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Abstract 

This thesis reports a number of empirical studies exploring the development of 

expertise in computer programming. Experiments 1 and 2 are concerned with 

the way in which the possession of design experience can influence the 

perception and use of cues to various program structures. Experiment 3 

examines how violations to standard conventions for constructing programs can 

affect the comprehension of expert, intermediate and novice subjects. 

Experiment 4 looks at the differences in strategy that are exhibited by subjects of 

varying skill level when constructing programs in different languages. 

Experiment 5 takes these ideas further to examine the temporal distribution of 

different forms of strategy during a program generation task. Experiment 6 

provides evidence for salient cognitive structures derived from reaction time and 

error data in the context of a recognition task. Experiments 7 and 8 are 

concerned with the role of working memory in program generation and suggest 

that one aspect of expertise in the programming domain involves the acquisition 

of strategies for utilising display-based information. The final chapter attempts 

to bring these experimental findings together in terms of a model of knowledge 

organisation that stresses the importance of knowledge restructuring processes 

in the development of expertise. This is contrasted with existing models which 

have tended to place emphasis upon schemata acquisition and generalisation as 

the fundamental modes of learning associated with skill development. The work 

reported here suggests that a fine-grained restructuring of individual schemata 

takes places during the later stages of skill development. It is argued that those 

mechanisms currently thought to be associated with the development of 

expertise may not fully account for the strategic changes and the types of error 

typically found in the transition between novice, intermediate and expert 

problem solvers. This work has a number of implications for existing theories 

of skill acquisition. In particular, it questions the ability of such theories to 

account for subtle changes in the various manifestations of skilled performance 

that are associated with increasing expertise. Secondly, the work reported in this 

thesis attempts to show how specific forms of training might give rise to the 

knowledge restructuring process that is proposed. Finally, the thesis stresses the 

important role of display-based problem solving in complex tasks such as 

programming and highlights the role of programming language notation as a 

mediating factor in the development and acquisition of problem solving 

strategies. 
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Chapter 1. Introduction and overview 

The work reported in this thesis represents an attempt to understand the 

problem-solving processes involved in programming. My original motivation for 

studying programming arose from rather practical considerations i.e., how we 

might best design tools to support the problem-solving activities that are typically 

involved in programming tasks. However, in order to do this one needs to 

understand the nature of these problem-solving activities. Moreover, it rapidly 

became clear that existing theories of problem-solving do not provide an adequate 

account of the kinds of problem-solving behaviour that have been observed in 

programming. Hence, the original emphasis of this research moved away from the 

design of tools towards a more empirically motivated mode of research from 

which I attempted to gain some theoretical insight into the complexities of 

problem-solving in this domain. 

Alan Newell (1973) once claimed that cognitive psychology tends to be 

phenomenon-driven, in that the discovery of a new phenomenon (for instance, the 

visual icon) leads to an exhaustive exploration of all its possible ramifications by 

cognitive psychologists. To some extent we could also claim that cognitive 

psychology and cognitive science are not only phenomena driven but also artifact 

driven. The widespread and continuing use of high-level programming languages 

has spawned a significant amount of research into the problem-solving processes 

involved in the creation and the comprehension of complex software artifacts. 

Much of the early research into the cognitive aspects of programming served 

simply to suggest that established theories developed in other problem-solving 

domains could be usefully applied to understand programming behaviour. 

However, more recently, research into programming behaviour has begun to 

contribute more explicitly to the general body of problem-solving theory, and has 

suggested modifications and important extensions to paradigmatic 

problem-solving analyses. 
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In trying to understand programming tasks it should be possible to frame an 

analysis in terms of existing generic models of problem-solving such as those 

proposed by Newell and Simon or by Anderson (described in the next chapter). 

These models are, after all, intended to be generic models of problem-solving, and 

not just models of problem-solving in specific domains. The work reported in this 

thesis adopts the general problem-solving paradigm proposed by these models. 

However, it is suggested that programming tasks display some characteristics that 

are not well catered for by such models. In the next chapter I will first present a 

brief overview of these generic problem-solving frameworks and their application, 

and then attempt to derive some common characteristics of these frameworks 

which will provide a starting point for assessing their validity as models which 

might be used to account for problem-solving behaviour in programming. 

Preempting this discussion somewhat, I will suggest three major features of 

programming tasks that are not well represented by generic models of 

problem-solving. Firstly, programming places significant demands upon cognitive 

resources and programmers appear to be unable to elaborate an entire sequence of 

problem-solving steps without engaging in a closely linked series of planning and 

execution cycles. It will be suggested that existing models of problem-solving and 

planning do not emphasise sufficiently the close link between planning/operator 

selection and execution. 

Secondly, existing models of human problem-solving typically describe situations 

in which problem-solving operators are applied directly to objects in the world 

(albeit, in many cases, an artificial symbolic world) - for instance, in solving 

puzzles or playing games. However, programming is rather different in that a 

programmer may use any one of a range of programming languages to implement 

a solution to a problem. Moreover, these languages display different kinds of 

characteristics which may or may not support a particular problem-solving 

approach. 

Finally, in considering problem-solving in programming one needs to take 

account of the environment in which programs are typically constructed. For 

instance, compare writing a program using pen and paper with, say, dictating a 
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program (uncommon, but possible) or using a line-editor. Each of these 

environments has different characteristics, and these characteristics may, to a 

greater or lesser extent, support preferred problem-solving strategies. 

A central issue raised by this thesis is that these features of programming tasks are 

not adequately represented by generic problem solving-models. In addition, it 

seems that these models or frameworks generally tend to emphasise aspects of a 

problem-solvers' knowledge representation and the way in which this determines 

strategy and have neglected to consider characteristics of the task or of the 

environment in which the task is undertaken. Studies of problem-solving in 

programming are now beginning to address these issues and have considered in 

some detail the way in which task characteristics, and in particular the notational 

features of languages, can affect problem-solving behaviour. 

The work reported in this thesis attempts to link together findings that have 

emerged from studies of knowledge representation in programming and issues 

stemming from a consideration of the notational properties of programming 

languages. Until now these issues have been addressed in isolation. The central 

concern of this thesis is to provide a broader view and more detailed 

understanding of the problem-solving processes involved in programming. In 

particular, interest is directed towards understanding the way in which knowledge 

representation in programming develops, its relationship with different forms of 

programming strategy and the extent to which these are supported, or otherwise, 

by programming language and task characteristics. 

The following chapter begins by outlining a number of generic theories or 

frameworks which have been advanced as models of human problem-solving. In 

fact, the main emphasis of this section is to provide a broad overview of human 

problem-solving from the perspective of two major theories or frameworks -

namely, Newell and Simon's General Problem Solver (GPS) and Anderson's 

Adaptive Control of Thought (ACT *). There are clearly other frameworks and 

models which might provide an equally cogent account of human 

problem-solving. However, the application of GPS and ACT* has been extensive, 

and these frameworks have proven to be of great predictive value. Moreover, 
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while both frameworks provide a general description of the architecture of 

cognition, they differ substantiality in emphasis, and these differences provide 

important foci for a comparison of these theories. 

The second chapter then moves on to consider more specific issues relating to 

problem-solving in programming. The intention of this section is to consider the 

common characteristics of problem-solving tasks and to illustrate why 

programming should be considered as a problem-solving activity. Subsequently, 

the application of generic problem-solving frameworks is considered in the context 

of programming. An attempt is then made to suggest that there are some important 

characteristics of typical programming tasks that are not well catered for by 

existing problem-solving models. While this chapter is broadly concerned with 

domain independent problem-solving frameworks, subsequent chapters provide a 

review of some of the more important empirical and theoretical work which has 

addressed more directly the problem-solving processes involved in programming. 

Subsequent chapters are organised into three distinct themes - knowledge 

representation, strategy and notational features. The ease with which this emerged 

appears to reflect or belie the narrowness of traditional concerns in the psychology 

of programming. That is to say, very few studies actually attempt to suggest links 

between these different themes. This thesis represents a step in the other direction, 

and will hopefully provide a bridge between these various lacunae. 

The third chapter considers expert-novice differences and knowledge 

representation, and reviews a number of studies originating in the programming 

domain. In the fourth chapter interest is directed toward understanding the nature 

of problem-solving strategies in programming, while chapter five considers the 

way in which programming language features (specifically notational factors) have 

been shown to affect problem-solving strategy. Each of the next six chapters 

reviews a specific experiment carried out to examine a particular hypothesis or a 

small collection of related hypotheses. 

These empirical studies are reported in the order in which they were carried out, 

since initially no overarching model or framework existed which could be used to 
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neatly construe their theoretical development. However, as early studies in this 

series of experiments started to lead to the development of a model of 

problem-solving in programming, the theoretical focus of the work became 

clearer. It seems more appropriate to report the studies in this way rather than 

attempt to reconstruct the early experiments such that they fit with the model. 

While the early experiments in this series were generally exploratory, later studies 

make specific predictions stemming from the model proposed in this thesis. While 

allusion to the model is made in the context of reporting these experiments, the 

model itself is presented in the last chapter which attempts to draw together the 

results of the individual studies to suggest how features of a programmers 

knowledge representation develop and appear to interact with certain salient 

language features to determine particular forms of problem-solving strategy. 

This model suggests a number of significant extensions to existing theories of 

problem-solving behaviour in programming, and in particular it addresses issues 

relating to the development of programming knowledge. The empirical work 

reported in this thesis illustrates how knowledge representation develops and how 

it changes with increasing programming expertise. Concern is directed primarily to 

exploring the adequacy of schema or plan-based theories of programming 

knowledge. The simple model of schema acquisition that is proposed by these 

theories to explain the development of expertise is challenged and a more complex 

model which emphasises knowledge restructuring processes is proposed. 

This model suggests that knowledge representation is not uniform, but that as 

expertise develops certain features of a programmer's knowledge representation 

achieve prominence. For example, it is suggested that those aspects of a particular 

schema that directly encode the role of that schema will be more easily accessible 

than its other components. On this view, programming expertise is not seen to 

develop simply via the acquisition of a greater number and range of schemata, 

although this clearly is an important facet in the development of expertise. Rather, 

the emphasis of the model suggests the importance of knowledge restructuring, 

and empirical evidence for this phenomenon is cited. 
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For instance, in experiment five (reported in chapter 10) involving a program 

recognition task, it is shown that expert programmers respond to the presence of 

focal lines (i.e., those lines that directly encode the role of a particular plan or 

schemata) more quickly than they respond to non-focal lines. In the case of 

intermediates and novices no difference in response times to focal or non-focal 

lines is apparent. In addition, while intermediates and experts can detect plan 

violations with about the same frequency, experts detect such violations 

significantly faster than intermediates. These findings are taken as evidence for 

the idea that while both intermediates and experts are able to access the same range 

of plan structures, experts seem to be able to access the salient parts of these plan 

structures with great ease, perhaps suggesting that more experienced programmers 

structure their knowledge rather differently. 

The mechanisms that give rise to this restructuring processes appear to be 

associated with a programmers design experience. The first experiment reported in 

this thesis suggests that design training may encourage programmers to think 

about problems in a more structured fashion, and may facilitate the construction of 

a mapping between the problem domain and structures in the language domain. It 

remains unclear whether design training and design methodologies simply reflect 

expert cognitive structure, and thereby describe or in some way facilitate naturally 

occurring problem-solving strategies or whether design training actually 

determines or predisposes a particular cognitive structure and set of related 

strategies. 

In addition, the restructuring processes described by this model may suggest 

reasons for the adoption of particular forms of problem-solving strategy. In 

particular it may account for the transition from depth-first to breadth-first 

strategies that have been commonly observed in studies of the development of 

problem-solving expertise. Hence, expert programmers may develop a solution in 

a hierarchical fashion, starting from the implementation of lines of code that 

represent focal plan elements before expanding these to include subsidiary plan 

components. In the case of novices, and possibly intermediates, it is suggested 

that the uniform nature of their representation of plan knowledge does not allow 

for the differentiation of focal and non-focal plan elements and it is shown how 
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this might lead to the adoption of strategies which display depth-first 

characteristics. 

Moreover, it is argued that features of certain programming language notations 

may provide support for the implementation or the comprehension of focal plan 

elements. For instance, languages such as Pascal have been described as 

"role-expressive" in that their rich lexical structure appears to facilitate the 

discriminability of the individual program components that might be expressed in 

that language. This has important implications for the model proposed here since 

we might predict that there will be an interaction between language structure (i.e., 

the extent to which a particular language might be described as "role-expressive") 

and expertise. Hence, we might expect experts to perform better using 

"role-expressive" languages such as Pascal where focal structures will be more 

readily perceived, while the performance of experts and non-experts in plan related 

tasks may not differ significantly in less "role-expressive' languages such as 

BASIC. Indeed, one of the experiments reported later in this thesis supports this 

prediction, and suggests that there is a strong interaction between language 

structure and expertise. 

It will be suggested that the model of knowledge restructuring proposed here 

provides a parsimonious interpretation of a large body of existing empirical studies 

which have addressed problem-solving issues in programming. The model 

suggests ways of integrating previously distinct areas of research and indicates 

how aspects of a programmer's knowledge representation may interact with 

language and task features to determine programming strategy. In addition, the 

model has a number of distinct parallels with work in other domains, and this 

suggests that the model may be generalisable to other knowledge-intensive 

problem-solving tasks. 

In summary, there are a number of identifiable aims relating to the work reported 

in this thesis. Firstly, an attempt is made to explore the cogency of extant 

problem-solving models or frameworks in terms of their application to 

programming. Secondly, the existing psychological work on problem-solving in 

programming is reviewed and evaluated. This review is grouped into three 
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sections- knowledge representation, strategy and language features- in order to 

reflect the thematic concern anci historical development of this work. A number of 

experimental studies are then reported which address some of the shortcomings of 

existing work and provide the basis for a model of programming behaviour which 

attempts to bridge previously isolated areas of research, thus leading to a more 

unified framework for understanding programming behaviour. Finally, an attempt 

is made to relate this model to work in other problem solving domains and to 

illustrate briefly the cognitive mechanisms that might underpin the knowledge 

restructuring processes that are central to the model. 
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Cllmjpter 2. ModleHs of jproblem soHvnng behaviour and! their 

appllicatiollll to pll"'gramming tasks 

2.1 Introduction 

This chapter provides a broad, yet necessarily brief, review of two important 

problem-solving frameworks, Newell and Simon's General Problem Solver 

(GPS) and Anderson's ACT*. The primary intention of this chapter is to 

examine the general applicability of these frameworks in terms of their ability to 

account for the complex problem-solving processes that underpin programming 

behaviour. It will be suggested that there are certain salient characteristics of 

programming tasks that are not well catered for by existing models of human 

problem-solving. This discussion provides both a basis for our characterisation 

of programming as a problem-solving activity and a foundation for the work 

reported later in this thesis. 

Newell and Simon's problem and state space analysis of human problem 

solving is first introduced to provide a general background to the discussion 

presented in this chapter. This analysis is of some historical interest, but it 

appears to be of little significance in terms of its contribution to our 

understanding problem solving in the programming domain. This is because the 

focus of this work is upon relatively well-defined domains which involve little 

domain specific knowledge. This can be contrasted with the programming 

domain, where problems are generally ill-defined and where problem-solving 

activities are highly knowledge intensive. Despite the fact that the Newell and 

Simon model does not appear to be strictly relevant to our understanding of 

programming, it does provide the basis for a more general discussion of the 

underlying cognitive processes that appear to be involved in programming 

activities. In addition, this model serves as an important counterpoint to 

alternative models of human problem solving that have been concerned more 

specifically with problem-solving in ill-defined domains and/or with knowledge 

intensive problem-solving processes. 

This chapter then moves on to consider the ACT* model proposed by John 

Anderson. This model appears to provide a more applicable framework for 

9 



understanding problem-solving in programming. Indeed, the model has been 

applied with some success to analyses of skill acquisition and problem-solving 

in the context of symbolic programming languages such as LISP. The model of 

problem-solving proposed by Anderson is important in a number of ways. 

Firstly, it demonstrates explicitly how skill in a domain can be acquired. 

Secondly, it shows how both domain specific knowledge and general 

problem-solving methods can be used to guide problem-solving activities. 

Finally, the model suggests a set of mechanisms which can be used to explain 

how problem-solving performance changes with developing expertise. All three 

of these features are relevant to the issues discussed in this thesis and hence the 

ACf* model is described here in some detail. 

The final part of this chapter attempts to delineate some of the general features of 

programming tasks that models such as ACT* and GPS do not address. The 

reason for doing this is that this thesis suggests that the individual features of 

programming behaviour that have been proposed as component elements in 

models of problem-solving in programming cannot be considered in isolation. 

Hence, in order to understand programming behaviour we need to consider the 

interaction between domain knowledge, features of the device which the 

programmer uses to create a program and features of the programming language 

itself which may, in tum, tend to support or to undermine particular forms of 

programming behaviour. Only a broad characterisation of programming tasks is 

able to provide a perspective on the complexity of this form of behaviour and 

this chapter provides a general discussion of those issues which are germane to 

the characterisation of programming tasks that is suggested by the work reported 

in this thesis. 

2.2 Newell and Simon's General Problem Solver and the problem and state 

space hypotheses 

Simon (1979) presents a generic model of problem-solving activity which 

suggests a tripartite analysis of problem-solving behaviour. Simon suggests that 

we consider problem-solving behaviour as an interaction between an 

information processing system, i.e., the problem-solver, and a task 

environment, i.e., the task as described by the experimenter. In approaching a 
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problem-solving task, the problem solver represents the situation as a problem 

space which includes information on the problem's initial state, its goal state, 

and the problem-solving operators that may be applied with the intention of 

reducing the distance between the initial state and the goal state. 

Newell and Simon (1972) suggest that when people engage in problem solving 

behaviour they pass through certain correlative knowledge states. Hence, they 

begin with a representation of the initial state and search through the space of 

alternative states until they reach a knowledge state which corresponds to a 

representation of the goal for the problem. The transformation from one 

knowledge state to the next is governed by the application of problem solving 

operators. Since a problem of any complexity is likely to involve a large number 

of alternative paths, problem solvers can recruit heuristic methods in order to 

search the problem space more efficiently. 

These processes are perhaps best illustrated using an example. The "Tower of 

Hanoi" puzzle represents the kind of problem to which this model has typically 

been applied and as such it provides a useful and 'well-constrained' vehicle for 

demonstrating the application of Newell and Simon's framework. The initial 

state of the Tower of Hanoi problem specifies a certain configuration of three 

disks of different diameter placed upon the first of three vertical pegs. Initially, 

these disks are placed on the peg in size order, the largest at the bottom and the 

smallest at the top. The goal state for this problem is reached when all the disks 

are piled in the same order on the last peg. 

There are, however, certain restrictions on the way in which disks can be 

moved, i.e., only one disk can be moved at a time and a larger disk cannot be 

placed upon a smaller disk. The application of problem-solving operators, 

which is guided by these constraints, may give rise to a variety of alternative 

intermediate states between the initial state and the goal state. Since a human 

problem solver is unable to explore each of these alternatives in parallel, and 

because exploring every alternative in a serial fashion would be too time 

consuming for any problem of reasonable complexity, the problem solver needs 

to rely upon heuristic methods to guide search through the problem space. 
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One important heuristic method proposed by Newell and Simon is means-end 

analysis (Newell and Simon, 1972; Newell, Shaw and Simon, 1958). Here the 

problem solving process procedes by noting the difference between a current 

state and the goal state, creating a sub-goal which reduces this difference and 

then selecting and implementing an operator that solves the sub-goal. The 

means-end heuristic proposes that the problem solver must first evaluate the 

difference between the current state and the goal state. Secondly, the problem 

solver must establish a subgoal which reduces this difference and then execute 

the operator to achieve this subgoal. This process continues until the problem is 

solved. In contrast to an exhaustive search of the problem space, means-end 

analysis cannot guarantee a solution although it does reduce the number of 

alternative states the problem solver has to consider at any one time. Even a 

simple three ring Tower of Hanoi problem has a total of twenty-seven different 

states, and the adoption of heuristic search processes such as means-end 

analysis appears to be one way of obviating the limitations of working memory 

in problem-solving contexts. 

2.2.1 Modelling transformation problems 

Polson and his colleagues (Atwood and Polson, 1976; Jeffries, Polson, Razran 

and Atwood, 1977; Atwood, Masson and Polson, 1980) have conducted a 

number of studies of transformation problems 1, such as the Tower of Hanoi, 

which suggest that subjects have a limited understanding of such problems 

when they are first presented. Polson and his colleagues also suggest that 

problem solving performance is exacerbated by the inability of problem solvers 

to plan a sequence of moves if there are more than about three possible 

successive states. 

From their experimental evidence, Polson and his Colleagues have developed a 

computational model of human problem solving that solves simple 

transformation problems (Atwood and Polson, 1976). The model incorporates a 

three-stage process of interactions between means-end analysis and memory 

processes. The model proposes that information about problem states visited as 

the problem solver works towards a solution are stored in long-term memory. 

Since the problem solver is likely to sometimes forget which states they have 
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visited, the probability that the model will remember a particular state that it has 

previously encountered is set arbitrarily at .9. Working memory holds 

information about the current state of the problem, its successor states and the 

state evaluation information that guides the means-end analysis. 

In stage 1, the model selects moves according to the following criteria: 

- A move that would lead directly to the goal state is always taken 

- A move that leads back to the start state is never taken 

- Illegal moves are always rejected 

If none of these situations appertain, then the proposed move will be taken if it 

does not lead to a state that is seen as too far from the goal, and it gives rise to a 

new state of the problem. In stage 2, the model generates successors in tum and 

selects the first move that will lead to a new problem state. If none of the 

successor states leads to a new state, then stage 3 is entered. In stage 3, the 

number of successor states determines how a move is chosen. If working 

memory is not overloaded, then the best available move will be taken, i.e., the 

move that reduces the distance between the current state and the goal state by the 

greatest amount (that is, the move with the lowest means-end value). If 

working memory is overloaded (that is, there are more than three successor 

states), then the model selects a move at random. 

This model is important since it supplements the Newell and Simon state-space 

analysis by providing a full process model of human problem solving for 

transformational problems. In addition, it specifies the various heuristic methods 

used by problem solvers and includes assumptions about performance 

constraints. In general, the model proposed by Atwood and Polson sets forth 

the following proposals: 

- When planning moves, subjects only look ahead to a depth of one move. 

- Moves are evaluated by a means-end analysis 

13 



-Subjects employ anti-looping heuristics by avoiding moves that return them to 

immediately preceding states 

- There are limitations on the number of successor moves that can be stored and 

evaluated 

This model of problem-solving has some predictive capacity and appears to be 

generalisable, at least within a broad class of transformational problems that are 

considered. For instance, one specific prediction that arises from the model is 

that subjects will only plan one move ahead in order to reduce working memory 

load. Atwood , Masson and Polson (1980) tested this hypothesis by suggesting 

that a reduction in memory load will enable the problem solver to plan further 

ahead. They attempted to reduce working memory load by providing subjects 

with information about all of the possible moves available from any state in the 

problem. Atwood et al found that this manipulation produced a small 

improvement in the subjects' ability to consider alternative moves; however it 

appears that when capacity is freed it is not used to look ahead. Rather, extra 

capacity appears to facilitate the avoidance of states that tend to lead back to the 

initial state of the problem. 

The problem solving framework proposed by Newell and Simon and later 

extended by Polson and his colleagues has proved to be one of the most 

successful general theories of cognition. The Newell and Simon framework 

specifies a well articulated process model of the cognitive substrates of human 

problem solving, and hence it provides an analysis that is amenable to 

computational modelling. In addition, the model has strong predictive value, 

and has spawned a significant amount of research concerned with exploring the 

key predictions of the model. 

2.2.2 Problem-solving in ill-structured or ill-defined domains 

The success of the Newell and Simon model appears to derive largely from its 

concern with specifying the role of domain independent and generic problem 
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solving methods and heuristics. However, it has become clear that there are 

numerous problem solving domains in which problem solvers need to be able to 

recruit large amounts of domain specific knowledge in order to guide their 

problem solving activities. This is especially true of problem domains that might 

be characterised as ill-defined or ill-structured (Newell, 1969; Reitman, 1965; 

Simon, 1973; 1978). 

Newell (1969) defines ill-structured problems as problems which have poorly 

defined goals and no well-defined criteria for evaluating the solution to the 

problem, involving the integration of multiple sources of knowledge, and with 

no predetermined solution path. In contrast to this, the problems typically 

addressed by Newell and Simon's model have well defined goal and start states, 

and the relevant problem solving operators are specified in the problem 

description. For instance, the legal moves in the Tower of Hanoi problem are 

derivable from the problem specification, the initial state is given and the goal 

state is known. 

In contrast, it appears that programming tasks display many of the 

characteristics of ill-structured problems (Guindon, 1988; 1990; Rist, 1989). 

For example, there are no unique solutions to programming problems - different 

programs utilising different solution methods may give rise to the same results. 

As we shall see later in this thesis, programming skill also appears to depend 

upon the utilisation and integration of multiple sources of knowledge (Brooks 

1983; Pennington 1987a and b). The Newell and Simon analysis appears to 

apply to only a very narrow class of puzzle-like problems and its ability to 

account for problem-solving in complex real-world domains such as 

programming is doubtful. 

A similar problem is also reflected in VanLehn's (1990) criticism of the 

problem/state space analysis in terms of its application to subtraction problems. 

He suggests that the state space hypothesis requires the problem solver to have a 

test which can inform the search process when the final state or the goal state is 

achieved. He rules out various possibilities for this test such as asking a teacher 

or an expert, using superficial approximate tests or adding the answer to the 

subtrahend to see if it equals the minuend. VanLehn suggests that the last of 

these tests is implausible since it is infrequently observed, and the second 
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because it would lead to a much larger class of systematic errors than have 

actually being found in studies of subtraction. The first test he claims, cannot be 

used when students are being tested, and that during testing it would be 

implausible to assume that students search a problem space that is different to 

the one they searched while learning. Similar criticisms of the problem/state 

space hypothesis are also evident in the context of programming tasks, since 

there is not always a clear test that a programmer can apply to inform them 

whether their program is correct. 

In addition to the domain restrictions on the applicability of the Newell and 

Simon model that are discussed above, there are other reasons for believing that 

the framework they present is unable to account fully for programming 

behaviour. In particular, the model proposed by Newell and Simon does not 

account for the development of problem-solving skill. It might be argued that 

any model of human problem-solving should provide some account of how 

problem-solving skills are acquired and how the nature of problem-solving 

performance changes with the acquisition of these skills. The Newell and Simon 

framework has been elaborated more recently to include a specific model of 

learning (Anzai and Simon, 1979), however the emphasis of their model has 

always been concerned with describing and modelling domain independent 

problem-solving heuristics, rather than on skill acquisition. 

While the Newell and Simon model does not appear to be of immediate 

relevance to our discussion of problem-solving in programming, it was a major 

pioneering achievement and remains important for a number of reasons. Firstly, 

the analysis presented by Newell and Simon proposes a specific nomenclature 

for describing problem-solving. The terminology they set forth has become 

almost standard in discussions of problem-solving, and for this reason it has 

been important to introduce this terminology here. Secondly, our discussion of 

the Newell and Simon model has required us to distinguish between different 

classes of problem, i.e., between well-structured and ill-structured problems. 

This has enabled us to introduce a preliminary characterisation of typical 

programming tasks and has illustrated that programming should be considered 

to be a problem-solving activity. Finally, the Newell and Simon model provides 

an important counterpoint to Anderson's ACf*, which, in contrast to Newell 

and Simon's approach, places emphasis upon problem-solving in knowledge 
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intensive domains and suggests mechanisms which may underpin the 

development of problem-solving skill. 

2.3 Anderson's ACT* model of problem-solving 

Anderson's (1983) ACT* (Adaptive Control of Thought) framework specifies a 

generic cognitive architecture which has been used to account for a range of 

cognitive functions, from pattern recognition to problem-solving. In addition, it 

has provided a basis for theories of skill acquisition in a number of domains 

including text editing (Singley and Anderson, 1985; 1988) , geometry 

(Anderson, Greeno, Kline and Neves, 1981) and computer programming 

(Anderson and Reisner, 1985; Pirolli and Anderson, 1985; Pirolli and 

Bielaczyc, 1989). Anderson's framework provides a detailed description of the 

processes which govern skill acquisition and which lead to the performance 

differences that have typically been associated with skill development. Since a 

primary aim of this thesis is to attempt to specify the processes that give rise to 

the performance differences that are observed to accompany the development of 

programming expertise, a discussion of the ACT* framework is of particular 

relevance. 

ACT* has three main structural components; a declarative memory, a production 

(or procedural) memory and a working memory. Figure 2.1 is a schematic 

representation of the ACT* architecture showing its major structural components 

and their interlinking processes. 

17 



Declarative 
Memory 

Encoding 

Application 

Working 
Memory 

OUTSIDE WORLD 

Production 
Memory 

Performances 

Figure 2.1 A schematic representation of the ACT* framework 

The declarative memory of ACT* is represented as a semantic network (Collins 

and Loftus, 1975) of interconnected nodes which have different activation 

strengths. These nodes represent cognitive units or chunks which can be such 

things as propositions (hate, Bill, Fred) strings (one, two, three) or spatial 

images (a triangle above a square). Each of these cognitive units encodes a set of 

elements in a particular relationship. Anderson restricts the size of these 

cognitive units to five elements, and more complex structures are formed by 

constructing a hierarchical network of simple elements. 

The procedural memory of ACT* is basically a production system (Hunt and 

Pol track, 197 4, Young 1979). Production systems consist of a collection of IF 

(state)- THEN (action) rules, which specify various condition-action pairs and 

some global procedure for instantiating rules and for performing a consequent 

action. The condition of the production rule specifies some data pattern, and if 
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elements matching these patterns are found in working memory, then the 

production will 'fire'- i.e., operate. The action part of the rule specifies what to 

do in that particular state. A typical production rule, informally stated, might 

take the following form: 

IF person 1 is the father of person 2 

and person 2 is the father of person 3 

THEN person 1 is the grandfather of person 3. 

This production would apply if 'Fred is the father if Bill' and 'Bill is the father 

of Tom' were active in working memory. This rule would enable the system to 

infer that Fred is the grandfather of Tom and would deposit this fact in working 

memory. Since production systems are computationally universa12 they are able 

to model any class of cognitive activity that we are able to specify. Indeed, 

production system models have been used by various researchers to explain a 

wide range of cognitive processes (for instance, see Brown and Van Lehn, 

1980; Kieras and Bovair, 1981). 

The third main structural component in Anderson's model is working memory. 

In fact, working memory is not a separable component in this model, but rather 

it represents that information in declarative memory that is currently active. 

According to Anderson (1983) "Working memory consists of information that 

the system can currently access, consisting of information retrieved from 

long-term declarative memory as well as temporary structures deposited by 

encoding processes and the action of productions" (p. 19). 

Most of the processes shown in figure 2.1 involve working memory. Encoding 

processes deposit information derived from the outside world into working 

memory, while performance processes convert commands contained in working 

memory into action. Anderson claims that, unlike the other processes specified 

by ACT*, these two processes are not central to the framework. The storage 

process basically modifies the contents of declarative memory by either creating 

a permanent record in declarative memory of the contents of working memory or 

by altering the strengths of existing records in the declarative system. The 
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retrieval process retrieves information from declarative memory. The storage 

and retrieval of information in declarative memory can be effected in a number 

of ways. For instance, when the rules in the production memory match the 

contents of working memory they are executed. The process of production 

matching, followed by execution that is specified by these processes is called 

production application. Production memory can also be applied recursively, 

such that new productions can be formed by examining existing productions. 

Anderson is careful to suggest that this general framework does not constitute a 

theory, since it makes no specific predictions about behaviour. Anderson 

suggests that a predictive theory must specify in greater detail the properties of 

the storage, retrieval and production application processes that are central to the 

ACT* framework. In fact most of Anderson's book 'The architecture of 

cognition' is devoted to a consideration of these issues, and it is not feasible to 

review them here in any detail. However, one important aspect of the ACT* 

framework is its ability to account for skill acquisition, and it is to this we now 

turn. In addition to outlining the general theoretical principles of skill acquisition 

in ACT*, the next section of this chapter shows how ACT* has been applied to 

skill acquisition in a programming context. 

2.3.1 ACT* and skill acquisition 

A central tenet of the ACT* theory is that skill learning consists largely of a 

process which transforms declarative knowledge into procedural knowledge and 

then modifies this procedural knowledge via application processes. This 

declarative/procedural knowledge distinction is clearly one of the fundamental 

elements of Anderson's theory of skill acquisition. Broadly speaking, 

declarative knowledge is knowledge that is open to introspection and can 

therefore be reported and is not tied to the situation in which it is used. In 

contrast, procedural knowledge is applied automatically, often cannot be 

reported and can only be applied in specific situations. 

Stated broadly, Anderson views skill acquisition as a move from the use of 

declarative knowledge structures to procedurally based knowledge that can be 

applied rapidly and automatically in specific situations. More specifically, 
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Anderson claims that the acquisition of cognitive skills consists of three 

successive stages of learning; a declarative stage, a procedural stage and a tuning 

stage. 

The first stage of skill acquisition involves the accumulation of domain relevant 

facts which are incorporated into declarative network structures. This 

knowledge will be used in conjunction with domain independent heuristics, 

such as means-end analysis. For instance, when learning chess, the novice 

would acquire a number of rules or facts which characterise the legal moves for 

each piece. Similarly, in learning programming, the novice programmer may 

rely exclusively upon the programming knowledge they have acquired from 

textbooks. One feature of declarative knowledge is that it does not require the 

problem-solver to use it in some specific manner, as would be necessary if that 

knowledge were represented in a procedural fashion. However, before 

declarative knowledge can be used it must be retrieved and kept active in 

working memory. The ACT* framework suggests that the slow pace and 

tentative nature of problem-solving during this declarative stage can be attributed 

to the need to activate and access information in long-term memory (Anderson, 

1982). Moreover, the loss of information from working memory can account 

for many of the errors made by novice problem solvers (Anderson and Jeffries, 

1985). 

As problem solvers become more experienced, Anderson claims that declarative 

knowledge becomes proceduralized. During this so called transitional stage, 

productions are created from the declarative knowledge acquired during the first 

phase of skill acquisition. In this second stage, successful sequences of activity, 

produced by the application of weak method heuristics to declarative knowledge 

are complied into new domain-specific productions. This compilation process 

governs the transformation from the interpretive application of declarative 

knowledge to procedures that apply this knowledge directly (Neves and 

Anderson, 1981). Knowledge compilation has adaptive value in the sense that it 

eliminates the retrieval process, and by doing so it has the effect of not only 

speeding up performance but also reducing the load on working memory. 

The knowledge compilation processes in ACT* take two distinct forms: 

composition and proceduralization. Composition (Anderson, 1976; Lewis, 
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1978) takes a sequence of productions that follow each other in solving a 

particular problem and collapses them into a single production that has the same 

effect as that sequence. Proceduralization (Anderson, 1982) takes place when a 

particular piece of declarative knowledge is used repeatedly in the context of a 

particular subgoal and results in the creation of a production rule which 

represents the declarative information as its condition and the result of the 

execution of this declarative information as its action. 

In the final stage of skill acquisition, any additional learning is attributed to the 

tuning of procedures. Basically, this tuning process involves an improvement in 

the choice of procedures for performing a given task. Since one can characterise 

all problem-solving tasks as involving search through a problem space, then the 

tuning of this search procedure, such that it leads to the discovery of optimal 

solutions, will presumabley improve problem solving performance. Anderson, 

Kline and Beasley (1980) have proposed three learning mechanisms which may 

be employed in this search tuning process. They suggest a generalisation 

process by which production rules become broader in their range of 

applicability, a discrimination process in which their range is narrowed, and a 

strengthening process by which successful rules are strengthened and poorer 

rules weakened. 

2.3.2 Applying the ACf* framework - Skill acquisition in LISP 

Anderson, Conrad and Corbett (1989) describe an analysis of student learning 

with their LISP tutor which adopts the general principles of the ACf* 

framework. Anderson et al suggest that there are basically three claims that can 

be derived from the ACf* model that are relevant to the instruction of a skill 

such as LISP. According to the ACf* theory a skill like LISP programming can 

be represented as a set of production rules. For instance, the following piece of 

code, which implements a function that inserts the second element of one list at 

the beginning of another list, can be represented as a series of productions: 
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Hence the code; 

(defun insert-second (lis 1 lis2) 

(cons (car (cdr lis 1)) lis2)) 

becomes the production rule set; 

p-defun 

p-name 

p-params 

p-insert 

p-second 

p-tail 

p-var 

IF the goal is to define a function 
THEN code defun and set subgoals 

1. To code the name of the function. 
2. To code the parameters of the function 
3. To code the relation calculated by the function 

IF the goal is to code the name of the function 
and = name is the name 

THEN code = name 

IF the goal is to code the parameters of the function 
and the function accepts one or more arguments 

THEN create a variable for each member of the set 
and code them as a list within parentheses 

IF the goal is to get the second element of a list 
THEN code cons and set subgoals 

IF 
THEN 

1. To code the element 
2. To code the list 

the goal is to get the second element of a list 
code car and set a subgoal 
1. To code the tail of a list 

IF the goal is to code the tail of a list 
THEN code cdr and set a subgoal 

1. To code the list 

IF the goal is to code an expression 
and a function parameter has the expression as a 

value 
and = name is the name assigned to that 

parameter 
THEN code= name 
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Anderson et al have derived about 500 production rules of this kind to encode the 

skill of programming in LISP. Although the ACT* theory holds that the 

knowledge of a skilled programmer will be represented in this way, this is not the 

case for a novice programmer. Anderson et al suggest that one cannot present 

these rules to a student and expect the student to directly encode them as 

production rules. Rather, information must initially be encoded in declarative 

form. Anderson et al, on the basis of informal observation, suggest that during 

learning, students rely to a greater extent upon exemplar descriptions of the 

functions of LISP constructs rather than upon rule-based descriptions. Some 

empirical support for the efficacy of exemplar-based approaches to teaching 

programming is presented by Boyle and Drazkowski (1989). 

Once the student has acquired some declarative knowledge of the domain, the 

knowledge compilation process converts the initial interpretative use of this 

declarative knowledge into a procedural production rule form. Anderson, Boyle, 

Farrell and Reisner (1987) provide an example of this compilation mechanism in 

the context of skill development in LISP programming. In their model there is a 

function that will retrieve function definitions from long-term memory and apply 

them in appropriate contexts. For instance, in the following production, relation 

and function are variables which allow the production to match different data: 

IF 

THEN 

the goal is to code a relation defined on an argument 
and there is a LISP function that codes this relation 

use this function with the argument 
and set a subgoal to code the argument 

Here, the second line of the condition might match, for instance, 'CAR codes the 

first member of the list'. This rule can be proceduralized to eliminate the retrieval 

of the CAR definition as follows: 

IF 

THEN 

the goal is to code the first member of a list 

use the CAR of the list 
and set as a subgoal to code the list 
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This proceduralization is achieved by deleting the second clause that required 

long-term memory retrieval from the first production. Moreover, the rest of the 

production is made specific to the relationship between first member and the 

function CAR. Once a production has been created that can directly recognise the 

application of CAR, this will result in a reduction in the quantity of long-term 

memory information that needs to be held in working memory. 

Another compilation mechanism that is important in the ACf* framework is 

composition. Basically, composition involves combining a number of successful 

operators into a single macro-operator that has the same overall effect as the 

sequence of individual operators. Anderson et a1 again provide an example of this 

mechanism from LISP. Suppose that one wanted to insert the first member of list1 

into list2. Here the following two operators would apply in sequence: 

IF 

THEN 

IF 

THEN 

the goal is to insert an element into a list 

CONS the element to the list 
and set as subgoals to code the element 
and to code the list 

the goal is code the first member of a list 

take the CAR of the list 
and set as a subgoal to code the list 

Here the first rule would apply and bind an element to 'the first member of list 1' 

and a list to 'list2'. The second production would apply and bind a list to 'list1 '. A 

simple case of composition involves collapsing these two productions into a single 

production: 

IF 

THEN 

the goal is to insert the first member of one list into another list 

CONS the CAR of the first list to the second list 
and set as subgoals to code the first list 
and code the second list 

The result of composing productions in this way would be an increase in coding 

speed since a problem could be coded in fewer steps. McKendree and Anderson 

(1987) have provided some empirical support for this speedup phenomenon for 

frequently repeated combinations of LISP functions. 
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Anderson et al (1989) present a number of empirical studies of their LISP tutor. 

This tutor embodies several design considerations derived from the ACT* model 

of skill acquisition. While it is not appropriate to discuss the design of this tutor 

here, the empirical findings of Anderson et al (1989) are of relevance to the current 

discussion, since they provide some support for their model of skill acquisition in 

LISP. 

In one of their analyses, Anderson et allooked for learning trends amongst their 

subjects who were using the LISP tutor. They found evidence to support the view 

that production rules are modular units of knowledge which can be learned 

independently from other units. Hence, subjects show regular learning curves 

defined on production rules and their independence from other similar rules was 

demonstrated by subjecting the production learning data to factor analysis. They 

also found that these rules are abstract and are not tied to a specific content. 

Hence, production rules can be transferred across contents and languages. They 

suggest that these findings not only provide support for the ACT* model but are 

also contrary to other theories of skill acquisition, such as those proposed by 

schema theory (Rumelhart, 1980; Rumelhart and Norman, 1981) and by 

connectionist approaches (McClelland and Rumelhart, 1986; Rumelhart and 

McClelland, 1986). For instance, they claim that schema theory would emphasise 

larger units of knowledge than productions and that connectionist approaches 

would rule out the existence of abstract rules such as those evident in the 

Anderson et al study. 

The ACT* framework has provided a detailed specification of skill acquisition in a 

number of domains and Anderson and his colleagues have constructed 

computational models of skill acquisition which embody the main assumptions of 

the ACT* framework. These models have demonstrated that a learning system 

which starts with only a small number of domain related facts stored in declarative 

memory, together with a number of preexisting problem solving procedures can 

acquire new procedures which can be made responsive to the kinds of situations 

that occur in the domain of learning. ACT* suggests a basic set of learning 

processes and specifies, in effect, a theory of the basic principles of operation built 

into the cognitive system. The main strength of the ACT* framework is that it can 

explain a range of relevant phenomena from the performance differences 

associated with developing expertise to the transfer of cognitive skill. 
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2.3.3 Problems and limitations of the ACT* framework 

In one sense the main problem with ACT* is that it is too powerful. For instance, 

many of the simulations of skill learning which embody ACT* principles often 

perform better than the human subjects that they are intended to model. For 

example Anderson (1982) describes a simulation of the behaviour of high-school 

students solving two-column proof problems in geometry. While the simulation 

managed to solve the problems that it was presented with, not all the students did. 

This suggests that ACT* may provide a good model of idealised problem solving 

and learning, but not necessarily of the actual problem solving behaviour exhibited 

by real subjects. 

This problem is compounded to some extent by the focus of the ACT* framework 

upon models of appropriate skilled performance rather than upon mistaken and/or 

inappropriate behaviour. The ACT* framework suggests that errors in problem 

solving are either 'systematic' errors derived from defective knowledge or are 

errors which arise from unintended actions or slips (Norman, 1981; Reason, 

1979) during procedure execution. However as Brown, Burton and VanLehn 

have shown, errors can arise because individuals may have 'buggy' procedures, 

i.e., correct procedures with one or more minor perturbations or bugs (Brown and 

Burton, 1978; Brown and VanLehn, 1980; Burton, 1982; VanLehn, 1982, 1990). 

Anderson et al (1987) have attempted to build buggy procedures into their LISP 

tutor and these procedures are used to account for student errors. However, even 

with the inclusion of buggy procedures, it is still possible that there are other 

mechanisms which can produce regular errors. 

For instance, it is possible that a problem solver may simply have no idea how to 

solve a particular problem and hence may adopt a coping strategy to produce a 

response. This problem suggests that we may require richer representations of 

skill than are presently afforded by models such as ACT*. Experts in some 

domain can readily cope with novel problems; are often able to transfer their skills 

to very different domains and can argue and reason about the subject matter of 

their domain and the nature of their expertise. As we shall see later, in the 

programming domain, these skills are clearly important. However, the ACT* 

model addresses none of these abilities, since it concentrates upon a parsimonious 

explanation of performance in the context of well practised and familiar tasks. 
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Payne (1988) suggests that frameworks such as ACf* fail to consider the 

importance of non-procedural conceptual representations in problem solving and 

that "even skills with a large procedural component rely on a great deal of 

conceptual knowledge, and that the content and structure of the conceptual 

knowledge may continue to develop with expertise, alongside'the procedural 

methods" (pg 76). However, as we have seen, the ACT* framework suggests 

that non-procedural knowledge ceases to play a role in skill after the initial novice 

stage. In chapter 3 a number of studies are reviewed which place a strong 

emphasis upon the role of conceptual knowledge in programming expertise. It 

appears that in programming, as well as in other domains, non-procedural 

knowledge plays a vital role in expertise, and that the ACf* framework is limited 

it terms of its ability to account for expertise in programming or similar knowledge 

intensive domains. 

2.4 Can existing models of problem-solving account for the complexity of 

programming behaviour? 

The two problem solving frameworks that have been reviewed in this chapter 

appear to display a number of general limitations which suggest that they may be 

unable to account for the complexity evident in programming tasks. For instance, 

we have characterised programming problems as ill-structured tasks which are 

highly knowledge intensive. The state space analysis of problem solving 

suggested by Newell and Simon would appear to be unable to account for problem 

solving behaviour in ill-structured domains, and as such it provides an 

inappropriate model for attempting to understand the full range of 

problem-solving activities involved in programming. 

The ACf* model is advanced as an alternative framework for understanding 

problem solving and skill acquisition in knowledge intensive domains. 

Consequently, this model should provide a more appropriate framework for 

understanding programming behaviour. However, as we have seen, the ACf* 

framework fails to suggest a role for non-procedural or conceptual knowledge in 

problem solving. Since many studies of programming highlight the importance of 

such knowledge (see review in chapter 3) in the development of expertise, it may 

be doubted whether models such as ACf* provide sufficient flexibility to 
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characterise the many facets of expertise which have been demonstrated in a range 

of studies. 

The limitations of the two frameworks that have been described above not only 

present problems in terms of an analysis of programming behaviour, since they 

are clearly of significance in other problem solving domains. However, it is 

apparent that there are certain salient properties of programming tasks which 

appear to be very specific to the problem solving activities that occur in this 

domain. Moreover, extant problem solving frameworks do not appear to provide a 

basis that can fully account for the effects that these features of programming tasks 

can have on problem solving behaviour. The next section of this chapter 

concentrates upon a discussion of these issues. This provides a basis for a 

characterisation of programming activates which not only considers the nature of 

the programmer's task, but in addition, highlights the role in problem solving of 

programming language features and of the tools used by programmers to create 

programs. This multifaceted view of problem solving in programming reflects the 

broad approach adopted by this thesis. 

2.4.1 The inseparability of planning and execution 

The dominant view of problem-solving suggests that the problem-solving activity 

is a top-down focused process that starts with high-level goals which are 

subsequently refined into subgoals and ultimately into achievable action. This 

process is often referred to as successive refinement or problem decomposition. 

Recall that the model of problem-solving suggested by Newell and Simon starts 

with a specification of the goal state and attempts to reduce the difference between 

the initial or the current state of the problem by applying operators or by creating 

subgoals. In routine skill, this decomposition process can take place without 

problem solving since action sequences can be remembered as prepackaged 

methods for achieving specific goals (Newell and Simon, 1972; Card, Moran and 

Newell, 1983). In this situation information from the external world plays a 

limited role by providing feedback information to test the effects of certain 

operators against goals (Miller, Galanter and Pribram, 1960; Norman, 1986). 
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This account of human problem solving has clearly been successful. However it 

under emphasises the role of perception in cognitive skill and the extent to which 

the external world can act as a resource to support problem solving behaviour. A 

number of researches have shown that the 'external display' upon which a task is 

enacted can serve as a repository for search control knowledge and can therefore 

reduce the working memory load that is normally required to carry out a given 

task. One can compare the use of external displays with classical models of 

problem solving where the problem solver must maintain a stack of subgoals. The 

importance of external memory props has been demonstrated by several 

researchers who have suggested that actions are often enacted before plans are 

complete (for example see, Green, Bellamy and Parker, 1987; Young and Simon, 

1987). In addition, an important parallel development in AI models of planning is 

the idea that planning cannot be easily separated from execution (Agre and 

Chapman, 1987; Ambros-Ingerson, 1987; Chapman, 1987; 1989). For instance, 

Ambros-Ingerson (1987) highlights the importance of 'knowledge getting 

actions', which are built into plans and specify where additional planning 

information can be obtained, generally from external sources. Larkin's (1989) 

recent analysis of 'display-based' problem solving similarly stresses the 

importance of obtaining information about the current problem state from the 

display. 

In the programming domain, Green et al (1987) have proposed a model of 

programming behaviour - their so called 'Parsing/Gnisrap model - which suggests 

that because of working memory limitations, programmers must dump 

information onto an external medium (i.e., a VDU screen) when overload is 

threatened and then later parse that information back into a cognitive representation 

when it is subsequently required. The Parsing/Gnisrap model is described in 

greater detail in chapter 4, but one important contribution of this model is the idea 

that planning and execution in programming are inextricably bound together. The 

existence of such a phenomenon poses problems for classical models of problem 

solving in terms of their ability to account for problem solving behaviour in 

programming.There are two main reasons for this. Firstly, such models fail to 

recognise the importance of external media in problem solving and secondly, they 

suggest that planning and plan execution (or operator selection and execution) are 

separate processes, whereas, in fact, in many complex domains, they appear to be 

very closely linked. 
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2.4.2 The effects of programming language features on programming behaviour 

Programming tasks are clearly rather different from the kinds of tasks that are 

typically studied in problem solving analyses. One major difference is that 

programming involves the use of a specialised language which is employed to 

implement the various problem solving operators necessary to solve a particular 

problem. In traditional problem solving studies, operators are applied directly to 

objects in the world, and it is not necessary to employ a metalanguage to describe 

or to express these operators. One can of course describe games such as chess 

using a formal notation. However, it is likely that the various problem solving 

strategies or methods which are employed while playing a game of chess may well 

be different to the methods and strategies used if one has to describe and 'play' the 

game using an abstract formal notation3. 

While we might attempt to characterise programming languages as in some sense 

analogous to the formal language that can be used to describe chess moves, there 

does not appear to be a close programming analogy with the more typical situation 

where problem solving operators are applied directly to objects in the world. Some 

writers have claimed that one way of making programming more 'natural' might 

be to use graphical notations, in which graphical objects representing various 

programming constructs can be manipulated in various ways to construct a 

program (Badre and Allen, 1989; Cunniff and Taylor, 1987a and b; Cunniff, 

Taylor and Black, 1986). Others have suggested that natural language might 

provide a better means of specifying algorithms (Biermann, Ballard and Sigmon, 

1983). There is a great deal of current debate surrounding the use and the general 

efficacy of these various notations (Dyck and Mayer, 1985; Fitter and Green, 

1979; Green, 1982; Gaiotti and Ganong, 1985). However what is fairly clear is 

that different notations may support different kinds of problem solving tasks to a 

greater or a lesser extent. 

For instance, Adelson (1984, and see review in chapter 3) has shown that the way 

in which programming information is presented (i.e., as different types of 

flowcharts or as text) can have a marked effect upon subjects' ability to answer 

different kinds of program comprehension question. Hence, it appears that 

subjects may be able to extract different forms of information more readily from 

different notations. This phenomenon does not only arise when comparing text 
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with graphical presentation, since other studies have demonstrated that different 

text-based notations can support different kinds of programming tasks. 

For example, Green, Bellamy and Parker (1987) have shown that programmers 

rarely generate programs in a strictly linear fashion, where the final text order of 

the program mirrors its generative order. Moreover, this study demonstrated that 

the extent of this non-linearity is related in part to the programming language that 

subjects use. Green et al claim that some notations facilitate linear generation while 

others do not. Additional support for this is provided by Bellamy and Gilmore 

(1990) who found that Pascal programmers adopted a non-linear style of program 

development, while BASIC and PROLOG programmers exhibited a more or less 

linear style . They claim that "the task of translating from the plan structure to the 

linear structure of Pascal places far too high a mental load even on expert 

programmers, doing simple problems. In other words, the Pascal programming 

language fails to support plan generation" (pg 68). They go on to suggest that 

programming plans (that is plans that represent stereotypical tacit programming 

knowledge) "are dependent upon the programming strategy of the particular 

programmer. This in turn is influenced by the notation, taught strategies and the 

programming environment used during learning to program" (pg 68). Hence, it 

appears that certain notational properties of programming languages can affect the 

problem solving strategies exhibited during program generation. 

In addition, language features also appear to affect the comprehension of 

programs. For example, Gilmore and Green (1988) have shown that programmers 

can extract certain forms of information from some notations more easily than they 

can from others. They introduce the term "role-expessiveness" to describe the 

extent to which certain notations may make particular programming languages 

more discriminable from others. They suggest that one primary element of 

role-expressiveness relates to the ease with which programmers are able to extract 

certain forms of information from a given program text. They claim that this 

process will be facilitated if the programmer is able to discriminate between the 

structure she is searching for and other structures that surround it. For example, 

Gilmore and Green claim that Pascal is more role-expressive than BASIC since 

Pascal has a rich set of lexical cues, making structure more discriminable, and in 

BASIC the same piece of code may be used for more than one purpose, which can 

lead to structure confusion. Role expressiveness is clearly not the only notation 
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feature that might contribute to particular kinds of programming strategy. In fact, 

Green (1989) has outlined a number of so called notational dimensions, which he 

claims may determine the strategy employed by programmers when engaged in 

particular tasks. 

Hence, another problem with classical accounts of problem solving behaviour is 

that such accounts fail to generalise to problem domains in which problem solving 

operators need to be expressed in some metalanguage. As a consequence, such 

models cannot account fully for the problem solving behaviour exhibited by 

programmers which appears to be heavily influenced by certain properties of the 

notation of the particular language being used. 

2.4.3 The effects of problem solving environments on behaviour 

There appear to be two major cognitive demands that distinguish computer use, 

including normal programming tasks, from the puzzle solving concerns 

traditionally addressed in studies of problem solving (Payne; 1987; 1990). Firstly, 

when using a computer system, operators cannot be applied directly. Rather they 

must be effected via a task language which maps operators into action sequences. 

Secondly, the structure of the problem space is clearly more complex, since in 

addition to representing goals and subgoals in the task domain, it must also 

accommodate some representation of the device. In programming terms we might 

the distinction between the 'device language', which the programmer uses to issue 

commands to the editor or its equivalent and the 'task language' which represents 

rules that describe the target domain (Green, Bellamy and Parker, 1987). In 

addition, we need to consider the medium by which the user interacts with a task 

(i.e., the interaction medium), e.g., pen and paper, VDU etc. The characteristics 

of each of these elements of interactive behaviour are likely to play a role in the 

determination of programming behaviour or strategy. 

This is amply illustrated in Green's discussion of a system designed to receive 

spoken Pascal code, using an isolated-utterance speech recognizer (Green, 1989). 

Green claims that "the system worked reasonably well - i.e., if one dictated Pascal 

code into it, the recognition rate was quite acceptable. However, because the 

speech recogniser relied upon the constraints of Pascal to make the recognition 
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problem tractable, the program had to be syntactically correct at all times. The 

design of the system made it preferable to dictate the program in text order, from 

start to finish. Unfortunately, because of certain characteristics of the Pascal 

notation, it is pretty well impossible to dictate impromptu Pascal without any 

omissions ... Pascal is not a suitable notation for this environment" (pg. 444). 

Green, Bellamy and Parker (1987) have demonstrated that programmers rarely 

generate their programs in a strict linear order. Hence, one might hypothesise that 

if programmers are constrained to a linear generation strategy, then this will 

seriously affect their performance. In chapter 11 an experiment is reported in 

which programmers were required to use an editor which did not allow any 

backward movement. Hence, like the speech input system discussed by Green, 

programmers were forced into a situation where they had to generate their 

_{)rograms in a linear fashion. Unlike the speech input system, this editor displayed 

the program generated to date, and hence reduced the demand on working memory 

to some extent. However, programmers still made many errors. Indeed, when 

programmers had to use this environment, the performance of expert programmers 

was reduced to the level exhibited by novices. This decrement in performance 

serves to illustrate the effect that device characteristics and interaction medium can 

have on performance, and suggests a major limitation of traditional problem 

solving frameworks which fail to consider the effects of the device and interaction 

medium on behaviour. 

2.5 Conclusions 

This chapter has been concerned with a review of two important problem solving 

frameworks and has placed particular emphasis upon the ability of these 

frameworks to account for problem solving behaviour in programming. While 

neither of these frameworks appears to provide an account of programming 

behaviour that can capture its full richness, they do at least provide a starting point 

from which one can attempt to begin to characterise programming behaviour. This 

chapter has suggested that we cannot view programming as an activity which 

simply involves the application of generic problem solving methods and nor can 

we model its full complexity by simply suggesting a large collection of 

condition-action rules and some means of applying them. Rather, programming 
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behaviour appears to depend upon the use of complex planning and problem 

solving strategies which in tum may be supported or otherwise by certain 

notational features of programming languages and by features of the device space. 

As Bellamy and Gilmore ( 1990) suggest: 

" To understand the psychology of complex tasks such as programming, we need 

to consider planning strategies in particular task contexts. Theories of planning 

and problem solving have spent too long with their heads in the sand, ignoring the 

role the external world plays in determining behaviour. If psychology is going to 

make significant contributions both in theoretical and applied areas of research, we 

need investigations of how features of the external world determine behavioral 

strategies. Only then will we be able to produce artifacts that support effective task 

strategies" (pg 69-70). 

The work reported in this thesis broadly supports this view, but perhaps more 

importantly, it suggests that we need to consider not only the role of the external 

world in the determination of programming behaviour, but also the way in which 

representations of programming knowledge interact with language features to give 

rise to particular forms of strategy. This tripartite view of programming behaviour 

is reflected in the concerns of subsequent chapters, where these issues will receive 

further attention. In chapter 3, we review the extensive literature on knowledge 

representation in programming, while chapter 4 concentrates upon the nature of 

the problem solving strategies which appear to underpin programming behaviour. 

In chapter 5, concern is directed towards a review of studies which have 

suggested that programming language features play a major role in the 

determination of programming strategy. This provides a basis for the experiments 

reported in chapters 6- 11, which in tum provide support for the tripartite analysis 

of programming behaviour advanced in this thesis. 
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Notes 

1 Greeno (1978) introduces the term 'transformation problem' to characterise 

those problems which transform one situation into another. Hence, the Tower of 

Hanoi problem is transformational in that one can identify various moves which 

transform one state into another. Other examples of transformational problems are 

the water jugs problem (Atwood and Polson, 1976) and the missionaries and 

cannibals problem (Simon and Reed, 1976) 

2 Production systems are computationally universal in the sense that they can be 

implemented as a Turing Machine and according to the Church-Turing thesis, any 

behaviour that can be precisely specified will be in the class of things that can be 

computed by a Turing Machine. 

3 For instance one cannot easily extract perceptual groupings from a formal 

symbolic representation of chess positions and moves and the ability to do this 

would appear to be a central element of skill in this domain. 
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Chapter 3. Knowledge Representation and Expert/Novice 

Differences in Programming and in Related Domains 

3.1 Introduction 

A large number of studies concerned with the nature and development of expertise 

in programming and in other problem solving domains have highlighted 

significant qualitative differences between the way in which experts and novices 

organise and structure their knowledge about a particular domain. Studies of 

expert/novice differences in programming have drawn extensively from theories of 

expertise in other domains. For instance, a number of studies, following de 

Groot's ( 1965) seminal work on expertise in chess have attempted to relate skill 

differences in programming to the ability of experts to recognise and represent 

meaningful chunks of code (Barfield, 1986; Shneiderman, 1976). Other theories 

of programming skill have adopted generalised production system architectures to 

explain certain salient attributes of expert performance, including phenomena that 

are typically associated with skill development such as knowledge restructuring 

and compilation (see chapter 2). 

A number of other important studies have drawn analogies with work in the text 

comprehension domain (Detienne and Soloway, 1990; Soloway and Ehrlich, 

1984). Studies of knowledge representation in text comprehension have been 

germane to both the development of theoretical accounts of the content of tacit 

programming knowledge and to descriptions of the organisation and structure of 

this knowledge. More recently the importance of hybrid representations has been 

highlighted. This hybrid approach suggests that programmers can recruit 

knowledge from a variety of diverse sources in order to guide problem-solving 

and, in addition, that a simple uniform view of knowledge representation in 

programming is not sufficient to account for the behavioral complexity of this 

task. 

This chapter will provide a thematic review of existing studies which have been 

concerned with the relationship between knowledge structure and expertise in 

programming. Existing work on knowledge representation in non-programming 

domains will not be comprehensively reviewed since many studies of expertise in 

programming have served to replicate the basic findings of research in other 

domains. Hence, the main aim of the present chapter is to provide a broad review 
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of existing research into knowledge representation and skill differences in 

programming. However, this focus on programming research provides a cogent 

and extensive overview of some of the more general findings to emerge from the 

problem-solving literature concerned with domains such as Chess, Physics and 

Mathematics. 

This does not mean to say that work in such domains has nothing more to 

contribute to a study of problem-solving and skill differences in programming. 

Rather, it will be suggested that a great deal of theoretical understanding still 

remains to be gained from an analysis of problem-solving in these kinds of 

domain. Moreover, it should be noted that while many early programming studies 

appear to draw upon previous problem-solving research only in as much as they 

attempt to replicate its basic findings, more recent work is beginning to contribute 

more explicitly to our theoretical understanding of general problem-solving skills 

in addition to providing a description of the content and structure of knowledge 

representation for programming tasks. 

This chapter begins by reviewing some of the early work on skill differences and 

knowledge representation in programming. These studies serve to provide 

important supplementary support for the now well known finding that experts tend 

to represent domain knowledge in terms of meaningful chunks, while novices tend 

to derive cognitive structures from salient surface features of problems. More 

recent work has elaborated in greater detail the nature of these different grouping 

strategies, while studies of programming that claim allegiance to the text 

comprehension paradigm have specified the content of the stereotypical knowledge 

structures that are brought to bear during problem-solving. 

This chapter concludes with an evaluation of these studies in terms of their 

contribution to our understanding of problem-solving in programming. It will be 

suggested that many of these studies have failed to elicit information about 

cognitive structure and content that can be generalised between programming 

languages and paradigms. The main criticism of such work is that theories and 

principles have often been derived from studies of the comprehension of a single 

programming language and that the implications drawn from such studies do not 

necessarily apply in the case of different languages or different programming 

paradigms. 
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Another aim of this chapter is to provide an overview and background to a number 

of the empirical studies reported in this thesis which have addressed issues relating 

to the generalisability of existing studies. This empirical work will not be 

discussed in detail in the present chapter but will be briefly mentioned in the final 

section in order to place it in the context of other work and to illustrate its historical 

anticedents and development. This chapter attempts to draw out links between the 

individual experimental studies reported in this thesis, and concludes by 

suggesting that a more comprehensive understanding of the cognitive aspects of 

programming will arise only when programming skill is interpreted in a broad 

ecumenical context. That is, in a context which empahsises not only aspects of a 

programmer's knowledge representation but also considers the development of the 

strategic aspects of programming skill and the way in which the notational 

properties of certain languages might act to facilitate or to constrain programming 

behaviour. 

3.2 Expert/Novice differences and chunking skills 

The idea that experts develop 'chunks' of knowledge that represent important 

functional units or structures within a particular domain is common psychological 

currency (Miller, 1956; Chase and Simon, 1973; de Groot, 1965; Egan and 

Schwartz, 1979; Larkin, McDermott, Simon and Simon, 1980; Reitman, 1976). 

Within the programming domain, a range of studies have suggested that 

programming expertise might be characterised by the programmer's ability to 

decompose and represent programs in terms of 'chunks' of knowledge which are 

based upon semantically meaningful elements of programs. For example, 

Shneiderman (1976) has shown that the standard results obtained in the now well 

known chess studies are replicable in the context of programming. Shneiderman 

found that experts could recall more lines of program code than novice 

programmers when that program was organised in executable order. Conversely, 

when the program was ordered randomly no significant differences in recall 

performance between the two groups were evident. 

A number of other studies, employing more complex recall procedures and 

stimulus material, have provided additional support for the 'chunking' hypothesis 

(Bateson, Alexander and Murphy, 1987; Barfield, 1986). For instance, Barfield 

(1986), employed three levels of program organisation (executable order, random 

lines and random chunks) in a free recall experiment to explore differences in 

39 



knowledge representation for programmers of different skill levels. Barfield found 

that novice programmers recalled the same number of program lines regardless of 

program organisation. Conversely, the intermediate group demonstrated superior 

recall when the program was presented in executable order as opposed to the 

random line and random chunk conditions. Barfield suggests that this indicates 

that executable order facilitates chunking for intermediate level programmers. 

Experts, on the other hand, demonstrated high recall performance in both the 

executable order condition and in the random chunk condition. However, when 

the program is completely randomised the performance of the expert group drops 

to a similar level to that exhibited by intermediates. Barfield suggests that since the 

memory capacity of the experts is the same as that for other groups, the superior 

recall in the random chunk and executable order conditions must arise because of 

the experts familiarity with particular units of code that perform the same function. 

3.3 Knowledge structures: content and formation 

The studies reviewed above demonstrate that the superior organisation of 

programming knowledge in long term memory is one of the central factors in 

expert performance. However, these studies fail to specify in detail the nature of 

that organisation. For instance, one question that is left unresolved relates to the 

content of expert knowledge structures. In addition, the chunking studies 

described above do not address issues concerned with the mechanisms which may 

underlie an expert's ability to create and represent meaningful chunks of 

knowledge. As a consequence, two central questions appear to emerge from these 

studies; How are chunks formed and what sort of information do such structures 

typically represent? 

3.3.1 The organisation of programming knowledge by novices and experts 

McKeithen, Reitman, Rueter and Hirtle, (1981) describe a study which attempts 

to address the issues raised by these questions. They report two experiments. The 

first experiment replicates the classic expert-novice difference in short term recall 

for programmers who viewed either a coherent or a scrambled version of a 

program. This experiment produced results which parallel those of Barfield ( 1986) 

and of Sheiderman (1976) reported above. In a second experiment, McKeithen et 

al., attempted to extend the interpretation of this basic phenomenon by inferring 
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details of a subject's organisation of programming concepts by constructing 

hierarchical representations of the relations among programming language 

keywords. 

For this experiment, McKeithen et al. employed a technique developed by Reitman 

and Rueter (1980) which produces a hierarchical representation of information 

from regularities in the orders in which items are recalled over many trials. This 

technique capitalises upon the fact that people tend to recall all items of one chunk 

before moving on to the next chunk (Cohen, 1966). McKeithen et al. examined 

the way in which programmers form chunks by presenting their subjects with a 

number of cards each of which had written upon it a word derived from the set of 

ALGOL W reserved words (for instance, ELSE, REAL, NULL etc.). Novice, 

intermediate and expert subjects were asked to learn each of the words presented 

on the cards such that they could subsequently recall them without the aid of the 

cards. Subjects were then asked to attempt to recall the words they had learnt 

during 25 scheduled trails. Some of these trials were cued in that subjects were 

presented with a reserved word and were then asked to recall other words "that go 

with it". Most of the trials, however, were uncued and subjects could recall words 

in the order they wished. 

McKiethen et al. analysed the recall order for each subject using an algorithm 

developed by Reitman and Rueter (1980). This algorithm involves searching 

subject's recall strings for all groups of items that always appear contiguously, 

regardless of recall order. For example, a number of groups of contiguously 

recalled items (ABC, BC, DEFG, DEF, EFG, DE, EF and FG) can be derived 

from the four recall strings in figure 3.1. These groups can be represented either 

as a lattice under set inclusion or as a parenthesised expression. Consistency in the 

order of recall of groups (such as an ordered set of chunks or a list) appears in the 

lattice as overlapping groups: e.g., DEFG, DEF, EFG, DE, EF and FG indicate 

that DEFG is always ordered. Inspection of the original recall strings can 

determine whether the order is always the same (i.e., a unidirectional chunk) or 

one order and its reverse (a bidirectional chunk). Unidirectional chunks can be 

represented in the tree diagrams by using a single-headed arrow notation, and 

bidirectional chunks by double-headed arrows. In the parenthetic representation, 

square brackets denote a unidirectional chunk and angle brackets a bidirectional 

chunk. Nondirectional chunks, whose constituents can appear in any order, are 

indicated by the absence of an arrow in the tree diagram and by curved brackets in 

the parenthetic expression. 
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a. Recall Strings 

A B c D E F G 
D E F G c B A 
D E F G B c A 
B C A D E F G 

b. Lattice of Chunks 

A 

A B C D E F G 

~~ 
A B C D E F G 

B 

"' /' " DEF EFG 

B C D ~ ~f'F G 

A < { ~ /------ 'f/ ~ 
-~~ 

root 

c. Ordered Tree 

c D E F G 

d. Expression 

((A (B C)) [d e f g]) 

Figure 3 .1. Example analysis of recall strings by the Reitman -Rueter technique. 
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Figure 3.2 shows the organisation of reserved words for a novice programmer 

and for a typical expert programmer. McKiethen et al. found that beginning 

programmers appear to utilise a range of different mnenomic techniques. For 

instance, some novice subjects appeared to be using an encoding strategy based 

upon orthography, while others seemed to be using common natural language 

sequences such as DO-FOR-WHILE or BITS-OF-STRING. Experts, on the 

other hand, appear to cluster together words based upon common structures used 

in ALGOL (i.e., WHILE-DO or IF, THEN, ELSE), while intermediates appear 

to employ a mixture of strategies and to base their organisation on both ALGOL 

structures and natural language chunks. 

The results of the McKeithen et al. study provide an impressive demonstration that 

differences in knowledge organisation, as reflected by recall order and 

memorisation strategy, are strongly correlated with differences in programming 

skill. McKeithen et al. do not claim that particular forms of knowledge 

organisation produce expertise, since any support for this hypothesis would need 

to be derived from a demonstration of within-subject skill changes with 

instruction. However, one might hypothesise that learning particular forms of 

organisation would led to the enhancement of programming skill. 

Moreover, McKeithen et al. suggest that their findings may support the claims 

made by protagonists of structured programming, since it is possible that an 

expert's mental organisation of a program may correspond to the forms of 

organisation produced by applying structured programming techniques. Hence, it 

appears that the Reitman - Rueter technique for analysing recall order that is 

adopted by McKeithen et al. may provide the basis for exploring the purported 

cognitive advantages of adopting structured programming principles. The main 

contribution of the McKeithen et al. study is that it provides evidence for the way 

in which programmers group together related pieces of information in order to 

form knowledge structures that can best guide problem solving in programming. 

Their work provides a natural extension to some of the earlier chunking studies by 

outlining the different strategies used to group information and by illustrating the 

way in which particular strategies are associated with different levels of skill. 
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~--BITS 

CASE 
SHORT 

__.,.~iii::::-- STEP 
STRING 
IF 
IS 

-~--OF 
OR 

~~ii~~~~~~~~~~~~~~DO ELSE 
LONG 

---------------!::::~====STEP 
END 

Figure 3.2. Typical novice (above) and expert (below) knowledge organisation 

found in the McKeithen eta/ study. The novice's organisation is apparently based 

on orthography, while the expert's is based upon the meaning of words in the 

programming language. 
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The results of the McKeithen et al study suggest that experts group program 

statements according to broad semantic categories while novices use familiar 

surface features such orthography. In other problem solving domains similar 

finding have emerged. For instance in Physics problem solving it has been shown 

that novices typically represent only the surface (or concrete) features of a problem 

whereas experts represent abstract physical principles (Chi, Glaser and Rees, 

1981; Chi, Feltovich and Glaser, 1981). Similar findings have also emerged in 

studies of mathematics (Schoenfeld and Herrmann, 1982). 

3.3.2 Abstract and concrete representations of programming knowledge 

In the programming domain, Adelson (1981) has attempted to extend these 

findings by characterising some of the properties of the abstract and concrete 

representations that are formed during program comprehension. Adelson (1981) 

found that expert programmers used abstract conceptually based representations 

when attempting to recall programs, whereas novices used syntactically based 

representations. Using a multi-trial free recall procedure, Adelson asked novice 

and expert programmers to recall 16 lines of program code that had been presented 

randomly. Although the subjects had not been told that the 16lines could be 

organised either conceptually into three programs or syntactically into five 

categories according to the control words they contained, an analysis of the recall 

for each group showed that experts had clustered the lines into complete 

programs, while the novices clustered lines according to syntactic category. This 

finding simply serves to replicate the results of the McKiethen et al (1981) study 

reported above. Adelson (1984; 1985) later extended this basic paradigm to 

explore in more detail the nature of the organisational groupings produced by 

expert and novice programmers, by characterising some of the properties of 

abstract and concrete representations. 

For example, Adelson (1984), reports an experiment in which expert and novice 

subjects were given tasks that required them to form and use both abstract and 

concrete representations. Subjects were presented with a stimulus set consisting of 

eight PPL (Polymorphic Programming Language, described as similar to APL and 

PL/1) programs with two types of flowchart and two types of questions for each 

of the eight programs. The flowcharts were constructed such that one described 

the output resulting from program execution, while the other described how the 

program functioned. 
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Adelson suggests that flowcharts that represent what a program does (i.e., in 

terms of its expected output) should be considered as abstract representations, 

since they describe the results obtained without specifying the method used to 

achieve them (e.g., in order to sort a set of items alphabetically one might use a 

variety of methods such as a merge sort, shell sort or bubble sort). Conversely, 

the flowcharts that describe a program's function are referred to as concrete in the 

sense that they represent procedural information without providing any general 

descriptive information about expected results. Adelson suggests that these two 

categories of abstract and concrete representation have strong parallels to the more 

common distinction that is drawn between procedural and declarative knowledge 

(Anderson, 1983; Winograd, 1974). 

In addition to being presented with a program and a flowchart describing that 

program (Figures 3.3 and 3.4), subjects were presented with a number of 

questions relating to either concrete or abstract features of the program. For 

example - "Is the field wider than it is long?" (abstract question, what the program 

does), "which border of the field is filled in first?" (concrete question, how the 

program works). 

The level of abstraction of the flowchart was crossed with the level of abstraction 

of the question to create four conditions for subjects of different levels of 

expertise: two appropriate set conditions, in which the level of abstraction of the 

flowchart matched the level of abstraction of the question, and two inappropriate 

set conditions where the level of abstraction of the flowchart did not match the 

level of abstraction of the question. Hence, in the appropriate set conditions, 

subjects saw either an abstract flowchart followed by an abstract question or a 

concrete flowchart followed by a concrete question. In the two inappropriate 

conditions, subjects were presented with either an abstract flowchart followed by a 

concrete question or a concrete flowchart followed by an abstract question. The 

two dependent variables used in this experiment were comprehension time (the 

time it took a subject to state that they had understood the flowchart well enough to 

go on and study the program and answer the associated question) and error rates 

on the questions. 
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PROORAM 

$MAKEFIELD; I;J 

[1] ... DATA DEFINITIONS IN THE CURRENT ENVIRONMENT 
[2] ... $GRID = [1 : ] ROW 
[3] ... $ROW = [1 : ] CHAR 
[4] LINE - MAKE (ROW, 40,') ... CREATE THE FIELD 
[5] FIELD - MAKE (GRID, 20, LINE) 
[6] FOR I - 1:19:20 DO% ... FILL IN TOP AND BOTTOM 

(FOR J - 1 :40 DO FIELD [I,J] -'B) ... BORDER 
[7] FOR I- 2:19 DO% 

(FOR J - 1:39:40 DO FIELD [I,J] - 'B ... FILL IN SIDES 

make a field of 20 rows; 
each row composed of 40 characters; 
each character a space 

, 
mark the edges of the field 
with character b's 

,, 
stop 

Figure 3.3. Program described in the following flowcharts. The flowchart above 

is an abstract flowchart in that it describes what the program does. 
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LINE<- A ROW OF 40 SPACES 

FIELD<- A GRID OF 20 LINES 

Figure 3.4. An example of a concrete flowchart. 
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Adelson found that both types of flowchart reduced program comprehension time 

significantly. In addition, the abstract flowcharts were comprehended more 

quickly than the concrete flowcharts. No differences in comprehension times were 

evident between the novice and expert groups for the concrete/abstract conditions. 

In terms of the data relating to errors, Adelson found that experts performed more 

accurately in the inappropriate set condition in response to concrete questions 

while novices performed more accurately in response to the abstract questions. In 

the appropriate set conditions, experts answered both the concrete and the abstract 

questions more accurately than novices. 

Adelson suggests that these results support the idea that novice programmers 

represent the concrete or procedural aspects of a problem while experts tend to 

form more abstract declarative representations. It is worth noting here the contrast 

between Adelson's findings and Anderson's suggestion that experts employ 

procedural knowledge and novices, declarative (see chapter 2). In the 

inappropriate set conditions, where the level of abstraction of the flowchart and the 

question do not match, the flowcharts will inappropriately prepare subjects to 

represent the program at one level of abstraction or the other. Adelson reasons that 

if the level that is actually appropriate is the subjects' natural or preferred level, 

then they would still be able to perform well. That is they would be able to 

accurately and quickly form a representation of the program that is appropriate to 

answering a particular question, and be able to process the information contained 

in this representation despite the misleading set. Conversely, if the appropriate 

level is not natural to the subject, the effects of the inappropriate set condition plus 

the non-naturalness of the representation will combine to impair performance. 

Adelson claims that the patterns of results in the appropriate set conditions provide 

information about the natural level of representation for each group. Hence, a 

condition in which a group's performance is good is a condition in which the 

required representation is natural, and a condition in which a group's performance 

is poor is one in which the required representation is not natural. Hence, since the 

novice group perform better in the concrete condition, while the expert group 

perform more accurately in the abstract condition we can infer that novices 

represent programming knowledge in concrete terms and experts in abstract 

fashion. 
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This finding provides additional support for the idea that novices and experts 

represent domain knowledge differently. In programming, experts appear to focus 

upon the declarative aspects of a problem while novices place emphasis upon a 

problems procedural aspects. Some support for this distinction can also be derived 

from work in other domains, suggesting that this finding may be generalisable to 

other areas of expertise. For instance, Brown and Burton (1978) found that school 

mathematics teachers who were expert in performing elementary arithmetic 

operations, experienced difficulty verbalising these operations. 

The importance of different forms of representation is strikingly evident in 

Adelson's (1984) study in the context of those conditions where novice 

performance actually surpasses that of experts. Adelson claims that experts have 

learnt that during comprehension it is more profitable to focus upon high-level 

abstract elements of a program rather than on low-level implementation details. 

She claims that this point will also be valid for very high-levellanguages in which 

the distinction between what is abstract and what is concrete may not map onto the 

distinction between what a program does and how it functions. However, Adelson 

provides no evidence for this conjecture, and more recent research (Cooke and 

Schvaneveldt, 1988; Gilmore and Green, 1988) has suggested that the cognitive 

structures that have been observed in this and similar studies may be specific to the 

particular programming language used in the studies. 

3.4 Are representations of programming knowledge language independent? 

Cooke and Schvaneveldt (1988) have observed that the stimulus material used by 

Adelson, and for that matter by the majority of researchers studying programming 

expertise, has consisted of either program statements or reserved programming 

words. They suggest that this kind of material does not provide an ideal means of 

eliciting information about a subject's semantic knowledge which should, by 

definition, be language independent. This would be predicted by other models of 

programming. For instance, according to Shneiderman's (1980) 

syntactic/semantic model, syntactic knowledge is specific to each programming 

language, while semantic knowledge represents general programming concepts 

that are not language-specific. 

Cooke and Schvaneveldt (1988) also suggest another important methodological 

limitation of studies of programming expertise. They argue that these studies have 
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tended to categorise individuals with some programming expertise as the least 

experienced programmers, thus ignoring completely naive programmers with no 

programming experience at all. Cooke and Schvaneveldt suggest that the cognitive 

structures of individuals prior to any exposure to domain-related material may 

reveal preconceived notions, misconceptions or prior knowledge that might be of 

interest to those involved or interested in education. Presumably these 

preconceived notions etc. may play an important role in the development of 

programming skill and knowledge representation. 

Cooke and Schvaneveldt (1988) report a study in which they attempted to address 

some of the limitations of previous work that have been outlined above. In 

particular, their study examined the organisation of a set of abstract programming 

concepts for subjects of various levels of skill, including a naive group who 

possessed no programming experience whatsoever. Cooke and Schvaneveldt 

(1988) presented their subjects with a set of 16 programming concepts derived 

from an introductory computer science text book. Subjects were asked to assign 

ratings, on a scale of zero to nine, to each concept based upon their familiarity 

with that concept. The subjects were then asked to undertake a relatedness rating 

task, where they were informed that there are a number of dimensions along 

which the concepts could be related (e.g., frequency of co-occurrence, generality, 

importance). An assignment of a zero score for a pair of concepts indicated that the 

pair were highly unrelated, while a score of nine indicated that the pair were highly 

related. 

These data were then used to construct network representations that indicated the 

strength of the relatedness measure coexisting between concepts. These networks 

were constructed using the Pathfinder algorithm (Dearholt, Schvaneveldt and 

Durso, 1985; Schvaneveldt, Durso and Dearholt, 1985) which produces a 

network, from empirically derived relatedness measures, in which items or 

concepts are represented as nodes and the relationships between items are 

represented as links between nodes. 

A weight corresponding to the strength of the relationship between nodes is 

associated with each link and is taken to represent the inverse 'psychological' 

distance between nodes. The Pathfinder scaling technique has been applied to a 

number of domains including the design of menu systems (Roske-Hofstrand and 

Paap, 1986). A number of studies have shown that Pathfinder networks are 

psychologically meaningful. For instance, such networks have been shown to 

51 



have predictive value in that they can account for a subjects free recall performance 

better than other scaling techniques (Cooke, Durso and Schvaneveldt, 1986). 

The results of the Cooke and Schvaneveldt study indicated that the networks that 

were derived from the estimates of relatedness performed by their four 

experimental groups differed systematically with experience. The naive group 

appeared to base their structuring upon the meaning of the terms in natural 

language. This provides additional support for the finding of McKiethen et al who 

demonstrated that natural language associations are instrumental in the 

organisation of recall for novice programmers. In addition, the intragroup 

correlations between networks produced from the naive subjects' relatedness 

estimates proved to be high, suggesting a shared conceptual structure. In the case 

of the advanced group, conceptual organisation appeared to be based upon the 

meaning of the concepts in the programming domain. The intermediate network 

representation was rather similar to the network obtained for advanced subjects, in 

that the two networks shared many common features. One of the more interesting 

findings of this study was that the relatedness rating correlations demonstrated that 

intragroup agreement did not increase in a linear fashion with increasing expertise. 

Rather, agreement tended to decrease from the naive to the novice level and then 

gradually increase from the novice to the advanced level. 

The fact that naive subjects shared some common domain knowledge, albeit 

inappropriate to the programming task itself, is interesting in that it suggests that 

naive subjects have a mental model of programming just as the non-expert may 

have a naive mental model of physics (Gentner and Gentner, 1983). In other 

non-programming domains it has been demonstrated that inappropriate models can 

lead to serious conceptual difficulties during learning (Norman, 1983). The results 

of the Cooke and Schvaneveldt study suggest a means of identifying the source of 

beginning programmers misconceptions and thereby may contribute to 

instructional practice by explicitly focusing on the formation of appropriate 

conceptualisations. It is interesting to note that subjects with some, albeit limited, 

programming experience (i.e., the novice and intermediate groups) did not share a 

common conceptual structure. 

Cooke and Schvaneveldt suggest that this decline in agreement may be due to 

variations in teaching strategy, the use of particular text books etc. However, once 

concepts become well-learned, these variations in programming experience no 

longer appear to matter. They suggest that the advanced network representation 

52 



can be considered to be an explicit goal state in the learning process, while the 

naive representation corresponds to the state prior to learning. An analysis of 

intermediate states may indicate conceptual misunderstandings that have arisen 

during the learning process and Cooke and Schvaneveldt suggest that this will 

have implications for the adoption of particular teaching or training strategies. 

The studies that have been reviewed above have a number of implications for our 

understanding of the way in which knowledge representation changes with 

increasing expertise. In particular, they indicate that expert and novice 

representations have some very specific but differingproperties. For instance, 

experts have been shown to group information in a semantic fashion, while 

novices group information according to the surface features exhibited by a 

program. Adelson has demonstrated that experts tend to represent the declarative 

information relevant to a particular program, while novices focus to a greater 

extent upon a program's procedural content. 

While these studies have been important in terms of describing the more general 

features of programmers' knowledge representations, they do not provide an 

indication of the detailed content of these knowledge structures. There is, 

however, a growing body of literature that has focused explicitly upon a 

description of the kinds of tacit knowledge that programmers appear to be able to 

recruit to guide problem-solving. These studies have drawn analogies with work 

in text comprehension to suggest that problem-solving in programming is 

mediated by the possession of script or schema-like knowledge structures that 

provide specific techniques for commonly occurring programming procedures that 

are both language and problem independent. 

3.5 Knowledge Representation in programming: Analogies with text 

comprehension 

3.5.1 Introduction 

A number of important analogies have been drawn between work in the text 

comprehension domain and theories of knowledge representation in programming. 

Clearly there are certain common features of these domains that make this analogy 

plausible. For instance, programming involves the construction of text-like 

structures which are used to instruct a computer. The use of programming 
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languages might therefore been seen to be similar to our use of the written word 

for communicative purposes 1. 

Here, perhaps the most important analogy is with notion of a 'schema'. Schemas 

are proposed as knowledge structures which consist of a set of propositions that 

are organised in terms of their semantic content. There are two primary principles 

upon which most schema theories are built. Firstly, that cognitive processing is 

guided and limited by the application of prior knowledge. Secondly, that schemas 

contain relatively abstract knowledge which is largely independent of any one 

event. Moreover, in most theoretical accounts of schema use such structures are 

thought to be organised hierarchically, and to facilitate reasoning via the 

instantiation of default values in situations where information is not present in the 

task domain. 

Schema-based mechanisms for cognitive control offer a method for limiting the 

amount of inputted information, or bottom-up control, that is needed to perform a 

task. Moreover, schemas provide top-down control by using prior knowledge to 

restrict the range of possible operations that might be undertaken. Hence, either a 

perceptual input or a cognitive goal or process may evoke a schema with a related 

semantic content. 

Such theories have appeared in a number of forms. For instance Minsky, from an 

AI perspective, uses the term 'frame' (Minsky, 1971). Schank and Abelson 

identify a particular type of schema known as a 'script' composed of a sequence of 

abstracted actions which occur in the context of common events, with slots for 

specific instances (Schank and Abelson, 1977). Schank and Abelson also identify 

'plans', which are executed in order to determine the inferences that are required in 

order to understand situations for which there are no stereotypical event 

sequences. Hence, scrips denote sequences of actions that have occured on 

numerous occasions (e.g. visting a restaurant), whereas plans describe the 

production of novel action sequences (e.g. robbing a bank). 

Schema theories have been used to account for a wide range of cognitive 

behavours, such as language understanding, memory and problem solving. As 

such, we might regard such theories as fairly powerful, however there is a danger 

that this explanatory potential may result in the concept becoming too nebulous to 

be of any real value as a predictive mechanism. Too some extent this problem is 

reflected in some of the criticisms of schema-based theories of programming that 
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are proposed by this thesis. In particular, it is argued that schema theories of 

programming knowledge must specify explicity the mechanisms that mediate the 

acquisition and use of programming knowledge. 

Soloway and his colleagues (Detienne and Soloway, 1990; Soloway and Ehrlich, 

1984; Soloway, Ehrlich, Bonar and Greenspan, 1982; Soloway, Ehrlich and 

Gold, 1983; Spohrer, Soloway and Pope, 1985), drawing upon the work of 

Schank and others (Schank, 1980; 1981; Schank and Abelson, 1977), have 

proposed that programmers possess and are able to access abstract schematic 

plan-based structures that represent stereotypical programming knowledge. A 

number of other authors have attempted to provide a more formal specification of 

plan knowledge in programming. For instance Rich, Shrobe and Waters (Rich, 

1981; Rich, Shrobe and Waters, 1979; Waters, 1979; 1982) have developed a 

large collection of plans based upon their intuitions about programming. It is likely 

that there are hundreds (possibly thousands) of these plans which can be used to 

guide problem-solving in programming, and as in other domains this repertoire of 

plans provides a set of standard methods for achieving certain types of goals. 

Ehrlich and Soloway (1984) suggest that such plans provide high-level structures 

that serve to chunk together related pieces of information. Such plan structures are 

regarded as similar to Schank and Abelson's (1977) notion of scripts (See above). 

Scripts are used to explain how people can understand stereotypic sequences of 

events such as eating at a restaurant or going to a doctor. By analogy to this, 

Ehrlich and Soloway claim that plan knowledge in programming consists of a 

catalogue of stereotypic action sequences. These action sequences describe the 

programmer's tacit knowledge of the domain. The possession of such tacit 

knowledge structures has been shown to be an important factor in distinguishing 

experts from novices in other domains (Collins, 1978, Larkin et al, 1980; Polya, 

1973) and it would seem reasonable to suggest that expert programmers are able to 

recruit similar knowledge in order to guide their problem solving activities. 

Previous studies of the programming activity, such as those described above, have 

sought to establish that experts not only have more knowledge about programming 

than their less experienced counterparts, but that experts can be distinguished from 

novices in terms of their better organisation of knowledge. The work of Soloway 

and his colleagues has extended previous work by describing the typical content 

of expert knowledge structures and as such has provided a valuable insight into 

the way in which tacit knowledge can guide problem solving activities. 
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3.5.2 Programming Plans and Discourse Rules 

Soloway and Ehrlich (1984) introduce the notion of the programming plan to 

provide a description of those program fragments that are thought to represent 

stereotypic action sequences in programming. They suggest that expert 

programmers possess two main kinds of plan: Plans that relate to aspects of a 

program's control flow and plans that represent facets of variable use. An example 

of a control flow plan might be a plan that accumulates and keeps track of a 

running total (see figure 3.5). Soloway and Ehrlich suggest that such a plan might 

be used in variety of programs which may have been constructed to implement 

solutions to a wide range of problems. In this sense, such plans should be 

regarded as both language and problem independent. Hence, programs are 

constructed on the basis of generalised plan knowledge and specific plans are 

created in response to the requirements and constraints of a particular problem. 

The use of the term plan may seem rather odd here, since as we have seen, plans 

are usually taken to denote the action sequences that are required in the context of 

novel events. As we remarked above, perhaps a more useful description would 

equate the notion of plans with the concept of a 'script'. 

The composition of plans, according to Soloway and Ehrlich, is mediated by 

so-called rules of programming discourse (see also, Leventhal, 1987; 1988), 

which are proposed to be directly analogous to conversational discourse rules. An 

example of a program discourse rule is that variable names should normally reflect 

their function2. Hence, a program might be correct in that it produces the right 

results but may be difficult to read because it violates certain rules of discourse. 

3.5.3 Empirical Studies 

Soloway and Ehrlich (1984) report a number of empirical studies to support their 

contention that programmers are able to recruit tacit plan knowledge during 

problem solving and that the possession of such plan knowledge can be used to 

distinguish experts from novices. These studies employ two major experimental 

paradigms. Firstly, a fill-in-the-blank task, where subjects are presented with a 

program fragment with one or more lines omitted, their task being to supply the 

missing line/sand secondly a straightforward free recall task. Both sets of studies 

compared performance in these two tasks in response to the presentation of plan or 

unplan-like programs. 
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In this context, a plan-like program was constructed such that its component plan 

structures were consistent with certain rules of programming discourse. An 

unplan-like version (Soloway and Ehrlich's term) of the same program can be 

constructed by introducing violations to one or more of its consituent plan 

structures (see figure 3.6). It should be noted that in all cases both the plan and 

unplan-like versions were executable programs, and in the majority of cases 

computed the same values. This can be contrasted with the experimental materials 

used in a number of earlier studies which consisted of program statements 

presented in random order. 

Version A 
PROGRAM Yellow (input, output), 
V AR I INTEGER 

Letter, LeastLetter Char, 
BEGIN 

LeastLetter = 'a', 
FOR I = 1 TO 10 DO 

BEGIN 
READLN (Letter), 
If Letter > LeastLetter 

THEN Leastletter =Letter, 
END, 

Writeln (Leastletter), 
END 

Version B 
PROGRAM Green (input, output), 
V AR I INTEGER 

Letter, LeastLetter Char, 
BEGIN 

LeastLetter = 'z', 
FOR I= 1 TO 10 DO 

BEGIN 
READLN (Letter), 
If Letter < LeastLetter 

THEN Leastletter =Letter, 
END, 

Writeln (Leastletter), 
END 

Figure 3.5 a. These programs both represent a search plan, however in the second 
case (Version b) the program violates the discourse rule which suggests that "a variable 
name should reflect its function". 

Version A 
PROGRAM Pink (Input, Output), 

CONST 
MaxSentence = 99, 
NumOfConvicts = 5, 

VAR 
ConvictiD, I, Sentence INTEGER 

BEGIN 

END 

FOR I = 1 to NumOfConvicts DO 
BEGIN 

READLN (ConvictiD, Sentence), 
IF Sentence > MaxSentence 

THEN Sentence= MaxSentence, 
WRITEIN (ConvictiD, Sentence), 

END 

Version B 
PROGRAM Gold (Input, Output), 

CONST 
MaxSentence = 99, 
NumOfConvicts = 5, 

VAR 
ConvictiD, I, Sentence INTEGER 

BEGIN 

END 

FOR I = 1 to NumOfConvicts DO 
BEGIN 

READLN (ConvictiD, Sentence), 
WHILE Sentence > MaxSentence 

DO Sentence = MaxSentence, 
WRITEIN (ConvictiD, Sentence), 

END 

Figure 3.5 b. The basic plan represented by this program involves resetting variables to 
boundary conditions. The discourse rule violated in version B is "An IF should be used 
when a statement body is guaranteed to be executed only once and a WHILE used when a 
statement body may need to be executed repeatedly". 
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Fill-in-the-blank tasks 

In their first study, Soloway and Ehrlich presented novice and advanced 

programmers with a number of plan-like and unplan-like program fragments in 

which certain critical elements had been omitted (figure 3.6). The subject's task 

was to fill in the blank line with a piece of code that they thought best completed 

the program. According to Soloway and Ehrlich, subjects who engage in this task 

will need to infer the intention of the program based upon their knowledge of the 

problem and upon their tacit plan knowledge and this should create expectations 

about what would constitute an appropriate way of completing the program. A 

similar technique has been used in text comprehension work in order to explore 

subjects' underlying knowledge of typical real world events (Bower, Black and 

Turner, 1979; Kemper, 1982) and these studies suggest that this technique does 

provide an appropriate means of eliciting subjects' tacit knowledge about a 

particular domain. 

Soloway and Ehrlich reason that if advanced programmers possess and use 

programming plans then they should be able to recognise program fragments in 

plan-like versions of programs as examples of particular plans and consequently 

they will complete the blank line in that program with code that corresponds to the 

role expressed by that plan. In the case of unplan-like programs, the advanced 

programmer will not be able to infer the program's plan structure and they will 

consequently be less likely to fill in the missing line correctly. Novice 

programmers, who, it is claimed, have not developed a full repertoire of plans 

and programming conventions, will not be guided by plan structures and hence 

should perform with similar levels of accuracy in response to both plan-like and 

unplan-like programs. 

Soloway and Ehrlich's results provide support for these hypotheses. Firstly, 

experts were able to complete blank lines in programs more accurately than 

novices (61% correct response vs 48% correct response). In addition, subjects 

completed the plan-like versions correctly more often than the non-plan like 

versions. Finally, there was a significant interaction between program version 

(plan-like or unplan-like) and expertise. 
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Version A 

PROGRAM Brown (input, output), 
VARNum REAL, 

I INTEGER, 
BEGIN 

FORI= 1 TO lODO 
BEGIN 

Read (Num), 
IF Num < 0 THEN Num = -Num, 
Writeln (Num, Sqrt (Num)), 

END 
END 

Version B 

PROGRAM Green (input, output), 
VARNum REAL, 

I INTEGER, 
BEGIN 

Num=O 
FORI= 1 TO lODO 

BEGIN 
Read (Num), 
IF Num < 0 THEN Num = -Num, 
Writeln (Num, Sqrt (Num)), 

END 
END 

PROGRAM Brown (input, output), 
VARNum REAL, 

I INTEGER, 
BEGIN 

FORI= 1 TO lODO 
BEGIN 

END 

*********** 
IF Num < 0 THEN Num =-Num, 

Writeln (Num, Sqrt (Num)), 
END 

PROGRAM Green (input, output), 
VARNum REAL, 

I INTEGER, 
BEGIN 

Num=O 
FOR I = 1 TO 10 DO 

BEGIN 

END 

*********** 
IF Num < 0 THEN Num =-Num, 

Writeln (Num, Sqrt (Num)), 
END 

Figure 3.6. An example of the experimental materials used by Soloway and Ehrlich 
( 1984 ). The basic plans in this example are a guard plan and a variable plan. Version a is 
plan-like, while version b is unplan-like in that it includes two incompatible discourse 
rules. 
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Moreover, the difference in performance between the novice and expert subjects 

for plan-like programs was significant, while in the case of unplan-like programs, 

no difference was evident. Indeed, in the case of unplan-like programs, the 

performance of the expert group was reduced to that exhibited by the novice 

group. These results provide strong support for the idea that expert programmers 

use plan knowledge to guide their comprehension of programs. This knowledge 

provides a basis upon which expectations about program function can be 

constructed. Moreover, when these expectations are violated, expert performance 

is reduced drastically. 

Program Recall 

In a second study, Soloway and Ehrlich examined subjects' recall of plan-like and 

unplan-like programs. Soloway and Ehrlich employed the same stimulus materials 

in this study as in their fill-in-the-blank tasks, however only expert programmers 

participated. Subjects were presented with a program which they were 

subsequently asked to recall verbatim. Half of these programs were plan-like and 

the other half were unplan-like. Figure 3.6 shows examples of the programs used 

in this study. Notice that the programs are identical except for two 'critical' lines. 

These lines are described as critical in the sense that they convey information as to 

whether the program is plan-like or unplan-like. Subjects were presented with a 

program three times. During the first trial subjects were requested to recall as 

much of the program as possible. During the second and third trials, they were 

asked to either add to their original recall or change any part of their recall that they 

felt was in error. 

They key prediction made by Soloway and Ehrlich is that programmers would 

recall the critical lines from plan-like programs earlier than the critical lines from 

the unplan-like programs. The idea that the representatives of a particular category 

are recalled first in free recall studies is a well documented psychological principle 

(Crowder, 1976). Soloway and Ehrlich, employing this principle, suggest that if 

expert programmers make use of tacit plan knowledge and discourse rules to 

encode a program when it is presented, then the critical lines in plan-like programs 

will be recalled early in a free recall task, since these lines are considered to be the 

key representatives of a particular plan. In the case of unplan-like programs, 

critical lines do not bear a relationship to the program's plan structure and hence 

are of the same level of significance as other lines in the program. Hence, one 

would not expect these lines to be recalled any earlier than others. 
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Once again Soloway and Ehrlich's results provide support for the idea that the 

problem solving activities of expert programmers are mediated by the possession 

of stereotypical plan structures. The results from their recall experiment showed 

that subjects recalled more critical lines from plan-like programs than from 

unplan-like programs. There was also a significant interaction between version 

and trial, suggesting that the critical lines in plan-like programs are recalled earlier 

than in the unplan-like programs. 

In summary, the idea that plan knowledge plays an organising role in memory 

suggests a number of features that appear to be central to program comprehension. 

Firstly, the comprehension process appears to proceed by the recognition of 

patterns that implement known plans. Secondly, plans will be activated by partial 

pattern matches and confirming details will either be sought or assumed. Hence, 

plan structures are seen to guide problem-solving via both the application of 

known methods and through the creation of expectations about the typical form 

and behaviour of these methods. 

3.5.4 Other work on plans 

Interactions between everyday knowledge and programming language constructs 

The close analogy between studies of schema theory in text comprehension and in 

programming research has led to a number of other predictions about the role of 

tacit knowledge in programming. For instance, work in the text comprehension 

domain carried out by Bower et al. (1979) has shown that when texts violate the 

stereotypical sequences dictated by a script structure, subjects will tend to reorder 

the text during recall tasks so that it conforms to structures suggested by their tacit 

real world knowledge. In addition, Schank (1979) has proposed that the 

inferences that are typically made during text comprehension are affected by 

schema-congruent expectations. According to Schank, the salience of a particular 

text structure to a given reader is partly determined by its relative congruity or 

incongruity with that reader's schematic knowledge. 

In a similar vein, Soloway, Bonar and Ehrlich (1983) found that programmers 

show a tendency to order program statements in a manner dictated by their 

everyday knowledge even though this ordering leads to bugs in their programs. 
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For instance, this study showed that the process/read loop construct in Pascal (see 

figure 3.7) is a major source of bugs because it mismatches the normal course of 

events in the real world, i.e., normally we would first need to get an object (read 

it) in order to process that object in some way. 

programEl; 
var Count, Sum, Number : integer; 

Average ; real; 
begin 

Count:= 0; 
Sum :=0; 
Read (Number); 
while Number<> 99999 do 

begin 
Sum := Sum+ Number; 
Count : = Count + 1; 
Read (Number) 

end; 
if count> 0 

then 
begin 

end 

Average := Sum/Count; 
Writeln (Average); 

end 
else 

Writeln (' no numbers input: 
average undefined'); 

program Pascal L; 
var Count, Sum, NewValue: integer; 

Average: Real; 
begin 

Count:= 0; 
Sum :=0; 
loop 

Read (newValue); 
if New Value= 99999 then leave: 
Sum := Sum+ NewValue; 
Count:= Count+ 1; 

again 
if Count > 0 

then 
begin 

end 

Average:= Sum/Count 
Writeln (Average); 

end 
else 

Writeln ('no numbers input: 
average undefined') 

Figure 3.7 a. Two programs illustrating different looping strategies. Program Elisa 
normal Pascal program, utilising a PROCESS/READ strategy, while the program on the 
right is written in Pascal Land uses a READ/PROCESS strategy. 

Read (first value) 
while Test (ith value) 

do begin 
Process (ith value) 
Read (i +1st value) 

end 

loop 
do begin 

Read (ith value) 
Test (ith value) 
Process (ith value) 

end 

Figure 3.7 b. Schematic representations of, on the left, the process/read strategy typical of 
Pascal, and on the right, the read/process strategy embodied in Pascal L. 
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In addition, this study showed that subjects wrote correct programs more often 

when they used a language that facilitated their preferred (i.e., read then process) 

cognitive strategy. For instance, the language Pascal L uses a loop .. .leave .. again 

construct (see figure 3.7) and this language appears to facilitate the construction 

correct programs for intermediate and expert programmers. Additional support for 

the idea that everyday knowledge can create misleading expectations for beginning 

programmers is provided by Eisenstadt, Breuker and Evertsz (1984) who 

demonstrated that novice programmers can recruit plans based upon 'real-world' 

algorithms, but that difficulties arise when there is not a straightforward mapping 

between these algorithms and the kinds of operations that are allowed in a 

particular programming language. 

Plan violation and program complexity 

Additional support for the role of plan structures in comprehension has been 

derived from the idea that if plan structures are a key feature in program 

comprehension - the thesis suggested by Soloway and Ehrlich, and supported by 

their empirical research - then the extent to which a program violates normal plan 

composition should provide a measure of the understandability of that program. In 

order to explore this hypothesis further, Soloway, Ehrlich and Black (1983) 

compared three program analysis techniques- Halstead's Volume metric 

(Halstead, 1977), propositional analysis (Atwood and Ramsey, 1978) and plan 

analysis (Soloway and Ehrlich, 1984) - in order to determine the extent to which a 

measure of plan violation can predict program comprehension. 

Soloway et al (1983) took three versions of a program intended to solve the same 

problem and subjected the programs to the three analysis techniques mentioned 

above. The main difference between the three versions of the program was that the 

plan composition in two of the programs violated a number of rules of 

programming discourse. Soloway et al suggest that programmers will expect other 

programmers to follow these rules of discourse. Hence, plan or discourse rule 

violations will make programs to more difficult to comprehend. The question that 

Soloway et al address is whether the results of the three different methods of 

program analysis they consider can distinguish comprehensible programs (i.e., 

programs that conform to plan structure) from less comprehensible programs (i.e., 

programs that violate plan/discourse rule structure). 
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The first analysis technique, Halstead's Volume Metric, involves calculating the 

total number of operations (N 1) and operands (N2) in a program and the number 

of unique operations (n1) and operands (n2). These measures are then combined 

according to the following equation: 

The resulting number is intended to provide a measure of the size and broad 

complexity of a program. In addition, one might assume these factors to be a 

reasonable predictor of comprehensibility. While some studies have shown that 

Halstead's Volume Metric can predict programmer performance (eg., Sheppard, 

Borst and Love, 1978), Soloway et al found that the volume metric calculated for 

their three programs was equivelent. Hence this metric does not appear to provide 

a good basis for measuring the relative comprehensibility of different programs. 

Next, Soloway et al subjected the three programs to a propositional analysis. This 

form of analysis was derived from text comprehension work carried out by 

Kintsch and van Dijk (1978) who have suggested that texts can be decomposed 

and analysed in terms of their constituent propositional structure. The assumption 

here is that a text with a complex propositional structure will be more difficult to 

understand than a text with a simpler propostional structure. In the text 

comprehension domain there is considerable empirical support for the validity of 

this assumption (Kintsch and Keenan, 1973; Kintsch, Kozminski, Streby, 

McKoon and Keenan, 1975). In the context of programming, Soloway et al. 

suggest that programs will be more complex, and therefore more difficult to 

understand, when they have a) more propositions (defined by Soloway et alas the 

composition of a predicate (or operator in the context of programming) and its 

associated arguments (or operands)) and b) more levels of nesting. However, as 

with the volume analysis, this propositional analysis failed to distinguish between 

the plan-like and the unplan-like programs. 

This study suggests that plan analysis may constitute a useful method for 

assessing the comprehesnisbility of programs. The study also provides additional 

implicit support for the idea that plans play a focal role in program comprehension. 

Soloway et al readly admit that it is not clear how one might calculate a number 

that accurately reflects the violation or non-violation of discourse rules3. 

However, they suggest that the plan analysis should be seen as providing 
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qualitative rather than quantatative information about program comprehensibility, 

and that a numerical rating system does not typically point out the specific source 

of program complexity. They suggest that a qualiative analysis can be used to 

pinpoint specific areas of program complexity and also give a definitive 

prescription as to how this complexity might be ameliorated. 

3.5.6 Plan theory: Automated plan analysis and the development of intelligent 

tutoring systems 

Further evidence for the plan-based view of programming is provided by a study 

in which novices' errors were analysed in terms of the goal and plan structures 

inherent in their programs. Johnson, Soloway, Cutler and Draper (1983) 

characterised bugs by examining the differences between the actual and the 

intended plan structure of a program. From this they were able to provide a two 

dimensional analysis of program bugs according to the component of the plan 

which is affected by the bug and the type of bug or error. For example plan 

components include, updates, declarations, initialisations etc, while error types 

include, misplaced, spurious, missing etc. Using this classification technique, 

Johnson et al were able to analyse successfully 783 novice bugs into 29 of the 

possible 32 bug categories. This suggests once again that the analysis of programs 

into plan structures represents a valid framework for exploring the the nature of 

cognition in programming, since it enables one to predict the kinds a plan-based 

errors novices are likely to make. 

Knowledge-based program analysis- PROUST 

This analysis led to the development of PROUST (Johnson and Soloway 1985, 

Johnson, 1988; 1990; Littman and Soloway, 1988), a system that analyses 

novices' programs automatically to derive a non-algorithmic, or plan-based, 

description of the program. PROUST employs a knowledge base of programming 

plans and strategies, together with a description of the bugs that are commonly 

associated with these plans and strategies. PROUST carries out an 'intention' 

based analysis of programs, i.e., it frames its analysis in terms of both the 

intended functions of the program and in terms of the programmers intention as to 

how a particular function should to be achieved. According to Johnson, it is 

difficult to determine the intended function of a program simply by inspecting the 
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code, since there is no way of knowing whether what a programmer produces is 

what that programmer had in mind. PROUST derives information about the 

program's intended function by forming a description of the problem that was 

assigned to the programmer. In this context, problem descriptions consist of a set 

of goals to be satisfied and sets of the data objects that these goals apply to. 

For instance, for a program which calculates and reports the average daily rainfall 

over a certain period, the problem description defines a data object, ?DailyRain, 

which acts as a parameter to a number of the goals in the problem description. One 

of these goals Sentinel-Controled Input Sequence, forms a goal which requires a 

series of values to be read, and stops when a specific value (the sentinel) is 

reached. Figure 3.8 shows the goal decomposition of a problem in PROUST's 

problem description notation. 

From this problem description, the task of identifying the intentions underlying a 

program involves discovering firstly, how the goals in the problem description 

relate to the goals that are actually implemented in the program and secondly, what 

the programmer intended by implementing these goals. PROUST starts by 

assuming that the student's goals match, or are some variant of, the problem 

description's goals. If no plausible attempt to implement a particular goal can be 

found in the code, then PROUST retracts its initial assumption and asserts that the 

student omitted the goal. 

Clearly, programmers might implement the same goal in many different ways. For 

small programs it may be possible to enumerate all the different ways of 

implementing a goal, but for more complex problems the variety of different goal 

implementations will be too great. In PROUST's case the system constructs a 

description of the intentions underlying each individual student solution. To do 

this PROUST employs a knowledge base of programming plans. PROUST 

combines these plans into possible implementations for each goal, and then 

matches the plans against the code. If PROUST is unable to match its goal 

decomposition of the problem with its decomposition of the students solution, it 

attempts to account for this mismatch between the plans and the code. To do this 

PROUST uses its knowledge base of plan-difference rules, which suggest bugs 

and misconceptions that may account for the mismatch. For example such a rule 

might take the following form: 
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"IF a while statement is found in place of an if statement, 

AND the while statement appears inside of another loop 

THEN the bug is a while-for-if bug, probably caused by a confusion about the 

control flow of embedded loops." 

Johnson (1988) reports an empirical evaluation of PROUST which gives some 

idea of its strengths and weaknesses as a system for analysing bugs and 

misconceptions in novice programs. Figure 3.9 shows the results of running 

PROUST on a corpus of 206 solution to the same programming problem. 

?Daily Rain isa Scalar Measurement. 

Achieve the following goals: 

. 
Sentinel - Controlled Input Sequence (?DailyRain 99999); 

Input Validation (?DailyRain, ?DailyRain < 0); 

Output (Average (?DailyRain)); 

Output (Count (?DailyRain)); 

Output (Guarded Count (?DailyRain, ?DailyRain > 0)); 

Output (Maximum (?DailyRain)); 

Figure 3.8. A problem to calculate the average and maximum rainfall over a given 

time represented in PROUST'S problem description notation. 
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Total number of programs 206 

Number of programs receiving full analysis: 167 (81%) 
Total number of bugs: 598 (75%) 
Bugs recognised correctly: 562 (94%) 
Bugs not recognised: 36 (6%) 
False alarms: 66 

Number of programs receiving partial analyses: 31 (15%) 
Total number of bugs: 167 (21%) 
Bugs recognised correctly: 61 (37%) 
Bugs not reported: 36 (6%) 
False alarms: 20 

Number of programs PROUST did not analyse: 9 (4%) 
Total number of bugs: 32 (4%) 

Figure 3.9. Results of PROUST's analysis of206 programs written to 
solve the same problem. 

PROUST managed to analyse 81% of the programs completely, that is, it was able 

to derive a consistent model of the intentions underlying the programs. In these 

cases, PROUST successfully located 94% of the bugs that were identified by the 

experimenters. This result is impressive since it demonstrates that PROUST can 

detect bugs more successfully than traditional manual code inspections such as 

walkthroughs (Myers, 1978). 

Bridge - A plan-based programming tutor 

The success of the PROUST system provides additional support for plan-based 

accounts of program understanding since it demonstrates that plan-based 

descriptions of programs can provide a good basis for predicting and locating 

bugs and misconceptions. One natural extension of the PROUST work has 

involved using its output as a base for an interactive tutorial environment. 
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Since PROUST runs only in batch mode on a finished program, it is unable to 

provide a great deal of feedback to students about their progress. However, 

Bridge (Bonar and Cunningham, 1988; Bonar and Liffick, 1990), a prototype 

tutorial environment for novice programmers, is able to provide interactive 

feedback to students of programming. The architecture of the Bridge system will 

not be discussed in any detail here. However, the philosophy underlying the 

Bridge approach to plan teaching is germane to our discussion on 

knowledge-based theories of programming expertise. 

The fundamental assumption underlying the Bridge system is that teaching plans 

to students will improve their basic ability to understand and generate programs. 

Bonar and Cunningham contrast this with the kind of instruction students receive 

from programming texts, which introduce a programming language by discussing 

the syntax and semantics of each statement type . They suggest that this approach 

exacerbates a common novice tendency to adopt a syntactic matching strategy 

while problem-solving, such as that observed in physics novices (Chi et al. 1981 ). 

For instance, Bonar (1985) showed that novices work linearly through a program, 

choosing each statement based upon the syntactic features of previously 

encountered statements. Bonar and Cunningham suggest that one way of 

overcoming such a syntactic strategy is to teach novices the standard techniques 

for implementing common tasks, i.e., programming plans. 

Bonar and Cunningham have carried out a limited evaluation of Bridge. This 

evaluation addressed student attitudes to the Bridge system and considered the 

problems they had interacting with the tutor. However, the evaluation did not 

directly examine the efficacy of Bridge as a programming tutor. It is interesting to 

note that while Bonar and Cunningham do suggest that their students were 

reasonably successful at developing outline solutions using plan-based concepts, 

they often had some difficulty translating this into a program. They suggest that 

"Matching between the Phase 2 output and Pascal code was problematic, 

however. Because there is not always a simple match between a plan component 

and Pascal code, students will sometimes make a reasonable selection that Bridge 

doesn't accept". (pg 409). This appears to suggest that knowing plans alone may 

be inadequate to explain the performance of programmers. Rather, what appears to 

be important is understanding how plans are used. This brings us to the role 

strategy in programming expertise and this issue is receives further consideration 

in chapter 4. 
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3.5. 7 Elaborations of the plan theory - Rist's theory of schema creation in 

programming 

Recently, Rist (1986 a and b; 1989) has attempted to outline the mechanisms that 

might underpin plan use. Rist has proposed a model of program generation which 

traces the evolution of a program through a number of stages. An explicit feature 

of Rist's model concerns the identification of levels of abstraction in program 

structure. It is claimed that programs are built from simple knowledge structures 

that are merged and combined to form more complex structures. 

At the lowest level of detail , individual fragments of knowledge are combined to 

form a single line of code. The next stage in the development of a program is to 

create a programming plan which, as we have seen, provides 'canned' solutions 

for common goals such as calculating a running total or reading some data value. 

Next, these plans need to merged into the final program structure. Rist is primarily 

interested in the processes that underlie the plan generation activity and central to 

his theoretical explanation is the idea of focal expansion. 

Focal expansion describes the process of generating a programming plan from a 

so-called 'focal line'. In Rist's account, each programming plan has an associated 

focal line that directly encodes the goal of that plan. For instance a 'running total 

loop plan' will be associated with the focal line 'count:=count+ 1'. The complete 

plan will also consist of an initialisation component and some means of reading 

data values into the plan. The design of a program is seen to progress through 

various stages beginning with the implementation of a focal line, its extension to 

form a complete plan and finally to the creation of an entire program through a 

process of plan merger. 

Rist's model is described in more detail in chapter 4, where an attempt is made to 

explore the role of strategy in program comprehension and generation. However, 

there are specific aspects of Rist's model that are germane to the present 

discussion and in particular his description of the different levels of abstraction in 

plan-based knowledge representation. 

Rist suggests that programming plans can be described as a collection of schemata 

which are represented as slot-and-filler mechanisms. In addition these schemata 

represent programming knowledge at various levels of abstraction. For instance, 
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Programming Plans - or PPlans, in Rist's terminology - represent the lowest level 

of plan abstraction and are similar to the basic plans described by Soloway and 

Ehrlich ( 1984 ). PPlans have slots for the goal of the plan and for the code that it 

generates. Complex Program Plans -CCPlans - are built from a number of PPlans 

to achieve higher-level goals. Rist also describes other types of plans- for 

instance, Abstract Plans (APlans) which are thought to represent knowledge of 

different types of loop or sort techniques. Specific Plans (SPlans) represent 

specific routines such as bubble or shell sort, and Global Plans (GPlans) represent 

global procedures including "validate", "initialise" or "update". 

Rist's work provides a number of important extensions to plan-based theories. 

Firstly, it suggests a role for different categories and levels of plan knowledge. 

Whereas the Soloway and Ehrlich description of programming knowledge appears 

to suggest that plan representations are uniform and internally undifferentiated, 

Rist's approach asserts that plans can occur at different levels and that certain 

salient elements of each plan schemata guide the program generation activity. 

Secondly, Rist makes an explicit attempt to demonstrate how plans are 

implemented during code generation. One of the major limitations of existing plan 

theories is that the fail to specify the mechanisms that guide the implementation of 

plans during coding. In chapter 4, where Rist's work is elaborated in greater 

detail, the role of schema creation and focal expansion in plan implementation are 

discussed. These provide the basic mechanisms that control the transformation of 

plans into code and appear to provide a promising basis for an extension of 

plan-based theories of programming expertise. 

3.5.8 Assessing claims about programming plans: Problems and limitations of the 

plan theory 

The work of Soloway and his colleagues, and Rist's subsequent extension of 

plan-based programming theory, has clearly contributed to our understanding of 

the use of tacit knowledge in guiding problem solving in programming. In 

addition, this work has provided a useful means of describing the content of such 

knowledge structures and has been influential in the design of automated program 

analysis systems and intelligent tutoring aids. However, more recent work has 

questioned the basic adequacy of the plan theory. For instance, Pennington (1977 

a and b) has conducted a number of studies (described below) which suggest that 

programmers form multiple representations from a program's text structure, and 
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that the nature of the representation that programmers actually develop is largely 

dependent upon features of the task that they are engaged in. Such representations 

include plan knowledge, but may also carry information relating to state and 

control flow. These studies question the centrality of the plan concept in program 

comprehension, but they do not provide sufficient evidence to reject plan theories. 

However more recently, a number of studies have questioned the basic theoretical 

claims that underlie plan-based approaches to program comprehension. 

What claims do plan-based theories of program comprehension make? 

Claim 1: Plans are language and problem independent 

In order to assess the validity of plan-based theories of program comprehension it 

is necessary to make clear the theoretical claims that this approach advances. One 

of the major claims of plan-based theories is that programming plans will be both 

language and task/problem independent. Programming plans are taken to represent 

generic knowledge structures that in some sense represent the deep structure of a 

problem, hence a generic running total plan might be used in a variety of programs 

intended to solve a wide range of problems. In this way programs are seen to be 

constructed from these generic plans, which are then tailored according to the 

particular circumstances of a given problem. For example, the expert programmer 

wishing to compute facts about vehicle control will be able to access, say, a 

generic count plan , from their extensive repertoire of programming plans, and 

then instantiate this with variable names relevant to the particular situation, i.e., 

"count the vehicles". However a number of recent studies suggest the 

development of plan structures, or the ease with which plan structures might be 

comprehended or extracted from the program text, appears to be inextricably 

bound up with the way in which programming is taught, and this finding appears 

to pose serious implications for plan-based theories of programming expertise (see 

chapter 6). 

The relationship between teaching and plan acquisition is problematic because if 

the acquisition of plan structures is the primary characteristic of programming 

expertise, as suggested by Soloway and Ehrlich, then differences in teaching 

strategy and educational background should not affect the nature of that expertise. 

Gilmore and Green ( 1988) highlight this problem with an analogy to instruction 

and expertise in chess: 
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"If the acquisition of plan structures is the defining quality of expertise, then 

differences in teaching strategy etc. should not affect the nature of expertise. For 

example, it is reasonable to argue that the nature of expertise in chess does not 

depend upon teaching strategies , because the nature of attack and defence and the 

configurations that represent them are inherent in the game. Similarly 

programming plans are assumed to be inherent in the problem, not in the language 

or the teaching, and the development of such schemata/plans is dependent on 

experience, not on teaching". 

In chapter 6, experimental work is reported which suggests that the ability to 

extract plan structures from program texts is largely dependent upon the design 

experience possessed by the programmer, and that this design experience helps the 

programmer to construct a mapping between structures in the problem domain 

(plans) and structures in the language domain (programs). Additional evidence for 

this idea is presented by Stone, Jordan and Wright, (1990) who provide 

experimental support for the idea that instruction in structured programming 

principles can improve debugging performance by increasing a programmer's 

comprehension of program goals and plans4. Taken together these findings appear 

to pose significant difficulties for plan theories of programming, since educational 

background and differences in teaching strategy per se should not affect the nature 

of plan knowledge or the acquisition of plans and their use. 

Soloway and Ehrlich suggest that programming plans should be considered as 

schemata, however schema theory suggests that schemata acquisition is performed 

via an inductive process in which specific experiences are concatenated into 

generic schemata (Rumelhart and Norman, 1981). Schemata are not taught 

explicitly and we are certainly not taught procedures which facilitate the inspection 

and integration of schemata. However, while the work reported above does not 

suggest that plans are taught explicitly, it does indicate that differences in teaching 

strategy may influence the kinds of representations that programmers build and the 

way in which programmers use these generic representation. 

Another problem with the plan theory is that all of the reported empirical work on 

program comprehension that has been used to provide support for plan-based 

theories has used programs written in a single language (usually Pascal or one of 

its close variants). However, the plan theory gains much of its theoretical force 

from the claim that plan structures are language independent. For instance 
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Soloway and Ehrlich claim that their experiments support the idea that "plan 

knowledge play(s) a powerful role in program comprehension" (p. 609) (my 

emphasis). However, their work was concerned only with the role of plans in the 

comprehension of Pascal or Pascal-like programs, the assumption presumably 

being that these effects will generalise to very different languages. Anderson 

(1985) claims that plans will be equally useful to expert Basic programmers as to 

expert Pascal programmers, but no evidence is cited for this. Indeed, until 

recently, there have in fact been few attempts to discover whether programmers 

using languages other than Pascal employ similar plans. 

Gilmore and Green have recently called into question the generality of the 

programming plan as a description of the main type of cognitive representation 

employed by the expert programmer. Gilmore and Green (1988) have carried out a 

number of studies5 which suggest that the notation of certain programming 

languages may make those languages amenable or otherwise to the identification 

and use of plans. This suggestion is based upon the finding that Basic 

programmers are unable to benefit from cues to plan structure (i.e., when such 

structures are colour highlighted) while debugging programs, while debugging 

success for Pascal programmers appears to be facilitated significantly by plan 

structure cues. Basic programmers appear not to employ and abstract plan-based 

representation of a particular program during program comprehension, but tend to 

rely more extensively upon control flow information implicit in the text structure 

of the program. Gilmore and Green claim that Basic is less "role-expressive" than 

other languages. That is, Basic programs are less discriminable from each other 

than are say Pascal programs. In the case of Pascal, they argue that features of the 

notation of the language, in particular its role expressiveness and lexical richness, 

make it easier for the programmer to infer the role of a particular statement and to 

discover the relationship between groups of statements. 

This research calls into question the basic theoretical claim of plan theorists, which 

suggests that plan structures constitute a source of knowledge that is language 

independent. Indeed, if the plan theory is not generalisable to languages other than 

Pascal then clearly it is of significantly less utility and therefore interest. In chapter 

5 a distinction is drawn which emphasises the different views which have 

emerged with respect to plan theories. One view, the traditional view of plans, 

suggests that programming plans are universal natural structures that characterise 

the expert programmer's mental representation of a program. In this sense such 

plans are thought to represent the deep structure of a programming problem. 
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Alternatively, we may claim that programming plans might best be regarded as 

artifacts of the particular notational properties that certain languages display. 

Claim 2: The major defining characteristic of programming expertise is the 

possession of plans 

The above discussion also has implications for the second major claim of the plan 

school: that is, that the possession of plan structures forms the basis for 

understanding programming expertise. The studies carried out by Gilmore and 

Green and by Davies that have been briefly reviewed above found that although 

their expert subjects displayed the same level of debugging performance, some of 

these subjects based their debugging strategies upon plan knowledge while others 

employed different forms of information. Hence in terms of debugging 

performance, programmer's behaviour may be equivocal, and it seems that plan 

knowledge, in this context at least, does not provide a cogent means of defining 

expertise. One of the main problems with the plan theory is that it seems that plans 

are used both to explain expertise and to provide the only empirical measure of that 

expertise. Note that in the studies carried out by Soloway and Ehrlich, no 

independent measures of expertise were established. 

In chapter 7, I report a study which suggests that while the existence of plans may 

be used to differentiate novices from experts, an analysis of plan structures does 

not appear to provide a means of teasing out more subtle distinctions between 

levels of expertise. In particular, this study suggests that intermediate 

programmers appear to possess the same range and number of plan structures as 

their more experienced counterparts. However, intermediates and experts use 

plans rather differently. For example, while experts and intermediates are able to 

detect violations to plan structures with equal proficiency, intermediates take much 

longer to detect these violations in comparison to experts. 

This finding suggests that the procedures for detecting plan violations may be 

compiled in the case of expert performance, thus leading to increased detection 

speed. Hence, the evidence concerning plan use seems to provide little support 

for the idea that the possession of plans can be taken as a defining characteristic of 

expertise. In terms of the plan theory, one would presumably expect plan 

structures to be gradually accumulated as a programmer becomes more 

experienced. However, the lack of a clear discontinuity in the number and range of 
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plans used by intermediates and novices suggests that this view is invalid. More 

importantly perhaps, this experimental work suggests that we need to consider not 

only a simple enumerative view of the relationship between plans and expertise, 

but that we also need to stress the importance of those factors that control plan 

use. This brings us to a consideration of the strategic aspects of programming 

behaviour which will be considered in more detail in chapter 4. 

In the Architecture of Cognition (1983), John Anderson proposes a number of 

specific criticisms of schema theory that parallel some of the criticisms made here 

in response to plan-based theories of programming. Here, Anderson is concerned 

specifically with a comparison of the findings and the predictions of schema 

theory with his production system model of skill acquisition - ACT* (see chapter 2 

for a detailed description of this model). He suggests that the major problem with 

schema theory is that it blurs the distinction between declarative and procedural 

knowledge and fails to explain the evident contrast between these two forms of 

knowledge. Anderson suggests that there are good reasons to have both 

declarative and procedural knowledge. Declarative knowledge is flexible and can 

be accessed in many ways, while procedural knowledge is rigid but efficient. 

Schemata, he suggests "are more declarative in nature and have similar flexibility" 

(pg 39). He goes on to suggest that : 

"The condition-action asymmetry of production systems is committed to the idea 

that efficiency can be achieved by capitalizing on the structure and direction of 

information flow. One can only go from the instantiation of the condition to the 

execution of the action, not from the action to the condition. This contrasts with 

schemata ... where it is possible to instantiate any part and execute any other part. 

The asymmetry of productions underlies the phenomenon that knowledge 

available in one situation may not be available in another. Schemata, with their 

equality of access for all components, cannot produce this" (pg 39, my emphasis) 

Another criticism that Anderson levels against schema theories is that such theories 

do not specify effective mechanisms for schema acquisition. He claims that 

technically, it is difficult to construct learning mechanisms that can deal with the 

full range of schema complexity. Anderson claims that "Empirically, it is 

transparent that learning is gradual and does not proceed in schema-sized jumps." 

(pg 39) 
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As we have seen these two criticisms of schema theory also apply to plan-based 

views of programming, and they serve to illustrate at least two of the central 

problems of the plan-based approach. The work reported later in this thesis 

attempts to extend and modify existing plan-based views of programming by 

suggesting a plan restructuring and control mechanism based upon experimental 

data concerned with plan comprehension and use. It will be suggested that this 

restructuring mechanism leads to asymmetrically structured schemata or plans 

which may have compiled elements, but in which certain salient plan structures 

remain accessible throughout the problem-solving activity. 

3.6 Hybrid Models 

Another apparent problem with much of the work that we have reviewed so far is 

that it considers knowledge representation in programming to be of a broadly 

uniform nature. For instance, analyses of programming behaviour based upon 

plan knowledge suggest that data flow and functional relationships will be central 

to program comprehension. However, this assumption has been challenged by 

Pennington (1987a) who carried out a series of experiments which suggest that 

programmers are able to form a number of diverse representations of a program 

text, and that the development of these representations appears to be broadly 

influenced by the demands of particular tasks. 

Pennington was primarily interested in investigating whether procedural (control 

flow) or functional (plan knowledge) relations dominate programmers' mental 

representations of programs. She suggests that various types of knowledge about 

programming enable programmers to detect and represent the variety of relations 

that are implicit in a program text, and that the detection of these relations is a 

necessary condition of program understanding (Green, 1980; Green, Sime and 

Fitter, 1980; Pennington, 1985). 

Pennington suggests that computer programs, like other forms of text, contain 

implicit information that must be detected in order to fully understand the program. 

For example, the sequence of statements in a program provides information about 

the sequence in which the program will be executed. Another type of information 

relates to the data flow of the program which is concerned with the changes or 

constancies in the meaning or value of program objects throughout the course of 

the programs execution. The notion that programmers abstract such information 
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from the implicit text structure of the program has close analogy to the idea that 

natural language texts are understood in terms of their underlying referential, 

causal, or logical relations (Kintsch, 1974; Meyer, 1975; Trabasso, Secco and van 

den Broeck, 1982). 

Pennington suggests that four main types of abstraction can take place. The first 

abstraction involves inferring a program's goals , i.e, what the program is 

supposed to accomplish or produce. Pennington suggests that this abstraction is of 

a functional nature and will contain little explicit information about how these 

goals will actually be accomplished. A second abstraction involves extracting 

information from the text about processes that transform the initial data objects into 

the outputs of the program, i.e., a data flow abstraction. A third abstraction might 

involve the production of a control flow representation, indicating the passage of 

execution control. A final abstraction, may involve extracting information about 

the program action that will result when a particular set of conditions is true. This 

abstraction resembles a decision table in which each possible state of the world is 

associated with its consequences. 

In her experimental studies, Pennington provided a number of different types of 

comprehension question. Each type of question was phrased such that it accessed 

a different type of information from the program (e.g., Will an average be 

computed? (function); is the last record in ORDER_FILE counted in 

COUNT_CLIENTS? (sequence); will the value of COUNT_CLIENTS affect the 

value of ACTIVE_AVG? (data flow); When TEXT_EXIT is reached, will 

ORDER_REC_ID have a particular known value? (state)). Subjects were given a 

program to study and were told that they would be asked to respond to 

comprehension questions and be given a subsequent memory test. Following their 

study of the program text, subjects were asked to respond to each of the 

comprehension questions. They then carried out a free recall task where they were 

asked to recall as much of the program as possible, in whatever order occurred to 

them. Finally, the subjects participated in a complex priming task in which the 

time taken to recognise an individual line from the program was recorded. 

Pennington was interested in exploring a number of hypotheses. However, her 

specific concern addressed the hypothesis that if programmers form plan-based 

representations of programs, then they should recognise lines faster when they are 

preceded by lines derived from the same plan structure. This hypothesis is based 

upon the assumption that activation of an item in the memory structure will activate 
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items close to it, and especially those in the same cognitive unit. Hence, response 

time to the target preceded by an item in the same cognitive unit should be faster 

than the response time to an item not in the same cognitive unit (Anderson, 1983; 

McKoon and Ratcliff, 1980); that is, a priming effect should be apparent. 

Pennington's results suggest a number of problems with plan-based theories of 

programming expertise. Firstly, her subjects made fewer errors on the 

control-flow questions compared to the data-flow and the function questions. 

Moreover, the effect of priming was greater when the primes were derived from 

the same control structure as opposed to being derived from the same plan 

structure. Hence, it appears that representations of control flow appear to dominate 

a programmer's representation of a program, and that representations of function 

and data-flow, which are more naturally allied to plans, are not as important as a 

basis for organising memory structures. 

Pennington replicated these findings in a second study to which an additional stage 

was added. In this second experiment, her subjects were required to make 

modifications to a program and half were asked to provide verbal protocols while 

carrying out this task. Pennington discovered that after the modification phase the 

dominant representations were concerned with data-flow and function, and this 

was especially true for those who had supplied protocols. These results suggest 

that a programmer's task goals may also influence the structural relations that 

dominate mental representations in comprehension 

Pennington concludes by stating that her results "strongly support a view of 

program comprehension in which abstract knowledge of the program text plays 

the initial organising role in memory for programs, and that control flow or 

procedural relations dominate in the macrostructure memory representation" (p. 

337). She further claims that these results are consistent with the results found in 

prose text comprehension which suggest that knowledge of narrative and 

expository text structures guides comprehension and plays an important role above 

and beyond other content-schematic factors (e.g., Cirilo and Foss, 1980; 

Haberlandt, Berian and Sandson, 1980; Mandler and Johnson, 1977). 

Pennington's work suggests that knowledge representation in programming takes 

on a hybrid form with various sources of knowledge contributing to the 

development of memory organisation. Hence, certain forms of knowledge may 

play an important organising role during different stages of comprehension. 
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Moreover, it appears that the kinds of tasks undertaken by programmers may 

influence the nature of the mental representation of a program. This view clearly 

does not rule out a role for plan-based knowledge structures in program 

comprehension. It does however, challenge their centrality as structures that are 

hypothesised as being fundamental to program comprehension. Hence as 

Pennington suggests "While plan knowledge may well be implicated in some 

phases of understanding and answering questions about programs, the relations 

embodied in the proposed plans do not appear to form the organising principles 

for memory structures." (p. 327). 

3.7 Conclusions 

This chapter has served to provide a broad review of the extensive literature 

concerned with knowledge representation in programming. To a large extent the 

focus of work in psychological studies of programming has paralleled the 

concerns expressed in other problem-solving areas. For instance, early studies of 

programming concentrated upon the general structural aspects of knowledge 

representation, and provided important supplementary support for the chunking 

hypothesis that originated in other problem-solving domains such as chess and 

physics. Later studies began to focus more explicitly upon a description of the 

content of expert and novice knowledge structures. The concern of these later 

studies appears to mirror the trend apparent in other problem-solving domains, 

where interest began to be directed toward understanding the nature of generic 

knowledge structures and their role in problem-solving and comprehension. This 

is perhaps best exemplified by the work of Schank and his colleagues in their 

development of schema theory and the subsequent application of this theory to 

program comprehension by Soloway and others. 

More recently, the centrality of the plan concept has been challenged by studies 

which suggest that programmers can extract many different forms of programming 

knowledge from a given text structure. In addition, the studies reported later in 

this thesis, and outlined briefly here, highlight some major theoretical difficulties 

with plan-based theories of programming expertise and program comprehension. 

It appears that there is still much scope for further research into knowledge 

representation in programming. For example, we know little about the 

mechanisms that are involved in plan acquisition. In addition, while plan-based 

theories provide a detailed description of programming knowledge, they have little 
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to contribute to our understanding of the way in which plans are used. One 

intention of this thesis is to provide a general theoretical framework within which 

these issues can be addressed. 

While this chapter has sought to suggest that studies of programming expertise 

have broadly paralleled studies of expertise in other domains, it should be noted 

that some of the outstanding features of expertise that have been observed in 

non-programming domains have not found a place in general accounts of 

programming behaviour. For instance, most descriptions of knowledge 

representation in programming appear to suggest that such representations are 

uniform and that all parts of the representation are equally accessible. However, 

there is substantial evidence to suggest that the development of expertise is 

associated with changes in the way in which knowledge is represented. 

For instance, it has been observed that a significant part of the development of 

skill in a particular domain involves the transformation of declarative knowledge 

into procedural knowledge (Anderson, 1982; 1983; 1987; Neves and Anderson, 

1981; and see review in chapter 2). However, most theories of the development of 

programming skill do not make a distinction between these two forms of domain 

knowledge. For instance, the plan theory of programming appears to suggest that 

the knowledge expressed by plans has both declarative and procedural elements. 

Hence, a plan may specify the actions necessary to compute a particular procedure 

or it may describe, in a stereotypic fashion, the contents of that procedure. 

Characterising programming knowledge in this way clearly does not lead to a 

theoretical explanation of skill development in programming that is congruent with 

alternative accounts of skill development in similarly complex domains. 

A fundamental aspect of the framework suggested by this thesis is that as skill 

develops knowledge may be both proceduralised and/or restructured. Hence, it is 

suggested that certain key elements of plans remain accessible even though other 

elements of the plan may be compiled and proceduralised. The experiments 

reported in this thesis provide support for the idea that certain salient elements of 

plans are used to guide skilled problem solving behaviour in programming. For 

instance, in a study of program generation reported in chapter 8, expert 

programmers were observed to develop their programs by instantiating a focal 

plan element and then accreting the rest of the plan around that focal element. In 

chapter 10, an experiment is reported which demonstrates that expert programmers 

can access these focal plan elements both more quickly and more accurately than 
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novices or intermediates. In addition, a third experiment (reported in chapter 7) 

has shown that while experts and intermediates can detect plan violations with 

about the same frequency, expert programmers detect such violations with greater 

rapidity than intermediates. 

These findings are interpreted within a general framework which suggests that a 

critical factor in the development of expertise in programming is not simply related 

to the development of a larger catalogue of plan knowledge, as suggested by the 

plan theorists. Rather, expertise appears to be related to the way in which plan 

knowledge is structured. Similarly, in other domains, such knowledge 

restructuring processes have been proposed as central elements in theories of skill 

acquisition (for instance, Kay and Black's (1984) work on text editing and 

Lewis's (1981) work on algebra). In addition, Cheng (1985) has taken these ideas 

further by suggesting that the enhanced performance exhibited by experts in 

certain domains, and accounted for by classical problem solving theories in terms 

of knowledge compilation and proceduralization, can be equally well interpreted 

by proposing a knowledge restructuring mechanism which can restructure task 

components so that they are coordinated, integrated or reorganised into new 

perceptual or cognitive units. 

This thesis attempts to relate this knowledge restructuring process (elaborated in 

the final chapter of the thesis) to a subject's exposure to design experience and to 

the way in which this experience may impact upon a programmer's knowledge 

organisation in relation to programming tasks. In addition, an attempt is made to 

illustrate how this knowledge restructuring process, in concert with the effects of 

certain notational features, can give rise to particular forms of strategy. This leads 

to the development of a model of programming behaviour which suggests possible 

ways in which external task and language features might interact with a 

programmers internal representation of programming knowledge. It will be 

suggested that this model accounts parsimoniously for existing experimental data 

and that it is not open to the kind of criticism that is typically levelled at plan-based 

theories of programming expertise. 
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Notes 

1 It should be noted that this analogy considers programs as communicative 

entities. However the analogy loses strength if one considers the dual nature of 

programs: that is, they can be executed for effect as well as being read as 

communicative entities. 

2 See Kernighan and Plauger (1978) for a collection of rules derived from actual 

programming practice. Soloway and Ehrlich equate these rules with their notation 

of program discourse rules. 

3 Note that the Soloway et al study used programs where the experimenters had 

deliberately violated certain discourse rules. It is likely that it would be more 

difficult to assess accuratly the extent to which arbitarily generated programs 

violate certain rules in more naturalistic contexts. 

4 Readers are refered to chapter 6 for a more detailed description of these studies 

5 Readers are refered to chapter 5 for a more detailed description of these studies 
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Clluapter 41. Stu.ndlfies of tlhle stmtegic aspects of jpll"ogrammi~rng slknnn 

4.1 Introduction 

The previous chapter addressed issues stemming from what we might refer to as 

knowledge-based theories of programming expertise - that is, theories of expertise 

that have been concerned with the content and structure of programming 

knowledge. However, as we have seen, one major limitation of many of these 

knowledge-based theories is that they often fail to consider the way in which 

knowledge is used or applied. Hence, such theories have tended to concentrate 

simply upon the description or characterisation of declarative and/or procedural 

knowledge structures with the primary intention of demonstrating novice/expert 

differences in knowledge representation. However, such theories have failed to 

elaborate the cognitive mechanisms that may be thought to underpin the utilisation 

of such knowledge and have, by and large, ignored the strategic elements of 

expertise which are likely to play an important role in any comprehensive theory of 

programming skill. 

To take one example, proponents of the plan theory of programming have devoted 

considerable effort to providing a detailed description of the kinds of knowledge 

structures that are thought to underlie expertise. However, the plan theory does 

not suggest how plans might be used. Hence, it might be claimed that the plan 

theory simply presents a theory of plans rather than a theory of planning. 

The main assumption of plan-based theories is that the cognitive processes 

underlying programming are relatively straightforward (Gilmore 1990). Based 

upon ideas from artificial intelligence, it is suggested that these processes should 

be considered to be general problem-solving skills (cf. ACT*; Anderson (1983), 

and SOAR; Laird, Newell and Rosenbloom, 1987), which are possessed not only 

by experts but also by novices. Hence, the development of expertise is seen to be 

associated with the gradual accumulation of plan knowledge over time, rather than 

with the development of processes or heuristics which may govern plan use and 

application. Kolodner (1983) encapsulates the main problem with 
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knowledge-based theories of expertise: "even if a novice and an expert had the 

same semantic knowledge ... , the expert's experience would have allowed him 

(sic) to build up better episodic definitions of how to use it". 

An alternative to knowledge-based theories is to suggest that expertise in 

programming may involve the development or acquisition of complex task-specific 

cognitive or problem-solving strategies (Shneiderman and Mayer, 1979). Two 

interpretations of this view are possible. One interpretation, may be to suggest that 

the development of expertise involves the acquisition of strategies rather than 

declarative knowledge. This view suggests that even if we were able to teach 

expert knowledge structures to novices, this would not make them into experts 

since they will not have acquired strategies for utilising this knowledge (See 

Neisser (1976) for a more general discussion of this issue in the context of other 

problem solving skills). 

Alternatively, one may adopt a less strict position and suggest that expertise has 

both knowledge-based and strategic components. One might for instance argue 

that features of a programmer's knowledge representation determine the form of 

strategy that they adopt. This is the position suggested by the work reported in this 

thesis where an attempt is made to demonstrate the relationship between the 

development of expertise and the adoption of particular forms of strategy. 

Moreover, in contrast with existing work, this thesis is not simply concerned with 

characterising the forms of strategy that are seen to be associated with particular 

levels of skill. 

Rather, it is concerned with explaining why these strategies emerge. In particular, 

attention is directed toward exploring the relationship between the development of 

structured representations of programming knowledge and the adoption of specific 

forms of strategy. It will be suggested (see the final chapter of this thesis) that a 

know lege restructuring process occurs during the acqusition of expertise which 

results in the differential accessibility of various knowledge structures. Moreover, 

it is hypothesised that this gives rise to different forms of strategy. Hence, the 

work reported in this thesis represents an attempt to adopt a rather different 

perspective on the relationship between expertise and the emergence of particular 

forms of programming strategy. This approach provides an explanation for the 
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differences in strategy that have been observed in studies of programming 

behaviour and attempts to relate these strategic differences to an explicit model of 

knowledge representation in programming. 

This chapter considers a number of studies which have been concerned with the 

role of strategy in programming. These studies have tended to explore either the 

strategic aspects of program comprehension or the role of strategy in program 

generation. A number of studies have been concerned only with the strategies 

employed by experts, while others have attempted to associate differences in 

strategy with different levels of expertise. A number of other studies have been 

explicitly concerned with the kinds of difficulties experienced by novices, and in 

particular with those difficulties that arise because of an absence of elementary 

problem-solving strategies or because of a reliance upon inappropriate strategies. 

This chapter attempts to represent these different concerns and is composed of 

three sections. The first section deals with studies of program comprehension 

strategy, while the second reviews studies of generation strategy. A third section 

deals more explicitly with studies of novices, and attempts to highlight the fact that 

novices can display strategic as opposed to, or in addition to, knowledge-based 

programming difficulties. 

4.2 Strategies involved in program comprehension 

4.2.1 Brook's model of program comprehension 

One of the earliest theoretical explorations of the strategic aspects of program 

comprehension was outlined by Brooks (1977; 1983). Brooks presents what he 

calls a sufficiency theory which is intended as a description of the processes by 

which a programmer attempts to understand a program. A sufficiency theory, 

according to Brooks, should provide a description of a set of mechanisms and 

relationships that are sufficient to explain at least the most salient aspects of 

program comprehension behaviour. Brooks presents a number of behavioral or 

empirical differences that he claims any model of program comprehension should 

be able to account for. These sources of variation include the following: 
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1. The effects of differences in the task performed by the program on 

comprehension. Why do programs that perform different computations differ in 

comprehensibility, even though the intrinsic properties of these programs (e.g., 

length, complexity etc) are the same? 

2. The effects of variation in program text. Why, and under what conditions, do 

programs written in different languages vary in comprehensibility even though 

they perform the same computation? 

3. The effects of different programming tasks. Why might the comprehension 

process differ depending upon the nature of the task the programmer is 

undertaking. For instance, modifying a program as opposed to debugging it? 

4. The effects of individual differences. Why might one programmer find a 

particular program easier to comprehend than another programmer? 

Brooks then goes on to propose a model to explain these sources of variation. 

Brooks claims that the mechanisms suggested by this model are sufficient to 

explain the variability in the extent to which particular programs can be 

understood. He suggests that in this respect the model takes the form of a theory 

demonstration approach (Miller, 1978). 

Brooks outlines three main elements of his model of program comprehension in 

terms of a set of domain mappings and processes. He suggests that the 

programming process involves constructing mappings from a problem domain 

into the programming domain. This mapping process may also involve a number 

of intermediate domains . To illustrate this mapping process he considers a 

cargo-routing problem. Here, objects in the problem domain are cargoes that have 

specific destinations which must be reached within particular time and cost 

constraints. Before a program can be constructed to solve a routing problem, the 

programmer must assign numbers to the various cost and time elements, and 

identifiers (which might also be numbers) to the cargoes and destinations. This 

results in what Brooks refers to as a new knowledge domain, where the domain 

objects have become numbers. Next, an algorithm must be selected to carry out 
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the required computation. This gives rise to a further domain in which 

mathematical objects, such as trees or arrays, are constructed and in which various 

operations are specified, such as matrix inversion. Yet another domain emerges 

when the program itself is constructed and these mathematical objects are 

implemented as data structures and as primitive programming language operations. 

Finally, the execution of the program results in a further domain in which objects 

become the contents of memory locations and operations are implemented as 

low-level machine code instructions. 

Brooks claims that the task of understanding programs requires programmers to 

construct or to reconstruct enough salient information about these domains in 

order to provide a basis for generating various mappings between the domains. 

This construction or reconstruction process involves the programmer acquiring 

two main forms of information. One form of information is contained within each 

domain. That is, information about the basic set of objects in the domain and their 

relationships. The second form of information relates to the relationships between 

objects and operators in one domain and those in nearby domains. 

Brooks suggests that this construction/reconstruction process is expectation driven 

and consists of confirming/refining various hypotheses which are generated from 

the programmer's knowledge of the task domain and other related domains. 

According to Brooks, this process begins with a primary hypothesis which is 

generated when the programmer obtains any information about the task that the 

program performs. This primary hypothesis specifies the global structure of the 

program in terms of its inputs, outputs, data structures and processing sequences. 

The next stage in Brooks' model involves verifying or validating this primary 

hypothesis. This verification process will normally involve finding evidence for 

the hypothesis in the program code or in its associated documentation. Brooks 

further claims that since the primary hypothesis will almost always be global and 

non-specific, the programmer will have to generate a number of subsidiary, and 

less detailed, hypotheses which can be verified against information obtained from 

the code and the documentation. Brooks claims that these subsidiary hypotheses 

can be regarded as forming a hierarchical structure where those hypotheses lower 

in the hierarchy represent specialisations of those occurring above. 

88 



Brooks asserts that to minimise memory load, these subsidiary hypotheses will 

normally be created in a top-down, depth first manner. Hence, the comprehension 

process begins with the creation of a primary, and then a number of subsidiary 

hypotheses about the program's function. Initially these are based upon the 

programmers knowledge of the domain and of similar programs. Eventually, these 

subsidiary hypotheses become sufficiently detailed to enable the programmer to 

directly verify them against program text or documentation. The success or failure 

of this verification process can then be used to guide the formation or the 

modification of other subsidiary hypotheses. Hence, the condition that causes the 

hypothesis refinement process to terminate occurs when the level of detail of a 

hypothesis is sufficiently close to the program text or documentation to enable a 

specific comparison. More specifically, this process terminates when the 

operations or data structures specified in the hypothesis are ones that the 

programmer can associate with features or details visible in the program text which 

are typical indicators of the particular operation or structure in question. 

Brooks refers to the features that typically indicate the occurrence of certain 

structures or operations within the code as 'beacons'. For example, a typical 

indicator for a procedure that sorts array elements might be a section of code in 

which the values of an array element are interchanged. Clearly, there might be 

multiple beacons for a single structure or conversely the same beacon might 

represent a variety of structures or operations. 

In summary, Brooks' theory of program comprehension holds that 

comprehension is a top-down, hypothesis driven activity. According to this 

theory, the programmer does not study a program line-by-line, but instead forms 

hypotheses about program function based upon high-level domain and 

programming knowledge. These hypotheses, once suitably decomposed, are then 

verified against the program text by searching for beacons which indicate the 

presence of particular functions or structures. A particular hypothesis is verified 

when the expected beacons are found. If these are not found, the program text 

might be searched more thoroughly. If this more detailed search fails, the 

hypothesis is weakened and will be revised or discarded. One major difference 

between Brooks' theory and the studies described in the previous chapter is that 

this theory recogises the more global level of program structures and suggests, in 
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turn, an interaction between knowledge structures and information that is derived 

more directly from the program. 

Brooks claims that his theory of program comprehension can account for the 

sources of variation in program comprehension outlined earlier. For instance, 

there is considerable evidence that the type of control structures used to express 

programs can have a marked effect upon their comprehensibility (Green, 1977; 

Soloway, Ehrlich, Bonar and Greenspan, 1982). Hence, the text structure of the 

program may contribute to the ease with which hypotheses can be verified. An 

even more powerful source of variation may be related to the tasks the program is 

intended to perform. Hence, if as suggested by Brooks, program comprehension 

involves reconstructing the relationship between the original problem and the 

program text, then ease of comprehension will depend to a large extent upon the 

complexity of the original problem. In support of this, Brooks cites a study by 

Curtis, Sheppard, Milliman, Borst and Love, ( 1979) which showed significant 

differences in the comprehensibility of programs with the same software metric1 

value. 

The theory also suggests at least three distinct factors that might contribute to 

individual differences in program comprehension ability- programming 

knowledge, domain knowledge and comprehension strategies. Firstly, a 

programmer's ability to confirm hypothesis against code or to refine hypotheses 

appropriately will depend to a certain extent upon the programmer's knowledge of 

typical programming idioms and algorithms. 

Secondly, since Brooks' theory suggests that domain knowledge is critical to the 

formulation of high-level hypotheses, one might predict that a programmer will 

have great difficulty generating useful hypotheses if that programmer does not 

understand the problem the program is intended to solve. To the author's 

knowledge this prediction has not been tested; however it does suggest that 

documenting the rationale behind the specification for a program may aid 

comprehension by illustrating salient features of the problem domain. 

Finally, interprogrammer variation may arise from differences in the strategies 

employed by programmers to locate information in the program text. For instance, 
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two programmers attempting to validate the same hypothesis may use different 

strategies. One programmer may attempt to validate it by tracing the subroutine 

calling hierarchy, while another might attempt to locate input and output functions. 

Brooks claims that while these strategy differences may not account for as much 

individual programmer variation as programming and domain knowledge, they 

may play a role in explaining pathological cases of programmers who are 

exceptionally successful or unsuccessful at program comprehension. 

4.2.2 Empirical support for the Brooks model 

Brooks' theory of program comprehension provides a detailed and wideranging 

account of the strategies thought to be employed by programmers when they 

attempt to understand a program. However, while Brooks cites existing 

experimental work in support of the theory, no specific empirical evidence for the 

model is proposed. More recently a number of studies have been undertaken 

which address specific hypotheses derived from Brooks' model. For instance, 

Wiedenbeck (1986a and b) and Wiedenbeck and Scholtz (1989) have provided 

evidence for the idea that programmers use beacons to guide their problem-solving 

behaviour during program comprehension. 

The role of beacons in program comprehension 

For instance, in one of these studies (Wiedenbeck and Scholtz, 1989) a 

comparison was made between the comprehension of programs containing 

beacons and other similar programs which did not contain a beacon. Wiedenbeck 

and Scholtz constructed two versions of a Shellsort program, one containing a 

beacon line which swapped various values in a standard manner (i.e., t := a[j]; a[j] 

:= a[j + i]; a[j + i] := t;). A second 'disguised' version of the program introduced a 

whole second array, which was a copy of the first and served as a temporary 

storage for the swap value. The swap was performed by assigning the values to be 

swapped into the appropriate locations of this second array, then later copying the 

second array back into the first. Wiedenbeck and Scholtz claim that this second 

version is almost identical to the first, but that in the second case the beacon is 

disguised. 
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Novice and advanced subjects were given the programs to study for a short period 

and were then asked to carry out three tasks. The first task involved describing the 

function of the program. The second task involved subjects judging their 

confidence in having understood the program and a third task required subjects to 

recall the program verbatim. The first task was intended to demonstrate the 

subjects' understanding of the program and the confidence rating was used to 

provide a supplementary comprehension measure, since subjects might perform as 

well on the disguised version, but be less sure of themselves in respect to their 

understanding of the program. The recall measure was introduced to determine 

whether subjects remembered the swap better when it was presented in its more 

typical form. 

Wiedenbeck and Scholtz found that the advanced group was better at determining 

program function than the novice group and that, overall, subjects were more 

accurate in determining the function of the normal (no-disguise) version. They 

argue that these differences appear to arise as a consequence of the superior 

comprehension performance of the advanced subjects on the no-disguise version. 

Similar findings emerged in the case of the confidence rating task. Here advanced 

subjects were significantly more confident of their function judgments than were 

novices, and confidence was higher for function judgments in the no-disguise 

version than in the disguise version. In the recall task, there was a trend for 

subjects to recall the swap lines in the no-disguise version better than in the 

disguise version (67% vs 40% correct recall); however this difference was not 

significant. 

This experiment provides some evidence for the role of beacons in program 

comprehension and suggests that at least part of Brooks' model maybe correct. 

The idea that program comprehension behaviour is guided by beacons which serve 

to highlight important code structures is central to the model of program generation 

presented later in this thesis. The model proposed in this thesis places emphasis 

upon the process of knowledge restructuring that appears to be associated with the 

development of expertise. The model proposes that certain focal elements of 

plan-based knowledge structures will be more easily accessible and that these focal 

elements will tend to be generated first during program development. 

Subsequently, these focal structures will be further expanded to form a complete 
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solution. Correspondingly, we might consider program beacons to form an 

external analogue of these internally represented focal structures. Hence, the ease 

with which particular languages support the expression of beacons is likely to 

affect comprehension success. 

Strategic differences in program comprehension 

While the studies reported above by Wiedenbeck and her colleagues have served 

to provide a direct test of one aspect of Brooks' theory, other work has indirectly 

addressed issues stemming from the ideas on program comprehension that are 

presented by Brooks. For instance, Pennington (1987b) has carried out a study 

looking at the way in which differences in comprehension strategy can affect the 

level of comprehension achieved by expert programmers. Pennington carried out 

a detailed protocol analysis of the verbalisations of 40 professional programmers 

who were asked to study and modify a program. After a 45 minute study period 

her subjects were asked to summarise the program they had studied and respond 

to a number of comprehension questions. 

Pennington analysed her subjects' verbal protocols by classifying each statement 

in the program summary according to two explicit dimensions. Firstly, statements 

were classified according to their type, i.e., as a procedural, a data flow or a 

function statement. Secondly, each statement was classified in terms of its 

referent. For instance, a statement might refer to specific program operations or 

variables. Pennington classifies such statements as detailed statements. 

Alternatively, statements might refer to a program's procedural elements, and 

Pennington calls these program level statements. Domain level statements refer to 

real world objects such as cables or buildings and, finally, statements with no 

explicit referent were classified as vague statements. 

The program comprehension questions were used to classify the subject 

population into an upper (Ql) and a lower (Q4) comprehension quartile. 

Pennington then looked at the differences between these two groups in terms of 

the protocol classification scheme described above. With respect to the statement 

type classification, Pennington found no reliable differences between the Q 1 and 
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Q4 groups. However, analysis of the referent classification illustrated a number 

of important differences between the upper and lower quartile comprehenders. 

Specifically, the Ql group produced fewer statements at both the detailed level and 

at the vague level. 

To explore the Ql and Q4 differences further, Pennington sorted the program 

summaries produced by her subjects into three different "summary strategy" 

groups according to the proportion of statements at different levels in each 

summary. The first group (nine subjects) was composed of those programmers 

whose summaries predominantly consisted of statements corresponding to the 

program level. These summaries were referred to as program level summaries. 

The second group (twenty subjects) showed a more even distribution over 

program and domain levels, and their summaries were referred to as 

cross-referenced summaries. Finally, a third group (eleven subjects) produced 

summaries that included a high proportion of domain or vague statements and 

these were called domain summaries. 

Pennington suggests that to construct program summaries, subjects must retrieve 

information from one or more memory representations and that consequently we 

may assume that these summaries reflect at least some properties of the subject's 

mental representation2. Pennington claims that abstract knowledge of a program 

text structure plays an initial organising role in memory for programs, and at this 

stage tends to dominate the macrostructure (van Dijk and Kintsch, 1983) memory 

representation that Pennington refers to as a program model. A second 

representation is created at later stages in program comprehension that reflects the 

functional structure of the program and is expressed in the language of the real 

world domain to which the program is applied. This Pennington calls the domain 

model. 

It appears that Pennington's work supports the idea initially proposed by Brooks 

that a significant factor in program comprehension involves creating a successful 

mapping between the problem and the programming domain - in terms of 

Pennington's study, between the domain model and the program model. One can 

identify three distinct strategies employed by Pennington's subjects. One strategy, 

the program level strategy, is characterised by the almost complete absence of 
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order in which the program was written and were expected to be able to describe 

how the program worked. For both of these groups reading times and search 

patterns were collected. A third group of subjects viewed a coherent program, but 

were asked to talk about what they were doing as they inspected the program. In 

this case, only verbal protocols and search patterns were analysed. 

The reading time data and search strategy information collected from the first two 

experimental groups illustrated the varied nature of cognitive processes during 

code comprehension. Reading time data indicated that subjects who viewed a 

coherent program spent an average of around 50 minutes studying the program 

lines, while those reading a scrambled program spent an average of only 6.5 

minutes reading the program. Almost all of the subjects who viewed the coherent 

program made short 'retrogressions' through the code. In order to analyse this 

phenomenon further, Robertson et al, categorised each action performed by the 

subjects as either a forward move (from one line to the next after another forward 

move), backward move (from one line to the previous line after another backward 

move) or as a switch in direction. Switches could in turn be categorised as either 

forward-backward switches (a return to a previous line after a forward move), or 

as backward-forward switches (a return to a subsequent line after a backward 

move). The data relating to these switching episodes indicates that around 11% of 

the subjects activity involved switches in direction, of this 16.6% involved going 

backwards through the code and the remaining 72.4% constituted forward 

movement. 

Search patterns were characterised by segmenting each subject's protocol into 

episodes. An episode consisted of a forward pass through a section of code, a 

forward-backward switch, and a second forward pass. All of the subjects' data 

contained a number of such episodes, and about one third of subjects' activities 

were categorised as being within episodes. Next, Robertson et al analysed reading 

times for the various movement types (i.e, forward, backward, 

forward-backward, backward-forward etc) and for between and within episode 

activities. These data are shown in table 4.1. 

There was a significant difference between the reading times within episodes and 

between episodes, and Robertson et al take this to imply that the 
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"episode/non-episode distinction may be due to the highly goal directed nature of 

processing within episodes" (p. 960). They suggest that between episode 

processes are likely to include more discovery based processing, whereas during 

within episode activity, subjects are searching for particular information. We 

might here draw parallels with Brooks' model and suggest that between episode 

processing may give rise to hypothesis generation, while within episode 

processing may provide a mechanism for hypothesis verification. Although 

Robertson et al do not mention Brooks' model, it does appear that their data 

provides support for the comprehension strategies that Brooks alludes to in the 

context of his model. 

Movement Type 

Forward 

Backward 

Forward-Backward 

Backward-Forward 

First Forward Pass 

Second Forward Pass 

Episode begin 

Episode end 

Between 
Episodes 

408 

141 

1581 

569 

Within 
Episodes 

146 

1027 

410 

387 

225 

348 

411 

Figure 4 .1. Reading times for the various movement types reported by Robertson et al 
(1990) 

The protocol analysis carried out by Robertson et al also suggests that certain 

movement types are associated with particular kinds of problem-solving activity. 

Here, the programmers' verbal comments were classified into six groups: 

Analyse, assume, question, answer, function and strategy. These were defined as 

follows: 
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Analyse - comments which a programmer offered as an explanation of a code 

segment. 

Assume - comments where a programmer made prediction about what she 

expected next in the program. 

Question - a comment that contained a query about the code 

Answer- a comment or statement that could be explicitly linked to an earlier 

question. 

Function - a comment about the function of a particular piece of code. 

Strategy - a comment about what the programmer planned to do next. 

Table 4.2 shows the proportion of comment types within each move category. It 

appears that concern for the functionality of the code was the topic of most of the 

programmers comments. This concern for functionality was apparent for all 

movement types with the exception of the backward movement category. In the 

case of this movement category, questions and strategy were the primary 

concerns. Robertson et al suggest that "the unequal distribution of comment types 

across movement categories shows that programmers had qualitatively different 

things in mind when they moved around in the code" (p. 963) 
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Movement Type 
Comment Forward Backward Forward Backward 
Category Backward Forward 

Analyse .078 .053 0 .057 

Assume .219 .158 .167 .220 

Question .078 .263 .125 .118 

Answer .094 .105 .083 .118 

Function .422 .158 .250 .368 

Strategy .109 .263 .375 .103 

Figure 4.2. Proportion of movement types in eaxh movement category. 

These data might be seen as providing support for other models of program 

comprehension. For instance, Brooks' model places emphasis upon the idea that 

programmers generate and test hypotheses about the function and role of elements 

of code when they attempt to understand a program. However, the nature of these 

hypotheses remains unexplored. The contribution of the Robertson et al study is 

that it provides a detailed analysis of the kinds of questions that are framed by 

programmers during comprehension. This analysis enables us to state more clearly 

the detailed nature of the hypotheses that programmers generate In addition, it 

provides a basis for a more detailed understanding the nature of programmers' 

information seeking activities which are directed towards testing these hypotheses 

and which are are evident in the strategies that they employ during comprehension. 

Widowski and Eyferth (1986) have conducted a study of programmers' searching 

strategies using a methodology similar to that employed by Robertson et al. 

Widowski and Eyferth were interested in comparing the strategies used by novice 
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and expert programmers who were asked to study a program line-by-line through 

a manoeuvrable, single line window. Widowski and Eyferth extended the 

traditional application of the Chase and Simon (1973) chess research which 

compared the performance of novices and experts on well-ordered versus 

randomly-ordered game positions. In the programming domain, the effects of well 

ordered vs random program presentation are well documented (see chapter 3), and 

studies of this effect in programming have replicated the basic finding of Chase 

and Simon who showed that expert performance is drastically reduced in the 

random condition, while novice performance is affected little. This effect is 

thought to be based upon the expert's ability to extract meaningful chunks from 

the materials presented, be they chess positions or programs. 

Widowski and Eyferth suggest that the same effect should obtain in situations 

where programs are well ordered, but which are unconventional or atypical. This 

would be predicted by the Chase and Simon model, since, although a program 

may be well ordered, it may not always be possible for a programmer to 

decompose it into meaningful chunks. In the case of an atypical program, 

programmers may not posses sthe appropriate knowledge structures upon which 

to base their chunking strategies. Hence, in the case of atypical (or semantically 

complex) programs, we might expect novice-expert differences to diminish, since 

experts may not have the knowledge structures necessary to process them. 

Widowski and Eyferth compared the performance of a number of Pascal novices 

and experts who were allowed to view only a single line of a program at a time. 

For the purpose of their experiment, Widowski and Eyferth constructed two pairs 

of programs which differed in their level of semantic complexity or typicality. 

Each pair of programs consisted of a stereotypical (semantically simple) and a 

non-stereotypical (semantically complex) program. Each pair of programs was the 

same length and the programs had an equivalent number of variables. Subjects 

were allowed to study each program for 10 minutes. 

In a subsequent recall study, significant effects of expertise and semantic 

complexity were evident. However, there was no interaction between expertise 

and complexity. Contrary to the hypothesis derived from Chase and Simon's 

model, experts were much better than novices at recalling both typical and atypical 
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programs. Indeed, the difference in novice and expert performance was, if 

anything, greater in the atypical condition. 

Next, Widowski and Eyferth analysed the reading patterns of their subjects in 

order to derive information on the search strategies they used. The basic form of 

measurement used here involved analysing the number of "runs" made by 

subjects. Here, a "run" was evidenced by the subject reading a number of 

consecutive lines before moving either backwards or forwards over more than one 

line in order to read another line. They suggest that this simple unit can reveal 

parts of the program text "that form subjectively meaningful entities" (pg 273). 

Widowski and Eyferth found that experts demonstrated more flexible reading 

strategies that novices. In the case of the stereotypical programs, experts adopted a 

strategy that involved reading the code in long but infrequent runs. In the case of 

the atypical programs, experts read the program in short and frequent runs. They 

suggest that the former strategy reflects a top-down or conceptually driven 

comprehension process, while the latter represents a bottom-up and heuristically 

oriented strategy. For novices, the same comprehension strategy appeared to be 

employed for both the typical and atypical programs. 

The contribution of this study to our understanding of program comprehension is 

twofold. On the one hand, this study demonstrates that experts have a better ability 

to respond to novel situations, even though they may not have the appropriate 

knowledge structures or plans to guide behaviour. Secondly experts appear to 

have a greater range of strategies available to them, leading to greater flexibility in 

performance. Hence, this work provides an interesting counterpoint to plan-based 

theories of programming expertise by suggesting the important role played by 

strategy in program comprehension. 

The studies conducted by Robertson et al and by Widowski and Eyferth have 

demonstrated the importance of the strategic elements of program comprehension. 

However, in order to achieve this, and to render their studies possible, they have 

restricted the task environment to such an extent that one might wish to draw into 

question the ecological validity of their experiments. One way of studying 

comprehension strategies which does not involve undue restriction to the task 

environment might be to examine the eye movement and fixation patterns made by 
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programmers while reading programs for comprehension purposes. However, 

studies of program comprehension which have involved eye movement analyses 

are rare. 

One study of subject differences in program reading has been conducted by 

Crosby and Stelovsky (1989). They asked expert and novice programmers to 

study a short binary search program. The subjects were asked to study the 

program for as long as they needed to understand it and a record of the total 

number of fixations made by the subjects and their associated durations were 

collected. 

Figure 4.3 illustrates two rather distinct reading patterns that emerged in Crosby 

and Stelovsky's study. These diagrams show the eye fixation patterns of two 

subjects superimposed over the algorithm. Each fixation point is represented here 

as a circle, whose size is propotional to the size of the pupil. Figure 4.3 a 

illustrates a typical "left-to-right, top-to-bottom reading strategy", of the kind that 

might be found in studies of nonprocedural text-based prose (Just and Carpenter, 

1980). A rather different reading style is shown in Figure 4.3 b. This subject first 

concentrated on the upper three lines of the algorithm, then skipped a number of 

lines to concentrate on the central portion of the program. Notice that this subject 

repetedly fixated upon certain areas of the algorithm. Crosby and Stelovksy 

suggest that "rereading was not only a frequent practice, but a necessity for 

comprenension. If an internal buffer held the information (as, for instance 

suggested by Bouma and de Voogd's (1974) model of reading), frequent 

rereading would be superfluous" (p. 141). 

Crosby and Stelovsky provide a more detailed analysis of individual scanning 

strategies by producing two dimensional "area/fixation" graphs which indicate the 

sequence of areas perused with respect to time. They found that patterns of eye 

fixations could be categorised, although there was a considerable range of 

individual scanning strategies. Such strategies ranged from linear scans of the text, 

typical of the kind found in prose reading, to highly nonlinear strategies. One 

might expect these differences in strategy to be related in some way to the 

expertise of the programmer, since the nonlinear strategy would appear to be 

highly goal directed, whereas the linear strategy treats each part the program 
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equally. However, Crosby and Stelovsky found no relationship between the use 

of particular strategies and expertise. 

into 3 subarrays*) 

en 

Figure 4.3a. A typical/eft-to-right, top-to-bottom reading strategy. 
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t (* A[left] < X < 

(*choose middle to split A into 3 subarrays*) 

(left + right) div 2; 

found := left = right + 2; 

index := middle; 

end; (*bin Search*) 

Figure 4.3a. A 'Comparative' reading strategy. 

Indeed, the only differences in expertise that were manifest in their study were 

related to the percentage of time spent viewing particular parts of the algorithm. 

Crosby and Stelovsky partitioned the algorithm used in their study into a number 

of areas, which could in turn be grouped into five classes: Comments, 

comparisons, complex statements, simple assignments and keywords. They then 

analysed the average percentage of fixation time spent by the novice and expert 

groups on these five areas. This analysis is shown in figure 4.4. It appears from 

this analysis that experts spend more time reading complex statements, whereas 

novices tend to concentrate upon comments. One might infer from this that experts 

develop their understanding of the program from the program text itself, while 

novices rely to a greater extent upon comments to augment their understanding. 

This would in itself seem to be a reasonable assumption. However, it would be 
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interesting to discover the extent to which experts actually use comments to aid 

understanding. Moreover, if experts tend not to rely significantly upon comments 

during comprehension activities then this would clearly question their utility, 

especially in program maintenance tasks where comprehension clearly plays a key 

role. 

The results of the Crosby and Stelovsky study are rather difficult to account for 

given the large body of literature which has demonstrated a strong relationship 

between particular forms of strategy and expertise. In general, their study failed to 

reveal any significant relationships between viewing strategy and programming 

experience or comprehension. The Crosby and Stelovsky study is interesting since 

it adopts a rather different methodological perspective to the studies of program 

comprehension reported above. Moreover, the results of this study are contrary to 

what one might expect given the results of existing work. In particular, it suggests 

that reading strategy and viewing time do not display any significant correlation 

with programming experience. In contrast, the other studies reported in this 

chapter would predict systematic variations in search strategy associated with 

differences in expertise. It would appear injudicious to reject previous accounts of 

program comprehension simply upon the basis of a single study. However, 

bearing in mind this caveat, it is clear that the Crosby and Stelovsky study raises a 

challenge to existing theories of program comprehension. 

The studies reviewed so far have been concerned primarily with the strategic 

elements of program comprehension. However, there also exists a considerable 

body of literature which has addressed issues relating to the strategic aspects of 

program generation. One problem with knowledge-based theories that was 

highlighted at the start of this chapter, is that while such theories serve to describe 

the content of stereotypical knowledge structures, they have typically not 

attempted to specify the processes that control the transformation of these 

representations into code during problem-solving. Recently however, Rist 

(1986a, b; 1989; 1990) has proposed a model of schema creation in programming 

that describes the way in which plan-based knowledge structures are transformed 

into programs and accounts for the differences in generation strategy that have 

been observed to be associated with differences in expertise. 
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Figure 4.4. Percentage of fixation time spent by the novice and expert groups 

viewing the five areas identified by Crosby and Stelovsky. 
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4.3 Strategies involved in program generation 

4.3.1 Rist's model of focal expansion 

Rist (1989) has proposed a model of program generation which illustrates how 

simple fragments of plan knowledge are composed at various levels of abstraction 

and, in addition, demonstrates how these plan structures are eventually 

implemented as code-based representations. Unlike previous plan-based accounts 

of programming behaviour which suggest that plans have a flat structure 

consisting of a sequence of steps that are simply concatenated to achieve a goal 

(Detienne and Soloway, 1990; Robertson and Yu, 1990), Rist's model assumes a 

more complex plan structure and suggests several distinct mechanisms which 

govern plan composition and use. 

The first stage of plan formation, according to Rist, involves creating a single line 

of code. Rist adopts Mayer's (1987) suggestion that the smallest fragment of 

knowledge used in program comprehension is a transaction. Transactions 

conceptualise a program statement in terms of the operations that take place, their 

location and the object that is acted upon. For example in order to understand the 

line of code, LET B=A + 1, requires 10 transactions. First the integer and 

increment must be defined and stored in temporary memory (4 steps), and then 

added (1 step). Next, the location of the sum must be defined and then deleted 

from temporary memory (3 steps). Finally, control must be transferred to the next 

statement and that statement executed (2 steps). According to Rist, the creation of 

even a single line of code involves a significant amount of reasoning and planning. 

Rist proposes that within a single line of code, there will be a central or focal code 

fragment that represents the most important operation performed by that line . This 

focus is described as that part of the statement that directly implements the current 

goal. In the above example the programmer's goal will be to increment a number, 

hence the code fragment that achieves this (i.e., + 1) becomes the focus of the 

programmers current activity, and other code structures will be built around it. 
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During the next stage of plan development, single lines of code are combined to 

create a programming plan. To do this, the plan focus must be extended to include 

other subsidiary plan elements. Rist suggests that this extension process can take 

two forms; plan creation or plan retrieval. In plan creation, the plan is developed 

backwards from the goal, to the focus of the plan and finally to its extension. 

Here, plan generation begins with the calculation element of the plan and then 

continues with the initialisation and the output. In plan retrieval, plans are 

generated in schema order, such that the initialisation part of the plan will be 

generated first, then the calculation part, and finally its output. 

The next level of plan use describes the process of plan composition to form a 

program. Here, Rist suggests simply that during this stage, basic plans are 

combined to form more complex plans. Rist claims that the visible structure of a 

complete program is created by these complex plans which make up the final form 

of the program. Rist further claims that only at the end of this construction process 

will the abstract form of the solution be apparent. Here, Rist suggests that this 

abstract program structure can be analysed in terms of the 'role structure' of 

various elements of the program. These role structures describe the goals of 

various program elements in terms of whether these goals involve establishing 

some input, making a calculation or relate to output in some way. 

The model of solution design proposed by Rist describes plan generation at these 

four levels and makes two basic claims about the effects of knowledge on 

behaviour. Essentially, if knowledge can be found to guide program design, then 

top-down and forward plan generation will be observed. If knowledge cannot be 

found, then a solution will be created by focal expansion, which characterises 

program generation as a bottom-up process. Hence, the novice, given a goal that 

they have extracted from the problem statement, will retrieve a fragment of code 

that directly implements the current goal, and will then construct the rest of a plan 

around this focal segment. Rist equates the development of expertise with an 

increase in stored knowledge which specifies the required plans. Given this plan 

knowledge, Rist claims that experts simply need to retrieve stored schemata and 

that a programmer's generation strategy will change from focal expansion to 

schema expansion as expertise develops. 
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Rist (1989) reports a longitudinal protocol analysis of a small number of subjects 

(10) who were asked to generate programs to solve a number of problems. Both 

the verbal statements produced by subjects and their resulting programs were 

analysed. The coding scheme used to analyse these protocols described, where 

appropriate, each code fragment or verbal utterance as relating to an "input goal" 

(1), or to a "calculate goal" (C) or to an "output goal"(O) (Spohrer, Soloway and 

Pope, 1985). In addition, an analysis of the program's plan structure was 

undertaken, and the order of emergence of plan elements (expressed as an ICO 

sequence) was established. 

Two sample protocols, illustrating this analysis are shown in figure 4.5. The first 

protocol illustrates the process of focal expansion, where the focal plan element is 

retrieved early during during plan development. According to Rist, this form of 

plan implementation would be observed in the case of novice programmers. Here, 

the order of generation is contrary to what one would expect if the plan was 

retrieved and implemented in schema order (i.e., in ICO order). The second 

protocol shows a program generation episode which reflects forward plan 

expression in schema order (I CO). This protocol represents the type of coding 

strategy thought to correspond to expert coding behaviour. 

The results of this study provide support for the model of code generation 

proposed by Rist. Firstly, the protocol analysis demonstrated that both forms of 

generation strategy, i.e., focal expansion and schema retrieval, were displayed by 

subjects. Secondly, there was a change in the mode of plan expression with 

experience. Evidence for this change in plan expression was established by 

comparing the degree of schema expression in plan creation (i.e., focal expansion) 

versus plan retrieval. This analysis showed that there was a significant increase in 

coding and verbal behaviour that could be accounted for in terms of plan retrieval 

processes associated with programming experience. Correspondingly, there was 

a significant decrease in plan creation with experience. 
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VERBAL STATEMENTS 

(N7) "For rain itself, 
rain is going to equal ... 
I need ... I need something ... 
I need something there that keeps ... 
I'm setting the sum equal to the amount 
of rain from 
before, OK ... sum will be a problem, 
I'll come back to it later ... 
[other goals solved] ... 
OK, do sum gets sum plus rain, or 
even better 
... and now set that to zero" 

VERBAL STATEMENTS 

(N2) "The first thing I want 
to do is to get the original word ... 
You might want to use an array for the 
letters in the word, so you have ... 

Now get the original word, so say 
WHILE ... use a REPEAT loop ... 
give a prompt first ... 

then REPEAT ... 

umm ... you want to read in ... 
you want a counter ... 
initialize a counter, 

and then you want to repeat 
... so you read it in, and 
then let i ... 
... intialize i to 1 
... and then increment it by 1 
... uh-uh, until ... " 

PROGRAM CODE INTERPRETATION 

goal 0 
+ rain focus c 

rainfall:= extension c 

sum extension c 

rainsum:=rainsum+rain focal line c 
rainsum:=O extension I 

PROGRAM CODE INTERPRETATION 

goal 
TYPE letters=array[l ,20] 
of char; V AR word: letters; define a word 

write ('please enter a word'); extention ~ead 
repeat extension 1Ioop 
read( ... focus cread,loop 

i :=0 [before repeat] extension 1count 
read (word[i]); use ocount 

1 := ... focus ccount 
i := 1 [before repeat] 
i := i + 1 
until(word[i] = ' '); use oread 

Figure 4.5 The first Protocol (above) illustrates the process of focal expansion, where the focal plan 
element is retrieved early during during plan development. This form of expansion is claimed to be 
characteristic of novices. Here, the order of generation is contrary to what one would expect if the 
plan was retrieved and implemented in schema order (i.e., in !CO order). The second protocol 
shows a program generation episode which reflects forward plan expression in schema order (!CO). 
This protocol represents the type of coding strategy thought to be used by experts. 
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4.3.2 Studies of change processes - The Parsing/Gnisrap model 

Green, Bellamy and Parker (1987a and b) have attempted to extend Rist's model 

of focal expansion by proposing a comprehensive model of coding behaviour 

which highlights those features of the device, task, interaction medium and user 

knowledge that contribute to the use and the development of particular forms of 

programming strategy. They suggest that there are two important aspects of 

coding behaviour that a model needs to account for. One aspect of coding 

behaviour relates to the fact that code is often not generated in a strict linear 

fashion, where the final text order of the program corresponds to its generative 

order. For instance, Figure 4.6 shows a number of departures from linear 

generation for a typical Basic protocol. Green et al suggest that these departures 

from linear generation indicate problems in the task and the device languages or 

their relationship. They suggest that departures from linear generation are 

significant, since they increase mental workload, may give rise to omissions and 

oversights and, depending upon the editor used to create the program, can involve 

many additional keystrokes to effect successful navigation around the code. 

1 
2 

r----1~6 

3 
7 

L~ 
4 
5 
10 

1 1 

10 Restore 
20 Dim data%(9) 

Dim Reversed%(9) 
30 For 1% = 0 To 9: Read data%(1%): 

40 

Reversed 
% 

(9 - 1%) = data%(1%): 
Print; data%(1); " ": Next 

Print: For 1% = 0 TO 9: 
Print; Reversed%(!%);" ": Next 

50 Data 1 ,2,3,4,5,6,7,8,9,0 

Figure 4.6. Departures from linear generation for a typical Basic protocol. The 

numbers on the left represent the order of generation. 
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A second aspect of coding behaviour relates to the ease with which information 

can be extracted from the text structure of the program. When programmers adopt 

a non-linear style of code generation they need to be able to read and to 

comprehend earlier parts of the code before they can insert subsequent parts. This 

re-comprehension process is likely to be facilitated if the programmer can easily 

extract relevant information from the program text. 

Green et al introduce the 'Parsing-Gnisrap' cycle to describe the cyclical 

alternation between code generation and recomprehension. The parsing-gnisrap 

model describes two fundamental psychological processes which underpin coding 

behaviour. Firstly, programming text is mentally elaborated from a skeletal plan, 

and when working memory is full, or when overload is threatened, part of this 

text is output to an external medium. When the programmer subsequently needs to 

recover the details of parts of the text that have been externalised, the text must be 

comprehended. To achieve this the text must be parsed in order to recreate the 

original plan structure. Gnisrap is simply the reverse of parsing and involves 

transforming an internal representation into an externally represented text 

structure. 

This model borrows directly from that proposed by Rist in that it suggests that 

expert coding is a forward chaining process which involves matching elements of 

a skeletal plan to programming plans and then expressing these plan elements in 

code-based terms. Rist's model suggests that expert programmers will tend to 

generate code in plan order, where the order of generation will reflect the final text 

order of the program. Conversely, the parsing-gnisrap model makes rather 

different predictions about the order of program generation. These differences 

arise as a consequence of one primary extension to Rist's model. 

The behaviour of the parsing-gnisrap model, unlike Rist's model of focal 

expansion, is fundamentally determined by working memory limitations. In Rist's 

model, programming knowledge is represented as schemata-based structures 

which state the code, its purpose, the role of components within the code, and its 

pre and post conditions. Plans are built by retrieving a focal line and then by 

subsequently extending this focal structure to include the plan's subsidiary code. 

In addition, other schemata may be invoked at this time by matching the 
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preconditions of the present schemata with the pre and post conditions of other 

schemata. According to Rist's model, nonlinearities will only occur when a 

programmer has to interleave a new plan into the existing program. The 

parsing-gnisrap model allows greater flexibility by suggesting that nonlinearities 

can occur within the generation of individual plans. For instance, it suggests that 

the minor parts of plans will often be omitted during generation, and that 

programmers will need to return to complete code fragments after generating later 

parts of the program. 

The parsing-gnisrap model suggests that rather than build up a whole program 

internally and then output it to an external source, programmers will output 

fragments as they are completed, or will dump incomplete fragments when 

working memory becomes overloaded. The model deletes information from 

working memory when it is output to an external source. Hence, when the 

programmer subsequently needs to refer to an existing code fragment, it will need 

to be parsed such that its original plan structure can be recreated. 

The behaviour of the parsing-gnisrap model (and correspondingly the behaviour 

of the programmer being modelled) depends upon characteristics of the device, the 

task language, the interaction medium and the model's knowledge representation. 

For example, the device language might represent the commands necessary to 

manipulate editor functions. If one has to navigate a complex structure in order to 

insert or to comprehend information, as necessitated by the parsing-gnisrap 

model, then the ease or difficultly of doing this is likely to affect strategy. 

The use of a particular interaction medium e.g. pen and paper, VDU, will also 

affect strategy. Green et al illustrate this by comparing the ease of using pen and 

paper to generate a program as opposed to dictating a program. With pen and 

paper it is a simple matter to insert new material, for instance, to balance 

parentheses or declare new variables. According to Green et al, pen and paper has 

a large 'access window', which allows the programmer to access any part of the 

expression being built. Conversely, in dictation, the access window is restricted to 

a single point. Between these two limiting cases lie word processors and text 

editors where the user must do some work to access any point other than the 

current cursor location. 
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The size of the access window is a property of the interaction medium, not of the 

task language. Hence, one can dictate or write Pascal or algebra and here the 

interaction medium differs while the task language remains the same. However, 

Green et al claim that the importance of the window size depends upon the task 

language. When using languages with many left-to-right constraints such as 

algebra or Pascal, it is important to have a wide access window, whereas other 

notations such as reverse Polish, which have fewer constraints of this sort, may 

not demand a large access window. 

Characteristics of the task language will also affect strategy. For instance, some 

languages are highly resistant to local change. Such languages might be described 

as viscous (Green, 1990a and b; 1991). For example, it is harder to insert a new 

section into a Pascal program than into an equivalent Basic program. This 

phenomenon is evident in the results of an experiment carried out by Green et al to 

test certain predictions stemming from the parsing-gnisrap model. This experiment 

is described in more detail in chapter 5, however its main finding was that the 

extent of non-linear generation in coding was related to the language being used. 

Hence, Pascal programmers adopted a highly non-linear style of code generation 

whereas both Basic and Prolog programmers departed infrequently from a linear 

generation strategy. 

Green et al claim that there may are several possible reasons for these difference in 

strategy. Firstly, Pascal procedures may offer better facilities for a non-linear 

approach than Basi~. subroutines. Secondly, the Pascal teaching tradition, and its 

emphasis upon stepwise refinement, has always emphasised a top-down, and 

consequently non-linear method of program development. Thirdly, Pascal appears 

to be inherently viscous, and an approach which minimises interleaving will be 

preferred. Finally, Basic is less role-expressive than Pascal (see chapter 5). 

Hence, Basic programmers will experience more difficulty comprehending code 

once it is generated and will therefore adopt a strategy which minimises the 

amount ofre-comprehension that is necessary, i.e, a linear generation strategy. 

The factors affecting coding strategy which are outlined above are, with the 

possible exception of Pascal teaching tradition, related explicitly to the formal 

structure of the task language. However, it is clear that strategy will also be 
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determined to some extent by the structure of the user's knowledge of how to 

perform programming tasks. In plan-based theories of programming expertise, 

plan structures are uniform and all their parts are equally accessible. However, it is 

clear that, in most cases, these plans will be composed of a major part and other 

necessary, yet minor elements. For example, a summation plan will require a 

minor initialisation component and more salient summation element. 

Green et al suggest that "These minor and possibly less salient parts of plans are 

sometimes left out by programmers during the first pass, either intentionally or by 

mistake, and are inserted later. On the other hand, it is extremely rare to see the 

minor part included in the first pass and the major part omitted. This asymmetry 

suggests to us that the effect is caused by asymmetry in the knowledge structure: 

the major part is focal to the plan, but the minor part is invoked only as a 

precondition required by the major part" (p 138). 

The importance of the parsing-gnisrap model is that it describes the process by 

which a plan is instantiated in a programming notation and the effect that various 

notational features will have on plan implementation and general coding strategy. 

In this sense, the parsing-gnisrap model complements and extends Rist's work on 

focal expansion by detailing the mechanisms that control plan use to give rise to 

various forms of strategy. For instance, the Green et al work showed that Pascal 

programmers frequently made backward jumps during coding to insert base 

preconditions, whereas in Basic, this retrospective inclusion of preconditions was 

infrequently observed. Similarly, PROLOG programmers almost always inserted 

a base case before developing other parts of the associated procedure. Green 

(1990b) suggests that this may arise because, in PROLOG, base cases are 

spatially contiguous with their associated focal line in the main case, whereas in 

Pascal, plan structures are diffuse. 

While the parsing-gnisrap model displays some overall similarity to the model of 

focal expansion proposed by Rist, it clearly makes different predictions about the 

order of plan generation. In particular, Rist's model would predict that experts 

would generate code in schema order, while novices would develop code by focal 

expansion. The parsing-gnisrap model makes no predictions about the relationship 

between expertise and generation strategy. However, the main factor that gives 
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rise to nonlinearities in this model relates to its limited working memory capacity. 

Since there is no reason to expect that experts would have a greater working 

memory capacity than novices, then, according to the parsing-gnisrap model, they 

should display broadly similar generation strategies, and hence exhibit similar 

patterns of nonlinearities. 

Moreover, the data used to support the parsing-gnisrap model was collected from 

expert programmers. As we have seen, this data appears to show that in many 

cases code is not generated in plan order, as would be predicted by Rist's model. 

For instance, in Pascal, preconditions are often inserted after other parts of a plan 

have been developed. Since Green et al did not analyse the plan structures evident 

in the programs generated by their subjects, it is not clear that one can make a 

direct comparison between this data and that reported by Rist. However, in 

general terms, the nonlinearities observed in the Green et al study do not appear to 

support a model of expert coding behaviour such as Rist's which would predict 

that plans will be retrieved and implemented in the order in which they appear in 

the final program. 

4.3.3 Knowledge restructuring: Extensions to the parsing-gnisrap model and the 

role of focal expansion 

In chapter 8 an experiment is reported that attempts to extend the paradigm 

suggested by Green et al by examining the nonlinearities in program generation 

made by programmers of varying skill level using different languages. This 

experiment suggests that the level of skill of the programmer is a more important 

discriminator than the programming language used. However, there were clear 

interactions in this experiment between skill level and language. This result is 

interpreted within the broad framework suggested by this thesis which advances a 

model of knowledge restructuring to account for skill development in 

programming. 

In particular, it is suggested that certain languages may facilitate the 

implementation and comprehension of focal code structures. This would explain 

the interaction between expertise and language. Hence, we might assume that as 
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knowledge representation is in the process of development, any additional means 

of facilitating a preferred programming strategy, such as might be provided by 

features of the notation of a particular language, would be of importance. At 

higher levels of skill, factors relating to the organisation of knowledge appear to 

play a greater role in the determination and support of particular forms of strategy. 

This experiment might be seen as providing a bridge between Rist's work on 

knowledge representation and the emphasis of the parsing-gnisrap model on 

language features, by suggesting possible ways in which these factors might 

interact to determine the nature of programming strategy. 

Additional support for this model of knowledge restructuring is provided by two 

further experiments which are reported in chapters nine and ten. In chapter nine, 

an experiment is described which examines the temporal generation of code for 

novice and expert programmers. Here, following Rist, each statement of the 

completed program was classified according to whether it constituted a focal or a 

non-focal line. The model of knowledge restructuring presented in this thesis 

would suggest that a programmer's representation of programming knowledge is 

not uniform, as is suggested by plan-based accounts. Rather, certain important 

code structures, i.e., focal lines, will be represented with greater saliency than 

other subsidiary plan elements. Moreover, in common with the parsing-gnisrap 

model, it is suggested that focal lines will commonly be generated first during 

coding (i.e., before non-focal lines). This reduces the load on working memory 

and provides a framework around which the rest of the program can be built. 

Since this knowledge restructuring process is assumed to underpin the 

development of expertise in programming, one would expect to see differences in 

the temporal generation of focal vs non-focal structures corresponding to the level 

of expertise of the programmer. This prediction is supported by the results of the 

experiment reported in chapter nine. In particular, expert programmers were seen 

to generate significantly more focal lines during the early stages of the 

development of a program, whereas novice programmers generated significantly 

more non-focal lines. This disparity was maintained until quite late in the 

development of a program, but focal and non-focal line generation tended to 

converge towards the final stages of program generation. This provides some 

support for the idea that expertise is related to the restructuring of programming 
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knowledge, since one would expect the saliency of various plan components to 

affect the generation patterns evident during coding. 

In addition, it is suggested that the early generation of focal lines during coding 

reflects the adoption of a top-down hierarchically levelled approach to program 

development. In chapter 6, an experiment is reported which suggests a 

relationship between design experience and subjects' ability to use cues to extract 

plan structure from a program text. It may also be the case that design experience 

can facilitate particular generation strategies. In particular, focal lines may 

represent a discrete level of design abstraction. 

This would certainly accord with Rist's characterisation of focal lines. According 

to Rist (1989) "the (plan) focus ... marks the start of detailed design in the domain 

of the program" (p. 403). Most design methodologies embody an approach which 

suggests that programs should be developed in a top-down fashion, beginning 

with the highest level of design abstraction and progressing to lower levels only 

when the preceding levels are fully articulated. Hence, programmers with design 

experience may be inclined adopt a strategy which causes them to articulate focal 

lines during the early stages of program development. 

Further evidence for the knowledge restructuring argument voiced by this thesis is 

reported in chapter ten. Here, an experiment is reviewed which employs a 

program memorisation and probe recognition task to explore the form of 

knowledge representation for programmers of various skill levels. In this 

experiment, subjects were presented with a number of small Pascal programs 

which they were asked to memorise. Subsequently, subjects were presented with 

a probe item and were asked to state whether it was contained in the original 

program. Half of these probe items were derived from the original programs and 

the other half from similar programs. Additionally, half of the probe items derived 

from the original programs were classified as focal lines and the other half as 

non-focal lines. The results of this study showed that intermediates and experts 

exhibited approximately the same recognition accuracy, suggesting that they were 

able to access similar knowledge structures. However, the expert group correctly 

recognised focal lines much faster than the intermediate group. This is taken as 

evidence for the idea that experts represent focal lines with greater saliency than 
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their less experienced counterparts and, consequently, as evidence for the model 

of knowledge restructuring presented in this thesis. 

These experiments suggest a possible means of linking the process of focal 

expansion described by Rist with the idea that code is generated and evaluated in 

cyclical phases as suggested by the parsing-gnisrap model. However, the 

knowledge restructuring model presented here differs from previous work in a 

number of respects. Firstly, in contrast to Rist's model, focal expansion is seen as 

a strategy which arises due to knowledge restructuring, and hence will be 

exhibited predominantly be experts rather than by novices. Secondly, the work 

reported in this thesis predicts that differences in generation strategy will be related 

to differences in expertise. In contrast, while the parsing-gnisrap model makes no 

specific predictions about the effects of expertise, this model implies that there will 

be no relationship between these two factors. Generation strategy, according to 

the parsing-gnisrap model, depends primarily upon working memory constraints 

and upon the nature of the task language being used, and there is no reason to 

believe that these would, in tum, be related specifically to expertise. 

4.3.4 Change-Episodes 

The cyclical nature of code generation and comprehension suggested by the 

parsing-gnisrap model is also reflected in other studies of programming 

behaviour. For instance, Gray and Anderson (1987) have carried out an analysis 

of so called 'change episodes'. Change episodes are described as key junctures in 

the coding process where programmers alter their code. Gray and Anderson 

suggest that an analysis of these episodes can help to illuminate the cognitive 

process involved in programming, since they provide a wealth of information 

about the programmer's goals, about their planning activities, about their 

evaluation of existing code and about the error detection and correction 

mechanisms which are typically invoked during programming tasks. 

Gray and Anderson suggest that coding should be viewed as a problem solving 

process where the problem statement represents the initial state of the problem and 

the completed program its goal state. The knowledge and skills of the programmer 
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determine which parts of the problem involve problem solving and which parts 

simply entail the retrieval of information from long term memory. 

Following All wood (1984), Gray and Anderson distinguish two types of problem 

solving activities: progressive and evaluative. Progressive activities work directly 

toward the goal state of the problem, whereas evaluative activities involve 

checking some already executed part of the problem solution. In programming 

terms, coding (and planning what to code) are progressive activities and checking 

and changing code are evaluative activities- in Gray and Anderson's terminology, 

change-episodes. 

Previous accounts of problem solving behaviour have, according to Gray and 

Anderson, tended to ignore these evaluative activities and studies of programming 

appear to have followed this trend. For example, most accounts of debugging 

(Vessey, 1985; 1986; 1989; Waddington and Henry, 1989) involve progressive 

activities. The issue of how programmers actually evaluate their progress during 

debugging and coding is not normally addressed. The work of Green et al does 

suggest an important role for evaluative activities during coding, however the 

parsing-gnisrap model does not make any strong predictions about when and 

where these activities will take place. By relating change-episodes to predicted 

planning or problem solving difficulties during coding, Gray and Anderson have 

been able to specify the circumstances in which change-episodes are most likely to 

occur, and this provides a systematic basis for understanding the evaluative 

activities that normally take place during coding. 

The Gray and Anderson study involved analysing the change-episodes contained 

in protocols produced by 'advanced novice' subjects writing a single LISP 

function. A change-episode is said to occur when the programmer alters some 

code that they have already written or when they subsequently modify a plan that 

has already been articulated (derived from a verbal protocol). Gray and Anderson 

suggest a tripartite analysis of change-episodes involving the change goal, the 

noticing event and the fix. The change goal is an articulated goal that the 

programmer later decides to change. The noticing event describes the first 

indication that the programmer wishes to change the goal structure of their 

solution. The fix is the goal structure after it has been changed. 
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Gray and Anderson derive a number hypotheses which relate to each of the three 

elements in their change-episode analysis. As far as change goals are concerned, 

Gray and Anderson suggest that the probability of a goal being the target of a 

change-episode will be correlated with the amount of planning involved in its 

execution. This hypothesis is based upon the assertion that goals which involve a 

significant amount of planning arise because the goal is not yet well learned and 

has not been subject to knowledge compilation or that there are so many variations 

as to how the goal can be used that a specific rule for the required variation has not 

yet been compiled. They suggest that in the first case, poorly learned goals can 

easily be coded incorrectly and hence they can become the target of evaluative 

activities. In the second case, choosing the correct instantiation of a goal will 

depend upon having a clear idea about how the rest of the function will be coded, 

and this in turn can depend upon a number of highly variable goals. 

The second element of Gray and Anderson's change-episode analysis, noticing 

events, are indicated either by keystroke analysis or from verbal protocols. In the 

first case, the programmer might interrupt their current activity in order to 

backtrack to an earlier part of the program. In the second case, verbal utterances 

might be indicative of a noticing event (for instance, an "oops" followed by a 

revision) or it might consist of a full articulation of the change-goal. 

Gray and Anderson suggest three issues relating to the nature of these noticing 

events which form the basis of their hypotheses. Firstly, do change-episodes form 

an abrupt interruption to the progressive activity of coding or do they arise as a 

more natural outcome of an activity such as symbolic execution that was begun for 

some other reason? Secondly, do the nature of change episodes differ if they are 

initiated by different types of noticing events? Finally, is there a relationship 

between the activity that immediately precedes the noticing event and the change 

goal? 

The final part of Gray and Anderson's analysis is related to how a goal is altered 

during a change-episode. Essentially, the fix is the goal-structure after it has been 

changed, and this is established by comparing the goal structure before the 

change-episode with the goal-structure after the change-episode. They suggests 
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two issues that relate to fixes. Firstly, are their as many types of changes or fixes 

as there are change-episodes, or can most fixes be categorised? Secondly, what 

does the nature of these fixes suggest about the role of planning in coding? 

The results of the Gray and Anderson study support the specific hypotheses that 

are outlined above and, in addition, provide a basis for a discussion of the more 

general questions raised by their analysis. For example, they found that the 

probability of a goal being the target of a change-episode was indeed correlated 

with the amount of planning involved in its execution. Their results also suggest 

that only a small number of fix categories exist. In particular, their results indicate 

that a large proportion of fixed change-episodes could be grouped into just two fix 

categories; one which involved relatively minor editing of a goal's subgoals and 

one which entailed major transformations in the goal's structure. Their results also 

suggest that a change-episcx,le can be initiated in three distinct circumstances; as an 

interrupt to coding, as tag-along to other change-episodes or as a product of 

symbolic execution. 

The first of these describes the situation where programmers simply stop coding to 

make changes. Gray and Anderson suggest that these interrupts appear to be part 

of the planning process. They argue that programmers begin to work on a goal 

before it is fully planned and that this may help programmers to remember the goal 

structure of the plan without committing them to its detailed elaboration. It appears 

that as programmers begin to elaborate a plan, this may suggest that higher order 

goals require revision. 

This process clearly has similarities with the kinds of activities described by the 

parsing-gnisrap model, since it relates planning and working memory limitations 

to the fragmentary nature of code generation and accounts for the evaluative 

activities that need to be undertaken to recover or to recreate higher-level goals. 

Change-episodes can also be initiated as a result of tag-alongs to other 

change-episodes. In general, these episodes involve fairly straightforward fixes 

such as correcting spelling mistakes or balancing parentheses. However, some 

episodes appeared to arise due to confusion over which of several methods to 

apply in a particular situation. Here, Gray and Anderson argue that such methods 
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may at an intermediate stage of compilation, where the programmer may know 

several methods, but not know which to apply. Finally, change-episodes can 

occur as a result of symbolic execution where the programmer had been 

symbolically executing their code immediately prior to noticing the need to change 

a previously coded or stated goal. 

The evidence for these three categories of change-episode was mainly derived 

from verbal protocols. However, Gray and Anderson also present collateral 

information (i.e., time between last keystroke and noticing event) which provides 

additional independent support for their categorisations. In the three categories 

they found that the mean time in seconds between the last keystroke and the 

noticing event was 52.5 (symbolic execution), 2.2 (interrupts), and 4.0 

(tag-alongs). These differences are statistically significant, and provide additional 

support for the validity of their change-episode categorisation. 

Gray and Anderson's change-episode analysis has proved important since it 

makes firm theoretical predictions about where change-episodes will occur during 

coding. In addition, it provides a detailed account of the cognitive mechanisms 

which underpin such change processes and other more general evaluation 

activities. Moreover, the change-episode analysis presented by Gray and 

Anderson clearly ties in with other work on change processes, and in particular 

with the parsing-gnisrap model. Both of these models suggest that because of 

certain cognitive limitations, code is generated in fragments and that these 

fragmentary structures need to be evaluated in some way in order to recreate the 

original plan or goal structures that initially gave rise to the generation of these 

code fragments. 

However, despite the close parallels between these models, both display a very 

different emphasis. The parsing-gnisrap model is primarily concerned with the 

effects of features of the task language on coding behaviour, and has little to say 

about knowledge representation. Conversely, the change-episode analysis 

attempts to relate the evaluative activities that occur during coding to a specific 

model of the planning and problem solving processes that underpin programming. 

Viewed together, these models clearly advance our understanding of problem 

solving in programming by illustrating the various factors that give rise to the 
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adoption of particular forms of strategy. This analysis leads to a characterisation of 

programming behaviour which highlights its true complexity and distinguishes it 

from other domains. 

Research on change processes such as that used to support the parsing-gnisrap 

model and Anderson and Gray's analysis of change-episodes is currently lagging 

some way behind advances in language design. For instance, the object oriented 

programming paradigm has spawned a number of languages which have been 

designed specifically to support an information structure which facilitates code 

change and modification. The emphasis of these languages is upon code re-use, 

and to make re-use possible these languages need to exhibit sufficient flexibility to 

allow the programmer to easily modify and tailor the code. However, there is little 

empirical evidence which demonstrates the extent to which particular object 

oriented languages might support change and re-use (See, Green, Gilmore, 

Winder and Davies, 1992). 

Lange and Moher (1989) report a single subject study of a professional software 

developer working in an object oriented environment which showed that code was 

frequently re-used. However, their subject achieved this by simply copying text 

rather than using the method-inheriteance mechanisms provided by the system. 

Lange and Moher suggest that this "reflects an overall approach of comprehension 

avoidance, in spite of the fact that the subject was modifying code that she herself 

had written earlier" (p. 69). Similar findings have arisen in other studies of 

software reuse (Maiden and Sutcliffe, 1991; Sutcliffe and Maiden, 1990). If these 

findings are generalisable, then they may suggest that language designers will 

need to think again about supporting change processes in object oriented 

environments. Moreover, this finding provides additional support for the idea that 

change processes are cognitively significant and that such processes require some 

cognitive effort to effect. 

4.3.5 Characterising coding activities and program design as opportunistic 

The studies of change processes that are reviewed above appear to suggest that 

coding may be considered to be an opportunistic process (Hayes-Roth and 
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Hayes-Roth, 1979; Hayes-Roth, Hayes-Roth, Rosenschein and Cammarata, 

1979) consisting of bouts of activity each of which involve the creation of code 

fragments. These fragments are, in turn, continually reevaluated and modified in 

respect to the particular goal or subgoal currently under consideration (Green et al, 

1987). In addition, the development of code may be postponed at any time in 

order that the programmer might direct her attention to other goals or subgoals, 

possibly in response to the recognition of previously unforeseen interactions 

between code structures (Gray and Anderson, 1987). 

Such opportunistic strategies can be contrasted with top-down models of problem 

solving which suggest that problem solving is a focused process that starts from 

high level goals which are successively refined into achievable actions. In 

addition, it is claimed that this process is hierarchically levelled. That is, plans or 

sub-goals are always fully expanded or refined at the same level of abstraction 

before the problem solver or planner moves on to a lower level in the plan/goal 

hierarchy. Such a view of problem solving is well established in the psychological 

literature (Kant and Newell, 1984; Newell and Simon, 1972) and hierarchical 

planning models in artificial intelligence are founded upon these principles (Ernst 

and Newell, 1969; Sacerdoti, 197 4; 1977). 

More recently an alternative view of the planning/problem solving process has 

emerged. This view characterises planning and problem solving as 

opportunistically mediated, heterarchical processes (Hayes-Roth and Hayes-Roth, 

1979; Hayes-Roth et al, 1979). Here, in contrast to top-down models, planning is 

seen as a process where interim decisions in the planning space can lead to 

subsequent decisions at either higher or lower levels of abstraction in the plan 

hierarchy. At each point during the planning process the planner's current 

decisions and observations may suggest various opportunities for plan 

development. For instance, a decision about how to conduct an initially planned 

activity may highlight constraints on later activities, causing the planner to refocus 

attention on that part of the plan. In a similar way, low-level refinements to an 

abstract plan may suggest the need to replace or modify that plan. Hayes-Roth and 

Hayes-Roth (1979) have provided support for their view of the planning process 

by observing subjects planning a series of errands through a town. Here subjects 

tended to mix high and low-level decision making. Often subjects planned 

125 



low-level sequences of errands in the absence or in direct violation of a high-level 

plan. 

The dichotomy between top-down and opportunistic processing is also evident in 

empirical studies of the programming activity. For instance, Jeffries et al (1981) 

found that both novice and expert programmers decomposed their designs in a 

top-down fashion- moving between progressive levels of detail until a particular 

part of the solution could be directly implemented in code. One major difference 

between novice and expert programmers was that novices tended to employ a 

depth-first search of the solution space- expanding only one part of the solution at 

progressive levels of detail- while experts adopted a breadth first approach

synchronously developing many sub-goals at the same level of abstraction before 

moving to a lower level. 

Adelson and Soloway (1985) provide additional support for the use of top-down 

design by experts working in both familiar and unfamiliar domains and Anderson 

and others (Anderson, Farrell and Sauers, 1984; Pirolli, 1986; Pirolli and 

Anderson, 1985) have shown that novices characteristically develop designs in a 

top-down and depth-first manner. Such a view of the design process is also 

clearly implicated in prescriptive accounts of the software design activity. For 

instance, the emphasis on top-down problem decomposition and stepwise 

refinement that is advocated by the structured programming school (Dahl, Dykstra 

and Hoare, 1972; Wirth, 1971). 

In contrast, a number of more recent, studies have highlighted the opportunistic 

nature of program design tasks. For example, Guindon ( 1988; 1989) found that 

software designers often deviate from a top-down, stepwise refinement strategy 

and tend to mingle high and low-level decisions during a design session. Hence, 

designers may move from a high level of abstraction - for instance, making 

decisions about control structure (e.g., central vs distributed) - to lower levels of 

abstraction, perhaps dealing with implementation issues. Guindon notes that the 

jumps between these different abstraction levels do not occur in a systematic 

fashion, as one might expect from hierarchically levelled models, but instead can 

occur at any point during the evolution of a design. 
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Other studies (Ratcliff and Siddiqi, 1985; Siddiqi, 1985, Siddiqi and Ratcliff, 

1989) suggest similar deviations from a simple top-down model within program 

design. In addition, these studies have questioned the basic adequacy of 

prescriptions stemming from the structured programming school, in particular the 

notion of functional decomposition/stepwise refinement. For example, Siddiqi and 

Ratcliff, (1989) looked at the problem decomposition strategies employed by 

programmers during program design tasks. They found that subjects trained in 

structured programming do not carry out problem decomposition in a manner 

which reflects a search for appropriate levels of abstraction in a specification, as 

would be expected if these subjects were rigorously applying structured 

programming techniques. Rather, their problem decomposition is guided largely 

by various availability effects (Tversky and Kahneman, 1973) derived from the 

problem representation. 

They found that problem decomposition can be affected by stimulus availability or 

by knowledge availability. These describe cues derived from two sources; 

Stimulus activated; i.e., where decomposition is motivated by content and surface 

characteristics of the problem specification, or knowledge activated; i.e., where 

decomposition is triggered by design experience. The last of these availability 

effects would suggest a hierarchical problem decomposition strategy, if the subject 

had received prior training in program design. However, the stimulus activated 

availability effect may suggest other decomposition strategies, and Siddiqi and 

Ratcliff have observed that on many occasions problem decomposition is triggered 

in this way, and can often lead to simplistic problem decompositions. Moreover, 

they found that this bias towards simplistic decompositions can be reduced by 

instituting small changes to the problem specification. 

The Siddiqi and Ratcliff studies suggest significant problems with hierarchically 

levelled, top-down characterisations of coding behaviour and software design 

such as those prescribed by the structured programming school. In addition, if one 

considers this work in the light of other studies which have attempted to 

characterise design and programming behaviour as opportunistic, then this clearly 

also poses problems in terms of applying classical models of problem solving to 

programming activities. Such models clearly advance a top-down description of 

problem solving and embody hierarchically levelled goal decomposition methods. 
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However, many programming activities appear to display few of the 

characteristics that have being posited by these models. For instance, programs are 

often constructed in a piecemeal fashion with frequent redesign and evaluation 

episodes and programmers are frequently observed to move between different 

hierarchical levels at various arbitrary points during the coding process. 

4.4 Studies of Novices 

The emphasis of the work that has been reviewed so far in this chapter has been 

concerned with the nature of the strategies employed by experts - often 

professional programmers - in program comprehension and generation. These 

studies suggest that there is an important strategic element in programming skill. 

We can contrast this view of expertise with knowledge-based theories which 

suggest that the development of skill in programming simply involves acquiring 

and building a body of programming knowledge. One of the main implications of 

knowledge-based theories is that one way of teaching programming involves 

passing on the knowledge used by experts to beginning programmers, and it 

follows from this that novice difficulties in programming arise simply from a lack 

of programming knowledge. However, a number of recent studies suggest that 

novice programmers display strategic as opposed to knowledge-based difficulties. 

For instance, Perkins and Martin (1986) conducted a series of interviews with 

novice Basic programmers in order to explore the kinds of difficulties they 

experienced. They suggest that one way of exploring novice difficulties is to ask 

what students typically know and do not know. In this context, they draw a 

distinction between low-level programming knowledge - that is, knowledge of 

particular language structures or stereotypical plans- and higher-level strategic 

knowledge of the abstract and general tactics of problem-solving. Perkins and 

Martin suggest that these sources of knowledge form two extremes on a 

continuum, and they ask whether novice difficulties arise from a beginners 

shortfall in low-level knowledge structures or from deficiencies in their high-level 

strategic repertoire. 
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They suggest that there are two extreme cases where these deficiencies might be 

manifest. It may be the case that novice programmers have the general cognitive 

skills for the tasks they face, but that their mastery of the primitives of the 

language may be poor. Hence, such skills cannot be applied effectively to solve 

programming problems. Conversely, novice programmers may posses knowledge 

of the language but be unable to muster this knowledge since they lack the 

necessary tactical skills. This, of course, is an over-simplification of the problems 

that novices might face. The novice may know some things about the language 

and not know other things. Perkins and Martin suggest that common experience 

testifies that often a person does not simply "know" or "not know" something. 

Rather, people can often only recruit fragmentary or fragile knowledge. 

The term fragile knowledge is introduced by Perkins and Martin to describe 

knowledge which a student has, but fails to use when it is needed or when it is 

appropriate. From their analysis of interviews with novice programmers, Perkins 

and Martin suggest that fragile knowledge may take a number of forms. For 

instance, missing knowledge is knowledge that the student has either not retained 

or has never learnt. Inert knowledge is knowledge that the student has but fails to 

retrieve when it is required. Misplaced knowledge denotes circumstances in which 

a student uses knowledge inappropriately and conglomerated knowledge signifies 

situations where a student combines disparate elements of knowledge in 

syntactically or semantically anomalous ways. 

Fragile knowledge does not simply arise because a student has not been taught 

about a particular programming construct, and evidence for the existence of 

fragile knowledge is based upon the fact that on nearly 50% of occasions where 

hints were given to students while they writing programs, the student went on to 

successfully solve the problem, even though the hint did not make reference to the 

appropriate knowledge. Their interview data also suggests that these categories of 

fragile knowledge are "exacerbated by a shortfall in elementary problem-solving 

strategies" (p 225). 

For instance, one example of a 'neglected strategy' is a 'close-tracking' or 

'parsing' strategy which involves reading the code in order to discover what the 

program actually does. One might expect even novices to employ such a 
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rudimentary problem-solving strategy. However, it appears from the interviews 

conducted by Perkins and Martin, that novices rarely engage in close-tracking -

that is, they infrequently read what exists of a program in order to check their 

progress in relation to stated or implicit objectives. Perkins and Martin go on to 

suggest that the use of such elementary problem-solving strategies should be 

encouraged. They claim that students would gain much by the self-prompting of a 

close-tracking strategy. They suggest that students should be encouraged, through 

their programming education, to ask questions like "what will the code I have just 

written really do?" or "how did my program get that wrong answer?" 

The strategic difficulties encountered by novices in the Perkins and Martin study 

suggests that the acquisition of strategic skills may play a significant role in the 

development of expertise. It may indeed be the case that novices know appropriate 

plans but not how to use them. The proponents of knowledge-based theories of 

programming expertise have generally ignored the strategic aspects of 

programming skill. However, it is clear from the studies reported in this chapter 

that strategic elements of programming skill may, in some cases, by of greater 

significance than its knowledge-based components. 

For example, Gilmore (1990) reports an unpublished study which also suggests 

that novices may know plans but not be able to use them successfully. Gilmore 

gave novice POPll programmers a programming problem in which they could 

choose between an iterative or a recursive solution. The novices in this study had 

been taught about both recursion and iteration. In a number of cases, Gilmore 

observed that the student's response to an error message was simply to switch 

from a recursive plan to an iterative plan or vice versa. 

He reports one particular protocol where a subject developed an iterative solution, 

but omitted the necessary initialisation. This turned out to be the only error in this 

subjects solution, but rather than try to edit the program, the subject simply 

switched to a recursive solution. In developing this recursive solution, the subject 

made an analogous error, by failing to implement a function that returned a value 

from the stopping condition. The subject then reverted back to an iterative plan. In 

total, this subject switched between these two possible solutions five times before 

detecting the mistake. Thus, while this subject obviously displayed some 
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knowledge of recursion and iteration, it seems that he was unsure about how to 

use this knowledge in an appropriate fashion. 

4.5 Conclusions 

The work reviewed in this chapter illustrates the wide range of perspectives that 

have been adopted by studies which have addressed the strategic aspects of 

programming skill. Unfortunately, no clear picture emerges from this work. While 

many studies have clearly demonstrated the importance of strategic knowledge, 

they have not presented a unified characterisation of the nature of programming 

strategy. For instance, a number of studies of program comprehension suggest 

that programmers search through the text of a program in a selective fashion, 

attempting to pick out salient structures or beacons which can be used to futher 

guide search or to provide evidence for specific hypotheses about program 

function which are generated during the comprehension process. While many 

resarchers would adhere to this general position, there is some evidence that 

search strategies vary considerably between individuals and that particular forms 

of strategy do not appear to be realted to either comprehension success or to 

differences in expertise. 

Similarly, models of generation strategy have described programming behaviour 

in different ways. In addition, one can derive different, and often conflicting, 

predictions from these models about the strategy that will be adopted by 

programmers. For example, Rist's model of program generation makes very 

specific and detailed predictions about the relationship between the order of 

program generation and expertise. Conversely, the models proposed by Green et 

al. and by Gray and Anderson, while not explicitly concerned with factors relating 

to programming skill, suggest that there will not, in general, be a relationship 

between generation strategy and expertise. 

The work reported in this thesis attempts to provide a conceptual bridge between a 

number of the studies reviewed in this chapter. In particular, the model of 

knowledge restructuring that is proposed in the final cahpter of this thesis adopts 

the general framework suggested by the parsing-gnisrap model in order to account 
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for the cyclical nature of code generation and evaluation that has been observed in 

a number of the experimental studies that are reported later in this thesis. In 

addition, this restructuring model relies centrally upon Rist's elaboration of the 

process of focal expansion in order to explain how representations of 

programming knowledge can be transformed and eventually implemented as 

programs. The intention of this work is twofold. Firstly, to provide a model that 

can account parsimoniously for a wide range of experimental findings, and 

secondly to provide a theoretical basis which might allow some integration of 

previously disparate areas of research. Hence, this model, and the experiments 

reported in this thesis, attempt to account for particular forms of programming 

strategy by demonstrating how strategy might be determined by the programmer's 

knowledge representation, by features of the task language and via their 

interactions. 
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Notes 

1. Software metrics (or more accurately program complexity metrics, since other 

metrics measure different things) are intended to provide a measure of the 

complexity of program code. Such metrics are normally derived from a simple 

count of a number of program surface features, i.e, number of operators or 

operands, etc. 

2. One can again draw parallels here with work in text comprehension, particularly 

Rumelhart's (1977) work on story summarisation. 
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Chapter 5. The role of task language/notational features in 

programming strategy and program comprehension 

5.1 Introduction 

In chapter 2 we suggested that to fully understand problem solving in complex 

interactive domains such as programming we need to consider the effects of task 

and device language features on problem solving behaviour. In this context, Payne 

(1987) suggests that problem solvers need to maintain two problem spaces, a goal 

space and a device space, and that they need to construct a mapping between the 

two. This approach to understanding problem solving in complex environments 

differs from more traditional accounts of problem solving behaviour in two ways. 

On the one hand, operators are not applied directly to objects, rather they are 

effected via a task language which maps operators into action sequences. 

Secondly, the problem space is more complex and must accommodate some 

representation of the device which the problem solver is using. Hence, when 

writing a computer program using a text editor; the programming language 

constitutes the task language, and the commands used to manipulate the editor 

comprise the device language. 

In previous chapters we have alluded to the fact that features of both the task and 

the device language can affect programming behaviour, and it would seem clear 

that any complete account of problem solving in programming must take these 

factors into consideration. The intention of the present chapter is to provide a 

review of studies which have examined the effects of task language features on 

programming behaviour and strategy. Unfortunately, there have been few studies 

which explicitly address the role of device languages in the determination of 

programming strategy, however a small number of studies have at least recognised 

their importance and have attempted to state clearly the contribution that features of 

the device language make to the performance of the programmers observed in 

these studies. Hence, the emphasis of this chapter is concerned with outlining 

features of task languages, and particularly their notational aspects, which have 

been shown to affect programming strategy and program comprehension. 
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Green (1990a) suggests that programming languages embody implicit theories of 

programming, and that language designs broadly reflect the concerns of these 

implicit theories. He suggests that three main stages can be identified in the 

development of implicit theories of programming. These stages reflect the 

historical evolution of programming languages and hence provide a useful 

framework within which to review empirical work which has attempted to 

explicate these implicit theories and to question their validity as accounts of 

programming behaviour. 

5.2 Programming as errorless transcription 

Green (1990a) characterises the first phase in the development of programming 

languages as embodying a theory which views programming tasks as involving an 

errorless transcription between some mental representation of a program and its 

code-based representation. He claims that the Fortran-BASIC tradition epitomises 

this view, and that these languages display a number of basic design features 

which reflect the errorless transcription approach: 

"The Fortran programming system (punched cards) and the Basic line numbering 

system encouraged programmers to create their programs in the order of the text 

-i.e., line 1 of the final text was also the first line to be punched in. Thus, the 

program was fully developed at the start of coding, needing only to be transcribed. 

Fortran and Basic have very few guards against typing errors, which can readily 

create a new text that is syntactically acceptable but not, of course, the intended 

program. By implication, programmers do not make typing errors. 

Neither fortran nor Basic originally supported any use of perceptual cues to help 

indicate structure. Possible cues would have included indented FOR-loops, 

demarcated subroutines, bold face or capitals to indicate particular lexical classes, 

etc. The implication is that programmers can comprehend the program text without 

assistance. 
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The use of GOTOs as the sole method to determine control flow encourages small 

changes but makes large changes extremely tedious. The implication here is 

programmers do not modify their first version except trivially" (p. 123). 

Hence, the errorless transcription view implies that a mental representation of a 

program should be regarded as a series of discrete steps and that programming 

involves translating each of these steps into its coded representation in the target 

programming language. Empirical research, mostly conducted in the 1970's, 

tended to focus upon a number of specific questions which arose from this view. 

For instance, a range of studies attempted to compare the use of GOTOs with 

nested conditionals (see the next section of this chapter for a review of these 

studies). 

Other studies focused upon the individual syntactic constructions of various 

programming languages. For instance, Youngs (1974) analysed the errors made 

by novice and professional programmers according to the statement type where the 

error occurred (e.g., assignment, iteration, GOTO, conditional etc.). One of the 

more interesting results to emerge from Youngs' study was the large proportion of 

errors that were related to control statements (35% for novices and 51% for 

professional programmers). Youngs' collected data from a whole range of 

programming languages and so it is difficult to derive any specific conclusions 

which might inform language design. However, it is interesting to speculate about 

the extent to which the inflexibility of GOTO type control structures might have 

contributed to the errors found by Youngs. 

5.3 The demonstrable correctness view of programming 

The second phase of language development that is outlined in Green's review of 

implicit theories of programming is the so called 'demonstrable correctness' view 

of programming. This view is well represented by the structured programming 

school (Dahl, Dijkstra and Hoare, 1972; Yourdon, 1975) and by those languages 

which embody the principles advocated by this school, particularly Pascal. The 

main principle of the structured programming school is that programmers should 

work according to certain rules and within various constraints, and that this 
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disciplined approach will make it easier to prove that a program so constructed will 

be correct. This, of course, is a mathematical claim. However, in parallel, the 

structured programming school has made additional, and empirically testable 

claims, to the effect that the correct structuring of programs will not only lead to 

reduced errors but will also maximise the likelihood of program comprehension. 

Hence, structured programs will be easier to understand, to write and to debug. 

Here, comprehensibility is equated with structural simplicity and the idea that 

programs can be hierarchically constructed from various simple components. The 

structured programming school advocates two main principles. 

The first principle is that programmers should use well-defined control structures. 

This principle led to the rejection of arbitrary GOTOs. It has been argued that if 

such structures were allowed, more information would be needed in order to 

characterise the progress of control flow in a program. For example, Dijkstra 

(1968) claims that "Our intellectual powers are rather geared to master static 

relations ... and our powers to visualize processes evolving in time are relatively 

poorly developed. For that reason we should do (as wise programmers aware of 

our limitations) our upmost to shorten the conceptual gap between the static 

program and the dynamic process, to make the correspondence between the 

program (spread out in text space) and the process (spread out in time) as trivial as 

possible." Dijkstra then goes on to ask "Suppose that a process, considered as a 

time succession of actions, is stopped after an arbitrary action, what data do we 

have to fix in order that we can redo the process until the very same point?". This 

is taken to suggest that the use of GOTOs to characterise control flow would mean 

that more information would be needed in order to understand the control flow of 

the program, and as a consequence, that programs constructed in such a way 

would be difficult to comprehend. 

The second major principle of the structured programming school is that 

programmers should define and compose data structures and types in a 

hierarchical fashion. According to this view, the programmer is able implement the 

higher levels of a design and represent the lower levels by stubs which simulate 

their function in a simplified way. As the implementation of one level is 

completed, the programmer can then move on to a lower level in the hierarchy and 

implement that in terms of its sub-levels. Ultimately ,the lowest level in the 

hierarchy is implemented using basic programming language facilities. Note that 
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this principle, often called stepwise refinement, is also embodied in many models 

of human problem solving. Moreover, in the area of complexity theory, Simon 

(1962) has argued that systems which survive have three outstanding 

characteristics: they are organised in terms of a hierarchy of sub-systems, these 

sub-systems are often loosely coupled and the sub-systems themselves are highly 

internally cohesive. These three characteristics mirror precisely the main concerns 

of the structured programming school. 

In language design, Pascal reflected these concerns by rejecting GOTOs and by 

instituting, instead, a small repertoire of nestable loops and conditional structures 

to describe control flow. In addition, Pascal enabled programmers to hierarchically 

define and compose data structures and types. Programs built using these 

principles should, if the claims of the structured programming school are correct, 

be easier to comprehend than unstructured programs. However, a second phase of 

empirical research, which attempted to address some of the claims of the 

structured programming school, indicted that structured programming does not 

necessarily constitute a panacea which can eliminate the problems that are typically 

faced by programmers. 

5.3.1 Research on structured programming claims 

For example, Sime, Arblaster and Green (1977) compared the performance of 

novices constructing small programs in three micro-languages (see also Sime, 

Green and Guest, 1973). Each of these micro-languages embodied a different 

control structure; a jump-if structure Gump ), a nested begin else structure 

(nest-BE) and a nested if not end (nest-INE) structure (see figure 5.1). These three 

structures were used since they not only exhibit differences in nesting and jumping 

styles, but also differ in terms of the method used to indicate the scope of 

conditionals within each nesting style. Of these three notations, one (the Nest-BE 

notation) was structured, in that is used begin-end statements to mark conditional 

blocks in the normal way, one was unstructured (the jump notation- a GOTO like 

construct) and one was structured, as in the first case, but also contained 

additional information (the Nest-INE notation). This additional information was 

logically redundant since it could be derived from information already present in 

the program. Hence, in the example illustrated in Figure 5.1, the predicates 
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('juicy', etc.) are restated for the negative arm of the conditional ('end juicy'). The 

main hypothesis of this study, based initially upon the author's intuitions, was that 

this conditional restatement would improve performance. 

Jump 

if hard goto Ll 
if juicy goto L2 
chop roast stop 

L2 fry stop 
L3 boil stop 

Nest-BE 

ifhard then 
begin boil end 

else 
begin 
if juicy then 

begin fry end 
else 

begin chop roast end 
end 

Statement of problem: 

Nest-INE 

if hard: boil 
not hard: 

if juicy: fry 
not juicy: chop roast 
end juicy 

end hard 

Fry: everything which is juicy but not hard 
Boil: everything which is hard 
Chop and roast: everything which is neither hard not juicy 

Figure 5 .1. The three forms of control structure and problem statement used in Sime et al 
(1977). 
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Sime et al showed that both of the nested conditionals led to improved 

performance (in terms of the number of errors in the resulting program) over the 

unstructured notation, however performance was best in the nest-INE condition 

where additional control information was provided. These results may provide 

some general support for the structured programming school, however it is not 

possible to delineate, in this experiment, the effects of structure from the effects of 

providing extra information. Sime et al go on to claim that enhanced performance 

in the nest-INE condition arises because the redundant repetition of predicates 

helps the programmer to 'deprogram', that is to translate the program back into the 

original problem statement. 

Arblaster, Sime and Green (1979), took these ideas further by comparing the 

effects of structured vs unstructured notations on performance. In this study 

Arblaster et al, were interested in exploring the necessity of employing 

hierarchically structured notations, as implied by the structured programming 

school, as opposed to using notations which are structured in other ways. Their 

results demonstrated that several kinds of notational structuring (described as 

hierarchical, decision-table-like, and compromise) can improve program 

comprehension compared to a condition which used an unstructured notation. 

However, the hierarchically structured notation did not give rise to a significant 

improvement in performance compared to the other structured notations. 

The results of the studies ~eported above raise some doubts about the central 

claims made by the structured programming school. In particular, it is not clear 

that structured conditionals improve performance in the way that would be 

predicted. Secondly, it also appears that other forms of structuring, in addition to 

hierarchical structuring, can lead to improved performance. However, these 

results must be interpreted with some caution. Firstly, a study conducted by 

Vessey and Weber (1984a) extended the three languages used by Sime et alto 

include indented and unindented forms of all three conditional structures. In their 

original experiment, Sime et al indented only the nested languages, since they 

claimed that the jump condition could not be indented without considerably 

restricting the syntax of the micro-language. 
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However, Vessey and Weber showed that the jump language could be indented 

with only a slight relaxation of the syntax (see figure 5.2). Their results 

demonstrated that the nested conditionals led to improved performance over the 

JUMP conditional, but only in their unindented forms. In the case of their 

indented forms, Vessey and Weber found little evidence in favour of nested 

languages over unstructured conditionals. Hence, it appears that subjects' 

performance in the tasks studied by Vessey and Weber was determined to a greater 

extent by indentation than was supposed by Sime et al, and this clearly raises 

some doubts about the relative advantages of nested conditionals over other 

conditional structures. 

Indented modified JUMP 

IF hard GOTO L1 
GOTOL4 

L 1 IF green GOTO L2 
GOTOL3 

L2 peel roast stop 
L3 peel grill stop 
L4 IF tall GOTO L5 

GOTOL6 
L5 chop fry stop 
L6 IF juicy GOTO L 7 

GOTOL8 
L7 boil stop 
L8 roast stop 

Figure 5.2. Vessey and Weber showed that the jump language used in the 
Sime et al ( 1977) study could be indented with only a slight relaxation of the 
syntax. 

Another problem with many of these early studies of programming is that the 

questions they addressed were often inappropriate to the kinds of answers that 

such studies could provide. For instance, the primary concern of Sime et al was to 

evaluate the claim that nested conditionals are better than GOTOs. However, 

programming is clearly a complex skill, and it is quite probable that an advantage 

for nested conditionals might be evident in the context of certain programming 

tasks, but be absent in others, and that unstructured control forms might be more 
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useful in different task contexts (see also, Gilmore, 1990). This problem is also 

apparent in other studies, for instance, in Shneiderman's (1976) comparison of 

logical vs arithmetic IF statements in Fortran. The problem here is that research on 

micro-languages simply may not be generalisable to tasks other than the 

constrained problems employed in these studies. In addition, it is not clear 

whether the results of these studies will generalise to professional programmers, 

since they were concerned only with novices. However, Green (1977), has 

demonstrated that presenting professional programmers with hierarchically 

structured programs, together with extra information about the truth-values of 

particular variables could give rise to a significant speed advantage in terms of 

answering certain kinds of comprehension question. 

Vessey and Weber (1984b) have produced a comprehensive review of empirical 

studies which have addressed structured programming claims, including those 

outlined above. They suggests that, in general, the evidence supporting structured 

programming is weak. However, according to Vessey and Weber, this not 

necessarily because the claims made by the structured programming school are 

wrong. Rather, they suggest that these problematic results are "a manifestation of 

poor theory, poor hypotheses and poor methodology". (pg 398). They go on to 

suggest that there are several specific reasons why previous results have turned 

out to be equivocal "First... the theory enunciating the effects of structured 

programming on software practice is rudimentary and inadequate; second .. this 

lack of a theory has inhibited the formation of hypotheses that contribute to both 

understanding and predictive powers; third .. until the theory has been developed, 

it is not possible to identify the strategic hypotheses and, as a consequence carry 

out empirical research; and finally .. the existing empirical work reflects the shoddy 

state of the theory in that it does not effect a coordinated whole, nor has it aspired 

to understanding as opposed to prediction". (pg 406). 

While the research reported above has not made a clear case either for or against 

structured programming, it has demonstrated that for certain tasks, and for certain 

groups of subjects, language features can and do affect programming behaviour. 

In general, we might suggest that the structured programming school has made 

claims which are either too extensive or too vague for proper systematic empirical 

study, and that empirical work has simply mirrored these claims by over 

generalising the significance of its results. 
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5.3.2 Extending work on language features to non-procedural paradigms 

The work we have reviewed so far has been concerned with the effects of 

language features in the procedural language paradigm. However, in principle, 

this work should also apply to other paradigms, since most researchers who have 

studied notational design have been careful to phrase their explanations in terms of 

the general information processing requirements of particular tasks, and the extent 

to which specific notational features might support these requirements. 

In this vein, Gilmore and Green (1984), attempted to test Green's (1977) 

assertion that the mental operations demanded by certain tasks are harder in some 

notations than in others by studying the effects of different notations on 

comprehension tasks. In particular, they were interested in testing the hypothesis 

that it would be easier to answer procedural-type questions than declarative 

questions, given a program with a procedural notation, and conversely, that it 

would be easier to answer declarative-type questions in comparison to procedural 

questions, given a declarative notation. 

Gilmore and Green used four notations in their experiment. Two of these 

notations were procedural and two were declarative, and one of each pair 

contained cues to procedural or declarative information, respectively. One 

procedural notation resembled Pascal and contained cues to circumstantial 

information through the indentation of conditional statement, while the other 

resembled Basic, and used labels and GOTOs, instead of indentation (see Figure 

5.3). Both of the declarative notations are described by Gilmore and Green as 

resembling production systems. In the declarative-uncued condition, the rules 

formed an ordered set, whose antecedent conditions were tested in order. In the 

cued-declarative condition, the rules again fired in order, but unlike the uncued 

condition, rules were displayed even if they contributed no action. Hence, in the 

uncued condition, control information is distributed piecemeal among the rules, 

whereas in the cued condition, all control information is immediately apparent. 
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if both of ANN and JANE goto A 
if not SARH goto C 
SAIL (4) 

C: BIKE (1) 
E: if distance >= gangsize*4 goto D 

BUS (2) 
gotoE 

D: if ANN goto B 
DRIVE (2) 
gotoB 

A: WALK(4) 
if distance >= gangsize*4 goto B 
BUS (2) 
gotoA 

B: BURYLOOT 

a). Proc-No-Cues 

P1: SARAH and at most SAIL (4) 
one of ANN and JANE Turn P1 off 

P2: both ANN and JANE WALK (4) 
Turn P2 off 

P3: at most one of ANN BIKE (1) 
and JANE Turn P3 off 

P4: distance < gangsize*4 BUS (2) 
Turn P2 on 

P5: not ANN DRIVE (2) 
Turn P5 off 

P6: BURY LOOT 
stop 

c). Decl-No-Cues 

begin 
if ANN and JANE then 

begin 
WALK(4); 
while distance<gangsize*4 do 
begin 

BUS (2) 
WALK(4) 

end 
end 
else 
begin 

if SARAH then SAIL (4); 
while distance < gangsize*4 do BUS (2); 

end 
BURY LOOT 

end 

b). Proc-Cues 

(A)SAIL (4) SARAH and at most one of 
nothing ANN and JANE otherwise 

(B)WALK (4) Both of ANN and JANE 
nothing otherwsie 

(C)BIKE (1) at most one of ANN and JANE 
nothing otherwise 

(D)BUS(2), B, D distance<gangsize*4 
nothing otherwsie 

(E)DRIVE (2) not ANN 
nothing otherwise 

(F)BURY LOOT. 

d). Decl-Cues 

Figure 5.3. Examples of the programs used in Gilmore and Green ( 1984 ). The top pair of 
programs illustrate the procedural notations, with cues or without. The bottom pair of programs 
illustrate the two declarative languages. 
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Gilmore and Green asked their subjects to study the programs and then answer a 

series of questions which were intended to tap either sequential or circumstantial 

information. The sequential questions asked what either the next or the previous 

action in the program would be, given the occurrence of some event, while the 

circumstantial questions asked what condition would be true if a particular action 

either had or had not occurred. Subjects were tested in two situations, one in 

which they were able to consult the printed text of the program, and the other 

where they answered questions from memory. 

Their findings provide general support for the idea that specific notations might be 

more suited to particular tasks. Hence, in general, their subjects were able to 

answer the declarative questions more accurately given a declarative notation, 

while the procedural notation facilitated correct responses to the procedural 

questions. However, these effects were weak, except in the condition where 

subjects were working from memory. Hence, the notational structure of the 

program appears to affect the ease with which information can be extracted from 

the printed page and also seems to facilitate recall. The first of these findings is 

perhaps not surprising, however second is rather more interesting, since it 

suggests that the mental representation of a program maintains some features of 

the original notation, and as a corollary that programs are not stored in a uniform 

mental language. 

The idea that all programming languages are represented in some uniform mental 

language which preserves the semantics of the program but not its surface 

features, is implicit in many theories of programming (Soloway and Ehrlich, 

1984; Shneiderman and Mayer, 1977). For instance, the frequent use of memory 

tests to assess program comprehension implicitly assumes that the same problem, 

represented in different notations, will give rise to the same memory 

representation. In support of this, Shneiderman (1977), cites Bransford and 

Franks (1971) who have demonstrated that in prose memory, syntax is rapidly 

forgotten, and that semantics are recalled. 
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5.3.3 Implications for plan-based accounts of programming behaviour 

Moreover, the schema or plan-based account of program comprehension, 

similarly, relies upon the assumption that programs are represented in a generic 

semantic form, and that programming plans will be equally applicable regardless 

of the language being used. In chapter 3, we questioned the validity of this 

assumption, and there is now a significant amount of evidence which suggests that 

such plans are not language independent. For instance, Gilmore and Green (1988) 

have carried out a study which demonstrated that while plans may be useful to 

Pascal programmers, Basic programmers appear to rely to a much greater extent 

upon the control flow information which they are able to derive from the program. 

Hence, it appears that the plan theory may be able to account for program 

comprehension in the context of certain languages but not in others, and this may 

suggest that the plan theory is of significantly less utility that has previously been 

supposed. 

Gilmore and Green (1988), examined the debugging behaviour of experienced 

programmers using two different languages - Basic and Pascal. Their subjects 

were presented with programs which had various structural elements highlighted. 

For instance, some programs had control structure highlighted. Here programs 

were indented in the normal way to provide a perceptual cue to control-flow. 

There have been many studies which have demonstrated the utility of indentation 

as a perceptual cue in the context of tasks that require an understanding of the 

control-flow structure of the program (Miara, Musselman, Navarro and 

Shneiderman, 1983; Kesler, Uram, Magarah-Abed, Fritsche, Amport and 

Dunsmore, 1984), and as such it can provide a useful perceptual cue without 

affecting the perception of other structures. Other programs used in the Gilmore 

and Green study were highlighted in a different way to provide cues to the 

program's plan structure. To achieve this, Gilmore and Green highlighted each 

separate plan in a different colour. The validity of using colour cues to indicate 

structure has been demonstrated independently by VanLaar (1989), who showed 

that colour can supplement indentation in showing control-flow in Pascal 

programs , with some net gain in performance for learners answering a variety of 

comprehension questions. Also, in addition to the two program formats outlined 

above, other programs were presented with no perceptual cues and others with 

both control-flow and plan structure cues. 
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The main intention of the Gilmore and Green study was to determine the way in 

which perceptual cues to different structures in a program can affect the 

performance of programmers in certain tasks. More specifically, they were 

interested in addressing three specific issues that arise from the plan-based view of 

programming. Firstly, they suggest that the existence of plans has mainly been 

inferred from protocol and error analysis, rather than from direct experimental 

evidence. They claim that direct experimental support for the plan-based view 

could be obtained by showing that perceptual cues to plan structure, such as the 

colour cues described above, improve the comprehensibility of programs. 

Secondly, they suggest that the plan theory would claim that plans constitute the 

primary mode of representation for the programming knowledge of experts and 

that plans represent the deep structure of the problem being solved. Gilmore and 

Green suggest that, as a corollary to this, providing a situation in which plans can 

be readily perceived should improve performance on all programming tasks. 

Finally, Gilmore and Green argue that all the existing evidence for plans had been 

obtained from studies of Pascal programmers, with the assumption that plan 

effects will generalise to other languages. By comparing the performance of 

programmers using different languages, Gilmore and Green were able to test this 

plan generalisability assumption. 

In the Gilmore and Green study, these issues were addressed by comparing the 

detection rate and accuracy of their subjects in a debugging task for a variety of 

bug types, in situations where perceptual cues were provided to various program 

structures. Bug types were derived from one of four categories. Firstly, bugs 

could be described as surface level bugs, when they were independent from any 

particular structure in the program. Such bugs are likely to arise from typing errors 

and syntactic slips. For instance, surface level bugs might include missing or 

misplaced quotes or undeclared variables. Control flow bugs occur in the control 

flow of the program, but do not affect other structures, for instance, a missing 

begin statement. Plan structure bugs are, as the name implies, bugs which arise 

from the incorrect implementation of a plan and include such things as updating 

the wrong variable. Finally, there are bugs which are caused by structures 

interacting in the wrong way. For instance, both the control-flow structure and the 

plan structure of a program may be correct, but their interaction may contain 

errors; for example, initialisations within a main loop. 
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Gilmore and Green suggested four specific predictions which correspond to the 

predictions that they.claim are implied by plan-based accounts of programming 

behaviour. Firstly, they suggested that the presence of cues will make no 

difference to the detection of surface errors. Secondly, that indentation cues to 

control flow will improve the detection of control flow errors. Thirdly, that the use 

of colour cues to indicate plan structure will improve the detection of plan errors, 

and finally, that the presence of both cue-types will improve the detection of 

interaction errors. Moreover, they argue that these effects should be evident in the 

case of both Basic and Pascal. 

The main findings of this study pose a number of disturbing implications for 

plan-based accounts of programming, since while all the above hypotheses were 

supported for the Pascal data, none were supported by the data from the Basic 

programmers. The results of this study clearly demonstrate that plan structures are 

psychologically meaningful to Pascal programmers, since perceptual cues to 

plan-based structures give rise to an improvement in performance in plan-related 

tasks. However, plan structure cues did not improve performance in 

non-plan-related tasks, and Gilmore and Green suggest that because of this, plans 

do not represent the deep semantic structure of the problem. Finally, they claim 

that since plan structure cues do not enhance the performance of Basic 

programmers, it appears that such programmers do not view programs in the same 

way as Pascal programmers. While Pascal programmers may be influenced by 

plan structures, it appears that the behaviour of Basic programmers is influenced 

more by other structures, and in particular by control-flow. 

Gilmore and Green interpret their findings as suggesting that certain notations may 

facilitate plan use, while different notations may more readily support the 

extraction and use of other sources of information. In particular, they advance the 

idea that some notations, and in particular Pascal, may be more role-expressive 

than others, and that role-expressiveness may facilitate plan use. Gilmore (1986) 

introduced the idea of role-expressiveness to describe a property of languages 

which facilitates the automisation of a mapping between the problem being solved 

and the programming knowledge that is brought to bear during problem solving. 

He suggests that there are three components to role-expressiveness; 

discriminability, statement-structure mapping and statement-task mapping. 
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Discriminability refers to the ease with which a notation provides access to chunks 

of code, where a chunk may be a single statement or a group of related statements. 

The initial step in perceiving the role of some statement is to differentiate it from 

other structures that surround it, and if this process can be aided then this will 

improve comprehension for certain kinds of task. Gilmore and Green claim that 

this process is facilitated in languages such as Pascal which display a rich set of 

lexical cues. Statement -structure mapping refers to the process of establishing the 

structural role of a statement, independently of the particular problem being 

solved. Gilmore and Green claim that establishing this mapping will be more 

difficult in unstructured languages such as Basic where the same piece of code 

may be used for more than one purpose (for example, as an initialisation or as an 

update. Statement-task mapping is a process which maps the structural role of 

statements to their task role. An example of the difficulties that can arise at this 

level is evidenced in Soloway, Boner and Ehrlich's (1983) observation that novice 

programmers who try to force a problem into a 'read-process' loop make errors 

when they are required to test the terminating condition twice. 

The Gilmore and Green study clearly throws some doubt upon plan-based 

explanations of programming behaviour, and in particular upon the idea that plans 

are generalisable structures which are used during problem solving regardless of 

the programming language being used. In addition, this study points to some 

important notational features of programming languages which appear to underpin 

the ease with which certain structures, including plan structures, can be extracted 

from the program text. However, it appears that there are other explanations for 

the findings of this study which suggest other factors, in addition to notational 

features, which may have given rise to the results obtained. 

For instance, in chapter 6 an experiment is reported which suggests that the 

learning experiences of Pascal and Basic programmers are often very different, 

and that this may have may have been a confounding factor and led to the 

differences in plan comprehension observed in the Gilmore and Green study. This 

experiment demonstrated that Basic programmers who had been taught structured 

programming techniques performed in a very similar manner to the Pascal 

programmers in the Gilmore and Green study, in terms of their ability to use cues 

to plan structure in plan related tasks. Conversely, other Basic programmers, who 
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were not taught structured programming, did not show an improvement in plan 

related tasks in the situation where plan structures were cued. In fact, as in the 

Gilmore and Green study, the performance of this second group was affected to a 

much greater extent by control-flow cues. 

This suggests that the learning experience of programmers may contribute in 

certain ways to their comprehension and information seeking strategies, and that 

structured programming experience may in some way encourage programmers to 

focus upon a program's plan structure even though the notation of the 

programming language used may not facilitate plan use, as in the case of Basic. 

The results of this experiment are interpreted in terms of the broad theory 

presented in this thesis, whereby expertise is seen to be related, in part, to the 

restructuring of programming knowledge. This restructuring process may be 

facilitated by certain forms of programming experience, and especially by 

techniques such as structured programming which emphasise the functional role of 

certain programming constructs and encourage programmers to adopt 

decompositional strategies which suggest a hierarchical structuring of 

programming knowledge. Interpreted in this way, certain forms of programming 

behaviour are seen as dependent upon interactions between knowledge structures 

and notational features, and this suggests that the current polarisation between 

notational and plan-based accounts of programming behaviour may be 

inappropriate. 

5.4 Programming as exploration 

The third phase in Green's taxonomy of language paradigms and implicit 

programming theories reflects the present view of programming. According to 

Green, this view characterises programming as an evolutionary process in which 

various alternatives are explored and their consequences considered. In this way, 

programs are built from preexisting structures which are modified in certain ways 

according to the demands of the particular problem being solved. Recent language 

developments such as Smalltalk embody this evolutionary view of program 

development by encouraging code re-use and by emphasising the process of 

gradual incremental change in software development. 
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In chapter 4 we reviewed a number of studies which have attempted to characterise 

programming in this way. For instance, the parsing-gnisrap model of code 

generation proposed by Green et al (1987 a and b) and Gray and Anderson's 

analysis of change episodes have both emphasised the cyclical nature of 

programming activities. These models have promoted the idea that code is not 

generated in a linear fashion, but is instead generated in fragments - a facet of 

behaviour reflecting certain cognitive limitations - and that these fragments need to 

be continually reinterpreted and evaluated as coding progresses. In chapter 4 a 

detailed description of these models was presented, and this need not be repeated 

here. However, these models make certain predictions about the effects of 

notational features upon the nature of these cyclical coding activities, and it is to 

these that we now turn. 

For instance, the behaviour of the parsing-gnisrap model is determined by a 

number of features, including the effects of certain notational properties of the 

language being used. In particular, Green et al suggest that the behaviour of this 

model is determined in large part by the ease with which already generated code 

fragments can be reinterpreted; that is, remapped back into an internal cognitive 

representation. They claim that this process will be facilitated if the language is 

role-expressive (see above), and in consequence that it supports the programmer's 

perception of the role of each program statement or group of related statements. 

Role-expressiveness, therefore will affect the parsing side of the parsing-gnisrap 

model. However, other language features will affect the generative aspect of 

coding behaviour. 

In particular, languages which are resistant to local change (to use Green's 

terminology- viscous languages (See Green, 1989; 1990b)) will provide little 

support for non-linear generation. For instance, to insert a new line in Basic may 

involve renumbering existing lines and will possibly necessitate readdressing 

control structure assignments. In Pascal, adding a single statement or procedure 

may not be as difficult, however if this necessitates reconstructing the identifier 

hierarchy so that a given procedure can be brought into a lower block, then this 

may have many undesirable repercussions. 

Viscosity is not only a property of task languages, but may also be manifest at the 

device level. For instance, some editors require much more effort to achieve a 
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given action, and a significant proportion of a programmer's behaviour may be 

taken up simply operating an editor. This is especially true when code is not 

generated in a linear fashion and where programmers have to navigate through the 

code. Such device viscosity is reflected in a study of CAD users conducted by 

Whitefield (1985), who found that users would often spend a significant 

proportion of their time simply operating the device and making no progress with 

the task in hand. 

One principle question addressed in the Green et al study was the extent to which 

different languages might affect the distribution of non-linearities during code 

generation. Green et al analysed the behaviour of programmers using three 

languages -BASIC, Pascal and Prolog. These languages were chosen to exemplify 

some important differences in language design. Their results showed that although 

Pascal programmers produced programs with a very similar structure to the Basic 

programmers, the latter group generated code almost linearly, whereas the Pascal 

group engaged in many backward jumps to insert new material into already 

generated structures. Finally, the Prolog group fell somewhere between these two 

extremes in terms of the extent of non-linearities. 

Green et al claim that their results provide evidence for predictions stemming from 

the parsing-gnisrap model, in particular that coding is fitful and sporadic and that 

the extent of this nonlinearity is dependent upon features of the language. They 

explain these results by suggesting that Basic is more viscous than Pascal, causing 

programmers to adopt a strategy which minimises interleaving, and secondly that 

Basic is less role-expressive than Pascal. Hence, Basic programmers will generate 

code in a linear fashion, since they would otherwise experience difficulty 

comprehending it. In the case of Prolog, Green et al are more conjectural about its 

notational properties, however they do suggest that it may rank low on the 

role-expressiveness dimension. In particular, they have observed that there are 

very few cues in Prolog which can be used to indicate the purpose of a specific 

piece of code. For instance, they suggest that it is impossible to know if a Prolog 

variable is to be used for input or output at any one time during the execution of a 

program. 
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5.4.1 Modelling the parsing of notations 

More recently, Green and Borning (1990) have attempted to produce a 

computational model of notation parsing, based upon an extension of Kempen and 

Vosse's (1989) unification based natural language parser. Green and Borning 

refer to their model as a generalised unification parser, since it preserves Kempen 

and Vosse's general approach, but has increased power. In particular, it is capable 

of using typographical features to aid the parsing process. 

Their parsing model is programmed with an elementary grammar of procedural 

language cliches or plans (see figure 5.4). For instance, text patterns representing 

counter plans start with an initialisation statement, in which some identifier is set 

to an exceptional value, commonly zero. Secondly, there will be a statement 

corresponding to a start of loop, followed by an add-1 statement, where an 

identifier is set to itself plus one. Finally there will be an end of loop which 

completes the counter pattern. Other statements may of course intervene between 

these various plan components, however these are ignored during parsing1. 

Green and Borning have extended the Kempen and Vosse parser in various ways 

and in the present context, two of these extensions are of particular relevance. 

Firstly, their model can use display-based features to aid the parsing process. 

Hence, the salience of a particular statement and its corresponding level of 

activation in the parse space can be affected by its indentation level, by its colour 

coding (i.e., as in the Gilmore and Green (1988) study) or by other typographical 

features. 

Secondly, in the Green and Borning model, beacon constructions (Wiedenbeck, 

1986 a and b, and see chapter 4) are assigned permanently raised activation values 

in the lexicon. Green and Borning do not discuss how beacons are identified, 

however they suggest that raising their activation level will have the effect of 

making the model search for beacons. They suggest that an experienced 

programmer will know which constructions are likely to be the most efficient ones 

to parse first (See Brooks, 1983 and chapter 4), and hence their model captures 

this salient behavioral feature of the programming activity. 
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Initialise 

Counter 
[var = NCiients] 
[tab = 1] 
[loopvar = Order] 
[type = while] 

Add-1 
[var = NCiients] 
[tab= 1] 

[var = NCiients 
[tab = 2] 

Begin-loop 
[loopvar = Order] 
[type = while] 

[tab = 1] 

End-loop 

[tab = 1] 
[type = while} 

Figure 5.4. The elementary grammar of procedural language cliches or plans used 

in Green and Borning's parser. 

Their model makes a number of comparative predictions about the ease with which 

various notations can be parsed. In general, parsing difficulty will increase when 

elements in the parse tree, or unification space, have similar activation levels. In 

the context of this model, the probability of unifying any two elements in the parse 

tree depends primarily upon their activation value. Hence, when a programming 

language has few lexical or typographical cues, the parser's ability to differentiate 
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structure will decrease and parsing difficulty will increase correspondingly. For 

example, they suggest that their model would predict that Prolog would be a 

difficult language to parse since it has no conventions for indentation and has 

fewer distinctive typographical constructions than many other languages. 

Green and Boming report that they are attempting to extend their parser to include 

an elementary grammar of Pro log cliches. If their intuitions about the difficulty of 

parsing Prolog are correct, then this is likely to have significant implications for 

both the teaching of Prolog and for associated programming environments. Prolog 

has developed a reputation for being a difficult language to learn, and studies of 

Prolog learning have suggested that this may be because of the difficulties learners 

experience with its underlying conceptual model (Ormerod, Manktelow, Robson 

and Steward, 1986; Ormerod, Manktelow, Steward and Robson; 1990; White, 

1987). In particular, one difficulty arises in determining the execution path from 

the program text, and to ameliorate this, systems which have incorporated 

impressive animations of Pro log execution have been developed (Brayshaw and 

Eisenstadt, 1988; 1989). 

However, as Green and Boming suggest " the difficulty of parsing Prolog 

correctly may have contributed to the difficulty experienced by novices. A 

corollary of our work would be that a Prolog parser which picked out and labelled 

familiar cliches could significantly assist the learner." (pg 956). This would 

parallel work in other languages such as VanLaar's (1989) colour coded Pascal 

environment, and Green and Comah's (1984) 'Programmer's Torch' which was 

designed to highlight cliche structure in Basic. In addition, the Green and Boming 

study draws into question the importance of execution animation over other 

techniques intended to improve program comprehension, and in particular 

techniques which illuminate a program's plan or cliche structure. 

5.5 Conclusions 

The work reviewed in this chapter has demonstrated the effects that certain 

notational properties of programming languages can have on both the nature of 

program generation strategy and upon comprehension success. This work has 

primarily addressed two themes. 
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Much of the early work on notational properties was concerned with evaluating the 

claims made by the structured programming school and, in particular, the idea that 

certain conditional forms will be more comprehensible than others. While this 

exercise has clearly proved to be useful in terms of questioning the basic 

assumptions of this paradigm, it is less clear whether these findings can inform 

notational design outside the narrow class of problems and restricted 

micro-languages that have been studied. In addition, it is questionable, whether 

the results of these studies are generalisable to more complex programming tasks. 

The second phase of research into notational properties has been concerned more 

explicitly with examining the way in which notations can support the cyclical 

generation/evaluation activates that have frequently been observed in the context of 

programming studies. For instance, this work has addressed the way in which 

certain notational properties can affect generation strategy by demonstrating the 

extent to which such properties might support nonlinear generation. In addition, 

this work has suggested that comprehension success, at least in the context of 

certain tasks, is also affected by the notational properties of the language that is 

being used. In particular, it has been shown that task language features can 

influence the ease with which a program text can be decomposed or parsed into its 

constituent plan structures. This second phase of work has led to the description 

of various notational dimensions (Green, 1989) which, it is claimed "apply to 

many types of language ... and control how (or whether) the preferred cognitive 

strategy for design-like tasks can be adopted." (Green, 1989, pg 443). 

In the context of the restructuring model presented in this thesis there appear to be 

at least three primary notational properties or dimensions that are of relevance. 

This model relies upon the notion of focal expansion to explain how programs are 

generated and adopts the basic principle of the parsing-gnisrap model which 

emphasises the fragmentary nature of code generation and evaluation. Hence, the 

ease with which focal structures can be parsed back into plans will be likely to 

affect both program generation strategy and comprehension success. This will 

depend upon the extent to which a particular language can be described as 

role-expressive. In addition, since this restructuring process is proposed to 

underpin the development of expertise, then there should be an interaction between 

expertise and language used, where the languages are here distinguished by the 

extent of their role-expessiveness. 
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Secondly, the extent to which plan structures (as represented in code) are 

contiguously distributed, in a spatial sense, will also affect the success of focal 

expansion. Hence, in languages where plan structures are diffuse, the programmer 

will have to do more work at the device level in order to implement a plan. In 

addition, as we have seen, languages which enable programmers to implement a 

base case or initialisation adjacent to the main procedure may facilitate 

comprehension. In this situation it is not necessary for programmers to link 

together various spatially disparate areas of a program during comprehension in 

order to recreate the program's original plan structure. 

Finally, and related to this, the viscosity of the language will also affect the 

success of focal expansion. The model of knowledge restructuring presented in 

this thesis suggests that focal lines represent a discrete level of design abstraction. 

In addition, the model claims that focal lines will tend to be generated first during 

coding, following a hierarchically levelled approach to design decomposition. 

Hence, if features of the language make it difficult to insert subsidiary plan 

elements then the focal expansion process will be disrupted, and this disruption 

will result in the adoption of different forms of generation strategy. 

Notes 

1. Rich and Wills (1990) present an alternative program parsing method based 

upon a graph parsing technique which takes a program text as input and produces 

plan cliches as output. Rich and Wills claim that this output can be used to 

reconstruct a program's design and automatically generate documentation. 
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Chapter 6. The effects of the possession of design skills upon the 

perception and use of programming plans. 

6.1 Introduction 

In chapter 3 we introduced the notion of the programming plan. It was suggested 

there that descriptions of programming behaviour that have been couched in terms 

of plan theory have provided reasonably successful accounts of novice and expert 

programming behaviour in certain kinds of experimental task. However, more 

recently, the primary claims of the plan theory have been brought into question. In 

particular, subsequent experimental work has questioned the ability of the plan 

theory to account for the existence and the use of plan structures in languages 

other than Pascal. In addition, other work has thrown some doubt upon the 

relationship between programming plans and the development of expertise in 

programming. 

This chapter reports two experiments that address these issues in further detail. 

The first experiment explores the extent to which plan knowledge guides the 

debugging behaviour of experienced programmers. These programmers had 

equivalent levels of experience with the programming language used in this study 

(Basic), however half of this experimental group had received design training. The 

second experiment looks at the recall of programs by design experienced and 

non-design experienced subjects. The intention of these experiments was to 

examine the extent to which the use of programming plans might be generalisable 

to languages other than Pascal and to explore the role played by design skills in the 

development of such plans. This allows us to examine the two central claims of 

the plan theory. Firstly, that programming plans are universal structures used by 

experienced programmers, despite the language being used. Secondly, that plans 

are the defining characteristic of programming expertise. 
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6.1.1 Programming plans and expertise 

Soloway and Ehrlich (1984) present a fairly straightforward view of the 

relationship between plans and expertise. They suggest that experts possess and 

use appropriate plan structures while generating and comprehending programs and 

that novices typically do not. However, little is said about the processes involved 

in becoming an expert. Rist (1985) suggests that expert programmers develop 

both more plans and plans at a higher level than novices, and that the development 

of plans is characteristic of programming expertise. Another possibility is that 

novices may in fact possess an extensive range of plan structures but have 

difficulty mapping these structures onto structures in the target programming 

language. 

Gilmore and Green (1988) claim that the plan theory of programming implies that 

programming plans represent the "underlying deep structure of the programming 

problem" (p. 423). Hence, if novices understand at least some aspect of the 

problem domain, as one might reasonably expect in certain cases, then it would be 

possible to assert that plans exist, and that they represent structures in that domain, 

but that novices have to learn how to express these plans in a particular 

programming language. Knowing that an average is a sum divided by a count 

must clearly be some form of 'natural plan' which would presumably be observed 

in non-programmers. Hence, novices must possess such knowledge if they are 

familiar with the problem domain. One of the limitations of the plan theory of 

programming is that little is known about the sorts of factors that might be 

involved in the development of the ability to map these 'natural plans' onto code 

structures. 

6.1.2 The generalisability of programming plans 

The second major problem with the plan theory of programming is concerned with 

the generalisability of plans to languages other than Pascal. Soloway and Ehrlich 

claim that programming plans are one of the major components of programming 

expertise. 

159 



However, Gilmore and Green (1988), have recently drawn into question the 

generality of the programming plan as a description of the main type of 

representation employed by the expert programmer (see chapters 3 and 5). 

Gilmore and Green suggest that the notation of certain programming languages 

may make those languages amenable or otherwise to the identification and use of 

plans. This suggestion is based upon the finding that Basic programmers are 

unable to benefit from cues to plan structure, while de-bugging programs, in the 

way that Pascal programmers are. 

They conclude that Basic programmers do not appear to employ an abstract 

plan-based representation of a particular program while attempting to understand 

that program, but rely more extensively upon the control flow information 

embedded in the notation. Gilmore and Green suggest that Basic is less "role 

expressive" than other languages. That is that Basic programs are less 

discriminable from each other than are, say Pascal programs. In the case of 

Pascal, they argue that features of the notation of the language, and in particular its 

role expressiveness, make it easier for the programmer to infer the role of a 

particular statement and to discover the relationship between groups of statements 

(see chapter 5). 

This work has a number of implications. Firstly, it suggests that the programming 

plan may not be a universal construct that is common to all programming 

languages (most previous studies on programming plans have been concerned 

only with Pascal or very similar languages). Secondly, that where plan structures 

do exist, they may not constitute the exclusive nor even the primary source of 

information relevant to program comprehension. Problems of this nature challenge 

the fundamental theoretical suppositions which underlie the notion of the 

programming plan and thus create something of an impasse. 

To sum up, previous research appears to suggest two potentially divergent views; 

a) that programming plans are universal natural strategies that characterise the 

cognitive representation of a program and the programming activity of the expert 

programmer and that the existence of plans can be taken to be a reflection of this 

expertise. Such plans are thought to represent the 'deep structure' of the 
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programming problem. This approach might be termed the 'Plans as Natural 

Artifacts view'. 

b) that programming plans might be best regarded, in some circumstances at least, 

as artifacts both of a particular language and the structure that this language 

imposes on the programmer via the constraints of its specific notation. This 

approach might be called the 'Plans as Notational Artifacts view'. 

The two experiments reported in this chapter present a third view on the nature of 

programming plans. Experimental evidence is cited that provides the basis for an 

alternative interpretation to present views, and suggests, in addition, what might 

be regarded as a more parsimonious and consistent analysis of existing 

experimental data. 

6.1.3 The relationship between design experience and programming plans 

The experimental work reported here suggests that both the above interpretations 

of the nature of plans maybe incomplete and that programming plans might be 

more suitably characterised in terms of their specific relationship to the way in 

which programming is taught. It appears that such plans cannot be regarded 

exclusively as natural structures that have evolved independently of learning about 

a language nor can they be considered solely as static properties of a program i.e. 

as mere artifacts of the structure that a particular language might impose. 

The rationale underlying this alternative view on the nature of programming plans 

relates to two factors. Firstly, the way in which the differential learning experience 

of programmers may be reflected in the type of programming language used by a 

specific population of programmers and secondly, the effect that this may have on 

the development and use of programming plans. 

Many experienced programmers will have learnt to program within the context of a 

formal course in which programming itself formed only a part. Programming is 

often taught in conjunction with the development of program design skills. For 

example, major methodologies such as Jackson Structured programming 
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(Jackson, 1975) or one of the more important design notations such as structure 

charts (Constantine and Yourdon, 1979) and design description languages (Chu, 

1978). Such skills are intended by their nature to be independent of the particular 

programming language employed. 

Despite the increasing emphasis placed upon the teaching of program design skills 

it is clear that many programmers are taught to program without the benefit of any 

formal training in program design. Programming is often taught in isolation as an 

adjunct to other subjects (engineering, business etc.). Moreover, it can be seen 

that the type of programming language taught to those groups who also learn 

about design skills, is often radically different than that taught to those who learn a 

language in isolation. Hence one might expect the so called structured languages, 

Pascal, Algol, C and the like to be the mainstays of courses associated with the 

teaching of formal design methods. 

Conversely, Basic often predominates as a general purpose language in groups 

where programming is used to support other activities. Interestingly, this 

dichotomy is also reflected in the differences found in more objective 

classifications of programming languages by usage where Pascal, C and Algol fall 

into a clearly differentiated group of languages, while Basic and Cobol fall into 

another (Doyle and Stretch, 1987). 

Previous experimental studies investigating the nature of programming plans 

across languages have ignored the fact that groups of programmers experienced in 

using different languages, despite exhibiting similar levels of programming 

competence, may have been exposed to widely differing kinds of backgrounds. 

Similarly, studies examining the nature of programming plans within a single 

language, have ignored the possible effects of the teaching of design skills on the 

development and use of such plans. 

It would perhaps be unreasonable to suggest that the proponents of the natural 

artifact view of programming plans would rule out the possible effect of teaching 

on the development of plans. However, the plan theory suggests that plans 

constitute the expert programmer's mental representation of a program and 

consequently that they (plans) represent the deep structure of the problem. 
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However, if the development of plan structures is one of the major defining 

characteristics of expertise, then differences in teaching strategy per se, should 

not affect the nature of that expertise. 

Most design methodologies place an emphasis upon problem decomposition and 

this may facilitate the ability to perceive common methods of solution within and 

between problems. Hence, it might be claimed that 'natural plans' exist, and exist 

within the problem one is trying to solve, but that novices have some difficulty 

expressing these in the target programming language. In addition, these plans or 

features of these plans need not correspond, except perhaps coincidentally, with 

the sorts of structures that arise as a product of the design activity. However, 

'design skills' might facilitate the ability to perceive features of commonality 

between those structures which are the products of design, and are not expressible 

directly in a programming language, and 'natural plans' which in tum form useful 

structures that can be expressed in a programming language. 

An investigation into the role of the effects of the teaching of program design on 

the existence and use of programming plans has a number of important 

implications for our understanding of such plans. If programming plans are to be 

regarded as natural artifacts that represent universal cognitive strategies which in 

some way facilitate the activity of programming by providing the basis for a 

cognitive representation of a program, then one would expect experienced 

programmers, whatever their background, to possess and employ such plans 

while generating or attempting to understand a program. If this is not the case then 

we must clearly rethink our theoretical position on the nature of programming 

plans, because of their assumed universality. 

Denying this universality would mean that proponents of the Natural Artifacts 

view would have to make what might constitute possibly unacceptable 

concessions to their theory in order that it remain consistent. Indeed, if the plan 

theory is not generalisable to languages other than Pascal then clearly it of 

significantly less utility and therefore interest. If one is to view programming plans 

as Notational Artifacts then one might expect certain programming languages to 

facilitate (eg Pascal) or to discourage (eg Basic) the perception of plan-structures 

in that language regardless of the programmer's particular background in design. 
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Of course, if such design courses teach plans or how to find and use them, then it 

would not be surprising in the least to discover that those who have taken such a 

course use plans with more success than those who have not. However, the 

design courses discussed in this chapter were concerned exclusively with the 

teaching of structured design methods (in particular, Jackson structured design) 

and functional decomposition, and not with the explicit teaching of the sorts of 

plan structures identified by the Soloway group. Indeed, the exercises associated 

with these courses required students only to produce program designs and not 

implementations of these designs in any target programming language. 

The experiments reported in this chapter address the hypothesis that programming 

plans can be at least partially characterised as artifacts of design or, as artifacts of 

the teaching of particular program design strategies. Taken as a whole these 

experiments do not assume homogeneity of experience between subject groups, 

rather groups have been chosen precisely because their backgrounds differ in 

terms of the level of design experience possessed by the groups. It must be noted 

however that as far as their ability to generate correct programs and to de-bug 

programs is concerned all groups exhibited equivalent overall levels of 

programming competence. It is interesting to note that most previous studies 

which have examined the role of programming plans in expert programming 

performance have attempted to measure performance factors that relate to either the 

recall or the generation of plan-like structures in programs. Hence programming 

plans are used to both explain the difference between novice and expert 

performance whilst at the same time providing the only measure of that 

performance. This lack of any independent means of evaluating programming 

performance seems to have clouded the theoretical interpretation of such research. 

Two experiments are reported each looking at a separate aspect of the development 

and the nature and role of programming plans. The first experiment is concerned 

with the effects of the cueing of salient information structures in Basic programs 

and the effect that this has on de-bugging for design/ non-design experienced 

programmers. The second experiment examines the recall of plan structures by 

design and non-design experienced programmers. 
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The first experiment follows quite closely a design presented by Gilmore and 

Green (1988), in which Basic and Pascal programmers were asked to find bugs in 

programs in which various information structures were highlighted (see chapter 

5). Gilmore and Green found that the highlighting of plan structures was 

advantageous to experienced Pascal programmers, but of little benefit to Basic 

programmers who appear to rely more extensively on control based information in 

programs. They conclude that the notation of Basic is less 'role expressive', 

making the identification and use of plans more difficult. 

However, another interpretation of these results might be to suggest that Pascal 

programmers are more likely to have access to design based skills than Basic 

programmers, and that these skills facilitate the identification and use of 

plan-based information in programs. Indeed, Gilmore and Green point out that the 

Basic programmers used their experiment were engineering students while the 

Pascal programmers were computer science students. It would not be 

unreasonable to assume that the latter group had some experience of program 

design as most computer science courses now have a program design component. 

In the case of the former group this assumption is less valid since Basic is often 

taught in isolation to the teaching of design skills. Hence, evidence that is put 

forward for the effects of notation on the comprehension of plan structures in 

programs might equally well be interpreted as arising from non-trivial differences 

between the subject groups. 

In fact, Gilmore and Green acknowledge that notational factors and in particular 

'role expressiveness' might not be the only factors that influence the use of 

plan-structures in different programming languages. Indeed, they argue that 

different teaching strategies may provide a different emphases to the way in which 

such structures are perceived in programs. However they say little more about this 

issue except to say that more research is required into the influence of educational 

factors in determining the development of expertise in programming. 

If one considers the "natural artifacts" view of programming plans, as we have 

characterised it, then one would expect no significant or systematic differences to 

exist between groups of design/non-design skilled programmers in terms of the 

benefit of the provision of cues to plan structure as compared to other types of 
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cue. Indeed in the experiment reported by Gilmore and Green, both groups 

exhibited similar overall levels of programming competence (as measured in terms 

of their general ability to debug programs). Hence, if programming plans are the 

major defining characteristic of programming expertise, then cues to plan 

structures in Basic programs should help the expert Basic programmer to detect 

plan-related bugs in the same way that cues to plan structures in Pascal programs 

should aid the expert Pascal programmer in the detection of plan-related bugs. 

However this hypothesis is not supported by the results of the Gilmore and Green 

study. 

The first experiment reported in this chapter has been carried out in order to 

investigate the effects of the possession of design skills on the perception of cues 

to plan-structures in Basic programs. If the notational features of a language, and 

in particular its role expressiveness, are the primary factors that determine whether 

plan-structures can be usefully employed in the comprehension of programs 

written in that language, then cues to plan structure in Basic programs (which 

offer low role expressiveness) should be less useful than cues to other information 

structures, and in particular cues to control-based information. However, if the 

hypothesis that the possession of design skills facilitates and enables the 

programmer to both perceive and use plan structures in programs is correct, then 

cues to plan-structure in Basic should aid the design skilled programmer more than 

the non-design skilled programmer. In addition, if we assume that both of these 

groups are equally competent with the language, then the overall detection and 

correction of bugs by both groups should be broadly comparable. If this is the 

case and design skilled programmers benefit more than non-design skilled 

programmers from the provision of cues to plan structure, then the notion of the 

programming plan cannot provide the basis for a mechanism that can 

straightforwardly explain the nature of expertise in programming. 

The second experiment reported in this chapter is a longitudinal study which is 

concerned with the effects that the teaching of design has on the recall of 

plan-based structures in Basic programs. Looking at the accuracy, speed and the 

order of the recall of programs provides us with the opportunity to examine the 

possible relationships between design experience and the perception and 

comprehension of programs. 
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Soloway and Ehrlich (1984) have analysed the recall of plan and non-plan-based 

Algol programs in order to test their hypothesis that if plan-based structures in 

programs facilitate the comprehension of those programs, then the recall of the 

salient features of plan-based programs is likely to be achieved more quickly and 

with greater accuracy than that of non-plan-based programs (see chapter 3 for a 

more detailed discussion of these experiments). 

According to Soloway and Ehrlich, if programming plans help programmers to 

encode a program more efficiently, then expert programmers should recall first 

those lines (the critical lines) that make programs plan-like before they recall other 

elements of the program. 

Gilmore and Green (1984), again using a program recall paradigm, have examined 

the notion that all programming languages are translated into a single type of 

cognitive representation when they are encoded by the programmer. Positing a 

single, universal, representation of programming knowledge has a strong affinity 

with the ideas which underlie the approach that we have characterised as the 

Natural Artifact view of programming plans. In this study Gilmore and Green 

explored the way in which individuals reproduce aspects of a specific language 

notation when they are asked to recall a program. The results of this study are 

used by the authors to illustrate their contention that the mental or cognitive 

representation of a program maintains certain salient features of the original 

notation of that program and as a corollary that the representation of the 

comprehended version of the program is not stored in a uniform "mental 

language" that is in some way independent of its external form. 

Again we appear to have encountered something of a potential dichotomy between 

the natural and notational views of programming plans. On the one hand, plans are 

proposed as mechanisms through which one can explain the internal cognitive 

structures which underlie the mental representation of programs. On the other 

hand, features of the mental representations of programs (Gilmore and Green do 

not mention plans explicitly) are regarded as notational artifacts that are derived 

from the external structure of the program. 

167 



If we are to claim that design experience (rather than mere programming 

experience alone) facilitates the ability of programmers to use plan-structures in the 

comprehension of programs then we would expect the following hypotheses to be 

supported by the findings of the second experiment reported in this chapter. 

1). During the first trial there should not be a significant interaction between 

Program type (plan-like or unplan-like) and Group (design skilled/non-design 

skilled). 

2). During the second trial this interaction should be significant. 

If these hypotheses are supported we will be in a position to claim firstly, that after 

learning about design, programmers are able to recall plan-structures more 

effectively than before. Secondly, this effect will have been demonstrated to be 

independent of mere programming experience, since both groups attended the 

same Basic programming course and had presumably attained the same level of 

competence in Basic. The conventional interpretation of the programming plan 

would not be able to account straightforwardly for this finding. If programming 

plans are the major characteristic of programming expertise then programmers of 

equal competence -with the same level of exposure to the language- should 

demonstrate a similar level of plan recall. This perhaps highlights again one of the 

fundamental problems of research into programming plans. That is that the notion 

of the programming plan is used to both explain the nature of expertise and 

provide the only measure of that expertise. 

6.2 Experiment 1, the effects of cues to program structures 

6.2.1 METHOD 

Subjects 

A total of 72 students participated in the experiment. One group of 36 subjects 

was drawn from a population of computer science undergraduates all of whom 

had attended a course on program design (Group A). A second group of equal size 
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was recruited from courses in finance, accountancy and engineering. This group 

(Group B) had no experience of program design. Both groups had an equivalent 

level of Basic programming experience amounting to at least 18 months. The 

design courses discussed in this chapter took place over a period of two academic 

terms. During the first term students were instructed in the underlying philosophy 

of structured design and functional decomposition. The second term was given 

over to the application of these techniques, and students participated in design 

exercises for which feedback was provided but no assessment made. Students 

were not expected to produce implementations of their designs in a target 

programming language. 

Materials 

The experimental materials used in this study consisted of three versions of 

programs written in Basic. These programs were based upon a program intended 

to calculate average rainfall (Johnson and Soloway, 1985). Five versions of a 

first (practice) program were created and 10 versions of the remaining two. All 

programs contained two bugs drawn from the Yale Bug Catalogue 1 (Johnson, 

Soloway, Cutler and Draper, 1983). 

These bugs were of three types and were evenly distributed between the programs 

with a maximum of two in each. Ten bugs were unrelated to any particular code 

structure (for example, incorrect operator in arithmetic calculation, typographical 

error etc.), ten were related to control structure (for example, incorrect 

line-number assignment in GOTO statements) and a third class of ten bugs were 

related to the plan structure of the program (for example, no guard for invalid 

input, updating of wrong variable etc.). 

Three representations of each of these programs were established. One 

representation provided no cues, a second used indentation in the normal way to 

reflect the underlying control structures of the program and the third used colour to 

indicate plan structure. In the case of the latter representation, lines of code which 

belonged to the same plan were indicated by presenting them on the screen 

grouped in terms of a particular colour. This representation did not make use of 

indentation. 
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The plan structures used were Input plan with guard, Running total loop plan, 

Counter variable plan and Guarded counter variable plan (Johnson and Soloway, 

1985). 

Figure 6.1 shows an example of one of the programs used in the experiment. 

Figure 6.1 a shows the correct version of the program with plan-structures 

highlighted. Figure 6.1 b illustrates a program which contains a number of errors. 

10 REM avrprob 
20 LET count= 0 
30 LET Sum= 0 
40 REPEAT 
50 HNPUT New 
60 HlF New = 99999 l'lHIEN G01'0 90 
70 ILE1' Sum = Sum + New 
80 LET Count= Count + 1 
90 UNTIL New= 99999 
100 IF Count= 0 THEN PRINT "No legal inputs" ELSE PRINT 

"Average is ..... "; Sum/Count 
110 END 

Figure 6.1a). correct version. 

1 0 REM avrprob 
20 LET count = 0 
30 LET Sum= 0 
40 REPEAT 
50 HNPU1' New 
60 HlF New= 99999 l'lHIEN G01'0 100 
70 ILE1' Sum = Sum + Count 
80 LET Count= Count + 1 
90 UNTIL New= 99999 
100 IF Count= 0 THEN PRINT "No legal inputs" ELSE PRINT 

"Average is ..... "; Sun/Count 
110 END 

Figure 6.1 b). Program with control flow error line 60, plan error line 70, and 
surface error line 100. 

Figure 6.1. An example of a Program used in the first experiment. Different 
fonts represent the colour highlighting of different plans. Lines 20 and 80-
Counter variable plan. Lines 50 and 70 - Running total loop plan. 
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Design 

The experiment was a three factor design. The independent variables were: 

1). The type of structural cue provided- No Cue, Control Cue or Plan Cue. 

2). The level of design experience of the group - Group A, design experience and 

Group B, no design experience. 

3). Bug-type- Surface, control or plan. 

Two factors (I) and (2) were between subjects factors; factor (3) was a 

within-subjects factor. 

The dependent variable was the number of errors detected and corrected in a 

limited, fixed amount of time. 

Procedure 

After a short practice session, in which subjects were given feedback relating to 

their performance, the experimental programs were presented to subjects at 

random on the screen of a microcomputer. Subjects were instructed to attempt to 

find errors in the programs and to highlight these on the screen using a light pen. 

Transcripts of this activity were obtained. Subjects were given a natural language 

specification of the problem (from Johnson and Soloway, 1985) and allowed 1.4 

minutes to locate the bugs in the programs. Subjects were explicitly told that each 

program contained only two bugs. They were then asked to correct these errors 

using a familiar screen editor and were allowed 5 minutes to complete this activity. 

Again, transcripts of this editing activity were obtained for later analysis. 
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6.2.2 Results 

The results of this experiment, represented graphically in figures 6.2 and 6.3, 

were analysed using a three-way analysis of variance. 
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Figure 6.3 The location and correction of errors by design experience and 

cue-category 

This analysis revealed no main effect of design experience, bug-type or cue-type. 

Hence design experience does not appear to improve the programmer's overall 

ability to detect bugs or to use cues. In addition, there was no three-way 

interaction between design skill, cue-type and bug-type. Such an interaction might 

be expected if the possession of design experience impacted upon the 

programmer's general ability to use cues to structure or to detect bugs. Interactions 

between design skill and bug type and design skill and cue type were evident. The 

design skill x bug type interaction was significant (F2,30 = 14.5, p <0.01) as was 

the design skill x cue type interaction CF2,30 = 18.6, p < 0.01). 

This suggests that design experience does have a significant impact upon a 

programmer's ability to detect plan-related bugs and use cues to plan structure. A 

cursory examination of Figures 6.3 and 6.4 suggests that while design skilled 

subjects are able to use plan related cues and to detect plan related bugs, these 

abilities appear to prevail at the expense of an ability to use other types of cue or to 
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detect other types of bugs. Indeed, a significant interaction (F 1 15 = 6.86, p < 
' 

0.05) is evident between design skill, bug category and cue category (omitting 

plan bugs and plan cues). 

6.2.3 Discussion 

These results clearly demonstrate the effect of the possession of design related 

skills on the comprehension of plan-based structures in programs. In general, 

subjects in both groups demonstrated a similar level of programming competence. 

Hence, no main effect on the detection and correction of errors by design/non 

design experienced subjects was found. In fact, the overall percentage rate of error 

detection and repair only differed by two percent between groups for both cue and 

bug category (Bug category: Group A, 56%, Group B, 54%. Cue category: 

Group A, 57%, Group B, 55%). However, the detection and correction of errors 

by the design experienced group increased significantly when plan-structures were 

highlighted or when the errors in question were related to one of these 

plan-structures (see Figures 6.3 and 6.4). This is reflected in the interactional 

effects that were found to exist between the possession of design experience 

(Group) and bug category and design experience (Group) and cue category. 

Contrary to the results of Gilmore and Green (1988), Basic programmers do 

appear to benefit from the provision of cues to plan structure when attempting to 

locate and repair errors in programs. However, it must be noted that this effect is 

only significant for the group that possessed design experience. From their study, 

Gilmore and Green suggest that the failure of Basic programmers to comprehend 

plan structures in programs is a reflection of the strictures of the notation of Basic; 

in particular, that it is less role expressive than Pascal. However, the failure of 

Basic programmers to benefit from cues to plan structure in comparison to Pascal 

programmers might simply be a reflection of the differential design experience 

possessed by each group. 

Advocating the concept of programming plans to explain the difference between 

novice and expert performance in program generation and comprehension would 

therefore appear to be too simple a view. On the basis of the experiment reported 
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above, there does not appear to be a significant degree of uniformity between the 

use of plans by groups of programmers who would be regarded, on the basis of 

their ability to detect and repair errors, to possess very similar levels of 

programming competence. The results of the above experiment challenge both the 

natural and the notational artifact views on programming plans. Such plans appear 

not to be universal natural strategies or constructs that characterise or reflect the 

expertise of the programmer nor can they be regarded merely as notational artifacts 

that are imposed by the constraints of the particular structure of the language in 

question. Plan-structures appear only to provide the basis for the comprehension 

of programs for those programmers trained in design. In addition, plan structures 

are employed in the comprehension of Basic programs despite previous 

suggestions that Basic, because of features of its notation, does not facilitate the 

development and use of plan-like structures. 

Another interesting result is that the ability possessed by design experienced 

programmers to detect plan-related bugs and use cues to plan structures appears to 

hamper their ability to detect control and surface bugs and to make use of control 

and surface cues. In other words design experience might be seen to focus 

attention on plan-like bugs/cues at the expense of other possible sources of 

bugs/cues. Without more research we are not in a position to comment on the 

possibility that in actual programming practice more surface and control bugs may 

infest programs than plan bugs. If this were the case we might be forced to adopt 

the rather disturbing conclusion that the possession of design experience might 

have an overall detrimental effect upon a programmers' ability to detect certain 

types of bugs! 

6.3 Experiment 2, program recall 

6.3.1 Method 

Subjects 

Two groups of first year undergraduate students were employed in this study. 

Participants in both groups had initially at least 6 months experience of Basic 
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programming. One group of subjects (Group B) attended the same course on 

program design that was attended by subjects participating in the first experiment. 

There were 24 subjects in each group. Note that these subjects did not participate 

in experiment 1. 

Materials 

The programs used in this study were again based upon a program intended to 

calculate average rainfall (Johnson and Soloway, 1985) and consisted of 30 lines 

of Basic code. Following the procedure adopted by Soloway and Ehrlich (1984), 

two versions of the program were constructed. One version contained five critical 

lines conveying information relating to three salient plan structures: Calculating a 

running total, calculating a maximum, and establishing a counter variable plan. 

Figure 6.4a shows a fragment of this program with two of its constituent plan 

structures illustrated. A second - unplan-like - version of this program was 

constructed (see figure 6.4b). In this case, following Soloway and Ehrlich (1984), 

the initialisation assignments of the count and sum variables violated the normal 

and correct form of initialisation for the counter variable plan and the running total 

loop plan. Otherwise the programs were intended to be identical: both version had 

the same number of lines and a similar number of operands and operators. 

Design 

The experiment was a three factor design. These factors were:-

1). The type of treatment for each group; exposure to design experience or no 

exposure (Group A and Group B respectively). 

2). The nature of the programs (plan-like or unplan-like). 

3). Performance (number of critical lines correctly recalled in a limited time) on 

first vs second trial. 
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10 REM avrprob 
20 LET count = 0 
30LETSum=O 
40REPEAT 
50 INPUT New 
60 IF New = 99999 THEN GOTO 90 
70 LET Sum = Sum + New 
80 LET Count = Count + 1 
90 UNTIL New = 99999 
100 IF Count= 0 THEN PRINT "No legal inputs" ELSE PRINT 

"Average is ..... "; Sum/Count 

PROGRAM (a) - Plan-like 

10 REM avrprob 
20 LET count = -1 
30 LET Sum = -99999 
40REPEAT 
50 INPUT New 
60 LET Sum = Sum + New 
70 LET Count = Count + 1 
80 UNTIL New = 99999 
90 IF Count= 0 THEN PRINT "No legal inputs" ELSE PRINT 

"Average is ..... "; Sum/Count 

PROGRAM (b)- Unplan-like 

Figure 6.4. Fragments ofprograms used in the second experiment. Two of the 
five critical lines in the program are represented by lines 20 and 30. The plan 
structures represented (in the case of Program a.) are a Running Total Loop Plan 
(lines 30 and 70) and Counter Loop Plan (lines 20 and 80). 
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Procedure 

In the first trial subjects were presented with a program on the screen of a 

microcomputer. Each presentation lasted for 120s. Half of the subjects in each 

group were presented with the plan-like version of the program and the other half 

with the unplan-like version. The assignment of programs to subjects was done at 

random. Immediately after the presentation of the programs subjects were asked to 

attempt to recall the program verbatim and to retype it onto a familiar full-screen 

editor. Subjects were given 300s to complete this task. The screen editor was 

modified so that each depression of the return key (to open a new line) was 

recorded and time-stamped. This enabled a record to be obtained of the temporal 

order of recall. 

Five months after this first trial a second trial was conducted. This trial followed 

the same procedure as the first. During the elapsed time between the first and 

second trials, one group of subjects (Group A) had attended an optional course on 

program design (the content of this course has been outlined in the introduction to 

experiment 1). Subjects in both groups attended the same course on Basic 

programming between the first and second trial. Measures were obtained during 

each trial of the number of correctly recalled critical and non-criticallines and the 

order in which these lines were recalled by both groups. 

6.3.2 Results 

The results of this experiment are shown graphically in figures 6.5 and 6.6. The 

number of critical lines correctly recalled during the first lOOs of the recall session 

in both trials were entered into a three factor analysis of variance with the factors; 

Program type (plan-based or unplan-based), Group (A and B) and Trial (first and 

second). This revealed the following effects; 

a). No main effect of Program type, Group or Trial (all F's < 1.5, NS) 

b). A three way interactionm between Group, Program type and Trial (F1,5 = 
14.5, p < 0.01). 
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No other main or interactional effects were apparent. 

This three-way interaction can be split up into two separate two-way interactions -

one for trial 1, where there should be no significant interaction between 

Program-type and Group, and one for trial 2 when there should be an interaction. 

This is indeed the case. For trial1 the Program type x Group interaction is not 

significant. For trial2 this interaction is highly significant (F 1,5 = 19.43, p < 

0.01). 

In order to ensure that both groups exhibited similar levels of programming 

competence in Basic the results of a simple end of course test were analysed. This 

test involved presenting students with mini programs that they were expected to 

debug. The results of this test, which were marked by someone other than the 

experimenter, were compared for each group and at-test indicated that no 

significant differences did in fact exist between the groups. 

4 
Vl 
0 • • Group A c:: ·-- Vl cao 3 0---0 Group B uO 

'J:j ........ 
·~:: .... 
u ~ ...... ~ 

2 obll 
1-< c:: o.c 
.D::s 
8"d 
::s"d 1 c:: 0 

a=== 
0~ 
:::E~ 

Plan-like Unplan-like 

PROGRAM-TYPE 

Figure 6.5. Mean number of critical lines recalled (first JOOs of recall session) for 

program-type in tria! I. Group A, design experienced. Group B, non-design 

experienced. 
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6.3.3 Discussion 

The only significant effect revealed by the three-way analysis of variance 

discussed in the results section of this experiment was that existing between 

Group, Program-type and Trial. This interaction appears to reflect the increased 

number of plan structures recalled by group A during the second trial. Clearer 

evidence for this effect is to be found in the results of the individual two-way 

analyses. These results show that before design training the groups did not differ. 

However after training, subjects in Group A, the trained group, recalled 

significantly more plan structures than Group B. The conventional interpretation 

of the relationship between programming plans and expertise cannot account for 

this effect. Indeed one might expect plan recall to increase between trials since at 

the second trial, both groups had attended the same programming course and had 
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presumably added to their knowledge of the programming language. Indeed, a 

comparison of the results of the end of course test in Basic for both groups 

suggests that their expertise (at least in debugging) was broadly equivalent. 

However contrary to this expectation, if one compares performance by the groups, 

the increase in the level of recall of plan structures between trails was not 

consistent. 

The results of this experiment suggest that not all experienced programmers use 

plan-like representations to encode programs. This clearly has implications for 

those who advocate the programming plan as a key element in their theoretical 

analysis of expert programming performance. Again the universality of the 

programming plan appears to be drawn into question.In addition to this, 

conventional work into programming plans appears to tacitly adhere to the 

assumption that the recall or the generation of more programming plans is a good 

way to characterise expertise. However, when proper external measures of 

performance and expertise are employed, i.e., in terms of debugging abilities, this 

assumption loses strength. 

6.4 Overall discussion 

Programming plans appear to form useful constructs only for those programmers 

who possess design related skills. Indeed, on the basis of the experiment reported 

above, it would appear that the recall of plan-like structures cannot be used to 

indicate differences between novice and expert programming performance. This is 

because one would not expect significant and systematic differences in 

performance to arise between the two groups of programmers studied. The results 

of the first experiment reported in this paper confirm that where independent 

measures are used to assess performance (i.e., in terms of debugging skills) then 

the difference in overall levels of performance found to exist between those with 

design experience and those without is not significant. This provides additional 

support for the conclusions drawn above and, viewed in tandem with these later 

findings, questions both the universality of programming plans and their use in the 

characterisation of expert programming performance. 
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6.5 General conclusions 

Taken together the results of the experiments reported in this chapter highlight the 

effects of design experience upon the nature and development of programming 

plans. These experiments have shown that the plan theory cannot account 

straightforwardly for the differences between novice and expert programming 

performance. In particular, they clearly show the important role played by the 

acquisition of design-based knowledge in the comprehension of programs. The 

conflict between the natural and the notational approach to programming plans 

may, when viewed in the context of these experiments, turn out to be more 

apparent than real. However, the main conclusion remains valid. That is that 

current views concerning the nature and development of programming plans are 

flawed in two ways. On the one hand, the notational view is too narrow in its 

perspective because of the emphasis it places on notation at the expense of other 

demonstrably important factors. On the other hand, the views expounded by the 

Soloway group reflect a fundamental confusion between the measurement of plans 

and their use in theoretical explanations of expert performance. Hence, neither 

provides a sound theoretical basis for a full psychological theory of programming. 

Clearly the naturalistic and notational views of programming plans are by no 

means mutually exclusive. One might wish to suggest that 'natural' plans exist, 

but that novices have difficulty expressing them in a programming language. 

However, some programming languages may reveal plan components more 

clearly than others (the notational view). A tripartite analysis is proposed here in 

which both of the views described above can be considered valid only when the 

role of design experience is recognised as an important factor in the development 

of plan-related knowledge. By adopting this view, it is possible to provide a 

consistent analysis of existing experimental data. 

Using this framework, it can be argued that while novices have some difficulty 

learning to express plans, they can benefit from training in design. This is because 

although training in design is not concerned with the explicit teaching of 

programming plans, we can see that the design process provides a means of 

applying the salient features of plans, and discovering the links between them. 
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Thus such training is likely to aid the programmer in constructing and/or 

employing the vital mapping between structures in the problem domain and 

structures in the language domain. 

It appears from the experiments reported in this chapter that design training may 

encourage programmers to focus upon plan structures during comprehension and 

debugging activities. A similar finding has been reported by Stone, Jordan and 

Wright (1990), who demonstrated that training in structured programming 

techniques, such as those reported in this chapter, can improve debugging 

performance by "increasing the comprehension of program goals and plans" (pg 

81). They go on to claim that their results "suggest that the value of structured 

programming techniques may be realized more in the programmer's way of 

thinking about a program than in the creation of a structured program per se." (p. 

81). 

Subsequent experiments reported in this thesis suggest that the development of 

expertise in programming does not simply involve the accumulation of plans. 

Rather, programming expertise appears to depend upon the structuring of 

programming knowledge such that certain salient plan elements can be retrieved 

and accessed more quickly. It may be the case that design training facilitates this 

structuring process by encouraging programmers to focus upon the salient 

elements of plans. In addition, this might be expected to enhance the mapping 

between the language and problem domain that is discussed above, by providing a 

means of applying the salient features of plans and establishing the links between 

them. 

The model of programming expertise presented in this thesis will be considered in 

greater depth in chapter 12, where the results of this and subsequent experiments 

are interpreted in a rather more integrated and global context. The experiments 

reported in this chapter contribute to this model, but must be viewed in tandem 

with the other experiments reported in this thesis. Nevertheless, the experiments 

reported in this chapter raise a number of specific issues for the plan theory of 

programming. Firstly, despite a suggestion to the contrary in earlier work, 

programming plans do appear to be generalisable to languages other than Pascal. 

However, only the design experienced programmers involved in this experiment 
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demonstrated significant plan use. Secondly, there does not appear to be a clear 

relationship between the possession of plans and the development of expertise in 

programming. Hence, programmers who might be regarded to possess equivalent 

levels of skill, in terms of their general debugging ability, do not necessarily use 

plans to the same extent. These two findings appear to challenge the central tenets 

of the plan theory as it is currently expressed and clearly raise fundamental doubts 

about its ability to account for the nature and the development of programming 

expertise. 
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Chapter 7. Plan Violation and Programming Expertise: Evidence for 

knowledge restructuring 

7.1 Introduction 

One of the main conclusions of the previous experiment was that programming 

plans do not appear to provide a straightforward account of programming 

expertise. Hence, programmers may exhibit the same general level of 

programming competence in the context of certain tasks, but use plans rather 

differently. One area that has yet to be subjected to experimental analysis is 

concerned with the dynamic aspects of plan use and the relationship between plan 

use and the development of expertise. 

One major criticism of the plan/goal analysis of programming is that it presents a 

fairly limited view of the programming activity. This is particularly true given 

what we know about the role of plans and goals in other problem solving 

domains. Programming plans are proposed as constructs that form the basis for 

distinctions between novice and expert performance, yet little concern has been 

directed toward an analysis of the development and use of plan structures and the 

refinement of goals as programming expertise and knowledge increases. 

Studies of the development of plan structures and goals in other domains suggest 

that the plans that underpin expertise develop through a number of identifiable 

stages. Kay and Black (1984, 1986), for example, have traced the plan acquisition 

process in a text editing domain. They suggest that a complex relationship exists 

between the development of plan structures and increase in expertise. They 

highlight the importance of the refinement of plan structures and the use of 

selection rules as expertise develops. 

In light of this work, the notion that the primary distinction between the novice 

and expert programmer is solely based upon the latter's possession of plan related 

structures would appear to be an oversimplification. Indeed, experts need to not 

only possess plan structures but also know how to use them appropriately. Kay 

and Black (op cit) suggest that during intermediate stages of skill acquisition plan 

structures are already well developed but that genuine expertise tends to be 
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exhibited only when appropriate selection rules are developed to guide the 

implementation ofplans. 

Kay and Black suggest that skill learning in the text editing domain progresses 

through four identifiable stages. The first stage in this description represents the 

naive user who has no text editing experience. They suggest that users bring to 

the task a range of preconceptions about text editing terminology which may or 

may not accord with their interpretations of that terminology as expertise develops. 

The next stage in Kay and Black's description is concerned with the goal of 

overcoming this prior knowledge bias. They suggest that during this phase (which 

they call the initial learning phase) users develop conceptual knowledge structures 

that link specific goals with commands. At this stage, users tend to cluster together 

functionally related commands. For example, INSERT, PUT, REPLACE might 

be grouped together because these commands are used to accomplish the goal of 

adding information. Users tend to modify their initial clustering strategy, based 

upon prior knowledge associations, to one which emphasises the functional links 

between commands. 

The third phase of expertise development is concerned primarily with the 

formation of plans. Once users have acquired a range of basic editing commands 

and goals, they learn that a number of commands can be grouped together in terms 

of the frequency of the use of such commands in accomplishing a particular goal. 

That is, they combine the actions that were organised separately during the phase 

of initial learning. Both Kay and Black and Sebrechts et. al. (1985) provide 

evidence about the nature of the development of knowledge structures during this 

third phase. During early stages users group commands in terms of their 

functional relationships. As expertise develops this grouping tends to occur with 

respect to commands that are used in conjunction to accomplish a particular goal. 

For example, the commands PUT and PICK might be grouped since they are used 

together when the user wants to move an item of text. 

During the final stage in Kay and Black's model, users produce compound plans 

to accomplish major goals and refine the selection rules that are used to choose 

among alternative plans in given situations. At this level goals are linked to plans 

using the conditions in which these compound plans are invoked, whereas, in 
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phase three goals are linked to simple plans, and during phase two merely to 

actions. 

The Kay and Black model suggests that a complex relationship exists between 

expertise and the development of goals and plans in a routine cognitive activity 

such as text editing. This model also has a number of implications for our 

understanding of the role of goals and plans in the programming domain. Previous 

studies of the programming activity suggest that expertise can be characterised 

primarily by the possession of plans or plan related structures and additionally that 

the existence of such plans can be used to make the distinction between the novice 

and expert. In the programming domain little or no concern has been directed 

toward an analysis of the development and refinement of plan structures as 

expertise increases. The Kay and Black description of skill development suggests 

a number of key areas of concern for the analysis of problem solving in 

programming. These can be summarised as follows; 

i). Can the mere existence of plans be taken as an indicator of expertise? 

ii). Are plan structures exhibited at intermediate skill levels? 

iii). Do programmers develop plan selection rules as their expertise develops? 

iv). How are plan structures refined as expertise develops? 

These issues are here addressed via an experimental study of the programming 

activity as programming skill increases. Programmers of varying skill levels 

(Novice, Intermediate and Expert) were presented with a number of Pascal 

programs, each of which contained several blank lines. In addition, a number of 

program fragments were presented with each program. The programmer's task 

was to attempt to state which of the fragments could be used to best complete the 

program; which might be their second choice, and so on. In the first series of 

programs the associated program fragments represented plan structures and 

contraventions of plan structures. 
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For example, Figure 7.1 represents a program intended to calculate the square root 

of a number. The important plan structure in this program might be referred to as a 

Data Guard Plan (Soloway and Ehrlich, 1984). The first program fragment (1) 

illustrates the correct use of the Data Guard Plan. This plan protects the "Sqrt" 

function from trying to take the square root of a negative number. The 'IF' part of 

the statement carries out this check and makes the number positive if necessary. 

The second program fragment (2) represents a contravention of the Data Guard 

Plan. Here the first statement suggests an assignment type initialisation (Num = 
0). This gives rise to the expectation of an assignment update (i.e., Num := Num 

+ 1). However, the Data Guard Plan predicts a read update since using an 

assignment statement would never result in a negative number - making the Data 

Guard Plan in this case superfluous. The third program fragment (3) contravenes 

the plan structure in a more straightforward manner and simply introduces an 

incorrect test for a negative value (Num > 0) in the last statement. 

One might expect, in light of the studies into the development of expertise that 

have been reviewed in this chapter, that the level of expertise possessed by the 

programmer would have some effect upon both their choice of the ordering of 

program fragment and the time taken to make this choice. If the existence of plan 

structures can provide an indication of the programmers expertise or, similarly, if 

such structures facilitate the comprehension of programs, then expert 

programmers might be expected to choose a fragment that best completes the 

program which represents or conforms to a plan structure. 

Indeed, from the results of the Kay and Black studies reviewed in this chapter, it 

might also be expected that programmers of intermediate skill level would make a 

similar choice. This would confirm the finding that plans exist and are used at both 

intermediate and expert skill levels. If plan structures are well represented as 

cognitive schemata, which would be expected in the case of the expert, then the 

time needed by the programmer to make a choice of appropriate program fragment 

(conforming to a plan structure) would presumably be less than that needed when 

such structures are poorly formed (as one might expect in the case of the novice) 

or when plan structures remain unconsolidated (corresponding to the intermediate 

level). 
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The second series of program fragments used in this study represented the correct 

and violated use of program discourse rules. Program discourse rules, according 

to Soloway and Ehrlich, specify the conventions in programming. For example, 

such rules might take the form (following Soloway and Ehrlich, 1984); 

"If there is a test for a condition then the condition must have the potential of being 

true." 

"An IF should be used when a statement body is guaranteed to be executed only 

once and a WHILE used when a statement body may need to be executed 

repeatedly" 

To a large extent rules of programming discourse correspond to the types of 

selection rules used by experts that have been identified in other studies of skilled 

performance. Soloway and Ehrlich (1984), for example, claim that discourse rules 

govern the use of plan structures in programming. That is, they provide an 

indication of the type of plan that is appropriate at a given point in the program 

and, in addition, provide some constraints on the formation of plan structures. 

Figure 7.2 illustrates the representation of a discourse rule and two violations of 

the rule in three program fragments. The discourse rule represented in the program 

is that variable names should reflect their functions. In this example the program is 

intended to calculate either a maximum or a minimum value. 

The first program fragment (1) represents a procedure that conforms to the 

program discourse rule. That is, the variable name Max is used in a procedure 

intended to calculate a maximum value. The second fragment of code (2) 

represents a violation of this discourse rule. This procedure uses the Max variable 

in conjunction with the calculation of a minimum value. The last procedure (3) 

represents a similar violation of this discourse rule but in this case the program 

would produce a run-time error if executed. 

Again, we might expect experts to exhibit a preference for the program fragment 

that represents the correct use of a discourse rule, since at this level of skill the 

selection rules corresponding to the rules of programming discourse will be well 

189 



developed. Kay and Black suggest that expertise is characterised not only by the 

possession of plans but also by the use of appropriate selection rules. This also 

conforms to predictions that stem from the GOMS model (Card, Moran and 

Newell, 1980) of skilled behaviour which places an emphasis on the presence of 

selection rules as a characteristic of expertise. 

At intermediate skill levels it might be expected that programmers, while 

displaying a preference for plan structures, may not exhibit well developed 

selection rules. Hence one might expect that the choice of program fragment used 

in the completion of a program may not accord with a strategy based upon the use 

of such rules. Correspondingly, no particular preference for the program 

fragments that represent discourse rules should be exhibited. This effect should 

also be apparent in the case of the novice programmer. The time taken to produce 

an appropriate ordering of program fragments should also provide some evidence 

about the development and role of program discourse rules at different skill levels. 

In the case of the expert programmer one might expect discourse rules to be well 

developed. Hence, the time taken to decide upon an appropriate ordering of rules 

in a particular circumstance would be less than that required by both the novice 

and the intermediate programmer. In such cases we would hypothesise that rules 

of programming discourse remain undeveloped. 

7.2. Method 

Subjects 

A total of 45 subjects participated in the experiment. These subjects were 

categorised according to experience into Novice, Intermediate and Expert 

programmers. Each of these groups were of equal number. The Novice 

programmers were undergraduates with approximately two months experience of 

Pascal. The Intermediate group were also undergraduates but this group had 

completed a nine month course in Pascal. The Expert group were either teachers of 

Pascal or were employed in industry as programmers. All in the latter group had 

used the language on a regular basis for more than two years. 
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Procedure 

Subjects were given the programs and program fragments (See Figure 7.1 and 

Figure 7.2) in booklet form. These booklets also contained instructions for the 

completion of the task. Subjects were asked to attempt to complete all the 

programs (i.e., to choose the most appropriate ordering of program fragments) as 

quickly as possible. No time limit was imposed on this task and all subjects 

responded to all the programs. Both the ordering of program fragments and the 

time taken for each subject to decide upon this ordering for each program was 

recorded. 
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(1 ) 

(2) 

(3) 

PROGRAM One (input, output), 
VAR Num REAL, 

I INTEGER, 
BEGIN 

Writeln (Num, Sqrt (Num)), 
END, 

END 

FOR I = 1 TO 1 0 DO 
BEGIN 

READ (Num), 
IF Num < 0 THEN Num = -Num, 

Num = 0, 
FOR I = 1 TO 1 0 DO 

BEGIN 
READ (Num), 
IF Num < 0 THEN Num = -Num, 

FOR I = 1 TO 1 0 DO 
BEGIN 

READ (Num), 
IF Num > 0 Then Num = -Num, 

D 

D 

D 

Figure 7.1. A program intended to calculate a Square root illustrating program 
fragments corresponding to ( 1) the correct use of the Data Guard Pian and 
violations of its use (2) and (3). 
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(1) 

(2) 

(3) 

PROGRAM Three (input, output), 
VAR Max, I, Num, INTEGER, 
BEGIN 

END, 

Writeln (Max), 
END 

Max =0 
FOR I = 1 TO 1 0 DO 
BEGIN 

READLN (Num), 
IF Num > Max THEN Max= Num 

Max= 999999 
FOR I = 1 TO 1 0 DO 
BEGIN 

READLN (Num), 
IF Num < Max THEN Max = Num 

Max= 0 
FOR I = 1 TO 1 0 DO 
BEGIN 

READLN (Num), 
IF Num = Max THEN Max = Num 

D 

D 

D 

Figure 7.2. A program illustrating program fragments representing the correct 
use of a program discourse rule ( 1) and violations of that rule (2) and ( 3 ). 
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Materials 

Two sets of programs and program fragments were used in this study. The first 

set of three programs were associated with program fragments that represented 

plan structures and contraventions of plan structures. The three program types 

were as follows: 

Program Type1- A program intended to calculate a square root (See Figure 7.1). 

Program Type 2 - A program intended to calculate an average. 

Program Type 3 - A program intended to calculate a maximum or a minimum 

value. (See Figure 7 .2). 

The plan structures employed (derived from Soloway and Ehrlich, 1984) were as 

follows: 

Plan 1- A Guard Plan (see Figure 7.2). 

Plan 2 - A Running Total Loop Plan. 

Plan 3 - A Search Plan. 

Plan 1 was associated with Program 1, Plan 2 with Program 2 and Plan 3 with 

Program 3. Each program was presented with three program fragments (as in 

Figures 7.1 and 7 .2). One program fragment represented the correct use of the 

plan and the second and third fragments a contravention of plan structures. The 

ordering of program fragments presented with each program was randomised, as 

was the order in which program types occurred. 

The second series of programs consisted of the same program types (Program 

Type 1-3) and a number of associated program fragments. These fragments 

represented program discourse rules and violations of these rules (See Figure 

7.2). The three discourse rules used (Derived from Soloway and Ehrlich, 1984) 

were as follows: 
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Discourse Rule 1 - "If testing for a condition then the condition must have the 

potential of being true." 

Discourse Rule 2- "Do not include statements in the program which will not be 

used." 

Discourse Rule 3 - "Variable names should reflect function." 

Each of the three program types was presented with three associated program 

fragments. One of these program fragments represented the correct use of the 

program discourse rule, a second represented a violation of the rule, but resulted 

in an executable program, and the third violated the discourse rule but resulted in a 

error-prone program (See Figure 7.2). In the same manner as above, discourse 

rule 1 was associated with program 1, discourse rule 2 with program 2 and 

discourse rule 3 with program 3. 

7.3. Results 

Figures 7.3 to 7.6 illustrate the results of this study. Figure 7.3 shows the 

programmer's first choice of program fragment when completing a program. 

These fragments correspond to either a plan structure or to plan structure 

violations. As can be seen, both intermediate and expert programmers choose, in 

the main, to complete the program with the fragment that corresponds to the 

correct use of a plan structure. Conversely, novices do not exhibit a preference for 

plan structures over program fragments representing violations of plan structure. 

These effects were statistically significant. 

There was an overall efect of skill level (F2,28 = 13.64, P < 0.001) and of 

fragment type (plan/plan violation) (F2,28 = 10.62, p < 0.001). In addition, the 

interaction between skill level and fragment type (plan/plan violation) was also 

significant (F456 = 5.92, p < 0.001). Multiple post-hoc comparisons were 

conducted with the Newman-Keuls test, and a significance level of p < 0.01 was 

adopted for all such tests. 
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This procedure indicated that both expert and intermediate programmers choose 

the program fragments representing plan structures more frequently than novices. 

Correspondingly, novices tended to choose fragments representing plan structure 

violations more frequently than both intermediate and expert programmers. None 

of the other contrasts between means was significant. Hence, novices choose 

fragments representing plan structures with approximately the same frequency as 

they choose fragments representing plan structure violations and intermediates 

choose to use the correct plan fragment with about the same frequency as experts. 

14 

12 

10 

4 

2 

Conforming to 
Plan Structure 

Plan Structure 
Violation 
Type -1 

Novice Programmers 

~ Intermediate Programmers 

D Expert Programmers 

Plan Structure 
Violation 
Type- 2 

Program Fragment Type 

Figure 7.3. The frequency with which a program fragment (corresponding to a 

plan structure and violations of plan structure) was choosen as best completing a 

program by novice, intermediate and expert programmers. 
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Figure 7.4 shows the total time taken by novice, intermediate and expert groups to 

make a choice of program fragments and to order them appropriately. Novices 

take the greatest time to order the program fragments, follwed by the intermediate 

group and then by experts. These differences are statistically significant. Novices 

take significantly longer than those in the intermediate group to order program 

fragments (t-test, p < 0.05, two-tailed), and the latter group also take somewhat 

longer than experts (t-test, p < 0.05, two-tailed). 

120 

90 

30 

Novice Intennediate Expert 

Group 

Figure 7.4. Mean time taken to order programfragments (corresponding to a plan 

structure and to violations of plan structure) by novice, intermediate and expert 

programmers. 
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Figure 7.5 shows the mean number of occasions in which program fragments, 

corresponding to the correct and violated use of a program discourse rule, are 

chosen first in the ordering of program fragments by novice, intermediate and 

expert programmers. Here, when asked to complete a program, the expert group 

tend to choose first the program fragment that represents the correct use of a 

program discourse rule. Those in the intermediate group tend to make this choice 

less frequently. Novices exhibit no particular preference for the correct use of a 

discourse rule over program fragments representing contraventions of the rule. 

These effects were statistically significant. 

14 

12 

10 

4 
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Conforming to 
Discourse rule 

Novice Programmers 

~ Intermediate Programmers 

D Expert Programmers 

Discourse rule 
Violation 
Type-1 

Program Fragment 'fype 

Discourse rule 
Violation 
Type- 2 

Figure 7.5. The frequency with which a program fragment (corresponding to a 

discourse rule and to violations of a discourse rule) was choosen as best 

completing a program by novice, intermediate and expert programmers. 
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There was an overall effect of skill level (F2,28 = 8.63, p < 0.001) and of 

fragment type (discourse rule/discourse rule violation)(F2,28 = 19.54, p < 0.001). 

The interaction between skill level and fragment type (discourse rule/discourse rule 

violation) was also significant (F4,56 = 11.46, p < 0.001). Once again, multiple 

post-hoc comparisons were conducted using the Newman-Keuls test, and a 

significance level of p < 0.01 was adopted. This procedure indicated that experts 

choose the program fragment representing the correct use of a program discourse 

rule more frequently than both the novice group and the intermediate group. 

Comparing the choice of program fragments representing the correct and violated 

use of a program discourse rule suggests that experts tend to choose the program 

fragment that represents the correct use of such a rule more frequently than a 

fragment representing a contravention of the rule. The same is true of the 

intermediate group. Conversely, novices show no preference for fragments 

representing the correct use of a discourse rule compared with those representing 

the controvention of such a rule. 

Figure 7.6 shows the total time taken by novice, intermediate and expert groups in 

completing the ordering of program fragments representing discourse rules and 

discourse rule violations. Here, experts tend to complete the task faster than both 

intermediate and novice groups. This is confirmed by further statistical analysis. 

Experts order program fragments faster than both those in the intermediate group 

(t-test, p < 0.05, two-tailed), and those in the novice group (t-test, p < 0.05, 

two-tailed). The intermediate group, in tum, appear to complete this ordering task 

slightly more quickly than those in the novice group, but this difference was not 

significant. 

7 .4. Discussion 

The results of this study suggest that the relationship between programming skills 

and the formation and utilisation of plans and selection rules in programming is by 

no means straightforward. Previous work in this area suggests that expertise is 

characterised primarily by the possession of programming plans and rules of 

programming discourse (Soloway and Ehrlich, 1984). 

199 



120 

30 

Novice Intermediate Expert 
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Figure 7.6. Mean time taken to order program fragments (corresponding to a 

discourse rule and to violations of a discourse rule) by novice, intermediate and 

expert programmers. 

This work, however fails to examine the way in which such plans might be 

formed and the nature of their use as skill in programming develops. The results 

of the experiment reported above suggest that programming plans exist at both 

expert and intermediate skill levels in programming. At both levels such plans 

provide a basis for the comprehension of programs. Both expert and intermediate 

groups are equally likely to choose a program fragment corresponding to a plan 

structure when completing a program. Novices, in contrast appear to exhibit no 
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particular preference for those program fragments representing plan structures 

over those representing plan structure violations. 

One interesting difference in performance that emerged between the expert and 

intermediate groups was that reflected in the time taken to complete the ordering of 

program fragments corresponding to plan structures and to plan structure 

violations. The intermediate group took much longer than the expert group to 

produce such an ordering. This may suggest either a). that while both intermediate 

and expert groups utilise plan based structures, in the case of the former these 

plans remain unconsolidated or b). that the intermediate group are, for some 

reason, unable to easily access or activate these plans. 

These findings would accord with results obtained from studies of the 

development of skilled performance in other problem solving domains. For 

example, Kay and Black (1984) suggest that the existence of plan structures in text 

editing is characteristic of both intermediate and expert performance, but that the 

rules of selection governing the use of appropriate plan structures only develop at 

higher levels of expertise. Such expertise would appear, in addition, to be 

characterised by the development of so called compound plans. Indirect evidence 

for this is adduced by Kay and Black from studies which suggest that as expertise 

develops the time taken to formulate and implement plans decreases. Another 

possible interpretation of this result might be to suggest that experts automate 

some simple generic sub-components of the programming task (these may 

correspond to plan structures). Empirical studies of this knowledge compilation 

process have been reported for general problem solving tasks (Anderson, 1982) 

and within the more specific context of programming (Anderson, 1987; 

Wiedenbeck, 1985). 

The results of the experiment reported in this chapter provide some support for the 

contention that expertise in programming cannot be explained merely by alluding 

to the notion of the so called programming plan. Such plans are used by both 

intermediate and expert programmers. The important distinction between these 

groups would appear to be based more strongly upon the use and deployment of 

appropriate selection rules as expertise develops. 
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This distinction appears to be reflected in the results stemming from an 

examination of the role of program discourse rules in skill development in 

programming. Expert programmers tend to make the most use of program 

discourse rules. Their use of such rules differs significantly from that of 

intermediate programmers who, when completing a program, tend to exhibit no 

particular preference for the program fragment representing the correct use of a 

discourse rule over those violating such rules. This would suggest that an 

important characteristic of expertise is related to both the possession and use of 

program discourse rules. Examining the time taken to order program fragments 

which correspond to discourse rules and to violations of these rules indicates that 

intermediate performance differs little from that of novices. Experts, on the other 

hand, perform the task a great deal faster than both novice and intermediate 

groups. This again supports the view that such discourse rules are an important 

feature of expert performance. 

Existing plan/goal analyses of programmer behaviour provide only a limited 

insight into some of the underlying features of this important problem solving 

activity. Studies in other domains, most notably that of text editing, suggest the 

need to examine in more detail not only the role of plans but also the nature of the 

development and refinement of such plans as expertise increases and, in addition, 

the central role played by selection rules in expert performance. This chapter has 

attempted to highlight the correspondences that exist between plan/goal analyses of 

text editing and those which appertain in programming. Strong similarities have 

emerged between these domains. 

For example, models of problem solving such as that proposed by Kay and Black 

for text editing provide a valuable basis for an analysis of programming. 

Extending the scope of such models to account for performance differences in 

programming has highlighted a number of difficencies in the current plan/goal 

analysis of problem solving within this domain. The present study has attempted 

to address some of these difficencies and by doing so to suggest ways in which 

the plan/goal analysis of programming might be extended. The central theme of the 

chapter - that programming plans alone do not provide an adequate basis for a full 

account of expert problem solving in programming - is supported and the 

plan/goal analysis of programming is extended to reflect the central role played by 

selection rules in expert performance. 
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7.5 General Conclusions 

The results of the experiment reported in this chapter provide general support for 

the idea that the possession of plans per se does not necessarily guarantee the same 

level of programming performance for different groups of subjects. It has been 

suggested that performance differences may be associated with the development 

and refinement of appropriate selection rules and/or with a process of knowledge 

restructuring that may result in the development of compound plans. 

In addition, this process may give rise to the restructuring of knowledge within 

plans and lead to certain structures becoming prominent within the context of 

individual plan structures. The model of programming knowledge presented later 

in this thesis suggests that via this restructuring process, focal plan elements will 

tend become more accessible as expertise develops. Hence, in the context of the 

present experiment, while intermediates appear to be able access the same plan 

knowledge as experts, they are able to achieve this more effectively, as evidenced 

by their greater speed. It may be suggested that this increase in speed results from 

the greater ease with which plans can be retrieved and implemented when focal 

structures are accessible. 
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level attained by the programmer. This chapter endeavours to extend current 

models of programming by emphasising the need to consider in detail not only the 

development of programming strategy, but also the way in which knowledge 

representation and features of the task language interact to give rise to particular 

forms of programming behaviour. 

The studies described previously in this thesis suggest a particular dichotomy 

between theories of programming that emphasise knowledge representation and 

those which stress the effects of language notation. However, these two elements 

are by no means mutually exclusive. The problem facing such theories is one of 

providing explanations for the way in which these factors interact to produce 

observed phenomena. 

8.1.2 Strategy vs Knowledge 

Also, besides questioning the assumed universality of the programming plan, the 

work cited above suggests other problems with the plan theory of programming. 

Bellamy and Gilmore (1990), have compared the coding behaviour of experienced 

programmers using a number of different languages. The intention of this work 

was to examine whether the order of program generation suggested the existence 

of plan-like structures. Their evidence for the use of plan structures in program 

generation was equivocal (see chapter 3). 

Hence, the question that arises is why plans should prevail in the comprehension 

process (as in Soloway's recall experiments) but not during generation? It may be 

that the appearance of plan-based behaviour is determined by comprehension 

strategy rather than knowledge (see chapter 4). Hence, studies which have 

examined recall as opposed to generation may, as Bellamy and Gilmore suggest, 

have tapped post-hoc rationalisations of the programmer's behaviour. Therefore, it 

would seem reasonable that studies investigating such behaviour should aim to 

clarify or make explicit the particular role of strategy versus knowledge. In 

addition, it is clear that studies examining program recall should not be assumed 

necessarily to be tapping the same knowledge structures or programming 

strategies as those found to exist in code generation. 
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8.1.3 Addressing Strategy 

Other problems with the plan notion are that little attention has been paid to a 

consideration of the mechanisms that control plan selection or implementation, to 

the nature of the development of plans with expertise or to the dynamic aspects of 

plan use (see chapter 3). Rist's (1986, 1989) model of the programming activity 

suggests that novices and experts employ very different strategies when 

developing a program to solve a particular problem. Rist claims that expertise is 

characterised by the ability of the programmer to focus upon the most salient parts 

of the plans which comprise a program. These Rist terms the 'focal lines' of the 

plans. Rist suggests that as expertise develops, some plans are automated (such as 

input and output) and initially ignored during design. This enables the programmer 

to direct her attention to the more difficult or novel segments of code. In terms of 

Rist's framework, as expertise increases plans are selected rather than constructed, 

and knowledge of the plan focus reflects this increase in expertise. 

In contrast to Rist's model, Green, Bellamy and Parker (1987) suggest that when 

code is not generated in a strict linear fashion (which they claim is the 'natural' 

development path for the construction of programs; cf Hoc, 1981 ), this is 

primarily because of problems with notational features of the programming 

language (partly because of it's limited 'role-expressiveness') or because of 

constraints imposed by the device language. Besides these two determinants of 

strategy, Green et al (1987), also suggest the importance of the programmer's 

knowledge representation, but in contrast to previous studies that have emphasised 

the role of knowledge representation, their empirical work has focused upon an 

investigation of those features of both the task (programming) language and the 

device language which are thought to determine strategy. 

8.1.4 Towards an integrated developmental framework for understanding 

programming behaviour. 

It is likely that features of the device language, the task language and the 

programmer's knowledge representation interact to determine the nature of 

programming strategy. The work reported in this chapter provides empirical 
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support for a model that has been constructed in order to explain the development 

of programming strategy and to clarify the nature of the interactions between 

programming language and the development of those structures which are 

hypothesised to represent programming knowledge. The aim of this work is 

twofold. Firstly, to provide additional support for the models of coding presented 

by Green et a1 and by Rist and secondly, to extend and elaborate these models by 

exploring the way in which their separate aspects (i.e., Green, Bellamy and 

Parker's emphasis on task language features and the programming environment 

and Rist's on knowledge representation) might be combined to form a single and 

unified developmental framework. This framework aims to show how 

programming strategies change with changes in knowledge representation arising 

via restructuring and to highlight the effects of the notational features of the task 

language on the development of these strategies. 

In order to investigate the strategic aspects of the programming activity the work 

reported here used a method similar to one originally devised by Green et alto 

examine non linearities in the coding process. Green et al, used discontinuities or 

'jumps' in the generation of program text to indicate departures from linearity. For 

this purpose a jump was defined as an editing action which was followed by 

moving the cursor to another location and performing another editing action. An 

extension to this method, which taps more directly the role of knowledge 

representation in the determination of programming strategy, involves examining 

departures from linearity within and between the program's plan structures. This 

method has been used successfully to investigate the more general effects of 

programming language notation and skill differences on strategy (Bellamy and 

Gilmore, 1990). 

Essentially, the method involves identifying the plan structures in code that have 

been generated or reconstructed from memory and then analysing, from transcripts 

of the coding activity, the number of jumps made between lines within the same 

plan structure (intra-plan jumps) and the number of jumps made between lines 

which form part of different plan structures (inter-plan jumps). 

Such jumps can be characterised as the points at which programmers make some 

change in their code. Gray and Anderson (1987) introduce the notion of 
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'change-episodes' to describe these key junctures in the coding process. They 

suggest that change-episodes can be implemented in two distinct ways; either as 

minor local amendments to a program or as major transformations in the 

programs' goal structure. 

Inter and Intra-plan jumps loosely correspond to the categorisation of 

change-episodes proposed by Gray and Anderson. For instance, Intra-plan jumps 

involve small local changes to code while inter-plan jumps may (though will not 

always) imply some change to the program's plan or goal structure. The intention 

of the work reported in this chapter is to extend out current understanding of the 

development of programmers' knowledge representations with increasing 

expertise and to investigate the more general effects of the notation of particular 

languages within this broadly developmental framework. Using the technique 

outlined above a number of issues might be addressed. 

Firstly, if plan structures constitute the underlying cognitive representation of a 

program and are not language dependent, but are instead related to the 

programmer's level of expertise, then clearly this will be reflected in differences in 

the strategic use of plan structures by programmers of different skill levels. 

Secondly, this technique provides a means of assessing the way in which the 

effects of language notation might facilitate or discourage plan use. In contrast to 

the method employed by Green et al, which simply analysed the number of 

distinct non-linearities in coding, here these non-linearities can be examined within 

the context of discrete plan-based knowledge structures. This provides a means of 

examining the interactions that might exist between features of the notation of the 

programming language and the programmer's knowledge representation. It may 

also be the case that features of the notation of programming languages tend to 

assume a greater or lesser role in the determination of strategy as programming 

skill develops. Hence, this technique enables us to examine the more complex 

interactions that might exist between expertise, knowledge representation and 

notation. 

A second measure that provides information about the factors that affect or 

contribute to programming strategy is pause data. Such data has been used to 
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indicate the independence of discrete plan structures in memory. For instance, 

Haberlandt (1980) has found reading time evidence for story episodes as 

independent memory units. Specifically, Haberlandt found that readers paused for 

a greater length of time at the beginnings and ends of episodes in stories. In a 

similar way, Robertson and Black (1983) have shown that pause time increases 

between hypothesised plan boundaries in a text editing task. Reitman and Rueter 

(1980) have invesigated the organisation of programmer's knowledge 

represenations using a free recall technique backed up with collateral converging 

evedence obtained from structures induced from the pattern of recall pauses (see 

chapter 3). 

Within the present context we are interested in the time spent pausing between the 

execution of inter- and intra-plan jumps. This information will have a twofold use. 

Firstly, it will provide evidence for plan boundaries; hence the pause time between 

intra (within) -plan jumps should be less than that occurring between inter 

(between) -plan jumps. Secondly, such data will allow us to investigate issues 

such as whether the ability to locate plan boundaries may differ as a function of 

expertise or is dependent upon salient features of the programming language 

notation. Indeed, the interaction between these elements may turn out to be more 

revealing. For example, it may be the case that the discriminability of language 

structures, which in turn is dependent upon notational features such as 

'role-expressivness', may have a significant role to play as programming skill 

develops, but becomes less important at higher levels of expertise. In this case, the 

ease or difficulty of discriminating between plan structures will be reflected in the 

time spent pausing between inter-plan jumps. 

8.2 Method 

Subjects 

Thirty Six subjects were recruited for this experiment. These subjects were 

classified into 3 groups of equal size according to their programming expertise. 

The novice group consisted of first year undergraduate computer science students 

all of whom had attended a preliminary short course in Pascal. All subjects in this 
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group had some knowledge of Basic, although this was limited to experience 

acquired during ad hoc courses prior to their matriculation. None of these subjects 

expressed the feeling that they could claim any particular expertise in Basic. 

Indeed this prior screening of potential subjects excluded a number of subjects 

from this group because of their wide ranging experience of Basic and 

concomitant knowledge of the language. 

A second group of subjects was classified as intermediate. This group consisted of 

second and final year computer science undergraduates. Subjects in this group had 

completed two single term courses in Pascal, and all had employed the language 

extensively in project work. All subjects in this group professed to being 

reasonably conversant with Basic. Indeed, most of the subjects classified as 

intermediate had used Basic quite extensively during the early stages of their 

course. A final group of expert programmers consisted of subjects drawn from a 

population of teachers of programming and professional programmers employed 

in industry. None of the subjects in this group had less than 3 years post-degree 

programming experience, while a number of members possessed over 10 years 

post -degree experience. 

Materials/Experimental Programs 

Subjects were asked to produce programs from natural language specifications of 

three problems. One of these problems was the 'rainfall problem' (see figures 8.1 

and 8.2) used by Johnson and Soloway (1985). The second problem involved 

determining whether an integer supplied as data was a prime number or not. The 

third problem specification was concerned with the calculation of a maximum and 

a minimum value from a series of numeric keyboard inputs. 
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PROGRAM Rain (INPUT, OUTPUT); 
CONST STOP = 99999; 
VAR Sum, Rain, Max, Ave: REAL; 

Valid, Rainy, Dry: INTEGER; 
BEGIN 

.... 
.... 

' ... 

Sum:= 0; 
Dry:= 0; 
Rainy:= 0 
Max :=0; 
Writeln ('E 
Readln; 
Read (Rain 
WHILER 

nter rainfall'): 

); 
ain < 0 DO 

teln (Rain : 0: 2, 'is not a possible rainfall, 
BEGIN 

Wn 
pleas 
Rea 

END; 
WHILER 

BEGIN 
Su 
IFR 

e try again'); 
d (Rain); 

ain <> STOP DO 

m := Sum + Rain; 
ain = 0 THEN .... 

Dry:= Dry+ 1 .... .... 
EL SE ...,. 

Rain :=Rain + 1; .... ... y y 

t--

GUARDED COUNTER 
VARIABLE PLAN 
- Counts zero inputs -

GUARDED COUNTER 
VARIABLE PLAN 
- Counts positive inputs -

IF Rain> Max THEN Max:= Rain; ADD PARTIAL RESULTS 
Valid:= Rainy+ Dry; •---------- PLAN 
Writeln ('Enter Rainfall'); 
Readln; 
Read (Rain); 
WHILE Rain < 0 DO 

BEGIN 

-Combine counters -

Writeln (Rain: 0 :2, 'is not a possible rainfall, please try again'); 
Read (Rain); 

END; 
END; 

END. 

Figure 8.2. A standard Pascal solution to the rainfall problem with a number of plan structures 
illustrated (from Johnson and Soloway, 1985). 
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Design 

The experiment employed a program generation task. There were two independent 

variables:-

1. Language - Pascal/Basic 

2. Skill level - Novice/Intermediate/Expert 

and two dependent variables:-

1. Number of jumps performed by jump-type classification (Inter/Intra-plan 

jumps) 

2. Length of pause between jumps by jump-type classification (Inter/Intra-plan 

jumps) 

8.4 Procedure 

Subjects were presented with a short description of one of the three experimental 

problems and were asked to generate a solution using a familiar full-screen editor. 

They were allowed 5 minutes to complete this task. Subjects were not allowed to 

use pencil and paper but could make on screen notes if they wished. Subjects were 

asked to produce solutions in both Pascal and Basic, but the order in which they 

were requested to code their solutions in either language was randomised. All 

subjects attempted to generate solutions to all three of the experimental problems. 

The order of presentation of these problems was randomised. Transcripts of all 

on-screen activity were obtained for future analysis using the UMIST MMI 

monitor (Morris, Theaker, Phillips and Love, 1988). This device enables 

non-invasive recording of all user keystrokes and machine responses and provides 

controllable real-time (and half-real time) playback of user activities via the host 

machine. These transcripts were subsequently analysed for the presence of plan 

structures in code, the occurrence and nature of plan jumps and the pause duration 

between jumps. 
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A number of protocols were established in order to ensure a level of consistency 

within these different measures. The presence of plan structures was analysed by a 

group of three experienced programmers, all of whom were briefed about the 

nature of programming plans and were informed which plans might be expected to 

occur in each of the programs. These plans were derived from Johnson and 

Soloway (1985). Each member of the group analysed all the resulting program 

generation transcripts in terms of the expected plan structure of the program. They 

were asked to associate each line of the program with a specific plan. The raters 

were requested to carry out their analysis in terms of the plans identified by the 

experimenter. However, they were encouraged to suggest other plans within the 

program that were not made explicit in the initial plan analysis. It should be noted 

that no new plans were identified during this process. Figure 8.3 shows two 

program fragments illustrating comparable plan structures in Basic and Pascal. 

Plan jumps were defined as follows: Intra-plan jumps were classified as 

movements between a current cursor position to positions within the same plan 

structure. Inter-plan jumps were classified as movements between a current cursor 

position to positions within different plan structures. These protocols applied to 

situations where new text was being inserted or existing text modified. Pause time 

between jumps was recorded in milliseconds, but this level of recording sensitivity 

was not thought necessary for the analysis. Hence, pause time is represented to 

the nearest second. 

Edits to line numbers in Basic and to indentation structure in Pascal were excluded 

from the analysis since neither editing operation has a counterpart in the other 

language. It was thought that inclusion of these data in the analyses could give rise 

to difficulties in the comparison of plan editing between the two languages. 
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BEGIN 
Sum:=O; 
Rain:=O; 

Read (Rain); 
WHILE Rain <> 99999 DO 

BEGIN 
IF Rain<O THEN 

ELSE 
BEGIN 

IF Rain=O THEN 
Vaild := Vaild + 1 

ELSE 
BEGIN 

Vaild := Vaild + 1 
Rainfall := Rainfall + 1 

END; 
Sum :=Sum+ Rain 
IF Rain> Max THEN 

Max :=Rain 
END 

Read (Rain); 

END; 
Average:= SumNalid; 

Figure 8.3a A Pascal program fragment indicating a running total loop plan and an 
average plan 
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50 REM avrprob 

80 LET Count = 0 
90LET Sum =0 
IOOREPEAT 

140 INPUT New 
145 IF New= 99999 THEN GOTO 170 
150 LET Sum= Sum+New 
160 LET Count= Count+ 1 
170 UNTIL New = 99999 

190 IF Count= 0 THEN PRINT "No legal inputs" ELSE PRINT 
"Average is ... "; Sum/Count 

Figure 8.3b). A Basic program fragment indicating a running total loop plan and an 
average plan 

Figure 8.3. Two program fragments representing similar plan structures in Pascal and 
Basic. Note that these programs do not compute exactly the same function. This reflects 
the variation typically found in the subject's answers. 

8.5 Results 

Plan jumps 

Figure 8.4 shows the mean number of inter and intra-plan jumps performed by 

subjects during generation by novice, intermediate and expert programmers using 

either Pascal or Basic. These data were entered into a three-way analyses of 

variance with the following factors in each case: 
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1). Skill level (novice/intermediate/expert) 

2). Jump type (inter/intra-plan jump) 

3). Language (Pascal/Basic) 

No main effect of skill level or language was apparent. There was a significant 

interaction between jump type and skill level (F2,132 = 6.34, p<O.Ol). This 

appears to reflect the orthogonal relationship between inter and intra plan jumps 

with increasing levels of expertise. In addition, a complex three-way interaction 

between language, jump type and skill level was evident.(F2,66 = 3.72, p<0.05). 

Separate ANOV As for the results from each jump-type classification were 

employed in attempt to clarify the nature of this more complex interaction. These 

ANOV As revealed that the skill level x language interaction was significant in the 

case of the inter-plan classification (F2,66 = 8.43, p<O.Ol) but not for the 

intra-plan classification. This interaction appears to be a consequence of the greater 

number of inter-plan jumps performed by intermediate and expert Pascal 

programmers in comparison to their Basic counterparts. There were no other 

significant main or interactional effects. 
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Figure 8.4 Mean number of inter- and intra-plan jumps performed by 

programmers of different skill levels in Pascal and Basic during program 

generation. 
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Pauses 

Pause data (figure 8.5) was analysed in a similar fashion using a three-way 

ANOV A. The three factor levels were the same as above. This analysis indicated 

the following effects: 

There was no main effect of either language or skill level. The effect of jump type 

was highly significant (F2,132 = 18.2, p<0.01). There was a significant 

interaction between skill level and jump type (F2,66 = 5.89, p<0.01) and a 

three-way interaction between language, skill level and jump type (F2,66 = 10.74, 

p<0.01). Again, separate ANOVAs for each jump type classification were carried 

out. This procedure indicated that the language x skill level interaction was 

significant in the case of the Inter-plan classification (F2,66 = 7.55, p<0.01) but 

non significant for the intra-plan classification. 

Additional language comparisons 

A comparison of the average number of plans generated for different programming 

languages (Basic or Pascal) revealed no significant difference between languages 

(t-test). The average length (lines of code) of each plan did not differ significantly 

between languages (t-test). In addition, the average length (lines of code) of Pascal 

and Basic solutions did not differ significantly (t-test). However, novices 

generated significantly fewer plans than both intermediates and experts, while a 

comparison of intermediate and expert performance indicated no significant 

difference in plan generation (t-test). 

A measure of inter-judge scoring reliability was obtained in order to ensure a level 

of concordance between the three judges assessing programs for the presence of 

plans. A high coefficient of concordance was found to exist between judges 

(Kendall's coefficient of concordance W = 0.77, p<O.Ol). 
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In addition, a plan analysis of all the resulting program transcripts was carried out 

by the experimenter in order to attempt to corroborate the results produced by the 

analysts. Both analyses were carried out independently and there was a high level 

of concordance between experimenter and judges analyses in terms of both the 

plans that were identified (W = 0.57, p<0.01) and their identification with 

particular lines of code in the program (W = 0.64, p<0.01). 

The program transcripts were also analysed in terms of the comparative 

distribution of plans in Pascal and Basic. This analysis was undertaken because it 

is possible that the plans generated in one language might be implemented in a 

localised group of statements, and in another language be more widely distributed 

in the program, thus giving rise to problems interpreting the plan editing process. 

Here, all lines in a program that corresponded to the same plan construct were 

identified. Each set of program statements (corresponding to a particular plan) 

were given the same label. Next the distance from the first line of a particular plan 

to other lines comprising that plan were assessed. Hence, if the next line of the 

plan was immediately adjacent to the initial line this was scored as zero, if it 

occurred on the next line it was scored as one, and so on until reaching the last 

statement of a particular plan. This procedure provides a broad measure of the 

distribution of the elements of a particular plan . An average indication of plan 

distribution in the two languages can be computed by summing these distribution 

measures for each plan and dividing this by the total number of lines comprising 

each plan. The average distribution measure for Pascal plans (0.11) did not differ 

significantly from the average distribution measure for Basic plans (0.09), [t-test]. 

The fact that this distribution measure is greater than zero for both languages does 

suggest some plan distribution, however this distribution is minimal and, by and 

large, plans appear to be generated in spatially contiguous blocks of code in both 

Pascal and Basic. 
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8.6 Discussion 

Taken together these data suggest a rather complex relationship between skill 

level, language and programming strategy. While they provide support for 

particular elements within existing theories of programming, they also reveal some 

of the more complex interactions between these elements which are not predicted 

by such theories. For instance, as predicted by Rist (1986), the results of the 

present study indicate changes in the strategic use of plans as skill levels increase. 

Hence, the linear generation mode adopted by novices is replaced by a strategy 

that appears to reflect a development in plan focus as expertise increases. This is 

evidenced by the significant increase in inter-plan jumps with increasing expertise 

and a concomitant decrease in intra-plan jumps during the program generation 

task. These data also support a view of program generation that is similar to 

Jeffries' (1982) analysis of the strategies involved in reading programs. Jeffries 

found that experts read programs in the order in which they would be executed. In 

contrast, novices tend to read programs from beginning to end, in linear order like 

a piece of text. 

In addition, the pause data suggests that as expertise increases the time spent 

pausing between both inter and intra-plan jumps decreases. This may reflect the 

type of speed-up function typically found in other studies of skilled performance 

within both a general problem solving context (Anderson, 1982) and also within 

the programming domain (Anderson, 1987; Wiedenbeck, 1985). Also, evidence 

for plan boundaries is suggested by the interaction between jump type and skill 

level for pause data. Hence, the pause time between inter-plan jumps is greater 

than that between intra-plan jumps for all skill levels. As in other studies 

(Haberlandt, 1980; Reitman and Rueter, 1980; Robertson and Black, 1986) this 

suggests the existence of discrete plan boundaries in the programmer's knowledge 

representation. 

The effects of language on generation strategy are however rather less 

straightforward. The model of coding presented by Green et a1 (1987) predicts a 

clear relationship between the notational features of particular languages and the 

development of programming strategies. Hence, if this model were correct, a 

language such as Basic should inhibit plan use because of certain features of its 
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notation while Pascal, which is thought to offer greater plan discriminability, 

should facilitate plan use. The results of the present study, however, suggest that 

language has little overall effect upon programming strategy. This concurs with 

results obtained by Bellamy and Gilmore ( 1990) which also failed to provide 

evidence for a straightforward relationship between language and programming 

strategy. 

While the results of the present study do not reveal a main effect of language, they 

do indicate a potentially interesting three-way interaction between plan-type, 

language and skill-level. Further analysis suggests that this interaction results from 

the fact that a greater number of inter-plan jumps are performed by intermediate 

and expert Pascal programmers in comparison to their Basic counterparts. One 

reason for this seems to be that the effect of notation in the determination of 

programming strategy plays a greater role as programming skills develop, and 

particularly at intermediate skill levels. 

Additional evidence for this interaction effect is to be found in the analysis of 

pause data during program generation. Once again no main effect language was 

evident, however the language x skill-level interaction was highly significant in the 

case of the inter-plan jump classification. From figure 8.5 it is clear that, for 

intermediates, the length of pause between inter-plan jumps in Pascal is 

significantly less than that occurring between inter-plan jumps in Basic. This may 

suggest that as programming skill develops the notation of the language (and its 

related plan discriminability etc.) has a significant effect upon plan use, but is of 

little relevance as a determinant of strategy at lower and higher skill levels. 

The interpretation of this effect may be quite straightforward. For the novice, plan 

use is hypothesised to be minimal (as demonstrated in the present study), hence 

one would not expect notational factors to play a role. As expertise increases then 

the mean length of pause between inter-plan jumps for Pascal falls sharply. In 

contrast, there is only a slight reduction in the mean length of pause for the Basic 

data. Hence, for Pascal programmers, at the earlier stages of skill development, 

the notation of the language appears to support the use of plan structures. This is 

evidenced by the reduction in the mean length of pause which is taken to be an 

indicator of the ease with which plan structures can be used (selected or 
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implemented). The small decrease in the mean length of pause for Basic 

programmers at early stages of skill development is assumed to support the 

contention that the notation of this language does not support the use of plans. 

At later stages of skill development the results indicate an inversion of the above 

results. Assuming a straightforward notational view we would expect to find a 

linear relationship between the ability to use plans and increasing levels of 

expertise, regardless of language. However, figure 8.5 illustrates that for Pascal 

programmers the rate at which the mean length of pause reduces between 

intermediate and expert skill levels is minimal. For Basic programmers, however, 

there is a decrease in the mean length of pause between these particular skill levels. 

Once again, these results give credence to the idea that at early levels of skill 

development the notational aspects of Pascal support the use of plan structures, 

but once expertise has developed to a certain point the effects of notation become 

less important. For Basic, the development of the ability to use plan structures 

appears to be hindered during the beginning stages of skill development. 

However, the initial adverse effects of notation on plan use soon diminish as 

programmers reach sufficiently high levels of skill. Hence, the question that needs 

to be addressed is why plan use appears to be differentially affected by the 

notational aspects of the programming language at different skill levels. 

Green et al (1987; and see chapter 4) suggest that because of the limitations of 

working memory, programmers need to make use of an external medium (eg the 

VDU screen) as a temporary store for code fragments as they are generated. The 

aim of Parsing is to recreate the original plan structure from these code fragments. 

In addition, features of the notation of the language may aid or hinder plan use. 

The formal structure of the programming language is not the only determinant of 

strategy. According to Green et al, strategy is also affected by the user's 

knowledge of how to perform external tasks- by their knowledge representation. 

However, as we have seen in previous discussion of this work, no consideration 

is given to the way in which the notational features of the programming language 

and the programmer's knowledge representation might interact to determine 

strategy. 
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Green et al claim that their parsing/gnisrap model is a model of expert coding 

behaviour, but the results of the present study suggest that expert programming 

strategies do not appear to be affected by notational features in the way that the 

parsing/gnisrap model would predict. It appears from the data that the 

parsing/gnisrap model provides a reasonable interpretation of intermediate 

performance, where notation appears to influence programming strategy in the 

manner predicted. 

The model would, however, also predict a similar strategy to prevail during expert 

performance. If we assume, not unreasonably, that intermediates and experts have 

similarly constrained working memory, then the only other factor in the 

parsing/gnisrap model, excluding notation, that might influence strategy would be 

the programmer's knowledge representation. Hence, it appears that for experts, 

features of their knowledge representation take precedence over notation as a 

determinant of strategy. 

Different notations are likely to facilitate parsing to a greater or a lesser extent 

(Green, 1989). Hence, in terms of the above interpretation, experts appear to be 

able to make use of some feature of their knowledge representation for programs 

that enables them to parse for particular structures more readily. One way in which 

parsing might be facilitated is via the recognition of 'beacons' which serve to 

indicate the presence of particular program components. Wiedenbeck (1986a, 

1986b) has demonstrated that experts can recall these key lines or beacons much 

better than novices. In addition, the presence of beacons in programs has been 

shown to facilitate program comprehension (Wiedenbeck and Scholtz, 1989). 

These studies suggest that expert programmers possess and are able to access a 

representation of programming knowledge which in some way reflects the 

saliency of these key lines. 

The results of the present study tend to support these findings and in addition 

provide a means of examining the way in which programmers' knowledge 

representations may develop. These data also suggest some quite subtile 

interactions between developments in knowledge representation and general 

notational features of particular languages. Hence, as programming skill develops, 
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features of the programmer's knowledge representation appear to reflect the 

increasing role of 'beacons' and 'focal lines', etc., in the program comprehension 

and generation process. 

Hence, intermediate programmers, whom we might suggest are still involved in 

the process of developing these particular features of their programming 

knowledge, are likely to be affected, to a greater extent than experts, by the ease 

with which they can parse existing program structures back into internal semantic 

representations. The results reported above appear to support this argument and, 

while not providing a basis for the rejection of existing models, clearly indicate the 

need for a framework which can allow for the integration of a range of different 

models in order to explain the richness of this particular form of behaviour. 

8. 7 General Conclusions 

8.7.1 Changes in programming strategy with expertise 

The experiment reported in this chapter has demonstrated that a range of factors 

may contribute to the determination of programming strategy. These factors 

include the development of particular features of the programmer's knowledge 

representation and the way in which the notation of a language might facilitate the 

parsing of code structures into cognitive representations and vice versa. The 

results of the present study provide evidence for changes in strategy which are 

associated with increasing expertise. In terms of existing work, there appear to be 

a number of ways of accounting for these differences in strategy. 

Firstly, one of the outstanding features of expertise in programming, and in other 

domains appears to be the particularly opportunistic nature of preferred cognitive 

strategy for programming and other tasks. Hence, the programming activity 

cannot be characterised as purely sequential, rather it might be better construed as 

consisting of bouts of activity each of which involve the creation of code 

fragments. These fragments are, in tum, continually re-evaluated and modified in 

respect to the particular goal or subgoal currently under consideration. In addition, 

the development of code may be postponed at any time in order that the 
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programmer might direct their attention to other goals or subgoals, possibly in 

response to the recognition of previously unforeseen interactions between code 

structures. Opportunistic strategies of this nature have been highlighted in a 

number of previous studies concerned with both program design (Guindon, 1989; 

Guindon, Krasner and Curtis,1987; Ratcliff and Siddiqi, 1985; Siddiqi, 1985; 

Visser, 1988) and the coding activity (Green et al, 1987). The non-linearities 

observed in the present study, which appear to characterise both expert and 

intermediate program generation behaviour, may provide additional support for 

this opportunistic view of the coding process. 

An alternative view of the strategic changes that appear to accompany increasing 

expertise might be to suggest that programming strategy is transformed from a 

depth-first novice strategy to a breadth-first expert strategy. This position is 

advanced by Jeffries et a1 (1981) who claim that novices adopt a depth-first 

approach to problem solving in programming; that is, they tend to expand only 

one part of a solution at progressive levels of detail. In contrast, experts tend to 

synchronously develop many sub-goals at the same level of abstraction before 

moving on to a lower level. 

While the results of the present study provide evidence that programming strategy 

changes with increasing expertise, they do not provide a means of distinguishing a 

depth-first vs breadth-first view of the programming activity, such as that 

suggested by Jeffries et al ( 1981 ), from an opportunistic characterisation of expert 

programming strategy. However, this study does indicate various factors which 

appear to contribute to the adoption of such strategies or to the ease with which 

they might be supported. The framework advanced below suggests two central 

determinants of programming strategy and stresses the fundamental importance of 

their interaction in the development of strategy. 

8.7.2 The role of knowledge representation in the determination of strategy 

Firstly, it seems clear that the programmer's knowledge representation must 

support the representation of salient code structures. Such structures, which might 

be characterised as 'beacons' or 'focal lines', act as partial descriptions of 
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particular code fragments and provide reminders that a segment of a program may 

need completing at a subsequent stage. In addition, the development of these code 

structures appears to coincide with increasing expertise. This may suggest that as 

expertise develops, knowledge structures change such that the organisation of 

these structures reflects the increasing importance of 'focal lines' and 'beacons' 

etc. Similarly, in the domain of software design, Jeffries, Turner, Polson and 

Atwood (1981) found that although novices used the same general 

problem-solving methods as experts, they lacked skills in two areas: applying 

processes for solving subproblems, and effective ways of representing 

knowledge. Jeffries et al attribute this latter deficit to the inadequacy of the 

organising functions provided by the novice's immature design schema. 

While the present chapter does not seek to deny the existence of generic declaritive 

representations of programming knowledge (i.e., programming plans), it does 

suggest the need to consider the development of an asymmetry in programmers' 

knowledge structures with increasing expertise. Hence, such knowledge 

structures appear to facilitate the representation of the 'focal' aspects of plans, 

while the necessary, yet minor and subordinate parts of plans are represented with 

less saliency. Here, we might the adopt the common view of natural language text 

comprehension (Bower, Black and Turner, 1979; Kintsch, 1974; Rumelhart, 

1975) and conceive of programming knowledge as being represented in terms of 

hierarchically structured schemata, with focal plan elements achiveing prominance 

in each plan or schemata hierarchy. 

This model of knowledge representation in programming will be elaborated later in 

this thesis (chapter 12). While this model clearly does not rule out a plan-based 

approach, it does suggest certain limitations for the plan theory of programming. 

For example, one implication of the present study is that it would appear that the 

plan theory does not provide an adequate basis for a theory of programming 

expertise. Hence, the expert programmer does not simply have more plans than 

the intermediate. Rather, the development of expertise might be better 

characterised as a 'fine-tuning' activity whereby the focal elements of plans are 

identified and the kinds of knowledge asymmetry we have discussed are 

established. 
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It is the case that novice programmers seem to be able to access fewer plans than 

both intermediates and experts. This may mean that the plans novices are able to 

access are poor matches to the current goal under consideration. Hence, novices 

may feel the need to correct these badly-matching plans immediately. This may 

give rise to the finding that novices tend to work on one plan at a time and to the 

associated prevalence of intra-plan jumps that has been observed in the context of 

novice behaviour. Conversely, experts, who have a greater range of plans may be 

able to find better matches to a current goal and hence may be more prepared to 

suspend the development of a particular plan until later. This view of the 

development of programming expertise would suggest that programmers gradually 

acquire program-specific plan constructs and as a consequence one would 

presumably expect intermediates to possess a greater range of plans than novices 

and a correspondingly smaller range than experts. However, the results of the 

present study indicate that experts and intermediates generate the same number and 

range of plans while novices, in comparison, generate significantly fewer plans. 

This provides additional support for other findings reported later in this thesis. In 

particular, intermediate and expert programmers appear to perform at the same 

level when asked to detect plan violations in programs, suggesting a similar level 

of plan knowledge. Novices, by contrast, are very poor at detecting plan 

violations (See chapter 7). 

In the present context, we might suggest that while both intermediates and experts 

have access to the same number and range of plans, in the latter case the 

representation of these plans has become attenuated in order to reflect a growing 

recognition of the importance the focal aspects of these plans. In the final chapter 

of this thesis a framework for understanding programming behaviour is advanced 

which attempts to provide a richer account of the devlopment of knowledge 

representation in programming. Here it is suggested that the behaviour of expert 

programmers is governed largely by the implementation and comprehension of 

focal plan structures. 

The results of the present study contribute to our understanding of the processes 

which underpin schema or plan development, and provides a framework for 

elaborating the relationship between the development of knowledge structures and 

expertise. This is likely to have implications for schema theory as it is applied in 
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other domains, since few studies have been concerned the detailed relationship 

between schema development and expertise. Where this relationship has been 

studied, expertise differences are normally explaned in terms of either the relative 

completeness or incompleteness of schemas (Lesgold et al, 1988) or in terms of 

the presence or absence particular schemas (Soloway, Adelson and Ehrlich, 

1988). In the present context, emphasis is placed upon the way in which 

knowledge is structured rather than upon the presence of schemas or their relative 

completeness. This issue is considered in greater detail in chapter 10 where a 

study is reported that indicates the central importance of schema restructuring in 

the development of expertise. 

8.7.3 Notation as a determinant of strategy 

The second part of our framework is concerned with an analysis of the way in 

which programming language notation might support programming strategy. One 

of the more interesting findings of the present study is that notation does not 

appear to support an opportunistic or a breadth-first strategy to the same degree for 

programmers of different skill levels. That is, the effects of notation on strategy are 

less extensive for experts than for intermediates. In terms of existing theory 

(Green et al, 1987) this effect would not be predicted, since there is no reason to 

believe that features of the task language notation should provide differential 

support for programming strategy, regardless of a programmer's level of 

expertise. 

One way to explain this differential effect might be to suggest that notation and 

knowledge representation interact very strongly to determine strategy. Hence, as 

representations of programming knowledge are in the process of development, as 

we suggest in the case of intermediates, then any additional means of facilitating 

programming strategy, such as might be provided by certain features of the 

notation, are likely to be of particular importance. At higher levels of skill, factors 

relating to the organisation of knowledge appear to play a greater part in the 

determination and the support of programming strategy. 
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In addition, the work reported here suggests a slightly different model of planning 

to those models which are generally advanced as descriptions of the human 

planning activity. Most extant models of planning embody some abstract notion of 

the planning activity in which the nature of the problem representation is not 

shown to have an effect upon the kind of planning or problem solving strategy that 

is invoked. However, within the programming domain it is clear that features of 

the notation of the task language can facilitate, or indeed act to constrain, the 

preferred cognitive strategy that is adopted for this task. This is likely to have nore 

general implications for the study of planning within the range of domains that use 

formal or semi-formal notations to describe aspects of the problem space. 

Consequently, it might be suggested that there are certain dangers in attempting to 

divorce planning models from an analysis of the way in which tasks might be 

represented. 

8.8 Summary 

The framework advanced here suggests a number of implications for our 

understanding of the determinants of programming strategy. In particular, it is 

clear that the role of both notation and knowledge representation cannot be fully 

explained in isolation. This is because these factors appear to interact very strongly 

to determine programming behaviour. Hence, it is only through an analysis of 

these more complex interactions that a comprehensive elaboration of the 

determinants of programming strategy will be forthcoming. This chapter suggests 

the need to consider these interactions within a developmental framework. That is, 

within a context which views the development of programming skill as 

accompanied by subtle changes in the way in which programming knowledge is 

represented. This 'fine tuning' of programming knowledge appears to provide 

support for particular forms of preferred programming strategy. The use of such 

strategies is in tum assisted by features of the language notation, but only during 

the beginning stages of their development. As programming skill increases the role 

of notation appears to take less precedence as a determinant of strategy. 

This analysis suggests that previous studies which have examined the nature of 

programming strategy only provide an interpretive basis within a rather limited 
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context. Hence, such studies, while emphasising the need to consider both 

notation and knowledge representation, have failed to elaborate the relationships 

and interactions between these factors within the general realm of skill 

development in programming. This chapter attempts to build upon the results of 

these studies, whilst at the same time stressing the fundamental nature of the 

interactions between these central determinants of strategy. A comprehensive 

understanding of the strategies involved in a complex task such as programming is 

only likely to be facilitated if we can not only delineate the role of its individual 

components, but also understand in detail the intricate nature of their interactions. 
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Chapter 9. Delineating forms of strategy and their relationship to 

the development of expertise in programming. 

9.1. Introduction 

In the previous chapter an attempt was made to demonstrate the way in which 

strategy may change with increasing levels of programming expertise. However, 

the experiments reported there did not allow for a clear differentiation between 

general forms of program generation strategy. Specifically, the findings reported 

in the last chapter did not enable a distinction to be made between breadth-first 

strategies and depth-first/opportunistic strategy. For that reason, the present 

chapter aims to provide a more detailed analysis of the generation strategies 

exhibited by novice and expert programmers. 

The primary intention of this chapter is concerned with explicating the detailed 

relationship between the knowledge restructuring process that is proposed in this 

thesis and the emergence of particular forms of strategy. In particular, it has been 

suggested that this restructuring process improves the accessibility of particular 

elements of individual program schemata or plans. Moreover, it was suggested in 

the previous chapter that elements which are prominent in the schemata hierarchy 

are likely to be those which are salient to the programmer. 

Extending this analysis further, Rist's concept of 'focal line' was adopted in order 

to provide some means of equating this psychological saliency with specific 

program structures. In terms of this analysis, it was hypothesised that focal lines 

will tend to be generated first during coding, and that programmers, having 

mapped out the general structure of the program at a high level of abstraction, will 

return later to these focal structures in order to elaborate the code surrounding 

them. This prediction is based upon the parsing-gnisrap model, however the 

present analysis endeavours to exten<.f this model by both describing the salient 

aspects of a programmer's knowledge representation and by demonstrating the 

way in which this form of representation can affect programming strategy 

233 



In order to carry out such an analysis, an attempt has been made to define a 

number of explicit levels of abstraction in program structure. This is based 

partially upon Rist's model of focal expansion that was described in chapter 3. 

Additionally, emphasis has been placed upon the derivation of general behavioral 

regularities from data generated from a reasonably large number of subjects. Data 

has been collected from a retrospective analysis of code generation rather than 

from verbal protocols, as in Rist's studies, and this means that the imprecision 

normally involved in classifying salient behavioral aspects of the programming 

activity can be avoided. Collecting data in this way should reduce the inaccuracy 

stemming from the linearisation effects that are common in subjects' verbalisations 

about knowledge structures that have a significant temporal and/or spatial 

dimension (Levelt, 1981). Such effects are likely to be of particular significance 

in studies which use verbal protocols to provide evidence of particular forms of 

strategy. In the context of the present study, however, abstraction levels can be 

related explicitly to fragments of program code as they are generated. Hence, the 

study relies neither upon concurrent verbalisation nor upon potentially imprecise 

protocol classification schemes. 

9.2 The programming task: Nonlinearities and focal expansion 

Rist ( 1989) has proposed a model of program generation which traces the 

evolution of a program through a number of stages (see chapter 3). An explicit 

feature of Rist's model concerns the identification of levels of abstraction in 

program structure. It is claimed that programs are built from simple knowledge 

structures that are merged and combined to form more complex structures. Rist is 

primarily interested in the processes that underlie the plan generation activity and 

central to his theoretical explanation is the idea of focal expansion. 

Focal expansion describes the process of generating a programming plan from a 

so-called 'focal line'. In terms of Rist's account, each programming plan has an 

associated focal line that directly encodes the goal of that plan. For instance a 

'running total loop plan' will be associated with the focal line 'count:=count+ 1'. 

The complete plan will also consist of an initialisation component and some means 

of reading data values into the plan. The production of a program is seen to 

progress through various stages beginning with the implementation of a focal line, 
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its extension to form a complete plan and finally to the creation of an entire 

program through a process of plan merger. 

The emphasis of Rist's model is concerned with the process of plan creation 

through focal expansion, however little attention is paid to the process of plan 

merger. This raises some important issues in the context of the present study. For 

instance, are plans created in a linear order such that the programmer completes 

one plan before moving onto the next? Or, conversely, are the focal lines of plans 

instantiated first to provide an abstract skeletal program structure which can later 

be extended to include less salient plan elements? The model of know lege 

restructuring presented in this thesis would predict the latter, since focal lines are 

taken to represent a single level of abstraction within a program structure. 

Non-focal lines simply extend this plan focus. According to Rist (1989) "The 

(plan) focus ... marks the start of detailed design in the domain of the program" 

(p 403). The emphasis of Rist's model is, however, too constrained (considering, 

in detail, only the move from focal line to programming plan) to explain possible 

interactions between higher-level structures. 

The present study attempts to address the issues outlined above by examining the 

evolution of high and low-level program structures during a program generation 

task. Information obtained from this analysis will provide some indication of the 

form of strategy that is adopted for this task. 

Following Rist, it is assumed that focal and non-focallines represent discrete 

levels of abstraction within the program hierarchy. One implication of the model 

presented in this thesis is that focal lines will be created before non-focal lines. 

Hence, one level of the program hierarchy will be established before lower-levels 

in the hierarchy are expanded. 

Another way of investigating these issues is to explore more explicitly the nature 

of the nonlinearities found to exist in code generation. In the previous chapter an 

experiment was reported which explored these nonlinearities in the context of plan 

generation in programming, but an analysis of nonlinearities can also provide 

more specific evidence for the development of particular forms of strategy. In the 

present context, interest is directed towards the nonlinearites occurring both within 

and between hierarchical levels in program structure. Hence, a number of different 

235 



categories of nonlinearity are possible; jumps between a focal line and another 

focal line; jumps between a non-focal line and other non-focal lines (within the 

program's hierarchical structure). Conversely, jumps may occur between 

hierarchical structures; from focal line to non-focal line or vice versa. 

Although the present study is primarily concerned with the generation strategies 

employed by experts, it has also been possible to investigate novice behaviour 

within this context. Hayes-Roth and Hayes-Roth (1979) suggest that expertise 

may influence the kind of planning model a planner or problem solver brings to 

bear on a particular problem, however no further consideration is given to this 

conjecture. Jeffries et al (1981) have shown that novices tend to adopt a depth-first 

approach to design problem solving while experts favour a breadth-first approach. 

Larkin et al (1980) have demonstrated that experts and novices employ different 

strategies when solving physics problems. Experts tend to work forwards from 

general physical principles to problem goals while novices work backwards from 

the problem goal. With these notable exceptions, many previous studies looking at 

both program tasks and at more general problem solving activities have failed to 

elaborate the mechanisms that underlie the relationship between expertise and the 

use of particular forms of strategy. 

The model presented in this thesis makes two specific claims about the strategies 

that will be adopted for program generation tasks. In the case of experts, a 

top-down or breadth first strategy should be evident since it is suggested that 

programs will be generated in a manner which reflects the hierarchical structure of 

the programmer's knowledge representation. That is, one level of program 

abstraction should be mapped out before other levels are elaborated. Specifically, 

we have suggested that those structures representing focal lines will tend to be 

generated first and that these will later be elaborated to include less salient elements 

at other levels of abstraction. In contrast, it has been suggested that novice and 

intermediate programmers do not typically posses this differentiated form of 

programming knowledge. Hence, for these groups it might be predicted that 

generation will be in schema order, and that this will be reflected in the adoption of 

depth-first or opportunistically orientated strategies. 
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9.3 Participants, Procedure and Tasks 

Forty subjects participated in this study. Subjects were split into two groups of 

equal size. One group of subjects were classified as experts and the other as 

novices. The expert group consisted of programmers/designers with a number of 

years industrial experience (4 to 13 years. Mean, 5.6 years) and of teachers of 

programming and software design, all of whom possessed previous industrial 

software design experience. The novice group comprised a number of Second 

year undergraduate students. Members of this group were drawn from the same 

student cohort and all had been instructed in the basic principles of traditional 

software design practice and structured prograrnrning.Subjects in both groups had 

experience of the programming language employed for this study - Pascal. All 

members of the expert group either taught Pascal or used it extensively in their 

work, while all members of the novice group had attended a first year course in 

Pascal and had used the language for project work. 

Participants were asked to undertake a number of programming tasks of varying 

difficulty. The simplest problem (derived from Johnson and Soloway, 1985) 

required participants to construct a program that would calculate an average and a 

running total from a series of input values. More difficult problems were based 

upon Ratcliffe and Siddiqi's (1985) traffic counting task and a task derived from 

Rist (1989) which required participants to sort 2113 weights into ascending order. 

These problems might be considered to be fairly straightforward by professional 

standards, however it is clear that they demand a significant degree of problem 

solving behaviour- the more difficult tasks taking between 43 and 78 minutes for 

experienced programmers/designers. 

Participants were provided with short natural language specification of the 

problems and were asked to write a program to solve each problem. Participants 

were told that they could make on-screen notes if desired, but were requested not 

to use pen and paper. No time limit was imposed on the tasks. Participants were 

asked to type their programs onto a familiar full-screen editor. All on-screen 

activities were recorded using the UMIST HIMS tool (Theaker et al, 1989); a 

non-invasive recording and replay device providing a number of analysis facilities. 
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[ ]. 
[ ]. 
[ ]. 
[I) Sum:=O; 
[I) Rain:=O; 
[ ]. 
[ ]. 
[ ]. 
[R] Read (Rain); 
Plan} 
[E) WHILE Rain <> 99999 DO 
[M] BEGIN 
[E) IF Rain<O THEN 
[ ]. 
[ ]. 
[M] ELSE 
[M] BEGIN 
[E) IF Rain=O THEN 
[F) 
[M] 
[M] 
[F) 
[F) 
[M] 
[F) 
[E) 
[E) 
[M] 
[E) 
[ ]. 
[ ]. 

Vaild := Vaild + 1 
ELSE 

BEGIN 
Vaild := Vaild + 1 
Rainfall := Rainfall + 1 

END; 
Sum :=Sum+ Rain 
IF Rain> Max THEN 

Max:= Rain 
END 

Writeln ( 'Please enter next value:' ); 

[R] Read (Rain); 
[M] END; 
[F) Average:= SumNalid; 
[ ]. 

{Running Total Variable Plan} 
{Guard Plan} 

{Guard Plan/Running Total Loop 

{Running Total Loop Plan} 

{Guard Plan} 

{Guard Plan} 
{Counter Variable Plan} 

{Counter Variable plan} 
{Guard Plan} 

{Running Total Variable/Loop Plan} 

{Running Total Loop Plan} 

{Average Plan} 

Figure 9.1. Program except illustrating plan structures and statement 
categorisation. [F)= Focal Line; [R] =Read statement; [E)= Extension; 
[!}=Initialisation and [M] =Miscellaneous. 
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The resulting programs were analysed for the presence of common plans by three 

independent raters using a goal hierarchy (Bellamy and Gilmore, 1990; Gray and 

Anderson, 1987). The plans that were identified varied little between the raters. 

For each plan, the raters were asked to identify the focal line of that plan based 

upon the definition provided by Rist (1989). Once again there was high degree of 

agreement between raters regarding the identification of focal lines. Figure 9.1 

presents a program except with plan structures highlighted and illustrates an 

example of the coding scheme used to classify program statements. This coding 

scheme allows each statement to be categorised either as a focal line (a line that 

directly implement a current goal) or as a non-focal line. Non-focal lines may 

consist of statements representing a focal line extension, a plan initialisation or a 

read process (see Rist, 1989). All other statements were classified as 

miscellaneous. 

From the above analysis, and by replying on-screen activity, a retrospective 

analysis of the temporal distribution of focal and non-focal lines was undertaken. 

In addition, a number of nonlinearities could be classified. For this purpose a 

nonlinearity was defined as a jump between one line of code to another. This 

could be either to edit an existing line or to insert a new line. An analysis was 

undertaken of the number of nonlinearities occurring between focal lines; between 

non-focal lines and between focal and non-focal lines and vice versa. 

9.4 Results 

Figure 9.2 shows the mean number of focal and non-focal lines (representing 

different abstraction levels) generated by both novice and expert programmers 

during the experimental session. The number of lines generated within each block 

consists of a simple count of the lines produced (focal or non-focal - according to 

the protocol outlined above) during each 10 minute time period, and is therefore 

not a cumulative count over the entire session. 
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Figure 9.2. Mean nunber of focal and non-focal lines generated by expert and 

novice programmers during each generation block. 

The cumulative mean number of focal lines generated by experts and novices over 

all generation blocks did not differ significantly (t-test) (mean[Novices] = 10.4: 

mean[Experts] = 9.4). Similarly, no difference was evident between the 

cumulative mean number of non-focallines generated by these groups over the 

same period (t-test) (mean[Novices] = 79.1 : mean[Experts] = 72.3). 

These data were entered into a pair of two-way ANOV A's - one constructed with 

the focal line data, and the other with non-focal line data. In each case the two 

factors were: 
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- Group (Expert/Novice) 

-Generation Block (t1 through t6) 

For the focal line data no significant main effects were evident. However, a 

significant interaction between generation block and group (F5,228 = 6.73, p < 

0.001) was apparent. This interaction appears to reflect the decrement in focal line 

generation that can be observed in the case of the expert group as the session 

progressed. The novice group, in contrast, appeared to maintain a fairly constant 

rate of generation throughout the course of the session. Further support for this 

finding was provided by instituting multiple pairwise comparisons of means 

between all adjacent generation blocks using the Newman-Keuls test with a 

significance level of p < 0.01. In the case of the expert group, significant 

differences were found to exist between blocks t1 through t4, with no significant 

differences between t4 through t6. For the novice group there were no significant 

differences in an identical range of post hoc comparisons. 

Similar findings emerge from the non-focal data. Again, no main effects were 

apparent. However, there was a significant interaction between generation block 

and group (F5,228 = 10.32, p < 0.001). Multiple post hoc comparisons of means 

indicated significant differences between blocks t2 through t4 for the expert group, 

reflecting an increasing rate of non-focal line generation during this period. No 

significant differences were evident for all other post hoc comparisons. 

Figure 9.3 shows the number of nonlinearities occurring between and within 

hierarchical level. For this purpose a between hierarchy jump was classified as a 

jump between a focal line and a non-focal line or vice versa and a within hierarchy 

jump as a jump between a focal line and another focal line or between a non-focal 

line and another non-focal line. These data were analysed using a identical 

procedure to the one reported above. 
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Figure 9.3. Mean number of Between and Within-Hierarchy jumps performed by 

novice and expert subjects during each geneartion block. 

The cumulative mean number of within hierarchy jumps for experts and novices 

over all generation blocks did not differ significantly (t-test) (mean[Novices] = 
12.5: mean[Experts] = 10.2). Similarly, no difference was evident between the 

cumulative mean number of between hierarchy jumps for these groups over the 

same period (t-test) (mean[Novices] = 20.9: mean[Experts] = 21.3). 

These data were entered into a pair of two-way ANOVA's- one constructed with 

the within hierarchy data, and the other with between hierarchy data. Again, the 

two factors in both analyses were: 
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-Group (Expert/Novice) 

-Generation Block (t1 through t6) 

In the case of the between hierarchy data no main effects were apparent There 

was, however, a significant interaction between Group and Generation block 

(F5,228 = 4.23, p < 0.001), reflecting the decreasing rate of between hierarchy 

jumps over generation blocks for the expert group. Multiple post hoc comparisons 

reveal significant differences (p<O.Ol) between means for blocks t1 through t4 for 

the expert group. No other post hoc comparisons proved to be significant. 

For the within hierarchy data, there was an interaction between Group and 

Generation block (F5,228 = 5.89, p < 0.001). Here, multiple post hoc 

comparisons indicated significant differences between means for blocks t1 through 

t5 for the expert group. Again, no other sigificant differences were apparent in the 

case of the novice group in an identical range of comparisons. 

9.5 Discussion 

These results clearly have a number of implications for the way in which we might 

attempt to characterise the program generation activity. Firstly, the strategy 

adopted by experienced programmers appears to broadly correspond to the 

adoption of a top-down, hierarchically levelled approach. Hence, the abstract 

structure of the program, represented by the instantiation of focal lines, is mapped 

out at an early stage in the evolution of the program. This high level structure 

provides a framework around which the rest of the program can be built. 

However, at many points during the evolution of the program, programmers can 

be seen to engage in opportunistic behaviour - synchronously generating both 

focal and non-focal structures. Hence, at any particular point during the 

programming activity, behaviour might legitimately be described as opportunistic. 

However, this clearly does not rule out the existence of a more global top-down 

programming strategy. 
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At early stages during program generation, expert programmers make many jumps 

between structures at the same level of abstraction. As the task progresses, 

however, nonlinearities occur between hierarchical levels and strategy is seen to 

become more opportunistically oriented. This corresponds to the findings that 

emerge from the analysis of focaVnon-focalline data reported in the first study. 

Taken together, these findings clearly demonstrate that different forms of strategy 

may be adopted within the context of a single task, and further, that choice of 

strategy may not be primarily determined by task characteristics as suggested by 

existing work (Carroll et al, 1980; Hayes-Roth and Hayes-Roth, 1979). The 

results reported here indicate that during the early stages of the development of a 

program, opportunistic episodes are subsumed within a more general top-down 

approach. However, during later stages, program generation takes on a more 

opportunistic character as programmers begin to perform significantly more jumps 

between distinct hierarchical levels. 

A rather different picture emerges in the context of novice behaviour. Less 

experienced programmers appear to display highly opportunistic behaviour 

throughout the course of the programming activity. This finding is rather 

surprising since all the programmers participating in this study had some training 

and experience (albeit rather limited in the case of the novice programmers) in 

top-down programming methodologies. One might reasonably expect this to be 

reflected in the generation strategy that is adopted. However, in spite of this, 

novice programmers appear to maintain a fairly constant generation rate for both 

focal and non-focallines and tend to perform as many jumps between hierarchical 

level as within. Such behaviour could only be described as opportunistic as it 

reflects none of the characteristics that are implied by top-down models of 

programming. 

The mechanisms which might be thought to underlie the differences that have been 

found to be associated with different levels of expertise are not clear. Anderson 

(1983) suggests that behaviours which might be described as opportunistic 

deviations from hierarchical problem solving may often arise as a consequence of 

fairly simple cognitive failures. For instance, subjects may pursue details of a 

current plan that is inconsistent with higher level goals simply because they have 

forgotten or have misremembered these goals. Both Hoc (1988) and Guindon et al 

244 



(1987) have observed that even expert designers may experience difficulties 

simultaneously considering all possible solution elements at a single level of 

abstraction, thus leading to an opportunistic approach as opposed to a the adoption 

of a strict top-down strategy. 

From this we might conclude that opportunistic episodes arise largely as a 

consequence of simple cognitive failures. By and large these failures appear to be 

related to working memory capacity limitations. For instance, this is apparent 

from the difficulties experienced by programmers in simultaneously maintaining 

all possible solution elements at one level of abstraction. Opportunistic strategies 

may be a symptom of these kinds of failure or alternatively it may be adopted as a 

deliberate means of circumventing working memory limitations in order to reduce 

the frequency and scope of possible failures. In the context of the present study it 

is not possible to resolve this issue. However, the findings of a study reported in 

chapter 11 of this thesis looking at the role of working memory and expertise in 

programming shed some light upon the prevalence of opportunistic episodes in 

programming behaviour. 

Here it has been observed that expert programmers tend to rely extensively upon 

the use of external memory sources (VDU screen, notes on paper etc) when 

generating a program. Conversely, novices rely to a much greater extent upon the 

use of internal memory to develop as much of a solution as possible before 

transferring it to an external source. The reasons for this are as yet unclear. 

However, such a strategy may give rise to the opportunistically oriented behaviour 

evident in the case of novice programmers in the context of the present study. 

Relying in this way upon internal memory sources means that novices will 

experience difficulty simultaneously maintaining aspects of an emerging program 

in memory. In particular, it will prove difficult to map out a global framework at a 

single level of abstraction - that is, adopt a hierarchically levelled approach. 

Indeed, Rist (1989) has found that novice programmers tend to adopt a very 

localised coding strategy, which places a minimal load on their working memory, 

and design the same part of a solution at different levels of abstraction. In contrast, 

experts appear to employ a strategy that involves greater use of external media to 

reduce working memory load. The present study suggests that expert 

programmers develop solutions in a hierarchically levelled fashion and this may 
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only be possible if an external media is used to record partial fragments of the 

solution as it develops. However, as the program evolves, experts seem to revert 

to the more localised strategy that is evident in the case of novice behaviour, and 

tend to engage in a greater frequency of opportunistic episodes. 

One possible reason for this phenomenon may be that, in the case of expert 

performance, there is a clear temporal separation between the progressive and 

evaluative problem solving activities that are normally involved in the 

programming task. Gray and Anderson ( 1987) suggest that problem solving 

activities in programming can be described as either progressive (working directly 

toward the goal state of a problem) or as evaluative (evaluating some already 

executed part of the problem solution). One might speculate that expert 

programmers will tend to engage broadly in progressive activities during the early 

stages of a programming task and in evaluative activities toward its latter stages. 

Hence, in the context of the present study, we might characterise the early 

top-down stages of program generation as progressive and the later opportunistic 

activities as arising from an evaluative process which has led to the location of 

flaws in the emergent program. For novices, progressive and evaluative episodes 

may be more closely linked and this is likely to be manifested in temporally 

localised generation and monitoring activity. This may give rise to a more 

systematic pattern of opportunistic episodes as small localised parts of an 

emergent program are evaluated and then modified when necessary. In order to 

provide additional support for this hypothesis, an analysis of the temporal 

distribution of evaluative and progressive activities in a programming task is 

presently being undertaken. This analysis is not yet complete. However, early 

indications appear to provide support for notion that differences in expertise are 

associated with distinct temporal patterns of progressive and evaluative activities 

such as those discussed above. 

9.6 Conclusions 

The studies reported in this paper differ in a number of significant respects from 

existing work which has examined salient behavioral characteristics of the 

programming activity. In particular, the use of a comparatively large subject 
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group means that the possible confounding factors which might arise as a 

consequence of intra-subject variation are minimised. In addition, it has been 

possible to derive, from previous empirical work (Rist, 1989), a number of 

distinct levels of abstraction within the problem space upon which to base a 

behavioral analysis. 

A number of interesting findings emerge from this analysis. Firstly, it has been 

shown that opportunistic episodes may occur at any point during the evolution of a 

program. However, this does not rule out the existence of an overall top-down 

strategy. Hence, the clear dichotomy between top-down and opportunistic 

approaches that is implicated in previous work may be unfounded. It is unlikely 

that studies involving an analysis of the behaviour of a relatively small number of 

subjects would make the observation of these regularities possible. 

Secondly, it has been shown that the emergence of top-down or opportunistic 

strategies is not task dependent as suggested by a number of previous studies. 

Rather such strategies can co-exist within the context of a single task. However, 

one form of strategy make take precedence over the the other at particular points 

during the evolution of the program. 

Expertise also appears to play a major role in the determination of particular forms 

of strategy. For instance, novice programming behaviour appears to be 

systematically opportunistic, displaying none of the characteristics of a top-down 

approach. Conversely, expert programmers adopt a broadly top-down approach, 

at least during the early stages of program generation. In this context, the notion of 

the focal line appears to play a significant role in expert programming behaviour. 

The experiment reported in this chapter has shown that experts tend to generate 

focal lines first, providing a framework around which the rest of the program can 

be constructed. This may arise as a consequence of the knowledge restructuring 

process proposed in this thesis whereby the devlopment of expertise is seen to be 

accompanied by the restructuring of plan/schemata structures such that focal lines 

achieve promanance. 
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Finally, there appear to be clear differences between the temporal distribution of 

opportunistic and top down episodes when comparing novice and expert 

programming behaviour. It has been proposed that the pattern of this distribution 

may be indicative of differences existing between experts and novices in terms of 

the separation of progressive and evaluative programming episodes. It appears that 

novices adopt a very localised evaluation strategy that is likely to give rise to 

localised changes, and consequently to a systematic temporal distribution of 

opportunistic behaviour. Conversely, experts tend to engage in evaluative 

episodes toward the latter stages of the programming task, giving rise to an 

asymmetrical pattern of top-down and opportunistic behaviour. The idea that 

differences in expertise are associated with distinct temporal patterns of 

progressive and evaluative activities is again only speculative. This hypothesis will 

require further empirical support before any firm view can be established. 

In conclusion, this chapter suggests a rather different view of the programming 

activity to that proposed in previous studies. In particular, top down and 

opportunistic strategies are seen to co-exist within the context of a single task. 

Additionally, there appear to be clear differences between novice and expert 

programming strategies. The psychological mechanisms that may underlie these 

differences are as yet unclear, but further empirical studies will hopefully provide 

a foundation for a more detailed analysis and specification of these mechanisms. 

In particular, future experimental work should address the distribution of 

progressive and evaluative episodes in program generation and the relationship of 

this distribution to differences in expertise. This will provide more information on 

the behavioral aspects of the programming activity and may contribute to our 

understanding of more general problem solving tasks. 

Another issue that will need to be addressed relates to the generalisability of the 

present study. Programming is clearly taught in a top-down fashion and many 

views of the program design process prescribe a top-down, hierarchically levelled 

approach (see chapter 5). It may be the case that a rational top-down process of 

this nature is not appropriate to the software design activity (Pamas and Clements, 

1986). Such a view of the design process may stem from the tendency of previous 

work to conflate descriptive and prescriptive accounts of the design activity 

(Carroll and Rosson, 1985). However, the effects of the way in which 

programming is taught are likely to be closely related to the way in which program 
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ming actually takes place. Hence, it is difficult to disentangle 'natural' preferred 

programming strategies from those which are acquired and/or prescribed. 
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Clhlaqpteir liO. Klrnowledlge Irestnncturing in programming: Evidence foir 

saliellllt n>syclhlological stiructures derived from reaction time and 

erirors. 

10.1 Introduction 

This chapter explores in greater detail the relationship between knowledge 

structure and organisation and the development of expertise in programming. An 

empirical study is reported which provides support for the model of knowledge 

organisation in programming that is presented later in this thesis (see chapter 12). 

This model stresses the importance of knowledge restructuring processes in the 

development of expertise. In the context of the present chapter, this is contrasted 

with existing models which have tended to place unique emphasis upon plan or 

schemata acquisition as the fundamental mode of learning associated with skill 

development in programming and other domains (see chapter 3). For example, it 

is clear from our earlier discussion of the plan theory of programming presented 

by Soloway and others, that the development of expertise in programming 

depends largely upon the acquisition of plans. This work not only neglects to 

consider the detailed structure of plan knowledge, but also provides no indication 

of the way in which plan structures are implemented as programs. 

10.2 Schema theory and expertise 

Schema theory provides the theoretical foundation for a great deal of work in 

contemporary cognitive science (Schank and Abelson, 1977; Rumelhart, 

1975).The idea that understanding and comprehension are mediated by schematic 

stereotypical knowledge structures extends a tradition begun by Bartlett (Bartlett, 

1932) and the Gestalt psychologists earlier this century. Contemporary schema 

theory now underpins accounts of text comprehension (Kintsch and van Dijk, 

1978) and complex problem solving (Larkin, 1983; 1985) and has been applied 
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more recently to a variety of HCI domains including text editing (Kay and Black, 

1984) and computer programming (Soloway and Ehrlich, 1984). 

The application of schema theory to our understanding of problem solving has 

proved important for a number of reasons. Firstly, it provides a means of 

describing fundamental aspects of a problem solver's knowledge representation 

for a complex task. From this it should be possible to derive predictions 

concerning typical problem solving behaviour in the context of a particular task 

and to provide an indication of the sorts of errors that problem solvers are likely to 

make in that task. Secondly, schema theory can provide an account of the way in 

which knowledge representation may change with increasing expertise. A 

description of this developmental process not only contributes to a theoretical 

understanding of the evolution of complex skills, but can also pose implications 

for instructional practice and for system design. 

This chapter explores the relationship between the evolution of expertise and 

schema development and organisation in the context of a programming task. The 

chapter presents an empirical study which provides evidence for changes in the 

structure of programming knowledge with increasing expertise. 

10.3 Schema development and expertise 

Previous work concerned with programming and other complex problem solving 

tasks suggests a number of different ways of accounting for the development of 

expertise and its relationship to knowledge structure and organisation. These 

different views can be characterised briefly as follows: 
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Experts posses more schemata than novices 

This is the position adopted by Soloway and Ehrlich (1984) in their analysis of the 

development of programming expertise. They introduce the notion of the 

programming plan to describe generic stereotypical knowledge structures or 

schemata that guide problem solving behaviour in programming. Soloway and 

Ehrlich claim that expert programmers possess this kind of programming 

knowledge while novices typically do not. According to this view, expertise 

develops through a gradual process of plan/schema acquisition and this process 

would appear to constitute the basic mode of learning in Soloway and Ehrlich's 

model. As a corollary, it has been suggested that one means of facilitating the 

development of expertise is to teach such plans explicitly to beginning 

programmers (Bonar and Cunningham, 1988). 

Expertise and schemata content 

Another way of accounting for differences in problem solving expertise is to 

suggest that experts have more complete schemata than novices (Heller and Riff, 

1984; Larkin, 1983; 1985). For instance, work by Chi, Feltovich and Glaser 

(1981) concerned with physics problem solving behaviour, suggests that while 

novices and experts may posses similar kinds of domain specific schemata, 

experts are able to access extra knowledge in comparison to novices in terms of 

elaborated schemata that represent general physical principles. Novices, by 

contrast, appear to represent only the 'surface features' of a problem and their 

problem solving behaviour is guided by keywords present in the problem 

description and by stated domain objects. Weiser and Shertz (1983) have 

replicated this finding for expert and novice computer programmers, thus 

suggesting that schemata content is an important general characteristic of 

competence in the programming domain. 

252 



Experts structure schemata differently 

The studies reported so far in this thesis suggest a rather different view of the 

relationship between expertise and the development of knowledge representation. 

These studies suggest that experts may posses a greater number of program 

specific schemata than novices. This accords with Soloway and Ehrlich's 

characterisation of the development of programming expertise. However, as we 

noted in chapter 7, intermediates appear to be able to access the same range of 

schemata as experts. This is evidenced by the fact that intermediates can detect 

violations to plan or schemata structure as proficiently as experts. This finding 

would not be predicted by a view of programming expertise which places 

emphasis on the acquisition of program specific schemata such as that proposed 

by Soloway and Ehrlich. Rather, one would expect intermediate performance in 

response to schemata or plan violation to be better than novice performance and 

rather worse than expert performance. If one assumes that schema acquisition is 

continuous and correlated with developing expertise, as suggested by Soloway 

and Ehrlich, then these kinds of abrupt discontinuities in performance would not 

be predicted. 

The model of knowledge restructuring presented in this thesis suggests that skill 

differences in programming may be related to the way in which programmers 

structure their knowledge about the programming activity. In particular, 

programmers who have attained high levels of skill appear to be able to access 

program schemata in which certain salient program structures have achieved 

prominence. According to this view, expertise is seen to be related in part to the 

development of hierarchically structured schemata, rather than to a relatively 

simple process of schemata acquisition. 

Following Rist (1989) it is suggested that programs can be represented at different 

levels of abstraction. Central to Rist's elaboration of schema development in 

programming is the notion of the 'focal line'. According to Rist, a focal line 

directly encodes the goal represented by a particular program schemata or plan. 
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For instance, a plan or schemata concerned with calculating a running total will 

associated with the focal line 'count:=count + 1'. The complete plan will also 

consist of an initialisation component and some means of reading and outputting 

data values. Hence, one might conceive of focal lines as corresponding to the 

highest level of schemata abstraction. The other components of a particular 

schemata (i.e. non-focal lines) simply serve to extend this plan focus. This view 

of the programming activity was presented in the previous chapter, and the 

empirical data reported there appears to provide some support for this view. 

If the development of expertise involves the restructuring of programming 

knowledge such that certain salient structures achieve prominence, then one might 

expect this to be reflected in the time taken to respond to the presence or absence 

of certain forms of stimuli. For example, if focal lines are taken to represent 

salient structures, then we might expect that when programmers are presented with 

focal lines and asked to state whether they were contained within a previously 

presented program which they were asked to memorise, they will respond faster 

than when presented with lines representing non-focal structures. 

Moreover, since this restructuring process is hypothesised to be related to skill 

development, then we should expect to find differences between novice and expert 

responses in the context of this task. In particular, in the case of novices we have 

hypothesised that schema structures remain undifferentiated, hence we may predict 

that response times to focal and non-focal lines will be broadly equivalent. In 

contrast, experts will respond to focal lines more quickly than non-focal lines. 

In the case of errors we might expect a slightly different result. For example, one 

major claim of this thesis is that while experts and intermediates may be able to 

access programming knowledge which has similar content, this knowledge is 

structured differently in the case of experts, and that this differential structuring 

leads to their enhanced performance in the context of certain tasks. If this is the 

case, while we might expect reaction times to differ when comparing intermediate 

and expert performance, their error rates should be broadly equivalent. These 
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specific hypotheses are evaluated in the experiment described below, in which 

programmers of different skill levels were asked to memorise a program and were 

then presented with probe items corresponding to focal or non-focal lines. A 

number of these probe items were derived from the programs the subjects were 

originally asked to memorise, while others were derived from other, similar, 

programs. 

10. 4 An experimental study of schema development in programming 

10.4.1 Participants and procedure 

The experimental study reported in this chapter employs a program memorisation 

and recognition task to explore the form and content of knowledge representation 

for programmers of different skill levels. Twenty Four subjects participated in this 

study. These subjects were assigned to three groups of equal size according to 

their level of programming expertise. The novice group consisted of first year 

undergraduate students, all of whom had completed a short introductory course in 

Pascal. The intermediate group was composed of second year undergraduate 

students. All members of this group had undertaken an intensive 6 month Pascal 

course during their first year of study and all had subsequently used this language 

extensively in project work. The third group consisted of expert Pascal 

programmers who were either teachers of Pascal or were professional 

programmers. 

Participants were presented with a number of short Pascal programs which they 

were asked to memorise. These programs were drawn from the collection of 

programs generated by subjects taking part in the experiment reported in the 

previous chapter. The participants were then presented with a probe item (focal or 

non-focal line) and were asked to state whether this probe item was present in the 

original program. 
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Half of the probe items were derived from the programs the participants were 

asked to memorise, while the remaining half were generated from other similar 

Pascal programs. A measure of reaction time from the presentation of the probe 

item to the subjects' response was collected together with information relating to 

the frequency of errors. In this context an error could be said to occur when a 

subject affirmed that a probe item was present in the original program when in fact 

it was absent or vice versa. The results of this study are represented graphically in 

figures 10.1 and 10.2. 

The programs that were presented to subjects were classified according to the 

scheme outlined in the previous chapter. A focal line was defined as the line of 

code that directly implements the current goal of a particular programming plan. 

Three independent raters identified the plan structures contained in each program 

and then indicated the focal line associated with each of the plans that they had 

identified. It should be noted that there was a high level of agreement between the 

raters in terms of both the plans that were identified and their associated focal 

lines. 

10.4.2 Results and discussion 

This study suggests that the transition from lower to higher levels of skill in 

programming does not follow a continuous developmental path as might be 

suggested by certain models of programming expertise. In particular, if expertise 

depends upon the acquisition of program schemata or plans then one would 

expect to find a roughly linear relationship between increasing expertise, the 

number of errors made and the subjects' reaction time in response to probe items. 

Hence, if experts possess a greater number and range of schemata than 

intermediates or novices then one might hypothesise that experts would be able to 

find a match to a probe item with greater speed and accuracy than both novices or 

intermediates. Additionally, intermediates should perform with greater accuracy 
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and speed than novices. The results of the present study, however, do not provide 

support for such a view. Rather, there appear to be clear discontinuities between 

subjects' response times and the number of errors made when comparing the 

performance of novices, intermediates and experts. 

The results of this study also provide support for the view that knowledge 

structures change with increasing expertise. Hence, experts respond to the 

presence of focal lines with greater speed than both intermediates (t = 2.83, 14 df, 

p<0.02) and novices (t = 5.72, 14 df, p<0.001). However, there is no significant 

difference between experimental groups in terms of their reaction to non-focal 

lines. This suggests that in the case of the expert group, focal lines are 

represented with greater saliency than non-focal lines. However, subjects in both 

the novice and intermediate groups do not appear to posses schemata which 

differentiate between focal and non-focal lines. The error data indicates that 

intermediate and expert groups identify both focal and non-focal lines with greater 

accuracy than novices ([focal] tintermediate= 3.42, 14 df, p<0.01; texpert = 8.63, 

14 df, p<0.001) ([non-focal] tintermediate= 5.83, 14 df, p<0.001; texpert = 7.93, 

14 df, p<0.001). 
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Conversely, both the intermediate and expert groups identify focal lines with about 

the same accuracy as non-focal lines (~ntermediate = 1.23, NS; texpert = 1.01, NS). 

This finding supports the view that intermediates and experts are able to access 

representations of programming knowledge which are composed of similar 

components. However, as suggested by the reaction time data, these 

representations appear to be differentially structured. In the case of the novice 

group, performance is only slightly better than chance (t = 1.14, NS). Hence, 

novice performance does not appear to be mediated by the possession of complete 

schematic representational structures. 
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In summary, these results suggest that both intermediate and expert programmers 

appear to be able to access abstract schemata based structures which represent 

stereotypical programming knowledge. The error data for these groups implies 

that these schemata have similar content since they give rise to equivalent patterns 

of error behaviour for both groups. However, in the case of the expert group, 

reaction time performance in response to the presentation of a probe item is 

enhanced. This effect is hypothesised to be related to the existence of a structural 

asymmetry in the expert programmers schematic representation of programming 

knowledge. 

10.5 Conclusions 

The results of the experiment reported in this chapter suggest that knowledge 

structures may develop via a restructuring process rather than through a process of 

knowledge accretion which simply involves developing a larger repertoire of 

plans. This view is similar to work by Lewis (1981) which suggests that algebra 

skill depends partly upon the creation of single variables to replace complex 

mathematical expressions. This restructuring or 'information hiding' process may 

allow more complex problems to be accommodated within the limited capacity of 

working memory thus facilitating problem solving. 

Previous accounts of programming expertise have tended to emphasise the 

development of extensive repertoires of programming knowledge rather than focus 

upon issues relating to knowledge restructuring processes. This is exemplified in 

Soloway's work on plans, where it is suggested that expertise simply involves 

building a more extensive collection of programming plans together with the rules 

which goven their use. However, as we have seen, the possession of plans per se 

cannot be used to diffrentiate certain groups of programmers, especially at higher 

levels of skill; namely at the point of transition between intermediates and experts. 

The work reported in this chapter suggests that a more cogent account of skill 
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development might combine knowledge accretion with a restructuring process 

whereby, once a sufficient library of plans has been constructed, fine-tuning or 

restructuring takes place. This view is similar to Rumelhart and Norman's account 

of skill devlopment which places central emphasis upon restructuring mechanisms 

founded upon the accretion of a large body accumulated domain knowledege 

(Rumelhart and Norman, 1978). 

The model outlined above also has clear parallels with work on program beacons 

reported by Wiedenbeck (1986). Wiedenbeck found that expert programmers 

recall key lines (beacons) in a program much better than they recall non-beacon 

lines. However, the recall of non-beacon lines does not differ significantly when 

comparing novice and expert performance. This suggests that there are key 

features of programs that play a focal role in program understanding, and from 

previous work, it seems likely that these features guide the comprehension 

(Brooks, 1983) of programs. Moreover, in chapter 8 it was suggested that these 

focal structures may also play a significant role in program generation. The present 

study advances this analysis by providing a means of defining salient knowledge 

structures in programming in a less intuitive manner than has previously been 

possible. In addition, the focal line analysis presented here extends existing plan 

theory of programming by suggesting a model that can account for plan 

restructuring and its relationship to skill development. 

The articulation of this model suggests that previous accounts of skill development 

in programming may be too simplistic to provide an adequate account of the 

development of expertise in this domain. In particular, it has been demonstrated 

that the existence of plans per se cannot account for the development of skill in 

programming. Rather, what appears to be more important is the way in which the 

organisation of individual schemata changes with increasing expertise. 
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Chapter 11. Expertise in programming: The role of working memory 

and display-based problem solving. 

11.1 Introduction 

The work reported in this chapter represents an attempt to explore the role of 

working memory in programming skill. Two experiments are reported in this 

chapter which demonstrate that the development of expertise in programming does 

not appear to depend upon an increase in working memory capacity or availability. 

This fmding is unexpected given the importance placed upon working memory 

capacity in other theoretical accounts of the development of complex skills. These 

experiments provide evidence for an alternative view which suggests that expertise 

in programming may be dependent upon the development of strategies for efficiently 

utilising external displays for the purpose of recording intermediate states and 

partially formed solution steps. 

In this context, it appears that novices rely extensively upon working memory to 

generate as much of a solution as possible before transferring it to an external 

source. In contrast, experts engage in problem solving behaviour which is 

characterised by the extensive use of an external display as an information 

repository. This gives rise to a pattern of generation behaviour which manifests itself 

in terms of a closely linked cycle of code generation and evaluation activities. One of 

the most striking results of this work is that when experts are unable to use an 

external display to support facets of this activity then their performance deteriorates 

to the level typically exhibited by novices. These results are discussed in terms of a 

framework which emphasises the role of display-based problem solving and its 

contribution to strategy development. Finally, the implications of this study are 

discussed in terms of its ability to account for performance in other complex problem 

solving domains. 

As we have seen in previous sections, until recently the prevailing focus of study in 

the psychology of programming has been concerned with the organisation of 

knowledge in long term memory and the role of certain forms of conceptual 

organisation in program comprehension and the development of expertise.However, 
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more recent studies have moved away from the consideration of static knowledge 

structures towards a view which emphasises the fluid and dynamic role played by 

programming knowledge in both the generation of code (Green, Bellamy and 

Parker, 1987) and in program design (Rist, 1986; 1989). Other studies have focused 

upon the generative and evaluative aspects of the coding activity. For instance, in 

chapter 8 the cognitive processes involved in programming were characterised by 

studying the nonlinearities in program generation that are evident in naturalistic task 

contexts. In a somewhat similar vein, Gray and Anderson (1987) have used 

so-called 'change episodes' - key junctures in the coding process where 

programmers make some change to their code - to highlight the important role played 

by the evaluative or checking activities that are normally invoked during code 

generation. 

These studies have extended our basic understanding of the strategies employed by 

problem-solvers in this relatively complex domain. However, they have tended to 

provide only rather general descriptive accounts of the cognitive processes which are 

thought to underpin the programming activity. Such studies have emphasised the 

effects of either different knowledge structures or of the salient notational features of 

the task language on the development and maintenance of particular types of 

strategy. However, by and large, they have ignored, or have addressed in only a 

cursory fashion, the nature of the basic cognitive mechanisms that may give rise 

such strategies. For instance, while it is true to say that such studies have explored 

the form of representation of programming knowledge in long term memory, and the 

effect this has on problem-solving strategy, they have typically only briefly 

addressed the role of other memory structures which may be closely implicated in 

the emergence of typical forms of programming behaviour. 

The study reported here seeks to extend existing work into the cognitive aspects of 

programming by examining the role of one seemingly important cognitive 

mechanism - working memory - in the development of programming expertise. In 

addition, interest is directed towards understanding the way in which this limited 

resource might influence the nature of the problem-solving processes involved in the 

programming activity. 
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The role of working memory has been implicated in a number of previous studies of 

programming behaviour. However, as a mechanism that might be thought to 

strongly contribute to programming strategy, it has received little experimental 

attention. 

This chapter will begin by briefly reviewing the existing work on programming that 

posits working memory as part of the framework within which the development of 

programming skill is discussed. Studies of working memory from other problem 

solving domains will be introduced in this section to provide a background to this 

discussion and to indicate any points of commonality or departure from those 

analyses suggested in recent studies of the programming activity. This provides a 

basis for the two experimental studies reported later in this chapter. The first of these 

studies looks at the effects of a straightforward articulatory suppression task on 

programming strategy and explores the role of working memory in the development 

of programming skill and its relationship to expertise. 

The second study considers the relationship between working memory and the use 

of an external memory source (in this case a VDU screen). Here the text editor used 

to enter code was modified such that the order of program generation had to conform 

to the final text order of the program. That is, the screen editor only allowed the 

programmer to enter text vertically - top to bottom- and to move between adjacent 

lines. This can be contrasted to the more typical use of a screen editor where 

programmers can generate any part of a program in any particular order and can 

suspend the development of code in one place to direct attention to other code 

structures elsewhere, returning latter to fill in any remaining gaps. 

A number of recent studies (Bellamy and Gilmore, 1990; Green et al, 1987 and see 

chapters 8 and 9) suggest that this is the way programmers typically develop their 

code. Conversely, if programmers have to commit themselves early to a particular 

course of action and are not able to effectively use an external medium to record their 

partially formed deliberations, then one might expect this to have both a detrimental 

effect on performance and to place extra load upon working memory. Previous 

studies which have explored the role of external memory sources have typically 

restricted their analysis to situations in which external sources are used to support 

long term memory (Intos-Peterson and Fournier, 1986; Schonflug, 1986a; 1986b). 
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The analysis reported here takes a different approach and considers the use of 

external memory support for short term and transient memory constructs. This 

approach also differs from other studies looking at the role of working memory in 

complex tasks (Hitch, 1978; Staszewski, 1988) in that typically these studies have 

required subjects to dispense with external aids even in tasks, such as simple 

addition and multiplication, where such aids appear to be used extensively under 

more normal circumstances. 

The final section of this chapter is concerned with a detailed discussion of the 

implications of these experiments for our understanding of the role of working 

memory in programming and in other complex cognitive skills. In particular, 

attention is directed toward the role of working memory in the development of 

expertise, its role in complex planning tasks and mental simulation and in situations 

where the potential exists for the deployment of external memory sources which can 

be used to partially supplant internal sources. 

11.2 The current status of working memory in studies of the programming activity 

One of the most pervasive findings of recent research into the cognitive aspects of 

programming is that programs are not generated in a simple linear fashion - that is, 

in a strict left-to-right or first-to-last order (Bellamy and Gilmore, 1990; Green et al, 

1987 and see chapters 8 and 9). Typically, programmers make many deviations 

from a strict linear development path, leaving gaps in the emerging program which 

are to be filled in later. Hence, the final text order of the program will rarely 

correspond to its generative order. 

Existing models of programming suggest a number of possible reasons for the 

existence of such nonlinearities. For instance, Rist ( 1986 a and b; 1989) claims that 

nonlinearaities in generation emerge as programmers build code structures around 

so-called 'focal lines'. The development of expertise in Rist's model is based upon 

the availability of knowledge and the notion of focal expansion. According to Rist, 

as expertise develops, plan schema are retrieved rather than created and the evolution 

of this process is reflected in the order of program generation. In terms of this 

model, novices are seen to generate programs in a bottom-up fashion expanding 
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outwards from the plan focus, while experts are able to simply retrieve plans in 

schema order, thus creating a pattern of top-down and forward program generation. 

This explains the differences observed in Rist's study between the strategies adopted 

by novices and by experts and the patterns of nonlinearities encountered. 

Green et al (1987) have proposed a number of extensions to Rist's model. In the 

parsing/gnisrap model of coding they describe the process by which a skeletal plan 

is instantiated in a programming notation. In the context of Rist's model, focal lines 

will be instantiated first and then other structures will be built around them. The 

order of generation of the program is determined largely by the knowledge that is 

available to the programmer and nonlinearities will only occur when a programmer 

starts to interleave new plans into the existing structure. The parsing/gnisrap model 

builds upon Rist's ideas but introduces one significant extension. 

Unlike Rist's model, the parsing/gnisrap framework introduces a working memory 

component into the analysis of coding behaviour. The parsing/gnisrap model has a 

severely limited working memory capacity which forces it to use an external medium 

(eg the VDU screen) when program fragments are completed or when working 

memory has become overloaded. 

In this model programs are not built up internally and then output to an external 

media from start to finish with a generative order that reflects the final text order of 

the program. This form of generation would presumably imply an unrealistically 

extended (and sustained) working memory capacity. However, the working memory 

limitations suggested by the parsing/gnisrap model give rise to other cognitive costs. 

This is because programmers will need to frequently refer back to generated 

fragments and in some way recreate the original plan structure which may have only 

been partially implemented in code. 

The parsing/gnisrap model, in its current conception, has primarily focused upon the 

factors that influence the program parsing process. Hence, interest is directed 

toward the way in which certain notational features of programming languages can 

obscure or reveal the functional role of components expressed in that notation 

(Gilmore, 1986; Gilmore and Green, 1988). 
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Bellamy and Gilmore ( 1990) examined the number of nonlinearities in terms of 

whether they occurred between plans (in the Soloway sense) or within plans. Using 

this technique they were able to compare predictions stemming from Rist's model 

with those implied by the parsing/gnisrap model. In Rist's model nonlinearities will 

only occur when a programmer starts to interleave a new plan into an existing 

structure. The parsing/gnisrap model suggests that nonlinearities can occur in other 

ways. For instance, minor parts may often be left out of plans and programmers will 

return later (in terms of the linear structure of the program) to insert these code 

fragments. 

Hence, Rist's model suggests that there will be more between plan than within plan 

nonlinearities, while the parsing/gnisrap model predicts that generation will be 

broadly in plan order, but that within plan nonlinearites will occur because of 

working memory limitations. The results of the Bellamy and Gilmore study broadly 

support the predictions stemming from the parsing/gnisrap model and provide some 

evidence for the influence of features of the notation of particular languages in 

determining the nature of the parsing/gnisrap cycle. 

11.3 External memory and display-based performance in problem solving 

The parsing/gnisrap model displays several important commonalities with emerging 

models of planning and problem solving in other complex domains. In particular, 

this model stresses the role played by external memory sources as information 

repositories which can be used to record intermediate problem solving states. In a 

similar vein, work connected with the development of planning models in Artificial 

Intelligence has suggested that actions are often enacted before plans or problem 

solution sequences are complete (see chapter 2). In formulating this alternative 

account of planning, these models stress the inexorable link between the planning 

process and the execution of plans. 

Models such as this differ significantly from the more classical accounts of planning 

that have been previously articulated in Artificial Intelligence in that an entire 

sequence of plans need not be worked out in advance. Rather, the effects of 

implementing partial plans can be tested against the planner's expectations and 
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information may then be sought from the external world in order to reduce the 

uncertainty that may be associated with the implementation of particular plans. 

More recently, the role of external memory sources as repositories for search control 

knowledge and intermediate state information has gained prominence in a variety of 

problem solving models (Howes and Payne, 1990; Larkin, 1989; Payne, 1990; in 

press). For instance, Larkin (1989) has proposed a production system model of 

human 'display-based' problem solving (DiBS) where the system's working 

memory is divided into two kinds of elements: those reflecting the problem solver's 

internal goals and those representing features of external real world objects. As in 

other production system models, specific productions are executed when their 

preconditions are satisfied in working memory (Anderson, 1983). The associated 

actions of these productions then act in turn to modify the content of working 

memory. In terms of Larkin's model, these changes can arise in two ways -either 

as changes to the physical world or as changes to the problem solver's internal 

representation of goals and subgoals. 

These accounts of problem solving and planning are clearly very similar in their 

general form to emerging accounts of problem solving and planning in the 

programming domain. For instance, a central feature of the parsing/gnisrap model is 

the idea that code generation involves two fundamental psychological processes; one 

in which the external structure (program code) is created from the internal (cognitive) 

structure that represents the problem requirements and an inverse process by which 

this internal structure is recreated when necessary from the external structure. 

Similarly, Gray and Anderson (1987) stress the importance of the evaluation 

episodes that are frequently seen to occur during code generation. The existence of 

these evaluative activities presumably implies that programmers are able to extract 

relevant information from the code that they have already generated in order to 

inform their subsequent problem solving activity. This will necessitate re-parsing the 

code and then matching it with an internal representation of plans and goals. Hence, 

in terms of both of these models, the external display becomes a central repository 

for intermediate state information when working memory is loaded. The 

parsing/gnisrap model implies that code will not be generated in a linear fashion, 

since code fragments will be externalised as soon as working memory is loaded or 
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when the programmer arbitrarily reprioritises some task that demands a different 

series of activities than are required by the current goal. 

11.4 Expertise and skilled memory theory 

Although the parsing/gnisrap model relies extensively upon the notion of working 

memory in order to explain the evident nonlinearites in program generation, it fails to 

address several key issues in relation to the role of working memory that have been 

raised elsewhere. One issue of particular importance is the relationship between 

working memory and the development of expertise. The emphasis of the 

parsing/gnisrap model directs our attention towards the effects of language structure 

and notation on the parsing/gnisrap cycle. However the effects of skill development 

on strategy are not considered. 

In chapter 8 a study was reported looking at the nature of the nonlinearities found to 

exist in a program generation task for programmers of different skill levels. One 

fmding to emerge from this work is that experts perform a significantly greater 

number of between plan jumps than novices and that novices correspondingly tend 

to perform more within plan jumps- that is, adopt a linear generation strategy. This 

result is unexpected for two reasons. On the one hand, the parsing/gnisrap model 

assumes that working memory is a fixed and limited capacity resource. Hence, if we 

assume that working memory is the only factor (excluding language features) to 

influence the parsing/gnisrap cycle, then expertise should not affect the number of 

between-plan nonlinearities that are evident in the generation task. 

Conversely, if we consider working memory to be a more flexible resource with an 

extensible capacity that is related in part to skill development (Chase and Ericsson, 

1982), then we should expect to find the obverse result. Moreover, the chunking, 

restructuring and compilation mechanisms that are central to many important 

production system models of skill development should give rise to a reduction in 

working memory load in the case of expert performance (Anderson, 1983; 1987; 

Newell and Rosenbloom, 1981; Laird, Newell and Rosenbloom, 1988). Here, it is 

assumed that the problem solving steps and intermediate states required to reach a 

solution will be reduced in number when productions are collapsed, compiled or 
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otherwise restructured. This would presumably reduce the requirement to 

concurrently maintain a large number of solution steps in working memory and 

consequently increase its availability. 

If we assume that there-parsing of some already generated output involves some 

cognitive cost, then one might expect the development of programming skill to be at 

least partly dependent upon a programmers ability to generate as much of the 

program internally before writing it to some external source, and therefore reducing 

the need tore-parse. However, the opposite appears to be the case. The results of 

the experiments reported in chapters 8 and 9 may suggest that skilled programmers 

make extensive use of an external memory source (i.e., a VDU screen) while 

novices tend to rely to a much greater extent upon the use of internal memory to 

develop as much of the solution as possible before transferring it to external 

memory. In addition, novices appear to rarely change their output once it is 

generated. 

In light of the well documented relationship between working memory and the 

development of expertise that has been observed in other domains (Chase and 

Ericsson, see above) these findings are clearly rather anomalous. Given the 

cognitive costs that are involved in continually evaluating and modifying generated 

code, we require an explanation as to why skilled programmers rely so extensively 

on external rather than internal memory sources. 

One reason for this phenomenon might be related to the way in which programming 

is taught - in particular to the effects of the teaching of program/software design, and 

their emphasis on functional decomposition and stepwise refinement. The effect of 

teaching programmers to decompose problems into manageable components, as 

suggested by these methods, may have a strong influence on their adoption of 

external sources- for instance, to record partially formed design decisions etc.- in 

preference to a reliance on internal memory. Unfortunately, most existing studies of 

working memory in the context of skill development have tended to artificially 

restrict the task under consideration by disallowing the use of external sources. 

Hence, the ecological validity of these studies may be limited to the rather unusual 

skills that are considered. One important component of skill development in a 

number of domains, including computer programming, seems to be the related to the 
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ability to efficiently use external memory sources - and this component has not been 

extensively considered in previous studies of problem solving in complex domains. 

Another factor that might give rise to a reliance on external sources is related to the 

question of whether the working memory system has a semantic component. That 

is, whether such a system can deal simultaneously with information derived from 

different semantic categories or levels of abstraction. When developing a program, 

information from a variety of sources needs to be assimilated, ranging from abstract 

information about high-level goals and plans to very low-level information relating 

to syntactic conventions etc. Indeed, the use of multiple forms of information is not 

only evident in programming. For instance, Kaplan and Simon (1990) have 

observed that problem solvers may need to search a variety of different problem 

spaces. However, in Kaplan and Simon's framework it appears that problem solvers 

are only able to access one problem space at a time. This is also evident in other 

generic problem solving models - e. g., SOAR (Laird, Newell and Rosenbloom, 

1987). 

It has been argued that programming demands the assimilation of information from a 

range of problem space representations (Pennington, 1987 a; Pennington and 

Grabowski, 1990) and this assimilation of representations may need to be 

coordinated and integrated simultaneously. However, this kind of coordination and 

integration of information has been shown in many studies to place a significant load 

on working memory (Elio, 1986; Logan, 1985; Schneider and Detweiler, 1987). 

Hence, it may be the case that continually switching between these different 

abstraction levels incurs too great a cognitive cost and that a more efficient strategy 

may involve developing a solution at one level of abstraction before moving on to a 

lower level. This may give rise to the observation that expert programmers appear to 

develop their code from focal structures, building the rest of the code around these 

fragments and using the external display as repository for intermediate solution 

steps. Conceiving of the programming task in this way allows us to consider the 

interactions between display-based problem solving and partial planning, and may 

provide a more coherent understanding of the complex problem solving activities 

that take place in programming and other tasks. 
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The nonlinearities observed in the context of skilled programming performance, 

where high level components (focal lines) are generated first before other lower level 

structures is amenable to this form of explanation. Of course, this form of top-down 

development has been reported extensively in studies of the program design activity 

(Adelson and Soloway, 1985; Guindon et al, 1987; Jeffries et al, 1981), but it is 

usually accounted for in terms of the organisation of conceptual knowledge in long 

term memory rather than in terms of more transient and short term memory 

structures. As little seems to known about the possible semantic component of 

working memory, an account of programming strategy based upon this kind of 

working memory limitation seems to be equally valid. 

Deviations from a top-down step-wise refinement approach to problem solving may 

be caused simply by working memory capacity limitations. Hence, problem solvers 

may simply forget details of their current goal and begin to pursue goals at other 

levels of abstraction. However, an alternative explanation might be to suggest that 

problem solvers find it more difficult to assimilate information in working memory 

when it is derived from a number of different abstraction levels. Anderson (1983) 

suggests this possibility when discussing proposed opportunistic control structures 

for cognition (Hayes-Roth and Hayes-Roth, 1979) where information from a variety 

of different hierarchical levels is assimilated in working memory during problem 

solving activities. Anderson claims that opportunistic control of this kind "causes 

problems because skipping among its many planes and levels makes unrealistic 

demands on working memory" (p 130). Hence, we may suggest that in cases such 

as this the use of an external display becomes paramount. Moreover, the typical 

form of programming strategy exhibited by experts may simply be a manifestation of 

the use of such external resources and the fact that this necessitates many interlinked 

planning and evaluation cycles. 

11.5 Experimental Studies 

The present chapter seeks to explore a number of the issues outlined above in terms 

of the two experimental studies reported in this section. While previous research 

provides a strong indication of the role of working memory in programming, there 

exists no empirical research which has addressed its role more directly. The standard 

271 



paradigm of working memory research is adopted for the first experiment. Here, 

subjects were requested to carry out a straightforward articulatory suppression task 

while engaged in a concurrent program generation activity. Here, the number of 

within and between plan nonlinearities were recorded as were the number of errors 

remaining in the program on task completion. 

This experiment addresses a number of specific hypotheses. Firstly, if working 

memory limitations cause programmers to make use of an external medium, as 

suggested by Green et al, then the act of loading the working memory system 

through a concurrent task should give rise to an increase in nonlinearities. Given the 

effort required to use an external medium, in terms of the number of times a 

programmer must engage in the parsing/gnisrap cycle, one would expect 

experienced programmers to rely more extensively upon internal sources. Additional 

support for this hypotheses also arises from a range of studies which suggest that 

skill development is accompanied by an increase in working memory capacity or 

availability (Chase and Simon, 1982; Staszewski, 1988). 

However, the results presented in chapter 9 suggest a rather different picture and 

indeed give rise to an opposing hypothesis, i.e., that skilled programmers make less 

use of internal sources than do novices and tend to rely much more extensively upon 

using an external medium to record partial code fragments as they are generated. 

Hence, when working memory capacity is restricted this should give rise to a greater 

number of nonlinearites in the context of novice behaviour and only a small 

decrement in nonlinearites for experts. The first experiment attempts to address these 

specific hypotheses by recording the nonlnearities in program generation for novice 

and expert programmers under normal task conditions and in the situation where 

working memory is loaded via a concurrent task. 

The second experiment considers the role of working memory from a rather different 

perspective. Here interest is directed towards the way in which restricting the use of 

an external medium affects programming performance. In terms of the above 

analysis, if programmers are not able to correct already generated code at later stages 

in the coding process, then this should have an effect on their performance. 

Programmers can use a variety of different media to record a program as it is 

generated and the nature of this media is likely to affect the programming process 
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itself. For instance, pen and paper provides great flexability in terms of changing an 

existing output- programmers can simply correct errors as they become apparent. In 

addition, pen and paper can provide a means of indicating commitment to some 

output - for instance, using light rather than heavy strokes (Green, 1989). 

Screen editor~ can provide similar flexibility, but require users to engage in 

additional effort in terms of formulating and issuing editing and search commands 

etc. An example of a highly restrictive environment is that of a simple line-editor 

where the complexity of editing and search is exacerbated, since users often need to 

explicitly address a particular line of text to carry out some editing operation. One 

can envisage even more restrictive environments where it is not possible at all to 

decouple the order of program generation from its final text order. For instance, 

Green (1989) suggests that the failure of a prototype Pascal speech-input system 

was caused largely by the fact that users were required to dictate the program in final 

text order, rather than in the order in which they might normally generate it. 

The second experiment required subjects to create a program using a full-screen 

editor that provided no opportunity for the subject to revise already generated input 

or to insert new material into existing text. The use of such an editor will clearly 

place a significant load upon a subjects working memory capacity since they will be 

required to internally generate as much of the program as possible before 

externalising it. Anderson and Jeffries (1985) have demonstrated that many errors in 

programming arise when there is a loss of information in the working memory 

representation of a problem. Hence, by placing emphasis upon the use of working 

memory it should be possible to induce error prone behaviour that parallels that 

evident when working memory is loaded in other ways, for instance via articulartory 

suppression. 

In terms of the previous discussion, we hypothesise that experts would perform 

worse than novices when the device used to create the program is restricted in such a 

way as to make retrospective changes impossible. This is based upon the 

assumption outlined above which suggests that experts make more extensive use of 

external sources to record partial code fragments that are then later elaborated and 

extended through a closely linked cycle of generative and evaluative activities. 
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Conversely, it has been suggested that novices will tend to rely to a greater extent 

upon generating as much of the program as possible internally before writing it to an 

external source. It is clear that these strategic differences will be supported to a 

greater or a lesser extent by the device used to create the program. Hence, for expert 

programmers, it is hypothesised that restricting the device will cause them to revert 

to a novice strategy, since they will then be unable to use the external display in the 

normal way. This, in turn leads to the hypothesis that novice and expert error rates 

will be similar in the restricted device condition, reflecting a decrement in 

performance by the expert group. 

Establishing support for this hypothesis would have a number of important 

implications. Firstly, it would suggest that the development of expertise may not be 

based simply upon the acquisition of knowledge about a particular domain. If this 

were the case, we would expect experts to perform better than novices no matter 

what constraints were imposed by the task environment. Secondly, it would indicate 

that increased working memory availability, perhaps arising through some 

mechanism such as chunking, does not necessarily lead to better performance. 

If increased working memory availability is correlated with expertise, then experts 

should perform better that novices in situations where they are required to rely 

almost exclusively upon internal sources. If this is not the case, then it may become 

necessary to review the central status of working memory in theories dealing with 

the development of complex skills. One possible alternative explanation is to argue 

that experts have developed particular strategies for dealing with task complexity that 

involve close interaction with external information repositories to record partial 

solution fragments as they are generated. If novices have not developed such 

strategies, then it is unlikely that their performance would be affected significantly 

by restricting the task environment. 

This analysis can be further extended by attempting to classify the errors in the 

programs generated by subjects. For example, a scheme devised by Gilmore 

(1986b) suggests four main categories of error: 

1. Surface level errors caused mainly by typing and syntactic slips: For example, 

confusion between < and >, missing or misplaced quotes etc. 
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2. Control-Flow errors: For example, missing or spurious else statements, split 

loops etc. 

3. Plan-Structure errors: Including, guard test on wrong variable, update wrong 

variable etc. 

4. Interaction errors: A class of errors occurring at the point where structures of 

different types interact: For example, a missing 'Read' in the main loop, 

initialisations within the main loop. 

Clearly some of these errors will be knowledge-based (specifically, plan-structure 

errors) while others will be strongly dependent upon working memory limitations. 

For example, both control-flow and interaction errors, since they depend upon the 

establishment of referential links and dependencies between code structures, are 

likely to be affected by working memory constraints. Hence, in terms of the first 

experiment, we might expect that both control-flow and interaction errors will 

predominate in novice solutions in the situation where working memory availability 

is reduced. In the case of experts, it is argued that the interactions and 

interdependencies between code structures will be evaluated in the context of using 

an external memory source. That is, by reparsing existing code fragments in order to 

reconcile them with the code the programmer is currently working on. As a 

consequence, that the act of loading working memory will therefore not affect the 

occurrence of these types of error. 

In the case of the second experiment we would expect the converse. If experts are 

not able to use the external display to aid problem solving in the manner predicted, 

then it might be hypothesised that interaction and control-flow errors will 

predominate in the condition where use of the device is restricted such that 

retrospective changes cannot be made. It might also be predicted that this 

experimental manipulation will not affect the occurrence of plan-structure errors 

since these are hypothesised to be knowledge-based rather than strategy-based. 
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11.5.1 Experiment 1. The effects of articulatory suppression on programming 

strategy and errors 

Method 

Subjects 

Twenty subjects participated in this experiment. One group of ten subjects consisted 

of professional programmers who were employed in commercial or industrial 

contexts. All the subjects in this group used Pascal on a daily basis and all had 

substantial formal training in the use of this language. Members of this group were 

classified as experts. A second group of ten subjects consisted of second year 

undergraduate students all of whom had been formally instructed in Pascal syntax 

and language use during the first year of their course. None of these subjects had 

used Pascal before, however some had prior experience of other languages 

(predominantly BASIC and COBOL). Members of this group were classified as 

novices. 

Materials and procedure 

A variety of suppression tasks were explored initially, but the more complex tasks 

tended to disrupt performance to such an extent that a very simple articulatory 

suppression task was adopted. This involved asking the subjects to repeat a string of 

five auditorily presented random digits. Subjects engaged in this task until they had 

completed the experimental session. Hitch and Baddeley (1976) found that a 

concurrent task similar to this significantly affected verbal reasoning performance in 

the context of an experimental task which involved fairly simple logical deductions. 

Hence, it is reasonable to assume that this concurrent task would also affect 

performance in a more complex activity such as programming. 

The experimenter was present throughout the session in order to ensure that this 

concurrent task was performed, and intervened only when the subject paused for 

more than 5 sec. The subjects were requested to generate a fairly simple program 

from a natural language specification. This specification required the subjects to 
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produce a program that could read a series of input values, calculate a running total, 

output an average value and stop given a specific terminating condition (see chapter 

6 for a full description of this specification). This specification was derived from 

Johnson and Soloway (1985) and was chosen because it has formed the basis for 

many empirical studies of programmers. Hence, it was assumed that the resulting 

programs could be more easily analysed in terms of their constituent structures 

(specifically, plan structures) and in terms of any errors remaining in the program 

on completion of the task. 

The subjects were allowed to study the specification for 2 mins. and were then asked 

to generate a program corresponding to this specification while engaged in the 

concurrent suppression task. The subjects were given 15 mins. to complete this 

task, and were asked to work as quickly and accurately as possible. The subjects 

typed their solutions onto a familiar full-screen text editor. 

A non-invasive keystroke recording device was used to monitor the subject's 

behaviour. This device provides facilities for replaying keystrokes via a host 

machine. This replay was analysed to provide some indication of the temporal 

sequence in which programs were generated by subjects. In addition, three 

independent raters were asked to analyse all the resulting program transcripts for the 

presence of plan structures and for errors. Within and between-plan jumps were 

defined as follows: Within plan jumps were classified as movements between a 

particular line of the program text to another line which formed part of the same plan 

structure. Between plan jumps were defined as movements from the current line to 

lines within different plan structures. These protocols applied only to situations 

where the jumps was followed by an editing action (i.e., to insert, append or change 

some text). Finally, the errors were classified according to the scheme described 

above. That is, into surface, control-flow, plan or interaction errors. 
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Design 

The experiment was a two-factor design, with the following independent variables: 

1. Articulatory suppression/No suppression 

2. Level of expertise- Novice/Expert 

There were two dependent variables: 

1. The number of Between/Within plan jumps during program generation 

2. The number of errors remaining in the final program 

Results 

Plan-jumps 

The results of this experiment are shown graphically in figures 11.1, 11.2 and 

11.3. Figure 11.1 shows the number of within and between-plan jumps performed 

by novice and expert programmers in the two experimental conditions. These results 

were analysed using a three-way analysis of variance. 
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Figure 11.1 Number of within and between-plan jumps performed by novice and 

expert groups in the two experimental conditions. 

This analysis revealed main effects of suppression (F1 72 = 8.47, p<O.Ol) and , 

expertise (F1 72 = 12.56, p<O.Ol) on jump-type and a more complex interaction , 

between suppression and expertise (F154 = 4.73, p<0.05). A number of post-hoc , 

comparisons were carried out using the Newman-Keules test with an adopted 

significance level of p<O.Ol. This procedure indicated that experts produced 

significantly more between plan jumps than novices in the non-suppression 

condition. Conversely, novices produced a greater number of within plan-jumps in 
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this condition. In the case of the suppression condition, there were no significant 

differences between both within and between-plan jumps for either novices or 

experts. 

The results of comparisons across conditions indicated a significant difference 

between the number of both within and between-plan jumps for the novice group. 

No significant cross condition comparisons were evident in the case of the expert 

group. 

Errors 

Figure 11.2 shows the total mean number of errors remaining in the programs on 

task completion for novice and expert subjects in the two experimental conditions. 

This was analysed using a two-way analysis of variance. This analysis revealed a 

main effect of expertise (F1,36 = 9.37, p<0.01) and suppression (F1,36 = 4.54, 

p<0.05) and an interaction between these two factors (F1,36 = 15.89, p<0.01). Once 

again a number of post-hoc comparisons were carried out using the Newman-Keules 

test with an adopted significance level ofp<0.01. This indicated a significant 

difference in error rates in the both experimental conditions when comparing the 

novice and expert groups. In addition, a significant difference between error rates 

across conditions was evident for the novice group. In the case of the expert group 

the same comparison proved not to be significant. 
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Figure 11.2 Mean number of errors in each of the experimental conditions for 

experiment 1. 

Error classification analysis 

Figure 11.3 represents the proportion of errors falling into each error classification. 

In the case of experts, there is a fairly even distribution of error types across the two 

experimental conditions. Indeed, further statistical analysis revealed no significant 

differences between error types both within and between conditions (multiple 

t-tests). In the case of the novice group, the distribution of error types is less 

straightforward. In the non-suppression condition, novices produced a significantly 

greater number of plan errors in comparison to the other categories (t-test). 

Moreover, the only significant difference between the novice and experts groups in 

this condition was the number of plan errors produced by the novice group (t-test). 
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In the second condition, the distribution of errors across classification types for 

expert subjects was again fairly even. No significant differences between any of the 

error classifications were evident (multiplet-tests). In the case of the novice group, 

significantly more control-flow and interaction errors were evident in comparison to 

the other two error classifications (t-test). Moreover, for the novice group,the 

number of plan errors occurring in the second condition was significantly less than 

in the first condition (t-test). 
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Figure 11.3 Proportion of errors in each error category in experiment 1. 
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Discussion 

This experiment has clearly demonstrated that expert performance in programming 

tasks is not significantly affected by articulatory suppression. Hence, for experts the 

total number of errors remaining in the final program on task completion is not 

significantly different in the suppression condition in comparison to the 

non-suppression condition. Moreover, it appears that the nature of expert strategy is 

similarly unaffected by this experimental manipulation. Hence, the prevalence of 

between-plan jumps that is evident in the non-suppression condition for the expert 

group is not diminished in the suppression condition. Similarly, the occurrence of 

within-plan jumps does not differ significantly in the two experimental conditions. 

Conversely, the novice group produced significantly more errors in the suppression 

condition when compared to the non-suppression condition. In addition, the nature 

of the coding strategy that they adopt is also affected. In particular, it appears that 

novice programmers revert from a linear generation strategy characterised by the 

prevalence of within-plan jumps, to a strategy more characteristic of experts. That is, 

to a strategy which reflects a greater number of between-plan jumps. 

In section 11.5 it was stated that expert programmers appear to rely much more 

extensively than novices upon the use of external sources to record partial code 

fragments and that the act of loading working memory or of otherwise reducing its 

availability would not affect this process. Hence, in terms of that model, it was 

suggested that experts will tend to engage in very closely linked cycles of planning, 

subsequent code generation and evaluation. Since it is posited that this process relies 

very little upon the programmer's working memory capacity it is reasonable to 

expect that articulatory suppression would not affect the nature of performance in the 

context of this task. The results of this experiment provide support for this view. 

Conversely, it has been argued that novice programmers place much greater reliance 

upon the internal development and simulation of code. In this case, it is claimed that 

reducing the availability of working memory will cause the novice programmer to 

revert to a strategy that necessitates more extensive use of an external media. 

Moreover, it is hypothesised that this change in strategy will be reflected in the 

number of discontinuities between discrete program structures. That is, in terms of 
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between-plan jumps. Once again, the results of this experiment provide some 

evidence for this account of programming behaviour. 

Further support for this view is evident in the error data. In the non-suppression 

condition, novice subjects are clearly more error prone than experts. This finding is 

not unexpected. However, in the suppression condition, the error rate for the expert 

group changes little from this base line whereas the novice error rate more than 

doubles. This may indicate that when working memory is loaded novices must 

externalise information and that this constitutes a strategy which they find unnatural, 

thus leading to an increased error rate. 

A more detailed analysis of these errors in terms of the classification scheme 

described in section 11.5 reveals a change in the nature of errors for novice subjects 

between the two experimental conditions. Hence, in the non-suppression condition, 

the novice group tend to make a greater number of plan errors, suggesting 

knowledge-based difficulties. Conversely, in the suppression condition a greater 

proportion of control-flow and interaction errors are evident. In terms of the analysis 

presented in previous sections, the preponderance of control-flow and interaction 

errors may simply reflect a difficulty in keeping track of the interdependences 

between various elements in the emerging program. When working memory 

availability is reduced it appears that novices experience some difficulty with these 

interdependencies. Moreover, unlike experts, it appears that novices cannot use the 

external display as an aid to memory to its full extent. 

It could be argued that an alternative explanation for these findings is that experts 

simply have an extended working memory capacity and are not affected to the same 

extent as novices by a reduction in this capacity. Such an account would presumably 

have no difficulty predicting the results of the experiment reported above. 

In order to assess the cogency of this alternative explanation the second experiment 

reported in this chapter adopts a rather different approach for exploring the 

relationship between working memory and the development of programming skill. 

In particular, if experts, for whatever reason, are able to extend their effective 

working memory capacity or increase its availability in other ways then restricting 

the task environment should not significantly affect their performance. 
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The second experiment reported in this chapter should be seen as complementary to 

the first. Whereas the first experiment involved an attempt to reduce the subjects' 

available working memory capacity, the second experiment has been designed so as 

to encourage subjects to rely extensively upon working memory. Hence, if experts 

have an extended working memory capacity then they should demonstrate 

performance equitable to that displayed in the first experiment. Moreover, if this 

extended capacity notion is correct, then clearly experts should perform better than 

novices even in the situation where the task environment is severely restricted as is 

the case in the second experiment. 

11.5.2 Experiment 2. Effects of restricting the task environment 

Method 

Subjects 

The same subjects participated in this experiment. However, the order in which they 

took part in each experiment was randomised. 

Materials and procedure 

Once again, the subjects were asked to produce a program corresponding to a brief 

specification written in English. This program (based upon the bank problem 

described in Johnson, 1988. See figure 11.4) involved processing three types of 

bank transactions. In this experiment, the nature of the task environment formed the 

basis for the two experimental conditions. In one condition, subjects were aksed to 

generate a program using a familar full-screen text editor. In the second condition 

subjects used a modified version of the same editor, which allowed cursor movement 

in only one direction. That is, from the top of the screen to the bottom. In addition, 

the text editor allowed only cursor movement between adjacent lines. Hence, once a 

subject had generated a line and pressed the return key, they were unable to then 

return to that line to perform any subsequent editing operations. The editor did, 

however, allow edits to the curent line being generated. 
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Write a Pascal program that can process three types of bank 

transaction: deposits, withdrawals, and a special transaction that 

indicates that no more transactions are to follow. Your program 

should begin by asking the user to input their account id and initial 

balance. The program should then prompt the user to input the 

following information: 

1. the transaction type 

2. if it is an END-Processing transaction the program should print 

out (a) the final balance of the users account, (b) the total number of 

transactions, and (c) the total number of each type of transaction. 

The program should then stop. 

3. if it is a DEPOSIT or WITHDRAWAL, the program should ask 

for the amount of the transaction and then post it appropriately. 

Figure 11.4 A specification of the 'bank problem' 

The subjects first participated in a 5 min. familiarisation session, where the basic 

modifications to the editor were described. The subjects were then asked to attempt 

to generate a program from the specification. They were told to be as accurate as 

possible since they would be unable to change their input one they had pressed the 

return key at the end of each line. They were asked to check each line of their 

program before pressing the return key, in order to determine whether they were 

satisfied with their response. Subjects in both conditions were given 15 mins to 

complete this task. The subjects were randomly assigned to each of the experimental 

conditions. 
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Design 

This experiment was a two-factor design with the following independent variables: 

Environment - restricted/unrestricted 

Level of expertise- Novice/Expert 

In this case the dependent variable was the number of errors remaining in the final 

program. 

Results 

Errors 

The results of this experiment are shown graphically in figures 11.5 and 11.6. 

Figure 11.5 shows the total mean number of errors produced by the expert and 

novice groups in the two experimental conditions. These data were analysed using a 

two-way analysis of variance with the following factors; Environment (restricted or 

unrestricted) and Level of expertise (Novice/Expert) This analysis revealed a main 

effect of Environment (F1,36 = 5.74, p<0.05), a main effect of Level of expertise 

(F1,36 = 4.21, p<0.05) and an interaction beween these two factors (F1,36 = 9.76, 

p<0.01). A number of post-hoc comparisions were carried out using the 

Newman-Keules test with an adopted significance level of p<O.Ol. This analysis 

revealed a significant difference between the number of errors produced by novices 

and experts in condition 1 (unrestricted environment). In condition 2 (restricted 

environment), this comparison did not prove significant. Comparisons across 

conditions revealed a significant difference in the number of errors produced by the 

expert group, but no difference in the case of the novice group. 
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Error classification 

The resulting program transcripts were analysed in terms of different error types 

according to the classification scheme described above. The results of this anlysis 

are shown in Figure 11.6. In the case of experts, there is a fairly even distribution of 

error types in the first experimental condition. Indeed, further statistical analysis 

revealed no significant differences between error types within this condition 

(multiplet-tests). In the case of the novice group, the distribution of error types in 

the first condition suggests a greater proportion of plan errors in comparison to the 

other categories (t-test). 

In the second condition, the distribution of errors across classification types for 

expert subjects was rather more complicated. Here, experts produced a greater 

proportion of control-flow and interaction errors in comparion to the other error 

classifications (multiplet-tests). In addition, experts produced significantly more 

control-flow and interaction errors in comparison to the first condition. Experts also 

produced significantly more control-flow and interaction errors in comparison to the 

novice group in this condition. In the case of the novice group, there were no 

significant differences in terms of each error classification across the two conditions. 

As in the first condition, novices produced significantly more plan errors in the 

second condition. 
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Discussion 

These results provide a striking demonstration of the effects of restricting the task 

environment on problem solving performance. In previous sections it was argued 

that experts rely to a great extent upon using the e.xternal dispaly to record fragments 

of code that are then further elaborated at subsequent points during the generation 

process. This led to the hypothesis that if programmers were unable to return to 

previously generated fragments then they would be forced into a situation where 

they would have to rely extensively upon working memory to establish the various 

dependences and interactions between code structures. However, it appears that 

while novices are seemingly unaffected by changes to the task environment, experts 

not only perform worse than novices but also produce the kinds of errors that are 

indicative of an inability to internally construct links and interdependencies between 

code structures. Hence, these results reveal that experts produce more errors than 

novices in the restricted task environment. Moreover, experts produce a significantly 

greater number of control-flow and interaction errors in this second condition. 

It was suggested in discussion of the first experiment that the results emerging from 

that study might reasonably be interprited as indicating that experts have an extended 

working memory capacity. However, if this were the case then the results of this 

second experiment would appear to be rather anomolus. In particular, if experts have 

an extended working memory capacity in comparison to novices, then we might 

expect that situations which cause experts to rely upon working memory would not 

give rise to such an extensive decrement in performance. 

Moreover, there appears to be no reasonable explanation in terms of the increased 

working memory capacity assumption as to why experts produce many more 

control-flow and interaction errors in comparison to novices. Recall that in the first 

experiment it was the novice group that displayed a greater frequency of 

control-flow and interaction errors. 

A more cogent explanation for these findings might simply involve suggesting that 

experts rely upon external sources and are not able to efficiently revert to a strategy 

that demands extensive reliance upon working memory. This analysis would 
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account for both sets of experimental findings. In the first experiment a reduction in 

working memory availability did not affect expert performance. 

This could clearly be accounted for in two ways. On the one hand, it could be 

argued that experts simply have an extended working memory capacity. Conversely, 

we might claim that experts rely extensively upon external sources and find it 

difficult to adopt other alternative strategies. However, the second experiment 

appears to suggest that the first of these explanations is incorrect. In particular, if 

experts have an extended working memory capacity then we would expect them to 

perform better than novices in situations where a reliance upon working memory is 

necessitated. This appears not to be the case. 

11.6 Conclusions 

11.6.1 Working memory, display-based problem solving and the development of 

expertise. 

These experiments have clearly demonstrated that the relationship between skill 

development in programming and working memory is not as predicted. Hence, it 

appears that experts rely significantly upon external sources to record code 

fragments as these are generated and then return later, in terms of the temporal 

sequence of program generation, to further elaborate and extend these fragments. It 

has been suggested that one of the major determinants of expertise in programming 

may be related to the adoption or the development of strategies that facilitate the 

efficient use of external sources. In contrast, novices appear to develop as much of 

the program internally before transfering it to an external source. In addition, they 

appear to rarely change their code once it has been generated 

The reason why experts make such extensive use of an external medium is unclear. 

This externalsiation of information clearly has a high cost in terms of the reparsing 

or recomprehension of generated code that is implied. Hence, it might seem 

counterintuitive to suggest that problem solvers will tend to rely upon this kind of 

strategy rather than upon a strategy which involves the more extensive use of 

working memory. However, this explanation is consonant with existing work which 
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has implicated display-based recognition skills in theoretical analyses of complex 

problem solving (Larkin, 1989; Howes and Payne, 1990). The contribution of these 

analyses has been important, however they have neglected to consider the 

relationship between display use and expertise and the consequent effect that this 

may have upon the nature of problem solving strategies. 

It is clear that a problem solver's ability to maintain prior states of control and to 

remember intermediate solution steps is severly limited (Greeno and Simon, 1974; 

Simon, 1975). In addition, Hitch (1978) has shown that working memory errors are 

reduced if intermediate results are utilised as soon as possible after they are 

produced. These factors may give rise to the development of strategies which cause 

the programmer to rely primarily upon the use of external memory sources. 

The results of the experiments reported here question the cogency of accounts of 

skill development which place central emphasis upon the assumption that experts 

possess an extended working memory capacity or availability. In the case of expert 

programmers, it has been show that articulatory suppression affects neither 

programming strategy nor number of errors. This would be expected given the 

increased capacity assumption posited in previous models. However, the results of 

the second experiment would not be predicted on the basis of this assumption. 

In particular, restricting the task environment such that the programmer must rely 

more extensively upon working memory should affect neither strategy nor errors to 

the extent that was apparent in this particular study. Since it is uncommon to see 

expert performance reduced to level exhibited by novices, it might therefore be 

assumed that restricting the environment in this way causes experts to revert from 

their adopted strategy to one more characteristic of novices. 

Not withstanding this, there is a significant amount of empirical evidence for the 

increased capacity assumption, and as such it would be premature to reject it on the 

basis of the experiments reported here. However, these experiments suggest that 

display-based competence is an important factor in the development of expertise in 

programming. The extent to which the development of such a competence is relevant 

to other skills remains an important empirical question. Programming is clearly a 

complex skill, and this complexity appears to necessitate the use of an external 

293 



medium. In the context of other skills, it may be the case that an external medium is 

not available. Alternatively, other problem domains may not give rise to an extensive 

number of interacting solution steps as is clearly the case in programming. Hence, in 

other complex domains it is possible that there are very good reasons for relying 

upon working memory. 

The present study may be limited in terms of its ability to account for problem 

solving strategies in other domains, although there are areas where this kind of 

analysis appears to be relevant, e.g., in writing and text composition, where multiple 

constraints and solution step interactions are inescapable (Flower and Hayes, 1980; 

Sharples and O'Malley, 1988). While the analysis presented here may not be 

appropriate to all problem solving domains, it is clear that, in terms of programming 

at least, this study poses a number of implications which may challenge the validity 

some of the claims made in previous analyses. 

11.6.2 Working memory and the nature of errors 

The work reported here has a number of implications for the way in which we might 

attempt to explain the occurrence and distribution of different types of error. In 

particular, it is clear that a certain classes of error can be attributed to working 

memory limitations and that such errors are not distributed at random. In terms of 

the error classification employed here, it appears that interaction and control flow 

errors predominate in situations where working memory availability is reduced. 

Previous work (Anderson and Jeffries, 1985) has suggested that errors arising from 

working memory failures will occur at random. More recently, Anderson (1989) has 

claimed that "working memory failures are slips at random and produce a wide range 

of different responses and would not concentrate at one place in the protocol" (p 

350). However, the results of the present study suggest that working memory 

related errors may have a more systematic distribution, and that the type of errors 

one might expect to occur may to some extent be predictable. 
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11.6.3. The role oflanguage features and the nature of task environments 

Gilmore (1986a) has criticised Anderson and Jeffries' analysis of working memory 

errors from a rather different perspective. Gilmore suggests that their analysis "is 

very weak and its main impact lies in the new approach, rather than the detailed 

analysis. The main weakness is that language features do not seem to be considered 

relevant to the analysis. Anderson and Jeffries make no attempt to analyse the causes 

of processing overload ... " (p 528-529). 

This criticism is pertinent to the present analysis since the nature of display-based 

problem solving in programming will be highly dependent upon features of the 

particular programming language considered. For example, Green (1990; 1991) 

suggests that some programming languages are "viscous" in that they are highly 

resistant to local modification. In terms of the analysis presented here, less viscous 

languages will provide better support for the kind of incremental problem-solving 

processes that are proposed. Hence, we might predict that programmers using 

different languages will make different kinds of error. In addition, since experts 

appear to employ an incremental strategy and novices a characteristically linear 

strategy, then it could be argued that some languages may be more suited to experts 

and others to novices. 

The language features described above will affect the strategies employed in the 

generation of code. However, there are other language features which will affect its 

comprehension. Gilmore and Green (1988) suggest that some languages are 

"role-expressive" (for example, Pascal) in that they may contain a rich source of 

lexical cues which enable a programmer to distinguish more easily the constituent 

structures contained in a program written in that language. They contest that less 

role-expressive languages (for instance, Prolog) are lexically more amorphous and 

that such languages will not facilitate certain forms of comprehension. 

More recently, claims have been made about object-oriented languages which may 

provide support for the present analysis. For example, Rosson and Alpert (1990) 

have claimed that such languages facilitate decomposition of the problem space by 

enabling programmers to develop encapsulated chunks of code whose internal 

operations are effectively isolated from other chunks. They go on to claim that this 
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form of decomposition will increase the amount of information that can be held in 

working memory since objects in the problem space can be held as separable chunks 

whose lower order implementation has no implications for other objects of interest. 

This arises because object-oriented languages enable a programmer to establish an 

abstract interface to a data structure which effectively hides the implementation 

details from the procedure using that data. All access to a data structure is effected 

via operations provided by the data structure's public interface. In object-oriented 

languages, the data contained within an object are private to that object and are 

accessible only via messages to the owning object (Micallef, 1988). Hence, the 

message interface can make useful information about an object available while hiding 

its implementation details (Goldberg and Robson, 1983). 

Rosson and Alpert claim that this kind of encapsulation will reduce working memory 

load since the programmer need not worry about the interactions between the object 

they are constructing and other objects. This claim has not been subject to empirical 

evaluation but the analysis presented in this paper would suggest that such a claim 

may well be valid. One should note, however, that at other levels, the use of 

object-oriented languages may place an extra burden upon working memory. In 

particular, in most object-oriented systems one is forced to specify the relationships 

among objects (or more accurately, among classes of objects) before operations 

upon those objects can be defined. Detienne (1990) has shown that this requirement 

causes considerable difficulties since changing the structure of an evolving program 

can be very difficult. To avoid this problem, one might expect programmers to rely 

upon working memory in order to establish relationships between objects and 

classes before committing this structure to an external representation. 

One issue that is important in the context of the display-based analysis proposed in 

this paper is how one might begin to devise a scheme for externalising working 

memory during program generation. In the realm of object-oriented languages it has 

been proposed that one way of facilitating this is to provide a description level 

similar to that found in bibliographic databases (Green, Gilmore, Blumenthal, 

Davies and Winder, in press). Here, the problem is one of retrieving a target from a 

partial description. Typically, bibliographic databases not only represent attributes of 

a text itself but also additional key words which can be used for searching and 

browsing. In programming terms, descriptors might be based upon persistent (eg. 
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functional subsystems) or transient (eg. a set of items to be documented) 

relationships between code structures; chronological relationships (eg. code 

developed or tested at a particular time) etc. 

Providing this additional representation of a program may facilitate the 

recomprehension process that is central to the analysis presented in the present 

chapter. In particular, the provision of a description level could make certain 

relationships salient within a given task context, thus facilitating display-based 

recomprehension. Indeed, even such things as simple colour cues or tags (Lansdale, 

Simpson and Stroud, 1988) which identify commonalities between important code 

structures may facilitate the representation of salient relationships. Clearly there is 

significant scope for further research into mechanisms which can support both the 

externalisation of working memory and the recomprehension processes that appear 

to be central to display-based competence. 

The language features described in this section are important in terms of the present 

analysis, since the incremental nature of code generation and 

comprehension/recomprehension will clearly be affected by the nature of the 

language. The present analysis extends existing work by suggesting ways in which 

language features and strategy may interact in concert with features of the task 

environment to give rise to particular forms of behaviour. It should be noted that 

these effects would not taken into account by display-based views, since the salience 

of particular features of the display remains undifferentiated. Hence, one important 

extension to the display-based models of problem solving would be the 

incorporation of a mechanism which allows one to specify the salience of particular 

display-based features. 

The analysis presented here also suggests that problem solving success in 

programming will in part be determined by the nature of the task environment. Of 

particular importance will be the extent to which an environment supports nonlinear 

generation strategies and the ease with which changes to existing structures can be 

effected. These considerations may shed light upon the finding that the use of certain 

forms of programming environment can be frustrating for experienced 

programmers. For instance, Neal (1987 a and b) has conducted a number of studies 

exploring the efficacy of syntax-directed editors. Such editors provide syntactic 
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templates for particular structures. Hence, in Pascal, if the programmer inserts a 

'begin' statement, a corresponding 'end' statement will be generated automatically. 

Neal found that experienced programmers frequently expressed dissatisfaction with 

such editors. Neal (1987a) comments that expert programmers "felt that to enter a 

program they had to do much more, both conceptually and physically because of the 

methods allowed for inserting and changing text ... " (p 100). Neal's findings 

together with those reported in this paper suggest that environments intended to 

support the coding process should provide the flexibility to support both incremental 

development and change. 

11.7 Summary 

The experiments reported in this chapter suggest that the development of expertise in 

programming is dependent upon the adoption of strategies for effectively utilising an 

external display. Moreover, these experiments have demonstrated that increased 

working memory capacity or availability is not a necessary prerequisite of skilled 

performance in this domain. Rather, skilled programmers appear to engage in 

closely linked cycles of code generation and evaluation activities. According to this 

model, code is generated in a fragmentary fashion and the display is used as a 

repository for recording intermediate solution steps. In addition, it has been argued 

that the success of this strategy will depend upon features of the programming 

language and upon the nature of the task environment. 

While the analysis presented in this chapter has indicated the importance of 

display-based performance in programming, it has also suggested two primary 

limitations of this general approach. Firstly, existing accounts of display-based 

problem solving ignore the apparent relationship between expertise and the 

development of strategies for utilising display-based information. Secondly, such 

accounts do not consider the possibility that different forms of display-based 

information will be differentially salient in the context of a given task. Further 

developments of display-based accounts of problem solving will need to address 

these issues if they are to provide a full and coherent description of human problem 

solving in the context of complex tasks. 
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Chapter 12 Knowledge restructuring processes and the 

development of expertise in programming 

12.1 Summary of experimental work 

Two experiments were reported in chapter six which highlighted the effects of 

design experience upon the nature and development of programming plans. 

These experiments showed that the plan theory cannot account straightforwardly 

for the differences between novice and expert programming performance. In 

particular, they demonstrated the important role played by the acquisition of 

design-based knowledge in the comprehension of programs. The implications of 

these experiments are that current views concerning the nature and development 

of programming plans are flawed in two ways. On the one hand, the notational 

view is too narrow in its perspective because of the emphasis it places on notation 

at the expense of other demonstrably important factors. On the other hand, the 

views expounded by the Soloway group reflect a fundamental confusion between 

the measurement of plans and their use in theoretical explanations of expert 

performance. Hence, neither provides a sound theoretical basis for a full 

psychological theory of programming. 

Subsequent experiments reporteded in this thesis suggested that the development 

of expertise in programming does not simply involve the accumulation of plans. 

Rather, programming expertise appears to depend upon the structuring of 

programming knowledge such that certain salient plan elements can be retrieved 

and accessed more quickly. It may be the case that design training facilitates this 

structuring process by encouraging programmers to focus upon the salient 

elements of plans. In addition, this might be expected to enhance the mapping 

between the language and problem domain that is discussed above, by providing 

a means of applying the salient features of plans and establishing the links 

between them. 

The results of the experiment reported chapter seven extend this theme by 

providing general support for the idea that the possession of plans per se does not 

necessarily guarantee the same level of programming performance for different 
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groups of subjects. Hence, in the context of that experiment, while intermediates 

were to be able access the same plan knowledge as experts, they were able to 

achieve this more effectively, as evidenced by their greater speed. 

The implications of this experiment are twofold. Firstly, it seems clear that a 

programmer's knowledge representation must support the representation of 

salient code structures. Such structures, which might be characterised as 

'beacons' or 'focal lines', act as partial descriptions of particular code fragments 

and provide reminders that a segment of a program may need completing at a 

subsequent stage. In addition, the development of these code structures appears 

to coincide with increasing expertise. This may suggest that as expertise 

develops, knowledge structures change such that the organisation of these 

structures reflects the increasing importance of 'focal lines' and 'beacons' etc. 

The results of the experiments presented in chapter 8 contribute to our 

understanding of the processes which underpin schema or plan development, and 

provide a framework for elaborating the relationship between the development of 

knowledge structures and expertise. One of the more interesting findings of the 

study presented there was that notation does not appear to support an 

opportunistic or a breadth-first strategy to the same degree for programmers of 

different skill levels. That is, the effects of notation on strategy are less extensive 

for experts than for intermediates. 

One way to explain this differential effect might be to suggest that notation and 

knowledge representation interact very strongly to determine strategy. Hence, as 

representations of programming knowledge are in the process of development, as 

we suggest in the case of intermediates, then any additional means of facilitating 

programming strategy, such as might be provided by certain features of the 

notation, are likely to be of particular importance. At higher levels of skill, factors 

relating to the organisation of knowledge appear to play a greater part in the 

determination and the support of programming strategy. 

A number of interesting findings emerged from this analysis. Firstly, it was 

shown that opportunistic episodes may occur at any point during the evolution of 

a program. However, this does not rule out the existence of an overall top-down 
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strategy. Hence, the clear dichotomy between top-down and opportunistic 

approaches that is implicated in previous work may be unfounded. Secondly, it 

was demonstrated that the emergence of top-down or opportunistic strategies is 

not task dependent as suggested by a number of previous studies. Rather such 

strategies can co-exist within the context of a single task. However, one form of 

strategy make take precedence over the the other at particular points during the 

evolution of the program. 

Expertise also appears to play a major role in the determination of particular 

forms of strategy. For instance, novice programming behaviour appears to be 

systematically opportunistic, displaying none of the characteristics of a top-down 

approach. Conversely, expert programmers adopt a broadly top-down approach, 

at least during the early stages of program generation. In this context, the notion 

of the focal line appears to play a significant role in expert programming 

behaviour. The experiment reported in chapter 8 demonstrated that experts tend to 

generate focal lines first, providing a framework around which the rest of the 

program can be constructed. This may arise as a consequence of the knowledge 

restructuring process proposed in this thesis whereby the devlopment of expertise 

is seen to be accompanied by the restructuring of plan/schemata structures such 

that focal lines achieve promanance. 

The results of the experiment reported in chapter 9 suggested that knowledge 

structures may develop via a restructuring process rather than through a process 

of knowledge accretion which simply involves developing a larger repertoire of 

plans. Previous accounts of programming expertise have tended to emphasise the 

development of extensive repertoires of programming knowledge rather than 

focus upon issues relating to knowledge restructuring processes. This is 

exemplified in Soloway's work on plans, where it is suggested that expertise 

simply involves building a more extensive collection of programming plans 

together with the rules which goven their use. However, as we have seen, the 

possession of plans per se cannot be used to diffrentiate certain groups of 

programmers, especially at higher levels of skill; namely at the point of transition 

between intermediates and experts. 
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The final experiment indicated the importance of display-based performance in 

programming and suggested two primary limitations of this general approach. 

Firstly, existing accounts of display-based problem solving ignore the apparent 

relationship between expertise and the development of strategies for utilising 

display-based information. Secondly, such accounts do not consider the 

possibility that different forms of display-based information will be differentially 

salient in the context of a given task. Further developments of display-based 

accounts of problem solving will need to address these issues if they are to 

provide a full and coherent description of human problem solving in the context 

of complex tasks. In the context of the present discussion it was suggested that 

focal lines would be diffrrentially salient and would form a kemal around which 

code could be built. We suggested that the primary mechanism in code generation 

was based upon the close interaction between planning and re-evaluation which 

demands extensive reliance upon information that had previously been 

extemalised. 

12.2 An overview of the framework - Knowledge restructuring in programming 

These experiments form the empirical basis for the central argument advanced in 

this thesis. This argument proposes that the possession of plans or of other 

schematic programming knowledge structures does not in itself provide an 

adequate account of the development of expertise in programming. The 

experiments reported in this thesis have demonstrated that programming expertise 

depends not only upon the possession of plans but also upon the structure of plan 

knowledge and upon the way in which such knowledge can be used to guide 

strategy. For example, the experiments reported here have shown that 

intermediate and expert programmers can display similar levels of performance in 

certain tasks which require the application of generic plan knowledge. However, 

in contrast, other features of performance appear to be dependent upon the level 

of expertise of the programmer. The results of these experiments have been taken 

to imply that while intermediates and experts may be able to access a similar 

range of plan structures, they appear to use these knowledge structures rather 

differently during both program generation and comprehension. The reasons for 

this appear to be related to the way in which this knowledge is structured. 
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To account for this phenomena, it has been argued that the development of 

programming expertise is underpinned by a knowledge restructuring process, 

leading to the development of hierarchically structured schemata which emphasise 

the salient aspects of each plan or schema structure. It has been suggested that 

this restructuring process may give rise to differences in the observed program 

generation strategies that are adopted by programmers of various skill levels. 

Hence, it has been demonstrated that expert programmers adopt a strategy 

whereby the focal aspects of plans are generated first and other program 

structures are built around them. This can be contrasted with other models of 

program generation, for example that presented by Rist, which predicts that 

experts will adopt a sequential mode of code generation and develop programs in 

schema order. The framework presented here has more in common with the 

parsing/gnisrap model advanced by Green et. al. which suggests that programs 

are developed in a fragmentary and incremental fashion. The parsing/gnisrap 

model also stresses the very close link between planning and execution which is a 

central element in the present analysis. 

A number of the experiments reported in this thesis have demonstrated that expert 

programmers do not generate their programs in a linear fashion. More 

specifically, it appears that experts tend to generate the focal elements of plans 

and then later extend these to include subsidiary plan elements. It has been 

suggested that developing programs in this way reduces the demand on working 

memory since the decomposition of the emerging program will be held at a single 

level of abstraction (see chapters 8, 9 and 11). In chapter 11 it was suggested that 

jumping between different levels of abstraction in a problem space can place 

significant demands upon working memory (see also Anderson, 1983) and this 

may lead to the observation that experts tend to decompose their solutions in a 

broadly top-down fashion. 

Experts also appear to rely extensively upon externalising the contents of 

working memory during program generation (see chapter 11). It was suggested 

in chapter 11 that one of the major determinants of expertise may be the adoption 

or the development of strategies which facilitate the effective use of external 

memory sources. As a consequence, it has been argued that both the nature of the 
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problem solving environment and the programming language will have an effect 

upon problem solving behaviour. In particular, given the incremental nature of 

program generation, the success of this process will in large part be determined 

by the flexibility of the environment in terms of the support it provides for 

implementing changes. Similarly, the viscosity of the language will affect this 

process, since it determines the ease with which changes can be made. In terms 

of comprehension, other factors come into play. Here, the expressiveness of the 

language, measured in terms of the ease with which various structures can be 

located and differentiated, will play a central role in facilitating comprehension. 

The model of programming behaviour presented in this thesis suggests a small 

number of reasonably straightforward mechanisms which can account for both 

the generation and the comprehension of programs. In addition, this framework 

stresses the importance of both language and environmental features in 

determining the nature and success of programming behaviour. 

In this final chapter, a more detailed framework for understanding the knowledge 

restructuring processes outlined in this thesis will be presented. This chapter will 

attempt to demonstrate how the experimental work reported in this thesis can be 

used to support a parsimonious interpretation of program generation and 

comprehension. 

In the context of this framework there appear to be three important areas of 

concern. Firstly, we need to explain action. That is, how schematic 

representations of programming knowledge are instantiated as code. This derives 

from a consideration of the problems of previous schema-based accounts of 

programming behaviour and in particular the notion that such accounts have 

failed to provide a specification of the processes governing schema instantiation. 

This problem appears to derive largely from the fact that the components of 

schemata are equally accessible, and that they can be implemented in any order. It 

is argued that this leads to difficulties in understanding how action is initiated. 

Moreover, such models provide no indication of how programming strategy 

might develop. Indeed, they fail to provide any description of the nature of the 

strategic elements of problem solving in this complex domain. Hence, while such 

accounts may provide a theory of plans, they fail to provide a theory of planning. 
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The second area of concern discussed in this chapter relates to the actual 

representation of programming knowledge, and in particular to the form of 

representation one might adopt in order to provide a basis for a hierarchical 

representation of such knowledge. In this context, it is suggested that schemata 

are not flat structures where every part of the structure can be accessed equally. 

Adopting ideas from the text comprehension domain, it is suggested that 

schemata structures may be viewed as hierarchically structured propositional 

representations. In this context, the salient elements of programming plans, that 

is those elements that encode information relating to the current goal (focal lines) 

will occur at higher levels of the propositional hierarchy. It is suggested that this 

form of representation may go some way towards capturing the structural 

organisation of programming knowledge that is hypothesised to give rise to many 

of the experimental findings reported in this thesis. 

Models of programming behaviour based upon propositional accounts are not 

new. However, such models have failed to provide a cogent explanation of how 

levels in a propositional hierarchy can be determined. Moreover, these models 

have not considered the way in which knowledge structures might develop with 

expertise. One aim of this thesis is to address these limitations by providing an 

account of the nature and development of programming knowledge and a 

demonstration of how differences in the structure of this knowledge can lead to 

differences in strategy. 

Finally, consideration is given to the acquisition of structured representations of 

programming knowledge. It is suggested that the development of structured 

representations may not simply arise via the control of a basic psychological 

mechanism such as knowledge compilation. Rather, it is argued that the specific 

learning or training experience of the programmer contributes significantly to the 

development of hierarchical representations of programming knowledge. 
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12.3 Knowledge restructuring- A process model of schema instantiation 

One important area of work which may contribute to the development of a model 

of knowledge representation in programming is that concerned with 

representations of linguistic knowledge and in particular with work in the text 

comprehension domain. It is clear that the plan theory of programming has strong 

parallels with work in these domains. In particular, advocates of the plan theory 

have attempted to frame their analysis of programming knowledge in terms of 

Schank's notion of scripts. Scripts have been used to provide a representational 

scheme for describing generic domain specific knowledge structures, and on this 

basis clearly bear some relationship to programming plans. 

However, one of the main criticisms of Schank's theory is that is that it lacks a 

process model which specifies in detail how scripts or schemata are used. For 

example, Anderson (1983) claims that the symmetry of schemata can lead to 

potential problems "For instance, from the fact that the light is green one wants to 

infer that one can walk. One does not want to infer that the light is green from the 

fact that one is walking. No successful general-purpose programming language 

has yet been created that did not have an asymmetric conditionality built in as a 

basic property. We should expect no less of the human mind" (p 39). The 

problem with schemata is that it is very difficult to see how they can provide a 

basis for understanding action. Similarly, the plan theory of programming fails to 

specify how plans are used. It seems rather anomalous that researchers are 

prepared to advance a theory of plans without specifying a theory of planning. 

One of the main aims of this thesis has been concerned with explicating a 

framework to account for action and planning in programming, and this 

framework depends to a significant degree upon the rejection of some of the 

rather more simplistic notions which are embodied in plan theories. 

The present framework suggests that expertise may involve the acquisition of 

declarative schemata which are accessible in the context of certain recognition and 

recall tasks (see chapter 10). Hence, programmers of different skill levels (expert 

and intermediate) can respond with similar levels of accuracy to the presentation 

of probe items, but experts tend to respond faster than intermediates in response 

to focal lines, whereas there is no difference in response to non-focal lines. 
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This finding suggests that while programmers can access their declarative 

programming knowledge, there is a basic asymmetry in their representation. The 

work presented here suggests a schema-based framework which may go some 

way toward addressing the criticisms typically levelled at other schema-based 

models of problem solving. In particular, as Anderson (1983) points out, in most 

schema based accounts, it is possible to instantiate and/or execute any part of a 

given schema since the control structure inherent in such models provides 

equality of access to all components. In the present context, it is suggested that 

certain elements of programming schemata will have permanently raised 

activation levels and will tend to be generated before other elements of the same 

schemata (see chapter 9).This reflects the empirical finding that focal lines tend to 

be generated before other elements of a particular schemata are expanded and/or 

refined. 

12.4 Knowledge restructuring- towards a hierarchical model of knowledge 

representation in programming 

In order to develop the model presented in this thesis in more detail it is necessary 

to not only specify the mechanisms which underpin the knowledge restructuring 

and control processes that are central to the theory, but also to outline a 

representational scheme which can accommodate a hierarchically organised 

knowledge base of plans and goal structures. 

One way of viewing programming knowledge from this perspective is to 

consider such knowledge structures as being represented as a set of hierarchically 

structured propositions. This is the approach taken by Kintsch and van Dijk in 

their analysis of text comprehension and production. 

Kintsch and van Dijk suggest that there are three levels of memory representation 

for text which can be distinguished. At one level, a text can be described in terms 

of the exact words and phrases used. Kintsch and van Dijk refer to this as the 

surface level representation. Another level of representation captures the 

semantic content of the text which represents both local (microstructure) and 
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global (macrostructure) features. The content of this level is captured in 

propositional form (Kintsch, 1974), where each statement in the text is 

represented as an individual proposition. For example, the phrase "If Mary 

Trusts John she is a fool" might be represented as (IF, (TRUST, MARY, 

JOHN),(FOOL, MARY)). Kintsch and van Dijk argue that this sentence would 

be represented by subjects in a hierarchical fashion with the proposition (IF, 

(TRUST, MARY, JOHN) occurring at a higher level than (FOOL, MARY). One 

prediction arising from this is that propositions identified as important (i.e., high 

in the propositional hierarchy) will be best recalled. A number of studies have 

shown this to be the case (Christiaansen, 1980; Kintsch and Keenan, 1973; 

Mandler and Johnson, 1977 and Meyer, 1975) and these studies provide strong 

evidence for some form of hierarchically structured representation of linguistic 

knowledge. 

The experiment reported in chapter 10 employs a similar paradigm to analyse 

programming knowledge. Here, it was demonstrated that highly skilled 

programmers are able to respond more quickly to focal lines than intermediates, 

although their levels of accuracy were similar. Novices, however, performed 

much less accurately than both experts and intermediates. By analogy to the work 

of Kintsch and his colleagues, this study may suggest that certain salient 

programming structures may appear at higher levels in a programmer's 

macrostructure representation. Moreover, the restructuring of programming 

knowledge appears to be related explicitly to the development of expertise. 

In terms of the framework presented here, plan structures in programming might 

be seen as a similar unit of analysis as the macrostructure representation of text as 

proposed by Kintsch. The macrostructure of a text represents sentences in terms 

of agents, goals and objects. It may be possible to derive a similar form of 

representation for programming knowledge where a focal line may be taken to 

represent or to express the goal of a particular plan. In terms of the present 

analysis, each goal structure will manipulate one more objects according a given 

procedure. In this sense a plan or programming schemata should be seen as 

analogous to a sentence. Previous analyses which have attempted to describe 

programming knowledge using the text structure model presented by Kintsch 

have described each program statement in propositional form. However, a more 
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appropriate level of representation would appear to suggest that programming 

plans or schemata should be considered as the basic unit of representation having 

more in common with the macrostructure level of analysis. 

Having said this, however, the programming plan also appears to bear some 

resemblance to the third level of text structure knowledge proposed by Kintsch 

and van Dijk. Kintsch and van Dijk term this third level of representation the 

situation model. They claim that the situation model represents the situation 

described by the text and that it is "detached from the text structure proper and 

embedded in pre-established fields of knowledge" (p 135). They go on to 

suggest that "(T)he principle of organisation at this level may not be the text's 

macrostructure, but the knowledge schema (e.g., an appropriate script or frame) 

used to assimilate it." (p 135-136) 

It is of interest to note that the situation model may appear to represent the same 

kind of structure as described by programming plans. However, this analogy 

poses problems if one examines the correspondence more closely. For example, 

it is clear that since notational factors appear to play a role in the perception and 

use of plans, then the text structure itself must in tum influence the representation 

of plan structures. 

Atwood and Ramsey (1978) have also applied Kintsch and van Dijk's model of 

text comprehension to program understanding. They equate individual program 

statements with propositions, and the macrostructure representation is formed by 

grouping these propositions into a functional unit or chunk. Atwood and 

Ramsey, attempted to provide some evidence for their analysis by examining bug 

detection rates. They predicted that bugs residing at higher levels in the 

macrostructure hierarchy would be easer to detect than bugs at lower levels. Their 

data provides some support for this prediction and subsequent studies have found 

similar patterns of results (Vessey, 1989). 

There are, however, a number of serious problems with this work. The main 

weakness of these studies is that the measure of depth in the proposition structure 

is flawed and does not correspond to Kintsch's propositional analysis. For 

example, Vessey uses depth in the control structure of the program as a measure 
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of level in the propositional hierarchy. However, Kintsch's propositional 

analysis attempts to capture the salience of each proposition in terms of its 

meaning to the reader. Another problem with this work is that, in Vessey's case 

at least, the conclusions that are drawn are based upon the analysis of a single 

bug occurring in different places. However, as Gilmore (in press) points out the 

'same' bugs in different locations, may not be the same bugs at at. For example, 

Gilmore claims that while control-flow bugs may seem to be easily equated, the 

same cannot be said about semantic and plan-related bugs since they cannot be 

equivalent unless they appear at the same point in the program. A third problem, 

which may be related in part to these other difficulties, has been noted by 

Pennington (1985) who has suggested that the Atwood and Ramsey study may 

have been confounded by the location of bugs in the program text. It appears that 

bugs that resided high in their propositional hierarchy also occurred near the 

beginning of the program. 

The model presented here attempts to specify the salience of programming 

structures at the program text level by equating focal lines with structures which 

occur at high levels in the propositional hierarchy. A focal line, as we have seen, 

describes the line of code that directly implements the programmer's current goal 

and hence we would expect that this structure would have some psychological 

significance for the programmer. 

Gilmore (1988b) suggests that Schneiderman's (1980) model of programming is 

also very similar to Kintsch and van Dijk's model and that "the major weakness 

of this approach is that although it places much emphasis on factors of notational 

design (because the main process is the extraction of information from the 

program), it has nothing to say about what features of notations improve the 

efficiency of these processes, even though this should be one of the important 

functions of a model of program comprehension." (p 16). The work reported in 

this thesis represents a step in the opposite direction in that predictions about 

notational properties of programming languages are related to an explicit model of 

knowledge representation in programming. This model also makes predictions 

about the forms of strategy adopted by programmers of different skill levels and 

the extent to which certain notational properties might support preferred 

strategies. 
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In summary, while other models of programming have attempted to use ideas 

from the text comprehension domain none have paid sufficient attention to the 

saliency of particular programming structures nor to the effects of surface 

features of the text base that might affect program comprehension and generation. 

The main contribution of the present analysis is that it provides a means of 

specifying the saliency of particular structures and demonstrates how features of 

the notation of a language might affect the implementation and the subsequent 

comprehension of such structures. 

12.5 Acquiring hierarchical representations: Design training and the 

development of structured representations of programming knowledge 

One question that arises in terms of the above discussion is how the process of 

knowledge restructuring presented in this thesis might be initiated. It is clear that 

one of the central issues addressed in this thesis is the extent to which structured 

knowledge representations might develop via straightforward mechanisms of 

skill acquisition or alternatively whether they arise as a consequence of specific 

forms of training. 

In chapter 6 it was demonstrated that certain kinds of tasks involving plan 

knowledge appear to depend upon the prior learning experiences of the 

programmers studied. In particular, it was shown that design experienced 

programmers performed significantly better in those situations which demanded 

the application of plan-based knowledge. It might be suggested on the basis of 

the studies reported in this chapter that design training facilitates plan use by 

focusing upon methods which emphasis the strict application of a top-down 

hierarchically levelled model. 

In other domains it has been demonstrated that presenting hierarchically 

organised instructions can not only facilitate the acquisition of declarative 

knowledge (Smith and Goodman, 1984) but can also increase performance in 

complex problem solving tasks (Eylon and Reif, 1984; Larkin, 1980; Zeitz and 

Spoehr, 1989). Hence, it might be claimed that the degree to which explanatory 
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or training material emphasises a hierarchical structure will influence the 

development of knowledge representation which might in turn exert an influence 

over the degree to which that information can be proceduralised with practice into 

effective problem solving methods. 

The effects of specific forms of prior training has not, until recently, been a factor 

that has figured significantly in more traditional accounts of skill acquisition. For 

example, in terms of the ACT* framework , programmers who achieve similar 

levels of practice should develop similar levels of procedural skill. Learning and 

skill acquisition in the ACT* framework are effectively based upon the amount of 

material presented and practised, while much less emphasis is placed upon the 

way in which this learning material is presented. The ACT* framework tends to 

emphasise the hierarchical nature of goal structures while neglecting specific 

issues in training. More recently, the embodyment of ACT* principles in 

intelligent tutoring systems has led to the suggestion that some effort should be 

put into communicating goal structures explicitly to students. Anderson, Boyle, 

Farrell and Reisner (1987) suggest that "there is a natural danger of casting 

instruction ... in terms of the linear structure (of the program)" (p 103). They go 

on to suggest that "fortunately, more enlightened instruction does emphasise a 

hierarchical, structured program" (p 103). However, they suggest "while 

structured programming is definitely a step in the right direction, it only 

ameriorates the basic problem ... the structured program itself is only a syntactic 

object which will have an imperfect correspondence to the structure of the 

programmer's plan" (p 103). 

However, while seemingly excluding structured programming as a method of 

communicating goal structures, Anderson et al do not go on to suggest how a 

goal structure should be communicated. They qoute protocol studies which 

indicate that the explicit tutoring of plan structures can improve programming 

performance (Pirolli and Anderson, 1985), however they say nothing about how 

this might relete to instruction in the way in which plans are hierarchically linked 

and structured. The work reported in this thesis may go some way toward 

proving and account of the way in which specific forms of training might lead to 

improved problem solving performance. 
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In particular, it is argued that while structured programs may be linear artifacts 

which may not communicate a program's goal structure nor necessarily map onto 

the structure of programming plans, the actual process of devloping structured 

programs may encourage programmers to focus upon the salient features of plans 

and their application. Indeed, as we saw in chapter 6, the development of certain 

forms of programming skill (particularly the ability to use plan structures) 

appears to depend centrally upon the way in which learning material is presented 

to students. Hence, while the two groups of programmers studied in that 

experiment possessed equivalent levels of experience with the particular language 

concerned, they tended to use their knowledge rather differently. Moreover, 

another implication of this work is that programming plans are not taught directly 

to students. The efficacy of tutoring environments which emphasise the explicit 

teaching of plans, as suggested by Anderson et al, may be misguided in that it 

fails to recognise that an important element in skill development appears to be 

concerened with establishing the salient elements of plans and mapping between 

plans and actual code structures. It was suggested in chapter 6 that design 

training may facilitate these kinds of abilities. 

The work reported in this thesis appears to draw into question important aspects 

of extant theories of skill acquisition to the extent that it suggests that certain 

forms of training may lead to hierarchically organised knowledge structures and 

consequently to differences in the way in which such knowledge is applied. It 

appears that in situations where learners are subject to the same amount of 

practice but where they are not given a framework for organising the knowledge 

that they acquire then their performance in certain tasks is significantly impaired. 

In the context of the present discussion, it might be argued that design training 

(particularly in structured programming/design) causes programmers to focus 

upon salient elements of relevant knowledge structures and that this in turn may 

lead to the development of structured schemata where focal plan elements are 

salient. 
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12. 6 Implications for further experimental work 

The framework proposed in this thesis suggests a number of possibilities for 

further research into the cognitive processes that might be involved in 

programming. For example, one issue relates to debugging. The experiment 

reported by Vessey described above showed that bugs are not detected more 

quickly if they occur at higher levels in a program's propositional hierarchy. 

However, as we have seen, Vessey equates position in the structural hierarchy 

with the indentation level of the program statement. One prediction arising from 

the work reported here is that bugs in focal lines will be detected more quickly 

than bugs in occurring other structures. Moreover, focal lines may be highly 

embedded in the program's indentation structure, indicating a possible 

confounding factor in Vessey's study. If errors occurring in focal line are 

detected more quickly than errors residing elsewhere this would indicate that 

focal lines are of particular salience to programmers. This may also have more 

general implications for the design of tools intended to support the debugging 

process. 

Figure 12.1 illustrates a propositional analysis of one of the experimental 

programs discussed in chapter 6. This program was analysed according to 

Kintsch's original formaulation (Kintsch, 1982). However, certain modifications 

were needed to accommodate the differences between programs and texts. Two 

major assumptions were made. Firstly, the notion of an argument in terms of 

textual analysis has been translated into the value of a variable. This may be 

slightly problematic since the value of this variable will change during execution. 

For instance, in figure 12.1 the value of the variables SUM and COUNT are used 

in the calculation of Average. 

Under strict argument repetition, SUM and COUNT would be bound to the first 

occurrence of SUM and COUNT (as represented by the intialisation). In terms of 

the interpretation of argument repetition that is presented here, data flow is used 

to represent hierarchy as opposed to simply using the name of the variable. The 

choice of data flow was to some extent aribitrary, since control flow or an other 

mode of representation might have been used. The illustrates one difficulty of 

considering programs as analogous to text. In particular, there are many ways in 
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which to view a program, and each of these different perspectives is likely to give 

rise to a different representation of the problem. 

Figure 12.1 presents this propositional analysis and indicates the program's focal 

lines (derived from Rist's (1989) definition). This diagram shows that, in terms 

of this analysis at least, focal lines are not represented with greater saliency than 

other structures in the propositional analysis. It may be that other forms of 

representation would show greater saliency for focal structures. Another line of 

research might be concerned with the ability of different forms of representation 

to provide support for the empirical findings presented in this thesis. For 

example, a more fine-grained analysis might show that, while focal-lines may not 

reside at a high level in the structural hierarchy, there may well still be systematic 

differences in recall when recall patterns are correlated with different levels in 

this structure. It is possible that we may not be able to construct macrostructure 

representations of programs since they may differ too significantly from text in 

their communicative function. It is clear that more empirical research will be 

required before the proposed analogy between text and programs can be 

supported. 

One interesting observation that arose while constructing the propositional 

analysis presented below is that while focal lines may not be hierachically 

distinct, it is clear that, compared to other components of the program, they have 

many more links with other propositions. Hence, line e has four connections, 

while linesfand d have 3 connections. Note that with the exception of h andj, all 

other propositions have only two connections. It is possible that the degree of 

connectiveness is a better predictor of recall strategy, debugging performance and 

other behaviour than level in the propositional hierarchy. 

Another area of potential interest stemming from the present analysis might be 

concerned with the question of whether there are performance changes at the 

point where knowledge restructuring takes place. For example, Lesgold et al 

(1988) have shown that many errors occur at the point where representations 

begin to change in the context of the development of a complex problem solving 

skill. This study demonstrated a nonmonotonic relationship between experience 

and performance in the development of radiological diagnostic skills. Lesgold et 
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al suggest that this kink in the learning curve might arise as a consequence of a 

major shift in processing or in knowledge representation. Immediately after a 

shift, intermediate practitioners were much more likely to make errors than they 

were before. 

Program A 
1 Sum= 0 
2 Count= 0 
3 read (number) 
4 (F) WHILE number <> 9999 DO 
5 BEGIN 
6 (F) Sum = Sum + number 
7 (F) Count = Count + 1 
8 read (number) 
9 END 
10 IF Count> 0 
11 THEN 
12 BEGIN 
13 average= Sum/Count 
14 writeln (average) 
15 END 
16 ELSE 
17 writeln ('no legal inputs) 

/a 
Progrem A b 

~c 

a INITIALISE (Sum 0) 
b INITIALISE (Count 0) 
c SUBCALL (read, number) 
d LOOP (number<> 0) 

e UPDATE (Sum, Sum + number) 
f INCREMENT (Count) 
g SUBCALL (read, number) 

h TEST (Count) 
i COND (Count > 0) 

j SET (average, Sum/Count) 
k SUBCALL (write, average) 

1 COND (Count <= 0) 
m SUBCALL (write, average) 

---!.j-k 

--m 

Figure 12.1 A propositional analysis of a short program. Focal lines are indicated 

in bold (F), and the propositional decomposition is shown on the right. The 

diagram illustrates the hierarchical level of each proposition (read from left to 

right). Note that the number of connections for focal lines is greater than for 

non-focallines. 
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It should be noted that a similar phenomenon has also been reported by 

developmental psychologists (Bowerman, 1982; Karmiloff-Srnith, 1979; Klahr, 

1982; Strauss and Stavy, 1982). For instance Bowerman reported that children 

initially produce the correct instances of many irregular past-tense verbs and 

plural nouns (e.g., went, feet). Later they shift to incorrect regularisations of 

those words (e.g., goed, foots). Still later, children gain complete control over 

the irregularities in their vocabulary and stop making these kinds of mistakes. 

Hence, it seems that restructuring may lead to a short term decrement in 

performance in many areas of skill development when the transformation takes 

place between an adequate representation and an optimal representation. This 

might also be combined with procedural changes in the sense that strategies 

appropriate for one representation may be inappropriate in the context of another 

representation. 

In terms of the present analysis, one might predict similar effects in the 

development of programming skill. An alternative possibility is that at 

intermediate skill levels processing is partly but not completely automated, with a 

fluctuating level of control suggesting that certain aspects of a task may be 

especially prone to error at this point. However, in the case of programming skill 

it may be the case that when such errors do occur they will be related more 

explicitly to focal structures in programs. If this is the case it would provide 

support for the idea that shifts in knowledge representation accompany the 

development of expertise and that the development of focal structures is an 

important part of this process. 

Another possibility for further research is concerned with the question of whether 

there are other levels in the structural representation of programs. The present 

analysis suggests only two levels of representation, but it is possible that other 

important structures will be identified. The important point is that one should not 

consider schema structures as flat undifferentiated chunks of knowledge. Rather, 

it is clear that schema or plan structures will embody some internal organisation 

which reflects the importance of various structures to the programmer. The work 

reported here has identified the role of focal lines in capturing the salient goal 

structures of programming plans, but it is clear that other structures may also be 

of importance. 
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12.7 Implications for programming environments 

In addition to these theoretical concerns, the model also poses a number of 

practical implications for the design of systems intended to provide support for 

the programming activity. For example, programming environments that 

incorporate a "fisheye" view of source code text (Furnas, 1986) rely upon some 

way of indicating a current focus around which the fisheye view can be 

constructed. Furnas (1986) suggests that a degree of interest (DOl) function can 

be assigned to each point in a program's structure indicating how interested a 

user is in seeing that point, given the current task. This DOl function is generated 

by an algorithm which employs a notion of 'a priori importance' to assign 

suitable values to points in the program structure. This a priori importance value 

is intended to represent components of a structure which are of psychological 

importance to a particular user engaged in a given task. However as Furnas 

concedes "the usefulness of a DOl ... will depend at least upon the suitable 

definition of ... a priori importance" (Furnas, 1986. pg 17). The findings of the 

present study may provide the basis for such a definition by indicating the salient 

features of a programmers knowledge representation. Hence, the identification 

of focal lines may provide the starting point for a more psychologically valid 

conception of a priori importance leading to the design of more suitable displays 

for complex information structures such as programs. 

Of course for such a system to work one would need to automatically derive a 

program's plan structures and associated focal lines. However, this has not 

proved to be a straightforward task since commonly the same plan will not share 

the same surface characteristics at the code level (Rich and Wills, 1990). A 

promising approach has recently been proposed by Rist (forthcoming) who 

outlines a system intended to derive plan structure from code by tracing plan 

dependency links (capturing both data and control flow) from the plan focus to 

other elements of the plan. In its basic form, Rist's algorithm consists of a single 

recursive procedure that links the data flow into each line with its control flow. 

This algorithm employs a parsing mechanism- PARE (Plan Analysis by Reverse 

Engineering) which represents each basic system object (line of code) as a series 

of slots which when instantiated specify the use of that line of code, other code it 
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obeys, the data values it makes and the other lines of code that it controls (Rist 

and Bevemyr, 1991). Rist claims that this algorithm has been used on hundreds 

of Pascal programs to derive their constituent plan structure and as such it would 

seem like a potential contender for a system which might extract and display focal 

code elements and provide a basis for environments which can emulate or reflect 

cognitively-based structures. 

12.8 Conclusions 

In conclusion, this thesis has presented an analysis of the problem solving 

activities involved in programming tasks. A model has been presented which 

aims to extend our current thinking about problem solving in complex domains 

such as programming. This model emphasises the role of knowledge 

restructuring in the development of programming expertise and suggests that the 

processes of program generation and program comprehension are based upon the 

implementation of a small number of reasonably straightforward cognitive 

processes. These processes involve the creation or the location and subsequent 

recomprehension of the focal structures contained in schematic representations of 

programming knowledge. 

The process of program generation is presented as an incremental process of 

fragmentary code generation and recomprehension which is governed by 

working memory limitations and is mediated by features of the programming 

language used and the environment in which the program is created. The process 

of program comprehension is described as an activity which involves the search 

for focal structures in extant code which can be mapped onto an internal 

representation of schematic programming knowledge. As for generation, the 

process of comprehension is also affected by language features in the sense that 

the ease with which focal structures can be discriminated will be dependent upon 

the the expressive power of the language. The processes of comprehension and 

generation should be seen as complementary since they are both fundamentally 

related to the development and the comprehension of salient structures residing 

either in the code or in terms of the programmer's representation of programming 

knowledge. 
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While this thesis has been concerned with problem solving activities in 

programming it clearly raises a number of issues with respect to the adequacy of 

existing generic models of problem solving. In particular, the work reported here 

suggests that a full understanding of problem solving in the context of complex 

tasks may require an articulation of the relationship between planning/operator 

selection and execution. The work reported in this thesis suggests that these 

processes cannot be considered in isolation. This in tum suggests that a 

significant amount of problem solving behaviour may only be explicable in terms 

of a detailed understanding of the way in which problem solvers extemalise 

current states and then subsequently respond to these extemalised states. It is 

suggested here that a more complete understanding of problem solving in 

complex domains will only be achieved once these factors begin to receive the 

attention that they deserve. 
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