebria salina; Cm » Calathus micropterus; 

Qae = Calathus melanocephalus; Lp" Loricera pilicornis; Pi^AmaralunicolUs: \J " Leistus ntfescens; To = Trechus obtusus; 

Tc = TrichoceUus cognatus; Bb^Bratiycetlus harpalinus; Bx" Bradycellus ruficoUis; Be = Bradycellus collaris and Bu = 

Bembidion unicolor. 

C C A Environment biplot 
See Fig 3.12 for key 
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Figure 3.11'. Cononical conespondence anaysis diagram of the sample sites, 
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Figure 3.12. Canonical correspondence analysis digram of the environmental variable bi-plots. 

3 Bare Ground 
4 Bare ground variance 
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The Monte Carlo permutation test showed that Axis 1 showed a distribution that was highly different 

from a random distribution at Z' < 0.001 significance level. However tlie trace test on all axes was not 

significant, this may be a reflection of the low variance in the axes 3 & 4 (eigenvalues 0.027 & 0.021 

respectively) which suggests that these axes may be attributable to random noise in the data set. If 

indeed this is the case then one would expect the overall test not to be significant. It was not possible to 

test this as CANOCO only allows for an independent test on the first axis. The fact that the first axis 

accounted for 62.2% of the variation in a low variaUon data set (Axis 1 eigenvalue 0.199) suggests that 

the data set is overwhelmingly dominated by one environmental gradient. 

The site ordination diagram indicates three main groupings: A, C, J, D & N., K, G, 1, F, B & M . and one 

of E, L & M. The environment biplot indicates three main groups of environmental variables goveming 

the ordination of both sites and species, in the lower left-hand quadrant are factors indicating the within 

site heterogeneity. In the Upper left-hand quadrant arc variables thai indicate the ojxinncss of the site 

and in the lower right-hand quadrant are factors that indicate the structural complexity degree of 

Calluna cover. 

The biplot diagram indicates that the environmental variables measured are operating approximately 

equally on both axis I & I I , thus suggesting that the variables measured are not those that are goveming 

community organisation. However it would appear that the variables measured are a convenient 

"descriptor" of a product variable of the two axes. The Inter set correlations of environmental variables 

used in the CCA with site axes after deletion of outling species are given in table 3.10. togeather with 

their significance. They show that all six environmental variables used were significantly correlated with 

the first axis but only one, the percentage of bare ground was significantiy correlated with axis 2, again 

illustrating that there is only one major axis ovf variation in the data. 

Table 3.10. Inter set correlations of environmental viu-iablcs used in the CCA 

with axes after deletion of outling species (r x 1000). 

NO. ENVIRONMENTAL Axis Axis 
VARIABLE 1 2 

3 Bare Ground -698 ** 580 * 

4 Bare ground variance -679 ** -392 ns 
5 Calluna cover 872 *** -354 ns 
14 Woody debris variance -729 ** 83 ns 
16 Vegetation height 862 •** -265 ns 
17 Vegetation height variance 568 * -388 ns 

* P<.0.05; **P< 0.01; *** P<0.001 

Table 3.11. shows t-values of the regression coefficients. Only one value exceeded the critical value of a 
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students t-distribution. However the students t-test is not appropriate for tests of significance of 

canonical coefficients, because they have a larger variance. But the t-values have an exploratory use. In 

particular when the t-value of a variable is less than 2.1 in absolute value, then the variable does not 

contribute much to the fit of the species data in addition to the contributions of the other variables in die 

analysis. The variable then does not have an effect that is uniquely attributable to that particular 

variable. Bare ground variance, woody debris variance and to a lesser extent vegetation height variance 

therefore do not contribute much independentiy to the fit of the species data in addition to that 

contributed by the other variables . 

Table 3.11. T-values of regression coefficients (x 100) 

NO. ENVIRONMENTAL Axis Axis 
VARIABLE 1 2 

3 Bare Ground 194 ns 310 * 
4 Bare ground variance -57 ns -31 ns 
5 Calluna cover 222 ns 40 ns 
14 Woody debris variance -145 ns -124 ns 
16 Vegetation height 36 ns 212 ns 
17 Vegetation height variance 75 ns -205 ns 

* P<.0.05; ns= not .significant. 
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4. DISCUSSION 

4.1. P I T F A L L C A T C H E S AND T H E I R R E L E V A N C E TO COMMUNITY 

STUDIES 

According to Greenslade (1964) pitfall traps are quite suitable for studies of reproduction and the 

activity pattems of carabids, while there are several objections attached to the method when quantitative 

interpretation of the data are made. The size of the catch may be influenced by the trap itself and the 

biology of the species in question. However for the purposes of community studies a measure of absolute 

abundance is not neces.sary since broad abundance classes convey sufficient information. The following 

sections address the factors which govem whether this degree of accuracy can be achieved. 

4.1.1. T R A P A T T R I B U T E S . 

Luff (1975) compared the trapping efficientiy of traps of different size. He concluded that 6-10 cms was 

a suitable diameter to use. Traps of different sizes catch species at different efficiencies, efficiency is 

defined as the ratio of capture of individuals to the number of encounters. In this study traps of 6cm 

diameter were used. This trap size in Luffs study caught species at an efficiency of between 71 and 89%, 

with a mean of 72.8 %. 

The most commonly used preservatives are formaldehyde and ethylene glycol. The former, and that used 

in this study, has the advantage of being both cheaper and better suited both for killing and preserving. 

Formaldehyde may exert some attractive effect on carabid beeties although there seems to be littie or no 

difference in the reactions of the different species (Luff, 1968). 

Luff (1975) suggested that a trap position in relation to that of other traps would result in the catch per 

trap being reduced when traps are placed close together in a grid. This effect was minimised by having 

traps in one row with a large spacing, 3m, between. 

The material out of which the trap is constmcted can effect the retention rate. Luff (1975) measured 

escape rates of 4% per day from dry plastic traps. It can be assumed that the escape rate was negligible 

with the use of a preservative and wetting agent. This also had the additional advantage of reducing 

predation within the trap. 
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4.1.2. B I O L O G I C A L A S P E C T S O F PIT F A L L TRAPPING. 

Pitfall trapping is a relative meihod of estimating the composition of a community. Southwood (1978) 

suggests that "The biological interpretation of relative population estimates is extremely difficuU. Their 

size is influenced by the majority or all of the following factors: 

1. Changes in actual numbers - population changes. 

2. Changes in the number of animals in a particular "phase". 

3. Changes in activity following some change in the environment. 

4. The responsiveness of that particular sex and species to the trap stimulus 

5. Changes in efficiency of the traps." 

Factor 2 is not of relevance to tliis study as only adults were lo be considered. 

Factor 1 could be of significance i f different species populations changed relative to each other at 

different times of the year and i f a study only sampletl part of the year. This was in fact the case as only 

three months were sampled. The sampling programme thus biased the sample towards species such as 

C. nemoralis and C. problematicus which are prominent in the spring and away from species such as C. 

arvensis which are prominent latter on in the year. Seasonal differences were also noted within species, 

early in tlie sampling programme C. problematicus was trapped predominanUy in the post bum / 

pioneer sampling sites, latter becoming more ubiquitous. 

Hance (1990) delected considerable differences in phenology between species, therefore this may be of 

significance to the results as a complete phenological cycle was not sampled, the length required for this 

is not certain as some species in the uplands e.g. Carahus prohlernaticus remain as adults for over two 

years (Butterfield, 1986). A year of trapping would be Uic minimum trapping period required lo t:ikc 

into account seasonal phenological patterns but this would necessitate all years exhibiting similar' 

patterns this evidently is not the case many invertebrates exhibit loose cyclic patterns over a number of 

years attributable to parasites, long life cycles wiUi a synchronous emergence of adults only in certain 

years and climatic effects which occur only in some years e.g. the heather beede. 

These factors are only significant in community studies i f tiie sample bias due to phenology occurs 

differentiy between sampling sites at different times of the year. This aspect has been investigated in 

carabid beeUes by Maelfait and Desender (1990). Although their results are to some extent mixed they 

conclude that".... it is possible to use short sampling periods to distinguish the carabid communities of 

comparable habitats. When these short f)eriods are used, observed differences should be interpreted with 

care. As we have shown, differences in capture yields may not simply reflect habitat preference. 

Phenology patterns, phenological shifts and seasonal migration from one habitat to another have to be 
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taken into account. This implies that site assessment studies using carabid beetJes requires considerable 

expertise". 

Any community study based on a short period of sampling therefore has to assume that these conrununity 

fluxes "average" out between sampling sites due to the different between site effects of the differential 

species change. In fact niche theory would suggest that this is the case as otherwise vacant niches would 

occur, however this may of course not be filled by a species of the same family. Implicit in this is that the 

community is ordered through competition. Factors other than competition may be affecting the 

community such that competition has little or no affect. Where populations are bellow carrying capacity 

any observed differences in the community are purely the result of niche differentiations. 

Changes in the environment could affect the trap yields differently but this an effect of between sample 

site differences and functioning. Tiius in short Icnn slutlics where there has been no significanl .scral 

development such that there is no convergence of habitat type and thus community towards a "serai 

average" over time then these differences in environment are a function of community differentiation 

and need not be considered. 

Factor 4, The responsiveness of that particular sex and species to the traps. This factor operates 

differently between sites and witliin sites. Obviously the more mobile a species or sex is the more likely a 

species is to come into contact with a trap and thus be trapped, assuming no differentiation between 

species in any other respect. It has been demonstrated that considerable differences occur between 

species within the same habitat. Barriers and obstructions alter the probability of a species coming into 

contact with a trap i f these are different between sites then there is a difference in probability in capture 

between them. 

The effects of the vegetation cover on the behaviour of each species have been considered by some 

authors, but are difficult to quantify. Greenslade (1964) found that habitats with an open field layer 

allow greater speed of movement, resulting in higher catches than those obtiiined in habitats with a 

dense vegetation cover. This applies in particularly to the larger species, which move faster than the 

smaller ones, are more easily trapped, and hence may be over represented in the samples. Conversely, 

Luff (1975) found the small species were in fact more easily trapped than the larger ones. However, most 

habitats contain some vegetation, ajid because this obstructs the movement of the larger species more 

than that of the smaller species, the effect of the greater mobility of larger species should thereby be 

reduced. 

Desender & Maelfait (1986) showed that the catches of pitfall traps and an absolute estimate (soil cores) 

were not significantly correlated and that the ratio of the two methods varied between species. They 

suggest that the catches of different carabid species in ..."traps will hardly be related to the real relative 
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abundances of the species, because of differences in biology between the species concerned". Some 

overestimated species are highly mobile animals actively hunting during the daytime. The 

underestimated species are those with a pronounced preference for night activity; their feeding strategy 

probably brings about a reduced ground surface activity. 

It has generally been accepted that larger carabid beetles can be expected to cover greater distances than 

smaller ones. However, Desender and Maelfait suggest that it is "mainly the diurnal activity cycle and 

feeding ecology of a species which are the influencing factors" in its representation in a pitfall catch. 

Halsall and Wratten (1988) with a time lapse video study found significant differences between capture 

rates for different species. These differences were unrelated to size, speed of movement and diurnal 

behaviour. They also found that there where few differences in capture rates when the type of substrate, 

trap type and season were changed. 

Baars (1979) also working in Calluna dominated vegetation found that carabid beetles showed a 

satisfactorily linear relationship between pitfall catches and the mean density as determined by an 

absolute measure in different structural types of vegetation if trapped over a complete phenological 

cycle. 

Since the numbers of beetles caught in pitfall traps depends on both the abundances and the activity of 

each species, the trapping results are commonly expressed by the "activity density" (Refseth, 1980). This 

is thought to yield a good estimate of the role of a species in an ecosystem, and data obtained from pitfall 

traps ought therefore to yield valuable information about the numerical and ecological status of each 

carabid species. 

However, in zoo-sociological studies of the present type, in which the results from several sample sites 

are to be compared, it is actually not necessary to have exact estimates of population densities. Refseth 

(1980) stated that when the sizes and numbers of traps and the duration of the sampling periods are all 

approximately equivalent, the catches made will be an expression of the relative abundances of the 

different species and hence yield comparable data. It therefore seems very important to ensure that 

standard sampling techniques are used in making systematic studies of carabid communities. 

Luff (1990) suggested that "the use of carabid communities as indicators of environmental quality and 

change depends on their being a sensitive and consistent reflection of their environment..." the " species 

caught is relatively independent of local small scale habitat variations. The use of incidence (i.e., 

presence / absence) data is therefore acceptable for gross habitat classification". He also suggests that 

"quantitative carabid data, incorporating some measure of relative abundance of each species in the 

catch at each site may be very sensitive to local variations in habitat type... . Classifications of carabid 
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habitats based on such data... must therefore either rely on samples taken from spatially uniform 

habitats, or be based on enough sub-samples (e.g. individually sited pitfall traps) so as to average out 

local habitat variations", tliis is supported by the work ofNemilea et al. (1992). 

Reasons for the differences in communities trapped in each habitat could be either differing activity of 

each species, or changes in their trapability. Clearly tiiere was less overall ciu^abid activity in the Callima 

sample sites compared to the post bum ones. This may be the result from greater difficulty of movement 

in the vegetation (Greenslade, 1964) or because the Calluna sample sites provided more food and 

shelter, so that searching activity was reduced. There was no evident relationship between species body 

size and their habitat preference. It seems likely Uierefore that, at least in part, the differences in the 

communities caught in each habitat reflect true differences in die effective abundance of the various 

species present. Whether these in turn relate to actual population density is immaterial; tlie community 

caught in tlie pitfall traps is still a sensitive indicator of habitat type. 

4.2. Analysis of species habitat relationships 

4.2.1. M U L T I V A R I A T E ANALYSIS 

CANOCO and TWINSPAN both use weighted averaging to estimate the optimum of the species. This 

meUiod is an estimate of Gaussian regression. Ter Braak and Looinan (1986) and Ter Braak (1986) have 

shown tiiat the method as employed in correspondence analysis approximates the maximum likelihood 

solution of Gaussian ordination, i f the sampling distribution of the species abundances is Poisson, and if: 

a. l/fthe species' tolerances are equal, 

b. the species' maxima are equal, 

c. the species' optimum are homogeneously distributed over an interval A that is large compared to 

the tolerance, and, 

d. the site scores are homogeneously distributed over a large interval B that is contained in A. 

The wording "homogeneously distributed" is used to cover either of two cases, namely I . that the scores 

are equispaced, with spacing small compared to the tolerance, or 2. that the scores are drawn randomly 

from a uniform disttibution. Conditions 1 to 3 imply a species packing model with respect to the 

ordination space. The .species scores resulting estimate the optimum of the species in this model. 

Conditions 1 and 2 are unlikely to hold for most natural communities but the usefulness of the methods 

relies on their robusmess against violations of these conditions (Hill and Gauch, 1980). 

Dargie (1986) demonstrated that gradients in beta diversity and species richness cause different forms of 
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distortion in correspondence analysis ordinations. However, detrending largely removes the beta 

diversity effect and reduces, but does not eliminate the influence of species richness. Beta diversity is 

defined as the degree of change in species diversity along an environmental gradient (Magurran, 1988). 

Van Groenewoud (1992) tested CA and DCA using simulated conununity data of known structure and 

varying complexity. He showed that where the conmiunity response was unequal with respect to the first 

and subsequent environmental gradient the resulting ordination did not recover the community well. 

The analysis showed that the first community gradient wil l be recovered in an acceptable manner only i f 

the variation in the coimnuiiity due to the second or higher order gradients are small. This was in fact 

the case in the present study, axis 1 eigenvalue = 0.199 subsequent axes < 0.077. 

CCA however uses the site values of the environmental gradients to compute the species optimum and 

therefore should recover the data with a greater degree of acceptability than those methods recovering a 

latent variable. This suggestion has yet to be tested. 

CANOCO can only ordinate sites accurately in environmental space where the community at that site is 

comprised of species which respond to the environmental gradients supplied. Species which are 

ubiquitous or those which show an average response to an environmental variable will be placed at the 

origin, the average point in ordination space, of the ordination diagram. Thus if a sites conununity is 

comprised entirely or almost so of ubiquitous species then it will be placed at the centre of the ordination 

space when the environmental characteristics of the site would place it else where. 

This would appear to have happened with sites e, h and 1 (all post burn sites), which are placed at the 

origin even though their environment is at one corner of the ordination space. The conununity at these 

sites was largely comprised of genera list species a reflection of the highly perturbed nature of the sites. 

I f a species is highly narrow (selective) in its habitat use, but the mean of its environment space is the 

same as that of the average habitat, the species would be judged to be uiiselective by the model, a 

problem when the results are to be used in modelling habitat requirements. 

These properties of the multivariate methods employed thus have to be considered when interpreting 

ordination diagrams. 
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4.3. T H E C O M M U N I T I E S O F C A R A B I D B E E T L E S IN N O R T H E R N H E A T H 

4.3.1. C O M M U N I T Y STRUCTURE 

The classification produced in this study can be compared with a number of other studies, they are 

summarised in table 4.1. which examines the occurrence of species that were trapped in this study in the 

other classifications. 

In the course of this investigation three assemblages / communities of carabid beetles have been 

recognised; one from post burn sites, one from pioneer phase Calluna sites and one from building to 

degenerate phase Calluna sites. The pioneer phase sites can be considered to be species enriched 

versions of the building to degenerate phase Calluna sites as the pioneer phase sites contain most of 

those species found in this group. It should be noted that the conununity from post-burn sites is 

distinguished from the pioneer phase grouping only by the lack of high numbers of preferential species, 

it can therefore be viewed as an early stage in this communities development from the common core 

community. This is not immediately apparent from the TWINSPAN dendrogram which only displays 

the mathematical relationship, not the ecological relationship between the sites. 

4.3.2. C O M M U N I T Y AFFINITY 

The two communities remaining, i.e. when that associated with the post-bum is considered to be an 

almost total sub-set of the pioneer phase grouping, are comparable to communities 2 and 3 in Luff et at. 

(1989) classification of the Carabidae communities of north-east England. Luff et al describe their 

communities thus: "Habitat group 2: well drained upland localities... including heather moor, probably 

on shallow mineral soils". These authors cite typical species as including//, germinyi, T. cognatus and 

C. melanocephalus. " Habitat group 3: wetter upland... localities, often with a peat substrate". These 

sites had similar upland species as those found in habitat group 2 but also contained species preferring 

damp conditions such as P. diligens. 

Whilst the species groupings are broadly comparable, the habitat differs in morphology, though not in 

micro-climate. Site group la of this study is broadly comparable, in species composition, to that of 

habitat group 3 of Luff ec al. Site group 2b of this study is comparable to site group 2 of Luff et al. 

However both groups of this study were derived from Calluna - Vaccinium myrtillus vegetation on a 

shallow peat substrate forming a typical example of dry northern-heath vegetation. Consequently the two 

classifications are not comparable in habitat types. It is likely that the micro-climate of site group la is 

damper than that of site group 2b therefore the site types derived from this study correspond to that of 

Luff et al. in this regard. 
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Eyre and Luff (1990) have constructed a preliminary classification of European grassland habitats using 

carabid beeties. Their classification tide is somewhat of a misnomer as they define grassland as non 

woodland sites, it therefore contains dwarf-shrub habitats. The study groupings la and 2b(lb & 2b) were 

comparable to habitat C and Habitat B. of this classification respectively. Habitat B is described as well-

drained, upland heatiis in the United Kingdom with a high incidence of A .̂ salina, C. melanocephalus, 

P. madidus and T. obtusus. Habitat c. is described as UK and Norwegian damp, upland heaths witii P. 

diligens, P. nigrita, Agonum fuliginosum and Patrobus assimilis. These habitat groups are comparable to 

groups 2 & 3 of Luff et al. 

The pioneer phase sites of this study also show a slight degree of association with habitat A and habitat 

F of Eyre and Luff, described as Norwegian upland sites and Netherlands, West German and Polish 

lowland dry heaths lowland heath sites in that pioneer phase sites share species with these habitat 

groupings that were not recorded from habitats B and C of Eyre and Luff. M. arctica was in common 

with the Norwegian upland sites and C. nitens and Harpalus aeneus were in conunon with the 

continental lowland heath sites. However many of the characteristic species of these groupings were not 

present on the study site of this investigation. These findings suggest that Eyre and Luffs classification 

does need refining, as indeed they suggest by their tide. 

The communities of this study can also be compared with those derived from classifications that 

examined upland sites in grater^detail. These studies can be grouped into three groups, that examining 

the invertebrate communities of the uplands in general (Coulson and Butterfield, 1985), that examining 

the carabid communities of the uplands in general (Butterfield and Coulson, 1983) and those examining 

die carabid communities of upland heath in particular (Gardner, 1991 and Fishpool and Usher 1989). 

The post-bum and pioneer phase sites were most closely attributable to peat community I of Butterfield 

and Coulson (1983) which occurred on dry heath and included two sites near the current study site. It is 

characterised by Calluna associated species such as T. cognatus and B. ruficollis together with 

widespread open habitat species such as P. madidus, C. melanocephalus and N. salina. However this 

study found that M. arctica, C. nitens and P. adstrictus where more characteristic, reflecting the greater 

areas of bare ground on these sample sites. 

The building to degenerate phase sample sites of this investigation closely resemble peat community n 
of Butterfield and Coulson (1983) which was comprised of sites on areas where dry heath and deep wet 

are adjacent. Characteristic species include those of peat community I together widi typical wet habitat 

species such as P. diligens. This study found that P. strenuus another species typical of wet habitats was 

also indicative of this type of habitat. The habitat description of Butterfield and Coulson does not fit 

these sample sites exactly since they were comprised of what would be considered dry heath botanically, 

however these sites were predominantly building to mature phase sites which in the study of Barclay-

Esoiip (1971) had the most humid micro-climate and could therefore be considered roughly comparable 
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to the description of Butterfield and Coulson. 

The studies of Gardener (1991) and Fishpool and Usher (1989) relate more directly with this 

investigation than those already discussed as the predominandy investigate northern heath and use 

TWINSPAN in their clustering. Their TWINSPAN analysis relate closely to that of the present study. 

Gardeners' group B and Fishpool and Usher's group HI relate closely to site group la of this study, all 

three grouping share similar vegetation, i.e. that with a closed Calluna canopy, and characteristic 

species namely B. ruflcollis, T. obtusus, C. melanocephalus, C. violaceus and C. problematicus. Their 

site group C and n relate closely to site groups lb , 2a and 2b of this study all are comprised of dry 

Calluna heath with an open canopy or sites which have been recently burnt. They share characteristic 

species which include: P. adstrictus, N. salina and M. arctica. 

Although few carabid species are restricted to high altitude there are a number of species which are 

more frequently encountered in upland areas. Goodier (1968) lists eight species which were found above 

609m in the mountains of Wales but rarely foimd at lower altitudes. Two of these, Miscodera arctica 

and Pterostichus adstrictus were found during the present study. Of the 12 species that are found in the 

British Isles out of the 17 species found at altitudes above 900m in southern Norway (Refseth, 1980) 5 

were also found during this investigation. These species were: Carabus violaceus, Miscodera arctica, 

Calathus melanocephalus, C. micropterus and Notiophilus germinyi. However the habitats were not 

comparable. 
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Table 4.1. Comparison of carabid community classifications. 

Fishpool Luff et al. Butterfiel Eyre and Gardner This study 
and Uslier (1991) d& Luff (1991) 

(1989) Coulson (1990) 
(1983) 

lU u 2 3 I II B C B C la lb 2 

Carabus arvensis * * * * 
Carabus nemoralis * * » * 
Carabus nitens » * * * 
Carabus problematicus * * * * * * * * * * * 
Carabus violaceus * * * * * * * * * * * 
Pterostichus strenuus * * * * 
Pterostichus adstrictus * * * * * * * * * * • * * 
Pterostichus diligens * * * * * * * * * * * 
Pterostichus niger * * * * • * 
Pterostichus nigrita * * * * * * * 
Pterostichus madidus * * * * * * * * * * * * 
Notiophilus biguttatus * * * * * * * * 
Notiophilus germinyi * * * * * * * 
Miscodera arctica * * » * * 
Nebria salina * * * * * * * * * * * * • 

Nebria brevicollis * * * * * * * 
Calathus micropterus * * * » * * * * * * 
Calathus t * * * * * * * * * * * 
melanocephalus 
Patrobus septentrionis * 
Loricera pilicornis * * * * » * * * * * * 
Amara lunicollis * * * * * 
Leistus rufescens * * * * * * * * 
Harpalus aeneus * * 
Trechus obtusus * * * * * * * * * * * * 
Trechus quadristriatus * * * * * 
Trichocellus cognatus * * * * * * * * * * * * 
Bradycellus harpalinus * * * * * * * * 
Bradycellus ruflcollis * * * * * * * * * * * * * 
Bradycellus collaris * * 
Amaria familiaris * * 
Bembidion unicolor * * * * * * 

4.3J. COMMUNITY ENVIRONMENT RELATIONSHIPS 

It is clear that the carabid communities on managed Calluna-Vaccinium heath are strongly related to die 

degree of vegetation development. The comparison of DCA and CCA site scores, which showed no 

significant differences between the ranks of sites on axis 1, clearly showed that the major part of the 

variation in the community (Axis 1 explained 62 per cent of the commimity variation after deletion of 

oudying species) can be predicted / accounted for by the structural characteristics of die vegetation. This 

is shown by the CCA ordinations similarity to the DCA ordination which only explores variation widiin 

the species matrix in terms of a latent variable which has the maximum explanatory effect. Therefore the 

combination of environmental variables used in the final analysis can be seen as accurately describing 

the latent variable. Experimentation would be required to determine whether it is actually the 

environmental variables used or the associated variables they reflect, namely, microclimatic differences 

such as humidity, insolation, maximum and minimum temperature. These factors can be related directiy 

to vegetation development and several carabid species have been shown to exhibit distinct preferences in 

respect to temperature, moisture and light Gardner (1991). It is therefore not surprising that the species 
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composition should be influenced by these variables. 

As 92 per cent, though part of this figure may be due to noise, of the variation in the species data was 

explained by the six environmental variables supplied in the final analysis, after the deletion of outiiers 

(to reduce noise), i t would suggest that the environment is simple and community space is largely 

limited to four dimensions. 

Species particularly characteristic of pioneer areas were Pterostichus adstrictus, Miscodera arctica and 

Carabus nitens. A l l three have been associated with dry open ground with sparse vegetation in the 

uplands by Lindroth (1974). Holliday (1984) and Richardson and HoUiday (1982) found P. adstrictus 

more abimdant in burned spruce forest than undamaged woodland and attributed this to the abundance 

of rotting logs for breeding in the former. P. adstrictus is a highly mobile species which flies into open 

sites (J.E.L. Butterfield personal communication). Thus the species may have been attracted to the 

charred remains of the Calluna or alternatively some other feature that is associated with post-bum and 

pioneer phase patches, the association with bumt sites is clear as both Fishpool and Usher(1989) and 

Gardner and Usher (1989) concur. Lindroth (1974) described both Miscodera arctica and Carabus 

nitens as being associated with moss in addition to those factors already mentioned therefore it is not 

surprising that these species were associated with the pioneer phase sites as moss was most abundant on 

sample sites of this phase. 

Species associated with the later stages of heather development included Pterostichus nigra, P. strermus 

and P. dilgens all of which have been associated witii wet areas by Lindroth (1974) therefore is not too 

surprising to find them to be associated with a high canopy cover which has been demonstrated 

Barclay-Estrup (1971) to have a low saturation deficit and consequentiy a relatively high humidity. 

Some species e.g. C. problematicus where considered by Lindroth (1974) to be widespread headiland 

species and, namely; others Bradycellus ruficollis and Trichocellus cognatus to be specifically 

associated with Calluna. 

The remaining species tend to be either species tiiat were considered to be widespread heathland species 

or associated with open country by Lindroth (1974). 

Bumt northem heath and pioneer Calluna represent in hospitable habitat for carabids since bumt stands 

have both higher summer temperatures than Calluna clad heath, which may favour some species, and 

lower winter minimum temperatures. Such stands are also more susceptible to freezing (FuUen, 1986). 

Calluna reduces wind speed and the lack of this protection combined with high insolation and high 

temperatures could result in increased desiccating in bumt and pioneer Calluna stands. Despite these 

effects in both habitats tiiey contain a higher number of species than the stands with a high Calluna 
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cover, probably as a reflection of the greater habitat heterogeneity. 

4-3.4. SIGNIFICANCE F O R CONSERVATION MANAGEMENT. 

It is clear that there are at least three communities of carabid beeties to be found in the Calluna-

Vaccinium community of northem heath. That associated with pioneer phase Calluna being the most 

distinctive in that it had species clearly associated with it unlike the other phases. ConsequenUy 

management is required to maintain this habitat. Indeed the management practised on the study site 

might be ideal, though perhaps requiring a reduction in stocking level, as the grazing subsequent to 

burning retards the development from pioneer phase thus prolonging a stands suitability for this 

community. However the deflections of the vegetation community associated with this form of 

management i f prolonged would prove to be deleterious in the long term. 

Like Gardner (1991) also studying in northem heath and Refseth (1980) studying in low-alpine heath 

and sub-alpine forest this investigation has demonsti-ated that the carabid fauna were well correlated 

with the stmctural complexity. However unlike Refseth it is suggested that a separate classification for 

carabid communities would considerably increase upon the level of information obtained by plant and 

bird species. Indeed this study concurs with die suggestion of Eyre et al. (1986) that invertebrate 

commimity data may be more useful for assessing the impacts of enviroimiental change than either plant 

or bird data, since invertebrate adapt to changes of smaller magnitude and more rapidly additionally the 

abundance of individuals and species is generally larger therefore any change can be determined at a 

finer resolution. Since the carabid commimity, and presumably the invertebrate community as a whole, 

^ can not be predicted fi"om vegetation type alone it is important that with respect to conservation 

evaluation that factors other than vegetation type are considered, the results together with those of 

Fishpool and Usher (1989) and Gardner (1991) suggest that stmctural characteristics of the vegetation at 

the very least should be considered when evaluating northem heath. 
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