
Durham E-Theses

Knowledge restructing and the development of

expertise in computer programming

Davies, Simon P.

How to cite:

Davies, Simon P. (1992) Knowledge restructing and the development of expertise in computer

programming, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/6012/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6012/
 http://etheses.dur.ac.uk/6012/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

KNOWLEDGE RESTRUCTURING AND THE DEVELOPMENT OF

EXPERTISE IN COMPUTER PROGRAMMING

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

SIMON P. DAVIES

Department of Psychology

University of Durham

Thesis submitted in partial fulfilment of requirements for PhD in Psychology,

July, 1992.

2 DEC 1992

Preface

The work reported in this thesis owes much to the support and understanding of my

colleagues both past and present. A great deal of the groundwork for the thesis was

established while I was employed by the University of Durham on a research project funded

by IBM UK. A lot of the experimental work and much of the analysis was conducted at

Huddersfield Polytechnic which provided an ideal environment for data collection. Although

many of the experiments had already been written-up in one form or another, bringing out

the links and connections between the individual experiments proved to be a difficult

task. This was only really made possible at the expense of other things that I should have

been doing at that time.

Foremost, I would like to thank my supervisor, John Findlay, for all his help and

encouragement over the years. I would also like to thank Adrian Castell for the discussions

we have had on cognate subjects. The final shape of this thesis, and many of the ideas

expressed in it owe much to these discussions. Other people have also been instrumental

though they may not realise it. Thomas Green's work originally inspired me to tackle

programming and his encouragement over the past few years has sustained my interest. I

would also like to thank David Gilmore for his patience over the last several months. Other

people deserve thanks for other things. My parents for putting up with me, without putting

me down. My friends for living with my sometimes strange (and usually bad) habits. My

Grandfather, Cliff, who was a block off the old chip. Abbey Archer who has reduced my

cynicism to at least a tolerable level, and to whom this work is dedicated. And, last but not

least, the kids in my life- Boo, Kelly, Laurie and Thomas who have been inspirational in

lots of ways.

Abstract

This thesis reports a number of empirical studies exploring the development of

expertise in computer programming. Experiments 1 and 2 are concerned with

the way in which the possession of design experience can influence the

perception and use of cues to various program structures. Experiment 3

examines how violations to standard conventions for constructing programs can

affect the comprehension of expert, intermediate and novice subjects.

Experiment 4 looks at the differences in strategy that are exhibited by subjects of

varying skill level when constructing programs in different languages.

Experiment 5 takes these ideas further to examine the temporal distribution of

different forms of strategy during a program generation task. Experiment 6

provides evidence for salient cognitive structures derived from reaction time and

error data in the context of a recognition task. Experiments 7 and 8 are

concerned with the role of working memory in program generation and suggest

that one aspect of expertise in the programming domain involves the acquisition

of strategies for utilising display-based information. The final chapter attempts

to bring these experimental findings together in terms of a model of knowledge

organisation that stresses the importance of knowledge restructuring processes

in the development of expertise. This is contrasted with existing models which

have tended to place emphasis upon schemata acquisition and generalisation as

the fundamental modes of learning associated with skill development. The work

reported here suggests that a fine-grained restructuring of individual schemata

takes places during the later stages of skill development. It is argued that those

mechanisms currently thought to be associated with the development of

expertise may not fully account for the strategic changes and the types of error

typically found in the transition between novice, intermediate and expert

problem solvers. This work has a number of implications for existing theories

of skill acquisition. In particular, it questions the ability of such theories to

account for subtle changes in the various manifestations of skilled performance

that are associated with increasing expertise. Secondly, the work reported in this

thesis attempts to show how specific forms of training might give rise to the

knowledge restructuring process that is proposed. Finally, the thesis stresses the

important role of display-based problem solving in complex tasks such as

programming and highlights the role of programming language notation as a

mediating factor in the development and acquisition of problem solving

strategies.

Contents List

Chapter 1 Introduction and overview .. . 1

Chapter 2 Models of problem-solving behaviour and their
application to programming tasks 9

Chapter 3 Knowledge representation and expert/novice
differences in programming and in related domains 37

Chapter 4 Studies of the strategic aspects of programming skill 84

Chapter 5 The role of task language features in programming
strategy and program comprehension 134

Chapter 6 Experiments land 2. The effects of the possession
of design skills on the perception and use of plan
structures ... 158

Chapter 7 Experiment 3. Expert/Novice differences in the detection
of Plan/Discourse rule violations 185

Chapter 8 Experiment 4. The role of notation and knowledge
representation in the determination of programming
strategy 204

Chapter 9 Experiment 5. Delineating forms of strategy and
their relationship to the development of expertise
in programming... 233

Chapter 10 Experiment 6. Knowledge restructuring in programming:
Evidence for salient psychological structures derived
from reaction times and errors 250

Chapter 11 Experiments 7 and 8. Expertise in programming:
The role of working memory and display-based
problem solving... 261

Chapter 12 Knowledge restructuring processes and the
development of expertise in programming 299

References ... 321

Chapter2

Chapter3

Chapter4

FIGURES

Figure 2.1 A schematic representation of the ACT* framework.

Figure 3.1 Example analysis of recall strings produced by the
Reitman-Rueter technique.

Figure 3.2 Typical novice and expen knowledge organisation
found in the McKeithen et al study.

Figure 3.3 Program and flowchan from Adelson's 1984 study

Figure 3.4 An example of an abstract flowchan from Adelson,
1984.

Figure 3.5a Programs representing a search plan from Soloway
and Ehrlich 1984

Figure 3.5b Programs representing plans involving variable
resetting (From Soloway and Ehrlich, 1984).

Figure 3.6 Example of the experimental materials used by
Soloway and Ehrlich, 1984.

Figure 3.7a Two programs illustrating different looping
strategies.

Figure 3.7b Schematic representations of a process/read strategy
in Pascal and in Pascal L.

Figure 3.8 A problem calculating the average and maximum
rainfall over a given time represented in Proust's
problem description notation.

Figure 3.9 Results of Proust's analysis of 206 programs written
to solve the same problem.

Figure 4.1 Reading time for the various movement types
reponed by Robenson et al (1990).

Figure 4.2 Proportion of movement types in each movement
category.

Figure 4.3a A typical left-to-right, top-to-bottom program
reading strategy.

Chapter 5

Chapter 6

Figure 4.3b A 'comparative' reading strategy.

Figure 4.4 Percentage of fixation time by novice and expert
groups viewing the five areas identified in a study by
Crosby and Stelovsky, 1989.

Figure 4.5 Protocols illustrating focal and schema expansion

Figure 4.6 Departures form linear generation order for a typical
Basic protocol.

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Three forms of control structure and problem
statement used in Sime et al, 1977.

Vessey and Weber showed that the jump language
used in the Sime et al (1977) study could be indented
with only a slight relaxation of the syntax.

Examples of programs used by Gilmore and Green,
1984.

The elementary grammar of procedural language
cliches or plans used in green and Borning's (1990)
parser.

Examples of programs used in the first experiment
representing the colour highlighting of different
plans.

The location and correction of errors by design
experience and bug-category.

The location and correction of errors by design
experience and cue-category.

Fragments of programs used in the second
experiment.

Mean number of critical lines recalled for program
type in trial 1.

Mean number of critical lines recalled for
program-type in trial 2.

Chapter 7

Chapter 8

Figure 7.1 A program intended to calculate a square root
illustrating program fragments corresponding to the
correct use of a Data-Guard plan and to violations of
its use.

Figure 7.2 A program illustrating program fragments
representing the correct use of a program discourse
rule and violations of that rule.

Figure 7.3 The frequency with which a program fragment was
chosen as best completing a program by novice,
intermediate and expert programmers.

Figure 7.4 Mean time to order program fragments (Plan/Plan
violation) by novice, intermediate and expert
programmers.

Figure 7.5 Frequency with which a program fragment
(Discourse rule/Discourse rule violation) was
chosen as best completing a program.

Figure 7.6 Mean time to order program fragments (Discourse
rule/Discourse rule violation).

Figure 8.1

Figure 8.2

Figure 8.3

Figure 8.4

Figure 8.5

A specification of the 'rainfall problem' used by
Johnson and Soloway, 1985.

A standard Pascal solution to the rainfall program
with plan structures highlighted.

Program fragments representing similar plan
structures in Pascal and Basic.

Mean number of inter- and intra-plan jumps
performed by programmers of different skill levels
in Pascal and Basic during program generation.

Mean length of pause (seconds) between inter- and
intra-plan jumps for different languages during
program generation.

Chapter9

Chapter 10

Chapter 11

Chapter 12

Figure 9.1

Figure 9.2

Figure 9.3

program except illustrating plan structures and
statement categorisation.

Mean number of focal and non-focallines generated
by expert and novice programmers during each
generation block.

Mean number of between and within-hierarchy
jumps performed by novice and expert subjects
during each generation block.

Figure 10.1 Percentage correct responses to probe item for
novice, intermediate and expert programmers.

Figure 10.2 Mean response time (ms) to probe item by novice,
intermediate and expert programmers.

Figure 11.1 Number of within and between plan jumps
performed by novice and expert groups in the two
experimental conditions.

Figure 11.2 Mean number of errors in each of the experimental
conditions in experiment 1.

Figure 11.3 Proportion of errors in each error category in
experiment 1.

Figure 11.4 A specification of Johnson's (1988) 'bank
problem'.

Figure 11.5 Mean number of errors in the two experimental
conditions in experiment 1.

Figure 11.6 Proportion of error types in each error category in
experiment 2.

Figure 12.1 Propositional analysis of a program

Chapter 1. Introduction and overview

The work reported in this thesis represents an attempt to understand the

problem-solving processes involved in programming. My original motivation for

studying programming arose from rather practical considerations i.e., how we

might best design tools to support the problem-solving activities that are typically

involved in programming tasks. However, in order to do this one needs to

understand the nature of these problem-solving activities. Moreover, it rapidly

became clear that existing theories of problem-solving do not provide an adequate

account of the kinds of problem-solving behaviour that have been observed in

programming. Hence, the original emphasis of this research moved away from the

design of tools towards a more empirically motivated mode of research from

which I attempted to gain some theoretical insight into the complexities of

problem-solving in this domain.

Alan Newell (1973) once claimed that cognitive psychology tends to be

phenomenon-driven, in that the discovery of a new phenomenon (for instance, the

visual icon) leads to an exhaustive exploration of all its possible ramifications by

cognitive psychologists. To some extent we could also claim that cognitive

psychology and cognitive science are not only phenomena driven but also artifact

driven. The widespread and continuing use of high-level programming languages

has spawned a significant amount of research into the problem-solving processes

involved in the creation and the comprehension of complex software artifacts.

Much of the early research into the cognitive aspects of programming served

simply to suggest that established theories developed in other problem-solving

domains could be usefully applied to understand programming behaviour.

However, more recently, research into programming behaviour has begun to

contribute more explicitly to the general body of problem-solving theory, and has

suggested modifications and important extensions to paradigmatic

problem-solving analyses.

1

In trying to understand programming tasks it should be possible to frame an

analysis in terms of existing generic models of problem-solving such as those

proposed by Newell and Simon or by Anderson (described in the next chapter).

These models are, after all, intended to be generic models of problem-solving, and

not just models of problem-solving in specific domains. The work reported in this

thesis adopts the general problem-solving paradigm proposed by these models.

However, it is suggested that programming tasks display some characteristics that

are not well catered for by such models. In the next chapter I will first present a

brief overview of these generic problem-solving frameworks and their application,

and then attempt to derive some common characteristics of these frameworks

which will provide a starting point for assessing their validity as models which

might be used to account for problem-solving behaviour in programming.

Preempting this discussion somewhat, I will suggest three major features of

programming tasks that are not well represented by generic models of

problem-solving. Firstly, programming places significant demands upon cognitive

resources and programmers appear to be unable to elaborate an entire sequence of

problem-solving steps without engaging in a closely linked series of planning and

execution cycles. It will be suggested that existing models of problem-solving and

planning do not emphasise sufficiently the close link between planning/operator

selection and execution.

Secondly, existing models of human problem-solving typically describe situations

in which problem-solving operators are applied directly to objects in the world

(albeit, in many cases, an artificial symbolic world) - for instance, in solving

puzzles or playing games. However, programming is rather different in that a

programmer may use any one of a range of programming languages to implement

a solution to a problem. Moreover, these languages display different kinds of

characteristics which may or may not support a particular problem-solving

approach.

Finally, in considering problem-solving in programming one needs to take

account of the environment in which programs are typically constructed. For

instance, compare writing a program using pen and paper with, say, dictating a

2

program (uncommon, but possible) or using a line-editor. Each of these

environments has different characteristics, and these characteristics may, to a

greater or lesser extent, support preferred problem-solving strategies.

A central issue raised by this thesis is that these features of programming tasks are

not adequately represented by generic problem solving-models. In addition, it

seems that these models or frameworks generally tend to emphasise aspects of a

problem-solvers' knowledge representation and the way in which this determines

strategy and have neglected to consider characteristics of the task or of the

environment in which the task is undertaken. Studies of problem-solving in

programming are now beginning to address these issues and have considered in

some detail the way in which task characteristics, and in particular the notational

features of languages, can affect problem-solving behaviour.

The work reported in this thesis attempts to link together findings that have

emerged from studies of knowledge representation in programming and issues

stemming from a consideration of the notational properties of programming

languages. Until now these issues have been addressed in isolation. The central

concern of this thesis is to provide a broader view and more detailed

understanding of the problem-solving processes involved in programming. In

particular, interest is directed towards understanding the way in which knowledge

representation in programming develops, its relationship with different forms of

programming strategy and the extent to which these are supported, or otherwise,

by programming language and task characteristics.

The following chapter begins by outlining a number of generic theories or

frameworks which have been advanced as models of human problem-solving. In

fact, the main emphasis of this section is to provide a broad overview of human

problem-solving from the perspective of two major theories or frameworks -

namely, Newell and Simon's General Problem Solver (GPS) and Anderson's

Adaptive Control of Thought (ACT *). There are clearly other frameworks and

models which might provide an equally cogent account of human

problem-solving. However, the application of GPS and ACT* has been extensive,

and these frameworks have proven to be of great predictive value. Moreover,

3

while both frameworks provide a general description of the architecture of

cognition, they differ substantiality in emphasis, and these differences provide

important foci for a comparison of these theories.

The second chapter then moves on to consider more specific issues relating to

problem-solving in programming. The intention of this section is to consider the

common characteristics of problem-solving tasks and to illustrate why

programming should be considered as a problem-solving activity. Subsequently,

the application of generic problem-solving frameworks is considered in the context

of programming. An attempt is then made to suggest that there are some important

characteristics of typical programming tasks that are not well catered for by

existing problem-solving models. While this chapter is broadly concerned with

domain independent problem-solving frameworks, subsequent chapters provide a

review of some of the more important empirical and theoretical work which has

addressed more directly the problem-solving processes involved in programming.

Subsequent chapters are organised into three distinct themes - knowledge

representation, strategy and notational features. The ease with which this emerged

appears to reflect or belie the narrowness of traditional concerns in the psychology

of programming. That is to say, very few studies actually attempt to suggest links

between these different themes. This thesis represents a step in the other direction,

and will hopefully provide a bridge between these various lacunae.

The third chapter considers expert-novice differences and knowledge

representation, and reviews a number of studies originating in the programming

domain. In the fourth chapter interest is directed toward understanding the nature

of problem-solving strategies in programming, while chapter five considers the

way in which programming language features (specifically notational factors) have

been shown to affect problem-solving strategy. Each of the next six chapters

reviews a specific experiment carried out to examine a particular hypothesis or a

small collection of related hypotheses.

These empirical studies are reported in the order in which they were carried out,

since initially no overarching model or framework existed which could be used to

4

neatly construe their theoretical development. However, as early studies in this

series of experiments started to lead to the development of a model of

problem-solving in programming, the theoretical focus of the work became

clearer. It seems more appropriate to report the studies in this way rather than

attempt to reconstruct the early experiments such that they fit with the model.

While the early experiments in this series were generally exploratory, later studies

make specific predictions stemming from the model proposed in this thesis. While

allusion to the model is made in the context of reporting these experiments, the

model itself is presented in the last chapter which attempts to draw together the

results of the individual studies to suggest how features of a programmers

knowledge representation develop and appear to interact with certain salient

language features to determine particular forms of problem-solving strategy.

This model suggests a number of significant extensions to existing theories of

problem-solving behaviour in programming, and in particular it addresses issues

relating to the development of programming knowledge. The empirical work

reported in this thesis illustrates how knowledge representation develops and how

it changes with increasing programming expertise. Concern is directed primarily to

exploring the adequacy of schema or plan-based theories of programming

knowledge. The simple model of schema acquisition that is proposed by these

theories to explain the development of expertise is challenged and a more complex

model which emphasises knowledge restructuring processes is proposed.

This model suggests that knowledge representation is not uniform, but that as

expertise develops certain features of a programmer's knowledge representation

achieve prominence. For example, it is suggested that those aspects of a particular

schema that directly encode the role of that schema will be more easily accessible

than its other components. On this view, programming expertise is not seen to

develop simply via the acquisition of a greater number and range of schemata,

although this clearly is an important facet in the development of expertise. Rather,

the emphasis of the model suggests the importance of knowledge restructuring,

and empirical evidence for this phenomenon is cited.

5

For instance, in experiment five (reported in chapter 10) involving a program

recognition task, it is shown that expert programmers respond to the presence of

focal lines (i.e., those lines that directly encode the role of a particular plan or

schemata) more quickly than they respond to non-focal lines. In the case of

intermediates and novices no difference in response times to focal or non-focal

lines is apparent. In addition, while intermediates and experts can detect plan

violations with about the same frequency, experts detect such violations

significantly faster than intermediates. These findings are taken as evidence for

the idea that while both intermediates and experts are able to access the same range

of plan structures, experts seem to be able to access the salient parts of these plan

structures with great ease, perhaps suggesting that more experienced programmers

structure their knowledge rather differently.

The mechanisms that give rise to this restructuring processes appear to be

associated with a programmers design experience. The first experiment reported in

this thesis suggests that design training may encourage programmers to think

about problems in a more structured fashion, and may facilitate the construction of

a mapping between the problem domain and structures in the language domain. It

remains unclear whether design training and design methodologies simply reflect

expert cognitive structure, and thereby describe or in some way facilitate naturally

occurring problem-solving strategies or whether design training actually

determines or predisposes a particular cognitive structure and set of related

strategies.

In addition, the restructuring processes described by this model may suggest

reasons for the adoption of particular forms of problem-solving strategy. In

particular it may account for the transition from depth-first to breadth-first

strategies that have been commonly observed in studies of the development of

problem-solving expertise. Hence, expert programmers may develop a solution in

a hierarchical fashion, starting from the implementation of lines of code that

represent focal plan elements before expanding these to include subsidiary plan

components. In the case of novices, and possibly intermediates, it is suggested

that the uniform nature of their representation of plan knowledge does not allow

for the differentiation of focal and non-focal plan elements and it is shown how

6

this might lead to the adoption of strategies which display depth-first

characteristics.

Moreover, it is argued that features of certain programming language notations

may provide support for the implementation or the comprehension of focal plan

elements. For instance, languages such as Pascal have been described as

"role-expressive" in that their rich lexical structure appears to facilitate the

discriminability of the individual program components that might be expressed in

that language. This has important implications for the model proposed here since

we might predict that there will be an interaction between language structure (i.e.,

the extent to which a particular language might be described as "role-expressive")

and expertise. Hence, we might expect experts to perform better using

"role-expressive" languages such as Pascal where focal structures will be more

readily perceived, while the performance of experts and non-experts in plan related

tasks may not differ significantly in less "role-expressive' languages such as

BASIC. Indeed, one of the experiments reported later in this thesis supports this

prediction, and suggests that there is a strong interaction between language

structure and expertise.

It will be suggested that the model of knowledge restructuring proposed here

provides a parsimonious interpretation of a large body of existing empirical studies

which have addressed problem-solving issues in programming. The model

suggests ways of integrating previously distinct areas of research and indicates

how aspects of a programmer's knowledge representation may interact with

language and task features to determine programming strategy. In addition, the

model has a number of distinct parallels with work in other domains, and this

suggests that the model may be generalisable to other knowledge-intensive

problem-solving tasks.

In summary, there are a number of identifiable aims relating to the work reported

in this thesis. Firstly, an attempt is made to explore the cogency of extant

problem-solving models or frameworks in terms of their application to

programming. Secondly, the existing psychological work on problem-solving in

programming is reviewed and evaluated. This review is grouped into three

7

sections- knowledge representation, strategy and language features- in order to

reflect the thematic concern anci historical development of this work. A number of

experimental studies are then reported which address some of the shortcomings of

existing work and provide the basis for a model of programming behaviour which

attempts to bridge previously isolated areas of research, thus leading to a more

unified framework for understanding programming behaviour. Finally, an attempt

is made to relate this model to work in other problem solving domains and to

illustrate briefly the cognitive mechanisms that might underpin the knowledge

restructuring processes that are central to the model.

8

Cllmjpter 2. ModleHs of jproblem soHvnng behaviour and! their

appllicatiollll to pll"'gramming tasks

2.1 Introduction

This chapter provides a broad, yet necessarily brief, review of two important

problem-solving frameworks, Newell and Simon's General Problem Solver

(GPS) and Anderson's ACT*. The primary intention of this chapter is to

examine the general applicability of these frameworks in terms of their ability to

account for the complex problem-solving processes that underpin programming

behaviour. It will be suggested that there are certain salient characteristics of

programming tasks that are not well catered for by existing models of human

problem-solving. This discussion provides both a basis for our characterisation

of programming as a problem-solving activity and a foundation for the work

reported later in this thesis.

Newell and Simon's problem and state space analysis of human problem

solving is first introduced to provide a general background to the discussion

presented in this chapter. This analysis is of some historical interest, but it

appears to be of little significance in terms of its contribution to our

understanding problem solving in the programming domain. This is because the

focus of this work is upon relatively well-defined domains which involve little

domain specific knowledge. This can be contrasted with the programming

domain, where problems are generally ill-defined and where problem-solving

activities are highly knowledge intensive. Despite the fact that the Newell and

Simon model does not appear to be strictly relevant to our understanding of

programming, it does provide the basis for a more general discussion of the

underlying cognitive processes that appear to be involved in programming

activities. In addition, this model serves as an important counterpoint to

alternative models of human problem solving that have been concerned more

specifically with problem-solving in ill-defined domains and/or with knowledge

intensive problem-solving processes.

This chapter then moves on to consider the ACT* model proposed by John

Anderson. This model appears to provide a more applicable framework for

9

understanding problem-solving in programming. Indeed, the model has been

applied with some success to analyses of skill acquisition and problem-solving

in the context of symbolic programming languages such as LISP. The model of

problem-solving proposed by Anderson is important in a number of ways.

Firstly, it demonstrates explicitly how skill in a domain can be acquired.

Secondly, it shows how both domain specific knowledge and general

problem-solving methods can be used to guide problem-solving activities.

Finally, the model suggests a set of mechanisms which can be used to explain

how problem-solving performance changes with developing expertise. All three

of these features are relevant to the issues discussed in this thesis and hence the

ACf* model is described here in some detail.

The final part of this chapter attempts to delineate some of the general features of

programming tasks that models such as ACT* and GPS do not address. The

reason for doing this is that this thesis suggests that the individual features of

programming behaviour that have been proposed as component elements in

models of problem-solving in programming cannot be considered in isolation.

Hence, in order to understand programming behaviour we need to consider the

interaction between domain knowledge, features of the device which the

programmer uses to create a program and features of the programming language

itself which may, in tum, tend to support or to undermine particular forms of

programming behaviour. Only a broad characterisation of programming tasks is

able to provide a perspective on the complexity of this form of behaviour and

this chapter provides a general discussion of those issues which are germane to

the characterisation of programming tasks that is suggested by the work reported

in this thesis.

2.2 Newell and Simon's General Problem Solver and the problem and state

space hypotheses

Simon (1979) presents a generic model of problem-solving activity which

suggests a tripartite analysis of problem-solving behaviour. Simon suggests that

we consider problem-solving behaviour as an interaction between an

information processing system, i.e., the problem-solver, and a task

environment, i.e., the task as described by the experimenter. In approaching a

10

problem-solving task, the problem solver represents the situation as a problem

space which includes information on the problem's initial state, its goal state,

and the problem-solving operators that may be applied with the intention of

reducing the distance between the initial state and the goal state.

Newell and Simon (1972) suggest that when people engage in problem solving

behaviour they pass through certain correlative knowledge states. Hence, they

begin with a representation of the initial state and search through the space of

alternative states until they reach a knowledge state which corresponds to a

representation of the goal for the problem. The transformation from one

knowledge state to the next is governed by the application of problem solving

operators. Since a problem of any complexity is likely to involve a large number

of alternative paths, problem solvers can recruit heuristic methods in order to

search the problem space more efficiently.

These processes are perhaps best illustrated using an example. The "Tower of

Hanoi" puzzle represents the kind of problem to which this model has typically

been applied and as such it provides a useful and 'well-constrained' vehicle for

demonstrating the application of Newell and Simon's framework. The initial

state of the Tower of Hanoi problem specifies a certain configuration of three

disks of different diameter placed upon the first of three vertical pegs. Initially,

these disks are placed on the peg in size order, the largest at the bottom and the

smallest at the top. The goal state for this problem is reached when all the disks

are piled in the same order on the last peg.

There are, however, certain restrictions on the way in which disks can be

moved, i.e., only one disk can be moved at a time and a larger disk cannot be

placed upon a smaller disk. The application of problem-solving operators,

which is guided by these constraints, may give rise to a variety of alternative

intermediate states between the initial state and the goal state. Since a human

problem solver is unable to explore each of these alternatives in parallel, and

because exploring every alternative in a serial fashion would be too time

consuming for any problem of reasonable complexity, the problem solver needs

to rely upon heuristic methods to guide search through the problem space.

11

One important heuristic method proposed by Newell and Simon is means-end

analysis (Newell and Simon, 1972; Newell, Shaw and Simon, 1958). Here the

problem solving process procedes by noting the difference between a current

state and the goal state, creating a sub-goal which reduces this difference and

then selecting and implementing an operator that solves the sub-goal. The

means-end heuristic proposes that the problem solver must first evaluate the

difference between the current state and the goal state. Secondly, the problem

solver must establish a subgoal which reduces this difference and then execute

the operator to achieve this subgoal. This process continues until the problem is

solved. In contrast to an exhaustive search of the problem space, means-end

analysis cannot guarantee a solution although it does reduce the number of

alternative states the problem solver has to consider at any one time. Even a

simple three ring Tower of Hanoi problem has a total of twenty-seven different

states, and the adoption of heuristic search processes such as means-end

analysis appears to be one way of obviating the limitations of working memory

in problem-solving contexts.

2.2.1 Modelling transformation problems

Polson and his colleagues (Atwood and Polson, 1976; Jeffries, Polson, Razran

and Atwood, 1977; Atwood, Masson and Polson, 1980) have conducted a

number of studies of transformation problems 1, such as the Tower of Hanoi,

which suggest that subjects have a limited understanding of such problems

when they are first presented. Polson and his colleagues also suggest that

problem solving performance is exacerbated by the inability of problem solvers

to plan a sequence of moves if there are more than about three possible

successive states.

From their experimental evidence, Polson and his Colleagues have developed a

computational model of human problem solving that solves simple

transformation problems (Atwood and Polson, 1976). The model incorporates a

three-stage process of interactions between means-end analysis and memory

processes. The model proposes that information about problem states visited as

the problem solver works towards a solution are stored in long-term memory.

Since the problem solver is likely to sometimes forget which states they have

12

visited, the probability that the model will remember a particular state that it has

previously encountered is set arbitrarily at .9. Working memory holds

information about the current state of the problem, its successor states and the

state evaluation information that guides the means-end analysis.

In stage 1, the model selects moves according to the following criteria:

- A move that would lead directly to the goal state is always taken

- A move that leads back to the start state is never taken

- Illegal moves are always rejected

If none of these situations appertain, then the proposed move will be taken if it

does not lead to a state that is seen as too far from the goal, and it gives rise to a

new state of the problem. In stage 2, the model generates successors in tum and

selects the first move that will lead to a new problem state. If none of the

successor states leads to a new state, then stage 3 is entered. In stage 3, the

number of successor states determines how a move is chosen. If working

memory is not overloaded, then the best available move will be taken, i.e., the

move that reduces the distance between the current state and the goal state by the

greatest amount (that is, the move with the lowest means-end value). If

working memory is overloaded (that is, there are more than three successor

states), then the model selects a move at random.

This model is important since it supplements the Newell and Simon state-space

analysis by providing a full process model of human problem solving for

transformational problems. In addition, it specifies the various heuristic methods

used by problem solvers and includes assumptions about performance

constraints. In general, the model proposed by Atwood and Polson sets forth

the following proposals:

- When planning moves, subjects only look ahead to a depth of one move.

- Moves are evaluated by a means-end analysis

13

-Subjects employ anti-looping heuristics by avoiding moves that return them to

immediately preceding states

- There are limitations on the number of successor moves that can be stored and

evaluated

This model of problem-solving has some predictive capacity and appears to be

generalisable, at least within a broad class of transformational problems that are

considered. For instance, one specific prediction that arises from the model is

that subjects will only plan one move ahead in order to reduce working memory

load. Atwood , Masson and Polson (1980) tested this hypothesis by suggesting

that a reduction in memory load will enable the problem solver to plan further

ahead. They attempted to reduce working memory load by providing subjects

with information about all of the possible moves available from any state in the

problem. Atwood et al found that this manipulation produced a small

improvement in the subjects' ability to consider alternative moves; however it

appears that when capacity is freed it is not used to look ahead. Rather, extra

capacity appears to facilitate the avoidance of states that tend to lead back to the

initial state of the problem.

The problem solving framework proposed by Newell and Simon and later

extended by Polson and his colleagues has proved to be one of the most

successful general theories of cognition. The Newell and Simon framework

specifies a well articulated process model of the cognitive substrates of human

problem solving, and hence it provides an analysis that is amenable to

computational modelling. In addition, the model has strong predictive value,

and has spawned a significant amount of research concerned with exploring the

key predictions of the model.

2.2.2 Problem-solving in ill-structured or ill-defined domains

The success of the Newell and Simon model appears to derive largely from its

concern with specifying the role of domain independent and generic problem

14

solving methods and heuristics. However, it has become clear that there are

numerous problem solving domains in which problem solvers need to be able to

recruit large amounts of domain specific knowledge in order to guide their

problem solving activities. This is especially true of problem domains that might

be characterised as ill-defined or ill-structured (Newell, 1969; Reitman, 1965;

Simon, 1973; 1978).

Newell (1969) defines ill-structured problems as problems which have poorly

defined goals and no well-defined criteria for evaluating the solution to the

problem, involving the integration of multiple sources of knowledge, and with

no predetermined solution path. In contrast to this, the problems typically

addressed by Newell and Simon's model have well defined goal and start states,

and the relevant problem solving operators are specified in the problem

description. For instance, the legal moves in the Tower of Hanoi problem are

derivable from the problem specification, the initial state is given and the goal

state is known.

In contrast, it appears that programming tasks display many of the

characteristics of ill-structured problems (Guindon, 1988; 1990; Rist, 1989).

For example, there are no unique solutions to programming problems - different

programs utilising different solution methods may give rise to the same results.

As we shall see later in this thesis, programming skill also appears to depend

upon the utilisation and integration of multiple sources of knowledge (Brooks

1983; Pennington 1987a and b). The Newell and Simon analysis appears to

apply to only a very narrow class of puzzle-like problems and its ability to

account for problem-solving in complex real-world domains such as

programming is doubtful.

A similar problem is also reflected in VanLehn's (1990) criticism of the

problem/state space analysis in terms of its application to subtraction problems.

He suggests that the state space hypothesis requires the problem solver to have a

test which can inform the search process when the final state or the goal state is

achieved. He rules out various possibilities for this test such as asking a teacher

or an expert, using superficial approximate tests or adding the answer to the

subtrahend to see if it equals the minuend. VanLehn suggests that the last of

these tests is implausible since it is infrequently observed, and the second

15

because it would lead to a much larger class of systematic errors than have

actually being found in studies of subtraction. The first test he claims, cannot be

used when students are being tested, and that during testing it would be

implausible to assume that students search a problem space that is different to

the one they searched while learning. Similar criticisms of the problem/state

space hypothesis are also evident in the context of programming tasks, since

there is not always a clear test that a programmer can apply to inform them

whether their program is correct.

In addition to the domain restrictions on the applicability of the Newell and

Simon model that are discussed above, there are other reasons for believing that

the framework they present is unable to account fully for programming

behaviour. In particular, the model proposed by Newell and Simon does not

account for the development of problem-solving skill. It might be argued that

any model of human problem-solving should provide some account of how

problem-solving skills are acquired and how the nature of problem-solving

performance changes with the acquisition of these skills. The Newell and Simon

framework has been elaborated more recently to include a specific model of

learning (Anzai and Simon, 1979), however the emphasis of their model has

always been concerned with describing and modelling domain independent

problem-solving heuristics, rather than on skill acquisition.

While the Newell and Simon model does not appear to be of immediate

relevance to our discussion of problem-solving in programming, it was a major

pioneering achievement and remains important for a number of reasons. Firstly,

the analysis presented by Newell and Simon proposes a specific nomenclature

for describing problem-solving. The terminology they set forth has become

almost standard in discussions of problem-solving, and for this reason it has

been important to introduce this terminology here. Secondly, our discussion of

the Newell and Simon model has required us to distinguish between different

classes of problem, i.e., between well-structured and ill-structured problems.

This has enabled us to introduce a preliminary characterisation of typical

programming tasks and has illustrated that programming should be considered

to be a problem-solving activity. Finally, the Newell and Simon model provides

an important counterpoint to Anderson's ACf*, which, in contrast to Newell

and Simon's approach, places emphasis upon problem-solving in knowledge

16

intensive domains and suggests mechanisms which may underpin the

development of problem-solving skill.

2.3 Anderson's ACT* model of problem-solving

Anderson's (1983) ACT* (Adaptive Control of Thought) framework specifies a

generic cognitive architecture which has been used to account for a range of

cognitive functions, from pattern recognition to problem-solving. In addition, it

has provided a basis for theories of skill acquisition in a number of domains

including text editing (Singley and Anderson, 1985; 1988) , geometry

(Anderson, Greeno, Kline and Neves, 1981) and computer programming

(Anderson and Reisner, 1985; Pirolli and Anderson, 1985; Pirolli and

Bielaczyc, 1989). Anderson's framework provides a detailed description of the

processes which govern skill acquisition and which lead to the performance

differences that have typically been associated with skill development. Since a

primary aim of this thesis is to attempt to specify the processes that give rise to

the performance differences that are observed to accompany the development of

programming expertise, a discussion of the ACT* framework is of particular

relevance.

ACT* has three main structural components; a declarative memory, a production

(or procedural) memory and a working memory. Figure 2.1 is a schematic

representation of the ACT* architecture showing its major structural components

and their interlinking processes.

17

Declarative
Memory

Encoding

Application

Working
Memory

OUTSIDE WORLD

Production
Memory

Performances

Figure 2.1 A schematic representation of the ACT* framework

The declarative memory of ACT* is represented as a semantic network (Collins

and Loftus, 1975) of interconnected nodes which have different activation

strengths. These nodes represent cognitive units or chunks which can be such

things as propositions (hate, Bill, Fred) strings (one, two, three) or spatial

images (a triangle above a square). Each of these cognitive units encodes a set of

elements in a particular relationship. Anderson restricts the size of these

cognitive units to five elements, and more complex structures are formed by

constructing a hierarchical network of simple elements.

The procedural memory of ACT* is basically a production system (Hunt and

Pol track, 197 4, Young 1979). Production systems consist of a collection of IF

(state)- THEN (action) rules, which specify various condition-action pairs and

some global procedure for instantiating rules and for performing a consequent

action. The condition of the production rule specifies some data pattern, and if

18

elements matching these patterns are found in working memory, then the

production will 'fire'- i.e., operate. The action part of the rule specifies what to

do in that particular state. A typical production rule, informally stated, might

take the following form:

IF person 1 is the father of person 2

and person 2 is the father of person 3

THEN person 1 is the grandfather of person 3.

This production would apply if 'Fred is the father if Bill' and 'Bill is the father

of Tom' were active in working memory. This rule would enable the system to

infer that Fred is the grandfather of Tom and would deposit this fact in working

memory. Since production systems are computationally universa12 they are able

to model any class of cognitive activity that we are able to specify. Indeed,

production system models have been used by various researchers to explain a

wide range of cognitive processes (for instance, see Brown and Van Lehn,

1980; Kieras and Bovair, 1981).

The third main structural component in Anderson's model is working memory.

In fact, working memory is not a separable component in this model, but rather

it represents that information in declarative memory that is currently active.

According to Anderson (1983) "Working memory consists of information that

the system can currently access, consisting of information retrieved from

long-term declarative memory as well as temporary structures deposited by

encoding processes and the action of productions" (p. 19).

Most of the processes shown in figure 2.1 involve working memory. Encoding

processes deposit information derived from the outside world into working

memory, while performance processes convert commands contained in working

memory into action. Anderson claims that, unlike the other processes specified

by ACT*, these two processes are not central to the framework. The storage

process basically modifies the contents of declarative memory by either creating

a permanent record in declarative memory of the contents of working memory or

by altering the strengths of existing records in the declarative system. The

19

retrieval process retrieves information from declarative memory. The storage

and retrieval of information in declarative memory can be effected in a number

of ways. For instance, when the rules in the production memory match the

contents of working memory they are executed. The process of production

matching, followed by execution that is specified by these processes is called

production application. Production memory can also be applied recursively,

such that new productions can be formed by examining existing productions.

Anderson is careful to suggest that this general framework does not constitute a

theory, since it makes no specific predictions about behaviour. Anderson

suggests that a predictive theory must specify in greater detail the properties of

the storage, retrieval and production application processes that are central to the

ACT* framework. In fact most of Anderson's book 'The architecture of

cognition' is devoted to a consideration of these issues, and it is not feasible to

review them here in any detail. However, one important aspect of the ACT*

framework is its ability to account for skill acquisition, and it is to this we now

turn. In addition to outlining the general theoretical principles of skill acquisition

in ACT*, the next section of this chapter shows how ACT* has been applied to

skill acquisition in a programming context.

2.3.1 ACT* and skill acquisition

A central tenet of the ACT* theory is that skill learning consists largely of a

process which transforms declarative knowledge into procedural knowledge and

then modifies this procedural knowledge via application processes. This

declarative/procedural knowledge distinction is clearly one of the fundamental

elements of Anderson's theory of skill acquisition. Broadly speaking,

declarative knowledge is knowledge that is open to introspection and can

therefore be reported and is not tied to the situation in which it is used. In

contrast, procedural knowledge is applied automatically, often cannot be

reported and can only be applied in specific situations.

Stated broadly, Anderson views skill acquisition as a move from the use of

declarative knowledge structures to procedurally based knowledge that can be

applied rapidly and automatically in specific situations. More specifically,

20

Anderson claims that the acquisition of cognitive skills consists of three

successive stages of learning; a declarative stage, a procedural stage and a tuning

stage.

The first stage of skill acquisition involves the accumulation of domain relevant

facts which are incorporated into declarative network structures. This

knowledge will be used in conjunction with domain independent heuristics,

such as means-end analysis. For instance, when learning chess, the novice

would acquire a number of rules or facts which characterise the legal moves for

each piece. Similarly, in learning programming, the novice programmer may

rely exclusively upon the programming knowledge they have acquired from

textbooks. One feature of declarative knowledge is that it does not require the

problem-solver to use it in some specific manner, as would be necessary if that

knowledge were represented in a procedural fashion. However, before

declarative knowledge can be used it must be retrieved and kept active in

working memory. The ACT* framework suggests that the slow pace and

tentative nature of problem-solving during this declarative stage can be attributed

to the need to activate and access information in long-term memory (Anderson,

1982). Moreover, the loss of information from working memory can account

for many of the errors made by novice problem solvers (Anderson and Jeffries,

1985).

As problem solvers become more experienced, Anderson claims that declarative

knowledge becomes proceduralized. During this so called transitional stage,

productions are created from the declarative knowledge acquired during the first

phase of skill acquisition. In this second stage, successful sequences of activity,

produced by the application of weak method heuristics to declarative knowledge

are complied into new domain-specific productions. This compilation process

governs the transformation from the interpretive application of declarative

knowledge to procedures that apply this knowledge directly (Neves and

Anderson, 1981). Knowledge compilation has adaptive value in the sense that it

eliminates the retrieval process, and by doing so it has the effect of not only

speeding up performance but also reducing the load on working memory.

The knowledge compilation processes in ACT* take two distinct forms:

composition and proceduralization. Composition (Anderson, 1976; Lewis,

21

1978) takes a sequence of productions that follow each other in solving a

particular problem and collapses them into a single production that has the same

effect as that sequence. Proceduralization (Anderson, 1982) takes place when a

particular piece of declarative knowledge is used repeatedly in the context of a

particular subgoal and results in the creation of a production rule which

represents the declarative information as its condition and the result of the

execution of this declarative information as its action.

In the final stage of skill acquisition, any additional learning is attributed to the

tuning of procedures. Basically, this tuning process involves an improvement in

the choice of procedures for performing a given task. Since one can characterise

all problem-solving tasks as involving search through a problem space, then the

tuning of this search procedure, such that it leads to the discovery of optimal

solutions, will presumabley improve problem solving performance. Anderson,

Kline and Beasley (1980) have proposed three learning mechanisms which may

be employed in this search tuning process. They suggest a generalisation

process by which production rules become broader in their range of

applicability, a discrimination process in which their range is narrowed, and a

strengthening process by which successful rules are strengthened and poorer

rules weakened.

2.3.2 Applying the ACf* framework - Skill acquisition in LISP

Anderson, Conrad and Corbett (1989) describe an analysis of student learning

with their LISP tutor which adopts the general principles of the ACf*

framework. Anderson et al suggest that there are basically three claims that can

be derived from the ACf* model that are relevant to the instruction of a skill

such as LISP. According to the ACf* theory a skill like LISP programming can

be represented as a set of production rules. For instance, the following piece of

code, which implements a function that inserts the second element of one list at

the beginning of another list, can be represented as a series of productions:

22

Hence the code;

(defun insert-second (lis 1 lis2)

(cons (car (cdr lis 1)) lis2))

becomes the production rule set;

p-defun

p-name

p-params

p-insert

p-second

p-tail

p-var

IF the goal is to define a function
THEN code defun and set subgoals

1. To code the name of the function.
2. To code the parameters of the function
3. To code the relation calculated by the function

IF the goal is to code the name of the function
and = name is the name

THEN code = name

IF the goal is to code the parameters of the function
and the function accepts one or more arguments

THEN create a variable for each member of the set
and code them as a list within parentheses

IF the goal is to get the second element of a list
THEN code cons and set subgoals

IF
THEN

1. To code the element
2. To code the list

the goal is to get the second element of a list
code car and set a subgoal
1. To code the tail of a list

IF the goal is to code the tail of a list
THEN code cdr and set a subgoal

1. To code the list

IF the goal is to code an expression
and a function parameter has the expression as a

value
and = name is the name assigned to that

parameter
THEN code= name

23

Anderson et al have derived about 500 production rules of this kind to encode the

skill of programming in LISP. Although the ACT* theory holds that the

knowledge of a skilled programmer will be represented in this way, this is not the

case for a novice programmer. Anderson et al suggest that one cannot present

these rules to a student and expect the student to directly encode them as

production rules. Rather, information must initially be encoded in declarative

form. Anderson et al, on the basis of informal observation, suggest that during

learning, students rely to a greater extent upon exemplar descriptions of the

functions of LISP constructs rather than upon rule-based descriptions. Some

empirical support for the efficacy of exemplar-based approaches to teaching

programming is presented by Boyle and Drazkowski (1989).

Once the student has acquired some declarative knowledge of the domain, the

knowledge compilation process converts the initial interpretative use of this

declarative knowledge into a procedural production rule form. Anderson, Boyle,

Farrell and Reisner (1987) provide an example of this compilation mechanism in

the context of skill development in LISP programming. In their model there is a

function that will retrieve function definitions from long-term memory and apply

them in appropriate contexts. For instance, in the following production, relation

and function are variables which allow the production to match different data:

IF

THEN

the goal is to code a relation defined on an argument
and there is a LISP function that codes this relation

use this function with the argument
and set a subgoal to code the argument

Here, the second line of the condition might match, for instance, 'CAR codes the

first member of the list'. This rule can be proceduralized to eliminate the retrieval

of the CAR definition as follows:

IF

THEN

the goal is to code the first member of a list

use the CAR of the list
and set as a subgoal to code the list

24

This proceduralization is achieved by deleting the second clause that required

long-term memory retrieval from the first production. Moreover, the rest of the

production is made specific to the relationship between first member and the

function CAR. Once a production has been created that can directly recognise the

application of CAR, this will result in a reduction in the quantity of long-term

memory information that needs to be held in working memory.

Another compilation mechanism that is important in the ACf* framework is

composition. Basically, composition involves combining a number of successful

operators into a single macro-operator that has the same overall effect as the

sequence of individual operators. Anderson et a1 again provide an example of this

mechanism from LISP. Suppose that one wanted to insert the first member of list1

into list2. Here the following two operators would apply in sequence:

IF

THEN

IF

THEN

the goal is to insert an element into a list

CONS the element to the list
and set as subgoals to code the element
and to code the list

the goal is code the first member of a list

take the CAR of the list
and set as a subgoal to code the list

Here the first rule would apply and bind an element to 'the first member of list 1'

and a list to 'list2'. The second production would apply and bind a list to 'list1 '. A

simple case of composition involves collapsing these two productions into a single

production:

IF

THEN

the goal is to insert the first member of one list into another list

CONS the CAR of the first list to the second list
and set as subgoals to code the first list
and code the second list

The result of composing productions in this way would be an increase in coding

speed since a problem could be coded in fewer steps. McKendree and Anderson

(1987) have provided some empirical support for this speedup phenomenon for

frequently repeated combinations of LISP functions.

25

Anderson et al (1989) present a number of empirical studies of their LISP tutor.

This tutor embodies several design considerations derived from the ACT* model

of skill acquisition. While it is not appropriate to discuss the design of this tutor

here, the empirical findings of Anderson et al (1989) are of relevance to the current

discussion, since they provide some support for their model of skill acquisition in

LISP.

In one of their analyses, Anderson et allooked for learning trends amongst their

subjects who were using the LISP tutor. They found evidence to support the view

that production rules are modular units of knowledge which can be learned

independently from other units. Hence, subjects show regular learning curves

defined on production rules and their independence from other similar rules was

demonstrated by subjecting the production learning data to factor analysis. They

also found that these rules are abstract and are not tied to a specific content.

Hence, production rules can be transferred across contents and languages. They

suggest that these findings not only provide support for the ACT* model but are

also contrary to other theories of skill acquisition, such as those proposed by

schema theory (Rumelhart, 1980; Rumelhart and Norman, 1981) and by

connectionist approaches (McClelland and Rumelhart, 1986; Rumelhart and

McClelland, 1986). For instance, they claim that schema theory would emphasise

larger units of knowledge than productions and that connectionist approaches

would rule out the existence of abstract rules such as those evident in the

Anderson et al study.

The ACT* framework has provided a detailed specification of skill acquisition in a

number of domains and Anderson and his colleagues have constructed

computational models of skill acquisition which embody the main assumptions of

the ACT* framework. These models have demonstrated that a learning system

which starts with only a small number of domain related facts stored in declarative

memory, together with a number of preexisting problem solving procedures can

acquire new procedures which can be made responsive to the kinds of situations

that occur in the domain of learning. ACT* suggests a basic set of learning

processes and specifies, in effect, a theory of the basic principles of operation built

into the cognitive system. The main strength of the ACT* framework is that it can

explain a range of relevant phenomena from the performance differences

associated with developing expertise to the transfer of cognitive skill.

26

2.3.3 Problems and limitations of the ACT* framework

In one sense the main problem with ACT* is that it is too powerful. For instance,

many of the simulations of skill learning which embody ACT* principles often

perform better than the human subjects that they are intended to model. For

example Anderson (1982) describes a simulation of the behaviour of high-school

students solving two-column proof problems in geometry. While the simulation

managed to solve the problems that it was presented with, not all the students did.

This suggests that ACT* may provide a good model of idealised problem solving

and learning, but not necessarily of the actual problem solving behaviour exhibited

by real subjects.

This problem is compounded to some extent by the focus of the ACT* framework

upon models of appropriate skilled performance rather than upon mistaken and/or

inappropriate behaviour. The ACT* framework suggests that errors in problem

solving are either 'systematic' errors derived from defective knowledge or are

errors which arise from unintended actions or slips (Norman, 1981; Reason,

1979) during procedure execution. However as Brown, Burton and VanLehn

have shown, errors can arise because individuals may have 'buggy' procedures,

i.e., correct procedures with one or more minor perturbations or bugs (Brown and

Burton, 1978; Brown and VanLehn, 1980; Burton, 1982; VanLehn, 1982, 1990).

Anderson et al (1987) have attempted to build buggy procedures into their LISP

tutor and these procedures are used to account for student errors. However, even

with the inclusion of buggy procedures, it is still possible that there are other

mechanisms which can produce regular errors.

For instance, it is possible that a problem solver may simply have no idea how to

solve a particular problem and hence may adopt a coping strategy to produce a

response. This problem suggests that we may require richer representations of

skill than are presently afforded by models such as ACT*. Experts in some

domain can readily cope with novel problems; are often able to transfer their skills

to very different domains and can argue and reason about the subject matter of

their domain and the nature of their expertise. As we shall see later, in the

programming domain, these skills are clearly important. However, the ACT*

model addresses none of these abilities, since it concentrates upon a parsimonious

explanation of performance in the context of well practised and familiar tasks.

27

Payne (1988) suggests that frameworks such as ACf* fail to consider the

importance of non-procedural conceptual representations in problem solving and

that "even skills with a large procedural component rely on a great deal of

conceptual knowledge, and that the content and structure of the conceptual

knowledge may continue to develop with expertise, alongside'the procedural

methods" (pg 76). However, as we have seen, the ACT* framework suggests

that non-procedural knowledge ceases to play a role in skill after the initial novice

stage. In chapter 3 a number of studies are reviewed which place a strong

emphasis upon the role of conceptual knowledge in programming expertise. It

appears that in programming, as well as in other domains, non-procedural

knowledge plays a vital role in expertise, and that the ACf* framework is limited

it terms of its ability to account for expertise in programming or similar knowledge

intensive domains.

2.4 Can existing models of problem-solving account for the complexity of

programming behaviour?

The two problem solving frameworks that have been reviewed in this chapter

appear to display a number of general limitations which suggest that they may be

unable to account for the complexity evident in programming tasks. For instance,

we have characterised programming problems as ill-structured tasks which are

highly knowledge intensive. The state space analysis of problem solving

suggested by Newell and Simon would appear to be unable to account for problem

solving behaviour in ill-structured domains, and as such it provides an

inappropriate model for attempting to understand the full range of

problem-solving activities involved in programming.

The ACf* model is advanced as an alternative framework for understanding

problem solving and skill acquisition in knowledge intensive domains.

Consequently, this model should provide a more appropriate framework for

understanding programming behaviour. However, as we have seen, the ACf*

framework fails to suggest a role for non-procedural or conceptual knowledge in

problem solving. Since many studies of programming highlight the importance of

such knowledge (see review in chapter 3) in the development of expertise, it may

be doubted whether models such as ACf* provide sufficient flexibility to

28

characterise the many facets of expertise which have been demonstrated in a range

of studies.

The limitations of the two frameworks that have been described above not only

present problems in terms of an analysis of programming behaviour, since they

are clearly of significance in other problem solving domains. However, it is

apparent that there are certain salient properties of programming tasks which

appear to be very specific to the problem solving activities that occur in this

domain. Moreover, extant problem solving frameworks do not appear to provide a

basis that can fully account for the effects that these features of programming tasks

can have on problem solving behaviour. The next section of this chapter

concentrates upon a discussion of these issues. This provides a basis for a

characterisation of programming activates which not only considers the nature of

the programmer's task, but in addition, highlights the role in problem solving of

programming language features and of the tools used by programmers to create

programs. This multifaceted view of problem solving in programming reflects the

broad approach adopted by this thesis.

2.4.1 The inseparability of planning and execution

The dominant view of problem-solving suggests that the problem-solving activity

is a top-down focused process that starts with high-level goals which are

subsequently refined into subgoals and ultimately into achievable action. This

process is often referred to as successive refinement or problem decomposition.

Recall that the model of problem-solving suggested by Newell and Simon starts

with a specification of the goal state and attempts to reduce the difference between

the initial or the current state of the problem by applying operators or by creating

subgoals. In routine skill, this decomposition process can take place without

problem solving since action sequences can be remembered as prepackaged

methods for achieving specific goals (Newell and Simon, 1972; Card, Moran and

Newell, 1983). In this situation information from the external world plays a

limited role by providing feedback information to test the effects of certain

operators against goals (Miller, Galanter and Pribram, 1960; Norman, 1986).

29

This account of human problem solving has clearly been successful. However it

under emphasises the role of perception in cognitive skill and the extent to which

the external world can act as a resource to support problem solving behaviour. A

number of researches have shown that the 'external display' upon which a task is

enacted can serve as a repository for search control knowledge and can therefore

reduce the working memory load that is normally required to carry out a given

task. One can compare the use of external displays with classical models of

problem solving where the problem solver must maintain a stack of subgoals. The

importance of external memory props has been demonstrated by several

researchers who have suggested that actions are often enacted before plans are

complete (for example see, Green, Bellamy and Parker, 1987; Young and Simon,

1987). In addition, an important parallel development in AI models of planning is

the idea that planning cannot be easily separated from execution (Agre and

Chapman, 1987; Ambros-Ingerson, 1987; Chapman, 1987; 1989). For instance,

Ambros-Ingerson (1987) highlights the importance of 'knowledge getting

actions', which are built into plans and specify where additional planning

information can be obtained, generally from external sources. Larkin's (1989)

recent analysis of 'display-based' problem solving similarly stresses the

importance of obtaining information about the current problem state from the

display.

In the programming domain, Green et al (1987) have proposed a model of

programming behaviour - their so called 'Parsing/Gnisrap model - which suggests

that because of working memory limitations, programmers must dump

information onto an external medium (i.e., a VDU screen) when overload is

threatened and then later parse that information back into a cognitive representation

when it is subsequently required. The Parsing/Gnisrap model is described in

greater detail in chapter 4, but one important contribution of this model is the idea

that planning and execution in programming are inextricably bound together. The

existence of such a phenomenon poses problems for classical models of problem

solving in terms of their ability to account for problem solving behaviour in

programming.There are two main reasons for this. Firstly, such models fail to

recognise the importance of external media in problem solving and secondly, they

suggest that planning and plan execution (or operator selection and execution) are

separate processes, whereas, in fact, in many complex domains, they appear to be

very closely linked.

30

2.4.2 The effects of programming language features on programming behaviour

Programming tasks are clearly rather different from the kinds of tasks that are

typically studied in problem solving analyses. One major difference is that

programming involves the use of a specialised language which is employed to

implement the various problem solving operators necessary to solve a particular

problem. In traditional problem solving studies, operators are applied directly to

objects in the world, and it is not necessary to employ a metalanguage to describe

or to express these operators. One can of course describe games such as chess

using a formal notation. However, it is likely that the various problem solving

strategies or methods which are employed while playing a game of chess may well

be different to the methods and strategies used if one has to describe and 'play' the

game using an abstract formal notation3.

While we might attempt to characterise programming languages as in some sense

analogous to the formal language that can be used to describe chess moves, there

does not appear to be a close programming analogy with the more typical situation

where problem solving operators are applied directly to objects in the world. Some

writers have claimed that one way of making programming more 'natural' might

be to use graphical notations, in which graphical objects representing various

programming constructs can be manipulated in various ways to construct a

program (Badre and Allen, 1989; Cunniff and Taylor, 1987a and b; Cunniff,

Taylor and Black, 1986). Others have suggested that natural language might

provide a better means of specifying algorithms (Biermann, Ballard and Sigmon,

1983). There is a great deal of current debate surrounding the use and the general

efficacy of these various notations (Dyck and Mayer, 1985; Fitter and Green,

1979; Green, 1982; Gaiotti and Ganong, 1985). However what is fairly clear is

that different notations may support different kinds of problem solving tasks to a

greater or a lesser extent.

For instance, Adelson (1984, and see review in chapter 3) has shown that the way

in which programming information is presented (i.e., as different types of

flowcharts or as text) can have a marked effect upon subjects' ability to answer

different kinds of program comprehension question. Hence, it appears that

subjects may be able to extract different forms of information more readily from

different notations. This phenomenon does not only arise when comparing text

31

with graphical presentation, since other studies have demonstrated that different

text-based notations can support different kinds of programming tasks.

For example, Green, Bellamy and Parker (1987) have shown that programmers

rarely generate programs in a strictly linear fashion, where the final text order of

the program mirrors its generative order. Moreover, this study demonstrated that

the extent of this non-linearity is related in part to the programming language that

subjects use. Green et al claim that some notations facilitate linear generation while

others do not. Additional support for this is provided by Bellamy and Gilmore

(1990) who found that Pascal programmers adopted a non-linear style of program

development, while BASIC and PROLOG programmers exhibited a more or less

linear style . They claim that "the task of translating from the plan structure to the

linear structure of Pascal places far too high a mental load even on expert

programmers, doing simple problems. In other words, the Pascal programming

language fails to support plan generation" (pg 68). They go on to suggest that

programming plans (that is plans that represent stereotypical tacit programming

knowledge) "are dependent upon the programming strategy of the particular

programmer. This in turn is influenced by the notation, taught strategies and the

programming environment used during learning to program" (pg 68). Hence, it

appears that certain notational properties of programming languages can affect the

problem solving strategies exhibited during program generation.

In addition, language features also appear to affect the comprehension of

programs. For example, Gilmore and Green (1988) have shown that programmers

can extract certain forms of information from some notations more easily than they

can from others. They introduce the term "role-expessiveness" to describe the

extent to which certain notations may make particular programming languages

more discriminable from others. They suggest that one primary element of

role-expressiveness relates to the ease with which programmers are able to extract

certain forms of information from a given program text. They claim that this

process will be facilitated if the programmer is able to discriminate between the

structure she is searching for and other structures that surround it. For example,

Gilmore and Green claim that Pascal is more role-expressive than BASIC since

Pascal has a rich set of lexical cues, making structure more discriminable, and in

BASIC the same piece of code may be used for more than one purpose, which can

lead to structure confusion. Role expressiveness is clearly not the only notation

32

feature that might contribute to particular kinds of programming strategy. In fact,

Green (1989) has outlined a number of so called notational dimensions, which he

claims may determine the strategy employed by programmers when engaged in

particular tasks.

Hence, another problem with classical accounts of problem solving behaviour is

that such accounts fail to generalise to problem domains in which problem solving

operators need to be expressed in some metalanguage. As a consequence, such

models cannot account fully for the problem solving behaviour exhibited by

programmers which appears to be heavily influenced by certain properties of the

notation of the particular language being used.

2.4.3 The effects of problem solving environments on behaviour

There appear to be two major cognitive demands that distinguish computer use,

including normal programming tasks, from the puzzle solving concerns

traditionally addressed in studies of problem solving (Payne; 1987; 1990). Firstly,

when using a computer system, operators cannot be applied directly. Rather they

must be effected via a task language which maps operators into action sequences.

Secondly, the structure of the problem space is clearly more complex, since in

addition to representing goals and subgoals in the task domain, it must also

accommodate some representation of the device. In programming terms we might

the distinction between the 'device language', which the programmer uses to issue

commands to the editor or its equivalent and the 'task language' which represents

rules that describe the target domain (Green, Bellamy and Parker, 1987). In

addition, we need to consider the medium by which the user interacts with a task

(i.e., the interaction medium), e.g., pen and paper, VDU etc. The characteristics

of each of these elements of interactive behaviour are likely to play a role in the

determination of programming behaviour or strategy.

This is amply illustrated in Green's discussion of a system designed to receive

spoken Pascal code, using an isolated-utterance speech recognizer (Green, 1989).

Green claims that "the system worked reasonably well - i.e., if one dictated Pascal

code into it, the recognition rate was quite acceptable. However, because the

speech recogniser relied upon the constraints of Pascal to make the recognition

33

problem tractable, the program had to be syntactically correct at all times. The

design of the system made it preferable to dictate the program in text order, from

start to finish. Unfortunately, because of certain characteristics of the Pascal

notation, it is pretty well impossible to dictate impromptu Pascal without any

omissions ... Pascal is not a suitable notation for this environment" (pg. 444).

Green, Bellamy and Parker (1987) have demonstrated that programmers rarely

generate their programs in a strict linear order. Hence, one might hypothesise that

if programmers are constrained to a linear generation strategy, then this will

seriously affect their performance. In chapter 11 an experiment is reported in

which programmers were required to use an editor which did not allow any

backward movement. Hence, like the speech input system discussed by Green,

programmers were forced into a situation where they had to generate their

_{)rograms in a linear fashion. Unlike the speech input system, this editor displayed

the program generated to date, and hence reduced the demand on working memory

to some extent. However, programmers still made many errors. Indeed, when

programmers had to use this environment, the performance of expert programmers

was reduced to the level exhibited by novices. This decrement in performance

serves to illustrate the effect that device characteristics and interaction medium can

have on performance, and suggests a major limitation of traditional problem

solving frameworks which fail to consider the effects of the device and interaction

medium on behaviour.

2.5 Conclusions

This chapter has been concerned with a review of two important problem solving

frameworks and has placed particular emphasis upon the ability of these

frameworks to account for problem solving behaviour in programming. While

neither of these frameworks appears to provide an account of programming

behaviour that can capture its full richness, they do at least provide a starting point

from which one can attempt to begin to characterise programming behaviour. This

chapter has suggested that we cannot view programming as an activity which

simply involves the application of generic problem solving methods and nor can

we model its full complexity by simply suggesting a large collection of

condition-action rules and some means of applying them. Rather, programming

34

behaviour appears to depend upon the use of complex planning and problem

solving strategies which in tum may be supported or otherwise by certain

notational features of programming languages and by features of the device space.

As Bellamy and Gilmore (1990) suggest:

" To understand the psychology of complex tasks such as programming, we need

to consider planning strategies in particular task contexts. Theories of planning

and problem solving have spent too long with their heads in the sand, ignoring the

role the external world plays in determining behaviour. If psychology is going to

make significant contributions both in theoretical and applied areas of research, we

need investigations of how features of the external world determine behavioral

strategies. Only then will we be able to produce artifacts that support effective task

strategies" (pg 69-70).

The work reported in this thesis broadly supports this view, but perhaps more

importantly, it suggests that we need to consider not only the role of the external

world in the determination of programming behaviour, but also the way in which

representations of programming knowledge interact with language features to give

rise to particular forms of strategy. This tripartite view of programming behaviour

is reflected in the concerns of subsequent chapters, where these issues will receive

further attention. In chapter 3, we review the extensive literature on knowledge

representation in programming, while chapter 4 concentrates upon the nature of

the problem solving strategies which appear to underpin programming behaviour.

In chapter 5, concern is directed towards a review of studies which have

suggested that programming language features play a major role in the

determination of programming strategy. This provides a basis for the experiments

reported in chapters 6- 11, which in tum provide support for the tripartite analysis

of programming behaviour advanced in this thesis.

35

Notes

1 Greeno (1978) introduces the term 'transformation problem' to characterise

those problems which transform one situation into another. Hence, the Tower of

Hanoi problem is transformational in that one can identify various moves which

transform one state into another. Other examples of transformational problems are

the water jugs problem (Atwood and Polson, 1976) and the missionaries and

cannibals problem (Simon and Reed, 1976)

2 Production systems are computationally universal in the sense that they can be

implemented as a Turing Machine and according to the Church-Turing thesis, any

behaviour that can be precisely specified will be in the class of things that can be

computed by a Turing Machine.

3 For instance one cannot easily extract perceptual groupings from a formal

symbolic representation of chess positions and moves and the ability to do this

would appear to be a central element of skill in this domain.

36

Chapter 3. Knowledge Representation and Expert/Novice

Differences in Programming and in Related Domains

3.1 Introduction

A large number of studies concerned with the nature and development of expertise

in programming and in other problem solving domains have highlighted

significant qualitative differences between the way in which experts and novices

organise and structure their knowledge about a particular domain. Studies of

expert/novice differences in programming have drawn extensively from theories of

expertise in other domains. For instance, a number of studies, following de

Groot's (1965) seminal work on expertise in chess have attempted to relate skill

differences in programming to the ability of experts to recognise and represent

meaningful chunks of code (Barfield, 1986; Shneiderman, 1976). Other theories

of programming skill have adopted generalised production system architectures to

explain certain salient attributes of expert performance, including phenomena that

are typically associated with skill development such as knowledge restructuring

and compilation (see chapter 2).

A number of other important studies have drawn analogies with work in the text

comprehension domain (Detienne and Soloway, 1990; Soloway and Ehrlich,

1984). Studies of knowledge representation in text comprehension have been

germane to both the development of theoretical accounts of the content of tacit

programming knowledge and to descriptions of the organisation and structure of

this knowledge. More recently the importance of hybrid representations has been

highlighted. This hybrid approach suggests that programmers can recruit

knowledge from a variety of diverse sources in order to guide problem-solving

and, in addition, that a simple uniform view of knowledge representation in

programming is not sufficient to account for the behavioral complexity of this

task.

This chapter will provide a thematic review of existing studies which have been

concerned with the relationship between knowledge structure and expertise in

programming. Existing work on knowledge representation in non-programming

domains will not be comprehensively reviewed since many studies of expertise in

programming have served to replicate the basic findings of research in other

domains. Hence, the main aim of the present chapter is to provide a broad review

37

of existing research into knowledge representation and skill differences in

programming. However, this focus on programming research provides a cogent

and extensive overview of some of the more general findings to emerge from the

problem-solving literature concerned with domains such as Chess, Physics and

Mathematics.

This does not mean to say that work in such domains has nothing more to

contribute to a study of problem-solving and skill differences in programming.

Rather, it will be suggested that a great deal of theoretical understanding still

remains to be gained from an analysis of problem-solving in these kinds of

domain. Moreover, it should be noted that while many early programming studies

appear to draw upon previous problem-solving research only in as much as they

attempt to replicate its basic findings, more recent work is beginning to contribute

more explicitly to our theoretical understanding of general problem-solving skills

in addition to providing a description of the content and structure of knowledge

representation for programming tasks.

This chapter begins by reviewing some of the early work on skill differences and

knowledge representation in programming. These studies serve to provide

important supplementary support for the now well known finding that experts tend

to represent domain knowledge in terms of meaningful chunks, while novices tend

to derive cognitive structures from salient surface features of problems. More

recent work has elaborated in greater detail the nature of these different grouping

strategies, while studies of programming that claim allegiance to the text

comprehension paradigm have specified the content of the stereotypical knowledge

structures that are brought to bear during problem-solving.

This chapter concludes with an evaluation of these studies in terms of their

contribution to our understanding of problem-solving in programming. It will be

suggested that many of these studies have failed to elicit information about

cognitive structure and content that can be generalised between programming

languages and paradigms. The main criticism of such work is that theories and

principles have often been derived from studies of the comprehension of a single

programming language and that the implications drawn from such studies do not

necessarily apply in the case of different languages or different programming

paradigms.

38

Another aim of this chapter is to provide an overview and background to a number

of the empirical studies reported in this thesis which have addressed issues relating

to the generalisability of existing studies. This empirical work will not be

discussed in detail in the present chapter but will be briefly mentioned in the final

section in order to place it in the context of other work and to illustrate its historical

anticedents and development. This chapter attempts to draw out links between the

individual experimental studies reported in this thesis, and concludes by

suggesting that a more comprehensive understanding of the cognitive aspects of

programming will arise only when programming skill is interpreted in a broad

ecumenical context. That is, in a context which empahsises not only aspects of a

programmer's knowledge representation but also considers the development of the

strategic aspects of programming skill and the way in which the notational

properties of certain languages might act to facilitate or to constrain programming

behaviour.

3.2 Expert/Novice differences and chunking skills

The idea that experts develop 'chunks' of knowledge that represent important

functional units or structures within a particular domain is common psychological

currency (Miller, 1956; Chase and Simon, 1973; de Groot, 1965; Egan and

Schwartz, 1979; Larkin, McDermott, Simon and Simon, 1980; Reitman, 1976).

Within the programming domain, a range of studies have suggested that

programming expertise might be characterised by the programmer's ability to

decompose and represent programs in terms of 'chunks' of knowledge which are

based upon semantically meaningful elements of programs. For example,

Shneiderman (1976) has shown that the standard results obtained in the now well

known chess studies are replicable in the context of programming. Shneiderman

found that experts could recall more lines of program code than novice

programmers when that program was organised in executable order. Conversely,

when the program was ordered randomly no significant differences in recall

performance between the two groups were evident.

A number of other studies, employing more complex recall procedures and

stimulus material, have provided additional support for the 'chunking' hypothesis

(Bateson, Alexander and Murphy, 1987; Barfield, 1986). For instance, Barfield

(1986), employed three levels of program organisation (executable order, random

lines and random chunks) in a free recall experiment to explore differences in

39

knowledge representation for programmers of different skill levels. Barfield found

that novice programmers recalled the same number of program lines regardless of

program organisation. Conversely, the intermediate group demonstrated superior

recall when the program was presented in executable order as opposed to the

random line and random chunk conditions. Barfield suggests that this indicates

that executable order facilitates chunking for intermediate level programmers.

Experts, on the other hand, demonstrated high recall performance in both the

executable order condition and in the random chunk condition. However, when

the program is completely randomised the performance of the expert group drops

to a similar level to that exhibited by intermediates. Barfield suggests that since the

memory capacity of the experts is the same as that for other groups, the superior

recall in the random chunk and executable order conditions must arise because of

the experts familiarity with particular units of code that perform the same function.

3.3 Knowledge structures: content and formation

The studies reviewed above demonstrate that the superior organisation of

programming knowledge in long term memory is one of the central factors in

expert performance. However, these studies fail to specify in detail the nature of

that organisation. For instance, one question that is left unresolved relates to the

content of expert knowledge structures. In addition, the chunking studies

described above do not address issues concerned with the mechanisms which may

underlie an expert's ability to create and represent meaningful chunks of

knowledge. As a consequence, two central questions appear to emerge from these

studies; How are chunks formed and what sort of information do such structures

typically represent?

3.3.1 The organisation of programming knowledge by novices and experts

McKeithen, Reitman, Rueter and Hirtle, (1981) describe a study which attempts

to address the issues raised by these questions. They report two experiments. The

first experiment replicates the classic expert-novice difference in short term recall

for programmers who viewed either a coherent or a scrambled version of a

program. This experiment produced results which parallel those of Barfield (1986)

and of Sheiderman (1976) reported above. In a second experiment, McKeithen et

al., attempted to extend the interpretation of this basic phenomenon by inferring

40

details of a subject's organisation of programming concepts by constructing

hierarchical representations of the relations among programming language

keywords.

For this experiment, McKeithen et al. employed a technique developed by Reitman

and Rueter (1980) which produces a hierarchical representation of information

from regularities in the orders in which items are recalled over many trials. This

technique capitalises upon the fact that people tend to recall all items of one chunk

before moving on to the next chunk (Cohen, 1966). McKeithen et al. examined

the way in which programmers form chunks by presenting their subjects with a

number of cards each of which had written upon it a word derived from the set of

ALGOL W reserved words (for instance, ELSE, REAL, NULL etc.). Novice,

intermediate and expert subjects were asked to learn each of the words presented

on the cards such that they could subsequently recall them without the aid of the

cards. Subjects were then asked to attempt to recall the words they had learnt

during 25 scheduled trails. Some of these trials were cued in that subjects were

presented with a reserved word and were then asked to recall other words "that go

with it". Most of the trials, however, were uncued and subjects could recall words

in the order they wished.

McKiethen et al. analysed the recall order for each subject using an algorithm

developed by Reitman and Rueter (1980). This algorithm involves searching

subject's recall strings for all groups of items that always appear contiguously,

regardless of recall order. For example, a number of groups of contiguously

recalled items (ABC, BC, DEFG, DEF, EFG, DE, EF and FG) can be derived

from the four recall strings in figure 3.1. These groups can be represented either

as a lattice under set inclusion or as a parenthesised expression. Consistency in the

order of recall of groups (such as an ordered set of chunks or a list) appears in the

lattice as overlapping groups: e.g., DEFG, DEF, EFG, DE, EF and FG indicate

that DEFG is always ordered. Inspection of the original recall strings can

determine whether the order is always the same (i.e., a unidirectional chunk) or

one order and its reverse (a bidirectional chunk). Unidirectional chunks can be

represented in the tree diagrams by using a single-headed arrow notation, and

bidirectional chunks by double-headed arrows. In the parenthetic representation,

square brackets denote a unidirectional chunk and angle brackets a bidirectional

chunk. Nondirectional chunks, whose constituents can appear in any order, are

indicated by the absence of an arrow in the tree diagram and by curved brackets in

the parenthetic expression.

41

a. Recall Strings

A B c D E F G
D E F G c B A
D E F G B c A
B C A D E F G

b. Lattice of Chunks

A

A B C D E F G

~~
A B C D E F G

B

"' /' " DEF EFG

B C D ~ ~f'F G

A < { ~ /------ 'f/ ~
-~~

root

c. Ordered Tree

c D E F G

d. Expression

((A (B C)) [d e f g])

Figure 3 .1. Example analysis of recall strings by the Reitman -Rueter technique.

42

Figure 3.2 shows the organisation of reserved words for a novice programmer

and for a typical expert programmer. McKiethen et al. found that beginning

programmers appear to utilise a range of different mnenomic techniques. For

instance, some novice subjects appeared to be using an encoding strategy based

upon orthography, while others seemed to be using common natural language

sequences such as DO-FOR-WHILE or BITS-OF-STRING. Experts, on the

other hand, appear to cluster together words based upon common structures used

in ALGOL (i.e., WHILE-DO or IF, THEN, ELSE), while intermediates appear

to employ a mixture of strategies and to base their organisation on both ALGOL

structures and natural language chunks.

The results of the McKeithen et al. study provide an impressive demonstration that

differences in knowledge organisation, as reflected by recall order and

memorisation strategy, are strongly correlated with differences in programming

skill. McKeithen et al. do not claim that particular forms of knowledge

organisation produce expertise, since any support for this hypothesis would need

to be derived from a demonstration of within-subject skill changes with

instruction. However, one might hypothesise that learning particular forms of

organisation would led to the enhancement of programming skill.

Moreover, McKeithen et al. suggest that their findings may support the claims

made by protagonists of structured programming, since it is possible that an

expert's mental organisation of a program may correspond to the forms of

organisation produced by applying structured programming techniques. Hence, it

appears that the Reitman - Rueter technique for analysing recall order that is

adopted by McKeithen et al. may provide the basis for exploring the purported

cognitive advantages of adopting structured programming principles. The main

contribution of the McKeithen et al. study is that it provides evidence for the way

in which programmers group together related pieces of information in order to

form knowledge structures that can best guide problem solving in programming.

Their work provides a natural extension to some of the earlier chunking studies by

outlining the different strategies used to group information and by illustrating the

way in which particular strategies are associated with different levels of skill.

43

~--BITS

CASE
SHORT

__.,.~iii::::-- STEP
STRING
IF
IS

-~--OF
OR

~~ii~~~~~~~~~~~~~~DO ELSE
LONG

---------------!::::~====STEP
END

Figure 3.2. Typical novice (above) and expert (below) knowledge organisation

found in the McKeithen eta/ study. The novice's organisation is apparently based

on orthography, while the expert's is based upon the meaning of words in the

programming language.

44

The results of the McKeithen et al study suggest that experts group program

statements according to broad semantic categories while novices use familiar

surface features such orthography. In other problem solving domains similar

finding have emerged. For instance in Physics problem solving it has been shown

that novices typically represent only the surface (or concrete) features of a problem

whereas experts represent abstract physical principles (Chi, Glaser and Rees,

1981; Chi, Feltovich and Glaser, 1981). Similar findings have also emerged in

studies of mathematics (Schoenfeld and Herrmann, 1982).

3.3.2 Abstract and concrete representations of programming knowledge

In the programming domain, Adelson (1981) has attempted to extend these

findings by characterising some of the properties of the abstract and concrete

representations that are formed during program comprehension. Adelson (1981)

found that expert programmers used abstract conceptually based representations

when attempting to recall programs, whereas novices used syntactically based

representations. Using a multi-trial free recall procedure, Adelson asked novice

and expert programmers to recall 16 lines of program code that had been presented

randomly. Although the subjects had not been told that the 16lines could be

organised either conceptually into three programs or syntactically into five

categories according to the control words they contained, an analysis of the recall

for each group showed that experts had clustered the lines into complete

programs, while the novices clustered lines according to syntactic category. This

finding simply serves to replicate the results of the McKiethen et al (1981) study

reported above. Adelson (1984; 1985) later extended this basic paradigm to

explore in more detail the nature of the organisational groupings produced by

expert and novice programmers, by characterising some of the properties of

abstract and concrete representations.

For example, Adelson (1984), reports an experiment in which expert and novice

subjects were given tasks that required them to form and use both abstract and

concrete representations. Subjects were presented with a stimulus set consisting of

eight PPL (Polymorphic Programming Language, described as similar to APL and

PL/1) programs with two types of flowchart and two types of questions for each

of the eight programs. The flowcharts were constructed such that one described

the output resulting from program execution, while the other described how the

program functioned.

45

Adelson suggests that flowcharts that represent what a program does (i.e., in

terms of its expected output) should be considered as abstract representations,

since they describe the results obtained without specifying the method used to

achieve them (e.g., in order to sort a set of items alphabetically one might use a

variety of methods such as a merge sort, shell sort or bubble sort). Conversely,

the flowcharts that describe a program's function are referred to as concrete in the

sense that they represent procedural information without providing any general

descriptive information about expected results. Adelson suggests that these two

categories of abstract and concrete representation have strong parallels to the more

common distinction that is drawn between procedural and declarative knowledge

(Anderson, 1983; Winograd, 1974).

In addition to being presented with a program and a flowchart describing that

program (Figures 3.3 and 3.4), subjects were presented with a number of

questions relating to either concrete or abstract features of the program. For

example - "Is the field wider than it is long?" (abstract question, what the program

does), "which border of the field is filled in first?" (concrete question, how the

program works).

The level of abstraction of the flowchart was crossed with the level of abstraction

of the question to create four conditions for subjects of different levels of

expertise: two appropriate set conditions, in which the level of abstraction of the

flowchart matched the level of abstraction of the question, and two inappropriate

set conditions where the level of abstraction of the flowchart did not match the

level of abstraction of the question. Hence, in the appropriate set conditions,

subjects saw either an abstract flowchart followed by an abstract question or a

concrete flowchart followed by a concrete question. In the two inappropriate

conditions, subjects were presented with either an abstract flowchart followed by a

concrete question or a concrete flowchart followed by an abstract question. The

two dependent variables used in this experiment were comprehension time (the

time it took a subject to state that they had understood the flowchart well enough to

go on and study the program and answer the associated question) and error rates

on the questions.

46

PROORAM

$MAKEFIELD; I;J

[1] ... DATA DEFINITIONS IN THE CURRENT ENVIRONMENT
[2] ... $GRID = [1 :] ROW
[3] ... $ROW = [1 :] CHAR
[4] LINE - MAKE (ROW, 40,') ... CREATE THE FIELD
[5] FIELD - MAKE (GRID, 20, LINE)
[6] FOR I - 1:19:20 DO% ... FILL IN TOP AND BOTTOM

(FOR J - 1 :40 DO FIELD [I,J] -'B) ... BORDER
[7] FOR I- 2:19 DO%

(FOR J - 1:39:40 DO FIELD [I,J] - 'B ... FILL IN SIDES

make a field of 20 rows;
each row composed of 40 characters;
each character a space

,
mark the edges of the field
with character b's

,,
stop

Figure 3.3. Program described in the following flowcharts. The flowchart above

is an abstract flowchart in that it describes what the program does.

47

LINE<- A ROW OF 40 SPACES

FIELD<- A GRID OF 20 LINES

Figure 3.4. An example of a concrete flowchart.

48

I <- I+ 19 1----____J

J <- J+39 1----l

I <- 1+1

Adelson found that both types of flowchart reduced program comprehension time

significantly. In addition, the abstract flowcharts were comprehended more

quickly than the concrete flowcharts. No differences in comprehension times were

evident between the novice and expert groups for the concrete/abstract conditions.

In terms of the data relating to errors, Adelson found that experts performed more

accurately in the inappropriate set condition in response to concrete questions

while novices performed more accurately in response to the abstract questions. In

the appropriate set conditions, experts answered both the concrete and the abstract

questions more accurately than novices.

Adelson suggests that these results support the idea that novice programmers

represent the concrete or procedural aspects of a problem while experts tend to

form more abstract declarative representations. It is worth noting here the contrast

between Adelson's findings and Anderson's suggestion that experts employ

procedural knowledge and novices, declarative (see chapter 2). In the

inappropriate set conditions, where the level of abstraction of the flowchart and the

question do not match, the flowcharts will inappropriately prepare subjects to

represent the program at one level of abstraction or the other. Adelson reasons that

if the level that is actually appropriate is the subjects' natural or preferred level,

then they would still be able to perform well. That is they would be able to

accurately and quickly form a representation of the program that is appropriate to

answering a particular question, and be able to process the information contained

in this representation despite the misleading set. Conversely, if the appropriate

level is not natural to the subject, the effects of the inappropriate set condition plus

the non-naturalness of the representation will combine to impair performance.

Adelson claims that the patterns of results in the appropriate set conditions provide

information about the natural level of representation for each group. Hence, a

condition in which a group's performance is good is a condition in which the

required representation is natural, and a condition in which a group's performance

is poor is one in which the required representation is not natural. Hence, since the

novice group perform better in the concrete condition, while the expert group

perform more accurately in the abstract condition we can infer that novices

represent programming knowledge in concrete terms and experts in abstract

fashion.

49

This finding provides additional support for the idea that novices and experts

represent domain knowledge differently. In programming, experts appear to focus

upon the declarative aspects of a problem while novices place emphasis upon a

problems procedural aspects. Some support for this distinction can also be derived

from work in other domains, suggesting that this finding may be generalisable to

other areas of expertise. For instance, Brown and Burton (1978) found that school

mathematics teachers who were expert in performing elementary arithmetic

operations, experienced difficulty verbalising these operations.

The importance of different forms of representation is strikingly evident in

Adelson's (1984) study in the context of those conditions where novice

performance actually surpasses that of experts. Adelson claims that experts have

learnt that during comprehension it is more profitable to focus upon high-level

abstract elements of a program rather than on low-level implementation details.

She claims that this point will also be valid for very high-levellanguages in which

the distinction between what is abstract and what is concrete may not map onto the

distinction between what a program does and how it functions. However, Adelson

provides no evidence for this conjecture, and more recent research (Cooke and

Schvaneveldt, 1988; Gilmore and Green, 1988) has suggested that the cognitive

structures that have been observed in this and similar studies may be specific to the

particular programming language used in the studies.

3.4 Are representations of programming knowledge language independent?

Cooke and Schvaneveldt (1988) have observed that the stimulus material used by

Adelson, and for that matter by the majority of researchers studying programming

expertise, has consisted of either program statements or reserved programming

words. They suggest that this kind of material does not provide an ideal means of

eliciting information about a subject's semantic knowledge which should, by

definition, be language independent. This would be predicted by other models of

programming. For instance, according to Shneiderman's (1980)

syntactic/semantic model, syntactic knowledge is specific to each programming

language, while semantic knowledge represents general programming concepts

that are not language-specific.

Cooke and Schvaneveldt (1988) also suggest another important methodological

limitation of studies of programming expertise. They argue that these studies have

50

tended to categorise individuals with some programming expertise as the least

experienced programmers, thus ignoring completely naive programmers with no

programming experience at all. Cooke and Schvaneveldt suggest that the cognitive

structures of individuals prior to any exposure to domain-related material may

reveal preconceived notions, misconceptions or prior knowledge that might be of

interest to those involved or interested in education. Presumably these

preconceived notions etc. may play an important role in the development of

programming skill and knowledge representation.

Cooke and Schvaneveldt (1988) report a study in which they attempted to address

some of the limitations of previous work that have been outlined above. In

particular, their study examined the organisation of a set of abstract programming

concepts for subjects of various levels of skill, including a naive group who

possessed no programming experience whatsoever. Cooke and Schvaneveldt

(1988) presented their subjects with a set of 16 programming concepts derived

from an introductory computer science text book. Subjects were asked to assign

ratings, on a scale of zero to nine, to each concept based upon their familiarity

with that concept. The subjects were then asked to undertake a relatedness rating

task, where they were informed that there are a number of dimensions along

which the concepts could be related (e.g., frequency of co-occurrence, generality,

importance). An assignment of a zero score for a pair of concepts indicated that the

pair were highly unrelated, while a score of nine indicated that the pair were highly

related.

These data were then used to construct network representations that indicated the

strength of the relatedness measure coexisting between concepts. These networks

were constructed using the Pathfinder algorithm (Dearholt, Schvaneveldt and

Durso, 1985; Schvaneveldt, Durso and Dearholt, 1985) which produces a

network, from empirically derived relatedness measures, in which items or

concepts are represented as nodes and the relationships between items are

represented as links between nodes.

A weight corresponding to the strength of the relationship between nodes is

associated with each link and is taken to represent the inverse 'psychological'

distance between nodes. The Pathfinder scaling technique has been applied to a

number of domains including the design of menu systems (Roske-Hofstrand and

Paap, 1986). A number of studies have shown that Pathfinder networks are

psychologically meaningful. For instance, such networks have been shown to

51

have predictive value in that they can account for a subjects free recall performance

better than other scaling techniques (Cooke, Durso and Schvaneveldt, 1986).

The results of the Cooke and Schvaneveldt study indicated that the networks that

were derived from the estimates of relatedness performed by their four

experimental groups differed systematically with experience. The naive group

appeared to base their structuring upon the meaning of the terms in natural

language. This provides additional support for the finding of McKiethen et al who

demonstrated that natural language associations are instrumental in the

organisation of recall for novice programmers. In addition, the intragroup

correlations between networks produced from the naive subjects' relatedness

estimates proved to be high, suggesting a shared conceptual structure. In the case

of the advanced group, conceptual organisation appeared to be based upon the

meaning of the concepts in the programming domain. The intermediate network

representation was rather similar to the network obtained for advanced subjects, in

that the two networks shared many common features. One of the more interesting

findings of this study was that the relatedness rating correlations demonstrated that

intragroup agreement did not increase in a linear fashion with increasing expertise.

Rather, agreement tended to decrease from the naive to the novice level and then

gradually increase from the novice to the advanced level.

The fact that naive subjects shared some common domain knowledge, albeit

inappropriate to the programming task itself, is interesting in that it suggests that

naive subjects have a mental model of programming just as the non-expert may

have a naive mental model of physics (Gentner and Gentner, 1983). In other

non-programming domains it has been demonstrated that inappropriate models can

lead to serious conceptual difficulties during learning (Norman, 1983). The results

of the Cooke and Schvaneveldt study suggest a means of identifying the source of

beginning programmers misconceptions and thereby may contribute to

instructional practice by explicitly focusing on the formation of appropriate

conceptualisations. It is interesting to note that subjects with some, albeit limited,

programming experience (i.e., the novice and intermediate groups) did not share a

common conceptual structure.

Cooke and Schvaneveldt suggest that this decline in agreement may be due to

variations in teaching strategy, the use of particular text books etc. However, once

concepts become well-learned, these variations in programming experience no

longer appear to matter. They suggest that the advanced network representation

52

can be considered to be an explicit goal state in the learning process, while the

naive representation corresponds to the state prior to learning. An analysis of

intermediate states may indicate conceptual misunderstandings that have arisen

during the learning process and Cooke and Schvaneveldt suggest that this will

have implications for the adoption of particular teaching or training strategies.

The studies that have been reviewed above have a number of implications for our

understanding of the way in which knowledge representation changes with

increasing expertise. In particular, they indicate that expert and novice

representations have some very specific but differingproperties. For instance,

experts have been shown to group information in a semantic fashion, while

novices group information according to the surface features exhibited by a

program. Adelson has demonstrated that experts tend to represent the declarative

information relevant to a particular program, while novices focus to a greater

extent upon a program's procedural content.

While these studies have been important in terms of describing the more general

features of programmers' knowledge representations, they do not provide an

indication of the detailed content of these knowledge structures. There is,

however, a growing body of literature that has focused explicitly upon a

description of the kinds of tacit knowledge that programmers appear to be able to

recruit to guide problem-solving. These studies have drawn analogies with work

in text comprehension to suggest that problem-solving in programming is

mediated by the possession of script or schema-like knowledge structures that

provide specific techniques for commonly occurring programming procedures that

are both language and problem independent.

3.5 Knowledge Representation in programming: Analogies with text

comprehension

3.5.1 Introduction

A number of important analogies have been drawn between work in the text

comprehension domain and theories of knowledge representation in programming.

Clearly there are certain common features of these domains that make this analogy

plausible. For instance, programming involves the construction of text-like

structures which are used to instruct a computer. The use of programming

53

languages might therefore been seen to be similar to our use of the written word

for communicative purposes 1.

Here, perhaps the most important analogy is with notion of a 'schema'. Schemas

are proposed as knowledge structures which consist of a set of propositions that

are organised in terms of their semantic content. There are two primary principles

upon which most schema theories are built. Firstly, that cognitive processing is

guided and limited by the application of prior knowledge. Secondly, that schemas

contain relatively abstract knowledge which is largely independent of any one

event. Moreover, in most theoretical accounts of schema use such structures are

thought to be organised hierarchically, and to facilitate reasoning via the

instantiation of default values in situations where information is not present in the

task domain.

Schema-based mechanisms for cognitive control offer a method for limiting the

amount of inputted information, or bottom-up control, that is needed to perform a

task. Moreover, schemas provide top-down control by using prior knowledge to

restrict the range of possible operations that might be undertaken. Hence, either a

perceptual input or a cognitive goal or process may evoke a schema with a related

semantic content.

Such theories have appeared in a number of forms. For instance Minsky, from an

AI perspective, uses the term 'frame' (Minsky, 1971). Schank and Abelson

identify a particular type of schema known as a 'script' composed of a sequence of

abstracted actions which occur in the context of common events, with slots for

specific instances (Schank and Abelson, 1977). Schank and Abelson also identify

'plans', which are executed in order to determine the inferences that are required in

order to understand situations for which there are no stereotypical event

sequences. Hence, scrips denote sequences of actions that have occured on

numerous occasions (e.g. visting a restaurant), whereas plans describe the

production of novel action sequences (e.g. robbing a bank).

Schema theories have been used to account for a wide range of cognitive

behavours, such as language understanding, memory and problem solving. As

such, we might regard such theories as fairly powerful, however there is a danger

that this explanatory potential may result in the concept becoming too nebulous to

be of any real value as a predictive mechanism. Too some extent this problem is

reflected in some of the criticisms of schema-based theories of programming that

54

are proposed by this thesis. In particular, it is argued that schema theories of

programming knowledge must specify explicity the mechanisms that mediate the

acquisition and use of programming knowledge.

Soloway and his colleagues (Detienne and Soloway, 1990; Soloway and Ehrlich,

1984; Soloway, Ehrlich, Bonar and Greenspan, 1982; Soloway, Ehrlich and

Gold, 1983; Spohrer, Soloway and Pope, 1985), drawing upon the work of

Schank and others (Schank, 1980; 1981; Schank and Abelson, 1977), have

proposed that programmers possess and are able to access abstract schematic

plan-based structures that represent stereotypical programming knowledge. A

number of other authors have attempted to provide a more formal specification of

plan knowledge in programming. For instance Rich, Shrobe and Waters (Rich,

1981; Rich, Shrobe and Waters, 1979; Waters, 1979; 1982) have developed a

large collection of plans based upon their intuitions about programming. It is likely

that there are hundreds (possibly thousands) of these plans which can be used to

guide problem-solving in programming, and as in other domains this repertoire of

plans provides a set of standard methods for achieving certain types of goals.

Ehrlich and Soloway (1984) suggest that such plans provide high-level structures

that serve to chunk together related pieces of information. Such plan structures are

regarded as similar to Schank and Abelson's (1977) notion of scripts (See above).

Scripts are used to explain how people can understand stereotypic sequences of

events such as eating at a restaurant or going to a doctor. By analogy to this,

Ehrlich and Soloway claim that plan knowledge in programming consists of a

catalogue of stereotypic action sequences. These action sequences describe the

programmer's tacit knowledge of the domain. The possession of such tacit

knowledge structures has been shown to be an important factor in distinguishing

experts from novices in other domains (Collins, 1978, Larkin et al, 1980; Polya,

1973) and it would seem reasonable to suggest that expert programmers are able to

recruit similar knowledge in order to guide their problem solving activities.

Previous studies of the programming activity, such as those described above, have

sought to establish that experts not only have more knowledge about programming

than their less experienced counterparts, but that experts can be distinguished from

novices in terms of their better organisation of knowledge. The work of Soloway

and his colleagues has extended previous work by describing the typical content

of expert knowledge structures and as such has provided a valuable insight into

the way in which tacit knowledge can guide problem solving activities.

55

3.5.2 Programming Plans and Discourse Rules

Soloway and Ehrlich (1984) introduce the notion of the programming plan to

provide a description of those program fragments that are thought to represent

stereotypic action sequences in programming. They suggest that expert

programmers possess two main kinds of plan: Plans that relate to aspects of a

program's control flow and plans that represent facets of variable use. An example

of a control flow plan might be a plan that accumulates and keeps track of a

running total (see figure 3.5). Soloway and Ehrlich suggest that such a plan might

be used in variety of programs which may have been constructed to implement

solutions to a wide range of problems. In this sense, such plans should be

regarded as both language and problem independent. Hence, programs are

constructed on the basis of generalised plan knowledge and specific plans are

created in response to the requirements and constraints of a particular problem.

The use of the term plan may seem rather odd here, since as we have seen, plans

are usually taken to denote the action sequences that are required in the context of

novel events. As we remarked above, perhaps a more useful description would

equate the notion of plans with the concept of a 'script'.

The composition of plans, according to Soloway and Ehrlich, is mediated by

so-called rules of programming discourse (see also, Leventhal, 1987; 1988),

which are proposed to be directly analogous to conversational discourse rules. An

example of a program discourse rule is that variable names should normally reflect

their function2. Hence, a program might be correct in that it produces the right

results but may be difficult to read because it violates certain rules of discourse.

3.5.3 Empirical Studies

Soloway and Ehrlich (1984) report a number of empirical studies to support their

contention that programmers are able to recruit tacit plan knowledge during

problem solving and that the possession of such plan knowledge can be used to

distinguish experts from novices. These studies employ two major experimental

paradigms. Firstly, a fill-in-the-blank task, where subjects are presented with a

program fragment with one or more lines omitted, their task being to supply the

missing line/sand secondly a straightforward free recall task. Both sets of studies

compared performance in these two tasks in response to the presentation of plan or

unplan-like programs.

56

In this context, a plan-like program was constructed such that its component plan

structures were consistent with certain rules of programming discourse. An

unplan-like version (Soloway and Ehrlich's term) of the same program can be

constructed by introducing violations to one or more of its consituent plan

structures (see figure 3.6). It should be noted that in all cases both the plan and

unplan-like versions were executable programs, and in the majority of cases

computed the same values. This can be contrasted with the experimental materials

used in a number of earlier studies which consisted of program statements

presented in random order.

Version A
PROGRAM Yellow (input, output),
V AR I INTEGER

Letter, LeastLetter Char,
BEGIN

LeastLetter = 'a',
FOR I = 1 TO 10 DO

BEGIN
READLN (Letter),
If Letter > LeastLetter

THEN Leastletter =Letter,
END,

Writeln (Leastletter),
END

Version B
PROGRAM Green (input, output),
V AR I INTEGER

Letter, LeastLetter Char,
BEGIN

LeastLetter = 'z',
FOR I= 1 TO 10 DO

BEGIN
READLN (Letter),
If Letter < LeastLetter

THEN Leastletter =Letter,
END,

Writeln (Leastletter),
END

Figure 3.5 a. These programs both represent a search plan, however in the second
case (Version b) the program violates the discourse rule which suggests that "a variable
name should reflect its function".

Version A
PROGRAM Pink (Input, Output),

CONST
MaxSentence = 99,
NumOfConvicts = 5,

VAR
ConvictiD, I, Sentence INTEGER

BEGIN

END

FOR I = 1 to NumOfConvicts DO
BEGIN

READLN (ConvictiD, Sentence),
IF Sentence > MaxSentence

THEN Sentence= MaxSentence,
WRITEIN (ConvictiD, Sentence),

END

Version B
PROGRAM Gold (Input, Output),

CONST
MaxSentence = 99,
NumOfConvicts = 5,

VAR
ConvictiD, I, Sentence INTEGER

BEGIN

END

FOR I = 1 to NumOfConvicts DO
BEGIN

READLN (ConvictiD, Sentence),
WHILE Sentence > MaxSentence

DO Sentence = MaxSentence,
WRITEIN (ConvictiD, Sentence),

END

Figure 3.5 b. The basic plan represented by this program involves resetting variables to
boundary conditions. The discourse rule violated in version B is "An IF should be used
when a statement body is guaranteed to be executed only once and a WHILE used when a
statement body may need to be executed repeatedly".

57

Fill-in-the-blank tasks

In their first study, Soloway and Ehrlich presented novice and advanced

programmers with a number of plan-like and unplan-like program fragments in

which certain critical elements had been omitted (figure 3.6). The subject's task

was to fill in the blank line with a piece of code that they thought best completed

the program. According to Soloway and Ehrlich, subjects who engage in this task

will need to infer the intention of the program based upon their knowledge of the

problem and upon their tacit plan knowledge and this should create expectations

about what would constitute an appropriate way of completing the program. A

similar technique has been used in text comprehension work in order to explore

subjects' underlying knowledge of typical real world events (Bower, Black and

Turner, 1979; Kemper, 1982) and these studies suggest that this technique does

provide an appropriate means of eliciting subjects' tacit knowledge about a

particular domain.

Soloway and Ehrlich reason that if advanced programmers possess and use

programming plans then they should be able to recognise program fragments in

plan-like versions of programs as examples of particular plans and consequently

they will complete the blank line in that program with code that corresponds to the

role expressed by that plan. In the case of unplan-like programs, the advanced

programmer will not be able to infer the program's plan structure and they will

consequently be less likely to fill in the missing line correctly. Novice

programmers, who, it is claimed, have not developed a full repertoire of plans

and programming conventions, will not be guided by plan structures and hence

should perform with similar levels of accuracy in response to both plan-like and

unplan-like programs.

Soloway and Ehrlich's results provide support for these hypotheses. Firstly,

experts were able to complete blank lines in programs more accurately than

novices (61% correct response vs 48% correct response). In addition, subjects

completed the plan-like versions correctly more often than the non-plan like

versions. Finally, there was a significant interaction between program version

(plan-like or unplan-like) and expertise.

58

Version A

PROGRAM Brown (input, output),
VARNum REAL,

I INTEGER,
BEGIN

FORI= 1 TO lODO
BEGIN

Read (Num),
IF Num < 0 THEN Num = -Num,
Writeln (Num, Sqrt (Num)),

END
END

Version B

PROGRAM Green (input, output),
VARNum REAL,

I INTEGER,
BEGIN

Num=O
FORI= 1 TO lODO

BEGIN
Read (Num),
IF Num < 0 THEN Num = -Num,
Writeln (Num, Sqrt (Num)),

END
END

PROGRAM Brown (input, output),
VARNum REAL,

I INTEGER,
BEGIN

FORI= 1 TO lODO
BEGIN

END

IF Num < 0 THEN Num =-Num,

Writeln (Num, Sqrt (Num)),
END

PROGRAM Green (input, output),
VARNum REAL,

I INTEGER,
BEGIN

Num=O
FOR I = 1 TO 10 DO

BEGIN

END

IF Num < 0 THEN Num =-Num,

Writeln (Num, Sqrt (Num)),
END

Figure 3.6. An example of the experimental materials used by Soloway and Ehrlich
(1984). The basic plans in this example are a guard plan and a variable plan. Version a is
plan-like, while version b is unplan-like in that it includes two incompatible discourse
rules.

59

Moreover, the difference in performance between the novice and expert subjects

for plan-like programs was significant, while in the case of unplan-like programs,

no difference was evident. Indeed, in the case of unplan-like programs, the

performance of the expert group was reduced to that exhibited by the novice

group. These results provide strong support for the idea that expert programmers

use plan knowledge to guide their comprehension of programs. This knowledge

provides a basis upon which expectations about program function can be

constructed. Moreover, when these expectations are violated, expert performance

is reduced drastically.

Program Recall

In a second study, Soloway and Ehrlich examined subjects' recall of plan-like and

unplan-like programs. Soloway and Ehrlich employed the same stimulus materials

in this study as in their fill-in-the-blank tasks, however only expert programmers

participated. Subjects were presented with a program which they were

subsequently asked to recall verbatim. Half of these programs were plan-like and

the other half were unplan-like. Figure 3.6 shows examples of the programs used

in this study. Notice that the programs are identical except for two 'critical' lines.

These lines are described as critical in the sense that they convey information as to

whether the program is plan-like or unplan-like. Subjects were presented with a

program three times. During the first trial subjects were requested to recall as

much of the program as possible. During the second and third trials, they were

asked to either add to their original recall or change any part of their recall that they

felt was in error.

They key prediction made by Soloway and Ehrlich is that programmers would

recall the critical lines from plan-like programs earlier than the critical lines from

the unplan-like programs. The idea that the representatives of a particular category

are recalled first in free recall studies is a well documented psychological principle

(Crowder, 1976). Soloway and Ehrlich, employing this principle, suggest that if

expert programmers make use of tacit plan knowledge and discourse rules to

encode a program when it is presented, then the critical lines in plan-like programs

will be recalled early in a free recall task, since these lines are considered to be the

key representatives of a particular plan. In the case of unplan-like programs,

critical lines do not bear a relationship to the program's plan structure and hence

are of the same level of significance as other lines in the program. Hence, one

would not expect these lines to be recalled any earlier than others.

60

Once again Soloway and Ehrlich's results provide support for the idea that the

problem solving activities of expert programmers are mediated by the possession

of stereotypical plan structures. The results from their recall experiment showed

that subjects recalled more critical lines from plan-like programs than from

unplan-like programs. There was also a significant interaction between version

and trial, suggesting that the critical lines in plan-like programs are recalled earlier

than in the unplan-like programs.

In summary, the idea that plan knowledge plays an organising role in memory

suggests a number of features that appear to be central to program comprehension.

Firstly, the comprehension process appears to proceed by the recognition of

patterns that implement known plans. Secondly, plans will be activated by partial

pattern matches and confirming details will either be sought or assumed. Hence,

plan structures are seen to guide problem-solving via both the application of

known methods and through the creation of expectations about the typical form

and behaviour of these methods.

3.5.4 Other work on plans

Interactions between everyday knowledge and programming language constructs

The close analogy between studies of schema theory in text comprehension and in

programming research has led to a number of other predictions about the role of

tacit knowledge in programming. For instance, work in the text comprehension

domain carried out by Bower et al. (1979) has shown that when texts violate the

stereotypical sequences dictated by a script structure, subjects will tend to reorder

the text during recall tasks so that it conforms to structures suggested by their tacit

real world knowledge. In addition, Schank (1979) has proposed that the

inferences that are typically made during text comprehension are affected by

schema-congruent expectations. According to Schank, the salience of a particular

text structure to a given reader is partly determined by its relative congruity or

incongruity with that reader's schematic knowledge.

In a similar vein, Soloway, Bonar and Ehrlich (1983) found that programmers

show a tendency to order program statements in a manner dictated by their

everyday knowledge even though this ordering leads to bugs in their programs.

61

For instance, this study showed that the process/read loop construct in Pascal (see

figure 3.7) is a major source of bugs because it mismatches the normal course of

events in the real world, i.e., normally we would first need to get an object (read

it) in order to process that object in some way.

programEl;
var Count, Sum, Number : integer;

Average ; real;
begin

Count:= 0;
Sum :=0;
Read (Number);
while Number<> 99999 do

begin
Sum := Sum+ Number;
Count : = Count + 1;
Read (Number)

end;
if count> 0

then
begin

end

Average := Sum/Count;
Writeln (Average);

end
else

Writeln (' no numbers input:
average undefined');

program Pascal L;
var Count, Sum, NewValue: integer;

Average: Real;
begin

Count:= 0;
Sum :=0;
loop

Read (newValue);
if New Value= 99999 then leave:
Sum := Sum+ NewValue;
Count:= Count+ 1;

again
if Count > 0

then
begin

end

Average:= Sum/Count
Writeln (Average);

end
else

Writeln ('no numbers input:
average undefined')

Figure 3.7 a. Two programs illustrating different looping strategies. Program Elisa
normal Pascal program, utilising a PROCESS/READ strategy, while the program on the
right is written in Pascal Land uses a READ/PROCESS strategy.

Read (first value)
while Test (ith value)

do begin
Process (ith value)
Read (i +1st value)

end

loop
do begin

Read (ith value)
Test (ith value)
Process (ith value)

end

Figure 3.7 b. Schematic representations of, on the left, the process/read strategy typical of
Pascal, and on the right, the read/process strategy embodied in Pascal L.

62

In addition, this study showed that subjects wrote correct programs more often

when they used a language that facilitated their preferred (i.e., read then process)

cognitive strategy. For instance, the language Pascal L uses a loop .. .leave .. again

construct (see figure 3.7) and this language appears to facilitate the construction

correct programs for intermediate and expert programmers. Additional support for

the idea that everyday knowledge can create misleading expectations for beginning

programmers is provided by Eisenstadt, Breuker and Evertsz (1984) who

demonstrated that novice programmers can recruit plans based upon 'real-world'

algorithms, but that difficulties arise when there is not a straightforward mapping

between these algorithms and the kinds of operations that are allowed in a

particular programming language.

Plan violation and program complexity

Additional support for the role of plan structures in comprehension has been

derived from the idea that if plan structures are a key feature in program

comprehension - the thesis suggested by Soloway and Ehrlich, and supported by

their empirical research - then the extent to which a program violates normal plan

composition should provide a measure of the understandability of that program. In

order to explore this hypothesis further, Soloway, Ehrlich and Black (1983)

compared three program analysis techniques- Halstead's Volume metric

(Halstead, 1977), propositional analysis (Atwood and Ramsey, 1978) and plan

analysis (Soloway and Ehrlich, 1984) - in order to determine the extent to which a

measure of plan violation can predict program comprehension.

Soloway et al (1983) took three versions of a program intended to solve the same

problem and subjected the programs to the three analysis techniques mentioned

above. The main difference between the three versions of the program was that the

plan composition in two of the programs violated a number of rules of

programming discourse. Soloway et al suggest that programmers will expect other

programmers to follow these rules of discourse. Hence, plan or discourse rule

violations will make programs to more difficult to comprehend. The question that

Soloway et al address is whether the results of the three different methods of

program analysis they consider can distinguish comprehensible programs (i.e.,

programs that conform to plan structure) from less comprehensible programs (i.e.,

programs that violate plan/discourse rule structure).

63

The first analysis technique, Halstead's Volume Metric, involves calculating the

total number of operations (N 1) and operands (N2) in a program and the number

of unique operations (n1) and operands (n2). These measures are then combined

according to the following equation:

The resulting number is intended to provide a measure of the size and broad

complexity of a program. In addition, one might assume these factors to be a

reasonable predictor of comprehensibility. While some studies have shown that

Halstead's Volume Metric can predict programmer performance (eg., Sheppard,

Borst and Love, 1978), Soloway et al found that the volume metric calculated for

their three programs was equivelent. Hence this metric does not appear to provide

a good basis for measuring the relative comprehensibility of different programs.

Next, Soloway et al subjected the three programs to a propositional analysis. This

form of analysis was derived from text comprehension work carried out by

Kintsch and van Dijk (1978) who have suggested that texts can be decomposed

and analysed in terms of their constituent propositional structure. The assumption

here is that a text with a complex propositional structure will be more difficult to

understand than a text with a simpler propostional structure. In the text

comprehension domain there is considerable empirical support for the validity of

this assumption (Kintsch and Keenan, 1973; Kintsch, Kozminski, Streby,

McKoon and Keenan, 1975). In the context of programming, Soloway et al.

suggest that programs will be more complex, and therefore more difficult to

understand, when they have a) more propositions (defined by Soloway et alas the

composition of a predicate (or operator in the context of programming) and its

associated arguments (or operands)) and b) more levels of nesting. However, as

with the volume analysis, this propositional analysis failed to distinguish between

the plan-like and the unplan-like programs.

This study suggests that plan analysis may constitute a useful method for

assessing the comprehesnisbility of programs. The study also provides additional

implicit support for the idea that plans play a focal role in program comprehension.

Soloway et al readly admit that it is not clear how one might calculate a number

that accurately reflects the violation or non-violation of discourse rules3.

However, they suggest that the plan analysis should be seen as providing

64

qualitative rather than quantatative information about program comprehensibility,

and that a numerical rating system does not typically point out the specific source

of program complexity. They suggest that a qualiative analysis can be used to

pinpoint specific areas of program complexity and also give a definitive

prescription as to how this complexity might be ameliorated.

3.5.6 Plan theory: Automated plan analysis and the development of intelligent

tutoring systems

Further evidence for the plan-based view of programming is provided by a study

in which novices' errors were analysed in terms of the goal and plan structures

inherent in their programs. Johnson, Soloway, Cutler and Draper (1983)

characterised bugs by examining the differences between the actual and the

intended plan structure of a program. From this they were able to provide a two

dimensional analysis of program bugs according to the component of the plan

which is affected by the bug and the type of bug or error. For example plan

components include, updates, declarations, initialisations etc, while error types

include, misplaced, spurious, missing etc. Using this classification technique,

Johnson et al were able to analyse successfully 783 novice bugs into 29 of the

possible 32 bug categories. This suggests once again that the analysis of programs

into plan structures represents a valid framework for exploring the the nature of

cognition in programming, since it enables one to predict the kinds a plan-based

errors novices are likely to make.

Knowledge-based program analysis- PROUST

This analysis led to the development of PROUST (Johnson and Soloway 1985,

Johnson, 1988; 1990; Littman and Soloway, 1988), a system that analyses

novices' programs automatically to derive a non-algorithmic, or plan-based,

description of the program. PROUST employs a knowledge base of programming

plans and strategies, together with a description of the bugs that are commonly

associated with these plans and strategies. PROUST carries out an 'intention'

based analysis of programs, i.e., it frames its analysis in terms of both the

intended functions of the program and in terms of the programmers intention as to

how a particular function should to be achieved. According to Johnson, it is

difficult to determine the intended function of a program simply by inspecting the

65

code, since there is no way of knowing whether what a programmer produces is

what that programmer had in mind. PROUST derives information about the

program's intended function by forming a description of the problem that was

assigned to the programmer. In this context, problem descriptions consist of a set

of goals to be satisfied and sets of the data objects that these goals apply to.

For instance, for a program which calculates and reports the average daily rainfall

over a certain period, the problem description defines a data object, ?DailyRain,

which acts as a parameter to a number of the goals in the problem description. One

of these goals Sentinel-Controled Input Sequence, forms a goal which requires a

series of values to be read, and stops when a specific value (the sentinel) is

reached. Figure 3.8 shows the goal decomposition of a problem in PROUST's

problem description notation.

From this problem description, the task of identifying the intentions underlying a

program involves discovering firstly, how the goals in the problem description

relate to the goals that are actually implemented in the program and secondly, what

the programmer intended by implementing these goals. PROUST starts by

assuming that the student's goals match, or are some variant of, the problem

description's goals. If no plausible attempt to implement a particular goal can be

found in the code, then PROUST retracts its initial assumption and asserts that the

student omitted the goal.

Clearly, programmers might implement the same goal in many different ways. For

small programs it may be possible to enumerate all the different ways of

implementing a goal, but for more complex problems the variety of different goal

implementations will be too great. In PROUST's case the system constructs a

description of the intentions underlying each individual student solution. To do

this PROUST employs a knowledge base of programming plans. PROUST

combines these plans into possible implementations for each goal, and then

matches the plans against the code. If PROUST is unable to match its goal

decomposition of the problem with its decomposition of the students solution, it

attempts to account for this mismatch between the plans and the code. To do this

PROUST uses its knowledge base of plan-difference rules, which suggest bugs

and misconceptions that may account for the mismatch. For example such a rule

might take the following form:

66

"IF a while statement is found in place of an if statement,

AND the while statement appears inside of another loop

THEN the bug is a while-for-if bug, probably caused by a confusion about the

control flow of embedded loops."

Johnson (1988) reports an empirical evaluation of PROUST which gives some

idea of its strengths and weaknesses as a system for analysing bugs and

misconceptions in novice programs. Figure 3.9 shows the results of running

PROUST on a corpus of 206 solution to the same programming problem.

?Daily Rain isa Scalar Measurement.

Achieve the following goals:

.
Sentinel - Controlled Input Sequence (?DailyRain 99999);

Input Validation (?DailyRain, ?DailyRain < 0);

Output (Average (?DailyRain));

Output (Count (?DailyRain));

Output (Guarded Count (?DailyRain, ?DailyRain > 0));

Output (Maximum (?DailyRain));

Figure 3.8. A problem to calculate the average and maximum rainfall over a given

time represented in PROUST'S problem description notation.

67

Total number of programs 206

Number of programs receiving full analysis: 167 (81%)
Total number of bugs: 598 (75%)
Bugs recognised correctly: 562 (94%)
Bugs not recognised: 36 (6%)
False alarms: 66

Number of programs receiving partial analyses: 31 (15%)
Total number of bugs: 167 (21%)
Bugs recognised correctly: 61 (37%)
Bugs not reported: 36 (6%)
False alarms: 20

Number of programs PROUST did not analyse: 9 (4%)
Total number of bugs: 32 (4%)

Figure 3.9. Results of PROUST's analysis of206 programs written to
solve the same problem.

PROUST managed to analyse 81% of the programs completely, that is, it was able

to derive a consistent model of the intentions underlying the programs. In these

cases, PROUST successfully located 94% of the bugs that were identified by the

experimenters. This result is impressive since it demonstrates that PROUST can

detect bugs more successfully than traditional manual code inspections such as

walkthroughs (Myers, 1978).

Bridge - A plan-based programming tutor

The success of the PROUST system provides additional support for plan-based

accounts of program understanding since it demonstrates that plan-based

descriptions of programs can provide a good basis for predicting and locating

bugs and misconceptions. One natural extension of the PROUST work has

involved using its output as a base for an interactive tutorial environment.

68

Since PROUST runs only in batch mode on a finished program, it is unable to

provide a great deal of feedback to students about their progress. However,

Bridge (Bonar and Cunningham, 1988; Bonar and Liffick, 1990), a prototype

tutorial environment for novice programmers, is able to provide interactive

feedback to students of programming. The architecture of the Bridge system will

not be discussed in any detail here. However, the philosophy underlying the

Bridge approach to plan teaching is germane to our discussion on

knowledge-based theories of programming expertise.

The fundamental assumption underlying the Bridge system is that teaching plans

to students will improve their basic ability to understand and generate programs.

Bonar and Cunningham contrast this with the kind of instruction students receive

from programming texts, which introduce a programming language by discussing

the syntax and semantics of each statement type . They suggest that this approach

exacerbates a common novice tendency to adopt a syntactic matching strategy

while problem-solving, such as that observed in physics novices (Chi et al. 1981).

For instance, Bonar (1985) showed that novices work linearly through a program,

choosing each statement based upon the syntactic features of previously

encountered statements. Bonar and Cunningham suggest that one way of

overcoming such a syntactic strategy is to teach novices the standard techniques

for implementing common tasks, i.e., programming plans.

Bonar and Cunningham have carried out a limited evaluation of Bridge. This

evaluation addressed student attitudes to the Bridge system and considered the

problems they had interacting with the tutor. However, the evaluation did not

directly examine the efficacy of Bridge as a programming tutor. It is interesting to

note that while Bonar and Cunningham do suggest that their students were

reasonably successful at developing outline solutions using plan-based concepts,

they often had some difficulty translating this into a program. They suggest that

"Matching between the Phase 2 output and Pascal code was problematic,

however. Because there is not always a simple match between a plan component

and Pascal code, students will sometimes make a reasonable selection that Bridge

doesn't accept". (pg 409). This appears to suggest that knowing plans alone may

be inadequate to explain the performance of programmers. Rather, what appears to

be important is understanding how plans are used. This brings us to the role

strategy in programming expertise and this issue is receives further consideration

in chapter 4.

69

3.5. 7 Elaborations of the plan theory - Rist's theory of schema creation in

programming

Recently, Rist (1986 a and b; 1989) has attempted to outline the mechanisms that

might underpin plan use. Rist has proposed a model of program generation which

traces the evolution of a program through a number of stages. An explicit feature

of Rist's model concerns the identification of levels of abstraction in program

structure. It is claimed that programs are built from simple knowledge structures

that are merged and combined to form more complex structures.

At the lowest level of detail , individual fragments of knowledge are combined to

form a single line of code. The next stage in the development of a program is to

create a programming plan which, as we have seen, provides 'canned' solutions

for common goals such as calculating a running total or reading some data value.

Next, these plans need to merged into the final program structure. Rist is primarily

interested in the processes that underlie the plan generation activity and central to

his theoretical explanation is the idea of focal expansion.

Focal expansion describes the process of generating a programming plan from a

so-called 'focal line'. In Rist's account, each programming plan has an associated

focal line that directly encodes the goal of that plan. For instance a 'running total

loop plan' will be associated with the focal line 'count:=count+ 1'. The complete

plan will also consist of an initialisation component and some means of reading

data values into the plan. The design of a program is seen to progress through

various stages beginning with the implementation of a focal line, its extension to

form a complete plan and finally to the creation of an entire program through a

process of plan merger.

Rist's model is described in more detail in chapter 4, where an attempt is made to

explore the role of strategy in program comprehension and generation. However,

there are specific aspects of Rist's model that are germane to the present

discussion and in particular his description of the different levels of abstraction in

plan-based knowledge representation.

Rist suggests that programming plans can be described as a collection of schemata

which are represented as slot-and-filler mechanisms. In addition these schemata

represent programming knowledge at various levels of abstraction. For instance,

70

Programming Plans - or PPlans, in Rist's terminology - represent the lowest level

of plan abstraction and are similar to the basic plans described by Soloway and

Ehrlich (1984). PPlans have slots for the goal of the plan and for the code that it

generates. Complex Program Plans -CCPlans - are built from a number of PPlans

to achieve higher-level goals. Rist also describes other types of plans- for

instance, Abstract Plans (APlans) which are thought to represent knowledge of

different types of loop or sort techniques. Specific Plans (SPlans) represent

specific routines such as bubble or shell sort, and Global Plans (GPlans) represent

global procedures including "validate", "initialise" or "update".

Rist's work provides a number of important extensions to plan-based theories.

Firstly, it suggests a role for different categories and levels of plan knowledge.

Whereas the Soloway and Ehrlich description of programming knowledge appears

to suggest that plan representations are uniform and internally undifferentiated,

Rist's approach asserts that plans can occur at different levels and that certain

salient elements of each plan schemata guide the program generation activity.

Secondly, Rist makes an explicit attempt to demonstrate how plans are

implemented during code generation. One of the major limitations of existing plan

theories is that the fail to specify the mechanisms that guide the implementation of

plans during coding. In chapter 4, where Rist's work is elaborated in greater

detail, the role of schema creation and focal expansion in plan implementation are

discussed. These provide the basic mechanisms that control the transformation of

plans into code and appear to provide a promising basis for an extension of

plan-based theories of programming expertise.

3.5.8 Assessing claims about programming plans: Problems and limitations of the

plan theory

The work of Soloway and his colleagues, and Rist's subsequent extension of

plan-based programming theory, has clearly contributed to our understanding of

the use of tacit knowledge in guiding problem solving in programming. In

addition, this work has provided a useful means of describing the content of such

knowledge structures and has been influential in the design of automated program

analysis systems and intelligent tutoring aids. However, more recent work has

questioned the basic adequacy of the plan theory. For instance, Pennington (1977

a and b) has conducted a number of studies (described below) which suggest that

programmers form multiple representations from a program's text structure, and

71

that the nature of the representation that programmers actually develop is largely

dependent upon features of the task that they are engaged in. Such representations

include plan knowledge, but may also carry information relating to state and

control flow. These studies question the centrality of the plan concept in program

comprehension, but they do not provide sufficient evidence to reject plan theories.

However more recently, a number of studies have questioned the basic theoretical

claims that underlie plan-based approaches to program comprehension.

What claims do plan-based theories of program comprehension make?

Claim 1: Plans are language and problem independent

In order to assess the validity of plan-based theories of program comprehension it

is necessary to make clear the theoretical claims that this approach advances. One

of the major claims of plan-based theories is that programming plans will be both

language and task/problem independent. Programming plans are taken to represent

generic knowledge structures that in some sense represent the deep structure of a

problem, hence a generic running total plan might be used in a variety of programs

intended to solve a wide range of problems. In this way programs are seen to be

constructed from these generic plans, which are then tailored according to the

particular circumstances of a given problem. For example, the expert programmer

wishing to compute facts about vehicle control will be able to access, say, a

generic count plan , from their extensive repertoire of programming plans, and

then instantiate this with variable names relevant to the particular situation, i.e.,

"count the vehicles". However a number of recent studies suggest the

development of plan structures, or the ease with which plan structures might be

comprehended or extracted from the program text, appears to be inextricably

bound up with the way in which programming is taught, and this finding appears

to pose serious implications for plan-based theories of programming expertise (see

chapter 6).

The relationship between teaching and plan acquisition is problematic because if

the acquisition of plan structures is the primary characteristic of programming

expertise, as suggested by Soloway and Ehrlich, then differences in teaching

strategy and educational background should not affect the nature of that expertise.

Gilmore and Green (1988) highlight this problem with an analogy to instruction

and expertise in chess:

72

"If the acquisition of plan structures is the defining quality of expertise, then

differences in teaching strategy etc. should not affect the nature of expertise. For

example, it is reasonable to argue that the nature of expertise in chess does not

depend upon teaching strategies , because the nature of attack and defence and the

configurations that represent them are inherent in the game. Similarly

programming plans are assumed to be inherent in the problem, not in the language

or the teaching, and the development of such schemata/plans is dependent on

experience, not on teaching".

In chapter 6, experimental work is reported which suggests that the ability to

extract plan structures from program texts is largely dependent upon the design

experience possessed by the programmer, and that this design experience helps the

programmer to construct a mapping between structures in the problem domain

(plans) and structures in the language domain (programs). Additional evidence for

this idea is presented by Stone, Jordan and Wright, (1990) who provide

experimental support for the idea that instruction in structured programming

principles can improve debugging performance by increasing a programmer's

comprehension of program goals and plans4. Taken together these findings appear

to pose significant difficulties for plan theories of programming, since educational

background and differences in teaching strategy per se should not affect the nature

of plan knowledge or the acquisition of plans and their use.

Soloway and Ehrlich suggest that programming plans should be considered as

schemata, however schema theory suggests that schemata acquisition is performed

via an inductive process in which specific experiences are concatenated into

generic schemata (Rumelhart and Norman, 1981). Schemata are not taught

explicitly and we are certainly not taught procedures which facilitate the inspection

and integration of schemata. However, while the work reported above does not

suggest that plans are taught explicitly, it does indicate that differences in teaching

strategy may influence the kinds of representations that programmers build and the

way in which programmers use these generic representation.

Another problem with the plan theory is that all of the reported empirical work on

program comprehension that has been used to provide support for plan-based

theories has used programs written in a single language (usually Pascal or one of

its close variants). However, the plan theory gains much of its theoretical force

from the claim that plan structures are language independent. For instance

73

Soloway and Ehrlich claim that their experiments support the idea that "plan

knowledge play(s) a powerful role in program comprehension" (p. 609) (my

emphasis). However, their work was concerned only with the role of plans in the

comprehension of Pascal or Pascal-like programs, the assumption presumably

being that these effects will generalise to very different languages. Anderson

(1985) claims that plans will be equally useful to expert Basic programmers as to

expert Pascal programmers, but no evidence is cited for this. Indeed, until

recently, there have in fact been few attempts to discover whether programmers

using languages other than Pascal employ similar plans.

Gilmore and Green have recently called into question the generality of the

programming plan as a description of the main type of cognitive representation

employed by the expert programmer. Gilmore and Green (1988) have carried out a

number of studies5 which suggest that the notation of certain programming

languages may make those languages amenable or otherwise to the identification

and use of plans. This suggestion is based upon the finding that Basic

programmers are unable to benefit from cues to plan structure (i.e., when such

structures are colour highlighted) while debugging programs, while debugging

success for Pascal programmers appears to be facilitated significantly by plan

structure cues. Basic programmers appear not to employ and abstract plan-based

representation of a particular program during program comprehension, but tend to

rely more extensively upon control flow information implicit in the text structure

of the program. Gilmore and Green claim that Basic is less "role-expressive" than

other languages. That is, Basic programs are less discriminable from each other

than are say Pascal programs. In the case of Pascal, they argue that features of the

notation of the language, in particular its role expressiveness and lexical richness,

make it easier for the programmer to infer the role of a particular statement and to

discover the relationship between groups of statements.

This research calls into question the basic theoretical claim of plan theorists, which

suggests that plan structures constitute a source of knowledge that is language

independent. Indeed, if the plan theory is not generalisable to languages other than

Pascal then clearly it is of significantly less utility and therefore interest. In chapter

5 a distinction is drawn which emphasises the different views which have

emerged with respect to plan theories. One view, the traditional view of plans,

suggests that programming plans are universal natural structures that characterise

the expert programmer's mental representation of a program. In this sense such

plans are thought to represent the deep structure of a programming problem.

74

Alternatively, we may claim that programming plans might best be regarded as

artifacts of the particular notational properties that certain languages display.

Claim 2: The major defining characteristic of programming expertise is the

possession of plans

The above discussion also has implications for the second major claim of the plan

school: that is, that the possession of plan structures forms the basis for

understanding programming expertise. The studies carried out by Gilmore and

Green and by Davies that have been briefly reviewed above found that although

their expert subjects displayed the same level of debugging performance, some of

these subjects based their debugging strategies upon plan knowledge while others

employed different forms of information. Hence in terms of debugging

performance, programmer's behaviour may be equivocal, and it seems that plan

knowledge, in this context at least, does not provide a cogent means of defining

expertise. One of the main problems with the plan theory is that it seems that plans

are used both to explain expertise and to provide the only empirical measure of that

expertise. Note that in the studies carried out by Soloway and Ehrlich, no

independent measures of expertise were established.

In chapter 7, I report a study which suggests that while the existence of plans may

be used to differentiate novices from experts, an analysis of plan structures does

not appear to provide a means of teasing out more subtle distinctions between

levels of expertise. In particular, this study suggests that intermediate

programmers appear to possess the same range and number of plan structures as

their more experienced counterparts. However, intermediates and experts use

plans rather differently. For example, while experts and intermediates are able to

detect violations to plan structures with equal proficiency, intermediates take much

longer to detect these violations in comparison to experts.

This finding suggests that the procedures for detecting plan violations may be

compiled in the case of expert performance, thus leading to increased detection

speed. Hence, the evidence concerning plan use seems to provide little support

for the idea that the possession of plans can be taken as a defining characteristic of

expertise. In terms of the plan theory, one would presumably expect plan

structures to be gradually accumulated as a programmer becomes more

experienced. However, the lack of a clear discontinuity in the number and range of

75

plans used by intermediates and novices suggests that this view is invalid. More

importantly perhaps, this experimental work suggests that we need to consider not

only a simple enumerative view of the relationship between plans and expertise,

but that we also need to stress the importance of those factors that control plan

use. This brings us to a consideration of the strategic aspects of programming

behaviour which will be considered in more detail in chapter 4.

In the Architecture of Cognition (1983), John Anderson proposes a number of

specific criticisms of schema theory that parallel some of the criticisms made here

in response to plan-based theories of programming. Here, Anderson is concerned

specifically with a comparison of the findings and the predictions of schema

theory with his production system model of skill acquisition - ACT* (see chapter 2

for a detailed description of this model). He suggests that the major problem with

schema theory is that it blurs the distinction between declarative and procedural

knowledge and fails to explain the evident contrast between these two forms of

knowledge. Anderson suggests that there are good reasons to have both

declarative and procedural knowledge. Declarative knowledge is flexible and can

be accessed in many ways, while procedural knowledge is rigid but efficient.

Schemata, he suggests "are more declarative in nature and have similar flexibility"

(pg 39). He goes on to suggest that :

"The condition-action asymmetry of production systems is committed to the idea

that efficiency can be achieved by capitalizing on the structure and direction of

information flow. One can only go from the instantiation of the condition to the

execution of the action, not from the action to the condition. This contrasts with

schemata ... where it is possible to instantiate any part and execute any other part.

The asymmetry of productions underlies the phenomenon that knowledge

available in one situation may not be available in another. Schemata, with their

equality of access for all components, cannot produce this" (pg 39, my emphasis)

Another criticism that Anderson levels against schema theories is that such theories

do not specify effective mechanisms for schema acquisition. He claims that

technically, it is difficult to construct learning mechanisms that can deal with the

full range of schema complexity. Anderson claims that "Empirically, it is

transparent that learning is gradual and does not proceed in schema-sized jumps."

(pg 39)

76

As we have seen these two criticisms of schema theory also apply to plan-based

views of programming, and they serve to illustrate at least two of the central

problems of the plan-based approach. The work reported later in this thesis

attempts to extend and modify existing plan-based views of programming by

suggesting a plan restructuring and control mechanism based upon experimental

data concerned with plan comprehension and use. It will be suggested that this

restructuring mechanism leads to asymmetrically structured schemata or plans

which may have compiled elements, but in which certain salient plan structures

remain accessible throughout the problem-solving activity.

3.6 Hybrid Models

Another apparent problem with much of the work that we have reviewed so far is

that it considers knowledge representation in programming to be of a broadly

uniform nature. For instance, analyses of programming behaviour based upon

plan knowledge suggest that data flow and functional relationships will be central

to program comprehension. However, this assumption has been challenged by

Pennington (1987a) who carried out a series of experiments which suggest that

programmers are able to form a number of diverse representations of a program

text, and that the development of these representations appears to be broadly

influenced by the demands of particular tasks.

Pennington was primarily interested in investigating whether procedural (control

flow) or functional (plan knowledge) relations dominate programmers' mental

representations of programs. She suggests that various types of knowledge about

programming enable programmers to detect and represent the variety of relations

that are implicit in a program text, and that the detection of these relations is a

necessary condition of program understanding (Green, 1980; Green, Sime and

Fitter, 1980; Pennington, 1985).

Pennington suggests that computer programs, like other forms of text, contain

implicit information that must be detected in order to fully understand the program.

For example, the sequence of statements in a program provides information about

the sequence in which the program will be executed. Another type of information

relates to the data flow of the program which is concerned with the changes or

constancies in the meaning or value of program objects throughout the course of

the programs execution. The notion that programmers abstract such information

77

from the implicit text structure of the program has close analogy to the idea that

natural language texts are understood in terms of their underlying referential,

causal, or logical relations (Kintsch, 1974; Meyer, 1975; Trabasso, Secco and van

den Broeck, 1982).

Pennington suggests that four main types of abstraction can take place. The first

abstraction involves inferring a program's goals , i.e, what the program is

supposed to accomplish or produce. Pennington suggests that this abstraction is of

a functional nature and will contain little explicit information about how these

goals will actually be accomplished. A second abstraction involves extracting

information from the text about processes that transform the initial data objects into

the outputs of the program, i.e., a data flow abstraction. A third abstraction might

involve the production of a control flow representation, indicating the passage of

execution control. A final abstraction, may involve extracting information about

the program action that will result when a particular set of conditions is true. This

abstraction resembles a decision table in which each possible state of the world is

associated with its consequences.

In her experimental studies, Pennington provided a number of different types of

comprehension question. Each type of question was phrased such that it accessed

a different type of information from the program (e.g., Will an average be

computed? (function); is the last record in ORDER_FILE counted in

COUNT_CLIENTS? (sequence); will the value of COUNT_CLIENTS affect the

value of ACTIVE_AVG? (data flow); When TEXT_EXIT is reached, will

ORDER_REC_ID have a particular known value? (state)). Subjects were given a

program to study and were told that they would be asked to respond to

comprehension questions and be given a subsequent memory test. Following their

study of the program text, subjects were asked to respond to each of the

comprehension questions. They then carried out a free recall task where they were

asked to recall as much of the program as possible, in whatever order occurred to

them. Finally, the subjects participated in a complex priming task in which the

time taken to recognise an individual line from the program was recorded.

Pennington was interested in exploring a number of hypotheses. However, her

specific concern addressed the hypothesis that if programmers form plan-based

representations of programs, then they should recognise lines faster when they are

preceded by lines derived from the same plan structure. This hypothesis is based

upon the assumption that activation of an item in the memory structure will activate

78

items close to it, and especially those in the same cognitive unit. Hence, response

time to the target preceded by an item in the same cognitive unit should be faster

than the response time to an item not in the same cognitive unit (Anderson, 1983;

McKoon and Ratcliff, 1980); that is, a priming effect should be apparent.

Pennington's results suggest a number of problems with plan-based theories of

programming expertise. Firstly, her subjects made fewer errors on the

control-flow questions compared to the data-flow and the function questions.

Moreover, the effect of priming was greater when the primes were derived from

the same control structure as opposed to being derived from the same plan

structure. Hence, it appears that representations of control flow appear to dominate

a programmer's representation of a program, and that representations of function

and data-flow, which are more naturally allied to plans, are not as important as a

basis for organising memory structures.

Pennington replicated these findings in a second study to which an additional stage

was added. In this second experiment, her subjects were required to make

modifications to a program and half were asked to provide verbal protocols while

carrying out this task. Pennington discovered that after the modification phase the

dominant representations were concerned with data-flow and function, and this

was especially true for those who had supplied protocols. These results suggest

that a programmer's task goals may also influence the structural relations that

dominate mental representations in comprehension

Pennington concludes by stating that her results "strongly support a view of

program comprehension in which abstract knowledge of the program text plays

the initial organising role in memory for programs, and that control flow or

procedural relations dominate in the macrostructure memory representation" (p.

337). She further claims that these results are consistent with the results found in

prose text comprehension which suggest that knowledge of narrative and

expository text structures guides comprehension and plays an important role above

and beyond other content-schematic factors (e.g., Cirilo and Foss, 1980;

Haberlandt, Berian and Sandson, 1980; Mandler and Johnson, 1977).

Pennington's work suggests that knowledge representation in programming takes

on a hybrid form with various sources of knowledge contributing to the

development of memory organisation. Hence, certain forms of knowledge may

play an important organising role during different stages of comprehension.

79

Moreover, it appears that the kinds of tasks undertaken by programmers may

influence the nature of the mental representation of a program. This view clearly

does not rule out a role for plan-based knowledge structures in program

comprehension. It does however, challenge their centrality as structures that are

hypothesised as being fundamental to program comprehension. Hence as

Pennington suggests "While plan knowledge may well be implicated in some

phases of understanding and answering questions about programs, the relations

embodied in the proposed plans do not appear to form the organising principles

for memory structures." (p. 327).

3.7 Conclusions

This chapter has served to provide a broad review of the extensive literature

concerned with knowledge representation in programming. To a large extent the

focus of work in psychological studies of programming has paralleled the

concerns expressed in other problem-solving areas. For instance, early studies of

programming concentrated upon the general structural aspects of knowledge

representation, and provided important supplementary support for the chunking

hypothesis that originated in other problem-solving domains such as chess and

physics. Later studies began to focus more explicitly upon a description of the

content of expert and novice knowledge structures. The concern of these later

studies appears to mirror the trend apparent in other problem-solving domains,

where interest began to be directed toward understanding the nature of generic

knowledge structures and their role in problem-solving and comprehension. This

is perhaps best exemplified by the work of Schank and his colleagues in their

development of schema theory and the subsequent application of this theory to

program comprehension by Soloway and others.

More recently, the centrality of the plan concept has been challenged by studies

which suggest that programmers can extract many different forms of programming

knowledge from a given text structure. In addition, the studies reported later in

this thesis, and outlined briefly here, highlight some major theoretical difficulties

with plan-based theories of programming expertise and program comprehension.

It appears that there is still much scope for further research into knowledge

representation in programming. For example, we know little about the

mechanisms that are involved in plan acquisition. In addition, while plan-based

theories provide a detailed description of programming knowledge, they have little

80

to contribute to our understanding of the way in which plans are used. One

intention of this thesis is to provide a general theoretical framework within which

these issues can be addressed.

While this chapter has sought to suggest that studies of programming expertise

have broadly paralleled studies of expertise in other domains, it should be noted

that some of the outstanding features of expertise that have been observed in

non-programming domains have not found a place in general accounts of

programming behaviour. For instance, most descriptions of knowledge

representation in programming appear to suggest that such representations are

uniform and that all parts of the representation are equally accessible. However,

there is substantial evidence to suggest that the development of expertise is

associated with changes in the way in which knowledge is represented.

For instance, it has been observed that a significant part of the development of

skill in a particular domain involves the transformation of declarative knowledge

into procedural knowledge (Anderson, 1982; 1983; 1987; Neves and Anderson,

1981; and see review in chapter 2). However, most theories of the development of

programming skill do not make a distinction between these two forms of domain

knowledge. For instance, the plan theory of programming appears to suggest that

the knowledge expressed by plans has both declarative and procedural elements.

Hence, a plan may specify the actions necessary to compute a particular procedure

or it may describe, in a stereotypic fashion, the contents of that procedure.

Characterising programming knowledge in this way clearly does not lead to a

theoretical explanation of skill development in programming that is congruent with

alternative accounts of skill development in similarly complex domains.

A fundamental aspect of the framework suggested by this thesis is that as skill

develops knowledge may be both proceduralised and/or restructured. Hence, it is

suggested that certain key elements of plans remain accessible even though other

elements of the plan may be compiled and proceduralised. The experiments

reported in this thesis provide support for the idea that certain salient elements of

plans are used to guide skilled problem solving behaviour in programming. For

instance, in a study of program generation reported in chapter 8, expert

programmers were observed to develop their programs by instantiating a focal

plan element and then accreting the rest of the plan around that focal element. In

chapter 10, an experiment is reported which demonstrates that expert programmers

can access these focal plan elements both more quickly and more accurately than

81

novices or intermediates. In addition, a third experiment (reported in chapter 7)

has shown that while experts and intermediates can detect plan violations with

about the same frequency, expert programmers detect such violations with greater

rapidity than intermediates.

These findings are interpreted within a general framework which suggests that a

critical factor in the development of expertise in programming is not simply related

to the development of a larger catalogue of plan knowledge, as suggested by the

plan theorists. Rather, expertise appears to be related to the way in which plan

knowledge is structured. Similarly, in other domains, such knowledge

restructuring processes have been proposed as central elements in theories of skill

acquisition (for instance, Kay and Black's (1984) work on text editing and

Lewis's (1981) work on algebra). In addition, Cheng (1985) has taken these ideas

further by suggesting that the enhanced performance exhibited by experts in

certain domains, and accounted for by classical problem solving theories in terms

of knowledge compilation and proceduralization, can be equally well interpreted

by proposing a knowledge restructuring mechanism which can restructure task

components so that they are coordinated, integrated or reorganised into new

perceptual or cognitive units.

This thesis attempts to relate this knowledge restructuring process (elaborated in

the final chapter of the thesis) to a subject's exposure to design experience and to

the way in which this experience may impact upon a programmer's knowledge

organisation in relation to programming tasks. In addition, an attempt is made to

illustrate how this knowledge restructuring process, in concert with the effects of

certain notational features, can give rise to particular forms of strategy. This leads

to the development of a model of programming behaviour which suggests possible

ways in which external task and language features might interact with a

programmers internal representation of programming knowledge. It will be

suggested that this model accounts parsimoniously for existing experimental data

and that it is not open to the kind of criticism that is typically levelled at plan-based

theories of programming expertise.

82

Notes

1 It should be noted that this analogy considers programs as communicative

entities. However the analogy loses strength if one considers the dual nature of

programs: that is, they can be executed for effect as well as being read as

communicative entities.

2 See Kernighan and Plauger (1978) for a collection of rules derived from actual

programming practice. Soloway and Ehrlich equate these rules with their notation

of program discourse rules.

3 Note that the Soloway et al study used programs where the experimenters had

deliberately violated certain discourse rules. It is likely that it would be more

difficult to assess accuratly the extent to which arbitarily generated programs

violate certain rules in more naturalistic contexts.

4 Readers are refered to chapter 6 for a more detailed description of these studies

5 Readers are refered to chapter 5 for a more detailed description of these studies

83

Clluapter 41. Stu.ndlfies of tlhle stmtegic aspects of jpll"ogrammi~rng slknnn

4.1 Introduction

The previous chapter addressed issues stemming from what we might refer to as

knowledge-based theories of programming expertise - that is, theories of expertise

that have been concerned with the content and structure of programming

knowledge. However, as we have seen, one major limitation of many of these

knowledge-based theories is that they often fail to consider the way in which

knowledge is used or applied. Hence, such theories have tended to concentrate

simply upon the description or characterisation of declarative and/or procedural

knowledge structures with the primary intention of demonstrating novice/expert

differences in knowledge representation. However, such theories have failed to

elaborate the cognitive mechanisms that may be thought to underpin the utilisation

of such knowledge and have, by and large, ignored the strategic elements of

expertise which are likely to play an important role in any comprehensive theory of

programming skill.

To take one example, proponents of the plan theory of programming have devoted

considerable effort to providing a detailed description of the kinds of knowledge

structures that are thought to underlie expertise. However, the plan theory does

not suggest how plans might be used. Hence, it might be claimed that the plan

theory simply presents a theory of plans rather than a theory of planning.

The main assumption of plan-based theories is that the cognitive processes

underlying programming are relatively straightforward (Gilmore 1990). Based

upon ideas from artificial intelligence, it is suggested that these processes should

be considered to be general problem-solving skills (cf. ACT*; Anderson (1983),

and SOAR; Laird, Newell and Rosenbloom, 1987), which are possessed not only

by experts but also by novices. Hence, the development of expertise is seen to be

associated with the gradual accumulation of plan knowledge over time, rather than

with the development of processes or heuristics which may govern plan use and

application. Kolodner (1983) encapsulates the main problem with

84

knowledge-based theories of expertise: "even if a novice and an expert had the

same semantic knowledge ... , the expert's experience would have allowed him

(sic) to build up better episodic definitions of how to use it".

An alternative to knowledge-based theories is to suggest that expertise in

programming may involve the development or acquisition of complex task-specific

cognitive or problem-solving strategies (Shneiderman and Mayer, 1979). Two

interpretations of this view are possible. One interpretation, may be to suggest that

the development of expertise involves the acquisition of strategies rather than

declarative knowledge. This view suggests that even if we were able to teach

expert knowledge structures to novices, this would not make them into experts

since they will not have acquired strategies for utilising this knowledge (See

Neisser (1976) for a more general discussion of this issue in the context of other

problem solving skills).

Alternatively, one may adopt a less strict position and suggest that expertise has

both knowledge-based and strategic components. One might for instance argue

that features of a programmer's knowledge representation determine the form of

strategy that they adopt. This is the position suggested by the work reported in this

thesis where an attempt is made to demonstrate the relationship between the

development of expertise and the adoption of particular forms of strategy.

Moreover, in contrast with existing work, this thesis is not simply concerned with

characterising the forms of strategy that are seen to be associated with particular

levels of skill.

Rather, it is concerned with explaining why these strategies emerge. In particular,

attention is directed toward exploring the relationship between the development of

structured representations of programming knowledge and the adoption of specific

forms of strategy. It will be suggested (see the final chapter of this thesis) that a

know lege restructuring process occurs during the acqusition of expertise which

results in the differential accessibility of various knowledge structures. Moreover,

it is hypothesised that this gives rise to different forms of strategy. Hence, the

work reported in this thesis represents an attempt to adopt a rather different

perspective on the relationship between expertise and the emergence of particular

forms of programming strategy. This approach provides an explanation for the

85

differences in strategy that have been observed in studies of programming

behaviour and attempts to relate these strategic differences to an explicit model of

knowledge representation in programming.

This chapter considers a number of studies which have been concerned with the

role of strategy in programming. These studies have tended to explore either the

strategic aspects of program comprehension or the role of strategy in program

generation. A number of studies have been concerned only with the strategies

employed by experts, while others have attempted to associate differences in

strategy with different levels of expertise. A number of other studies have been

explicitly concerned with the kinds of difficulties experienced by novices, and in

particular with those difficulties that arise because of an absence of elementary

problem-solving strategies or because of a reliance upon inappropriate strategies.

This chapter attempts to represent these different concerns and is composed of

three sections. The first section deals with studies of program comprehension

strategy, while the second reviews studies of generation strategy. A third section

deals more explicitly with studies of novices, and attempts to highlight the fact that

novices can display strategic as opposed to, or in addition to, knowledge-based

programming difficulties.

4.2 Strategies involved in program comprehension

4.2.1 Brook's model of program comprehension

One of the earliest theoretical explorations of the strategic aspects of program

comprehension was outlined by Brooks (1977; 1983). Brooks presents what he

calls a sufficiency theory which is intended as a description of the processes by

which a programmer attempts to understand a program. A sufficiency theory,

according to Brooks, should provide a description of a set of mechanisms and

relationships that are sufficient to explain at least the most salient aspects of

program comprehension behaviour. Brooks presents a number of behavioral or

empirical differences that he claims any model of program comprehension should

be able to account for. These sources of variation include the following:

86

1. The effects of differences in the task performed by the program on

comprehension. Why do programs that perform different computations differ in

comprehensibility, even though the intrinsic properties of these programs (e.g.,

length, complexity etc) are the same?

2. The effects of variation in program text. Why, and under what conditions, do

programs written in different languages vary in comprehensibility even though

they perform the same computation?

3. The effects of different programming tasks. Why might the comprehension

process differ depending upon the nature of the task the programmer is

undertaking. For instance, modifying a program as opposed to debugging it?

4. The effects of individual differences. Why might one programmer find a

particular program easier to comprehend than another programmer?

Brooks then goes on to propose a model to explain these sources of variation.

Brooks claims that the mechanisms suggested by this model are sufficient to

explain the variability in the extent to which particular programs can be

understood. He suggests that in this respect the model takes the form of a theory

demonstration approach (Miller, 1978).

Brooks outlines three main elements of his model of program comprehension in

terms of a set of domain mappings and processes. He suggests that the

programming process involves constructing mappings from a problem domain

into the programming domain. This mapping process may also involve a number

of intermediate domains . To illustrate this mapping process he considers a

cargo-routing problem. Here, objects in the problem domain are cargoes that have

specific destinations which must be reached within particular time and cost

constraints. Before a program can be constructed to solve a routing problem, the

programmer must assign numbers to the various cost and time elements, and

identifiers (which might also be numbers) to the cargoes and destinations. This

results in what Brooks refers to as a new knowledge domain, where the domain

objects have become numbers. Next, an algorithm must be selected to carry out

87

the required computation. This gives rise to a further domain in which

mathematical objects, such as trees or arrays, are constructed and in which various

operations are specified, such as matrix inversion. Yet another domain emerges

when the program itself is constructed and these mathematical objects are

implemented as data structures and as primitive programming language operations.

Finally, the execution of the program results in a further domain in which objects

become the contents of memory locations and operations are implemented as

low-level machine code instructions.

Brooks claims that the task of understanding programs requires programmers to

construct or to reconstruct enough salient information about these domains in

order to provide a basis for generating various mappings between the domains.

This construction or reconstruction process involves the programmer acquiring

two main forms of information. One form of information is contained within each

domain. That is, information about the basic set of objects in the domain and their

relationships. The second form of information relates to the relationships between

objects and operators in one domain and those in nearby domains.

Brooks suggests that this construction/reconstruction process is expectation driven

and consists of confirming/refining various hypotheses which are generated from

the programmer's knowledge of the task domain and other related domains.

According to Brooks, this process begins with a primary hypothesis which is

generated when the programmer obtains any information about the task that the

program performs. This primary hypothesis specifies the global structure of the

program in terms of its inputs, outputs, data structures and processing sequences.

The next stage in Brooks' model involves verifying or validating this primary

hypothesis. This verification process will normally involve finding evidence for

the hypothesis in the program code or in its associated documentation. Brooks

further claims that since the primary hypothesis will almost always be global and

non-specific, the programmer will have to generate a number of subsidiary, and

less detailed, hypotheses which can be verified against information obtained from

the code and the documentation. Brooks claims that these subsidiary hypotheses

can be regarded as forming a hierarchical structure where those hypotheses lower

in the hierarchy represent specialisations of those occurring above.

88

Brooks asserts that to minimise memory load, these subsidiary hypotheses will

normally be created in a top-down, depth first manner. Hence, the comprehension

process begins with the creation of a primary, and then a number of subsidiary

hypotheses about the program's function. Initially these are based upon the

programmers knowledge of the domain and of similar programs. Eventually, these

subsidiary hypotheses become sufficiently detailed to enable the programmer to

directly verify them against program text or documentation. The success or failure

of this verification process can then be used to guide the formation or the

modification of other subsidiary hypotheses. Hence, the condition that causes the

hypothesis refinement process to terminate occurs when the level of detail of a

hypothesis is sufficiently close to the program text or documentation to enable a

specific comparison. More specifically, this process terminates when the

operations or data structures specified in the hypothesis are ones that the

programmer can associate with features or details visible in the program text which

are typical indicators of the particular operation or structure in question.

Brooks refers to the features that typically indicate the occurrence of certain

structures or operations within the code as 'beacons'. For example, a typical

indicator for a procedure that sorts array elements might be a section of code in

which the values of an array element are interchanged. Clearly, there might be

multiple beacons for a single structure or conversely the same beacon might

represent a variety of structures or operations.

In summary, Brooks' theory of program comprehension holds that

comprehension is a top-down, hypothesis driven activity. According to this

theory, the programmer does not study a program line-by-line, but instead forms

hypotheses about program function based upon high-level domain and

programming knowledge. These hypotheses, once suitably decomposed, are then

verified against the program text by searching for beacons which indicate the

presence of particular functions or structures. A particular hypothesis is verified

when the expected beacons are found. If these are not found, the program text

might be searched more thoroughly. If this more detailed search fails, the

hypothesis is weakened and will be revised or discarded. One major difference

between Brooks' theory and the studies described in the previous chapter is that

this theory recogises the more global level of program structures and suggests, in

89

turn, an interaction between knowledge structures and information that is derived

more directly from the program.

Brooks claims that his theory of program comprehension can account for the

sources of variation in program comprehension outlined earlier. For instance,

there is considerable evidence that the type of control structures used to express

programs can have a marked effect upon their comprehensibility (Green, 1977;

Soloway, Ehrlich, Bonar and Greenspan, 1982). Hence, the text structure of the

program may contribute to the ease with which hypotheses can be verified. An

even more powerful source of variation may be related to the tasks the program is

intended to perform. Hence, if as suggested by Brooks, program comprehension

involves reconstructing the relationship between the original problem and the

program text, then ease of comprehension will depend to a large extent upon the

complexity of the original problem. In support of this, Brooks cites a study by

Curtis, Sheppard, Milliman, Borst and Love, (1979) which showed significant

differences in the comprehensibility of programs with the same software metric1

value.

The theory also suggests at least three distinct factors that might contribute to

individual differences in program comprehension ability- programming

knowledge, domain knowledge and comprehension strategies. Firstly, a

programmer's ability to confirm hypothesis against code or to refine hypotheses

appropriately will depend to a certain extent upon the programmer's knowledge of

typical programming idioms and algorithms.

Secondly, since Brooks' theory suggests that domain knowledge is critical to the

formulation of high-level hypotheses, one might predict that a programmer will

have great difficulty generating useful hypotheses if that programmer does not

understand the problem the program is intended to solve. To the author's

knowledge this prediction has not been tested; however it does suggest that

documenting the rationale behind the specification for a program may aid

comprehension by illustrating salient features of the problem domain.

Finally, interprogrammer variation may arise from differences in the strategies

employed by programmers to locate information in the program text. For instance,

90

two programmers attempting to validate the same hypothesis may use different

strategies. One programmer may attempt to validate it by tracing the subroutine

calling hierarchy, while another might attempt to locate input and output functions.

Brooks claims that while these strategy differences may not account for as much

individual programmer variation as programming and domain knowledge, they

may play a role in explaining pathological cases of programmers who are

exceptionally successful or unsuccessful at program comprehension.

4.2.2 Empirical support for the Brooks model

Brooks' theory of program comprehension provides a detailed and wideranging

account of the strategies thought to be employed by programmers when they

attempt to understand a program. However, while Brooks cites existing

experimental work in support of the theory, no specific empirical evidence for the

model is proposed. More recently a number of studies have been undertaken

which address specific hypotheses derived from Brooks' model. For instance,

Wiedenbeck (1986a and b) and Wiedenbeck and Scholtz (1989) have provided

evidence for the idea that programmers use beacons to guide their problem-solving

behaviour during program comprehension.

The role of beacons in program comprehension

For instance, in one of these studies (Wiedenbeck and Scholtz, 1989) a

comparison was made between the comprehension of programs containing

beacons and other similar programs which did not contain a beacon. Wiedenbeck

and Scholtz constructed two versions of a Shellsort program, one containing a

beacon line which swapped various values in a standard manner (i.e., t := a[j]; a[j]

:= a[j + i]; a[j + i] := t;). A second 'disguised' version of the program introduced a

whole second array, which was a copy of the first and served as a temporary

storage for the swap value. The swap was performed by assigning the values to be

swapped into the appropriate locations of this second array, then later copying the

second array back into the first. Wiedenbeck and Scholtz claim that this second

version is almost identical to the first, but that in the second case the beacon is

disguised.

91

Novice and advanced subjects were given the programs to study for a short period

and were then asked to carry out three tasks. The first task involved describing the

function of the program. The second task involved subjects judging their

confidence in having understood the program and a third task required subjects to

recall the program verbatim. The first task was intended to demonstrate the

subjects' understanding of the program and the confidence rating was used to

provide a supplementary comprehension measure, since subjects might perform as

well on the disguised version, but be less sure of themselves in respect to their

understanding of the program. The recall measure was introduced to determine

whether subjects remembered the swap better when it was presented in its more

typical form.

Wiedenbeck and Scholtz found that the advanced group was better at determining

program function than the novice group and that, overall, subjects were more

accurate in determining the function of the normal (no-disguise) version. They

argue that these differences appear to arise as a consequence of the superior

comprehension performance of the advanced subjects on the no-disguise version.

Similar findings emerged in the case of the confidence rating task. Here advanced

subjects were significantly more confident of their function judgments than were

novices, and confidence was higher for function judgments in the no-disguise

version than in the disguise version. In the recall task, there was a trend for

subjects to recall the swap lines in the no-disguise version better than in the

disguise version (67% vs 40% correct recall); however this difference was not

significant.

This experiment provides some evidence for the role of beacons in program

comprehension and suggests that at least part of Brooks' model maybe correct.

The idea that program comprehension behaviour is guided by beacons which serve

to highlight important code structures is central to the model of program generation

presented later in this thesis. The model proposed in this thesis places emphasis

upon the process of knowledge restructuring that appears to be associated with the

development of expertise. The model proposes that certain focal elements of

plan-based knowledge structures will be more easily accessible and that these focal

elements will tend to be generated first during program development.

Subsequently, these focal structures will be further expanded to form a complete

92

solution. Correspondingly, we might consider program beacons to form an

external analogue of these internally represented focal structures. Hence, the ease

with which particular languages support the expression of beacons is likely to

affect comprehension success.

Strategic differences in program comprehension

While the studies reported above by Wiedenbeck and her colleagues have served

to provide a direct test of one aspect of Brooks' theory, other work has indirectly

addressed issues stemming from the ideas on program comprehension that are

presented by Brooks. For instance, Pennington (1987b) has carried out a study

looking at the way in which differences in comprehension strategy can affect the

level of comprehension achieved by expert programmers. Pennington carried out

a detailed protocol analysis of the verbalisations of 40 professional programmers

who were asked to study and modify a program. After a 45 minute study period

her subjects were asked to summarise the program they had studied and respond

to a number of comprehension questions.

Pennington analysed her subjects' verbal protocols by classifying each statement

in the program summary according to two explicit dimensions. Firstly, statements

were classified according to their type, i.e., as a procedural, a data flow or a

function statement. Secondly, each statement was classified in terms of its

referent. For instance, a statement might refer to specific program operations or

variables. Pennington classifies such statements as detailed statements.

Alternatively, statements might refer to a program's procedural elements, and

Pennington calls these program level statements. Domain level statements refer to

real world objects such as cables or buildings and, finally, statements with no

explicit referent were classified as vague statements.

The program comprehension questions were used to classify the subject

population into an upper (Ql) and a lower (Q4) comprehension quartile.

Pennington then looked at the differences between these two groups in terms of

the protocol classification scheme described above. With respect to the statement

type classification, Pennington found no reliable differences between the Q 1 and

93

Q4 groups. However, analysis of the referent classification illustrated a number

of important differences between the upper and lower quartile comprehenders.

Specifically, the Ql group produced fewer statements at both the detailed level and

at the vague level.

To explore the Ql and Q4 differences further, Pennington sorted the program

summaries produced by her subjects into three different "summary strategy"

groups according to the proportion of statements at different levels in each

summary. The first group (nine subjects) was composed of those programmers

whose summaries predominantly consisted of statements corresponding to the

program level. These summaries were referred to as program level summaries.

The second group (twenty subjects) showed a more even distribution over

program and domain levels, and their summaries were referred to as

cross-referenced summaries. Finally, a third group (eleven subjects) produced

summaries that included a high proportion of domain or vague statements and

these were called domain summaries.

Pennington suggests that to construct program summaries, subjects must retrieve

information from one or more memory representations and that consequently we

may assume that these summaries reflect at least some properties of the subject's

mental representation2. Pennington claims that abstract knowledge of a program

text structure plays an initial organising role in memory for programs, and at this

stage tends to dominate the macrostructure (van Dijk and Kintsch, 1983) memory

representation that Pennington refers to as a program model. A second

representation is created at later stages in program comprehension that reflects the

functional structure of the program and is expressed in the language of the real

world domain to which the program is applied. This Pennington calls the domain

model.

It appears that Pennington's work supports the idea initially proposed by Brooks

that a significant factor in program comprehension involves creating a successful

mapping between the problem and the programming domain - in terms of

Pennington's study, between the domain model and the program model. One can

identify three distinct strategies employed by Pennington's subjects. One strategy,

the program level strategy, is characterised by the almost complete absence of

94

order in which the program was written and were expected to be able to describe

how the program worked. For both of these groups reading times and search

patterns were collected. A third group of subjects viewed a coherent program, but

were asked to talk about what they were doing as they inspected the program. In

this case, only verbal protocols and search patterns were analysed.

The reading time data and search strategy information collected from the first two

experimental groups illustrated the varied nature of cognitive processes during

code comprehension. Reading time data indicated that subjects who viewed a

coherent program spent an average of around 50 minutes studying the program

lines, while those reading a scrambled program spent an average of only 6.5

minutes reading the program. Almost all of the subjects who viewed the coherent

program made short 'retrogressions' through the code. In order to analyse this

phenomenon further, Robertson et al, categorised each action performed by the

subjects as either a forward move (from one line to the next after another forward

move), backward move (from one line to the previous line after another backward

move) or as a switch in direction. Switches could in turn be categorised as either

forward-backward switches (a return to a previous line after a forward move), or

as backward-forward switches (a return to a subsequent line after a backward

move). The data relating to these switching episodes indicates that around 11% of

the subjects activity involved switches in direction, of this 16.6% involved going

backwards through the code and the remaining 72.4% constituted forward

movement.

Search patterns were characterised by segmenting each subject's protocol into

episodes. An episode consisted of a forward pass through a section of code, a

forward-backward switch, and a second forward pass. All of the subjects' data

contained a number of such episodes, and about one third of subjects' activities

were categorised as being within episodes. Next, Robertson et al analysed reading

times for the various movement types (i.e, forward, backward,

forward-backward, backward-forward etc) and for between and within episode

activities. These data are shown in table 4.1.

There was a significant difference between the reading times within episodes and

between episodes, and Robertson et al take this to imply that the

~6

"episode/non-episode distinction may be due to the highly goal directed nature of

processing within episodes" (p. 960). They suggest that between episode

processes are likely to include more discovery based processing, whereas during

within episode activity, subjects are searching for particular information. We

might here draw parallels with Brooks' model and suggest that between episode

processing may give rise to hypothesis generation, while within episode

processing may provide a mechanism for hypothesis verification. Although

Robertson et al do not mention Brooks' model, it does appear that their data

provides support for the comprehension strategies that Brooks alludes to in the

context of his model.

Movement Type

Forward

Backward

Forward-Backward

Backward-Forward

First Forward Pass

Second Forward Pass

Episode begin

Episode end

Between
Episodes

408

141

1581

569

Within
Episodes

146

1027

410

387

225

348

411

Figure 4 .1. Reading times for the various movement types reported by Robertson et al
(1990)

The protocol analysis carried out by Robertson et al also suggests that certain

movement types are associated with particular kinds of problem-solving activity.

Here, the programmers' verbal comments were classified into six groups:

Analyse, assume, question, answer, function and strategy. These were defined as

follows:

97

Analyse - comments which a programmer offered as an explanation of a code

segment.

Assume - comments where a programmer made prediction about what she

expected next in the program.

Question - a comment that contained a query about the code

Answer- a comment or statement that could be explicitly linked to an earlier

question.

Function - a comment about the function of a particular piece of code.

Strategy - a comment about what the programmer planned to do next.

Table 4.2 shows the proportion of comment types within each move category. It

appears that concern for the functionality of the code was the topic of most of the

programmers comments. This concern for functionality was apparent for all

movement types with the exception of the backward movement category. In the

case of this movement category, questions and strategy were the primary

concerns. Robertson et al suggest that "the unequal distribution of comment types

across movement categories shows that programmers had qualitatively different

things in mind when they moved around in the code" (p. 963)

98

Movement Type
Comment Forward Backward Forward Backward
Category Backward Forward

Analyse .078 .053 0 .057

Assume .219 .158 .167 .220

Question .078 .263 .125 .118

Answer .094 .105 .083 .118

Function .422 .158 .250 .368

Strategy .109 .263 .375 .103

Figure 4.2. Proportion of movement types in eaxh movement category.

These data might be seen as providing support for other models of program

comprehension. For instance, Brooks' model places emphasis upon the idea that

programmers generate and test hypotheses about the function and role of elements

of code when they attempt to understand a program. However, the nature of these

hypotheses remains unexplored. The contribution of the Robertson et al study is

that it provides a detailed analysis of the kinds of questions that are framed by

programmers during comprehension. This analysis enables us to state more clearly

the detailed nature of the hypotheses that programmers generate In addition, it

provides a basis for a more detailed understanding the nature of programmers'

information seeking activities which are directed towards testing these hypotheses

and which are are evident in the strategies that they employ during comprehension.

Widowski and Eyferth (1986) have conducted a study of programmers' searching

strategies using a methodology similar to that employed by Robertson et al.

Widowski and Eyferth were interested in comparing the strategies used by novice

99

and expert programmers who were asked to study a program line-by-line through

a manoeuvrable, single line window. Widowski and Eyferth extended the

traditional application of the Chase and Simon (1973) chess research which

compared the performance of novices and experts on well-ordered versus

randomly-ordered game positions. In the programming domain, the effects of well

ordered vs random program presentation are well documented (see chapter 3), and

studies of this effect in programming have replicated the basic finding of Chase

and Simon who showed that expert performance is drastically reduced in the

random condition, while novice performance is affected little. This effect is

thought to be based upon the expert's ability to extract meaningful chunks from

the materials presented, be they chess positions or programs.

Widowski and Eyferth suggest that the same effect should obtain in situations

where programs are well ordered, but which are unconventional or atypical. This

would be predicted by the Chase and Simon model, since, although a program

may be well ordered, it may not always be possible for a programmer to

decompose it into meaningful chunks. In the case of an atypical program,

programmers may not posses sthe appropriate knowledge structures upon which

to base their chunking strategies. Hence, in the case of atypical (or semantically

complex) programs, we might expect novice-expert differences to diminish, since

experts may not have the knowledge structures necessary to process them.

Widowski and Eyferth compared the performance of a number of Pascal novices

and experts who were allowed to view only a single line of a program at a time.

For the purpose of their experiment, Widowski and Eyferth constructed two pairs

of programs which differed in their level of semantic complexity or typicality.

Each pair of programs consisted of a stereotypical (semantically simple) and a

non-stereotypical (semantically complex) program. Each pair of programs was the

same length and the programs had an equivalent number of variables. Subjects

were allowed to study each program for 10 minutes.

In a subsequent recall study, significant effects of expertise and semantic

complexity were evident. However, there was no interaction between expertise

and complexity. Contrary to the hypothesis derived from Chase and Simon's

model, experts were much better than novices at recalling both typical and atypical

100

programs. Indeed, the difference in novice and expert performance was, if

anything, greater in the atypical condition.

Next, Widowski and Eyferth analysed the reading patterns of their subjects in

order to derive information on the search strategies they used. The basic form of

measurement used here involved analysing the number of "runs" made by

subjects. Here, a "run" was evidenced by the subject reading a number of

consecutive lines before moving either backwards or forwards over more than one

line in order to read another line. They suggest that this simple unit can reveal

parts of the program text "that form subjectively meaningful entities" (pg 273).

Widowski and Eyferth found that experts demonstrated more flexible reading

strategies that novices. In the case of the stereotypical programs, experts adopted a

strategy that involved reading the code in long but infrequent runs. In the case of

the atypical programs, experts read the program in short and frequent runs. They

suggest that the former strategy reflects a top-down or conceptually driven

comprehension process, while the latter represents a bottom-up and heuristically

oriented strategy. For novices, the same comprehension strategy appeared to be

employed for both the typical and atypical programs.

The contribution of this study to our understanding of program comprehension is

twofold. On the one hand, this study demonstrates that experts have a better ability

to respond to novel situations, even though they may not have the appropriate

knowledge structures or plans to guide behaviour. Secondly experts appear to

have a greater range of strategies available to them, leading to greater flexibility in

performance. Hence, this work provides an interesting counterpoint to plan-based

theories of programming expertise by suggesting the important role played by

strategy in program comprehension.

The studies conducted by Robertson et al and by Widowski and Eyferth have

demonstrated the importance of the strategic elements of program comprehension.

However, in order to achieve this, and to render their studies possible, they have

restricted the task environment to such an extent that one might wish to draw into

question the ecological validity of their experiments. One way of studying

comprehension strategies which does not involve undue restriction to the task

environment might be to examine the eye movement and fixation patterns made by

101

programmers while reading programs for comprehension purposes. However,

studies of program comprehension which have involved eye movement analyses

are rare.

One study of subject differences in program reading has been conducted by

Crosby and Stelovsky (1989). They asked expert and novice programmers to

study a short binary search program. The subjects were asked to study the

program for as long as they needed to understand it and a record of the total

number of fixations made by the subjects and their associated durations were

collected.

Figure 4.3 illustrates two rather distinct reading patterns that emerged in Crosby

and Stelovsky's study. These diagrams show the eye fixation patterns of two

subjects superimposed over the algorithm. Each fixation point is represented here

as a circle, whose size is propotional to the size of the pupil. Figure 4.3 a

illustrates a typical "left-to-right, top-to-bottom reading strategy", of the kind that

might be found in studies of nonprocedural text-based prose (Just and Carpenter,

1980). A rather different reading style is shown in Figure 4.3 b. This subject first

concentrated on the upper three lines of the algorithm, then skipped a number of

lines to concentrate on the central portion of the program. Notice that this subject

repetedly fixated upon certain areas of the algorithm. Crosby and Stelovksy

suggest that "rereading was not only a frequent practice, but a necessity for

comprenension. If an internal buffer held the information (as, for instance

suggested by Bouma and de Voogd's (1974) model of reading), frequent

rereading would be superfluous" (p. 141).

Crosby and Stelovsky provide a more detailed analysis of individual scanning

strategies by producing two dimensional "area/fixation" graphs which indicate the

sequence of areas perused with respect to time. They found that patterns of eye

fixations could be categorised, although there was a considerable range of

individual scanning strategies. Such strategies ranged from linear scans of the text,

typical of the kind found in prose reading, to highly nonlinear strategies. One

might expect these differences in strategy to be related in some way to the

expertise of the programmer, since the nonlinear strategy would appear to be

highly goal directed, whereas the linear strategy treats each part the program

102

equally. However, Crosby and Stelovsky found no relationship between the use

of particular strategies and expertise.

into 3 subarrays*)

en

Figure 4.3a. A typical/eft-to-right, top-to-bottom reading strategy.

103

t (* A[left] < X <

(*choose middle to split A into 3 subarrays*)

(left + right) div 2;

found := left = right + 2;

index := middle;

end; (*bin Search*)

Figure 4.3a. A 'Comparative' reading strategy.

Indeed, the only differences in expertise that were manifest in their study were

related to the percentage of time spent viewing particular parts of the algorithm.

Crosby and Stelovsky partitioned the algorithm used in their study into a number

of areas, which could in turn be grouped into five classes: Comments,

comparisons, complex statements, simple assignments and keywords. They then

analysed the average percentage of fixation time spent by the novice and expert

groups on these five areas. This analysis is shown in figure 4.4. It appears from

this analysis that experts spend more time reading complex statements, whereas

novices tend to concentrate upon comments. One might infer from this that experts

develop their understanding of the program from the program text itself, while

novices rely to a greater extent upon comments to augment their understanding.

This would in itself seem to be a reasonable assumption. However, it would be

104

interesting to discover the extent to which experts actually use comments to aid

understanding. Moreover, if experts tend not to rely significantly upon comments

during comprehension activities then this would clearly question their utility,

especially in program maintenance tasks where comprehension clearly plays a key

role.

The results of the Crosby and Stelovsky study are rather difficult to account for

given the large body of literature which has demonstrated a strong relationship

between particular forms of strategy and expertise. In general, their study failed to

reveal any significant relationships between viewing strategy and programming

experience or comprehension. The Crosby and Stelovsky study is interesting since

it adopts a rather different methodological perspective to the studies of program

comprehension reported above. Moreover, the results of this study are contrary to

what one might expect given the results of existing work. In particular, it suggests

that reading strategy and viewing time do not display any significant correlation

with programming experience. In contrast, the other studies reported in this

chapter would predict systematic variations in search strategy associated with

differences in expertise. It would appear injudicious to reject previous accounts of

program comprehension simply upon the basis of a single study. However,

bearing in mind this caveat, it is clear that the Crosby and Stelovsky study raises a

challenge to existing theories of program comprehension.

The studies reviewed so far have been concerned primarily with the strategic

elements of program comprehension. However, there also exists a considerable

body of literature which has addressed issues relating to the strategic aspects of

program generation. One problem with knowledge-based theories that was

highlighted at the start of this chapter, is that while such theories serve to describe

the content of stereotypical knowledge structures, they have typically not

attempted to specify the processes that control the transformation of these

representations into code during problem-solving. Recently however, Rist

(1986a, b; 1989; 1990) has proposed a model of schema creation in programming

that describes the way in which plan-based knowledge structures are transformed

into programs and accounts for the differences in generation strategy that have

been observed to be associated with differences in expertise.

105

60

50

(!) 40
E
i=
~ 0 30

20

10

(*)

Comments Comparisons

o----o Expert Group

IJ---[J Novice Group

Complex
Statements

Simple Keywords
Statements

Figure 4.4. Percentage of fixation time spent by the novice and expert groups

viewing the five areas identified by Crosby and Stelovsky.

106

4.3 Strategies involved in program generation

4.3.1 Rist's model of focal expansion

Rist (1989) has proposed a model of program generation which illustrates how

simple fragments of plan knowledge are composed at various levels of abstraction

and, in addition, demonstrates how these plan structures are eventually

implemented as code-based representations. Unlike previous plan-based accounts

of programming behaviour which suggest that plans have a flat structure

consisting of a sequence of steps that are simply concatenated to achieve a goal

(Detienne and Soloway, 1990; Robertson and Yu, 1990), Rist's model assumes a

more complex plan structure and suggests several distinct mechanisms which

govern plan composition and use.

The first stage of plan formation, according to Rist, involves creating a single line

of code. Rist adopts Mayer's (1987) suggestion that the smallest fragment of

knowledge used in program comprehension is a transaction. Transactions

conceptualise a program statement in terms of the operations that take place, their

location and the object that is acted upon. For example in order to understand the

line of code, LET B=A + 1, requires 10 transactions. First the integer and

increment must be defined and stored in temporary memory (4 steps), and then

added (1 step). Next, the location of the sum must be defined and then deleted

from temporary memory (3 steps). Finally, control must be transferred to the next

statement and that statement executed (2 steps). According to Rist, the creation of

even a single line of code involves a significant amount of reasoning and planning.

Rist proposes that within a single line of code, there will be a central or focal code

fragment that represents the most important operation performed by that line . This

focus is described as that part of the statement that directly implements the current

goal. In the above example the programmer's goal will be to increment a number,

hence the code fragment that achieves this (i.e., + 1) becomes the focus of the

programmers current activity, and other code structures will be built around it.

107

During the next stage of plan development, single lines of code are combined to

create a programming plan. To do this, the plan focus must be extended to include

other subsidiary plan elements. Rist suggests that this extension process can take

two forms; plan creation or plan retrieval. In plan creation, the plan is developed

backwards from the goal, to the focus of the plan and finally to its extension.

Here, plan generation begins with the calculation element of the plan and then

continues with the initialisation and the output. In plan retrieval, plans are

generated in schema order, such that the initialisation part of the plan will be

generated first, then the calculation part, and finally its output.

The next level of plan use describes the process of plan composition to form a

program. Here, Rist suggests simply that during this stage, basic plans are

combined to form more complex plans. Rist claims that the visible structure of a

complete program is created by these complex plans which make up the final form

of the program. Rist further claims that only at the end of this construction process

will the abstract form of the solution be apparent. Here, Rist suggests that this

abstract program structure can be analysed in terms of the 'role structure' of

various elements of the program. These role structures describe the goals of

various program elements in terms of whether these goals involve establishing

some input, making a calculation or relate to output in some way.

The model of solution design proposed by Rist describes plan generation at these

four levels and makes two basic claims about the effects of knowledge on

behaviour. Essentially, if knowledge can be found to guide program design, then

top-down and forward plan generation will be observed. If knowledge cannot be

found, then a solution will be created by focal expansion, which characterises

program generation as a bottom-up process. Hence, the novice, given a goal that

they have extracted from the problem statement, will retrieve a fragment of code

that directly implements the current goal, and will then construct the rest of a plan

around this focal segment. Rist equates the development of expertise with an

increase in stored knowledge which specifies the required plans. Given this plan

knowledge, Rist claims that experts simply need to retrieve stored schemata and

that a programmer's generation strategy will change from focal expansion to

schema expansion as expertise develops.

108

Rist (1989) reports a longitudinal protocol analysis of a small number of subjects

(10) who were asked to generate programs to solve a number of problems. Both

the verbal statements produced by subjects and their resulting programs were

analysed. The coding scheme used to analyse these protocols described, where

appropriate, each code fragment or verbal utterance as relating to an "input goal"

(1), or to a "calculate goal" (C) or to an "output goal"(O) (Spohrer, Soloway and

Pope, 1985). In addition, an analysis of the program's plan structure was

undertaken, and the order of emergence of plan elements (expressed as an ICO

sequence) was established.

Two sample protocols, illustrating this analysis are shown in figure 4.5. The first

protocol illustrates the process of focal expansion, where the focal plan element is

retrieved early during during plan development. According to Rist, this form of

plan implementation would be observed in the case of novice programmers. Here,

the order of generation is contrary to what one would expect if the plan was

retrieved and implemented in schema order (i.e., in ICO order). The second

protocol shows a program generation episode which reflects forward plan

expression in schema order (I CO). This protocol represents the type of coding

strategy thought to correspond to expert coding behaviour.

The results of this study provide support for the model of code generation

proposed by Rist. Firstly, the protocol analysis demonstrated that both forms of

generation strategy, i.e., focal expansion and schema retrieval, were displayed by

subjects. Secondly, there was a change in the mode of plan expression with

experience. Evidence for this change in plan expression was established by

comparing the degree of schema expression in plan creation (i.e., focal expansion)

versus plan retrieval. This analysis showed that there was a significant increase in

coding and verbal behaviour that could be accounted for in terms of plan retrieval

processes associated with programming experience. Correspondingly, there was

a significant decrease in plan creation with experience.

109

VERBAL STATEMENTS

(N7) "For rain itself,
rain is going to equal ...
I need ... I need something ...
I need something there that keeps ...
I'm setting the sum equal to the amount
of rain from
before, OK ... sum will be a problem,
I'll come back to it later ...
[other goals solved] ...
OK, do sum gets sum plus rain, or
even better
... and now set that to zero"

VERBAL STATEMENTS

(N2) "The first thing I want
to do is to get the original word ...
You might want to use an array for the
letters in the word, so you have ...

Now get the original word, so say
WHILE ... use a REPEAT loop ...
give a prompt first ...

then REPEAT ...

umm ... you want to read in ...
you want a counter ...
initialize a counter,

and then you want to repeat
... so you read it in, and
then let i ...
... intialize i to 1
... and then increment it by 1
... uh-uh, until ... "

PROGRAM CODE INTERPRETATION

goal 0
+ rain focus c

rainfall:= extension c

sum extension c

rainsum:=rainsum+rain focal line c
rainsum:=O extension I

PROGRAM CODE INTERPRETATION

goal
TYPE letters=array[l ,20]
of char; V AR word: letters; define a word

write ('please enter a word'); extention ~ead
repeat extension 1Ioop
read(... focus cread,loop

i :=0 [before repeat] extension 1count
read (word[i]); use ocount

1 := ... focus ccount
i := 1 [before repeat]
i := i + 1
until(word[i] = ' '); use oread

Figure 4.5 The first Protocol (above) illustrates the process of focal expansion, where the focal plan
element is retrieved early during during plan development. This form of expansion is claimed to be
characteristic of novices. Here, the order of generation is contrary to what one would expect if the
plan was retrieved and implemented in schema order (i.e., in !CO order). The second protocol
shows a program generation episode which reflects forward plan expression in schema order (!CO).
This protocol represents the type of coding strategy thought to be used by experts.

110

4.3.2 Studies of change processes - The Parsing/Gnisrap model

Green, Bellamy and Parker (1987a and b) have attempted to extend Rist's model

of focal expansion by proposing a comprehensive model of coding behaviour

which highlights those features of the device, task, interaction medium and user

knowledge that contribute to the use and the development of particular forms of

programming strategy. They suggest that there are two important aspects of

coding behaviour that a model needs to account for. One aspect of coding

behaviour relates to the fact that code is often not generated in a strict linear

fashion, where the final text order of the program corresponds to its generative

order. For instance, Figure 4.6 shows a number of departures from linear

generation for a typical Basic protocol. Green et al suggest that these departures

from linear generation indicate problems in the task and the device languages or

their relationship. They suggest that departures from linear generation are

significant, since they increase mental workload, may give rise to omissions and

oversights and, depending upon the editor used to create the program, can involve

many additional keystrokes to effect successful navigation around the code.

1
2

r----1~6

3
7

L~
4
5
10

1 1

10 Restore
20 Dim data%(9)

Dim Reversed%(9)
30 For 1% = 0 To 9: Read data%(1%):

40

Reversed
%

(9 - 1%) = data%(1%):
Print; data%(1); " ": Next

Print: For 1% = 0 TO 9:
Print; Reversed%(!%);" ": Next

50 Data 1 ,2,3,4,5,6,7,8,9,0

Figure 4.6. Departures from linear generation for a typical Basic protocol. The

numbers on the left represent the order of generation.

111

A second aspect of coding behaviour relates to the ease with which information

can be extracted from the text structure of the program. When programmers adopt

a non-linear style of code generation they need to be able to read and to

comprehend earlier parts of the code before they can insert subsequent parts. This

re-comprehension process is likely to be facilitated if the programmer can easily

extract relevant information from the program text.

Green et al introduce the 'Parsing-Gnisrap' cycle to describe the cyclical

alternation between code generation and recomprehension. The parsing-gnisrap

model describes two fundamental psychological processes which underpin coding

behaviour. Firstly, programming text is mentally elaborated from a skeletal plan,

and when working memory is full, or when overload is threatened, part of this

text is output to an external medium. When the programmer subsequently needs to

recover the details of parts of the text that have been externalised, the text must be

comprehended. To achieve this the text must be parsed in order to recreate the

original plan structure. Gnisrap is simply the reverse of parsing and involves

transforming an internal representation into an externally represented text

structure.

This model borrows directly from that proposed by Rist in that it suggests that

expert coding is a forward chaining process which involves matching elements of

a skeletal plan to programming plans and then expressing these plan elements in

code-based terms. Rist's model suggests that expert programmers will tend to

generate code in plan order, where the order of generation will reflect the final text

order of the program. Conversely, the parsing-gnisrap model makes rather

different predictions about the order of program generation. These differences

arise as a consequence of one primary extension to Rist's model.

The behaviour of the parsing-gnisrap model, unlike Rist's model of focal

expansion, is fundamentally determined by working memory limitations. In Rist's

model, programming knowledge is represented as schemata-based structures

which state the code, its purpose, the role of components within the code, and its

pre and post conditions. Plans are built by retrieving a focal line and then by

subsequently extending this focal structure to include the plan's subsidiary code.

In addition, other schemata may be invoked at this time by matching the

112

preconditions of the present schemata with the pre and post conditions of other

schemata. According to Rist's model, nonlinearities will only occur when a

programmer has to interleave a new plan into the existing program. The

parsing-gnisrap model allows greater flexibility by suggesting that nonlinearities

can occur within the generation of individual plans. For instance, it suggests that

the minor parts of plans will often be omitted during generation, and that

programmers will need to return to complete code fragments after generating later

parts of the program.

The parsing-gnisrap model suggests that rather than build up a whole program

internally and then output it to an external source, programmers will output

fragments as they are completed, or will dump incomplete fragments when

working memory becomes overloaded. The model deletes information from

working memory when it is output to an external source. Hence, when the

programmer subsequently needs to refer to an existing code fragment, it will need

to be parsed such that its original plan structure can be recreated.

The behaviour of the parsing-gnisrap model (and correspondingly the behaviour

of the programmer being modelled) depends upon characteristics of the device, the

task language, the interaction medium and the model's knowledge representation.

For example, the device language might represent the commands necessary to

manipulate editor functions. If one has to navigate a complex structure in order to

insert or to comprehend information, as necessitated by the parsing-gnisrap

model, then the ease or difficultly of doing this is likely to affect strategy.

The use of a particular interaction medium e.g. pen and paper, VDU, will also

affect strategy. Green et al illustrate this by comparing the ease of using pen and

paper to generate a program as opposed to dictating a program. With pen and

paper it is a simple matter to insert new material, for instance, to balance

parentheses or declare new variables. According to Green et al, pen and paper has

a large 'access window', which allows the programmer to access any part of the

expression being built. Conversely, in dictation, the access window is restricted to

a single point. Between these two limiting cases lie word processors and text

editors where the user must do some work to access any point other than the

current cursor location.

113

The size of the access window is a property of the interaction medium, not of the

task language. Hence, one can dictate or write Pascal or algebra and here the

interaction medium differs while the task language remains the same. However,

Green et al claim that the importance of the window size depends upon the task

language. When using languages with many left-to-right constraints such as

algebra or Pascal, it is important to have a wide access window, whereas other

notations such as reverse Polish, which have fewer constraints of this sort, may

not demand a large access window.

Characteristics of the task language will also affect strategy. For instance, some

languages are highly resistant to local change. Such languages might be described

as viscous (Green, 1990a and b; 1991). For example, it is harder to insert a new

section into a Pascal program than into an equivalent Basic program. This

phenomenon is evident in the results of an experiment carried out by Green et al to

test certain predictions stemming from the parsing-gnisrap model. This experiment

is described in more detail in chapter 5, however its main finding was that the

extent of non-linear generation in coding was related to the language being used.

Hence, Pascal programmers adopted a highly non-linear style of code generation

whereas both Basic and Prolog programmers departed infrequently from a linear

generation strategy.

Green et al claim that there may are several possible reasons for these difference in

strategy. Firstly, Pascal procedures may offer better facilities for a non-linear

approach than Basi~. subroutines. Secondly, the Pascal teaching tradition, and its

emphasis upon stepwise refinement, has always emphasised a top-down, and

consequently non-linear method of program development. Thirdly, Pascal appears

to be inherently viscous, and an approach which minimises interleaving will be

preferred. Finally, Basic is less role-expressive than Pascal (see chapter 5).

Hence, Basic programmers will experience more difficulty comprehending code

once it is generated and will therefore adopt a strategy which minimises the

amount ofre-comprehension that is necessary, i.e, a linear generation strategy.

The factors affecting coding strategy which are outlined above are, with the

possible exception of Pascal teaching tradition, related explicitly to the formal

structure of the task language. However, it is clear that strategy will also be

114

determined to some extent by the structure of the user's knowledge of how to

perform programming tasks. In plan-based theories of programming expertise,

plan structures are uniform and all their parts are equally accessible. However, it is

clear that, in most cases, these plans will be composed of a major part and other

necessary, yet minor elements. For example, a summation plan will require a

minor initialisation component and more salient summation element.

Green et al suggest that "These minor and possibly less salient parts of plans are

sometimes left out by programmers during the first pass, either intentionally or by

mistake, and are inserted later. On the other hand, it is extremely rare to see the

minor part included in the first pass and the major part omitted. This asymmetry

suggests to us that the effect is caused by asymmetry in the knowledge structure:

the major part is focal to the plan, but the minor part is invoked only as a

precondition required by the major part" (p 138).

The importance of the parsing-gnisrap model is that it describes the process by

which a plan is instantiated in a programming notation and the effect that various

notational features will have on plan implementation and general coding strategy.

In this sense, the parsing-gnisrap model complements and extends Rist's work on

focal expansion by detailing the mechanisms that control plan use to give rise to

various forms of strategy. For instance, the Green et al work showed that Pascal

programmers frequently made backward jumps during coding to insert base

preconditions, whereas in Basic, this retrospective inclusion of preconditions was

infrequently observed. Similarly, PROLOG programmers almost always inserted

a base case before developing other parts of the associated procedure. Green

(1990b) suggests that this may arise because, in PROLOG, base cases are

spatially contiguous with their associated focal line in the main case, whereas in

Pascal, plan structures are diffuse.

While the parsing-gnisrap model displays some overall similarity to the model of

focal expansion proposed by Rist, it clearly makes different predictions about the

order of plan generation. In particular, Rist's model would predict that experts

would generate code in schema order, while novices would develop code by focal

expansion. The parsing-gnisrap model makes no predictions about the relationship

between expertise and generation strategy. However, the main factor that gives

115

rise to nonlinearities in this model relates to its limited working memory capacity.

Since there is no reason to expect that experts would have a greater working

memory capacity than novices, then, according to the parsing-gnisrap model, they

should display broadly similar generation strategies, and hence exhibit similar

patterns of nonlinearities.

Moreover, the data used to support the parsing-gnisrap model was collected from

expert programmers. As we have seen, this data appears to show that in many

cases code is not generated in plan order, as would be predicted by Rist's model.

For instance, in Pascal, preconditions are often inserted after other parts of a plan

have been developed. Since Green et al did not analyse the plan structures evident

in the programs generated by their subjects, it is not clear that one can make a

direct comparison between this data and that reported by Rist. However, in

general terms, the nonlinearities observed in the Green et al study do not appear to

support a model of expert coding behaviour such as Rist's which would predict

that plans will be retrieved and implemented in the order in which they appear in

the final program.

4.3.3 Knowledge restructuring: Extensions to the parsing-gnisrap model and the

role of focal expansion

In chapter 8 an experiment is reported that attempts to extend the paradigm

suggested by Green et al by examining the nonlinearities in program generation

made by programmers of varying skill level using different languages. This

experiment suggests that the level of skill of the programmer is a more important

discriminator than the programming language used. However, there were clear

interactions in this experiment between skill level and language. This result is

interpreted within the broad framework suggested by this thesis which advances a

model of knowledge restructuring to account for skill development in

programming.

In particular, it is suggested that certain languages may facilitate the

implementation and comprehension of focal code structures. This would explain

the interaction between expertise and language. Hence, we might assume that as

116

knowledge representation is in the process of development, any additional means

of facilitating a preferred programming strategy, such as might be provided by

features of the notation of a particular language, would be of importance. At

higher levels of skill, factors relating to the organisation of knowledge appear to

play a greater role in the determination and support of particular forms of strategy.

This experiment might be seen as providing a bridge between Rist's work on

knowledge representation and the emphasis of the parsing-gnisrap model on

language features, by suggesting possible ways in which these factors might

interact to determine the nature of programming strategy.

Additional support for this model of knowledge restructuring is provided by two

further experiments which are reported in chapters nine and ten. In chapter nine,

an experiment is described which examines the temporal generation of code for

novice and expert programmers. Here, following Rist, each statement of the

completed program was classified according to whether it constituted a focal or a

non-focal line. The model of knowledge restructuring presented in this thesis

would suggest that a programmer's representation of programming knowledge is

not uniform, as is suggested by plan-based accounts. Rather, certain important

code structures, i.e., focal lines, will be represented with greater saliency than

other subsidiary plan elements. Moreover, in common with the parsing-gnisrap

model, it is suggested that focal lines will commonly be generated first during

coding (i.e., before non-focal lines). This reduces the load on working memory

and provides a framework around which the rest of the program can be built.

Since this knowledge restructuring process is assumed to underpin the

development of expertise in programming, one would expect to see differences in

the temporal generation of focal vs non-focal structures corresponding to the level

of expertise of the programmer. This prediction is supported by the results of the

experiment reported in chapter nine. In particular, expert programmers were seen

to generate significantly more focal lines during the early stages of the

development of a program, whereas novice programmers generated significantly

more non-focal lines. This disparity was maintained until quite late in the

development of a program, but focal and non-focal line generation tended to

converge towards the final stages of program generation. This provides some

support for the idea that expertise is related to the restructuring of programming

117

knowledge, since one would expect the saliency of various plan components to

affect the generation patterns evident during coding.

In addition, it is suggested that the early generation of focal lines during coding

reflects the adoption of a top-down hierarchically levelled approach to program

development. In chapter 6, an experiment is reported which suggests a

relationship between design experience and subjects' ability to use cues to extract

plan structure from a program text. It may also be the case that design experience

can facilitate particular generation strategies. In particular, focal lines may

represent a discrete level of design abstraction.

This would certainly accord with Rist's characterisation of focal lines. According

to Rist (1989) "the (plan) focus ... marks the start of detailed design in the domain

of the program" (p. 403). Most design methodologies embody an approach which

suggests that programs should be developed in a top-down fashion, beginning

with the highest level of design abstraction and progressing to lower levels only

when the preceding levels are fully articulated. Hence, programmers with design

experience may be inclined adopt a strategy which causes them to articulate focal

lines during the early stages of program development.

Further evidence for the knowledge restructuring argument voiced by this thesis is

reported in chapter ten. Here, an experiment is reviewed which employs a

program memorisation and probe recognition task to explore the form of

knowledge representation for programmers of various skill levels. In this

experiment, subjects were presented with a number of small Pascal programs

which they were asked to memorise. Subsequently, subjects were presented with

a probe item and were asked to state whether it was contained in the original

program. Half of these probe items were derived from the original programs and

the other half from similar programs. Additionally, half of the probe items derived

from the original programs were classified as focal lines and the other half as

non-focal lines. The results of this study showed that intermediates and experts

exhibited approximately the same recognition accuracy, suggesting that they were

able to access similar knowledge structures. However, the expert group correctly

recognised focal lines much faster than the intermediate group. This is taken as

evidence for the idea that experts represent focal lines with greater saliency than

118

their less experienced counterparts and, consequently, as evidence for the model

of knowledge restructuring presented in this thesis.

These experiments suggest a possible means of linking the process of focal

expansion described by Rist with the idea that code is generated and evaluated in

cyclical phases as suggested by the parsing-gnisrap model. However, the

knowledge restructuring model presented here differs from previous work in a

number of respects. Firstly, in contrast to Rist's model, focal expansion is seen as

a strategy which arises due to knowledge restructuring, and hence will be

exhibited predominantly be experts rather than by novices. Secondly, the work

reported in this thesis predicts that differences in generation strategy will be related

to differences in expertise. In contrast, while the parsing-gnisrap model makes no

specific predictions about the effects of expertise, this model implies that there will

be no relationship between these two factors. Generation strategy, according to

the parsing-gnisrap model, depends primarily upon working memory constraints

and upon the nature of the task language being used, and there is no reason to

believe that these would, in tum, be related specifically to expertise.

4.3.4 Change-Episodes

The cyclical nature of code generation and comprehension suggested by the

parsing-gnisrap model is also reflected in other studies of programming

behaviour. For instance, Gray and Anderson (1987) have carried out an analysis

of so called 'change episodes'. Change episodes are described as key junctures in

the coding process where programmers alter their code. Gray and Anderson

suggest that an analysis of these episodes can help to illuminate the cognitive

process involved in programming, since they provide a wealth of information

about the programmer's goals, about their planning activities, about their

evaluation of existing code and about the error detection and correction

mechanisms which are typically invoked during programming tasks.

Gray and Anderson suggest that coding should be viewed as a problem solving

process where the problem statement represents the initial state of the problem and

the completed program its goal state. The knowledge and skills of the programmer

119

determine which parts of the problem involve problem solving and which parts

simply entail the retrieval of information from long term memory.

Following All wood (1984), Gray and Anderson distinguish two types of problem

solving activities: progressive and evaluative. Progressive activities work directly

toward the goal state of the problem, whereas evaluative activities involve

checking some already executed part of the problem solution. In programming

terms, coding (and planning what to code) are progressive activities and checking

and changing code are evaluative activities- in Gray and Anderson's terminology,

change-episodes.

Previous accounts of problem solving behaviour have, according to Gray and

Anderson, tended to ignore these evaluative activities and studies of programming

appear to have followed this trend. For example, most accounts of debugging

(Vessey, 1985; 1986; 1989; Waddington and Henry, 1989) involve progressive

activities. The issue of how programmers actually evaluate their progress during

debugging and coding is not normally addressed. The work of Green et al does

suggest an important role for evaluative activities during coding, however the

parsing-gnisrap model does not make any strong predictions about when and

where these activities will take place. By relating change-episodes to predicted

planning or problem solving difficulties during coding, Gray and Anderson have

been able to specify the circumstances in which change-episodes are most likely to

occur, and this provides a systematic basis for understanding the evaluative

activities that normally take place during coding.

The Gray and Anderson study involved analysing the change-episodes contained

in protocols produced by 'advanced novice' subjects writing a single LISP

function. A change-episode is said to occur when the programmer alters some

code that they have already written or when they subsequently modify a plan that

has already been articulated (derived from a verbal protocol). Gray and Anderson

suggest a tripartite analysis of change-episodes involving the change goal, the

noticing event and the fix. The change goal is an articulated goal that the

programmer later decides to change. The noticing event describes the first

indication that the programmer wishes to change the goal structure of their

solution. The fix is the goal structure after it has been changed.

120

Gray and Anderson derive a number hypotheses which relate to each of the three

elements in their change-episode analysis. As far as change goals are concerned,

Gray and Anderson suggest that the probability of a goal being the target of a

change-episode will be correlated with the amount of planning involved in its

execution. This hypothesis is based upon the assertion that goals which involve a

significant amount of planning arise because the goal is not yet well learned and

has not been subject to knowledge compilation or that there are so many variations

as to how the goal can be used that a specific rule for the required variation has not

yet been compiled. They suggest that in the first case, poorly learned goals can

easily be coded incorrectly and hence they can become the target of evaluative

activities. In the second case, choosing the correct instantiation of a goal will

depend upon having a clear idea about how the rest of the function will be coded,

and this in turn can depend upon a number of highly variable goals.

The second element of Gray and Anderson's change-episode analysis, noticing

events, are indicated either by keystroke analysis or from verbal protocols. In the

first case, the programmer might interrupt their current activity in order to

backtrack to an earlier part of the program. In the second case, verbal utterances

might be indicative of a noticing event (for instance, an "oops" followed by a

revision) or it might consist of a full articulation of the change-goal.

Gray and Anderson suggest three issues relating to the nature of these noticing

events which form the basis of their hypotheses. Firstly, do change-episodes form

an abrupt interruption to the progressive activity of coding or do they arise as a

more natural outcome of an activity such as symbolic execution that was begun for

some other reason? Secondly, do the nature of change episodes differ if they are

initiated by different types of noticing events? Finally, is there a relationship

between the activity that immediately precedes the noticing event and the change

goal?

The final part of Gray and Anderson's analysis is related to how a goal is altered

during a change-episode. Essentially, the fix is the goal-structure after it has been

changed, and this is established by comparing the goal structure before the

change-episode with the goal-structure after the change-episode. They suggests

121

two issues that relate to fixes. Firstly, are their as many types of changes or fixes

as there are change-episodes, or can most fixes be categorised? Secondly, what

does the nature of these fixes suggest about the role of planning in coding?

The results of the Gray and Anderson study support the specific hypotheses that

are outlined above and, in addition, provide a basis for a discussion of the more

general questions raised by their analysis. For example, they found that the

probability of a goal being the target of a change-episode was indeed correlated

with the amount of planning involved in its execution. Their results also suggest

that only a small number of fix categories exist. In particular, their results indicate

that a large proportion of fixed change-episodes could be grouped into just two fix

categories; one which involved relatively minor editing of a goal's subgoals and

one which entailed major transformations in the goal's structure. Their results also

suggest that a change-episcx,le can be initiated in three distinct circumstances; as an

interrupt to coding, as tag-along to other change-episodes or as a product of

symbolic execution.

The first of these describes the situation where programmers simply stop coding to

make changes. Gray and Anderson suggest that these interrupts appear to be part

of the planning process. They argue that programmers begin to work on a goal

before it is fully planned and that this may help programmers to remember the goal

structure of the plan without committing them to its detailed elaboration. It appears

that as programmers begin to elaborate a plan, this may suggest that higher order

goals require revision.

This process clearly has similarities with the kinds of activities described by the

parsing-gnisrap model, since it relates planning and working memory limitations

to the fragmentary nature of code generation and accounts for the evaluative

activities that need to be undertaken to recover or to recreate higher-level goals.

Change-episodes can also be initiated as a result of tag-alongs to other

change-episodes. In general, these episodes involve fairly straightforward fixes

such as correcting spelling mistakes or balancing parentheses. However, some

episodes appeared to arise due to confusion over which of several methods to

apply in a particular situation. Here, Gray and Anderson argue that such methods

122

may at an intermediate stage of compilation, where the programmer may know

several methods, but not know which to apply. Finally, change-episodes can

occur as a result of symbolic execution where the programmer had been

symbolically executing their code immediately prior to noticing the need to change

a previously coded or stated goal.

The evidence for these three categories of change-episode was mainly derived

from verbal protocols. However, Gray and Anderson also present collateral

information (i.e., time between last keystroke and noticing event) which provides

additional independent support for their categorisations. In the three categories

they found that the mean time in seconds between the last keystroke and the

noticing event was 52.5 (symbolic execution), 2.2 (interrupts), and 4.0

(tag-alongs). These differences are statistically significant, and provide additional

support for the validity of their change-episode categorisation.

Gray and Anderson's change-episode analysis has proved important since it

makes firm theoretical predictions about where change-episodes will occur during

coding. In addition, it provides a detailed account of the cognitive mechanisms

which underpin such change processes and other more general evaluation

activities. Moreover, the change-episode analysis presented by Gray and

Anderson clearly ties in with other work on change processes, and in particular

with the parsing-gnisrap model. Both of these models suggest that because of

certain cognitive limitations, code is generated in fragments and that these

fragmentary structures need to be evaluated in some way in order to recreate the

original plan or goal structures that initially gave rise to the generation of these

code fragments.

However, despite the close parallels between these models, both display a very

different emphasis. The parsing-gnisrap model is primarily concerned with the

effects of features of the task language on coding behaviour, and has little to say

about knowledge representation. Conversely, the change-episode analysis

attempts to relate the evaluative activities that occur during coding to a specific

model of the planning and problem solving processes that underpin programming.

Viewed together, these models clearly advance our understanding of problem

solving in programming by illustrating the various factors that give rise to the

123

adoption of particular forms of strategy. This analysis leads to a characterisation of

programming behaviour which highlights its true complexity and distinguishes it

from other domains.

Research on change processes such as that used to support the parsing-gnisrap

model and Anderson and Gray's analysis of change-episodes is currently lagging

some way behind advances in language design. For instance, the object oriented

programming paradigm has spawned a number of languages which have been

designed specifically to support an information structure which facilitates code

change and modification. The emphasis of these languages is upon code re-use,

and to make re-use possible these languages need to exhibit sufficient flexibility to

allow the programmer to easily modify and tailor the code. However, there is little

empirical evidence which demonstrates the extent to which particular object

oriented languages might support change and re-use (See, Green, Gilmore,

Winder and Davies, 1992).

Lange and Moher (1989) report a single subject study of a professional software

developer working in an object oriented environment which showed that code was

frequently re-used. However, their subject achieved this by simply copying text

rather than using the method-inheriteance mechanisms provided by the system.

Lange and Moher suggest that this "reflects an overall approach of comprehension

avoidance, in spite of the fact that the subject was modifying code that she herself

had written earlier" (p. 69). Similar findings have arisen in other studies of

software reuse (Maiden and Sutcliffe, 1991; Sutcliffe and Maiden, 1990). If these

findings are generalisable, then they may suggest that language designers will

need to think again about supporting change processes in object oriented

environments. Moreover, this finding provides additional support for the idea that

change processes are cognitively significant and that such processes require some

cognitive effort to effect.

4.3.5 Characterising coding activities and program design as opportunistic

The studies of change processes that are reviewed above appear to suggest that

coding may be considered to be an opportunistic process (Hayes-Roth and

124

Hayes-Roth, 1979; Hayes-Roth, Hayes-Roth, Rosenschein and Cammarata,

1979) consisting of bouts of activity each of which involve the creation of code

fragments. These fragments are, in turn, continually reevaluated and modified in

respect to the particular goal or subgoal currently under consideration (Green et al,

1987). In addition, the development of code may be postponed at any time in

order that the programmer might direct her attention to other goals or subgoals,

possibly in response to the recognition of previously unforeseen interactions

between code structures (Gray and Anderson, 1987).

Such opportunistic strategies can be contrasted with top-down models of problem

solving which suggest that problem solving is a focused process that starts from

high level goals which are successively refined into achievable actions. In

addition, it is claimed that this process is hierarchically levelled. That is, plans or

sub-goals are always fully expanded or refined at the same level of abstraction

before the problem solver or planner moves on to a lower level in the plan/goal

hierarchy. Such a view of problem solving is well established in the psychological

literature (Kant and Newell, 1984; Newell and Simon, 1972) and hierarchical

planning models in artificial intelligence are founded upon these principles (Ernst

and Newell, 1969; Sacerdoti, 197 4; 1977).

More recently an alternative view of the planning/problem solving process has

emerged. This view characterises planning and problem solving as

opportunistically mediated, heterarchical processes (Hayes-Roth and Hayes-Roth,

1979; Hayes-Roth et al, 1979). Here, in contrast to top-down models, planning is

seen as a process where interim decisions in the planning space can lead to

subsequent decisions at either higher or lower levels of abstraction in the plan

hierarchy. At each point during the planning process the planner's current

decisions and observations may suggest various opportunities for plan

development. For instance, a decision about how to conduct an initially planned

activity may highlight constraints on later activities, causing the planner to refocus

attention on that part of the plan. In a similar way, low-level refinements to an

abstract plan may suggest the need to replace or modify that plan. Hayes-Roth and

Hayes-Roth (1979) have provided support for their view of the planning process

by observing subjects planning a series of errands through a town. Here subjects

tended to mix high and low-level decision making. Often subjects planned

125

low-level sequences of errands in the absence or in direct violation of a high-level

plan.

The dichotomy between top-down and opportunistic processing is also evident in

empirical studies of the programming activity. For instance, Jeffries et al (1981)

found that both novice and expert programmers decomposed their designs in a

top-down fashion- moving between progressive levels of detail until a particular

part of the solution could be directly implemented in code. One major difference

between novice and expert programmers was that novices tended to employ a

depth-first search of the solution space- expanding only one part of the solution at

progressive levels of detail- while experts adopted a breadth first approach

synchronously developing many sub-goals at the same level of abstraction before

moving to a lower level.

Adelson and Soloway (1985) provide additional support for the use of top-down

design by experts working in both familiar and unfamiliar domains and Anderson

and others (Anderson, Farrell and Sauers, 1984; Pirolli, 1986; Pirolli and

Anderson, 1985) have shown that novices characteristically develop designs in a

top-down and depth-first manner. Such a view of the design process is also

clearly implicated in prescriptive accounts of the software design activity. For

instance, the emphasis on top-down problem decomposition and stepwise

refinement that is advocated by the structured programming school (Dahl, Dykstra

and Hoare, 1972; Wirth, 1971).

In contrast, a number of more recent, studies have highlighted the opportunistic

nature of program design tasks. For example, Guindon (1988; 1989) found that

software designers often deviate from a top-down, stepwise refinement strategy

and tend to mingle high and low-level decisions during a design session. Hence,

designers may move from a high level of abstraction - for instance, making

decisions about control structure (e.g., central vs distributed) - to lower levels of

abstraction, perhaps dealing with implementation issues. Guindon notes that the

jumps between these different abstraction levels do not occur in a systematic

fashion, as one might expect from hierarchically levelled models, but instead can

occur at any point during the evolution of a design.

126

Other studies (Ratcliff and Siddiqi, 1985; Siddiqi, 1985, Siddiqi and Ratcliff,

1989) suggest similar deviations from a simple top-down model within program

design. In addition, these studies have questioned the basic adequacy of

prescriptions stemming from the structured programming school, in particular the

notion of functional decomposition/stepwise refinement. For example, Siddiqi and

Ratcliff, (1989) looked at the problem decomposition strategies employed by

programmers during program design tasks. They found that subjects trained in

structured programming do not carry out problem decomposition in a manner

which reflects a search for appropriate levels of abstraction in a specification, as

would be expected if these subjects were rigorously applying structured

programming techniques. Rather, their problem decomposition is guided largely

by various availability effects (Tversky and Kahneman, 1973) derived from the

problem representation.

They found that problem decomposition can be affected by stimulus availability or

by knowledge availability. These describe cues derived from two sources;

Stimulus activated; i.e., where decomposition is motivated by content and surface

characteristics of the problem specification, or knowledge activated; i.e., where

decomposition is triggered by design experience. The last of these availability

effects would suggest a hierarchical problem decomposition strategy, if the subject

had received prior training in program design. However, the stimulus activated

availability effect may suggest other decomposition strategies, and Siddiqi and

Ratcliff have observed that on many occasions problem decomposition is triggered

in this way, and can often lead to simplistic problem decompositions. Moreover,

they found that this bias towards simplistic decompositions can be reduced by

instituting small changes to the problem specification.

The Siddiqi and Ratcliff studies suggest significant problems with hierarchically

levelled, top-down characterisations of coding behaviour and software design

such as those prescribed by the structured programming school. In addition, if one

considers this work in the light of other studies which have attempted to

characterise design and programming behaviour as opportunistic, then this clearly

also poses problems in terms of applying classical models of problem solving to

programming activities. Such models clearly advance a top-down description of

problem solving and embody hierarchically levelled goal decomposition methods.

127

However, many programming activities appear to display few of the

characteristics that have being posited by these models. For instance, programs are

often constructed in a piecemeal fashion with frequent redesign and evaluation

episodes and programmers are frequently observed to move between different

hierarchical levels at various arbitrary points during the coding process.

4.4 Studies of Novices

The emphasis of the work that has been reviewed so far in this chapter has been

concerned with the nature of the strategies employed by experts - often

professional programmers - in program comprehension and generation. These

studies suggest that there is an important strategic element in programming skill.

We can contrast this view of expertise with knowledge-based theories which

suggest that the development of skill in programming simply involves acquiring

and building a body of programming knowledge. One of the main implications of

knowledge-based theories is that one way of teaching programming involves

passing on the knowledge used by experts to beginning programmers, and it

follows from this that novice difficulties in programming arise simply from a lack

of programming knowledge. However, a number of recent studies suggest that

novice programmers display strategic as opposed to knowledge-based difficulties.

For instance, Perkins and Martin (1986) conducted a series of interviews with

novice Basic programmers in order to explore the kinds of difficulties they

experienced. They suggest that one way of exploring novice difficulties is to ask

what students typically know and do not know. In this context, they draw a

distinction between low-level programming knowledge - that is, knowledge of

particular language structures or stereotypical plans- and higher-level strategic

knowledge of the abstract and general tactics of problem-solving. Perkins and

Martin suggest that these sources of knowledge form two extremes on a

continuum, and they ask whether novice difficulties arise from a beginners

shortfall in low-level knowledge structures or from deficiencies in their high-level

strategic repertoire.

128

They suggest that there are two extreme cases where these deficiencies might be

manifest. It may be the case that novice programmers have the general cognitive

skills for the tasks they face, but that their mastery of the primitives of the

language may be poor. Hence, such skills cannot be applied effectively to solve

programming problems. Conversely, novice programmers may posses knowledge

of the language but be unable to muster this knowledge since they lack the

necessary tactical skills. This, of course, is an over-simplification of the problems

that novices might face. The novice may know some things about the language

and not know other things. Perkins and Martin suggest that common experience

testifies that often a person does not simply "know" or "not know" something.

Rather, people can often only recruit fragmentary or fragile knowledge.

The term fragile knowledge is introduced by Perkins and Martin to describe

knowledge which a student has, but fails to use when it is needed or when it is

appropriate. From their analysis of interviews with novice programmers, Perkins

and Martin suggest that fragile knowledge may take a number of forms. For

instance, missing knowledge is knowledge that the student has either not retained

or has never learnt. Inert knowledge is knowledge that the student has but fails to

retrieve when it is required. Misplaced knowledge denotes circumstances in which

a student uses knowledge inappropriately and conglomerated knowledge signifies

situations where a student combines disparate elements of knowledge in

syntactically or semantically anomalous ways.

Fragile knowledge does not simply arise because a student has not been taught

about a particular programming construct, and evidence for the existence of

fragile knowledge is based upon the fact that on nearly 50% of occasions where

hints were given to students while they writing programs, the student went on to

successfully solve the problem, even though the hint did not make reference to the

appropriate knowledge. Their interview data also suggests that these categories of

fragile knowledge are "exacerbated by a shortfall in elementary problem-solving

strategies" (p 225).

For instance, one example of a 'neglected strategy' is a 'close-tracking' or

'parsing' strategy which involves reading the code in order to discover what the

program actually does. One might expect even novices to employ such a

129

rudimentary problem-solving strategy. However, it appears from the interviews

conducted by Perkins and Martin, that novices rarely engage in close-tracking -

that is, they infrequently read what exists of a program in order to check their

progress in relation to stated or implicit objectives. Perkins and Martin go on to

suggest that the use of such elementary problem-solving strategies should be

encouraged. They claim that students would gain much by the self-prompting of a

close-tracking strategy. They suggest that students should be encouraged, through

their programming education, to ask questions like "what will the code I have just

written really do?" or "how did my program get that wrong answer?"

The strategic difficulties encountered by novices in the Perkins and Martin study

suggests that the acquisition of strategic skills may play a significant role in the

development of expertise. It may indeed be the case that novices know appropriate

plans but not how to use them. The proponents of knowledge-based theories of

programming expertise have generally ignored the strategic aspects of

programming skill. However, it is clear from the studies reported in this chapter

that strategic elements of programming skill may, in some cases, by of greater

significance than its knowledge-based components.

For example, Gilmore (1990) reports an unpublished study which also suggests

that novices may know plans but not be able to use them successfully. Gilmore

gave novice POPll programmers a programming problem in which they could

choose between an iterative or a recursive solution. The novices in this study had

been taught about both recursion and iteration. In a number of cases, Gilmore

observed that the student's response to an error message was simply to switch

from a recursive plan to an iterative plan or vice versa.

He reports one particular protocol where a subject developed an iterative solution,

but omitted the necessary initialisation. This turned out to be the only error in this

subjects solution, but rather than try to edit the program, the subject simply

switched to a recursive solution. In developing this recursive solution, the subject

made an analogous error, by failing to implement a function that returned a value

from the stopping condition. The subject then reverted back to an iterative plan. In

total, this subject switched between these two possible solutions five times before

detecting the mistake. Thus, while this subject obviously displayed some

130

knowledge of recursion and iteration, it seems that he was unsure about how to

use this knowledge in an appropriate fashion.

4.5 Conclusions

The work reviewed in this chapter illustrates the wide range of perspectives that

have been adopted by studies which have addressed the strategic aspects of

programming skill. Unfortunately, no clear picture emerges from this work. While

many studies have clearly demonstrated the importance of strategic knowledge,

they have not presented a unified characterisation of the nature of programming

strategy. For instance, a number of studies of program comprehension suggest

that programmers search through the text of a program in a selective fashion,

attempting to pick out salient structures or beacons which can be used to futher

guide search or to provide evidence for specific hypotheses about program

function which are generated during the comprehension process. While many

resarchers would adhere to this general position, there is some evidence that

search strategies vary considerably between individuals and that particular forms

of strategy do not appear to be realted to either comprehension success or to

differences in expertise.

Similarly, models of generation strategy have described programming behaviour

in different ways. In addition, one can derive different, and often conflicting,

predictions from these models about the strategy that will be adopted by

programmers. For example, Rist's model of program generation makes very

specific and detailed predictions about the relationship between the order of

program generation and expertise. Conversely, the models proposed by Green et

al. and by Gray and Anderson, while not explicitly concerned with factors relating

to programming skill, suggest that there will not, in general, be a relationship

between generation strategy and expertise.

The work reported in this thesis attempts to provide a conceptual bridge between a

number of the studies reviewed in this chapter. In particular, the model of

knowledge restructuring that is proposed in the final cahpter of this thesis adopts

the general framework suggested by the parsing-gnisrap model in order to account

131

for the cyclical nature of code generation and evaluation that has been observed in

a number of the experimental studies that are reported later in this thesis. In

addition, this restructuring model relies centrally upon Rist's elaboration of the

process of focal expansion in order to explain how representations of

programming knowledge can be transformed and eventually implemented as

programs. The intention of this work is twofold. Firstly, to provide a model that

can account parsimoniously for a wide range of experimental findings, and

secondly to provide a theoretical basis which might allow some integration of

previously disparate areas of research. Hence, this model, and the experiments

reported in this thesis, attempt to account for particular forms of programming

strategy by demonstrating how strategy might be determined by the programmer's

knowledge representation, by features of the task language and via their

interactions.

132

Notes

1. Software metrics (or more accurately program complexity metrics, since other

metrics measure different things) are intended to provide a measure of the

complexity of program code. Such metrics are normally derived from a simple

count of a number of program surface features, i.e, number of operators or

operands, etc.

2. One can again draw parallels here with work in text comprehension, particularly

Rumelhart's (1977) work on story summarisation.

133

Chapter 5. The role of task language/notational features in

programming strategy and program comprehension

5.1 Introduction

In chapter 2 we suggested that to fully understand problem solving in complex

interactive domains such as programming we need to consider the effects of task

and device language features on problem solving behaviour. In this context, Payne

(1987) suggests that problem solvers need to maintain two problem spaces, a goal

space and a device space, and that they need to construct a mapping between the

two. This approach to understanding problem solving in complex environments

differs from more traditional accounts of problem solving behaviour in two ways.

On the one hand, operators are not applied directly to objects, rather they are

effected via a task language which maps operators into action sequences.

Secondly, the problem space is more complex and must accommodate some

representation of the device which the problem solver is using. Hence, when

writing a computer program using a text editor; the programming language

constitutes the task language, and the commands used to manipulate the editor

comprise the device language.

In previous chapters we have alluded to the fact that features of both the task and

the device language can affect programming behaviour, and it would seem clear

that any complete account of problem solving in programming must take these

factors into consideration. The intention of the present chapter is to provide a

review of studies which have examined the effects of task language features on

programming behaviour and strategy. Unfortunately, there have been few studies

which explicitly address the role of device languages in the determination of

programming strategy, however a small number of studies have at least recognised

their importance and have attempted to state clearly the contribution that features of

the device language make to the performance of the programmers observed in

these studies. Hence, the emphasis of this chapter is concerned with outlining

features of task languages, and particularly their notational aspects, which have

been shown to affect programming strategy and program comprehension.

134

Green (1990a) suggests that programming languages embody implicit theories of

programming, and that language designs broadly reflect the concerns of these

implicit theories. He suggests that three main stages can be identified in the

development of implicit theories of programming. These stages reflect the

historical evolution of programming languages and hence provide a useful

framework within which to review empirical work which has attempted to

explicate these implicit theories and to question their validity as accounts of

programming behaviour.

5.2 Programming as errorless transcription

Green (1990a) characterises the first phase in the development of programming

languages as embodying a theory which views programming tasks as involving an

errorless transcription between some mental representation of a program and its

code-based representation. He claims that the Fortran-BASIC tradition epitomises

this view, and that these languages display a number of basic design features

which reflect the errorless transcription approach:

"The Fortran programming system (punched cards) and the Basic line numbering

system encouraged programmers to create their programs in the order of the text

-i.e., line 1 of the final text was also the first line to be punched in. Thus, the

program was fully developed at the start of coding, needing only to be transcribed.

Fortran and Basic have very few guards against typing errors, which can readily

create a new text that is syntactically acceptable but not, of course, the intended

program. By implication, programmers do not make typing errors.

Neither fortran nor Basic originally supported any use of perceptual cues to help

indicate structure. Possible cues would have included indented FOR-loops,

demarcated subroutines, bold face or capitals to indicate particular lexical classes,

etc. The implication is that programmers can comprehend the program text without

assistance.

135

The use of GOTOs as the sole method to determine control flow encourages small

changes but makes large changes extremely tedious. The implication here is

programmers do not modify their first version except trivially" (p. 123).

Hence, the errorless transcription view implies that a mental representation of a

program should be regarded as a series of discrete steps and that programming

involves translating each of these steps into its coded representation in the target

programming language. Empirical research, mostly conducted in the 1970's,

tended to focus upon a number of specific questions which arose from this view.

For instance, a range of studies attempted to compare the use of GOTOs with

nested conditionals (see the next section of this chapter for a review of these

studies).

Other studies focused upon the individual syntactic constructions of various

programming languages. For instance, Youngs (1974) analysed the errors made

by novice and professional programmers according to the statement type where the

error occurred (e.g., assignment, iteration, GOTO, conditional etc.). One of the

more interesting results to emerge from Youngs' study was the large proportion of

errors that were related to control statements (35% for novices and 51% for

professional programmers). Youngs' collected data from a whole range of

programming languages and so it is difficult to derive any specific conclusions

which might inform language design. However, it is interesting to speculate about

the extent to which the inflexibility of GOTO type control structures might have

contributed to the errors found by Youngs.

5.3 The demonstrable correctness view of programming

The second phase of language development that is outlined in Green's review of

implicit theories of programming is the so called 'demonstrable correctness' view

of programming. This view is well represented by the structured programming

school (Dahl, Dijkstra and Hoare, 1972; Yourdon, 1975) and by those languages

which embody the principles advocated by this school, particularly Pascal. The

main principle of the structured programming school is that programmers should

work according to certain rules and within various constraints, and that this

136

disciplined approach will make it easier to prove that a program so constructed will

be correct. This, of course, is a mathematical claim. However, in parallel, the

structured programming school has made additional, and empirically testable

claims, to the effect that the correct structuring of programs will not only lead to

reduced errors but will also maximise the likelihood of program comprehension.

Hence, structured programs will be easier to understand, to write and to debug.

Here, comprehensibility is equated with structural simplicity and the idea that

programs can be hierarchically constructed from various simple components. The

structured programming school advocates two main principles.

The first principle is that programmers should use well-defined control structures.

This principle led to the rejection of arbitrary GOTOs. It has been argued that if

such structures were allowed, more information would be needed in order to

characterise the progress of control flow in a program. For example, Dijkstra

(1968) claims that "Our intellectual powers are rather geared to master static

relations ... and our powers to visualize processes evolving in time are relatively

poorly developed. For that reason we should do (as wise programmers aware of

our limitations) our upmost to shorten the conceptual gap between the static

program and the dynamic process, to make the correspondence between the

program (spread out in text space) and the process (spread out in time) as trivial as

possible." Dijkstra then goes on to ask "Suppose that a process, considered as a

time succession of actions, is stopped after an arbitrary action, what data do we

have to fix in order that we can redo the process until the very same point?". This

is taken to suggest that the use of GOTOs to characterise control flow would mean

that more information would be needed in order to understand the control flow of

the program, and as a consequence, that programs constructed in such a way

would be difficult to comprehend.

The second major principle of the structured programming school is that

programmers should define and compose data structures and types in a

hierarchical fashion. According to this view, the programmer is able implement the

higher levels of a design and represent the lower levels by stubs which simulate

their function in a simplified way. As the implementation of one level is

completed, the programmer can then move on to a lower level in the hierarchy and

implement that in terms of its sub-levels. Ultimately ,the lowest level in the

hierarchy is implemented using basic programming language facilities. Note that

137

this principle, often called stepwise refinement, is also embodied in many models

of human problem solving. Moreover, in the area of complexity theory, Simon

(1962) has argued that systems which survive have three outstanding

characteristics: they are organised in terms of a hierarchy of sub-systems, these

sub-systems are often loosely coupled and the sub-systems themselves are highly

internally cohesive. These three characteristics mirror precisely the main concerns

of the structured programming school.

In language design, Pascal reflected these concerns by rejecting GOTOs and by

instituting, instead, a small repertoire of nestable loops and conditional structures

to describe control flow. In addition, Pascal enabled programmers to hierarchically

define and compose data structures and types. Programs built using these

principles should, if the claims of the structured programming school are correct,

be easier to comprehend than unstructured programs. However, a second phase of

empirical research, which attempted to address some of the claims of the

structured programming school, indicted that structured programming does not

necessarily constitute a panacea which can eliminate the problems that are typically

faced by programmers.

5.3.1 Research on structured programming claims

For example, Sime, Arblaster and Green (1977) compared the performance of

novices constructing small programs in three micro-languages (see also Sime,

Green and Guest, 1973). Each of these micro-languages embodied a different

control structure; a jump-if structure Gump), a nested begin else structure

(nest-BE) and a nested if not end (nest-INE) structure (see figure 5.1). These three

structures were used since they not only exhibit differences in nesting and jumping

styles, but also differ in terms of the method used to indicate the scope of

conditionals within each nesting style. Of these three notations, one (the Nest-BE

notation) was structured, in that is used begin-end statements to mark conditional

blocks in the normal way, one was unstructured (the jump notation- a GOTO like

construct) and one was structured, as in the first case, but also contained

additional information (the Nest-INE notation). This additional information was

logically redundant since it could be derived from information already present in

the program. Hence, in the example illustrated in Figure 5.1, the predicates

138

('juicy', etc.) are restated for the negative arm of the conditional ('end juicy'). The

main hypothesis of this study, based initially upon the author's intuitions, was that

this conditional restatement would improve performance.

Jump

if hard goto Ll
if juicy goto L2
chop roast stop

L2 fry stop
L3 boil stop

Nest-BE

ifhard then
begin boil end

else
begin
if juicy then

begin fry end
else

begin chop roast end
end

Statement of problem:

Nest-INE

if hard: boil
not hard:

if juicy: fry
not juicy: chop roast
end juicy

end hard

Fry: everything which is juicy but not hard
Boil: everything which is hard
Chop and roast: everything which is neither hard not juicy

Figure 5 .1. The three forms of control structure and problem statement used in Sime et al
(1977).

139

Sime et al showed that both of the nested conditionals led to improved

performance (in terms of the number of errors in the resulting program) over the

unstructured notation, however performance was best in the nest-INE condition

where additional control information was provided. These results may provide

some general support for the structured programming school, however it is not

possible to delineate, in this experiment, the effects of structure from the effects of

providing extra information. Sime et al go on to claim that enhanced performance

in the nest-INE condition arises because the redundant repetition of predicates

helps the programmer to 'deprogram', that is to translate the program back into the

original problem statement.

Arblaster, Sime and Green (1979), took these ideas further by comparing the

effects of structured vs unstructured notations on performance. In this study

Arblaster et al, were interested in exploring the necessity of employing

hierarchically structured notations, as implied by the structured programming

school, as opposed to using notations which are structured in other ways. Their

results demonstrated that several kinds of notational structuring (described as

hierarchical, decision-table-like, and compromise) can improve program

comprehension compared to a condition which used an unstructured notation.

However, the hierarchically structured notation did not give rise to a significant

improvement in performance compared to the other structured notations.

The results of the studies ~eported above raise some doubts about the central

claims made by the structured programming school. In particular, it is not clear

that structured conditionals improve performance in the way that would be

predicted. Secondly, it also appears that other forms of structuring, in addition to

hierarchical structuring, can lead to improved performance. However, these

results must be interpreted with some caution. Firstly, a study conducted by

Vessey and Weber (1984a) extended the three languages used by Sime et alto

include indented and unindented forms of all three conditional structures. In their

original experiment, Sime et al indented only the nested languages, since they

claimed that the jump condition could not be indented without considerably

restricting the syntax of the micro-language.

140

However, Vessey and Weber showed that the jump language could be indented

with only a slight relaxation of the syntax (see figure 5.2). Their results

demonstrated that the nested conditionals led to improved performance over the

JUMP conditional, but only in their unindented forms. In the case of their

indented forms, Vessey and Weber found little evidence in favour of nested

languages over unstructured conditionals. Hence, it appears that subjects'

performance in the tasks studied by Vessey and Weber was determined to a greater

extent by indentation than was supposed by Sime et al, and this clearly raises

some doubts about the relative advantages of nested conditionals over other

conditional structures.

Indented modified JUMP

IF hard GOTO L1
GOTOL4

L 1 IF green GOTO L2
GOTOL3

L2 peel roast stop
L3 peel grill stop
L4 IF tall GOTO L5

GOTOL6
L5 chop fry stop
L6 IF juicy GOTO L 7

GOTOL8
L7 boil stop
L8 roast stop

Figure 5.2. Vessey and Weber showed that the jump language used in the
Sime et al (1977) study could be indented with only a slight relaxation of the
syntax.

Another problem with many of these early studies of programming is that the

questions they addressed were often inappropriate to the kinds of answers that

such studies could provide. For instance, the primary concern of Sime et al was to

evaluate the claim that nested conditionals are better than GOTOs. However,

programming is clearly a complex skill, and it is quite probable that an advantage

for nested conditionals might be evident in the context of certain programming

tasks, but be absent in others, and that unstructured control forms might be more

141

useful in different task contexts (see also, Gilmore, 1990). This problem is also

apparent in other studies, for instance, in Shneiderman's (1976) comparison of

logical vs arithmetic IF statements in Fortran. The problem here is that research on

micro-languages simply may not be generalisable to tasks other than the

constrained problems employed in these studies. In addition, it is not clear

whether the results of these studies will generalise to professional programmers,

since they were concerned only with novices. However, Green (1977), has

demonstrated that presenting professional programmers with hierarchically

structured programs, together with extra information about the truth-values of

particular variables could give rise to a significant speed advantage in terms of

answering certain kinds of comprehension question.

Vessey and Weber (1984b) have produced a comprehensive review of empirical

studies which have addressed structured programming claims, including those

outlined above. They suggests that, in general, the evidence supporting structured

programming is weak. However, according to Vessey and Weber, this not

necessarily because the claims made by the structured programming school are

wrong. Rather, they suggest that these problematic results are "a manifestation of

poor theory, poor hypotheses and poor methodology". (pg 398). They go on to

suggest that there are several specific reasons why previous results have turned

out to be equivocal "First... the theory enunciating the effects of structured

programming on software practice is rudimentary and inadequate; second .. this

lack of a theory has inhibited the formation of hypotheses that contribute to both

understanding and predictive powers; third .. until the theory has been developed,

it is not possible to identify the strategic hypotheses and, as a consequence carry

out empirical research; and finally .. the existing empirical work reflects the shoddy

state of the theory in that it does not effect a coordinated whole, nor has it aspired

to understanding as opposed to prediction". (pg 406).

While the research reported above has not made a clear case either for or against

structured programming, it has demonstrated that for certain tasks, and for certain

groups of subjects, language features can and do affect programming behaviour.

In general, we might suggest that the structured programming school has made

claims which are either too extensive or too vague for proper systematic empirical

study, and that empirical work has simply mirrored these claims by over

generalising the significance of its results.

142

5.3.2 Extending work on language features to non-procedural paradigms

The work we have reviewed so far has been concerned with the effects of

language features in the procedural language paradigm. However, in principle,

this work should also apply to other paradigms, since most researchers who have

studied notational design have been careful to phrase their explanations in terms of

the general information processing requirements of particular tasks, and the extent

to which specific notational features might support these requirements.

In this vein, Gilmore and Green (1984), attempted to test Green's (1977)

assertion that the mental operations demanded by certain tasks are harder in some

notations than in others by studying the effects of different notations on

comprehension tasks. In particular, they were interested in testing the hypothesis

that it would be easier to answer procedural-type questions than declarative

questions, given a program with a procedural notation, and conversely, that it

would be easier to answer declarative-type questions in comparison to procedural

questions, given a declarative notation.

Gilmore and Green used four notations in their experiment. Two of these

notations were procedural and two were declarative, and one of each pair

contained cues to procedural or declarative information, respectively. One

procedural notation resembled Pascal and contained cues to circumstantial

information through the indentation of conditional statement, while the other

resembled Basic, and used labels and GOTOs, instead of indentation (see Figure

5.3). Both of the declarative notations are described by Gilmore and Green as

resembling production systems. In the declarative-uncued condition, the rules

formed an ordered set, whose antecedent conditions were tested in order. In the

cued-declarative condition, the rules again fired in order, but unlike the uncued

condition, rules were displayed even if they contributed no action. Hence, in the

uncued condition, control information is distributed piecemeal among the rules,

whereas in the cued condition, all control information is immediately apparent.

143

if both of ANN and JANE goto A
if not SARH goto C
SAIL (4)

C: BIKE (1)
E: if distance >= gangsize*4 goto D

BUS (2)
gotoE

D: if ANN goto B
DRIVE (2)
gotoB

A: WALK(4)
if distance >= gangsize*4 goto B
BUS (2)
gotoA

B: BURYLOOT

a). Proc-No-Cues

P1: SARAH and at most SAIL (4)
one of ANN and JANE Turn P1 off

P2: both ANN and JANE WALK (4)
Turn P2 off

P3: at most one of ANN BIKE (1)
and JANE Turn P3 off

P4: distance < gangsize*4 BUS (2)
Turn P2 on

P5: not ANN DRIVE (2)
Turn P5 off

P6: BURY LOOT
stop

c). Decl-No-Cues

begin
if ANN and JANE then

begin
WALK(4);
while distance<gangsize*4 do
begin

BUS (2)
WALK(4)

end
end
else
begin

if SARAH then SAIL (4);
while distance < gangsize*4 do BUS (2);

end
BURY LOOT

end

b). Proc-Cues

(A)SAIL (4) SARAH and at most one of
nothing ANN and JANE otherwise

(B)WALK (4) Both of ANN and JANE
nothing otherwsie

(C)BIKE (1) at most one of ANN and JANE
nothing otherwise

(D)BUS(2), B, D distance<gangsize*4
nothing otherwsie

(E)DRIVE (2) not ANN
nothing otherwise

(F)BURY LOOT.

d). Decl-Cues

Figure 5.3. Examples of the programs used in Gilmore and Green (1984). The top pair of
programs illustrate the procedural notations, with cues or without. The bottom pair of programs
illustrate the two declarative languages.

144

Gilmore and Green asked their subjects to study the programs and then answer a

series of questions which were intended to tap either sequential or circumstantial

information. The sequential questions asked what either the next or the previous

action in the program would be, given the occurrence of some event, while the

circumstantial questions asked what condition would be true if a particular action

either had or had not occurred. Subjects were tested in two situations, one in

which they were able to consult the printed text of the program, and the other

where they answered questions from memory.

Their findings provide general support for the idea that specific notations might be

more suited to particular tasks. Hence, in general, their subjects were able to

answer the declarative questions more accurately given a declarative notation,

while the procedural notation facilitated correct responses to the procedural

questions. However, these effects were weak, except in the condition where

subjects were working from memory. Hence, the notational structure of the

program appears to affect the ease with which information can be extracted from

the printed page and also seems to facilitate recall. The first of these findings is

perhaps not surprising, however second is rather more interesting, since it

suggests that the mental representation of a program maintains some features of

the original notation, and as a corollary that programs are not stored in a uniform

mental language.

The idea that all programming languages are represented in some uniform mental

language which preserves the semantics of the program but not its surface

features, is implicit in many theories of programming (Soloway and Ehrlich,

1984; Shneiderman and Mayer, 1977). For instance, the frequent use of memory

tests to assess program comprehension implicitly assumes that the same problem,

represented in different notations, will give rise to the same memory

representation. In support of this, Shneiderman (1977), cites Bransford and

Franks (1971) who have demonstrated that in prose memory, syntax is rapidly

forgotten, and that semantics are recalled.

145

5.3.3 Implications for plan-based accounts of programming behaviour

Moreover, the schema or plan-based account of program comprehension,

similarly, relies upon the assumption that programs are represented in a generic

semantic form, and that programming plans will be equally applicable regardless

of the language being used. In chapter 3, we questioned the validity of this

assumption, and there is now a significant amount of evidence which suggests that

such plans are not language independent. For instance, Gilmore and Green (1988)

have carried out a study which demonstrated that while plans may be useful to

Pascal programmers, Basic programmers appear to rely to a much greater extent

upon the control flow information which they are able to derive from the program.

Hence, it appears that the plan theory may be able to account for program

comprehension in the context of certain languages but not in others, and this may

suggest that the plan theory is of significantly less utility that has previously been

supposed.

Gilmore and Green (1988), examined the debugging behaviour of experienced

programmers using two different languages - Basic and Pascal. Their subjects

were presented with programs which had various structural elements highlighted.

For instance, some programs had control structure highlighted. Here programs

were indented in the normal way to provide a perceptual cue to control-flow.

There have been many studies which have demonstrated the utility of indentation

as a perceptual cue in the context of tasks that require an understanding of the

control-flow structure of the program (Miara, Musselman, Navarro and

Shneiderman, 1983; Kesler, Uram, Magarah-Abed, Fritsche, Amport and

Dunsmore, 1984), and as such it can provide a useful perceptual cue without

affecting the perception of other structures. Other programs used in the Gilmore

and Green study were highlighted in a different way to provide cues to the

program's plan structure. To achieve this, Gilmore and Green highlighted each

separate plan in a different colour. The validity of using colour cues to indicate

structure has been demonstrated independently by VanLaar (1989), who showed

that colour can supplement indentation in showing control-flow in Pascal

programs , with some net gain in performance for learners answering a variety of

comprehension questions. Also, in addition to the two program formats outlined

above, other programs were presented with no perceptual cues and others with

both control-flow and plan structure cues.

146

The main intention of the Gilmore and Green study was to determine the way in

which perceptual cues to different structures in a program can affect the

performance of programmers in certain tasks. More specifically, they were

interested in addressing three specific issues that arise from the plan-based view of

programming. Firstly, they suggest that the existence of plans has mainly been

inferred from protocol and error analysis, rather than from direct experimental

evidence. They claim that direct experimental support for the plan-based view

could be obtained by showing that perceptual cues to plan structure, such as the

colour cues described above, improve the comprehensibility of programs.

Secondly, they suggest that the plan theory would claim that plans constitute the

primary mode of representation for the programming knowledge of experts and

that plans represent the deep structure of the problem being solved. Gilmore and

Green suggest that, as a corollary to this, providing a situation in which plans can

be readily perceived should improve performance on all programming tasks.

Finally, Gilmore and Green argue that all the existing evidence for plans had been

obtained from studies of Pascal programmers, with the assumption that plan

effects will generalise to other languages. By comparing the performance of

programmers using different languages, Gilmore and Green were able to test this

plan generalisability assumption.

In the Gilmore and Green study, these issues were addressed by comparing the

detection rate and accuracy of their subjects in a debugging task for a variety of

bug types, in situations where perceptual cues were provided to various program

structures. Bug types were derived from one of four categories. Firstly, bugs

could be described as surface level bugs, when they were independent from any

particular structure in the program. Such bugs are likely to arise from typing errors

and syntactic slips. For instance, surface level bugs might include missing or

misplaced quotes or undeclared variables. Control flow bugs occur in the control

flow of the program, but do not affect other structures, for instance, a missing

begin statement. Plan structure bugs are, as the name implies, bugs which arise

from the incorrect implementation of a plan and include such things as updating

the wrong variable. Finally, there are bugs which are caused by structures

interacting in the wrong way. For instance, both the control-flow structure and the

plan structure of a program may be correct, but their interaction may contain

errors; for example, initialisations within a main loop.

147

Gilmore and Green suggested four specific predictions which correspond to the

predictions that they.claim are implied by plan-based accounts of programming

behaviour. Firstly, they suggested that the presence of cues will make no

difference to the detection of surface errors. Secondly, that indentation cues to

control flow will improve the detection of control flow errors. Thirdly, that the use

of colour cues to indicate plan structure will improve the detection of plan errors,

and finally, that the presence of both cue-types will improve the detection of

interaction errors. Moreover, they argue that these effects should be evident in the

case of both Basic and Pascal.

The main findings of this study pose a number of disturbing implications for

plan-based accounts of programming, since while all the above hypotheses were

supported for the Pascal data, none were supported by the data from the Basic

programmers. The results of this study clearly demonstrate that plan structures are

psychologically meaningful to Pascal programmers, since perceptual cues to

plan-based structures give rise to an improvement in performance in plan-related

tasks. However, plan structure cues did not improve performance in

non-plan-related tasks, and Gilmore and Green suggest that because of this, plans

do not represent the deep semantic structure of the problem. Finally, they claim

that since plan structure cues do not enhance the performance of Basic

programmers, it appears that such programmers do not view programs in the same

way as Pascal programmers. While Pascal programmers may be influenced by

plan structures, it appears that the behaviour of Basic programmers is influenced

more by other structures, and in particular by control-flow.

Gilmore and Green interpret their findings as suggesting that certain notations may

facilitate plan use, while different notations may more readily support the

extraction and use of other sources of information. In particular, they advance the

idea that some notations, and in particular Pascal, may be more role-expressive

than others, and that role-expressiveness may facilitate plan use. Gilmore (1986)

introduced the idea of role-expressiveness to describe a property of languages

which facilitates the automisation of a mapping between the problem being solved

and the programming knowledge that is brought to bear during problem solving.

He suggests that there are three components to role-expressiveness;

discriminability, statement-structure mapping and statement-task mapping.

148

Discriminability refers to the ease with which a notation provides access to chunks

of code, where a chunk may be a single statement or a group of related statements.

The initial step in perceiving the role of some statement is to differentiate it from

other structures that surround it, and if this process can be aided then this will

improve comprehension for certain kinds of task. Gilmore and Green claim that

this process is facilitated in languages such as Pascal which display a rich set of

lexical cues. Statement -structure mapping refers to the process of establishing the

structural role of a statement, independently of the particular problem being

solved. Gilmore and Green claim that establishing this mapping will be more

difficult in unstructured languages such as Basic where the same piece of code

may be used for more than one purpose (for example, as an initialisation or as an

update. Statement-task mapping is a process which maps the structural role of

statements to their task role. An example of the difficulties that can arise at this

level is evidenced in Soloway, Boner and Ehrlich's (1983) observation that novice

programmers who try to force a problem into a 'read-process' loop make errors

when they are required to test the terminating condition twice.

The Gilmore and Green study clearly throws some doubt upon plan-based

explanations of programming behaviour, and in particular upon the idea that plans

are generalisable structures which are used during problem solving regardless of

the programming language being used. In addition, this study points to some

important notational features of programming languages which appear to underpin

the ease with which certain structures, including plan structures, can be extracted

from the program text. However, it appears that there are other explanations for

the findings of this study which suggest other factors, in addition to notational

features, which may have given rise to the results obtained.

For instance, in chapter 6 an experiment is reported which suggests that the

learning experiences of Pascal and Basic programmers are often very different,

and that this may have may have been a confounding factor and led to the

differences in plan comprehension observed in the Gilmore and Green study. This

experiment demonstrated that Basic programmers who had been taught structured

programming techniques performed in a very similar manner to the Pascal

programmers in the Gilmore and Green study, in terms of their ability to use cues

to plan structure in plan related tasks. Conversely, other Basic programmers, who

149

were not taught structured programming, did not show an improvement in plan

related tasks in the situation where plan structures were cued. In fact, as in the

Gilmore and Green study, the performance of this second group was affected to a

much greater extent by control-flow cues.

This suggests that the learning experience of programmers may contribute in

certain ways to their comprehension and information seeking strategies, and that

structured programming experience may in some way encourage programmers to

focus upon a program's plan structure even though the notation of the

programming language used may not facilitate plan use, as in the case of Basic.

The results of this experiment are interpreted in terms of the broad theory

presented in this thesis, whereby expertise is seen to be related, in part, to the

restructuring of programming knowledge. This restructuring process may be

facilitated by certain forms of programming experience, and especially by

techniques such as structured programming which emphasise the functional role of

certain programming constructs and encourage programmers to adopt

decompositional strategies which suggest a hierarchical structuring of

programming knowledge. Interpreted in this way, certain forms of programming

behaviour are seen as dependent upon interactions between knowledge structures

and notational features, and this suggests that the current polarisation between

notational and plan-based accounts of programming behaviour may be

inappropriate.

5.4 Programming as exploration

The third phase in Green's taxonomy of language paradigms and implicit

programming theories reflects the present view of programming. According to

Green, this view characterises programming as an evolutionary process in which

various alternatives are explored and their consequences considered. In this way,

programs are built from preexisting structures which are modified in certain ways

according to the demands of the particular problem being solved. Recent language

developments such as Smalltalk embody this evolutionary view of program

development by encouraging code re-use and by emphasising the process of

gradual incremental change in software development.

150

In chapter 4 we reviewed a number of studies which have attempted to characterise

programming in this way. For instance, the parsing-gnisrap model of code

generation proposed by Green et al (1987 a and b) and Gray and Anderson's

analysis of change episodes have both emphasised the cyclical nature of

programming activities. These models have promoted the idea that code is not

generated in a linear fashion, but is instead generated in fragments - a facet of

behaviour reflecting certain cognitive limitations - and that these fragments need to

be continually reinterpreted and evaluated as coding progresses. In chapter 4 a

detailed description of these models was presented, and this need not be repeated

here. However, these models make certain predictions about the effects of

notational features upon the nature of these cyclical coding activities, and it is to

these that we now turn.

For instance, the behaviour of the parsing-gnisrap model is determined by a

number of features, including the effects of certain notational properties of the

language being used. In particular, Green et al suggest that the behaviour of this

model is determined in large part by the ease with which already generated code

fragments can be reinterpreted; that is, remapped back into an internal cognitive

representation. They claim that this process will be facilitated if the language is

role-expressive (see above), and in consequence that it supports the programmer's

perception of the role of each program statement or group of related statements.

Role-expressiveness, therefore will affect the parsing side of the parsing-gnisrap

model. However, other language features will affect the generative aspect of

coding behaviour.

In particular, languages which are resistant to local change (to use Green's

terminology- viscous languages (See Green, 1989; 1990b)) will provide little

support for non-linear generation. For instance, to insert a new line in Basic may

involve renumbering existing lines and will possibly necessitate readdressing

control structure assignments. In Pascal, adding a single statement or procedure

may not be as difficult, however if this necessitates reconstructing the identifier

hierarchy so that a given procedure can be brought into a lower block, then this

may have many undesirable repercussions.

Viscosity is not only a property of task languages, but may also be manifest at the

device level. For instance, some editors require much more effort to achieve a

151

given action, and a significant proportion of a programmer's behaviour may be

taken up simply operating an editor. This is especially true when code is not

generated in a linear fashion and where programmers have to navigate through the

code. Such device viscosity is reflected in a study of CAD users conducted by

Whitefield (1985), who found that users would often spend a significant

proportion of their time simply operating the device and making no progress with

the task in hand.

One principle question addressed in the Green et al study was the extent to which

different languages might affect the distribution of non-linearities during code

generation. Green et al analysed the behaviour of programmers using three

languages -BASIC, Pascal and Prolog. These languages were chosen to exemplify

some important differences in language design. Their results showed that although

Pascal programmers produced programs with a very similar structure to the Basic

programmers, the latter group generated code almost linearly, whereas the Pascal

group engaged in many backward jumps to insert new material into already

generated structures. Finally, the Prolog group fell somewhere between these two

extremes in terms of the extent of non-linearities.

Green et al claim that their results provide evidence for predictions stemming from

the parsing-gnisrap model, in particular that coding is fitful and sporadic and that

the extent of this nonlinearity is dependent upon features of the language. They

explain these results by suggesting that Basic is more viscous than Pascal, causing

programmers to adopt a strategy which minimises interleaving, and secondly that

Basic is less role-expressive than Pascal. Hence, Basic programmers will generate

code in a linear fashion, since they would otherwise experience difficulty

comprehending it. In the case of Prolog, Green et al are more conjectural about its

notational properties, however they do suggest that it may rank low on the

role-expressiveness dimension. In particular, they have observed that there are

very few cues in Prolog which can be used to indicate the purpose of a specific

piece of code. For instance, they suggest that it is impossible to know if a Prolog

variable is to be used for input or output at any one time during the execution of a

program.

152

5.4.1 Modelling the parsing of notations

More recently, Green and Borning (1990) have attempted to produce a

computational model of notation parsing, based upon an extension of Kempen and

Vosse's (1989) unification based natural language parser. Green and Borning

refer to their model as a generalised unification parser, since it preserves Kempen

and Vosse's general approach, but has increased power. In particular, it is capable

of using typographical features to aid the parsing process.

Their parsing model is programmed with an elementary grammar of procedural

language cliches or plans (see figure 5.4). For instance, text patterns representing

counter plans start with an initialisation statement, in which some identifier is set

to an exceptional value, commonly zero. Secondly, there will be a statement

corresponding to a start of loop, followed by an add-1 statement, where an

identifier is set to itself plus one. Finally there will be an end of loop which

completes the counter pattern. Other statements may of course intervene between

these various plan components, however these are ignored during parsing1.

Green and Borning have extended the Kempen and Vosse parser in various ways

and in the present context, two of these extensions are of particular relevance.

Firstly, their model can use display-based features to aid the parsing process.

Hence, the salience of a particular statement and its corresponding level of

activation in the parse space can be affected by its indentation level, by its colour

coding (i.e., as in the Gilmore and Green (1988) study) or by other typographical

features.

Secondly, in the Green and Borning model, beacon constructions (Wiedenbeck,

1986 a and b, and see chapter 4) are assigned permanently raised activation values

in the lexicon. Green and Borning do not discuss how beacons are identified,

however they suggest that raising their activation level will have the effect of

making the model search for beacons. They suggest that an experienced

programmer will know which constructions are likely to be the most efficient ones

to parse first (See Brooks, 1983 and chapter 4), and hence their model captures

this salient behavioral feature of the programming activity.

153

Initialise

Counter
[var = NCiients]
[tab = 1]
[loopvar = Order]
[type = while]

Add-1
[var = NCiients]
[tab= 1]

[var = NCiients
[tab = 2]

Begin-loop
[loopvar = Order]
[type = while]

[tab = 1]

End-loop

[tab = 1]
[type = while}

Figure 5.4. The elementary grammar of procedural language cliches or plans used

in Green and Borning's parser.

Their model makes a number of comparative predictions about the ease with which

various notations can be parsed. In general, parsing difficulty will increase when

elements in the parse tree, or unification space, have similar activation levels. In

the context of this model, the probability of unifying any two elements in the parse

tree depends primarily upon their activation value. Hence, when a programming

language has few lexical or typographical cues, the parser's ability to differentiate

154

structure will decrease and parsing difficulty will increase correspondingly. For

example, they suggest that their model would predict that Prolog would be a

difficult language to parse since it has no conventions for indentation and has

fewer distinctive typographical constructions than many other languages.

Green and Boming report that they are attempting to extend their parser to include

an elementary grammar of Pro log cliches. If their intuitions about the difficulty of

parsing Prolog are correct, then this is likely to have significant implications for

both the teaching of Prolog and for associated programming environments. Prolog

has developed a reputation for being a difficult language to learn, and studies of

Prolog learning have suggested that this may be because of the difficulties learners

experience with its underlying conceptual model (Ormerod, Manktelow, Robson

and Steward, 1986; Ormerod, Manktelow, Steward and Robson; 1990; White,

1987). In particular, one difficulty arises in determining the execution path from

the program text, and to ameliorate this, systems which have incorporated

impressive animations of Pro log execution have been developed (Brayshaw and

Eisenstadt, 1988; 1989).

However, as Green and Boming suggest " the difficulty of parsing Prolog

correctly may have contributed to the difficulty experienced by novices. A

corollary of our work would be that a Prolog parser which picked out and labelled

familiar cliches could significantly assist the learner." (pg 956). This would

parallel work in other languages such as VanLaar's (1989) colour coded Pascal

environment, and Green and Comah's (1984) 'Programmer's Torch' which was

designed to highlight cliche structure in Basic. In addition, the Green and Boming

study draws into question the importance of execution animation over other

techniques intended to improve program comprehension, and in particular

techniques which illuminate a program's plan or cliche structure.

5.5 Conclusions

The work reviewed in this chapter has demonstrated the effects that certain

notational properties of programming languages can have on both the nature of

program generation strategy and upon comprehension success. This work has

primarily addressed two themes.

155

Much of the early work on notational properties was concerned with evaluating the

claims made by the structured programming school and, in particular, the idea that

certain conditional forms will be more comprehensible than others. While this

exercise has clearly proved to be useful in terms of questioning the basic

assumptions of this paradigm, it is less clear whether these findings can inform

notational design outside the narrow class of problems and restricted

micro-languages that have been studied. In addition, it is questionable, whether

the results of these studies are generalisable to more complex programming tasks.

The second phase of research into notational properties has been concerned more

explicitly with examining the way in which notations can support the cyclical

generation/evaluation activates that have frequently been observed in the context of

programming studies. For instance, this work has addressed the way in which

certain notational properties can affect generation strategy by demonstrating the

extent to which such properties might support nonlinear generation. In addition,

this work has suggested that comprehension success, at least in the context of

certain tasks, is also affected by the notational properties of the language that is

being used. In particular, it has been shown that task language features can

influence the ease with which a program text can be decomposed or parsed into its

constituent plan structures. This second phase of work has led to the description

of various notational dimensions (Green, 1989) which, it is claimed "apply to

many types of language ... and control how (or whether) the preferred cognitive

strategy for design-like tasks can be adopted." (Green, 1989, pg 443).

In the context of the restructuring model presented in this thesis there appear to be

at least three primary notational properties or dimensions that are of relevance.

This model relies upon the notion of focal expansion to explain how programs are

generated and adopts the basic principle of the parsing-gnisrap model which

emphasises the fragmentary nature of code generation and evaluation. Hence, the

ease with which focal structures can be parsed back into plans will be likely to

affect both program generation strategy and comprehension success. This will

depend upon the extent to which a particular language can be described as

role-expressive. In addition, since this restructuring process is proposed to

underpin the development of expertise, then there should be an interaction between

expertise and language used, where the languages are here distinguished by the

extent of their role-expessiveness.

156

Secondly, the extent to which plan structures (as represented in code) are

contiguously distributed, in a spatial sense, will also affect the success of focal

expansion. Hence, in languages where plan structures are diffuse, the programmer

will have to do more work at the device level in order to implement a plan. In

addition, as we have seen, languages which enable programmers to implement a

base case or initialisation adjacent to the main procedure may facilitate

comprehension. In this situation it is not necessary for programmers to link

together various spatially disparate areas of a program during comprehension in

order to recreate the program's original plan structure.

Finally, and related to this, the viscosity of the language will also affect the

success of focal expansion. The model of knowledge restructuring presented in

this thesis suggests that focal lines represent a discrete level of design abstraction.

In addition, the model claims that focal lines will tend to be generated first during

coding, following a hierarchically levelled approach to design decomposition.

Hence, if features of the language make it difficult to insert subsidiary plan

elements then the focal expansion process will be disrupted, and this disruption

will result in the adoption of different forms of generation strategy.

Notes

1. Rich and Wills (1990) present an alternative program parsing method based

upon a graph parsing technique which takes a program text as input and produces

plan cliches as output. Rich and Wills claim that this output can be used to

reconstruct a program's design and automatically generate documentation.

157

Chapter 6. The effects of the possession of design skills upon the

perception and use of programming plans.

6.1 Introduction

In chapter 3 we introduced the notion of the programming plan. It was suggested

there that descriptions of programming behaviour that have been couched in terms

of plan theory have provided reasonably successful accounts of novice and expert

programming behaviour in certain kinds of experimental task. However, more

recently, the primary claims of the plan theory have been brought into question. In

particular, subsequent experimental work has questioned the ability of the plan

theory to account for the existence and the use of plan structures in languages

other than Pascal. In addition, other work has thrown some doubt upon the

relationship between programming plans and the development of expertise in

programming.

This chapter reports two experiments that address these issues in further detail.

The first experiment explores the extent to which plan knowledge guides the

debugging behaviour of experienced programmers. These programmers had

equivalent levels of experience with the programming language used in this study

(Basic), however half of this experimental group had received design training. The

second experiment looks at the recall of programs by design experienced and

non-design experienced subjects. The intention of these experiments was to

examine the extent to which the use of programming plans might be generalisable

to languages other than Pascal and to explore the role played by design skills in the

development of such plans. This allows us to examine the two central claims of

the plan theory. Firstly, that programming plans are universal structures used by

experienced programmers, despite the language being used. Secondly, that plans

are the defining characteristic of programming expertise.

158

6.1.1 Programming plans and expertise

Soloway and Ehrlich (1984) present a fairly straightforward view of the

relationship between plans and expertise. They suggest that experts possess and

use appropriate plan structures while generating and comprehending programs and

that novices typically do not. However, little is said about the processes involved

in becoming an expert. Rist (1985) suggests that expert programmers develop

both more plans and plans at a higher level than novices, and that the development

of plans is characteristic of programming expertise. Another possibility is that

novices may in fact possess an extensive range of plan structures but have

difficulty mapping these structures onto structures in the target programming

language.

Gilmore and Green (1988) claim that the plan theory of programming implies that

programming plans represent the "underlying deep structure of the programming

problem" (p. 423). Hence, if novices understand at least some aspect of the

problem domain, as one might reasonably expect in certain cases, then it would be

possible to assert that plans exist, and that they represent structures in that domain,

but that novices have to learn how to express these plans in a particular

programming language. Knowing that an average is a sum divided by a count

must clearly be some form of 'natural plan' which would presumably be observed

in non-programmers. Hence, novices must possess such knowledge if they are

familiar with the problem domain. One of the limitations of the plan theory of

programming is that little is known about the sorts of factors that might be

involved in the development of the ability to map these 'natural plans' onto code

structures.

6.1.2 The generalisability of programming plans

The second major problem with the plan theory of programming is concerned with

the generalisability of plans to languages other than Pascal. Soloway and Ehrlich

claim that programming plans are one of the major components of programming

expertise.

159

However, Gilmore and Green (1988), have recently drawn into question the

generality of the programming plan as a description of the main type of

representation employed by the expert programmer (see chapters 3 and 5).

Gilmore and Green suggest that the notation of certain programming languages

may make those languages amenable or otherwise to the identification and use of

plans. This suggestion is based upon the finding that Basic programmers are

unable to benefit from cues to plan structure, while de-bugging programs, in the

way that Pascal programmers are.

They conclude that Basic programmers do not appear to employ an abstract

plan-based representation of a particular program while attempting to understand

that program, but rely more extensively upon the control flow information

embedded in the notation. Gilmore and Green suggest that Basic is less "role

expressive" than other languages. That is that Basic programs are less

discriminable from each other than are, say Pascal programs. In the case of

Pascal, they argue that features of the notation of the language, and in particular its

role expressiveness, make it easier for the programmer to infer the role of a

particular statement and to discover the relationship between groups of statements

(see chapter 5).

This work has a number of implications. Firstly, it suggests that the programming

plan may not be a universal construct that is common to all programming

languages (most previous studies on programming plans have been concerned

only with Pascal or very similar languages). Secondly, that where plan structures

do exist, they may not constitute the exclusive nor even the primary source of

information relevant to program comprehension. Problems of this nature challenge

the fundamental theoretical suppositions which underlie the notion of the

programming plan and thus create something of an impasse.

To sum up, previous research appears to suggest two potentially divergent views;

a) that programming plans are universal natural strategies that characterise the

cognitive representation of a program and the programming activity of the expert

programmer and that the existence of plans can be taken to be a reflection of this

expertise. Such plans are thought to represent the 'deep structure' of the

160

programming problem. This approach might be termed the 'Plans as Natural

Artifacts view'.

b) that programming plans might be best regarded, in some circumstances at least,

as artifacts both of a particular language and the structure that this language

imposes on the programmer via the constraints of its specific notation. This

approach might be called the 'Plans as Notational Artifacts view'.

The two experiments reported in this chapter present a third view on the nature of

programming plans. Experimental evidence is cited that provides the basis for an

alternative interpretation to present views, and suggests, in addition, what might

be regarded as a more parsimonious and consistent analysis of existing

experimental data.

6.1.3 The relationship between design experience and programming plans

The experimental work reported here suggests that both the above interpretations

of the nature of plans maybe incomplete and that programming plans might be

more suitably characterised in terms of their specific relationship to the way in

which programming is taught. It appears that such plans cannot be regarded

exclusively as natural structures that have evolved independently of learning about

a language nor can they be considered solely as static properties of a program i.e.

as mere artifacts of the structure that a particular language might impose.

The rationale underlying this alternative view on the nature of programming plans

relates to two factors. Firstly, the way in which the differential learning experience

of programmers may be reflected in the type of programming language used by a

specific population of programmers and secondly, the effect that this may have on

the development and use of programming plans.

Many experienced programmers will have learnt to program within the context of a

formal course in which programming itself formed only a part. Programming is

often taught in conjunction with the development of program design skills. For

example, major methodologies such as Jackson Structured programming

161

(Jackson, 1975) or one of the more important design notations such as structure

charts (Constantine and Yourdon, 1979) and design description languages (Chu,

1978). Such skills are intended by their nature to be independent of the particular

programming language employed.

Despite the increasing emphasis placed upon the teaching of program design skills

it is clear that many programmers are taught to program without the benefit of any

formal training in program design. Programming is often taught in isolation as an

adjunct to other subjects (engineering, business etc.). Moreover, it can be seen

that the type of programming language taught to those groups who also learn

about design skills, is often radically different than that taught to those who learn a

language in isolation. Hence one might expect the so called structured languages,

Pascal, Algol, C and the like to be the mainstays of courses associated with the

teaching of formal design methods.

Conversely, Basic often predominates as a general purpose language in groups

where programming is used to support other activities. Interestingly, this

dichotomy is also reflected in the differences found in more objective

classifications of programming languages by usage where Pascal, C and Algol fall

into a clearly differentiated group of languages, while Basic and Cobol fall into

another (Doyle and Stretch, 1987).

Previous experimental studies investigating the nature of programming plans

across languages have ignored the fact that groups of programmers experienced in

using different languages, despite exhibiting similar levels of programming

competence, may have been exposed to widely differing kinds of backgrounds.

Similarly, studies examining the nature of programming plans within a single

language, have ignored the possible effects of the teaching of design skills on the

development and use of such plans.

It would perhaps be unreasonable to suggest that the proponents of the natural

artifact view of programming plans would rule out the possible effect of teaching

on the development of plans. However, the plan theory suggests that plans

constitute the expert programmer's mental representation of a program and

consequently that they (plans) represent the deep structure of the problem.

162

However, if the development of plan structures is one of the major defining

characteristics of expertise, then differences in teaching strategy per se, should

not affect the nature of that expertise.

Most design methodologies place an emphasis upon problem decomposition and

this may facilitate the ability to perceive common methods of solution within and

between problems. Hence, it might be claimed that 'natural plans' exist, and exist

within the problem one is trying to solve, but that novices have some difficulty

expressing these in the target programming language. In addition, these plans or

features of these plans need not correspond, except perhaps coincidentally, with

the sorts of structures that arise as a product of the design activity. However,

'design skills' might facilitate the ability to perceive features of commonality

between those structures which are the products of design, and are not expressible

directly in a programming language, and 'natural plans' which in tum form useful

structures that can be expressed in a programming language.

An investigation into the role of the effects of the teaching of program design on

the existence and use of programming plans has a number of important

implications for our understanding of such plans. If programming plans are to be

regarded as natural artifacts that represent universal cognitive strategies which in

some way facilitate the activity of programming by providing the basis for a

cognitive representation of a program, then one would expect experienced

programmers, whatever their background, to possess and employ such plans

while generating or attempting to understand a program. If this is not the case then

we must clearly rethink our theoretical position on the nature of programming

plans, because of their assumed universality.

Denying this universality would mean that proponents of the Natural Artifacts

view would have to make what might constitute possibly unacceptable

concessions to their theory in order that it remain consistent. Indeed, if the plan

theory is not generalisable to languages other than Pascal then clearly it of

significantly less utility and therefore interest. If one is to view programming plans

as Notational Artifacts then one might expect certain programming languages to

facilitate (eg Pascal) or to discourage (eg Basic) the perception of plan-structures

in that language regardless of the programmer's particular background in design.

163

Of course, if such design courses teach plans or how to find and use them, then it

would not be surprising in the least to discover that those who have taken such a

course use plans with more success than those who have not. However, the

design courses discussed in this chapter were concerned exclusively with the

teaching of structured design methods (in particular, Jackson structured design)

and functional decomposition, and not with the explicit teaching of the sorts of

plan structures identified by the Soloway group. Indeed, the exercises associated

with these courses required students only to produce program designs and not

implementations of these designs in any target programming language.

The experiments reported in this chapter address the hypothesis that programming

plans can be at least partially characterised as artifacts of design or, as artifacts of

the teaching of particular program design strategies. Taken as a whole these

experiments do not assume homogeneity of experience between subject groups,

rather groups have been chosen precisely because their backgrounds differ in

terms of the level of design experience possessed by the groups. It must be noted

however that as far as their ability to generate correct programs and to de-bug

programs is concerned all groups exhibited equivalent overall levels of

programming competence. It is interesting to note that most previous studies

which have examined the role of programming plans in expert programming

performance have attempted to measure performance factors that relate to either the

recall or the generation of plan-like structures in programs. Hence programming

plans are used to both explain the difference between novice and expert

performance whilst at the same time providing the only measure of that

performance. This lack of any independent means of evaluating programming

performance seems to have clouded the theoretical interpretation of such research.

Two experiments are reported each looking at a separate aspect of the development

and the nature and role of programming plans. The first experiment is concerned

with the effects of the cueing of salient information structures in Basic programs

and the effect that this has on de-bugging for design/ non-design experienced

programmers. The second experiment examines the recall of plan structures by

design and non-design experienced programmers.

164

The first experiment follows quite closely a design presented by Gilmore and

Green (1988), in which Basic and Pascal programmers were asked to find bugs in

programs in which various information structures were highlighted (see chapter

5). Gilmore and Green found that the highlighting of plan structures was

advantageous to experienced Pascal programmers, but of little benefit to Basic

programmers who appear to rely more extensively on control based information in

programs. They conclude that the notation of Basic is less 'role expressive',

making the identification and use of plans more difficult.

However, another interpretation of these results might be to suggest that Pascal

programmers are more likely to have access to design based skills than Basic

programmers, and that these skills facilitate the identification and use of

plan-based information in programs. Indeed, Gilmore and Green point out that the

Basic programmers used their experiment were engineering students while the

Pascal programmers were computer science students. It would not be

unreasonable to assume that the latter group had some experience of program

design as most computer science courses now have a program design component.

In the case of the former group this assumption is less valid since Basic is often

taught in isolation to the teaching of design skills. Hence, evidence that is put

forward for the effects of notation on the comprehension of plan structures in

programs might equally well be interpreted as arising from non-trivial differences

between the subject groups.

In fact, Gilmore and Green acknowledge that notational factors and in particular

'role expressiveness' might not be the only factors that influence the use of

plan-structures in different programming languages. Indeed, they argue that

different teaching strategies may provide a different emphases to the way in which

such structures are perceived in programs. However they say little more about this

issue except to say that more research is required into the influence of educational

factors in determining the development of expertise in programming.

If one considers the "natural artifacts" view of programming plans, as we have

characterised it, then one would expect no significant or systematic differences to

exist between groups of design/non-design skilled programmers in terms of the

benefit of the provision of cues to plan structure as compared to other types of

165

cue. Indeed in the experiment reported by Gilmore and Green, both groups

exhibited similar overall levels of programming competence (as measured in terms

of their general ability to debug programs). Hence, if programming plans are the

major defining characteristic of programming expertise, then cues to plan

structures in Basic programs should help the expert Basic programmer to detect

plan-related bugs in the same way that cues to plan structures in Pascal programs

should aid the expert Pascal programmer in the detection of plan-related bugs.

However this hypothesis is not supported by the results of the Gilmore and Green

study.

The first experiment reported in this chapter has been carried out in order to

investigate the effects of the possession of design skills on the perception of cues

to plan-structures in Basic programs. If the notational features of a language, and

in particular its role expressiveness, are the primary factors that determine whether

plan-structures can be usefully employed in the comprehension of programs

written in that language, then cues to plan structure in Basic programs (which

offer low role expressiveness) should be less useful than cues to other information

structures, and in particular cues to control-based information. However, if the

hypothesis that the possession of design skills facilitates and enables the

programmer to both perceive and use plan structures in programs is correct, then

cues to plan-structure in Basic should aid the design skilled programmer more than

the non-design skilled programmer. In addition, if we assume that both of these

groups are equally competent with the language, then the overall detection and

correction of bugs by both groups should be broadly comparable. If this is the

case and design skilled programmers benefit more than non-design skilled

programmers from the provision of cues to plan structure, then the notion of the

programming plan cannot provide the basis for a mechanism that can

straightforwardly explain the nature of expertise in programming.

The second experiment reported in this chapter is a longitudinal study which is

concerned with the effects that the teaching of design has on the recall of

plan-based structures in Basic programs. Looking at the accuracy, speed and the

order of the recall of programs provides us with the opportunity to examine the

possible relationships between design experience and the perception and

comprehension of programs.

166

Soloway and Ehrlich (1984) have analysed the recall of plan and non-plan-based

Algol programs in order to test their hypothesis that if plan-based structures in

programs facilitate the comprehension of those programs, then the recall of the

salient features of plan-based programs is likely to be achieved more quickly and

with greater accuracy than that of non-plan-based programs (see chapter 3 for a

more detailed discussion of these experiments).

According to Soloway and Ehrlich, if programming plans help programmers to

encode a program more efficiently, then expert programmers should recall first

those lines (the critical lines) that make programs plan-like before they recall other

elements of the program.

Gilmore and Green (1984), again using a program recall paradigm, have examined

the notion that all programming languages are translated into a single type of

cognitive representation when they are encoded by the programmer. Positing a

single, universal, representation of programming knowledge has a strong affinity

with the ideas which underlie the approach that we have characterised as the

Natural Artifact view of programming plans. In this study Gilmore and Green

explored the way in which individuals reproduce aspects of a specific language

notation when they are asked to recall a program. The results of this study are

used by the authors to illustrate their contention that the mental or cognitive

representation of a program maintains certain salient features of the original

notation of that program and as a corollary that the representation of the

comprehended version of the program is not stored in a uniform "mental

language" that is in some way independent of its external form.

Again we appear to have encountered something of a potential dichotomy between

the natural and notational views of programming plans. On the one hand, plans are

proposed as mechanisms through which one can explain the internal cognitive

structures which underlie the mental representation of programs. On the other

hand, features of the mental representations of programs (Gilmore and Green do

not mention plans explicitly) are regarded as notational artifacts that are derived

from the external structure of the program.

167

If we are to claim that design experience (rather than mere programming

experience alone) facilitates the ability of programmers to use plan-structures in the

comprehension of programs then we would expect the following hypotheses to be

supported by the findings of the second experiment reported in this chapter.

1). During the first trial there should not be a significant interaction between

Program type (plan-like or unplan-like) and Group (design skilled/non-design

skilled).

2). During the second trial this interaction should be significant.

If these hypotheses are supported we will be in a position to claim firstly, that after

learning about design, programmers are able to recall plan-structures more

effectively than before. Secondly, this effect will have been demonstrated to be

independent of mere programming experience, since both groups attended the

same Basic programming course and had presumably attained the same level of

competence in Basic. The conventional interpretation of the programming plan

would not be able to account straightforwardly for this finding. If programming

plans are the major characteristic of programming expertise then programmers of

equal competence -with the same level of exposure to the language- should

demonstrate a similar level of plan recall. This perhaps highlights again one of the

fundamental problems of research into programming plans. That is that the notion

of the programming plan is used to both explain the nature of expertise and

provide the only measure of that expertise.

6.2 Experiment 1, the effects of cues to program structures

6.2.1 METHOD

Subjects

A total of 72 students participated in the experiment. One group of 36 subjects

was drawn from a population of computer science undergraduates all of whom

had attended a course on program design (Group A). A second group of equal size

168

was recruited from courses in finance, accountancy and engineering. This group

(Group B) had no experience of program design. Both groups had an equivalent

level of Basic programming experience amounting to at least 18 months. The

design courses discussed in this chapter took place over a period of two academic

terms. During the first term students were instructed in the underlying philosophy

of structured design and functional decomposition. The second term was given

over to the application of these techniques, and students participated in design

exercises for which feedback was provided but no assessment made. Students

were not expected to produce implementations of their designs in a target

programming language.

Materials

The experimental materials used in this study consisted of three versions of

programs written in Basic. These programs were based upon a program intended

to calculate average rainfall (Johnson and Soloway, 1985). Five versions of a

first (practice) program were created and 10 versions of the remaining two. All

programs contained two bugs drawn from the Yale Bug Catalogue 1 (Johnson,

Soloway, Cutler and Draper, 1983).

These bugs were of three types and were evenly distributed between the programs

with a maximum of two in each. Ten bugs were unrelated to any particular code

structure (for example, incorrect operator in arithmetic calculation, typographical

error etc.), ten were related to control structure (for example, incorrect

line-number assignment in GOTO statements) and a third class of ten bugs were

related to the plan structure of the program (for example, no guard for invalid

input, updating of wrong variable etc.).

Three representations of each of these programs were established. One

representation provided no cues, a second used indentation in the normal way to

reflect the underlying control structures of the program and the third used colour to

indicate plan structure. In the case of the latter representation, lines of code which

belonged to the same plan were indicated by presenting them on the screen

grouped in terms of a particular colour. This representation did not make use of

indentation.

169

The plan structures used were Input plan with guard, Running total loop plan,

Counter variable plan and Guarded counter variable plan (Johnson and Soloway,

1985).

Figure 6.1 shows an example of one of the programs used in the experiment.

Figure 6.1 a shows the correct version of the program with plan-structures

highlighted. Figure 6.1 b illustrates a program which contains a number of errors.

10 REM avrprob
20 LET count= 0
30 LET Sum= 0
40 REPEAT
50 HNPUT New
60 HlF New = 99999 l'lHIEN G01'0 90
70 ILE1' Sum = Sum + New
80 LET Count= Count + 1
90 UNTIL New= 99999
100 IF Count= 0 THEN PRINT "No legal inputs" ELSE PRINT

"Average is "; Sum/Count
110 END

Figure 6.1a). correct version.

1 0 REM avrprob
20 LET count = 0
30 LET Sum= 0
40 REPEAT
50 HNPU1' New
60 HlF New= 99999 l'lHIEN G01'0 100
70 ILE1' Sum = Sum + Count
80 LET Count= Count + 1
90 UNTIL New= 99999
100 IF Count= 0 THEN PRINT "No legal inputs" ELSE PRINT

"Average is "; Sun/Count
110 END

Figure 6.1 b). Program with control flow error line 60, plan error line 70, and
surface error line 100.

Figure 6.1. An example of a Program used in the first experiment. Different
fonts represent the colour highlighting of different plans. Lines 20 and 80-
Counter variable plan. Lines 50 and 70 - Running total loop plan.

170

Design

The experiment was a three factor design. The independent variables were:

1). The type of structural cue provided- No Cue, Control Cue or Plan Cue.

2). The level of design experience of the group - Group A, design experience and

Group B, no design experience.

3). Bug-type- Surface, control or plan.

Two factors (I) and (2) were between subjects factors; factor (3) was a

within-subjects factor.

The dependent variable was the number of errors detected and corrected in a

limited, fixed amount of time.

Procedure

After a short practice session, in which subjects were given feedback relating to

their performance, the experimental programs were presented to subjects at

random on the screen of a microcomputer. Subjects were instructed to attempt to

find errors in the programs and to highlight these on the screen using a light pen.

Transcripts of this activity were obtained. Subjects were given a natural language

specification of the problem (from Johnson and Soloway, 1985) and allowed 1.4

minutes to locate the bugs in the programs. Subjects were explicitly told that each

program contained only two bugs. They were then asked to correct these errors

using a familiar screen editor and were allowed 5 minutes to complete this activity.

Again, transcripts of this editing activity were obtained for later analysis.

171

6.2.2 Results

The results of this experiment, represented graphically in figures 6.2 and 6.3,

were analysed using a three-way analysis of variance.

80

70

- 60
O-o
Q) c
e>ca
ca -o 50
..... Q) c
Q) (.)
(.) Q)
Q; 1i) 40
a..-o

• • Group A, Design experienced
o--o Group B, Non-design experienced

Surface Control Plan

BUG-CATEGORY

Figure 6.2. The location and correction of errors by design experience and

bug-category.

172

CJ)

H
0 "d
H <I>
H H
(J) -rl

co
4-l 0.,
0 "d (J)

~ H
<I> co
tJ'l ;:::..,
CO"dr-l
.j.J(J).j.J
~+JO
(J) 0 (J)
0 <I> H
H +J H
(J) (J) 0
~"dO

80

70

60

50

40

••~-1•• Group A, Design
experienced

0--0 Group B, Non-design
experienced

0------ID-

Surface Control

CUE-CATEGORY

Plan

Figure 6.3 The location and correction of errors by design experience and

cue-category

This analysis revealed no main effect of design experience, bug-type or cue-type.

Hence design experience does not appear to improve the programmer's overall

ability to detect bugs or to use cues. In addition, there was no three-way

interaction between design skill, cue-type and bug-type. Such an interaction might

be expected if the possession of design experience impacted upon the

programmer's general ability to use cues to structure or to detect bugs. Interactions

between design skill and bug type and design skill and cue type were evident. The

design skill x bug type interaction was significant (F2,30 = 14.5, p <0.01) as was

the design skill x cue type interaction CF2,30 = 18.6, p < 0.01).

This suggests that design experience does have a significant impact upon a

programmer's ability to detect plan-related bugs and use cues to plan structure. A

cursory examination of Figures 6.3 and 6.4 suggests that while design skilled

subjects are able to use plan related cues and to detect plan related bugs, these

abilities appear to prevail at the expense of an ability to use other types of cue or to

173

detect other types of bugs. Indeed, a significant interaction (F 1 15 = 6.86, p <
'

0.05) is evident between design skill, bug category and cue category (omitting

plan bugs and plan cues).

6.2.3 Discussion

These results clearly demonstrate the effect of the possession of design related

skills on the comprehension of plan-based structures in programs. In general,

subjects in both groups demonstrated a similar level of programming competence.

Hence, no main effect on the detection and correction of errors by design/non

design experienced subjects was found. In fact, the overall percentage rate of error

detection and repair only differed by two percent between groups for both cue and

bug category (Bug category: Group A, 56%, Group B, 54%. Cue category:

Group A, 57%, Group B, 55%). However, the detection and correction of errors

by the design experienced group increased significantly when plan-structures were

highlighted or when the errors in question were related to one of these

plan-structures (see Figures 6.3 and 6.4). This is reflected in the interactional

effects that were found to exist between the possession of design experience

(Group) and bug category and design experience (Group) and cue category.

Contrary to the results of Gilmore and Green (1988), Basic programmers do

appear to benefit from the provision of cues to plan structure when attempting to

locate and repair errors in programs. However, it must be noted that this effect is

only significant for the group that possessed design experience. From their study,

Gilmore and Green suggest that the failure of Basic programmers to comprehend

plan structures in programs is a reflection of the strictures of the notation of Basic;

in particular, that it is less role expressive than Pascal. However, the failure of

Basic programmers to benefit from cues to plan structure in comparison to Pascal

programmers might simply be a reflection of the differential design experience

possessed by each group.

Advocating the concept of programming plans to explain the difference between

novice and expert performance in program generation and comprehension would

therefore appear to be too simple a view. On the basis of the experiment reported

174

above, there does not appear to be a significant degree of uniformity between the

use of plans by groups of programmers who would be regarded, on the basis of

their ability to detect and repair errors, to possess very similar levels of

programming competence. The results of the above experiment challenge both the

natural and the notational artifact views on programming plans. Such plans appear

not to be universal natural strategies or constructs that characterise or reflect the

expertise of the programmer nor can they be regarded merely as notational artifacts

that are imposed by the constraints of the particular structure of the language in

question. Plan-structures appear only to provide the basis for the comprehension

of programs for those programmers trained in design. In addition, plan structures

are employed in the comprehension of Basic programs despite previous

suggestions that Basic, because of features of its notation, does not facilitate the

development and use of plan-like structures.

Another interesting result is that the ability possessed by design experienced

programmers to detect plan-related bugs and use cues to plan structures appears to

hamper their ability to detect control and surface bugs and to make use of control

and surface cues. In other words design experience might be seen to focus

attention on plan-like bugs/cues at the expense of other possible sources of

bugs/cues. Without more research we are not in a position to comment on the

possibility that in actual programming practice more surface and control bugs may

infest programs than plan bugs. If this were the case we might be forced to adopt

the rather disturbing conclusion that the possession of design experience might

have an overall detrimental effect upon a programmers' ability to detect certain

types of bugs!

6.3 Experiment 2, program recall

6.3.1 Method

Subjects

Two groups of first year undergraduate students were employed in this study.

Participants in both groups had initially at least 6 months experience of Basic

175

programming. One group of subjects (Group B) attended the same course on

program design that was attended by subjects participating in the first experiment.

There were 24 subjects in each group. Note that these subjects did not participate

in experiment 1.

Materials

The programs used in this study were again based upon a program intended to

calculate average rainfall (Johnson and Soloway, 1985) and consisted of 30 lines

of Basic code. Following the procedure adopted by Soloway and Ehrlich (1984),

two versions of the program were constructed. One version contained five critical

lines conveying information relating to three salient plan structures: Calculating a

running total, calculating a maximum, and establishing a counter variable plan.

Figure 6.4a shows a fragment of this program with two of its constituent plan

structures illustrated. A second - unplan-like - version of this program was

constructed (see figure 6.4b). In this case, following Soloway and Ehrlich (1984),

the initialisation assignments of the count and sum variables violated the normal

and correct form of initialisation for the counter variable plan and the running total

loop plan. Otherwise the programs were intended to be identical: both version had

the same number of lines and a similar number of operands and operators.

Design

The experiment was a three factor design. These factors were:-

1). The type of treatment for each group; exposure to design experience or no

exposure (Group A and Group B respectively).

2). The nature of the programs (plan-like or unplan-like).

3). Performance (number of critical lines correctly recalled in a limited time) on

first vs second trial.

176

10 REM avrprob
20 LET count = 0
30LETSum=O
40REPEAT
50 INPUT New
60 IF New = 99999 THEN GOTO 90
70 LET Sum = Sum + New
80 LET Count = Count + 1
90 UNTIL New = 99999
100 IF Count= 0 THEN PRINT "No legal inputs" ELSE PRINT

"Average is "; Sum/Count

PROGRAM (a) - Plan-like

10 REM avrprob
20 LET count = -1
30 LET Sum = -99999
40REPEAT
50 INPUT New
60 LET Sum = Sum + New
70 LET Count = Count + 1
80 UNTIL New = 99999
90 IF Count= 0 THEN PRINT "No legal inputs" ELSE PRINT

"Average is "; Sum/Count

PROGRAM (b)- Unplan-like

Figure 6.4. Fragments ofprograms used in the second experiment. Two of the
five critical lines in the program are represented by lines 20 and 30. The plan
structures represented (in the case of Program a.) are a Running Total Loop Plan
(lines 30 and 70) and Counter Loop Plan (lines 20 and 80).

177

Procedure

In the first trial subjects were presented with a program on the screen of a

microcomputer. Each presentation lasted for 120s. Half of the subjects in each

group were presented with the plan-like version of the program and the other half

with the unplan-like version. The assignment of programs to subjects was done at

random. Immediately after the presentation of the programs subjects were asked to

attempt to recall the program verbatim and to retype it onto a familiar full-screen

editor. Subjects were given 300s to complete this task. The screen editor was

modified so that each depression of the return key (to open a new line) was

recorded and time-stamped. This enabled a record to be obtained of the temporal

order of recall.

Five months after this first trial a second trial was conducted. This trial followed

the same procedure as the first. During the elapsed time between the first and

second trials, one group of subjects (Group A) had attended an optional course on

program design (the content of this course has been outlined in the introduction to

experiment 1). Subjects in both groups attended the same course on Basic

programming between the first and second trial. Measures were obtained during

each trial of the number of correctly recalled critical and non-criticallines and the

order in which these lines were recalled by both groups.

6.3.2 Results

The results of this experiment are shown graphically in figures 6.5 and 6.6. The

number of critical lines correctly recalled during the first lOOs of the recall session

in both trials were entered into a three factor analysis of variance with the factors;

Program type (plan-based or unplan-based), Group (A and B) and Trial (first and

second). This revealed the following effects;

a). No main effect of Program type, Group or Trial (all F's < 1.5, NS)

b). A three way interactionm between Group, Program type and Trial (F1,5 =
14.5, p < 0.01).

178

No other main or interactional effects were apparent.

This three-way interaction can be split up into two separate two-way interactions -

one for trial 1, where there should be no significant interaction between

Program-type and Group, and one for trial 2 when there should be an interaction.

This is indeed the case. For trial1 the Program type x Group interaction is not

significant. For trial2 this interaction is highly significant (F 1,5 = 19.43, p <

0.01).

In order to ensure that both groups exhibited similar levels of programming

competence in Basic the results of a simple end of course test were analysed. This

test involved presenting students with mini programs that they were expected to

debug. The results of this test, which were marked by someone other than the

experimenter, were compared for each group and at-test indicated that no

significant differences did in fact exist between the groups.

4
Vl
0 • • Group A c:: ·-- Vl cao 3 0---0 Group B uO

'J:j
·~::
u ~ ~

2 obll
1-< c:: o.c
.D::s
8"d
::s"d 1 c:: 0

a===
0~
:::E~

Plan-like Unplan-like

PROGRAM-TYPE

Figure 6.5. Mean number of critical lines recalled (first JOOs of recall session) for

program-type in tria! I. Group A, design experienced. Group B, non-design

experienced.

179

4 o--oGroupA
<ll
~

D---O Group B s::
:.:::l<ll

"Cd8 3 .g-
'8 ti
~t!:l

2 obll
us::

.0 '§ a"'t:)
s--g 1
s::::::=
~ ~
~u

~~

Plan-like Unplan-like

PROGRAM-TYPE

Figure 6.6. Mean number of critical lines reaclled (first JOOs of recall session) for

program-type in tria/2. Group A, design experienced. Group B, non-design

experienced.

6.3.3 Discussion

The only significant effect revealed by the three-way analysis of variance

discussed in the results section of this experiment was that existing between

Group, Program-type and Trial. This interaction appears to reflect the increased

number of plan structures recalled by group A during the second trial. Clearer

evidence for this effect is to be found in the results of the individual two-way

analyses. These results show that before design training the groups did not differ.

However after training, subjects in Group A, the trained group, recalled

significantly more plan structures than Group B. The conventional interpretation

of the relationship between programming plans and expertise cannot account for

this effect. Indeed one might expect plan recall to increase between trials since at

the second trial, both groups had attended the same programming course and had

180

presumably added to their knowledge of the programming language. Indeed, a

comparison of the results of the end of course test in Basic for both groups

suggests that their expertise (at least in debugging) was broadly equivalent.

However contrary to this expectation, if one compares performance by the groups,

the increase in the level of recall of plan structures between trails was not

consistent.

The results of this experiment suggest that not all experienced programmers use

plan-like representations to encode programs. This clearly has implications for

those who advocate the programming plan as a key element in their theoretical

analysis of expert programming performance. Again the universality of the

programming plan appears to be drawn into question.In addition to this,

conventional work into programming plans appears to tacitly adhere to the

assumption that the recall or the generation of more programming plans is a good

way to characterise expertise. However, when proper external measures of

performance and expertise are employed, i.e., in terms of debugging abilities, this

assumption loses strength.

6.4 Overall discussion

Programming plans appear to form useful constructs only for those programmers

who possess design related skills. Indeed, on the basis of the experiment reported

above, it would appear that the recall of plan-like structures cannot be used to

indicate differences between novice and expert programming performance. This is

because one would not expect significant and systematic differences in

performance to arise between the two groups of programmers studied. The results

of the first experiment reported in this paper confirm that where independent

measures are used to assess performance (i.e., in terms of debugging skills) then

the difference in overall levels of performance found to exist between those with

design experience and those without is not significant. This provides additional

support for the conclusions drawn above and, viewed in tandem with these later

findings, questions both the universality of programming plans and their use in the

characterisation of expert programming performance.

181

6.5 General conclusions

Taken together the results of the experiments reported in this chapter highlight the

effects of design experience upon the nature and development of programming

plans. These experiments have shown that the plan theory cannot account

straightforwardly for the differences between novice and expert programming

performance. In particular, they clearly show the important role played by the

acquisition of design-based knowledge in the comprehension of programs. The

conflict between the natural and the notational approach to programming plans

may, when viewed in the context of these experiments, turn out to be more

apparent than real. However, the main conclusion remains valid. That is that

current views concerning the nature and development of programming plans are

flawed in two ways. On the one hand, the notational view is too narrow in its

perspective because of the emphasis it places on notation at the expense of other

demonstrably important factors. On the other hand, the views expounded by the

Soloway group reflect a fundamental confusion between the measurement of plans

and their use in theoretical explanations of expert performance. Hence, neither

provides a sound theoretical basis for a full psychological theory of programming.

Clearly the naturalistic and notational views of programming plans are by no

means mutually exclusive. One might wish to suggest that 'natural' plans exist,

but that novices have difficulty expressing them in a programming language.

However, some programming languages may reveal plan components more

clearly than others (the notational view). A tripartite analysis is proposed here in

which both of the views described above can be considered valid only when the

role of design experience is recognised as an important factor in the development

of plan-related knowledge. By adopting this view, it is possible to provide a

consistent analysis of existing experimental data.

Using this framework, it can be argued that while novices have some difficulty

learning to express plans, they can benefit from training in design. This is because

although training in design is not concerned with the explicit teaching of

programming plans, we can see that the design process provides a means of

applying the salient features of plans, and discovering the links between them.

182

Thus such training is likely to aid the programmer in constructing and/or

employing the vital mapping between structures in the problem domain and

structures in the language domain.

It appears from the experiments reported in this chapter that design training may

encourage programmers to focus upon plan structures during comprehension and

debugging activities. A similar finding has been reported by Stone, Jordan and

Wright (1990), who demonstrated that training in structured programming

techniques, such as those reported in this chapter, can improve debugging

performance by "increasing the comprehension of program goals and plans" (pg

81). They go on to claim that their results "suggest that the value of structured

programming techniques may be realized more in the programmer's way of

thinking about a program than in the creation of a structured program per se." (p.

81).

Subsequent experiments reported in this thesis suggest that the development of

expertise in programming does not simply involve the accumulation of plans.

Rather, programming expertise appears to depend upon the structuring of

programming knowledge such that certain salient plan elements can be retrieved

and accessed more quickly. It may be the case that design training facilitates this

structuring process by encouraging programmers to focus upon the salient

elements of plans. In addition, this might be expected to enhance the mapping

between the language and problem domain that is discussed above, by providing a

means of applying the salient features of plans and establishing the links between

them.

The model of programming expertise presented in this thesis will be considered in

greater depth in chapter 12, where the results of this and subsequent experiments

are interpreted in a rather more integrated and global context. The experiments

reported in this chapter contribute to this model, but must be viewed in tandem

with the other experiments reported in this thesis. Nevertheless, the experiments

reported in this chapter raise a number of specific issues for the plan theory of

programming. Firstly, despite a suggestion to the contrary in earlier work,

programming plans do appear to be generalisable to languages other than Pascal.

However, only the design experienced programmers involved in this experiment

183

demonstrated significant plan use. Secondly, there does not appear to be a clear

relationship between the possession of plans and the development of expertise in

programming. Hence, programmers who might be regarded to possess equivalent

levels of skill, in terms of their general debugging ability, do not necessarily use

plans to the same extent. These two findings appear to challenge the central tenets

of the plan theory as it is currently expressed and clearly raise fundamental doubts

about its ability to account for the nature and the development of programming

expertise.

184

Chapter 7. Plan Violation and Programming Expertise: Evidence for

knowledge restructuring

7.1 Introduction

One of the main conclusions of the previous experiment was that programming

plans do not appear to provide a straightforward account of programming

expertise. Hence, programmers may exhibit the same general level of

programming competence in the context of certain tasks, but use plans rather

differently. One area that has yet to be subjected to experimental analysis is

concerned with the dynamic aspects of plan use and the relationship between plan

use and the development of expertise.

One major criticism of the plan/goal analysis of programming is that it presents a

fairly limited view of the programming activity. This is particularly true given

what we know about the role of plans and goals in other problem solving

domains. Programming plans are proposed as constructs that form the basis for

distinctions between novice and expert performance, yet little concern has been

directed toward an analysis of the development and use of plan structures and the

refinement of goals as programming expertise and knowledge increases.

Studies of the development of plan structures and goals in other domains suggest

that the plans that underpin expertise develop through a number of identifiable

stages. Kay and Black (1984, 1986), for example, have traced the plan acquisition

process in a text editing domain. They suggest that a complex relationship exists

between the development of plan structures and increase in expertise. They

highlight the importance of the refinement of plan structures and the use of

selection rules as expertise develops.

In light of this work, the notion that the primary distinction between the novice

and expert programmer is solely based upon the latter's possession of plan related

structures would appear to be an oversimplification. Indeed, experts need to not

only possess plan structures but also know how to use them appropriately. Kay

and Black (op cit) suggest that during intermediate stages of skill acquisition plan

structures are already well developed but that genuine expertise tends to be

185

exhibited only when appropriate selection rules are developed to guide the

implementation ofplans.

Kay and Black suggest that skill learning in the text editing domain progresses

through four identifiable stages. The first stage in this description represents the

naive user who has no text editing experience. They suggest that users bring to

the task a range of preconceptions about text editing terminology which may or

may not accord with their interpretations of that terminology as expertise develops.

The next stage in Kay and Black's description is concerned with the goal of

overcoming this prior knowledge bias. They suggest that during this phase (which

they call the initial learning phase) users develop conceptual knowledge structures

that link specific goals with commands. At this stage, users tend to cluster together

functionally related commands. For example, INSERT, PUT, REPLACE might

be grouped together because these commands are used to accomplish the goal of

adding information. Users tend to modify their initial clustering strategy, based

upon prior knowledge associations, to one which emphasises the functional links

between commands.

The third phase of expertise development is concerned primarily with the

formation of plans. Once users have acquired a range of basic editing commands

and goals, they learn that a number of commands can be grouped together in terms

of the frequency of the use of such commands in accomplishing a particular goal.

That is, they combine the actions that were organised separately during the phase

of initial learning. Both Kay and Black and Sebrechts et. al. (1985) provide

evidence about the nature of the development of knowledge structures during this

third phase. During early stages users group commands in terms of their

functional relationships. As expertise develops this grouping tends to occur with

respect to commands that are used in conjunction to accomplish a particular goal.

For example, the commands PUT and PICK might be grouped since they are used

together when the user wants to move an item of text.

During the final stage in Kay and Black's model, users produce compound plans

to accomplish major goals and refine the selection rules that are used to choose

among alternative plans in given situations. At this level goals are linked to plans

using the conditions in which these compound plans are invoked, whereas, in

186

phase three goals are linked to simple plans, and during phase two merely to

actions.

The Kay and Black model suggests that a complex relationship exists between

expertise and the development of goals and plans in a routine cognitive activity

such as text editing. This model also has a number of implications for our

understanding of the role of goals and plans in the programming domain. Previous

studies of the programming activity suggest that expertise can be characterised

primarily by the possession of plans or plan related structures and additionally that

the existence of such plans can be used to make the distinction between the novice

and expert. In the programming domain little or no concern has been directed

toward an analysis of the development and refinement of plan structures as

expertise increases. The Kay and Black description of skill development suggests

a number of key areas of concern for the analysis of problem solving in

programming. These can be summarised as follows;

i). Can the mere existence of plans be taken as an indicator of expertise?

ii). Are plan structures exhibited at intermediate skill levels?

iii). Do programmers develop plan selection rules as their expertise develops?

iv). How are plan structures refined as expertise develops?

These issues are here addressed via an experimental study of the programming

activity as programming skill increases. Programmers of varying skill levels

(Novice, Intermediate and Expert) were presented with a number of Pascal

programs, each of which contained several blank lines. In addition, a number of

program fragments were presented with each program. The programmer's task

was to attempt to state which of the fragments could be used to best complete the

program; which might be their second choice, and so on. In the first series of

programs the associated program fragments represented plan structures and

contraventions of plan structures.

187

For example, Figure 7.1 represents a program intended to calculate the square root

of a number. The important plan structure in this program might be referred to as a

Data Guard Plan (Soloway and Ehrlich, 1984). The first program fragment (1)

illustrates the correct use of the Data Guard Plan. This plan protects the "Sqrt"

function from trying to take the square root of a negative number. The 'IF' part of

the statement carries out this check and makes the number positive if necessary.

The second program fragment (2) represents a contravention of the Data Guard

Plan. Here the first statement suggests an assignment type initialisation (Num =
0). This gives rise to the expectation of an assignment update (i.e., Num := Num

+ 1). However, the Data Guard Plan predicts a read update since using an

assignment statement would never result in a negative number - making the Data

Guard Plan in this case superfluous. The third program fragment (3) contravenes

the plan structure in a more straightforward manner and simply introduces an

incorrect test for a negative value (Num > 0) in the last statement.

One might expect, in light of the studies into the development of expertise that

have been reviewed in this chapter, that the level of expertise possessed by the

programmer would have some effect upon both their choice of the ordering of

program fragment and the time taken to make this choice. If the existence of plan

structures can provide an indication of the programmers expertise or, similarly, if

such structures facilitate the comprehension of programs, then expert

programmers might be expected to choose a fragment that best completes the

program which represents or conforms to a plan structure.

Indeed, from the results of the Kay and Black studies reviewed in this chapter, it

might also be expected that programmers of intermediate skill level would make a

similar choice. This would confirm the finding that plans exist and are used at both

intermediate and expert skill levels. If plan structures are well represented as

cognitive schemata, which would be expected in the case of the expert, then the

time needed by the programmer to make a choice of appropriate program fragment

(conforming to a plan structure) would presumably be less than that needed when

such structures are poorly formed (as one might expect in the case of the novice)

or when plan structures remain unconsolidated (corresponding to the intermediate

level).

188

The second series of program fragments used in this study represented the correct

and violated use of program discourse rules. Program discourse rules, according

to Soloway and Ehrlich, specify the conventions in programming. For example,

such rules might take the form (following Soloway and Ehrlich, 1984);

"If there is a test for a condition then the condition must have the potential of being

true."

"An IF should be used when a statement body is guaranteed to be executed only

once and a WHILE used when a statement body may need to be executed

repeatedly"

To a large extent rules of programming discourse correspond to the types of

selection rules used by experts that have been identified in other studies of skilled

performance. Soloway and Ehrlich (1984), for example, claim that discourse rules

govern the use of plan structures in programming. That is, they provide an

indication of the type of plan that is appropriate at a given point in the program

and, in addition, provide some constraints on the formation of plan structures.

Figure 7.2 illustrates the representation of a discourse rule and two violations of

the rule in three program fragments. The discourse rule represented in the program

is that variable names should reflect their functions. In this example the program is

intended to calculate either a maximum or a minimum value.

The first program fragment (1) represents a procedure that conforms to the

program discourse rule. That is, the variable name Max is used in a procedure

intended to calculate a maximum value. The second fragment of code (2)

represents a violation of this discourse rule. This procedure uses the Max variable

in conjunction with the calculation of a minimum value. The last procedure (3)

represents a similar violation of this discourse rule but in this case the program

would produce a run-time error if executed.

Again, we might expect experts to exhibit a preference for the program fragment

that represents the correct use of a discourse rule, since at this level of skill the

selection rules corresponding to the rules of programming discourse will be well

189

developed. Kay and Black suggest that expertise is characterised not only by the

possession of plans but also by the use of appropriate selection rules. This also

conforms to predictions that stem from the GOMS model (Card, Moran and

Newell, 1980) of skilled behaviour which places an emphasis on the presence of

selection rules as a characteristic of expertise.

At intermediate skill levels it might be expected that programmers, while

displaying a preference for plan structures, may not exhibit well developed

selection rules. Hence one might expect that the choice of program fragment used

in the completion of a program may not accord with a strategy based upon the use

of such rules. Correspondingly, no particular preference for the program

fragments that represent discourse rules should be exhibited. This effect should

also be apparent in the case of the novice programmer. The time taken to produce

an appropriate ordering of program fragments should also provide some evidence

about the development and role of program discourse rules at different skill levels.

In the case of the expert programmer one might expect discourse rules to be well

developed. Hence, the time taken to decide upon an appropriate ordering of rules

in a particular circumstance would be less than that required by both the novice

and the intermediate programmer. In such cases we would hypothesise that rules

of programming discourse remain undeveloped.

7.2. Method

Subjects

A total of 45 subjects participated in the experiment. These subjects were

categorised according to experience into Novice, Intermediate and Expert

programmers. Each of these groups were of equal number. The Novice

programmers were undergraduates with approximately two months experience of

Pascal. The Intermediate group were also undergraduates but this group had

completed a nine month course in Pascal. The Expert group were either teachers of

Pascal or were employed in industry as programmers. All in the latter group had

used the language on a regular basis for more than two years.

190

Procedure

Subjects were given the programs and program fragments (See Figure 7.1 and

Figure 7.2) in booklet form. These booklets also contained instructions for the

completion of the task. Subjects were asked to attempt to complete all the

programs (i.e., to choose the most appropriate ordering of program fragments) as

quickly as possible. No time limit was imposed on this task and all subjects

responded to all the programs. Both the ordering of program fragments and the

time taken for each subject to decide upon this ordering for each program was

recorded.

191

(1)

(2)

(3)

PROGRAM One (input, output),
VAR Num REAL,

I INTEGER,
BEGIN

Writeln (Num, Sqrt (Num)),
END,

END

FOR I = 1 TO 1 0 DO
BEGIN

READ (Num),
IF Num < 0 THEN Num = -Num,

Num = 0,
FOR I = 1 TO 1 0 DO

BEGIN
READ (Num),
IF Num < 0 THEN Num = -Num,

FOR I = 1 TO 1 0 DO
BEGIN

READ (Num),
IF Num > 0 Then Num = -Num,

D

D

D

Figure 7.1. A program intended to calculate a Square root illustrating program
fragments corresponding to (1) the correct use of the Data Guard Pian and
violations of its use (2) and (3).

192

(1)

(2)

(3)

PROGRAM Three (input, output),
VAR Max, I, Num, INTEGER,
BEGIN

END,

Writeln (Max),
END

Max =0
FOR I = 1 TO 1 0 DO
BEGIN

READLN (Num),
IF Num > Max THEN Max= Num

Max= 999999
FOR I = 1 TO 1 0 DO
BEGIN

READLN (Num),
IF Num < Max THEN Max = Num

Max= 0
FOR I = 1 TO 1 0 DO
BEGIN

READLN (Num),
IF Num = Max THEN Max = Num

D

D

D

Figure 7.2. A program illustrating program fragments representing the correct
use of a program discourse rule (1) and violations of that rule (2) and (3).

193

Materials

Two sets of programs and program fragments were used in this study. The first

set of three programs were associated with program fragments that represented

plan structures and contraventions of plan structures. The three program types

were as follows:

Program Type1- A program intended to calculate a square root (See Figure 7.1).

Program Type 2 - A program intended to calculate an average.

Program Type 3 - A program intended to calculate a maximum or a minimum

value. (See Figure 7 .2).

The plan structures employed (derived from Soloway and Ehrlich, 1984) were as

follows:

Plan 1- A Guard Plan (see Figure 7.2).

Plan 2 - A Running Total Loop Plan.

Plan 3 - A Search Plan.

Plan 1 was associated with Program 1, Plan 2 with Program 2 and Plan 3 with

Program 3. Each program was presented with three program fragments (as in

Figures 7.1 and 7 .2). One program fragment represented the correct use of the

plan and the second and third fragments a contravention of plan structures. The

ordering of program fragments presented with each program was randomised, as

was the order in which program types occurred.

The second series of programs consisted of the same program types (Program

Type 1-3) and a number of associated program fragments. These fragments

represented program discourse rules and violations of these rules (See Figure

7.2). The three discourse rules used (Derived from Soloway and Ehrlich, 1984)

were as follows:

194

Discourse Rule 1 - "If testing for a condition then the condition must have the

potential of being true."

Discourse Rule 2- "Do not include statements in the program which will not be

used."

Discourse Rule 3 - "Variable names should reflect function."

Each of the three program types was presented with three associated program

fragments. One of these program fragments represented the correct use of the

program discourse rule, a second represented a violation of the rule, but resulted

in an executable program, and the third violated the discourse rule but resulted in a

error-prone program (See Figure 7.2). In the same manner as above, discourse

rule 1 was associated with program 1, discourse rule 2 with program 2 and

discourse rule 3 with program 3.

7.3. Results

Figures 7.3 to 7.6 illustrate the results of this study. Figure 7.3 shows the

programmer's first choice of program fragment when completing a program.

These fragments correspond to either a plan structure or to plan structure

violations. As can be seen, both intermediate and expert programmers choose, in

the main, to complete the program with the fragment that corresponds to the

correct use of a plan structure. Conversely, novices do not exhibit a preference for

plan structures over program fragments representing violations of plan structure.

These effects were statistically significant.

There was an overall efect of skill level (F2,28 = 13.64, P < 0.001) and of

fragment type (plan/plan violation) (F2,28 = 10.62, p < 0.001). In addition, the

interaction between skill level and fragment type (plan/plan violation) was also

significant (F456 = 5.92, p < 0.001). Multiple post-hoc comparisons were

conducted with the Newman-Keuls test, and a significance level of p < 0.01 was

adopted for all such tests.

195

This procedure indicated that both expert and intermediate programmers choose

the program fragments representing plan structures more frequently than novices.

Correspondingly, novices tended to choose fragments representing plan structure

violations more frequently than both intermediate and expert programmers. None

of the other contrasts between means was significant. Hence, novices choose

fragments representing plan structures with approximately the same frequency as

they choose fragments representing plan structure violations and intermediates

choose to use the correct plan fragment with about the same frequency as experts.

14

12

10

4

2

Conforming to
Plan Structure

Plan Structure
Violation
Type -1

Novice Programmers

~ Intermediate Programmers

D Expert Programmers

Plan Structure
Violation
Type- 2

Program Fragment Type

Figure 7.3. The frequency with which a program fragment (corresponding to a

plan structure and violations of plan structure) was choosen as best completing a

program by novice, intermediate and expert programmers.

196

Figure 7.4 shows the total time taken by novice, intermediate and expert groups to

make a choice of program fragments and to order them appropriately. Novices

take the greatest time to order the program fragments, follwed by the intermediate

group and then by experts. These differences are statistically significant. Novices

take significantly longer than those in the intermediate group to order program

fragments (t-test, p < 0.05, two-tailed), and the latter group also take somewhat

longer than experts (t-test, p < 0.05, two-tailed).

120

90

30

Novice Intennediate Expert

Group

Figure 7.4. Mean time taken to order programfragments (corresponding to a plan

structure and to violations of plan structure) by novice, intermediate and expert

programmers.

197

Figure 7.5 shows the mean number of occasions in which program fragments,

corresponding to the correct and violated use of a program discourse rule, are

chosen first in the ordering of program fragments by novice, intermediate and

expert programmers. Here, when asked to complete a program, the expert group

tend to choose first the program fragment that represents the correct use of a

program discourse rule. Those in the intermediate group tend to make this choice

less frequently. Novices exhibit no particular preference for the correct use of a

discourse rule over program fragments representing contraventions of the rule.

These effects were statistically significant.

14

12

10

4

2

Conforming to
Discourse rule

Novice Programmers

~ Intermediate Programmers

D Expert Programmers

Discourse rule
Violation
Type-1

Program Fragment 'fype

Discourse rule
Violation
Type- 2

Figure 7.5. The frequency with which a program fragment (corresponding to a

discourse rule and to violations of a discourse rule) was choosen as best

completing a program by novice, intermediate and expert programmers.

198

There was an overall effect of skill level (F2,28 = 8.63, p < 0.001) and of

fragment type (discourse rule/discourse rule violation)(F2,28 = 19.54, p < 0.001).

The interaction between skill level and fragment type (discourse rule/discourse rule

violation) was also significant (F4,56 = 11.46, p < 0.001). Once again, multiple

post-hoc comparisons were conducted using the Newman-Keuls test, and a

significance level of p < 0.01 was adopted. This procedure indicated that experts

choose the program fragment representing the correct use of a program discourse

rule more frequently than both the novice group and the intermediate group.

Comparing the choice of program fragments representing the correct and violated

use of a program discourse rule suggests that experts tend to choose the program

fragment that represents the correct use of such a rule more frequently than a

fragment representing a contravention of the rule. The same is true of the

intermediate group. Conversely, novices show no preference for fragments

representing the correct use of a discourse rule compared with those representing

the controvention of such a rule.

Figure 7.6 shows the total time taken by novice, intermediate and expert groups in

completing the ordering of program fragments representing discourse rules and

discourse rule violations. Here, experts tend to complete the task faster than both

intermediate and novice groups. This is confirmed by further statistical analysis.

Experts order program fragments faster than both those in the intermediate group

(t-test, p < 0.05, two-tailed), and those in the novice group (t-test, p < 0.05,

two-tailed). The intermediate group, in tum, appear to complete this ordering task

slightly more quickly than those in the novice group, but this difference was not

significant.

7 .4. Discussion

The results of this study suggest that the relationship between programming skills

and the formation and utilisation of plans and selection rules in programming is by

no means straightforward. Previous work in this area suggests that expertise is

characterised primarily by the possession of programming plans and rules of

programming discourse (Soloway and Ehrlich, 1984).

199

120

30

Novice Intermediate Expert

Group

Figure 7.6. Mean time taken to order program fragments (corresponding to a

discourse rule and to violations of a discourse rule) by novice, intermediate and

expert programmers.

This work, however fails to examine the way in which such plans might be

formed and the nature of their use as skill in programming develops. The results

of the experiment reported above suggest that programming plans exist at both

expert and intermediate skill levels in programming. At both levels such plans

provide a basis for the comprehension of programs. Both expert and intermediate

groups are equally likely to choose a program fragment corresponding to a plan

structure when completing a program. Novices, in contrast appear to exhibit no

200

particular preference for those program fragments representing plan structures

over those representing plan structure violations.

One interesting difference in performance that emerged between the expert and

intermediate groups was that reflected in the time taken to complete the ordering of

program fragments corresponding to plan structures and to plan structure

violations. The intermediate group took much longer than the expert group to

produce such an ordering. This may suggest either a). that while both intermediate

and expert groups utilise plan based structures, in the case of the former these

plans remain unconsolidated or b). that the intermediate group are, for some

reason, unable to easily access or activate these plans.

These findings would accord with results obtained from studies of the

development of skilled performance in other problem solving domains. For

example, Kay and Black (1984) suggest that the existence of plan structures in text

editing is characteristic of both intermediate and expert performance, but that the

rules of selection governing the use of appropriate plan structures only develop at

higher levels of expertise. Such expertise would appear, in addition, to be

characterised by the development of so called compound plans. Indirect evidence

for this is adduced by Kay and Black from studies which suggest that as expertise

develops the time taken to formulate and implement plans decreases. Another

possible interpretation of this result might be to suggest that experts automate

some simple generic sub-components of the programming task (these may

correspond to plan structures). Empirical studies of this knowledge compilation

process have been reported for general problem solving tasks (Anderson, 1982)

and within the more specific context of programming (Anderson, 1987;

Wiedenbeck, 1985).

The results of the experiment reported in this chapter provide some support for the

contention that expertise in programming cannot be explained merely by alluding

to the notion of the so called programming plan. Such plans are used by both

intermediate and expert programmers. The important distinction between these

groups would appear to be based more strongly upon the use and deployment of

appropriate selection rules as expertise develops.

201

This distinction appears to be reflected in the results stemming from an

examination of the role of program discourse rules in skill development in

programming. Expert programmers tend to make the most use of program

discourse rules. Their use of such rules differs significantly from that of

intermediate programmers who, when completing a program, tend to exhibit no

particular preference for the program fragment representing the correct use of a

discourse rule over those violating such rules. This would suggest that an

important characteristic of expertise is related to both the possession and use of

program discourse rules. Examining the time taken to order program fragments

which correspond to discourse rules and to violations of these rules indicates that

intermediate performance differs little from that of novices. Experts, on the other

hand, perform the task a great deal faster than both novice and intermediate

groups. This again supports the view that such discourse rules are an important

feature of expert performance.

Existing plan/goal analyses of programmer behaviour provide only a limited

insight into some of the underlying features of this important problem solving

activity. Studies in other domains, most notably that of text editing, suggest the

need to examine in more detail not only the role of plans but also the nature of the

development and refinement of such plans as expertise increases and, in addition,

the central role played by selection rules in expert performance. This chapter has

attempted to highlight the correspondences that exist between plan/goal analyses of

text editing and those which appertain in programming. Strong similarities have

emerged between these domains.

For example, models of problem solving such as that proposed by Kay and Black

for text editing provide a valuable basis for an analysis of programming.

Extending the scope of such models to account for performance differences in

programming has highlighted a number of difficencies in the current plan/goal

analysis of problem solving within this domain. The present study has attempted

to address some of these difficencies and by doing so to suggest ways in which

the plan/goal analysis of programming might be extended. The central theme of the

chapter - that programming plans alone do not provide an adequate basis for a full

account of expert problem solving in programming - is supported and the

plan/goal analysis of programming is extended to reflect the central role played by

selection rules in expert performance.

202

7.5 General Conclusions

The results of the experiment reported in this chapter provide general support for

the idea that the possession of plans per se does not necessarily guarantee the same

level of programming performance for different groups of subjects. It has been

suggested that performance differences may be associated with the development

and refinement of appropriate selection rules and/or with a process of knowledge

restructuring that may result in the development of compound plans.

In addition, this process may give rise to the restructuring of knowledge within

plans and lead to certain structures becoming prominent within the context of

individual plan structures. The model of programming knowledge presented later

in this thesis suggests that via this restructuring process, focal plan elements will

tend become more accessible as expertise develops. Hence, in the context of the

present experiment, while intermediates appear to be able access the same plan

knowledge as experts, they are able to achieve this more effectively, as evidenced

by their greater speed. It may be suggested that this increase in speed results from

the greater ease with which plans can be retrieved and implemented when focal

structures are accessible.

203

level attained by the programmer. This chapter endeavours to extend current

models of programming by emphasising the need to consider in detail not only the

development of programming strategy, but also the way in which knowledge

representation and features of the task language interact to give rise to particular

forms of programming behaviour.

The studies described previously in this thesis suggest a particular dichotomy

between theories of programming that emphasise knowledge representation and

those which stress the effects of language notation. However, these two elements

are by no means mutually exclusive. The problem facing such theories is one of

providing explanations for the way in which these factors interact to produce

observed phenomena.

8.1.2 Strategy vs Knowledge

Also, besides questioning the assumed universality of the programming plan, the

work cited above suggests other problems with the plan theory of programming.

Bellamy and Gilmore (1990), have compared the coding behaviour of experienced

programmers using a number of different languages. The intention of this work

was to examine whether the order of program generation suggested the existence

of plan-like structures. Their evidence for the use of plan structures in program

generation was equivocal (see chapter 3).

Hence, the question that arises is why plans should prevail in the comprehension

process (as in Soloway's recall experiments) but not during generation? It may be

that the appearance of plan-based behaviour is determined by comprehension

strategy rather than knowledge (see chapter 4). Hence, studies which have

examined recall as opposed to generation may, as Bellamy and Gilmore suggest,

have tapped post-hoc rationalisations of the programmer's behaviour. Therefore, it

would seem reasonable that studies investigating such behaviour should aim to

clarify or make explicit the particular role of strategy versus knowledge. In

addition, it is clear that studies examining program recall should not be assumed

necessarily to be tapping the same knowledge structures or programming

strategies as those found to exist in code generation.

205

8.1.3 Addressing Strategy

Other problems with the plan notion are that little attention has been paid to a

consideration of the mechanisms that control plan selection or implementation, to

the nature of the development of plans with expertise or to the dynamic aspects of

plan use (see chapter 3). Rist's (1986, 1989) model of the programming activity

suggests that novices and experts employ very different strategies when

developing a program to solve a particular problem. Rist claims that expertise is

characterised by the ability of the programmer to focus upon the most salient parts

of the plans which comprise a program. These Rist terms the 'focal lines' of the

plans. Rist suggests that as expertise develops, some plans are automated (such as

input and output) and initially ignored during design. This enables the programmer

to direct her attention to the more difficult or novel segments of code. In terms of

Rist's framework, as expertise increases plans are selected rather than constructed,

and knowledge of the plan focus reflects this increase in expertise.

In contrast to Rist's model, Green, Bellamy and Parker (1987) suggest that when

code is not generated in a strict linear fashion (which they claim is the 'natural'

development path for the construction of programs; cf Hoc, 1981), this is

primarily because of problems with notational features of the programming

language (partly because of it's limited 'role-expressiveness') or because of

constraints imposed by the device language. Besides these two determinants of

strategy, Green et al (1987), also suggest the importance of the programmer's

knowledge representation, but in contrast to previous studies that have emphasised

the role of knowledge representation, their empirical work has focused upon an

investigation of those features of both the task (programming) language and the

device language which are thought to determine strategy.

8.1.4 Towards an integrated developmental framework for understanding

programming behaviour.

It is likely that features of the device language, the task language and the

programmer's knowledge representation interact to determine the nature of

programming strategy. The work reported in this chapter provides empirical

206

support for a model that has been constructed in order to explain the development

of programming strategy and to clarify the nature of the interactions between

programming language and the development of those structures which are

hypothesised to represent programming knowledge. The aim of this work is

twofold. Firstly, to provide additional support for the models of coding presented

by Green et a1 and by Rist and secondly, to extend and elaborate these models by

exploring the way in which their separate aspects (i.e., Green, Bellamy and

Parker's emphasis on task language features and the programming environment

and Rist's on knowledge representation) might be combined to form a single and

unified developmental framework. This framework aims to show how

programming strategies change with changes in knowledge representation arising

via restructuring and to highlight the effects of the notational features of the task

language on the development of these strategies.

In order to investigate the strategic aspects of the programming activity the work

reported here used a method similar to one originally devised by Green et alto

examine non linearities in the coding process. Green et al, used discontinuities or

'jumps' in the generation of program text to indicate departures from linearity. For

this purpose a jump was defined as an editing action which was followed by

moving the cursor to another location and performing another editing action. An

extension to this method, which taps more directly the role of knowledge

representation in the determination of programming strategy, involves examining

departures from linearity within and between the program's plan structures. This

method has been used successfully to investigate the more general effects of

programming language notation and skill differences on strategy (Bellamy and

Gilmore, 1990).

Essentially, the method involves identifying the plan structures in code that have

been generated or reconstructed from memory and then analysing, from transcripts

of the coding activity, the number of jumps made between lines within the same

plan structure (intra-plan jumps) and the number of jumps made between lines

which form part of different plan structures (inter-plan jumps).

Such jumps can be characterised as the points at which programmers make some

change in their code. Gray and Anderson (1987) introduce the notion of

207

'change-episodes' to describe these key junctures in the coding process. They

suggest that change-episodes can be implemented in two distinct ways; either as

minor local amendments to a program or as major transformations in the

programs' goal structure.

Inter and Intra-plan jumps loosely correspond to the categorisation of

change-episodes proposed by Gray and Anderson. For instance, Intra-plan jumps

involve small local changes to code while inter-plan jumps may (though will not

always) imply some change to the program's plan or goal structure. The intention

of the work reported in this chapter is to extend out current understanding of the

development of programmers' knowledge representations with increasing

expertise and to investigate the more general effects of the notation of particular

languages within this broadly developmental framework. Using the technique

outlined above a number of issues might be addressed.

Firstly, if plan structures constitute the underlying cognitive representation of a

program and are not language dependent, but are instead related to the

programmer's level of expertise, then clearly this will be reflected in differences in

the strategic use of plan structures by programmers of different skill levels.

Secondly, this technique provides a means of assessing the way in which the

effects of language notation might facilitate or discourage plan use. In contrast to

the method employed by Green et al, which simply analysed the number of

distinct non-linearities in coding, here these non-linearities can be examined within

the context of discrete plan-based knowledge structures. This provides a means of

examining the interactions that might exist between features of the notation of the

programming language and the programmer's knowledge representation. It may

also be the case that features of the notation of programming languages tend to

assume a greater or lesser role in the determination of strategy as programming

skill develops. Hence, this technique enables us to examine the more complex

interactions that might exist between expertise, knowledge representation and

notation.

A second measure that provides information about the factors that affect or

contribute to programming strategy is pause data. Such data has been used to

208

indicate the independence of discrete plan structures in memory. For instance,

Haberlandt (1980) has found reading time evidence for story episodes as

independent memory units. Specifically, Haberlandt found that readers paused for

a greater length of time at the beginnings and ends of episodes in stories. In a

similar way, Robertson and Black (1983) have shown that pause time increases

between hypothesised plan boundaries in a text editing task. Reitman and Rueter

(1980) have invesigated the organisation of programmer's knowledge

represenations using a free recall technique backed up with collateral converging

evedence obtained from structures induced from the pattern of recall pauses (see

chapter 3).

Within the present context we are interested in the time spent pausing between the

execution of inter- and intra-plan jumps. This information will have a twofold use.

Firstly, it will provide evidence for plan boundaries; hence the pause time between

intra (within) -plan jumps should be less than that occurring between inter

(between) -plan jumps. Secondly, such data will allow us to investigate issues

such as whether the ability to locate plan boundaries may differ as a function of

expertise or is dependent upon salient features of the programming language

notation. Indeed, the interaction between these elements may turn out to be more

revealing. For example, it may be the case that the discriminability of language

structures, which in turn is dependent upon notational features such as

'role-expressivness', may have a significant role to play as programming skill

develops, but becomes less important at higher levels of expertise. In this case, the

ease or difficulty of discriminating between plan structures will be reflected in the

time spent pausing between inter-plan jumps.

8.2 Method

Subjects

Thirty Six subjects were recruited for this experiment. These subjects were

classified into 3 groups of equal size according to their programming expertise.

The novice group consisted of first year undergraduate computer science students

all of whom had attended a preliminary short course in Pascal. All subjects in this

209

group had some knowledge of Basic, although this was limited to experience

acquired during ad hoc courses prior to their matriculation. None of these subjects

expressed the feeling that they could claim any particular expertise in Basic.

Indeed this prior screening of potential subjects excluded a number of subjects

from this group because of their wide ranging experience of Basic and

concomitant knowledge of the language.

A second group of subjects was classified as intermediate. This group consisted of

second and final year computer science undergraduates. Subjects in this group had

completed two single term courses in Pascal, and all had employed the language

extensively in project work. All subjects in this group professed to being

reasonably conversant with Basic. Indeed, most of the subjects classified as

intermediate had used Basic quite extensively during the early stages of their

course. A final group of expert programmers consisted of subjects drawn from a

population of teachers of programming and professional programmers employed

in industry. None of the subjects in this group had less than 3 years post-degree

programming experience, while a number of members possessed over 10 years

post -degree experience.

Materials/Experimental Programs

Subjects were asked to produce programs from natural language specifications of

three problems. One of these problems was the 'rainfall problem' (see figures 8.1

and 8.2) used by Johnson and Soloway (1985). The second problem involved

determining whether an integer supplied as data was a prime number or not. The

third problem specification was concerned with the calculation of a maximum and

a minimum value from a series of numeric keyboard inputs.

210

PROGRAM Rain (INPUT, OUTPUT);
CONST STOP = 99999;
VAR Sum, Rain, Max, Ave: REAL;

Valid, Rainy, Dry: INTEGER;
BEGIN

....
....

' ...

Sum:= 0;
Dry:= 0;
Rainy:= 0
Max :=0;
Writeln ('E
Readln;
Read (Rain
WHILER

nter rainfall'):

);
ain < 0 DO

teln (Rain : 0: 2, 'is not a possible rainfall,
BEGIN

Wn
pleas
Rea

END;
WHILER

BEGIN
Su
IFR

e try again');
d (Rain);

ain <> STOP DO

m := Sum + Rain;
ain = 0 THEN

Dry:= Dry+ 1
EL SE ...,.

Rain :=Rain + 1; y y

t--

GUARDED COUNTER
VARIABLE PLAN
- Counts zero inputs -

GUARDED COUNTER
VARIABLE PLAN
- Counts positive inputs -

IF Rain> Max THEN Max:= Rain; ADD PARTIAL RESULTS
Valid:= Rainy+ Dry; •---------- PLAN
Writeln ('Enter Rainfall');
Readln;
Read (Rain);
WHILE Rain < 0 DO

BEGIN

-Combine counters -

Writeln (Rain: 0 :2, 'is not a possible rainfall, please try again');
Read (Rain);

END;
END;

END.

Figure 8.2. A standard Pascal solution to the rainfall problem with a number of plan structures
illustrated (from Johnson and Soloway, 1985).

212

Design

The experiment employed a program generation task. There were two independent

variables:-

1. Language - Pascal/Basic

2. Skill level - Novice/Intermediate/Expert

and two dependent variables:-

1. Number of jumps performed by jump-type classification (Inter/Intra-plan

jumps)

2. Length of pause between jumps by jump-type classification (Inter/Intra-plan

jumps)

8.4 Procedure

Subjects were presented with a short description of one of the three experimental

problems and were asked to generate a solution using a familiar full-screen editor.

They were allowed 5 minutes to complete this task. Subjects were not allowed to

use pencil and paper but could make on screen notes if they wished. Subjects were

asked to produce solutions in both Pascal and Basic, but the order in which they

were requested to code their solutions in either language was randomised. All

subjects attempted to generate solutions to all three of the experimental problems.

The order of presentation of these problems was randomised. Transcripts of all

on-screen activity were obtained for future analysis using the UMIST MMI

monitor (Morris, Theaker, Phillips and Love, 1988). This device enables

non-invasive recording of all user keystrokes and machine responses and provides

controllable real-time (and half-real time) playback of user activities via the host

machine. These transcripts were subsequently analysed for the presence of plan

structures in code, the occurrence and nature of plan jumps and the pause duration

between jumps.

213

A number of protocols were established in order to ensure a level of consistency

within these different measures. The presence of plan structures was analysed by a

group of three experienced programmers, all of whom were briefed about the

nature of programming plans and were informed which plans might be expected to

occur in each of the programs. These plans were derived from Johnson and

Soloway (1985). Each member of the group analysed all the resulting program

generation transcripts in terms of the expected plan structure of the program. They

were asked to associate each line of the program with a specific plan. The raters

were requested to carry out their analysis in terms of the plans identified by the

experimenter. However, they were encouraged to suggest other plans within the

program that were not made explicit in the initial plan analysis. It should be noted

that no new plans were identified during this process. Figure 8.3 shows two

program fragments illustrating comparable plan structures in Basic and Pascal.

Plan jumps were defined as follows: Intra-plan jumps were classified as

movements between a current cursor position to positions within the same plan

structure. Inter-plan jumps were classified as movements between a current cursor

position to positions within different plan structures. These protocols applied to

situations where new text was being inserted or existing text modified. Pause time

between jumps was recorded in milliseconds, but this level of recording sensitivity

was not thought necessary for the analysis. Hence, pause time is represented to

the nearest second.

Edits to line numbers in Basic and to indentation structure in Pascal were excluded

from the analysis since neither editing operation has a counterpart in the other

language. It was thought that inclusion of these data in the analyses could give rise

to difficulties in the comparison of plan editing between the two languages.

214

BEGIN
Sum:=O;
Rain:=O;

Read (Rain);
WHILE Rain <> 99999 DO

BEGIN
IF Rain<O THEN

ELSE
BEGIN

IF Rain=O THEN
Vaild := Vaild + 1

ELSE
BEGIN

Vaild := Vaild + 1
Rainfall := Rainfall + 1

END;
Sum :=Sum+ Rain
IF Rain> Max THEN

Max :=Rain
END

Read (Rain);

END;
Average:= SumNalid;

Figure 8.3a A Pascal program fragment indicating a running total loop plan and an
average plan

215

50 REM avrprob

80 LET Count = 0
90LET Sum =0
IOOREPEAT

140 INPUT New
145 IF New= 99999 THEN GOTO 170
150 LET Sum= Sum+New
160 LET Count= Count+ 1
170 UNTIL New = 99999

190 IF Count= 0 THEN PRINT "No legal inputs" ELSE PRINT
"Average is ... "; Sum/Count

Figure 8.3b). A Basic program fragment indicating a running total loop plan and an
average plan

Figure 8.3. Two program fragments representing similar plan structures in Pascal and
Basic. Note that these programs do not compute exactly the same function. This reflects
the variation typically found in the subject's answers.

8.5 Results

Plan jumps

Figure 8.4 shows the mean number of inter and intra-plan jumps performed by

subjects during generation by novice, intermediate and expert programmers using

either Pascal or Basic. These data were entered into a three-way analyses of

variance with the following factors in each case:

216

1). Skill level (novice/intermediate/expert)

2). Jump type (inter/intra-plan jump)

3). Language (Pascal/Basic)

No main effect of skill level or language was apparent. There was a significant

interaction between jump type and skill level (F2,132 = 6.34, p<O.Ol). This

appears to reflect the orthogonal relationship between inter and intra plan jumps

with increasing levels of expertise. In addition, a complex three-way interaction

between language, jump type and skill level was evident.(F2,66 = 3.72, p<0.05).

Separate ANOV As for the results from each jump-type classification were

employed in attempt to clarify the nature of this more complex interaction. These

ANOV As revealed that the skill level x language interaction was significant in the

case of the inter-plan classification (F2,66 = 8.43, p<O.Ol) but not for the

intra-plan classification. This interaction appears to be a consequence of the greater

number of inter-plan jumps performed by intermediate and expert Pascal

programmers in comparison to their Basic counterparts. There were no other

significant main or interactional effects.

217

{I)

0..

17

16

15

8 14
='

] 13
0..

'0 12
[)

§ 11-
z
§ 10
0 ::;;

c
Basic

•
• • . .

• • • • ..
~·

[1,' •

Novice

• Pascal

..

• •
• •

• • •

• •
• •

•
.

• • • •

• • . ~·
. . . • .

. . .

Intermediate

SKILL LEVEL

Inter-Plan Jumps

Intra-Plan Jumps

.

...... -•••

.·
. . .
. .

. . . .
.D

Expert

Figure 8.4 Mean number of inter- and intra-plan jumps performed by

programmers of different skill levels in Pascal and Basic during program

generation.

218

Pauses

Pause data (figure 8.5) was analysed in a similar fashion using a three-way

ANOV A. The three factor levels were the same as above. This analysis indicated

the following effects:

There was no main effect of either language or skill level. The effect of jump type

was highly significant (F2,132 = 18.2, p<0.01). There was a significant

interaction between skill level and jump type (F2,66 = 5.89, p<0.01) and a

three-way interaction between language, skill level and jump type (F2,66 = 10.74,

p<0.01). Again, separate ANOVAs for each jump type classification were carried

out. This procedure indicated that the language x skill level interaction was

significant in the case of the Inter-plan classification (F2,66 = 7.55, p<0.01) but

non significant for the intra-plan classification.

Additional language comparisons

A comparison of the average number of plans generated for different programming

languages (Basic or Pascal) revealed no significant difference between languages

(t-test). The average length (lines of code) of each plan did not differ significantly

between languages (t-test). In addition, the average length (lines of code) of Pascal

and Basic solutions did not differ significantly (t-test). However, novices

generated significantly fewer plans than both intermediates and experts, while a

comparison of intermediate and expert performance indicated no significant

difference in plan generation (t-test).

A measure of inter-judge scoring reliability was obtained in order to ensure a level

of concordance between the three judges assessing programs for the presence of

plans. A high coefficient of concordance was found to exist between judges

(Kendall's coefficient of concordance W = 0.77, p<O.Ol).

219

-u
~ en,
~ en
::I
CI:S
0..
0

...c
tin
t::

~
t::
CI:S
~

~

11

9

8

7

6

5

4

3

2

1

0

m Basic

• Pascal

&-------

•• • • • • .
• • • • • .

• •

Novice

................... --a-.

• •

• • •
• • • • • • • • • • • • . • • • • • • .

• • • • • .
• • •• ..

Intermediate

SKilL LEVEL

Inter-Plan Jumps

Intra-Plan Jumps

• • •
• • •

• •
• • • • .. . •'

~· . til

Expert

Figure 8.5. Mean length of pause (seconds) between inter- and intra-plan jumps

for different languages during program generation

220

In addition, a plan analysis of all the resulting program transcripts was carried out

by the experimenter in order to attempt to corroborate the results produced by the

analysts. Both analyses were carried out independently and there was a high level

of concordance between experimenter and judges analyses in terms of both the

plans that were identified (W = 0.57, p<0.01) and their identification with

particular lines of code in the program (W = 0.64, p<0.01).

The program transcripts were also analysed in terms of the comparative

distribution of plans in Pascal and Basic. This analysis was undertaken because it

is possible that the plans generated in one language might be implemented in a

localised group of statements, and in another language be more widely distributed

in the program, thus giving rise to problems interpreting the plan editing process.

Here, all lines in a program that corresponded to the same plan construct were

identified. Each set of program statements (corresponding to a particular plan)

were given the same label. Next the distance from the first line of a particular plan

to other lines comprising that plan were assessed. Hence, if the next line of the

plan was immediately adjacent to the initial line this was scored as zero, if it

occurred on the next line it was scored as one, and so on until reaching the last

statement of a particular plan. This procedure provides a broad measure of the

distribution of the elements of a particular plan . An average indication of plan

distribution in the two languages can be computed by summing these distribution

measures for each plan and dividing this by the total number of lines comprising

each plan. The average distribution measure for Pascal plans (0.11) did not differ

significantly from the average distribution measure for Basic plans (0.09), [t-test].

The fact that this distribution measure is greater than zero for both languages does

suggest some plan distribution, however this distribution is minimal and, by and

large, plans appear to be generated in spatially contiguous blocks of code in both

Pascal and Basic.

221

8.6 Discussion

Taken together these data suggest a rather complex relationship between skill

level, language and programming strategy. While they provide support for

particular elements within existing theories of programming, they also reveal some

of the more complex interactions between these elements which are not predicted

by such theories. For instance, as predicted by Rist (1986), the results of the

present study indicate changes in the strategic use of plans as skill levels increase.

Hence, the linear generation mode adopted by novices is replaced by a strategy

that appears to reflect a development in plan focus as expertise increases. This is

evidenced by the significant increase in inter-plan jumps with increasing expertise

and a concomitant decrease in intra-plan jumps during the program generation

task. These data also support a view of program generation that is similar to

Jeffries' (1982) analysis of the strategies involved in reading programs. Jeffries

found that experts read programs in the order in which they would be executed. In

contrast, novices tend to read programs from beginning to end, in linear order like

a piece of text.

In addition, the pause data suggests that as expertise increases the time spent

pausing between both inter and intra-plan jumps decreases. This may reflect the

type of speed-up function typically found in other studies of skilled performance

within both a general problem solving context (Anderson, 1982) and also within

the programming domain (Anderson, 1987; Wiedenbeck, 1985). Also, evidence

for plan boundaries is suggested by the interaction between jump type and skill

level for pause data. Hence, the pause time between inter-plan jumps is greater

than that between intra-plan jumps for all skill levels. As in other studies

(Haberlandt, 1980; Reitman and Rueter, 1980; Robertson and Black, 1986) this

suggests the existence of discrete plan boundaries in the programmer's knowledge

representation.

The effects of language on generation strategy are however rather less

straightforward. The model of coding presented by Green et a1 (1987) predicts a

clear relationship between the notational features of particular languages and the

development of programming strategies. Hence, if this model were correct, a

language such as Basic should inhibit plan use because of certain features of its

222

notation while Pascal, which is thought to offer greater plan discriminability,

should facilitate plan use. The results of the present study, however, suggest that

language has little overall effect upon programming strategy. This concurs with

results obtained by Bellamy and Gilmore (1990) which also failed to provide

evidence for a straightforward relationship between language and programming

strategy.

While the results of the present study do not reveal a main effect of language, they

do indicate a potentially interesting three-way interaction between plan-type,

language and skill-level. Further analysis suggests that this interaction results from

the fact that a greater number of inter-plan jumps are performed by intermediate

and expert Pascal programmers in comparison to their Basic counterparts. One

reason for this seems to be that the effect of notation in the determination of

programming strategy plays a greater role as programming skills develop, and

particularly at intermediate skill levels.

Additional evidence for this interaction effect is to be found in the analysis of

pause data during program generation. Once again no main effect language was

evident, however the language x skill-level interaction was highly significant in the

case of the inter-plan jump classification. From figure 8.5 it is clear that, for

intermediates, the length of pause between inter-plan jumps in Pascal is

significantly less than that occurring between inter-plan jumps in Basic. This may

suggest that as programming skill develops the notation of the language (and its

related plan discriminability etc.) has a significant effect upon plan use, but is of

little relevance as a determinant of strategy at lower and higher skill levels.

The interpretation of this effect may be quite straightforward. For the novice, plan

use is hypothesised to be minimal (as demonstrated in the present study), hence

one would not expect notational factors to play a role. As expertise increases then

the mean length of pause between inter-plan jumps for Pascal falls sharply. In

contrast, there is only a slight reduction in the mean length of pause for the Basic

data. Hence, for Pascal programmers, at the earlier stages of skill development,

the notation of the language appears to support the use of plan structures. This is

evidenced by the reduction in the mean length of pause which is taken to be an

indicator of the ease with which plan structures can be used (selected or

223

implemented). The small decrease in the mean length of pause for Basic

programmers at early stages of skill development is assumed to support the

contention that the notation of this language does not support the use of plans.

At later stages of skill development the results indicate an inversion of the above

results. Assuming a straightforward notational view we would expect to find a

linear relationship between the ability to use plans and increasing levels of

expertise, regardless of language. However, figure 8.5 illustrates that for Pascal

programmers the rate at which the mean length of pause reduces between

intermediate and expert skill levels is minimal. For Basic programmers, however,

there is a decrease in the mean length of pause between these particular skill levels.

Once again, these results give credence to the idea that at early levels of skill

development the notational aspects of Pascal support the use of plan structures,

but once expertise has developed to a certain point the effects of notation become

less important. For Basic, the development of the ability to use plan structures

appears to be hindered during the beginning stages of skill development.

However, the initial adverse effects of notation on plan use soon diminish as

programmers reach sufficiently high levels of skill. Hence, the question that needs

to be addressed is why plan use appears to be differentially affected by the

notational aspects of the programming language at different skill levels.

Green et al (1987; and see chapter 4) suggest that because of the limitations of

working memory, programmers need to make use of an external medium (eg the

VDU screen) as a temporary store for code fragments as they are generated. The

aim of Parsing is to recreate the original plan structure from these code fragments.

In addition, features of the notation of the language may aid or hinder plan use.

The formal structure of the programming language is not the only determinant of

strategy. According to Green et al, strategy is also affected by the user's

knowledge of how to perform external tasks- by their knowledge representation.

However, as we have seen in previous discussion of this work, no consideration

is given to the way in which the notational features of the programming language

and the programmer's knowledge representation might interact to determine

strategy.

224

Green et al claim that their parsing/gnisrap model is a model of expert coding

behaviour, but the results of the present study suggest that expert programming

strategies do not appear to be affected by notational features in the way that the

parsing/gnisrap model would predict. It appears from the data that the

parsing/gnisrap model provides a reasonable interpretation of intermediate

performance, where notation appears to influence programming strategy in the

manner predicted.

The model would, however, also predict a similar strategy to prevail during expert

performance. If we assume, not unreasonably, that intermediates and experts have

similarly constrained working memory, then the only other factor in the

parsing/gnisrap model, excluding notation, that might influence strategy would be

the programmer's knowledge representation. Hence, it appears that for experts,

features of their knowledge representation take precedence over notation as a

determinant of strategy.

Different notations are likely to facilitate parsing to a greater or a lesser extent

(Green, 1989). Hence, in terms of the above interpretation, experts appear to be

able to make use of some feature of their knowledge representation for programs

that enables them to parse for particular structures more readily. One way in which

parsing might be facilitated is via the recognition of 'beacons' which serve to

indicate the presence of particular program components. Wiedenbeck (1986a,

1986b) has demonstrated that experts can recall these key lines or beacons much

better than novices. In addition, the presence of beacons in programs has been

shown to facilitate program comprehension (Wiedenbeck and Scholtz, 1989).

These studies suggest that expert programmers possess and are able to access a

representation of programming knowledge which in some way reflects the

saliency of these key lines.

The results of the present study tend to support these findings and in addition

provide a means of examining the way in which programmers' knowledge

representations may develop. These data also suggest some quite subtile

interactions between developments in knowledge representation and general

notational features of particular languages. Hence, as programming skill develops,

225

features of the programmer's knowledge representation appear to reflect the

increasing role of 'beacons' and 'focal lines', etc., in the program comprehension

and generation process.

Hence, intermediate programmers, whom we might suggest are still involved in

the process of developing these particular features of their programming

knowledge, are likely to be affected, to a greater extent than experts, by the ease

with which they can parse existing program structures back into internal semantic

representations. The results reported above appear to support this argument and,

while not providing a basis for the rejection of existing models, clearly indicate the

need for a framework which can allow for the integration of a range of different

models in order to explain the richness of this particular form of behaviour.

8. 7 General Conclusions

8.7.1 Changes in programming strategy with expertise

The experiment reported in this chapter has demonstrated that a range of factors

may contribute to the determination of programming strategy. These factors

include the development of particular features of the programmer's knowledge

representation and the way in which the notation of a language might facilitate the

parsing of code structures into cognitive representations and vice versa. The

results of the present study provide evidence for changes in strategy which are

associated with increasing expertise. In terms of existing work, there appear to be

a number of ways of accounting for these differences in strategy.

Firstly, one of the outstanding features of expertise in programming, and in other

domains appears to be the particularly opportunistic nature of preferred cognitive

strategy for programming and other tasks. Hence, the programming activity

cannot be characterised as purely sequential, rather it might be better construed as

consisting of bouts of activity each of which involve the creation of code

fragments. These fragments are, in tum, continually re-evaluated and modified in

respect to the particular goal or subgoal currently under consideration. In addition,

the development of code may be postponed at any time in order that the

226

programmer might direct their attention to other goals or subgoals, possibly in

response to the recognition of previously unforeseen interactions between code

structures. Opportunistic strategies of this nature have been highlighted in a

number of previous studies concerned with both program design (Guindon, 1989;

Guindon, Krasner and Curtis,1987; Ratcliff and Siddiqi, 1985; Siddiqi, 1985;

Visser, 1988) and the coding activity (Green et al, 1987). The non-linearities

observed in the present study, which appear to characterise both expert and

intermediate program generation behaviour, may provide additional support for

this opportunistic view of the coding process.

An alternative view of the strategic changes that appear to accompany increasing

expertise might be to suggest that programming strategy is transformed from a

depth-first novice strategy to a breadth-first expert strategy. This position is

advanced by Jeffries et a1 (1981) who claim that novices adopt a depth-first

approach to problem solving in programming; that is, they tend to expand only

one part of a solution at progressive levels of detail. In contrast, experts tend to

synchronously develop many sub-goals at the same level of abstraction before

moving on to a lower level.

While the results of the present study provide evidence that programming strategy

changes with increasing expertise, they do not provide a means of distinguishing a

depth-first vs breadth-first view of the programming activity, such as that

suggested by Jeffries et al (1981), from an opportunistic characterisation of expert

programming strategy. However, this study does indicate various factors which

appear to contribute to the adoption of such strategies or to the ease with which

they might be supported. The framework advanced below suggests two central

determinants of programming strategy and stresses the fundamental importance of

their interaction in the development of strategy.

8.7.2 The role of knowledge representation in the determination of strategy

Firstly, it seems clear that the programmer's knowledge representation must

support the representation of salient code structures. Such structures, which might

be characterised as 'beacons' or 'focal lines', act as partial descriptions of

227

particular code fragments and provide reminders that a segment of a program may

need completing at a subsequent stage. In addition, the development of these code

structures appears to coincide with increasing expertise. This may suggest that as

expertise develops, knowledge structures change such that the organisation of

these structures reflects the increasing importance of 'focal lines' and 'beacons'

etc. Similarly, in the domain of software design, Jeffries, Turner, Polson and

Atwood (1981) found that although novices used the same general

problem-solving methods as experts, they lacked skills in two areas: applying

processes for solving subproblems, and effective ways of representing

knowledge. Jeffries et al attribute this latter deficit to the inadequacy of the

organising functions provided by the novice's immature design schema.

While the present chapter does not seek to deny the existence of generic declaritive

representations of programming knowledge (i.e., programming plans), it does

suggest the need to consider the development of an asymmetry in programmers'

knowledge structures with increasing expertise. Hence, such knowledge

structures appear to facilitate the representation of the 'focal' aspects of plans,

while the necessary, yet minor and subordinate parts of plans are represented with

less saliency. Here, we might the adopt the common view of natural language text

comprehension (Bower, Black and Turner, 1979; Kintsch, 1974; Rumelhart,

1975) and conceive of programming knowledge as being represented in terms of

hierarchically structured schemata, with focal plan elements achiveing prominance

in each plan or schemata hierarchy.

This model of knowledge representation in programming will be elaborated later in

this thesis (chapter 12). While this model clearly does not rule out a plan-based

approach, it does suggest certain limitations for the plan theory of programming.

For example, one implication of the present study is that it would appear that the

plan theory does not provide an adequate basis for a theory of programming

expertise. Hence, the expert programmer does not simply have more plans than

the intermediate. Rather, the development of expertise might be better

characterised as a 'fine-tuning' activity whereby the focal elements of plans are

identified and the kinds of knowledge asymmetry we have discussed are

established.

228

It is the case that novice programmers seem to be able to access fewer plans than

both intermediates and experts. This may mean that the plans novices are able to

access are poor matches to the current goal under consideration. Hence, novices

may feel the need to correct these badly-matching plans immediately. This may

give rise to the finding that novices tend to work on one plan at a time and to the

associated prevalence of intra-plan jumps that has been observed in the context of

novice behaviour. Conversely, experts, who have a greater range of plans may be

able to find better matches to a current goal and hence may be more prepared to

suspend the development of a particular plan until later. This view of the

development of programming expertise would suggest that programmers gradually

acquire program-specific plan constructs and as a consequence one would

presumably expect intermediates to possess a greater range of plans than novices

and a correspondingly smaller range than experts. However, the results of the

present study indicate that experts and intermediates generate the same number and

range of plans while novices, in comparison, generate significantly fewer plans.

This provides additional support for other findings reported later in this thesis. In

particular, intermediate and expert programmers appear to perform at the same

level when asked to detect plan violations in programs, suggesting a similar level

of plan knowledge. Novices, by contrast, are very poor at detecting plan

violations (See chapter 7).

In the present context, we might suggest that while both intermediates and experts

have access to the same number and range of plans, in the latter case the

representation of these plans has become attenuated in order to reflect a growing

recognition of the importance the focal aspects of these plans. In the final chapter

of this thesis a framework for understanding programming behaviour is advanced

which attempts to provide a richer account of the devlopment of knowledge

representation in programming. Here it is suggested that the behaviour of expert

programmers is governed largely by the implementation and comprehension of

focal plan structures.

The results of the present study contribute to our understanding of the processes

which underpin schema or plan development, and provides a framework for

elaborating the relationship between the development of knowledge structures and

expertise. This is likely to have implications for schema theory as it is applied in

229

other domains, since few studies have been concerned the detailed relationship

between schema development and expertise. Where this relationship has been

studied, expertise differences are normally explaned in terms of either the relative

completeness or incompleteness of schemas (Lesgold et al, 1988) or in terms of

the presence or absence particular schemas (Soloway, Adelson and Ehrlich,

1988). In the present context, emphasis is placed upon the way in which

knowledge is structured rather than upon the presence of schemas or their relative

completeness. This issue is considered in greater detail in chapter 10 where a

study is reported that indicates the central importance of schema restructuring in

the development of expertise.

8.7.3 Notation as a determinant of strategy

The second part of our framework is concerned with an analysis of the way in

which programming language notation might support programming strategy. One

of the more interesting findings of the present study is that notation does not

appear to support an opportunistic or a breadth-first strategy to the same degree for

programmers of different skill levels. That is, the effects of notation on strategy are

less extensive for experts than for intermediates. In terms of existing theory

(Green et al, 1987) this effect would not be predicted, since there is no reason to

believe that features of the task language notation should provide differential

support for programming strategy, regardless of a programmer's level of

expertise.

One way to explain this differential effect might be to suggest that notation and

knowledge representation interact very strongly to determine strategy. Hence, as

representations of programming knowledge are in the process of development, as

we suggest in the case of intermediates, then any additional means of facilitating

programming strategy, such as might be provided by certain features of the

notation, are likely to be of particular importance. At higher levels of skill, factors

relating to the organisation of knowledge appear to play a greater part in the

determination and the support of programming strategy.

230

In addition, the work reported here suggests a slightly different model of planning

to those models which are generally advanced as descriptions of the human

planning activity. Most extant models of planning embody some abstract notion of

the planning activity in which the nature of the problem representation is not

shown to have an effect upon the kind of planning or problem solving strategy that

is invoked. However, within the programming domain it is clear that features of

the notation of the task language can facilitate, or indeed act to constrain, the

preferred cognitive strategy that is adopted for this task. This is likely to have nore

general implications for the study of planning within the range of domains that use

formal or semi-formal notations to describe aspects of the problem space.

Consequently, it might be suggested that there are certain dangers in attempting to

divorce planning models from an analysis of the way in which tasks might be

represented.

8.8 Summary

The framework advanced here suggests a number of implications for our

understanding of the determinants of programming strategy. In particular, it is

clear that the role of both notation and knowledge representation cannot be fully

explained in isolation. This is because these factors appear to interact very strongly

to determine programming behaviour. Hence, it is only through an analysis of

these more complex interactions that a comprehensive elaboration of the

determinants of programming strategy will be forthcoming. This chapter suggests

the need to consider these interactions within a developmental framework. That is,

within a context which views the development of programming skill as

accompanied by subtle changes in the way in which programming knowledge is

represented. This 'fine tuning' of programming knowledge appears to provide

support for particular forms of preferred programming strategy. The use of such

strategies is in tum assisted by features of the language notation, but only during

the beginning stages of their development. As programming skill increases the role

of notation appears to take less precedence as a determinant of strategy.

This analysis suggests that previous studies which have examined the nature of

programming strategy only provide an interpretive basis within a rather limited

231

context. Hence, such studies, while emphasising the need to consider both

notation and knowledge representation, have failed to elaborate the relationships

and interactions between these factors within the general realm of skill

development in programming. This chapter attempts to build upon the results of

these studies, whilst at the same time stressing the fundamental nature of the

interactions between these central determinants of strategy. A comprehensive

understanding of the strategies involved in a complex task such as programming is

only likely to be facilitated if we can not only delineate the role of its individual

components, but also understand in detail the intricate nature of their interactions.

232

Chapter 9. Delineating forms of strategy and their relationship to

the development of expertise in programming.

9.1. Introduction

In the previous chapter an attempt was made to demonstrate the way in which

strategy may change with increasing levels of programming expertise. However,

the experiments reported there did not allow for a clear differentiation between

general forms of program generation strategy. Specifically, the findings reported

in the last chapter did not enable a distinction to be made between breadth-first

strategies and depth-first/opportunistic strategy. For that reason, the present

chapter aims to provide a more detailed analysis of the generation strategies

exhibited by novice and expert programmers.

The primary intention of this chapter is concerned with explicating the detailed

relationship between the knowledge restructuring process that is proposed in this

thesis and the emergence of particular forms of strategy. In particular, it has been

suggested that this restructuring process improves the accessibility of particular

elements of individual program schemata or plans. Moreover, it was suggested in

the previous chapter that elements which are prominent in the schemata hierarchy

are likely to be those which are salient to the programmer.

Extending this analysis further, Rist's concept of 'focal line' was adopted in order

to provide some means of equating this psychological saliency with specific

program structures. In terms of this analysis, it was hypothesised that focal lines

will tend to be generated first during coding, and that programmers, having

mapped out the general structure of the program at a high level of abstraction, will

return later to these focal structures in order to elaborate the code surrounding

them. This prediction is based upon the parsing-gnisrap model, however the

present analysis endeavours to exten<.f this model by both describing the salient

aspects of a programmer's knowledge representation and by demonstrating the

way in which this form of representation can affect programming strategy

233

In order to carry out such an analysis, an attempt has been made to define a

number of explicit levels of abstraction in program structure. This is based

partially upon Rist's model of focal expansion that was described in chapter 3.

Additionally, emphasis has been placed upon the derivation of general behavioral

regularities from data generated from a reasonably large number of subjects. Data

has been collected from a retrospective analysis of code generation rather than

from verbal protocols, as in Rist's studies, and this means that the imprecision

normally involved in classifying salient behavioral aspects of the programming

activity can be avoided. Collecting data in this way should reduce the inaccuracy

stemming from the linearisation effects that are common in subjects' verbalisations

about knowledge structures that have a significant temporal and/or spatial

dimension (Levelt, 1981). Such effects are likely to be of particular significance

in studies which use verbal protocols to provide evidence of particular forms of

strategy. In the context of the present study, however, abstraction levels can be

related explicitly to fragments of program code as they are generated. Hence, the

study relies neither upon concurrent verbalisation nor upon potentially imprecise

protocol classification schemes.

9.2 The programming task: Nonlinearities and focal expansion

Rist (1989) has proposed a model of program generation which traces the

evolution of a program through a number of stages (see chapter 3). An explicit

feature of Rist's model concerns the identification of levels of abstraction in

program structure. It is claimed that programs are built from simple knowledge

structures that are merged and combined to form more complex structures. Rist is

primarily interested in the processes that underlie the plan generation activity and

central to his theoretical explanation is the idea of focal expansion.

Focal expansion describes the process of generating a programming plan from a

so-called 'focal line'. In terms of Rist's account, each programming plan has an

associated focal line that directly encodes the goal of that plan. For instance a

'running total loop plan' will be associated with the focal line 'count:=count+ 1'.

The complete plan will also consist of an initialisation component and some means

of reading data values into the plan. The production of a program is seen to

progress through various stages beginning with the implementation of a focal line,

234

its extension to form a complete plan and finally to the creation of an entire

program through a process of plan merger.

The emphasis of Rist's model is concerned with the process of plan creation

through focal expansion, however little attention is paid to the process of plan

merger. This raises some important issues in the context of the present study. For

instance, are plans created in a linear order such that the programmer completes

one plan before moving onto the next? Or, conversely, are the focal lines of plans

instantiated first to provide an abstract skeletal program structure which can later

be extended to include less salient plan elements? The model of know lege

restructuring presented in this thesis would predict the latter, since focal lines are

taken to represent a single level of abstraction within a program structure.

Non-focal lines simply extend this plan focus. According to Rist (1989) "The

(plan) focus ... marks the start of detailed design in the domain of the program"

(p 403). The emphasis of Rist's model is, however, too constrained (considering,

in detail, only the move from focal line to programming plan) to explain possible

interactions between higher-level structures.

The present study attempts to address the issues outlined above by examining the

evolution of high and low-level program structures during a program generation

task. Information obtained from this analysis will provide some indication of the

form of strategy that is adopted for this task.

Following Rist, it is assumed that focal and non-focallines represent discrete

levels of abstraction within the program hierarchy. One implication of the model

presented in this thesis is that focal lines will be created before non-focal lines.

Hence, one level of the program hierarchy will be established before lower-levels

in the hierarchy are expanded.

Another way of investigating these issues is to explore more explicitly the nature

of the nonlinearities found to exist in code generation. In the previous chapter an

experiment was reported which explored these nonlinearities in the context of plan

generation in programming, but an analysis of nonlinearities can also provide

more specific evidence for the development of particular forms of strategy. In the

present context, interest is directed towards the nonlinearites occurring both within

and between hierarchical levels in program structure. Hence, a number of different

235

categories of nonlinearity are possible; jumps between a focal line and another

focal line; jumps between a non-focal line and other non-focal lines (within the

program's hierarchical structure). Conversely, jumps may occur between

hierarchical structures; from focal line to non-focal line or vice versa.

Although the present study is primarily concerned with the generation strategies

employed by experts, it has also been possible to investigate novice behaviour

within this context. Hayes-Roth and Hayes-Roth (1979) suggest that expertise

may influence the kind of planning model a planner or problem solver brings to

bear on a particular problem, however no further consideration is given to this

conjecture. Jeffries et al (1981) have shown that novices tend to adopt a depth-first

approach to design problem solving while experts favour a breadth-first approach.

Larkin et al (1980) have demonstrated that experts and novices employ different

strategies when solving physics problems. Experts tend to work forwards from

general physical principles to problem goals while novices work backwards from

the problem goal. With these notable exceptions, many previous studies looking at

both program tasks and at more general problem solving activities have failed to

elaborate the mechanisms that underlie the relationship between expertise and the

use of particular forms of strategy.

The model presented in this thesis makes two specific claims about the strategies

that will be adopted for program generation tasks. In the case of experts, a

top-down or breadth first strategy should be evident since it is suggested that

programs will be generated in a manner which reflects the hierarchical structure of

the programmer's knowledge representation. That is, one level of program

abstraction should be mapped out before other levels are elaborated. Specifically,

we have suggested that those structures representing focal lines will tend to be

generated first and that these will later be elaborated to include less salient elements

at other levels of abstraction. In contrast, it has been suggested that novice and

intermediate programmers do not typically posses this differentiated form of

programming knowledge. Hence, for these groups it might be predicted that

generation will be in schema order, and that this will be reflected in the adoption of

depth-first or opportunistically orientated strategies.

236

9.3 Participants, Procedure and Tasks

Forty subjects participated in this study. Subjects were split into two groups of

equal size. One group of subjects were classified as experts and the other as

novices. The expert group consisted of programmers/designers with a number of

years industrial experience (4 to 13 years. Mean, 5.6 years) and of teachers of

programming and software design, all of whom possessed previous industrial

software design experience. The novice group comprised a number of Second

year undergraduate students. Members of this group were drawn from the same

student cohort and all had been instructed in the basic principles of traditional

software design practice and structured prograrnrning.Subjects in both groups had

experience of the programming language employed for this study - Pascal. All

members of the expert group either taught Pascal or used it extensively in their

work, while all members of the novice group had attended a first year course in

Pascal and had used the language for project work.

Participants were asked to undertake a number of programming tasks of varying

difficulty. The simplest problem (derived from Johnson and Soloway, 1985)

required participants to construct a program that would calculate an average and a

running total from a series of input values. More difficult problems were based

upon Ratcliffe and Siddiqi's (1985) traffic counting task and a task derived from

Rist (1989) which required participants to sort 2113 weights into ascending order.

These problems might be considered to be fairly straightforward by professional

standards, however it is clear that they demand a significant degree of problem

solving behaviour- the more difficult tasks taking between 43 and 78 minutes for

experienced programmers/designers.

Participants were provided with short natural language specification of the

problems and were asked to write a program to solve each problem. Participants

were told that they could make on-screen notes if desired, but were requested not

to use pen and paper. No time limit was imposed on the tasks. Participants were

asked to type their programs onto a familiar full-screen editor. All on-screen

activities were recorded using the UMIST HIMS tool (Theaker et al, 1989); a

non-invasive recording and replay device providing a number of analysis facilities.

237

[].
[].
[].
[I) Sum:=O;
[I) Rain:=O;
[].
[].
[].
[R] Read (Rain);
Plan}
[E) WHILE Rain <> 99999 DO
[M] BEGIN
[E) IF Rain<O THEN
[].
[].
[M] ELSE
[M] BEGIN
[E) IF Rain=O THEN
[F)
[M]
[M]
[F)
[F)
[M]
[F)
[E)
[E)
[M]
[E)
[].
[].

Vaild := Vaild + 1
ELSE

BEGIN
Vaild := Vaild + 1
Rainfall := Rainfall + 1

END;
Sum :=Sum+ Rain
IF Rain> Max THEN

Max:= Rain
END

Writeln ('Please enter next value:');

[R] Read (Rain);
[M] END;
[F) Average:= SumNalid;
[].

{Running Total Variable Plan}
{Guard Plan}

{Guard Plan/Running Total Loop

{Running Total Loop Plan}

{Guard Plan}

{Guard Plan}
{Counter Variable Plan}

{Counter Variable plan}
{Guard Plan}

{Running Total Variable/Loop Plan}

{Running Total Loop Plan}

{Average Plan}

Figure 9.1. Program except illustrating plan structures and statement
categorisation. [F)= Focal Line; [R] =Read statement; [E)= Extension;
[!}=Initialisation and [M] =Miscellaneous.

238

The resulting programs were analysed for the presence of common plans by three

independent raters using a goal hierarchy (Bellamy and Gilmore, 1990; Gray and

Anderson, 1987). The plans that were identified varied little between the raters.

For each plan, the raters were asked to identify the focal line of that plan based

upon the definition provided by Rist (1989). Once again there was high degree of

agreement between raters regarding the identification of focal lines. Figure 9.1

presents a program except with plan structures highlighted and illustrates an

example of the coding scheme used to classify program statements. This coding

scheme allows each statement to be categorised either as a focal line (a line that

directly implement a current goal) or as a non-focal line. Non-focal lines may

consist of statements representing a focal line extension, a plan initialisation or a

read process (see Rist, 1989). All other statements were classified as

miscellaneous.

From the above analysis, and by replying on-screen activity, a retrospective

analysis of the temporal distribution of focal and non-focal lines was undertaken.

In addition, a number of nonlinearities could be classified. For this purpose a

nonlinearity was defined as a jump between one line of code to another. This

could be either to edit an existing line or to insert a new line. An analysis was

undertaken of the number of nonlinearities occurring between focal lines; between

non-focal lines and between focal and non-focal lines and vice versa.

9.4 Results

Figure 9.2 shows the mean number of focal and non-focal lines (representing

different abstraction levels) generated by both novice and expert programmers

during the experimental session. The number of lines generated within each block

consists of a simple count of the lines produced (focal or non-focal - according to

the protocol outlined above) during each 10 minute time period, and is therefore

not a cumulative count over the entire session.

239

5.0

"' ~ 4.0 c Expert Programmers
:§
';! •Novice Programmers

.8 3.0

......
0

] 2.0
s
::I z

1.0

"' ~
;§ 20
-a
~ 15 I c::
0 c::
'0 10
~
~ s

5 ::I z

t1 t2 t3 t4 t5 t6
..-.. ..-.. ..-.. ..-.. '(ii' ..-..
"' "' "' "' c:: c:: c:: .5 c:: "' c::
'§ '§ '§ E '§ '§
0 0 0 0 0 0 C'-1 rr> "'t V) \0 I 6 6 0

I
I

0 0 0 '-" C'-1 rr> ~ '-" '-" '-" V)
'-"

GENERATION BLOCK

Figure 9.2. Mean nunber of focal and non-focal lines generated by expert and

novice programmers during each generation block.

The cumulative mean number of focal lines generated by experts and novices over

all generation blocks did not differ significantly (t-test) (mean[Novices] = 10.4:

mean[Experts] = 9.4). Similarly, no difference was evident between the

cumulative mean number of non-focallines generated by these groups over the

same period (t-test) (mean[Novices] = 79.1 : mean[Experts] = 72.3).

These data were entered into a pair of two-way ANOV A's - one constructed with

the focal line data, and the other with non-focal line data. In each case the two

factors were:

240

- Group (Expert/Novice)

-Generation Block (t1 through t6)

For the focal line data no significant main effects were evident. However, a

significant interaction between generation block and group (F5,228 = 6.73, p <

0.001) was apparent. This interaction appears to reflect the decrement in focal line

generation that can be observed in the case of the expert group as the session

progressed. The novice group, in contrast, appeared to maintain a fairly constant

rate of generation throughout the course of the session. Further support for this

finding was provided by instituting multiple pairwise comparisons of means

between all adjacent generation blocks using the Newman-Keuls test with a

significance level of p < 0.01. In the case of the expert group, significant

differences were found to exist between blocks t1 through t4, with no significant

differences between t4 through t6. For the novice group there were no significant

differences in an identical range of post hoc comparisons.

Similar findings emerge from the non-focal data. Again, no main effects were

apparent. However, there was a significant interaction between generation block

and group (F5,228 = 10.32, p < 0.001). Multiple post hoc comparisons of means

indicated significant differences between blocks t2 through t4 for the expert group,

reflecting an increasing rate of non-focal line generation during this period. No

significant differences were evident for all other post hoc comparisons.

Figure 9.3 shows the number of nonlinearities occurring between and within

hierarchical level. For this purpose a between hierarchy jump was classified as a

jump between a focal line and a non-focal line or vice versa and a within hierarchy

jump as a jump between a focal line and another focal line or between a non-focal

line and another non-focal line. These data were analysed using a identical

procedure to the one reported above.

241

10.0

~
E 2.0
::I
£
-~ 1.5

:I:: 1.0 c
:§
~ 0.5

tl t2
,.-... ,.-...
0 -I 0 - t!,;, 0

3 0

s· 3
"' s· .._..

"' .._..

t3
,.-...

!:3 w
0

3 s·
"' .._..

C Expert Programmers
o Novice programmers

t4 t5
,.-... ,.-...
w -'>-
0 0

I J:,. VI
0 0

3 3 s· s·
"' "' .._.. .._..

GENERATION BLOCK

t6
,.-...
VI
0

I

~
3 s·
"' .._..

Figure 9.3. Mean number of Between and Within-Hierarchy jumps performed by

novice and expert subjects during each geneartion block.

The cumulative mean number of within hierarchy jumps for experts and novices

over all generation blocks did not differ significantly (t-test) (mean[Novices] =
12.5: mean[Experts] = 10.2). Similarly, no difference was evident between the

cumulative mean number of between hierarchy jumps for these groups over the

same period (t-test) (mean[Novices] = 20.9: mean[Experts] = 21.3).

These data were entered into a pair of two-way ANOVA's- one constructed with

the within hierarchy data, and the other with between hierarchy data. Again, the

two factors in both analyses were:

242

-Group (Expert/Novice)

-Generation Block (t1 through t6)

In the case of the between hierarchy data no main effects were apparent There

was, however, a significant interaction between Group and Generation block

(F5,228 = 4.23, p < 0.001), reflecting the decreasing rate of between hierarchy

jumps over generation blocks for the expert group. Multiple post hoc comparisons

reveal significant differences (p<O.Ol) between means for blocks t1 through t4 for

the expert group. No other post hoc comparisons proved to be significant.

For the within hierarchy data, there was an interaction between Group and

Generation block (F5,228 = 5.89, p < 0.001). Here, multiple post hoc

comparisons indicated significant differences between means for blocks t1 through

t5 for the expert group. Again, no other sigificant differences were apparent in the

case of the novice group in an identical range of comparisons.

9.5 Discussion

These results clearly have a number of implications for the way in which we might

attempt to characterise the program generation activity. Firstly, the strategy

adopted by experienced programmers appears to broadly correspond to the

adoption of a top-down, hierarchically levelled approach. Hence, the abstract

structure of the program, represented by the instantiation of focal lines, is mapped

out at an early stage in the evolution of the program. This high level structure

provides a framework around which the rest of the program can be built.

However, at many points during the evolution of the program, programmers can

be seen to engage in opportunistic behaviour - synchronously generating both

focal and non-focal structures. Hence, at any particular point during the

programming activity, behaviour might legitimately be described as opportunistic.

However, this clearly does not rule out the existence of a more global top-down

programming strategy.

243

At early stages during program generation, expert programmers make many jumps

between structures at the same level of abstraction. As the task progresses,

however, nonlinearities occur between hierarchical levels and strategy is seen to

become more opportunistically oriented. This corresponds to the findings that

emerge from the analysis of focaVnon-focalline data reported in the first study.

Taken together, these findings clearly demonstrate that different forms of strategy

may be adopted within the context of a single task, and further, that choice of

strategy may not be primarily determined by task characteristics as suggested by

existing work (Carroll et al, 1980; Hayes-Roth and Hayes-Roth, 1979). The

results reported here indicate that during the early stages of the development of a

program, opportunistic episodes are subsumed within a more general top-down

approach. However, during later stages, program generation takes on a more

opportunistic character as programmers begin to perform significantly more jumps

between distinct hierarchical levels.

A rather different picture emerges in the context of novice behaviour. Less

experienced programmers appear to display highly opportunistic behaviour

throughout the course of the programming activity. This finding is rather

surprising since all the programmers participating in this study had some training

and experience (albeit rather limited in the case of the novice programmers) in

top-down programming methodologies. One might reasonably expect this to be

reflected in the generation strategy that is adopted. However, in spite of this,

novice programmers appear to maintain a fairly constant generation rate for both

focal and non-focallines and tend to perform as many jumps between hierarchical

level as within. Such behaviour could only be described as opportunistic as it

reflects none of the characteristics that are implied by top-down models of

programming.

The mechanisms which might be thought to underlie the differences that have been

found to be associated with different levels of expertise are not clear. Anderson

(1983) suggests that behaviours which might be described as opportunistic

deviations from hierarchical problem solving may often arise as a consequence of

fairly simple cognitive failures. For instance, subjects may pursue details of a

current plan that is inconsistent with higher level goals simply because they have

forgotten or have misremembered these goals. Both Hoc (1988) and Guindon et al

244

(1987) have observed that even expert designers may experience difficulties

simultaneously considering all possible solution elements at a single level of

abstraction, thus leading to an opportunistic approach as opposed to a the adoption

of a strict top-down strategy.

From this we might conclude that opportunistic episodes arise largely as a

consequence of simple cognitive failures. By and large these failures appear to be

related to working memory capacity limitations. For instance, this is apparent

from the difficulties experienced by programmers in simultaneously maintaining

all possible solution elements at one level of abstraction. Opportunistic strategies

may be a symptom of these kinds of failure or alternatively it may be adopted as a

deliberate means of circumventing working memory limitations in order to reduce

the frequency and scope of possible failures. In the context of the present study it

is not possible to resolve this issue. However, the findings of a study reported in

chapter 11 of this thesis looking at the role of working memory and expertise in

programming shed some light upon the prevalence of opportunistic episodes in

programming behaviour.

Here it has been observed that expert programmers tend to rely extensively upon

the use of external memory sources (VDU screen, notes on paper etc) when

generating a program. Conversely, novices rely to a much greater extent upon the

use of internal memory to develop as much of a solution as possible before

transferring it to an external source. The reasons for this are as yet unclear.

However, such a strategy may give rise to the opportunistically oriented behaviour

evident in the case of novice programmers in the context of the present study.

Relying in this way upon internal memory sources means that novices will

experience difficulty simultaneously maintaining aspects of an emerging program

in memory. In particular, it will prove difficult to map out a global framework at a

single level of abstraction - that is, adopt a hierarchically levelled approach.

Indeed, Rist (1989) has found that novice programmers tend to adopt a very

localised coding strategy, which places a minimal load on their working memory,

and design the same part of a solution at different levels of abstraction. In contrast,

experts appear to employ a strategy that involves greater use of external media to

reduce working memory load. The present study suggests that expert

programmers develop solutions in a hierarchically levelled fashion and this may

245

only be possible if an external media is used to record partial fragments of the

solution as it develops. However, as the program evolves, experts seem to revert

to the more localised strategy that is evident in the case of novice behaviour, and

tend to engage in a greater frequency of opportunistic episodes.

One possible reason for this phenomenon may be that, in the case of expert

performance, there is a clear temporal separation between the progressive and

evaluative problem solving activities that are normally involved in the

programming task. Gray and Anderson (1987) suggest that problem solving

activities in programming can be described as either progressive (working directly

toward the goal state of a problem) or as evaluative (evaluating some already

executed part of the problem solution). One might speculate that expert

programmers will tend to engage broadly in progressive activities during the early

stages of a programming task and in evaluative activities toward its latter stages.

Hence, in the context of the present study, we might characterise the early

top-down stages of program generation as progressive and the later opportunistic

activities as arising from an evaluative process which has led to the location of

flaws in the emergent program. For novices, progressive and evaluative episodes

may be more closely linked and this is likely to be manifested in temporally

localised generation and monitoring activity. This may give rise to a more

systematic pattern of opportunistic episodes as small localised parts of an

emergent program are evaluated and then modified when necessary. In order to

provide additional support for this hypothesis, an analysis of the temporal

distribution of evaluative and progressive activities in a programming task is

presently being undertaken. This analysis is not yet complete. However, early

indications appear to provide support for notion that differences in expertise are

associated with distinct temporal patterns of progressive and evaluative activities

such as those discussed above.

9.6 Conclusions

The studies reported in this paper differ in a number of significant respects from

existing work which has examined salient behavioral characteristics of the

programming activity. In particular, the use of a comparatively large subject

246

group means that the possible confounding factors which might arise as a

consequence of intra-subject variation are minimised. In addition, it has been

possible to derive, from previous empirical work (Rist, 1989), a number of

distinct levels of abstraction within the problem space upon which to base a

behavioral analysis.

A number of interesting findings emerge from this analysis. Firstly, it has been

shown that opportunistic episodes may occur at any point during the evolution of a

program. However, this does not rule out the existence of an overall top-down

strategy. Hence, the clear dichotomy between top-down and opportunistic

approaches that is implicated in previous work may be unfounded. It is unlikely

that studies involving an analysis of the behaviour of a relatively small number of

subjects would make the observation of these regularities possible.

Secondly, it has been shown that the emergence of top-down or opportunistic

strategies is not task dependent as suggested by a number of previous studies.

Rather such strategies can co-exist within the context of a single task. However,

one form of strategy make take precedence over the the other at particular points

during the evolution of the program.

Expertise also appears to play a major role in the determination of particular forms

of strategy. For instance, novice programming behaviour appears to be

systematically opportunistic, displaying none of the characteristics of a top-down

approach. Conversely, expert programmers adopt a broadly top-down approach,

at least during the early stages of program generation. In this context, the notion of

the focal line appears to play a significant role in expert programming behaviour.

The experiment reported in this chapter has shown that experts tend to generate

focal lines first, providing a framework around which the rest of the program can

be constructed. This may arise as a consequence of the knowledge restructuring

process proposed in this thesis whereby the devlopment of expertise is seen to be

accompanied by the restructuring of plan/schemata structures such that focal lines

achieve promanance.

247

Finally, there appear to be clear differences between the temporal distribution of

opportunistic and top down episodes when comparing novice and expert

programming behaviour. It has been proposed that the pattern of this distribution

may be indicative of differences existing between experts and novices in terms of

the separation of progressive and evaluative programming episodes. It appears that

novices adopt a very localised evaluation strategy that is likely to give rise to

localised changes, and consequently to a systematic temporal distribution of

opportunistic behaviour. Conversely, experts tend to engage in evaluative

episodes toward the latter stages of the programming task, giving rise to an

asymmetrical pattern of top-down and opportunistic behaviour. The idea that

differences in expertise are associated with distinct temporal patterns of

progressive and evaluative activities is again only speculative. This hypothesis will

require further empirical support before any firm view can be established.

In conclusion, this chapter suggests a rather different view of the programming

activity to that proposed in previous studies. In particular, top down and

opportunistic strategies are seen to co-exist within the context of a single task.

Additionally, there appear to be clear differences between novice and expert

programming strategies. The psychological mechanisms that may underlie these

differences are as yet unclear, but further empirical studies will hopefully provide

a foundation for a more detailed analysis and specification of these mechanisms.

In particular, future experimental work should address the distribution of

progressive and evaluative episodes in program generation and the relationship of

this distribution to differences in expertise. This will provide more information on

the behavioral aspects of the programming activity and may contribute to our

understanding of more general problem solving tasks.

Another issue that will need to be addressed relates to the generalisability of the

present study. Programming is clearly taught in a top-down fashion and many

views of the program design process prescribe a top-down, hierarchically levelled

approach (see chapter 5). It may be the case that a rational top-down process of

this nature is not appropriate to the software design activity (Pamas and Clements,

1986). Such a view of the design process may stem from the tendency of previous

work to conflate descriptive and prescriptive accounts of the design activity

(Carroll and Rosson, 1985). However, the effects of the way in which

programming is taught are likely to be closely related to the way in which program

248

ming actually takes place. Hence, it is difficult to disentangle 'natural' preferred

programming strategies from those which are acquired and/or prescribed.

249

Clhlaqpteir liO. Klrnowledlge Irestnncturing in programming: Evidence foir

saliellllt n>syclhlological stiructures derived from reaction time and

erirors.

10.1 Introduction

This chapter explores in greater detail the relationship between knowledge

structure and organisation and the development of expertise in programming. An

empirical study is reported which provides support for the model of knowledge

organisation in programming that is presented later in this thesis (see chapter 12).

This model stresses the importance of knowledge restructuring processes in the

development of expertise. In the context of the present chapter, this is contrasted

with existing models which have tended to place unique emphasis upon plan or

schemata acquisition as the fundamental mode of learning associated with skill

development in programming and other domains (see chapter 3). For example, it

is clear from our earlier discussion of the plan theory of programming presented

by Soloway and others, that the development of expertise in programming

depends largely upon the acquisition of plans. This work not only neglects to

consider the detailed structure of plan knowledge, but also provides no indication

of the way in which plan structures are implemented as programs.

10.2 Schema theory and expertise

Schema theory provides the theoretical foundation for a great deal of work in

contemporary cognitive science (Schank and Abelson, 1977; Rumelhart,

1975).The idea that understanding and comprehension are mediated by schematic

stereotypical knowledge structures extends a tradition begun by Bartlett (Bartlett,

1932) and the Gestalt psychologists earlier this century. Contemporary schema

theory now underpins accounts of text comprehension (Kintsch and van Dijk,

1978) and complex problem solving (Larkin, 1983; 1985) and has been applied

250

more recently to a variety of HCI domains including text editing (Kay and Black,

1984) and computer programming (Soloway and Ehrlich, 1984).

The application of schema theory to our understanding of problem solving has

proved important for a number of reasons. Firstly, it provides a means of

describing fundamental aspects of a problem solver's knowledge representation

for a complex task. From this it should be possible to derive predictions

concerning typical problem solving behaviour in the context of a particular task

and to provide an indication of the sorts of errors that problem solvers are likely to

make in that task. Secondly, schema theory can provide an account of the way in

which knowledge representation may change with increasing expertise. A

description of this developmental process not only contributes to a theoretical

understanding of the evolution of complex skills, but can also pose implications

for instructional practice and for system design.

This chapter explores the relationship between the evolution of expertise and

schema development and organisation in the context of a programming task. The

chapter presents an empirical study which provides evidence for changes in the

structure of programming knowledge with increasing expertise.

10.3 Schema development and expertise

Previous work concerned with programming and other complex problem solving

tasks suggests a number of different ways of accounting for the development of

expertise and its relationship to knowledge structure and organisation. These

different views can be characterised briefly as follows:

251

Experts posses more schemata than novices

This is the position adopted by Soloway and Ehrlich (1984) in their analysis of the

development of programming expertise. They introduce the notion of the

programming plan to describe generic stereotypical knowledge structures or

schemata that guide problem solving behaviour in programming. Soloway and

Ehrlich claim that expert programmers possess this kind of programming

knowledge while novices typically do not. According to this view, expertise

develops through a gradual process of plan/schema acquisition and this process

would appear to constitute the basic mode of learning in Soloway and Ehrlich's

model. As a corollary, it has been suggested that one means of facilitating the

development of expertise is to teach such plans explicitly to beginning

programmers (Bonar and Cunningham, 1988).

Expertise and schemata content

Another way of accounting for differences in problem solving expertise is to

suggest that experts have more complete schemata than novices (Heller and Riff,

1984; Larkin, 1983; 1985). For instance, work by Chi, Feltovich and Glaser

(1981) concerned with physics problem solving behaviour, suggests that while

novices and experts may posses similar kinds of domain specific schemata,

experts are able to access extra knowledge in comparison to novices in terms of

elaborated schemata that represent general physical principles. Novices, by

contrast, appear to represent only the 'surface features' of a problem and their

problem solving behaviour is guided by keywords present in the problem

description and by stated domain objects. Weiser and Shertz (1983) have

replicated this finding for expert and novice computer programmers, thus

suggesting that schemata content is an important general characteristic of

competence in the programming domain.

252

Experts structure schemata differently

The studies reported so far in this thesis suggest a rather different view of the

relationship between expertise and the development of knowledge representation.

These studies suggest that experts may posses a greater number of program

specific schemata than novices. This accords with Soloway and Ehrlich's

characterisation of the development of programming expertise. However, as we

noted in chapter 7, intermediates appear to be able to access the same range of

schemata as experts. This is evidenced by the fact that intermediates can detect

violations to plan or schemata structure as proficiently as experts. This finding

would not be predicted by a view of programming expertise which places

emphasis on the acquisition of program specific schemata such as that proposed

by Soloway and Ehrlich. Rather, one would expect intermediate performance in

response to schemata or plan violation to be better than novice performance and

rather worse than expert performance. If one assumes that schema acquisition is

continuous and correlated with developing expertise, as suggested by Soloway

and Ehrlich, then these kinds of abrupt discontinuities in performance would not

be predicted.

The model of knowledge restructuring presented in this thesis suggests that skill

differences in programming may be related to the way in which programmers

structure their knowledge about the programming activity. In particular,

programmers who have attained high levels of skill appear to be able to access

program schemata in which certain salient program structures have achieved

prominence. According to this view, expertise is seen to be related in part to the

development of hierarchically structured schemata, rather than to a relatively

simple process of schemata acquisition.

Following Rist (1989) it is suggested that programs can be represented at different

levels of abstraction. Central to Rist's elaboration of schema development in

programming is the notion of the 'focal line'. According to Rist, a focal line

directly encodes the goal represented by a particular program schemata or plan.

253

For instance, a plan or schemata concerned with calculating a running total will

associated with the focal line 'count:=count + 1'. The complete plan will also

consist of an initialisation component and some means of reading and outputting

data values. Hence, one might conceive of focal lines as corresponding to the

highest level of schemata abstraction. The other components of a particular

schemata (i.e. non-focal lines) simply serve to extend this plan focus. This view

of the programming activity was presented in the previous chapter, and the

empirical data reported there appears to provide some support for this view.

If the development of expertise involves the restructuring of programming

knowledge such that certain salient structures achieve prominence, then one might

expect this to be reflected in the time taken to respond to the presence or absence

of certain forms of stimuli. For example, if focal lines are taken to represent

salient structures, then we might expect that when programmers are presented with

focal lines and asked to state whether they were contained within a previously

presented program which they were asked to memorise, they will respond faster

than when presented with lines representing non-focal structures.

Moreover, since this restructuring process is hypothesised to be related to skill

development, then we should expect to find differences between novice and expert

responses in the context of this task. In particular, in the case of novices we have

hypothesised that schema structures remain undifferentiated, hence we may predict

that response times to focal and non-focal lines will be broadly equivalent. In

contrast, experts will respond to focal lines more quickly than non-focal lines.

In the case of errors we might expect a slightly different result. For example, one

major claim of this thesis is that while experts and intermediates may be able to

access programming knowledge which has similar content, this knowledge is

structured differently in the case of experts, and that this differential structuring

leads to their enhanced performance in the context of certain tasks. If this is the

case, while we might expect reaction times to differ when comparing intermediate

and expert performance, their error rates should be broadly equivalent. These

254

specific hypotheses are evaluated in the experiment described below, in which

programmers of different skill levels were asked to memorise a program and were

then presented with probe items corresponding to focal or non-focal lines. A

number of these probe items were derived from the programs the subjects were

originally asked to memorise, while others were derived from other, similar,

programs.

10. 4 An experimental study of schema development in programming

10.4.1 Participants and procedure

The experimental study reported in this chapter employs a program memorisation

and recognition task to explore the form and content of knowledge representation

for programmers of different skill levels. Twenty Four subjects participated in this

study. These subjects were assigned to three groups of equal size according to

their level of programming expertise. The novice group consisted of first year

undergraduate students, all of whom had completed a short introductory course in

Pascal. The intermediate group was composed of second year undergraduate

students. All members of this group had undertaken an intensive 6 month Pascal

course during their first year of study and all had subsequently used this language

extensively in project work. The third group consisted of expert Pascal

programmers who were either teachers of Pascal or were professional

programmers.

Participants were presented with a number of short Pascal programs which they

were asked to memorise. These programs were drawn from the collection of

programs generated by subjects taking part in the experiment reported in the

previous chapter. The participants were then presented with a probe item (focal or

non-focal line) and were asked to state whether this probe item was present in the

original program.

255

Half of the probe items were derived from the programs the participants were

asked to memorise, while the remaining half were generated from other similar

Pascal programs. A measure of reaction time from the presentation of the probe

item to the subjects' response was collected together with information relating to

the frequency of errors. In this context an error could be said to occur when a

subject affirmed that a probe item was present in the original program when in fact

it was absent or vice versa. The results of this study are represented graphically in

figures 10.1 and 10.2.

The programs that were presented to subjects were classified according to the

scheme outlined in the previous chapter. A focal line was defined as the line of

code that directly implements the current goal of a particular programming plan.

Three independent raters identified the plan structures contained in each program

and then indicated the focal line associated with each of the plans that they had

identified. It should be noted that there was a high level of agreement between the

raters in terms of both the plans that were identified and their associated focal

lines.

10.4.2 Results and discussion

This study suggests that the transition from lower to higher levels of skill in

programming does not follow a continuous developmental path as might be

suggested by certain models of programming expertise. In particular, if expertise

depends upon the acquisition of program schemata or plans then one would

expect to find a roughly linear relationship between increasing expertise, the

number of errors made and the subjects' reaction time in response to probe items.

Hence, if experts possess a greater number and range of schemata than

intermediates or novices then one might hypothesise that experts would be able to

find a match to a probe item with greater speed and accuracy than both novices or

intermediates. Additionally, intermediates should perform with greater accuracy

256

and speed than novices. The results of the present study, however, do not provide

support for such a view. Rather, there appear to be clear discontinuities between

subjects' response times and the number of errors made when comparing the

performance of novices, intermediates and experts.

The results of this study also provide support for the view that knowledge

structures change with increasing expertise. Hence, experts respond to the

presence of focal lines with greater speed than both intermediates (t = 2.83, 14 df,

p<0.02) and novices (t = 5.72, 14 df, p<0.001). However, there is no significant

difference between experimental groups in terms of their reaction to non-focal

lines. This suggests that in the case of the expert group, focal lines are

represented with greater saliency than non-focal lines. However, subjects in both

the novice and intermediate groups do not appear to posses schemata which

differentiate between focal and non-focal lines. The error data indicates that

intermediate and expert groups identify both focal and non-focal lines with greater

accuracy than novices ([focal] tintermediate= 3.42, 14 df, p<0.01; texpert = 8.63,

14 df, p<0.001) ([non-focal] tintermediate= 5.83, 14 df, p<0.001; texpert = 7.93,

14 df, p<0.001).

257

Cl.)

"' c
0
Q.,

"' Cl.)
u

~
0
u
~

·100%-

50%-

0%

N E

Figure 10.1

% Correct response to probe item
for Novice (N), Intermediate (I) ani
Expert (E) programmers.

,-..

"' E ._,
Cl.)

.§
Cl.)

"' c
8.
"' Cl.)

~

2500- Focal lines

2000

1500

1000

500

D Non-focallines

N E

Figure 10.2

Mean response time (ms) to
probe item by Novice (N),
Intermediate (I) and Expert (E)
programmers.

Conversely, both the intermediate and expert groups identify focal lines with about

the same accuracy as non-focal lines (~ntermediate = 1.23, NS; texpert = 1.01, NS).

This finding supports the view that intermediates and experts are able to access

representations of programming knowledge which are composed of similar

components. However, as suggested by the reaction time data, these

representations appear to be differentially structured. In the case of the novice

group, performance is only slightly better than chance (t = 1.14, NS). Hence,

novice performance does not appear to be mediated by the possession of complete

schematic representational structures.

258

In summary, these results suggest that both intermediate and expert programmers

appear to be able to access abstract schemata based structures which represent

stereotypical programming knowledge. The error data for these groups implies

that these schemata have similar content since they give rise to equivalent patterns

of error behaviour for both groups. However, in the case of the expert group,

reaction time performance in response to the presentation of a probe item is

enhanced. This effect is hypothesised to be related to the existence of a structural

asymmetry in the expert programmers schematic representation of programming

knowledge.

10.5 Conclusions

The results of the experiment reported in this chapter suggest that knowledge

structures may develop via a restructuring process rather than through a process of

knowledge accretion which simply involves developing a larger repertoire of

plans. This view is similar to work by Lewis (1981) which suggests that algebra

skill depends partly upon the creation of single variables to replace complex

mathematical expressions. This restructuring or 'information hiding' process may

allow more complex problems to be accommodated within the limited capacity of

working memory thus facilitating problem solving.

Previous accounts of programming expertise have tended to emphasise the

development of extensive repertoires of programming knowledge rather than focus

upon issues relating to knowledge restructuring processes. This is exemplified in

Soloway's work on plans, where it is suggested that expertise simply involves

building a more extensive collection of programming plans together with the rules

which goven their use. However, as we have seen, the possession of plans per se

cannot be used to diffrentiate certain groups of programmers, especially at higher

levels of skill; namely at the point of transition between intermediates and experts.

The work reported in this chapter suggests that a more cogent account of skill

259

development might combine knowledge accretion with a restructuring process

whereby, once a sufficient library of plans has been constructed, fine-tuning or

restructuring takes place. This view is similar to Rumelhart and Norman's account

of skill devlopment which places central emphasis upon restructuring mechanisms

founded upon the accretion of a large body accumulated domain knowledege

(Rumelhart and Norman, 1978).

The model outlined above also has clear parallels with work on program beacons

reported by Wiedenbeck (1986). Wiedenbeck found that expert programmers

recall key lines (beacons) in a program much better than they recall non-beacon

lines. However, the recall of non-beacon lines does not differ significantly when

comparing novice and expert performance. This suggests that there are key

features of programs that play a focal role in program understanding, and from

previous work, it seems likely that these features guide the comprehension

(Brooks, 1983) of programs. Moreover, in chapter 8 it was suggested that these

focal structures may also play a significant role in program generation. The present

study advances this analysis by providing a means of defining salient knowledge

structures in programming in a less intuitive manner than has previously been

possible. In addition, the focal line analysis presented here extends existing plan

theory of programming by suggesting a model that can account for plan

restructuring and its relationship to skill development.

The articulation of this model suggests that previous accounts of skill development

in programming may be too simplistic to provide an adequate account of the

development of expertise in this domain. In particular, it has been demonstrated

that the existence of plans per se cannot account for the development of skill in

programming. Rather, what appears to be more important is the way in which the

organisation of individual schemata changes with increasing expertise.

260

Chapter 11. Expertise in programming: The role of working memory

and display-based problem solving.

11.1 Introduction

The work reported in this chapter represents an attempt to explore the role of

working memory in programming skill. Two experiments are reported in this

chapter which demonstrate that the development of expertise in programming does

not appear to depend upon an increase in working memory capacity or availability.

This fmding is unexpected given the importance placed upon working memory

capacity in other theoretical accounts of the development of complex skills. These

experiments provide evidence for an alternative view which suggests that expertise

in programming may be dependent upon the development of strategies for efficiently

utilising external displays for the purpose of recording intermediate states and

partially formed solution steps.

In this context, it appears that novices rely extensively upon working memory to

generate as much of a solution as possible before transferring it to an external

source. In contrast, experts engage in problem solving behaviour which is

characterised by the extensive use of an external display as an information

repository. This gives rise to a pattern of generation behaviour which manifests itself

in terms of a closely linked cycle of code generation and evaluation activities. One of

the most striking results of this work is that when experts are unable to use an

external display to support facets of this activity then their performance deteriorates

to the level typically exhibited by novices. These results are discussed in terms of a

framework which emphasises the role of display-based problem solving and its

contribution to strategy development. Finally, the implications of this study are

discussed in terms of its ability to account for performance in other complex problem

solving domains.

As we have seen in previous sections, until recently the prevailing focus of study in

the psychology of programming has been concerned with the organisation of

knowledge in long term memory and the role of certain forms of conceptual

organisation in program comprehension and the development of expertise.However,

261

more recent studies have moved away from the consideration of static knowledge

structures towards a view which emphasises the fluid and dynamic role played by

programming knowledge in both the generation of code (Green, Bellamy and

Parker, 1987) and in program design (Rist, 1986; 1989). Other studies have focused

upon the generative and evaluative aspects of the coding activity. For instance, in

chapter 8 the cognitive processes involved in programming were characterised by

studying the nonlinearities in program generation that are evident in naturalistic task

contexts. In a somewhat similar vein, Gray and Anderson (1987) have used

so-called 'change episodes' - key junctures in the coding process where

programmers make some change to their code - to highlight the important role played

by the evaluative or checking activities that are normally invoked during code

generation.

These studies have extended our basic understanding of the strategies employed by

problem-solvers in this relatively complex domain. However, they have tended to

provide only rather general descriptive accounts of the cognitive processes which are

thought to underpin the programming activity. Such studies have emphasised the

effects of either different knowledge structures or of the salient notational features of

the task language on the development and maintenance of particular types of

strategy. However, by and large, they have ignored, or have addressed in only a

cursory fashion, the nature of the basic cognitive mechanisms that may give rise

such strategies. For instance, while it is true to say that such studies have explored

the form of representation of programming knowledge in long term memory, and the

effect this has on problem-solving strategy, they have typically only briefly

addressed the role of other memory structures which may be closely implicated in

the emergence of typical forms of programming behaviour.

The study reported here seeks to extend existing work into the cognitive aspects of

programming by examining the role of one seemingly important cognitive

mechanism - working memory - in the development of programming expertise. In

addition, interest is directed towards understanding the way in which this limited

resource might influence the nature of the problem-solving processes involved in the

programming activity.

262

The role of working memory has been implicated in a number of previous studies of

programming behaviour. However, as a mechanism that might be thought to

strongly contribute to programming strategy, it has received little experimental

attention.

This chapter will begin by briefly reviewing the existing work on programming that

posits working memory as part of the framework within which the development of

programming skill is discussed. Studies of working memory from other problem

solving domains will be introduced in this section to provide a background to this

discussion and to indicate any points of commonality or departure from those

analyses suggested in recent studies of the programming activity. This provides a

basis for the two experimental studies reported later in this chapter. The first of these

studies looks at the effects of a straightforward articulatory suppression task on

programming strategy and explores the role of working memory in the development

of programming skill and its relationship to expertise.

The second study considers the relationship between working memory and the use

of an external memory source (in this case a VDU screen). Here the text editor used

to enter code was modified such that the order of program generation had to conform

to the final text order of the program. That is, the screen editor only allowed the

programmer to enter text vertically - top to bottom- and to move between adjacent

lines. This can be contrasted to the more typical use of a screen editor where

programmers can generate any part of a program in any particular order and can

suspend the development of code in one place to direct attention to other code

structures elsewhere, returning latter to fill in any remaining gaps.

A number of recent studies (Bellamy and Gilmore, 1990; Green et al, 1987 and see

chapters 8 and 9) suggest that this is the way programmers typically develop their

code. Conversely, if programmers have to commit themselves early to a particular

course of action and are not able to effectively use an external medium to record their

partially formed deliberations, then one might expect this to have both a detrimental

effect on performance and to place extra load upon working memory. Previous

studies which have explored the role of external memory sources have typically

restricted their analysis to situations in which external sources are used to support

long term memory (Intos-Peterson and Fournier, 1986; Schonflug, 1986a; 1986b).

263

The analysis reported here takes a different approach and considers the use of

external memory support for short term and transient memory constructs. This

approach also differs from other studies looking at the role of working memory in

complex tasks (Hitch, 1978; Staszewski, 1988) in that typically these studies have

required subjects to dispense with external aids even in tasks, such as simple

addition and multiplication, where such aids appear to be used extensively under

more normal circumstances.

The final section of this chapter is concerned with a detailed discussion of the

implications of these experiments for our understanding of the role of working

memory in programming and in other complex cognitive skills. In particular,

attention is directed toward the role of working memory in the development of

expertise, its role in complex planning tasks and mental simulation and in situations

where the potential exists for the deployment of external memory sources which can

be used to partially supplant internal sources.

11.2 The current status of working memory in studies of the programming activity

One of the most pervasive findings of recent research into the cognitive aspects of

programming is that programs are not generated in a simple linear fashion - that is,

in a strict left-to-right or first-to-last order (Bellamy and Gilmore, 1990; Green et al,

1987 and see chapters 8 and 9). Typically, programmers make many deviations

from a strict linear development path, leaving gaps in the emerging program which

are to be filled in later. Hence, the final text order of the program will rarely

correspond to its generative order.

Existing models of programming suggest a number of possible reasons for the

existence of such nonlinearities. For instance, Rist (1986 a and b; 1989) claims that

nonlinearaities in generation emerge as programmers build code structures around

so-called 'focal lines'. The development of expertise in Rist's model is based upon

the availability of knowledge and the notion of focal expansion. According to Rist,

as expertise develops, plan schema are retrieved rather than created and the evolution

of this process is reflected in the order of program generation. In terms of this

model, novices are seen to generate programs in a bottom-up fashion expanding

264

outwards from the plan focus, while experts are able to simply retrieve plans in

schema order, thus creating a pattern of top-down and forward program generation.

This explains the differences observed in Rist's study between the strategies adopted

by novices and by experts and the patterns of nonlinearities encountered.

Green et al (1987) have proposed a number of extensions to Rist's model. In the

parsing/gnisrap model of coding they describe the process by which a skeletal plan

is instantiated in a programming notation. In the context of Rist's model, focal lines

will be instantiated first and then other structures will be built around them. The

order of generation of the program is determined largely by the knowledge that is

available to the programmer and nonlinearities will only occur when a programmer

starts to interleave new plans into the existing structure. The parsing/gnisrap model

builds upon Rist's ideas but introduces one significant extension.

Unlike Rist's model, the parsing/gnisrap framework introduces a working memory

component into the analysis of coding behaviour. The parsing/gnisrap model has a

severely limited working memory capacity which forces it to use an external medium

(eg the VDU screen) when program fragments are completed or when working

memory has become overloaded.

In this model programs are not built up internally and then output to an external

media from start to finish with a generative order that reflects the final text order of

the program. This form of generation would presumably imply an unrealistically

extended (and sustained) working memory capacity. However, the working memory

limitations suggested by the parsing/gnisrap model give rise to other cognitive costs.

This is because programmers will need to frequently refer back to generated

fragments and in some way recreate the original plan structure which may have only

been partially implemented in code.

The parsing/gnisrap model, in its current conception, has primarily focused upon the

factors that influence the program parsing process. Hence, interest is directed

toward the way in which certain notational features of programming languages can

obscure or reveal the functional role of components expressed in that notation

(Gilmore, 1986; Gilmore and Green, 1988).

265

Bellamy and Gilmore (1990) examined the number of nonlinearities in terms of

whether they occurred between plans (in the Soloway sense) or within plans. Using

this technique they were able to compare predictions stemming from Rist's model

with those implied by the parsing/gnisrap model. In Rist's model nonlinearities will

only occur when a programmer starts to interleave a new plan into an existing

structure. The parsing/gnisrap model suggests that nonlinearities can occur in other

ways. For instance, minor parts may often be left out of plans and programmers will

return later (in terms of the linear structure of the program) to insert these code

fragments.

Hence, Rist's model suggests that there will be more between plan than within plan

nonlinearities, while the parsing/gnisrap model predicts that generation will be

broadly in plan order, but that within plan nonlinearites will occur because of

working memory limitations. The results of the Bellamy and Gilmore study broadly

support the predictions stemming from the parsing/gnisrap model and provide some

evidence for the influence of features of the notation of particular languages in

determining the nature of the parsing/gnisrap cycle.

11.3 External memory and display-based performance in problem solving

The parsing/gnisrap model displays several important commonalities with emerging

models of planning and problem solving in other complex domains. In particular,

this model stresses the role played by external memory sources as information

repositories which can be used to record intermediate problem solving states. In a

similar vein, work connected with the development of planning models in Artificial

Intelligence has suggested that actions are often enacted before plans or problem

solution sequences are complete (see chapter 2). In formulating this alternative

account of planning, these models stress the inexorable link between the planning

process and the execution of plans.

Models such as this differ significantly from the more classical accounts of planning

that have been previously articulated in Artificial Intelligence in that an entire

sequence of plans need not be worked out in advance. Rather, the effects of

implementing partial plans can be tested against the planner's expectations and

266

information may then be sought from the external world in order to reduce the

uncertainty that may be associated with the implementation of particular plans.

More recently, the role of external memory sources as repositories for search control

knowledge and intermediate state information has gained prominence in a variety of

problem solving models (Howes and Payne, 1990; Larkin, 1989; Payne, 1990; in

press). For instance, Larkin (1989) has proposed a production system model of

human 'display-based' problem solving (DiBS) where the system's working

memory is divided into two kinds of elements: those reflecting the problem solver's

internal goals and those representing features of external real world objects. As in

other production system models, specific productions are executed when their

preconditions are satisfied in working memory (Anderson, 1983). The associated

actions of these productions then act in turn to modify the content of working

memory. In terms of Larkin's model, these changes can arise in two ways -either

as changes to the physical world or as changes to the problem solver's internal

representation of goals and subgoals.

These accounts of problem solving and planning are clearly very similar in their

general form to emerging accounts of problem solving and planning in the

programming domain. For instance, a central feature of the parsing/gnisrap model is

the idea that code generation involves two fundamental psychological processes; one

in which the external structure (program code) is created from the internal (cognitive)

structure that represents the problem requirements and an inverse process by which

this internal structure is recreated when necessary from the external structure.

Similarly, Gray and Anderson (1987) stress the importance of the evaluation

episodes that are frequently seen to occur during code generation. The existence of

these evaluative activities presumably implies that programmers are able to extract

relevant information from the code that they have already generated in order to

inform their subsequent problem solving activity. This will necessitate re-parsing the

code and then matching it with an internal representation of plans and goals. Hence,

in terms of both of these models, the external display becomes a central repository

for intermediate state information when working memory is loaded. The

parsing/gnisrap model implies that code will not be generated in a linear fashion,

since code fragments will be externalised as soon as working memory is loaded or

267

when the programmer arbitrarily reprioritises some task that demands a different

series of activities than are required by the current goal.

11.4 Expertise and skilled memory theory

Although the parsing/gnisrap model relies extensively upon the notion of working

memory in order to explain the evident nonlinearites in program generation, it fails to

address several key issues in relation to the role of working memory that have been

raised elsewhere. One issue of particular importance is the relationship between

working memory and the development of expertise. The emphasis of the

parsing/gnisrap model directs our attention towards the effects of language structure

and notation on the parsing/gnisrap cycle. However the effects of skill development

on strategy are not considered.

In chapter 8 a study was reported looking at the nature of the nonlinearities found to

exist in a program generation task for programmers of different skill levels. One

fmding to emerge from this work is that experts perform a significantly greater

number of between plan jumps than novices and that novices correspondingly tend

to perform more within plan jumps- that is, adopt a linear generation strategy. This

result is unexpected for two reasons. On the one hand, the parsing/gnisrap model

assumes that working memory is a fixed and limited capacity resource. Hence, if we

assume that working memory is the only factor (excluding language features) to

influence the parsing/gnisrap cycle, then expertise should not affect the number of

between-plan nonlinearities that are evident in the generation task.

Conversely, if we consider working memory to be a more flexible resource with an

extensible capacity that is related in part to skill development (Chase and Ericsson,

1982), then we should expect to find the obverse result. Moreover, the chunking,

restructuring and compilation mechanisms that are central to many important

production system models of skill development should give rise to a reduction in

working memory load in the case of expert performance (Anderson, 1983; 1987;

Newell and Rosenbloom, 1981; Laird, Newell and Rosenbloom, 1988). Here, it is

assumed that the problem solving steps and intermediate states required to reach a

solution will be reduced in number when productions are collapsed, compiled or

268

otherwise restructured. This would presumably reduce the requirement to

concurrently maintain a large number of solution steps in working memory and

consequently increase its availability.

If we assume that there-parsing of some already generated output involves some

cognitive cost, then one might expect the development of programming skill to be at

least partly dependent upon a programmers ability to generate as much of the

program internally before writing it to some external source, and therefore reducing

the need tore-parse. However, the opposite appears to be the case. The results of

the experiments reported in chapters 8 and 9 may suggest that skilled programmers

make extensive use of an external memory source (i.e., a VDU screen) while

novices tend to rely to a much greater extent upon the use of internal memory to

develop as much of the solution as possible before transferring it to external

memory. In addition, novices appear to rarely change their output once it is

generated.

In light of the well documented relationship between working memory and the

development of expertise that has been observed in other domains (Chase and

Ericsson, see above) these findings are clearly rather anomalous. Given the

cognitive costs that are involved in continually evaluating and modifying generated

code, we require an explanation as to why skilled programmers rely so extensively

on external rather than internal memory sources.

One reason for this phenomenon might be related to the way in which programming

is taught - in particular to the effects of the teaching of program/software design, and

their emphasis on functional decomposition and stepwise refinement. The effect of

teaching programmers to decompose problems into manageable components, as

suggested by these methods, may have a strong influence on their adoption of

external sources- for instance, to record partially formed design decisions etc.- in

preference to a reliance on internal memory. Unfortunately, most existing studies of

working memory in the context of skill development have tended to artificially

restrict the task under consideration by disallowing the use of external sources.

Hence, the ecological validity of these studies may be limited to the rather unusual

skills that are considered. One important component of skill development in a

number of domains, including computer programming, seems to be the related to the

269

ability to efficiently use external memory sources - and this component has not been

extensively considered in previous studies of problem solving in complex domains.

Another factor that might give rise to a reliance on external sources is related to the

question of whether the working memory system has a semantic component. That

is, whether such a system can deal simultaneously with information derived from

different semantic categories or levels of abstraction. When developing a program,

information from a variety of sources needs to be assimilated, ranging from abstract

information about high-level goals and plans to very low-level information relating

to syntactic conventions etc. Indeed, the use of multiple forms of information is not

only evident in programming. For instance, Kaplan and Simon (1990) have

observed that problem solvers may need to search a variety of different problem

spaces. However, in Kaplan and Simon's framework it appears that problem solvers

are only able to access one problem space at a time. This is also evident in other

generic problem solving models - e. g., SOAR (Laird, Newell and Rosenbloom,

1987).

It has been argued that programming demands the assimilation of information from a

range of problem space representations (Pennington, 1987 a; Pennington and

Grabowski, 1990) and this assimilation of representations may need to be

coordinated and integrated simultaneously. However, this kind of coordination and

integration of information has been shown in many studies to place a significant load

on working memory (Elio, 1986; Logan, 1985; Schneider and Detweiler, 1987).

Hence, it may be the case that continually switching between these different

abstraction levels incurs too great a cognitive cost and that a more efficient strategy

may involve developing a solution at one level of abstraction before moving on to a

lower level. This may give rise to the observation that expert programmers appear to

develop their code from focal structures, building the rest of the code around these

fragments and using the external display as repository for intermediate solution

steps. Conceiving of the programming task in this way allows us to consider the

interactions between display-based problem solving and partial planning, and may

provide a more coherent understanding of the complex problem solving activities

that take place in programming and other tasks.

270

The nonlinearities observed in the context of skilled programming performance,

where high level components (focal lines) are generated first before other lower level

structures is amenable to this form of explanation. Of course, this form of top-down

development has been reported extensively in studies of the program design activity

(Adelson and Soloway, 1985; Guindon et al, 1987; Jeffries et al, 1981), but it is

usually accounted for in terms of the organisation of conceptual knowledge in long

term memory rather than in terms of more transient and short term memory

structures. As little seems to known about the possible semantic component of

working memory, an account of programming strategy based upon this kind of

working memory limitation seems to be equally valid.

Deviations from a top-down step-wise refinement approach to problem solving may

be caused simply by working memory capacity limitations. Hence, problem solvers

may simply forget details of their current goal and begin to pursue goals at other

levels of abstraction. However, an alternative explanation might be to suggest that

problem solvers find it more difficult to assimilate information in working memory

when it is derived from a number of different abstraction levels. Anderson (1983)

suggests this possibility when discussing proposed opportunistic control structures

for cognition (Hayes-Roth and Hayes-Roth, 1979) where information from a variety

of different hierarchical levels is assimilated in working memory during problem

solving activities. Anderson claims that opportunistic control of this kind "causes

problems because skipping among its many planes and levels makes unrealistic

demands on working memory" (p 130). Hence, we may suggest that in cases such

as this the use of an external display becomes paramount. Moreover, the typical

form of programming strategy exhibited by experts may simply be a manifestation of

the use of such external resources and the fact that this necessitates many interlinked

planning and evaluation cycles.

11.5 Experimental Studies

The present chapter seeks to explore a number of the issues outlined above in terms

of the two experimental studies reported in this section. While previous research

provides a strong indication of the role of working memory in programming, there

exists no empirical research which has addressed its role more directly. The standard

271

paradigm of working memory research is adopted for the first experiment. Here,

subjects were requested to carry out a straightforward articulatory suppression task

while engaged in a concurrent program generation activity. Here, the number of

within and between plan nonlinearities were recorded as were the number of errors

remaining in the program on task completion.

This experiment addresses a number of specific hypotheses. Firstly, if working

memory limitations cause programmers to make use of an external medium, as

suggested by Green et al, then the act of loading the working memory system

through a concurrent task should give rise to an increase in nonlinearities. Given the

effort required to use an external medium, in terms of the number of times a

programmer must engage in the parsing/gnisrap cycle, one would expect

experienced programmers to rely more extensively upon internal sources. Additional

support for this hypotheses also arises from a range of studies which suggest that

skill development is accompanied by an increase in working memory capacity or

availability (Chase and Simon, 1982; Staszewski, 1988).

However, the results presented in chapter 9 suggest a rather different picture and

indeed give rise to an opposing hypothesis, i.e., that skilled programmers make less

use of internal sources than do novices and tend to rely much more extensively upon

using an external medium to record partial code fragments as they are generated.

Hence, when working memory capacity is restricted this should give rise to a greater

number of nonlinearites in the context of novice behaviour and only a small

decrement in nonlinearites for experts. The first experiment attempts to address these

specific hypotheses by recording the nonlnearities in program generation for novice

and expert programmers under normal task conditions and in the situation where

working memory is loaded via a concurrent task.

The second experiment considers the role of working memory from a rather different

perspective. Here interest is directed towards the way in which restricting the use of

an external medium affects programming performance. In terms of the above

analysis, if programmers are not able to correct already generated code at later stages

in the coding process, then this should have an effect on their performance.

Programmers can use a variety of different media to record a program as it is

generated and the nature of this media is likely to affect the programming process

272

itself. For instance, pen and paper provides great flexability in terms of changing an

existing output- programmers can simply correct errors as they become apparent. In

addition, pen and paper can provide a means of indicating commitment to some

output - for instance, using light rather than heavy strokes (Green, 1989).

Screen editor~ can provide similar flexibility, but require users to engage in

additional effort in terms of formulating and issuing editing and search commands

etc. An example of a highly restrictive environment is that of a simple line-editor

where the complexity of editing and search is exacerbated, since users often need to

explicitly address a particular line of text to carry out some editing operation. One

can envisage even more restrictive environments where it is not possible at all to

decouple the order of program generation from its final text order. For instance,

Green (1989) suggests that the failure of a prototype Pascal speech-input system

was caused largely by the fact that users were required to dictate the program in final

text order, rather than in the order in which they might normally generate it.

The second experiment required subjects to create a program using a full-screen

editor that provided no opportunity for the subject to revise already generated input

or to insert new material into existing text. The use of such an editor will clearly

place a significant load upon a subjects working memory capacity since they will be

required to internally generate as much of the program as possible before

externalising it. Anderson and Jeffries (1985) have demonstrated that many errors in

programming arise when there is a loss of information in the working memory

representation of a problem. Hence, by placing emphasis upon the use of working

memory it should be possible to induce error prone behaviour that parallels that

evident when working memory is loaded in other ways, for instance via articulartory

suppression.

In terms of the previous discussion, we hypothesise that experts would perform

worse than novices when the device used to create the program is restricted in such a

way as to make retrospective changes impossible. This is based upon the

assumption outlined above which suggests that experts make more extensive use of

external sources to record partial code fragments that are then later elaborated and

extended through a closely linked cycle of generative and evaluative activities.

273

Conversely, it has been suggested that novices will tend to rely to a greater extent

upon generating as much of the program as possible internally before writing it to an

external source. It is clear that these strategic differences will be supported to a

greater or a lesser extent by the device used to create the program. Hence, for expert

programmers, it is hypothesised that restricting the device will cause them to revert

to a novice strategy, since they will then be unable to use the external display in the

normal way. This, in turn leads to the hypothesis that novice and expert error rates

will be similar in the restricted device condition, reflecting a decrement in

performance by the expert group.

Establishing support for this hypothesis would have a number of important

implications. Firstly, it would suggest that the development of expertise may not be

based simply upon the acquisition of knowledge about a particular domain. If this

were the case, we would expect experts to perform better than novices no matter

what constraints were imposed by the task environment. Secondly, it would indicate

that increased working memory availability, perhaps arising through some

mechanism such as chunking, does not necessarily lead to better performance.

If increased working memory availability is correlated with expertise, then experts

should perform better that novices in situations where they are required to rely

almost exclusively upon internal sources. If this is not the case, then it may become

necessary to review the central status of working memory in theories dealing with

the development of complex skills. One possible alternative explanation is to argue

that experts have developed particular strategies for dealing with task complexity that

involve close interaction with external information repositories to record partial

solution fragments as they are generated. If novices have not developed such

strategies, then it is unlikely that their performance would be affected significantly

by restricting the task environment.

This analysis can be further extended by attempting to classify the errors in the

programs generated by subjects. For example, a scheme devised by Gilmore

(1986b) suggests four main categories of error:

1. Surface level errors caused mainly by typing and syntactic slips: For example,

confusion between < and >, missing or misplaced quotes etc.

274

2. Control-Flow errors: For example, missing or spurious else statements, split

loops etc.

3. Plan-Structure errors: Including, guard test on wrong variable, update wrong

variable etc.

4. Interaction errors: A class of errors occurring at the point where structures of

different types interact: For example, a missing 'Read' in the main loop,

initialisations within the main loop.

Clearly some of these errors will be knowledge-based (specifically, plan-structure

errors) while others will be strongly dependent upon working memory limitations.

For example, both control-flow and interaction errors, since they depend upon the

establishment of referential links and dependencies between code structures, are

likely to be affected by working memory constraints. Hence, in terms of the first

experiment, we might expect that both control-flow and interaction errors will

predominate in novice solutions in the situation where working memory availability

is reduced. In the case of experts, it is argued that the interactions and

interdependencies between code structures will be evaluated in the context of using

an external memory source. That is, by reparsing existing code fragments in order to

reconcile them with the code the programmer is currently working on. As a

consequence, that the act of loading working memory will therefore not affect the

occurrence of these types of error.

In the case of the second experiment we would expect the converse. If experts are

not able to use the external display to aid problem solving in the manner predicted,

then it might be hypothesised that interaction and control-flow errors will

predominate in the condition where use of the device is restricted such that

retrospective changes cannot be made. It might also be predicted that this

experimental manipulation will not affect the occurrence of plan-structure errors

since these are hypothesised to be knowledge-based rather than strategy-based.

275

11.5.1 Experiment 1. The effects of articulatory suppression on programming

strategy and errors

Method

Subjects

Twenty subjects participated in this experiment. One group of ten subjects consisted

of professional programmers who were employed in commercial or industrial

contexts. All the subjects in this group used Pascal on a daily basis and all had

substantial formal training in the use of this language. Members of this group were

classified as experts. A second group of ten subjects consisted of second year

undergraduate students all of whom had been formally instructed in Pascal syntax

and language use during the first year of their course. None of these subjects had

used Pascal before, however some had prior experience of other languages

(predominantly BASIC and COBOL). Members of this group were classified as

novices.

Materials and procedure

A variety of suppression tasks were explored initially, but the more complex tasks

tended to disrupt performance to such an extent that a very simple articulatory

suppression task was adopted. This involved asking the subjects to repeat a string of

five auditorily presented random digits. Subjects engaged in this task until they had

completed the experimental session. Hitch and Baddeley (1976) found that a

concurrent task similar to this significantly affected verbal reasoning performance in

the context of an experimental task which involved fairly simple logical deductions.

Hence, it is reasonable to assume that this concurrent task would also affect

performance in a more complex activity such as programming.

The experimenter was present throughout the session in order to ensure that this

concurrent task was performed, and intervened only when the subject paused for

more than 5 sec. The subjects were requested to generate a fairly simple program

from a natural language specification. This specification required the subjects to

276

produce a program that could read a series of input values, calculate a running total,

output an average value and stop given a specific terminating condition (see chapter

6 for a full description of this specification). This specification was derived from

Johnson and Soloway (1985) and was chosen because it has formed the basis for

many empirical studies of programmers. Hence, it was assumed that the resulting

programs could be more easily analysed in terms of their constituent structures

(specifically, plan structures) and in terms of any errors remaining in the program

on completion of the task.

The subjects were allowed to study the specification for 2 mins. and were then asked

to generate a program corresponding to this specification while engaged in the

concurrent suppression task. The subjects were given 15 mins. to complete this

task, and were asked to work as quickly and accurately as possible. The subjects

typed their solutions onto a familiar full-screen text editor.

A non-invasive keystroke recording device was used to monitor the subject's

behaviour. This device provides facilities for replaying keystrokes via a host

machine. This replay was analysed to provide some indication of the temporal

sequence in which programs were generated by subjects. In addition, three

independent raters were asked to analyse all the resulting program transcripts for the

presence of plan structures and for errors. Within and between-plan jumps were

defined as follows: Within plan jumps were classified as movements between a

particular line of the program text to another line which formed part of the same plan

structure. Between plan jumps were defined as movements from the current line to

lines within different plan structures. These protocols applied only to situations

where the jumps was followed by an editing action (i.e., to insert, append or change

some text). Finally, the errors were classified according to the scheme described

above. That is, into surface, control-flow, plan or interaction errors.

277

Design

The experiment was a two-factor design, with the following independent variables:

1. Articulatory suppression/No suppression

2. Level of expertise- Novice/Expert

There were two dependent variables:

1. The number of Between/Within plan jumps during program generation

2. The number of errors remaining in the final program

Results

Plan-jumps

The results of this experiment are shown graphically in figures 11.1, 11.2 and

11.3. Figure 11.1 shows the number of within and between-plan jumps performed

by novice and expert programmers in the two experimental conditions. These results

were analysed using a three-way analysis of variance.

278

en
a.
E
~

c
ctS
a.

I

c
..c

en
a.
E
~

c
ctS
a.
I

c
Q)
Q)

~
Q)

III

·----- ---

•1---1 NOVICE GROUP

C- - -I EXPERT GROUP

....
~ ~ ~

... -.. ...

, ______________________________ ,

CONDITION 1
(No Suppression)

CONDITION2
(Suppression)

Figure 11.1 Number of within and between-plan jumps performed by novice and

expert groups in the two experimental conditions.

This analysis revealed main effects of suppression (F1 72 = 8.47, p<O.Ol) and ,

expertise (F1 72 = 12.56, p<O.Ol) on jump-type and a more complex interaction ,

between suppression and expertise (F154 = 4.73, p<0.05). A number of post-hoc ,

comparisons were carried out using the Newman-Keules test with an adopted

significance level of p<O.Ol. This procedure indicated that experts produced

significantly more between plan jumps than novices in the non-suppression

condition. Conversely, novices produced a greater number of within plan-jumps in

279

this condition. In the case of the suppression condition, there were no significant

differences between both within and between-plan jumps for either novices or

experts.

The results of comparisons across conditions indicated a significant difference

between the number of both within and between-plan jumps for the novice group.

No significant cross condition comparisons were evident in the case of the expert

group.

Errors

Figure 11.2 shows the total mean number of errors remaining in the programs on

task completion for novice and expert subjects in the two experimental conditions.

This was analysed using a two-way analysis of variance. This analysis revealed a

main effect of expertise (F1,36 = 9.37, p<0.01) and suppression (F1,36 = 4.54,

p<0.05) and an interaction between these two factors (F1,36 = 15.89, p<0.01). Once

again a number of post-hoc comparisons were carried out using the Newman-Keules

test with an adopted significance level ofp<0.01. This indicated a significant

difference in error rates in the both experimental conditions when comparing the

novice and expert groups. In addition, a significant difference between error rates

across conditions was evident for the novice group. In the case of the expert group

the same comparison proved not to be significant.

280

15
(14.5)

NOVICE GROUP

(4)

(3) -- --- - -- - -- - 0 ---o----------
EXPERT GROUP

CONDIDONl

(NO SUPPRESSION)

CONDIDON2

(SUPPRESSION)

Figure 11.2 Mean number of errors in each of the experimental conditions for

experiment 1.

Error classification analysis

Figure 11.3 represents the proportion of errors falling into each error classification.

In the case of experts, there is a fairly even distribution of error types across the two

experimental conditions. Indeed, further statistical analysis revealed no significant

differences between error types both within and between conditions (multiple

t-tests). In the case of the novice group, the distribution of error types is less

straightforward. In the non-suppression condition, novices produced a significantly

greater number of plan errors in comparison to the other categories (t-test).

Moreover, the only significant difference between the novice and experts groups in

this condition was the number of plan errors produced by the novice group (t-test).

281

In the second condition, the distribution of errors across classification types for

expert subjects was again fairly even. No significant differences between any of the

error classifications were evident (multiplet-tests). In the case of the novice group,

significantly more control-flow and interaction errors were evident in comparison to

the other two error classifications (t-test). Moreover, for the novice group,the

number of plan errors occurring in the second condition was significantly less than

in the first condition (t-test).

50

40

36

SURF ACE ERRORS

~ PLAN ERRORS

CONTROL-FLOW ERRORS

~ INTERACTION ERRORS

41

NOVICE EXPERT NOVICE EXPERT

CONDITION 1 CONDffiON2

(NO SUPPRESSION) (SUPPRESSION)

Figure 11.3 Proportion of errors in each error category in experiment 1.

282

Discussion

This experiment has clearly demonstrated that expert performance in programming

tasks is not significantly affected by articulatory suppression. Hence, for experts the

total number of errors remaining in the final program on task completion is not

significantly different in the suppression condition in comparison to the

non-suppression condition. Moreover, it appears that the nature of expert strategy is

similarly unaffected by this experimental manipulation. Hence, the prevalence of

between-plan jumps that is evident in the non-suppression condition for the expert

group is not diminished in the suppression condition. Similarly, the occurrence of

within-plan jumps does not differ significantly in the two experimental conditions.

Conversely, the novice group produced significantly more errors in the suppression

condition when compared to the non-suppression condition. In addition, the nature

of the coding strategy that they adopt is also affected. In particular, it appears that

novice programmers revert from a linear generation strategy characterised by the

prevalence of within-plan jumps, to a strategy more characteristic of experts. That is,

to a strategy which reflects a greater number of between-plan jumps.

In section 11.5 it was stated that expert programmers appear to rely much more

extensively than novices upon the use of external sources to record partial code

fragments and that the act of loading working memory or of otherwise reducing its

availability would not affect this process. Hence, in terms of that model, it was

suggested that experts will tend to engage in very closely linked cycles of planning,

subsequent code generation and evaluation. Since it is posited that this process relies

very little upon the programmer's working memory capacity it is reasonable to

expect that articulatory suppression would not affect the nature of performance in the

context of this task. The results of this experiment provide support for this view.

Conversely, it has been argued that novice programmers place much greater reliance

upon the internal development and simulation of code. In this case, it is claimed that

reducing the availability of working memory will cause the novice programmer to

revert to a strategy that necessitates more extensive use of an external media.

Moreover, it is hypothesised that this change in strategy will be reflected in the

number of discontinuities between discrete program structures. That is, in terms of

283

between-plan jumps. Once again, the results of this experiment provide some

evidence for this account of programming behaviour.

Further support for this view is evident in the error data. In the non-suppression

condition, novice subjects are clearly more error prone than experts. This finding is

not unexpected. However, in the suppression condition, the error rate for the expert

group changes little from this base line whereas the novice error rate more than

doubles. This may indicate that when working memory is loaded novices must

externalise information and that this constitutes a strategy which they find unnatural,

thus leading to an increased error rate.

A more detailed analysis of these errors in terms of the classification scheme

described in section 11.5 reveals a change in the nature of errors for novice subjects

between the two experimental conditions. Hence, in the non-suppression condition,

the novice group tend to make a greater number of plan errors, suggesting

knowledge-based difficulties. Conversely, in the suppression condition a greater

proportion of control-flow and interaction errors are evident. In terms of the analysis

presented in previous sections, the preponderance of control-flow and interaction

errors may simply reflect a difficulty in keeping track of the interdependences

between various elements in the emerging program. When working memory

availability is reduced it appears that novices experience some difficulty with these

interdependencies. Moreover, unlike experts, it appears that novices cannot use the

external display as an aid to memory to its full extent.

It could be argued that an alternative explanation for these findings is that experts

simply have an extended working memory capacity and are not affected to the same

extent as novices by a reduction in this capacity. Such an account would presumably

have no difficulty predicting the results of the experiment reported above.

In order to assess the cogency of this alternative explanation the second experiment

reported in this chapter adopts a rather different approach for exploring the

relationship between working memory and the development of programming skill.

In particular, if experts, for whatever reason, are able to extend their effective

working memory capacity or increase its availability in other ways then restricting

the task environment should not significantly affect their performance.

284

The second experiment reported in this chapter should be seen as complementary to

the first. Whereas the first experiment involved an attempt to reduce the subjects'

available working memory capacity, the second experiment has been designed so as

to encourage subjects to rely extensively upon working memory. Hence, if experts

have an extended working memory capacity then they should demonstrate

performance equitable to that displayed in the first experiment. Moreover, if this

extended capacity notion is correct, then clearly experts should perform better than

novices even in the situation where the task environment is severely restricted as is

the case in the second experiment.

11.5.2 Experiment 2. Effects of restricting the task environment

Method

Subjects

The same subjects participated in this experiment. However, the order in which they

took part in each experiment was randomised.

Materials and procedure

Once again, the subjects were asked to produce a program corresponding to a brief

specification written in English. This program (based upon the bank problem

described in Johnson, 1988. See figure 11.4) involved processing three types of

bank transactions. In this experiment, the nature of the task environment formed the

basis for the two experimental conditions. In one condition, subjects were aksed to

generate a program using a familar full-screen text editor. In the second condition

subjects used a modified version of the same editor, which allowed cursor movement

in only one direction. That is, from the top of the screen to the bottom. In addition,

the text editor allowed only cursor movement between adjacent lines. Hence, once a

subject had generated a line and pressed the return key, they were unable to then

return to that line to perform any subsequent editing operations. The editor did,

however, allow edits to the curent line being generated.

285

Write a Pascal program that can process three types of bank

transaction: deposits, withdrawals, and a special transaction that

indicates that no more transactions are to follow. Your program

should begin by asking the user to input their account id and initial

balance. The program should then prompt the user to input the

following information:

1. the transaction type

2. if it is an END-Processing transaction the program should print

out (a) the final balance of the users account, (b) the total number of

transactions, and (c) the total number of each type of transaction.

The program should then stop.

3. if it is a DEPOSIT or WITHDRAWAL, the program should ask

for the amount of the transaction and then post it appropriately.

Figure 11.4 A specification of the 'bank problem'

The subjects first participated in a 5 min. familiarisation session, where the basic

modifications to the editor were described. The subjects were then asked to attempt

to generate a program from the specification. They were told to be as accurate as

possible since they would be unable to change their input one they had pressed the

return key at the end of each line. They were asked to check each line of their

program before pressing the return key, in order to determine whether they were

satisfied with their response. Subjects in both conditions were given 15 mins to

complete this task. The subjects were randomly assigned to each of the experimental

conditions.

286

Design

This experiment was a two-factor design with the following independent variables:

Environment - restricted/unrestricted

Level of expertise- Novice/Expert

In this case the dependent variable was the number of errors remaining in the final

program.

Results

Errors

The results of this experiment are shown graphically in figures 11.5 and 11.6.

Figure 11.5 shows the total mean number of errors produced by the expert and

novice groups in the two experimental conditions. These data were analysed using a

two-way analysis of variance with the following factors; Environment (restricted or

unrestricted) and Level of expertise (Novice/Expert) This analysis revealed a main

effect of Environment (F1,36 = 5.74, p<0.05), a main effect of Level of expertise

(F1,36 = 4.21, p<0.05) and an interaction beween these two factors (F1,36 = 9.76,

p<0.01). A number of post-hoc comparisions were carried out using the

Newman-Keules test with an adopted significance level of p<O.Ol. This analysis

revealed a significant difference between the number of errors produced by novices

and experts in condition 1 (unrestricted environment). In condition 2 (restricted

environment), this comparison did not prove significant. Comparisons across

conditions revealed a significant difference in the number of errors produced by the

expert group, but no difference in the case of the novice group.

287

15

(10.5)

•

.
(4) ...

.
. ••

CONDITION 1

. . . .
. . ·
. . ·

. . . . ·

(NON RESTRICTED ENVIRONMENT)

. . . · • .
I •

. . .

. . · .
(15)
. e EXPERT GROUP

. · ... (12) ... NOVICE GROUP

CONDITION2

(RESTRICTED ENVIRONMENT)

Figure 11.5 Mean number of errors in the two experimental conditions in

experiment 1.

288

Error classification

The resulting program transcripts were analysed in terms of different error types

according to the classification scheme described above. The results of this anlysis

are shown in Figure 11.6. In the case of experts, there is a fairly even distribution of

error types in the first experimental condition. Indeed, further statistical analysis

revealed no significant differences between error types within this condition

(multiplet-tests). In the case of the novice group, the distribution of error types in

the first condition suggests a greater proportion of plan errors in comparison to the

other categories (t-test).

In the second condition, the distribution of errors across classification types for

expert subjects was rather more complicated. Here, experts produced a greater

proportion of control-flow and interaction errors in comparion to the other error

classifications (multiplet-tests). In addition, experts produced significantly more

control-flow and interaction errors in comparison to the first condition. Experts also

produced significantly more control-flow and interaction errors in comparison to the

novice group in this condition. In the case of the novice group, there were no

significant differences in terms of each error classification across the two conditions.

As in the first condition, novices produced significantly more plan errors in the

second condition.

289

50

SURFACE ERRORS 47

~ PLAN ERRORS

40 CONTROL-FLOW

en ~ INTERACITON
~ g
(I)

T9
9 30
4-<
0
s:::
0
E
0...

£

NOVICE EXPERT NOVICE EXPERT

CONDffiONl CONDffiON2

(NON RESTRICTED) (RESTRICTED)

Figure 11.6 Proportion of errors in each error category in experiment 2

290

Discussion

These results provide a striking demonstration of the effects of restricting the task

environment on problem solving performance. In previous sections it was argued

that experts rely to a great extent upon using the e.xternal dispaly to record fragments

of code that are then further elaborated at subsequent points during the generation

process. This led to the hypothesis that if programmers were unable to return to

previously generated fragments then they would be forced into a situation where

they would have to rely extensively upon working memory to establish the various

dependences and interactions between code structures. However, it appears that

while novices are seemingly unaffected by changes to the task environment, experts

not only perform worse than novices but also produce the kinds of errors that are

indicative of an inability to internally construct links and interdependencies between

code structures. Hence, these results reveal that experts produce more errors than

novices in the restricted task environment. Moreover, experts produce a significantly

greater number of control-flow and interaction errors in this second condition.

It was suggested in discussion of the first experiment that the results emerging from

that study might reasonably be interprited as indicating that experts have an extended

working memory capacity. However, if this were the case then the results of this

second experiment would appear to be rather anomolus. In particular, if experts have

an extended working memory capacity in comparison to novices, then we might

expect that situations which cause experts to rely upon working memory would not

give rise to such an extensive decrement in performance.

Moreover, there appears to be no reasonable explanation in terms of the increased

working memory capacity assumption as to why experts produce many more

control-flow and interaction errors in comparison to novices. Recall that in the first

experiment it was the novice group that displayed a greater frequency of

control-flow and interaction errors.

A more cogent explanation for these findings might simply involve suggesting that

experts rely upon external sources and are not able to efficiently revert to a strategy

that demands extensive reliance upon working memory. This analysis would

291

account for both sets of experimental findings. In the first experiment a reduction in

working memory availability did not affect expert performance.

This could clearly be accounted for in two ways. On the one hand, it could be

argued that experts simply have an extended working memory capacity. Conversely,

we might claim that experts rely extensively upon external sources and find it

difficult to adopt other alternative strategies. However, the second experiment

appears to suggest that the first of these explanations is incorrect. In particular, if

experts have an extended working memory capacity then we would expect them to

perform better than novices in situations where a reliance upon working memory is

necessitated. This appears not to be the case.

11.6 Conclusions

11.6.1 Working memory, display-based problem solving and the development of

expertise.

These experiments have clearly demonstrated that the relationship between skill

development in programming and working memory is not as predicted. Hence, it

appears that experts rely significantly upon external sources to record code

fragments as these are generated and then return later, in terms of the temporal

sequence of program generation, to further elaborate and extend these fragments. It

has been suggested that one of the major determinants of expertise in programming

may be related to the adoption or the development of strategies that facilitate the

efficient use of external sources. In contrast, novices appear to develop as much of

the program internally before transfering it to an external source. In addition, they

appear to rarely change their code once it has been generated

The reason why experts make such extensive use of an external medium is unclear.

This externalsiation of information clearly has a high cost in terms of the reparsing

or recomprehension of generated code that is implied. Hence, it might seem

counterintuitive to suggest that problem solvers will tend to rely upon this kind of

strategy rather than upon a strategy which involves the more extensive use of

working memory. However, this explanation is consonant with existing work which

292

has implicated display-based recognition skills in theoretical analyses of complex

problem solving (Larkin, 1989; Howes and Payne, 1990). The contribution of these

analyses has been important, however they have neglected to consider the

relationship between display use and expertise and the consequent effect that this

may have upon the nature of problem solving strategies.

It is clear that a problem solver's ability to maintain prior states of control and to

remember intermediate solution steps is severly limited (Greeno and Simon, 1974;

Simon, 1975). In addition, Hitch (1978) has shown that working memory errors are

reduced if intermediate results are utilised as soon as possible after they are

produced. These factors may give rise to the development of strategies which cause

the programmer to rely primarily upon the use of external memory sources.

The results of the experiments reported here question the cogency of accounts of

skill development which place central emphasis upon the assumption that experts

possess an extended working memory capacity or availability. In the case of expert

programmers, it has been show that articulatory suppression affects neither

programming strategy nor number of errors. This would be expected given the

increased capacity assumption posited in previous models. However, the results of

the second experiment would not be predicted on the basis of this assumption.

In particular, restricting the task environment such that the programmer must rely

more extensively upon working memory should affect neither strategy nor errors to

the extent that was apparent in this particular study. Since it is uncommon to see

expert performance reduced to level exhibited by novices, it might therefore be

assumed that restricting the environment in this way causes experts to revert from

their adopted strategy to one more characteristic of novices.

Not withstanding this, there is a significant amount of empirical evidence for the

increased capacity assumption, and as such it would be premature to reject it on the

basis of the experiments reported here. However, these experiments suggest that

display-based competence is an important factor in the development of expertise in

programming. The extent to which the development of such a competence is relevant

to other skills remains an important empirical question. Programming is clearly a

complex skill, and this complexity appears to necessitate the use of an external

293

medium. In the context of other skills, it may be the case that an external medium is

not available. Alternatively, other problem domains may not give rise to an extensive

number of interacting solution steps as is clearly the case in programming. Hence, in

other complex domains it is possible that there are very good reasons for relying

upon working memory.

The present study may be limited in terms of its ability to account for problem

solving strategies in other domains, although there are areas where this kind of

analysis appears to be relevant, e.g., in writing and text composition, where multiple

constraints and solution step interactions are inescapable (Flower and Hayes, 1980;

Sharples and O'Malley, 1988). While the analysis presented here may not be

appropriate to all problem solving domains, it is clear that, in terms of programming

at least, this study poses a number of implications which may challenge the validity

some of the claims made in previous analyses.

11.6.2 Working memory and the nature of errors

The work reported here has a number of implications for the way in which we might

attempt to explain the occurrence and distribution of different types of error. In

particular, it is clear that a certain classes of error can be attributed to working

memory limitations and that such errors are not distributed at random. In terms of

the error classification employed here, it appears that interaction and control flow

errors predominate in situations where working memory availability is reduced.

Previous work (Anderson and Jeffries, 1985) has suggested that errors arising from

working memory failures will occur at random. More recently, Anderson (1989) has

claimed that "working memory failures are slips at random and produce a wide range

of different responses and would not concentrate at one place in the protocol" (p

350). However, the results of the present study suggest that working memory

related errors may have a more systematic distribution, and that the type of errors

one might expect to occur may to some extent be predictable.

294

11.6.3. The role oflanguage features and the nature of task environments

Gilmore (1986a) has criticised Anderson and Jeffries' analysis of working memory

errors from a rather different perspective. Gilmore suggests that their analysis "is

very weak and its main impact lies in the new approach, rather than the detailed

analysis. The main weakness is that language features do not seem to be considered

relevant to the analysis. Anderson and Jeffries make no attempt to analyse the causes

of processing overload ... " (p 528-529).

This criticism is pertinent to the present analysis since the nature of display-based

problem solving in programming will be highly dependent upon features of the

particular programming language considered. For example, Green (1990; 1991)

suggests that some programming languages are "viscous" in that they are highly

resistant to local modification. In terms of the analysis presented here, less viscous

languages will provide better support for the kind of incremental problem-solving

processes that are proposed. Hence, we might predict that programmers using

different languages will make different kinds of error. In addition, since experts

appear to employ an incremental strategy and novices a characteristically linear

strategy, then it could be argued that some languages may be more suited to experts

and others to novices.

The language features described above will affect the strategies employed in the

generation of code. However, there are other language features which will affect its

comprehension. Gilmore and Green (1988) suggest that some languages are

"role-expressive" (for example, Pascal) in that they may contain a rich source of

lexical cues which enable a programmer to distinguish more easily the constituent

structures contained in a program written in that language. They contest that less

role-expressive languages (for instance, Prolog) are lexically more amorphous and

that such languages will not facilitate certain forms of comprehension.

More recently, claims have been made about object-oriented languages which may

provide support for the present analysis. For example, Rosson and Alpert (1990)

have claimed that such languages facilitate decomposition of the problem space by

enabling programmers to develop encapsulated chunks of code whose internal

operations are effectively isolated from other chunks. They go on to claim that this

295

form of decomposition will increase the amount of information that can be held in

working memory since objects in the problem space can be held as separable chunks

whose lower order implementation has no implications for other objects of interest.

This arises because object-oriented languages enable a programmer to establish an

abstract interface to a data structure which effectively hides the implementation

details from the procedure using that data. All access to a data structure is effected

via operations provided by the data structure's public interface. In object-oriented

languages, the data contained within an object are private to that object and are

accessible only via messages to the owning object (Micallef, 1988). Hence, the

message interface can make useful information about an object available while hiding

its implementation details (Goldberg and Robson, 1983).

Rosson and Alpert claim that this kind of encapsulation will reduce working memory

load since the programmer need not worry about the interactions between the object

they are constructing and other objects. This claim has not been subject to empirical

evaluation but the analysis presented in this paper would suggest that such a claim

may well be valid. One should note, however, that at other levels, the use of

object-oriented languages may place an extra burden upon working memory. In

particular, in most object-oriented systems one is forced to specify the relationships

among objects (or more accurately, among classes of objects) before operations

upon those objects can be defined. Detienne (1990) has shown that this requirement

causes considerable difficulties since changing the structure of an evolving program

can be very difficult. To avoid this problem, one might expect programmers to rely

upon working memory in order to establish relationships between objects and

classes before committing this structure to an external representation.

One issue that is important in the context of the display-based analysis proposed in

this paper is how one might begin to devise a scheme for externalising working

memory during program generation. In the realm of object-oriented languages it has

been proposed that one way of facilitating this is to provide a description level

similar to that found in bibliographic databases (Green, Gilmore, Blumenthal,

Davies and Winder, in press). Here, the problem is one of retrieving a target from a

partial description. Typically, bibliographic databases not only represent attributes of

a text itself but also additional key words which can be used for searching and

browsing. In programming terms, descriptors might be based upon persistent (eg.

296

functional subsystems) or transient (eg. a set of items to be documented)

relationships between code structures; chronological relationships (eg. code

developed or tested at a particular time) etc.

Providing this additional representation of a program may facilitate the

recomprehension process that is central to the analysis presented in the present

chapter. In particular, the provision of a description level could make certain

relationships salient within a given task context, thus facilitating display-based

recomprehension. Indeed, even such things as simple colour cues or tags (Lansdale,

Simpson and Stroud, 1988) which identify commonalities between important code

structures may facilitate the representation of salient relationships. Clearly there is

significant scope for further research into mechanisms which can support both the

externalisation of working memory and the recomprehension processes that appear

to be central to display-based competence.

The language features described in this section are important in terms of the present

analysis, since the incremental nature of code generation and

comprehension/recomprehension will clearly be affected by the nature of the

language. The present analysis extends existing work by suggesting ways in which

language features and strategy may interact in concert with features of the task

environment to give rise to particular forms of behaviour. It should be noted that

these effects would not taken into account by display-based views, since the salience

of particular features of the display remains undifferentiated. Hence, one important

extension to the display-based models of problem solving would be the

incorporation of a mechanism which allows one to specify the salience of particular

display-based features.

The analysis presented here also suggests that problem solving success in

programming will in part be determined by the nature of the task environment. Of

particular importance will be the extent to which an environment supports nonlinear

generation strategies and the ease with which changes to existing structures can be

effected. These considerations may shed light upon the finding that the use of certain

forms of programming environment can be frustrating for experienced

programmers. For instance, Neal (1987 a and b) has conducted a number of studies

exploring the efficacy of syntax-directed editors. Such editors provide syntactic

297

templates for particular structures. Hence, in Pascal, if the programmer inserts a

'begin' statement, a corresponding 'end' statement will be generated automatically.

Neal found that experienced programmers frequently expressed dissatisfaction with

such editors. Neal (1987a) comments that expert programmers "felt that to enter a

program they had to do much more, both conceptually and physically because of the

methods allowed for inserting and changing text ... " (p 100). Neal's findings

together with those reported in this paper suggest that environments intended to

support the coding process should provide the flexibility to support both incremental

development and change.

11.7 Summary

The experiments reported in this chapter suggest that the development of expertise in

programming is dependent upon the adoption of strategies for effectively utilising an

external display. Moreover, these experiments have demonstrated that increased

working memory capacity or availability is not a necessary prerequisite of skilled

performance in this domain. Rather, skilled programmers appear to engage in

closely linked cycles of code generation and evaluation activities. According to this

model, code is generated in a fragmentary fashion and the display is used as a

repository for recording intermediate solution steps. In addition, it has been argued

that the success of this strategy will depend upon features of the programming

language and upon the nature of the task environment.

While the analysis presented in this chapter has indicated the importance of

display-based performance in programming, it has also suggested two primary

limitations of this general approach. Firstly, existing accounts of display-based

problem solving ignore the apparent relationship between expertise and the

development of strategies for utilising display-based information. Secondly, such

accounts do not consider the possibility that different forms of display-based

information will be differentially salient in the context of a given task. Further

developments of display-based accounts of problem solving will need to address

these issues if they are to provide a full and coherent description of human problem

solving in the context of complex tasks.

298

Chapter 12 Knowledge restructuring processes and the

development of expertise in programming

12.1 Summary of experimental work

Two experiments were reported in chapter six which highlighted the effects of

design experience upon the nature and development of programming plans.

These experiments showed that the plan theory cannot account straightforwardly

for the differences between novice and expert programming performance. In

particular, they demonstrated the important role played by the acquisition of

design-based knowledge in the comprehension of programs. The implications of

these experiments are that current views concerning the nature and development

of programming plans are flawed in two ways. On the one hand, the notational

view is too narrow in its perspective because of the emphasis it places on notation

at the expense of other demonstrably important factors. On the other hand, the

views expounded by the Soloway group reflect a fundamental confusion between

the measurement of plans and their use in theoretical explanations of expert

performance. Hence, neither provides a sound theoretical basis for a full

psychological theory of programming.

Subsequent experiments reporteded in this thesis suggested that the development

of expertise in programming does not simply involve the accumulation of plans.

Rather, programming expertise appears to depend upon the structuring of

programming knowledge such that certain salient plan elements can be retrieved

and accessed more quickly. It may be the case that design training facilitates this

structuring process by encouraging programmers to focus upon the salient

elements of plans. In addition, this might be expected to enhance the mapping

between the language and problem domain that is discussed above, by providing

a means of applying the salient features of plans and establishing the links

between them.

The results of the experiment reported chapter seven extend this theme by

providing general support for the idea that the possession of plans per se does not

necessarily guarantee the same level of programming performance for different

299

groups of subjects. Hence, in the context of that experiment, while intermediates

were to be able access the same plan knowledge as experts, they were able to

achieve this more effectively, as evidenced by their greater speed.

The implications of this experiment are twofold. Firstly, it seems clear that a

programmer's knowledge representation must support the representation of

salient code structures. Such structures, which might be characterised as

'beacons' or 'focal lines', act as partial descriptions of particular code fragments

and provide reminders that a segment of a program may need completing at a

subsequent stage. In addition, the development of these code structures appears

to coincide with increasing expertise. This may suggest that as expertise

develops, knowledge structures change such that the organisation of these

structures reflects the increasing importance of 'focal lines' and 'beacons' etc.

The results of the experiments presented in chapter 8 contribute to our

understanding of the processes which underpin schema or plan development, and

provide a framework for elaborating the relationship between the development of

knowledge structures and expertise. One of the more interesting findings of the

study presented there was that notation does not appear to support an

opportunistic or a breadth-first strategy to the same degree for programmers of

different skill levels. That is, the effects of notation on strategy are less extensive

for experts than for intermediates.

One way to explain this differential effect might be to suggest that notation and

knowledge representation interact very strongly to determine strategy. Hence, as

representations of programming knowledge are in the process of development, as

we suggest in the case of intermediates, then any additional means of facilitating

programming strategy, such as might be provided by certain features of the

notation, are likely to be of particular importance. At higher levels of skill, factors

relating to the organisation of knowledge appear to play a greater part in the

determination and the support of programming strategy.

A number of interesting findings emerged from this analysis. Firstly, it was

shown that opportunistic episodes may occur at any point during the evolution of

a program. However, this does not rule out the existence of an overall top-down

300

strategy. Hence, the clear dichotomy between top-down and opportunistic

approaches that is implicated in previous work may be unfounded. Secondly, it

was demonstrated that the emergence of top-down or opportunistic strategies is

not task dependent as suggested by a number of previous studies. Rather such

strategies can co-exist within the context of a single task. However, one form of

strategy make take precedence over the the other at particular points during the

evolution of the program.

Expertise also appears to play a major role in the determination of particular

forms of strategy. For instance, novice programming behaviour appears to be

systematically opportunistic, displaying none of the characteristics of a top-down

approach. Conversely, expert programmers adopt a broadly top-down approach,

at least during the early stages of program generation. In this context, the notion

of the focal line appears to play a significant role in expert programming

behaviour. The experiment reported in chapter 8 demonstrated that experts tend to

generate focal lines first, providing a framework around which the rest of the

program can be constructed. This may arise as a consequence of the knowledge

restructuring process proposed in this thesis whereby the devlopment of expertise

is seen to be accompanied by the restructuring of plan/schemata structures such

that focal lines achieve promanance.

The results of the experiment reported in chapter 9 suggested that knowledge

structures may develop via a restructuring process rather than through a process

of knowledge accretion which simply involves developing a larger repertoire of

plans. Previous accounts of programming expertise have tended to emphasise the

development of extensive repertoires of programming knowledge rather than

focus upon issues relating to knowledge restructuring processes. This is

exemplified in Soloway's work on plans, where it is suggested that expertise

simply involves building a more extensive collection of programming plans

together with the rules which goven their use. However, as we have seen, the

possession of plans per se cannot be used to diffrentiate certain groups of

programmers, especially at higher levels of skill; namely at the point of transition

between intermediates and experts.

301

The final experiment indicated the importance of display-based performance in

programming and suggested two primary limitations of this general approach.

Firstly, existing accounts of display-based problem solving ignore the apparent

relationship between expertise and the development of strategies for utilising

display-based information. Secondly, such accounts do not consider the

possibility that different forms of display-based information will be differentially

salient in the context of a given task. Further developments of display-based

accounts of problem solving will need to address these issues if they are to

provide a full and coherent description of human problem solving in the context

of complex tasks. In the context of the present discussion it was suggested that

focal lines would be diffrrentially salient and would form a kemal around which

code could be built. We suggested that the primary mechanism in code generation

was based upon the close interaction between planning and re-evaluation which

demands extensive reliance upon information that had previously been

extemalised.

12.2 An overview of the framework - Knowledge restructuring in programming

These experiments form the empirical basis for the central argument advanced in

this thesis. This argument proposes that the possession of plans or of other

schematic programming knowledge structures does not in itself provide an

adequate account of the development of expertise in programming. The

experiments reported in this thesis have demonstrated that programming expertise

depends not only upon the possession of plans but also upon the structure of plan

knowledge and upon the way in which such knowledge can be used to guide

strategy. For example, the experiments reported here have shown that

intermediate and expert programmers can display similar levels of performance in

certain tasks which require the application of generic plan knowledge. However,

in contrast, other features of performance appear to be dependent upon the level

of expertise of the programmer. The results of these experiments have been taken

to imply that while intermediates and experts may be able to access a similar

range of plan structures, they appear to use these knowledge structures rather

differently during both program generation and comprehension. The reasons for

this appear to be related to the way in which this knowledge is structured.

302

To account for this phenomena, it has been argued that the development of

programming expertise is underpinned by a knowledge restructuring process,

leading to the development of hierarchically structured schemata which emphasise

the salient aspects of each plan or schema structure. It has been suggested that

this restructuring process may give rise to differences in the observed program

generation strategies that are adopted by programmers of various skill levels.

Hence, it has been demonstrated that expert programmers adopt a strategy

whereby the focal aspects of plans are generated first and other program

structures are built around them. This can be contrasted with other models of

program generation, for example that presented by Rist, which predicts that

experts will adopt a sequential mode of code generation and develop programs in

schema order. The framework presented here has more in common with the

parsing/gnisrap model advanced by Green et. al. which suggests that programs

are developed in a fragmentary and incremental fashion. The parsing/gnisrap

model also stresses the very close link between planning and execution which is a

central element in the present analysis.

A number of the experiments reported in this thesis have demonstrated that expert

programmers do not generate their programs in a linear fashion. More

specifically, it appears that experts tend to generate the focal elements of plans

and then later extend these to include subsidiary plan elements. It has been

suggested that developing programs in this way reduces the demand on working

memory since the decomposition of the emerging program will be held at a single

level of abstraction (see chapters 8, 9 and 11). In chapter 11 it was suggested that

jumping between different levels of abstraction in a problem space can place

significant demands upon working memory (see also Anderson, 1983) and this

may lead to the observation that experts tend to decompose their solutions in a

broadly top-down fashion.

Experts also appear to rely extensively upon externalising the contents of

working memory during program generation (see chapter 11). It was suggested

in chapter 11 that one of the major determinants of expertise may be the adoption

or the development of strategies which facilitate the effective use of external

memory sources. As a consequence, it has been argued that both the nature of the

303

problem solving environment and the programming language will have an effect

upon problem solving behaviour. In particular, given the incremental nature of

program generation, the success of this process will in large part be determined

by the flexibility of the environment in terms of the support it provides for

implementing changes. Similarly, the viscosity of the language will affect this

process, since it determines the ease with which changes can be made. In terms

of comprehension, other factors come into play. Here, the expressiveness of the

language, measured in terms of the ease with which various structures can be

located and differentiated, will play a central role in facilitating comprehension.

The model of programming behaviour presented in this thesis suggests a small

number of reasonably straightforward mechanisms which can account for both

the generation and the comprehension of programs. In addition, this framework

stresses the importance of both language and environmental features in

determining the nature and success of programming behaviour.

In this final chapter, a more detailed framework for understanding the knowledge

restructuring processes outlined in this thesis will be presented. This chapter will

attempt to demonstrate how the experimental work reported in this thesis can be

used to support a parsimonious interpretation of program generation and

comprehension.

In the context of this framework there appear to be three important areas of

concern. Firstly, we need to explain action. That is, how schematic

representations of programming knowledge are instantiated as code. This derives

from a consideration of the problems of previous schema-based accounts of

programming behaviour and in particular the notion that such accounts have

failed to provide a specification of the processes governing schema instantiation.

This problem appears to derive largely from the fact that the components of

schemata are equally accessible, and that they can be implemented in any order. It

is argued that this leads to difficulties in understanding how action is initiated.

Moreover, such models provide no indication of how programming strategy

might develop. Indeed, they fail to provide any description of the nature of the

strategic elements of problem solving in this complex domain. Hence, while such

accounts may provide a theory of plans, they fail to provide a theory of planning.

304

The second area of concern discussed in this chapter relates to the actual

representation of programming knowledge, and in particular to the form of

representation one might adopt in order to provide a basis for a hierarchical

representation of such knowledge. In this context, it is suggested that schemata

are not flat structures where every part of the structure can be accessed equally.

Adopting ideas from the text comprehension domain, it is suggested that

schemata structures may be viewed as hierarchically structured propositional

representations. In this context, the salient elements of programming plans, that

is those elements that encode information relating to the current goal (focal lines)

will occur at higher levels of the propositional hierarchy. It is suggested that this

form of representation may go some way towards capturing the structural

organisation of programming knowledge that is hypothesised to give rise to many

of the experimental findings reported in this thesis.

Models of programming behaviour based upon propositional accounts are not

new. However, such models have failed to provide a cogent explanation of how

levels in a propositional hierarchy can be determined. Moreover, these models

have not considered the way in which knowledge structures might develop with

expertise. One aim of this thesis is to address these limitations by providing an

account of the nature and development of programming knowledge and a

demonstration of how differences in the structure of this knowledge can lead to

differences in strategy.

Finally, consideration is given to the acquisition of structured representations of

programming knowledge. It is suggested that the development of structured

representations may not simply arise via the control of a basic psychological

mechanism such as knowledge compilation. Rather, it is argued that the specific

learning or training experience of the programmer contributes significantly to the

development of hierarchical representations of programming knowledge.

305

12.3 Knowledge restructuring- A process model of schema instantiation

One important area of work which may contribute to the development of a model

of knowledge representation in programming is that concerned with

representations of linguistic knowledge and in particular with work in the text

comprehension domain. It is clear that the plan theory of programming has strong

parallels with work in these domains. In particular, advocates of the plan theory

have attempted to frame their analysis of programming knowledge in terms of

Schank's notion of scripts. Scripts have been used to provide a representational

scheme for describing generic domain specific knowledge structures, and on this

basis clearly bear some relationship to programming plans.

However, one of the main criticisms of Schank's theory is that is that it lacks a

process model which specifies in detail how scripts or schemata are used. For

example, Anderson (1983) claims that the symmetry of schemata can lead to

potential problems "For instance, from the fact that the light is green one wants to

infer that one can walk. One does not want to infer that the light is green from the

fact that one is walking. No successful general-purpose programming language

has yet been created that did not have an asymmetric conditionality built in as a

basic property. We should expect no less of the human mind" (p 39). The

problem with schemata is that it is very difficult to see how they can provide a

basis for understanding action. Similarly, the plan theory of programming fails to

specify how plans are used. It seems rather anomalous that researchers are

prepared to advance a theory of plans without specifying a theory of planning.

One of the main aims of this thesis has been concerned with explicating a

framework to account for action and planning in programming, and this

framework depends to a significant degree upon the rejection of some of the

rather more simplistic notions which are embodied in plan theories.

The present framework suggests that expertise may involve the acquisition of

declarative schemata which are accessible in the context of certain recognition and

recall tasks (see chapter 10). Hence, programmers of different skill levels (expert

and intermediate) can respond with similar levels of accuracy to the presentation

of probe items, but experts tend to respond faster than intermediates in response

to focal lines, whereas there is no difference in response to non-focal lines.

306

This finding suggests that while programmers can access their declarative

programming knowledge, there is a basic asymmetry in their representation. The

work presented here suggests a schema-based framework which may go some

way toward addressing the criticisms typically levelled at other schema-based

models of problem solving. In particular, as Anderson (1983) points out, in most

schema based accounts, it is possible to instantiate and/or execute any part of a

given schema since the control structure inherent in such models provides

equality of access to all components. In the present context, it is suggested that

certain elements of programming schemata will have permanently raised

activation levels and will tend to be generated before other elements of the same

schemata (see chapter 9).This reflects the empirical finding that focal lines tend to

be generated before other elements of a particular schemata are expanded and/or

refined.

12.4 Knowledge restructuring- towards a hierarchical model of knowledge

representation in programming

In order to develop the model presented in this thesis in more detail it is necessary

to not only specify the mechanisms which underpin the knowledge restructuring

and control processes that are central to the theory, but also to outline a

representational scheme which can accommodate a hierarchically organised

knowledge base of plans and goal structures.

One way of viewing programming knowledge from this perspective is to

consider such knowledge structures as being represented as a set of hierarchically

structured propositions. This is the approach taken by Kintsch and van Dijk in

their analysis of text comprehension and production.

Kintsch and van Dijk suggest that there are three levels of memory representation

for text which can be distinguished. At one level, a text can be described in terms

of the exact words and phrases used. Kintsch and van Dijk refer to this as the

surface level representation. Another level of representation captures the

semantic content of the text which represents both local (microstructure) and

307

global (macrostructure) features. The content of this level is captured in

propositional form (Kintsch, 1974), where each statement in the text is

represented as an individual proposition. For example, the phrase "If Mary

Trusts John she is a fool" might be represented as (IF, (TRUST, MARY,

JOHN),(FOOL, MARY)). Kintsch and van Dijk argue that this sentence would

be represented by subjects in a hierarchical fashion with the proposition (IF,

(TRUST, MARY, JOHN) occurring at a higher level than (FOOL, MARY). One

prediction arising from this is that propositions identified as important (i.e., high

in the propositional hierarchy) will be best recalled. A number of studies have

shown this to be the case (Christiaansen, 1980; Kintsch and Keenan, 1973;

Mandler and Johnson, 1977 and Meyer, 1975) and these studies provide strong

evidence for some form of hierarchically structured representation of linguistic

knowledge.

The experiment reported in chapter 10 employs a similar paradigm to analyse

programming knowledge. Here, it was demonstrated that highly skilled

programmers are able to respond more quickly to focal lines than intermediates,

although their levels of accuracy were similar. Novices, however, performed

much less accurately than both experts and intermediates. By analogy to the work

of Kintsch and his colleagues, this study may suggest that certain salient

programming structures may appear at higher levels in a programmer's

macrostructure representation. Moreover, the restructuring of programming

knowledge appears to be related explicitly to the development of expertise.

In terms of the framework presented here, plan structures in programming might

be seen as a similar unit of analysis as the macrostructure representation of text as

proposed by Kintsch. The macrostructure of a text represents sentences in terms

of agents, goals and objects. It may be possible to derive a similar form of

representation for programming knowledge where a focal line may be taken to

represent or to express the goal of a particular plan. In terms of the present

analysis, each goal structure will manipulate one more objects according a given

procedure. In this sense a plan or programming schemata should be seen as

analogous to a sentence. Previous analyses which have attempted to describe

programming knowledge using the text structure model presented by Kintsch

have described each program statement in propositional form. However, a more

308

appropriate level of representation would appear to suggest that programming

plans or schemata should be considered as the basic unit of representation having

more in common with the macrostructure level of analysis.

Having said this, however, the programming plan also appears to bear some

resemblance to the third level of text structure knowledge proposed by Kintsch

and van Dijk. Kintsch and van Dijk term this third level of representation the

situation model. They claim that the situation model represents the situation

described by the text and that it is "detached from the text structure proper and

embedded in pre-established fields of knowledge" (p 135). They go on to

suggest that "(T)he principle of organisation at this level may not be the text's

macrostructure, but the knowledge schema (e.g., an appropriate script or frame)

used to assimilate it." (p 135-136)

It is of interest to note that the situation model may appear to represent the same

kind of structure as described by programming plans. However, this analogy

poses problems if one examines the correspondence more closely. For example,

it is clear that since notational factors appear to play a role in the perception and

use of plans, then the text structure itself must in tum influence the representation

of plan structures.

Atwood and Ramsey (1978) have also applied Kintsch and van Dijk's model of

text comprehension to program understanding. They equate individual program

statements with propositions, and the macrostructure representation is formed by

grouping these propositions into a functional unit or chunk. Atwood and

Ramsey, attempted to provide some evidence for their analysis by examining bug

detection rates. They predicted that bugs residing at higher levels in the

macrostructure hierarchy would be easer to detect than bugs at lower levels. Their

data provides some support for this prediction and subsequent studies have found

similar patterns of results (Vessey, 1989).

There are, however, a number of serious problems with this work. The main

weakness of these studies is that the measure of depth in the proposition structure

is flawed and does not correspond to Kintsch's propositional analysis. For

example, Vessey uses depth in the control structure of the program as a measure

309

of level in the propositional hierarchy. However, Kintsch's propositional

analysis attempts to capture the salience of each proposition in terms of its

meaning to the reader. Another problem with this work is that, in Vessey's case

at least, the conclusions that are drawn are based upon the analysis of a single

bug occurring in different places. However, as Gilmore (in press) points out the

'same' bugs in different locations, may not be the same bugs at at. For example,

Gilmore claims that while control-flow bugs may seem to be easily equated, the

same cannot be said about semantic and plan-related bugs since they cannot be

equivalent unless they appear at the same point in the program. A third problem,

which may be related in part to these other difficulties, has been noted by

Pennington (1985) who has suggested that the Atwood and Ramsey study may

have been confounded by the location of bugs in the program text. It appears that

bugs that resided high in their propositional hierarchy also occurred near the

beginning of the program.

The model presented here attempts to specify the salience of programming

structures at the program text level by equating focal lines with structures which

occur at high levels in the propositional hierarchy. A focal line, as we have seen,

describes the line of code that directly implements the programmer's current goal

and hence we would expect that this structure would have some psychological

significance for the programmer.

Gilmore (1988b) suggests that Schneiderman's (1980) model of programming is

also very similar to Kintsch and van Dijk's model and that "the major weakness

of this approach is that although it places much emphasis on factors of notational

design (because the main process is the extraction of information from the

program), it has nothing to say about what features of notations improve the

efficiency of these processes, even though this should be one of the important

functions of a model of program comprehension." (p 16). The work reported in

this thesis represents a step in the opposite direction in that predictions about

notational properties of programming languages are related to an explicit model of

knowledge representation in programming. This model also makes predictions

about the forms of strategy adopted by programmers of different skill levels and

the extent to which certain notational properties might support preferred

strategies.

310

In summary, while other models of programming have attempted to use ideas

from the text comprehension domain none have paid sufficient attention to the

saliency of particular programming structures nor to the effects of surface

features of the text base that might affect program comprehension and generation.

The main contribution of the present analysis is that it provides a means of

specifying the saliency of particular structures and demonstrates how features of

the notation of a language might affect the implementation and the subsequent

comprehension of such structures.

12.5 Acquiring hierarchical representations: Design training and the

development of structured representations of programming knowledge

One question that arises in terms of the above discussion is how the process of

knowledge restructuring presented in this thesis might be initiated. It is clear that

one of the central issues addressed in this thesis is the extent to which structured

knowledge representations might develop via straightforward mechanisms of

skill acquisition or alternatively whether they arise as a consequence of specific

forms of training.

In chapter 6 it was demonstrated that certain kinds of tasks involving plan

knowledge appear to depend upon the prior learning experiences of the

programmers studied. In particular, it was shown that design experienced

programmers performed significantly better in those situations which demanded

the application of plan-based knowledge. It might be suggested on the basis of

the studies reported in this chapter that design training facilitates plan use by

focusing upon methods which emphasis the strict application of a top-down

hierarchically levelled model.

In other domains it has been demonstrated that presenting hierarchically

organised instructions can not only facilitate the acquisition of declarative

knowledge (Smith and Goodman, 1984) but can also increase performance in

complex problem solving tasks (Eylon and Reif, 1984; Larkin, 1980; Zeitz and

Spoehr, 1989). Hence, it might be claimed that the degree to which explanatory

311

or training material emphasises a hierarchical structure will influence the

development of knowledge representation which might in turn exert an influence

over the degree to which that information can be proceduralised with practice into

effective problem solving methods.

The effects of specific forms of prior training has not, until recently, been a factor

that has figured significantly in more traditional accounts of skill acquisition. For

example, in terms of the ACT* framework , programmers who achieve similar

levels of practice should develop similar levels of procedural skill. Learning and

skill acquisition in the ACT* framework are effectively based upon the amount of

material presented and practised, while much less emphasis is placed upon the

way in which this learning material is presented. The ACT* framework tends to

emphasise the hierarchical nature of goal structures while neglecting specific

issues in training. More recently, the embodyment of ACT* principles in

intelligent tutoring systems has led to the suggestion that some effort should be

put into communicating goal structures explicitly to students. Anderson, Boyle,

Farrell and Reisner (1987) suggest that "there is a natural danger of casting

instruction ... in terms of the linear structure (of the program)" (p 103). They go

on to suggest that "fortunately, more enlightened instruction does emphasise a

hierarchical, structured program" (p 103). However, they suggest "while

structured programming is definitely a step in the right direction, it only

ameriorates the basic problem ... the structured program itself is only a syntactic

object which will have an imperfect correspondence to the structure of the

programmer's plan" (p 103).

However, while seemingly excluding structured programming as a method of

communicating goal structures, Anderson et al do not go on to suggest how a

goal structure should be communicated. They qoute protocol studies which

indicate that the explicit tutoring of plan structures can improve programming

performance (Pirolli and Anderson, 1985), however they say nothing about how

this might relete to instruction in the way in which plans are hierarchically linked

and structured. The work reported in this thesis may go some way toward

proving and account of the way in which specific forms of training might lead to

improved problem solving performance.

312

In particular, it is argued that while structured programs may be linear artifacts

which may not communicate a program's goal structure nor necessarily map onto

the structure of programming plans, the actual process of devloping structured

programs may encourage programmers to focus upon the salient features of plans

and their application. Indeed, as we saw in chapter 6, the development of certain

forms of programming skill (particularly the ability to use plan structures)

appears to depend centrally upon the way in which learning material is presented

to students. Hence, while the two groups of programmers studied in that

experiment possessed equivalent levels of experience with the particular language

concerned, they tended to use their knowledge rather differently. Moreover,

another implication of this work is that programming plans are not taught directly

to students. The efficacy of tutoring environments which emphasise the explicit

teaching of plans, as suggested by Anderson et al, may be misguided in that it

fails to recognise that an important element in skill development appears to be

concerened with establishing the salient elements of plans and mapping between

plans and actual code structures. It was suggested in chapter 6 that design

training may facilitate these kinds of abilities.

The work reported in this thesis appears to draw into question important aspects

of extant theories of skill acquisition to the extent that it suggests that certain

forms of training may lead to hierarchically organised knowledge structures and

consequently to differences in the way in which such knowledge is applied. It

appears that in situations where learners are subject to the same amount of

practice but where they are not given a framework for organising the knowledge

that they acquire then their performance in certain tasks is significantly impaired.

In the context of the present discussion, it might be argued that design training

(particularly in structured programming/design) causes programmers to focus

upon salient elements of relevant knowledge structures and that this in turn may

lead to the development of structured schemata where focal plan elements are

salient.

313

12. 6 Implications for further experimental work

The framework proposed in this thesis suggests a number of possibilities for

further research into the cognitive processes that might be involved in

programming. For example, one issue relates to debugging. The experiment

reported by Vessey described above showed that bugs are not detected more

quickly if they occur at higher levels in a program's propositional hierarchy.

However, as we have seen, Vessey equates position in the structural hierarchy

with the indentation level of the program statement. One prediction arising from

the work reported here is that bugs in focal lines will be detected more quickly

than bugs in occurring other structures. Moreover, focal lines may be highly

embedded in the program's indentation structure, indicating a possible

confounding factor in Vessey's study. If errors occurring in focal line are

detected more quickly than errors residing elsewhere this would indicate that

focal lines are of particular salience to programmers. This may also have more

general implications for the design of tools intended to support the debugging

process.

Figure 12.1 illustrates a propositional analysis of one of the experimental

programs discussed in chapter 6. This program was analysed according to

Kintsch's original formaulation (Kintsch, 1982). However, certain modifications

were needed to accommodate the differences between programs and texts. Two

major assumptions were made. Firstly, the notion of an argument in terms of

textual analysis has been translated into the value of a variable. This may be

slightly problematic since the value of this variable will change during execution.

For instance, in figure 12.1 the value of the variables SUM and COUNT are used

in the calculation of Average.

Under strict argument repetition, SUM and COUNT would be bound to the first

occurrence of SUM and COUNT (as represented by the intialisation). In terms of

the interpretation of argument repetition that is presented here, data flow is used

to represent hierarchy as opposed to simply using the name of the variable. The

choice of data flow was to some extent aribitrary, since control flow or an other

mode of representation might have been used. The illustrates one difficulty of

considering programs as analogous to text. In particular, there are many ways in

314

which to view a program, and each of these different perspectives is likely to give

rise to a different representation of the problem.

Figure 12.1 presents this propositional analysis and indicates the program's focal

lines (derived from Rist's (1989) definition). This diagram shows that, in terms

of this analysis at least, focal lines are not represented with greater saliency than

other structures in the propositional analysis. It may be that other forms of

representation would show greater saliency for focal structures. Another line of

research might be concerned with the ability of different forms of representation

to provide support for the empirical findings presented in this thesis. For

example, a more fine-grained analysis might show that, while focal-lines may not

reside at a high level in the structural hierarchy, there may well still be systematic

differences in recall when recall patterns are correlated with different levels in

this structure. It is possible that we may not be able to construct macrostructure

representations of programs since they may differ too significantly from text in

their communicative function. It is clear that more empirical research will be

required before the proposed analogy between text and programs can be

supported.

One interesting observation that arose while constructing the propositional

analysis presented below is that while focal lines may not be hierachically

distinct, it is clear that, compared to other components of the program, they have

many more links with other propositions. Hence, line e has four connections,

while linesfand d have 3 connections. Note that with the exception of h andj, all

other propositions have only two connections. It is possible that the degree of

connectiveness is a better predictor of recall strategy, debugging performance and

other behaviour than level in the propositional hierarchy.

Another area of potential interest stemming from the present analysis might be

concerned with the question of whether there are performance changes at the

point where knowledge restructuring takes place. For example, Lesgold et al

(1988) have shown that many errors occur at the point where representations

begin to change in the context of the development of a complex problem solving

skill. This study demonstrated a nonmonotonic relationship between experience

and performance in the development of radiological diagnostic skills. Lesgold et

315

al suggest that this kink in the learning curve might arise as a consequence of a

major shift in processing or in knowledge representation. Immediately after a

shift, intermediate practitioners were much more likely to make errors than they

were before.

Program A
1 Sum= 0
2 Count= 0
3 read (number)
4 (F) WHILE number <> 9999 DO
5 BEGIN
6 (F) Sum = Sum + number
7 (F) Count = Count + 1
8 read (number)
9 END
10 IF Count> 0
11 THEN
12 BEGIN
13 average= Sum/Count
14 writeln (average)
15 END
16 ELSE
17 writeln ('no legal inputs)

/a
Progrem A b

~c

a INITIALISE (Sum 0)
b INITIALISE (Count 0)
c SUBCALL (read, number)
d LOOP (number<> 0)

e UPDATE (Sum, Sum + number)
f INCREMENT (Count)
g SUBCALL (read, number)

h TEST (Count)
i COND (Count > 0)

j SET (average, Sum/Count)
k SUBCALL (write, average)

1 COND (Count <= 0)
m SUBCALL (write, average)

---!.j-k

--m

Figure 12.1 A propositional analysis of a short program. Focal lines are indicated

in bold (F), and the propositional decomposition is shown on the right. The

diagram illustrates the hierarchical level of each proposition (read from left to

right). Note that the number of connections for focal lines is greater than for

non-focallines.

316

It should be noted that a similar phenomenon has also been reported by

developmental psychologists (Bowerman, 1982; Karmiloff-Srnith, 1979; Klahr,

1982; Strauss and Stavy, 1982). For instance Bowerman reported that children

initially produce the correct instances of many irregular past-tense verbs and

plural nouns (e.g., went, feet). Later they shift to incorrect regularisations of

those words (e.g., goed, foots). Still later, children gain complete control over

the irregularities in their vocabulary and stop making these kinds of mistakes.

Hence, it seems that restructuring may lead to a short term decrement in

performance in many areas of skill development when the transformation takes

place between an adequate representation and an optimal representation. This

might also be combined with procedural changes in the sense that strategies

appropriate for one representation may be inappropriate in the context of another

representation.

In terms of the present analysis, one might predict similar effects in the

development of programming skill. An alternative possibility is that at

intermediate skill levels processing is partly but not completely automated, with a

fluctuating level of control suggesting that certain aspects of a task may be

especially prone to error at this point. However, in the case of programming skill

it may be the case that when such errors do occur they will be related more

explicitly to focal structures in programs. If this is the case it would provide

support for the idea that shifts in knowledge representation accompany the

development of expertise and that the development of focal structures is an

important part of this process.

Another possibility for further research is concerned with the question of whether

there are other levels in the structural representation of programs. The present

analysis suggests only two levels of representation, but it is possible that other

important structures will be identified. The important point is that one should not

consider schema structures as flat undifferentiated chunks of knowledge. Rather,

it is clear that schema or plan structures will embody some internal organisation

which reflects the importance of various structures to the programmer. The work

reported here has identified the role of focal lines in capturing the salient goal

structures of programming plans, but it is clear that other structures may also be

of importance.

317

12.7 Implications for programming environments

In addition to these theoretical concerns, the model also poses a number of

practical implications for the design of systems intended to provide support for

the programming activity. For example, programming environments that

incorporate a "fisheye" view of source code text (Furnas, 1986) rely upon some

way of indicating a current focus around which the fisheye view can be

constructed. Furnas (1986) suggests that a degree of interest (DOl) function can

be assigned to each point in a program's structure indicating how interested a

user is in seeing that point, given the current task. This DOl function is generated

by an algorithm which employs a notion of 'a priori importance' to assign

suitable values to points in the program structure. This a priori importance value

is intended to represent components of a structure which are of psychological

importance to a particular user engaged in a given task. However as Furnas

concedes "the usefulness of a DOl ... will depend at least upon the suitable

definition of ... a priori importance" (Furnas, 1986. pg 17). The findings of the

present study may provide the basis for such a definition by indicating the salient

features of a programmers knowledge representation. Hence, the identification

of focal lines may provide the starting point for a more psychologically valid

conception of a priori importance leading to the design of more suitable displays

for complex information structures such as programs.

Of course for such a system to work one would need to automatically derive a

program's plan structures and associated focal lines. However, this has not

proved to be a straightforward task since commonly the same plan will not share

the same surface characteristics at the code level (Rich and Wills, 1990). A

promising approach has recently been proposed by Rist (forthcoming) who

outlines a system intended to derive plan structure from code by tracing plan

dependency links (capturing both data and control flow) from the plan focus to

other elements of the plan. In its basic form, Rist's algorithm consists of a single

recursive procedure that links the data flow into each line with its control flow.

This algorithm employs a parsing mechanism- PARE (Plan Analysis by Reverse

Engineering) which represents each basic system object (line of code) as a series

of slots which when instantiated specify the use of that line of code, other code it

318

obeys, the data values it makes and the other lines of code that it controls (Rist

and Bevemyr, 1991). Rist claims that this algorithm has been used on hundreds

of Pascal programs to derive their constituent plan structure and as such it would

seem like a potential contender for a system which might extract and display focal

code elements and provide a basis for environments which can emulate or reflect

cognitively-based structures.

12.8 Conclusions

In conclusion, this thesis has presented an analysis of the problem solving

activities involved in programming tasks. A model has been presented which

aims to extend our current thinking about problem solving in complex domains

such as programming. This model emphasises the role of knowledge

restructuring in the development of programming expertise and suggests that the

processes of program generation and program comprehension are based upon the

implementation of a small number of reasonably straightforward cognitive

processes. These processes involve the creation or the location and subsequent

recomprehension of the focal structures contained in schematic representations of

programming knowledge.

The process of program generation is presented as an incremental process of

fragmentary code generation and recomprehension which is governed by

working memory limitations and is mediated by features of the programming

language used and the environment in which the program is created. The process

of program comprehension is described as an activity which involves the search

for focal structures in extant code which can be mapped onto an internal

representation of schematic programming knowledge. As for generation, the

process of comprehension is also affected by language features in the sense that

the ease with which focal structures can be discriminated will be dependent upon

the the expressive power of the language. The processes of comprehension and

generation should be seen as complementary since they are both fundamentally

related to the development and the comprehension of salient structures residing

either in the code or in terms of the programmer's representation of programming

knowledge.

319

While this thesis has been concerned with problem solving activities in

programming it clearly raises a number of issues with respect to the adequacy of

existing generic models of problem solving. In particular, the work reported here

suggests that a full understanding of problem solving in the context of complex

tasks may require an articulation of the relationship between planning/operator

selection and execution. The work reported in this thesis suggests that these

processes cannot be considered in isolation. This in tum suggests that a

significant amount of problem solving behaviour may only be explicable in terms

of a detailed understanding of the way in which problem solvers extemalise

current states and then subsequently respond to these extemalised states. It is

suggested here that a more complete understanding of problem solving in

complex domains will only be achieved once these factors begin to receive the

attention that they deserve.

320

References

Adelson, B., (1981). Problem solving and the development of abstract categories in
programming languages. Memory and Cognition, 9 (4), 422- 433.

Adelson, B., (1984). When novices surpass experts: The difficulty of a task may increase
with expertise. Journal of Experimental Psychology: Learning, Memory and Cognition, 10,
3, 483-495.

Adelson, B., (1985). Comparing natural and abstract categories: A case study from
computer science. Cognitive Science, 9, 417-430.

Adelson, B. and Soloway, E., (1985). The role of domain experience in software design.
IEEE Trans. SE, SE- 11 (11), 1351- 1360.

Agre, P. and Chapman, D., (1987). Pengi: An implementation of a theory of activity. In
Proceedings of the Sixth National Conference on Artificial Intelligence, 268- 272. Menlo
Park, Calif: American Association for Artificial Intelligence.

All wood, C. M., (1984). Error detection processes in statistical problem solving. Cognitive
Science, 8 413- 437.

Ambros-Ingerson, J. A., (1987). Relationships between planning and execution. AISB
quarterly newsletter, 57.

Anderson, J. R., (1976). Language, Memory and Thought. Lawrence Erlbaum, Hillsdale,
NJ.

Anderson, J. R., (1982). Acqusition of cognitive skill. Psychological Review, 89, 369-
406.

Anderson, J. R., (1983). The architecture of cognition. Harvard University Press,
Cambridge, MA.

Anderson, J. R., (1985). Cognitive Psychology and its Implications. W. H. Freeman, New
York, NY.

Anderson, J. R., (1987). Acquisition of cognitive skill. Psychological Review, 89, 369-
406.

Anderson, J. R., (1989). The anological origins of errors in problem solving. In D. Klahr
and K. Kotovsky (Eds.), Comple information processing: The impact of Herbert A. Simon.
LEA, Hillsdale, NJ.

Anderson, J. R., Boyle, C. F., Farrell, R. and Reiser, B. J., (1987). Cognitive principles
in the design of computer tutors. In P. Morris (Ed.), Modelling Cognition. John Wiley.

Anderson, J. R., Conrad, F. G. and Corbett, A. T., (1989). Skill Acquisition and the Lisp
Tutor, Cognitive Science, 13, 467 - 505.

Anderson, J. R., Greeno, J. G., Kline, P. J. and Neves, D. M., (1981) Acquisition of
problem solving skill. In J. R. Anderson (Ed.), Cognitive skills and their acquisition.
Lawrence Erlbaum, Hillsdale, NJ.

321

Anderson, J. R., Farrell, R. and Sauers, R., (1984). Learning to program in LISP.
Cognitive Science, 8, 87 - 129.

Anderson, J. R. and Jeffries, R., (1985). Novice LISP errors: Undetected losses of
information from working memory. Human-Computer Interaction, li, 107-131.

Anderson, J. R., Kline, P. J. and Beasley, C. M., (1980). Complex learning processes. In
R. E. Snow, P. A. Federico and W. E. Montague (Eds.), Aptitude, Learning and
Instruction, Vol. 2. Lawrence Erlbaum, Hillsdale, NJ.

Anderson, J. R. and Reiser, B. J., (1985). The LISP tutor. Byte, liO, 159- 175.

Anzai, Y. and Simon, H., (1979). The theory of learning by doing. Psychological Review,
86, 124-180.

Arblaster, A., Sime, M. E. and Green, T. R. G., (1979). Jumping to some purpose. The
Computer Journal, 22, 105 - 109.

Atwood, M. E., Masson, M. E. and Polson, P., (1980). Further exploration with a process
model for water jug problems. Memory and Cognition, 8, 182- 192.

Atwood, M. E. and Polson, P. G., (1976). A process model for water jug problems.
Cognitive Psychology, 8, 191 - 216.

Atwood, M. E. and Ramsey, H. R., (1978). Cognitive structure in the comprehension and
memory of computer programs: An investigation of computer program debugging.
Technical Report, ARI TR-78-A210, Science Applications, Englewood, CA.

Badre, A. N. and Allen, J., (1989). Graphic language representation and programming
behavior. In G. Salvendy and M. J. Smith (Eds.), Designing and using Human-Computer
Interfaces and Knowledge based systems. Elsevier, Amsterdam.

Barfield, W., (1986). Expert-novice differences for software: implications for
problem-solving and knowledge acquisition. Behaviour and Information Technology,§
(1), 15- 29.

Bateson, A. G., Alexander, R. A. and Murphy, M.D., (1987). Cognitive processing
differences between novice and expert computer programmers. Int. J. of Man-Machine
Studies, 26, 649-660.

Bellamy, R. K. E. and Gilmore, D. J., (1990). Programming Plans:Intemal or External
Strucures. InK. J. Gilhooly, M. T. G. Keane, R. H. Logie and G. Erdos, eds., Lines of
Thinking: Reflections on the Psychology of Thought , Vol 1, Wiley.

Biermann, A. W., Ballard, B. W. and Sigmon, A. H., (1983). An experimental study of
natural language programming. Int. J. Man-Machine Studies, liB, 71 - 87.

Black, J. B., Kay, D. S. and Soloway, E., (1987). Goal and plan representations: from
stories to text editors and programs. In Interfacing thought: cognitive aspects of HCI, J. M.
Carroll (Ed.), MIT Press.

Bonar, J., (1985). Understanding the bugs of novice programmers. Dissertation,
University of Massachusetts, Amherst, MA.

322

Bonar, J. and Cunningham, R., (1988). Bridge: an intelligent tutor for thinking about
programming. In J. Self (Ed.), Artificial Intelligence and Human Learning. Chapman Hall,
London.

Bonar, J. and Liffick, B. W., (1990). A visual programming system for novices. InS. K.
Chang (Ed.), Principles of visual programming systems. Pentice-Hall.

Bower, G. H., Black, J. B. and Turner, T., (1979). Scripts in memory for texts. Cognitive
Psychology, 11, 177-220.

Bowerman, M., (1982). Starting to talk worse: Clues to language acquisition from childre's
late speech errors. InS. Strauss (Ed.), U-Shaped behavioural growth, Academic Press,
New York.

Boyle, T. and Drazkowski, B., (1989). Exploiting natural intelligence: Towards the
development of effective environments for learning to program. In A. Sutcliffe and L.
Macaulay (Eds.), People and Computers V. Cambridge University Press, Cambridge.

Bransford. J.D. and Franks, J. J., (1971). The abstraction of linguistic ideas. Cognitive
Psychology, 2, 331 - 350.

Brayshaw, M. and Eisenstadt, M., (1988). Adding data and procedure abstraction to the
Transparent Prolog Machine (TPM). Open University HCRL Research Rep. Number 31,
Jan. 1988.

Brayshaw, M. and Eisenstadt, M., (1989). A practical tracer for Prolog. Open University
HCRL Research Report Number 42. Feb. 1989.

Brooks, R. E., (1977). Towards a theory of the cognitive processes in computer
programming. Int. J. of Man-Machine Studies, 9, 737-751.

Brooks, R. E., (1983). Towards a theory of the comprehension of computer programs. Int.
J. Man -Machine Studies, 18, 543 - 554.

Bouma, H. and deVoogd, A. H., (1974). On the control of eye saccades in reading. Vision
Research, 14, 273 - 284.

Burton, R. R., (1982). Diagnosing bugs in simple procedural skill. In D. H. Sleman and J.
S. Brown (Eds.), Intelligent Tutoring Systems. Academic Press, New York.

Brown, J. S. and Burton, R. R., (1978). Diagnostic models for procedural bugs in basic
mathematical skills. Cognitive Science, 2, 155- 192.

Brown, J. S. and VanLehn, K., (1980). Repair theory: A generative theory of bugs in
procedural skills. Cognitive Science, 4, 379 - 426.

Card, S. K., Moran, T. P. and Newell, A., (1983). The psychology of human-computer
interaction. Lawrence Erlbaum, Hillsdale, NJ.

Carey, L., Flower, L., Hayes, J. R., Schriver, K. and Haas, C., (1987). Differences in
writers' initial task representations (office of navel research technical report 2), Pittsburgh,
PA: Carnegie Mellon University.

323

Carlson, R. A., Khoo, B. H., Yaure, R. G. and Schneider, W., (1990). Acquisition of
problem solving skill: Levels of organisation and use of working memory. Journal of
Experimental Psychology: General, 119, 2, 193- 214.

Carpenter, P. A. and Just, M.A., (1989). The role of working memory in language
comprehension. In D. Klahr and K. Kotovsky (Eds.), Comple information processing: The
impact of Herbert A. Simon. LEA, Hillsdale, NJ.
Chapman, D., (1987). Planning for conjunctive goal. Artificial Intellegence, 32, 333- 377.

Chapman, D., (1989). Penguins can make cake. AI Magazine, AAAI, Winter 1989. 45-
50.

Chase, W. G. and Ericsson, K. A., (1982), Skill and working memory. In G. H. Bower
(ed.), The psychology of learning and motivation. Academic Press, New York.

Chase, W. G. and Simon, H. A., (1973). Perception in chess. Cognitive Psychology, 4,
55- 81.

Cheng, P. W., (1985). Restructuring versus automaticity: Alternative accounts of skill
acqusistion. Psychological Review, 92, 3, 414- 423.

Chi, M. T. H., Feltovich, P. J. and Glaser, R., (1981). Categorisation and preresentation
of physics problems by experts and novices. Cognitive Science, 5, 121 -152.

Chi, M. T. H., Glaser, R. and Rees, E. (1981). Expertise in problem solving. In advances
in the psychology of human intelligence, Vol. 1. Lawrence Erlbaum, Hillsdale, NJ.

Christiaasen, R. E., (1980). Prose memory: Forgeting rates for memory codes. Journal of
Experimental Psychology. Human Learning and Memory, 6, 5, 611- 619.

Cirilo, R. K. and Foss, D. J., (1980). Text structure and reading time for sentences.
Journal of Verbal Learning and Verbal Behavior, 19, 96- 109.

Collins, A., (1978). Explicating the tacit knowledge in teaching and learning. Technical
Report 3889, Bolt, Beranek and Newman, Cambridge, MA.

Collins, A.M. and Loftus, E. F., (1975). A spreading-activation theory of semantic
processing. Psychological Review, 82, 407 - 428.

Cohen, B. H., (1966). Some-or-none characteristics of coding behavior. Journal of Verbal
Learning and Verbal Behavior, 5, 182- 187.

Cooke, N. M., Durso, F. T. and Schvaneveldt, R. W., (1986), Recall and measures of
memory organization. Journal of Experimental Psychology: Learning, Memory and
Cognition, 12, 538- 549.

Cooke, N.J. and Schvaneveldt, W., (1988). Effects of computer programming experience
on network representations of abstract programming concepts. Int. J. Man- Machine
Studies, 29, 407-427.

Crosby, M. and Stelovsky, J., (1989). Subject differences in the reading of computer
algorithms. In G. Salvendy and M. J. Smith (Eds.), Designing and using
Human-Computer Interfaces and Knowledge based systems. Elsevier, Amsterdam.

324

Crowder, R. G., (1976). Principles of learning and memory. Lawrence Erlbaum, Hillsdale,
NJ.

Cunniff, N. and Taylor, R. P., (1987). Graphics and learning: A study of learner
characteristics and comprehension of programming languages. Proc. of INTERACT'87,
Stuttgart, 1987.

Cunniff, N. and Taylor, R. P., (1987). Graphical vs. textual representation: an empirical
study of novices' program comprehension. In G. M. Olson, S. Sheppard and E. Soloway
(Eds.), Empirical studies of programmers: second workshop, Ablex, Norwood, NJ.

Cunniff, N., Taylor, R. P. and Black, J. B., (1986). Does programming language affect
the type of conceptual bugs in beginners' programs? A comparison of FPL and Pascal. In
Human Factors in Computing Systems, Proc CHI'86, North-Holland, Amsterdam.

Curtis, B., Sheppard, S. B., Milliman, P., Borst, M.A. and Love, T., (1979). Measuring
the Psychological Complexity of Software Maintenance Tasks with the Halstead and
McCabe Metrics. IEEE Transactions on software engineering, SE -5 (2), 96- 104.

Dahl, 0. -J., Dijkstra, E. W. and Hoare, C. A. R., (1972). Structured programming.
Academic Press, London.

deGroot, A. D., (1965). Thought and choice in chess. Moulton, The Hague.

Dearholt, D. W., Schvaneveldt, R. W. and Durso, F. T., (1985). Properties of networks
derived from proximities. Memorandum in Computer and Cognitive Science,
MCCS-85-14. Computing Research Laboratory, New Mexico State University.

Detienne, F., (1985). Programming expertise and program understanding. Paper presented
at the 9th. Congress of the international ergonomics association. Bounemouth, Sept. 1985.

Detienne, F., (1986). Program understanding and knowledge organization: the influence of
acquired schemata. Paper presented at the 3rd. European conference on cognitive
ergonomics. Paris, Sept. 1986.

Detienne, F., (1989). A schema-based model of program understanding. To appear in,
Mental models and Human-Computer Interaction, North-Holland. (presented at the 8th.
international workshop on informatics and psychology, Scharding, Austria, May 1989).

Detienne, F., (1990). Difficulties in designing with an object-oriented language: an
empirical study. In D. Diaper, D. Gilmore, G. Cockton and B. Shackel (Eds.),
Human-Computer Interaction, Interact'90. North-Holland, Amseterdam.

Detienne, F. and Soloway, E., (1989). Program understanding as an expectation-druven
activity. In G. Salvendy and M. J. Smith (Eds.), Designing and using Human-Computer
Interfaces and Knowledge based systems. Elsevier, Amsterdam.

Detienne, F. and Soloway, E., (1990). An empirically-derived control structure for the
process of program understanding. International Journal of Man-Machine Studies, 33,
323-342.

Dijkstra, E. W., (1968). Letter to the editor. Communications of the Association for
Compuing Machinery, 11, 147- 148.

325

Draper, S. W., (1986). Display managers as the basis for user machine communication. In
D. A. Norman and S. W. Draper (Eds.), User Centred System Design. Lawrence Erlbaum,
Hillsdale, NJ.

Du Boulay, B. and Matthew, I., (1984). Fatal error in pass zero: how not to confuse
novices. Behaviour and Information Technology, 3 (2), 109-118.

Dyck, J. and Auernheimer, B., (1989). Comprehension of Pascal statements by novice and
expert programmers, Poster Presented at CHI'89, Seattle, Washington.

Dyck, J. L. and Mayer, R. E., (1985). BASIC Versus Natural Language: Is There One
Underlying Comprehension Process? Human Factors in Computing Systems. Proc.
CHI'85. L. Borman and B. Curtis (Eds.), North-Holland, Amsterdam.

Egan, D. E. and Schwartz, B. J., (1979). Chunking in recall of symbolic drawings.
Memory and Cognition, 7, 149- 158.

Ehrlich, K. and Soloway, E., (1984). An empirical investigation of the tacit plan
knowledge in programming. In J. C. Thomas and M. L. Schneider, (Eds.), Human factors
in computing systems, Ablex, Norwood, New Jersey.

Eisenstadt, M., Breuker, J. and Evertsz, R., (1984). A cognitve account of 'natural'
looping strategies. In the Proceedings of INTERACT84, Elsevier, Amsterdam.

Elio, R., (1986). Representation of similar well-learned cognitive procedures. Cognitive
Science, 10, 41 - 73.

Ernst, G. W. and Newell., (1969). GPS: A case study in generality and problem solving.
Academic Press, New York.

Eylon, B. and Reif, F., (1984). Effects of knowledge organisation on task performance.
Cognition and Instruction, li, 5- 44.

Fikes, R. E. and Nilsson, N.J., (1971). STRIPS: A new approach to the application of
problem solving. Artificial Intelligence, 2, 189- 208.

Fitter, M. J. and Green T. R. G., (1979). When do diagrams make good computer
languages? Int. J. Man-Machine Studies, U, 235- 261.

Flower, L. & Hayes, J. R. (1980). The dynamics of composing: Making plans and
juggling constraints. In G. Steinberg (Ed.), Cognitive processes in writing. Lawrence
Erlbaum, Hillsdale, NJ.

Furnis, G. W., (1986). Generalized Fisheye Views. In M. Mantei and P. Orbeton (Eds.),
Proc. CHI'86. Boston, MA. North-Holland.

Gaiotti, K. M. and Ganong, W. F., (1988). What non-programmers know about
programming: Natural language procedure specification. Int. J. Man-Machine Studies, 22,
1- 10.

Gentner, D. and Gentner, D. R., (1983). Flowing waters or teeming crowds: mental
models of electricity. In D. Gentner and A L. Stevens (Eds.), Mental Models. Lawrence
Erlbaum, Hillsdale, NJ

326

Gilmore, D. J., (1986). Structural visibility and program comprehension. In People and
computers: designing for usability. M.D. Harrison and A. F. Monk (Eds.), Cambridge
University Press, Cambridge.

Gilmore, D. J., (1986b). The perceptual cueing of the structure of computer programs.
Unpublished Ph.D. thesis, University of Sheffield.

Gilmore, D. J., (1990). Methodological issues in the study of programming. In J.-M. Hoc,
T.R.G. Green, R. Samurcay and D. J. Gilmore, (Eds.), Academic Press, London.

Gilmore, D. J., (1990). Expert programming knowledge: A strategic approach. In J.-M.
Hoc, T.R.G. Green, R. Samurcay and D. J. Gilmore, (Eds.), Academic Press, London.

Gilmore, D. J., (in press). Models of debugging. ACTA Psychologica.

Gilmore, D. J. and Green, T. R. G., (1984). Comprehension and recall of miniature
programs. Int. J. Man- Machine Studies, 21, 31-48.

Gilmore, D. J. and Green, T. R. G., (1987). Are 'programming plans' psychologically real
-outside Pascal? Proc. ofiNTERACT87, H. J. Bullinger and B. Shackel (Eds.), Elsevier
Science Publishers B. V., North-Holland.

Gilmore, D. J. and Green, T. R. G., (1988). Programming Plans and Programming
Expertise. QJEP, 40A (3), 423- 442.

Gitomer, D. H., (1984). A cognitive analysis of a complex troubleshooting task.
Unpublished doctoral dissertation, University of Pittburgh, Pittsburgh, PA, USA.

Goldberg, A. and Robson, D., (1983) Smalltalk-80: The language and its implementation,
Addison-Wesley, Reading, MA.

Gray, W. D. and Anderson, J. R., (1987). Change-episodes in coding: when and how do
programmers change their code? In G. M. Olson, S. Sheppard and E. Soloway (Eds.),
Empirical studies of programmers: second workshop, Ablex, Norwood, NJ.

Green, T. R. G., (1977). Conditional program statements and their comprehensability by
professional programmers. J of Occup. Psycho/., SO, 93 - 109.

Green, T. R. G., (1980). Programming as a cognitive activity. In Human Interaction with
Computers, H. T. Smith and T. R. G. Green (Eds.), Academic Press, London.

Green, T. R. G., (1982). Pictures of programs and other processes, or how to do things
with lines. Behaviour and Information Technology, 1 (1), 3 - 36.

Green, T. R. G., (1989). Cognitive dimensions of notations. In A. Sutcliffe and L.
Macaulay (Eds.), People and Computers V. Cambridge University Press, Cambridge

Green, T. R. G., (1990a). Programming Languages as Information Structures. In J.-M.
Hoc, T. R. G. Green, R. Samurcay and D.J. Gilmore (Eds.) The Psychology of
Programming, Academic Press, London.

Green, T. R. G., (1990b). Representing and Manipulating programming knowledg.
Working paper for CogBrow meeting. October 1990.

327

Green, T. R. G., (1990c). The cognitive dimension of viscosity: a sticky problem for HCI.
In D. Diaper, D. Gilmore, G, Cockton and B, Shackel (Eds.) Human Computer Interaction
- INTERACT'90., North-Holland, Amsterdam.

Green, T. R. G., (1991). Describing informtion artifacts with cognitive dimensions and
structure maps. Paper to be presented at HCI'91

Green, T. R. G., Bellamy, R. K. E. and Parker, J. M., (1987). Parsing and gnisrap: a
model of device use, Proc. INTERACT'87, H. J. Bullinger and B. Shackel (Eds.),
Elsevier Science Publishers B. V., North-Holland.

Green, T. R. G. and Borning, A., (1990). The Generalised unification Parser: Modelling
the parsing of notations. In D. Diaper, D. Gilmore, G, Cockton and B, Shackel (Eds.)
Human Computer Interaction- INTERACT90., North-Holland, Amsterdam.

Green, T. R. G. and Cornah, A. J., (1984). The programmer's torch. Proc.
INTERACT'84. London 1984.

Green, T. R. G., Gilmore, D. J. and Winder, R., (1990). Towards a cognitive browser for
OOPS: the program as a rich information structure. Paper presented at a GMS-IPSI
workshop on Intelligent access to information systems. Darmstadt, Germany, November
1990.

Green, T. R. G., Gilmore, D. J., Blumenthal, B. B., Davies, S. P. and Winder, R.,
(1992). Towards a cognitive browser for OOPS. International Journal ofHuman-Comuter
Interaction, 4(1), 1-34.

Green, T. R. G., Sime, M. E. and Fitter, M. J., (1980). The problems the programmer
faces, Ergonomics, 23 (9), 893 - 907.

Green, T. R. G. and Payne, S. J., (1982). The Woolly Jumper: Typographic Problems of
Concurrency in Information Display. Visible Language, 16 (4), 391 - 403.

Green, T. R. G. and Payne, S. J., (1984). Organization and learnability in computer
languages. Int. J. Man -Machine Studies, 21, 7- 18.

Green, T. R. G., Petre, M. and Bellamy, R. K. E., (1991). Comprehensibility of visual
and textual programs: a test of Superlativism agains the'match-mismatch conjecture. To
appear in proceedings of ESP'91, New Brunswick, NJ.

Greeno, J. G., (1978). Nature of problem solving abilities. In W. K. Estes (Ed.),
Handbook of learning and cognitive processes, Lawrence Erlbaum, Hillsdale, NJ.

Greeno, J. G. and Simon, H. A., (1974). Processes for sequence production.
Psychological Review, 81, 187- 181.

Guindon, R., (1988). Software design tasks as ill-structured problems, software design as
an opportunistic process. MCC Technical Report STP-214-88.

Guindon, R., (1989). The process of knowledge discovery in systems design. In G.
Salvendy and M. J. Smith (Eds.), Designing and using Human-Computer Interfaces and
Knowledge based systems. Elsevier, Amsterdam.

328

Guindon, R., (1990). Knowledge exploited by experts during software system design. Int.
J. Man -Machine Studies, 33, 279- 304.

Guindon, R., Krasner, H. and Curtis, B., (1987 a). Cognitive processes in software
design: Activities in early, upstream design. Proc. INTERACf'87, Stuttgart, 1987.

Guindon, R., Krasner, H. and Curtis, B., (1987 b).Breakdowns and processes during the
early activities of software design by professionals. In G. M. Olson, S. Sheppard and E.
Soloway (Eds.), Empirical studies of programmers: second workshop, Ablex, Norwood,
NJ.

Haas, C., (1987). How the writing medium shapes the writing process: Studies of writers
composing with pen and paper and word processing. Doctoral dissertation in rehetoric.
Pittsburgh, PA: Carnegie-Mellon University.

Haas, C., (1989). Does the medium make a difference? Two studies of writing with pen
and paper and with computers. Human Computer-Interaction, 4, 2, 149- 169.

Hass, C. and Hayes, J. R., (1986). What did I just say? Reading problems in writing with
a machine. Research in the teaching of English, 20 (2), 22 - 35.

Haberlandt, K. (1980). Story grammers and the reading time of story constituents. Poetics,
9, 99-116.

Haberlandt, K., Berian, C. and Sandson, J., (1980). The episode schema in stroy
processing. Journal of Verbal Learning and Verbal Behavior, 19, 635- 650.

Halstead, M, M., (1977). Elements of software science. Elsevier, New York, NY.

Hayes, J. R., (1989), Writing research: The analysis of a very complex task. In D. Klahr
and K. Kotovsky, (Eds.), Complex Information Processing; The impact of Herbert A.
Simon. Erlbuam, Hillsdale, NJ.

Hayes-Roth, B. and Hayes-Roth, F., (1979). A cognitive model of planning, Cognitive
Science, 3, 275- 310.

Hayes-Roth, B., Hayes-Roth, F., Rosenschein,S. and Cammarata, S., (1979). Modeling
planning as an incremental, opportunistic process process. Proceedings of the Sixth
International Joint Conference on Artificial Intelligence, Tokyo, Japan.

Hitch, G. J., (1978). The role of short-term working memory in mental arithmetic,
Cognitive Psychology, 10, 302 - 323.

Hitch, G. J. and Baddeley, A. D., (1976). Verbal reasoning and working memory,
Quarterly Journal of Experimental Psychology, 28, 603 - 621.

Hoc, J-M. (1981). Planning and direction of problem solving in structured programming:
an empirical comparision between two methods. International Journal of Man-Machine
Studies, 15, 363 - 383.

Hoc, J-M., (1988). Towards effective computer aids to planning in computer programming:
Theoretical concern and empirical evidence drawn from assessment of a prototype. In G. C.
Vander Veer, T. R. G. Green, J-M, Hoc & D. M. Murray (Eds.), Working with
computers: Theory versus outcome. Academic Press, London.

329

Hoc, J-M., Guyard, J., Quere, M. and Jacquot, J.P., (1984). Designing and evaluating
computer aids in structured programming. Proc. INTERACf'84. London 1984.

Hoc, J. -M., (1988). Cognitive psychology of planning. Academic Press, London.

Howes, A. and Payne, S. J., (1990). Display-based competence: towards user models for
menu-driven interfaces. International Journal of Man-Machine Studies, 33, 637 - 655.

Hunt, E. B. and Poltrack, S. E., (1974). The mechanisms of thought. In B. H. Kantowitz
(Ed.), Human Information Processing: Tutorials in performance and Cognition, Lawrence
Erlbaum, Hillsdale, NJ.

Intons-Peterson, M. and Fournier, J., (1986). External and internal memory aids: When
and how often do we use them?. J. Exp. Psycho!. General, US, 267- 280.

Jeffries, R. A. (1982). Comparison of Debugging Behavior of Novice and Expert
Programmers. Pittsburgh, PA: Department of Psychology, Carnegie-Mellon University.

Jeffries, R., Polson, P., Razran, L. and Atwood, M. E., (1977). A process model for
missionaries-cannibals and other river-crossing problems. Cognitive Psychology, 9, 412-
440.

Jeffries, R., Turner, A. A., Polson, P. G. and Atwood, M. E., (1981). The processes
involved in designing software. In cognitive skills and their acquisition, J. R. Anderson
(Ed.), Lawrence Erlbuam, Hillsdale, NJ.

Johnson, W. L., (1988). Modelling programmers' intentions. In J. Self (Ed.), Artificial
Intelligence and Human Learning. Chapman and Hall, London.

Johnson, W. L., (1990). Understanding and Debugging Novice Programs. Artificial
Intelligence, 4J2, 51- 97.

Johnson, W. L. and Soloway, E., (1985). PROUST: Knowledge based program
understanding. IEEE Trans. on SE. SE - U(3), 267 - 275.

Johnson, W. L., Soloway, E., Cutler, B. and Draper, S., (1983). Bug catalog 1. Research
Report No 286, Computer Science Dept., Yale University, Yale, New Haven, Connecticut.

Just, M.A. and Carpenter, P. A., (1980). A theory of reading: From eye fixation to
comprehension. Psychological Review, 87, 329- 354.

Kaebling, L. P., (1987). An architecture for intelligent reactive systems. In M. Georgeff
and A. L. LAnsky (Eds.), Reasoning about actions and plans, Morgan Kaufmann, Palo
Alto, CA.

Kahney, H., (1983). What do novice programmers know about recursion. In A. Janda
(Ed.), Proc. CHI'83. Boston, MA. North-Holland.

Kant, E. and Newell, A., (1984). Problem Solving Techniques for the Design of
Algorithms. nformation Processing and Management, 20, 1-2, 97- 118.

Kaplan, C. A. and Simon, H. A., (1990). In search of insight. Cognitive Psychology, 22,
374-419.

330

Karmiloff-Smith, A., (1979). Micro- and macrodevelopmental changes in language
acquisition and other representational systems. Cognitive Science, 3, 91 - 118.

Katz, J. R. and Anderson, J. R., (1988). Debugging: an analysis of bug-location strategies.
Human- Computer Interaction, 3, 351 - 399.

Kay, M. (1985). Parsing in functional unification grammer. In D. R. Dowty, L. Karttunen
& A.M. Zwicky (Eds.), Natural Language Parsing: Psychological, computational and
theoretical perspectives. Cambridge University Press.

Kay, D. S. and Black, J. B., (1984). The changes in knowledge representation of computer
systems with expertise. Proceedings of the Human Factors Society, 28th, Annual Meeting,
Santa Monica, USA.

Keane, M., Kahney, H. and Brayshaw, M., (1989). Simulating analogical mapping
difficulties in recursion problems. Open University HCRL Research Report Number 41.
Feb. 1989.

Kempen, G. and Vosse, T., (1989). Incremental syntactic tree formation in human sentence
processing: an interactive architecture based on activation decay and simulated annealing.
Cahiers de la Fondation Archives Jean Piaget.

Kemper, S., (1982). Filling in the missing link. Journal of Verbal Learning and Verbal
Behavior, 2ll, 99- 107.

Kernighan, B. and Plauger, P., (1987). The elements of programming style. McGraw-Hill,
New York, NY.
Kesler, T. E., Uram, R. B., Magareh-Abed, F., Fritzsche, A., Amport, C. and Dunsmore,
H. E., (1984). The effect of indentation on program comprehension. Int. J. Man- Machine
Studies, 2ll, 415- 428.

Kessler, C. M and Anderson, J. R., (1986). A model of novice debugging in LISP.
Empirical Studies of programmers, First Workshop. Ablex, Norwwod, NJ.

Kieras, D. E. and Bovair, S., (1981). Strategies for abstracting main ideas from simple
technical prose. Technical report no. UARZ/DP{I'R-81/9, University of Arizona.

Kintsch, W., (1974). The representation of meaning in memory. Lawrence Erlbaum,
Hillsale, NJ.

Kintsch, W., (1982). Memory and Cognition, Kriger, Malabar, Florida.

Kintsch, W. and Keenan, J. M., (1973). Reading rate and retention as a function of the
number of propositions in the base structure of sentences. Cognitive Psychology, 5, 257 -
274.

Kintsch, W., Kozminsky, E., Streby, W. L., McKoon, G. and Keenan, J. M., (1975).
Comprehension and recall of text as a function of content variables. Journal of Verbal
Learning and Verbal Behavior, ll~, 196- 214.

Kintsch, W. and van Dijk, T. A., (1978). Toward a model of text comprehension and
production. Psychological Review, 55, 363- 394.

331

Klahr, D., (1982). Nonmonotone assessment of monotone development: An information
processing analysis. InS. Strauss (Ed.), U-Shaped behavioural growth, Academic Press,
New York.

Kolodner, J. L., (1983). Towards an understanding of the role of experience in the
evolution from novice to expert. International Journal of Man-Machine Studies, n9, 497 -
518.

Laird, J. E., Newell, A. and Rosenbloom, P. S., (1987). SOAR: An architecture for
general intelligence. Artificial Intelligence, 33, 1 - 64.

Lange, B. M. and Moher, T. G., (1989). Some strategies for reuse in an object-oriented
programming environment. InK. Bice and C. Lewis (Eds.), Proceedings of CHI'89.
Addison-Wesley.

Lansdale, M. W., Simpson, M. and Stroud, T. R. M., (1988). A comparison of words and
icons as external memory aids in an information retrieval task. Behaviour and Information
Technology, 9, 2, 111 - 131.

Larkin, J. H., (1980). Skilled problem solving in physics: a hierarchical planning model,
Journal of Strucural Learning, l[ii, 271- 297.

Larkin, J. H., (1981). Enriching formal knowledge: A model of learning to solve problems
in physics. In J. R. Anderson (ed). Cognitive Skills and Their Acquisition. Lawrence
Erlbaum Associates, Hillsdale, NJ.

Larkin, J., (1989). Display-based problem solving. In D. Klahr and k. Kotovski (Eds.),
Complex information processing: A tribute to Herbert A. Simon. Lawrence Erlbaum,
Hillsdale, NJ.

Larkin, J. H., McDermott, J., Simon, D. and Simon, H. A., (1980). Expert and novice
performance in solving physics problems. Science, 208, 1335 - 1342.

Lesgold, A.M., (1984). Human skill in a computerized society: complex skills and their
acquisition, Behaviour Research Methods, Instruments and Computers,]_l[ii (2), 79- 87.

Lesgold, A., Rubinson, H., Feltovich, P., Glaser, R., Klopfer, D. & Wang, Y. (1988).
Expertise in a complex skill: Diagnosing X-ray pictures. In M. T. H. Chi, R. Glaser & M.
J. Farr (Eds.), The nature of expertise. Lawrence Erlbaum Associates, Hillsdale, NJ.

Lewis, C., (1978). Production system model of practice effects. Dissertation, University of
Michigan.

Lewis, C., (1981). Skill in algebra. In J. R. Anderson (Ed.), Cognitive skills and their
acqusition. Lawrence Erlbaum, Hillsdale, NJ.

Lewis, C. and Olson, G., (1987). Can principles of cognition lower the barriers to
programming? In G. M. Olson, S. Sheppard and E. Soloway (Eds.), Empirical studies of
programmers: second workshop, Ablex, Norwood, NJ.

Leventhal, L. M., (1987). Discourse rules in program comprehension: emergence of
construct affordances rule, In Proc. ofiNTERACT'87, H. J. Bullinger and B. Shackel
(Eds.), Elsevier, North- Holland.

332

Leventhal, L. M., (1988). Experience of programming beauty: some patterns of
programming aesthetics. Int. J. Man- Machine Studies, 28, 525- 550.

Littman, D. C. and Soloway, E., (1988). Evaluating ITS's: The cognitive science
persepctive. In M. C. Polson and J. J. Richardson (Eds.), Foundations of intelligent
tutoring systems. Lawrence Erlbaum, Hillsdale, NJ.

Logan, G. D., (1979). On the use of concurrent memory load to measure attention and
automaticity. Journal of Experimental Psychology. Human Perception and Performance, 5,
189-207.

Maiden, N. and Sutcliffe, A., (1991). The abuse of reuse: Why software reuse must be
taken into care. Paper presented at HCI'91. Edinburgh

Mandler, J. M. and Johnson, N. S., (1977). Remembrance of things parsed: Story
structure and recall. Cognitive Psychology, 9, 111 - 151.

Mayer, R. E., (1976). Comprehension as affected by structure of problem represention.
Memory and Cognition, 4 (3), 249 - 255.

Mayer, R. E., (1985). Learning in complex domains: a cognitive analysis of computer
programming. In the psychology of learning and motivation, G. H. Bower (Ed.), Vol19,
Academic Press.

Mayer, R. E., (1987). Cognitive aspects of learning and using a programming language. In
Interfacing thought: Cognitive aspects of HCI, J. M. Carroll (Ed.), MIT Press.

Mayes, J. T., Draper, S. W., McGregor, M.A. and Oatley, K., (1988). Information flow
in a user interface: the effects of experience and context on the recall of Mac Write screens.
In D. M. Jones and R. Winder (Eds.), People and Computers IV. Cambridge University
Press, Cambridge.

McCalla, G. I. and Reid, L., (1982). Plan creation, plan execution and knowldge
acquisition in a dynamic microworld. International Journal of Man-Machine Studies, 16, 89
- 112.

McClelland, J. L. and Rumelhart, D. E., (1986). Parallel distributed processing. Vol. 2-
Psychological and Biological models. MIT Press, Cambridge, MA.

McKeithen, K. B., Reitman, J. S., Rueter, H. H. and Hirtle, S.C., (1981). Knowledge
organization and skill differences in computer programs. Cognitive Psychology, 13,
307-325.

McKendree, J. and Anderson, J. R., (1987). Effect of Practice on Knowledge and use of
Basic Lisp. In Interfacing thought: Cognitive aspects of HCI, J. M. Carroll (Ed.), MIT
Press.

McKoon, G. and Ratcliff, R., (1984). Priming and on-line text comprehension. In D. E.
Kieras and M.A. Just (Eds.), New methods in reading comprehension research. Lawrence
Elbaum, Hillsdale, NJ.

Meyer, B. J. F., (1975). The organization of prose and its effect on memory.
North-Holland, Amsterdam.

333

Miara, R. J., Musselman, J. A, Navarro, J. A. and Shneiderman., (1983). Program
Indentation and Comprehensibility. Comms ACM, 26 (11), 861- 867.

Micallef, J., (1988). Encapsulation, reusability and extensibility in object-oriented
programming languages. Journal of Object-Oriented Programming, 1, 1, 12-38.

Miller, G. A., (1956). The magical number seven, plus or minus two: Some limits on our
capacity for processing information. Psychological Review, 63, 81 - 93.

Miller, G. A., Galanter, E. and Pribram, K., (1960). Plans and the structure of behaviour.
Holt, Rinehart and Wilson, New York.

Miller, L., (1978). Has artificial intelligence contributed to an understanding of the human
mind? A critique of arguments for and against. Cognitive Science, 2(2), 111 - 128.

Morris, D., Theaker, C. J., Phillips, R., & Love, W. (1988). Human-Computer Interface
Recording. The Computer Journal, 31, 5, 437 - 444.

Myers, G. J., (1978). A controlled experiment in program testing and code
walkthroughs/inspection. Communications of the ACM, 21, 760 -768.

Mynatt, B. T., (1984). The effects of semantic complexity on the comprehension of
program modules. Int. J. Man- Machine Studies, 21, 91- 103.

Neal, L. R., (1987a). Cognition-sensitive design and user modeling for syntax-directed
editors. In J. M. Carroll and P. Tanner (Eds.), Human Factors in Computing Systems IV,
Nort -Holland, Amsterdam.

Neal, L. R., (1987b). User modeling for syntax-directed editors. In H.-J. Bullinger and B.
Shackel (Eds.), Proceedings oflnteract'87. North-Holland, Amserdam.

Neisser, U., (1976). Cognition and Reality. Principles and implications of cognitive
psychology. W. H. Freeman, San Francisco.

Neves, D. M. and Anderson, J. R., (1981). Knowledge compilation: mechanisms for the
automatization of cognitive skills. In J. R. Anderson (Ed.), Cognitive skills and their
acquisition, Lawrence Erlbaum, Hillsdale, NJ.

Newell, A., (1969). Heuristic programming: Ill-structured problems. In J. Aronofsky
(Ed.), Progress in operations research, Wiley.

Newell, A., (1973). You can't play 20 questions with nature and win. In W. G. Chase
(Ed.), Visual information processing. Academic Press, New York.

Newell, A. and Rosenbloom, P. S., (1981). Mechanisms of skill acquisition and the law of
practice. In J. R. Anderson (Ed.), Cognitive skills and their acquisition. Erlbaum,
Hillsdale, NJ.

Newell, A., Shaw, J. C. and Simon, H., (1958). Elements of a theory of human problem
solving. Psychological Review, 65, 151 166.

Newell, A. and Simon, H., (1972). Human problem solving. Prentice Hall, Englewood
Cliffs, NJ.

334

Norman, D. A., (19S1). Caterorisation of action slips. Psychological Review, 88, 1-15.

Norman, D. A., (19S3). Some observations on mental models. In D. Gentner and A. L.
Stevens (Eds.), Mental Models. Lawrence Erlbaum, Hillsdale, NJ.

Norman, D., (19S6). Cognitive Engineering. In D. A. Norman and S. W. Draper (Eds.),
User-Centered System Design. Lawrence Erlbaum, Hillsdale, NJ.

Norman, D. A., (19SS). The psychology of everyday things. Basic Books, New York.

Ormerod, T. C., (1991). What really determines the success of novices learning
programming- A collection of protocols. PPIG'91.

Ormerod, T. C., Manktelow, K. I., Robson, E. H. and Steward, A. P., (19S6). Content
and representation effects with reasoning tasks in PROLOG form. Behaviour and
Information Technology, 5 (2), 157- 16S.

Ormerod, T. C., Manktelow, K. I., Steward, A. P. and Robson, E. H., (1990). The
effects of content and representation on the transfer of PROLOG reasoning skills. InK. J.
Gilhooly, M. T. G. Keane, R. H. Logie and G. Erdos, eds., Lines of Thinking:
Reflections on the Psychology of Thought ,Vol1, Wiley.

Parker, J. and Hendley, B., (19S7). The UNIVERSE program development environment.
In Proc. of INTERACT'S?. H. J. Bullinger and B. Shackel (Eds.), Elsevier, North
Holland.

Parker, J. and Hendley, B., (19SS). The re-use of low-level programming knowledge in
the UNIVERSE programming environment. In P. Brereton (Ed.), Software Engineering
Environments, Ellis Horwood, Chichester, 19SS.

Pavard, B., (19S5). La conception des systemes de traitement de texte. Intellectica, 1,
37-6S.

Payne, S. J., (19S7). Complex problem spaces: Understanding the knowledge needed to
use interactive systems. In H. Bullinger and B. Shackel (Eds.), Human Computer
Interaction- INTERACT'S?. North-Holland, Amsterdam.

Payne, S. J., (19SS). Methods and mental models in theories of cognitive skill. In J. Self
(Ed.), Artificial Intelligence and Human Learning. Chapman and Hall, London.

Payne, S. J., (1990). Looking HCI in the I. In D. Diaper, D. Gilmore, G, Cockton and B,
Shackel (Eds.) Human Computer Interaction- INTERACT'90., North-Holland,
Amsterdam.

Payne, S. J., (in press). Display-based action at the user interface. International Journal of
Man-Machine Studies.

Payne, S. J., Squibb, H. R. and Howes, A., (1990). The nature of device models: The
yoked state space hypothesis and some experiments with text editors. Human-Computer
Interaction, 5, 415- 444.

Pennington, N., (19S5). Cognitve components of expertise in computer programming: A
review of the literature. Psychological Documents, 15, 2702.

335

Pennington, N., (1987 a). Stimulus structures and mental representations in expert
comprehension of computer programs. Cognitive psychology, 19, 295- 341.

Pennington, N., (1987 b). Comprehension strategies in programming. In G. M. Olson, S.
Sheppard and E. Soloway (Eds.), Empirical studies of programmers: second workshop,
Ablex, Norwood, NJ.

Pennington, N. and Grabowski, B., (1990). The tasks of programming. In J.-M. Hoc,
T. R. G. Green, R. Samurcay and D. J. Gilmore (Eds.), Psychology of Programming,
London, Academic Press.

Perkins, D. N. and Martin, F., (1986). Fragile knowledge and neglected strategies in
novice programmers. Empirical studies of programmers, First Workshop, Ablex,
Norwood, NJ.

Petre, M. and Winder, R., (1988). Issues governing the suitability of programming
languages for programming tasks. In People and Computers IV, Proc. HCI'88, UMIST.
(Eds.) D. Jones and R. Winder, Cambridge University Press, Cambridge.

Pirolli, P. L., (1986). A cognitive model and computer tutor for programming recursion.
Human-Computer Interaction, 2, 319- 355.

Pirolli, P. L. and Anderson, J. R., (1985). The role of learning from examples in the
acquisition of recursive programming skills, Canadian Journal of Psychology, 39 (2),
240-272.

Pirolli, P. and Bielaczyc, K., (1989). Empirical analysis of self-explanation and transfer in
learning to program. In the proceedings of the Eleventh conference of the Cognitive Science
Society. Ann Arbor, Michigan. Lawrence Erlbaum, Hillsdale, NJ. 405- 457.

Polya, G., (1973). How to solve it. Princeton University Press, Princeton, NJ.

Rajan, T., (1986). A principled design for an animated view of program execution for
novice programmers. Open University HCRL Research Report Number 19a. December
1986.

Ranney, M. and Reiser B. J., (1989). Reasoning and explanation in an intelligent tutor for
programming. In G. Salvendy and M. J. Smith (Eds.), Designing and using
Human-Computer Interfaces and Knowledge based systems. Elsevier, Amsterdam.

Ratcliff, B. and Siddiqi, J. I. A., (1985). An empirical investigation into problem
decomposition strategies used in program design. Int. f. Man- Machine Studies, 22, 77-
90.

Reason, J. T., (1979). Actions as not planned: the price of automatisation. In G.
Underwood and R. Stevens (Eds.), Aspects of consciousness. Academic Press, London.

Reif, R. and Heller, J. 1., (1982). Knowledge structure and problem solving in physics.
Educational Psychologist, 17, 102- 127.

Reitman, J., (1976). Skilled perception in Go: Deducing memory structures from
inter-response times. Cognitive Psychology, 8, 336 - 356.

336

Reitman, J. and Rueter, H., (1980). Organization Revealed by Recall and confirmed by
Pauses, Cognitive Psychology, 12, 554 - 581.

Reitman, W., (1965). Cognition and thought, Wiley, New York.

Rich, C., (1981). A formal representation for plans in the programmer's apprentice. In
Proceedings ofUCAI-81, Vancouver, BC, 1044- 1052.

Rich, C., Shrobe, H. E. and Waters, R. C., (1979). An overview of the programmers
apprentice. In Proceedings ofiJCAI-79, Tokto, Japan.

Rich, C. and Wills, L. M., (1990). Recognizing a program's design: A graph-parsing
approach. IEEE Software, 82- 89.

Rist, R. S., (1986a). Plans in programming: definition, demonstration, and development.
Empirical Studies of Programmers, First Workshop, Ablex, Norwood, NJ.

Rist, R. S., (1986b). Focus and learning in program design. Proceedings of the 8th.
Cognitive Science conference, Amherst, MA.

Rist, R. S., (1986). Learning by doing: description of model. Yale Research Report.

Rist, R. S., (1989). Schema creation in programming, Cognitive Science, 13, 389-414.

Rist, R. S., (1990). Variability in program design: the interaction of process with
knowledge, International Journal of Man-Machine Studies, 33, 305-322

Rist, R. S., and Bevemyr, J., (1989). PARE: A cognitively base programmer analyser.
12th Int Conf. on AI.

Robertson, S. P., & Black, J. B. (1986). Planning in text editing behavior. In A. Jonda
(Ed.), Human factors in computing systems, North-Holland, New York.

Robertson, S. P. and Chiung-Chen, Y., (1990). Common cognitive representations of
program code across tasks and languages. International Journal of Man-Machine Studies,
33, 343 - 360.

Robertson, S. P., Davis, E. F., Okabe, K. and Fitz-Randolf, D., (1990). Program
comprehension beyond the line. Proceedings of INTERACT'90. D. Diaper, D. Gilmore,
G. Cockton and B. Shackel, (Eds.), Elsevier, North-Holland, Amsterdam.

Roske-Hofstrand, R. J. and Paap, K. R., (1986). Cognitive networks as a guide to menu
organization: and application in the automated cockpit. Ergonomics, 29, 1301- 1312.

Rosson, M. B. and Alpert, S. R., (1990). The cognitive consequences of object-oriented
design. Human-Computer Interaction, 5, 345 - 379.

Rumelhart, D. E. (1975). Notes on a schema for stories. In D. G. Bobrow and A. Collins
(eds.), Representation and understanding: Studies in cognitive science. Academic Press,
New York.

Rumelhart, D. E., (1977). Understanding and summarizing brief stories. In D. Laberge and
S. J. Samuels (Eds.), Basic processes in reading. Lawrence Erlbaum, Hillsdale, NJ.

337

Rumelhart, D. E., (1980). Schemata: The basic building blocks of cognition. In R. Spiro,
B. Bruce and W. Brewer (Eds.), Theoretical issues in reading comprehension. Lawrence
Erlbaum, Hillsdale, NJ.

Rumelhart, D. E.and McClelland, J. L., (1986). Parallel distributed processing. Vol. 1 -
Foundations. MIT Press, Cambridge, MA.

Rumelhart, D. E. and Norman, D. A., (1978). Accretion, Tuning and Restructuring: Three
modes of learning. In J. W. Cotton and R. Klatsky, (Eds.), Semantic factors in cognition,
Lawrence Erlbaum, Hillsdale, NJ.

Rumelhart, D. E. and Norman, D. A., (1981). Analogical processes in learning. In J. R.
Anderson (Ed.), Cognitive skills and their acquisition. Lawrence Erlbaum, Hillsdale, NJ.

Sacerdoti, E. D., (1974). Planning in a hierarchy of abstraction spaces. Artificial
Intelligence, 5, 115 - 135.

Sacerdoti, E. D., (1977). A structure for plans and behavior. Elsevier, North-Holland.

Sajaniemi, J. and Nienelainen A. (1989). Program editing based on variable plans: A
cognitive approach to program manipulation. In G. Salvendy and M. J. Smith (Eds.),
Designing and using Human-Computer Interfaces and Knowledge based systems. Elsevier,
Amsterdam.

Schank, R. C., (1979). Intrestingness: Controlling inferences. Artificial Intelligence, 12,
273- 297.

Schank, R. C., (1980). Language and Memory. Cognitive Science, 4, 243- 284.

Schank, R. C., (1981). Reading and Understanding. Lawrence Erlbaum, Hillsdale, NJ.

Schank, R. C. and Abelson, R., (1977). Scripts, Plans, Goals and Understanding.
Lawrence Erlbaum, Hillsdale, NJ.

Scheider, W. and Detweiler, M., (1987). A connectionist/control architecture for working
memory. In G. H. Bower (Ed.), The psychology of learning and motivation, Vol21,
Academic Press, New York.

Schoenfeld, A. H. (1985). Mathematical problem solving. Academic press, London.

Schoenfeld, A. and Herrmann, D., (1982). Problem perception and knowledge structures
in expert and novice mathematical problem solvers. Journal of Experimental Psychology:
Learning, Memory and Cognition, 8, 484- 494.

Scholtz, J. and Wiedenbeck, S., (1989). Learning a new programming language. In G.
Salvendy and M. J. Smith (Eds.), Designing and using Human-Computer Interfaces and
Knowledge based systems. Elsevier, Amsterdam.

Schonflug, W., (1986a). External information storage: An issue for the psychology of
memory. In F. Klix and H. Hagendorf (eds.), Human memory and cognitive capabilities;
mechanisms and performance. Elsevier Science Publishers.

Schonflug, W., (1986b). The trade-off between internal and external information storage.
Journal of Memory and Language, 25, 657-675.

338

Schvaneveldt, R. W., Durso, F. T. and Dearholt, D. W., (1985). Pathfinder: Scaling with
network structures. Memorandum in Computer and Cognitive Science, MCCS-85-9,
Computing Research Laboratory, New Mexico State University.

Sharples, M and O'Mally, C., (1988). A framework for the design of a writer's assistant.
In J. Self (Ed.), Artificial Intelligence and Human Learning. Chapman and Hall, London.

Shneiderman, B., (1976). Exploratory experiments in programmer behaviour. International
Journal of Computer and Information Science, 5, 123- 143.

Shneiderman, B., (1977). Measuring computer program quality and comprehension.
International Journal of Man-Machine Studies, 9, 465 - 478.

Shneiderman, B., (1980). Software psychology: Human factors in computer and
information systems. Little, Brown, Boston, MA.

Shneiderman, B. and Mayer, R., (1979). Syntactic/Semantic Interactions in Programmer
Behavior: A model and Experimental Results. International Journal of Computer and
Information Sciences, 8, 3, 219- 238.

Shneiderman, B., Shafer, P., Simon, R. and Weldon, L., (1986). Display Strategies for
Program Browsing: Concepts and Experiment. IEEE Software, 3, 3, 7- 15.

Siddiqi, J. I. A., (1985). A model of programmer designer behaviour. In people and
computers: designing the interface, P. Johnson and S. Cook (Eds.), Cambridge University
Press.

Siddiqi, J. I. A. and Ratcliff, B. (1989). Specification influences in program design. Int. J.
Man-Machine Studies, 31, 393-404.

Siddiqi, J. I. A. and Sumiga, J. H., (1989). Empirical evaluation of a proposed model of
the program design process. In P. Zundo and P. Agrawal (Eds.), Proc. 4th. Symposium on
empirical foundations of information and software sciences (1987). Plenum Press, 1989.
333-345.

Sime, M. E., Arblaster, A. T. and Green, T. R. G., (1977). Structuring the programmer's
task. J. Occup. Psychology, 50, 205- 216.

Sime, M. E., Green, T. R. G. and Guest, D. J., (1973). Psychological evaluation of two
conditional constructions used in computer languages. International Journal of
Man-Machine Studies, 5, 123- 143.

Sime, M. E., Green, T. R. G. and Guest, D. J., (1977).Scope marking in computer
conditionals- A psychological evaluation. International Journal of Man-Machine Studies,
9, 107- 118.

Simon, H. A., (1962). The arcitecture of complexity. Proc. Amer. Philosoph. Soc., 106,
467-482.

Simon, H., (1973). The structure of ill-structured problems. Artificial Intelligence, 4, 181 -
201.

339

Simon, H. A., (1975). The functional equivalence of problem solving skills, Cognitive
Psychology, 7, 268- 288.

Simon, H. A., (1978). Information-processing theory of human problem solving. In W. K.
Estes (Ed.), Handbook of learning and cognitive processes: Vol5. Lawrence Erlbaum,
Hillsdale, NJ.

Simon, H. and Reed, S. K., (1976) Modelling strategy shifts on a problem solving task.
Cognitive Psychology, 8, 86- 97.

Singley, M. K. and Anderson, J. R., (1985). The transfer of text-editing skill. International
Journal of Man-Machine Studies, 22, 403- 423.

Singley, M. K. and Anderson, J. R., (1988). A keystroke analysis of learning and transfer
in text editing. Human-Computer Interaction, 3, 223 -274.

Smith, E. E. and Goodman, L., (1984). Understanding instructions: the role of an
explanatory schema. Cognition and Instruction, 1, 359- 396.

Soloway, E., Bonar, J. and Ehrlich, K., (1983). Cognitive strategies and looping
constructs: an empirical study. Comms ACM, 26 (11), 853- 860.

Soloway, E. and Ehrlich, K., (1984). Empirical studies of programming knowledge. IEEE
Trans. SE, SE - 10(5), 595 -609.

Soloway, E., Ehrlich, K. and Black, J. B., (1983). Beyond numbers: Don't ask "how
many" ... Ask "Why". In A. Janda (Ed.), Proc. CHI'83. Boston, MA. North-Holland.

Soloway, E., Ehrlich, K., Bonar, J and Greenspan, J., (1982). What do novices know
about programming. In A Badre and B. Shneiderman (Eds.), Directions in
Human-Computer Interaction, Ablex, Norwood, NJ.

Soloway, E., Ehrlich, K. and Gold, E., (1983). Reading a program is like reading a story
(well, Almost). Proc. 5th. Annual Conf. of the Cognitive Science Society. Rochester, NY.

Spohrer, J. C. and Soloway, E., (1986). Alternatives to construct-based programming
misconceptions. In Human factors in computing systems, Proc. CHI'86, North- Holland,
Amsterdam.

Spohrer, J. C., Soloway, E. and Pope, E., (1985). Where the bugs are. In Human factors
in computing systems 2, Proc. CHI'85, L. Borman and B. Curtis (Eds.), North - Holland,
Amsterdam.

Staszewski, J. J., (1988). Skilled memory and expert mental calculation. In Chi, M. T. H.,
Glaser, R. and Farr, M. J., (Eds.), The nature of expertise, Lawrence Erlbaum, Hillsdale,
NJ.

Stone, D. N., Jordan, E. W. and Wright, M. K., (1990). The impact of Pascal education
on debugging skill. Int. J. Man-Machine Studies, 33, 81- 95.

Strauss, S. and Stavy, R., (1982). U-shaped behavioral growth: implications for theories
of development. In W. W. Hartup (Ed.), Review of child devlopment research. University
of Chicago Press, Chicago.

340

Sutcliffe, A. and Maiden, N., (1990). Software reusability: Delivering productivity gains or
short cuts. In D. Diaper, D. Gilmore, G. Cockton and B. Shackel (Eds.), Proceedings of
INTERACT'90. North-Holland, Amsterdam.

Thomas, J. C. and Carroll, J. M., (1979). The psychological study of design. Design
Studies. 1, 5-11.

Thomas, M. and Zweben, S., (1986). The effects of program-dependent and
program-independent deletions on software cloze tests. Empirical Studies of Programmers,
First Workshop, Ablex, Norwood, NJ.

Trabasso, T., Secco, T. and van den Broeck., (1982). Causal cohesion and story
coherence. In H. Mandl, N. L. Stien and T. Trabasso (Eds.), Learning and comprehension
of text. Lawrence Erlbaum, Hillsdale, NJ.

Tversky, A. and Kahneman, D., (1973). Availability: A heuristic for judging frequency and
probability. Cognitive Psychology, 5, 207- 232.

van Dijk, T. and Kintsch, W., (1983). Strategies of discourse comprehension. Academic
Press, New York, NY.

VanLaar, D., (1989). Evaluating a colour coding programming support tool. In A.
Sutcliffe and L. Macaular (Eds.), People and Computers V. Cambridge University Press,
Cambridge.

VanLehn, K., (1982). Bugs are not enough: emprical studies of bugs, impasses and repairs
in procedural skills. Journal of Mathematical Behaviour, 3, 3 - 72.

VanLehn, K., (1990). Mind Bugs: The origins of procedural misconceptions. MIT Press,
Cambridge, MA.

van Merrienboer, J. J. G., (1990). What cognitive science may learn from instructional
design: A case study in introductory computer programming. AERA Annual meeting,
Boston, USA.

Vessey, 1., (1985). Expertise in debugging computer programs: A process analysis. Int. J.
Man-Machine Studies, 23, 459- 494.

Vessey, 1., (1986). Expertise in debugging computer programs: An analysis of the contents
of verbal protocals, IEEE trans Systems, Man and Cybernetics, SMC- 16 (5), 621-637.

Vessey, I., (1989). Toward a theory of computer program bugs: an empirical test. Int. J.
Man-Machine Studies, 30,23-46.

Vessey, I. and Weber, R., (1984a). Conditional statements and program coding: an
experimental evaluation. Int. J. Man-Machine Studies, 21, 161 - 190.

Vessey, I. and Weber, R., (1984b). Research on Structured Programming: An Empiricist's
Evaluation. IEEE Trans. Soft. Eng., SE-10, 4, 397-407.

Visser, W., (1987). Strategies in programming programmable controllers: a field study on a
professional programmer. In G. M. Olson, S. Sheppard and E. Soloway (Eds.), Empirical
studies of programmers: second workshop, Ablex, Norwood, NJ.

341

Visser, W. and Hoc, J-M., (1989). Program design strategies. To appear in D. Gilmore, T.
R. G. Green, J-M. Hoc and R. Samurcay (Eds.), Psychology of programming, Academic
Press, London.

Visser, W. and Morais, A., (1991). Concurrent use of different expertise elicitation
methods applied to the study of the programming activity. In M. J. Tauber and D.
Ackermann (Eds.), Mental Models in HCI, Elsevier, North-Holland.

Waddington, R. and Henry, R., (1989). The effect on program authorship on novice
debugging performance. In G. Salvendy and M. J. Smith (Eds.), Designing and using
Human-Computer Interfaces and Knowledge based systems. Elsevier, Amsterdam.

Waddington, Rand Henry, R., (1991) Selective Information hiding: A debugging
Technique to address some of the problems of Novice programmers. Proc. Int Conference
on HCI, Suttgart, 1991.

Waters, R. C., (1979). A method for analysing loop programs. IEEE Transactions on
Software Engineering, 5, 237- 247.

Weber, G., (1991). Explanation Based retrieval in a case-based learning model. Proc of
13th meeting of the cognitive science society. Chicago.

Weber, G., (in press a). Episodic Modelling in an intelligent tutoring system. D. G.
Bouwhuis (Ed.), Cognitive modelling and Interactive Environments, NATO ASI Series F.
Springer, Berlin.

Weber, G., (in press b). An Episodic Student model for an Intelligent LISP Tutor, D. H.
Joanssen and T. Mayes (Eds.), Mindtools: Cognitive technologies for modelling
knowledge. Springer, Berlin.

Weber, G and Mollenberg, A., (Date unknown). STRUEDI: A tutoring system for LISP
Beginners, Draft Repoart

Weiser, M. and Shertz, J., (1983). Programming problem representation in novice and
expert programmers. Int. J. Man- Machine Studies, 19, 391 - 398.

Weissman, L. M., (1974). Psychological complexity of computer programs: an
experimental methodology. Sigplan notes, 9 (6), 25- 36.

White, R., (1988). Effects of Pascal upon the learning of Prolog- a preliminary study.
Presented at the International Conference on Thinking, Aberdeen, August 1988.

Whitefield, A. D., (1985). Constructing and applying a model of the user for computer
systems development. PhD Thesis, University College, London

Widowski, D. and Eyferth, K., (1986). Comprehending and recalling computer programs
of different structural and semantic complexity by experts and novices. In H-P Willumeit
(Ed). Human Decision making and manual control. Elsevier, North-Holland.

Wiedenbeck, S., (1985). Novice/expert differences in programming skills. Int. J.
Man-Machine Studies, 23, 383- 390.

342

Wiedenbeck, S., (1986a). Processes in computer program comprehension. Empirical
Studies of Programmers, First Workshop, Ablex, Norwood, NJ.

Wiedenbeck, S., (1986b). Beacons in computer program comprehension. Int. J. Man
Machine Studies, 25, 697-709.

Wiedenbeck, S., (1989). Learning iteration and recursion from examples. Int. J. Man
Machine Studies, 3~ ,1- 22.

Wiedenbeck, S. and Scholtz, J., (1989). Beacons: A knowledge structure in program
comprehension. In G. Salvendy and M. J. Smith (Eds.), Designing and using
Human-Computer Interfaces and Knowledge based systems. Elsevier, Amsterdam.

Wills, L. M., (1990). Automated program recognition: A feasibility demonstration.
Artificial Intelligence, 415, 113- 171.

Winograd, T., (1974). Natural language understanding. Academic Press, New York.

Winograd, T. and Flores, F., (1987). Understanding computers and cognition: A new
foundation for design. Addision Wesley, Reading, MA.

Wirth, N., (1971). Program development by stepwise refinement, Communications of the
ACM, :H.4l, 4.

Woodfield, S. N., Dunsmore, H. E. and Shen, V. Y., (1981).The effects of
modularization and comments on program comprehension. Proc. 5th. Int. Conf. on
Software Engineering. IEEE press, 215- 223.

Young, R. M., (1979). Production systems for modelling human cognition. In D. Michie
(Ed.), Expert systems in the microelectronic age. Edinburgh University Press, Edinburgh.

Young, R. M., Howes, A. and Wittington, J., (1990). A knowledge analysis of
interactivity. In D. Diaper, D. Gilmore, G. Cockton and B. Shackel (Eds.),
Human-Computer Interaction, Interact'90. North-Holland, Amsterdam.

Young, R. M. and Simon, T., (1987). Planning in the context of human-computer
interaction. In D. Diaper and R. Winder (Eds.), People and Computers 3. Cambridge
University Press, Cambridge.

Youngs, E. A., (1974). Human Errors in Programming. Int. J. of Man-Machine Studies,
6, 361-376.

Yourdon, E., (1975). Techniques of program structure and design. Prentice-Hall,
Englewood Cliffs, NJ.

Yu, C. and Robertson, S. P., (1988). Plan-based representations of Pascal and Fortran
code. In Proc. CHI'88

Zeitz, C. M. and Spoeher, K. T., (1989). Knowledge organisation and the acqusition of
procedural expertise. Applied cognitive psychology, 3, 313- 336.

343

