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Abstract 

In providing a means of progressively improving an initial estimate, perturbation 
series have become a ubiquitous tool in modern physics. However, and mainly 
because this stepwise process of improvement rapidly becomes increasingly involved, 
surprisingly little is known about the formal properties of the series obtained. This 
thesis therefore investigates some aspects of these properties and how they effect 
the application of these techniques, with an emphasis on quantum field theory and 
the phenomenology of e+e~ colliders. 

One of the better understood examples of a perturbative series is the WKB 

one which is widely used to approximate the energy levels of quantum mechanical 

systems. Recently much interest has centred on a modification of this, the SWKB 

series. Apart from (possibly) offering an improvement on the original, this is intrinsi

cally interesting in being related to the supersymmetry of field theory. Furthermore, 

as Chapter 1 explains, there is a close connection between the cases where the ini

tial estimate requires no correction and an important set of quantum mechanical 

problems (the "shape invariant" ones) which can be solved elegantly and completely. 

The situation in field theory is more complicated, not least because the series 

for any particular problem is no longer unique. While this presents few theoret

ical difficulties, it has serious consequences when attempts are made to compare 

predictions with experiment. This obstacle is particularly severe in Quantum Chro-

modynamics and its fundamental constant (AQ^XJ ) is therefore only roughly known 

at present. It will be argued that current responses to this are all imperfect, but 

that tests of the theory can be envisaged that circumvent the problem. This leads 

into questions concerning the origin of the divergences in the perturbation series -

for although it may initially provide usefully improved estimates, the series probably 

breaks down eventually. Existing arguments about this topic are critically reviewed 

- and in one case substantially simplified - before an alternative one is proposed 

in some detail. By concentrating on a particularly restricted situation, the Com

mon Effective Charge Approach simplifies matters to the extent that issues such as 

non-analyticity of functions and the potential accuracy of perturbative techniques 

in realistic applications can be conveniently investigated. 
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"The best amateur history, however entertaining, cannot enlarge the un

derstanding or deepen the participation because it is written from outside, 

through a veil woven out of strangeness and wonderment. At its best it 

achieves sympathy and romantic love, but it cannot penetrate to fundamen

tal explanation; at its common bad it is sentimental, ignorant and an insult 

to the intelligence." 

G.R.Elton, The Practice of History 

"Quotation, ra.The act of repeating erroneously the words of another. The 

words erroneously repeated." 

Ambrose Bierce 
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C H A P T E R O N E 

The S W K B Series 

1.1 Supersymmetric Quantum Mechanics 

Despite a complete lack of any evidence for experimental manifestations, super-

symmetry (SUSY) is a dominant theme in present day particle physics on the basis 

of its spectacular technical sucesses in quantum field theory. Naturally this has 

tended to eclipse the parallel application of N = 2 SUSY to much simpler problems 

in quantum mechanics where the formalism can be shown to have verifiable conse

quences. In a superspace language this is an invariance under the transformations 

9 -* 9 + e, 9 9 + e, t -+ i + iW + ie~9 (1.1) 

on a scalar variable t and Grassmanian ones 9 and 9. The SUSY generators 

are used to define a Hamiltonian 

H = \{Q,Q) (1.3) 

and a SUSY algebra 

{Q>Q} = {Q,Q} = 0 [Q,H] = [Q,H] = 0. (1.4) 

In one dimension (now to be called x rather than t) this algebra has a particularly 

important representation introduced by Witten [1] in which 

with (7,- the Pauli matrices and where the Hamiltonian 

H = \{p2 + Ax) + naj{x)) (1.6) 

acts on a two-component wavefunction. Momentum p is quantised canonically. The 
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function (f>(x) is usually called the superpotential'm these applications (it's not quite 

the superpotential of field theory) and is central to everything. 

That importance is such that its superspace interpretation is worth returning 

to. A superfield 

$(<,M) = ?(0 + iM(t) + iO*(t) + 66B(t) (1.7) 

has a Lagrangian density 

C = \{D*)(D*) - U{*) (1.8) 

with derivatives 

D = i _ a* D = A _ # * (i.9) 

86 dt 86 dt v ; 

t/($) is an arbitrary function with Taylor series expansion 

U(9) = U(0) + $U'(0) + .... (1.10) 

Integrating (1.8) over 0 and 0 gives the actual Lagrangian and hence the Hamilto-

nian, from which the identification U'(0) = <f> can be made. 

Following Gendenshteih [2], the two-component Hamiltonian is fruitfully rein

terpreted as two related Schrodinger problems 

with potentials 

V_ = <j>2 - h(j>' (1.12a) 

v+ = <p + h<j>'. (1.12b) 

In handling the relations between these potentials it is useful to define generalised 
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Figure 1.1 Partner Potentials 

"raising and lowering" operators [3] 

A = h4-
dx 

+ <t> A+ 
dx 

+ <t> (1.13) 

in terms of which 

H_ = A+A H+ = AA+. (1.14) 

A simple and elegant pattern now emerges (Figure 1.1). If >̂„ ' is the n-th eigen-

function of V_, then = Ax^lT^ is the (n — l)-th eigenfunction of V+ with the 

same energy, i.e. 

A+ acts as the inverse operator to A. An exception to this pairing-up of the energy 
levels is the ground state of V_ which has no partner in V + . However it is also special 
in that any potential which can be written as <f>2 — h<j>' automatically has zero ground 
state energy; that it occurs here is merely a reflection of the characteristic absence 
of zero-point energies from supersymmetric theories. Many other features of this 
system have their origin in general SUSY results. The operators A and A+ are 
closely related to the Q and Q which interrelate fermions and bosons, so one should 
perhaps think of there being a single potential, most of whose energy levels have a 
two-fold degeneracy corresponding to a fermionic degree of freedom. In this view A 
and A+ change a boson into a fermion or vice versa without changing the energy. 

(1.15) 



This formalism evidently provides a quick method of generating nearly isospec-
tral potentials: pick virtually (see below) any <j>{x) and (1.12a ) -(1.12b ) give two 
such potentials. What is typically more useful, but much less easy, is to find the 
<f) which gives a specified V_, this involving the solution of the awkward Ricatti 
equation (1.12a ). Actually this is equivalent to finding just the ground state wave-
function for the potential since 

The latter equation shows that the choice of <f> cannot be quite arbitrary since ' 

must be normalisable and this entails that the superpotential be of predominantly 

odd parity in x as \x\ —> oo, a requirement very closely related to preventing the su-

persymmetry spontaneously breaking [1]. As a restriction this is not terribly severe 

and it is clearly satisfied by the (j> of any previously allowed Schrodinger potential. 

Having found the <f> for any particular potential there is always the possibility that 

the partner potential is easier to deal with - perhaps it has even been solved al

ready. Although this will normally involve another Ricatti equation, V+ will itself 

have another partner and so on; a complete solution to any of them will straight

forwardly yield a solution to all the others. The only problem is to efficiently find 

the superpotential for any potential. 

Before following these ideas in one special direction, it should be said that they 

have found uses in statistical, atomic and nuclear physics, often as a fresh inter

pretation of previously observed quantum mechanical regularities. In this sense 

supersymmetry is already a fact of nature. Details of these, overviews of the litera

ture and fuller introductions to SUSY can be found in the reviews by Gendenshtein 

and Krive [4] and, at a slightly higher level, that by Lahiri, Roy and Bagchi [5]. 

Pedagogical introductions to the topics discussed in the rest of the chapter, includ

ing examples worked through in detail, can be found in the two articles by Dutt, 

Khare and Sukhatme [3] [6]. 

t 

0 Mx) 
o 

(1.16) 

(-1 / max) -V>n (*) = e x P (1.17) 
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1.2 Shape Invariance 

One of the developments inspired by this way of treating Schrodinger's equation 

is an increased understanding of the simpler potentials whose spectrum can be solved 

for exactly. Contrary to the optimism conveyed in most elementary textbooks, 

potentials for which all the eigenvalues and eigenfunctions are known in closed form 

are actually rather scarce, with all of the simpler examples discovered within a few 

years of wave mechanics being proposed. The progressive and ongoing realisation 

that many of these have a common origin is therefore of some importance. 

Again the key observation dates back to Gendenshteih's paper [2] which in

troduces the concept of a shape invariant potential. This is any V_(x,a0) which 

depends on a finite set of parameters a0 in such a way that the corresponding V+ 

can be obtained by simply changing these parameters to a set a l 5 i.e. 

V+(x,aQ) = V_(x,ai) + R(ai) (1.18) 

where R(a.i) is an arbitrary ^-independent function. Or in terms of a compact 

notation for the superpotentials 

<l>l + W0 = <f>l-h<l>'i + R{a1). (1-19) 

Clearly the ground state of V + (* ,a 0 ) now has an energy i2(aj), so this must be 

Ei for V_(x,aQ). Provided the reparameterisation from a 0 to aj can be iterated, 

one can construct successive Hamiltonians each related by equations like (1.18) 

and straightforwardly prove by a continuation of this chain of argument that the 

spectrum of the original potential is 

n 

i=i 

By restricting oneself to potentials whose partners are essentially the same as the 

original, one has avoided having to partially solve a completely new problem each 

time a superpotential has to be found. The simplicity of the conclusion cannot be 

overemphasied: any solution <j>(x,a0) and R(a^ to (1.19) automatically has this 
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<j>{x) Name Reparameterisation 

ux — b Harmonic Oscillator w - t w 

(l+l)h 3D Oscillator (x > 0) 7 ^ / + l 
e2 (l+l)h 

(l+i)h x 
Coulomb (x > 0) (see [10]) I -> / + 1 

A - Be~x Morse A A-h 
A tanh x + ^ Rosen-Morse A-+ A-h 

A tan a: + ^ (see text) A —> A + h 
- A coth a: + ^ Eckart (x > 0) A->A + h 

A tanh x + 2?sech a; A-i A-h 
A coth a; — .Bcosech x (x > 0) A —> A - h 

—A cot a; + B esc a; (0 < x < IT) A —> A + ft 
A tan x — B cot a: Poschl-Teller I (0 < x < T T ) A A + h,B B + h 

A tanh x — B coth a; Poschl-Teller I I A^>A-h,B->B + h 

Table 1.1. Shape Invariant Superpotentials 

spectrum. Furthermore A + can be used to deduce the wavefunctions using 

^«(*,«o) = NoA+(x,aQ)A+(x,a1)...A+(x,an_1)tl>Q(x,an) (1.21) 

where i/>Q(x,an) is easily found using (1.17), and so a complete solution to the 
problem can be found [3]. 

How many solutions does (1.19) have ? Only the 12 listed in Table 1.1 have 

been found, but these contain all the very simple potentials known to have exact 

solutions. They are just those catalogued in more detail by Dutt et al [3], with 

the exception of <j)(x) = A tan a; + B/A, a trivial trigonometric generalisation of the 

Rosen-Morse potential independently pointed out in [7] and [8]. Like all the others, 

the reparameterisation involved is extremely simple. Searches have previously been 

made through rather large classes of potentials without finding any others, though 

any disappointment at this should be tempered, any exactly solvable potential which 

is not shape invariant being directly linked to a new infinite set of solvable partners 

using A and A + [9]. However solving one of these problems will usually involve a 

much more involved argument than that now applicable to those in Table 1.1. 
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In fact the concept of a reparameterisation symmetry encompassing this set of 

potentials was anticipated by Schrodinger's own factorisation method of 1940 [11]. 

Naturally this was not expressed in terms of a superpotential, but did require that 

any potential to which it was applied satisfied a condition equivalent to (1.19), ex

cept that the reparameterisations were restricted to a single one a2 = a0 + 1. A 

diligent search can normally reveal some sort of precedent for any innovation and 

Schrodinger's was itself only an independent rediscovery of Darboux's Theorem [12]. 

Development of the factorisation method largely died out after a review by Infeld 

and Hull [13] detailing the properties of the potentials in Table 1.1 showed that 

this exhausted the method's possibilities by considering polynomial dependences 

of <j> on a0. At first sight the restriction to a single parameter does not appear 

too significant since any simple reparameterisation {a0} —> {a j} should be reex-

pressable as a0 = aj + 1, e.g. the Poschl-Teller potentials were thought of as one 

parameter potentials at that time. However, when shape invariance was introduced 

multiple parameters were explicitly allowed from the outset and this encourages the 

realisation that former ideas were possibly too restrictive. For instance one can 

imagine reparameterisations in which one parameter only changes on every second, 

or even on every prime, iteration and this cannot (at least self-evidently) be reduced 

to a0 = aj + 1. Formulating all the theorems using this wider conception proved 

straightforward, although obviously no fully shape invariant examples have been 

found which actually require this extension. But this still necessitates finding an 

alternative to the Infeld-Hull exhaustion proof and the greater complexity now al

lowed to them suggests avoiding reparameterisation as its foundation and focussing 

on the ^-dependence of <f> instead. 

In exploring the extent of shape invariance various ansatze have been proposed 

[2] [7] [9] [13], all mainly inspired either empirically or by guesswork rather than any 

underlying theoretical principle. There is an unusual, previously unnoticed, poten

tial which, as well as being interesting in its own right, indicates that new examples 

probably can't be generated simply by adding new parameters to existing ansatze. 

A heuristic way of thinking about (1.19) is that one must find ways of "hiding" 

the change of sign between the two sides and that this can really only be done by 

intermixing the (Jy2 terms with the <f>' ones. Thus all the ansatze are variations on 

letting </>' ~ (jy1 in some loose sense, with sums of trigonometric functions, whose 
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derivatives can be equal to the cross-terms in the square, ideally suited to this. A 
3-parameter version of this would be 

<i>(x) = Af(x) + Bg(x) + Ch(x) 

g' = fh + cyclic perm. (1.22) 

Jacobi elliptic functions [14] are a generalisation of sin a; and cos a; to a triplet of 
functions snx, cnx and dnx , hence the reason for considering 

fa) = A— + B(l - fc2)1/2— + C( l - fc2)1'2 — (1.23) 
, dnx 
cnx ' ' cnx " ' cox 

where k is a parameter entering into the definition of these functions. As a potential 

this is a somewhat flat-bottomed well with infinitely high walls at finite x. Denoting 

two sets of parameters by a0 = {A0,BQ,CQ} and ax = -Bj,C^}, this satisfies 

(1.19) provided 

A\ + B\+Cl=A\ + Bl + Cl 

2B1C1 - Ax =2B0CQ + A0 

+cyclic perm. (1»24) 

One solution to this is 

Ax = AQ - 1 B1 =B0 + 1 Cx = CQ + 1 

-A0+B0 + C0 + ^ = 0 (1.25) 

and there are only two others, related to this one by cyclic permutations. The 

crucial point is that although <j>Q and <f>x now satisfy (1.19), because 

-A1+B1+C1 + ^ 0 (1.26) 

the reparameterisation cannot be repeated to find a < 2̂ to satisfy (1.19) along with 

<j>1. The iteration necessary to prove (1.20) and to generate the complete solution 

has broken down. 
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This example exhibits a kind of partial shape invariance. Since only the first 
reparameterisation can be carried out, one can only find (k' = (1 — fc2)1/2) 

M a o ) m (l±a±)-A'(1+*™)(*» + t w v ~ c ' ( 1 . 2 7 ) 

\ cna; / \ cnx J \ cnx / 

if, (a)= ( l + ^ V ^ 1 ( k ' + dnx\~Bo+l /dna + k'snx\ ~C°+1 

1 0 \ en* / \ cnx / \ cnx / 

x ((2A0 - 1 ) ^ + (2B0 + l)k'S^- + (2C0 + (1.28) \ cnar cn« cna; / 

Ex{aQ) = 2k2(A0-B0-1) + 2B0 + 1 (1.29) 

There are higher eigenfunctions, but these will only be accessible to other methods 

and their exact form is currently unknown. The above wavefunctions are legitimate 

provided the constraints 

A0 + BQ + C 0 > 0 

3A 0 - BQ + C0 < 0 (1.30) 

imposed by normalisability are also satisfied. These formulae for ^ and can be 

checked by substituting them into the actual Schrodinger equation; as expected this 

explicitly only works if AQ, B0 and C 0 satisfy (1.25). Similar results hold for the 

other two solutions to (1.24). 

Interest in this example ought not to centre on what we happen to learn about 

the solution - unlike complete ones, partial solutions to Schrodinger problems are 

very common [15] - and more on what it tells us about shape invariance. Clearly this 

is a counterexample to the Infeld-Hull proof, the loophole being that in some respects 

there are three parameters, in others only two. On the other hand, it appears 

that increasing the complexity of <f> need not lead to any new fully shape invariant 

solutions (contrary to some earlier expectations [7] [9]) and Table 1.1 could therefore 

be complete after all. A detailed examination of what is happening in this example 

shows that the number of terms an ansatz like (1.22) produces in (1.19) increases 

faster than the number of parameters, with each set of terms in (1.19) placing 
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constraints on these parameters. Extending (1.22) to four parameters is probably 

possible, al though no set of functions generalising the Jacobi el l ipt ic functions i n the 

required way seem to have been defined so existence cannot be taken for granted. 

This solution would only just be possible and fu r the r generalisations seem very 

unlikely. I t may be that a radically different ansatz could lead to new solutions, but 

there is now less cause fo r opt imism. 

1.3 T h e S W K B Series 

One area newly invented as a result of SUSY Q M is tha t of the supersymmetric 

W K B approximation, which is at least competative w i t h i ts conventional forerunner, 

bu t also the basis for fresh insight in to shape invariance. I f the wavefunction is 

wr i t t en as 

V> = eiSl% (1.31) 

and substi tuted in to Schrodinger's equation, one finds that 

S ' 2 - ihS" + <f>2 - h(/>' = E (1.32) 

i.e. 

S ' 2 - ihS" + V_ = E. 

The standard response is to expand S as a power series 

00 

n=0 

and solve for the coefficients by collecting powers of h. Depending on whether (1.32) 

or (1.33) is used, there are however two na tura l ways of t reat ing the potent ia l . I n 

the original W K B approach V_ was regarded as a single o(h°) object and an expan

sion derived accordingly. Once the superpotential is introduced as the fundamenta l 

func t ion , however, (1.32) becomes a more sensible s tar t ing poin t w i t h the potent ia l 

now split i n to an o(k°) t e rm <£2 and an o(h) one — h<f>' [16]. A l though the series this 

leads to possesses certain new and impor tan t features, i t is clearly related to the 

10 
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W K B one and much of i ts development was modelled on tha t . Collecting powers 

gives the recurrence relation 

9+1 
5" 9 = -£ 5 ' . - s V;+i> 9>i 

«'=0 

2S '„ 2S-5 

As w i t h the original [17], a quantisation condit ion can be derived 

/ ^2(-ih)nS'ndx =(n + l/2)nh 
J a n=0 

<f>\a) = <t>2(b) = E. (1.36) 

O n calculating the o(%) t e rm i n this the first m a j o r difference emerges; to o(h) this 

condit ion is 

/ (E-<j>2)1/2dx = n*h (1.37) 
Ja 

and hence i t is t r i v i a l l y exact for the ground state (a = 6, n = 0) , i n contrast to the 

W K B equivalent which almost invariably fails to reproduce even this. 

One can go on to calculate corrections to this i n powers of ft, [18]. Up to and 

including h6, this was first done by Adhikar i et al [19] using a sl ightly different 

method than suggested by (1.35) - the known terms i n the W K B quantisation con

d i t ion were expl ic i t ly rearranged by expanding V = <f>2 — ft<f>'. Wh i l e this reinforces 

the connection between the series, i t is as easy to start afresh using (1.35) and this 

method is more readily generalised. These terms have been independently recalcu

lated i n this manner - automated using a specially w r i t t e n F O R T R A N program* -

* I f this calculation were to be extended i n fu tu re , the author would chose to do so 

using F O R M or an equivalent. This alone indicates how quickly technology changes 

- the task proved beyond the capabilities of SMP. 
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to find [8] 

J L 2 M / 2 J h ' ' E f b ^ 

h4E f b 4 9 E 0 ' 4 140 <f>'A <j>><f>'" 

128 J a \ E - «A2)n/2 3 (JE7 — <Pf n (E - 02)7/2> x 

A , ™ # V 6 36036 E<f>,% _ <f>'6 

l v v +2376- Y I < 5 0 0 5 ( ^ 1024 y a

 V ( E - 02)17/2 5 _ ,£2)15/2 ( £ _ 02)13/2 

" 9 2 4 ( £ 7 - ^ 2 ) 1 3 / 2 + 7 2 0 ( £ _ 02)11/2 + 8 ° ( £ _ 02)11/2 + 8 ( £ _ ^2)9/2 ^ 

+ o ( f t 8 ) = 717T& (1.38) 

i n agreement w i t h [19]. For convenience, this (rather than (1.34)) w i l l be refered to 

as the SWKB series. 

Note that the integrat ion greatly simplif ied things, w i t h repeated integrat ion by 

parts causing numerous terms to combine or cancel. As w i l l be explained later, the 

integrat ion can be re-expressed as a contour one round a closed pa th which is why 

the endpoints can be safely discarded dur ing this step and also why any t e r m equal 

to an ^-derivative w i l l vanish. A l l the imaginary contributions natura l ly give zero, 

as can be demonstrated directly: i f S = A + iB then 

B' = \ ^ { \ n A ' ) (1.39) 

which is zero after integrat ion over x. Less obviously, a l l contributions w i t h odd 

powers of ft (apart f r o m o(f t ) , cri t ically contr ibut ing the 7r/2 necessary to derive 

(1.37)) seem to vanish as wel l . For several simple 0 this has been checked as far as 

ft11 [20] and there is no reason to doubt i ts generality. No explanation for this is 

known, al though heuristic ones w i l l be discussed later. 

How this new approximation compares to the W K B one has been the subject 

of extensive investigation, wi thout any clear conclusion [3] [5] [19] [20] [21] [22]. Aside 
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from its rather t r i v i a l success w i t h the ground state and the impor tan t set of cases 

where (1.37) is exact which occupy the rest of the chapter, there is no part icular 

reason to expect the S W K B series to be an improvement. I n any application i t is 

l iable to suffer from the disadvantage that <j> must be found or approximated as a 

first step. However i t is clearly an advance to have two similar techniques so that 

results can be compared between them and our understanding improved. 

1.4 A s y m p t o t i c Ser ies 

Is the expansion (1.38) convergent ? Almost certainly not , i t being a long-

established result that the W K B series is only asympto t ic* This is perhaps easiest 

to understand by modi fy ing a famous argument from Q E D to be discussed i n more 

detail i n Chapter 4. Equation (1.32) is well-defined i n the (semi-classical) l i m i t 

ft —> 0, as is (1.31) since at large |x | (1.32) ensures that S has the correct f o r m so that 

"4> is normalisable. However i f ft < 0, S remains the same i n these regions, bu t the 

sign change i n (1.31) means tha t tf> diverges and consequently the whole framework 

of the approximation breaks down. This indicates that i t is non-analytic at ft = 0 

and hence the series diverges. Since Chapter 4 w i l l express reservations about this 

type of argument, i t should be emphasised that the result can be rigorously proved 

by other means. I n fact the approximation can be treated i n a convergent fashion, 

bu t this approach is technically demanding and has yet to be extended to the S W K B 

case; the interested reader is refered to the Fromans' monograph [23]. 

W i t h asymptotic series appearing throughout this thesis, i t is w o r t h brief ly 

recalling their properties at the outset [24]. I f a func t ion f(z) has a power series 

expansion ] T ) r n 2 n , then i f Rn{z) defined via 

/(*) = rQ + rxz + . . . + r , . ! * - 1 + Rn(z) (1.40) 

has the property tha t , for each fixed n , R n ( z ) / z n is bounded as z —> 0, the series 

is said to be an asymptotic expansion of f(z). I f so i t can safely be added to or 

* Unfor tunate ly this thesis must deal w i t h several dist inct meanings of "asymp

to t ic . " A series may or may not be "asymptotic," but i ts coefficients w i l l always 

have an "asymptotic" (i.e. large-order) behaviour. More confusingly, i n field the

ory the "asymptotic" behaviour is l ikely to be that as Q —> oo and w i l l refer to a 

func t ion . These usages are so standard that i t would be perverse to avoid them. 
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mul t ip l i ed w i t h another of the k i n d and i t can also be integrated term-by-term, 

but possibly not so differentiated. A n impor tan t case is when rn ~ n!: then a 

m a x i m u m accuracy of R(z) ~ ( 2 7 r / z ) 1 / 2 e _ 1 / 2 : is obtained by summing only the f i rs t 

( l / z ) e ^ 2 z terms. This can be extremely good provided z is small , but adding fu r the r 

corrections to this estimate only worsens i t . 

A feature of some significance i n later chapters is that al though f(z) w i l l have a 

unique expansion, £^ r n z B does not have a unique func t ion associated w i t h i t , i f only 

because one can add perturbat ively invisible terms like e - 1 / z to a func t ion wi thou t 

changing the expansion. I n certain circumstances, by placing addit ional constraints 

on what that func t ion may be, a unique one can be ident i f ied and the best known 

of these methods w i l l be defined i n section 4.3. 

1.5 E x a c t Q u a n t i s a t i o n Cond i t i ons 

Even i f there is l i t t l e l im i t a t i on i n practical cases to the accuracy obtainable 

using corrections to i t , those special problems where (1.37) gives the exact spectrum 

are of part icular theoretical importance. This is especially so because of a result, 

or iginal ly proved by D u t t , Khare and Sukhatme [18], that this lowest-order S W K B 

approximation is exact when <j> is shape invariant . Pa r t ly because that version 

obscured the central role of reparameterisation, par t ly because i t was only proved 

to o(h), but mainly because of i ts importance to what follows we reproduce an 

alternative proof as presented i n [8]. 

Truncat ing the expansion (1.38) at o(hm) gives a quantisation condit ion of the 

f o r m 

Fm(a0,E) = ruth (1.41) 

obtained f r o m a Schrodinger equation for V_ 

S'2 - ihS" + </>l- h(f>'0 = E. (1.42) 

V + can be treated i n the same way, but there are now two possible s tar t ing points 

S'2 - ihS" + </>l + h(l>'Q = E (1.43) 

S'2 - ihS" + <f>\- h<f>\ = E - R ( a i ) . (1.44) 
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(1.43) differs f r o m (1.42) only w i t h respect to a single change i n sign. I f the remaining 

odd powers of h vanish f r o m the series as universally believed, this sign changes only 

effect on the derivation - (1.43) is (1.42) w i t h h —> —h and i —> — i, changes which 

leave the LHS of (1.38) unaltered - is that now the condit ion for V + is 

Fm(a0,E) = (n + l)irh (1.45) 

so that to this order Ei~\aQ) = £ ^ j ( o 0 ) . However, s tart ing f r o m (1.44) one derives 

a condit ion for of the f o r m 

Fm(a1,E-R(a1)) = mrh. (1.46) 

For any part icular value of E, these last two equations are asymptotic expansions i n 

h2 of the same exact quantisation condit ion and they must therefore be equivalent. 

Thus, even after t runcat ing at o(hm), they must give the same (as yet not necessarily 

correct) spectrum for V + . Inver t ing (1.41) gives a func t ion 

KM = €mMn) 

e m ( a 0 , 0 ) = 0, Va 0 (1.47) 

while doing the same to (1.46) gives 

KM = *mMn) + RM- (1-48) 

Now 

em(aQ,l) = JS^oo) = E 0 ( a i ) = R(ai). (1.49) 

Similari ty, but also using reparameterisation 

KM = KM = + RM (i-so) 

= R(a2) + R(a1). (1.51) 

Inductively, the result of t runcat ing at o(hm) is a spectrum 
n 

£ « ( « o ) = X > K ) (1-52) 

i=l 
i n agreement w i t h (1.20). Returning to the actual S W K B series (1.38), this means 

that for a shape invariant <f> al l the o ( f t 2 ) and higher corrections w i l l vanish order-

by-order. 
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Note tha t although reparameterisation only enters at one point i ts role is crucial. 

Thus the par t i a l shape invariance of (1.23) is too l imi t ed to enable the proof to work 

except for the first excited state which should be given exactly. 

The next natural question is what is the converse ? For which <f> is (1.37) ex

act ? To date, direct investigation has revealed no non-shape-invariant potentials 

for which this happens. Tha t i t may be a necessary condit ion for the S W K B cor

rections to be zero was first conjectured by Khare and Varshni [22]; evidence for the 

stronger result that these are only zero for the <j> i n Table 1.1 and hence that these 

are the only possible shape invariant potent ial was advanced i n [8] and the rest of 

this chapter w i l l be taken up w i t h reinforcing this case. 

Before discussing details i t is w o r t h reviewing what is known about the parallel 

case of the W K B series so as to discriminate between certain types of c la im. One 

can obviously prove that the lowest-order result is exact i n any special case i f enough 

i f enough is known to enable that result to be directly compared to the previously 

established correct spectrum, as the proof above does. A few such results are known 

for the W K B condit ion, most notably for the case of the harmonic oscillator where 

the addi t ional result that al l the corrections expl ici t ly vanish can be proved [25]. 

However the most rigourous approach is to use the convergent version of the theory 

mentioned above and this has been done for a l l 8 potentials (some shape invariant , 

some not) believed to be exact [26]. Whi l e undeniably respectable, this need not be 

ter r ib ly enlightening: V = Ae2ax + Be~2ax is known to be one, bu t no-one yet knows 

its exact spectrum. Where this approach is necessary is i n ru l ing out potentials 

which have zero corrections, but for which the lowest-order condit ion gives the 

wrong spectrum. These can be constructed [26] by taking one of the exact solutions 

and then mod i fy ing the potential outside the classical tu rn ing points; since a l l W K B 

integrals are taken between these points this action neither alters the corrections 

nor the W K B spectrum, but i t does change the correct answer. The loophole is that 

the energy levels shift by terms like e _ 1 / f t which are per turbat ively invisible. Note 

that this is only possible when there are a finite number of eigenvalues. 

Here the cri ter ion of "exactness" w i l l be that the corrections are zero fo r ar

b i t r a ry E, this last point ru l ing out such adjustments. Al though the proof above 

merely proves that they vanish when E = En, i t is shown below that a l l the poten-
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tials i n Table 1.1 satisfy this more stringent property. Whi l e there are cases where 

the above modifications can be made, i t seems highly unl ikely that any such ploy 

could preserve shape invariance. There is at least one case where this cri ter ion is 

too stringent: for (1.23) the precise value of E1 must enter i n a special way. As any 

similar case must be equally special, these are ignored. 

The central observation of this chapter is that the first few corrections are enough 

to restrict the set of potentials satisfying this cri ter ion to those i n Table 1.1 [8]. 

Taking the o(h2) correction f r o m (1.38), i t can be rewri t ten as 

d2 f 1 <j>'{y/Eu) 
dE* )_x (1 - u 2 ) l / 2 

du (1.53) 

where a change of variable f r o m x to u = <f>/y/E has been made.* This can only be 

zero i f < '̂(< )̂ has an even part which is no more than quadratic, i.e. 

<f>' = a + b<t>2 + (f>g((f>) (1.54) 

where g(<j)) is an even func t ion . This is a necessary condit ion for any shape invariant 

<f>. I n conjunction w i t h the def ini t ion of shape invariance slightly more is learnt 

about g(4>). Since normalisation requires that <f>'(x) > 0 as \<f>\ —* oo, the odd terms 

contained i n g cannot be allowed to become too dominant at large <f>, i.e. 

l i m ^ ffl < constant. (1.55) 
4>-+ oo <j>2 ~ 

Unsurprisingly, requiring higher-orders i n (1.38) to be zero places fu r the r restric

tions on g(<f>), bu t before pursuing that avenue i t may help to understand the f o r m 

taken i n the known shape invariant cases. Remarkably, the 12 examples reduce to 

( ca 
S 2 = { c ( a + ^ ) f 1 ' 5 6 ' 

where a and 6 are exactly as i n (1.54). Not only do they a l l satisfy this equation, 

integrat ing i t up labouriously reproduces Table 1.1 while g iv ing no addi t ional so

lut ions. Using i t to evaluate the lowest-order quantisation condit ion also yields a l l 

* This is only possible i f <f)'{<j>) has some odd component, but this is ensured by 

normalisabili ty. The integrations w i t h respect to E must be done first and are 

legitimate; although the l imi t s are independent their contributions cancel since 

<j>\a) = <j>\b). 
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the correct spectra. A natural conjecture is therefore that (1.56) is a necessary and 

sufficient condit ion for shape invariance. 

Whatever the t r u t h of this, i t certainly allows a simple proof that a l l the correc

tions i n (1.38) are zero i f <̂  appears i n Table 1.1. A result of this sort was first proved 

by Raghunathan et al [27] for the Rosen-Morse potent ial , but a l l the examples can 

now be handled at once. Note that their conclusion that their argument generalises 

to a l l "solvable potentials," a wider class than that of a l l shape invariant ones, has 

been disproved [28]. The unique property of (1.56) is that different ia t ing (n — 1) 

times w i t h respect to <f> gives 

<f>^\<t>) = p(n + 1) + p{n)g{<l>) (1.57) 

where p(m) is an m t h order, purely odd or even polynomial i n <f>, the details of 

which are irrelevant for the moment. Under mul t ip l ica t ion 

^(n)^(m) = p ( n + m + 2 ) + p ( n + m + 1 ) 5 ( < £ ) . (1.58) 

Straightforward inspection of (1.35) and (1.38) shows that any t e rm appearing i n 

any correction has a restricted combination of factors and derivatives which the 

above formulae reduce to polynomials i n <f> of restricted power. Repeating the set of 

steps used to derive (1.53) then demonstrates that each of these terms is ind iv idua l ly 

zero. B y considering a few special terms i n (1 .38) , the converse can be proved: terms 

i n any correction are only seperately zero i f <f» satisfies (1 .56) . 

This is impor tan t , but unnecessarily strong. For the lowest-order quantisation 

condit ion to be exact i n the sense adopted here corrections are required to be zero 

order-by-order, not term-by-term. The problem thus reduces to that of consider

ing conspiracies between terms i n , say, o(hm) which are each non-zero, but which 

manage to cancel. 

1.6 H i g h e r - O r d e r C o r r e c t i o n s 

By examining the first two remaining corrections progress can be made i n el im

ina t ing any possibil i ty of conspiracy. Unfortunately, the corrections rapid ly become 

complicated and the formulae involved i n discussing when they are zero even more 
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so, hence the considerations i n this section may appear unnecessarily labyrinthine, 

par t icular ly since the conjectured answer is so simple. Al though this a t t i tude is 

probably jus t i f ied - and the next section w i l l describe some prel iminary thoughts 

about an alternative motivated by just these frustrat ions - no economical approach 

to the problem is now known and so the only strategy is essentially to consider each 

possible conspiracy i n t u r n . 

Subst i tut ing (1.54) in to the o(ft4) correction expressed as an integral over 0 

yields 

/ ̂ (E - 02)11/2 - 1 4 0

 { E - 02)9/2 - ( £ - 0 2 ) 7 / 2 ^ ( « + 7 ^ ) 

+(a + b<f>2)</>2(2gg" + g'2) + 2gg'<)>{Za + 5602) (1.59) 

as the non- t r iv ia l content (g' = dg/d(f> etc.), but this is too complicated to enable 

a condit ion on g to be spotted i n the s t ra ightforward way i t was w i t h the o(h2) 

equivalent. Thus the strategy chosen is to expand g2(<f>) as a power series i n 0 

92(<f>) = P0 + M2 + ^ 4 + • • • (i-so) 

and use the corrections to place constraints on the coefficients of this expansion. 

Mak ing the subst i tut ion 

/ J . - a f t Q ) " / ? . (1.61) 

greatly simplifies the algebra i n that i t eliminates a and b f r o m all the formulae. 

Since the reverse subst i tut ion easily reinstates them, the explicit dependence on a 

and 6 is dropped f r o m here on. Deriving the constraints first involves integrat ing 

all terms i n (1.59) w i t h respect to E enough times (here five) so that the lowest 

power of S'Q appearing is (E — 0 2 ) - 1 / 2 , then expanding al l the g that appear. I n 

doing so, one has to contend w i t h the likes of (d,g/d<j>)2, which i n this case is most 

conveniently dealt w i t h by defining the expansion 

( ^ ) 2 = e 0 + e ^ + e ^ + . . . (1.62) 
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whose coefficients are related to the j3n by 

1 n ~ l 

en = (n + l ) / ? n + + l ) ( n - i + - e,-}/?B_ t, (1.63) 

Other combinations of the g{<f>) and i ts derivatives are expressible i n simple ways 

using just j!in and en. One now has an expression mix ing (E — < £ 2 ) 1 / 2 w i t h series 

i n (jy2. The change of variables used i n the previous section, <f> = ^/Eu, is repeated 

and then powers i n E are collected. Each power has a coefficient which is now a set 

of simple integrals over u t ied up w i t h involved functions of the f$n. The integrals 

and then finally the derivatives w i t h respect to E are done, e l iminat ing the first few 

terms, but leaving a power series i n E. 

Formal ly at least, this power series allows the correction to be evaluated given 

<f>' as a power series i n (f>, but for i t to be useful i n this way raises d i f f i cu l t questions 

concerning the convergence of bo th (1.60) and the series i n E. Wh i l e t h ink ing of 

the series thus w i l l be useful shortly, this is usually unnecessarily ambitious and we 

need only be interested i n i t as a fo rma l expansion. To be precise, even i f any of the 

series involved were to be badly divergent, the coefficients ought s t i l l to obey the 

derived formulae. Thus i f some <f> corresponding to (1.60) has a zero o ( f t 4 ) correction 

for a l l E, then al l the coefficients of the power series i n E must be zero. The point 

is tha t these zero coefficients are jus t functions of the /?n and hence can be used to 

derive necessary conditions on the expansion (1.60) of a shape invariant g(<j>). 

These condit ion are most conveniently expressed as a recurrence relat ion for the 

coefficients of a g(<f>) g iving a zero correction: 

( 2 n - l ) ( 2 - 5 n ) ^ n _ 1 + ( - 1 0 n 2 + 3 3 n - 2 6 ) / 9 n _ 2 + 6 ( e n _ 1 + e n _ 2 ) = 0, n > 3 (1.63) 

where the equation for each n derives f r o m a separate power of E. As a simple cross

check, the f o r m (1.56) (which has fln = 0 and e n = - e n _ i for n > 2) clearly satisfies 

i t . Note tha t /9 0, and /?2 are not fixed by these equations, bu t a l l subsequent 

coefficients are uniquely determined i n terms of them, so the set of a l l g having zero 

o ( f t 4 ) corrections can be parameterised by g(Po,fl\,02,<l>)- B y itself, this equation 

tells us very l i t t l e - even the large n l i m i t is not clearly understood and ( i n this 
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context) generating the series expansions doesn't really help us to get closer to 

these candidates for shape invariant potentials as funct ions. However, the main 

idea is evidently working and the set of functions which might have zero corrections 

throughout the S W K B series has already been drastically reduced. Thus encouraged 

the obvious next step is to repeat this exercise for the o ( f t 6 ) correction. 

I n terms of the manipulations involved the details are exactly the same as those 

for o ( ^ 4 ) , except that everything is a order of magnitude more complicated. This 

calculation was carried out by hand, but w i t h substantial pieces of i t checked using 

the Symbolic Manipula t ion Program (SMP) . Details of the lengthy recurrence re

la t ion obtained are relegated to Appendix 1; the ma jo r point to register is that i t 

gives the coefficients f r o m fa onwards i n terms of /?0, fa, fa, fa and fa. The main 

remaining issue is whether any of the series so generated are consistent w i t h any of 

those found f r o m the previous correction. 

However, at this point i t may legit imately be asked how reliable, even w i t h the 

benefit of SMP's involvement, are (1.63) and the fo rmula i n Appendix 1 ? For this 

reason a numerical check on them has been devised using the in terpreta t ion of their 

derivation as essentially calculating the corrections for an a rb i t ra ry g((f>). I t relies 

on the fact that the coefficient of a power of E i n the series for this answer only 

involves some of the fa, e.g. i n the o ( f t 4 ) case the E n + i t e r m contains contributions 

f r o m fa, fa . . . / ? n + 2 only. Previously this coefficient would be set to zero and 

thus a recurrence relation for fa+% i n terms of fa, fa . . . / 3 n + 1 obtained, bu t now 

we are interested i n using i t when the correction is non-zero. Suppose one picks 

some largish integer N and arb i t ra ry values for fa and fa, then uses the recurrence 

relation to calculate a series 

9{N)(<t>2) = A, + h<? + • • • + M 2 N - (1-64) 

I f JV —* oo this gives a series which when inserted i n integral (1.59) should (passing 

over questions of convergence for the moment) produce zero overall , but which for 

finite values of N gives 

W K E ) = E N + 1 a N + 1 + E N + 2 a N + 2 + . . . (1.65) 

for this integral - powers of EN and lower having been set to zero by picking the 

21 



special values of fln for n < N. I n principle, , E) can be evaluated numerically 

fo r several ( low) values of E and a^+i estimated i n this way. I t can also be calculated 

algebraically and the relation between orJV+IC^O?/^l •••PN+I) (1-63) is so close 

that agreement between the two versions constitutes a stringent check on the lat ter . 

I n practise, difficult ies arise because of the non-integrable singularities i n the 

denominator of (1.59). As is standard, these can be softened using integrat ion 

w i t h respect to E, leaving the correction i n a f o r m akin to (1.53), w i t h an integral 

that must be evaluated for arbi t rary E and then differentiated several times. F rom 

the present point of view this is unfortunate since numerically this new integral 

is dominated by the low powers of E el iminated by the different ia t ion and whose 

coefficients thus have l i t t l e to do w i t h (1.63), i.e. one now has 

h ( 9 { N ) , E ) =a'0 + Ea\ + E2a'2 + E3a'3 + £ 4 a ' 4 

+ E N + 1 a ' N + 1 + E N + 2 a ' N + 2 + . . . (1.66) 

where these a'n are simply related to an by factors involving n alone. A naive 

solution wou ld be to calculate the integral and then differentiate numerically, but 

this is too cumbersome and i t is much easier to calculate 

I 2 ( g ( N \ E ) - I 2 ( g ( M \ E ) , M > N (1.67) 

i n which these i n i t i a l terms cancel. B y using different values of N the recurrence 

relation can be thoroughly checked. A t this point i t is probably sufficient to say 

that the method succeeded i n detecting several small errors i n earlier versions of the 

algebra, mainly i n connection w i t h the o(he) correction. The f ina l agreement was 

such as to dismiss any worries about convergence i n this context. 

A numerical search was ins t i tu ted to search for consistent solutions of bo th 

recurrence relations, i.e. to find how many of the <7(/?o>/2i»/?2> )̂ given by (1.63) also 

satisfy the equation i n Appendix 1 ? For any /30, fix and /?2 the o{%*) relat ion can 

give /?3, /?4, /?5, /9 6, (37 and /38, then 0O, /?2, 3̂ and /?4 can be inserted i n t o the 

o(h6) one to f i n d /?' 5, /?' 6, /3' 7 and /3' 8 . The question is are there non- t r iv ia l sets of 
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0O, P\ and 02 such that 

0 5 =0' 5 , 06=0'6> /?7 = ^ 7 » 08 = 0'8 (1-68) 

and this is equivalent to solving a (complicated) set of four non-linear equations i n 

three variables. As such i t is an awkward problem where the best hope of an efficient 

method is normal ly the s traightforward 3D Newton-Raphson one [29], using "de

flation" (placing ar t i f ic ia l poles on top of known solutions) to prevent the i tera t ion 

retreading explored regions. I t was chosen to r u n the program as a search through 

a set of the three simplest equations w i t h any solution of these being checked to 

see i f /?8 = 0'8. Dur ing execution i t relatively quickly located 12 solutions to the 

restricted set of equations, al l of which then fai led the last test, the program f ina l ly 

running on for 132 hours. Most of these candidates were clustered around the or i 

g in i n (/?Q, 0L5 02) space and an examination of the f o r m of the functions involved 

shows them to have a lo t of structure i n this region, bu t to be featureless elsewhere. 

Obviously i n this sort of si tuation there is always the danger that the search proce

dure is inefficient or is being misled and so no absolute assurance can be given that 

other solutions to the restricted set of equations do not exist. However these results 

do make the possibility that there are other <f> w i t h zero S W K B corrections very 

unlikely. Note that even i f another solution were to be found i t not only has to give 

08 = 0*8' bu t i t also has to satisfy the inf in i te set of similar equations imposed by 

requir ing that the recurrence relations agree to a l l orders i n <f>2. A n d this is wi thou t 

worry ing about the o(hs) and higher corrections. 

Therefore i t is w i t h some confidence that we can conclude tha t only superpoten-

tials satisfying (1.56) can give zero S W K B corrections throughout the series. Tha t 

equation is then bo th a sufficient and a necessary condit ion for shape invariance. 

1.7 T o w a r d s A n A n a l y t i c P r o o f 

T w o questions concerning the S W K B series are s t i l l i n search of an elegant 

and ins igh t fu l proof, assuming current conjectures to be true: why every second 

correction automatically vanishes and why (1.56) should be a necessary condi t ion 

for the remaining ones to be zero ? Possible answers which connect bo th are the 

subject of this section. As w i l l become clear this is no more than a sketch of a 

suggested solution and so on certain points r igour w i l l not be pursued i n detai l . 

23 



W h a t can be proved is that bo th statements are t rue i n a large class of possible 

<f> - those for which </>'(<f>) is only non-analytic along the real axis i n the <j> plane. This 

can be done by generalising the basic idea underlying the proof by Raghunathan 

et al [27], using the S W K B quantisation condit ion expressed as a contour integral , 

that the Rosen-Morse potent ial has no higher-order corrections. I n the complex x 

plane the integral i n (1.38) was originally the contour one running around the cut 

f r o m a to 6 due to (E — i ^ 2 ) 1 / 2 appearing i n al l the terms of the series [17]. By 

considering the <j> dependence of the correction terms expressed as contour integrals 

over they showed that a l l the integrands fe l l sufficiently quickly as the contour 

was expanded to i n f i n i t y for al l these terms to be zero. Crucially, the operation 

of expanding the contour can only succeed i f there is no extra structure i n outer 

reaches of the complex plane for i t to get entangled i n , a point that can be verified 

directly i n the part icular case they considered. 

The argument here is that the same procedure can isolate a single t e r m i n the 

o ( f t 4 ) correction, thereby greatly s impl i fy ing the problem. A p p l y i n g i t to (1.59), one 

can prove that as \(j>\ —* oo, the integrand approaches 

this l i m i t suppressing the E dependence arising f r o m the denominators. Note that 

i f this l i m i t is possible (i.e. no obstructing poles or cuts i n <jr2), then no in fo rmat ion 

is lost i n taking i t . I f the correction is s t i l l to be zero for a l l E, then i n this f o r m we 

can see that this is only true provided 

^ijd<j) = 0 (1.70) 
c 4> 

where C is the contour at in f in i ty . There are then several ways this can be exploited 

depending on how rigorous one wants to be, but perhaps the most honest is to 

reverse the expansion of the contour and recover 

•-VE ( 1 - 7 1 > 

a line integral which must be equal to (1-70), excluding irrelevant constants. B y the 
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same line of argument as i n section 1.5, this is only zero i f 

g2 = fa + fa<t>2 + fa<j>\ (1-72) 

Bu t this is inconsistent w i t h (1.63) unless fa = 1 and fa = 0 which is jus t the known 

case (1.56). 

A similar style of proof works for the terms w i t h odd powers of h, which as 

mentioned i n section 1.3 appear to vanish for al l <j>. The W K B series displays a 

similar pat tern as various proofs show [30] [31], bu t almost invariably (see [25] for 

the interesting exception) these reduce to the observation that the quantisation 

condit ion cannot contain complex terms. Such a route is not available here, where 

h and i are no longer quite so closely related, but instead one can point out that i n 

vanishing these terms preserve order-by-order the degeneracy between the spectra of 

V_ and V + that would otherwise be broken. This is extremely suggestive of the f ie ld 

theory result that i f unbroken at tree-level, supersymmetry is likewise preserved i n 

per turbat ion theory to a l l orders i n h [32].* Unfortunately, the proof is an order-

by-order result which proceeds at a Feynman diagram level and so does not help 

i n f ind ing an equivalent here. However the fo l lowing approach is promising: let 

S = A + hB separate the odd and even terms i n h, then 

/ M * = /Gs ( l n A ) +lr)< t e (1-73) 

has a first t e rm which vanishes i n the contour integral . To lowest order the other 

t e rm gives the o{%) constant. This leaves 

/ f i - ^ W / ' ^ ' - ^ V ( 1 . T 4 ) 
J \ A A j 9 J AA„(A + A0) 9 1 ' 

where AQ = (E — 0 2) 1/ 2, and i n expanding the contour as before 

A -»i<j>, B -> \ (1.75) 

since 

A2 + h2B-ih2B'+<f>2 = E 

* I n fact i t was i n response to this that W i t t e n [1] considered models where SUSY 

is dynamically broken by (arb i t ra r i ly small) non-perturbative effects and was thus 

led to (1.6). 
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2AB - iA' - <j>' = 0 (1.76) 

so this integral becomes 

0. (1.77) 

This handles all orders at once, but 1/A can be expanded as a series in h and thus 

one again sees that the deformation of the contour is only legitimate if <f>'{<j)) puts 

no poles or cuts in the way. Note that the structures of <f>"(<f>) = <f>'.d<f>'/d<f> and the 

higher derivatives are closely related to that of <f>'(<f>), so we need only dicuss that. 

At first sight the restriction to superpotentials where <f>'(<f>) is analytic away 

from the real axis appears too severe and the above proofs therefore a dead end. 

However this is to overlook a host of constraints on the superpotential which could 

conceviably guarentee just such an outcome. For a start no cut on the real axis can 

extend to infinity. This is partly a consequence of normalisability - (j>(x) may have 

turning points, between which <]>'(</)) will be multiply valued, but there is always a 

even number of them and at large |a;| the inverse is unambiguous, so <f>'(<f>) is single-

valued at large (f) - and partly that of </>(x) being single-valued for real x. The latter 

point is usually only implicit, but it is necessary for >̂ to be single-valued, as it must 

be on physical grounds. Any confined non-analyticity on the real axis is avoidable 

by taking a sufficiently large E such that the contour in, say, (1.73) encloses it to 

begin with. 

Analytically continuing a real, single-valued <f>(x) away from the real axis is a 

very well-known situation, the main feature of which is that <f>(j) = <j)(z). Equally 

well-known is that this can give rise to poles, but these need not matter in 4>'{<f>) 

where they appear at infinity. The circumstances concerning cuts is less clear; for 

instance, superficially one could have 

except that this violates the implicit condition on V{x) that it is defined classically 

and it is therefore somehow unnatural that that definition should inherently involve 

complex numbers. There is also (1.55) to be reproduced. Hence it is not quite 

so nonsensical to suggest that for any "sensible" superpotential, <j>'(<f>) be analytic 
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except on part of the real axis. Furthermore, any of the additional criteria could 

explain why this type of argument needs only the o(ft 4) correction to succeed, as 

opposed to that in the previous section which had to be augmented by the o(%6) one 

- presumably all the series generated by (1.63) correspond to functions violating at 

least one of these criteria. If so, it would become certain that shape invariance is a 

property restricted to those superpotentials in Table 1.1. 

Finally, there is the obvious question of which potentials does the original W K B 

approximation have zero corrections for. Apart from the case-by-case studies men

tioned earlier [25] [26], this has never been seriously addressed and it is perhaps 

surprising that greater progress has been made with the generally more complicated 

S U S Y version. Unfortunately, setting V = <p2 and finding <p'(<p) for the known exact 

cases [26] produces only odd functions of <p, making the key change of variable from 

x to <p inadmissible and so halting the enterprise at the outset. That this did not 

happen before was a direct consequence of normalisability again and this in turn is 

intimately related to the preservation of S U S Y in the model [1]. It may yet tran

spire that supersymmetry's most permanent legacy is a deeper understanding of the 

Schrodinger equation. 
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C H A P T E R T W O 

Massless Renormalisable Field Theory 

2.1 D i m e n s i o n a l T r a n s m u t a t i o n 

Theories in which we have some degree of confidence are normally investigated by 

trying to measure the unpredicted fundamental constants. For the moment suppose 

there is only one of these, a dimensionless coupling g. Actual predictions will either 

be of the type: if a dimensionless observable R (in some way dependent on g) has 

one value then the observable a has another; or concern energy dependences. For 

instance it may be anticipated, simply from dimensional analysis [33], that R will 

satisfy 

Q % = ~ b p { R ) { 2 A ) 

where Q is some external energy, p a function (in principle) given completely by 

the theory and —6a product of malice aforethought, regardless of whatever value 

R might actually have at a particular energy, this latter needing a cooperative 

experimentalist before anything can be said about it. Integrating up this equation 

f R dx ^~"\\) ? 
log Q +constant = - / -r-r = f(R(Q)) w - (2.2) 

Joo P\x) 

where / , like p, is a function given to us (in principle) completely by theory. It is 

the constant here that is the minimal requirement from experiment. This can be 

done in two logically equivalent ways: either we can measure R at, say, Q = 10 GeV 

or we can find the energy Q at which, say, R = 3.1415. Conventionally, it is the 

latter that is done, albeit indirectly, by letting Q = A be the energy at which 

f(R(Q = A)) = 0 (2.3) 

so that 

R(Q) = f-\log(Q/A)) (2.4) 

is the full prediction of the theory which now allows us to anticipate what values R 
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will take at other energies. In ideal practice we would calculate / in closed form and 

then measure R at different energies to determine that at which (2.4) is satisfied 

and so find A in GeV. Measurable A is the only unknown parameter of the theory 

and as such replaces the coupling as the fundamental constant. 

Now an innocent remark with large, awkward consequences. What if things had 

been done the other way round ? That would have introduced an energy Q = n, 

to be called the renormalisation scale, as that at which we chose to measure R and 

although 

Rfc) = f ' W / i / A ) ) (2.5) 

depends on this choice, 

R(Q) = r \ f ( R ( n ) ) + log(Q//*)). (2.6) 

cannot, i.e. this formula is true for arbitrary /z. Similarily, neither can any other 

observable cr(Q) 

Because all the equations above are dimensionless overall and the underlying 

theory could have been defined entirely in terms of massless quantities, it is perhaps 

surprising that the dimensionless parameter g has been replaced by a massive one 

A. In the process by which this happens, known as dimensional transmutation, the 

arbitrary scale fi plays a key role. Note that instead of materialising from nowhere, 

massive quantities have entered the the theory because it is being "probed" from 

outside by an external Q - for instance the 91 GeV centre of mass energy fed into 

collisions at L E P . 

Of course to restrict ourselves to one observable is far too limiting and any other 

c(Q) is now given by some predicted function 

<r(Q) = <r(Q/fi,R{il)) (2.7) 

directly. For this, the condition that, contrary to appearances, a can't depend on 

the choice of \i either, 

da „ . „. 
„ - = 0 (2.8) 
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can be expanded into 

- PWM))^) *)!,=*(,) = 0. (2.9) 

Although this is all rather simple, we begin to see p(x) emerge in a more important 

role. 

Naturally physics is also independent of whichever observable R we choose to 

use as a reference and it is particularly easy to convert to another, say <r, for which 

instead of (2.1) we now have 

Trivially 

P » = ^P(R). (2.11) 

However, to satisfy the equivalent of (2.3) for a will usually involve a different value 

of A, but numerically this can be compensated by a change of units altering the 

particular value of \i we have in mind. Conversely, changes in \i keeping A constant 

correspond to a change of reference quantity. Crucially, as is clear from dimensional 

analysis, changes in \i can also be compensated by changes in Q. Thus 

<T(zQ,R(n),fi) = a(Q,R(n),nz-1). (2.12) 

Using in variance under change from fi to p! = f i z - 1 , the right hand side becomes 

such that 

a(zQ,R^),(i) = a(Q,R(nz),n). (2.13) 

Setting Q = p, (a new conceptual ingredient perhaps, but quite in keeping with the 

arbitrariness of /x) on the right and renaming Qz = W, we conclude 

<T{W,R(ti),n) = a(n,R(W),fi). (2.14) 

Hence the energy dependence of a can be transferred from the function onto one of 

its arguments. 
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Thus far all functions have been considered as definite and given rather than as 

unknowns requiring calculation in some model. Between /z-invariance and (2.14), 

individual functions have turned out to be expressable in a variety of different, 

yet fundamentally equivalent, forms. However any attempt to calculate interesting 

functions invariably has to resort to some kind of approximation and it is unlikely 

that this will treat all these versions on an equal footing. This can be a powerful 

advantage. For instance, if R(fi) is known or believed to be small it is tempting to 

expand <r(Q/fi, R(fi)) as a perturbation series in powers of it, but it may be better 

to expand <r(l,R(Q)), particularly if one is interested in the high-energy properties 

of a theory in which R(Q) decreases with energy. Or it may be that a special choice 

of \i gives a series with especially good convergence. 

This is a freedom for which there is a price. 

2.2 Ins ide A Q u a n t u m F i e l d T h e o r y 

Simple dimensional analysis sufficed to derive (2.9) with unquestionable validity 

because a itself was explicitly dimensionless and an observable. But should we 

choose to investigate an unmeasurable quantity T, perhaps as part of an intermediate 

step in the calculation of a measurable one, such considerations of what happens 

when we change units or renormalisation point are no longer a constraint. Actually, 

if r is unphysical we could a priori allow it to have virtually any properties we wish, 

violating any symmetry of nature. None of this matters so long as the calculational 

rules of the theory are respected and the observables are legitimate. However, faced 

with this potential anarchy we are forced to confront at least some of the details in 

an example of a massless, renormalisable theory. The simplest instance is that of a 

scalar field <f> defined by the Lagrangian 

£ = \{d*4>W*) - (2-15) 

That the quantum world is all that is the case (although weighted by the exponen

tial of the classical action) was an observation which led Feynman to his "sum-over-

histories" approach and path integral quantisation, the means of handling quantum 

fields to be adopted here. Standard presentations of this method are readily access-

able [34] * and we do no more than outline the general framework. 

* For an alternative, a discussion of canonical quantisation can be found in [35]. 
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From the Lagrangian the classical action is 

dAxC (2.16) 

and this can be used to find the generating functional 

Z[J] = M J [ d < f > ] e x p { i S [ < f > ] + J d^xJ{x)<j){x)} (2.17) 

where Z[0] = 1 and J(x) is an arbitrary function. 

Most difficulties of rigour arise in trying to define and calculate this path integral, 

the integrand of which is an entirely classical expression, but with the integration 

over all space-time configurations of the field. An immediate problem is that the 

integrand is oscillatory and hence not obviously convergent, so conventionally a Wick 

rotation is made from Minkowski to Euclidean space, the integral evaluated there 

and then continued back, with the hope that this is a sensible procedure. A more 

serious difficulty is that of evaluating the integral at all, in all but the most trivial of 

cases. Two approaches are popular: splitting C into a free field and an interaction 

term in order to expand the final amplitude for a process as a perturbation series; 

or breaking space-time up into a finite lattice and estimating Z[J] as a sum over 

a set of randomly selected field configurations for a decreasing lattice spacing. For 

the moment however we assume that some method of obtaining Z[J] is available 

and pass on to its significance and the remainder of the formalism. 

And Z[J] is central to calculating anything because it embodies all essential 

information concerning the theory. It is the vacuum-to-vacuum transition amplitude 

in the presence of a source J and simple intuition about this is correct: to understand 

the theory it is only necessary to master its behaviour for a closed box "prodded" 

in an arbitrary fashion. From it we can calculate any Green's function 

G N ( x v . . . , x N ) =< O l T ^ i ) . . . < f > ( x N ) \ 0 > (2.18) 

where T denotes that the fields are time-ordered with ^(#i ) later than <f>(xN), using 

the formula 

r ( \ 1 S N Z [ J ] I ( 9 ^ 
G N ( X l , x N ) = i F S J M . . . s j ( X l f ) ^ - ( 2 ' 1 9 ) 

Note that Z[J] is not a function of J : it's J(x) that is a function while Z[J] is a 
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functional, so the multiple differentiations are functional ones - Ryder [34] gives a 

concise introduction to the theory of functionals. Two important types within the 

set of all Green's functions are connected ones, generated from «'W[J] = logZ[J] , 

and one-particle irreducible ones, r W , found using 

R W = E ^ 7 < * V - - / d " x n T ( n \ x 1 , . . . , x n ) < f > c ( x 1 ) . . . < f > c ( x n ) (2.20) 
n=0 

T[4>c] = W[J) - J d4xJ(x)<f>c(x). (2.22) 

Green's functions are an enormously important part of the mathematics in field the

ory and prime candidates for the unphysical quantities mentioned at the beginning 

of this section. However, the significant object for the description of experiment is 

the S-matrix; that is the set of all scattering amplitudes between initial states (as 

t —> —00) and final ones, represented as the unitary operator S relating incoming 

and outgoing free fields. 

<f>out{x) = S*4>in{x)S. (2.23) 

The closed form is the reduction formula 

S =: exp[ J < j , i n ( z ) K j ^ d z } : Z [ J ] \ J = 0 . (2.24) 

Colons denote normal ordering in which all annihilation operators are written to the 

right of all creation ones and the operator K for each external particle is simply that 

which acting on a free field gives its equation of motion, e.g. d^d^ here in massless 

<^4. Given 5 , the calculation of half-lives or cross-sections is purely a matter of 

kinematics independent of quantum field theory.* 

As is well-known, none of this makes sense. 

* A n observation famously used by Heisenberg and successors in an attempt to 

subvert it [36]. 
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Any attempt to calculate Z[J] inevitably produces an infinite result which, and 

this is the critical aspect, passes through to the S-matrix. No attempt merely to 

regularise the earlier stages of a calculation can avoid this divergence in its answer. 

As is equally well-known, the source of this difficulty is that the Lagrangian (2.15) 

has been formulated in terms of an inherently unobservable, irretreivable remote 

parameter and field. The existence of divergences in the connection between the 

underlying theory and its physical manifestation naturally entails extra difficulties. 

Many of these are concerned with the initial regularisation of the theory to produce 

finite expressions which can then be freely manipulated during the actual process 

of renormalisation. Detailed examination reveals the expressions to be divergent 

because of the high-momenta, U V parts of the theory and so most regulators intro

duce a cut-off K which will be allowed to become infinitely large at the end of the 

calculation. Since the regularised theory is intended to be a kind of approximation 

to the full theory in which \i plays so central a role, there must be a substitute scale 

and it is « that fulfills this task.* Even so this approximation never replicates all 

the features of the original and it will in some way be unphysical, e.g. in breaking 

Lorentz or gauge invariance. This should not matter provided these aspects are 

not used in any calculation and regulators can normally be selected or developed 

to ensure this, the other major consideration being convenience. If such flagrant 

dangers are avoided, all regulators should give the same renormalised theory. 

Having disposed of these preliminaries, the formal details of renormalisation 

and its consequences can be described. In terms of bare quantities our example 

Lagrangian was 

C = \(WBW*B)-9B*B> (2.25) 

bare quantities which it is assumed are related to their physical counterparts via 

* Some regulators, notably dimensional regularisation, have limits which are di-

mensionless, but these also always need an arbitrary mass somewhere in the formu

lation. This is, slightly misleadingly, immediately identified with //. As explained in 

section 2.1, fj, is strictly a renormalisation scale and is unconcerned with any regu

larisation one. However, for exactly the same reasons as K, they are formally similar 

and can be combined during renormalisation by a suitable choice of prescription 

(see section 2.3). Standard presentations do this implicitly. 
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renormalisation constants 

(f>B = <j>Z^ gB = gZ1Z^ (2.26) 

Now 

C = ~ 9*4 + \{Z\ - 1 ) ( 0 „ * ) ( 0 > * ) - (1 - Z j ) V . (2.27) 

The terms to the right are refered to as counterterms and contain all the divergences. 

Their real usefulness only becomes apparent in order-by-order renormalisation us

ing Feynman diagrams when diagrams arising from them will explicitly cancel the 

divergences in the diagrams of the bare theory. For present purposes we need only 

assume that both the bare parameters and the renormalisation constants can be 

made infinitesimal leaving finite physical parameters and an algorithm for calcu

lating observables which gives finite answers. That only two (i.e. finitely many) 

renormalisation constants are required is what distinguishes the theory as renor-

malisable; for a discussion of non-renormalisable and super-renormalisable theories 

see Collins [37]. 

With a specific model and its innards lain out, we can return to the topic 

raised at the start of this section: what is the equivalent to (2.9) for unphysical 

quantities ? One particle-irreducible Green's functions provide a simple example 

of unmeasurable yet practical quantities and, from (2.18), these clearly transform 

under renormalisation as 

In our earlier discussion, we could assume that the renormalised quantity was inde

pendent of fi and while this is no longer possible, it can be replaced by the observa

tion that the bare Green's function is also independent of it. Thus by differentiating 

( z ^ ( / x / K , 5 5 ) ) n r ^ ( g i , 5 B , K ) = rWfo.,0,/1). (2.28) 

(2.28) by a 

d d 
i ( g ) r<">(fc f0,/i) = o n da 

(2.29) 

dg 
0{g) = n da 

(2.30) 
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7(<7) = / * ~ - l n ^ (2.31) 

analogously to (2.9), but with 0(g) replacing — p(R) and the addition of a n~/(g) 

term. Encouraged by this, can a generalisation of (2.14) be found now that the pi-

dependence will be explicitly known in any particular case and the potential anarchy 

thus eliminated ? If r ( n ) has mass dimensions D , examining g,- —• q^e1, in combination 

with (2.29) yields the inhomogeneous Callan-Symanzik equation 

•ft+P(9)-Q-g+D-ni{9) r ( B W , ^ ) = o (2.32) 

and its solution 

r ( n W , < 7 ( / i ) , / i ) = r w ^ o ^ / ^ e x p t D - n f dt'j(g(fiet')) 
Jo 

(2.33) 

The appearance of j(g) in (2.29) compared to (2.9) signals the existence of anoma

lous dimensions. In the case of an observable <r(Q 2 / / i 2 , R(IJ.)) and because the theory 

is massless, changes in /x and units could compensate transformations like Q —> etQ 

in the external energies. This symmetry, like any other, has a Ward identity as

sociated with it, but since r ( n ) is ^-dependent it need not hold for unobservable 

quantities and the classical symmetry is thus seen to develop quantum anomalies. 

As usual Coleman's [38] is the best account of the breaking of scale invariance and 

how it relates to dimensional analysis. 

2.3 T h e R e n o r m a l i s a t i o n G r o u p 

It is now desirable to unify and significantly extend the two versions of renor

malisation presented so far. Section 2.1 presented the concept stripped down to 

its positivist essentials, couched as far as possible in terms of observable quantities 

(thereby avoiding any distinction between finite and infinite renormalisations) and 

in a form also intended to highlight certain features destined to recur in later chap

ters. The version just discussed is probably more familiar simply because it reflects 

the stance adopted during any calculation, but it is not one adapted for any realistic 

confrontation with experiment. Renormalised variables like g (and masses in more 

complicated examples) are loosely refered to as having their physical values, without 
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their measurement having been worried about. Mathematically this is avoided by 

introducing arbitrary renormalisation prescriptions like 

g = , T W ( f t = 0) (2.34) 

where x l f . . . , £ 4 ) has been transformed to momentum space. Such a decision 

amounts to ignoring the Lagrangian and defining g as being whichever quantity 

happens to satisfy (2.34). Formally this is perfectly acceptable since, as we have 

already noted, the observed physics cannot depend on our choice of variable to use 

as reference during renormalisation. However it completely confuses any attempt to 

ing Q C D ) the situation is even worse: having specified the Lagrangian in terms of 

a set of masses, confinement of the constituent particles prevents any unambiguous 

determination of even their renormalised values. We must therefore find a bridge 

between the mathematically powerful formalism of section 2.2 and the operationally 

rigourous procedure of section 2.1. 

Before showing how this is easily done, one apparent discrepency between the 

two versions must be explained. In section 2.2 two renormalisations - one of g and 

one of </> - were required. Closer examination reveals that that on <j>, known as wave-

function renormalisation, has no effect on the 5-matrix and thus the wavefunction 

renormalisation is carried out so that the renormalised field satisfies the standard 

commutation relations [39], thereby allowing the Feynman rules to be applied to 

(2.27) rather than (2.25). Only one fundamental constant has to be measured. 

An analogy between p(R) and fi{g) has already been noted and this can be 

tightened by partially differentiating (2.6) with respect to 

as against (2.30). For convenience in dealing with perturbative expansions later, we 

introduce a couplant 

measure the fundamental constant of the theory. In certain massive theories (includ-

dR{n) dF 
P W ) da ax 

(2.35) 

a = 
4 T T 2 

(2.36) 
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In a marginal abuse of notation,* let 

Hjfc = /?(«) (2-37) 

where /3(a) is now to be refered to as a /^-function. 

Not only will the physical significance of a (~ g2) depend on the choice of 

renormalisation prescription, the actual function f3 is so dependent as well. Indeed 

it is convenient to reverse this observation and use the /^-function as a means of 

labelling its renormalisation prescription [40]. Also specify n and the prescription 

is unique. 

A prescription is also called a renormalisation scheme ( R S ) . 

This realisation that one can just define a scheme by specifying a /^-function 

and a // without having to worry about what condition corresponds to (2.3) in this 

prescription is of major conceptual importance, even if it does not directly help to 

calculate anything. It is a comprehensive way of expressing the extensive freedom 

we have in formulating a renormalisable theory without physics being in any way 

effected. This freedom is known as renormalisation group ( R G ) invariance, the 

group operation in question being that of changing from one R S to another. Indeed 

it is really only when expressed in terms of changing the (now arbitrary) /^-function 

that we see that this is naturally an infinite group. 

One important way of expressing the difference between schemes is given by the 

counterterms. As described above, counterterm renormalisation entailed splitting 

the Lagrangian into two halves, one of which contained all the divergences of the 

theory. Because finite terms can be absorbed into divergent ones without altering 

the nature of the latter, the last sentence cannot completely fix this procedure and 

a change in scheme just involves the transfer of a finite piece from one half of the 

Lagrangian to the other. 

That this leaves the total Lagrangian unchanged is R G invariance. If the cou-

plant and /^-function are a and /?(a) in one scheme and a' and /3'(a') in another then 

* Apart from a brief resurrection in section 4.5, /3(g) as defined in (2.30) will not 

appear again. Any confusion can only effect book-keeping, since f3(a) and 0(g) both 

play the same role in the theory. 

38 



(c.f. (2.11)) these must be related via 

fi(a) = £f3'(a>) (2.38) 

using (2.37) above. With the full R G available, the problems raised at the start of 

the section simply melt away. Pick a scheme 0(a) and calculate R(a) therein. There 

is evidently an R S in which 

for p(x) from (2.1), and where a comparision of (2.11) and (2.38) shows that R = a'. 

We are thus free to conduct calculation in whichever scheme we happen to find 

easiest and then coordinate these results with experiment via (2.38) and whichever 

observable we choose for R. 

Beguiling though the formalism and its renormalisation may be, field theory is 

nothing unless a means of calculation. As already noted, the formulation of any 

practical technique at all is impossible without the acceptence of some degree of 

approximation and difficult even then. Precious few - perhaps only lattice theory, 

Schwinger-Dyson equations and dispersion relations aside from what follows - are 

of any significance and of these perturbation theory has been the overwhelmingly 

dominant tradition. Although this thesis will not resort to actually performing a 

conventional perturbative calculation, properties and problems generic to the results 

of these calculations are central to it and it is therefore appropriate to explain what 

a perturbation series is in this context. 

Central to the method is the division of the Lagrangian (2.15) into free-field and 

perturbative terms 

0'(x) = -p(x) (2.39) 

2.4 Perturbative Series 

£ = C o+g£i(<t>)- (2.40) 

Naturally it has been ensured that the g = 0, free-field theory is solvable: 

d*xJ(x')AF( x)J(x)) 2.41 Z J J ] = exp( 
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A , ( * ' - x) = J ^ c - " - ^ ' - V + iO"1. (2-42) 

Ajr is known as the Feynman propagator and the ie is purely conventional, with 

e —• 0+ at the end of the calculation. The central result to make the interacting 

theory tractable is 

Z[J] = M exp(ig j C x { - i j j ) d ^ j Z0[J}. (2.43) 

Its proof is tedious and the reader is refered to Ryder [34] for details. Two remarks 

are in order: none of the remaining integrals are functional ones and note the way 

each <j> in Cl has been replaced by a functional derivative. This expression is still 

rigourously exact, but remains uncalculable. The step from a non-perturbative 

theory to a perturbative one is finally taken and the exponential is expanded as a 

power series in g 

J ^ . • • • A - ^ - i « k ) ) - - - £

1 ( - < « f c ) ) z » w - < 2 - 4 4 > 

With Z0[J] available as an explicit functional (2.41) and £ i ( ^ ) = <^4, it is merely a 

matter of (extreme) patience to calculate any term in the series and by using the 

results of section 2.2 one can thus express any observable as an expansion in powers 

of g. And in a certain sense that is it: perturbative scalar quantum field theory as 

a logically complete structure. 

However this present version bears no resemblance to the calculational tools 

of the practitioner. He or she uses (2.44) translated into topology and speaks of 

Feynman rules and diagrams. Strictly this translation introduces no new physics, 

yet it has been one of the most profound and fruitful reformulations in the science 

of our century. Since the visualisation of Green's functions and amplitudes as all 

possible networks with a specified number of ends and only certain kinds of vertex 

is one of the most widely disseminated ideas in physics and since its mathematical 

underpinings are incidental to the general properties of the series obtained, it is 

unnecessary to elaborate on the details. The basic idea has been explained better 

than we could hope to do here [41]. Of course each diagram is only a graphical 

mnemonic for a piece of algebra it is necessary to evaluate en route to a numerical 

coefficient. 

40 



With the theory being calculated order-by-order in perturbative expansions, one 

must renormalise in a similar fashion and it is now that the method of counterterms 

reveals its elegance. These can be treated as additional interaction terms and conse

quently give rise to extra diagrams distinct from the standard ones. In the original 

expansion diagrams containing closed loops typically contribute divergences and for 

each of these divergent graphs there is a new counterdiagram, also divergent but 

in such a way as to cancel the existing one up to finite amounts. One particular 

prescription, the MS one, has become dominant and is invariably used in phe

nomenology. Rather than being explicitly defined by its /^-function (about which 

we currently know little), this scheme is specified by a calculational prescription. 

Handling diagrams with closed loops in the bare theory around which arbitrary 

momenta flow always reduces to integrals of which 

/ ^ ' (2.45) 
(p 2 - a?)a 

is an example. The integration is over all the possible momenta in the loop and 

so the integral diverges. In dimensional regularisation the integral is continued to 

n = 4 — e dimensions and evaluated there. Before taking the £ -> 0 limit which 

removes the regulator, a 1/e pole must be removed by renormalisation. Apart from 

this pole, a group of constants always appears and so it is discarding 

i + l n 4 7 r - 7 £ (2.46) 

from all divergent integrals which defines the MS scheme. The coupling is written 

a j f s = an and the determination of this at a particular energy is often the imme

diate aim of any experiment. Because dimensional regularisation preserves gauge 

invariance, its development was a crucial step in proving the renormalisabilty of 

non-Abelian gauge theories and is the method of choice in the Standard Model, 

even though it remains to be rendered meaningful outside perturbation theory. 

The extension of the complete programme above to the point where the Standard 

Model Lagrangian can be treated involves several new technical developments. Once 

the unfamiliar axioms of Grassman algebras are accepted, fermions can be included 

alongside bosons and in most theories, the inclusion of masses is trivial - the free-

field Lagrangian can usually be solved for massive fields and for the purposes of 
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renormalisation the masses are merely additional (dimensionful) couplings.* But, 

crucially, an alternative technique for incorporating masses is apparently adopted 

in nature. 

2.5 A Theory O f Almost Everything 

The Lagrangian (2.15) of massless <£4 theory was not intended as a serious can

didate for a realistic theory and indeed i t has proved too simple a structure to 

account for all the experimental evidence gathered to date concerning events on a 

scale smaller than, say, an apple. But not by much. 

C = L i 7 " V + R h ^ R - 9{qYTaq)Gl - \ G I V G ? (2.47a) 

- \w%Wr - \B%B? (2.47b) 

- L^{g'\raW; + gPjBJL - R j ^ B ^ R (2.47c) 

+ I K - 9'\raW; - g ' ^ B ^ - V{<j>) (2.47d) 

- (GiL<f>R + G^L(j>cR + hermitean conjugate) (2.47e) 

where 

G% = 0,01 - 0„GJ - g h ^ G l (2.48a) 

W;„ = W - dvW; - g'f'aheWlWc

v (2.48b) 

= %Bu ~ dvB, (2.48c) 

is just such a structure once the known fields and quantum numbers have been 

correctly assigned and two additional pieces ((f) and part of q) are hypothesised. 

The elementary fields then correspond to three massive leptons (electron, muon 

and tau) and their neutrino companions, six quarks (up, down, strange, charm, 

bottom and top), the photon, the intermediate vector bosons (W^ and Z°), eight 

gluons and a Higgs boson. Yet more remarkably, this presentation of the Standard 

Model is needlessly explicit and somewhat hides the symmetries around which the 

Lagrangian has been formed, for i t is no more than that of the SU(3) x SU(2) x U(l) 

* Even in this case the arguments of section 2.1 roughly carry through [33], the 

infinitesimal bare masses being unable to provide an adequate mass scale. 
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non-Abelian gauge theory with its latter two symmetries spontaneously broken by 

a minimal Higgs mechanism. 

A non-Abelian gauge theory is one invariant under the local gauge transforma

tions of its fields 

ip(x) —• exp(-\jOCj(x))ip(x) (2.49a) 

G > ) - G f c ) - - d ^ - U ^ x ^ x ) (2.49b) 

where the OL^X) are arbitrary functions and the At- are the generators of a particular 

Lie group. Its Lagrangian is now constrained to be 

£ = H i j ^ - m)j> - ^ y A ^ ) G ; - j G ^ G f (2.50) 

wi th the field strength G j ^ given in terms of the gauge field Gj, by (2.48a ) . Quan

tising this theory is rather delicate precisely because of the extra symmetry which 

now relates infinite classes of field configurations, all sharing the same action, so 

that when the path integration is taken over all configurations a new divergence is 

introduced into the generating functional. Understanding now that the integration 

should only be over physically distinct configurations, gauge fixing terms must be 

added to the Lagrangian, but the reader is again directed to textbooks [34] for a 

fu l l account of how this is done and why the solution is elegantly equivalent to the 

introduction of unphysical Faddeev-Popov ghost fields. 

In most of the remainder our concern wil l be with circumstances where most of 

(2.47) is irrelevant and a good description of experiment is provided by Quantum 

Chromodynamics (QCD), defined by (2.50) with the gauge group taken to be colour 

SU(3). Of the particles listed above only the quarks and gluons possess the colour 

quantum number and so their fellows can be temporarily forgotten while the gluons 

are assigned to the vector gauge particles GJ, (i = 1,8) and the quarks to the 

fermionic Perturbative calculations of QCD /3-functions reveal one of the theories 

crucial properties, asymptotic freedom, by which i t is meant that 

6 = — L > 0 for Nf < 17 (2.51) 

and so that (perturbatively) g decreases and hence we can anticipate an improve

ment in the applicability of perturbation theory as the energy increases. Historically 
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[42], the realisation that only non-Abelian gauge theories are asymptotically free was 

of prime importance in the proposal of QCD as a theory of the strong interaction. 

The property is possibly also responsible for ensuring the consistency of the renor-

malised theory, a complicated issue avoided in our discussion of renormalisability 

where i t was assumed that the programme outlined was indeed sufficient to render 

observables finite. This has proved to be the case in <^4 [37] and gauge theories 

[43] when they are defined in their perturbative versions, but the question of any 

non-perturbative generalisation is completely unresolved. W i t h the short-distance, 

UV properties of the theory being the fundamental obstacle forcing infinite renor-

malisations upon us, i t may be conjectured that only asymptotically free ones are 

well-behavied enough in this l imit for consistency to be attained. That such a re

strictive result may be appropriate is a serious possibility given detailed studies of 

<f>4 ([44] and references therein). 

Conversely, at low energies QCD behaves in a more strongly interacting fashion 

and the perturbative approximation must ultimately break down. Indeed calculating 

the equivalent of (2.1) to the one-loop level in perturbation theory yields 

a M ) ~ i ^ W ( 2 ' S 2 ) 

indicating some sort of pathology near Q ~ A. Since A ~o(100 MeV) roughly marks 

the mass range of the lightest hadrons constructed from the (effectively massless) 

quarks, the presence of this Landau pole, the breakdown of perturbation theory and 

the existence of these bound states are regarded as broadly related. 

This pattern of asymptotic behaviours is reversed in Quantum Electrodynamics 

(QED), the unprecedentedly successful theory of low-energy interactions of charged 

particles mediated by photons, whose construction is analogous to that of QCD, 

but with the gauge group now the Abelian one U(l) to give the familiar classical 

gauge invariance of Maxwell's equations. Now b = —2Nj/3 being negative means 

that the theory has a small coupling at low-energies. Naively this is taken to explain 

why QED achieves astonishing accuracy in its predictions, of which the best known 

is its anticipation of the electron's magnetic moment to one part in 10 7. Since 

this thesis has as one of its main concerns the ambiguities which prevent QCD 

being tested to this level of precision, there wil l be occasion (chapter 4) to examine 
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this commonplace sceptically. At the other end of the energy-scale, experimental 

evidence for the high-energy behaviour of pure QED is unlikely to be forthcoming 

for reasons suggested by the way in which the U(l) of electrodynamics is indirectly 

incorporated into the Standard Model Lagrangian. As (2.47) and (2.48c ) show, a 

Z7(l) with gauge field and quantum number Y explicitly appears, but this Y 

is the weak hypercharge rather than the electric one and QED only emerges when 

(2.47) is rewritten to acknowledge that its symmetries are broken ones. 

Although of enormous significance conceptually and in the development of ideas 

about renormalisability, spontaneous symmetry breaking is of no consequence in later 

chapters, where QCD is the main concern. I t derives f rom the fact that every so

lution of a theory need not share the symmetries of the Lagrangian f rom whence i t 

was generated, an eventuality which can immediately undermine the developments 

of section (1.4) where i t was tacitly assumed that the free-field vacuum had been cor

rectly identified prior to i t being perturbed about. By forcing the free-field solution 

to have symmetries neither i t nor the fu l l solution possess, an accurate perturbative 

answer is unlikely to be forthcoming. Actually this is not an immediate problem 

in gauge theories, since the Lagrangian (2.50) does not exhibit this phenomenon. 

Unless an extra, Higgs, field <j> is coupled into the theory. Only when i t is realised 

that this can be done with the Lagrangian remaining gauge invariant, but in such a 

fashion that i t solves the problem of how to introduce a massive gauge field - since 

mass terms like M2GllGfi are clearly not invariant under (2.49b ) the gauge bosons 

had previously been required to be massless - does the idea become compelling. 

Details of how (2.47) is recast to display its equivalence to a theory containing an 

SU(2) gauge theory with massive W and Z bosons can be found in any textbook 

[45]. To conjecture that the Lagrangian is unaltered by this breaking and hence still 

perturbatively renormalisable is natural [46], to prove altogether more difficult, but 

still feasible [43]. 

At the time of writing the large amounts of data generated by a quartet of 

collaborations (ALEPH, DELPHI, L3 and OPAL) operating at CERN's LEP e+e" 

collider are allowing a detailed comparision of the Standard Model against reality 

at an energy of 91 GeV where its three interactions form the heirarcy of strengths* 

* "Strength" is normally a loose reference to the size of the a introduced in (2.36). 
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(2.53) 

the weak interaction being the broken SU(2) portion of the model carried by the 

massive gauge bosons. Without aspiring to a similar accuracy, the testing of the 

electromagnetic and weak sectors of the theory has been approached with an attitude 

akin to that used in testing QED at low energies : perturbation theory can give an 

unambiguous framework in which the calculation of higher-orders merely leads to 

refined predictions of effectively unlimited precision. Much remains to be done by 

way of improving statistics and analyses and in the extension to higher energies, 

but i t is clear that the SU(2) x U(l) part of the Standard Model stands unfalsified. 

However such an approach is much less convincing when adopted to test QCD. 

Since this thesis will be largely concerned with this problem, the force of which is 

to be explained in the next chapter, SU(2) x 17(1) wi l l play the incidental role of a 

precursor to the QCD processes of interest at LEP, although QED wil l occasionally 

appear as an example of a simple gauge theory. 

The reader may be wondering what all this has to do with the fate of QED at 

high energies, but the very success of gauge symmetries as a guide in constructing 

the Standard Model has encouraged the widely held view that i t in turn can be 

replaced by a simpler structure enclosing its three, at present still essentially distinct, 

interactions in a single one. Many examples of Grand Unified Theories (GUT's) have 

been proposed, all exploiting the remarkable observation that when extrapolated to 

high energies the ordering (2.53) of the couplings collapses, with the three becoming 

approximately equal at around 10 1 5 GeV, and all of which explain this by postulating 

the existence of a simple gauge symmetry (originally SC/(5)), manifest at very high 

energies, but spontaneously breaking at around this 10 1 5 GeV into SU(3) x SU(2) x 

U(l). Thus i f QED were to be tested at high energies i t would merge into an 

asymptotically free unified interaction well before the Landau pole of the pure theory 

might ever be encountered. Given current technology such scales are impossible to 

investigate directly, but what happens there should constrain certain aspects of 

phenomena already observed, in particular the relative values of the coupling (2.53) 

at 91 GeV. Crudely, the three theories incorporated into (2.47) act independently 

The discussions of sections 2.1 and 2.3 may be thought of as motivating this as the 

random choice of a (hopefully typical) "cross-section". 
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below the GUT scale and so knowing the /3-functions of these theories enables the 

running of their couplings to be predicted and their convergence at a unique energy 

checked, hence accurate measurements at LEP of these couplings (necessary as a 

boundary condition on this integration) is a test of the GUT hypothesis. When 

done in detail [47] the three are found to not quite meet. However this need only 

falsify the supposition that the Standard Model behaviour remains valid up until a 

single breaking scale and numerous extensions of this basic idea already existed -

supersymmetric models, 50(10), etc. - in which the breaking occurred at more than 

one scale. Any such generalisation almost invariably introduces an extra arbitrary 

parameter and the f i t is such that the limited data can normally be accommodated 

by this extra degree of freedom, although the resulting models must always be 

physically reasonable and not predict too rapidly decaying a proton. While this 

limits the conclusions to be drawn, these fits are important as virtually our only 

means of anticipating what lies in store above a few TeV. In the foreseeable future 

the main experimental uncertainty involved wil l remain that on as at 91 GeV and 

an improvement in this measurement is thus paramount. I t is to the vagueries of 

its determination that we now turn. 
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C H A P T E R T H R E E 

The Reliability Of Perturbation Theory 

3.1 Introduction 

Perturbative expansions, calculated to any finite order, violate one of the com

plete theory's essential properties, namely the freedom of any observable f rom de

pendence on the renormalisation point fi. As was remarked earlier, different choices 

for fj, distribute the contents of a function <r(g 2 /^ 2 ,a(/ i)) amongst the terms of a 

perturbative series in a(/-t) in different ways and - while this means that an infinitely 

wide range of superficially unrelated expansions are possible, a judicious choice f rom 

among which may greatly simplify the problem - i t is the fact that such redistribu

tions involve the whole series, whereas our knowledge of i t is unavoidably partial, 

that creates severe difficulty in perturbation theory. 

Because calculations of tree-level coefficients do not involve renormalisation, the 

problem only appears when the one-loop diagrams have been evaluated, but is then 

present in all orders thereafter. The seriousness of this dependence should not be 

underestimated; i t is after all the hallmark of an unphysical quantity. Rather than 

estimating an unambiguous result, in most orders the perturbative truncation can 

provide any possible answer whatsoever - and all at the same time. In destroying a 

central feature of what we are trying to test, we appear to have forfeited the possibil

i ty of prediction. How then can the numerous experimental results claiming to verify 

QCD be explained ? Instead of succumbing to despair, i t has been common practice 

to supplement the closely-defined procedures of perturbative calculation wi th a set 

of ad-hoc and informal rules of thumb motivated by, often vague, appeals to var

iously "reasonableness," "commonsense," "physical intuition" and "approximation 

theory" (see [48] for review]). Since i t is usually unclear whether these alternatives 

are reinforcing, mere prejudice, or even mutually exclusive i t is probable that a 

clear resolution of this confused situation wil l require not only a more detailed un

derstanding of why they may be (un)justified, but also a fresh perspective. Though 
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the related debate as to why these issues were never a cause for concern in the 

application of QED is partly historical, i t is also an ongoing physical one. 

I t is as well to state at the outset the author's guess that the standard strategies 

wil l ultimately prove to have been broadly correct (so that, for instance, A - ^ - is 

not likely to be 5 GeV), although possibly only because they were sufficiently con

servative to prevent contradiction; as such they are a necessary and reasonable first 

step, a broad-brush solution. They do however raise the danger that in being too 

vague, too loose, they obscure otherwise discernable and important detail in data 

already gathered. Currently about half of the quoted error in global determinations 

of as is a consequence of the residual theoretical uncertainties left by these conven

tional approaches. I f nothing else, the prospect of possibly reducing this justifies 

the challenge. That said, the view developed later in this chapter is only a partial 

answer and the enlargement on one part of i t in Chapters 5-7 particularly tentative. 

But this wil l be true of any answer, a definite one being equivalent to an exact, 

non-perturbative treatment of the theory. 

3.2 Definitions: Perturbation Series 

Throughout the last chapter quantities like a and /3(a) were taken to be exactly 

determinable functions instead of the truncated perturbative versions encountered in 

practice and i t is now necessary to settle on a notation for these prior to embarking 

on an investigation of this truncation's consequences. 

Suppose that a programme of evaluating Feynman diagrams is halted after the 

iVth order in the renormalised couplant a = as/n has been found, so that cr(a) is 

approximated by 

where the coefficients Kn are dependent on the choice of RS for n > 1, as is the 

(N) N 
(3.1) 

approximation to the coupling a,(N\(i), which is a solution of the truncated 0-

function equation in the same RS 

= _ 6 a W 2 ( l + caW + c 2 a W 2 + . . . + cN_^ 
N-l (N) (3.2) 

d/i 

baW*BW(aW). (3.3) 
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Here 6 and c are the RS invariants the former defined in section 2.5 and the latter 

by 

c = 
153 - 19Nf 

2(33 - 2Nf) 
(QCD), c = - (QED) (3.4) 

while the rest of the coefficients c 2, . . . , c N - 1 are RS dependent. Note that any 

observable can have its perturbation series massaged into the form of (3.1) by sub

tracting constant terms from and taking powers of the original series. Given the 

existence of schemes (such as MS) whose c 2 is known, but also of observables whose 

2f 2 is the only coefficient known, i t may be queried why both series have been trun

cated at the same order; might this not be discarding useful information ? This is 

however just the standard practice in even the simplest of perturbative calculations 

elsewhere and close reflection on the matter [49] justifies this by showing that the 

lowest order discarded in either series always dominates the truncation error. 

I t has already been seen (section 2.1) that an equation like (3.2) implies a mass 

scale A such that /z/A is invariant under changes of unit, so i t is convenient to define 

a new dimensionless variable 

(3.5) 

in place of fi for use in labelling schemes. To JVth order, each RS now uniquely 

corresponds to a point in the abstract coordinate space ( T , C 2 , . . . , C / \ r _ i ) - Integrating 

equation (3.2) yields a transcendental equation [40] 

a(") 
+ c + x*B(N)(x) x*(l + cx) 

(3.6) 

with a , ( N \ f i ) in the relevant RS as its solution. In doing so a particular (infinite) 

boundary condition had to be chosen and this is the origin of the second term 

in the integrand cancelling the divergence in the reciprocal of the /?-function. As 

should be clear on comparing equations (2.1)-(2.3) with these above, this decision 

is equivalent to defining the integration constant in section 2.1, a process which was 

responsible for the appearance of A. Here any finite modification of the term used 

to cancel the divergence can be absorbed into a redefinition of the parameter A in 

r . Unfortunately, the usual &QCD w a s defined in a slightly different context [50] by 
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one of these slightly different conventions and, although the relation 

/ 2 c \ ~ c / 6 

* = A Q C D { J J (3.6a) 

= 1 .15A Q C / ) , Nf = 5 (3.6b) 

between the two is rather simple, there is the possibility of confusion. In addition, 

the value changes with the number of effective flavours at each quark threshold [48] 

and some sources quote the four flavour A ^ p , others the ^QCQ relevant at LEP. 

When quoting numerical values we wil l always use the conventional A q ^ , but A is 

too theoretically elegant not to be adopted elsewhere. 

Using different schemes also gives different values of A : having moved to another 

fi, this can be compensated by changing units so that its numerical value returns 

to its original value, while altering A . However these values in different schemes are 

easily related using no more than a one-loop calculation [51]. To understand this 

consider a quantity 

R = a(l+rxa +...) = a'(l + r1\a' + ...) (3.7) 

calculated in two schemes RS and RS1 whose couplings are related via 

a' = a(l + vxa + u2a2 + . . . ) . (3.8) 

Straightforwardly substituting gives rx = u1+r'1. Integrating up the equivalent of 

(2.38) relating the /3-functions of the two schemes involves an integration constant 

t a dx fa' dx , v 

c = lw)-lW) (3'9) 

which can be found by expanding in powers of a 

C = - + c\n(-^—} + o(a) - i - c l n ( - ^ - - ) + o(a') (3.10) 
a \l + caj w a1 \1 + ca> J y ' v ' 

= vx + o(a) (3.11) 
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and equating equal powers, so that one finds C = I / J . But this constant relates to 

the definition of A and in particular 

T-T' = r 1 - r \ . (3.12) 

This can be reformulated into the statement [40]: for each observable the combi

nation p0 = T — r j calculated in one scheme has the same numerical value as the 

equivalent combination calculated in another, i.e. pQ is an RS invariant. 

Since this is only bound up with changes in r , are there other invariants related 

to the fu l l set of changes in the Renormalisation Group ? To see that there are, i t 

is easiest just to construct an appropriate set [52]. They are based on the Effective 

Charge (EC) scheme [53] of the observable: the effective charge of a is simply 

R = ikp. = a ' ( i + ria' + r 2 a ' 2 + ...) 

V — „ - ^ (3-13) 

in the scheme ( T , C 2 , C 3 , . . . ) with couplant a'; the EC scheme for a is then the 

scheme (p 0 , p2, p3, . . . ) with couplant 

a = R (3.14) 

and /3-function p(a) where 

p( x) = x2(l + P l x + p2x2 + . . . ) . (3.15) 

The standard formula 

P(R) = (3-16) 

relating these two schemes can be expanded in powers of a' to yield the coefficients 

p2, p 3 , . . . in terms of the cn and the r„ in the original RS. The actual definition of 

the EC scheme is (3.14) alone, which is independent of ( T , C 2 , C 3 , . . . ) SO 

Po = r - r1 
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Pi = c 

P2 = c 2 + r 2 - ^ c - r j 

Pz = c 3 + 2r 3 - 4 r j r 2 - 2 ^ ^ - r f c + 2rf 

(3.17) 

is an infinite set of scheme invariants. Each observable has its own set of similar 

invariants. In the version truncated at the iVth order, knowing the perturbation 

series ( r 1 ? r 2 , . . . , f j v - i ) °f (T^N\a^) and the RS ( T , C 2 , . . . , cN_x) to that order is 

sufficient to calculate (p 0 , p2, • •., PN-I) n o more. More generally, knowing any 

two of these three sets of coefficients allows the third to be deduced, making these 

invariants convenient for the translation of ( r l 5 r 2 , . . . , r j y _ 1 ) calculated in scheme 

( r , c 2, . . . , c^r_j) into those which would have been found had another scheme ( T ' , 

c'2, . . . , c ' jy_i) been used. 

As in all such cases, these invariants can be arbitrarily recombined into other 

sets of equally valid invariants, a process equivalent to defining the invariants as the 

/^-function coeffients in whatever scheme gives a particular set of series coefficients, 

e.g. specifying that the series take the form R = ae° , rather than the R = a that i t 

does in the EC scheme, and using whatever /^-function coefficients this gives. Such 

redefinitions are possible, but unenlightening in that they lead to more complicated 

formulae throughout. 

3.3 Definitions: Observables 

Before turning to the problems involved in testing QCD, i t will be as well to 

define several specific e+e - observables for use as the need arises. A mature approach 

to testing beyond tree-level is to choose observables for study mainly on the basis of 

their experimental and calculational convenience instead of trying, for instance, to 

isolate a "gluon jet." Indeed, once the simplistic belief that a 3-jet event is allowing 

one to "see" a gluon has been passed over, one can more or less define a "3-jet event" 

in any way one wishes, although of course, as many a textbook picture illustrates, 

some events do appear strikingly "three-jetty" and i t would normally be perverse 

to choose a definition excluding these. Ultimately we might hope to be able to 

calculate every observable accurately, so the ones chosen to begin with need only be 

well understood and not of any great physical significance. 
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In the case of jet fractions, a range of definitions have been discussed, each of 

broadly the same experimental practicability, but with differing higher-order and 

hadronisation corrections. Some of these are simple in conception - e.g. hadrons 

must fall inside a cone of specified size in order to constitute a jet - others defy 

visualisation and are often cast in the form of an algorithm with the energy-momenta 

of particles in an event as input. By far the most significant subset is that of 

JADE-type algorithms [54] in which the experimentalists (actually their substantially 

swifter electronics) assign a number to each pair ( i , j ) of particles, locate the 

pair with the smallest value and then, provided that value satisfies 

where yc is an arbitrary parameter, these two particles are eliminated from further 

consideration, but have their energy and momentum combined to form a "pseu-

doparticle" which is included on an equal footing with the other particles when this 

procedure is repeated, as i t is unti l all pairs fail (3.18). The total number of re

maining particles and pseudoparticles is the number of jets in this event. Both 

and the rule for forming a pseudoparticle from its parents remain to be defined &ad 

different choices give rise to the variety of JADE-type algorithms used (Table 3.1). 

At first sight i t may appear that the E algorithm is the most natural, but adding 

the 4-vectors of massless particles does not produce a massless pseudoparticle, while 

most theoretical work concerns massless partons, so i t is usually felt to be advanta

geous to ensure that all particles are massless throughout, a requirement responsible 

for much of the variation in Table 3.1 [55]. A l l the algorithms are infra-red safe but 

subject to hadronisation corrections varying from the small to fairly large. Most 

of the current interest therefore centres on two algorithms, EO and Durham, which 

both appear to have small ( < 5%) corrections [56]. 

Having divided the observed events into two, three etc. jet events, the ratios 

Vij < Vc3 (3.18) 

fniVc) = 
o-(n-jet) 

(3.19) 

known as jet fractions, are the actual observables. These have perturbative expan-
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Name Vii Recombination 

E 

EO 

JADE 

Durham 

(Pi + Pj? 

(Pi + Pj? 

2EiEj(l-cos8ij) 

2xmn(E?,E])(l - cosfy) 

Pk = Pi + Pj 
Ek = E i + E j 

Pk = Pi + Pj 

Pk = Pi + Pj 

Table 3.1. Selected Jet Algorithms 

sions in the couplant of the form 

f2 = 1 - K21a - K22a2-K23az + ... 

f3 = K31 a + K32a2+K33a3 + ... (3.20) 

f4= K42a2+Ki3a? + ... 

Of the coefficients there only the one-loop K2\i the tree-level K31, K42 and K53 [57], 

the two-loop ^ 2 a n < i the one-loop K32 are known fully for the common algorithms 

[58], although approximations of practical accuracy ( ~ 10%) are known for the 

higher tree-level ones [59]. Relatively simple examination of the formulae in Table 3.1 

can reveal relationships between coefficients for different algorithms using kinematics 

only. Thus K31 is identical for both EO and JADE, while i t is larger for E. 

Problems occur at small yc because a 3-jet fraction wil l be structured thus 

h =«(<Aio + Au lnyc + A12\n2yc) 

+a2(A20 + A2l lnyc + A22lu2yc + A 2 3 l n 3 y c + A 2 4 l n 4 j / C ) 

+ . . . (3.21) 

and for yc < 0.05 the l n y c terms become large. There are precidents for both 

this problem and its solution, most notably the recent improvements [60] in the 

treatment of both thrust (see below) and heavy jet masses, and by 

resumming the leading and next-to-leading logarithms. These developments are 

part of the application to QCD of ideas originally developed by Sudakov to deal with 
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bremsstrahlung in QED when the emission is so severely constrained kinematically 

that only soft, collinear photons can be radiated (see review by Catani [61]). Under 

these circumstances the total amplitude 

obtained by integrating the probability dw(l,..., n) for emitting n photons over the 

phase space 0 ( 1 , . . . , n; yc) and then summing over the number of photons, becomes 

where the exponential only involves the description of single photon emission. This 

being that of n independent single ones, and also the factorisation of the phase 

space in the soft, collinear Sudakov l imit . Although the first of these might have 

been expected to be inapplicable to coloured gluons, i t can happen with certain 

QCD quantities. I f similar arguments apply to jet fractions, when yc is small the 

final term in each row of (3.21) will be large enough to destroy the approximation, 

but their coefficients wil l be related and all will be combinable into an exponential 

like (3.24). The details are complicated and work is still in progress, although well-

advanced [62]. Difficulties arose when Brown and Stirling [63] pointed out that 

the second, phase space factorisation didn't occur for existing algorithms, basically 

because in them two soft gluons could be combined into a jet even though they 

would more be more naturally split between two other jets. Subsequent attention 

has focussed on two specially invented algorithms, the Durham [64] and Geneva [56] 

ones. I t appears that the former exponentiates, whereas the latter probably does 

not [61]. Comparisions with data remain to be done for resummed calculations, but 

the o(a 2) forms have been examined in detail with promising results [56]. 

An alternative to dividing an event up into jets is to classify its shape. For any 

event one can define the thrust 

oo 
dw(l, n 0 ( 1 , i + 

71=1 

(3.22) 

oo n 
dw(i)Q(i,yc) 1 + 

n=l t=l 

(J dw(i)Q(i,ycYj exp 

(3.23) 

(3.24) 

is dependent both on the factorisation of dw(l . . . , n ) , the emission of n photons 

£ « \Pa-m T = max 
E a l P a l 

(3.25) 
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with the sums taken over all particle 3-momenta in the CM frame and the maximum 

is found by varying unit vector n. For a large event sample, a distribution in T can 

be established. The same final state particles can be used to define a tensor 

' « " E J P . I < 3 - 2 6 ) 

which will have eigenvalues Xn. Then the C-variable is 

C = 3(A 1A 2 + A 2 A 3 + A 3 A 1 ) , (3.27) 

varying from zero for back-to-back events upwards. Further details of both and the 

results for r1 can be found in [65]. 

A less discriminating, but theoretically better understood, measure of purely 

hadronic events is the total hadronic cross-section, known as the .R-ratio when nor

malised as 

R EE M a d r o n s ) ^ ( 3 > 2 8 ) 

In the MS scheme this has the very well-known expansion [66] (/x2 = g , Nj = 5) 

R = ^ ( 1 + a + 1.409a2 - 12.8a3 + o(a 4)) (3.29) 

= Y ( 1 + SQCD) (3-30) 

where SQQD * s ^ e f ° r m appropriate to (3.1) above. Close to the Z° peak there are 

substantial electroweak corrections to this QCD result, so the data to be used [67] 

is that taken at Q = 34 GeV where these can be neglected. On the peak, SQCD can 

be checked using the ratio of hadronic and leptonic decay widths 

Rz = <3-31) 
1 lep 

= (19.97 ± 0.03)(1 + 8 Q C D ) (3.32) 

where the numerical factor is electroweak [68], These massless QCD results can be 

modified to include heavy quark masses [69], but the changes are small (K^ = 1.05, 
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K^s = 1.41) and insignificant in the present context. Unfortunately, because both 

R and R% are o(l) in a$, SQCD 1 S s m a l l a n ( l its accurate measurement difficult, 

but they have the advantage that hadronisation can be ignored. For the previous 

observables, while being fairly small at the points that will be used later, the size 

of the hadronisation corrections varies across the distributions [65]. Except for that 

coming from lower energies and for Rz (where the 1991 L E P average is used instead 

[70] [71]), all data in the following comes from O P A L [70]. 

3.4 C l a i m s A n d Misconcept ions 

In addressing the problem of scale dependence at N L O there are four attitudes 

discernable in the literature: 

a) Treating fi as an unknown and fitting to the data for it. 

b) Setting it to some physical scale in the problem, typically the centre of mass 

energy. 

c) Picking a value such that 

dR n 

fi— ~ 0 
d/J. 

i.e. minimising the dependence on the scale. 

d) Using the ambiguity to make the series converge well, normally by adopting the 

E C scheme, also known as Fastest Apparent Convergence ( F A C ) . 

Although each of these in its pure form has its advocates (e.g. [72], [73],[40] and 

[53] respectively), it is more common for more than one to be appealed to, often as a 

justification for one of the others. In a recent global determination of a_g carried out 

by O P A L [70] all three appear in some form: an average is taken of the couplings 

obtained using a) and b), while checking that this estimate is consistent with c) and 

including for the first time the Durham jet algorithm with its soft //-dependence 

alongside the usual J A D E ones. As is clearly stated in doing so, this conservatism 

is a response to the lack of agreement on a correct procedure. Faced with the same 

problem the D E L P H I Collaboration [71] basically consider variations in scale from 

0.002.E c m to ECM and then institute a complicated averaging procedure to handle 

the correlations between different observables. 
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Probably the most naive approach involves fitting the scale to the data. How

ever, simply fitting for \i and A to a single observable is impossible. Consider the 

one-loop truncation 

a ( V 2 ) ) = #i(« (2 ) W2>2f^) (3.33) 

= K1(aW+aW2(F(aW)-Po)) (3.34) 

where 

and 

= - 6 a ( 2 ) 2

( i + c a ( 2 ) } ( 3 . 3 6 ) 

TW = F(aW). (3.37) 

Figure 3.1 displays the generic parabolic shape of cr( 2)(a( 2)), with the dotted line 

representing the result of a typical measurement [48]. Normally both p 0 0- e ' A.) and 

a(2)(/x) are unknown so this single measurement does not suffice to determine them. 

Adding additional observables to the sample is of no help, there still being too many 

unknowns. Progress is only possible provided one is willing to make some sort of 

assumption relating \i values for different observables. Naturally the observables 

thus linked are ones already continuously connected, e.g. points in a thrust, yc or C 

distribution are all fitted using a common //. Innocuous as this may seem for a first 

approximation, it has a contradiction at its heart: to be interesting a distribution 

must have some strong variation - fitting a common fi and A to a set of points in a 

perfectly flat distribution is hardly likely to be an improvement on fitting them to 

one - yet this is exactly when one might imagine that "jx" varies widely across the 

distribution. It is also a scheme dependent approximation. 

In all such fits the data is not being used to test Q C D ; it is being parameterised 

using a crude parameterisation which has some features in common with that theory. 

Parameterisations are certainly useful, but are usually a means of compressing infor

mation without any pretence at interpretation, often as an admission of ignorance 
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F i g u r e 3.1 Scale Dependence of <r^' 

about the underlying theory. As a mixture of theory and simple guesses, current 

fits are phenomenology in the original sense and as such an unreliable (although 

suggestive) basis for the measurement of a fundamental parameter in the complete 

theory, at least until the approximations can be cross-checked. For their sample of 

observables the O P A L Collaboration [70] find that fitting x = pi/Eem gives values 

ranging from 0.008 for E 0 jet rates and 0.017 for the C-variable through to 0.77 for 

oblateness. Quite apart from the A ^ j values inferred, by themselves these numbers 

tell us nothing. By adopting some additional assumption about the "correct" scale 

it may be possible to claim something, but one has to be very careful. After all, one 

may be trying to distinguish between cases where the theory is wrong, the idea of a 

single scale is inadequate and where the assumption is incorrect. 

Note that when the resummations mentioned above were done with thrust, 

where ln ( l — T) terms are involved, expressions were obtained giving a good fit 

to the data over widely seperated T values with a fitted scale / i ~ Q and a greatly 
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reduced dependence on that scale at small (1 — T) [60] [70]. Although minor problems 

matching results in the Sudakov limit to the conventional ones - with M^p and 

Mj^1^ the resummed results work well in the previously problematic small mass 

regions, but slightly spoil the existing agreement elsewhere [70] - remain, these are 

important advances which should greatly increase confidence in our ability to fit 

Q C D predictions realistically. However, with the benefit of hindsight it should be 

emphasised however just how wrong earlier, and indeed most current, fits were. 

Using a single fi across an o(a 2 ) distribution can be a terrible approximation. 

Popular simply as an independent choice of scale, position b) is also often used 

as the extra assumption. The standard argument in its favour is that if there is 

only one energy scale Q in the problem then fi ~ Q is a plausible guess; a detailed 

understanding of the full physics involved may modify this, but probably by no more 

than numerical factors of o(l) . There are cases where fj, = Q fits the data extremely 

well, notably in deep-inelastic scattering - Martin, Roberts and Stirling [74] report 

that even allowing some functional variation in fx fails to improve the agreement 

significantly - but these are the exception rather than the rule, particularly in e + e -

reactions as we have seen [70]. Rather a lot of room for maneouvre is still left 

and so one finds arguments claiming to offer improvements by using more realistic 

physics. For instance, the e + e~ jet fractions present a particular difficulty for the 

original estimate because fitting as described above gives values at least an order 

of magnitude less than the centre of mass energy Q. So it is sometimes argued 

that the relevant energy is actually Q/3, since this is the energy of each jet in a 

3-jet event [56], or something smaller because the "essential" physics is presumed to 

take place at an even lower level in the event. Arguing about Q/3 as against Q in 

this context is to greatly overestimate the reliability of what is being done. Quite 

why this sort of dimensional argument, be it estimating the size of atoms, stars 

or mountains, is usually so successful when applied cautiously remains a mystery 

[75], but it can never distinguish a factor of 3 (~ 7r) which could arise for any 

number of trivial reasons in an exact proof. Sometimes employed as a first draft, the 

method invariably works best when the underlying physics is already well understood 

and is no substitute for insight. Rephrasing this, its success depends on a degree 

of certainty that no other massive quantities are involved, when in fact one (A) 

is to hand. With the jet fractions it may be thought significant that the fitted 
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(i ~ A, but this would suggest the involvement of low-energy non-perturbative effects 

when the actual hadronisation corrections appear small [65]. Finally, as its very 

dependence on fi indicates, the truncated series is possibly not a very physical object 

and one's intuition may break down - butchering the theory may introduce large 

factors spuriously. Similarily, any discussion of physical content in the dimensional 

continuation required to define the MS scheme must surely be tentative. 

Note that it is not an argument for fx = Q to point out that otherwise r n ( f i / Q ) 

will contain large logarithms of fi/Q. Until it has actually been calculated there 

is no way to know how r n ( l ) compares to the result for some other choice of /x. 

To suggest that it is likely to be "naturally" smaller is only the above reasoning in 

disguise. 

The issue is further clouded by the precedent of Q E D where "natural" schemes 

(including a scale) are often appealed to as the reason why the choice was never a 

problem there. In fact, a large part of the explanation seems to be historical inertia. 

It can be rigourously proved in Q E D [76] that the classical Thomson cross-section 

for Compton scattering is recovered in the long-wavelength limit 

% ^ ^ ) \ * - 0 . (3.38) 

The existence of this classical limit, a consequence of infrared freedom, enables 

perturbation theory to be applied at the very small energies appropriate to, say, 

solid-state physics where the electron charge can be precisely measured using the 

Josephson effect. Although our liberty to define the coupling in whatever way we 

choose still exists, it is only sensible, in preventing unnecessary confusion, to agree 

on a definition which can be compared to the usage elsewhere at this low energy 

and, once this is agreed, to present the results of all calculations in this R S . This is 

unobjectionable, provided it is remembered that this is no more than a convention. 

Unfortunately the description of this R S as the "natural" choice - which it is in the 

sense of least confusing - seems to have mutated into the folklore conviction that 

this is a "natural scheme" because it has some physical significance.* And so long 

* An argument by Collins [77] claims that, unlike Q E D with the electron mass, 

Q C D has no external mass scale and hence &QCD 1 S unmeasurable. This relies on 
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as perturbation theory gave such impressive agreement with experiment while using 

(i ~ m e there was little reason to worry about the possibility of changing the R S . 

With the theory now being used at much higher energies with running couplings, 

these positions no longer accord with everyday practice. Thus the issue is not 

why there was not a scale dependence problem in Q E D , but why the scheme that 

happened to be picked was responsible for such reliable predictions ? Alternatively, 

why is Q E D so forgiving ? An answer to this, consistent with our attitude to Q C D , 

will be given in the next section. 

Turning to c), what does the size of the //-dependence indicate about the relia

bility of an observable ? Contrary to folklore, for example 

"substantial renormalisation scale dependence . . . indicates that perturba-

tive corrections beyond the order calculated are not yet negligible," [56] 

by itself it is rather uninformative [79]. Returning to the truncation (3.34) - (3.37), 

in realistic cases the second term in F(a^) is small and in neglecting it none of the 

conclusions are changed. Now 

da 1 .„ „„, 
H —— = 0 a (3.39) 

d/i p 0 

and at this turning point 

2d2a 2KJ2 ( c x 2 

dy? / V V Po/ 

so the flatness or otherwise of the fi-dependence at one-loop only depends on p0. 

This is perhaps made more vivid by taking an example of current interest: the only 

reason that the Durham jet algorithm in fixed-order (not the resummed results) has 

smaller /i-dependence than the E 0 one is because the one-loop correction (i.e. r^) is 

smaller. Scale dependence is intimately bound up with the size of K2 and is not an 

a general observation [78] that if physics cannot depend on the choice of units, a 

"Theory of Everything" can only predict ratios of masses and is not, as claimed, a 

special consequence of dimensional transmutation. Since Q C D is no more a T O E 

than Q E D , one is in fact still free to use me as a reference mass. 
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additional characteristic of the result as sometimes implied [56] [61]. As an insight 

this is somewhat trivial, since it merely reiterates that a one-loop calculation by 

itself does not say anything about higher-orders. Uncalculated terms are unknown. 

To be exact, the above derivation would need an exact value of A, so as to be 

able to find p0. In practice this has to be replaced by one found from fitting with a 

common /x and only then can one study how stable this fit is under changes of that fi. 

Naturally one hopes that the fit shows only a small dependence on // , but again care 

must be taken because there are two effects involved - that arising from assumming 

a common \i and the intrinsic /i-dependence of the truncation. Furthermore one 

must be wary of any claim to have estimated "the higher-order corrections" under 

any circumstances since this concept is highly scheme dependent. In fact studying 

the ^-dependence of a fit does tell one something about how large the corrections 

are, but only in a very restricted set of schemes. Although there are cases (the jet 

fractions at small yc for example) where this information has been useful, it is not 

as significant as sometimes implied. 

No such claim about higher-orders is made by Stevenson, the foremost proponent 

of c) in the form of his Principle of Minimal Sensitivity (PMS) [40] [49]. This is the 

scheme-fixing prescription defined by 

M ^ - = 0, ^ J — = 0, j = 2 , 3 , . . . ( n - l ) . (3.41) 
dfi dcj 

Assessments of this extreme version of c) are readily available [48] [80]; it is rather 

impervious to direct criticism because its justification lies outside field theory in the 

general notion that any approximation should be insensitive to the choice of any 

unphysical parameters. One could argue that as a desirable property of approxima

tions it should be examined a posteriori, instead of being used as a basis for defining 

the approximation in the first place. There is also the reservation that it relies on 

the derivative of an asymptotic (?) power series which may not itself be asymptotic. 

A remark general to all these positions is that none of them, even in combination, 

unambiguously add to our understanding. Were a reliable value of A ^ j to be 

provided by other means, there would be little to be learnt in using it to investigate 

their conspicuous failures because the idea of a "correct" scale reproducing the 
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correct results is a ficticious one. As more orders are added to perturbation theory, 

one certainly expects that any of the extracted A's will approach the correct value, 

but one cannot anticipate that the "correct" scale will do the same - indeed as 

the dependence on // decreases the fitted values will presumably become unstable. 

Paradoxically, if the idea of a "natural scale" were to be correct, we would learn less 

and less about it the better the theory is approximated. 

Finally, simply as a choice of scheme (in this context) the E C one's only merit 

is the obvious opportunistic one. However, the formalism associated with it is of 

deeper significance than that. 

3.5 E n e r g y Dependence 

If "higher-order corrections" have proved too elusive to help assess the reliability 

of perturbation theory, what can they be replaced by ? Q C D makes two types of 

prediction about an observable R: how it relates to other observables and how it 

varies with energy. Investigations of a sample of observables at a single energy are 

normally coordinated via a A which should be universal, but as we have just seen 

this process is bedeviled by uncertainties concerning p,. In contrast, the energy 

dependence of R is a much cleaner prediction of the theory: 

The choice of notation here is deliberate and the function p(R) is just the E C /3-

function. 

This allows a simple test of the theory without any parallel of the /i-ambiguity. 

The situation is exactly that discussed in section 2.1 where it was seen that inte

grating up gives a prediction 

R S is most convenient and then using equations (3.17), as many terms as desired in 

the expansion of p(R) (and hence / - 1 ) can be calculated. The only uncertainty is 
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dR 
bp(R) Q do 

= -bR2(l + cR + p2R2 + ...). (3.42) 

R(Q) = / ^ ( l o g t Q / A ) ) (3.43) 

where A is the A introduced above. By calculating diagrams as usual in whatever 



the unavoidable one caused by neglecting terms in the expansion.* Measuring R(Q) 

at a single Q then enables A to be infered. 

It perhaps comes as little surprise to discover that this procedure is formally 

equivalent to using a particular R S and that it is the Effective Charge scheme at 

that. Interestingly, even though all schemes would then give the same answer, 

this scheme is probably the simplest to use were the theory to be applied non-

perturbatively. Although A is what is wanted for comparisions between observables, 

for any particular quantity the same information is probably better encoded in the 

scheme invariant p0. Now suppose that a complete calculation of some observable 

function R(Q/p,,as(fi)) were to be available, how would p0 be extracted ? The 

extrapolation of conventional attitudes would entail inverting this to find ats(fi) for 

some (now) arbitrary p. and then calculating p0 via (3.6) and (3.17), assuming the 

/^-function of whatever scheme has coupling ot3 has also been calculated. However 

this is unnecessarily complicated and it is more natural to eliminate the first stage 

by taking R instead of aa as the coupling, i.e. to use the E C scheme. Then R, once 

measured, is inserted straight into 

Equation (3.44) also plainly displays where our ignorance resides when we compro

mise with a perturbative truncation. F(R) is a trivial function of the measured 

* Chyla [81] has erroneously argued that (3.42) avoids /x-dependence only at the 

expense of introducing a new ambiguity. As in Chapter 2 (3.43) can be rewritten as 

R(Q) = f~* (f(R(p))+\og(Q / p,)), but approximating / by perturbatively truncating 

p does not introduce a /i-ambiguity into it. The easiest way to see this is to note 

that the ^-independence of R to all orders does not depend on the actual form of 

p, so only approximating this function doesn't alter that. Truncations do introduce 

a //-dependence into <r(p, R(p)), but this is an entirely separate issue. 

P o = F(R) + APo(R) (3.44) 

where F(R) was defined in (3.35) and 

Ap + o p(x) x2(l + cx) 
(3.45) 
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value, but our knowledge of ApQ is restricted to its perturbative expansion 

APo(tf) = f R d y l P * + P * y + --;) - . (3.46) 
m } J0 (1 + cy){\ + cy + p2y* + ...) V J 

At the one-loop level, the standard truncation implies that Ap0 = 0 and this in 

conjunction with (3.44) gives values for p0 and A - j ^ . 

To return to (3.42) and its consequences, inverting (3.43) also gives (3.44). How

ever, the interpretation is now completely different. 

In the conventional approach, once chosen the E C scheme (or any other choice 

of scheme) effectively ignores the //-ambiguity thereby explaining why it is absent 

from the formalism, whereas now that ambiguity genuinely does not arise because 

a separate problem is being considered. Expressed differently, whatever formal re

semblance 

= 0(a) and = P(R) (3-47) 

may have, they correspond to different physics. As a general idea, this sort of sugges

tion about using (3.43) to measure A has been made by Grunberg [53] (leading him 

to define E C schemes) and by Dhar and Gupta [82], but these proposals foundered 

on unnecessary confusion surrounding the interpretation of the E C formalism. 

If the theory is truncated at the one-loop level (i.e. ApQ = 0), what sort of results 

are obtained ? An important comparison here is with the P M S result: this is also 

equivalent (as any scheme-fixing method must be) to specifying an approximation 

P'o t o Po> 

p' 0 = F(R) + o(R). (3.48) 

Thus to a good approximation, at the one-loop (and in fact higher-loop [48] [80]) level 

P M S and E C give indistinguishable values of p'0 and adopting the latter formalism 

cannot reduce the substantial scatter (common to all known methods) found in the 

values of A - ^ j obtained using PMS [70], There is however a major difference in 

the way this scatter is interpreted by the two approaches - unlike P M S , the E C 

approach can assign direct physical significance to it. 
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Comparing (3.42) and its integrated version (3.45) shows A p 0 to be controlling 

the deviation from the approximation 

~ -bR2(l + cR) (3.49) 

to the running of R. Because of asymptotic freedom as Q —• oo, R —• 0 and 

F(R) oo, A p 0 -> 0. (3.50) 

At very large energies, one finds 

| A p 0 | < |po| (3.51) 

and A p 0 = 0 becomes an increasingly good prescription for extracting A; in partic

ular the error involved is roughly 

8A 

In any scheme, the scheme dependence problem reduces in severity as asymptotia is 

approached , eventually disappearing when the theory becomes trivial in the limit. 

Conversely, it is only because the theory must be applied sub-asymptotically that 

the problem exists at all and this is as much part of the issue as truncation. Unlike 

for the higher-order terms neglected by the truncation, there is a natural measure 

of the extent to which a particular observable is sub-asymptotic - none other than 

A p 0 [79]. 

With the scale dependence problem mollified in such cases, one (at least initially) 

ought to concentrate on quantities satisfying (3.51). From this point of view the 

reversal in the sign of b and the direction in which the coupling runs in going 

from Q C D to Q E D is largely irrelevant, so it is important that (3.51) is admirably 

obeyed in the standard tests of the latter theory. For instance, the anomalous 

magnetic moment of the electron has p 0 ~ 400 and A p 0 ~ 0.003 when Q ~ rae, to 

be compared to Q C D at Q ~ Mz when p 0 ~ 20 and A p 0 = o(10) as we shall see 

below. The fundamental reason for the success of Q E D is thus seen to be that it has 

been tested sufficiently close to its asymptotic regime for the scheme dependence to 

be irrelevant, rather than non-existent. 
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Observable A p 0 

f2 EO (yc = 0.10) 0.99 ± 0.15 

/ 3 EO (yc = 0.10) 0.98 ± 0.21 

/ 2 D (y c = 0.10) 2.04 ± 0.78 

/ 3 D (yc = 0.06) 2.05 ± 1.35 

Thrust ( T = 0.83) 0.98 ± 0.69 

C (c = 0.38) 1.47 ± 0 . 7 7 

7.16 ± 2 . 8 2 

6.14 ± 2.79 

Table 3.2. Selected A p 0 Values 

Thus instead of treating the E C formalism as merely another method of fixing 

a scheme in Q C D and hence extracting A-jjj^, it is more fruitful to reverse the logic 

and investigate the consequences of assuming some value of A ^ j . From (3.44) a 

measurement of R unambiguously gives p 0 — A p 0 and the guess for A-jgj along with 

a one-loop calculation in any R S determines p 0 and so one can find A p 0 for different 

quantities. The particular value of A ^ r is pretty incidental because other choices 

only correspond to uniform shifts in the values of A p 0 for all the observables and 

so experiment and a one-loop calculation easily fix relative values of A p 0 , i.e. up to 

an unknown universal constant [79]. The scatter in the values of A-̂ -g- previously 

extracted now translates into a scatter in the values of A p 0 which is to be interpreted 

as showing that different observables are approaching asymptotia at different rates. 

For illustrative purposes, letting A^^- = 110 MeV, the observables described in 

section 3.3 give the results in Table 3.2, which are also plotted in Figure 3.2. The 

points selected to represent distributions are typically ones with small errors. For 

T and C there is little variation across the distributions, but with the jet fractions 

there is substantial variation at small yc where large corrections are anticipated, as 

is clear in Figure 3.3 where the full / 3 distribution for E 0 is shown. Points were 

therefore selected from the large yc region where A p 0 is constant within the errors. 

Note that no scale uncertainty need be included in any of the errors, which are 

consequently purely experimental. 
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F i g u r e 3.3 A p 0 for EO 3-jet fraction 
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Returning to the question of significance, how does this differ from assuming 

a value for A - j ^ and then extracting some putatively "correct" scale fi for each 

observable ? Firstly, although the present data on energy dependence is slightly too 

crude for the purpose, in principle there is an independent check on a possible range 

for A p 0 using (3.42). There are basic difficulties: in Q E D where the processes are 

liable to be clean the higher-order terms on the right-hand side of (3.42) will be small 

because R ~ a is, while in Q C D the corrections are large, but so are the errors. Aside 

from the inherent disadvantage of starting in o(a 2 ) instead of o(a) so that absolute 

sizes are smaller to begin with, practical pressures are in favour of accumulating large 

statistics at a single energy rather than aportioning beamtime amongst a range of 

energies. Bethke [55] displays the data available for the 3-jet fraction / 3 (at fixed 

yc) with the intention of demonstrating that a s runs convincingly in the manner 

predicted by Q C D , although (3.42) suggests that a better interpretation is that / 3 

itself runs. The points are somewhat scattered with relatively large errors, but are 

on the verge of usefulness. For instance, using J A D E data [54] for the 3-jet fraction 

(y c = 0.08) between Q =34 and 44 GeV, where the errors are slightly smaller then 

elsewhere, gives 

= -0.022 ± 0.008 (3.53) 

and 

then yields 

^*K4 ( oi r , +w<iW (3-54) 

-3 .4 < A p 0 < 8.7 (3.55) 

as a crude estimate, which translates into the bound [79] 

A g L < 300MeV. (3.56) 

The advent of L E P 200 should help by providing an extended baseline and refining 

this sort of analysis for different variables may be able to produce a useable estimate 

of A-jfg free of scale dependence uncertainties, as well as a cross-check between 

values of A p 0 derived via (3.42) and those found from (3.45), thereby testing the 

consistency of Q C D . 
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Secondly, unlike with /J , it is believed that A p 0 can be calculated perturbatively 

with each additional order adding to our knowledge of it (at least until the divergence 

of a presumably asymptotic series sets in) rather than rendering it increasingly 

meaningless. However the omens for this are not good. By itself Figure 3.2 cannot 

decide which quantities have | A p 0 | ~ 0, the freedom to shift everything up or down 

by changing A still existing. However if the data is correct this cannot be true for 

all the observables shown, with R and RZ clearly requiring closer consideration. 

Fortunately, SQCD is the only series in the theory calculated to o(a 3 ) , and therefore 

A p 0 can be approximated using 

these estimates appearing as crosses in Figure 3.2. Shifting the observed values down 

by increasing A could eliminate the difference, but only at the expense of increasing 

| A p 0 | for / 3 (EO) beyond the crude bound (3.55) above. Although recognising that 

the discrepency is only about 2 standard deviations and hence subject to confirma

tion, a cautious conclusion would be to suggest that not all (if any) observables in 

Q C D have reached asymptotia. 

If conventional perturbation theory cannot yet reliably estimate A p 0 , other ap

proaches must be turned to. This might be taken as the counsel of despair unless 

one such alternative - lattice gauge theory - were already close to feasibility. In a 

recent quenched-approximation calculation [83] of the I P - I S charmonium splitting, 

comparision with the actual difference yielded the estimate A ^ L = 1 1 0 ± ^ MeV. 

Although this must be treated with extreme caution - there are naturally difficul

ties in extrapolating from A^ 0), whatever this means, to A^5) and their inferred a s is 

two standard deviations below the L E P average* - it is to be noted that this would 

suggest that most of the observables considered here are very close to asymptotia. 

This will be confirmed or falsified by improved measurements. 

Finally, there is the possibility of some innovative basis being found for a pre

diction of A p 0 in a particular case, probably for one where it is small. Chapters 

5 through 7 will describe a speculative approximation to A p 0 for the jet fractions 

which, amongst other features, has A p 0 ~ 0 as a consequence. 

* But an average obtained using the methods criticised above. 

R 
P2 NNLO dx A p o (1 + cx)(l + cx + p 2 « 2 ) 0 

(3.57) 

72 



C H A P T E R F O U R 

Divergence Proofs and Large Orders 

4.1 I n t r o d u c t i o n 

Whither perturbation theory if the only truly reliable way of determining A 

were to be through the use of lattice theory, a technique which ultimately aims to 

replace it ? A cynical response might be that expansions are only a set of numbers 

for which we have no intuition [84], but this is hardly adequate and supercomputer 

numbercrunching would be little advance from this point of view. In fact the demise 

of perturbation theory is not a serious prospect: different approaches will sometimes 

be competitive, sometimes complementary and it is not a complete capitulation to 

admit that one question cannot finally be decided by one of them. Furthermore the 

demarcation between perturbative and non-perturbative physics is rather fluid [85], 

so it is not entirely paradoxical to use properties of the series, normally their large-

order behaviour, in an attempt to understand things outside perturbation theory. 

Working within perturbation theory, an understanding of how this approximation 

breaks down internally can teach us something external to it. As we shall see, most of 

the traffic normally flows in the opposite direction, but there are precedents (notably 

the diagrammatics that led to renormalons) for this sort of argument. Later chapters 

explore this sort of border territory further by proposing an hypothesis which can 

be formulated order-by-order, yet which has non-pertubative consequences; for the 

moment the focus is on relatively conventional approaches. 

Regardless of one's attitude to the testing of Q C D , questions of convergence 

and large-order behaviour encroach. Some of these are abstract and can probably 

be ignored in applying Feynman rules in new and ingenious ways to pressing prob

lems, but it is probably as well to be reminded occasionally that our confidence in 

perturbative techniques at least partly consists of an act of faith — it remains to 

be proved that the series are even asymptotic, to be manipulated at will. If they 

are there is still the challenge of deciding how reliable they are, particularly given 
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the standard wisdom that their accuracy will begin to deteriorate after about 1 /a 

terms. The prospect of calculating, say, ten terms in a Q C D series is unimaginably 

remote, but this is less so with five or six and at present we cannot be certain that 

such a staggeringly ambitious project would be worth embarking on if the intention 

is to improve the approximation. To ensure that the results would be shedding light 

on experiment requires an understanding of the series as a whole. 

A wholly spurious approach to relating large and small order behaviours in an 

important quantity has recently been proposed by G.B.West [86], the details and 

faults of which it will be necessary to discuss in section 4.5, not least because its 

success would have resulted in the replacement of current techniques by large-order 

ones even in very low order calculations, a claim far more extreme than any we 

intend to make. Understanding the asymptotia of perturbation series can only ever 

be complementary to summing diagrams, not a substitute. 

Finally, in at least one instance an acute phenomenological difficulty has led to 

a radical hypothesis about convergence. Influenced by his work on scheme depen

dence and his Principle of Minimal Sensitivity, Stevenson [87] argued that possible 

divergences in the perturbation series are irrelevant because we should actually only 

be concerned about the limit of a sequence of numerical approximations to a phys

ical quantity rather than that of a set of partial sums. In any PMS-style approach 

we would be choosing a different scheme at each order in perturbation theory and 

using the truncated series - the full version of which is possibly divergent - in this 

temporary scheme to estimate an observable. The sequence of approximations is 

indeed a set of partial sums, but partial sums of different series. Our conventional 

intuition having broken down, he suggested that it might be possible for this se

quence to converge to a sensible answer, which might or might not resemble the full 

non-perturbative result, and discussed several toy models mimicing this behaviour. 

Of more significance here - and indeed largely incidental to his new scenario - he 

went on to clearly highlight loopholes in the standard case that there are divergences 

in Q C D series arising from vacuum effects. 

4.2 V a c u u m Ins tab i l i ty A r g u m e n t s 

By a large margin the simplest and most physical argument claiming to prove 
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that perturbation series diverge is that devised by Dyson [88] for the case of Q E D . 

Any observable 

R(a) = a(l +rxa + r2a2 + . . . ) (4.1) 

is an expansion in a couplant proportional to e 2, the square of the electron charge, 

and so for o > 0 we are dealing with a situation corresponding to conventional 

electrodynamics in which like-charges repel with a Coulomb force proportional to 

e 2. This theory we presume to be consistent, if only because of its relation to 

classical physics and our macroscopic experience. However, a < 0 implies an unfa

miliar theory of attracting like-charges whose vacuum is catastrophically unstable: 

energy can be invested in pair-creating electrons and positrons in order to extract 

the unlimited return as separating clumps of exclusively particles or antiparticles 

implode. Something so drastic is happening around a = 0 that it is concluded that 

the function R(a) is non-analytic there and hence has an expansion with zero radius 

of convergence about that point. 

Apart from certain specific criticisms of its details - when e 2 < 0 the resultant 

complex charges force the Hamiltonian to be non-hermitean in contravention to the 

axioms of quantum theory - this argument displays failings general to most proofs 

of divergence and is thus worth analysing in some detail. 

A n immediate problem is that of R S dependence. At first sight the existence of 

schemes in which, say, R(a) = a(l + a) and is thus perfectly convergent appears to 

completely undercut the conclusion, but this is no more than an indication that the 

question has been badly formulated. Dealing with observable physics and largely 

relient on classical intuition, the argument cannot address such an R S dependent 

issue as how a particular series behaves. As we have seen (section 2.3) the pertur-

bative expansion of an observable cannot be quoted in isolation, the corresponding 

^-function also being required as a specification of the scheme - although both of 

these can be summarised by a set of invariant pn - and it is because there is more to 

Q E D than expansions of physical quantities that the proof should not directly asso

ciate discontinuites in the physics with expansion (4.1). Thus we could harmonise a 

convergent R(a) with the non-analyticity at a = 0 by supposing it to partner some 

badly divergent /^-function series, a possibility which undermines any attempt to 

conclude something about a scheme, e.g. MS, where our ignorance of its ^-function 
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is virtually complete. 

A n altogether more forceful criticism [87] also relies on realising that the full 

field theory has more content than its perturbative expression, although now in a 

rather different sense. The only formal mathematical step in the proof is the final 

one deducing that the series has zero radius of convergence because the function is 

non-analytic at a = 0. This is invalid, as the following simple example shows. 

R(a) = I n a . e x p A l - e 1 / a ) ) + a ( l + r,a + r2a? + . . . ) . (4.2) 
a 

Despite having an essential singularity at the origin, this R(a) could still be a func

tion in Q E D and have a convergent expansion of the form (4.1) since the term 

containing the singularity is invisible in perturbation theory with it and all its 

derivatives vanishing as a —> 0+. Although in this eventuality we could use the 

series to define an analytic function, this wouldn't necessarily be R(a). Of course 

the existence of a non-perturbative term such as that in (4.2) is only to be expected 

from any realistic field theory, where an instanton could be responsible for an e - 1 / ° 

contribution. On this point it is essential to re-emphasize the distinction between 

a function and its perturbative expansion. A function can be non-analytic at the 

origin, but have a convergent expansion which sums to give a different function; or 

have a divergent one from which the original function can be reconstructed; or have 

a divergent one telling us nothing about its source. All of these possibilities are 

consistent with the Dyson argument. 

These objections retain their force when this informal proof is developed into 

detailed estimates of the large-order behaviour by showing that the non-analyticity 

takes the form in Q C D of an i e - 1 / l ° l cut along the negative ct-axis (additional sin

gularities close to a = 0 cannot be excluded, yet could invalidate any conclusion), a 

contour integral around which can be used to obtain the series coefficients, again as

suming that this non-analyticity is visible in perturbation theory. Increasing math

ematical sophistication and rigour brings with it the price that in Q C D , to date 

at least, none of the firm conclusions relate to physical quantities, typically being 

applicable only to Green's functions, so their relevance is unclear. This is less of a 

restriction in <f>\0 -f 1) and Lipatov [89] pioneered these techniques by obtaining 

c„ ~ ( - l ) n n ! n 7 / 2 (4.3) 

76 



as the behaviour of its momentum subtraction /^-function terms for large n. The 

path integral and saddle-point methods needed to extract asymptotic behaviours 

are now highly refined [90] and beyond the scope of this discussion - although the 

proof to be criticised in section 4.5 mimics certain aspects in one-dimension - so we 

merely remark on these general reservations. 

4.3 B o r e l S u m m a t i o n and Recoverab i l i t y 

Because saddle-point results invariably suggest that divergences in <f>* and Q E D 

are alternating factorial (i.e. ~ (—l) n n! ) and those in Q C D fixed factorial (~ n!), 

alternative approaches are often formulated using Borel transforms. Given any 

function R(a) and its series expansion 

oo 

£ r » « n + 1 > (4-4) 
n=0 

one can define a Borel transform 

oo n 

n=0 

and a formal Borel integal 

/•OO 

RB(a) = / e-*/°FB(z)dz. (4.6) 
Jo 

Even when the original series has zero radius of convergence, the transform (4.5) 

may have a finite one allowing (4.6) to exist by analytically continuing FB(z) to the 

whole real line. In such circumstances RB(a) is a plausible, and sometimes unique, 

sum of (4.4) in the sense of being a candidate for the function R(a) it originally 

came from. For this reason the Borel transform has often been looked to as a means 

of reconstructing physical quantities from their divergent expansions and it may 

indeed work in </>4 or Q E D since rn = ( — l ) n n ! has the well-defined Borel sum 

poo -z/a 
RBia) = l ( T + i f k ( 4 - 7 ) 

= -e^aEi(-l/a) (4.8) 

when expressed in terms of the exponential integral function [91]. Unfortunately, 

in the fixed factorial case the denominator in the above equation becomes (1 — z) 

77 



and the sum is ill-defined, so the prospects in Q C D are less promising. However, a 

converse holds and it is sufficient to show that Fg(z) has a pole singularity on the 

positive z-axis to prove that the series (4.4) diverges fixed factorially; in fact each 

pole at x ( > 0) contributes 

n! 
x 

rn ~ (4.9) 

so although the pole nearest the origin is sufficient, each subsequent one gives a 

sub-leading divergence. 

In the functional integral approach each saddle point corresponds to a finite 

action classical solution of the Euclidean field equations, i.e. an instanton [92], 

and the standard results imply that in Q C D a sequence of singularities is strung 

out along the positive z-axis in the Borel transform plane, the most significant one 

arising from the instanton solution of smallest action. However, these results strictly 

refer to the Borel-Laplace transform FBL(z) [87] defined via 

/•OO 

R(a) = / e-*/aFB1(z)dz (4.10) 
Jo 

rather than Fg(z) introduced in (4.5) and, as the example 

FBL(z) = e* + 8 ( l - z ) , (4.11) 

giving 

R(a) = —^— + a - 1 e - ^ a (4.12) 
(1 - a) 

and thus 

FB(z) = e 2 (4.13) 

demonstrates, a singularity in FBL{z) need not force FB(z) to have one or R(a) to 

have a divergent expansion. This is merely a reiteration of the earlier observation 

that perturbatively invisible terms can undermine conventional arguments. 

A different approach was attempted by' t Hooft [93] making use of the fact that 

very general constraints such as causality and the existence of hadronic bound states 

allow us to deduce information about the analyticity structure of Green's functions 
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in the complex momentum plane. Mapping this structure onto the a-plane, he 

claimed to show that the perturbation series for these functions must diverge, but 

in fact only proved [87] that the functions are not "Borel-recoverable" from their 

expansions, i.e. that 

R(a) # RB{a) (4.14) 

provided RB(a) is defined, or equivalently 

± FBL{z). (4.15) 

A possible reason for this is indeed that the series diverges so as to give FB{z) a 

singularity and render RB(a) ill-defined, but without further information the exis

tence of non-perturbative terms - and much of the physics input to his argument 

involved bound states - is an equally possible explanation, c.f. (4.11) - (4.13). 

4.4 R e n o r m a l o n s 

However great their historical and technical significance, instantons are still es

sentially a classical artefact. They are also probably not responsible for the dominant 

singularity. This honour is reserved for the renormalons which can only appear in 

a quantised theory and about which much less is known - it is not even clear that 

they can exist in Q C D . However, significant progress has very recently been made 

[94] [95] and a great deal may be discovered in the near future. 

In an infrared-free theory the situation is much more clear-cut and it was in 

Q E D that these divergences were first identified by Lautrup [96] and ' t Hooft [93] 

while considering the n-bubble diagram contributing to the anomalous magnetic 

moment in nth order. That moment is associated by a dispersion relation to the 

vacuum polarisation n(fc 2) and so the sum of these contributions is 

oo «1 2 n 

A(a) = aJ2an dx{\ - ^ ( - ^ ( ^ m 2 ) ) , (4.16) 
n=0 0 

the second-order vacuum polarisation H 2 ( fc 2 ) having a definite functional form. Each 

term in the series can now be estimated and it turns out that at the nth order this 

one diagram will contribute ~ n! to the coefficient. This is in striking contrast to the 
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instanton n! which arises from the combinatorial increase in the number of diagrams 

instead of from a single graph. Summing the above series geometrically, 

l 1 - x 
A(a) = a dx 

2(fS™2)' 
(4.17) 

o 1 + aH 

The structure of n 2 is such that there is a pole for a > 0 and so A(a) has a cut 

on the positive real axis. This same bubble summation (in the photon propagator) 

is directly responsible for Q E D having a Landau pole at high energies. Loosely 

this pole means that A(a) is ambiguous at very high momenta; in Borel transform 

language the re! produces a singularity with the consequence that in reconstructing 

A(a) from the series the contour in (4.6) must be slightly distorted, introducing 

a term ~ e - 1 / a the details of which depend on precisely what contour is chosen. 

Resolving this ambiguity in Borel reconstruction is necessarily equivalent to a non-

perturbative solution of the theory. 

Apart from technical objections made by Litwin [97], one must have reserva

tions about this argument, particularly because it concerns only a subset of dia

grams and so could be subject to cancellations. However in a series of papers Parisi 

[98] [99] [100] [101] argued that the divergence has a much deeper origin in the renor-

malisation. Working with a ^-function (3(a) — a2 (b < 0), Borel transforming the 

R G equation for a Green's function T^n\p,a) gives 

for the Borel transform of that Green's function. The important piece here is the 

(p/n)~bz factor. If a Green's function is formed by multiplying two others, this 

factor propagates through the convolution theorem for products to be reproduced 

in the new transform. However, Green's functions are also interrelated by Schwinger-

Dyson equations which are more complicated than products. For example, in <f>* 

theory the 6-point function is related to the 4-point one by an equation of the 

d 
bz + n 0 P dp 

(4.18) 

and hence a solution 

bz 
B(p,z)=r(z)pn(?j (4.19) 
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schematic form 

^ ^ ' ^ = / ( ^ T ^ 2 ) 3 l r ^ P ' - ^ 0 ' 0 ; a ) | 3 ( 4 - 2 0 ) 

or by its Borel transform equivalent 

*.«>,«) = / { / l P

m 2 y I { P , z ) (4.21) 

where in accordance with the above remarks I(p, z) ~ (p//J>)~bz- The integral giving 

B6 is dependent for its convergence on the precise power here: as z —* —2/6 the 

integral diverges and thus the Borel transform of T 6 has a singularity at z = —2/6. 

Green's functions are so interdependent that a Borel singularity in one presumably 

appears in all the others and utilising information from all the Schwinger-Dyson 

equations, one finds that singularities appear at [98] 

—In 
z = — , Vn € N, (6 < 0) (4.22) 

i.e. evenly spaced along the positive real axis. These are the ultraviolet renormalons. 

Here the choice of /^-function isn't important and more detailed investigations 

show that the positions of the poles are fixed, although their strength has some 

dependence on at least the second /^-function coefficient [85]. By using large-N 

expansions, Parisi and, later, others [90] were able to confirm all the above, except 

in the case of the —2/6 pole derived above where a conspiracy between diagrams 

occurs cancelling it [93]. This is obviously worrying, but there is no evidence for 

anything similar elsewhere. Moreover Parisi [99] derived a result connecting each 

pole with a local operator in the theory, thereby putting the subject on a firmer 

footing. 

Although derived for an I R free theory, all these results survive in Q C D with one 

major modification: the sign of 6 changes and so now all the poles lie on the negative 

real axis of the Borel plane where they do not effect large-order behaviours. A new 

set of poles, the infra-red renormalons, may appear in the old positions however. 

As their name suggests these are presumed to be produced by non-perturbative 

effects at low energy, but their status is much more controversial than their pre

decessors. In particular, Parisi's theorem [99] about operators crucially depended 
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on the Bogoliubov-Parasuik-Hepp ( B P H ) theorem which states that all U V diver

gences can be removed by counterterms of local operators, so in speculating about 

asymptotically-free theories he was forced to conjecture that a similar result holds 

for I R divergences [101]. This would necessarily involve non-local counterterms and 

its significance, even if true, remains a subject of debate [102]. 

A general reservation [103] about any such claim concerns the distinction be

tween analytic and non-analytic RS's . Although both couplant a and transform 

Fg(z) are RS-dependent, the Borel sum (4.6) is an invariant, at least formally. This 

however assumes that one can actually do the integral, which in turn requires that 

the couplant is defined, and this only happens if the /^-function is analytic. Schemes 

like MS are probably non-analytic,* while the simplest example of an analytic 

scheme is that introduced b y ' t Hooft [93] where ck = 0, k > 2, and the all-orders 

couplant is given by 

1 Cd 
T = - + c ln . (4.23) 

a 1 + ca v ' 

Unfortunately, one's intuition is that in applying a generalised B P H theorem the 

subtraction procedure is liable to produce a non-analytic ^-function. The problem 

is that although the presence of a pole in the Borel transform derived in an analytic 

scheme guarantees the existence of the same pole in any other analytic scheme, this 

need not be the case for a non-analytic one. Thus the standard arguments need not 

be telling us anything about the actual Borel summability of Q C D . 

In this context, the realisation that there may be a simpler way of deriving the 

renormalon singularities is of particular significance. Developed in its original form 

by Brown and Yaffe [94], the proof considers a scalar function /(— t) analytic across 

most of the t = — q2 plane, such that in the deep Euclidean region, t —> oo, it has 

an expansion in the running couplant a(—t) 

oo 

/ H ) = « H ) E / / H ) n (4-24) 
n=0 

with real coefficients / „ . Analytically continue this from t real and negative to 

* This is not to suggest that ctjf^ is meaningless. Merely that within perturbation 

theory not enough is known about the MS scheme for it to form the basis for a 

summation. 
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t = s + iO+, with s real and positive, the result of which will have an expansion 

f ( s ) = a ( s ) y j T f n a ( s ) \ (4.25) 
n=0 

In the simplest - though unphysical since it assumes Nj = 153/19 - R S the /?-

function is 0(a) = a2 and the running coupling is given by 

a(-t) = ^ (4.26) 
l + a ( ^ ) f l n ( - < / p 2 ) ^ > 

so the couplants before and after continuation are related via 

1 - N C ^ V ^ (4.2T) a(—t) 2 \ s J a(s) 

—in 
—t = se 

This can be used to re-express (4.24) as an expansion in a(s) which can be com

pared with (4.25) in order to deduce the f n coefficients in terms of the f n ones. 

Athough this requires a messily complicated formula, Brown and Yaffe realised that 

the connection could be more elegantly expressed by introducing a dummy variable 

m=0 x 7 m=0 

which is evidently a relation between the Borel transforms for the expansions of / 

in the physical and deep Euclidean regions. Extracting its imaginary part, recalling 

that the f n are real and introducing the notation B[f](z) for the Borel transform of 

/ , we find [94] 

Bw-tm = M f M f ) . ( 4 . 2 9 ) 
sin ^-z 

Thus unless the numerator on the right has a set of appropriate zeros, the Borel 

transform of f(—t) has a set of poles in exactly the same places as predicted for the 

renormalons. 
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This conclusion must be immediately tempered with caution. One reaction is 

that the argument is trivial, akin to denning a function 

G(z) == (1 - z)B[f(-t)](z) (4.30) 

and claiming that the Borel transform of f(—t) has a pole at z = 1 unless G(z) 

has a compensating zero there, so it should be emphasised that [94] derived the 

(essentially equivalent) result in the particular case where / is I I , the scalar part of 

the photon polarisation tensor, and Imf = R/12ir, the normalised total hadronic 

e+e~ cross-section, neither of which is artificial. Furthermore there is a precedent 

for this general type of result as part of existing approaches [98]. 

Another reaction is to note that (4.29) suggests another pole, at z = 2/6, where 

no renormalon is expected, there being no gauge-invariant local operator of dimen

sion 2. The simplest resolution of this is just to assume that the Borel transform 

of R has a compensating zero there; this is itself new information, but there are 

no obvious phenomenological consequences. If however the pole is real, this could 

dramatically alter assumptions about the non-perturbative behaviour of Q C D , the 

dominant non-perturbative corrections now falling as 1/Q2 rather than the 1 / Q 4 

expected hitherto [85] [95] [104]. 

Superficially, the generalisation of (4.28) when using a less artificial /^-function 

is complicated and in pursuing this Brown, Yaffe and Zhai [105] had to invent a 

version of the problem which treats the perturbation series as a vector in a Hilbert 

space to which ladder operators are applied. Arguing that a ' t Hooft style scheme 

like (4.23) embodies all the essential physics, they adopt 

/3(a) = (4.31) 
1 — ca 

for convenience. Even so, the details are still tortuous and their success depends on 

defining a modified Borel transform 

^ = tf^rrk^ (4'32) 
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for which 
roo - z / a / Y Z 

/ ( . ) . ( ! — ) J T H , ) W T ^ { ^ i , (4.33) 

An equivalent of (4.29) now holds for T(z) instead of FB(z), but it can be shown 

that any poles in the new transform are reproduced in the Borel one with the same 

positions. Furthermore, the strength of these poles is slightly modified in going from 

one transform to the other so that 

F B { Z ) ~ ( * - A V * V Z " X I ( 4 " 3 4 ) 

in agreement with a Q C D result previously derived heuristically by Mueller [85] 

for all renormalon poles in the theory. Note however that this particular agree

ment assumes that the transform on the right of (4.29) contains no poles - if it 

contains renormalon poles these strengths are altered. Thus the result is sugges

tive of Mueller's, but would also imply that the latter could only apply in certain 

circumstances. 

Interesting though they are, the lengthy technical details of these current deriva

tions only serve to seriously obscure the simplicity of what is happening. Everything 

is much more transparent if the Borel-Laplace transform or a modification thereof 

is used instead. Returning for clarity to (3(a) — a 2 , if (4.25) has transform FBL(z), 

then 

/•OO 

/(«) = / FBL{z)e-'«')dz (4.35) 
Jo 

e^Fs^e-'K-^dz (4.36) -L 
the latter using (4.27), and this must also equal /(—<) since it cannot matter non-

perturbatively in which regime we choose to expand perturbatively. The crucial 

exponential factor is thus trivial. How this generalises is almost equally so: defining 

°M~lfw) <4-37) 

so that now (4.27) becomes 

G(a{-t)) - G(a(s)) = -iir (4.38) 
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and a new transform 

f(a) = / F(z)e 
oo 

L 0 
(4.39) 

the same exponential factor appears. Equation (4.33) is just this new transform 

with (4.31) as the /9-function; only the way a and z are tied up together in this is 

important and additional factors of either alone are irrelevant. 

In this light, what is remarkable about [105] is not the derivation of the main 

result, but the properties of the modified transform, in particular that its poles 

remain fixed. This is a consequence of a formula [105] 

relating the two transforms. A plausible conjecture is that a similar result holds 

when T(z) is replaced by the general transform (4.39), provided /3(a) is analytic. It 

is equally important that the new transform has a perturbative realisation like (4.32). 

In the Brown, Yaffe and Zhai proof, this is the foundation and (4.33) really only has 

the role of re-expressing the results in terms of the Borel transform via (4.40). Slight 

care is needed in using the Borel-Laplace transform route above since (4.35) and 

(4.36) strictly aren't defined when poles are present. However by restricting oneself 

to the cases where there are no non-perturbative terms and Fgi(z) = FB(z) one 

easily and rigourously derives a result in terms of FgL which can be reinterpreted 

as a result like (4.28) concerning coefficients which will remain true even when the 

Borel-Laplace representation is ill-defined. 

Simplifying the proof to this extent sharpens the question of what all this has 

to do with renormalons. These poles certainly appear indistinguishable from them, 

but do not obviously relate to the same physics. It is just conceivable that H is a 

special choice and that, contrary to the standard arguments, its poles are somehow 

isolated and do not appear in the transforms of other functions in the theory. Issues 

like this have yet to be addressed, but there is certainly the prospect that when 

they are a better understanding of renormalons in general and a firmer basis for 

discussing their properties in Q C D will result. 

J 2my\ W ) 
z y i + 

(1 - z/yy+cv 
(4.40) 
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4.5 A Fa i l ed A p p r o a c h 

Brown and Yaffe originally derived (4.29) for n and R while examining a con

troversial claim by West [86] [106] that not only could the large-order behaviour of 

an expansion be determined using only momentum analyticity and renormalisation 

group invariance, but that the same answer could be highly competitive with exist

ing low-order Feynman diagram calculations. The example involved the i2-ratio of 

Q C D discussed in section 3.3, where its expansion was seen to be of the form 

( 2 \ 0 0 

iL,a( / i ) ) r » a " » (4.41) 
M ' n=0 

West's asymptotic estimate for the coefficients being 

r „ _ f ^ ( f V - i r ( " + y ) h < - ^ (442) 

When Nj = 5, this gives 

r 3 ~ -13.4 (4.43) 

with a claimed uncertainty of only 20%, to be compared with the 

r 3 = -12.8 (4.44) 

of the full calculation [66]. By any standards this is startling: (4.44) involved 

several years of confusion * and hundred of hours of computer algebra spent in 

evaluating the graphs, while (4.42) required only a few pages of algebra. If justified, 

this agreement would render 40 years of calculational expertise obsolete and allow 

unparalled opportunities in applying perturbation theory. 

Unfortunately this attempt to extrapolate an asymptotic estimate down to low 

orders dissolves with closer inspection. Although iVy = 5 is the number of flavours 

* The original calculation of the 3-loop result [107] contained an error and gave 

64.9 as the answer instead of the current -12.8, provoking the "large-coefficient" 

crisis. As an estimate (4.43) is all the more remarkable for having been published 

[106] prior to the correction of the exact result. 
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F i g u r e 4.1 Nj dependences of exact result (4.45) and estimate (4.42) for r 3 . 

presently relevant at L E P and F N A L , we would expect the success of (4.43) as an 

approximation not to be dependent on an historical happenstance [108], [109], [110]: 

for arbitrary Nj the exact 3-loop result is 

r 3 = (-6.637 - 1.200JV, - 0.005iVj), (4.45) 

omitting the negligible '^ight-by-light" term proportional to ( £ Q ) 2 , while the Nj 

dependence of (4.43) is easily found using (2.51) and (3.4), and these are compared 

in Figure 4.1. The excellent agreement for Nj = 5 is thus seen to be fortuitous -

the two curves just happen to intersect near to Nj = 5. Although less physically 

motivated in that it is equivalent to completely changing the theory, one can also 

vary the number of colours, NQ, to similar effect [110] 

Of course it might still be that for sufficiently large n (4.42) is the correct asymp

totic result - as we will see, [86] grossly underestimates the first (~ 1/n) correction 

term to (4.43) hence the disagreement in Figure 4.1 need not be reproduced for 
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n ^> 3. This is West's current position [111]. However, the derivation behind (4.42) 

is completely invalid and for a surprising reason. In order to explain why, it is first 

necessary to outline that derivation. West works with a fixed coupling g2 = 4ir2a(fi2) 

and a /^-function 

0(9) = -g\b1+b2g2 + ...) (4.46) 

whose coefficients correspond to 

b . 6t c„ 

in our usual notation. The claimed 20% uncertainty is obtained by retaining 

0(b2/b2n) terms while estimating the neglected scheme 0((bo,/b\n2) ones. In MS 

for Nj = 5, where for n = 3 this neglects 

bo 4co 
9^ = W * °-°5 ( 4 - 4 8 ) 

compared to 

bo 2c , 

s i p " ( 4 ' 4 9 > 

and so appears justified. 

From the photon polarisation tensor 

n„„(« 2) = i J fze*-* < om^Moyfto > (4.60) 

= ( « V - 9 „ O n ( 9

2 ) (4.5i) 

we can find R = 127rJmn using the Optical Theorem and also introduce another 

function 

D ( q 2 / » 2 , g 2 ) = q 2 ^ . (4.52) 

Eliminating n from these equations 

ImD.lJM™ (4.53) 
12TT 8g2 K ' 
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so i f D is expanded as 

oo 

D(q2/»\92) = X ] ( - l ) n < ( ? 2 / ^ ) y 2 R (4.54) 
71=0 

the coefficients of the two series are related by 

r. = - ( - ^ r ^ - ^ - [ I m d n + , + b^Imdn + . . . ] . (4.55) 

The actual physics of the argument contains only two assumptions, the first of which 

is the RG invariance of R under changes in / i , so that 

R{q2/H\ a(/i)) = /(*), * = V ™ <4-56) 

where 

2K(g) s / m (4-57) 

As in the previous section, the scheme in which bn = 0, n > 1 (i.e. c = 0 and cn = 0, 

n > 1) and 2K(g) = will be of particular importance. 

Acceptance of the standard results [112] on the analyticity of TL(q2) is the other 

physics input. Causality is sufficiently constraining to be able to restrict any non-

analyticity in the complex <j2-plane to the postive real axis, allowing the dispersion 

relation 

n ( ? 2 ) = 5 ^ ( A ) n ( A <4-58) 

In terms of R and D this becomes 

h W ^ R ^ I M ( 4 - 5 9 ) 

and - suppressing doubts about the legitimacy of this last equation - changing 

variables to z 

2 X « V m V ) = 4 * * W r ^ ~ ~ ~ ~ 2 - (4-60) 
/ i 2 J0 127T2 | 2 _ £e2K(g)f 

The strategy is to use this representation to get information on the asymptotic 

behaviour of the Imdn, and hence of the rn via (4.55). To this end one uses a Mellin 
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representation to continue d n ( q 2 / f j . 2 ) to d(n,q2/fj,2) for complex values, by writing 

W / V ) = j c T ^ - f r ^ ' D t f / M . (4.61) 

Using the representaion (4.60) for £>, and interchanging the order of the integrations 

one has 

„ 0,9, f°° dz , / dg2 (-g2)-i-*ei+2KW 

Here we have written t = ln(q2//i2). One then transforms this contour integral to 

the k = 1/g2 plane and uses a saddle point technique to estimate 

f dk _ et+iK{V) 

J c ^ ~ k ) a \ z - e t + 2 W ) y ' ( 4 , 6 3 ) 

Here C" is an anti-clockwise contour which straddles the cut along the positive real 

axis arising from (—fc)* - 1 . The claimed result is that a z-independent saddle point 

at k = fcx ~ b^s — 1) dominates and 

where <f>(k) is a specified function of K(k) and its derivatives. This result is propor

tional to D(q2/n2,l/k1) f rom (4.60) and hence one obtains 

d i s r f / f i 2 ) -
1 1/2 

k{-lD(q21n2, \Ikx) cos its. (4.65) 

Taking the s —• oo limit of this,using (4.55) and converting back to our normal 

conventions leads to the estimate of equation (4.42). 

In assessing the validity of this proof several approaches have been used. Brown 

and Yaffe [94] chose to ignore the details and addressed the general question of to 

what extent the assuptions of analyticity and RG invariance place restrictions on the 

relation between D and R and found nothing more powerful than (4.53), although in 

doing so they discovered (4.29) which can be thought of as resulting from expanding 

D in the deep Euclidean region. However interesting in itself, as a criticism of the 

argument above this approach is open to the objections that they may merely have 

failed to make fu l l use of their premises or that West may have unconsciously added 

a crucial yet innocuous extra one. 
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A more decisive observation concerns the /^-dependence of the answer, although 

the whole question of scheme dependence in the proof is a murky one which has 

led to some confusion. At first sight i t is unclear quite what RS has been used in 

the derivation since the answer only involves the scheme invariant constants b and 

c. However, discarding the o(6 3 /6 |n 2 ) and higher terms is implicitly equivalent to 

defining the scheme as that in which the 63 and higher /^-function coefficients are 

zero, this being the scheme in which all these corrections are zero. As mentioned 

above, this scheme seems a good approximation to the MS one. But, contrary to 

earlier claims [86] [106], this does not eliminate all the corrections [108]. For example, 

one of the final steps in the argument involves approximating ImD(l, 1/Ajj) by the 

first term in its perturbative expansion 

ImDil,!/^) = Jm<Z(2,l)^2 - Imd(3,l)^ + o ^j^j ( 4 ' 6 6 ) 

on the grounds that k1 ~ 6j(s — 1) is large. The first correction term to this is 

proportional to 

and does not involve the higher /^-function coefficients. I t is however scheme depen

dent via r2(n). Returning to the application of the result (4.42) at low n i t is now 

possible to take up two distinct positions. Firstly, one can set // = Q as prescribed 

in the MS scheme; then the original argument gives the good agreement for N j = 5, 

but at the expense of a large correction when (4.67) is used with r ^ 5 = 1.409. Just 

this single term gives an 80% correction - significantly larger than the conservative 

20% overall uncertainty claimed by West and completely destroying the validity at 

low n of the approximations. Alternatively, one could pick the p, ~ Q/2 such that 

(4.67) vanishes and (4.42) is exact. Unfortunately, there are presumably other cor

rections of this size involved and so quite what scheme one is picking wil l remain 

obscure i f they are treated in the same way. Since there is bound to be a scheme in 

which (4.43) is correct, this is almost, i f not quite, contentless. 

The difficulties re-emerge in more serious guise asymptotically. Because of the 

1/n factor in (4.67), this and all other corrections of this type are sub-asymptotic 

and so the estimate of r n does indeed become independent of fi as n —• co. Brown, 

92 



Yaffle and Zhai [105] have pointed out that on very general grounds <£ n (g 2 / / / 2 ) cannot 

be independent of fi as indicated by (4.65) i f the coefficients grow factorially, even 

once this l imit has been taken. I f the answer is inconsistent with RG invariance, 

the proof must be in error somewhere and, given the importance a corrected answer 

would have, the problem is now to locate and, i f possible, amend that mistake. 

There is thus no substitute for a detailed examination of the proof such as was 

presented in [108], a fuller version of which we now turn to. 

That something is seriously wrong inside the proof is most easily seen by eval

uating (4.63) exactly for some special cases. When s is a positive integer the cut 

along the positive real axis necessary to render ( — & ) a - 1 single-valued is no longer 

needed and vanishes, allowing C" to be closed at infinity, thus making the integral 

vanish. Clearly this behaviour is not represented in its subsequent approximation 

( k l ) e (4.68) 
[27r0(jfc1)]1/2 (z - e«+**<*>)' 

w - H r ^ * * ™ - ^ ( 4 - 6 9 ) 

which is non-zero for integer s. This can be confirmed in the specific case when 

62 = 0 and K is given by (4.57) as the integral can then be evaluated for a general 

s in terms of a generalised Riemann zeta function [113] to obtain 

- V ^ - ' . M ) 1 ' ' 3 ' 5 ' ' ' ' ^ - « • * » 
el 7r 

This gives zero for integer s both due to the sin irs factor and because 

fes^J = °> ( 4-7 1 ) 

Although 62 = 0 is an unphysical assumption,* i t is an unremarkable one in the 

original argument where there is no indication of a breakdown in the l imit 6 2 —• 0. 

* In a forthcoming reply [111], West has objected to its use in both [108] and 

[94]. As should be clear, the integral vanishes regardless of what value 62 takes, but 

setting b2 = 0 illustrates this behaviour rather nicely. Since the results in [94] have 

been generalised to 62 i1 0, this objection also fails to address the issues raised there. 
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Clearly the method of steepest descent is giving the wrong answer for this exam

ple. This is presumably due to the saddle point lying on the positive axis with the 

path of steepest descent perpendicular to the cut along i t preventing the contour 

f rom passing over the saddle point as required by the method. The alternative of a 

contour which doubles back is obviously at odds with the entire motivation for the 

saddle point technique. However the difficulty lies deeper than any possible problem 

in estimating the integral, since the exact form of (4.63) is evidently nonsensical in 

implying that d(s) vanishes for integer s, something only possible i f R were trivial. 

Three aspects of the proof arouse suspicion initially, but two of these could have 

been avoided in a version of the proof less faithful to West's original. One is the 

change of variables from g2 to k = 1/g2 between (4.62) and (50) twisting the contour 

C f rom an innocuous one simply running around the cut along the positive axis into 

an awkward cardioid which is not obviously distortable into the C assummed in 

[86]. But rather than having used (4.61) as a definition of <i(s,<j 2//x 2), i t would have 

been possible to continue the coefficients using 

d(s, q 2 / ^ ) ee J BL(-ky-*Dtflp?, l / k ) (4.72) 

so that k and C carry through without modification. To forestall objections that 

this integrand diverges at infinity, we point out that C" can be defined as any 

contour with endpoints arbitarily close together at some finite point crossed by the 

cut. W i t h this continuation we no longer have the special case (4.70), although the 

general point about s = n still pertains. Secondly, instead of relying on (4.59) with 

its apparently non-integrable singularity we could have introduced 

in its place, where T is the contour around the g2-cut in JR closed at infinity. 

Thus we are left with a dubious interchange in the order of the integrations 

between (4.61) and (4.62) . Given the frequency with which such a step is used as 

a key ingredient of proofs in theoretical physics this is a somewhat disconcerting 
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suggestion, yet one which can be made more plausible by two simple examples. 

Modelling the first example on the above, let 

Jo 

replace (4.60), where D(g2) is clearly arbitrary since f ( z ) is just its Borel-Laplace 

transform, so that 

For s = n , d(n) = 0 in contradiction to this arbitrariness because then the contour 

integral has zero residue from the essential singularity at g1 = 0.* Examples can be 

very elementary: 

i f C is a circle of radius less than one. 

In this light, how reliable are similar calculations ? For instance, in his intro

ductory review on functional methods of obtaining large orders [114] Zinn-Justin 

blithely interchanges integrations in simple examples. But on closer inspection i t is 

clear that all the integrations use saddle-point approximations even when analogous 

to the ^-integration above, so they could have been done in either order, thereby 

allowing a useful check on consistency and both routes indeed agree in the few 

examples discussed. Because i t depends on the fc-integration returning something 

recognisable enabling D to be recovered from the z-integration, West's proof neces

sarily lacks this cross-check. Even so, the sparse mathematical results on this topic 

appear weak in non-trivial contexts and, along with the failure of the saddle-point 

method in a simple problem, the collapse of West's proof on these grounds suggests 

that results in this area should be treated with more caution. 

* This example, introduced in [108], is discussed by West in [111] where he suggests 

replacing (4.61) with a line integral along the cut. However, this is only possible 

when the integrand is analytic at the origin, the line integral diverging otherwise, 

and i t is implicit in both the main argument and the example that D is non-analytic 

there. 

oo 
D{92) = / 

Jo 

/ 9 f{z)d (4.75) 

oo 
/ Hz)dz f 

Jo Jc 

2 \ l - s 
( - * ' ) d(s) 

2m o 
(4.76) 

l l 

Jo Jc Jc JO 
dzdw dwdz 7= 

c (w + z) (w + z) C JO 0 
(4.77) 
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4.6 Conclusion 

I f this chapter is to have an overall conclusion, i t must indeed be that all efforts to 

decide whether QCD perturbation series diverge must be treated sceptically. Such 

is the difficulty of stating anything for certain in field theory, there is perhaps a 

tendency to believe that the mathematics is too nasty for the answers to be anything 

so helpful as convergent. Without wishing to appeal* too optimistic instead, i t can 

be pointed out that there are three criteria which one should hope that any approach 

would eventually satisfy and yet which all the above violate in some way 

1. The series concerned should be that of a physical quantity and not just a Green's 

function. 

2. The proof should be genuinely perturbative in that i t can be expressed entirely 

in terms of perturbative coefficients. This is to avoid the possibility of pertur-

batively invisible terms. 

3. The divergence must be provable for an analytic /^-function. 

In the next chapter a model incorporating certain features of QCD jet fractions 

wil l be described and the chapter after that will show without straying from these 

criteria that the series contained in i t diverge. 

96 



C H A P T E R F I V E 

The Common Effective Charge Approach 

5.1 The Assumptions 

This and the remaining chapters are concerned with those situations where three 

observables / 2 , / 3 and / 4 satisfy a constraint 

and have some dependence on a parameter yc such that one of them, say / 4 ( y c ) , tends 

to zero in a l imit yc —• y* for kinematic reasons. By making two simple assumptions 

i t wi l l prove possible to reduce the content of this problem to a single equation [103] 

and later chapters will discuss solutions to this, showing that all the perturbation 

series diverge (Chapter 6) and that Ap0 is small for the three observables (Chapter 

In the interests of generality and simplicity that key equation wil l be derived 

without particular reference to the details of what these observables might be and 

whether the assumptions may apply. However for readers familiar with their prop

erties we signal our intention to focus the second half of the chapter on the e +e~ jet 

fractions as an obvious example of the type of observable we have in mind. Thus 

the notation has been chosen to be consistent with these and f 2 , / 3 and / 4 wi l l 

sometimes be refered to as 2, 3 and 4-jet fractions respectively. I t is also for this 

reason that their perturbative expansions are taken to be 

/ 2 + / 3 + / 4 = l (5.1) 

7). 

h 

h 

h 

1 - K21a - K22a?-K23a3 + ... 

K31a + K32a?+K33a? + ... 

Ki2a2+Ki3a3 + ... 

(5.2) 

Each of these observables has an associated effective charge 

1 - / 
K 21 K. 31 
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and also a set of scheme invariants, denoted by (Po^(y c), P2

n\yc)^ pi^C^c)' • • •) ^ o r 

/ „ , constructed in accordance with section 3.2 f rom the series 

oo 

/ m = E r i W ) a n + 1 - ( 5 ' 4 ) 
n=0 

Naturally, each also has an EC /9-function 

pW( x) = x 2 ( l + c x + pWjJ + . . . + p(n)xm + . ..) (5.5) 

satisfying 

P(n)(fn) = (5-6) 

in a particular scheme with coupling a (switching notation so that a can be reserved 

for the coupling in a scheme used extensively below). I t is important to realise 

that the three functions p( 2), pW and p( 4) cannot be independent. For a start they 

must reflect the constraint (5.1). This must be true order-by-order in perturbation 

theory, an observation leading to the infinite set of equations relating the coefficients 

of (5.2) at each order 

K31 -K21=0 (5.6a) 

K32 + KA2 - K 2 2 = 0 (5.6b) 

tf33 + K43 - K 2 3 = 0 (5.6c) 

Deriving these relations involved no specific choice of scheme and so they can be 

reexpressed in terms of the p^ and the tree-level coefficients alone: 

K„ = K21 (S.7a) 

42 

This is the first type of interdependence amongst the p-functions. 
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The next type concerns the / 4 —> 0 l imit which leaves / 2 and / 3 equal for values 

of yc> y*. There one has the strict, but somewhat trivial, result that 

P{? = P?> P ( 2 ) (*) = P ( 3 ) (*) (5.8) 

and so continuity implies that 

( p i 2 ) - p i 3 ) ) - » 0 as / 4 - > 0 , n > 0 (5.9) 

further restricting the form of the functions. What happens to or equivalently 

/ 4 , in this Umit ? Without doing the one-loop calculation the answer must strictly 

be that anything could happen since 

/ 4 = «( l + 7 § 3 - a + ---) (5-10) 

possibly entails a 1/JsT42 pole as yc —> 0. However i f 4 2 —» 0 is a consequence of the 

phase-space suppression of / 4 as a whole and i t is thus probable that there is an 

overall factor reproducing this behaviour in each coefficient and giving the set of 

limits 

4 " —> constant as / 4 —• 0, n > 3 (5-11) 

I f so, and i t wil l be assumed hereafter, both / 4 and p( 4) are well-defined in this l imi t . 

The next step is most clearly explained i f a particular RS is chosen in which to 

take i t , although this is in no way necessary. That particular scheme is the 4-jet EC 

one* whose couplant is a = / 4 , so 

/ 4 = K42a\ (5.12) 

* A footnote for those worried that no such scheme exists for yc > y*. Each 

y c value really gives a different definition of observable / 4 and hence of the 4-jet 

EC scheme, labelled by p^\yc,x). The single-argumented function p^\y*,x) has 

already been assumed to exist. Should one require i t for yc > y*, one can take the 

"4-jet EC" scheme to be the one labelled by this function without worrying about 

identifying its effective charge with an observable. 
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" 4̂2 nl 
A 2 1 

and whose function is p^\ Now (5.1) takes the form 

h = h + 

while (5.6) becomes 

P ( 2 ) ( / 2 ) = P ( 4 ) ( a ) ^ . 

(5.13) 

(5.14) 

There is an equivalent to this for / 3 , but rather than display i t individually we 

subtract i t f rom this one to get 

P ( 2 ) ( /s + ^« 2) - P ( 3 ) ( / 3 ) = 2a§V4>(a). 
A 2 1 A 2 1 

(5.15) 

I f we let / 2 —» / 3 —• i? as i f 4 2 —• 0 and knowing from (5.8) that pW —• p( 3) in the 

same l imit , then 

dpW(R) G(R) _ 2pW(q) 
(5.16) 

where 

G(R) = tf21 

oo / 

£ **+2 ( l im 
(2) (3) 

Pk ~ Ph 

k=2 42 ) 
= Vfl*+ 2 ( Hm P * ) 

fc=2 v 4 2 Pq Pq ' 

(5.17) 

(5.18) 

using (5.7b ). At present nothing whatever is known for certain about this function 

in any of the relevant cases and i t would require the calculation of perturbation 

series beyond their existing orders before anything definite could be said. On the 

grounds of simplicity, we propose that 

G(x) = 0 (5.19) 

by adopting the following assumption: both p^ and p^\ regarded as functions of 

JC42, vary smoothly, i.e. with continous first derivative, through the 4-jet threshold. 

A mild extension of the exact continuity requirement (5.9) on these functions, this 

wil l be easily testable against future perturbative calculations and in the meantime 

appears eminently plausible. The consequences on the rest of the argument of 

weakening this assumption wil l be examined in section 7.6. 
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This Smoothness Assumption is actually the first unprovable statement required; 

once adopted i t supercedes the earlier one about the existence of / 4 in the l imit 

/ 4 —> 0, since equations (5.7) now determine its finite coefficients unambiguously, 

e.g. 

is the iC 4 2 —+ 0 limit of (5.7c ), which now yields the formula 

r}«> = r » + § , (5.21) 

true in any scheme. This is merely a small taste of the perturbative expression of the 

set of non-perturbative equations that this assumption allows one to derive. (5.16) 

becomes 

dpW(R) 2p(4)(a) 
dR a 

whereas taking i f 4 2 —» 0 in the partner of (5.14) directly gives 

(5.22) 

P{3)(R) = ^ P ( 4 ) ( « ) - (5-23) 

Eliminating p^A\a) between these equations, one gets 

dpW(R) _ 2pW(R) 
(5.24) 

da a 

which can be integrated up to yield 

pW(R) = Co? (5.25) 

where the integration constant can be fixed as C = 1 by noting that 

pW(x) ^ R(x) ^ 
X2 X 

(5.26) 

when x —» 0. The problem is thus reduced to the pair of equations 

PW(R) = a2 (5.27) 

P ( 4 ) ( « ) = a 2 ^ , (5.28) 

so specifying any one of the functions p( 4), p( 3) = pW and R(a) is sufficient to enable 

the other two to be deduced. 
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An extra constraint is clearly necessary to actually determine these functions 

and this is naturally the most difficult step since i t replaces a fu l l calculation of part 

of the theory. Because the exact details of, say, p( 4) are unknown, we must resort 

to a plausible guess and the simplest possibility is to set 

pW(x) = pM{x) = p(x) (5.29) 

so that there is a common EC /3-function p(x). Equations (5.27) and (5.28) then 

determine the perturbative coefficients pk uniquely to all orders, and as we shall 

see in Chapter 7 the function itself is (probably) also solvable non-perturbatively. 

Taken literally, (5.29) is therefore a very restrictive and powerful assumption, but 

this is not our main intention and i t should really be interpreted loosely - that 

is, p(4) should be a "similar" function to p( 3). The next chapter wil l discuss i n 

some detail how, when taken literally, this Common Effective Charge Approximation 

results in a divergent perturbation series for p(x) with (probably) the fixed-factorial 

growth anticipated by earlier arguments (Chapter 4). In itself this is interesting 

and instructive (particularly since the divergence proof accords with the criteria in 

section 4.6), but the ultimate question must be how robust these conclusions are i f 

much milder assumptions are adopted. This type of issue is addressed in Chapter 7 

after the explanation of how non-perturbative information can be extracted. 

As indicated by (5.21) relating and p^ ~ p^ and the assumption 

above is thus equivalent to assuming that the effective charge for 3-jet production 

is similar to that for 4-jet. That is, multijet production corresponds to tree-level 

diagrams with an approximately common effective charge at each vertex, which at 

least seems physically reasonable. Given our ignorance, that all the observables are 

treated on an equal footing is perhaps the most appealing aspect of (5.29). 

However, the main justification for the assumption is that i t enables one, however 

tentatively, to explore unknown territory in comparing the all-orders structure of the 

perturbation series with a non-perturbative solution and in beginning to understand 

how the different functions relate to each other. By providing a definite example 

that can be worked through in detail i t also provides a foundation for more ambitious 

forays, both here and in the future. As a (hopefully not unrealistic) model of what 

is happening inside perturbation theory i t may even have something to tell us about 
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applications thereof, but i t cannot seriously be expected to describe experimental 

details. 

Combining (5.29) with (5.27) and (5.28) from the previous section produces as 

a straightforward consequence the equation 

u2(x)^ = u2(u(x)) (5.30) 
ax 

where u(x) is the function such that 

a = u(R) (5.31) 

p(x) = u2(x). (5.32) 

I t is therefore of central importance to the Common Effective Charge Approach 

(CECA) and i t is to this that subsequent chapters wi l l be devoted. Anticipating 

their conclusions, i t is u(x) that is proved to have a divergent expansion in x, with 

the divergences in other series following from this, and for all three observables 

A P o ~ A p ^ N L O , (5.33) 

is the same for all three and small enough to be ignored in practice. 

Finally, i f another scheme had been chosen in which to do the derivation, how 

much would have survived explicitly, apart of course from the answer, p(x), itself ? 

Repeating the above analysis more generally shows that 

h = « ( / s ) vc - y* ( 5 - 3 4 ) 

with u(x) again the solution to (5.30), as one might have guessed. However, the 

relationship between / 4 and the couplant in the new scheme wil l necessarily be more 

complicated. 

5.2 A n Example 

In deriving (5.30) all the physics has been distilled into an easily stated math

ematical question: what are the solutions of this equation, i f any ? This is the 
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immediate problem to be faced, but before giving an answer i t is necessary to dis

cuss whether the starting assumptions had any physical relevance in the first place. 

Otherwise the exercise merely becomes one in pure mathematics. Furthermore, a 

concrete example may help fill out particular details of the earlier, slightly abstract, 

presentation. However, what follows is hereby plainly advertised as a digression 

and any reader who wishes to omit i t can retrieve the main thread of the CECA's 

development at the beginning of Chapter 6. The earlier health warning must also 

be repeated: the purpose is to show that the CECA could be realistic rather than 

to suggest that i t is in this particular case. 

Are there any sets of observables where 

/ 2 + / 3 + / 4 = l (5-35) 

and / 4 —» 0. Simple examples with both this constraint and threshold are, for 

suitably defined reaction rates, e+e~ —» n photons in QED, X+X~ —• n scalars in 

(j>3+i theory, where some extra charged fermions X ± have been coupled in [115] , and 

e+e~ —• n jets + hard photon in QCD. These three (and particularly the last) have 

definitions modelled on the jet fractions for e+e~~ =-> n jets as predicted by QCD 

and as discussed in section 3.3. When these fractions are plotted against yc broadly 

the same pattern is produced by each algorithm with f 2 and / 3 monotonically rising 

and falling respectively over most of the range as yc increases [70]. Apart f rom f 2 , 

all the others fall successively to zero for sufficiently large yc. These thesholds are 

examples of the purely kinematic ones required by the CECA and, although the 

precise details wil l depend on the choice of algorithm, i t is thus worth deriving the 

critical yc = y* for the 4-jet one when 

V i j = 2EiEj - 2 P i . P j (5.36) 

as i t is for the E0 algorithm. Working in the centre of mass frame, suppose one has 

four particles (.£/,-, p , ) 

Pi + P2 + P 3 + P 4 = 0 

E1 + E2 + E3 + £4 = y/s~. 
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For each of these there is an identity like 

yn + yn+Vu = 2EjVJ (5.38) 

so that 

2 ( y i 2 + 2/13 + 2/14 + 2/23 + V24 + t/34) = 2 s - ( 5 - 3 9 ) 

Since this can only be a 4-jet event provided y,- - > y cs for all y^, one finds 

y* = \ - (5.40) 

Generalising, an n-jet event is only possible i f 

«• s so îy- ( 5-41) 

There are thus no five jet events for yc > 0.1, no four jet ones for yc > 1/6 and 

only two jet ones when yc > 1/3. These values will be slightly different for other 

algorithms, but note that the superficially different Durham one has in fact the same 

thresholds. 

Althought the CECA assumes nothing about the position of the crucial 4-jet 

threshold, i t is required that the 4-jet effective charge is well-defined in the yc —• y* 

l imit , i.e. that the phase space suppression does factor out of the power series. This 

seems to be bourne out in the data for the observed jet fractions. Figure 5.1 shows 

OPAL data [70] taken at 91 GeV using the E0 algorithm in which the convergence 

of / 2 and / 3 as y* is approached is clearly seen, with / 4 displaying no indications 

of any imminent pathology there, although the very small absolute rates close to 

threshold prevent any definite settlement of the issue. At this point i t should be 

re-emphasised that the Smoothness Assumption is a priori much more "natural" 

than (5.29) and so serious consideration should be given to any consequences this 

may have on its own. 

Neither experiment nor theory can for the moment falsify G(x) = 0 as suggested 

above. For instance, considering p^ — p^ in the 4-jet EC scheme reveals that 

l im K n

P - ^ ^ = -c-2-§21. (5.42) 

Even though K^il^ix D e e n calculated [58], only having the / 4 series to tree-level 
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Figure 5.1 EO effective charges 

means that no-one knows which scheme this should be translated to for use in this 

non-invariant formula; a determination of A' 4 3 would however fix this first (invariant) 

coefficient of G(R). Superficially this result will be algorithm dependent,but this 

is not inevitable since K^fK^ in a specific scheme like MS and the definition of 

the 4-jet E C scheme would both change and could conceviably compensate for each 

other in doing so. 

If G(x) = 0 is correct, p^(R) = a2 follows directly, where, as a reminder, R is 

just fc/K31 measured at the 4-jet threshold and a is the limiting value of y / f j K ^ 

there. As an exercise, one can plot out a against R using values obtained from jet 

fraction data taken at different energies. Due to the running of the quantities, this 

then maps out the function p(3). Doing this with data between 22 GeV [54] and 91 

GeV [70] unfortunately only shows that the uncertainties are too large to distinguish 

the result from the simplest of all guesses p^(x) ~ z 2 . 

For completeness, we record that if the C E C A were literally applied to the jet 

106 



fractions, its prediction (Chapter 7) that ApQ ~ 0 would imply values of of the 

order of 150 GeV for both the E0 and the Durham algorithms. What is probably 

more significant is that i t also predicts that 

A P o ~ Ap»NLO (5.43) 

encouraging the hope that this wil l be true for the jet fractions in general. 

Although the 4-jet threshold occurs at relatively large yc, the reader may be 

wondering whether the CECA has anything to do with the summation of large 

logarithms in yc, particularly since they wil l both appear to be making statements 

about series to all orders in q s . The short answer is no, but first a reservation 

must be expressed about the normal interpretation of these resummations as the 

summation of large terms in the expansion which otherwise spoil the convergence 

(see e.g. [61]). Since the series is probably only asymptotic, any such rearrangement 

is probably only formal. To take a simple example, the series 

a = 1 + a(A0 + A2L2) 

+ a2(B0 + A2A0L2 + \a\L*) 

+ ... 

where L denotes some large logarithm, could be rearranged as 

a = e a A ^ (1 +aAQ + a2 B0 + . . . ) . (5.45) 

I f the series 

1 + aA0 + a2B0 + . . . (5.46) 

is divergent, then so must be both of these versions. Should the exponential factor 

in (5.45) differ greatly from unity, summing the first few terms of one series wi l l give 

a very different result from doing the same to the other. In QCD only one of these 

might be a good approximation - the other would start too far f rom the answer for 

enough terms to smoothly correct for this before the divergence sets in in both. For 

/ 3 the exponential factor wil l be crucial at small yc where / 3 < 1 experimentally 
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and (5.2) cannot have the correct starting point. In an asymptotic approximation 

the initial guess is much more important than the existence of large terms further 

down the series. 

Although the resummations are invaluable in trying to reliably pick out the 

dominating contributions at small yc and should thereby eliminate the major dif

ferences between large and small y c , they fall short of describing the entire series -

indeed from this point of view they are little better then a tree-level calculation -

and i t is for this reason that something like the CECA is necessary to tell us about 

the reliability of the series like (5.46) which still have to be faced. 
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C H A P T E R S I X 

Perturbative Consequences 

6.1 Introduction 

When presented with 

u2^- = u2(u) (6.1) 
ax 

a natural reaction is to expand the function u(x) as its perturbation series 

00 

u(x) = x^2unxn (6.2) 
71=0 

and use the equation to derive a recurrence relation for the coefficients: 

i—l 

UQ = 1 , ttj = -

t 

Pi = X I U j U i - j ( ° ) 

where Cn(R)% is to be interpreted as the xn term in the series of R(x) raised to 

the i t h power obtained using Cauchy products. This chapter wi l l have as its main 

concern the mathematical properties of this expansion, with the physical aspects of 

u(x) accordingly taking a secondary role and with the non-perturbative ones ignored 

completely, as is the (unresolved) question of the function's existence, prior to being 

taken up in the next chapter. Thus (6.3) can be taken as the starting point for the 

discussion. As explained in Chapter 4, the received field theory belief is that such 

a series should be fixed-factorially divergent. 
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One special case should be mentioned: i f c = 0 then the series truncates to give 

u(x) = x, which is also the only known exact analytic solution of (6.1), but which 

is trivial enough to be ignored and is anyway unphysical. 

This aside, a few trivial observations can be made immediately. Direct calcula

tion gives the first few terms as 

u 0 = l , M l = £ , u 2 = ^c 2 , u 3 = y c 3 , . . . (6.4) 

The c-dependence of the coefficients takes the particularly simple form 

uk = ukck (6.5) 

with uk independent of c, as can easily be verified by induction, and so the problem 

reduces to that of investigating (6.3) for c = ± 1 . This series is an infinite one with 

its coefficients positive and monotonically increasing. A formal proof again proceeds 

by induction, noting that i f the coefficients up to un_1 are positive then so are all 

the terms in the equation for un and that one also has the equality 

W n > ( ^ T T ^ " - 1 n - 3 ( 6 ' 6 ) 

obtained simply by dropping all terms which do not depend on ton_i f rom the 

recurrence relation. 

W i t h these lemmas in hand we can now prove one of this thesis' central results. 

6.2 T h e Divergence Proof 

To begin wi th it's easiest to prove the result for c > 0, for which i t suffices to 

consider absolute convergence; the generalisation (given below) is then trivial . 

Theorem The power series expansion of u(x) has zero radius of convergence 

when c > 0. 

Proof Because u k + 1 > cuk, the series cannot have an infinite radius of conver

gence, so suppose that i t has a finite one r > 0. With in this radius of convergence 
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the series is assumed to be absolutely convergent to a sum which we denote by U(x). 

oo 
,n \x\ < r (6.7) 

n=0 

But since uk > 0, Vfc one has 

U(x) > x + -x2. 0 < x < r (6.8) 

An x = X can then always be chosen such that X < r, but with 

> r. (6.9) 

Next recall that (6.3) was obtained from (6.1) by expanding both sides of the latter 

as power series and then rearranging terms. Well-known results state that differenti

ating a power series does not change the radius of convergence and that the Cauchy 

product of two series has a radius of convergence which is the smaller of the two for 

the original series. Applying these, the combination 

corresponding to the left-hand side of (6.1) expanded as a power series in x, is seen 

to have radius of convergence r. I t is thus convergent at x = X. However, the right-

hand side when expanded into a power series in x must be rearrangable (courtesy 

of the hypothesied absolute convergence) into 

which is only convergent at x = X , as i t must be to enable the perturbation expan

sions on both sides of (6.1) to be equal, provided 

dU 
U\x) 

dx 
(6.10) 

U2(U(x)) = U2(x)(l + UlU(x) + u2U2(x) + .. .)2 (6.11) 

U(X) < r (6.12) 

in contradiction with (6.8) and (6.9) above. The series thus cannot be absolutely 

convergent with either a finite or an infinite radius of convergence. • 
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Although a simple idea has already been laboured, two nuances of the proof 

require discussion. Firstly, the condition (6.12) is not universally true for all cases 

in which an expansion of f(u(x)) is under consideration, since cancellations can 

occur causing any one of the series involved to truncate, thereby rendering any 

considerations in terms of radii of convergence inappropriate. For instance, i f 

f ( x ) = -x u(x) = 1 - x2 (6.13) 

i t is evidently not true that 

\u(x)\ < 1 Vx > 0 (6.14) 

But this is not significant because f(u(x)) has collapsed to a polynomial in x and 

since the Uf. are known to be positive and the expansion of U2(U(x)) to be equal 

to the non-truncating one on the left-hand side, such a violation cannot occur here. 

Secondly and rather more crucially, we observe that the proof has not assumed any 

non-perturbative knowledge of u(x), unlike the arguments discussed in Chapter 4. 

I t may be objected that equating (6.10) and (6.11) looks suspiciously similar to 

the non-perturbative equality (6.1), but this is unfounded. Simply because the 

recurrence relation is derived from (6.1), even in the form (6.3) i t must have buried 

inside a certain "structural" similarity to (6.1) which non-perturbative effects cannot 

destroy and i t is this that the proof exploits. In principle everything could be directly 

reformulated in terms of (6.3), but such a version of the proof would only be much 

longer and obscure the basic idea. 

As promised the series also diverges when c < 0. This is just a consequence 

of the fact that we're dealing with a power series and hence i t either converges 

absolutely or i t diverges. 

6.3 R(a) and a(R) 

Knowing that u(x) has a divergent expansion immediately tells one that p(x) = 

M 2 ( X ) must also have one and, as emphasised earlier (Chapter 3), p is a physical 

quantity directly measurable in experiments. However, even i f a very restrictive 

definition of "physical quantity" is adopted which excludes p and only admits R, 

i.e. the jet fractions themselves, but not their energy variation, the criteria for 
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divergence proofs introduced in section 4.6 can still be adhered to, i t now being 

straightforward to deduce that 

(6.15) 
n=0 

in the 4-jet EC scheme is also a divergent expansion. Its coefficients are related 

to the un by the operation of "inversion" (sometimes "reversion"), the power series 

equivalent of inverting functions, and a standard result due to Cauchy states that i f 

the power series for a function is divergent then so is the power series for the inverse 

of that function [116]. Although there are standard algorithms to actually calcu

late the coefficients of this inverted series these are complicated and the particular 

circumstances allow more elegant means. One obvious one is simply to set c,- = p,-, 

since this equality is at the heart of the CECA, in the infinite set of equations (3.17) 

and solve for the r n , but in practice this is too awkward. I t is much easier to expand 

dR a 2 

da p(a) 

1 + pxa + p 2 a 2 + 

(6.16) 

(6.17) 

in powers of a to get 

( n + l ) r B = - ^ ( n -k + l)rn_kpk 

k=l 

(6.18) 

or equivalently [117] and perhaps more elegantly 

(n + l)rn = ( - 1 ) " 

Pi 

Pi 

Po 

Pi 

0 

Po 

Pn-l Pn-2 Pn-Z 

Pn Pn-l Pn-2 

0 

0 

Po 

Pi 

(6.19) 

Incidentally, (6.17) could have been used to prove that R(a) diverges since i t is 

another standard theorem [116] that the radius of convergence of a reciprocal power 

series is equal to that of the original, unless that original has a zero in which case 
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i t is less, so proving that p(a) diverges is sufficient here. As an alternative way of 

calculating the coefficients, instead of expanding p(R) = a2 in R as done previously, 

i t can be expanded in powers of a to get the same answer as above. Of course, since 

its pn are known i t is only a matter of labourious calculation to f ind the series for 

R in any desired scheme. 

Actually u(x) itself corresponds to a "physical series" in the narrow sense as

sumed above. This is a consequence of equation (5.34) which shows that the function 

u(x) relating the 3 and 4-jet effective charges is scheme invariant. Consider the 3-

jet EC scheme instead of the 4-jet one and continue to let the 3 and 4-jet effective 

charges be R and a respectively; in this scheme the role of couplant and "observable" 

have been interchanged and the relevant expansion is now a(R) = u(R) instead of 

R(a). Thus the expansion of / 4 in the 3-jet EC scheme as calculated in the CECA 

has zero radius of convergence. 

Finally, in accordance with the last of the criteria in Chapter 4, i t can be proved 

that the series for / 3 diverges in an analytic scheme. I f the t 'Hooft scheme (4.23) 

with couplant a' is used, then 

a ' 2 ( l + c a ' ) ^ = p ( 3 ) ( # ) = u2(R). (6.20) 
da' 

Suppose a'(R) has a convergent series. Then da'/dR also has a finite radius of 

convergence, as does dR/da' considered as a series in R. Again the left-hand side 

is a convergent series in R while the other is not, giving the contradiction. I f a'(R) 

has zero radius of convergence, then so does R(a'). 

6.4 The Large-Order Behaviour 

Having somewhat indirectly proved in section 6.2 that i t diverges, an obvious 

next step is to establish how the series for u behaves at large-orders and also just 

how quickly this asymptotic behaviour sets in . I t is as well to state at the outset 

that no definite conclusion has been reached on the matter, but that the evidence 

is encouragingly consistent with an ultimately fixed-factorial growth. This section 

wil l be devoted to a discussion of the problems involved and to deriving the best 

available, i f still loose, bound on the divergence and the following one to the results 

of numerical investigations into the coefficients. 
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What makes the recurrence relation (6.3) so intractable is that i t relies on mul

tiple Cauchy products and in particular the sums involved in evaluating them. I f as 

suspected un ~ n! at large n then at some level i t has to be checked that i f this is 

assumed for n < k — 1 then the recurrence relation is consistent with i t for n = k. 

However in doing this one quickly finds oneself having to deal with the summations 

like 

m\(n - m)\ (6.21) 
m=0 

which arise in trying to evaluate the coefficients in 

( l + a ; + 2!x2 + . . . + n!a ; n - l - . . . ) p . (6.22) 

Although i t can legitimately be objected that taking the power of a divergent series 

like this one is an ill-defined operation, its formulation in terms of the Cauchy prod

uct is not and merely leads to a difficult problem in the manipulation of factorials, 

namely an adequate treatment of expressions like (6.21). Perhaps surprisingly no 

such treatment appears to exist. 

Just restricting ourselves to (6.21), closed forms do exist. Products of factorials 

naturally suggest the beta-function B(x,y) [14] and one is thus led to 

± ro!(n - „ , ) ! = („ + 1 ) ! [ ( 1 + ' ) - i " ( 1 _ t ) d t (6.23) 

Alternatively, consideration of simple Dirichlet integrals gives 

V m!(n - m)\ = (n + 2)! / / * ~ V"xdxdy (6.24) 

the double integral being taken over a triangle in the (x, y) plane with vertices at 

(1,0), (0,1) and the origin. However, (6.21) relates to the p = 2 case of (6.22) and 

neither of these integrals provides any basis for the sort of iterative generalisation 

necessary to deal with arbitrary integer p. 

Of course i t is only the large-n limit of the recurrence relation (6.3) that is of 

interest at the moment and so i t may be that, regardless of how interesting and 
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challenging i t may be as an abstract mathematical problem, the precise result is 

unnecessary. Crudely one can argue that 

n 1 

] T m!(n - m)\ = 2n!(l + o ( - ) ) (6.25) 
m=0 n 

with the subleading terms to be neglected in the remainder of any calculation. 

Unfortunately i t has already been seen that naively extending this reasoning to (6.3) 

by discarding terms not including tin_\ (which must be "significantly" smaller) only 

leads to 

«n ~ c u n - i ( 6 - 2 6 ) 

a result far too weak to be correct, i f only because i t indicates a convergent series. 

Marginal improvements on this theme are possible - picking out the i = k — 1 term 

from (6.3) would suggest 

2un ~ cpn_x (6.27) 

yet 2un = cpn_x only corresponds to the evidently convergent expansion for u = 

c _ 1 ( l — y/1 — 2xc), although whose radius of convergence at l /2c is admittedly 

mildly better than in the original approximation - but to nowhere near the extent 

as to suggest a promising approach. One is therefore forced to the conclusion that 

there is rather more to the problem than the leading term during intermediate 

stages and having resolved to retain the first sub-leading term i t becomes difficult 

to justify neglecting any of the others. Indeed, such a piecemeal approach again 

proves inadequate. In some as yet unclear fashion most of the recurrence relation 

(6.3) appears essential in generating the large-order behaviour. 

Faced with this impasse one is perhaps tempted to waive the caution expressed 

in Chapter 4 and resort to applying a saddle point method to (6.1) on the grounds 

that any answer, even if possibly wrong, is better than none at all. But even with 

a foreknowledge of the next chapter not enough is certain about the properties of 

u(x) to enable this to be done. 

What then can be said with confidence about the large-order behaviour ? An 

upper bound on the series growth can be obtained and the rest of this section is 
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concerned with its derivation. Although based on the simple, even naive, foundation 

of assuming a bound of the form u;,- < bal for part of the series, then using this to 

derive a weaker bound which also applies to the next coefficient up and iterating, 

the details of the proof are slightly delicate. 

The first step is in the nature of proving a lemma. I f ui < bal, i < k then 

^ &2a* ^ f l t - ( J f c - 1 ) ! ^ (6.28) 

= r ^ T ^ 1 + b)k~2(k + 1 + + ! ) + ( * - ! ) } • (6-29) k — 1 o 

The minus term can evidently be dropped as, furthermore, can the final one since 

i t is smaller than i t for b > 1, as is always the case in this proof, and so their sum 

is negative. Thus 

"k ~ + b ) k ~ ' ( k + 1 +
 ( 6 ' 3 0 ) 

Some notation and the general strategy must now be introduced. Assume 

" i < ir(A0)\ i < N (6.31) 
Bo 

then use the lemma to show that 

"i<-_r(AiYi i<N + l. (6.32) 

Iterating gives 

B. 
^ ^ ( A J , i<N + m (6.33) 

m 

with the particular result 

"N+m < 4 - ( A m f + m . (6.34) 
Bm 

From (6.30), one has after n iterations 

K - i ( l + BZ;)}N+n N + n + 1 + 
«N+n< Bl_.il+ Bn_^ N + n-1 

(6.35) 

suggesting that one take 

An = (1 + i ^ - K - i (6.36) 
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Bn = + B - l ) 2 (6.37) 
n 

where 8n has been required to satisfy 

>1 + ^ r ^ r - (••»> 
The other important constraint on the iteration procedure is that the new bound 

cannot be allowed to violate earlier ones, a sufficient (and natural) condition for 

which is 

1 (^n - i )* ' < ^-(Any, i<N + n - l . (6.39) 

From (6.36) above i t is clear that An_1 < An, so i t is sufficient to enforce 

Bn < Bn_x (6.40) 

to ensure this happens, particularly since u>0 = 1 means that BN < 1. Everything 

now depends on a judicious choice of Sn and BN satisfying these formulae to produce 

as tight a bound as possible at very large n. From both the form of (6.36) and (6.34) 

the tightest sequence of bounds is clearly that given by the fixed point of (6.37) 

Bn = Bn_x = B* (6.41) 

corresponding to equality in constraint (6.40). For this to occur Sn is set equal to a 

constant 8 where 

« > 1 + (6.42) 

the constraint (6.38) on 8n now being increasingly well satisfied at large n. The 

fixed point of (6.37) itself requires 

6 = B*(l + B*)2. (6.43) 

Now 

A n = (l+wYA° (6-44) 

and 
N+m 

" A - + m < ^ ( ( l + ^ ) " | < + m (8-45) 

so the problem has been reduced to that of optimising the choice of J5*, or equiva-
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lently S. That choice is B* = 1 , 5 = 4, which duly satisfies (6.42) provided N > 2; 

take N = 2 and use (6.31), i.e. 

" , < ^ , i < 2 

to fix AQ as small is as permissible given the first few terms in the series. This done, 

the final answer is 

u>„ < 2 " 2 - 3 n + 2 ( v / 7 ) n . (6.47) 

How good a bound is this ? Probably i t is not too stringent because of the way the 

requirement that i t apply thoughout the whole series necessarily restricts how effec

tive i t can be at large n where our real interest lies, even although the initial terms 

may ultimately be of little consequence in the recurrence relation. In particular, 

(6.40) arises only because the bound must encompass the first term. 

This difficulty cripples analogous attempts to derive a lower bound, since i t forces 

the equivalent of Bn to become larger and larger very quickly (there is now no fixed 

point J3*), eventually causing the bound to fall as n increases. The knowledge that 

the series must grow faster than any geometric one asymptotically aside, the best 

lower bound is roughly 

w„ >(*>„_!, n > 2 (6.48) 

which can only be described as extremely weak. 

6.5 Numerical Results 

Confronted with the intractability of the recurrence relation (6.3) when tack

led analytically, an obvious recourse is to the calculation of as many terms of the 

series as possible on a computer in order to attempt an estimate of its large-order 

behaviour. In doing so the primary problem is to find an algorithm which makes 

the most efficient use of the limiting resources of time and memory. Clearly the 

largest decisions concern the handling of the multiple Cauchy products implied by 

the notation C n ( ^ ) m and indeed i t is this which determines both the overall strategy 

adopted and the final performance of the program. 
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Given a truncated series' coefficients (u 0» u i » • • •» UN)I> o n e c a n straightforwardly 

calculate (p0, p l 5 . . . , pN) and any subsequent powers one wishes, but one cannot go 

beyond the iVth term in any series - that requires knowledge of at least To 

calculate u using the recurrence relation in turn requires some knowledge of the 

iVth power of the truncated series, specifically C1(^)N. This particular coefficient is 

actually sufficiently special not to need a complete calculation ( C ^ j ) N = Nu^, but 

the basic point remains: knowing ( u 0 , « j , • • one can calculate all the powers 

up to the iVth one, find u N + 1 , then iterate. Of course most of the calculation 

required in finding powers of (t t 0 , « l 5 . . . , u N , is exactly that already done in 

finding powers of ( u 0 , u 1 ? . . . , so it's much quicker to store these series and then 

add to them later on than have to recalculate them entirely again and again. Thus 

the program is really calculating a square array corresponding to C n ( j - ) m , f rom part 

of which the actual un series can be read off: 

u0 = 1 «i = f «2 

Po = 1 Pi = c Pi 

Cl = l C\ = \c C} 
C$ = 1 Cf = 2c C\ 

U 0 — 1 — y C U 2 

Additional columns are added by using (6.3) and the table to find u t h e n filling 

in the rest from Cauchy's rule in the form 

I) =^o

C{l) UN^ (6-50) 

the application of which necessitates knowing all the rest of the array. Additional 

rows can be added merely by taking the Cauchy product of the top row with the 

bottom one. Both operations must be carried out prior to finding « jv+2-

The program itself is rather short, containing only 36 lines, and simply prints 

out the u„ as they are found. Its major storage requirement is the N xN quadruple 

array needed to be able to reach u ^. 

Al l the operations involved are either arithmetic ones or calls to the main array 

and so in estimating the program's speed the main consideration would appear to be 
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the number of iterations around loops and how this grows as longer stretches of the 

series are explored. How many loops are needed to calculate «jy ? The operations 

of adding a row or a column alternate throughout execution, but for this purpose 

they can be considered separately. To find 

n 

Pn = Yluiun-i ( 6 - 5 1 ) 
i=0 

requires n loops, as does Cn( j ) m provided the rows above are known. Hence i f ( « 0 , 

..., upf) were given, the other rows could be calculated using 

\N(N - 1)(N + 1) (6.52) 

steps. Only the steps involved in extending the top row using the recurrence relation 

still have to be included: to find un knowing the rest of the table requires n — 2 

steps, so 

\ ( N - l ) ( N - 2 ) (6.53) 

are needed in total for this. The running time of the program is thus expected to 

increase as 

i(JV - 1)(N2 + 2N-2) (6.54) 

~ i V 3 . (6.55) 

In fact only the top left-hand half of the table is ever used in the recurrence relation 

and the rest could be omitted, but this only halves the memory requirement and 

reduces the running time by a factor 3, neither of which is a sufficiently dramatic 

improvement to be important. 

Part of the reason for dwelling on this choice of strategy is that at first sight i t 

runs counter to the conventional wisdom [118] concerning the efficient calculation of 

Cauchy products. Quick algorithms have been specifically designed for the problem 

of large powers of a single series and i t might be thought that these would find 

an application here, but these were really intended for situations where the lower 

powers are of no interest. For instance, although Knuth [118] describes one which 
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F i g u r e 6.1 The series coefficients. 

can determine Cjjf above using only ~ TV2 iterations, to be compared to the ~ N* 

above, it requires another ~ TV2 to find C $ + 1 instead of the N needed if the table 

has been stored. And since the rest of the table has already been needed in the 

recurrence relation it makes sense to do just that. If one only wanted Cjy the 

alternative algorithm would be better, but we don't and it isn't, needing ~ N4 

iterations to find u^r. Although it would require much less (~ N) memory, this 

would be at the expense of a prohibatively long running time. 

Figure 6.1 displays the first 450 un (merging to form the solid line) together 

with the bound (6.47) derived in the last section (the dotted line). That result is 

now seen to be rather weak, although the coefficients' growth is still precipitous and 

u» 4 5 0 ~ 1 0 5 9 2 . To obtain a better understanding of this growth, the function 

D(C) (6.56) 

was fitted to each successive block of 50 coefficients and the results are plotted in 
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Figure 6.2. The most important conclusion is that the increase is close to T(n + 5) 

and probably converging to something like this. For field theory expectation to be 

satisfied it is only necessary for (6.56) to hold as n —> oo with A ~ o( l ) , but these 

results are quite consistent with exactly A — 1 in that limit. 

Hardly less interesting than this is the way that, say, the first 100 coefficients 

would be misleading about the ultimate asymptotic behaviour, this being signifi

cantly faster than one would suspect on that basis. This need not be discouraging 

since such a pattern could delay the breakdown of the series well beyond its first few 

orders and thereby give Q C D much greater predictive accuracy than we imagine, at 

least in principle. This is in striking contrast to section 4.5 where we saw a conjec

tured asymptotic result used to estimate the first few terms in a series. Similar sorts 

of extrapolations are rather common, but Figure 6.2 suggests that more caution is 

appropriate. However, fitting a single curve to selected points in the entire range 

up to n = 450 gives A ~ 1.4 and a curve indistinguishable by eye from Figure 6.1, 

so the difference should not be exaggerated. It should also be emphasised that the 

sensitivity of all these fits to the different parameters varies greatly - small changes 

in A produce vastly larger effects than equivalent changes in D - so that the precise 

values of C and D at any stage are more uncertain than those of A and B. 

To summarise, the divergence of the series appears to be a non-Borel summable, 

fixed-factorial one. 
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C H A P T E R S E V E N 

Non-Perturbative Consequences 

7.1 I n t r o d u c t i o n 

However challenging the problems it gives rise to, the perturbative solution to 

u 2 ^ - = u\u) (7.1) 
ax 

is only part of the story - its very promise is that of providing a non-perturbative 

solution. If such exists, and that remains to be proved, several properties of it can 

be deduced trivially, e.g. 

^ > 0, V* 6 » . (7.2) 

dx 

This assumes that any solution is real and, while it will turn out to be an inadequate 

supposition, this will probably be true in the region close to the origin of most 

interest to physics. It is also convenient to assume that u(x) is single-valued for 

x > 0 (and c > 0), although this is probably equally simplistic. For a start the 

non-analyticity at the origin is probably due to a cut, possibly one extending along 

the negative real axis. 

The trivial solution tt(x) = x can no longer be dismissed so lightly. It marks 

out a special line in the (u, x) plane which can only be crossed by a solution at the 

origin; at any other point x = xQ where u(xQ) — x0 

du 
dx 

dnu 
dxn 

= 0, n > 1. (7.3) 

Which side of this a solution begins on at the origin depends on the sign of c with 

c > 0 giving ones above the line. It has already been seen that c was not fixed by 

the perturbative expansion and by substituting u(x) = xu>(xc) into (7.1) one finds 

u(xc) + xc^^XC} = UJ2 (xcu>(xc)) (7.4) 
d{xc) 

as a reflection of this, so the complete set of non-perturbative solutions can be 
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F i g u r e 7.1 Construction I. 

partitioned into infinite families, the members of which are parameterised by c. If 

c is allowed to become complex, this enables the analytic structure of solutions to 

be rotated as well as dilated. One special case is that if u(x) satisfies (7.1), then so 

does — u( —x) but with a different c. 

The most awkward feature of (7.1) is the way u(u(x)) enters into it. If the 

solution is monotonic in accordance with (7.2) then its specification on any finite 

interval is insufficient for it to be checked that it does indeed satisfy (7.1) throughout 

that interval. This "overspill" problem will be a recurrent theme in this chapter. At 

first sight it may be thought that the most likely result is for a solution with c > 0 

to start from the origin, then begin to get steeper and steeper as a sort of positive 

feedback sets in through the right-hand side of (7.1), since u'(x) > 1 and gets bigger 

the steeper the function is further out. That this cannot quite be the case is shown 

by the construction in Figure 7.1. 

Letting u = u ( x 0 ) , v! = u' (x 0 ) , the point P is given by 

P = u + (u - x 0 )u ' . (7.5) 
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If the growth of the solution does not ease off, then P < u(u(x0)) and (7.1) at x0 

gives 

u + (u - x)u' < uVvJ (7.6) 

which can only have a solution for v u' (noting that u' > 0) if 

w 2 - 4(u -x)u>0 (7.7) 

so that 

u(x) < T . (7.8) 

Interesting though this bound is (particularly that it is independent of c), it could 

be evaded by several things including the existence of some point where u"(x) = 0 

or a pole in the solution at finite x. There is no effective equivalent for c < 0. 

7.2 N u m e r i c a l Solut ion 

An important advance can be achieved by shifting attention away from (7.1) 

itself and onto the equation 

= rf> - | ( T . 9 ) 

derived in Chapter 5 instead. Introducing the function 

once the full C E C A assumptions are applied, this equation becomes 

/ ( a ) = f(R) - °- (7.11) 

which can be rewritten as 

/ a - i - d x = J . (7.12) 
J r P ( x ) 2 v ' 

This is to be set alongside 

p(R) = a2. (7.13) 

These two equations suffice to fix the function a = u(R), which must be a solution 
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to (7.1) both because of consistency and because 

df = - 1 
dx p(x) 

allows that equation to be recovered directly. 

(7.14) 

The great advantage of this representation is that it suggests the possibility of 

finding a numerical solution: an initial guess for p(x) can be substituted into (7.12) 

to obtain an approximation to a(R) and hence hopefully a better approximation to 

p(x) via (7.13). In practice the program developed to carry this out stores values 

of u(x) at points evenly spaced in an interval [0, X], then for every point R in this 

set the integral (7.12) is evaluated numerically with a(R) initially set to the current 

value of u(R), but then adjusted (using a N A G L I B routine for solving a transcen

dental equation) until (7.12) is satisfied. At the end of each iteration this new set 

a(R) replaces the u(R) used to find it. Unfortunately, one immediately runs into the 

"overspill" difficulty since one needs to be able to approximate the integrand at the 

upper limit where x = a(X) > X. This is dealt with by linearly extrapolating the 

integrand beyond the region where the function is stored numerically, this consis

tently underestimates a(R) when solving (7.12), but overestimates the integrand in 

the same region on the next iteration, so provided l / p ( x ) does not vary too rapidly 

this approximation is conceivably under control. Certainly when the program is run 

with X fairly small it converges to an apparently sensible result. In Figure 7.2 the 

solid line shows g(x) = l / a ; 2 ( l + ex) — l / p ( x ) for c — 29/23 (corresponding to Q C D 

with Nf = 5) as obtained using 500 points. 

This choice of function to display was motivated partly by its physical signifi

cance and partly because it's rather more interesting then p(x) iself which merely 

stays close to x 2 ( l + cx) throughout. Several important conclusions can be drawn 

from this graph. 

Firstly, as expected the curve intersects the axis at p 2 = 7/4c 2 and is also 

sufficiently flat thereafter for 

ApHNLO(R) ~ 7-c2R (7.15) 

to be a very good approximation at small R, particularly when compared to F(R) ~ 

1/R for R ~ a s . Thus if one were to accept p(x) = u2(x) as the actual common 
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F i g u r e 7.2 Numerical Results (c > 0) 

/^-function for one of the jet algorithms, one would have succeeded in finding a 

quantity for which A p 0 is small since this would imply that its contribution to p0 

is less than 1% that of F(R). Clearly, if that were to be accepted, one need not 

even be restricted to (7.15) and cotdd use the numerical approximation to p(x) and 

obtain a better estimate. 

Secondly,it is possible to compare the new result with truncations of the pertur

bation series beyond this N N L O one. The dotted lines show how using the series 

for u(x) truncated at different orders to estimate g{x) compares to the actual func

tion, the order of truncation being the number next to each line. At sufficiently 

large values of x the inadequacy of the approximation becomes apparent and the 

agreement with the correct result breaks down rather suddenly, the point at which 

this happens moving closer to the origin as more orders are added. Although the 

accuracy of the numerical solution is not good enough (due to the limitations of 

the N A G L I B routine) to confirm this, it is probable that truncating after 450 terms 

produces a better approximation close to x= 0 than the same series to 50 terms. 

This is exactly the behaviour expected for an asymptotic series - additional terms 

improve the accuracy in a smaller interval - and Figure 7.2 is therefore evidence 
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that the series discussed in the last chapter is behaving like one. For the purpose 

of applying Q C D such a result is as encouraging as any formal proof that the series 

actually is asymptotic. It is also interesting that most of the truncations shown 

are well-behaved even at the comparitively large couplings relevant to contempory 

experiments, thereby contradicting the supposition that series must begin to diverge 

after only a handful of terms. This is presumably just a consequence of the strong 

sub-asymptotic (in the power series sense) effects noted in the last chapter. 

7.3 A n a l y t i c R e s u l t s 

When the order of truncation is reduced to very small values, the perturbative 

approximation manages to reproduce g(x) up until the maximum at x ~ 0.2.* 

Beyond this point the function seems to be essentially non-perturbative and its 

form is therefore of particular interest. The numerical results indicate that p(x) 

slowly falls back towards x 2 ( l + cx), causing g(x) to fall towards zero. However as 

the endpoint of the numerical calculation is increased past x ~ 0.5 an instability 

develops in this new calculation and as the iterations of g(x) continue a low wave is 

seen to sweep in from large x, growing as it does so into a very sharp peak which 

progressively destroys all the earlier results at small x, leaving p(x) ~ 0 in its wake. 

Suspicion may fall on the extrapolation necessary to deal with "overspill" but, while 

this is related to it, the difficulty is much more fundamental than that. 

To understand its origin it is useful to introduce the geometric reformulation of 

u(x) illustrated in Figure 7.3a. f ( x ) is any function such that 

As such it is clearly related to the f ( x ) in (7.10), which is just a solution of this 

equation with a particular choice of integration constant (c.f. the discussion of 

Chapter 3, of which this is just a special case), an integration constant which will 

be irrelevant in what follows. Because of this, (7.11) can be rewritten as 

df - 1 
(7.16) 

dx (x) u 

a = f - \ f ( R ) - c / 2 ) (7.17) 

the geometrical significance of which is just the arrowed path in the diagram. Triv-

* For c as in Q C D . Solutions for other c scale in accordance with (7.4). 
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F i g u r e 7.3 a) Construction II b) Bound on u(x) 

ially 
<Pf 2 (in 
HPT'**0' I > 0 <7'18> 

so f ( x ) is always convex, which means that u* constructed using the tangent at 

(R, F(R)) as shown is always such that 

u' < u. (7.19) 

But this tangent's gradient is known from (7.16) and so one finds the crucial bound 

2 
u c 

x < u - — (7.20) 

displayed in Figure 7.3b. Alternatively (and rather quicker, although without an 

additional insight into the computer program), if u(x) is monotonic then from (7.12) 

c ^ f a 1 , , - o , x 

with the same result. 
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In extending it beyond x = l / 2 c the numerical method breaks down because 

it is trying to construct a solution which violates this bound. The extrapolation 

procedure is related to this since it essentially approximates u(x) by x* when this 

lies outside the range, except that a parabola is used in its construction (in adopting 

a linear approximation to l / p ( x ) , f"(x) is being taken as constant) rather than the 

tangent; such modifications to the above argument are possible, but only marginally 

alter the final bound. 

However this bound also decisively undermines the assumption that u(x) is a 

real, single-valued function for all real x > 0. Nor is there a simple escape such as 

supposing that it follows the trend of the bound and doubles back before a; = l /2c ; 

du/dx can only be less than zero if u(x) is allowed to be complex. Tentative investi

gations of how the function may evade the bound have been attempted, but without 

any definite progress. The non-locality implied by the presence of u(u) in (7.1) en

ters crucially into its structure and u(x), if it exists at all, must be a complicated 

multi-branched complex function whose analytic properties are currently obscure. 

Not that this need refute the results of the previous section nor should it be 

regarded as necessarily threatening the physical plausibility of the C E C A . This 

would only be the case were it to be proved that u(x) is complex on the positive real 

axis to within a short distance of the origin. Otherwise, particularly as no bound 

significantly tighter than (7.20) has been found,one can suppose that the behaviour 

will only become different when R ~ l / 2 c which happens at energies low enough to 

be close to the leading-log Landau pole. That new aspects of the theory emerge at 

about this point is hardly a surprise and it is an interesting unanswered question 

whether the C E C A remains physical at low energies. When applied to the interval 

shown in Figure 7.2, the computer calculation does not involve any assumptions 

about what happens at this larger x ~ l / 2 c and so can be an accurate reflection of 

u(x) in the region of interest at 91 GeV. 

For future use, note that (7.12) can be recast on the real line into a more familiar 

form. Consider c as a function of u and a; 

xc = G ( ^ - l ) (7.22) 

after which (7.12) can be changed into 
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G ( X ) - L (V + 1)2[1 + G~\{y + l)G(xW ' ( ? " 2 3 ) 

Apart from the appearance of G _ 1 in the denominator, this closely resembles a 

non-linear Volterra equation of the second kind. Unfortunately, there is a dearth of 

general results and literature on these equations [119] [120], with each one giving rise 

to fresh difficulties and existence having to be proved case-by-case, but as a class 

they have an unusually wide variety of behaviours. For instance, even an example 

as simple as 

x) = x+ [ G\y)dy (7.24) 
Jo 

only has a continuous solution if x < ir/2 [120]. Note that this representation does 

not circumvent the problem of "overspill" since for any monotonic G(x) - and if it's 

not, (7.23) is immediately ambiguous - one has 

6 < G - 1 ( ( l + f c ) G ( 6 ) ) (7.25) 

so specifying G(x) on [0, b] does not determine the integrand on the same interval. 

7.4 Negat ive c 

If the construction in Figure 7.3a is examined more closely one realises that the 

difficulties arise at small f(x), in particular with the tail as x —» oo. For instance, it 

cannot be the case that / ( x ) —> k , a constant, as x —* oo, because this would imply 

the existence of an R0 beyond which u(R) would not be defined (the horizontal line 

needed to construct it passing below f(x) for all x), yet u(R) must be defined for 

R > RQ since this region enters into the determination of u(R) for R < i ? 0 . It is the 

impossibility of scenarios like this which give rise to the bound. However, if c < 0 

the arrowed path in Figure 7.3a reverses and these problems disappear, while no 

new ones emerge as x —• 0. This is simply a consequence of the fact that there is 

no longer any "overspill" since 

u(x) < x, a(a) < a. (7.26) 

Repeating the argument above, the bound is now found to be 

x < J £ l u 2 + u . (7.27) 

This is not closed and so solutions can now be monotonic, single-valued and real. 
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F i g u r e 7.4 Numerical results for c < 0 together with bound. 

Figure 7.4 displays the results of modifying the program so that it generates 

a numerical solution for c < 0. The barely discernable dashed line is this bound 

(7.27); any valid solution must lie above this line and a detailed comparision shows 

that the one found always does so. Unlike before, extending the program to larger x 

induces no breakdown in stability and the function continues to increase in the same 

featureless manner. An obvious check is to use it to numerically evaluate both sides 

of (7.1) to see if there is agreement; when done the agreement is one part in 10 6 , 

comparable to the machine accuracy (using double precision). Similar agreement 

was achieved for the c > 0 solution in Figure 7.2, provided x was not approaching 

the bound. 

Consistency of representation (7.23) requires that G(x) —• - c o as x —* —1, 

which implies that 

Because everything maps into z €[-1, 0] this version of the problem is especially 

useful in investigating the R —• oo limit. In this interval G(x) < 0 and monotonic; 
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by noting that G *((1 + y)G(x)) < 0 when y £[x, 0], one obtains 

I T 
G(x) < ——, V* < 0 (7.29) 

(1 + aj) 

which in turn implies a bound on u(R), although this happens to be a weaker one 

than (7.27) above. More interestingly, the integrand in (7.23) can be seen to be 

largest when y = 0, which leads to 

2a* 
G ( x ) - ( T W v * < 0 ( 7 - 3 0 ) 

so that G(x) is now tightly constrained. This does translate into new information 

about u(R), since it is equivalent to 

iw))2-i^)-umc]-°' (7-3i) 

a bound on R of the form 

i ? > — ( l + x / T T M ^ R ) , C < 0 . (7.32) 
2 

Together with (7.27) this sandwiches u(x) into a narrow band - this new bound is 

not shown in Figure 7.4 only because it is indistinguishable by eye from the solution 

just below it. As R —» oo, the limiting behaviour is 

2 / O N V 3 

c 
R1/2 < u(R) < (JL^ R2'z (7.33) 

in agreement with (7.28) above. 

Abstract situations where the C E C A might be applied with c < 0 can be envis

aged, notably in considering the process X+X~ —> n scalars when charged fermions 

have been coupled into (j>\+\ theory. Apart from this, the symmetry mentioned in 

section 7.1 means that 

u{—x, — c) — — u(x,c) (^34) 

and so the solution shown for c < 0 is also really one for c > 0 on the negative real 

axis. In principle at least, this allows for the possibility of constructing a solution 
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with x < 0, c > 0, then continuing it round onto the positive real axis. How 

this actually works, and the bound (7.20) clearly indicates that some complications 

must enter, will depend on the detailed analytic structure, but it does at least open 

another avenue in trying to understand the physical solution. Since no existence 

proof for a non-trivial u(x) is known, the importance of the c < 0 case is that it 

provides good evidence for (7.1) having an interesting solution at all. 

However, in the absence of an existence proof, the outcome that u(x) is either 

highly non-physical (most likely because it turns out to be inherently complex on the 

positive real axis) or even an impossibility must be considered. Although this would 

inevitably be very disappointing, the exercise would still teach us something: R G 

invariance alone is able to rule out some superficially "possible worlds." Since this 

is a much weaker condition than renormalisability itself, that would be surprising 

enough. 

7.5 W e a k e n i n g T h e A s s u m p t i o n s 

The derivations of Chapter 5 depended on only two assumptions, that the p's 

are smooth at the 4-jet threshold and that they are equal there. Of these the first 

is the less restrictive and more natural and has as its main consequence the relation 

whereas the second has turned out to be restrictive enough to leave no freedom in the 

theory apart from the value of A. This and the last chapter have described how they 

lead to the conclusion that the perturbation series are divergent yet A p 0 — 0. Whilst 

greater miracles have been known to occur in gauge field theories, it would be very 

surprising if both these assumptions, and particularly the second, were to turn out to 

be exact for any previously defined jet algorithm. A first test of this possibility will 

be the results for K43 obtained from the one-loop calculations presently underway 

[121]. Even without knowing the outcome of these, it is necessary to consider to 

what extent the conclusions may change if the assumptions have to be discarded or 

weakened. 

Because it is clearly the stronger, and hence in greater need of justification, we 

begin by adjusting the assumption that pW = p^\ while retaining (7.35). That 

a (7.35) 
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equation and 

Pi3\R)% = P ( 4 ) ( a ) (7.36) 

now define the problem, where p( 4) is taken as arbitrary, apart from the non-trivial 

restriction that its perturbation series should start a 2 ( l + ca + ...). This situation 

is probably far too vague for anything useful in the way of general conclusions to be 

drawn. Probably the only special feature common to all in this subset of possible 

systems is that p( 3)(x) > 0, which will have consequences for any fixed points, 

e.g. if p( 4) has a zero, R behaves like energy in the standard analysis of asymptotic 

behaviour and a(R) —> constant as R —> oo. However if p( 2) has a zero, then p( 4) 

must have more than one branch. 

To solve for p( 3) given p( 4 ), one must take a reciprocal and integrate to find 

R { a ) = / ^h)da (7-37) 

which must then be inverted and squared. Regarding p( 3) and p( 4) as power series, 

the properties of these operations can place restrictions on their radii of convergence 

via the theorems on reciprocation and inversion (integration and squaring have no 

effect) mentioned in section 6.3. In general all combinations of radii are possible, 

although a full description involves a messy set of special cases and it may be 

that certain possibilities can be excluded on general grounds, e.g. by specifying the 

behaviour of functions as x —> 0, or must entail certain features like the presence 

of fixed points. Thus for example both p( 3) and p( 4) can have infinite radii of 

convergence, but only if R(a) is monotonic and there are no fixed points. 

One interesting weakening of p(3) = p( 4) is to assume that p ^ = p ^ but only for 

k > N, or in the limit k —> oo. This evidently implies that their radii of convergence 

are equal and one can investigate what is necessary for these to be finite. One can 

apply the standard theorems to find that such a finite radius r is only possible 

provided 

a(r) < r. (7.38) 

Note that there is no such R = r for p( 3) = p( 4) if c ^ 0; this is really a special case 

of noting that (7.38) will be violated if pjj3^ > 0, Vfc. That equation probably doesn't 
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exhaust the consequences of imposing p^ — p^ at large k and one can conjecture 

that it will always be violated in such cases. To progress further than this would 

require some formulation which, unlike any discussed in Chapter 6, untangles the 

behaviour at large-orders from the series' beginning. 

Alternatively, if p^ > p^\ then both p^ and p( 4) will diverge, since com

paring the new recurrence relation to the old one shows that the equivalent of 

for p^ > p^ are greater than before. 

Within broad limits, either p(3)or p( 4) can be selected at will and thus so can 

either Ap0(R) or Ap0(a). Note that because Ap0(a) will be small when p(x) ~ 

x2{\ + cx) for x < cr, if p( 4) is increasing very rapidly, then so is p( 3) and both A p 0 ' s 

will be large. However the C E C A results described in this chapter encourage the 

hope that 

APo ~ Ap»NLO (7.39) 

in all reasonable cases, even with a divergent series, but any general result must 

assume some sort of relation between p^ and p^. 

7.6 N o n - S m o o t h Vers ions 

What are the consequences of weakening the smoothness assumption, i.e. letting 

(2) _ (3) 

K 4 2 — 0 A 4 2 

but still requiring 

p(3) = p ( 4 ) ? since R(a) will be a definite function, G(R) can be 

replaced by J(a) and equation (5.16) can be rewritten as 
- J ( a ) = *2« (7.41) 

dR w a v ' 

so that (5.27) is replaced by 

p(R) = a2 exp ^ ^j<*«) = a2ep^ (7.42) 

and (5.30) by 

^ = ^ e x p ( P ( « ( a ) ) - P ( a ) ) . (7.43) 

Straightforwardly one still finds that da/dR > 0 and that a = R is an uncrossable 
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line. The first of the limits (7.40) 

L = u m Pi (7.44) 
Kt2-+o KA2 

is particularly important since (5.21) becomes 

-L = c + 2^- (7.45) 

= c + 2rj (7.46) 

where R(a) = 53rnan. For this reason, although c remains important, it is really 

c' = c + L (7.47) 

that is the key parameter. In particular 

n M " 2 ( 7 ' 4 8 ) 

and, by analogy with (7.17), one has 

a = f - \ f { R ) - c'/2) (7.49) 

where f'(x) = l / p ( x ) again. Regardless of the other limits (7.40), provided L = —c 

this collapses to the trivial solution R = a. The physical reason for this is significant: 

the conventional C E C A only gives a non-trivial R(a) because, although p(x) is 

common to all jet fractions, ^ p^ and so the effective charges cannot be 

exactly equal. Letting L — —c removes this obstacle. 

Most other consequences depend on the specific form of J(x). A n important 

class of cases is when 

J(x) >x, \/x<X (7.50) 

(for which L < 0), so that P(x) is a monotonically increasing positive function. 

Then 

exp(P(a(a)) - P (a ) ) > 1 (7.51) 

when X > a(a) > a, so if a(R) starts off similar to one of the old c > 0, u(R) 

solutions (in fact that with c = c') it will grow faster then it at larger R. There 
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are thus two competing factors governing the growth as compared to u(R) with 

c itself unchanged: the new solution grows faster than an old one growing slower 

than u(x,c). For sufficiently large L, c1 becomes negative, this influence wins and 

a(R) is permanently below the a = R line, since for a(a) < a the inequality (7.51) 

reverses. The dividing case is the L = — c one. When (7.50) holds, a bound like 

(7.20) naturally exists. 

This need not be the case when J(x) < 0, the derivation relying on dp/dR > 0 

which can now be evaded. For any P(x) that is monotonically decreasing, the 

solution above reverses and solutions tend to be forced towards the a = R line when 

compared to u(R, c'). A major example here is when P(a) —• —oo as a —• oo, so 

that p(R) —• 0 in that limit and the integrand in (7.48) increases without bound 

producing 

a „ R + t R * e P W (7.52) 

and hence a(R) has a = R as an asymptote. 

It is difficult to be certain, but it seems unlikely that (the L = —c cases aside) 

p(x) can have any other than zero radius of convergence regardless of the form taken 

by J(x). Although the grounds for believing this are intuitive, they are very general: 

as a —> 0, J (a) becomes increasingly irrelevant in (7.41), its expansion starting one 

order higher than those of other terms, and this perturbative constraint presumably 

prevents it drastically changing the behaviour of other functions close to the origin. 

But this is exactly the region which determines whether the series converge or not, 

hence the optimism. In any particular case a proof modelled on that of Chapter 

6 is probably possible, even though the expontentials complicate the general case 

excessively. Note that as part of this one can no longer rely on a simple c (or 

even c') dependence in the series coefficients. Similarly any attempt to develop an 

argument in the style of the last section has to contend with the more complicated 

relationship between p(R) and a(R), with the radius of convergence of P(a) having 

to be brought into consideration. 

For any J(x) the problem can be solved numerically as before, although in doing 

so it is probably easier to classify cases using P(x) instead. On the same grounds as 

above, one can expect that Ap^NLO will still be a good approximation. However, 
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if 

—La + p2a + • (7.53) 

then 

P2 = 7-c2+p2-\L* + Lc (7.54) 

so exactly how large this makes ApQ is no longer as simple as before. 

Finally, we record a result whose derivation relies only on the K i 2 —• 0 limit 

of p^(a) being well-defined. Dropping the C E C A assumption means that (7.42) 

becomes 

= a > e x p ( / - ^ a ) . (7.55) 

Again the most striking consequence here is that the 3-jet E C /^-function must be 

greater than or (just possibly) equal to zero. This appears to be the most general 

consequence one can deduce from the normalisation of the jet fractions and R G 

invariance. 
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CONCLUSION 

As regards the argument of Chapter 1, the conclusion is clear: there is now very 

strong numerical evidence that only the known shape invariant potentials give zero 

S W K B corrections and hence that 

is a necessary and sufficient condition for full shape invariance. This is certainly the 

most natural possibility and the ideas sketched in section 1.7 suggest that a detailed 

understanding of why it comes about is within reach. 

No such note of finality is possible concerning series in field theory, nor probably 

will there ever be. Unlike mathematicians, physicists rarely have the liberty of 

asking questions they know to be capable of definite proof. However, to take an 

obvious example, it is more important (and more practical) to understand why 

perturbation series probably diverge than to settle the issue with full rigour. Even 

at this less ambitious level the topic continues to surprise. While probably not 

actually wrong , the standard (indeed textbook) explanations of Dyson and Lipatov 

increasingly look to be of secondary importance and the actual culprit to be the 

structure of R G invariance. Thus the divergence is caused by a general feature 

common to all renormalisable theories, rather than by particular solutions of the 

classical field equations. West was certainly premature to announce that analyticity 

and renormalisability alone could be responsible, but actually these appear not to 

fall too far short of sufficiency; Brown and Yaffe's result is a trivial consequence 

of these assumptions and by itself stongly suggests the existence of the renormalon 

singularities. 

Similarly the Common Effective Charge Approach uses the properties of the R G 

invariance, expressed through the order-by-order scheme invariants, to establish the 

divergence in a wide set of cases. Here renormalisability is not augmented by ana

lyticity and some additional assumption, but by a sequence of trial guesses at how 

p( 3) and might be related. The simplest case, that of p( 3) = p( 4) was discussed 

sfa 
a + bcp + cd> 4> 

Wa + b<j> 
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in detail and it was shown that the series are not only divergent, but probably fao 

torially so also. This is liable to be true much more generally. Futhermore, and this 

is one of the strengths of this approach, truncations of these series can be compared 

to the non-perturbatively generated functions that they are attempting to approx

imate. That simplest case is particularly encouraging in the way it suggests that 

not only can the first few terms in the series be a good approximation, but that the 

large-order behaviour sets in slowly enough for the breakdown due to the divergence 

to be delayed. If this pattern is found to hold in most cases, then perturbative Q C D 

may be capable of much greater accuracy than anticipated hitherto. The only way 

to be sure of this would be to greatly increase the number of cases encompassed by 

the method; this will probably require a conceptual breakthrough if it is to be done 

efficiently, but the field is ripe for exploration. 

Even if interpreted not quite so optimistically, these results presage well for sort

ing out how close to asymptotia (in energy) the various Q C D observables are. The 

single N N L O calculation sits uncomfortably with current data, but several more 

theoretical results of this type should be able to clarify matters if in most circum

stances ApQNLO is a good approximation. Together with improved experimental 

results, extra N L O terms, analyses of energy dependence and refined lattice calcu

lations, these hold out the prospect of greatly tightening our testing of the theory 

and hence the A extracted. But, whatever happens, Q C D is likely to continue to 

surprise for some time to come. 
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A P P E N D I X 1 

The recurrence relation for 0n derived from the o(h ) correction is 

- 8 ( 2 n + l ) (2n + 3)(35n 2 - 2 0 ) / ? n + 1 

=(3360n 4 + 672?z3 - 1992n 2 + 696n + 720)/3„ 

+ (3360n 4 - U 4 2 4 n 3 - 10920ra2 - 16296n + 720)f3n_1 

+ (1120n 4 - 7840n 3 - 4120n 2 - 14840n + 14160)/? n_ 2 

- 72(2ra + l ) (7n + 2 ) A e n + 1 

+ ( -3024n 2 - 3528n - 3600)en 

+ (-3024?! 2 - 4680n - 8496)e n_ 1 

+ ( -1008n 2 - 1944n - 5040)e n_ 2 

+ 2 1 6 ( £ n _ 1 + 3Sn_2 + 3 6 n _ 3 + 8n_A) 
n n—1 

i=0 «'=0 
n 

- ]T 2 (* + ! ) ( 4 8 0 n + 1 2 9 6 i + 888)/?,en_t-
1=0 

n-1 

- J^(2592i 2 + 960in + 960n + 2640i + 912) / 9 i e n _ i _ 1 

i'=0 

n n—1 

+ 864 ^n-i + 864 £ 
i=0 t=0 

n - 2 

+ 8 6 4 £ ( i + 3 ) ( n - i - l ) f t e » - i - i 
i=0 
n-1 

+ 864]T(i + l ) (n - i ) A e « - i 
»=0 

and it holds for n > 4. Previously undefined pieces are 

/ ! ( n , i ) =560n 4 - 896n 3 - 1700n 2 + 2592i 4 - 2808i 2 - 5184i 3n + 5616i ! 

- 1512i 2n - 3024m 3 + 1512in 2 + 2808m - 172n + 192 

144 



and 

/ 2 ( n , i ) =560ra4 - 896n 3 - 3860n 2 + 2592i 4 + 5184i 3 + 5976i 2 - 5184i 3n 

+ 5616i 2 n 2 - 3816i 2n - 3024m 3 - 2376m 2 - 6912m - 4996n 

+ 1944* - 600. 

The 8n are the coefficients of 

( ^ ) = * 3 ( * o + M 3 + M 4 + -..) 

and are analogous to the e„, with 

n n—1 

e° <=o t=0 

A e n + 1 is the part of e n + 1 without any dependence on / 3 n + 1 . 
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