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A B S T R A C T 

On the Galois Group of the Modular Equation 

by 
Catherine Jane Barry 

This thesis looks at a method of generating infini tely many extensions of the rationals 

w i t h Galois group P G £ 2 ( Z n ) . Firstly, the Galois group of the modular equation 

over Q ( j ) is shown to be PGL2C%n), by considering the n- th division points on 

an elliptic curve. Then, using Hilbert 's Irreducibil i ty Theorem and work discussed 

by Lang, we show that there are infini tely many rational values o f j such that this 

Galois group does not reduce in size. Finally, an equation whose roots generate the 

same extension as the modular equation but which has much smaller coefficients is 

found, based on work by Cohn. 
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I N T R O D U C T I O N 

This thesis is concerned w i t h the 'inverse Galois problem', that is, finding field 

extensions w i t h a certain given Galois group. In this thesis that group is PGLzi{En), 

the projective general linear group of 2 x 2 matrices w i t h entries i n Z n . This thesis 

is divided into four chapters. 

Chapter 1 comprises of relevant background material on elliptic and modular 

functions. Most of the results are standard, and so the proofs are only sketched. 

Further details can be found in [1], [13], [15] and [17]. 

Chapter 2 is concerned w i t h the work of Macbeath i n [11], i n which he proves that 

the Galois group of the modular polynomial $n{j,j(T/n)) over is PGLitfL*). 

I n this chapter a parallel approach is adopted, using the n- th division points on an 

elliptic curve, as studied by Lang in [9], and the connection w i t h Macbeath's work 

is shown. 

Chapter 3 is devoted to two different methods of obtaining infini tely many ex­

tensions of the rationals w i t h the same Galois group, P G L 2 ( Z n ) . The first relies on 

Hilbert 's Irreducibili ty T'heorem, (see [10]), and shows that for a fixed n there are 

infini tely many rational values of j where the modular polynomial generates such an 

extension. The second method relies on work discussed by Lang, [9], to show that 

there is only a finite set of primes p for which the Galois group of $p(j)j(T/p)) over 

Q does reduce in size. Using this method, two examples of curves which generate 

the required extension are given. 

I n looking at all the relevant research carried out subsequent to Macbeath's pa­

per, i t was found that a paper by Cohn, [3], which is itself based on work by Pricke, 

[4], would lend itself to fur ther study. Thus, in the final chapter, a method of deriv­

ing an alternative modular polynomial, / „ , w i t h smaller coefficients is investigated, 

since the usual modular polynomial <J>„ is known to have extremely large coefficients, 



making any computations for large n cumbersome. $ „ is defined to be the product 

of differences between j(r) and the conjugates of j ( r / n ) , where j(r/n) is invari­

ant under the subgroup T°(n) of T, and the quotient space H / r ° ( n ) is a Riemann 

surface over H / T of genus g. By considering the Atkin-Lehner involution, another 

quotient space, G*, is found, of genus g*, over which H / r ° ( n ) is a double covering. 

For the cases where g* = 0, a pair of rational functions Fn(t, ± s ) are found, where t 

is a single-valued funct ion on G* which becomes double-valued on H / r ° ( n ) . These 

two functions then generate the 'two-valued' modular equation. 

Two cases are looked at; n = 13, where g = 0, and n = 11, where 5 = 1. For the 

first case i t was actually found that the function s could be dispensed w i t h , in that 

Q (;', t, s) = Q ( j , t). In order to examine the second case i t was necessary to consult 

Fricke, to find how the functions t are s were chosen. 

Finally, in Chapter 4, the discriminants of the two modular equations were in ­

vestigated. The discriminant, d, of $ n is divisible by many squares of primes, which 

are found not to ramify, whereas the discriminant, d*, of / „ is found to divide d, 

and thus / „ has smaller coefficients. The values of r for which j(r) may appear i n 

the discriminant are found in both cases. 
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C H A P T E R 1 

1.1 Elliptic Functions 

We start by denoting by 

Z the ring of integers, 

Q the ring of rational numbers, 

M the ring of real numbers, 

C the ring of complex numbers, 

C = <D U { i o o } , the extended complex plane, 

H = {z 6 € , I m z > 0 } , the upper half plane, 

and H * = H U {zoo} U Q. 

We also denote by 

GL2(R) the set {A € M2(R) \detA = ± 1 } , 

SL2(R) the set {A e M2(R) \ detA = 1} . 

for a field R. 

We start by defining a lattice in <D: let u>i,u2 G <D, w i t h I m ( ^ ) > 0. Then the 

free abelian group, or lattice, A, is defined by 

A = A(UI,UJ2) = {mu>i + nu>2 | m, n E Z } . 

Two pairs, ( w i , w 2 ) > ( w i , w 2 ) w i t h vi,U2,v[,u2 € C, I m ( ^ ) > 0, I m ( ^ ) > 0, 

M2(R) the set a, b, c, d £ R 

define the same lattice i f and only i f there exists A = 
b 

€ GL2CZ) such that 

( u>2 ) ( J2 ) i.e. 

u>[ = au>i + ku2 

1 



U>2 = CLU\ + dh)2 . 

A function / of a complex variable is called periodic w i t h period u, i f 

f { z + u) = f ( z ) 

whenever z, z + u are in the domain of / . 

A function / is doubly periodic i f i t has two periods u>i,u>2, such that jj£ ^ ]R. 

Thus, a doubly periodic funct ion w i t h periods u>i,u)2 takes the same value on all 

points of the lattice A(u/i ,u;2) . Let / have periods ui,U2, ^ ^ R . Then ( w i , ^ ) is 

called a fundamental pair of periods i f every period of / is of the fo rm mu>\ + nuj2, 

w i t h m , n £ Z . Every fundamental pair of periods forms a lattice of parallelograms, 

which are called period parallelograms . 

A function / is called elliptic i f 

( i ) / is doubly periodic, 

( i i ) / is meromorphic ( i.e. its only singularities i n the finite plane are poles). 

Constant functions are examples of elliptic functions. In order to find examples of 

non-constant elliptic functions we need: 

Theorem 1.1.1: I f an elliptic funct ion / has no poles in a period parallelogram, 

then / is constant. 

^roof: Clear f rom Liouville's theorem, since i f the funct ion has no poles, i t 

must be analytic, and bounded. 

Theorem 1.1.2: The sum of the residues of an elliptic funct ion at its poles i n 

any period parallelogram is zero. 

Proof: Since a meromorphic funct ion has only a finite number of poles or ze­

roes, the period parallelogram may be translated to a congruent parallelogram w i t h 

no poles or zeroes on the boundary. The contour integral around any such parallel­

ogram w i l l be zero, by periodicity. Now apply Cauchy's residue theorem. 

Theorem 1.1.3: The number of zeroes of an elliptic funct ion in a period par-
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allelogram is equal to the number of poles, each counted w i t h multiplicities. 

Proof: Apply the principle of the argument to the period parallelogram. 

The number of zeroes (or poles) in any period parallelogram is called the order 

of the funct ion. Thus every non-constant elliptic funct ion has at least two zeroes 

(or poles ) i n each period parallelogram. Weierstrass decided to construct an elliptic 

funct ion w i t h a double pole at z = 0, and thus considered the funct ion 

However, we have 

Lemma 1.1.4: I f a is real, the infini te series 

E -
a>6A,u>#0 

converges absolutely i f and only i f a > 2. 

Thus, the series 

1 
f . ^ (z - u>)2 

does not converge absolutely. So instead we consider 

m W = X . ( ( ^ ? " ^ ) -
Since 

1 1 z(2u)-z) 1 
7 V2 2 = ~ 2 ? \2 W ~3 as W -> OO, 

we know that m(z) converges absolutely and uniformly, by the Weierstrass M-test. 

However, m(z) is not periodic, but + m(z) is, as w i l l be shown. Thus we define 

3 



This funct ion is known as the Weierstrass p function. 

Theorem 1.1.5: The funct ion p ( z ) defined above is an even funct ion of z w i t h 

periods u>i and L>2- I t is analytic except for a double pole at each period u> i n A. 

Proof: The only point at issue is the periodicity of p (z) . Since p (z) is uniformly 

convergent, we can differentiate term by term to get 

1 

u>eA 

Then, for all A E A, 

>'(*) = - 2 E 7 « 
w ^ ( z - u f 

= p ( z ) 

for a = u> — A £ A. Thus p ' (z) is A-periodic. Put t ing A = w and integrating, we get 

p (z + u) = p (z) + c, 

for a constant c. Now, for z = — u>/2 we get 

p (w/2) = p ( - w / 2 ) + c = p (w/2) + c, 

since p ( z ) is even. Thus c = 0, and this establishes the periodicity of p ( z ) . 

Theorem 1.1.6: Let r— min { |u;| : u> / 0 } . Then-for 0 < |z | < r we have 

1 
z n=l 

where 

G f c = £ for ib > 3. 

Gfc is called an Eisenstein series of order k. 

Proof: Consider m(z ) = p ( z ) — ^ . This is holomorphic in a neighbourhood 

of 0, has a simple zero at 0, and is even. Hence 

-22. m*2*) (0) z2k 

»(*) = E 

4 



Since m(z) is absolutely convergent, we can differentiate te rm by term 2k times, 

Thus 

m < » > ( Z ) = £ 
u)6A,u;^0 \ ' 

So 

nZHm - ( 2 4 + i) y _ L _ 

= (2fc + l ) G 2 f c + 2 . 

where G& is defined as i n the theorem. Hence the result. 

Theorem 1.1.7: The funct ion p(z) satisfies the non linear differential equation 

[ p'(z) ] 2 = 4 p\z) - 60 G 4 p (z) - 140 G 6 . 

Proof: By the previous theorem, the Laurent expansion at z = 0 is 

p'(z) = ^ + 6 G 4 z + 20 G 6 z 3 + F(z), 
z 

where F ( z ) is some power series in z which vanishes at z = 0. Therefore 

[ p ^ ) ] * * 2 £ G 4 _ 8 0 G z ) . 
z u z 2 

Also 

4 p 3 ( z ) = ^ + ^ + 6 0 G 6 + F ( z ) , 
z" z 

and hence 

[ p'\z) f - 4 p 3 ( z ) + 60 G 4 p (z) = -140 G 6 + F(z). 

Since the left hand side has no pole at z = 0, i t can have no poles anywhere i n a 

period parallelogram, and so must be constant. Therefore this constant must be 

—140G6, and so 

[ p'(z) ] 2 = 4 p 3 ( z ) - 60 G 4 p (z) - 140 G 6 . 

We now let g2 = 60 G 4 and g$ = 140 GQ. We call g2,g3 the Eisenstein invari­

ants . Then p ( z ) satisfies 

[p'(z)}2 = 4 p 3 { z ) - g 2 p { z ) - g 3 . 



Let 

e i = fp{T)> e 2 = p lyJ ' e 3 = p (r-r~)• 
Then these axe the distinct roots of the cubic equation for p'(z) : 

3 

Theorem 1.1.8: 4 p3(z) - g2 p (z) - g3 = 4 f j (p (z) - e;), 
t=i 

where the e, are distinct. Hence g2 — 27g3

2 ^ 0. 

Proof: p'(z) = - 2 — - — T T , and thus p ' (z ) has a pole of order 3 at each 

w £ A. Also, since p ( ^ ) is even, p'(z) is odd. Let u>3 = u/ a + u/2. Therefore, for 

i = 1,2,3, = p'(wi-\ui) = p ' ( - | a ; , ) , by periodicity. But , since p'(z) is odd, 

p'(-\wi) - -p'{\ui). Therefore, p'(^u>i) = 0 for i = 1,2,3, and so | w 2 , 5W3 

are zeroes of p'(z). Since p'(.z) has order 3, these must be simple zeroes of p', and 

so p' has no other zeroes in a period parallelogram w i t h vertices 0, a>i,u>2,o;3. 

Now consider the elliptic funct ion p(z) — for i = 1,2,3, which has a double 

pole at each w £ A. Thus, by Theorem 1.1.3, p(z) — must have two zeroes in the 

period parallelogram. Since p(z) — t{ — 0 for z — |u>i, and p'(^Wi) = 0, then |a>; is 

a double zero of p (z) — ej, and so p (z) — e; can have no other zeroes in the period 

parallelogram. Thus the e, are all distinct, and I $ = 1 ( p ( z ) — e )̂ has the same zeroes 

and poles as [p'(,z)] 2 . 

The discriminant of the cubic polynomial 

4 x 3 - g2x - g 3 

is g2 — 27 <73

2. The discriminant of a polynomial w i t h distinct roots does not vanish, 

so w i t h x = p (z), we have A = g2

3 — 27#3 2 ^ 0 . 

I n the next section we w i l l show that #2)03 and the modular invariant, j , defined 

as 

. _ 1 2 V 
3 <723 - 2 7 P 3

2 

are all examples of modular functions, and derive some properties of them. 
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1.2 The Modular Group, Modular Functions and Modular 
Forms 

The homogeneous modular group , T, is defined to be SL2CZ). Thus T acts 

on the set of pairs (u>2,u>2) w i i w 2 £ ^>^m(z^) > 0 by 

b ' 
( : 1 H : $ ) ( : ; ) - * - ( : 

This is well defined, since 

awx + bw2\ T ( ( a & + b)(c(%) + d) 

\u/3J \cwi + du2J (c(^) + d)(c(^) + d)^ 
U>2' ' v VU>2 ' 

lm(ad(%)-bc(%)) 

\c(%) + d\> 

> 0 , 

since ad — be = 1. Corresponding to each homogeneous transformation there is an 

inhomogeneous, or Mobius transformation, 

cz + d \ c d J 

The Mobius transformation is defined for all 2 £ C except for z = — d/c and z = ioo. 

We extend the definition to all of (D by defining 

A(ioo) = -
d ° 

A (—) = ioo 
c 

and 

i f c ^ 0, 

A (ioo) = zoo i f c = 0. 

These Mobius transformations fo rm a group under composition of mappings, and 

we call this group the inhomogeneous modular group, T. 

Clearly A and —A determine the same Mobius transformation, for A G I \ so we 

define the homomorphism <j>: T —> t by 

z ^ A { z ) = ^+l f o r A = ( a M e r , 
v ' cz + d \ c d J 

7 



which has kernel { ± 1 } . Thus 

{±1} 

Theorem 1.2.1: The homogeneous modular group T is generated by the elements 

T - { o \ ) • s - ( ! o X ) 

of infini te order and order 4, respectively. Thus f is generated by transformations 

T : z H-• z + 1 and £ : z i — • — of infini te order and order 2 respectively. 
z 

Proof: By the reduction theory of integral matrices we can diagonalize any 

matr ix i n T by premultiplying and postmultiplying by the matrices 

- ( ! - . 1 ) . ' - ( ! i ) . ^ ( i ! ) ' v - ( " . 1 - 0 -
But the only diagonal matrices i n T are / and —I = V, and V = S2, U = TST, 

hence our result. 

Since T, S generate V, so do S and ST of order 2 and 3 respectively. I n fact f 

is isomorphic to the free product 

r ^<s>x<sf> . 

Let r , r ' 6 H*. Then r , r ' are said to be equivalent under T i f r ' = A{T) for 

some A £ T. This is an equivalence relation, since T is a group, which divides H* 

into disjoint equivalence classes, known as orbits. The orbit T r is the set of all 

points of the fo rm AT where A E T. 

Definitions: A fundamental set of f for H* is a set containing exactly one 

point f r o m each orbit of H*. 

A fundamental region of f for H* is an open subset F? of H* such that 

(i) no two distinct points of Ff are equivalent under V, 

( i i ) i f r 6 H , there is a point T' in the closure of Ff such that r ' is equivalent 

to r under T. 

8 



f has infini tely many fundamental regions, of which the following is the standard: 

F r = { r € H | | r | > l , | R e T | < i } . 

This is shown by the shaded area below: 

v 

T = U + IV 

r = 1 

u 
0 

Definition: A function / is called a modular function (of level one) i f 

( i ) / is meromorphic in H (i.e. holomorphic except for poles), 

( i i ) f(A ( T ) ) = f ( r ) for all A G f , r G H * , 

( i i i ) / has a Fourier expansion of the fo rm 

oo 

f ( r ) = £ a(n)e2™T meZ, 
n=—m 

oo 

n=—m 

where we define q = e 2 i r , r , and qa = e2*taT for all a G C. 

Thus / is analytic i n H , except possibly for poles, and is invariant under all 

transformations of T. A funct ion satisfying the t h i r d condition is said to be mero­

morphic at ioo. I f m > 0 w i t h a(—m) / 0, we say that / has a pole of order m 

at ioo, and that / ( i o o ) = oo. I f m < 0 we say that / is analytic at ioo, and that 

9 



/ ( i o o ) = 0 i f m < 0, / ( t oo ) = a (0) i f m = 0. 

Definit ions: A complex valued funct ion / of two complex variables u>i,u>2, de­

fined for o>i/u>2 € H , is called a homogeneous modular form of weight 2k, 

k e Z i f 

( i) / (Awx, Aw 2 ) = A - 2 f c / ( " i , wa) V O / A G C , 

( i i ) / ( a w i - I - &w2,ca>1 + ^ 2 ) = / ( w i . a ^ ) V ^ ° * j E I \ 

( i i i ) / ( r , 1) is holomorphic i n H , 

( iv) / ( r , 1) has Fourier expansion 
00 

/ ( r , l ) = 5 > ( " ) « " • 
n=0 

Thus, by ( i i ) , / is a funct ion of the lattice A(wi ,u ;2) -

A funct ion g of one complex variable r = Ui/^ is called an inhomogeneous 

modular f o r m i f i*>22k 9 = / ( ^ l ) ^ ) for / ( w i , ^ ) a homogeneous modular 

form. Thus, / ( r , 1) is an inhomogeneous modular form. 

I f g is an inhomogeneous modular fo rm, then (i) and ( i i ) imply that g satisfies 

Conversely, (v) implies ( i i ) ; and (1) is t r iv ia l . 

T h e E i sens te in invariants: 

Since 

G2k = X ) ~2k = £ Ccr - I - d)2k 

u,#0,m€A W (c,d) # (0,0) T U > 

is absolutely convergent for A; > 2, we see that G2k is an inhomogeneous modular 

fo rm of weight 2k. Thus 

92 = 6 0 G 4 , 

93 = H 0 G 6 , 

10 



are modular forms of weight 4 and 6 respectively, i.e., 

0 2 ( ^ 1 , Au; 2) = \~*92(^1, u 2 ) , 

9 3 ( ^ 1 , ^ 2 ) = A ~ 6 5 3 ( u / i , w 2 ) • 

They can also be thought of as functions of one variable by pu t t ing 9 ( r ) = 9 ( r , 1) 

for r — LUI/U>2. 

The Fourier expansions for #2 5 03 are given by 

92{r) = ^ { l + 2 4 o f > 3 ( A 0 < ? * } 

o_6 ( 00 1 

where 

<Ja{k) = Y<da. 
d\k 

(see [1], p.20, Theorem 1.18) 

T h e discriminant: 

The discriminant was defined in 1.1 to be 

A ( r ) = 9*\T) - 2793

2(r) . 

Since A ( r ) ^ 0, and g2,93 are modular forms of level 4 and 6 respectively, A ( r ) is 

a modular fo rm of weight 12. 

A ( r ) has Fourier expansion 

A ( r ) = ( 2 7 r ) 1 2 5 > ( " ) < 7 n 

n = l 

where r (n) 6 Z , w i t h r (1) = 1, r (2) = - 2 4 . 

(see [1], p.20, Theorem 1.19.) 

11 



T h e modular invariant: 

The modular invariant, j , is defined to be 

1 2 W i , w 2 ) 
J ( ^ 2 ) = A ( r ) • 

Since A (0/1,0/2) ^ 0,and g2 (0/1,0/2), A (0/1, o/2) are homogeneous modular forms of 

the same weight, we have that j (0/1,0/2) is a modular funct ion of level one, i.e., 

j (Ao/i, Ao/ 2) = j (0/1, o/2) V O ^ A e C , 

and (ar + fc\ . . . , , / a 6 \ A „ 

I n particular, for r € H , we have 

i ( ! » r ) = 3 (w i .wa) . 

Thus, j is effectively a funct ion of one complex variable, r = o/i/o/ 2 . 

Using the Fourier expansions for g2 ( r ) and A ( r ) , we can derive the Fourier 

expansion for j ( r ) : Let q = e 2 i r , T . Then 

923(r) = 5 1 ^ ( 1 + 2 4 0 ? + - ) S 

= 5 1 T » (1 + 7209 + . - . ) 

and 

So 

A ( T ) = 2 1 2 T T 1 2 ( G _ 2 4 9

A + • • •) 

( r ) = - (1 + 720 9 + • • •) (1 + 24 9 + • • •) 

= - (1 + 7449 + • • •) 
q 
1 0 0 

= - + 7 4 4 + V 0(71)9" 

where c (n ) € Z . Thus j ( r ) has a simple pole at ioo. 

12 



The c (n ) have been calculated for n < 100, and various congruence conditions 

have been found, for example 

c(5n) = 0 (mod 25) . 

The values of c (n) for 0 < n < 6 are given here, as they are used in later calcula­

tions. 

c (0) = 744, 

c ( l ) = 196,884, 

c(2) = 21,493,760, 

c(3) = 864,299,970, 

c(4) = 20,245,856,256, 

c(5) = 333,202,640,600, 

c(6) = 4,252,023,300,096. 

Definit ion: Let / be a modular fo rm of weight 2A;, not identically zero, and 
/ 

let r 6 H \ {zoo}. The smallest integer n such that ^ — is holomorphic and 

non-zero at r is called the order of / at r , and is denoted by vT ( / ) . 

I f / is a modular fo rm of weight 2k, then / ( r ) = f(r + 1), so we can express / 
oo 

as a funct ion of q = e2ir,T, and we denote this funct ion by / . Thus f(q) = an qn . 
—oo 

Using this we can define V i o o ( / ) as the order for q = 0 of the funct ion f(q). 

T h e o r e m 1.2.2: For a non-zero modular funct ion / , the number of zeroes of 

/ is equal to the number of poles of / , in the closure of F?, taking into account their 

orders. 

Proof: Since / has only f ini tely many poles and zeros, we integrate around the 

contour R: 

13 



(1) 

( 5 ) \ + iM 

R 

(2) ( 4 f 

(4) 

0 + 1 

where we take M large enough that all the zeros and poles of / are inside R, The 

edges ( l ) , ( 4 ) and (2),(3) are equivalent in that i f / has a zero of pole on any of these 

edges, then i t also has a zero or pole on the equivalent edge. Only one of the zeros of 

poles is counted as belonging to F f . Also, the order of the zero or pole at g = e 2*'/ 3 

is to be divided by 3 since the angle at g is 7r/3 and g is equivalent to g + 1, and the 

order of the zero or pole at i is to be divided by 2 since the angle at i is IT. Suppose 

that / has a zero or pole of order m at ioo. Then / has Fourier expansion of the 
oo 

fo rm ^2 am Qm- Substituting for this we see that 
m 

/ Ldz= ^-dz = -2Trim. 
J(5) f J\+iM f 

Then we apply the principal of the argument. 

We now prove 

T h e o r e m 1.2.3: Let / be a non-zero modular fo rm of weight 2k. Then 

ViooV) + \ v i U ) + \ v e { f ) + E « r ( / ) = \ . 

where g = e 2 7"/ 3. 
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Proof: Since / has weight 2k and A is a modular fo rm of weight 12, then 

g = f 1 2 / A 2 k is a modular funct ion. Thus we can apply Theorem 1.2.2 to g. But A 

only has a simple pole at ioo, and so ^ ^ ( A 2 * ) = 2k. Thus we must have that 

V t o o ( f ) + \ v i { f ) + \ v e ( f ) + £ « r ( / ) = ^ = \ . 

We use this to prove 

T h e o r e m 1.2.4: The funct ion j takes every value exactly once in the closure 

of F f . A t the vertices, 

j ( i o o ) = oo, j(g) = 0, j(i) = 1728, 

and j ( r ) has a first order pole at r — ioo, a triple zero at r = g, and j ( r ) — 1728 

has a double zero at r = i. 

Proof: Let / ( r ) = j ( r ) — c for c 6 C. Then / ( T ) is a modular funct ion, which 

has a simple pole at ioo. Applying Theorem 1.2.3, 

\ v x ( f ) + \ v e ( f ) + £ V T ( f ) = 1. 

Since / ( r ) is holomorphic on H , all the terms on the LHS are > 0. Thus there is 

only one term on the LHS, and so 

M A VM)> M f ) ) = ( 2 , 0 , 0 ) , (0 ,3,0) or ( 0 , 0 , 1 ) . (*) 

Thus / is zero exactly once in F? \ {ioo}, and adding j ( i o o ) = oo gives a unique 

r 6 Ff such that j(r) = c. The multiplicities follow f r o m (*) . 

T h e o r e m 1.2.5: Every modular funct ion can be expressed as a rational func­

t ion of j , and conversely. 

Proof: Suppose / is a modular funct ion, w i t h zeroes of order r*, (k = 
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1 , . . . , m ) and poles pi of order sj, (/ = 1 , . . . , n ) . Let 

m 

9 ( r ) = ^ , 
UU(r)-j(pk)Y' 
1=1 

where a factor 1 is inserted whenever z*, or pt equals ioo. Then g is a modular 

funct ion w i t h the same zeroes and poles as / on the f ini te plane, w i t h the same 

multiplicities. By Theorem 1.2.2, i f / has a zero or pole at ioo then g also has a 

zero or pole there, w i t h the same multiplici ty. Thus f / g has no zeroes or poles, and 

so must be constant. Hence / is a rational funct ion of j . 

This result shows that the field of modular functions of level one is C ( j ) . 

Macbeath's paper actually requires a more specific result, for which we need some 

more theory: 

Definit ion: A n inhomogeneous modular form is called a cusp form i f i t is zero 

at ioo. By this, we mean that in the Fourier expansion 

/ ( r ) = £ 6 ( n ) * \ 
n=0 

we have that b (0) = 0. 

Let Mfc denote the C -vector space of modular forms of weight 2fc,and Mj? denote 

the C -vector space of cusp forms of weight 2k. Then we have: 

T h e o r e m 1.2.6: ( i) The only modular forms of weight 0 are the constant functions. 

( i i ) I f k < 0 or k = 1, the only modular fo rm of weight 2k is the zero funct ion, i.e., 

Mk = 0 for k < 0,k = 1. 

( i i i ) The only cusp fo rm of weight 2k, k < 5, is the zero funct ion, i.e., M% = 0 for 

k < 5. 

Proof: ( i) A modular fo rm of weight 0 is a modular funct ion, and since i t is 

analytic everywhere, including ioo, i t must be constant. 
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( i i ) Let / be a non-zero element of M * . Applying Theorem 1.2.3, 

Vioo(f) + \ v i { f ) + \ v , ( f ) + £ M / ) = 

all the terms on the LHS are > 0. Thus, k > 0, and k ^ 1, since 1/6 cannot be 

wr i t ten i n the fo rm / + m / 2 + n /3 , w i t h l,m,n > 0. 

( i i i ) I f A; < 5, then v i o o ( f ) = 0, by Theorem 1.2.3, and so / is not a cusp fo rm unless 

f = o. 

We can now state the result used by Macbeath: 

T h e o r e m 1.2.7: Any modular funct ion / ( r ) which is holomorphic on H can 

be wr i t t en as a polynomial i n j(r), w i t h coefficients in the field generated by the 

Fourier coefficients of / ( r ) . 

Proof: Suppose / ( r ) has Fourier expansion 

/ ( r ) = E a " « " ' ? = e2™. 

Also, j(r) is holomorphic on H w i t h Fourier expansion 

1 °° 
j(r) = - + ^2cnqn, w i t h c n 6 

Then, the new funct ion 

oo 

f ( r ) - o . m [ 7 ( r ) r = £ 
n = — m + l 

is also holomorphic on H . 

Continuing in this way, we f ind a funct ion 

g(r) = f - a . m j m - 6 _ m + 1 j r o - 1 - - V l j - z 

which is a modular funct ion of weight 0, which is holomorphic at zoo, and vanishes 

there. Thus g ( r ) is a cusp fo rm of weight 0. By Theorem 1.2.6 ( i i i ) , = 0 and so 

<7(r) = 0, and so / is a polynomial in j(r), w i t h coefficients in the field generated 

by the a n 's. 

17 



Macbeath also uses a corollary to this theorem, 

Coro l lary 1.2.8: Any modular function having Fourier series w i t h rational co­

efficients belongs to the field Q ( j ( r ) ) . 

Proof: Suppose / ( r ) has poles pi € H , of orders Zj. Let 

9(r) = f ( r ) U ( j ( r ) - j ( P i ) ) z ' , 
p> 

w i t h the product being taken over all the poles of / ( r ) . Then g ( r ) is a modular 

funct ion having no poles on H , and is thus a polynomial i n j ( r ) , by the above 

theorem, w i t h coefficients i n (D. Thus / £ c ; j ' = ^2^3* ^or a ^n^e s u m o v e r h 
i i 

where c^di € C, j* £ Q((<?))• Thus the c^di generate a vector space over Q, which 

we denote by < r u . . . , rn > , and so a = ] T 7 i f c rk, <i, = £ r * for 7»*> Sik e Q. 
it * 

Thus 

£ ( E W / - £ W ) r* = 0 . 

Since the rk are Unearly independent over Q, they must be linearly independent 

over Q ((<?)), and so £ 7»* 3%f ~ ^2 3* = 0 for all k. But for some k = k0 we must 
» » 

have that £ 7^ j* ^ 0, and so 
i 

/ = ^ 7 ^ 0 ' ) -
2^1iko3 
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1.3 Transformations of order n, and the Modular Polyno­
mial 

Before we can define the modular polynomial, we must first introduce transfor­

mations of order n. Let 

A „ = | M = ^ ° ^ a,b,c,d e TL, \M\ = n > 1, (a, b, c,d) = l j 

We call M a matr ix of order n, and the corresponding linear transformation a 

transformation of order n. Clearly, mult iplication on the left or right by elements 

of T maps A „ into itself. Thus we study the right cosets TM for M G A N . 

Two transformations M, M' 6 A N are congruent modulo T, 

M' ~ M or M' = M mod T , 

i f and only i f there is an S € T such that M' = SM, i.e., they lie i n the same orbit 

of A N under T. This defines an equivalence relation. 

T h e o r e m 1.3.1: The set 

{ ( o d ) ° < a ' ° - b < d l a d = n ' ( a , b , d ) = 1 1 

is a complete system of representatives of the equivalence classes of A N mod I \ 

Proof: Firstly, for any M = ^ ^ ^ j 6 A N , there is a matr ix M' = ^ ^ d' ) ^ 

A „ such that M ~ M': 

We need 5 = ( " £ ) G F s u c h t h a t S M = M ' ' i , e ' 

( a 0 \ ( a b \ ( a' V \ 
\ 7 6 ) \ c d ) - { 0 d' ) • 

Choose 7,6 such that 7a + 6c = 0, (7, 6) = 1, and then choose a, ft such that 

aS — /?7 = 1. 

Secondly, any two transformations in A N , 

/ a' V \ 

( s i ) -M = I ; , 1 , M ' = 
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are congruent i f and only i f 

a = ± o ' , d = ±<f, b = ± 6 ' ( m o d d), (*) 

w i t h the same sign taken in each case: 
a p 

I f M' ~ M then there exists r = I ~ £ J € R S U C H T H A T 

/ a ' b' \ _ ( a P \ ( a b \ _ ( aa ab + (3d \ 
{ 0 d! J ~ V 0 A 0 d j ~ ^ 7 a jb + 6d ) • 

Thus 7 = 0, and a<5 — 76 = 1 gives a = 6 = ± 1 , so a' = ± a , d' = ±d. Hence, 

b' = ± 6 + /ta 

= ± 6 (mod d) 

Conversely, i f (*) holds, then 

/ a r̂f - a '6 + ab' \ 
n 

\ 0 
all' 

n J 

• ( *' £ ) 
e r 

Thus M' = TM for some T G I \ 

The theorem follows directly f r o m these two results. 

The number of equivalent transformations is given by: 

T h e o r e m 1.3.2: The number iff (n) of equivalence classes of A „ mod T is given by 

(") = " I l ( i + ; ) 
pin V P/ 

Proof: Firstly, we consider the case for n = p, a prime. Then by Theorem 

1.3.1, the representatives of the equivalence classes are given by 

5 ! ( 0 p ) 
and for 0 < t < p. 

Thus 1/) (p) = p - f 1. 
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For n a positive integer, we must count the number of matrices of the type in 

Theorem 1.3.1. For fixed rf, a = n/d is determined, so we must find the number of 

possibilities for b. Let e = (a, d). Then there are — <f) (e) integers which are relatively 

prime to e. Hence 

V-(n) = E % ( e ) . 
d\n e 

Since <f> is a multiplicative funct ion, then so is il> i-e., i f ( n i , n 2 ) = 1 then ^ (nx, n 2 ) = 

ip (ni) ip (n2). For, 

^(ni)V»(n2) = £ — < (̂ei) £ — < (̂e2) 
dllni e i d 2 |n 2

 e 2 

• l i lniAlna 6 1 6 2 

= i>{nx,n2) 

Thus i t suffices to study the case when n = pk,p prime, k 6 W . 

v s 0 (P fP ) 

*=1 p 
= l + p * + p - * - l 

= p * ( l + r ) 

Hence the result. 

We can also show that T acts transitively on the left and right cosets of A „ : 

T h e o r e m 1.3.3: For every M £ A n there exist 7 ,7 ' € T such that 

i.e., T acts transitively on the left and right cosets of A n . 
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Proof: Since, in the proof of Theorem 1.3.1, we showed that every M G A n is 

equivalent to a matr ix of the fo rm ^ ^ ^ | G A » , we can take M to be ^ ^ ^ ^ 

wi thout loss of generality. 

We must show that for every M = ^ ^ ^ ^ 6 A n there is a 7 = ^ ^ ^ j 6 T 

M o ? ) 
such that 

M"S I : I e r . 

But 

aa — cp 

Sa 
ca — i 

n / 

= 7 

For the r.h.s. to be in T, we must have 

b6 - d/3 = 0 (mod n) , 

da = 0 ( m o d n ) , i.e., d = 0 (mod<!>). 

We can choose d = 6, and then 6-/3 = 0 (mod a ) . Choosing 6 = /3+ta for t G Z gives 

det ( f ) = 1, and hence 7' £ T . Thus M " x 7 ^ j j J ^ = 7', so 7 - ^ 7 ' = ^ J J ^ , 

i.e., 

A 

Hence T acts transitively on A n . 

Let 

di,a2, ,o:^( n ) 

be a complete set of coset representatives for A n under the action of T. Define j0a 

to be j(a ( r ) ) for a G A „ . Then the functions j0(Xi, (i = I,... ,tp (n ) ) are distinct, 

by Theorem 1.2.4, and are permuted transitively by the action of T, by Theorem 

1.3.3. 

V>(n) 

Definit ion: Let $ » ( * ) = U ( X - j 0 a ) . 
«=i 

This polynomial is called the modular polynomial of order n. The equation 

$ n ( X ) = 0 is called the modular equation of order n. 
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T h e o r e m 1.3.4: The coefficients of $ „ ( X ) in terms of X are i n Z[?'], i.e., are 

polynomials i n j w i th integer coefficients. 

Proof: 

•>l> (») V> (") 

*»(*) = I I ( X - joCCi) = £ S m X * W - m , S0 = l . 
t = l m = l 

The coefficients sm are the elementary symmetric functions of the j0cti, and are 

therefore holomorphic on H , and are invariant under T. Thus they are modular 

functions, and so are polynomials in j , by Theorem 1.2.7, i.e., sm = s m ( j ) . 

Let 
oo 

m = - l 

Then 

where 

jo<*i = i ( a , ( r ) ) = j * 6 ^ , for a i = ^ Q j | e A n , 

a, 6, d (E Z , 0 < a, 0 < b < d, ad = n, (a, b, d) = 1 . 

So 

27rt (oT+6/d)m t - m C 
. (ar + b\ ~ 

oo 

= £ Cnq^tJ™, where & = 3* (*) 
m=—1 

Thus, by Theorem 1.2.7, the s T O ( j ) are in Z [ £ n ] , where £ n = e 2 « ' , and are hence in 

Q(&). 

Let cr be an automorphism on Q (£ n)» 

O- : £ n — • 

for some r G Z w i t h ( r , n ) = 1. By (*) we see that a permutes the j 0 « i - Therefore, 

the s m ( j ) are invariant under such an automorphism, so have Fourier coefficients i n 

Z , so by Theorem 1.2.7, s m ( j ) (= Z . Thus we may regard $ n ( X ) as a polynomial 

in the two independant variables X and j over Z , i.e., 

<M*) = = ff(*-i.«i)eZ[x,j]. 
«=i 
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Since V permutes the j0a transitively, and acts as a group on automorphisms on 

the field C (j,j0oti,... , ; 0 c t y ( n ) ) , then $ „ ( X , j ) has degree iff (n) . 

T h e o r e m 1.3.5: ( i) * „ ( X , j ) = $ n ( j , X ) , 

( i i ) I f n is not a square, then is a polynomial in j of degree > 1 , and w i t h 

leading coefficient ± 1 . 

Proof: ( i ) Let a r = ^ ^ ™ ) ' ^ — r — ̂  ( n ) ' Then j0aT is a root of $ n ( X , j ) , 

i.e., 

$ ™ ( i ( r / n ) , ; ( r ) ) = 0. 

Hence 

^n(j(r),j(nr)) = 0. 

So j0aa is a root of $ n ( j , X ) , where a « = ^ Q l ^ ' ^ — s — ^i71)^ 3 r> 

but i t is also a root of $ „ (X, j ) . Since $ n is irreducible, we must have that 

* „ ( X , j ) | $ n ( j , X ) , i . e . , 

$ n ( j , X ) = 9 ( X , j ) $ n ( X J ) 

for some g ( t , j ) G Z [ t , j ] . Then 

$ „ ( j , X ) = ff(X,j)5(j,X)$n(;,X), 

so 

g ( X , j ) g ( j , X ) = l . 

So 

fl(X,j) = ± l . 

I f = - 1 , then $ „ ( ; ' , ; ' ) = - $ n ( j , j ) , i-e., $ n ( j , j ) = 0 , so must be a root 

of $ n ( X , j ) , but $ n ( X , j ) is irreducible over <D ( j ) , so this is not possible. Hence 

g ( X , j ) = 1 and so 

( i i ) Let a = ^ J * j , a G A „ 

As in the proof of Theorem 1 .3.4, we have that 

Jo a = -TTb + ( E ^ ? ^ ^ 
9dC<i \m=0 > 
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and so 
. . 1 1 

3 - J0a = - + r—s 

Since n is not a square, a ^ d, and so there is no cancellation in the polar term, and 

so the leading term in this expansion is either q'1 i f a < d, or £db<l^, i f a > d. 

Thus the leading coefficient i n either case is a root of unity. But , 

$ n ( j , i ) = n 0' -JoCXi), 
i=l 

and so the expansion of $ n starts w i t h 

qtn 

Since $ n ( j , j ) £ Z [ ? ] , c m must be both a root of uni ty and an integer. Hence 

cm = ± 1 , as required. 

T h e o r e m 1.3.6: I f r € H is imaginary quadratic, then j ( r ) is an algebraic integer. 

Proof: Let T € K, R = int (K), and 2 be an algebraic integer such that 

K = Q (z), R = Z [z]. 

I t is always possible to find an element x € R such that the norm of a; is a squarefree 

integer: I f K = <Q ( i ) , then take a; = 1 + i , i f /if = <Q (>/—d), where d > 1 is squarefree, 

then take x = v ^ — T h e n we can find a, 6, c, d 6 Z , w i t h (a, 6, c, d) = 1, such that 

xz = az + b 

x = cz + d. 

Put a = ^ Q ^ ) Then N ^ Q (X) = det (a ) = ad — 6c. Put ad — be = n , and so 

n is not a square. Then a 6 A n , and a (z) = z. Let a t i , . . . , a^,(„) be a complete set 

of inequivalent representatives of A n . Then there exists a / i G T such that a = /xctj 

for some 1 < i < ip (n ) . Then 

= j(a(z)) = j{ncti(z)) = i(n(ai{z)) = j(ai(z)), 

and so j (z) is a zero of the polynomial $ n ( j , j ) which lies i n Z and has leading 

coefficient ± 1 , by Theorem 1.3.5 ( i i ) , and hence j (z) is an algebraic integer. To 

show that j ( r ) is also an algebraic integer, we have that r € Q (z), and so there 
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exist r, s £ Q such that r = rz + s, i.e., r = 0(z) for some primitive /? 6 (?L 2 (Z). 

Then j 0/5 is integral over 7L\j), since we can assume det(/3) = n, and then j 0/3 is 

a root of $ n ( X , j ) , which has leading coefficient ±1, and lies in Z [ X , j ] . Hence 

3 ( T ) = j(P ( z ) ) is integral over Z [7 ( 2 ) ] , and so j (z) is also an algebraic integer, as 

required. 

26 



1.4 Modular Functions of level n 

We define 
{ ( n A \ 

a = d = 1 (mod n), c = d = 0 (mod n) ' - 1 0 
r . - < l " M £ r 

for n a positive integer. This subgroup of T is called the homogeneous principal 

congruence subgroup of level n. Clearly, Tn is normal in T, and it is also, by 

definition, the kernel of the natural homomorphism 

r — SL2{%n) 

where Z„ denotes the ring of all residue classes modulo n. We have 

Theorem 1.4.1: The natural homomorphism 

r — 5 L 2 ( Z „ ) 

is surjective. 

Proof: Let a = ^ ° d ) ^ <5-^2(Zn), i.e., ad — be = l ( m o d n ) . We need to 

show that there is a matrix a' = ^ ^ d' ) ^ ^ - ^ ( Z ) , i.e., with aid! — b'd = 1, such 

that a = a' (modn). 

Firstly, from matrix theory, we can diagonalise a, i.e., there exist 7 , 7 ' € SL2CZ) 

such that 70:7' is diagonal, and so if we can find (3 E SL2CE) such that /3 = 

7 0 7 ' ( m o d n ) , then a' = 7 - 1 / 3 7 / - 1 . Thus we may assume that a is diagonal, so 

and ad = 1 (modn). Let 

xn yn 
n d 

so a' = a (modn). 

We need to find integers x,y such that det (a') = 1. Putting ad = 1 + qn, we have 

that 

det (a1) = 1 + qn + xdn — yn2 . 

Thus, for det (a') = 1, we need to solve 

q + xd — yn = 0. 
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Since (d, n) = 1, this has a solution for x,y G Z . This proves the theorem. 

Thus, we have that 

£ = SL2(Xn) 

Definition: A function / , meromorphic on H , is called a modular function of 

level n if 

(i) f{ir) = f ( r ) for all 7 € r„, r e H , 

(ii) ( / o 7 ) * = £~= for all 7 € 5 L 2 ( Z ) , 

where 9"̂  = e

2 m T / n , and /* is the meromorphic function induced by / on the punc­

tured disc defined by r t-* for r G H with I m r > 5. 

Theorem 1.4.2: G£ 2 (Z„) = G n .SZ 2 (Z„) where 

Proof: Let A £ GZ / 2 (Z n ) . Then we can find a matrix G G Gn such that 

\GA\ = 1, i.e., GA = B for some £ 6 S£ 2 (Z„) . Then A = G _ 1 £ , and G - 1 € G n . 

The product decomposition is clearly unique, hence the result. 
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C H A P T E R 2 

The Galois group of the modular equation over Q (j) 

We now turn to the result proved by A.M.Macbeath in his paper, [11], namely 

that 

The Galois group of the modular equation $n{j(T),j(T/n)) = 0, over Q(j(r)) is 

PGL2{Kn). 

Then we have a result from algebraic geometry, Hilbert's irreducibility theorem, 

which shows that there are infinitely many specialisations of j ( r ) into the rationals 

j(r) — • r G Q 

such that $ n (r, j ( r / n ) ) = 0 also has Galois group PGLi^Z,n) over Q. 

Macbeath achieves his result by studying sublattices of index n. However, we 

shall adopt a parallel approach, using the ntk division points of elliptic curves, (cf 

Lang, [9]). We let Fn>c denote the field of modular functions of level n, as defined in 

chapter 1.4. Then T acts as a group of automorphisms of Fnjc'- Let / G -f n,C) 7 £ 

r, a G r„. Then, since Tn is normal in T, we have that 7 a = 0 / 7 for some a' G T n . 

Then 

/ (7<*T) = / ( a V ) = / { i r ) . 

Thus / 0 7 is invariant under r„. Also, / 0 7 is meromorphic on H , and satisfies the 

condition about expansions in powers of q^, q = e2w,T. Thus / 0 7 is a modular 

function of level n, and so T acts by composition as a group of automorphisms of 

Fn,C-

Fi,C is by definition the field of modular functions of level 1, and so by Theorem 

1.2.5 we have that 

^i,c = €(;). 
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We shall show that the Galois group of Fn<c over C ( j ) is — J ± i j -

We define the function 

, / x ^2(W1,W 2) 03(^1, 0 / 2 ) 
/ ( Z ; W 1 , U ; 2 ) = % S 

for 2 € C, u>i,u/2 G H , and call this function the Weber function. Then 

/ (z ; 0/1,0/2) is homogeneous of degree 0, since <72,<73> A and p are homogeneous of 

degrees 4,6,12 and 2 respectively. We then let f(z;r) = / ( z ; l , r ) for r = 0/2/0/1, 

and define /,./„,„/„ ( r ) by 

fr/n,s/n(r) = / (—^J T ) 

for 1 < n £ W, r, s € Z not both divisible by n. The function f T / n , s / n { T ) is called 

primitive if (r, s,n) = 1. Since p is A-periodic, then f r / n , s / n only depends on the 

residue class of r, s mod n. Thus we let 

a = ( ^ ) ( E ± Z 2 , * Z 2 , 
n n n 

and 

/ . (r ) = /(a;r) = / ( ^ l ± ^ I ; r ) . 
n 

The functions /„ are called the Fricke functions. They are holomorphic on H , since 

A ( r ) has no zeros, and depend only on the residue class of a (mod Z 2 ) . Clearly 

M r ) = fa(yr) f o r 7 e r . 

We will require a result about the Fourier expansions of the Fricke functions: 

Theorem 2.1.1: The Fourier coefficients of the Fricke functions in powers of 

q\ = e2^ belong to the field Q (£„), where £„ = e2^. 

Proof: We need to derive the Fourier expansion for p ( z ; r ) . We use the fact 

that 
00 -1 00 p2viu> 

and let q = e2niT, qz = e2*iz. 
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From the definition of the Weierstrass p-function, we have that 

1 
p ( z ; r ) = T 2 + E 

(m,n) / (0,0) (z — rtiT + n ) 2 (mr + n)2 ' 

= 3 + 1 + E E I 1. 
m=0 n#0 

= (27Ti) 2 1* 

m#0 n6Z 

2TT2 

(1 - <7*)2 6 

+ E E + - 2 -
(z + m r + n ) 2 ( - z + m r + n ) 2 (mr + n) 2J ' 

2TT2 oo oo 
= (2*t) 2 „ ^ - + (2^) 2 E E " fenm + <?; v m - 2 ? m n ) , 

(1 " <7*)2 6 m=l n=l 

= (2TTZ)2 
1 

r r T ¥ + i s + £ E ^ " m ( ? " + ? r - 2) 
M-Qz) L Z m = l n = l 

We also have from 1.2 the expansions for g2,gz and A; 

4TT4 f 0 0 1 
0 2 ( r ) = ^ - | l + 2 4 0 X > 3 ( n ) g n j 

53(T) = 
8TT6 

"27 
{ l - 5 0 4 f > 5 ( n ) g n } 

A ( r ) = ( f c r ^ J X n ) * -
n=l 

where cra(fc) = Y,d\k da and r (n) € Z , with r (1) = 1. 

Substituting these into the expression for f(z; r ) gives us the following Fourier ex­

pansion; 

f{z\r) = g(q) 1 + 
12g2 

oo 

(1 - 9.) ! 
+ 12 Y , sqrs(qz

a + qz-s-2) 
r,s=l 

where q = e2iriT, qz = e2*", and g {q) = crqr, with c r G Z , cx = 1, 
m i , . . . ° 1 + « 2 T 2>r. 
Thus, letting a = , f n = e » , n 

/a(r) = </(<?) i + ( 1 ! ! ^ g

g a ) a + 1 2

r E » q n ( c r ^ + c a a i ^ - 2) 

Since g (q) is a power series in q, with integer coefficients, then / A ( T ) has a power 

series in q^, with coefficients in Q ( f n ) -
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The Fricke functions /„ , for a £ — Z 2 , ^ Z 2 are modular functions of level n, 
n 

since if, for 7 (E T, 7 = l (modn), then 0 7 = a (modZ 2 ) , and so 

Utr) = M r ) = fa(r), 

so fair) is invariant under Tn. Also, since fa^r) = fail?), we see that T per­

mutes the / a . Particularly, i f o € n - 1 Z 2 , ^ Z 2 , is primitive of level n, i.e., i f 

a = (a i /n , c^/n) with (a i ,a 2 ,n) = 1, then 0 7 is primitive of level n, and so T per­

mutes the primitive Fricke functions of level n amongst themselves. Thus we see 

that 

vUJaWen-W, i%2) c F n , c . 

We have already seen that T acts as a group of automorphisms of F n ) c , and that 

T n acts trivially. Thus r / r n acts as a group of permutations on Fntc, with kernel 

containing ±1. The fixed field is the field of elements invariant under r / r n , i.e., 

the field of modular functions of level 1, which is equal to C ( j ) . Thus we have that 

r / ± T n maps onto Gal ( F n > c 

We can now prove 

Theorem 2.1.2: Fn>c = C ( j ' , / 0 | a G n _ 1 Z 2 , £ Z 2 ) and the Galois group 

of -Fn.C over <D(j) is 
r SL2(Zn) 

±r„ {±1} " 

Proof: Let E = C ( j , / « | o € n _ 1 Z 2 , £ Z 2 ) so that E C F n ) C . Since T 

permutes the / a , then T / r n acts as a group of automorphisms of E. Since p is even, 

p{—w) = p(w) , so /_„ = /„ , i.e. ±1 act trivially on E. We need to show that i f 

7 £ T, and / O 0 7 = fa for all a G n ^ Z 2 , g Z 2 , then 7 £ T n . { ± l } . 

Since p (u; A) = p (v; A) if and only i f u = ±v (modA), then 

fa = fb & a = ± 6 ( m o d Z 2 ) . 

We also have that / a o 7 = f a y for all 7 € T, a e Q 2 , ^ Z 2 . Thus if 7 leaves fa fixed, 

then 

/a = / a o 7 = /a 7 a 7 = ±C (modZ 2 ) . 
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Taking a = (1/n, 0) and (0,1/n), we see that 

( ? ± l ) ( m o d n ) 7 

Since 7 G I \ then 7 = ±1 (modn), and hence 7 G ±r n . Thus the map 

X . _ G a l ( £ 7 < D ( j ) ) 

is injective, with fixed field C ( j ) „ since j is invariant under I \ but the /„ are per­

muted by T. However, we already have that | r / ± T n | > |Gal(F n > c /C and 

since J? C Fn<c, we must have that E = F„tc, and Gal (F n ) c / C ( j ) ) = T/ ±r„, and 

so the theorem is proved. 

We now define the extension Fn of Q to be the field of modular functions of level 

n with coefficients in their expansions in terms of q$ in the field (Q (£„), and call Fn 

the modular function field of level n over Q. Thus Fn C F n c • We also know 

that j G Fn, since j has rational coefficients in its expansion in powers of q, and 

that fa G Fn, from Theorem 2.1.1. 

Theorem 2.1.3: (i) Fn = Q ( j , /„ | a G n ^ Z 2 , g Z 2 ) , 

G L 2 ( Z „ ) 
(ii) Gal ( F „ / Q ( j ) ) = 

{±1} 
SX CZ ) 

(iii) The Galois group of Fn over Q ( j , £ n ) is . 

Proof: (i) The proof of this part is very similar to the proof of Corollary 1.2.8. 

We know Q ( j , fa) C Fn C C ( j , /„) . Let / G Fn, and so 

, _ <f>i ( j , fa) 

where fc, fa G C (;, / a ) . Thus Cfc mjt = ^2 dk njt where the m*, are monomials 
jt k 

in j and the / 0 , i.e., in Q[£ n ]((9"))- Let the vector space generated by ck,dk over 

Q[£ n ] be denoted by < ri,...,rn > . Thus ck = J ^ 7 * / r j , 4 = *w r f , with 

7fcj , 4 i £ Q [£n] • Then we have that 

] C I £ T« m * / ~ £ n * ) r ' = 0 ' 
l \ k k / 
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where the content of the bracket is in Q [£«]((?" ))• But the r; are linearly indepen­

dent over Q [£„], and so are linearly independent over Q [£„]((<?" )) , so we must have 

that 7k/ nikf — Sfc Ski rik = 0 for all /. But £ f c 7*/ mk / 0 for some / = Z0) and 

then 

/ = | ^ £ < ! ( i , / . ) . 

SL CZi ) 

(ii) Let G = Gal (Fn/Q}(j)). So G contains a copy of — " , which we denote 

by We wil l show that G contains a copy of Gn, where 
G « = { ( J 2 ( * . ) • } . 

We consider the automorphism cr* of Q ( f n ) given by 

<?k '• €n —• £n> for * ^ ( Z n ) * > where kl = 1 (modn). 

and extend this automorphism to / £ F„ by defining cr* as acting on the coefficients 

of / . This automorphism leaves j fixed, since j(r) £ Q [[?]], 9 = e 2 m r . However, 

from the expansion of fa in the proof of Theorem 2.1.1, 

Cfc : fa{T) = / ( n l +

n

a 3 r ) ( r ) > /(2li±22I)( r) > 

so o-fc is an permutation of the Fricke functions, leaving Q ( j ) fixed. Thus ak is an 

element of G, and since 

( 1 0 W oi \ _ ^ ( oi \ = / /ax \ 
y 0 k J \ a2 j ' \ fco2 / V «2 / ' 

since k is a unit, a* is represented by ^ J ^ ^ . Thus G contains a copy of G n , 

which we denote by G'n. We have to show how G'n.SL' acts on G. 

We let GL and denote ^ ^ ^ " ^ ^ ± t y " ^ respectively. Since is 

a normal subgroup of GL, and SL C\Gn = {±1} , then every element g £ GL is 

represented in a unique way as g = ds, where d € Gn, s £ SX. 

We construct a map, a, from GL to G a l ( F n / Q ( j ) ) by 

a : x = ds —• d's1 
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where d' £ G'n, s' £ SL'. Because of the unique representation of g = ds, the map 

a is well defined. I t remains to show that a is a homomorphism, i.e., that 

(d iS ick^) ' = d\S\d2s2 

for all di, d2 £ Gn, s\, s2 £ SL. Since SL is a normal subgroup of GL, so that 

d2~1sid2 £ 5L , we have that 

(diSid2s2)' = (did2(^2 - 15id2)s2)' = di'd2'(d2~1Sid2)'s2 , 

so we are required to show that 

d\ d2 ( d i - 1 Sid2)'S2 = d\'s\'d2S2 

i.e., 

(cT l *i ) ' = d'-h'd' (*) 

for all d £ G n , s £ SL. 

We let / ( r ) = £ a r g t be in F n , i.e., a r € Q(6,)> and q = e2*iT. Then SL acts 

on Fn by 

7 ( / ( r ) ) = E ^ e 2 ' r i ( ^ ) " for all ^ rf)=7GT. 

Also, we know that G n acts on Fn by permuting the coefficients of / ( r ) using 

V : £n '—• Cnc, where be = l (modn), for ^ J J j = 7' £ G n . 

We know that 5 1 is generated by T = ^ J J ^ and S = ^ ^ J ) , by The­

orem 1.2.1. Since (*) asserts the equality on two homomorphisms, we only have to 

prove (*) holds for the generators T,S of SL and a general matrix in Gn. We first 

consider the case 

(1) 

( 

d = ( o ft)'66 ( Z n )* ' s = ( 0 1 ) ' T h e n w e h a v e t h a t d ~ l s d = 

1 " • 0 1) 

Thus, for g ( r ) = £ o r 9 " £ -Fn we have that 

( r ) ) = E < 9 « , 
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where a'T = a" (a r ) , and d' : £„ i—• f „ c , where be = l (modn). 

So, 

Also, since d'~1(a'T) = o r , and : £ n i—> f n

6 , 

= E ^ t S -

and so (*) holds. 

(2) Let d be as above, so d',d'~l acts as before, and let s — ^ ^ J ^ . Then 
0 6 ' 

•1/6 0 d lsd = ^ f ) . Thus we have that 

•'(«(r)) = E ^ « W ( _ 1 / T ) - . 

(d- l*d)'(^(T)) = £oPefc<(=*7i)» 

Thus, 

d ' " V d ' = d'- 1(E<e 2 , r < (~ 1 / T )») 

E a ' e 2 « i ( - l / r ) i 

so again (*) holds. 
(Z ^ 

Thus we have a homomorphism from — m t o Gal(.F n/Q ( j ) ) . Thus 

c D GL2C£n) 
{±1} 

111 I A1 o r t 

{±1} ( GL fZ V 
— ] . Also, the elements of Fn which are fixed under 

GL fZ 1 

— a r e t n e modular functions with rational coefficients, thus inside Q ( j ) , by 

Corollary 1.2.8. Thus Fix (^J^J^) = Q0')» a n d so 

G = G a l ( F n / Q 0 ) ) - ^ ^ l . 
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Hence (ii) is proved. 

(iii) We let K = <D n Fn. Since j G /„ G Q(£„) [[«*]], then Fn C 

Q (£ n ) [[9*]]. Thus i f C Q (£ n ) . Since Q ( j ) C = C ( j ) , then Fn<c is the compositum 

of Fn and <D, and so 

Gsl(Fn/K(j)) 2 G a l ( F n , c / C (;)) - . (**) 

Thus 

[K : Q] = : QO)] = ^ ( z j / ^ i } = I I = [Q : Q ] , 

so [ i f : Q] = [Q(£ B ) : Q] , and so K = <Q(£n), and by (**), 

Gal (F n /Q( ; , ^ ) ) = ^ ^ . 

This proves (iii) . 

We now need to show how this is connected to Macbeath's work. Macbeath 

considers the sublattices, Ao, of index n of the lattice A (ui,u>2), defined by 

A 0 = A 0 (aui + 6a/2, cvi + dw2) 

where a, b, c, d G Z , ad — be — n> 1, (o, 6, c, d) = 1. Then A/Ao — Z „ , and so we 

put En = {Ao C A I A/Ao — Z n } . Then Macbeath defines his extension L of Q ( j ) 

by 

L = $(j,j(A0), a l l A o G ^ n ) , 

where j(Ao) is defined to be j(—1 ^ f 2 ) . Let a i , , be a complete set 
\cu>i + du2 ) 

of coset representations for A„ under the action of V, as in Theorems 1.3.1, 1.3.2. 

Then we have 

Theorem 2.1.4: j(Ao) = j0cti for Ao G En and some a;, 1 < i < if> (n). 

Proof: Let Ao G En, and let d > 0 be the smallest integer such that du>2 G Ao-

Then we can find a basis of AQ in the form (au>i + 6u»2,ciu;2), where ad = n and 
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(a, 6, d) = 1. Then a > 0 is uniquely determined, but b is only determined modulo 

d. Thus we choose 0 < b < d. Then we have that 

i ( A 0 ) = j ( ^ T j = 3oOti{T), 

where ad = n, a > 0, 0 < b < d, (a, b, d) = 1, and 1 < i < ij) (n). 

Thus we have that 

L = QtM'(Ao) , allAo e En) = j0au 1 < i <i>{n)). 

Lemma 2.1.5: The functions j0oti are modular functions of level n. 

Proof: Let 7 e T n , and write 7 = / + Nf3, for some /3 e T. Then 

7' = a^a^1 = / + NotifiaJ1 

has components in Z , and det ( 7 ' ) = 1, so 7 ' 6 SL2(7Ln). Thus 

j 0 o ; i 7 = ;'o7'«t = j0oti, 

so that the j0oci are invariant under r„. Also, the j0oti are meromorphic on H , and 

satisfy the condition 

functions of level n. 

satisfy the condition about expansions in powers of q^. Thus, the j0oti are modular 

Lemma 2.1.6: The coefficients of the expansions of j0oti in powers of q * lie in the 

field Q ( £ n ) . 

Proof: We know that j ( r ) has the expansion j(r) = ^ cmqm, for q = e2irtT, 
m = - l 

Cm £ Z . Then, since ad = n, 

m = - l 
00 

E Cm g2nimaT/d ^2nimb/d 
m = - l 

00 
02irima.2T/n ^2mmab/n 

= E ^ ^ " C * -
m = - l 

m=—1 
00 
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T h u s j ( ^ ± ^ € flj&)[[«"]]• 

Theorem 2.1.7: Gal ( I / Q ( j ) ) - PGL2(Zn). 

Proof: From the above two lemmas we have that j0cti £ Fn, and hence that 

L C F n . We fix Fn by a subgroup of n a m e l y # — j ^ J j > w ^ e r e ^ £ Z„*. 

We already know that ± 1 act trivially on Fn. Then, for h = ^ ^ j j , r £ Z n * , 

we have that 

i / • x • / r \ ^ o r r + ftr .,aT + b . 
ftC7oa<) =Jo( / ia i ) = j{—-JT—) = J { — — ) = j 0 < X i , 

and so j0oti is invariant under H, i.e., L C Fix # . This gives us that H C Gal (Fn/L), 

and thus that G a l ( L / Q ( j ) ) C GM%n)/{±l} g* P G L 2 ( Z n ) . 

We must now show that PGZ>2(Zn) acts faithfully on £. Thus we must show 

that for all a e A n , for all 7 £ PGL2{TLn), 7 7̂  id, and for all r £ H , 

T ( i ( «W)) / i ( aW) , 

i.e., 

j(70 (T) ) ^ ; ( o ( r ) ) , 

i.e., by Theorem 1.2.4, 

a 7 - 1 a ~ 1 £ S L 2 { Z ) . 

So, suppose that a 7 - 1 a - 1 £ SL2{TL) for all 7 £ PGZ/ 2(Z„), 7 ^ id, and for all 

a £ A n . Letting a = ^ ^ ^ ^ where ad = n, a > 0, and 7 _ 1 = ^ ^ ^ ^ where 

I7I = ± 1 and (u, v, x,y) = 1, then 

^ ^ ( M ) ( : ; ) ( : " : ) <•> 

= l f a d u + bdx -abu + a2v-b2x + aby\ 
n \ (Px -bdx + ady J 

We need to find the neccesary conditions on u,v,x,y for a 7 _ 1 a - 1 £ 5 L 2 ( Z ) . 

Choosing a — ^ ™ J ^ gives us 1 = 0(modn) for all a|n and all 6. Choosing 

a = ( 0 n ) 6* v e s u s v — 0(modn) and a = ^ J ^ ^ gives u = y(modn). 
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Prom (*), these three congruences are sufficient for 0 7 1at 1 to be in S Z ^ Z ) . 

Thus we have that 7 _ 1 = ^ ^ ^ ^ mod n. But 7 _ 1 £ PGL2CZn), and so 

^ ^ , which means that 7 - 1 and hence 7 is the identity element in 

PGL2CZn). This contradiction shows that PGL2(jNLn) acts faithfully on L, and thus 

the Galois group of L over Q ( j ) is PGL2^En). 

We have therefore proved Macbeath's result using an alternative method. The 

situation we have is shown in the following diagram: 

SL2(Zn) 

{±1} 

L = Q(j.i«a<) 

PGL2(TLn) 

GX a (Zn) 
{±1} 
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C H A P T E R 3 

Rational values of j where the modular equation has Galois 
group PGL2{XN) 

3.1 Specialisations for fixed n and infinitely many j - an 
application of Hilbert's Irreducibility Theorem 

In his paper, [11], Macbeath uses Hilbert's Irreducibility Theorem, which in its 

simplest form can be stated as: 

Theorem 3.1.1: Let f ( t , X ) be an irreducible polynomial in Q [t,X]. Then there 

exist infinitely many rational numbers, t0, such that f ( t 0 , X ) is irreducible over Q. 

This result assures us that there are infinitely many rational values of j(r) = 

r € Q, such that $ n ( r , j ( T / n ) ) = 0 also has Galois group PGZ/2(Z„). 

To study Hilbert's Irreducibility Theorem, we first of all require some elementary 

definitions from Algebraic Geometry. We let A" be a field, and define affine n-space 

over K , denoted by A^-, or just A", to be the set of all n-tuples of elements of K. 

Let A = K [ x i , x n ] . We define f(P) = f { a u . . . , an) where f £ A, P G A n , 

i.e., we view the elements of A as functions from A™ to A. I f / £ A is a polynomial, 

we define the set of zeroes of / by 

Z { f ) = {P € An | f(P) = 0} . 

Also, if T C A, then we define the zero set of T to be 

Z(T) = {P E A" | f(P) = 0 for all / e T } . 

Definition: A subset S of A n is called an algebraic set if there exists a subset 
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T C A such that S = Z(T). 

Definit ion: A Z a r i s k i open subset is the complement of an algebraic set. 

Thus we have that a set of the fo rm A " \{Pi,..., Pr} is a Zariski open subset of 

A n , where { P i , . . . , PT} is a finite set of points in A™. This defines a topology, i.e., 

the intersection of two open sets is open, and the union of any number of open sets 

is open. 

Let / ( i i , . . . , t n , X ) £ K(ti,... ,tn)[X]. We define a basic H i lber t set, Uf#, 

by 

U f y K = {(h', ...,**')> h',-,tn' e K | f(ti', ...,tn',X) is irreducible i n K[X] over K] . 

A H i lber t subset of A " is defined to be the intersection of a finite number of basic 

Hilbert sets w i t h a finite number of non-empty Zariski open subsets of A™. A field 

K is called H i l b e r t i a n i f the Hilbert subsets of A n are non-empty. 

L e m m a 3.1.2: I f K is Hilbert ian then every Hilbert subset of A " is inf ini te . 

Proof: Let K be Hilbert ian, X be a non-empty Hilbert subset of A n , and 

suppose that X is finite, i.e., X = { P i , . . . , P r } . Let Z be the non-empty Zariski 

open subset of A " given by A n \{Pi,..., P r } . Then X f l Z is the intersection of a 

Hilbert subset w i t h a non-empty Zariski open subset, so is another Hilbert subset 

of A". But X n Z = { P i , . . . , PT} D A n \ { P i , . . . , P r } = 0, contradicting the fact 

that K is Hilbert ian. Thus X is infinite. 

We want to show that UfTK is infini te i n the case where K = Q and n = 1, i.e., 

A " = K = Q. This is equivalent to showing that <Q is Hilbertian, since i f the Hilbert 

subsets of Q are infini te , then the UfTK are infini te . Thus we must show that the 

Hilbert subsets are non-empty. 

Suppose that f ( t , X) G Q (*)[-X]> i.e., i ts coefficients are in <Q (t), and that f ( t , X) 

is irreducible over Then we can mul t ip ly / by a suitable polynomial to make 

the coefficients lie i n Q [t] wi thout changing this irreducibility. Dividing the resulting 

polynomial by the greatest common divisor of its coefficients gives us a polynomial 
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in Q [t, X] which is irreducible over Q. Conversely, i f f ( t , X) £ Q [t, X] is irreducible 

over Q, then i t is irreducible in Q ( t ) [ X ] . Let f ( t , X ) 6 Q ( i , X ) be an irreducible 

polynomial. I f t is transcendental over Q, then we call the curve defined by the 

equation f ( t , X) — 0 an affine plane curve, C. For R C Q, we define Ut,ii(C) by 

£ / i , a (C) = { i 0 € i? | there is no P G C ( Q ) such that t(P) = tQ} 

Then we have 

L e m m a 3.1.3: Every Hilbert subset of Q contains a finite intersection of Ut,R(C) 

for a f ini te number of affine plane curves C over Q. 

Proof: We let f ( t , X) € Q [t, X ] be irreducible over Q ( t ) , and write 

/ ( t , X ) = a n ( t ) X n + - . - + a 0 ( f ) , 

so a;(i) € Q [ t ] . Suppose / has factorisation 

f ( X ) = an(t) fl(X - a i ) 

in the algebraic closure of Q ( t ) . Then choosing t = < 0 where to £ Q gives a 

homomorphism Q [t] i — • Q [ t 0 ] = We choose the values f 0 £ Q such that 

a n(*o) ^ 0- Then the homomorphism can be extended to the r ing generated by 

the roots a i , . . . , a „ of / , because these roots are integral over Q [t, a n ( f ) - 1 ] . Let 

a i ' , . . . , a n ' be the images of these roots. I f / ( t 0 , X) factorizes as 

f(to,X) = g0(X)ho{X) 

in Q [X], then the coefficients of g0 and ho are polynomial functions of the a / . This 

gives rise to a factorisation of f ( t , X ) , 

f ( t , X ) = g(X)h(X) 

in the algebraic closure of Q ( t ) , where g, h are polynomials corresponding to go, ho. 

Since / is irreducible over Q ( t ) then at least one of the coefficients of g or h cannot lie 

in Q ( t ) . Suppose u Q ( f ) , where u is a coefficient of g or h. Then the r ing Q [f, u] 

is the affine ring of a curve C over Q. The factorisation / ( t o , -X") = (foPO'toGX') thus 

gives us a point (to>2/o) on C, w i t h fo,j/o £ Q-
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Wri t ing f ( t , X ) = g ( X ) h(X) in all possible ways in the algebraic closure of 

Q ( t ) , w i t h degree g, degree h > 1 w i l l give rise each t ime to a coefficient of g or h 

which does not he in Q ( t ) . Thus we w i l l obtain a finite number of curves C j , w i t h 

affine rings Q [t, u^, where 0 <Q ( t ) . Thus, any t0 £ Q such that there is no point 

(*o>2/o) on any Q, w i t h y 0 £ Q) w i l l be such that f(to,X) is irreducible i n Q [ X ] . 

Since a Hilbert subset contains a finite intersection of basic Hilbert sets, i t must 

contain a finite intersection of Ut^{C), as required. 

We let (t, y) be a point of an affine plane curve C over Q, w i t h y £ <Q ( f ) . We 

may assume that y is integral over Z [t], since i f i t is not, we may mul t ip ly y by a 

suitable polynomial in Z [t] so that i t is. Since y is integral over TL [t], then y can be 

expressed as an algebraic funct ion of t over R , and so has an expansion at inf in i ty : 

y = y(t) = at ? + • • • + b + c \ + • • • 
t~ 

w i t h a, 6, c , . . . € <D. We choose i« to be real. Then, i f there are inf ini te ly many val­

ues of t tending to in f in i ty in H such that y(t) is real, then the coefficients a, 6, c , . . . 

are i n fact real. For, i f any one of the coefficients were not real, then i t would dom­

inate the series to the right of i t as t tends to inf ini ty, so there could not be any 

cancellations, and so y(t) would not be real. 

We require the following lemma: 

L e m m a 3.1.4: Let the funct ion y(t) be m times continuously d i f fe ren t ia te i n the 

interval U <t < U + m . Suppose ti < U+i < ... < t i + m , where t», , • • • ,U+m 

. Then there exists a r w i t h U < r < U + m such that 

y{m)(r) Um 

ml 

where 

Um = 
1 U 

1 / / 2 

-1 •'i+m t i+m 
and Vm is the Vandermonde determinant, 

1 U U2 • 

Vm = 
1 i i 2 

••• •'j+m *'»+tn 

vm 

Um-1 y(ti) 

ti+m"1-1 y ( t i + m ) 

m-1 

4- Til— 1 f . 771 
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Proof: We let 

1 U U2 • • • U™-1 y(U) 

F(t) = 
1 f t- 2 . ti+m 2/(^»'+m) 
1 t t 2 • • • tm~l y(t) 

Then F(t) = 0 when t = t i t . .. ,ti+m-i. Then the function 

G(t) = F(t) - c ( t - U) (t - t i + 1 ) . . . (t - t i + ^ x ) 

w i l l also vanish at t = t i + m , for some constant c. Thus G( t ) = 0 for m + 1 values of 

t between ti and t j + T O . B y Rolle's theorem, there is at least one value of t , t = r say, 

between t< and t i + T O such that G^m)(r) = 0. Bu t G<m>(t) = F < m ) ( f ) - m!c. Thus 

J F , { " l ) ( r ) = m!c. 

Also, ^ " ^ ( r ) = y^m\r)Vm-i, since F ^ ( r ) has a zero everywhere i n the bo t tom 

row except for the last term, which is y^m\r). Thus 

m\c = y^i^Vn-x 

But 
_ F(tj+m) 

{ti+m ~ U) . . . ( t j+m — ^t+m - l ) 

and ( t i + m - U ) ... ( t i + m - f < + r o - i ) V r o _ i = V ^ . Since F ( t i + m ) = C/m, we have our 

result. 

We use this to prove 

T h e o r e m 3.1.5: Let y(t) be a function of a real variable, w i t h expansion 

y(t) = at» + • • • + b + c \ + • • • 
t~ 

where o, b, c , . . . , t« e E , and converging for all sufficiently large values of t. Assume 

y(t) £ R [ t ] . Suppose there are infini tely many t; € Z + , w i t h to < * i < •••> such 

that y(U) G Z . Then there exists an io £ Z , 0 < m €E Z and 0 < s G R such that 

for all i > io, 

ti+m ti > ti . 

Proof: Let 0 < m 6 Z be such that y^m\i) has no positive powers of t *, hence 

v M ( 0 = + 
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w i t h d 6 R . Since y (t) £ M [ t ] , y^(t) ^ 0, so we can assume d ^ 0, and s > 0. 

Thus, j / ( m ) ( r ) is small, and is of order r a . Bu t 
m! 

y ( m | ( r ) ^ Um 
ml Vm 

and Vm is the product of —— differences of the ti,..., t i + m . Thus, for a 

constant A, 

( t i + m ~ t i ) ^ > I I ( * « - = 1^1 * l ^ ^ m T ' l • 
t< j l< j2< i+»n 

But , Um € since the ^ are positive integers, and we know that ti < r < t i + m . 

Thus 
m ( m + i ) rm—;— 

ti+m-ti> -L^/\Um\tia 

and so 

^i+m ^ 

where s = —- - > 0. 
m(m + 1 ) 

We require two corollaries: 

C o r o l l a r y 3.1.6: Let y(t) = ot~ + • • • + b + c-^- + • • • . Then there exists a £ JR. 
t~ 

w i t h 0 < a < 1 such that the number of t, < B for which y (ti) E Z is less than Ba 

for all B sufficiently large. 

Proof: Let 0 < p < 1. Let 

N = the number of integers ti such that U < B, 

N\ = the number of integers ti such that ti < B& + 1, 

N2 = the number of integers ti such that B@ < ti < B. 

Write JV2 = um+m0, where u > 0, and 0 < m 0 < m. B y the theorem, f , + m > i , + V -

Thus 

^»+«m *̂ • 

Choosing B large enough, and /3 small enough that B > t i + u m , and U > B&, we 

have that B > Bp + uBps thus u < B1'^. Thus, 

N < iVi + N2 < B13 + 1 + m f l 1 " ^ + m 0 , 
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and so N < Ba for some 0 < a < 1. 

Coro l lary 3.1.7: Let U be a Hilbert subset of Q. Then there exists an a G K , 

w i t h 0 < a < 1 such that the number of positive integers < B in U is at least 

B — Ba 

for all B sufficiently large. 

Proof: By Lemma 3.1.3, Hilbert subsets of Q contain a f ini te intersection of 

sets 

Ut,z(C) = {U G Z | there is no P G C(Q) such that t(P) = U} 

for a finite number of affine plane curves over Q. By the above corollary, there exists 

as a G R , 0 < a < 1, such that the number of ^ < B such that y (ti) $ Z is at least 

B - Ba. Since y(U) is integral over Z [t], then i f (U,y(ti)) G C, w i t h G Q, 

then G Z i f t< G Z . Thus y (ti) £ Z for t< G Z means that ( t i , j / (*<)) is not on 

(7. Thus £/t,z(C)) and so U, contains at least B — Ba positive integers. 

Since 0 < a < 1, then 5 — B a > 1 for B sufficiently large, and so the Hilbert 

subsets are non-empty, and so we have that Q is Hilbert ian. Thus we have proved 

Theorem 3.1.1. Then we have 

T h e o r e m 3.1.8: Gal ( $ „ 0 ' ( T 0 ) , X ) / Q ) = PGL2(Tn) for inf ini te ly many j(r0) G Q. 

Proof: We have our extension of Q ( j ( r ) ) , L = <Q ( j ( r ) , j0ai(r), 1 < i < 

ip(n)), which is clearly a finite separable extension of Q ( j ( r ) ) , since the minimum 

polynomial of the jo<*i(T) is 

*(») 
*%U(T),X)= H ( X - j 0 a i ( T ) ) 

t=i 

which has no multiple roots since the j0o-i(r) are all distinct. By Galois theory, we 

know that every finite separable extension is a simple extension, thus we can find 

an element f ( r ) such that L = Q ( J ( T ) , f ( r ) ) . We denote the min imum polynomial 

of f ( r ) over Q ( j ( r ) ) by <j>(j(r),X), and thus (j>(j(r),X) w i l l have degree equal to 
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\PGL2(Xn)\. 

We now specialize j ( r ) into the rationals, i.e., choose a To <E H such that j ( r o ) G 

Q. This w i l l give us an extension L = Q ( / (TO ) ) over Q w i t h Galois group a subgroup 

of PGL2(7Ln)- Then / ( r 0 ) w i l l have a minimum polynomial over <Q, denoted by 

<j>(X). But / ( T O ) is also a root of (f>(j{ro),X), and so by Galois theory again, 

4>(x)\<t>(j(r0),x) (*) 

Since <j>(j(T),X) is irreducible over Q ( j ( r ) ) , we can apply Hubert 's Irreducibil i ty 

Theorem to give us that there are infini tely many j ( r 0 ) E Q such that <j>(j(ro),X) 

is irreducible over Q. I n these cases, by (*), we must have that <f>(X) = <f>(j(T0),X), 

so = | P G Z / 2 ( Z „ ) | , and so the Galois group of L over Q is also P G L 2 ( Z „ ) . 

i = Q ( i ( r ) , j 0 a i ( r ) ) = Q ( j ( r ) , / ( r ) ) 

PGL2{-En) 

L = $ ( f { n ) ) 

Thus we have shown that there are infini tely many rational values of j ( r ) which 

s t i l l give us extensions w i t h Galois group P G i / 2 ( Z n ) . 
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3.2 Infinitely many primes n for a fixed value of j - an 
application of the reduction of elliptic curves. 

I n the previous section we proved that for a fixed n there are infini tely many 

rational values of j where the Galois group does not collapse. There is an alternative 

result, namely that for a fixed j = r € Q, the set of primes p for which the Galois 

group of $ p ( r , j ( r / p ) ) does collapse is f ini te . We now study this result, and describe 

the proof, the details of which can be found in Lang, [9]. This result is also proved 

by Serre in [18]. 

Let E be an elliptic curve, i.e., a non-singular curve of genus 1, w i t h a rational 

point taken as an origin. We say that E is defined over a field K i f the coefficients 

of the defining equation lie in K. Any elliptic curve defined over K where char 

K / 2,3 can be defined by a Weierstrass equation 

V2 = 4 x 3 - g2x - 53 , 

where g2, <fa £ K. I f K = C, then the map 

z *-+ (p{z),p'(z)) 

parametrises points on E. Let A(u)i,u>2) be the lattice defined by the periods u>i,u>2 

of the Weierstrass p-function, and let EK be the set of points (x,y) on E, where 

x,y € K. Then the map 

a : C / A — • £ c 

is a bijection. 

Suppose E is an elliptic curve over K, as above. For each n £ Z + , we denote by 

En the kernel of the map 

z i—• nz , 

for z 6 E. Thus En is the subgroup of points of order n . I f E is defined over C, 

then since Ec — ©/A, we have that 

En S Z„ ® TLn 
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I f E is defined over a field of characteristic zero, then we can embed the field of 

definition of the curve in € and obtain the same result. 

Now let E be defined over a field K, and let L be a field extension of K. Suppose 

o is any automorphism of L. Then, applying a to the coefficients of the defining 

equation for E, we obtain a new curve, which we denote by E"'. Thus, i f E is defined 

by y2 = 4x3 - g2x - # 3 , then E" is defined by y2 — 4a;3 - g\x -g%. Also, i f P = (x, y) 

is a point on E, then P" = (x",y") is a point on E"'. 

Let a be an automorphism of L keeping K fixed, i.e., a € G a l ( L / i f ) , and so 

E" = E. Suppose P is a point of finite order on E, so that nP = 0 for some positive 

integer n . Then nP" = 0, so that P" is also a point of order n, and so a permutes 

the points of order n. Let P = (x,y), and K(P) = K(x,y), so that K(P) is the 

extension of K obtained by ajoining the coordinates of P. We then define the field 

of n - th division points of E over K, K(En), to be the compositum of the fields 

K(P) for all P E En. Since the coordinates of P are taken to be i n the algebraic 

closure of K, denoted by Ka, then we have that the elements of the Galois group 

of Ka over K are automorphisms of En. Thus, for char K = 0, K(En) is a Galois 

extension of K. Let t ing a be represented by M = ^ ^ ^ ^ w i t h respect to the pair 

of generators {Pi, P2} for En over Z n , then since 

( £ ) - ( : i ) ( S ) . 
M must be in GZ>2 (Z n ) , and so we have an injection f r o m Gal ( K ( E n ) / K ) into 

To consider the question of when the Galois group is the whole group GL2(T,n), 

Lang considers a transformation of the Weierstrass equation y2 = 4x3 — g2x — g$ by 

the translations 

X = x -
1 

2 ( X - I i ) 
y Y + 12' 

This transformation gives the equation 

Y 2 - XY = X3 - h2X - h3, 

which is known as a Ta te equation. I n the proof of Theorem 2.1.1 we had 
1 a oo oo 

p r ) = 1 9 + 71^712 + E E ruriq.9 + 9 . - - 2), 
i Z I 1 Hz) TO=ln=l 
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and so 

Rearranging, and put t ing qz = w, gives 

1 „ „ , f i nq" 
* W = 1 2 + J Z ( T ^ ) 5 - 2 S T ^ . 

qmw(l + qmw) 
^ ( l - ^ w ) 3 

Thus 

W „ , ^ V qnw 0 ^ ng" 

The Tate equation defines an elliptic curve, known as a Tate curve, over any field K 

which is complete under a non-archimedian absolute value, provided that q £ K is 

such that 0 < \q\ < 1, and w E K* is such that \q\ < \w\ < \q\-1. These conditions 

ensure that the series for X(w) and Y(w) converge absolutely. 

Suppose E is such a Tate curve over a suitable field K, as described above, w i t h 

invariant j(q) for a q G K such that 0 < \q\ < 1. Let K* be the multiplicative group 

of invertible elements i n K, and Cq be the infini te cyclic group generated by q i n 

K*. We then define the T a t e mapping, ip, by 

i>(w) = (X(w),Y(w)) i f w$Cq, 

ip(w) = 0 i f w £ Cq. 

This map is a homomorphism f r o m K* into EK, w i t h kernel Cq. Let C,"» be the 

subgroup of K* consisting of elements of K* whose n- th power is i n Cq. Then C9"« 

is generated by a n- th root of unity, ( „ , and an n- th root of q, q^ say. Lang then 

proves, ([9], p.203, Theorem 3): 

T h e o r e m 3.2.1: For n prime to char i f , the Tate mapping defines a Galois iso­

morphism f rom Cq~ jCq to EN, and 
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We shall require one more result, namely for which primes p the subgroup Ep is 

irreducible as a module over the Galois group. Let E be an elliptic curve denned 

over K, O the ring of integers of K, Op the local r ing for some prime p of K, and mp 

the maximal ideal of Op. We say that E has good reduct ion at p i f E is isomor­

phic over K to a curve / such that reducing / mod mp gives again a (non-singular) 

elliptic curve. I f the curve is defined by a Weierstrass equation y2 = 4a;3 — g2x — #3, 

w i t h g2, 0 3 6 Op, and i f p does not divide 2 or 3, then E has good reduction i f 

the discriminant A is a unit i n Op. Let E, F be elliptic curves over K. Then F 

is isogenous to E i f there is a map f r o m E to F w i t h f ini te kernel. A n important 

result, proved by Serre and Tate, ([16] p.IV-5, Corollary), is; 

T h e o r e m 3.2.2: I f E, F are elliptic curves defined over K, and F is isogenous to 

E over K, then i f E has good reduction at a prime p of K, so does F. 

T h e o r e m 3.2.3: Let S be a f ini te set of primes of K. The set of isomorphism 

classes of elliptic curves over K having good reduction at all primes of K not i n S 

is f ini te . 

Theorem 3.2.2 implies 

Coro l lary 3.2.4: Let E be an elliptic curve over K. Then there are only a fi­

nite number of non-isomorphic curves which are isogenous to E over K. 

Let E be an elliptic curve over K isomorphic to (D/A. Then the endomorphisms 

of E, End(E), are given by { a 6 C : aA C A } . E is said to have have complex 

mult ipl icat ion i f the ring of endomorphisms is bigger than Z . 

L e m m a 3.2.5: Suppose E is an elliptic curve over K, w i t h no complex mul t i ­

plication, i.e., End(E) = Z , and suppose F, G are elliptic curves isogenous to E 

over K. Choose isogenics X : F —> E, Y : G —• E w i t h cyclic kernels. I f these 

kernels are not isomorphic, then F and G are not isomorphic over K. 
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Proof: Let the kernels of the isogenies X, Y have order / , g respectively, and 

suppose that F and G are isomorphic, so let Z : F —> G be an isomorphism. Then 

there w i l l be an isogeny X' : E —• F, w i t h cyclic kernel / , and so the composition 
Z Z 

X'ZY gives an isogeny f rom E —• E, w i t h kernel ——• ® — . However, End( l£ ) = Z , 
/ Z , gfc 

so this isogeny must be mult ipl icat ion by an integer e, and hence the kernel must 
Z Z 

be of the fo rm — ® — . Thus / and g divide e, and e2 = f g , giving e = / = g, 
eZ eZ 

contradicting the fact that X, Y have non-isomorphic cyclic kernels. 

Suppose E is an elliptic curve over K wi thout complex mult ipl icat ion, and Ep 

is the subgroup of points of order p. Let G =Gal(Ka/K). Then W is said to be a 

G-subspace of EP i f gW C W for all g G G. Then Ep is G- irreduc ib le i f i t has 

no proper G-subspaces. Now we have 

T h e o r e m 3.2.6: Ep is G-irreducible for almost all primes p. 

Proof: Suppose Ep is reducible, and so must have a one-dimensional G-subspace, 

Wp, which is cyclic of order p. Then E/Wp is an elliptic curve, which is isogenous 

to E over K. By the above lemma, curves E/Wp are non-isomorphic for different 

values of p. By Corollary 3.2.4, there are only a finite number of elliptic curves 

E/Wp, therefore Ep is reducible for only finitely many p. 

Now we can get to our main result. Suppose E is an elliptic curve over a field 

K, w i t h invariant j = j(q) which is not integral at some prime p of K. Thus E has 

no complex multiplication. We define the completion Kp of K by 

KP = %®K, 

where (Qp is the field of p-adic numbers. Let F/ denote the field Z / i Z . 

T h e o r e m 3.2.7: Let E be an elliptic curve w i t h non integral j invariant over 

a number field K, and q = 7reu, where u is a unit i n Kp, and e is the order of q at 

(7r). Then the Galois group of K(Ei) over K is GL2(Fi) for all primes I satisfying 

( i ) / does not divide e, 

( i i ) I is such that there is no curve isogenous to E where the degree of the isogeny 

is equal to /, 
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( i i i ) I does not divide the absolute discriminant of the field K. 

Proof: We look at the local extension, Kp(Ei) over Kp, and show that this 

contains 5Z-2(Fi) for almost all primes /, so that the global extension, K(E{) over 

K, also contains SL2(Fi) for almost all /, since 

Gal(Kp(E,)/Kp) C Gal • 

Let G =Gal (K(Et)/K), G' =Gal(Kp(El)/Kp), and so G' acts on Ex. Now, q = ireu, 

and we know that 
1 0 0 

j = - + £ < V ? \ 

where c„ G Z . Thus we have that q G K w i t h 0 < \q\ < 1. Also, to find e, we 

simply take the power of p which exactly divides the denominator of j . By Theorem 

3.2.1 we have that Ei is Galois isomorphic to Cq^/Cq and that Kp(Ei) = Kp(£i, gT). 

Now, for all / not dividing e, there is an automorphism, cr, of Kp(£i, qi) over KP 

such that 

= 6 , 

and this automorphism may be represented by the matr ix 

( ; : ) • 
w i t h respect to the basis { £ j ) 9 7 } - Thus G', and hence G, contains the matr ix 

( 0 1 ) r e s D e c t t o { & > 9 ^ } - However, we know that Ei is G-irreducible for 

almost all I, by Theorem 3.2.6, and so for an / where Ei is G-irreducible there must 

be an element, 6 say, of G such that 8(1 £ { & } , otherwise Ei would have a proper 

G-subspace. Thus = £ „ r q't1 where s ^ 0 (mod/ ) . Let ££/ = v. Then 

6c6~lv = £cr£j 

= 

Thus a' = tfatf-1 leaves f fixed. We choose the basis {£i,v}, and so w i t h re­

spect to this basis a and a' are represented by the matrices B = ^ J J ^ and 
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C w i t h b, c ^ 0 since a and a' are non-trivial automorphisms. Then 

Bx = y g x J and G a = ^ ^ ^ J for 6x = cy = 1 (mod / ) . Bu t these two matrices 

generate S i / 2 ( Z ) , and hence generate SL2(Fi), and so G contains a copy of SL2(Fi). 

Also, K(Ei) = K(ii, qi), so that K(Ei) contains the i - th roots of unity. For all 

/ such that I j f A (K) we have tha t \K(^i) : K\ = I — 1, and so G contains a copy of 

(F,)*. Since GL2(Ft) = SL2(Ft) . (F,)*, where SL2{Fl) n (F,)* = { 1 } , then we have 

our result. 

We now take K = Q, and so condition ( i i i ) is satisfied for all /. Let E(j) be an 

elliptic curve defined over Q, having invariant j , and described by Y 2 = 4X3—aX—b. 

Choose an / which also satisfies conditions (i) and ( i i ) . Then Gal (Q (J£J)/Q) = 

GL2(F{), by Theorem 3.2.7. Now let E be an elliptic curve defined over Q ( j ) , 

which we choose to be described by 

Y 2 = 4X3 - a\(j)X - bX(j). 

We require that when we choose j — r 6 Q, then E = E(j). Bu t 

X { 3 ) ~ a 3 { j - U 3 ) 

gives X(j) = 1 for j = r £ Q, as required. 

We recall f r o m Chapter 2 that Fn = Q ( j , f a ) for the Fricke functions / „ , and 

now take n = I. Since the / „ are functions of p multiphed by a rational funct ion of 

g2 and g3, where g2,g3 are rational functions in j , then we have that Fi = Q ( j , / a ) = 

Q ( j , -*"(£/)). Thus Q ( j , Ei) is an extension of Fh and we know that Gal ( F , / Q ( j ) ) = 

G £ 2 ( F , ) / { ± 1 } . But Q O ) has char 0, and so Gal (<Q ( j , £?,) /Q ( j ) ) C G L 2 ( F , ) , as 

shown earlier i n this section. Let = G a l (Q ( j , Et)/(^ ( j ) ) . Then we must have 

that H £ G I 2 ( P i ) or # * G L 2 ( F , ) / { ± 1 } . Bu t G L 2 ( F , ) / { ± 1 } is not a subgroup of 

GL2(Fi), and so we have that G a l ( Q ( j , £ , ) / Q ( j ) ) = <3Z/ 2(F,). 

We already have that L = Q ( j , ; ' oa<( r ) ) . We let H = Q ( £ ( j ) / ) , R = Q [7], 5 = 

Qb'. ioOiO-)], 4 = and T = S A We let r € Q \ Z , and choose t € H 

such that j(t) = r. We then let R(r) = { x / j / 1 a;, y € i?, ( j - r)]fy}, so /2( r) 
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is a P.I.D. Let S(R) = SR{T) etc, and S\T = { f ( t ) | / G 5 } etc. We know that 

G a l ( # / Q ( j ) ) = GL2(F,) and Gal ( L / Q ( j ) ) = PGL2(Ft). Choose an Z such that 

A | t has Galois group GL2(¥{) over Q. 

L e m m a 3.2.8: T( r ) is a free i?( r)-module of rank |GL 2 (F/)I> a n d ^(r) is a f r e e 

# ( r ) -modu le of rank \PGL2(Fi)\. 

Proof: We prove the lemma first for T( r ) . We have that T(T) = R(R)[E(j)t, j0ai(r)]. 

Let P be any one of the E(j)i, j o C ^ r ) , and let 

a0pn + aip"-1 + . . . = 0 

be a primit ive minimum polynomial of f3 over R(T). I f this polynomial cannot be 

made monic, then a 0 is not a uni t i n i?( r ), i.e., a 0 is divisible by ( j — r)n for some 

0 < n G Z , and ( j — r) does not divide some a*, say aT. Then aT/a0 —> oo as T —> t. 

But aT/a0 is a symmetric funct ion of the conjugates of {3, and we know that none of 

these conjugates go to oo at r = t, and so we must have that f3 is integral over i?( r ). 

Then T( r ) is a finitely generated torsion-free i?( r)-module. Since i?( r) is a principal 

ideal domain, then we have that T( r ) is a free i2( r)-module (see [14], p.22, Corollary 

2), of finite rank s, say, i.e., there exist xi,...xa G T(r) such that for all v G T( r ) , v 

can be uniquely expressed as v = £ i r; Xi for r; G R(T). 

Now r ( r ) = S A R { T ) , so AC T ( r ) Q ( ; ) C Bu t Q ( j ) C T ( r ) Q ( j ) C H, and 

since any integral domain finite dimensional over a field is a field, then T( r ) Q ( j ) is 

a field. Since H is the field of quotients of A, we must have that T( r ) Q ( j ) = H. 

Thus an element h of H can be uniquely wr i t t en as h = where g G 

and so the span # over Q ( j ) . I f <fc G Q ( j ) , then there exists 0 < n G Z such 

that ( j — r ) n qi G i?( r), and so i f Y^Qi^i = 0 then — ^ ) n 9 t ^ i = 0 also. Bu t the 

Xi are linearly independent over R(T), and so ( j — r)n qi = 0, and hence the Xi are 

linearly independent over Q ( j ) . Thus {xi,... ,xa} is a basis for H over Q ( j ) , and 

so s = \H : Q ( ; ' ) | = | GL2(Ft)\. This proves the lemma for T ( T ) . 

The proof for 5( r ) is achieved by replacing T( r ) by S'j,.), i.e., by showing in the same 

way that 5( r ) is a free i?( r)-module, w i t h rank equal to the dimension of 5( r ) Q ( j ) = L 

over Q ( j ) , i.e., | P G L a ( F , ) | . 
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Coro l lary 3.2.9: ( i ) T ( r ) | t = T\t = A\u 

( i i ) | P G L 2 ( F , ) | > d i m Q ( 5 | t ) , 

( i i i ) The kernel of the evaluation map T( r ) •—• T( r)|< is ( j — r ) r ( r ) , 

( iv) For each g £ PGL2(Fi) there is an automorphism & of S| t defined by f ( t ) 9 t = 

/ ' (*)• 

Proof: (i) Clearly T ( r ) | t 3 T | t D .A| t . Bu t by the lemma we know that an 

element v of T(T) can be wr i t t en as v = £ T\ X{ w i t h 6 i?( r), thus w £ T ( r ) | t can be 

wr i t t en as w = £ ri(t) Xi(t) w i t h r i ( t ) 6 i?( r)|t = Q- Thus 

| G L a ( F , ) | > d i m Q ( r ( T ) | t ) > d i m Q ( T | t ) > d i m Q ( > l | t ) = | G I 2 ( F , ) | , 

and so all these dimensions are equal, giving us ( i ) . 

( i i ) As for ( i ) , w i t h S(r)\t 2 S\t, and so \PGL2(F,)\ > d i m Q ( 5 ( r ) | t ) > d i m q ( 5 | t ) . 

( i i i ) The kernel / of this map certainly contains ( j — r). Now, the dimension of 

T ( r ) / ( j —r) over R(r)/(j —r) is equal to \GL2(Ft)\, by the lemma. But R(T)/(j — r) = 

<Q, and the dimension of T ( r ) | t over Q is also |GI«2 (F/ ) | by ( i ) . Thus J cannot be 

bigger, and so I = ( j - r ) T ( r ) . 

( iv) Let J = ( j — r)T(r) H S. Then J is the kernel of the evaluation map restricted to 

S, and is stable under the action of g. So S\t = S/J has the given automorphism. 

T h e o r e m 3.2.10: I f Gal ( A | t / Q ) 2 G X 2 ( F / ) , then Gal ( 5 | t / Q ) = PGL2(Ft). 

Proof: By part ( iv) of the corollary there is a homomorphism <f>: PGL2(Fi) —> 

Aut(S ' | t ) . The action of gt is determined by its action on the j 0 < * i , and so the images 

of <j> permute the j0o.i- Now the j0cti remain distinct when evaluated at r = t: 

Suppose j0oci(t) = j0oij{i) for some i ^ j . Thus, A{t) = A'(t) where A, A' are of the 
- i at -\- b 

fo rm in Theorem 1.3.1, and so t = A A lt). Then t = ; w i t h a, b, c, d € Z , 
ct + d 

and so t G H is imaginary quadratic, and so, by Theorem 1.3.6, j(t) is an algebraic 

integer. Bu t j(t) = r £ so we must have that the j0cti(t) are all distinct. Thus 

<f> is injective. Also, by part ( i i ) of the corollary 

\PGL2(F,)\ > d i m Q ( 5 | t ) > | G a l ( 5 | 4 / Q ) | , 

and so <$> is also surjective. This completes the proof. 
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We now give some specific examples of elliptic curves E with non-integral j-

invariants, and show for which primes / the Galois group of <Q (Ei) over Q is GL2(Fi), 

and so Gal(j0ai(t)/ty = PGL2(Ft), where j(t) = r £ Q \ Z is the invariant of E. 

We know this holds for primes / satisfying all conditions of Theorem 3.2.7. We use 

Table 1 given in [2] to find our examples. 

Example 3.2.9: The curve 

y2 + y = x3 - x . 

2 1 2 3 3 

From Table 1, [2], the conductor, N = 37, A = 37, j = —r=~- Thus e = 1, and so 

we do not have to eliminate any primes I by condition (i) of Theorem 3.2.7. Also, 

from Table 1, the curve is not isogenous to any other curves, so by (ii) we do not 

have to eliminate any / either. Thus Gal(Q(i?{)/Q) = 0,2(^1) f o r a^ primes I, 

and so G a l ( * / ( ^ - , X ) / Q ) = P G £ 2 ( F , ) for all I. 

Example 3.2.10: The curve 

y2 + xy + y = x3 + x2 - 3x + 1. 

5 293 

We have N = 50 = 22.5, A = -2 2 . 5 2 , j = — ' — . Thus e = 5, so we must 

eliminate / = 5, by condition (i) of Theorem 3.2.7. Also, the curve is isogenous to 

the two curves 

y2 + xy + y = x3 4- x2 + 22x - 9, 

y2 + xy + y = x3 + x2 - 13x - 219, 

and the degrees of the isogenies are 3,5 respectively. Thus Gal (Q (E/)/Q) = G Z ^ F f ) 
—5 29 3 

for all primes I ^ 3,5, and so Gal($/ ( ' , X ) / Q ) = PGL2(Fl) for all 1^3,5. 
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C H A P T E R 4 

The two - valued Modular Equation 

4.1 The two-valued Modular Equation 

The modular polynomial, $n(j(r), j(nr)) has extremely large coefficients, with 

$ 3 already having a coefficient 22 digits long. In this chapter we study a paper by 

Cohn, [3], which is based on work by Fricke, [4], and gives a two-valued modular 

equation with much smaller coefficients. We are then able to give specific examples 

of equations whose roots generate extensions over <Q with Galois groups PG L2CZ.13) 

We know that j(z) is invariant under the modular group, T. The function j(z/n) 

is invariant under a subgroup of T, T°(n), where 

Then G = H / r ° ( n ) is a Riemann surface, with genus g, say. We now consider the 

Atkin-Lehner involution, 

z 1—• W(z) = 

and extend the group T°(n) to T°(n)*, where 

an extension of degree 2. Now G* = H / r ° (n )* is a Riemann surface of genus g*, 

say, where in fact g* < g, and G is a double covering over G*, i.e. one orbit of G* 

gives two orbits of G. 

The Riemann surfaces of genus 0 are essentially Riemann spheres, so there is a 

bijection from the surface to € U { 0 0 } . We only consider cases where g* = 0, i.e., 

and P G L 2 ( Z U ) . 

(n) = (mod n ) j £ r 3 = 0 

r°(n)* = r°(n) - i - wr ( » ) . 
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where there is a bijection t from G* to <D U {oo}, so t is a function on the upper 

half plane which is modular for r°(n)*. Then the field K of meromorphic functions 

of G is an extension of degree 2 over the field K* of meromorphic functions of G*, 

and K* = C (t), since g* — 0. Thus K = C (t, s) where s2 £ K, and we can take 

s2 to be a squarefree polynomial in t, i.e., s2 = / ( t ) . Then the degree of f ( t ) must 

be 2<j> + 2, in order that G has genus g. Then, the two orbits of G corresponding to 

one orbit of G* are given by (t, ± s ) . Now, 

j(z/n) = j(a(z/n)) = j(-n/z) = j(W(z)), 

where a = ^ ^ ^ ^ £ T. Since ^'(2) is a function of t(z),s(z), then there exists a 

function Fn(t,s) such that 

(4.1.1a) j(z) = Fn(t,s), 

(4.1.1b) j{z/n) = F w ( t , - s ) . 

If we put 

(4.1.2a) Nn(t)=j(z)j(z/n), 

(4.1.2b) Dn(t,s) = j ( z ) - j ( z / n ) , 

(4.1.2c) 5 n ( i ) = ( £ n

2 ( t , s) + 4 t f „ ( i ) ) 1 / 2 , 

then we have an equation in t with coefficients in j, which we call the two valued 

modular equation, given by 

(4.1.3) j 2 - S n ( t ) j + Nn(t) = 0. 

Since t is modular for T°(n)*, then i t is modular for T(n), and so must have Fourier 

expansion in powers of g«. Then, since two points in the fundamental domain are 

inequivalent under T°(n) for their imaginary parts sufficiently large, then t must have 

a Fourier expansion of the form ao + a\ + • • • or b0 + bi qn + • • •. We choose t 

such that t(ioo) = 00, and so take the first expansion, choosing ao = 1, ai = — C. 

Then we have 

(4.1.4a) j(z) = t n + nCt"-1 + 0 (tn~2), 

(4.1.4b) j(z/n) = t + C + 0(l/t). 
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This choice for t is not unique since there may be a translation in t. 

Functions Nn(t) and Dn(t, s) for suitable choices o f t , s are given in the appendix 

to [3]. 

We first consider a case where g = 0. We change variables from t, s to x, y so that 

(t, s) *-» (t, —s) is given instead by x <-> y: Since g = 0, we can choose s2 = t2 — AB2 

s (t - 25) 
for some constant B. We then define w = ——, so that ur = —-f . Then we 

t + 2B (t + 2B) 
choose 

(1 - w) 
(4.1.5a) x = f- Jr , 
V ' (1 + w) 

(4.1.5b) xy = l . 

Thus we have that 

j(z) = Gn(x), 

j(z/n) = Gn(y). 

Since t « 5/a: as z —» oo, we can choose x (zoo) = 0, so that j(z),j(z/n) satisfy the 

asymptotic conditions (4.1.4a,b). We require that x is a modular function for r°(n) 

which preserves the symmetry of (t,s) *-* (t,—s). Since r){z) satisfies T](—l/z) = 

(-iz)^rf(z), then for the cases where (n — 1) 124 we can take x to be 

< « < > — M - M ' * 

The fact that this is modular for T°(n) wil l be proved in Corollary 4.1.8. I t also 

preserves the symmetry of (t, s) *-* (t,—s) since 

V ( - n / z ) n ^ ^ 
_2i 

/ n ( — r\ I y \ nn'Z \ ̂  
y = x(-n/z) = 

V ( - l / z ) 

(—iz/n)2rj (z/n) n* 
(—iz)^T] (z) 

\r}(z)n*) 
1 

, 2« 
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and (Z, s) <-> (t, — s) gives w —w, and so x «-• y. Then, from the g-expansions we 

find that 
6 24 

B = nT^ , C = 
( n - 1 ) -

We require the following lemma: 

6 / n(z) \ T ^ 7 
Lemma 4.1.7: x (z) = nf"-1) . . . is a modular function for 

\v{z/n)J 

r o < n ) = { ( c rf)er|6 = c = 0 ( m o d n ) } , 

for all ( n - 1) | 24. 

Proof: Let A = ^ c ° € rg(n). We require the following property of 

T)(T): 

for ^ " ^ j 6 T and where e 2 4 = 1. An explicit formula for e is given by Dedekind's 

24 
functional equation, as found in [1], p.52, Theorem 3.4. Let v = -. r. Then we 

(n - 1) 
have that 

\'lyn{cnz+d)f ) 
/ o £ ± 6 n \ ^ * 

'l\cnz+dl = n* ' / a{z/n)+b 
7 An2c(i /n)+d/y 

j / ei \ • / cnz + d \ * / qfc) \ v 

U \e2) {n^ciz/^ + d) \v(z/n)J 

('iy ( fa) Y = n* 

where e 2 4 = e2,4 = 1- We must now show that (ei/t2)v = 1- We examine the cases 

n = 2,3 and 4 separately. For n = 2 we have that u = 24, and so clearly (ei/e 2) 1 ' = 1. 

For n > 3 we look at the functional equation for e and find that 

/ £ i V _ f • ( a + d _ a + d _ terms with cn2or (cn 2 ) 2 \ 1 
\ 6 2 / y r W y I2cn 12cn2 ^ in their denominators J J 

f 27ri(a + d) . ^ \ 
= e x P i — — 2 ™22j (*) en-6 
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Thus, for n = 3, we have 

and so, for 2 not dividing c, we must have that (ei/e2) 1 2 = 1. We must show that all 

matrices in r[j(3) can be generated by matrices of the form ^ ^ ^ ^ where 2 does 

not divide c. Let Z? = ^ * ^ ^ , so B is of the required form, and let X = ^ ^ ' ^ 

be a general matrix in Tn(3). Then BX = ( f „ ' | . Now, if 2 does not 
u v ' \ r - f 3p s + 3q J 

divide r, then X is already of the required form. So suppose that 2 divides r. Then 

2 does not divide p, otherwise 2 would divide de tX = 1. Thus 2 does not divide 

r + 3p, and so = Y, say is of the required form. Thus X = B~lY is generated 

by matrices of the required form, and so x (z) is modular for r{](3). 

For n = 4 we have 

/ e A 8 [27ri(a + cQ . ^ 1 

and so for 3 not dividing c, then {(-xle^f = 1. The matrices of the form ^ ^ ^ ' 

where 3 does not divide c, can be shown to generate r(j(4) by exactly the same 

method as above. 

For the cases where n > 5, by looking at (*) we see that (e 1/e 2) 1 ' = 1 when­

ever (cn, 6) = 1, and so we must show that these matrices generate ^ ( n ) : The 

matrix C = ^ ^ 1 ) ^ ^o ( n ) s a t i s f i e s * n e requirement that (n, 6) = 1, and Ch = 

( hn 1 ) ' ^ e t ^ = ( c rf)kea S e n e r a l m a t r i x m r"o(w), i.e., b = c = 0 (modn). 
Then o, c are not both divisible by 2 or by 3, since det X = 1. We have 

c±hx - ( a b 

\ c ± hna d ± hnb ) 

We need to show that one of C±hX is of the required form, i.e., one of (c±hna, 6) = 1. 

There are 4 cases: 

(i) 2/c, 3/c. Then X is already of the required form. 

(ii) 2 | c, 3/c. Take h = 1. Then 2/a, and so 2/c ± na. Also, if 3 | c + na, then 

a = —c (mod 3), and so c — na = c — a = 2c = —c ^ 0 (mod 3). Thus 3 j 'c — na, and 
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so B 1X is of the required form. 

(iii) 2 | c, 3 | c. Then 2/a, 3/a, and so 2/c ± na, 3/c ± na. 

(iv) 2/c, 3 | c. Then 3/a. Take / i = 2. Then 2jfc ± 2na, and 3/c ± 2na. 

Thus, in each case, X can be generated by matrices of the required form, and so 

x (z) is modular for T^n). This proves the lemma. 

Corollary 4.1.8: For all (n — 1) | 24, x (z) is a modular function for r°(n). 

Proof: Let ^ ^ ^ ^ € r°(n), and so (a, n) = 1, since de tX = 1. Now the 

matrix C = ^ ^ !j* ^ leaves x (2) fixed, since in (*) given in the proof of the lemma, 

we replace cn2 by n, so we can see that we always have (ei/e2)" = 1. Then 

^ ^ ^ x 1 ) ( c d ^ ( c + as d + bnx ) ^S&^' 

Since (a, n) = 1, we can solve xa = c(modn), and so Y € r | j(n). Thus X = C~XY 

leaves x (z) fixed, and so x (z) is modular for r°(n). 

We thus consider the case n = 13, i.e., £ = >/l3 and s 2 = t2 - 52. We need to 

show that the extension generated by t and s is the same extension as the extension 

L as defined in chapter 2, and then we are able to give an equation whose roots 

give an extension over Q with Galois group PGL^l^n). First we have, from the 

appendix to [3], that 

Nl3 = (t + 5) 2(* 4 + 254*3 + 5077*2 + 34092* + 75492)4, 

D13 = (t - 3)(t + 2)(t + 4)(t + 5)(t + 6)(t + 7)(t + 9)(*2 - 52)* 

( t 2 - 27)(*2 - t - 38)(<2 + 6t - 3) , 

and so, from (4.1.2a,b) we can evaluate j(z), j (z /13) and show that they lie in 

Q ( j , t, s). Thus we have that 

L = §(j(z),j(z/I3))cq(j,t,s). 

Now we are able to show that 
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Theorem 4.1.9: Gal (Q ( j , t, a)/Q (J)) = P G Z 2 ( Z i 3 ) . 

Proof: We need to show that t, a € L, to get our result. We look at x, where 

from (4.1.6) we have that 

x 

From Lemma 4.1.7, x is a modular function for T^n) , and is thus modular for V(n). 

Now, T)(z), 77(2/13) have integer coefficients in their expansions in powers of q and 

qi* respectively. We also have that ^13 G L, since fixing F13 by J~£jy g i y e s us L. 

Thus fixing the subgroup Q (£13) of F13 by "T^yy m u s t &ye u s t n e g r o u P L n Q (£13)-

We know that Gai (Q(fc 3 ) /Q) = (F13)*, and G a l ( Q ( £ 1 3 ) / £ n Q(6a)) = (FJ 3 ) 2 , 

since the determinant of a matrix in J^yy * s a 8 < l u a r e - Thus L n ^(£13) is a 

quadratic extension of Q which is ramified only at 13, and so must be Q(>/l3), 

since 13 = 1 (mod 4). Thus y/\Z G L, and hence \Zl3~ G Fn, so we get that x € Fn. 

We show that x is fixed by the action of the scalar matrices, ^ ^ ^ ^ , where 

k G ( Z 1 3 ) * . Now, 
( k Q \ _ ( l O \ 2 ( k 0 \ 

fcJvo fc j ^ 0 k-1 J ' 

where ^ Q ) £ ^^2(^13), ^ ^ ^ ^ G SL2CEi3)- We already know how 

( 
Q ^ j acts, from chapter 2: 

ak '• £13 — • where kl = 1 (mod 13). 

Since 77(2),77(2/13) G Zfg],Z[<7^] respectively, then x is fixed under a*. Thus 

it remains to show how ^ ^ ^ x ^ acts on x. First we choose m such that 

km = l ( m o d l 3 2 ) , i.e., /urn — 132a = 1 for some integer a. Thus the matrix 

V = ( u m" ) G 5 L a ( Z ) i s m a P P e d t o ( 0 A ) u n d e r 5 i 2 ( Z ) —» 5 i a ( Z i 3 ) . 

But V G ^ (13 ) , and so by Lemma 4.1.7, it leaves x fixed. Thus x is fixed under 

the scalar matrices, and so lies inside the extension L = Q(j(z),j(z/13)). Thus 

Q 0 » C Q( j (z ) , j ( z /13) ) C Q ( j , i , s ) . 

But from (4.1.5a) we find that 

5 ( 1 + x 2 ) 
t = 

x 
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and then 

thus s,t E x), and so we have that 

But Q (j(z),j(z/l3)) is a normal extension of Q ( j ) , and so we have that 

Q ( ;(*) , j (*/13)) = Q0' ,« ,«) . Thus 

G a l ( Q ( j , i , S ) / Q ( j ) ) = Gal (Q( i (*) , i (z /13) ) /Q (; '(*))). 

= P G L 2 ( Z 1 3 ) . 

We now show that we can dispense with s; 

Theorem 4.1.10: G a l ( Q ( j , M ) / Q ( ; ) ) = G a l ( Q ( j , t ) / Q ( j ) ) . 

Proof: We have that ty(j,t,s) is an extension of degree 2 over Thus 

the Galois group of Q ( j , t, s) over Q ( j , t) is an elementary abelian group, N say, of 
PGL (TL ) 

order 2T. Now, . —r = C 2 , and PSL2CZ13) is a simple, normal subgroup of 
P o L 2 ( Z i 3 ) 

PGZ/ 2(Z 13). Thus we have a composition series 

{1} < P S L 2 ( Z 1 3 ) < PGL2(Z13). 

Now, since Q ( j , f ) is normal over Q ( j ) , then N is a normal subgroup of P G L 2 ( Z i 3 ) , 

and so we get 

{1} < N < P G Z 2 ( Z 1 3 ) , 

and so by the Jordan-Holder Theorem, we must have that N = C 2 or N = 

PSX 2 (Z i 3 ) - But \N\ = 2 r , and so r = 1 and N = C 2 . We conclude by show­

ing that PGL2CE13) has no normal subgroup of order 2, for any such subgroup 

must be contained in the centre of P G L 2 ( Z i 3 ) , which we will show is trivial: We 

need to find which a G P G L 2 ( Z i 3 ) satisfy 

g 1ag = \a 

for all g G P G L 2 ( Z i 3 ) , and where A 6 ( Z 1 3 ) * . Taking g = ^ J J ^ a n d ^ J J ^ 
respectively gives us that a is of the form ^ ^ ^ ^ . But P G L 2 ( Z i 3 ) = 
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and so a = I, as required. Thus PGL2(j&.iz) has no normal subgroup of order 2, 

and hence Gal(Q ( j , t ) / Q ( j ) ) = PGL2{%1Z). 

We are now able to give our specific example. Using the equations for N13, D\z 

to give 5i3, by (4.1.2c), we find our 2-valued modular equation, (4.1.3). We choose 

a rational value of j so that 13 satisfies conditions conditions (i) and (ii) of Theorem 

3.2.7. Thus we choose the curve 

y — x — x + x , 

which has j = 2 1 1 /3, giving us the equation 

Example 4.1.11: 

/ 1 3 ( 2 n / 3 , t) = J(9 t u + 804t 1 3 + 1788072t12 + 236043288 t n 

+12246025350110 + 35221721121619 + 645126546402018 

+80606750638440t7+ 711610221772905t6 

+450177335674513215 + 20346314325794652i4 

+64281217622417952t3 + 135086706336372336t2 

+169866024492553920* + 96801145628029504), 

which has Galois group PGL2{'Li3) over Q. 

We now consider the case b = 11, of genus 1, following the work of Fricke, [4]. 

Fricke uses two theta-functions to derive his equations. The first is described by 

(4.1.12) y ( U l t U 2 ) = — 2 ^ + 6 „ W ) f 

for q = entT, (/x, v) G Z 2 , and (a, b, c) = ax2 + bxy + cy2 a positive quadratic form of 

discriminant = -11. Then, as shown in [12],p VI-22, Theorem 20, y(o>i,o;2) satisfies 

the following relation; 

(4.1.13) 2/(c*u>i + /3u2,70/1 + Su2) = ( j ^ j w 2 ) , 

f o r ( 7 ) G r ° ( n ) = { ( " * ) 6 r 1 7 = ° ( m o d 1 1 ) } ' a n d w h e r e ( n ) " 
the Legendre symbol. The other theta-function Fricke uses is 
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(4.1.14) u*) = — £ ( - l )V i 2 + 6 ' " / + c , ' 2 , 
w 2 p,v 

taken over all odd integers /z, and all integers v. According to Fricke, the product 

wa)^A(wi ) u2) 

also satisfies the relation (4.1.13). By substituting the quadratic form (1,1,3), which 

is of discriminant b2 — 4ac = —11, into (4.1.12), (4.1.14) we obtain 

y("i,u2) = — (l + 2q2 + Aq6 + 2q6 + 4q10---) 
UJ2 

z(wi,u2) = — (q-q3-q5 + qu+ q13-q23---) 
U)2 

respectively. These are both homogeneous functions of weight 1, i.e., 

y{Xu)U\u)2) = ^y{uuu2), 

and similarly for z(u>i,u>2). Fricke then considers the transformation W which sends 

and chooses W such that 

ux = -j=, u>2 = -iVUuJi, 

i.e., 

V -*vTT o y 

Under this transformation the modular forms g2,g$ and A are transformed to g'2,g'3 

and A' . Then (g'2 — g2)2 is a modular form of weight 8 with respect to r 0 ( l l ) , which 

Fricke asserts can be expressed as 

(9'2 - 92? = ay8 + by6z2 + cy*z4 + dy2z* + ez». 

The first few terms of the g-expansions are sufficient to give that 

(92 ~ 92? = 1<% V - 20y4z2 + 56y2z4 - Uz6). 

Thus we put g (u>i,u>2) = ^2 ^ 2 ' , which has (/-expansion 

9 («i ,u; 2 ) = (—V (1 - 2q2 - 18?4 - 56g6 - 146?8 - 252 9

1 0 • • • ) , 
\ uf2 / 
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a modular form of weight 4 for the subgroup r 0 ( l l ) . Fricke then defines his s and t 

by 

As before, we must show that t and s lie inside L. From the expansions for y, z and 

g, we can see that t, s E <Q ((g)), and thus (E Fn. I t remains to show that t, s are 

fixed under the action of the scalar matrices. 

We let K = ^ * °k ^ . Then G r 0 ( l l ) , and so 

K(y(ui,u2)) = 2/(wi,w 2), 

A r ( z ( w i , U ' 2 ) v

/ A ( u ; l > U ' 2 ) ) = ( ^ j z{uUU2)yJ&{uUU2). 

But ^A(wi,u2) = (27r)127/12(o;i,a;2), and /f(7/ 1 2(a;i,a;2)) = 7712 (0/1,^2), and so 

^ ( 2 ( ^ 1 , ^ 2 ) ) = (J^J z(ui,u2), 

Thus 

^ ( r ) ) = t ( r ) . 

Also, since g is modular for r 0 ( l l ) , we have that 

K(g (u>i,u2)) = g(vuu;2), 

giving 

K(s(r))= 9 { U ^ 2 ) 

( n ) 4 ^ - ^ ) 4 ' 

and since the Legendre symbol is equal to ± 1 , 

K(S(T)) = S(T). 

Thus t,s G L, and so, as before, we have that 

§(j,t,s) = §U(z),j(z/ll)), 

i.e., 

G a l ( Q ( j , t , S ) / Q ) = P G L 2 ( Z n ) . 
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We construct our two-valued modular equation f ( j , t ) for 6 = 11 using Sn{t), 

Nu(t), as given in [3]. We note that we have 

M = Suit)* DuM j ( z / u ) = Suit) - Du(t) 

where 

Du(t) = ( t 4 - 20t3 + 56t2 - 44t)5 x monic polynomial in t of degree 9. 

Writing 

/ A * 2 , i 2 ft M 242 2662 31944 
( i 4 - 20i 3 + 56*2 - 44*)5 = t2 - lOt - 22 = 5 , 

we find that j(z), j ( z / l l ) satisfy the asymptotic conditions (4.1.4a,b), with C = —6. 

The same curve as before, y2 = x3 — x2 + x, with j = 2 n / 3 has 11 satisfying the 

conditions (i) and (ii) of Theorem 3.2.7, and gives the equation 

Example 4.1.15: 

/ n ( 2 u / 3 , t) = ^(9t12 - 96tn + 1755072t10 + 87793728t9 - 109114368*8 

y 

-2241355776*7 + 10223026176*6 - 20789919744*5 

+28214427648*4 - 35589193728*3 + 41108373504*2 

-30828134400t + 10070523904), 

having Galois group PGL2CZ.11) over Q. 
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4.2 The size of the discriminant 

From examples 4.1.11, 4.1.15 we are able to see how much smaller the coefficients 

of the 2-valued modular equation f n ( j , t) are than those of the standard modular 

equation $n(j,t)- Indeed, $ 3 has a coefficient 22 digits long, whereas the largest 

coefficients of f n and / i 3 have 11 and 18 digits respectively. 

We now investigate the discriminant of the modular equation and find in the 

cases we look at that it is divisible by many squares of primes. We find out whether 

these primes ramify, or that we simply do not have the ful l ring of integers. We do 

this work for the modular equation of level 2. From [4] we have that 

* 2 ( j , x ) = x 3 + (24.3.3l7 - j2 - 2 4 .3 4 .5 3 )x 2 + (2 4 .3.31j 2 + 34.53.4027j + 2 8 .3 7 .5 6 )x 

+ ( j 3 - 2 4 .3 4 .5 3 ; 2 + 2 8 .3 7 .5 6 j - 2 1 2 .3 9 .5 9 ) , 

which has discriminant 

d = d ( j ) = 2 2 ; 2 ( i -I- 3 3 . 5 3 ) 2 ( ; 2 + 33.52.283j - 5 3.97499) 2(j - 1728). 

We want to choose a rational value r of j such that Gal ($ 2 ( r , a ; ) / Q ) = -PG2y 2(Z 2). 

Now, i ? G L 2 ( Z 2 ) = ^3, and since $z(r, x) is a cubic, i t has Galois group a subgroup 

of 5 3 . Thus we only need to show that 2 and 3 divide the order of the Galois group. 

Now 

|Gal( r ,x) /Q) | d ( r ) ^ square, 

|Gal(r, x ) /Q) | $ 2 is irreducible over Q. 

Choosing j = 2 gives d < 0, therefore d ^ square. Also, 

$ 2 (2, x) = x3 + 2x2 + 2x + 3 (mod 5) , 

and since 0, ± 1 , ± 2 are not roots of x3 + 2x2 + 2x + 3, $ 2 (2, x) is irreducible, and 

hence Gal ($ 2 (2, x ) /Q) = P G £ 2 ( Z 2 ) . 

Now, 

d = -25.112.292.2112.3072.863.197592. 
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Let 0 be a root of $2(2, x) and put K = 

d = AK(Z[d}) = 

Q[0], R = intK. Then we have that 

\R : Z [0] | 2 A( i? ) . 

Clearly, if \R : Z [0] | > 1, then Z [0] is not the full ring of integers. We require the 

following theorem: 

Theorem 4.2.1: If p2\\d, p > 3, and p does not divide \R : Z [9] |, and if 6 6 Z is 

such that 36 = a (modp), where a is the coefficient of x 2 in $ 2 ( r , x ) for some r £ Z , 

then 5 (x) = $2(7*) x — 6) is such that g (x) = x 3 (modp) and p2 does not divide g (0). 

Proof: We have that (p)# = pf 1 • • -p\% where S ^ / i = n = 3, for the ram­

ification indices e< and the residue degrees where 0 < e^,/; 6 Z . Thus each 

ej < 3. I f p does not divide e,- for any i, p is said to be tamely ramified, and 

W ( p i ) e i _ 1 • • • NipsY'-^lAiR). In this case, if p ' H A ^ ) , then t = E^e* - 1). We 

have p > 3, and thus p does not divide ej for any i. We also have that p 2 | |A( i?) , 

i.e., £ ( e j — 1) = 2. Thus we must have that (p)# = P3. Since p does not divide 

\R : Z [9] |, we may apply Dedekind's Theorem. Then, 

$ 2 ( r , x) = (x + 6) 3 (modp), 

so g (x) = x 3 (modp). Let <f> = 9 + 6. Then g (</>) = g (9 + b) = $ 2 (0) = 0, and so 

<̂  is a root of g (mod p). Also, from Dedekind's Theorem, P = (p, 9 + 6) = (p, 0). 

Suppose p 2 |p(0). Now, #(0) = - i V ( ^ ) , and hence P2|(0). Then we have that 

P2 \ (p) + (<f)) = P, giving a contradiction, hence our result. 

We use Theorem 4.2.1 to show that we do not have the fu l l ring of integers. We 

have that d = -25.112.292.2112.3072.863.197592, and the coefficient of x 2 in $ 2 (2 ,x ) 

is a — —159028. We check for p = 11; b = —53013 is a solution to 36 = a (mod 11), 

and thus we put 

g ( x ) = $ 2 (2 ,x + 53013) = x 3 + l l x 2 + 399584481x + 12692331156599 . 

Since 11 does not divide 12692331156599, we must have that 11 \R : Z [0] |. Check­

ing the other primes in the same way we find that p \R : Z [9] | for all primes p such 

that p2||ef. Thus we have many primes whose squares divide the discriminant which 

do not ramify. I t should thus be possible to generate the extension by adding the 
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root of a polynomial whose discriminant is divisible by fewer squares of redundant 

primes, and therefore has smaller coefficients. 

We thus look at the discriminant of the 2-valued modular equation. From [3] we 

have that 

N2 = (t + 272)3, D2 = (t + 47) (t2 - 1282)* , 

giving S2 = t2 + 49* - 6656. Substituting S2, N2 into (4.1.3) gives 

Mi, t) = t3 + (816 - j)t2 + (221952 - 49j)t + ( j 2 + 6656j + 20123648), 

with discriminant 

rf* = 2 2 . j 2 . ( j + 3 2 . 5 2 ) 2 . ( j - 1728). 

Thus d* I d, and so d* is is divisible by fewer squares of primes than d. We see that 

— = ( j 2 + 33.52.283j - 53.97499)2, 

and in fact this corresponds to a value of j ( r ) for r = ^ ^ — . Now d and d* 

are divisible by the differences of conjugates of j(r/n) and t respectively. For d we 

have that j(V(r)) = j{V'(T)), where V, V are primitive matrices of determinant n, 

only i f n(V')~lAV(T) = r for some A G T, i.e., only i f r is fixed under a transforma­

tion of determinant n 2 . For d*, since t is modular for T0(n)*, then t (V( r ) ) = t ( r ) 

for V e transversal of r /T°(n) i f and only i f V(T) = U{r) for some U G r°(n)*, i.e., 

U E r°(n) or U E WT°(n). For U G T°(n) we must have that r is fixed under a 

transformation of determinant 1, i.e., r must be equivalent to i or g, where g = e2^. 

I f U G Wr°(n), then r must be fixed under a transformation of determinant n. 

Since these are stronger conditions, it explains why d*\d. 

Suppose r is fixed under a transformation of determinant m, i.e., 

r for ad — be = m. Then 

-{d - a)2 ± J(a + d) 2 - 4m 
T fc 

For d, by the above, we have m = 4, so the possible complex square roots are 

v 7 - ^ = 4>, V ^ I S , = 2iV3, and v^7- But j(g) = Ofor ^ = e2?, = 1728 

and + v / = 7 ) / 2 ) = 3 3.5 3, so we must have that j2 + 33.52.283; - 53.97499 = 0 
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corresponds to a value of j ( r ) for r € Q (V~~15) > a n d m f a c * r = ^ • 

For c£* we have that m = 2, by the above, and so the only possible complex 

square roots are = 2-^—2, y/—7 and \/—4 = 2i. We must in fact expect to 

exclude the value y/—n since this is a fixed point of W, and so the only values of 

j(r) which may appear in the discriminant are for r = i , g and (—1 + y/^7)/2. 

Since, for g = 0, we have that Q( i , j(T /n)) = <Q(s,f) = Q(x) , where x is 

modular for T°(n), then r is fixed under a transformation of determinant 1. Thus 

the only values of j(r) which may appear in the discriminant are for r = i and 

g, giving an extension generated by the roots of an equation with even smaller 

coefficients. 
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