

Durham E-Theses

Coastal changes in Hong Kong and Southern China

Englefield, Gregory J. H.

How to cite:

Englefield, Gregory J. H. (1992) Coastal changes in Hong Kong and Southern China, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6000/

Use policy

 $The full-text\ may\ be\ used\ and/or\ reproduced,\ and\ given\ to\ third\ parties\ in\ any\ format\ or\ medium,\ without\ prior\ permission\ or\ charge,\ for\ personal\ research\ or\ study,\ educational,\ or\ not-for-profit\ purposes\ provided\ that:$

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107 http://etheses.dur.ac.uk

Coastal changes in Hong Kong and Southern China

Volume two (figures and tables)

Gregory J. H. Englefield

thesis submitted for the degree of Master of Philosophy

University of Durham

Department of Geography

1992

The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.

Figures and tables

List of Figures

1.1 The south coast of China and the location of the study area

<u>_</u>____

- 1.2 Tentative Quaternary stratigraphy from Hong Kong (after Yim <u>et al</u> 1988)
- 3.1 Location of sites studied
- 3.2 The site at Shajing
- 3.3 The location of bore holes at Shajing Lagoon
- 3.4 Stratigraphy at Shajing Lagoon "A"
- 3.6 Stratigraphy of bore holes SJA1 SJA5
- 3.7 Diatom diagram SJA8
- 3.8 Diatom diagram SJA19
- 3.9 The location of the Sham Wan site bore holes, Tung O, Lamma Island
- 3.10 Stratigraphy at Sham Wan (Tung O)
- 3.11 Diatom diagram SW4
- 3.11a Photograph of Sham Wan sediment core SWA4/4i
- 3.12 The location of the bore holes and sediment sections at Tin Shui Wai
- 3.13 Interpreted stratigraphy of "Dutch" bore holes transect A (see figure 3.12)
- 3.14 Interpreted stratigraphy of "Dutch" bore holes transect B (see figure 3.12)
- 3.15 Interpreted stratigraphy of "Dutch" bore holes transect C (see figure 3.12)
- 3.16 Sketch of the TSW/A section
- 3.17 Stratigraphic diagram of section TSW/A
- 3.18 Stratigraphy at Tin Shui Wai, eastern culvert TSW/B
- 4.1 Map of south China, and location of sites
- 4.2 Time-altitude graph of 217 sea level index points
- 4.3 Hong Kong sea level index point time-altitude plots
- 4.4 Shenzhen sea level index point time-altitude plots

- 4.5 Zhujiang Delta sea level index point time-altitude plots
- 4.6 Hanjiang sea level index point time-altitude plots
- 4.7 Xisha Islands sea level index point time-altitude plots
- 4.8 Hainan Islands sea level index point time-altitude plots
- 4.9 West Guangdong sea level index point time-altitude plots
- 4.10 Fujian coast sea level index point time-altitude plots
- 4.11 Combined sea-level change envelopes from all parts of the south China coast
- 4.12 South China coast sea-level index points. Fixed and relational indicators. (Total of 98 data points).
- 4.13 South China coast sea-level index points (not including Hainan Island and western Guangdong data). Fixed and relational indicators. (Total of 48 data points).
- 4.14 Sea-level indicators from the Zhujiang delta including Shenzhen.
- 4.15 Sea-level indicators from Hong Kong.
- 4.16 Sea-level indicators from Hainan Island.
- 4.17 Sea-level indicators from the coast of western Guangdong.
- 4.18 Sea-level indicators found on the Xisha Islands.
- 4.19 Sea-level indicators found in the Hanjiang delta.
- 4.20 Sea-level indicators from the coast of Fujian province.
- 5.1 The structure of a G.I.S. to analyze the impacts of coastal change
- 5.2 The Zhujiang Delta, and the location of tide gauge stations
- 5.3 The location of the study area
- 5.4 The structure of local government administration in the study area
- 5.5 Levelled transect across the study area, 2 km south of Shajing (see Figures 5.3 and 5.10 for location)
- 5.6 Recorded sea levels during three storms at the tide gauges in the Zhujiang Delta (all altitudes in metres Y.S.D.)
- 5.7 The tide gauge network in Hong Kong
- 5.8 Ground settlement of the North Point tide gauge 1954-1976
- 5.9 Altitudinal data for the study area

5.10 Reproduction of the 1:10,000 map of part of the study area

- 5.11 Relative altitudes of sea levels and land in the Zhujiang Delta
- 5.12 Population and altitude maps of the study area
- 5.13 Communication routes in the study area
- 5.14 Estimates of future sea level rise
- 5.15 Estimates of future sea level rise added to the highest recorded sea level at Shanbanzhou
- 5.16 Sea level rise scenarios for the Zhujiang Delta, according to Hoffman <u>et al</u> (1986)
- 5.17 Sea level rise scenarios for Shanbanzhou, combined with an estimate of subsidence of 2 mm/year
- 5.18 Sea-level rise scenarios for the Zhujiang Delta, combined with an estimate of land subsidence of 2mm/year
- 5.19 Possible increase in population for the Zhujiang Delta (10 counties) 1983-2100
- 5.20 Possible increase in population for the Zhujiang Delta (19 counties) 1983-2100
- 5.21 Possible increase in population of the Flood Risk Zone, Bao'an County, 1983-2100

List of Tables

- 1.1 Sea level change methodology
- 1.2 Offshore Quaternary stratigraphy of Hong Kong
- 1.3 Radiocarbon dated former sea level indicators
- 1.4 Sedimentation rates in the Zhujiang Delta
- 3.1 Particle size analysis, Shajing Lagoon SJA5, SJA6, SJA8, SJA19

- 3.2 Particle size analysis, Sham Wan SW4
- 3.3 Particle size analysis, Tin Shui Wai TSW/A
- 3.4 Stratigraphy at Sham Wan as described by Frost (1978)
- 4.1 Information collected for each dated sea level index point from southern China
- 4.2 Types of organic material dated using radiocarbon dating in the database of sea level index points
- 5.1 Mean tidal measurements from tide gauge stations in the Zhujiang Delta
- 5.2 Recorded altitude of tide gauge at North Point
- 5.3 List of topologies generated by the Geographical Information System
- 5.4 Annual recorded maximum sea levels, Hong Kong
- 5.5 Magnitude of storm surges and maximum sea levels in Hong Kong during three tropical cyclones
- 5.6 Sea altitudes recorded in Hong Kong during three tropical cyclones mean monthly maxima
- 5.8 Percentage of work force employed in different economic activities in the study area in 1983
- 5.9 Income per capita in the study area in 1983
- 5.10 Percentage of gross income of each district in the study area derived from different economic activities
- 5.11 Land use data for the study area related to altitude
- 5.12 Land resource data for the study area related to altitude
- 5.13 Estimates of future mean sea level change
- 5.14 Possible effects of future sea level change scenarios in the Zhujiang Delta

5.15 Medium and high sea level rise estimates added to highest recorded sea levels

- 5.16 The effects of scenarios of future sea level change combined with estimates of subsidence in the Zhujiang Delta of 2 mm per year
- 5.17 Projected population growth in 10 counties in the Zhujiang Delta 1983-2100

Figures and tables

.

Figure 1.1 The south coast of China and the location of the study area

.

·

Figure	1.2	Tentative	Quaternary	stratigraphy	from
		Hong Kong	(after Ýim	<u>et al</u> 1988)	

Figure 1.2 Tentative Quaternary stratigraphy from Hong Kong (after Yim et al 1988)

Max1mum thickness in m	21.5	Q	£.21	ب	10.3	14	
Age	Holocene/Postglacial	Last Glacial/Late Wurm	Last Interstadial	Middle Wurm	Second Last Interstadial	Pre-Second Last Interstadial	
Estimated age in years BP	<8,520	8,520- <30,560	30,560- 36,230	40,000- 50,000	55,000- 65,000	>65,000	
hic unit	Marine	u Terrestrial	Marine	d Terrestrial	Marine	Terrestrial	ormity
Stratigrap	Upper	Uppe r	Middle	u Middle	Lover	u Lover	d - Disconf

2

7

-

. - - -رید در

Figure 3.1 Location of sites studied

-

Figure 3.2 The site at Shajing

Figure 3.3 The location of bore holes at Shajing Lagoon

Map based on 1:10,000 map published by Chinese government

. • • • •

Figure	3.4	Stratigraphy	at	Shajing	Lagoon	"A"
					-	

See appendix 1 for details

Figure	3.6	Stratigraphy	of	bore	holes	SJA1	-	SJA5
--------	-----	--------------	----	------	-------	------	---	------

Figure 3.7 Diatom diagram SJA8

Figure 3.8 Diatom diagram SJA19

Figure 3.9 The location of the Sham Wan site bore holes, Tung O, Lamma Island

Figure 3.9 The location of the Sham Wan site bore holes, Tung O, Lamma Island

Figure	3.10	Stratigraphy	at	Sham	Wan	(Tung	O))
--------	------	--------------	----	------	-----	-------	------------	---

مو هو مد مر مز مز

يسر

Figure 3.11 Diatom diagram SW4

. پید، مذمہ

.

Figure	3.11a	Photograph SWA4/4i	of	Sham	Wan sediment	core

FIGURE 3.11a: Photograph of sediments sampled from core SW4, Tung O basin, Lamma Island.

Figure 3.12 The location of the bore holes and sediment sections at Tin Shui Wai

(**********

. .

Figure	3.13	Interpret	ted	stratigraphy	of	"Dutch"	bore
		holes	transect	A (see	figure	3.12)	

fadada: - **a.a.a** henara nya panan

98. SA

Figure	3.14	Interpreted	stratigraphy	of	"Dutch"	bore
		holes tran	sect B (see	figure	3.12)	

Figure	3.15	Interpreted		stratigraphy	of	"Dutch"	bore
		holes tr	ansect	Č (see	figure	3.12)	

معتقدة التفسيسيات التسور

-

•····, •••

والمرسون

Figure 3.16 Sketch of the TSW/A section

Figure	3.17	Stratigraphic	diagram	of	section	TSW/A
--------	------	---------------	---------	----	---------	-------

0.1-

e shell remains

Figure	3.18	Stratigraphy	at	Tin	Shui	Wai,	eastern
		culvert -	TSW/B			-	

ين جز ----

S.).

-

·- ..

. .

T'I D.

Figure 4.1c Location of sites of radiocarbon dated sea-level indicators in Hong Kong

Figure	4.2	Time-altitude	graph	of	217	sea	level
0		index points					

Ĵ

Figure 4.2 Time-altitude graph of 217 sea level index points

-

Sea-level index points from south China (217 dates from various sources)

sea level index point

Figure 4.3 Hong Kong sea level index point timealtitude plots

Figure	4.4	Shenzhen altitude	sea plots	level	index	point	time-
			r				

. . .

:::

Figure	4.5	Zhujiang	Delta	sea	level	index	point
		time-altitude	p	lots			-

.

-

<u>.</u>

· .

Figure	4.6	Hanjiang altitude	sea plots	level	index	point	time-
			▲				

.

Figure 4.7 Xisha Islands sea level index point timealtitude plots

I,

Figure	4.8	Hainan	Islands	sea	level	index	point
		time-altit	ude	plots			-

Figure 4.9 West Guangdong sea level index point time-altitude plots

Figure 4.10 Fujian coast sea level index point timealtitude plots

Figure	4.11	Combined		sea-level		change er		velopes	from
		all	parts	of	the	south	China	coast	

altitude m Y.S.D.

Figure 4.12 South China coast sea-level index points. Fixed and relational indicators. (Total of 98 data points).

Figure 4.13 South China coast sea-level index points (not including Hainan Island and western Guangdong data). Fixed and relational indicators. (Total of 48 data points).

į

Figure 4.14 Sea-level indicators from the Zhujiang delta including Shenzhen.

Figure	4.15	Sea-level	indicators	from	Hong	Kong.

÷.

CONTRACTOR DE LA CONTRACTOR

Figure 4.16 Sea-level indicators from Hainan Is

<u>ار ان ان ا</u>

Ц.

Figure 4.17 Sea-level indicators from the coast of western Guangdong.

्र इ.स.

Figure 4.18 Sea-level indicators found on the Xisha Islands.

. 🗐

Figure	4.19	Sea-level	indicators	found	in	the
-		Hanjiang	delta.			

in the

Figure 4.20 Sea-level indicators from the coast of Fujian province.

Figure 5.1 The structure of a G.I.S. to analyze the impacts of coastal change

FIGURE 5.1: The structure of a G.I.S. to analyse the impacts of coastal changes

Figure 5.2 The Zhujiang Delta, and the location of tide gauge stations

....

-4

Figure 5.3 The location of the study area

÷.....

ندنيمانية برديانيونون ر

er. De rata

Figure 5.4 The structure of local government administration in the study area

Figure 5.4

The structure of Chinese local government related to the study area:

· · ·····

Figure 5.5 Levelled transect across the study area, 2 km south of Shajing (see Figures 5.3 and 5.10 for location)

_

Figure 5.6 Recorded sea levels during three storms at the tide gauges in the Zhujiang Delta (all altitudes in metres Y.S.D.)

.

đ

4

: اد مم

. ...

......

. . .

Figure 5.7 The tide gauge network in Hong Kong

Figure 5.7 The tide gauge network in Hong Kong (after Yim 1988a)

Figure 5.8 Ground settlement of the North Point tide gauge 1954-1976

Figure	5.9	Altitudinal	data	for	the	study	area
--------	-----	-------------	------	-----	-----	-------	------

.

interna Station Station Station Station

Figure	5.10	Reproduction	of the 1:10,000	map of part
-		of the study	area	

÷., .

-

Figure 5.11 Relative altitudes of sea levels and land in the Zhujiang Delta Figure 5.11 Relative altitudes of sea levels and land in the Zhujiang Delta

Land and sea altitudes in the Zhujiang delta

Figure 5.12 Population and altitude maps of the study area

Figure	5.13	Communication	routes	in	the	study	area
--------	------	---------------	--------	----	-----	-------	------

Figure 5.14 Estimates	of	future	sea	level	rise
-----------------------	----	--------	-----	-------	------

Figure 5.15 Estimates of future sea level rise added to the highest recorded sea level at Shanbanzhou

<u>بالمحمد</u> المحمة الم Figure 5.16 Sea level rise scenarios for the Zhujiang Delta, according to Hoffman <u>et al</u> (1986)

. •:

::.:

Figure 5.17 Sea level rise scenarios for Shanbanzhou, combined with an estimate of subsidence of 2 mm/year

.

· - · ·

. . ~~

.

Figure 5.18 Sea-level rise scenarios for the Zhujiang Delta, combined with an estimate of land subsidence of 2mm/year

Figure5.19Possible
Zhujiangincrease
Deltain population
(10 counties)for
1983-2100

Figure5.20Possible
Zhujiangincrease
Deltain population
counties)for
1983-2100

ر. الله ا

l

Figure 5.21 Possible increase in population of the Flood Risk Zone, Bao'an County, 1983-2100

Table 1.1

Sea level change methodology

۲

Table 1.1 Sea-level changes methodology:

્યત્ર્ય

---- ----

. :

- 1 Selection of sites
- 2 Stratigraphic analysis `description of sediments levelling plane table surveying
- 3 Analysis of sediment samples micropalaeontology particle size analysis loss on ignition
- 4 Interpretation of changes through the sediment sequence
- 5 Identification of sea-level index points and tendencies of sea-level change
- 6 Dating of sea-level index points Radiocarbon dating Thermoluminescence dating
- 7 Comparison of dated sea-level index points from a series of sites, and the development of sea-level change curves or envelopes.

Table 1.2Offshore
KongQuaternary
kongstratigraphyofHong

.

Table 1.2: Offshore Quaternary stratigraphy of Hong Kong [after Berry and Ruxton (1960) and Holt (1962), summarised in Shaw <u>et al</u> (1986).]

> Marine muds usually grey and shelly; sand may dominate in areas affected by strong currents.

.

- T

. .

........

Hang Hau Formation

Terrestrial alluvium

sands, silts and clays with gravel bands, often mottled yellow-ochre and red; includes organic material.

Chep Lap Kok Formation

Weathered bedrock

Table	1.3	Radiocarbon	dated	former	sea	level
		indicators				

Table 1.3 Radiocarbon dated former sea level indicators from Hong Kong after Meacham (1979¹, 1980²).

į

......

Location	sample	age (C-14 years B.P.)	altitude (m P.D.)		
Sham Wan ²	shell	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	+0.6 to +1.4		
Sham Wan ¹	shell		-2.6 to -1.0		
Admiralty ¹	wood		-7.3		
Prince Edward ¹	ostrea		-11.0		
Argyle ²	ostrea		-11.0		

Table1.4SedimentationratesintheZhujiangDelta

r

Table	1.4: Se (mm	edimentat year ⁻¹)	i on rates after Hua	in the ng <u>et a</u> l	Zhujian o <u>1</u> 1987a.	g Del	ta
	Late	Pleistoc	ene	H	lolocene		
Time:	Q3 ²⁻¹	Q3 ²⁻²	Q3 ³ -Q4 ¹	Q4 ²⁻¹	Q4 ²⁻²	Q4 ³	
Rate:	0.787	0.936	0.299	2.66	55 2. 2	180	2.710
Average:		0.67			2	.52	

e 14

Table 3.1Particle size analysis,
SJA5, SJA6, SJA8, SJA19Shajing
Lagoon -

Bore hole no.	Depth * (cm.)	Altinude (m. Y.S.D.)	Gravel	Coarse sand	Medium sand	Fine sand	Coarse silt	Medium silt	Fine silt	Clay
SJA5	510 - 513	-4·18 -4·21	0.2	3.6	6.2	29-4	7.9	12.2	11-3	29.2
SJA5	518 - 522	-4·26 -4·30	0.1	0.9	1.3	4.2	2.5	15-1	24-4	51.5
SJA6	148 - 150	1.12 1.10	nil	2.1	5.4	6.0	10.5	18.2	41.2	16.6
SJA6	155 - 158	1.05 1.02	nil	1-4	6.9	8.2	10.2	27.9	39.5	5.9
SJA6	165 - 167	0.95 0.93	nil	2-4	11.8	9.5	10.3	56-2	6-2	3.6
SJA8	70 - 74	1.82 1.78	0.1	22.3	28.5	3.8	4.6	4.2	5.9	30.6
SJA8	81 - 85	1.71 1.67	0.3	15.2	19.5	4.0	5-1	8.4	11.3	36.2
SJA8	91 - 94	1.61 1.58	nil	15-1	20-4	5-1	5.5	10.4	13-1	30.4
SJA8	96 - 98	1.56 1.54	0.6	20.7	25.7	4.8	4.8	8.0	9.9	25.5
SJA8	99 - 100	1.53 1.52	nil	12.9	18.5	5.3	7.2	13-2	14.5	28.4
SJA8	102 - 105	1.50 1.47	0.1	9.6	14.5	5.5	9.0	16-4	17.3	27.6
SJA8	108 - 110	1-44 1-42	nil	1.2	3.5	9-4	12.0	16-4	47.2	10.3
SJA8	208 - 210	0-44 0-42	0.2	6.3	19.0	26.4	10-4	11.3	14.9	11.5
SJA8	281 - 284	-0-29 -0-32	8.0	22.8	29.6	18.9	4.5	13-2	0.2	2.8
SJA8	290 - 294	-0-38 -0-42	1.3	31.8	53-6	5.8	2.1	1.1	1.3	3.0
SJA19	176 - 180	0.75 0.71	2.0	20.7	34-6	2.3	4.5	34-2	0-4	1.3
SJA19	186 - 190	0-65 0-61	0.7	4-4	26.5	8.7	8.3	47.7	0.1	3.6
SJA19	190 - 194	0.61 0.57	2.4	4.1	10-0	10-3	11.3	57.0	0.1	4.8
SJA19	198 - 201	0.53 0.50	0.5	9.9	25.2	18.3	1.3	41.3	1.1	2.4
SJA19	209 - 212	0-42 0-39	0.9	2.1	4.7	7.8	10.6	69.5	0.7	3.7

Table 3.1 Particle Size Analysis, Shajing Lagoon, south China

ا ورد در

:

* centimetres from top of bore hole
| Table | 3.2 | Particle | size | analysis, | Sham | Wan | SW4 |
|-------|-----|----------|------|-----------|------|-----|-----|
|-------|-----|----------|------|-----------|------|-----|-----|

Sample no.	Depth * (cm.)	Altitude (m. P.D.)	Gravel	Coarse sand	Medium sand	Fine sand	Coarse silt	Medium silt	Fine silt	Clay
1	67 - 70	3.83 3.80	4.2	44.8	7.8	3.7	7.6	7.9	5.1	18-9
2	84 - 87	3-66 3-63	3.4	13.6	4.1	4.6	13-6	18-1	11.1	31.5
3	96 - 99	3-51 3-54	1.0	4-4	1-4	2.9	16.3	21.9	13.9	38.2
4	106 - 109	3-44 3-41	0.3	4.3	0.8	2.7	16-1	23.3	14.5	38-0
5	122 - 124	3-28 3-26	0.1	4.8	1.0	3-5	17.7	19-2	11.1	42-6
6	280 - 283	1.70 1.67	0.5	7.6	1.6	9.2	15-3	16.7	13-1	34-2
7	301 - 304	1-49 1-46	0.9	6.8	3-4	3.5	13.8	19-4	15.6	38-4
8	322 - 325	1.28 1.25	0.2	6-4	1.7	4.3	14.3	17.1	15.6	40-4
9	333 - 336	1.17 1.14	2.2	7.8	2.6	4-4	15-6	18-1	14.7	34.6
10	341 - 343	1.09 1.07	35.1	30-2	5.1	2.2	4.7	3.3	3-4	16.0
11	369 - 372	0.81 0.78	25-4	36.6	4.8	2.0	3.9	2.6	1.8	22.9
12	384 - 387	0.66 0.63	36-0	20.6	3.1	3.1	4.8	3.9	2.7	25.8

Table 3.2 Particle Size Analysis, Sham Wan, Lamma Island

, 1997 - 1995 1997 - 1997

يە. ئەرسىم

. ...

* centimetres from top of bore hole SW4

Table 3.3 Particle size analysis, Tin Shui Wai - TSW/A

Table 3.3 Particle Size Analysis, Tin Shui Wai, Section A

• • • • •

.

Depth •	Altitude (m. P.D.)	Gravel	Coarse sand	Medium sand	Fine sand	Coarse silt	Medium silt	Fine silt	Clay
2-3	-1.17 -1.18	0.1	1-8	5.9	45.2	16.5	6.7	5.4	18.4
8-9	-1·23 -1·24	0.1	1.2	6.7	42.4	19.9	6.2	5.1	18.4
15 - 16	-1·30 -1·31	lin	1.1	4-6	35.5	21.7	8.5	7.0	21.6
23 - 24	-1·38 -1·39	nil	0-3	2.5	33-0	26-6	8.6	6.0	23.0
28 - 29	-143 -144	0-5	2.2	7.3	34-3	18-0	8.9	5.8	23-0
36 - 37	-1·51 -1·52	0-1	3-3	23.7	50-6	9.6	2.4	1.7	8.6
42 - 43	-1.57 -1.58	nil	1-0	17.2	34-1	17-0	6-6	4.2	19.9
45 - 46	-1.60 -1.61	nil	1.7	9.6	34.5	21.2	8.1	5.1	19.8
48.5 - 50	-1.63 -1.65	0-2	2.1	37.8	47-0	7.3	1-8	1.0	2.8
centimetre	es from top c	of monolith t	.u						

Table 3.4Stratigraphy
Frost (1978)atSham
Wan asdescribedby

Table 3.4

- 1

. - **n**

......

Stratigraphy at Sham Wan as described by Frost (1978).

[The land surface across the site is approximately +3 m P.D., though Frost does not give accurately surveyed altitudes for each of the boreholes].

Point A	0 · 80 ·	- 80 - 200	CM	top soil; firm brown sand. wet, coarse grey-white sand.
Point B	surfa 0 - 50 - 90 - 160 - 240 - 280 - 360 - 400 -	ace at - 50 - 90 - 160 - 240 - 280 - 360 - 400 - 520	= +3.(cm) m P.D. roots, water, mud. brown clay with some sand, rootlets, wood fragments. grey-brown clay with thin sand layers, wood bits. grey clay with small shells, some wood and leaf fragments. grey clay with pockets of sand, few shells. grey-brown clay, smell of H ₂ S, leaf fragments. grey brown clay, smells. lighter grey clay with coarse sand, shells and large shell fragments.
Points C	0 140	- 140 - 250		grey-brown clay. grey clay with shells, softer than at point B; wall collapses at a depth of 250 cm.
Point D	0	- 100		coarse wet sand.
Point E	0 110	- 110 - 150		grey clay, very sandy. coarse wet sand.

See figure 3.9 (insert) for a location of the boreholes.

Table 4.1Information
level indexcollected
pointfor
each
from
southerndated
china

Table 4.1 Information collected for each dated sea level index point from southern China

*.*24

: ব

44. (•••••••

...

Location	The location of the site from which a sample was collected.
Sample	A description of the sample which has been dated.
Sample type	A classification of the sample (see table 4.2).
Altitude	The altitude in metres of the sample which was dated, relative to the Yellow Sea Datum (Y.S.D.).
Indicative meaning	The estimated altitudinal relationship of the dated sample to the altitude of sea level when the sample wes deposited (see table 4.2).
Indicative error	An estimate of the altitudinal error of the indicative meaning — summarised in table 4.2.
Age	The radiocarbon date of the sample in radiocarbon years before present (B.P.).
Date error	The error in radiocarbon years of two standard deviations from the calculated age of the sample.
Upper/Lower	Description of the sediments found above and below the sample.
Lab. code	The laboratory code of the radiocarbon dated sample where this has been made available. Many data from China have not had their laboratory codes included because these were not published. Although these dates have been included in this analysis, it must be stressed that the provenance of the information is unknown for these samples.

Table 4.2Types of organic
radiocarbon
level index pointsmaterial
in the databasedated
using
of sea

Chapter 4 01/09/92

÷

.~1

5

مرمز

Table 4.2 Types of organic material dated using radiocarbon dating in the database of sea-level index points

Material		Estimated indicative meaning*
Wood	mangrove wood	+0.5m ± 0.5m +2.0m ± 0.5m
Rootlets	fragment of "intertidal" wood salt marsh	-1.5m ±1.5m +0.5m ±0.5m
Intertidal silt/clay Estuarine silt/clay	brackish diatoms marine diatoms	-1.5m ±1.5m -5.0m ±5.0m
Molluscs (associated with brackish water conditions)	intertidal clay beach deposit ridge deposit	-1.5m ±1.5m +0.5m ±0.5m +2.0m ±1.0m
Molluscs (associated with fresh water conditions)		+2.0m ±1.0m
Beachrock	"beach type" "shell ridge type"	+0.5m ±0.5m +2.0m ±1.0m
Ostrea	shells in their living position fragments	-1.5m ±1.5m -1.5m ±1.5m
Coral reef	in "living" position beach deposits ridge deposits	-2.0m ±2.0m +0.5m ±1.5m +2.0m ±3.0m
Lagoon Clay		0.0m ±1.5m

* altitude relative to mean sea-level at time of deposition (after Huang <u>et al</u> 1982).

Table5.1Mean tidalmeasurementsfrom tidegaugestationsintheZhujiangDelta

Table 5.1 Mean tidal measurements from tide gauge stations in the Zhujiang delta Source: Institute of Geography, Guangshou

يند، .د. وروي

4

Tide gauge station angzhou	Tropical cyclone recorded in Hong Kong when max, high Lide recorded Ivy 1974	Length of record (years before 1980) 30	Maximum recorded high ude (m. Y.S.D.) 2.99	Mean High Water (M.H.W.) (m. Y.S.D.) 1-35	Difference between max. recorded sea level and M.H.W. (m.) 1.64	Lowest recorded low ide .(m. Y.S.D.)
ndi	Ivy 1974	30	2.75	1.32	1-43	-1.34
gu	Viola 1969	24	2.73	1:31	1.42	-1.36
'ingongzhen	Ivy 1974	و	2.80	1.34	1-46	-1.31
gwei	Ivy 1974	16	2.67	1.30	1.37	-1-44
u	Viola 1969	20	2.38	66-0	1.39	-1.54
iakou	Ivy 1974	27	2.74	1:26	1.48	-1.19
6	Viola 1964	26	2.88	1:21	1-67	10.1-
luinqsha	Viola 1964	27	2-83	1.24	1.59	-0.82
Jen	Ivy 1974	27	2.84	1.20	1-64	-0.59
anzhow*	Viola 1969	23	2.68	1.16	1.52	-1.41
rom 1956 to 1979						

 Table 5.1 Mean tidal measurements from tide gauge stations in the Zhujiang delta

Table 5.2Recorded altitudeof tide gauge at NorthPoint

Year	Month	Level (metres P.D.)
1954	October	4-109
1955	June October	4-065 4-077
1956	February	4.074
1957	February April September	4-063 4-059 4-056
1958	January July September	4-052 4-051 4-044
1959	January May September	4-064 4-045 4-041
1960	February April July November	4-034 4-034 4-033 4-033
1961	January April July December	4-034 4-032 4-032 4-032 4-032
1962	June November	4-026 4-024
1963	March	4-020
1964	July November	4-012 4-011
1965	April July September December	4-011 4-011 4-010 4-010
1966	March June September December	4-008 4-008 4-008 4-008 4-005
1967	March June December	4-004 4-005 4-000
1968	April September	4-000 3-998
1969	January December	3.996 3.993
1970	October	3.990
1971	April June October November	3-987 3-990 3-987 3-989
1972	April October	3-988 3-986
1973	January March June	3-983 3-984 3-979
1974	January April July October	3-973 3-964 3-963 3-963
1975	January April Juły October	3-960 3-961 3-962 3-959
1976	January April	3.957 3.959

Table 5.2 Recorded altitude of tide gauge at North Point

يد جز

₹....

••

Source: Royal Observatory, Hong Kong

Table5.3List of topologiesgeneratedby theGeographicalInformationSystem

Digitised coverage	Topology	Source of data	Residual mean square error
Study area boundary	Polygon	1:50,000 map	0.002
District boundaries	Polygon	1:50,000 map	0-003
Village boundaries	Polygon	1:200,000 map	0-004
Land use	Polygon	1:200,000 map	0-004
Land resources	Polygon	1:200,000 map	0.005
Spot heights	Point	1:50,000 map	0-001
Contour	Line	1:50,000 map	0-002
Transport network	Line	1:50,000 map	0-003
Settlements	Polygon	1:50,000 map	0.004

Table 5.3 List of topologies generated by the Geographical Information System

۰.

•

. . . .

. .

The residual mean square error is calculated when the digitised coverage was converted to the map co-ordinates using the TRANSFORM routine within pc ARC/INFO (see text for details).

Table5.4Annual recordedmaximum sealevels,HongKong

Year	North	Point	Chi M	ia Wan	Tai P	o Kau	Tsim Bei Tsui
	1	2	1	2	1	2	1
1954		3.20*		·····		· · · · · · · · · · · · · · · · · · ·	
1955		2.74*				···	
1956		2.83					
1957		3.08					
1958		2.44					
1959		2.22*					
1960		2.77*					
1961	2.62	2.59*					
1962		3.96				5.03	
1963	2.83	2.83*		2.93*		2.83*	
1964	3.12	3.14*		3.20*		3.63*	
1965	2.93	2.99*		3.08*		3.05*	
1966	2.90	2.38		2.65		2-44	
1967	2.82	2.80*		2.93*		2.99*	
1968	2.79	2.77*		2.90*		2.85*	
1969	3.11	3.11*		3.14		3-26*	
1970	2.90	2.62	3.00	2.74	3.15	2.89	
1971	3.23	3-23*	3.38	3.35*	3.35	3-35*	
1972	2.91	2.88	3.00		3.25	3.06	
1973	2.93	2.77		3.17*	3.12	2.93	
1974	3.32	3.32*	3.51	3.56*	3-42	3-43*	3.55
1975	2.92	2.92*	2.96	2.50	3.02	2.64	3.02
1976	2.79	2.66	2.93	2.93*	2.93	2.73	3.08
1977	2.98	2.98*	3.37	3-41*	2.99	3.00*	3.25
1978	2.85	2.85*	3.00	3.02*	2.90	2.91*	3.11
1979	2.78	2.78*	2.80	2.87*	2.65	4.35*	
1980	2.67	2.48	2.81	2.66	2.82	2.46	3.02
1981	2.77	2.66	2.75	2.83*	2.68	2.68*	3.16
1982	2.70	2.45			2.61	2.50	2.96
1983	2.81		3.05		3.04		3.62
1984	2.86		2.96		2.97		2.96
1985	2.72				2.79		3.08
1986	2.78		2.71		2.92		3.50
1987	3.06		2.63		3.09		3.07
1988	3.13		2.68		3.22		3.21

Table 5.4 Annual recorded maximum sea levels Source: Royal Observatory, Hong Kong

-

· .

- - -

Notes (1) Maxima extracted from computer archive (2) Maxima during typhoon passage * Maximum during typhoon coincident with annual maximum — all levels mCD

Table 5.5Magnitude of storm surges and maximum sealevels in Hong Kong during three tropicalcyclones

Table 5.5 Magnitude of storm surges and maximum sea levels in Hong Kong during three tropical cyclones

- 3

· • · · • •

• • •

		····		
orded sea level es P.D. 1. in brackets)	Tai Po Kau	245 (1·58)	3.11 (2.24)	3.05 (2.18)
Maximum reco in metr (metres Y.S.I.	North Point	2.51 (1.64)	2.96 (2.07)	2.75 (1.88)
e in metres	Tai Po Kau	0.70	0-98	1-40
Storm surg	North Point	0-56	0-70	0-94
ropical cyclone reported by servatory, Hong Kong		22nd July 1974	29th July 1969	28th May 1964
Royal Ob		Ivy	Viola	Viola

Table 5.6Sea altitudesrecordedinHongKongduringthreetropicalcyclones-meanmonthlymaxima

Table 5.6 Sea altitudes recorded in Hong Kong during three tropical cyclone storms — mean monthly maxima

[-1]

- . 1 da - . - . - .

• •

Surge residual (merres) Source: Chen, 1983	0.56	0:-10	0.94
Difference between the mean monthly maximum at North Point and the maximum sea level recorded (metres)	1-09	1.54	1.33
Maximum sea level recorded during tropical storm (metres P.D.) Source: Chen. 1983	2.51	2.96	2.75
Mean monthly maximum sca level at North Point 1962-1987 (metres P.D.) Source: Yim, 1988	1.42	1.42	1.42
ropical cyclone reported by servatory, Hong Kong	22nd July 1974	29th July 1969	28th May 1964
T Royal Ot	Ivy	Viola	Viola

Table5.8Percentage
different
studyof
economic
in
1983force
employedemployed
in
the

 Table 5.8
 Percentage of workforce employed in different economic activities in the study area, 1983

District	Agriculture	Forestry	Aquaculture husbandry	Animal	Industry	Other
Songgang	49	0	10	19	17	6
Shajing	21	0	45	11	21	2
Fuyong	54	0	13	11	14	6
Xixiang	37	0	12	12	22	9

Based on Zhong, 1985

: 4

ز فسرہ اسرائی

•

Table 5.9Income per capitain the study areain1983

Table 5.9Income per capita in the study area, 1983
(based on Deng, 1985)

÷

ig - 3

----ä

: •••

District	Income in Yuan
Songgang	420
Shajing	570
Fuyong	460
Xixiang	550
Mean for Ba'oan County	407

Table5.10Percentage
district
differentof
gross
in the
study
area
derivedof
each
from

Table 5.10 Percentage of gross income of each district derived from different economic activities

District	Agriculture	Forestry	Aquaculture husbandry	Animal	Industry	Other
Songgang	49	0	10	19	17	6
Shajing	21	0	45	11	21	2
Fuyong	54	0	13	11	14	6
Xixiang	37	0	12	12	22	9

Based on Deng, 1985

ч .

Table5.11Land use data for the study area related
to altitude

,

Land use	Above	Below	Total	% by altitude		le % by land u	
				Above	Below	Above	Below
Forest	77.7	3.6	81.3	95.5	4.5	50.3	3.1
Paddy	29.1	55-8	84.9	33.9	66-1	18.8	47.1
Non-irrigated arable	23.6	12.0	35.6	66-2	33.8	15.5	10.1
Vegetables	0.5	0.7	1.2	38.5	61.5	0-3	0.6
Orchard	3.0	1.4	4-4	69-1	30.9	2.0	1.1
Meadow	10-1	1.1	11.1	89.8	10-2	6.2	0.9
Freshwater fish ponds	0.9	30-9	31.8	0.8	99.2	0-2	26.1
Marine water fish ponds	0.0	7-8	7.8	0.2	99.8	0.0	6.6
Urban	1.0	3.8	4.8	20.3	7 9.7	0.6	3.2
Deserted	0.0	1.4	1-4	8.3	91.7	0.1	1.1
Lake	9.0	0.0	9.0	100.0	0.0	6.1	0.0
Total	154.9	118-4	273.3	56·2	43.8	100-0	100.0

Table 5.11 Land use data for the study area related to altitude

·•*'

``'

د. الأربية محمد م

: .;. - --

Areas in square kilometres above and below the +10 metre Y.S.D. contour line

Table5.12Land resourcedataforthestudyarearelatedtoaltitude

Land resource	Above	Below	Total	% by altitude		% by land resource	
				Above	Below	Above	Below
Forest (grade 1)	14-4	1.0	15-4	93.3	6.7	9.3	0.9
Forest (grade 2)	47.7	2.6	50.3	94.7	5.3	30-8	2.2
Forest (grade 3)	24.1	0.1	24.2	99.4	0.6	15.5	0.1
Paddy (grade 1)	6.3	26.2	32.5	19.4	80.6	4.1	22.1
Paddy (grade 2)	14.0	28.6	42.6	32.9	67.1	9.0	24.2
Paddy (grade 3)	8.5	10-0	18.5	45.8	54-2	5.5	84
Non-irrigated (grade 1)	3.7	0.3	4.0	93.7	6.3	2.4	0.2
Non-irrigated (grade 2)	22.6	9.9	32-4	69.5	30.5	14.6	8.3
Lake	9.0	0.0	9.0	100.0	0.0	5.8	0.0
Fish	2.2	35-4	37.6	6.0	94.0	1.4	29.9
Pasture	1.5	0.5	2.0	73.0	27.0	1.0	0.5
Urban	1.0	3-8	4.8	20.7	79.3	0.6	3.2
Total	154.9	118.4	273-3	56-2	43·8	100.0	100.0

Table 5.12 Land resource data for the study area related to altitude

Areas in square kilometres above and below the +10 metre Y.S.D. contour line

· :

Table5.13Estimatesoffuturemeansealevelchange

Үеаг	2000	2025	2050	2075	2100
Revelle (1983)*	_		_	0.700	_
Hoffman et al (1983) High	0.171	0.549	1.067	2.127	3-453
Mid-high	0.132	0-393	0.786	1.368	2.166
Mid-low	0.088	0.262	0.523	0.912	1-444
Low	0.048	0.130	0.238	0.380	0.562
Hoffman et al (1986) High	0.055	0.207	0.547	1.919	3.672
Low	0.035	0.101	0.205	0.364	0.587
Robin (1986) High	_				1.540
Low	_		—		0.240

Table 5.13 Estimates of global sea level change, 1980-2100 (figures in metres)

×.

<u>___</u>

•. ,

* estimate of mean sea level rise to 2085

Table5.14PossibleeffectsoffuturesealevelchangescenariosintheZhujiangDelta

•

Tide gauge station	Maximum recorded high tide	Hoffman et al (1986) low estimates						
		2000 + 0·035	2025 + 0·101	2050 + 0·205	2075 + 0·364	2100 + 0·587		
Guangzhou	2.99	3.025	3.091	3.195	3.354	3.577		
Huangpu	2.75	2.785	2.851	2.955	3.114	3.337		
Dasheng	2.73	2.765	2.831	2.935	3-094	3.317		
Dongyingongzhen	2.80	2.835	2.901	3-005	3.164	3.387		
Sishengwei	2.67	2.705	2.771	2.875	3.034	3.257		
Chewan	2.38	2-415	2.481	2.585	2.744	2.967		
Shanshakou	2.74	2.775	2.841	2.945	3.104	3.327		
Nansha	2.88	2.915	2.981	3.085	3.244	3-467		
Yuanqinqsha	2.83	2.865	2.931	3.035	3.194	3-417		
Hengmen	2.84	2.875	2.941	3.045	3.204	3-427		
Shanbanzhou	2.68	2.715	2.781	2.885	3.044	3.267		

Table 5.14	The possi	ble effects o	f future sea	level change	scenarios in	the Zhujian	g Delta
------------	-----------	---------------	--------------	--------------	--------------	-------------	---------

- - i

د . معرفیت ودروده

۰.۰.. پیرمین

The data presented by *Hoffman et al*, 1986 have been added to the levels of maximum sea level recorded in the past at the eleven tide gauge stations for which data is available. All figures in metres Y.S.D.
Table5.15Medium and high sea levelriseestimatesaddedtohighestrecordedsealevels

Tide gauge station	Maximum recorded high tide		Hoffman et	al (1986) lo	w estimates	
		2000	2025	2050	2075	2100
Guangzhou	2.99	3.065	3.231	3-435	3.694	3.977
Huangpu	2.75	3.825	2.991	3.195	3.454	3.737
Dasheng	2.73	2.805	2.971	3.175	3.434	3.717
Dongyingongzhen	2.80	2.875	3.041	3.245	3.504	3.787
Sishengwei	2.67	2.745	2.911	3.115	3.374	3.657
Chewan	2.38	2-455	2.621	2.825	3.084	3.367
Shanshakou	2.74	2.815	2.981	3.185	3.444	3.727
Nansha	2.88	2.955	3.121	3.325	3.584	3.867
Yuanqinqsha	2.83	2.905	3.071	3.275	3.534	3.817
Hengmen	2.84	2.915	3.081	3.285	3.544	3.827
Shanbanzhou	2.68	2.755	2.921	3.125	3.384	3.667

Table 5.15 Hoffman et al (1986) estimates of future sea level change

All figures in metres Y.S.D.

.

: فدر در Table 5.16The effects of scenarios of future sea
level change combined with estimates of
subsidence in the Zhujiang Delta of 2 mm
per year

.

Tide gauge station	Maximum recorded high tide		Hoffman et	al (1986) lo	w estimates	
		2000 + 0·035	2025 + 0·101	2050 + 0·205	2075 + 0·364	2100 + 0·587
Guangzhou	2.99	3.045	3.161	3.315	3.524	3.797
Huangpu	2.75	2.805	2.921	2.075	3.284	3.557
Dasheng	2.73	2.785	2.901	3.055	3.264	3.537
Dongyingongzhen	2.80	2.855	2.971	3.125	3.334	3.607
Sishengwei	2.67	2.725	2.841	2.995	3.204	3-477
Chewan	2.38	2435	2.551	2.705	2.914	3.187
Shanshakou	2.74	2.795	2.911	3.065	3.274	3.547
Nansha	2.88	2.935	3.051	3.205	3.414	3.687
Yuanqinqsha	2.83	2.885	3.001	3.155	3.364	3.637
Hengmen	2.84	2.895	3.011	3.165	3.374	3.647
Shanbanzhou	2.68	2.735	2.851	3.005	3.214	3-487

Table 5.16	The effects of sea level rise se	cenarios combined with	subsidence in the	Zhujiang Delta

: :

Subsidence is assumed to be 2mm per year. The data presented by Hoffman et all (1986) have been added to the levels of maximum sea level recorded in the past at the eleven tide gauge stations for which data is available. All figures in metres Y.S.D.

Table	5.17	Projected		popu	lation	growth	in	10
		counties	in	the	Zhujiang	Delta	1983-21	.00

ې بې نو

.

.

	Population 1983	Birth rate %	Death rate %	Population 1984	Population 2000	Population 2025	Population 2050	Population 2075	Population 2100
Panyu County	670,333	1-90	0.58	679,181	837,739	1,162,755	1,613,867	2,239,996	3,109,043
Zhuhai City	133,208	1.84	0.52	134,966	166,475	231,062	320,706	445,130	617,827
Foshan County	285,540	1:37	0.56	287,853	327,513	400,700	490,241	599,790	733,821
Jiangmen County	216,097	1-43	0-56	217,977	250,382	310,924	386,104	479,463	595,395
Nanhai County	820,157	2.12	0-61	832,541	1,058,150	1,539,103	2,238,662	3,256,186	4,736,198
Shunde County	807,860	1.93	0-62	818,443	1,007,919	1,395,511	1,932,152	2,675,156	3,703,881
Zhongshan County	1,022,246	2.13	0.57	1,038,193	1,329,968	1,958,432	2,883,871	4,246,617	6,253,316
Doumen County	240,929	2.22	0.48	245,121	323,034	497,212	765,306	1,177,955	1,813,100
Xinhui County	803,831	1.82	0-56	813,959	994,511	1,360,058	1,859,969	2,543,628	3,478,578
Gaoyao County	696,903	2-00	0-61	706,590	881,230	1,244,421	1,757,299	2,481,554	3,504,304
Total	5,697,104			5,774,831	7,176,920	10,100,178	14,248,175	20,145,474	28,545,463

Table 5.17 Population growth in the Zhujiang Delta

Source: Socio-economic data for countries in Zhujiang Delta (1982 census), China Atlas

 Table 5.17
 Population growth in the Zhujiang Delta