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Abstract 

Colin John McClean 

The scale - free and scale - bound properties of land surfaces: 

Fractal analysis and specific geomorphometry 
from digital terrain models. 

The scale-bound view of landsurfaces, being an assemblage of certain 
landforms, occurring within limited scale ranges, has been challenged by the scale-free 
characteristics of fractal geometry. This thesis assesses the fractal model by examining 
the irregularity of landsurface form, for the self-affine behaviour present in fractional 
Brownian surfaces. 

Different methods for detecting self-affine behaviour in surfaces are considered 
and of these the variogram technique is shown to be the most effective. It produces the 
best results of two methods tested on simulated surfaces, with known fractal properties. 
The algorithm used has been adapted to consider log (altitude variance) over a sample 
of log (distances) for: complete surfaces; subareas within surfaces; separate directions 
within surfaces. 

Twenty seven digital elevation models of landsurfaces are re-examined for self-
affine behaviour. The variogram results for complete surfaces show that none of these 
are self-affine over the scale range considered. This is because of dominant slope 
lengths and regular valley, spacing within areas. For similar reasons subarea analysis 
produces the non-fractal behaviour of markedly different variograms for separate 
subareas. The linearity of landforms in many areas, is detected by the variograms for 
separate directions. This indicates that the roughness of landsurfaces is anisotropic, 
unlike that of fractal surfaces. 

Because of difficulties in extracting particular landforms from their 
landsurfaces, no clear links between fractal behaviour, and landform size distribution 
could be established. 

A comparative study shows the geomorphometric parameters of fractal surfaces 
to vary with fractal dimension, while the geomorphometry of landsurfaces varies with 
the landforms present. Fractal dimensions estimated from landsurfaces do not correlate 
with geomorphometric parameters. 

From the results of this study, real landsurfaces would not appear to be scale-
free. Therefore, a scale-bound approach towards landsurfaces would seem to be more 
appropriate to geomorphology than the fractal alternative. 
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Chapter 1: Introduction 

1.1 Introduction. 

This thesis looks at the appropriateness of using fractal geometry in one field of 
the geosciences, geomorphology. Over the past decade fractal geometry has 
increasingly been hailed as an important base to chaos theory : a new way of looking at 
the irregularities of phenomena from subjects "spanning the breadth of science" (The 
Independent,5/6/89). However, at the heart of this thesis lies a series of dichotomies that 
has disturbed geomorphologists for a much longer period of time. The most important 
of these dichotomies is that between the use of stochastic models based on random 
processes and the use of deterministic models based on physical processes. 

"...many patterns of nature are so irregular and fragmented, that, compared 
with Euclid - a term used in this work to denote all of standard geometry - nature 
exhibits not simply a higher degree but an altogether different level of complexity." 
(Mandelbrot, 1982, p.l). Most geomorphologists would agree that landsurfaces and 
forms are indeed complex. Furthermore graphical representations of landscapes using 
fractal geometry have a definite visual resemblance to real landscapes. However should 
a model based on stochastic rather than physical processes be adopted to describe the 
surfaces and forms geomorphology studies? 

This dichotomy if considered further, and in the direction of form rather than 
process, leads to the discussion of whether or not landsurfaces should be subdivided 
into separate landforms. Ideally geomorphologists would like to be able to state that a 
certain set of physical processes produces a particular landform type. However because 
of the complexities of geomorphic systems, in both form, process and time, 
subclassification of landforms has had to involve at least some degree of subjectivity on 
the part of the interested geomorphologist. An extreme reaction to the complexities of 
geomorphic systems would be to turn away from the geomorphologist's ideal situation 
and treat landscapes as continuous rough surfaces and use whatever statistical methods 
become available to describe and model them. The bulk of modern geomorphological 
study lies somewhere between these two extremes. Deterministic models have been 
used alongside stochastic models in the study of many geomorphic systems. However, 
the use of fractal geometry, championed by Mandelbrot( 1977,1982), lies towards the 
stochastic extreme of this debate. 
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12 Random Landsurfaces versus Deterministic Landforms. 

Chorley reviews the dichotomy as early as 1967. In his discussion of the 
methodological issues raised by the new techniques being increasingly introduced to 
geomorphology, he looked at both deterministic and stochastic mathematical models 
(Chorley 1967). His definition of deterministic models refers to the main attractions of 
this type of model: "deterministic mathematical models are based on classical 
mathematical notations of exactly predictable relationships between independent and 
dependent variables (i.e. between cause and effect), and consist of a set of exactly 
specified mathematical assertions (derived from experience or intuition) from which 
unique consequences can be derived by logical mathematical argumentation. Such 
models are thus intimately concerned with relationships and 'driving forces' between 
factors identified in the simplified model." (Chorley, 1967, p. 69). 

It is the disadvantages of deterministic models, however, which led to the 
development of chaos theory and fractal geometry. The disadvantages of these models 
in geomorphology are again well appreciated in Chorley's discussion: "However few 
deterministic statements can completely specify all the variables included in a complex 
natural situation, so that discrepancies occur which, together with the random 
unpredictable effects inherent in natural processes, combine to produce 'noise' which 
tends to obscure the simpler deterministic relationships. Often these random effects are 
so important in determining the result of natural processes that partly or wholly 
statistical (stochastic) models have to be constructed to take account of them." 
(Chorley, 1967, p.72). 

By the early 1980s the dichotomy was still cause for discussion in 
geomorphology, although as Thomes and Ferguson (1981) pointed out, in their review 
of the adoption of quantitative methods in the subject, there had been work where parts 
of a system were modelled deterministically while other parts of the system were 
modelled stochastically. Thornes and Ferguson (1981) structure their discussion by 
looking at progress made in handling three categories of system. The first are simple 
systems which involve a maximum of three or four variables and tend to lend 
themselves to deterministic approaches. The other two system types, systems of 
complex disorder and systems of complex order, are where the use of stochastic models 
becomes important. In the case of models of complex disorder there are three areas 
which have led to the adoption of probabilistic ways of looking at landform 
development: the behaviour of ideal closed and open systems (Chorley, 1962); the 
randomness of geomorphic processes at the particle scale (Culling, 1963); and the 
apparent randomness caused by a large number of deterministic relationships interacting 
to produce a complex landscape system (Leopold and Langbein, 1963). 
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The classification of Thornes and Ferguson allows each type of system to merge 
into the other two and although stochastic processes may be used to add input into the 
more deterministically modelled parts of a system (Kirkby,1986), the major need for 
stochastic processes in modelling remains clear. Complexity, whether ordered or 
disordered, provides the reason for the attractiveness of stochastic modelling. The 
complexity of a system at its least extreme may, as Thornes and Ferguson suggest, 
demand the use of stochastic constraints to allow a solution when modelling using 
predominantly deterministic methods. At the other extreme the stochastic process may 
be used at the heart of the explanation of a process such as with Culling's work on soil 
creep at the scale of individual soil particles. The major problem of using these 
processes is testing the results of the subsequent simulations. Simulated results should 
be compared with empirically observed results. 

Before discussing the ideas behind the fractal model it is interesting to note the 
comments of two geomorphologists at around the time the use of fractal geometry was 
beginning to become widespread, "...but there is still ample scope in geomorphology for 
the development or importation of new techniques and there is certainly willingness to 
recognise the complexity of earth surface systems." (Thornes and Ferguson, 1981, 
p.285). 

13 Fractals 

Fractal geometry is a new technique in geomorphology, mainly imported from 
outside the discipline, but partially inspired by exactly the complexity of earth surface 
systems described above. Although Mandelbrot has developed the mathematical basis 
of fractal geometry from classical geometry and some of the long standing puzzles in it, 
the complexity of nature seems to have provided much of the inspiration for his new 
approach. "Why is geometry often described as 'cold' and 'dry' ? One reason lies in its 
inability to describe the shape of a cloud, a mountain, a coastline, or a tree. Clouds are 
not spheres, mountains are not cones, coastlines are not circles..." (Mandelbrot, 1982, 
p.l). As a result of such questioning Mandelbrot has developed certain concepts that 
challenge the geomorphologist to look at the same complex systems in a different light. 
The fractal approach accepts the irregularity in the forms found in nature and seeks to 
quantify that irregularity. 

There are two main themes in the fractal geometry which will be used in this 
thesis. One is irregularity. Mandelbrot suggests that the lines found in nature, for 
example coastlines and contours, are not 'rectifiable'. That is they are so irregular that 
to try and measure their length in the same way as the line understood in classical 
mathematics is pointless. A straight line or the circumference of a circle have an easily 
found precise length. If an irregular coastline's length is measured the result will depend 
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on the scale at which the coastline is considered. If the coastline is considered at a larger 
scale, more irregularity in its form must be taken into account than'at a smaller scale, 
and the resulting length will be longer than the result found at a smaller scale (fig. 1.1). 

Although fractals do not have to be irregular shapes, Mandelbrot himself states 
that the most useful fractals involve chance. It is therefore the irregularity of the fractal 
surfaces which have been created as simulations of real landsurfaces that is of interest in 
this study. The second theme of interest in fractal geometry in this work is the peculiar 
way in which the irregularity of such fractals behave. 

Perhaps the most concise and simple definition of a fractal is provided by 
Mandelbrot in Feder (1988, p. l l ) , "A fractal is a shape made of parts similar to the 
whole in some way". It is the similarity of the parts to the whole which makes the 
irregularity of the fractals considered here to be peculiar. This scaling behaviour of the 
irregularity or self-similarity as it has become known will be discussed more fully in 
Chapter 2, but it is relevant to explain the idea simply at this stage so that its likely 
implications for geomorphology can be discussed. 

If a fractal line is considered, its irregularity at one scale is the same as the 
irregularity of part of that line magnified. Mandelbrot's early discussion of coastlines as 
possible fractals implies that the shape of a coastline viewed at one scale is similar to 
the shape of a smaller part of that coasdine viewed at a greater magnification 
(Mandelbrot, 1967). Mandelbrot also suggests that this applies to cross-sections of the 
earth's relief and indeed the surfaces from which such cross sections come (Mandelbrot, 
1975). It would therefore be difficult to distinguish the whole surface from smaller parts 
of it viewed at a larger scale. 

This implies that if a real landsurface such as the one shown in Figure 1.2 is 
fractal, and it is then studied at a higher resolution, the irregularity revealed at that 
resolution should be statistically self-similar to the irregularity displayed in Figure 1.2. 
Figure 1.2 shows the surface at 300m grid mesh resolution. Figure 1.3 shows the same 
surface at a 100m grid mesh resolution. The question is, does the surface viewed at 
higher resolution reveal added irregularity to the degree necessary to be self-similar? 
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Figure 1.1 (a) Coastline at large scale. 

30km 

(b) Segment of coastline from box in (a) at a smaller scale. Similar 
irregularities are shown at both scales. 



Chapter 1: Introduction 17 

Figure 12 Representation of a landsurface using 300m grid mesh resolution. 

V 

V 
/ 

Figure 13 Representation of a landsurface using 100m grid mesh resolution. 



Chapter 1: Introduction 18 

At this point it can already be seen that the concept of self-similarity challenges 
many ideas in geomorphology. Certainly it is in conflict with the geomorphologist's 
practice of landform delimitation. Most geomorphologists would agree that landforms 
such as cirques or drumlins exist within a limited scale range. Therefore from their 
perspective it is difficult to see landforms as being elements of surface roughness which 
are similar in roughness to landscape features at different scales. As a result a closer 
look at geomorphologists' treatment of scale must be taken to see i f there is any 
agreement between the concept of self-similarity and the classification of subunits in 
landsurfaces into landforms. 

1.4 Scale in Geomorphology. 

Mark (1980) makes several interesting comments about the scales at which 
geomorphologists have traditionally worked. He mentions a dichotomy between 
'landscape-scale geomorphology' and 'process geomorphology'. On elaboration, this 
dichotomy can be seen to have similar roots to the dichotomy already discussed. The 
'landscape scale' referred to is the scale at which landforms can be identified from 
medium scale topographic maps. The map scale of 1:50000 is used as Mark's example, 
although landforms identified from 1:25000 or 1:10000 maps would also fall into this 
category and indeed such maps have been used in this study to create digital elevation 
models (DEMs). 

Process geomorphology on the other hand has tended to focus on smaller sized 
features, Mark (1980) uses the example of channel cross sections. As its title suggests 
'process' geomorphology often attempts to understand physical processes. In this 
respect it is closely linked to deterministic models. 

Examples of areas where work is currently carried out at the landscape scale are 
given by Mark as glacial geomorphology and drainage basin morphometry. This is 
interesting because many of the landsurfaces which will provide empirical data for this 
study have been received from workers in the two fields mentioned. 

Much of the work at the landscape scale has been 'descriptive' as Mark puts it. 
Although Mark does except drainage basin morphometry from this classification it must 
be noted that morphometry in general is 'describing' forms by using numbers. 
Therefore, although h is intuitively thought that many of the variables measured in 
geomorphometry have an important effect on processes as studied in process 
geomorphology, the two separate areas of work have "not yet been successfully linked1 

(Mark, 1980, p.81). 
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The final interesting comment made by Mark is that the quantitative techniques 
used at the landscape scale have often been based on models with a 'randomness' 
component. This of course brings the discussion back to the use of stochastic models 
and all the problems associated with the previously discussed dichotomy. Initial and 
boundary conditions are generally not known for real landsurfaces thus at least a certain 
random component is often added when considering such conditions. On the other 
hand, Mark suggests that individual physical processes place narrow constraints on the 
possible forms at the landscape-scale. Therefore limitations in the understanding of 
process geomorphology mean that it cannot, as yet, explain the complexity of form 
measured in the landscape scale. Although there is a difference of scale between these 
two sides of this dichotomy there is a general desire to bridge the gap. This dichotomy 
is not, therefore, necessarily evidence against the concept of self similarity, and it 
certainly takes into account the complexity of form. 

The closest geomorphologists came to applying concepts of self-similarity 
before the emergence of fractal geometry was the use of allometric analysis (Bull, 1975; 
Cox,1977; Church and Mark, 1980). Allometric analysis is the study of how forms in a 
system vary in comparison with one another with size. Although Cox (1977) has cited 
several problems when using allometric analysis in geomorphology, it is of interest here 
as it considers the effect of scale in geomorphology. It detects 'scale-related' distortions 
of geometry. Church and Mark suggest that this is the opposite of what they call 'self-
similarity', a state of constant proportion between the forms of parts of a system. They 
also describe this as 'isometry' which may be a more appropriate term as certain 
allometric relationships have subsequendy been discussed as exhibiting self-similarity 
in fractal terms. 

In their discussion Church and Mark use the abundant work on the relationships 
between the dimensions associated with alluvial fans and their source drainage basin 
characteristics (e.g. Bull, 1975) as examples. They also refer to work on the 
relationships between the different measures of drainage basin dimension (e.g. Hack, 
1957). This study of the unbalanced change of such forms with scale is carried out with 
the eventual aim of uncovering possible mechanisms, physical processes, which cause 
the non-linearity of these relationships between form. 

Of the two types of allometric analysis described by Church and Mark (1980), 
dynamic and static, it is static allometry which is of most interest in this discussion. 
Dynamic allometry looks at the change in form relationships of one individual landform 
with scale Over time. This is clearly rather difficult in the case of many landforms 
because of the nature of the geomorphic time scale. Static allometry takes data from as 
large a sample of a particular landform type as possible and then looks at the changes of 
form with scale. This approach expects the phenomenon under examination to exist 
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over a wide enough range of scales to justify any relationship obtained. For example, 
Church and Mark (1980) discover from looking at several different works on alluvial 
fan gradient that the associated basins range in area from 0.11km2 to 760km2. This 
possibility that landforms of similar shape can occur in a wide range of sizes seems 
intuitively to be evidence in support of Mandelbrot's concept of landsurfaces displaying 
self-similarity. However it must be remembered that in the cases where landforms exist 
over a wide scale range, the sample of landforms may be from several diverse areas. 
The above example of drainage basins involves a sample from a very large area of 
North America. The range in size of a certain landform type in one limited area may be 
much smaller. 

Allometric analysis in geomorphology is another example of quantitative 
research at the landscape scale and indeed much of the analysis in this study will also 
take place at this scale. This is because the resolutions of DEMs used in this study are in 
general at the landscape scale. It is therefore appropriate to look at the way 
geomorphology has described form at this scale. 

U Geomorphometry 

Workers in the field of geomorphometry have accepted when dealing with 
landsurfaces rather than landforms, general rather than specific geomorphometry, that 
landsurfaces are rough. As a result a number of indices have been developed to consider 
surface roughness. Many workers have, as Mark (1975) points out, realised that 
roughness cannot be completely defined by any single measure. It must be represented 
by a 'roughness vector' (Mark, 1975) or by a set of parameters considered jointly. This 
appreciation of irregularity in geomorphometry is an immediate point of agreement 
between fractal concepts and attempts to quantitatively describe landscape form. 
However geomorphologists have clearly sought to provide reasons for why such 
surfaces have different degrees and types of roughness. Mark (1975) mentions reasons 
such as irregularity of ridge spacing and differing sharpness of ridges. 

Another point of agreement between geomorphometry's attempts to characterise 
landsurfaces and Mandelbrot's view on landsurfaces is the use of spectra, at least as an 
analogy, in dealing with ridges and valleys as crests and troughs of wave forms. Evans 
(1972; 1979) suggested that spectral analysis of landsurfaces has not been particularly 
successful because of the valleys' curved courses and the convergence of valleys down 
stream. Mark (1975) points out that the analogy between waves, ridges and valleys is 
useful for structuring discussion of geomorphometry. Mandelbrot (1975) uses the 
electrical engineering terms signal and noise in considering landsurfaces. Chapter 2 will 
explain how important noises are to the fractal model. Following the example of Wood 
and Snell (1960), Mark (1975) associated the geomorphometric concepts of 'grain' and 
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'texture' to wavelength. The concept of relief is linked to the idea of wave amplitude. 
The first two of these parameters, grain and texture, illustrate the way in which 
geomorphometry treats scale. 

Texture, as considered by Mark, is the "shortest significant wavelength in the 
topography" (Mark, 1975, p. 166). He also states "Texture is related to the smallest 
landform element one wishes to detect* (Mark, 1975, p. 166). This view clearly points at 
the idea of landform delimitation determining the scale of study, by reference to the 
probable processes working. 

The 'texture ratio' is also a specific geomorphometric parameter (Smith, 1950) 
and is defined as 

N 

where N is the number of contour crenulations on a particular contour and P is 
the perimeter of the drainage basin under consideration in miles. As a parameter it also 
deals with smaller features of the surface, taking into account small crenulations. This 
parameter does not require the definite subjective decision of what size of landform 
should be the lower limit of the study; however it would be affected by the scale of map 
chosen for the analysis. 

Grain, as defined by Mark (1975, p. 166), is the "longest significant wavelength" 
in the topography. He discusses the method of Wood and Snell (1960) to calculate the 
grain of the topography. They used the change of local relief with increasing area to 
detect the grain. Local relief is the difference between the highest and lowest altitudes 
of any given area. To obtain a plot of local relief against increasing distance Wood and 
Snell used concentric circles around a randomly-located point within their area of 
interest. When the local relief for each concentric circle was plotted against the diameter 
of the circle, Wood and Snell found that in general there was a 'knick-point' where the 
rate of increase in local relief with distance would slow. This distance was taken as the 
'grain' of the topography. They did acknowledge that this method is not very precise; 
however their method does anticipate that for most landsurfaces the increase in local 
relief with distance will decrease after a distance related to the average slope length of 
the valleys in the area. This search for a knick-point assumes that for a given area there 
will be a certain limited distribution of slope lengths which would not be in agreement 
with the fractal model's requirement of self-similarity. 

The measure of local relief discussed above is just one of many measures of 
relief. Relief is a term applied to the description of the vertical extent of topography. 
Mark (1975) suggests that it can be considered as the amplitude of the topography. 
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Ahnert (1984, p. 1035) points out that it is "a crude indicator of potential gravitational 
energy available for denudation". There is an appreciation within the field of 
geomorphometry that the scale at which relief is measured has an important influence 
on its value. Evans (1972) points out that local relief must be measured over a large 
enough area to avoid merely estimating the gradient of one large slope. This 
corresponds to Mark's (1975) assertion that most parameters, such as local relief, must 
be calculated for areas containing distances greater than the grain of the topography. 
This is again a scale bound view based on the geomorphologist's empirical observation 
that local topography will have a noticeable grain. 

Probably the most important quantity studied in geomorphometry is slope. 
Evans (1980) explains that slope is a vector quantity, with both a magnitude and a 
direction. He logically describes the magnitude as gradient and the direction as aspect 
Slope is the geomorphometric quantity that can be seen immediately to have some 
control on geomorphic processes. As Evans (1972, p.36) points out "slope angles 
control the gravitational force available for geomorphic worK\ 

Theoretically, gradient is a continuous variable. However, unless a mathematical 
surface is fitted to the area, gradient must be measured as the change in altitude over 
some finite horizontal distance. This means that the only theoretical scale limitations 
to the use of slope are the contour interval used on a map from which gradient is 
estimated or the grid mesh of a DEM from which gradient is measured. 

Evans (1972,1979,1980) also proposes the use of the first derivative of slope. 
This gives a measure of the landsurface curvature. There are two components of this 
curvature. One is the rate of change of gradient with distance, termed profile convexity; 
the other is the rate of change of aspect with distance, termed plan convexity. These 
measures are also continuous and are subject to the same scale limitations as the slope 
measurements. Slope and its derivative will be more fully discussed in Chapter 7 where 
they will be used in a geomorphometric study of the surfaces used in this thesis. 

The study of the distribution of landmass with elevation is described as 
hypsometry and several relationships and parameters can be calculated to describe 
various aspects of this. All of these are obtained by initially determining what area of 
landsurface lies at a particular elevation. 

Most of the parameters briefly discussed here are measurements of changes in 
altitude with reference to changes in some other dimension of the landsurface. It will be 
seen in Chapter 2, when the fractal model is discussed at length, that such relationships 
for fractal surfaces are limited by certain constraints. The question arises, do real 
landsurfaces exhibit the same constraints and behaviour? 



Chapter 1: Introduction 23 

Ahnert (1984) has brushed against this question from the side of 
geomorphometry as opposed to from the fractal geometry side. Studying the local relief 
of 25 topographic maps from Germany, Austria, Switzerland, Scotland and Kenya, he 
makes some discoveries which have bearing on this study. He first looked at the 
relationship between local relief and the diameter of the area over which local relief was 
measured. As expected local relief increases with diameter. The form of the relationship 
for each area was a power function 

H = aLb 

where H is local relief and L is the diameter of the area under consideration. He 
calculated local relief with various shapes of area and also along linear profiles. 
Comparing the various regression lines fitting the form of the above equation, he found 
that all the regression lines crossed each other near a common point. He described the 
relief at this point as the 'characteristic relief of the area, and the diameter or length at 
this point as the characteristic length. This prompted further investigation of the 
coefficients and parameters obtained form the above relationship and although some of 
the analysis seems inappropriate it led Ahnert to follow one further line of 
investigation.By referring to the heights of the highest summits of major mountain 
ranges and their distance from their nearest forelands, he found that, as might be 
expected, wide mountain ranges can become higher than narrow ones. He attempts to 
explain this "height-limit rule" (Ahnert, 1984, p. 1050) with reference to tectonic and 
denudational process rates. However, in this study it is the form of the height-limit rule 
itself that is of interest as it bears remarkable similarity to some of the relationships 
exhibited by certain fractal processes which will be discussed in subsequent chapters. 

Clearly much geomorphometric analysis involves quite laborious algorithms. 
Computers have been used quite widely in the field to automate as many of these 
algorithms as possible. One specific program calculating gradient, aspect and their 
derivatives is described in Chapter 7 where it is used in a geomorphometric study of the 
surfaces considered in this thesis. 

Reference has already been made to digital elevation models (DEMs). These are 
merely computer-readable representations of the landsurface. Altitudes of selected 
points from the landsurface are recorded as numbers in a computer file. Chapter 3 gives 
some discussion of the different types of DEM which can be produced as well as 
explaining the process of creating a gridded DEM. Gridded DEMs are the preferred 
type of model in this study. The elevations are held as a regular grid of points 
interpolated from the landsurface. These models can be easily manipulated to search for 
signs within them of self-similarity and are also compatible with models simulated 
using fractal process. 
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1.6 Questions Raised. 

The fractal model has been introduced as an extreme of stochastic modelling 
techniques with which to model landsurface form. This has been presented against a 
background of the geomorphologist's desire to explain form in terms of physical 
processes and therefore, to a degree, the geomorphologist's preference for deterministic 
modelling. However in discussing geomorphology's progress in modelling, and views 
towards scale and approaches taken in geomorphometry, certain common concepts can 
be found between the fractal model and previous geomorphic thought. 

The complexity of geomorphic forms and systems is clearly appreciated by 
geomorphologists and this irregularity is at the heart of the fractal model. Scale has for a 
long time been seen as an important variable in studying form and process and there is 
an appreciation that some landforms may be found over quite a wide range of scales and 
therefore the idea of self-similarity is not completely alien to geomorphology. However, 
self-similarity is still the obvious problem area when considering the appropriateness of 
the fractal model in geomorphological study. 

The major question that must be asked in this study, therefore, becomes: are real 
landsurfaces self-similar? This question may be weakened to: are there any signs of 
self-similarity in any real landsurface? This is almost the inverse of a question about 
fractal surfaces which must also be studied. Do fractal surfaces exhibit the same 
geomorphometric properties as real landsurfaces? 

The first of these questions is initially more approachable, as the statistical 
properties of fractals are well defined. Therefore it can be envisaged that devising tests 
for the same statistical properties in real landsurfaces should be relatively simple. 
Several studies have done this already (Goodchild,1982; Mark and Aronson, 1984; Roy 
et al.,1987). However the number of surfaces actually studied is small and they are 
mainly in North America. Mark and Aronson (1984) actually cite the need for further 
empirical analysis. There is still ample room in the field for studying different surfaces. 
In fact, this is the major limitation of this approach. There are many different 
landsurface types on the Earth's surface and to obtain models of them all and to test 
them all for fractal behaviour would be a very sizeable task. 

The second question mentioned therefore becomes interesting. The processes 
which may be used to simulate fractal surfaces are now well defined (Feder, 1988; 
Peitgen and Saupe, 1988) and many programs and readily implementable algorithms 
exist for geomorphometric study. This means that the full range of fractal surfaces of 
varying degrees of roughness can be simulated and then analyzed as real landsurfaces 
have been in geomorphometry. The limitations of this approach would also be that the 
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geomorphometry of all landsurface types is not fully understood. Attempts will be made 
in this study to look at both of these questions because regardless of the limitations 
discussed, any work in this direction provides further evidence for or against the 
appropriateness of the fractal model to geomorphology. 

A further issue that can be addressed is that of how the concept of self-similarity 
relates to the size distributions of individual landforms. Do landforms exist as a 
continuum through a wide range of scales? Can a surface dominated by one type of 
landform show any signs of fractal behaviour? Again, to test size distributions for all 
landform type would be impossible, so in this study empirical tests will only be carried 
out on certain landsurfaces. 

As Chapter 2 will go on to explain, the properties of fractal surfaces are such 
that certain parameters associated with them can be calculated. One of these is of 
particular importance. The fractal dimension, as it is termed, is related to the complexity 
and roughness of the surface. In some respects it is similar to the geomorphometric 
parameters discussed above. It would therefore be interesting to see what use this 
parameter is in describing the form of real landsurfaces. This will of course depend on 
how close real landsurfaces are to fractal surfaces. 

1.7 Thesis Structure 

Having outlined the main questions which this work must address, the approach 
can now be discussed along with an explanation of the structure of this thesis. 

Chapter 2 as has already been mentioned will deal in depth with the fractal 
geometry necessary to this study. This includes a more rigorous and mathematical 
explanation of self-similarity. The concept of fractal dimension will be fully explained. 
A class of fractal processes that are of the most use to the study of landsurfaces, 
fractional Brownian noises, will be introduced. Throughout the chapter a discussion of 
some of the relevant empirical studies carried out in the earth sciences will be given. 

Before explaining the methods and algorithms to be used in this study it is 
necessary to introduce the way in which landsurfaces have been modelled in this study. 
As well as an introduction to digital elevation models, Chapter 3 will look closely at 
how a landsurface of drumlins was captured and converted into a DEM using the best 
method available given certain resource limitations. 

The properties of fractals having been fully explained, Chapter 4 gives an 
introduction to the algorithms which can be used to study self-similarity and fractal 
dimension in the study of landsurfaces. The usefulness of the variogram will become 
apparent as will the limitations of some other methods. This is followed by a description 
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of the implementation of these algorithms in the programs used in the thesis. 
Algorithms for actually simulating fractal surfaces will also be discussed and a program 
to apply one of these algorithms will be explained. 

The programs described in Chapter 4 can now be tested and used on the 
simulated fractal surfaces both as a check on the assessment techniques and as a source 
of information on the simulation algorithm. Chapter 5 discusses the results of using the 
above programs on simulated fractal surfaces. 

Chapter 6 discusses the fractal nature of real landsurfaces. This chapter follows 
a similar pattern to the previous chapter, the difference being that the results being 
discussed are for real landsurfaces. This chapter attempts to answer the first major 
question mentioned above (are real landsurfaces self-similar?) in the light of the finer 
detail of the fractal model explained in Chapter 2. 

The second question posed above was, do fractal surfaces exhibit the same 
geomorphometry as real landsurfaces? Chapter 7 deals with this question by looking at 
both the geomorphometry of fractal surfaces and the real surfaces studied. As well as 
attempting to answer this question a study of the geomorphometry of the real 
landsurfaces may cast light on any discrepancies between the fractal model and real 
landsurfaces revealed in Chapter 6. The geomorphometric parameters calculated for 
both real and simulated surfaces are also compared with the fractal dimensions from 
these surfaces in an attempt to assess the usefulness of fractal dimension as a 
geomorphometric parameter. 

To assess whether or not landsurfaces dominated by one landform type can 
display self-similarity and to see i f the landform type of the surface displays a wide 
range of sizes of the landform the DEM of an area of drumlins created in Chapter 3 and 
two other landsurfaces are analysed. Chapter 8 looks at the geomorphometry and size 
distribution of individual landforms identified from these DEMs. Comparison of these 
results with the fractal model allows a discussion of how well the concept of individual 
landform types may fit with the fractal model. 

The conclusions are presented in Chapter 9, where an overview of the relevance 
of all the results obtained and discussed can be brought together for a debate based on 
the questions proposed above. 
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Chapter 2: Fractals 

2.1 Introduction 

'Fractal' has become a familiar word in many branches of science as the uses of 
fractal geometry are evaluated. As a result most papers dealing with fractals have 
started off with some definition of what a fractal is before a more rigorous examination 
of the particular phenomenon that seems to lend itself to analysis using fractal 
geometry. Many of these papers use the definition of Mandelbrot (1982, p.IS): "A 
fractal is by definition a set for which the Hausdorff-Besicovitch dimension strictly 
exceeds the topological dimension". This is then followed by its explanation in 
relatively simple terms, normally involving an introduction to fractal dimension and 
self-similarity. However with the increase of investigation into the uses of fractal 
geometry, there has been an increase in the number of books which explain fractals and 
the development of ideas about them (Mandelbrot, 1977 and 1982; Falconer, 1985; 
Barnsley, 1988; Feder, 1988). This background coverage of fractals frees this study to 
focus on the concepts relevant to the examination of landsurfaces, landforms and other 
geophysical phenomena with a direct bearing on the subject of this thesis. 

The definition of a fractal which is most relevant to this study is the one by 
Mandelbrot mentioned in Chapter 1: "A fractal is a shape made of parts similar to the 
whole in some way" (Feder, 1988, p. 11). This chapter shall introduce the concept of 
fractal dimension via an explanation of the Hausdorff-Besicovitch dimension. Then 
Brownian motion and random walks will be considered, introducing the possibility of 
self-similar and self-affine fractals. This leads to a discussion of fractional Brownian 
motions which are the processes which have been proposed as realistic models of 
landsurfaces, coastlines and many other geophysical phenomena (Mandelbrot, 1975; 
Mandelbrot and Wallis 1968 and 1969a-e). The rest of the chapter shall be given over to 
a discussion of the work which has been carried out on investigating the applicability of 
these processes in various fields of research close to this study. 

22 Fractal Dimension 

As Feder (1988) demonstrates it is perhaps easiest to investigate the concepts of 
dimension by considering the size of a set of points in space. The size of a set of points 
might in the case of a line be its length or in the case of a surface its area. Figure 2.1 
shows some measures of the size of a line and a surface to illustrate the following 
discussion. 
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Figure 2.1: 

(a) 

Measuring the size of: (a) lines ,(b) surfaces (after Feder,1988). 
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(b) 

One measure of the size of a smooth curve is its length which can be measured 
in the following way. Using a line segment of a known length 8, the number N(6) of 
such segments needed to cover the curve can be found. A measure of the curve's length 
is therefore: 

L = W ( 8 ) 8 

as 5 tends towards zero the measure of the length becomes asymptotically equal to the 
curve's true length Lo and is independent of 8. Therefore: 

£ = # ( 8 ) 8 8 ^ 0 L 0 5 ° (2.1) 

Another measure of the size of the set of points could be to associate an area 
with the curve. To measure the area of the curve a line segment of known area S2 could 
be used. The number of these segments N(8) could again be found, providing a measure 
of the curve's area, A: 

A = N ( 5 ) 8 2 y I ^ L 0 8 1 

(2.2) 
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This time the measure of the area becomes asymptotically equal to the true length times 
5 as 5 tends to zero. 

Following the same logic a volume, V, can be measured using the segment S3 

and the following relationships hold: 

(2.3) 

However, both the area and the volume tend to zero as 5 itself tends to zero, leaving the 
only convenient measure of the set of points as the length of the curve. 

Using exactly the same arguments for a set of points that describes a surface it is 
easy to see that the measure of area is still as for (2.2) but this time as 5 vanishes A 
tends to the true area of the surface AQ: 

2 0 
A=JV (S )8 I T T o ^ o 5 (2.4) 

similarly: 

V = N(b)b3 A0bl

 ( 2 5 ) 

in this case, as for the A and V of the curve, the measure V vanishes as 8 tends to zero. 

I f an attempt is made to go in the opposite direction and find a length for the set 
of points describing the surface the relationships from the reasoning above would be 

L=N(8)b A 0 8 1

 ( 2 6 ) 

here L will tend towards infinity as S vanishes. It is clear from this that the only sensible 
measure of the size of the set of points defining the surface is the area. 

When considering the set of points describing the line, the length was a measure 
in space of dimension one, and the area was a measure in space of dimension two. 
Likewise for the set of points defining the surface the area is a measure in two 
dimensions while the volume is a measure in three dimensions. The Hausdorff-
Besicovitch dimension, D, is the dimension of the measure which lies between the 
dimensions, d, of the measures which tend to zero on one side and infinity on the other: 

I ' a < u - (2.7) 

where M<i is the measure in the dimension d. 
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In the cases explained above this concept is relatively straightforward. For the 
set of points describing the line the appropriate measure has the Hausdorff-Besicovitch 
dimension 1. The Hausdorff-Besicovitch dimension for the area of the surface is 2. 
However when considering irregular curves and irregular surfaces as opposed to smooth 
ones the dimension suggested by the relationship in (2.7) may be a fraction rather than a 
whole number, hence the term fractal dimension. 

Mandelbrot (1967) considered irregular, complicated lines such as the curves 
found in nature, showing that such curves could be thought of as having fractional 
dimensions. The example he used following the empirical research of Richardson 
(1961) was the dimension of a coastline. I f such a curve is measured using a line 
segment of known length as in (2.1) an estimate of the curve's length L is obtained. 

Unlike the smooth curve, the measured length L does not tend towards Lo as 5 
vanishes. This is because as the curve is measured using smaller and smaller segment 
lengths more and more details of the line's irregularities are considered and the length 
estimate therefore increases for smaller 8. It follows from (2.7) that in the limit of small 
8 (Feder, 1988) 

S (2.8) 

Having calculated N(8) for a range of values of 8 the fractal dimension, D, of the curve 
can be found by plotting the log of N(S) against the log of 5: the slope of the resulting 
line is therefore -D. 

23 Brownian Motion. 

It has been shown that as a result of the irregularity they display at all 
resolutions natural curves can be thought of as having a fractal dimension. The 
behaviour of this irregularity is important to the further definition of a fractal and is of 
particular interest to this study. The statistical properties of Brownian motion are well 
known and therefore it provides a convenient process to examine in terms of the 
irregular curves it produces. Mandelbrot (1968, 1969a-e, 1975) suggests that the 
behaviour of the curves which Brownian motion produces provides a first 
approximation to the behaviour of the kind of natural curves found in geomorphology. 

One of the first science lessons learnt in school is how a pollen grain in water 
moves continually as it collides with water and other molecules which are all in motion 
due to thermal energy. It is, however, not the physics of this process that is of interest 
to the study of irregular curves but the path taken by the particles during Brownian 
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motion. Ignoring interactions with other particles the pollen grain moves in a series of 
random steps. It takes what is often referred to as a random walk. Again Feder (1988) 
gives a good explanation of random walks. 

I f such a random walk is thought of as taking place in only one dimension the 
particle moves by jumping by a random amount during every increment i of time T,-. 
The probability distribution of the variable ^ is Gaussian. The position of the particle 
X(t) at time t is 

i=i (2.9) 

When x tends to zero X(t) becomes a random function described by Mandelbrot (1982) 
as a Brown function denoted by B(r). I f the function is considered at two different 
resolutions, that is two different values of time interval, t , important information about 
the scaling properties of the function is revealed. Feder (1988) suggests that the random 
steps J; should be taken from a Gaussian probability distribution 

= 1 exp 
4<DX (2.10) 

where 2> is what Feder describes as the diffusion coefficient. Here the mean is zero 
while the variance is 2m. I f the time increment is doubled each jump x considered 
becomes the sum of %' and which are two values taken from the distribution in 
(2.10). The probability of obtaining a specified value for %' and a specified value for 
to produce the value % is therefore the product of their two probability densities 

P ( V ; l ' , t ) = P{\',X)P(%:X) ( 2 . N ) 

The values of and must add up to % and therefore by integrating over all 
combinations of the two values, the probability density for increment % is obtained: 

p(%,2x) = . 1 exp - - 5 — 
' V4lF©T v \ 42) 2x1 (2.i2) 

This time the mean is still zero while the variance has increased to 4Dz. This argument 
holds when the time interval is multiplied by any factor. 
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The probability density of Brownian motion at one time resolution is the same 
as the probability density at a time resolution multiplied by a factor b i f the new 
increments or jumps are scaled by the factor b1^ 

(2.13) 

This is described as an affine transformation and as a result the curves which exhibit 
such scaling properties are described as self-affine. 

The scaling relation for the increments in (2.13) also holds for the Brown 
function and can be rewritten: 

P ( b ^ [ B [ b t ) - B ( b h ) ] ) = b * p[B(t)-B(t0)) ( 2 l 4 ) 

where B(t) and B(to) are the positions of a random walk at the times t and fn 
respectively. Therefore the Brown function is a self-affine Gaussian random process 
with zero mean and a variance which is divergent with time interval. The position of the 
Brownian particle is related to the increments of the process by the following 
relationship 

*(»)-«( 'o ) - 5 | ' - ' o f ( « ' d (2.15) 

where H equals l/2 for ordinary Brownian motion. 

2.4 Fractional Brownian motion 

Varying the exponent H in (2.15) between 0 and 1 provides a generalization to a 
family of processes Mandelbrot and Van Ness (1968) describe as fractional Brownian 
motions. These processes, of which Brownian motion is an example where the value 
H=l/$, produce curves with self-affine properties as discussed above. They have 
average increments of zero and the variances of their increments all diverge with time: 

B H ( t ) - B H ( t 0 ) ] 2 ) - \ t - t 0 

2H 
(2.16) 
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The correlation between past and future values of these functions varies with the 
parameter H. I f x is equal to one, 

where -2?//(-f) are past increments of the process, Bfj(t) are future increments, and the 
present increment is zero (Feder, 1988). JfH=L/2 then C(f) equals zero suggesting that 
past increments are independent of future increments. However i f H > ty2 the 
correlation between past and future increments will be positive. This suggests that there 
is persistence of positive or negative increment values. A trend, either positive or 
negative in the past will on average be followed by the same sort of trend in the future. 
When H < L/2, C(t) becomes negative implying antipersistence. This suggests that a 
positive trend in the past, will on average, be followed by a negative trend in the future 
or vice versa. 

When H > L/2 fractional Brownian motion is characterised by dominant long 
term fluctuations. (Dot H < L/2 values of the fractional Brownian motion alternate 
between positive and negative yielding curves dominated by short term noise. 

2.5 The Dimension of Self-Affine Fractals. 

In many of the earlier papers dealing with fractals, referred to in the introduction 
of this chapter, the concept of the scaling nature of fractals is often discussed using the 
example of a self-similar regular fractal. Examples of this can be seen in Mandelbrot 
(1967) and Burrough (1983a). 

In the case of self-similar fractal functions, the variables of the functions are 
scaled by the same factor. This is not the case for Brownian motion, a self-affine fractal, 
where the variables are scaled by two different but closely related factors. This 
difference in scaling properties has an influence on the extent to which the concept of 
dimension can be taken when dealing with self-affine fractals. 

From the discussion in part 2.2 about the fractal dimension of an irregular curve 
it can be seen that the measured length of such a line is 

C t 
{BH(<)2) 

2 
2H-1 

- 1 

(2.17) 

1(8) = ab l-D 
(2.18) 

if that curve was a self-affine fractal like the curves produced by Brownian motion. 
Consideration must then be taken of the different scaling factors for the X and Y 
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directions. When measuring such a curve by using a step size as mentioned in part 2.2, 
the contribution made to the length estimate by one step would be 

where bx is the time step or step in the ^-direction and AB//(t) is the step in the In­
direction. The last term of (2.19) will dominate i f a has a very small value or i f the 
magnification of the steps in the ^-direction is large. In these cases 8 ~ The number 
of segments of length 8, in the X- direction is 

T/bT~b~l~ 0 _ 1 / H ( 2 2 0 ) 

where T is the extent of the curve in the X-direction. This leads to the length of the 
curve being 

giving a fractal dimension of D = tyH when the magnification in the 7-direction is 
sufficient or the value of a is small enough to allow increasing amounts of irregularity 
in the curve to be measured. 

If, alternatively, the X-direction was magnified the fluctuations in the In­
direction would appear very small and when measured using a segment length 5, the 
first term in (2.18) would dominate and &~b, then 

This yields a fractal dimension of 1. 

It is these conflicting values of fractal dimension which must be appreciated 
when dealing with self-affine fractals. The fractal dimension D = 1, which is produced 
when measurement ceases to take account of irregularity in the curve is described as the 
'global' fractal dimension (Mandelbrot, 1985, 1986; Feder, 1988). The fractal 
dimension estimated when measurements take into account irregularity at different 
scales is called the 'local' fractal dimension by Feder (1988) or the 'latent' fractal 
dimension by Mandelbrot (1983, 1985). 

8 2H b x +b ABH(x)/ a (2.19) 

(2.22) 

This section of the chapter has discussed the fractals necessary to understand the 
way in which they may begin to be related to landsurfaces and landforms. Before any 
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analysis is described, it is necessary to review the way fractal concepts have been put to 
use or examined in fields related to this study. 

2.6 The Hurst Phenomenon. 

Hurst (1951) showed that the rescaled range, of some geophysical time series, 
varied as a function of the period of the record, but not in the way expected. This 
phenomenon has been examined by many workers since Hurst but is still referred to as 
the Hurst phenomenon and takes the following form: 

R / H 

/ b * (2.23) 

where Rn is the sample range of cumulative departures from the mean of a time series 
over the period n and Sn is the Standard deviation of the time series over the period n. 
Using the notation introduced previously in the chapter, the mean of the time series over 
a period n, where x(t) is the value of the time series for each interval of time /, is 

<*('»»= 1 ^ 
n (2.24) 

The cumulative departure from that mean for a time period n is 

«M -<*(')>' 
n 

If the minimum value that this sum attains is subtracted from the maximum value 
reached Rn is obtained. 

The unexpected result that this form of analysis yields for certain time series is 
that the exponent H in (2.23) takes a value greater than 0.5, which is the expected value 
for a time series where there is an absence of long-run statistical dependence or 
persistence as described in part 2.4. The Hurst phenomenon is therefore present in time 
series which seem to have the properties of fractional Brownian motions and because of 
this time series can be simulated with any desired value of the Hurst exponent, H, 
between 0 and 1. 

Hurst (1965) found the time series he studied to have values of H typically of 
about 0.7 (Table 2.1). Table 2.1 shows the range of records used by Hurst. Mandelbrot 
and Wallis (1969d) (Table 2.2) provide values of H for more of the same kind of data 
sets and indeed for one set of Canadian varves used by Hurst as well. For this data set 
Hurst obtained H = 0.77 whereas Mandelbrot and Wallis obtain the much higher value 
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of 0.96. This may be because Mandelbrot and Wallis redefined Hurst's original way of 
looking at the data sets 

Table 2.1: Table ofH( = K )for various natural phenomena (from Feder, 1988). 

Properties of K from Natural Phenomena 

Range 
Phenomenon of N 

Years 

Number 
Pheno- Sets 
mena 

K Coeff. of 
Mean Std. auto-correl-

devn. Range ation 

River discharges 10-100 
Roda Gauge 80-1,080 
River and lake levels 44-176 
Rainfall 24-211 

39 94 
1 66 
4 13 

39 173 

0-72 0091 0-50-0-94 
0-77 0 055 0-58-0-86 0-025 ±0-26 
0-71 0 082 0-59-0-85 n=15 
0-70 0-088 0-46-0-91 0 0 ^ ° 5 ° 8 * 

Varves 
Lake Saki 50-2,000 
Moen and 

Tamiskaming 50-1,200 
Corintos and 

Haileybury 50-650 

1 114 

2 90 

2 54 

0-69 0 064 0-56-0-87 -0-07 ±0-11 
n=39 

0-77 0 094 0-50-0-95 

0-77 0-098 0-51-0-91 
Temperatures 29-60 
Pressures 29-96 
Sunspot numbers 38-190 
Tree-rings and spruce 

index 50-900 

18 120 
8 28 
1 15 

5 105 

0-68 0 087 0-46-0-92 
0-63 0 070 0-51-0-76 
0-75 0 056 0-65-0-85 

0-79 0 076 0-56-0-94 

Totals and means of 
sections 

Water statistics 
Varves 
Meteorology and trees 

83 346 
5 258 

32 268 

0-72 0 08 0-46-0-94 
0-74 0 09 0-50-0-95 
0-72 0 08 0-46-0-94 

Grand totals and 
means 10-2,000 120 872 0-726 0-082 0-46-0-95 

Includes also river discharges. 

To analyse each data set Mandelbrot and Wallis (1969d) selected a sequence of 
values of n for which calculations of Rn were performed. The sequence was selected in 
order to avoid redundancy in the results generated and the unmanageable amount of 
values of Rn that could have been calculated. For each value of n selected the entire 
period of the time series, T, can be divided into nonoverlapping subsamples of n. As n 
gets closer to T and the number of nonoverlapping subsamples becomes small, 
overlapping subsamples must be taken. I f the values of Rn calculated from these 
subsamples are then plotted on doubly logarithmic paper a series of points for each 
selected value of n is produced (fig. 2.2). The mean of the Rn values calculated for each 
n is also plotted in fig. 2.2 as a square box. Mandelbrot and Wallis (1969d, p.324) state 
"An empirical record is said to satisfy Hurst's law i f , save perhaps for very small and 
very large values of s, the pox diagram of R(t,s)/S(t,s) is tightly aligned along a straight 
trendline, the slope of which will be designated by .H". The s of their notation is the 
same as the n of the notation used here. The reasons for the care Mandelbrot and Wallis 
take when considering the extreme ends of the plot are: at the bottom end, very small n 
gives rise to a large scatter of points for each n; at the top end, either the small number 
of subsegments available or the strong correlation between subsamples which overlap 
produces an artificial tightening of the scatter. 
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Figure. 22: Reseated Range (RIS) versus time interval over which rescaled range is 
measured (Time) for Monthly Sunspot Activity, 1749-1948 (from 
Mandelbrot and Wallis,1969d). 
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Table 22 : H values, calculated by Mandelbrot and Wallis, for some observed 
geophysical data. The Tamiskaming varve records were also studied by 
Hurst, (from Mandelbrot and Wallis,1969d). 

Moments 
Apparent 

Description H 3rd 4th 

Varve Data, from De Geer [1940] Swedish Time Scale 
Haileybury, Canada, +310 to -369 0.80 0.74 4.41 
Timiskaming, Canada, +1321 to -588 0.96 1.03 6.33 
Sirapsbacken, Sweden, +576 to +257 = 1.00 0.95 3.52 
Degeron, Sweden, +499 to 0 0.97 1.10 3.65 
Omnas, Sweden, +1399 to +1162 0.65 3.39 23.01 
Resele, Sweden, +1399 to +1132 0.67 4.00 26.02 
Hammerstrand, Sweden +2000 to +1767 0.85 2.10 9.05 
Ragunda, Sweden, +1933 to +1800 0.99 1.59 5.21 
L a go Corintos, Argentina, —801 to —1168 0.89 0.85 3.58 
Biano, Himalaya Mountains, —1 ISO to —1279 0.50 1.84 7.82 
Sesko, Himalaya Mountains, —1293 to —1374 0.99 0.31 2.20 
Enderit River, E . Africa, -406 to -546 0.91 1.07 4.10 

Schulman [1956] Tree ring indices 
Table 28, Douglas Fir and Ponderosa Pine, Fraser 

River, Brit. Col., 1420-1944 0.70 0.19 2.84 
Table 30, Douglas Fir, Jasper, Alberta 1537-1948 0.75 0.60 3.34 
Table 31, Douglas Fir, Banff, Alberta 1460-1950 0.65 0.32 2.76 
Table 33, Douglas Fir and Ponderosa Pine, Middle 

Columbia River Basin 1650-1942 0.75 0.10 3.20 
Table 36, Douglas Fir, Snake River Basin, 1282-

1050 0.77 0.24 3.60 
Table 38, Limber Pine, Snake River Basin, 1550-

1951 0.60 - 0 . 0 6 3.47 
Table 40, Douglas Fir, Upper Missouri River 

Basin, 1175-1950 « 0 . 5 0.33 3.14 
Table 41, Limber Pine, Upper Missouri River 

Basin, 978-1950 
Table 41, Limber Pine, Upper Missouri River 

Basin, 978-1950 0.63 0.29 3.71 
Table 43, Douglas Fir, North Platte River Basin, 

1336-1946 0.70 0.65 3.8S 
Table 44, Douglas Fir, South Platte River Basin, 

1425-1944 0.62 0.21 2.77 
Table 45, Douglas Fir, Arkansas River Basin, 

1427-1950 0.66 0.03 2.S6 
Table 49, Mixed species, 3 year means, Colorado 

River Basin 70 B .C. to 1949 A.D. 0.55 0.25 3.07 
Table 50, Douglas Fir, Colorado River Basin, 

1450-1950 0.64 - 0 . 1 5 2.82 
Table 52, Pinyon Pine, Colorado River Basin, 

1320-1948 0.68 -0 .43 3.32 
Table 65, Ponderosa Pine, Upper Gila River, 

1603-1930 0.69 - 0 . 0 7 3.25 
Table 66, Douglas Fir, Southern Arizona, 1414-

1950 0.69 -0 .03 3.11 
Table 70, Douglas Fir, Upper Rio Grande, 1375-

1951 0.65 0.21 2.SS 
Table 71, Pinyon Pine, Upper Rio Grande, 1356-

1951 0.68 -0 .23 2.76 
Table 72, Douglas Fir, Middle Rio Grande, 

(Guadalupe), 1650-1941 
Table 72, Douglas Fir, Middle Rio Grande, 

(Guadalupe), 1650-1941 0.59 0.24 2.87 
Table 73, Douglas Fir, Middle Rio Grande, (Big -

Bend), 1645-1945 0.71 0.59 3.13 
Table 75, Ponderosa Pine, S. E . Oregon, 1453-1931 
Table 76, Ponderosa Pine, N. E . Calif., 1485-1931 

0.58 0.04 3.27 Table 75, Ponderosa Pine, S. E . Oregon, 1453-1931 
Table 76, Ponderosa Pine, N. E . Calif., 1485-1931 0.78 0.11 3.12 
Table 77, Jeffrey Pine, E . Central Calif., 1353-1941 0.72 - 0 . 1 5 2.93 
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Table 2.2 continued 

Moments 

Description 
Apparent 

H 3rd 4th 

Table 78, Big-cone Spruce, S. Calif., 13S5-1950 0.56 0.11 3.62 
Table 79, Ponderosa Pine, S. Calif., 1350-1931 0.72 -0 .40 2.S9 
Table SO, Douglas Fir, W. CeDtral Mexico, 1640-

1943 0.86 -0 .10 2.40 
Table 85, Cipres at Cerro Leon, Argentina, 1572-

1949 0.91 0.41 3.41 

Data from Statistical History of the United States [1965] 
Annual Precipitation 

Albany, N. Y . , 1826-1962 0.87 0.56 3.46 
Baltimore, M d , 1817-1962 0.75 - 0 . 0 6 2.64 
Charleston, S. C , 1832-1962 0.89 0.65 3.53 
New Haven, Conn., 1873-1962 0.73 0.30 2.33 
New York, N. Y: , 1826-1962 0.65 0.59 2.89 
Philadelphia, Pa., 1820-1962 0.81 0.21 2.85 
San Francisco, Calif., 1850-1963 0.64 0.45 3.11 
St. Louis, Mo., 1857-1962 0.64 0.63 4.20 
St. Paul, Minn., 1837-1962 0.67 0.49 5.15 

Data from Ruth B. Simon (personal communication) 
Weekly Derby earthquake frequencies, April 1962-

June 1967 0.93 3.99 24.45 

Munro [194S] Sunspot data 
Monthly sunspot frequency, 1749-1948 v 0.96 1.04 3.SS 

Data from V. M. Yevdjevich [19631, U = Unadjusted for overyear carryover 

Gota River near Sjotrop-Vanersburg, Sweden, 
Y = Adjusted for overyear carryover 

Gota River near Sjotrop-Vanersburg, Sweden, U « 0 . 5 -0 .06 2.35 
1807-1957 Y « 0 . 5 0.42 2.94 

Neumunas River at Smalininkai, Lithuania, U.S.S.R., V 0.61 0.47 3.15 
1811-1943 Y 0.48 0.61 3.31 

Rhine River near Basle, Switzerland, 1807-1957 U « 0 . 5 0.14 2.80 Rhine River near Basle, Switzerland, 1807-1957 
Y » 0 . 5 0.23 2.89 

Danube River at Orshawa, Romania, 1837-1957 U « 0 . 5 0.27 2.26 
Y « 0 . 5 0.22 2.53 

Mississippi River near St. Louis, 1861-1957 U 0.79 0.29 2.75 Mississippi River near St. Louis, 1861-1957 
Y 0.68 0.18 2.45 

S t Lawrence River near Ogdensburg, N. Y . , U 0.98 - 0 . 2 6 2.70 
1860-1957 Y 0.69 0.14 2.70 

Professor J . C . Mann (personal communication) Data from Paleozoic E r a Sediments 
Wolfcampian Section, 

Kansas 
Vtrpnian-Desmoine-

sian Section, 
Superior, Arizona 

Missourian-Atokan 
Section, Honacker 
Trail, Utah 

Thickness of beds 0.75 4.60 32.27 
Lithology of beds 0.71 0.25 2.97 

Lithology of beds 0.55 0.78 3.27 
Bedding type 0.67 0.19 2.21 
Thickness of beds 0.70 3.51 24.81 
Lithology of beds 0.61 -0 .05 2.06 
Bedding type 0.58 0.47 2.11 

Data from J . de Beauregard' [1968] 
,1808-1966 
1863-1966 

0.55 0.65 3.01 ,1808-1966 
1863-1966 0.69 1.53 5.47 
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Such rigorous care was not taken by Hurst, who suggested that the trend lines all 
passed through the point with X-coordinate log 2 and ^-coordinate log 1. He then 
calculated H from the supposed relationship 

H 
l o g n - log 2 

where t is the starting point of a subsegment of length n. 

Mandelbrot and Wallis (1969a) found that the trendlines did not, in general, pass 
through the point mentioned and therefore the estimate of H tended to be too low when 
H > 0.72 and too high when H < 0.72. This, they suggest, lead to Hurst's typical value 
of around #=0.7. 

Feder (1988) has performed a small rescaled range study on sea wave height 
data from Troms0flaket, Norway. The time series used was for the three year period, 
1980-1983. Wave heights were recorded at 2 second intervals, 2045 times every 3 
hours. The 'significant wave height' for each 3 hourly period was calculated by taking 
the average of the largest third of the wave heights recorded. R/S analysis was then 
performed on the significant wave height time series yielding a value for H of 0.87 +or-
0.01. 

Visual investigation of the plot of the R/S analysis reveals some apparent 
structure (fig. 2.3). This structure in the curve is found at a lag of one year which 
suggested to Feder that it is the result of some seasonal variation. This poses the 
problem of how to deal with data sets which have some periodicity within them. Feder 
(1988) normalised the data set to zero mean and unit variance by taking the cumulative 
sum of significant wave heights, just as in (2.9) the cumulative sum of increments was 
used to define the position of the Brownian particle. 
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Figure 2.3: R/S as a function of the lag t,for a process where the significant wave-
height hsfor Troms0flaket is considered to be the random process {%}. 
The line represents a fit of the Hurst law R/S - x H to the data with H = 
0.87 ±0.01 (from Feder, 1988). 
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R/S analysis was then repeated, this time on the adjusted time series. The plot 
from the analysis (fig. 2.4) now shows two straight regions. For lags up to around 10 
days a value for H of 0.92 ± 0.02 was calculated, while for lags greater than 20 days the 
curve had changed to yield a value of H = 0.52 ± 0.02. This suggests that there is 
persistence in the wave statistics over periods of up to 10 days, but statistics separated 
by 20 days have become independent of each other. 

Figure 2.4: R/S as a function of the lag x (in years), for a process where the 
seasonally adjusted and normalized significant wave-height £ for 
Troms0flaket is considered to be the step in a (fractional) random walk. 
The lines are fits of the Hurst law R/S ~ T " . The fit for x < 10 days gives 
H = 0.92 ±0.02, and the fit for x>20 days gives H = 0J2± 0.02 (from 
Feder, 1988). 
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If the value of H > 0.5, obtained for the many geophysical time series studied 
using R/S analysis, is a result of the type of behaviour found in fractional Brownian 
motion the interesting issue is raised of why long-term dependence is exhibited. For the 
studies summarised by the results of Mandelbrot and Wallis (1969) in Table 2.2, the 
log-log plots revealed a linear relationship for all time lags and no breaks in the slope of 
the relationships were found, unlike the case of Feder's wave statistics. This led 
Mandelbrot and Wallis (1969, p.321) to claim: "Thus, for practical purposes, 
geophysical records must be considered to have an 'infinite' span of statistical 
interdependence". They did however qualify this statement by suggesting 'infinite' in 
the above usage means "longer than the longest records so far examined* (Mandelbrot 
and Wallis, 1969, p.335). 

The suggested cause of such memory effects in these records varies slightly with 
the type of record studied. In the case of river discharge time series, clearly, the storage 
of water in a drainage basin, in its soils and so on, produces a memory effect in that 
several different episodes of precipitation will all be affecting the discharge of the river 
at a particular time. In the case of actual rainfall records feedback systems within the 
climate of an area might cause some sort of autocorrelation of records. However for 
many phenomena which produce H > 0.5 it is not easy, even intuitively, to see why such 
long-term persistence should be present. 

Such problems have led to certain workers proposing alternative viewpoints as 
to the type of numerical process which can be used to simulate time series to imitate the 
geophysical time series exhibiting the Hurst phenomenon. Klemes (1974) draws 
attention to the intuitive weaknesses of fractional Brownian noises as models for long 
run geophysical records. He asks what physical mechanism can transmit the influence 
of, for example, a temperature at a particular time in one particular place over decades 
and centuries. This leads him to question the idea that a stationary stochastic process as 
proposed by Mandelbrot and Wallis can be used to model phenomena which could, 
quite feasibly be nonstationary. Klemes goes on to show by various numerical 
experiments that time series exhibiting the Hurst phenomena can be simulated by a 
process where the mean fluctuates with time. 

To elaborate, Klemes (1974), first showed that reforming R/S analysis on a 
Gaussian random series with unit variance in which the mean value alternates between 
0.5 and -0.5 at regular time intervals gave results interestingly different to similar 
analysis of a stationary Gaussian random series which produces a value of 0.5 for H. 
During the first time interval H is clearly going to be equal to 0.5, however as the 
influence of the second time period with a different mean is considered the value of H 
rises. After the second change of the mean H returns to 0.5 before falling more sharply 
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until gradually converging to 0.5 again. This shows that a change in the mean can 
indeed increase the Hurst exponent to a value above 0.5. 

Unlike natural time series, these series show very obvious structure starting with 
H=0.5 and returning to #=0.5. Klemes, therefore, developed the process by which the 
mean oscillates in order to make the simulated series have a constant H greater than 0.5. 
He did this by allowing the time period of each alternating mean to vary. Each time 
period was drawn from an exponential distribution of the logarithm of the time period. 
Time periods were allowed to vary between 1 and the some very large number. This 
process produces straight plots except at very large and very small values of x where the 
plot converges on and diverges from H - 0.5, respectively. 

The concept of a real time series exhibiting the Hurst phenomenon being 
produced by nonstationarity in the series mean is further supported by empirical 
evidence collected by Potter (1976). Using precipitation records from the eastern 
seaboard of the United States, Potter selected subsegments of the complete records 
which showed means substantially different to the total record. He then performed R/S 
analysis on the subsegments and the total record. The results of the subsegment analyses 
were compared to the expected results from a comparable Markovian series. Potter 
claims that the H exponent estimated from the real records are statistically near the 
exponents for the Markovian series and therefore suggests that nonstationarity can be an 
alternative to infinite memory as a numerical mechanism by which the Hurst 
phenomenon can occur. 

2.7 Other Fractals in Geophysics. 

One other relationship which is derived from (2.7) and (2.8) must be introduced 
and has been used in the investigation of Lunar and Martian morphometry (Woronow, 
1981), cloud forms (Lovejoy, 1982; Rys and Waldvogel, 1986; Hentschel and 
Procaccia, 1984; Lovejoy and Schertzer, 1985; Lovejoy and Mandelbrot, 1985) and 
drainage basin indices (Tarboton et al., 1988). This is the perimeter- area relationship. It 
is derived from applying fractal concepts of irregularity to the well established ratio P 
between their perimeter lengths and the areas of regular polygons of the same shape, 

p _ perimeter 
V area (2.25) 
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However for a fractal polygon the perimeter length L(5) tends to infinity as 5 tends to 
zero. The area A(8) remains finite, however, being measured by tiles of S2 in area. This 
leads to the ratio (Mandelbrot, 1977; Feder, 1988) 

However P(8) depends on the yardstick length 5 and some arbitrary factor C such that 
the perimeter relationship is in fact 

where C is a constant. 

Lovejoy (1982) used this ratio to study the scaling properties and the fractal 
dimensions of clouds and rain areas. Using remotely sensed radar images, areas 
containing large rain drops in quantities large enough to produce a rain rate of 
0.2mm/hour, or over, could be detected as rain areas. The area A of these rain areas was 
simply taken as the number of pixels in the rain area (each pixel is 1km2). The length of 
the perimeter was taken as the number of rain area pixels which were bordered by a 
pixel not attaining the above requirements. Each rain area was plotted on a graph of area 
versus perimeter length. 

Lovejoy measured clouds in the Indian Ocean from infrared images obtained 
from the Geostationary Operational Environment Satellite. Cloud areas were defined as 
groups of pixels where the temperature was less than -10 degrees centigrade. This 
definition of cloud therefore took no account of height in the atmosphere and both 
cumulus and cirrus clouds were included in the study. Areas and perimeters were 
calculated and plotted as for rain areas. 

The result was that the perimeter-area ratio was near constant for all clouds and 
rain areas measured giving a fractal dimension of around 1.35 for areas between 1km2 

and 1.2 x 106 km 2 , three linear orders of magnitude. Lovejoy and Schertzer (1985) 
claim that the lower area limit has been extended to 0.026km2 by Cahalan et al., in an 
unpublished manuscript, using landsat imagery. 

The fractal nature of atmospheric turbulence is generally considered to be the 
reason for the scaling behaviour of such meteorological phenomena. Hentschel and 
Procaccia (1984) extended their work on turbulence to the study of clouds. They 
considered atmospheric parameters such as temperature to be transported by a fractal 
turbulent field. Their theory produces an estimate of fractal dimension for cloud 

YD L 8 P 8 
VA(8) (2.26) 

D (l-D) L(S)=C5 
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perimeters in the range 1.37 to 1.41. This is clearly in good agreement with Lovejoy's 
empirical results and lends strong support for the scaling nature of turbulence leading to 
scaling phenomena such as clouds. 

Lovejoy and Schertzer (1985) have since developed the concept of general scale 
invariance in the atmosphere. This considers the atmosphere to be influenced by fractal 
turbulence in that the statistical properties of the atmosphere at the small scale are 
related to the properties at large scales by a magnification. However on top of this 
magnification a differential stratification must be included due to the effects of gravity, 
while a differential rotation must be included to take into account the Coriolis force. 
This line of investigation has yielded very successful simulations of clouds. 

Perhaps the reasonably good understanding which exists, of atmospheric physics 
and of turbulence has allowed the intuitive jump to a fractal description of 
meteorological phenomena. However, just as it was difficult to see reasons for infinite 
memory in some geophysical time series, it is difficult to explain the apparent fractal 
behaviour of such things as drainage basin morphology. 

Mandelbrot (1977) referred to the results of Hack (1957) in his proposal that the 
fractal form of the perimeter-area relationship might hold for drainage basins. Here 
Mandelbrot substituted Hack's 'length of longest stream' for perimeter and suggests 
that the relationship Hack found, where L is proportional to A 0 - 6 can be translated to 

L = 1 . 4 V A D 

with D from Hack's empirical evidence equal to 1.2. 

Tarboton et al. (1988) looked at the scaling properties of river networks, linking 
them to the indices devised by Horton (1945). Using U.S.G.S. DEM data they 
calculated the number of pixels which drained into each pixel of the DEM. This is 
equivalent to finding the area which drains into each pixel. They then used different 
threshold values of drainage area to select sets of pixels which defined channel 
networks. I f the threshold drainage area was decreased, the product was a finer-
resolution channel network. They then used three methods which can operate on the 
channel networks, for each resolution, to estimate fractal dimension. For each method 
they found that D was near to 2. This suggests that the networks are space filling. 

Therefore, although many would question why Hack and Gray obtained the 
apparently scaling relationships they did, the idea that a drainage network should fi l l the 
plane in order to operate optimally is easily understood. Perhaps, then, some sort of 
scaling, nested structure hinted at by Hack's law could best allow drainage networks to 
f i l l the plane. 
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2.8 Conclusions. 

When studying a phenomenon in terms of its possible fractal nature, its 
irregularity must be studied to see i f it shows signs of self-similar or self-affine 
behaviour. If this self-similar or self-affine behaviour is present over a sufficient range 
of scales within the phenomenon, the scale free nature of the phenomenon can give rise 
to an estimable fractal dimension. 

The fractional Brownian noise processes developed by Mandelbrot and Van 
Ness (1968) and Mandelbrot and Wallis (1969) provide methods for simulating fractal 
time series or if distance is substituted for time, fractal surface profiles. The properties 
of these simulations can be looked for, to some extent, in natural time series or profiles 
and so on. Investigation into the fractal properties of some of these time series have 
shown behaviour analogous to fractal Brownian motion. However properties such as 
infinite memory in fractional Brownian motions cannot always be easily reconciled 
with the possible physical mechanisms which seem to affect the natural time series 
exhibiting apparent fractal behaviour. 

In this study the possible scaling behaviour of landsurfaces and the landforms 
which contribute to these surfaces is being investigated. Therefore it will be necessary 
to analyse landsurfaces to find: (a) what if any scaling properties they show; (b) over 
what distance range do these properties hold; (c) whether a fractal dimension can be 
estimated; (d) how closely do landsurfaces relate to fractional Brownian processes. The 
next chapter discusses various methods and algorithms which allow this analysis to 
begin. 
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Chapter 3: Creating DEMs From Contour Maps 

3.1 Introduction 

Data capture processes vary in applicability for different landforms. However, 
this study is looking both at landsurfaces and at the individual landforms which 
contribute toward those landsurfaces. Landsurface data, when it is required for 
geomorphometric analysis is often held in the form of digital elevation models (DEMs). 
DEMs allow manipulation by computer to provide graphical representation of the 
surfaces. More importantly to this study they also allow the calculation of 
morphometric parameters (Evans, 1981; Frederickson et al., 1985; O'Neill and Mark, 
1987). 

Likewise, landforms can also be stored as DEMs to allow both graphical display 
and the automation of the calculation of geomorphometric parameters (Evans, 1987). It 
is true that certain parameters in the study of particular landforms cannot be obtained 
from DEMs and must be measured in the field or from aerial photographs. However, 
this study is looking at the parameters related to size distribution of landforms. As a 
result of the geomorphologist's belief, as discussed in Chapter 1, that certain landforms 
occur within a certain size range, geomorphologists have perhaps focused attention on 
clearly defined examples of landforms which seem to be at a certain scale. This study 
objectively seeks to find scale thresholds within which landforms types may exist. The 
automation of processes used to measure parameters of landsurface form and landform 
morphology is therefore desirable in order to add objectivity. DEMs are clearly the base 
upon which this automation can begin. 

It follows that in this study data capture of both landsurfaces and landforms 
should occur at the same time, individual landforms being components of the 
landsurfaces studied. As a result digital elevation models will be used for studying both 
surfaces and forms in this study. Digital elevation models (DEMs) must at this point be 
distinguished from digital terrain models (DTMs). Doyle (1978, p. 1481) suggests: "A 
digital terrain model (DTM) is an ordered array of numbers that represents the spatial 
distribution of terrain characteristics". DEMs represent specifically the spatial 
distribution of elevation, one particular characteristic of terrain (Burrough, 1986). 

3.2 Types of DEM 

There are essentially two groups of method by which a DEM can be constructed 
(Burrough, 1986). Mathematical methods fit some form of three dimensional function 
either globally to the whole area or locally to smaller patches of the surface. The second 
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group consists of image methods which can be subdivided into two further groups. Line 
models include digitised contours or profiles while point models include regular grid 
networks or models comprised only of critical features such as pits, peaks, ridges and 
talweg lines. 

Different methods have different applications. Mathematical methods to fit 
some global function to the surface, such as trend surface modelling are more 
appropriate where there is some recognition of a deterministic trend of interest in the 
surface rather than where the surface is being treated as possibly being random (Lam, 
1983). 

Chapter 1 briefly mentioned DEMs in the form of regular matrices of heights. In 
these DEMs the X and Y positions on the surface are implicit within the matrix while 
only the altitude Z is explicit. This form of DEM has also been described by the term 
'altitude matrix' by Evans(1972,1980). 

Altitude matrices, or 'gridded' DEMs, are not the only form of DEM based on 
image methods. One of the most common alternatives to the gridded DEM is the 
triangular irregular network (TIN). 

As its name implies the triangular irregular network method of modelling 
surfaces represents a surface by linking together, as a network of triangles, random 
altitude points or preferably information rich altitude points such as pits, peaks, ridges 
and valleys. An advantage of this type of model over the gridded DEM is that it can 
represent a surface by storing altitude information for fewer points. This is because 
large triangles are sufficient for representing areas of little relief while smaller triangles 
are used in area of more complex relief. However the reason for the TIN method's 
storage advantage also produces a major disadvantage. Where large triangles 
representing areas of low relief meet a major break of slope followed by a rougher slope 
which must be represented by smaller triangles the transition between large and small 
triangles is by way of long, thin, elongated triangles. Not only do the effects of these 
elongated triangles inevitably show up in graphical products from TIN models, but 
these long, thin triangles may often have the incorrect area for the surface which they 
are trying to represent (Douglas, 1986). 

Clearly it is desirable to use comparable techniques in all stages of the study. As 
a result there are several reasons why gridded DEMs should be the standard data 
structure used here. One reason is the ease with which the data can be processed. TINs, 
as well as possessing the problem given above, are slightly more difficult to process 
than gridded DEMs. Another reason for chosing gridded DEMs is that the existing 
computer programs of Evans (1979) which are used in this study and the programs of 
Depraetere (1989) deal with altitude data in this format. The final consideration which 
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points towards the choice of regular grid DEMs is that national mapping agencies such 
as the O.S., the U.S.G.S., and the I.G.N, are producing these commercially; some of 
these are used in this investigation. 

There are three groups of methods by which an altitude matrix can be produced: 
manual; automatic; and semi-automatic. Manual field survey is clearly time consuming 
and can only realistically be used in situations where only small areas are being 
considered. Furthermore surveying is often based on developing an irregular network of 
points and an altitude matrix must then be interpolated from this. A more practical 
manual solution for larger areas is to interpolate an altitude matrix from a contour map 
of the surface. This involves overlaying the map sheet of interest by an acetate sheet 
with points describing the necessary grid printed on it The altitude at each point is then 
interpolated from the surrounding contours. The obvious advantage of this method is 
that the human interpolator can intelligently act on the information which the contours 
give him. The obvious disadvantage of this method is that it is tedious for the 
interpolator and time consuming. 10,000 points must be interpolated to represent a 5km2 

Ordnance Survey 1:10,000 map sheet at a grid resolution of 50m. Once the interpolation 
is complete these 10,000 points must then be entered into a computer. 

The most attractive methods are automatic. Stereoscopic aerial photographs can 
have elevation measurements sampled from them by analytical stereo-plotters. However 
hardware such as this is not available in Durham. This leaves semi-automation as the 
only practicable alternative to the manual interpolation of points from contour maps. 
Semi- automatic methods involve the digitising of contours from map sheets followed 
by some form of automatic interpolation from these to a regular grid. 

33 Which Semi-Automated Method? 

It was decided on the basis of hardware and software availability in Durham to 
investigate some of the possible semi-automated methods of creating a DEM of an area 
of drumlins. The purpose of this is to illustrate some of the difficulties involved when 
creating DEMs, highlighting the fact that DEMs from what ever source are subject to 
error. The process will also provide another landsurface for study. The full relevance of 
a landsurface of drumlins will be explained in Chapter 8. 

The area of drumlins chosen for analysis was the area covered by the Ordnance 
Survey 1:10000 map series, sheets NY61NE and NY62SE, the southwest corner with 
grid coordinates 365000,517000; the northeast comer with coordinates 370000, 525000. 
Every contour, at 5m intervals, within this area was digitised on a AO Summographics 
microgrid tablet using the pcARC/INFO digitising facility (ESRI, 1989). 
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Interpolation of a regular grid of values from an irregular spatial distribution of 
values has been widely discussed in the literature (Lam, 1983; Yoeli, 1986; Davis, 
1986). Many methods of interpolation and algorithms for those methods exist. Sampson 
(1978) states "There are many different ways in which the control points in a 
neighbourhood can be combined to create an estimate. Unfortunately little comparative 
work has been done on the relative merits of these alternatives". Many commercial 
packages exist which have routines for a so called 'random-to-grid' interpolation. Most 
of them use some distance weighting method. However, as many of these packages 
have been developed for use in a wide variety of applications where graphical products 
such as contour plots are the desired end product, the gridding algorithms may not be 
optimal for producing a matrix of one particular surface. 

3.4 Surface I I 

Of the packages available in Durham 'Surface II ' was found to provide the best 
facilities for creating DEMs. "Surface II provides one of the most thoroughly tested 
grid interpolation routines commercially available" (McCullagh and Sampson 1972; 
Walden 1972; and Grassie 1982). In addition, the Surface II package was designed 
primarily for topographic and geologic isometric mapping and is probably "the most 
commonly used routine for these topics". (MacEachren et al., 1987, p.311). Most 
packages for contouring provide only one or two random-to-grid interpolation methods. 
Surface II provides three basic methods, and control over the parameters which 
determine the operation of each of these methods is facilitated, allowing a large number 
of possible interpolated grids. As different surfaces provide different problems for 
interpolation this flexibility is highly desirable if the product required is the actual DEM 
as opposed to a graphical representation. Table 3.1 presents the three methods and their 
relevant parameters. 

The first and most simple method is a one-phase local fit method, this is the 
most basic distance weighting method Surface II provides. One of the search methods 
listed in table 3.1 is used to select an operator-defined number of data points around the 
grid point to be interpolated. A distance-based weight is calculated for each data point 
selected, the weight depending on one of the operator- defined weighting functions 
mentioned in table 3.1. The value interpolated for the grid point is then taken as a 
weighted average of the selected data values (fig. 3.1). 
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Table 3.1 Random-to-grid interpolation methods available in Surfacell 

User Defined Parameters Method 
1 Phase 2 Phase Kriging 

Local Fit Local Fit 

Types of search Nearest Neighbour • / X 
for Neighbouring 
Points Quadrant • • • 

Octant / 

Distance (D) Default • • X 
Weighting 

Vb Functions Vb • X 

1/D2 • • X 

1/D4 • • X 

1/D6 
• • X 

Semi-Variogram Slope X X • 
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Figure 3.1 One-phase local fit (after Sampson, 1978) 
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Figure 3 2 Two-phase local fit (after Sampson, 1978) 
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A two-phase local fit is the next step up in complexity. During the first phase the 
nearest n neighbours to each data point are used to fit a weighted trend surface to each 
data point. The surface is constrained so that the plane passes exactly through the data 
points. The second phase is the same as the more simple one-phase method. Data points 
surrounding each grid point to be estimated are selected as before, and weights are 
allocated by the chosen weighting function. However it is the value of the trend surface 
passing through the selected data point extrapolated to the position of the grid point to 
be estimated that is used to give a weighted average value for the grid point (fig. 3.2). 
The Surface II command 'GRID' is used with its different parameters for both the one-
and two-phase methods. 

Universal kriging is the third method available. Assuming that a land surface 
can be treated as a regionalized variable, showing spatial autocorrelation over short 
distances while over larger distances points tend to be statistically independent of one 
another, kriging can provide a DEM estimated from random points that has "certain 
statistically optimal properties" (Davis, 1986, p. 383). Using kriging the weighting of 
points is based on the geostatistical properties of the random points. That is, weights for 
the data points depend on the spatial continuity of the random points expressed in the 
form of a semivariogram: 

where Z, and Z/+/, are altitudes at different locations separated by the distance h, and n is 
the number of observations of altitude difference at this separation. 

Therefore before Surface II can be used for kriging the semivariogram of the 
surface must be estimated in some way and if the surface is nonstationary the drift or 
trend in the surface must be estimated. The properties of the semivariogram are 
communicated to Surface II in the 'KRIG' command. The semivariogram's slope is 
input for a standard or more local neighbourhood and for a wider neighbourhood. This 
allows a less exhaustive but quicker calculation of weights as the number of 
simultaneous equations which must be solved is n+l where n is the number of data 
points being used in the estimation. KRIG also allows a choice of three drift values: a 
first- or second-order polynomial or the subtraction of the mean from every observation. 
The number of points to be used in each neighbourhood search can be specified in calls 
to the same routines which select neighbouring points for the one- and two-phase local 
fits. Sampson (1978, p. ) states "In theory, no other method of grid generation can 
produce more accurate estimates of the form of a mapped surface. In practice, the 
effectiveness of kriging depends upon the proper selection of several parameters, 
including the slope of the semivariogram. However, even with naive estimates of these 
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parameters, kriging will do no worse than arbitrary estimating procedures such as 
those of GRID"'. 

To obtain the highest possible quality DEM of the Eden Vale drumlins it was 
decided to compare the three different Surface II methods, with different combinations 
of values for their parameters. In order to save computer resources and time, only a 
small portion of the total area digitised was used to test the interpolation methods (fig. 
3.3). 

3.5 An Alternative 

A possible drawback of using Surface II or any other package which allows a 
random-to-grid interpolation is that the package assumes that the data points provided 
are random. The package treats each point as a spot height rather than part of a contour 
line. A nearest neighbour analysis of the contour data using the Surface II routine yields 
a nearest neighbour statistic of 1.01, suggesting that the points are randomly distributed 
spatially when considered as points. However the nature of the digitising process means 
that points which are closest to one another are points on the same contour. This may 
affect the interpolation if data points selected by the various options are from the same 
contour line. As well as this practical problem there is the more theoretical problem of 
wasting all the available topological data contained in the contours by treating them as a 
series of random points. 

As a result it was decided to write a Fortran 77 program based on an existing 
algorithm of Yoeli(1986) to interpolate a regular grid from digital contours. There are 
several stages to the algorithm. 

The first is the calculation of profiles at each grid interval in the X and Y 
directions of the grid and for two 45 degree diagonal directions (fig. 3.4). Each profile is 
formed by calculating the positions along the profile line where it is cut by a contour. In 
the program written, DEM.FOR (Appendix 1), this is achieved in two steps. Each 
digitised point belonging to a contour is compared to the point next to it and a check is 
made for the presence of a grid interval between them in the X and Y directions and the 
directions 45 degrees to these. To find out if a diagonal interval lies between the two 
points, the points are rotated through 45 degrees so that the grid intervals are now 
equivalent to the diagonals of the unrotated grid (fig 3.4). 

If for instance, as in figure 3.5, a grid interval with a value of X=n is between the 
values XI and X2 of the contour points PI and P2, then the contour involved intersects 
the grid interval. The point of intersection will be part of a profile of the area in the Y 
direction with a constant X value. 



Chapter 3: Creating DEMs From Contour Maps 55 

Figure 33: Area used in tests of random-to-grid interpolation methods. National 
Grid coordinates are given. The contours are plotted from the DEM 
produced by kriging with no polynomial drift. 

(368000,521000) 

3 

\ 5 

0 

3 

(365000,517000) 



Chapter 3: Creating DEMs From Contour Maps 56 

Figure 3.4 Profiles calculated from contour maps by DEM FOR 
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The Y value of the intersection point is simply found by linear interpolation 
between the point P1 and PI. Intersections in the X and diagonal directions are 
calculated in exactly the same way except that for the X direction and its rotated 
equivalent it is the X value of the intersection point which must be calculated. 

Once each point pair has been checked for intersecting grid intervals and the 
X,YZ values of the intersections have been recorded in an array for each profile 
direction, the arrays for each profile direction are sorted. If the profiles are in the Y 
direction, as in figure 3.5, the intersections are sorted by X values to place all the 
intersection points on one profile together. If the profiles are in the X direction then the 
array is sorted by Y values. The arrays must then be partially sorted once more, to place 
the points on each profile in order. 

The next stage of the algorithm is to fit a spline through the profile intersection 
points. In DEM.FOR the splines are used directly to estimate a value for the altitude at 
each grid node on a profile. A weight associated with this estimate can also be found 
by calculating the distance between the grid node and the two intersection points on 
either side of it. Any distance weighting function can then be used within the program. 

Fitting the splines yields from zero up to four estimates of altitude at each grid 
node in the matrix to be interpolated, and a weight for each of these estimates, from 
each profile direction. A final DEM can be calculated from these different estimates by 
taking a weighted average for every grid point 

3.6 Quality Assessment 

In assessing the quality of the DEM produced by each method and combination 
of values there are several indicators which can be taken into account. The most 
obvious indicator is the visual appearance of the DEM when it is run through a 
contouring package in relation to the original contours. Yoeli (1986) used contour 
threading, where the contours derived from the DEM are threaded through the original 
contours to see how closely they correspond. The closest operation to contour threading 
allowed by Surface II is to overlay the posting of the digitised points which make up the 
input contours with the derived contours. This approach has been used in this 
investigation. 

Surface II contains a routine for error analysis 'ERAN'. This is provided 
because the averaging processes used to produce grids may fail to honour the data 
points exactly. An indication of the error in the calculated surface at the data points can 
be obtained by back-calculating the value of the calculated surface at the data points 
from the grid matrix values. The back-calculated values can then be compared to the 
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original data values to produce various statistics. The grid nodes which enclose a 
particular data point are used in a double linear interpolation to estimate the back-
calculated value. The DEM.FOR matrix can be read into Surface II along with the 
contour points and 'ERAN' will perform an error analysis back-calculating from the 
DEM.FOR matrix to the contour points. 

One problem of interpolating a matrix from digitised contour values is that using 
the wrong weighting factor may lead to a bias of grid values being estimated at or near 
contour interval values. An obvious way of checking for this bias is to plot a detailed 
histogram of calculated grid values and visually checking for spikes at contour altitudes. 

3.7 Results 

There are eleven statistics examined: the maximum positive error, maximum 
negative error, absolute mean error, and absolute standard deviation should obviously 
be as low as possible. Absolute skewness being calculated for a one-tailed distribution 
should produce as high a positive value as possible with all the values being clustered 
near the minimum possible value of zero. Likewise kurtosis should be high. The 
percentage of points with less than 3m error and the Pearsonian correlation coefficient 
between the original data points and the back- calculated values from the estimated grid 
nodes should be as high as possible. The mean, standard deviation and skewness of the 
two-tailed distribution of errors should both be as close to zero as possible. 

Figures 3.6 to 3.16 are scatter plots for each statistic with methods classified in 
terms of their number of phases and search algorithms. The adaptation of Yoeli's 
contour-to- grid method (referred to as 'contour' in the method classification in the 
figures) provides by far the worst maximum positive and negative errors, -22.2m and 
17m respectively; for ease of display these have been left off the figures. Although the 
range of maximum negative errors for all the other methods is only 1.114m, the 
methods exhibiting the smallest maximum negative errors are the two-phased local fits 
using octant searches except for the one using a 1/D6 weighting function (fig. 3.6). For 
maximum positive error the same pattern of results can be seen (fig. 3.7), one- and two-
phase local fits with octant searches giving the lowest maximum errors while the worst 
results are those methods using a 1/D6 weighting function. 

The smallest absolute mean errors (fig. 3.8) are given by the kriging methods 
using a first order polynomial drift and having a minimum of 6 sectors which must 
contain a data point, and the kriging method with 0 polynomial drift. The worst absolute 
mean errors are again given by the Yoeli method followed by the one- and two-phase 
local fits using nearest neighbour searches with 1/D weighting. Absolute standard 
deviation in figure 3.9 shows the same order. 
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Figures 3.10 and 3.11 display absolute skewness and absolute kurtosis 
respectively. Both reveal the same pattern with the two previously mentioned kriging 
methods producing the highest values indicating that the error values for the grids 
interpolated by these methods are clustered near zero. 

Similarly, the methods producing the lowest positive skew and kurtosis are the 
one- and two-phase local fits using nearest neighbour searches with l/D weighting, 
Yoeli's method performs slightly better according to these statistics. 

The same basic order is shown in the Pearsonian correlation coefficients (fig. 
3.12) and the percentage of points with less than 3m errors (fig. 3.13), except that the 
Yoeli method is again the worst while in the latter all kriging methods perform equally 
as well. 

Statistics for the two-tailed distribution of errors show basically the same pattern 
as the absolute statistics. 

However when considering skewness (fig. 3.14), for which all methods produce 
negative values, the lowest values are for the kriging methods. The highest values are 
for the Yoeli method and the one- and two-phase local fits, with nearest neighbour 
searches and l/D weighting. This suggests that the errors associated with the kriging 
methods are more commonly overestimates than underestimates while the errors for the 
one- and two-phase methods are more evenly distributed between over and under 
estimates. 

Mean error against case number in figure 3.15 reveals that the kriging method 
with 0 polynomial drift gives the closest mean error to zero. However the worst mean 
error results, after Yoeli's method, are in this case the two-phase method with octant 
searches and the one-phase method with quadrant search, both with l/D6 weighting. 
The standard deviation of errors follows the usual pattern (fig. 3.16). 

From these statistics it would seem that the worst method tried is the contour-to-
grid method, while the best results are usually obtained by the kriging methods. 
Reference to figure 3.17, which is a scatterplot where the weighting factor has been 
used to classify the cases, indicates the apparent order of usefulness of the weighting 
functions. In the case of this drumlinised landsurface l/D weighting would appear to 
give the worst results. This suggests that more importance must be placed on the points 
closer to the grid node being estimated. Indeed 1/D4> l/D6 and the default weighting, 
which is very similar to the l / D 4 weighting seem to give better results respective to the 
limitations imposed upon them by the method and search technique being used. 
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3.8 Limitations of Surface I I Error Analysis 

The question must be raised of how realistic an indication of grid quality does 
the Surface II error analysis facility provide. This is because the back-calculation 
procedure is itself a form of interpolation procedure and will be in error to some extent. 

A simple way to assess this was to read a gridded DEM into Surface II as a 
series of X,Y and Z values, as if the DEM were a series of measurements of Z, randomly 
distributed in the X and Y directions on a surface. A small increment (5m) was made to 
each X value so that the procedure would not fail due to the number of operations which 
would have to be performed on this unrealistic number of zero errors.The DEM was 
then read in as a matrix with its X and Y values implicitly contained in the data 
structure. 'ERAN' was then used to back-calculate from the matrix to the supposedly 
random 'original' data. 

The results of this assessment were reasonably pleasing with statistics such as 
absolute mean error, absolute standard deviation, and standard deviation being around 
one order of magnitude better than for the kriging method with the zero degree 
polynomial drift. The percentage of points with less than 3m error was 100 and the 
correlation between original values and back-calculated values was 0.999. These 
statistic therefore suggest that 'ERAN' provides a useful tool to assess DEM 
interpolation quality. 
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Figure 3.6 
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Figure 3.7 
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Figure 3.8 
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Figure 3.9 
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Figure 3.10 
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Figure 3.11 
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Figure 3.12 
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Figure 3.13 
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Figure 3.14 
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Figure 3.15 
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Figure 3.16 
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Figure 3.17 
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3.9 The Spatial Distribution of the Errors. 

The back-calculated error values were read back into Surface I I and contour 
plots of error were produced for a number of the methods used. All plots show that the 
worst errors are found in the flood plain of the Eden, the main river through the area. 

This is easily explained by the fact that there are fewer contours over these level 
areas, in comparison to the drumlinised areas, and as a result the difficulty of 
interpolation in these areas where control points at different heights are separated by 
greater distances than for the rest of the surface cause problems for all the methods 
used. This is a problem common to all automated methods and only methods which can 
mimic the decision criteria used by a manual interpolator can begin to solve the 
problem. These decision criteria are reasonably complicated and the development of 
algorithms which successfully mimic the human interpolator would provide subject 
matter for several theses. Fortunately it is not the flood plains of this area which are of 
primary interest to this study; the drumlins of the area seem to suffer from less 
interpolation error. 

3.10 Bias Toward Contour Levels. 

As previously mentioned a bias of interpolated grid node values toward contour 
intervals can result when creating DEMs from contour maps. The frequency histograms 
of interpolated altitudes show this up clearly as spikes of high frequency at each contour 
level altitude in extreme cases. In cases where bias is slight, frequency of altitude 
increases up to, and then declines from, the contour level altitude. In the extreme cases, 
the usually near normal distribution of landsurface altitudes is almost obscured by 
spikedness. 

The main influence on this bias is the use of an inappropriate weighting 
function. The worst case of spikedness encountered in this study was produced by the 
one-phase local fit using a nearest neighbour search with 1/D6 weighting. This is 
understandable because firstly the nearest neighbour search will tend to find points 
close together on the same contour line. Secondly, the weighting function has the 
strongest distance decay available in Surface I I so points further away on other contours 
will be given very little weight. 

The least biased DEM produced was in fact the one produced by DEM.FOR. 
This is for two reasons. Firstly, and least importantly, the topological information about 
the contours used by the program ensures that points which are adjacent to one another 
on the same contour line cannot be used in the interpolation as they are in the random-
to-grid methods such as the one using the nearest neighbour search just mentioned. 
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Instead, the two contours which the grid node encloses are used in the interpolation. 
However the weighting of the estimates from these different contours is again a 
function of distance and this provides the major reason why the DEM.FOR method 
gives the least biased DEM. DEM.FOR used a 1//B weighting function to produce this 
least biased DEM. This weighting function makes weight decay more slowly with 
distance and is not available with SURFACE II . 

The next least biased DEM was produced using kriging with 0 polynomial drift. 
As mentioned previously the weights used in this interpolation are based on the spatial 
continuity of the surface as expressed by the slope of the semi-variogram, and so the 
weights are related to the actual surface being interpolated and not just a distance 
weighting function subjectively chosen by the user. 

3.11 Visual Assessment. 

So far, the kriging method with no polynomial drift has seemed to perform best 
over all the assessments used. However, since the back-calculating error analysis 
routine is itself an interpolation procedure and subject to some error, and, as there is 
some trade-off between bias in the interpolated values towards contour levels and the 
error analysis results (1/D 6 gives the largest bias but in general gives better error 
statistics than, for example, l/D weighting) it seems prudent to go back to a visual 
comparison between the original data and the DEM produced. 

Using Surface n , contour plots of the DEMs created by different methods were 
overlayed with the original data points, that is the points digitised along each of the 
original contours. The hard copy output of these plots was sufficiently large to be able 
to see both data points and contour lines clearly and as a result were too large to be 
included here. 

The spatial distribution of error suggested by the 'ERAN' command was 
confirmed by all the plots, with the worst discrepancies between original points and 
derived contours occurring in the river flood plain and other relatively flat areas with a 
lack of control points. These areas often had spurious contour loops present. The Eden 
valley, for example is broken up into a number of closed basins by each method. 

From a visual perspective, the best DEM was again the one constructed using 
kriging with no polynomial drift. DEMs produced using octant searches were the next 
best visually (the kriging method also uses the octant search methods). The nearest 
neighbour methods produced the worst visual results. Their contour plots showed 
jagged contours compared to the smoother octant search contours. This can be 
explained by the bias already mentioned toward adjacent points on the same contour 



Chapter 3: Creating DEMs From Contour Maps 75 

the nearest neighbours to the grid node being interpolated. The contours of the 
interpolated surface therefore lurch between the original contour lines. The octant 
search allows this to be overcome by forcing the selection of points in several different 
directions and as a result it is more probable that more than one original contour line 
will be considered in the interpolation. 

3.12 Conclusions. 

The limitations imposed by time and software availability in Durham have 
directed the study towards the creation of DEMs from contour maps by one out of a 
choice of several possible semi-automated methods. 

The most appropriate method considered on the basis of the quality assessment 
criteria used is universal kriging, with the drift being dealt with by subtracting the mean 
from every data point. It has proved to perform better than the other Surface I I random-
to-grid methods because it uses octant searches to select data points to be used in the 
kriging process and the weightings used in this process are directly related to the 
statistical properties of the surface being worked on. As a result this kriged DEM will 
be the one used in the rest of this study.. 

This work has encountered most of the problems generally associated with semi-
automated interpolation of DEMs. Perhaps the creation of DEMs is best achieved by 
manual interpolation from contour maps. However, as mentioned previously, to produce 
a DEM of an equivalent area completely by eye and hand would take days of tedium 
furthermore there are levels of subjectivity in the process of manual interpolation which 
it may be desirable to avoid. 

The search for algorithms which reflect some of the desirable interpolation 
criteria of a manual interpolation continues. The IGN are still using a Yoeli-type 
method with a slightly more complicated curve fitting process and no doubt superior 
coverage of contour and spot height data than is available to this study. They are still 
encountering exactly the same problems as in this study (Breard 1989). The IGN have 
also looked at the random-to-grid procedures supplied with packages such as Uniras 
and have found them less satisfactory. 

The decision must be made in the light of these short comings as to the wisdom 
of using semi-automated products in this study. In the case of the drumlins DEM it is 
worth using this surface because as mentioned previously the major source of error is in 
the main flat areas predominantly in the Eden river flood plain. The drumlins 
themselves are the most accurately depicted areas in the DEM. Knowledge of the 
limitations of DEM production makes their use reasonable. 
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Chapter 4: Detecting Scaling Behaviour in 
Landsurfaces 

4.1 Introduction 

As the range of phenomena which seem to display fractal behaviour is very 
large, there is perhaps an equally large range of techniques for assessing scaling 
behaviour and estimating fractal dimension. Two techniques and some of their 
applications have already been mentioned; rescaled range analysis and the perimeter-
area relationship. 

Mandelbrot (1975) described in some detail his view of the fractal behaviour of 
the Earth's relief, linking it to the fractal nature of coastlines and size distribution of 
islands. This has provided geomorphology the task of examining these ideas by 
empirically studying landsurfaces and by theoretically trying to reconcile fractal 
concepts with possible physical mechanisms which might allow such fractal behaviour 
in landsurfaces. 

There has been some response from geomorphologists, and they can also refer to 
work which has been carried out on other types of surface and even to work on the 
description of particle shape. The majority of this work has analysed contours taken 
from surfaces or profiles across surfaces, using one-dimensional techniques. The 
methods used in these studies and some of the results will be discussed in this chapter. 

The use of two-dimensional techniques, considering the whole surface at once, 
has been much less widespread but is obviously attractive when investigating 
Mandelbrot's (1975,1982) claim that any contour or profile taken from a fractal surface 
should have the same fractal dimension as that of the surface, minus one. I f 
Mandelbrot's claim is incorrect for real surfaces, as has been suggested by Goodchild 
(1982), then an assessment of the relevance of scaling behaviour in the surface as a 
whole still needs to be looked for and geomorphological equivalents to the general scale 
invariance of clouds need to be considered. The various two-dimensional techniques 
and algorithms proposed and their results will be introduced in this chapter. Adaptations 
of these techniques to consider anisotropic effects in landsurfaces and areal distribution 
of different processes will also be discussed. 

4.2 One-dimensional Techniques. 

Most of the one-dimensional techniques used to assess scaling behaviour of 
perimeters and profiles of geomorphic features, and other surfaces and shapes, have 
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been based on Richardson's (1961) divider-walking method, referred to in Chapter 2. 
The equation (2.18) describes the relationship which this is based on 

L(5)=a.5d-0) 

Richardson (1961) manually walked a set of dividers along atlas map 
representations of coastlines and international boundaries to study the relationship 
between divider spacing and length estimates of these features. He started by measuring 
the entire length in one step. Then the length was remeasured using two steps and so on. 
The length measurements were then plotted, along logarithmic axes, against divider step 
length. This type of plot has subsequently become referred to as a 'Richardson's plot' 
by many workers. Richardson drew attention to several of the problems in his method. 
He found that because of the irregularity of the boundaries "the fitting of a whole 
number of sides can only be done by troublesome successive approximations" 
(Richardson, 1961, p. 170). The final step to be measured was allowed to be a fraction of 
the step length being used. For similar reasons Richardson discovered that the total 
polygonal length, including the estimated fraction, when measuring the length of a 
closed line depends slightly on the starting point of the walk. 

The method of manually walking dividers and the way in which it should be 
performed has been reassessed as recently as 1984 by Kaye (1984). Kaye describes the 
process of measuring line length at different step sizes as a 'structured' walk. He 
stresses the need to detail the algorithm used carefully when writing about the results 
obtained from such a structured walk. Variations, such as which way the divider 
swings, clockwise or anticlockwise or alternately between the two, can produce 
different results. Kaye is in agreement with Richardson on adding the fractional final 
step required in many walks to the estimate of length. He suggests normalising the 
magnitude of measurements by dividing measurements by the 'ferets' diameter of the 
closed shape being analysed. The ferets diameter is the fine particle science term for the 
maximum projected length of a polygon. 

Kaye (1984) discusses the need for a multifractal approach when dealing with 
fine particle boundaries. He suggests that "it is necessary to use different fractals to 
describe different aspects of the boundary structure when examined at different levels of 
scrutiny" (Kaye, 1984, p.17). Kaye writes of a 'structural' fractal which describes the 
general irregularity of the shape as a whole, and a 'textural' fractal which describes the 
irregularity of the packing of the material which makes up the fine particle. He 
speculates as to how this method would apply when looking at coastlines (fig. 4.1) but 
provides no empirical evidence for examination. 
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Figure 4.1 Kaye's hypothetical coastline: as it includes certain man-made features 
and would have different fractal dimensions depending on the scale at 
which it was examined. P is the length of the coastline; X is the 
resolution of examination. (From Kaye, 1984) 
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Clearly, i f a large number of lines or maps at larger than atlas scale are going to be 
studied, it would be advantageous to automate this manual method to work on digitised 
data. Indeed, most of the one-dimensional work carried out since Richardson's has 
turned to automated adaptations of the manual walking-dividers technique. 

Some of the earliest investigations of fractal ideas by geomorphologists using 
Mandelbrot's (1967) development of Richardson's work includes the work of Hakanson 
(1978) and Goodchild (1980). However this early work is focused more on examining 
the accuracy of geographical line lengths and surface areas with respect to map scales 
and measurement techniques used rather than empirically studying scaling behaviour 
and fractal dimension in such features. 

Goodchild (1982) returned to fractal concepts in his study of fractional 
Brownian motion's contribution as a model for terrain. He used three methods to 
estimate the fractal dimension of: the shoreline; 250ft contour, 500ft contour, and lake 
outlines taken from 1:50,000 maps of Random Island, Newfoundland. 

The first method used was a computer simulation of the manual walking-
dividers method upon which Goodchild does not elaborate. The second method was 
developed for Goodchild's (1980) analysis of geographical line length. In it, a grid cell 
system is overlaid on the digitised line set. Line length is then estimated by counting the 
number of boundary grid cells which have neighbours both above and below the given 
line set. Equation (2.18) is then used to work out D from the relationship between line 
length and grid cell size. The third method used is based on the area-perimeter 
relationship, discussed in Chapter 2, although Goodchild did not explain how he 
measured area for this analysis. 
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Goodchild's results are very interesting and will be discussed more fully in later 
chapters. His results show that all the methods used give the same ranking of line sets 
when this ordering is based on the value of D. The shoreline has the lowest values of D 
for each method, and D increases for each method with altitude. This suggests that 
landsurfaces cannot be thought of as being like fractional Brownian surfaces where a 
contour line or profile taken from the surface will have the same fractal dimension as 
the surface, minus one. For a given line set, however, each method gives a slightly 
different estimate of D. The methods when applied to the shoreline give a small range 
from 1.11 to 1.14; for the 500ft contour this range has risen with D varying from 1.19 to 
1.54. This range is unacceptably large as on the basis of Chapter 2 a dimension of 1.19 
indicates quite a strong interdependence of altitude values separated by quite some 
distance, whereas a D of 1.54 suggests statistical independence between points. 

The grid cell method is also used in a study by Shelberg et al. (1983). Goodchild 
(1980) had used the contour of the mean value of the maximum and minimum altitudes 
from simulated fractal surfaces to estimate fractal dimension using the grid cell method. 
Shelberg et al. (1983) appreciated the possibility that i f a surface being analysed was 
composed of a mountain range and a plain, a contour with a low altitude which only 
occupies the plain, or a high altitude which only occurs in the mountains might give a 
biased view of the "overall fracticality" (Shelberg et al., 1983, p.322) of the surface. To 
overcome this possible bias they apply the grid cell method to a large sample (up to 
200) of different contours from the surface. D is estimated for each one and the average 
value for D of the sample is considered to be what they call the surface's 'fracticality'. 
Three surfaces are analysed in their study. Two are fractal simulations and one is a 
DEM from southern Nevada. The results for the real surface show a variation of only 
0.02 for different contour intervals used; however they do not state to what extent the 
real surface might be related to their hypothesised plain and mountain range situation. 

Kennedy and Lin (1986) discuss three automated methods to estimate fractal 
dimension as an aid to shape analysis. The first which they call the 'exact' method is a 
direct automation of the manual Richardson walking divider method. 

The algorithm is simple. A starting point on the digitised outline of the shape is 
selected. A minimum step length is selected for the first walk, 5. The straight line 
distance, d, between the starting point and the next digitised point in a selected direction 
from it (clockwise or anticlockwise) is calculated. This procedure occurs until d exceeds 
5. When this occurs the point at which straight line distance equals 5 is linearly 
interpolated between the point where d first exceeds 8 and the previous digitised point. 
The interpolated point is then used as the new starting point for the next step. A length 
estimate from the walk can be made by multiplying the number of steps plus the 
fractional step which may have been required to complete the walk by the step length. 
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This produces one point for a Richardson's plot and obviously the process is repeated 
over the range of step sizes permitted by the data's resolution. 

The second method discussed by Kennedy and Lin (1986) is the 'fast' method 
introduced by Schwarz and Exner (1980). 

This method overcomes the time-consuming process in the 'exact' method of 
interpolating the point at which a step arrives. Instead of using a fixed length step size 
in each walk a step size which is a fixed number of boundary points is used. A walk 
proceeds by stepping a specified number of points from the starting point, again in a 
specified direction.The distance between the starting point and the point walked to is 
then calculated and stored. The point walked to becomes the new starting point and the 
walk continues. Once the walk has been completed an average step length is calculated 
from the stored distances. This average distance is then used in the Richardson's plot 
along with the results from other walks to calculate the fractal dimension. This method 
has the disadvantage of resulting in smaller step lengths where the line being measured 
is more irregular and there are more points digitised to describe the shape. 

Kennedy and Lin's third method is called the 'FAENA' method (FAENA is for 
Fractal Analysis by Estimation - Normalised Approach) and is similar to Clark's (1986) 
'Hybrid' method. In the FAENA method the digitised points are searched until d is 
exceeded and the point where that occurs becomes the new point to step from. The 
distance of each step is again recorded so that an average can again be used in the 
Richardson's plot. Clark (1986) also reviews the 'exact' and 'fast' methods and 
proposes what he calls the 'hybrid' method where the point is searched out that has the 
straight line distance from the starting point which is closest to, either greater than or 
less than, 5. Both the Hybrid and FAENA methods are faster than the exact method but 
more accurate than the Fast method. 

These methods are all clearly-defined algorithms, an advantage and quality 
which Kaye (1984) suggested should be looked for. Kennedy and Lin point out that 
these methods can be used for shapes which do not possess scaling behaviour over wide 
scale ranges, which may be multifractals. 

One other method which can be used to estimate the fractal dimension of one-
dimensional data is spectral analysis. A fractional Brownian function has a power 
spectrum which decays with frequency, k, in the form k -(2#+0 (Mandelbrot, 1975). 
That is the slope of the power spectrum on a log-log plot is -(5-2D). Brown and Scholz 
(1985) use this relationship on the power spectra of several natural rock surfaces. They 
measured profiles of the surface topography of eight different rock surfaces in the field 
and laboratory over a scale range of lm to 10 microns. 
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They then computed the power spectra of the profiles by a fast Fourier transform 
technique. The power spectra plotted on log axes reveal convex relationships and when 
split into narrower bands of frequency ranges the values of the slopes of the spectra 
change from band to band. They conclude from this "that for fractals to be 
quantitatively useful in the study of rock surfaces, one must explicitly include the 
variation of the fractal dimension with spatial frequency" (Brown and Scholz, 1985, 
p.12581). 

The next section deals with the obvious idea of extending the popular and 
simple 'walking-dividers' methods to two-dimensions. As will be seen this is more 
difficult than it would appear. 

43 The Triangular Prism Surface Area Method. 

Clarke (1986) advocates mimicking the walking divider method in two 
dimensions. The algorithm he suggests deals with surface area instead of line length and 
instead of divider step size he proposes resolution at which surface area is measured. 

In Clarke's method surface area is calculated by interpolation from DEMs. 
Surface area for a particular resolution is calculated by taking four elevations from the 
DEM which form a square with the required resolution. The average of these four 
elevations is then taken as the elevation of a fifth point which is allocated the position at 
the midpoint of the square. The surface described by the five points is composed of four 
triangles (fig. 4.2). The combined area of these triangles is an estimate of the surface 
area within the square. 

Figure 42 A triangular prism composed of four triangles (afterClarke,1986) 
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This process is repeated for the number of squares of that particular resolution 
required to tile the necessary part of the DEM. Clearly, the combined surface area 
within these squares of given resolution is an estimate of the surface area of that part of 
the DEM. 

To obtain an estimate of the fractal dimension of the surface it is necessary to 
repeat this process for a number of resolutions. The part of the DEM tiled at different 
resolutions must obviously be the same. Clarke achieved this by using squares which 
increase in area as the lengths of their sides increase as powers of two. The number of 
powers of two which can fi t into the shortest side of the DEM is the number of 
resolutions for which surface area can be calculated by this method. 

Least-squares regression of log (surface area) on log (resolution) yields a value 
for the gradient of the relationship. This negative value can be subtracted from the 
topological dimension of the surface, 2, to give a supposed fractal dimension between 2 
and 3. 

One immediate drawback of this method, which is mentioned by Clarke himself 
and is shared by the one dimensional divider techniques, is that the least-squares 
regression is based on a small number of observations. The r 2 value for the relationship 
only gives a very rough indication of fit in this situation and, as in all other methods, 
individual values must be examined and visual reference made to a scatterplot of the 
relationship to check for linearity (Mark and Church, 1977). 

However this method raises more serious theoretical questions. How closely 
does the method mimic the one dimensional walking-divider methods? To suggest that 
surface area is the two dimensional equivalent of line length is perfectly sensible. 
However is resolution the equivalent in two dimensions of divider step size or its 
computer algorithm approximations? 

The manual method of walking dividers along a line does just that; the dividers 
are walked along the line following the line in whatever direction it turns. Likewise, in 
computer algorithm approximations to divider step size (Schwarz and Exner, 1980; 
Clark, 1986; Kennedy and Lin, 1986), the step, be it a number of digitised points or the 
closest point to a predefined distance, follows the direction set by the line. Each step is 
not just the scalar length of the step size, but is a vector with its direction determined by 
the geographical line it is walking. Even in cell counting methods (Hakanson, 1978; 
Goodchild, 1980, 1982; Shelberg et al., 1983) the way in which the cells are classified 
by the way in which the line crosses them adds a less direct but nevertheless directional 
component to the final estimate of line length. In the triangular prism surface area 
method, however, the resolution area is scalar. 
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A true two dimensional divider method would tile the surface as closely as 
possible with tiles of a given area (step size). The number of tiles it takes to cover the 
surface, times the tile area would give an estimate of surface area. Small tiles would fit 
the shape of the surface more exactly thus giving larger estimates of surface area, while 
larger tiles would generalise the surface to a greater extent thus yielding smaller 
estimates of surface area. Quite understandably, given the complexity of the problem, 
this type of analysis does not seem to have been attempted. Is the triangular prism 
surface area method analysing the actual surface under investigation? Reference to 
results given in Clarke's paper (fig. 4.3) raises initial doubts about this and studying his 
program reveals what is happening. The maximum resolution is the horizontal area 
covered by the landsurface and is given as 16384, with no units. The maximum value of 
surface area, again unitless, is given as 224729. This suggests that the surface area of 
the land surface is some 13 times the horizontal area which the landsurface covers. For 
surface area to be double horizontal area the average slope angle involved would be 60 
degrees (fig. 4.4). Likewise an average slope angle of over 85 degrees would be 
necessary to make surface area 13 times horizontal area. These slope angles are clearly 
not representative of real landsurface. 
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Figure 43 Results produced by Clarke (1986) for Bell Canyon, California. 
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Studying Clarke's program reveals that no account of the grid mesh size of the 
DEM is taken. Grid mesh is always treated as the unitless value 1. Al l horizontal 
measurements are made on the basis of this value. Vertical values however are in units; 
in the case of Bell Canyon these are in metres. Elevation in a DEM might, therefore, 
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change from 60m to 40m in a distance of 30m but this is treated in the program as a 
change in elevation of 20m in a distance of only lm. In the case of Bell Canyon it is 
therefore a distorted surface with an average slope angle of 85 degrees that yields a 
supposed fractal dimension of 2.193. 

This distortion of the surface is easily remedied, i f distances are calculated in the 
program taking grid mesh size into account. Not having access to the U.S.G.S. DEMs 
which Clarke analysed three different DEMs were studied both ignoring grid mesh and 
including grid mesh. It can be seen from Table 4.1 that the supposed fractal dimensions 
of the real, undistorted surfaces are too low to describe glaciated mountain areas such as 
Nupur, Thvera, and Torridon. In fact fractal dimensions of that order imply that the 
surfaces are very nearly regular and differentiable. 

Table 4.1 Fractal dimensions calculated from distorted (lm mesh) and undistorted 
(100m Mesh) DEMs. 

Thvera Nupur Torridon 

Grid Mesh D r 2 D r 2 D r 2 

l m 2.465 .908 2.597 .841 2.586 .908 
100m 2.013 .978 2.017 .965 2.011 .963 

It would seem from this evidence that a more theoretically sound technique 
should be used to study self- similarity and to estimate fractal dimension. 

4.4 The Variogram 

It was stated in Chapter 2 that fractional Brownian motions have an average 
increment of zero and variance which diverges with time (2.16). Thus if a landsurface is 
considered as a fractional Brownian motion its variance should be 

E = ( Z P - Z < ) ~ K A P 1 (4.1) 

where Zp and Zq are elevation values of the surface at points p and q and d p q is the 
horizontal distance between them. This states that the expected value of the squared 
elevation difference between two points on a surface is a function of the distance 
separating them. D, fractal dimension, can be estimated from a surface by constructing a 
variogram; the mean squared elevation differences for different horizontal distances are 
computed and their logs plotted against the logs of horizontal distances. The slope of the 
plot, b, gives: 
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D = 3-(b/2) (4.2) 

Mark and Aronson (1984) used the variogram as the basis of their method for 
estimating fractal dimension from U.S.G.S. DEMs. 32000 pairs of points were selected 
from within the largest circle that could be drawn in the area covered by the DEM. The 
points were chosen using a call to a pseudo-random number generator. Random 
selection of point pairs and selection from within a circle were performed to avoid 
directional bias in the sampling. The possible distance range was divided into 100 equal 
classes and then variance for the point pairs within these classes was calculated. A log-
log plot of variance against distance was then made. Log (variance) values based on 
fewer than 64 point pairs were omitted. 

The variogram was also used to study surfaces by Roy et al. (1987). They 
suggested that Mark and Aronson's sampling plan within the circle is biased towards 
the selection of points separated by middle and long distances. This results in the 
emphasis being put on the part of the variogram which is some distance from the origin. 
Analysis of variograms, they suggest, relies on the proximal part of the plot. This 
sampling bias may therefore distort the short range contribution to the fractal dimension 
estimate. 

Roy et al. therefore used a different method to sample points. They also started 
with the largest circle which the DEM would accommodate. A point was then randomly 
selected from within the circle. However the distance to separate the next point selected 
from the random point was predefined. The direction in which that point lies was 
randomly chosen and the predefined distance was then walked to find it. If the end point 
of the walk was outside the circle the pair of points were ignored. The number of points 
per class and the distance classes could therefore be predefined as desired. 

Both Mark and Aronson and Roy et al. obtain very reasonable and similar 
results. These have encouraged the development of the Fortran program FASTFRAC 
which also uses the variogram to examine surfaces for fractal behaviour. 

4.5 FASTFRAC 

FASTFRAC was developed at around the same time as Roy et al. were 
introducing their algorithm and is also developed in the light of Mark and Aronson's 
method. This method avoids checking for the occurrence of points within a circle and 
avoids the random selection of point pairs. 

A rectangular DEM contains points which are related to one another in one of 
three ways: row neighbours; column neighbours; or diagonal neighbours. Row 
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neighbours and column neighbours cover four directions and distances separating them 
are multiples of the grid mesh size. Diagonally neighbouring points can cover many 
more directions and provide distances that are between multiples of grid mesh size. By 
sampling a number of these neighbour relationships systematically across the DEM a 
representative sample of directions and distances can be obtained from which a 
variogram can be constructed. Using a systematic sample can give a greater number of 
log variance against log distance points than the random sample used by Mark and 
Aronson, however a larger number of point pairs is used to construct the variogram. The 
systematic sample does not really create any directional bias, as to obtain a sufficient 
number of distances for which to calculate variance a wide range of diagonal 
relationships is used. It should be noted that the directions obtainable from a random 
sample are exactly the same as those obtainable in a systematic sample. 

FASTFRAC calculates log (mean squared elevation difference) over a number 
of log (distances); the information necessary to create a variogram from a two 
dimensional data source stored within a file as a matrix. The variogram data can then be 
used to estimate the fractal dimension of the data source, an operation which can easily 
be performed using facilities for linear regression widely available in statistical 
packages. 

4.5 (i) Input 

Five variables are read in by individual read statements from either the terminal 
or a command file. These variables contain the necessary information to manipulate the 
matrix.The variable 'CONV stores the factor by which the matrix data must be 
multiplied to convert it to metres. 'NROW is the number of rows in the matrix. 
Likewise 'NCOL' is the number of columns in the matrix. The grid mesh size of the 
matrix is read in as 'GR\ The only character variable is 'FMT which reads in the string 
which contains the format of the file containing the matrix. Once this information is 
available to the program the matrix can be read from an input file. The data are stored in 
the two dimensional array 'HT'. 

4 J (ii) Calculations 

The two results required are log (mean squared elevation difference) and log 
(distance) for which the former is calculated. Squared elevation differences are 
calculated between neighbouring points which can be related by row, column or 
diagonally as mentioned previously. A point has NROW-1 neighbours in the same 
column, NCOL-1 neighbours in the same row and (NROW-1) x (NCOL-1) diagonal 
neighbours. To obtain a selection of different distances over which to measure mean 
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squared elevation difference (or variance) all three types of neighbours can be used. 
However, it is obvious that the greatest number of different distances can be obtained 
from diagonal relationships. 

4.5 (iii) The subroutine ABSOL 

One subroutine, ABSOL, forms most of the calculations for row and column 
neighbours. The subroutine ABSOL containing two sets of nested do loops allows 
squared altitude differences to be calculated for distances which are multiples of GR, 
that is distances obtained from row and column relationships. In the first set of loops the 
calculations are as follows: an array element is subtracted from the first array element 
which is a certain distance to its left, the distance between the points being determined 
outside the subroutine; the result is then squared; the process is then repeated for two 
more array elements, the addresses of which are determined by the value of the loop 
increment variable 'INCB'; the sum of the squared differences is kept in the variable 
'HR'; the process continues in this way until the loop terminating value is reached; the 
variable 'CM* counts the number of calculations performed. 

Finding the difference between every point in each matrix row would obviously 
take a large amount of time. This is why the variable INCB is employed. If the value of 
the inner loop variable is less than half the number of columns in the matrix then INCB 
is equal to some value greater than one, so that not every point and its relevant 
neighbour are sampled. To ensure a large enough sample to estimate the variance for 
any particular distance, INCB becomes equal to one when the inner loop variable is 
greater than or equal to half the number of columns in the matrix. 

The second nest of loops performs in the same way except that it deals with 
column neighbours. The loop increment variable is called INCC. However, since the 
distance over which variance is being calculated is the same throughout each subroutine 
call, HR is the sum of the calculations in both sets of loops and CM is the total number 
of calculations performed in each call. At the end of the call the log variance is 
calculated for that distance by dividing HR by CM and storing the loglO result in the 
array 4 HV\ 

4.5 (iv) The subroutine DIAGO 

DIAGO is the subroutine which deals with differences between diagonal 
neighbours. The subroutine performs a downwards left to right comparison of point 
pairs (fig. 4.5) and also a downwards right to left comparison. The particular diagonal 
distance which is used in any particular call to the subroutine is selected outside the 
subroutine in the main program. The numerical value of the distance is calculated 
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during the subroutine call however. INCD is similar to the variables INCB and INCC in 
ABSOL and ensures a sensible sample size from which to calculate variance . HV is 
again calculated in the same way. 

45 (v) Main program block 

This is split into two sets of nested loops. The first set of loops ensures that a 
sensibly-sized sample is used to estimate variance for smaller row/column and smaller 
diagonal distances, controlled by the variable INCA as well as ensuring a good range of 
smaller distances. The second set of loops takes a sample of the larger distances rather 
than using all possible distances which would, again, take to much time. This process is 
controlled by the variable INC. If these loops were not included the differences between 
each point pair, separated by each of the possible distances, would be calculated wasting 
large amounts of processor time even if a reasonably moderately sized DEM of 100 by 
100 points was to be processed. 

Figure 45 Diagonal comparison of point neighbours - example of downward left to 
right comparison and downward right to left comparison. 
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As well as calling ABSOL and DIAGO, the main program also contains calls to 
the subroutines SORT and AVWRTT. SORT is a standard sorting routine which is set 
up to sort HV and the array containing distances, DIST, by increasing distance. Output 
is prepared by the subroutine AVWRTT which uses the sorted distances to check for 
multiple occurrences of the same distance. If it finds a multiple occurrence it calculates 
an average variance for that distance. 

4.5 (vi) Output 

Distance and variance are written to an output file. Each row of output contains 
log distance and log variance for that distance. Also included in each row is the sample 
size used to obtain the variance. This output file is of a format compatible with many 
statistical packages. 

4 J (vii) Possible adaptations 

As the program is fairly time consuming, it is designed to be run via a batch 
queue and is not particularly interactive. One major adaptation, which may often be 
desirable, is to change the initial values of the variables INC, INCB, INCC and INCD. 
To increase the number of distances sampled INC can be reduced. Likewise to increase 
the sample size for each variance estimation, INCB, INCC and INCD can be reduced. 

Indeed while FASTFRAC was being developed these increment values were 
added only after several runs of the program where a completely exhaustive sample was 
taken up to large distances. It was on the basis of the near redundancy of many of the 
very similar distances over which variance was calculated that the more elaborate 
sampling method was introduced. In Chapter 6 the results from exhaustive and more 
careful sampling will be seen to be of the same quality. 

4.6 Adaptations of FASTFRAC. 

When studying the scaling behaviour of landsurfaces the question arises, from 
the geomorpological acceptance of such concepts as 'grain' in topography (Wood and 
Snell, 1960; Mark, 1975; Evans, 1972): how acceptable is a model which assumes 
topography to be isotropic? A simulated fractional Brownian surface should be isotropic 
as will be illustrated in the next chapter. Do real surfaces show anisotropy in any 
possible scaling behaviour? This question should be answerable by adapting 
FASTFRAC to calculate the variance over a range of different distances in four 
directions. 

90 



Chapter 4: Detecting Scaling Behaviour in Landsurfaces. 91 

As FASTFRAC works on systematically sampling rows, columns and diagonals, 
it was relatively simple to adapt it to store the squared elevation differences it calculates 
in groups corresponding to certain directions. Within the subroutine ABSOL two loops 
deal with row neighbours ('East- West' direction) and column neighbours ('North-
South' direction) separately. It is a simple task to store the results from each loop 
separately giving separate 'East-West' variances and 'North-South' variances. 

Within the subroutine DIAGO it is two IF statements which control the left to 
right diagonals and the right to left diagonals. It is again simple to store the results from 
within these two IF statements separately. The major change to FASTFRAC which is 
needed for keeping separate the results for different directions is in the control structure 
of the main block. Again there are two loops dealing with larger and smaller distances 
in order to give a sensible sample size. INC is the variable which still controls the 
multiple of grid size which is being studied and is used in both ABSOL and DIAGO: 
however, the loops incrementing by INCA which are responsible for ensuring a 
selection of different diagonals are no longer used and as a result calls to DIAGO only 
refer to 'Northwest-Southeast' and 'Northeast-Southwest' relationships. These 
adaptations to FASTFRAC are completed by the need to sort and write out each set of 
directional results which is obviously achieved by using four sets of calls to SORT and 
AVWRIT. 

As discussed in Chapter 1, another conceptual problem which geomorphologists 
should have with landsurfaces is the idea that a landsurface should possess a fractal 
dimension for the entire area. However in a landsurface a geomorphologist will 
recognise and classify certain areas in terms of the differing processes which have 
formed them and so on. These areas can often be at least partially delimited on the basis 
of form. How robust, therefore, is a fractal dimension obtained from a surface as a 
whole? Will smaller portions of the whole surface all have the same fractal 
characteristics as the whole? A first step to answering this question is to simply split 
each landsurface up into smaller sub-areas. This has been done in this study by dividing 
each surface into nine sub areas, as equal in horizontal area as possible. These sub-areas 
were then run through the programs discussed above. In summary the variogram 
method as implemented by FASTFRAC has been applied to whole DEMs of areas 
defined either on the basis of the areas' interest to the hydrologist or geomorphologist 
who made them, or purely on the mapping agency's need for coverage of an area. It has 
also been used to study the variation of scaling behaviour with orientation. Finally it has 
been used on smaller sub-areas of the DEMs to assess the areal limits of the overall 
results on scaling and fractal dimension. 
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4.7 Rescaled Range Analysis 

It would obviously be of benefit to this study to use another estimation 
techniques to give results to compare with the results of the variogram method. In the 
light of the debate on the results of rescaled range analysis discussed in Chapter 2, it 
was decided to treat landsurfaces in a similar way to time series and perform rescaled 
range (R/S) analysis on them. 

The first problem encountered when attempting R/S analysis of landsurfaces is 
how to make a suitable one-dimensional series out of a DEM. Unravelling a DEM into 
one long profile similar to a time series can be done in several ways. The main 
consideration as to which of these ways is most appropriate is the avoidance of a 
periodicity at which one segment of the unravelled DEM is nearly repeated because the 
next segment is composed of the row or column beside the row or column just 
unravelled in the last segment. This problem is discussed together with the results of the 
rescaled range analysis in chapters 5 and 6. 

What properties of the landsurface represented by the DEM must be used in the 
rescaled range analysis? This is the second problem encountered when trying to treat 
landsurfaces in a similar way to time series. Equation (2.23) describes the relationship 
found by Hurst, 

RnISn ~ r f l (2.23) 

where Rn was the sample range of cumulative departures from the mean of a time series 
over the period n, and Sn was the standard deviation of the time series over the period n. 
When dealing with a DEM, grid mesh size becomes the base unit for n and distance is 
substituted for time. Rn and Sn must be dealt with more carefully. It is not the mean and 
its cumulative departures of the actual altitudes recorded in the DEM that are required 
but the mean and departures from it of the increments of altitudes between one point 
and another. 

These two problems set the constraints for the FORTRAN program RS.FOR 
which using a DEM as input produces the login rescaled range value for a number of 
different login distances. The first part of this simple program reads the information 
about the DEM to be studied: the DEM filename; the number of columns; the number 
of rows; the grid mesh of the DEM; and the format of the DEM file. The DEM is then 
read into an array. A set of IF statements then allows the DEM array (HT) to be 
'spiralled' through. That is, the first row of the DEM is stored in another array (OUT), 
then the last column of the DEM is stored in OUT followed by the last row reversed and 
the first column and so on until the middle of the DEM is reached. OUT eventually 
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holds the complete DEM 'time series'. The increments of elevation can easily be found 
in a loop where the elevation of one point is subtracted from the elevation of the next 
point. 

The R/S analysis can now begin. The two outermost loops in this part of the 
program control the series of distances for which reseated range is being calculated. The 
series starts with n equal to 5 grid cells and n is incremented in the inner of these two 
loops by 1 until n is equal to 10. This leads to the next iteration of the outer loop and 
with a ten-fold increase in the increment for n so that the series progresses: 20; 30; 40; 
and on until 100 is reached The outer loop is again repeated with the increment value 
100 and finally with 1000. The final possible number of grid cells used is 10000 but the 
maximum value of grid cells used is limited to half the total number of points in the 
DEM. 

The third loop in is repeated as many times as n fits into the total number of 
points in the DEM, and it is within this loop that the mean and the maximum and 
minimum departures from it are calculated, for each section of the 'time series' n grid 
cells long. This means that for every value of n several values of reseated range are 
calculated. As a result the average value of reseated range can be calculated outside the 
third loop. In order to assess the dispersion around these average values of reseated 
range the standard deviation is also calculated. The results are then written to a file in an 
format easily readable by most statistical packages. 

4.8 Conclusions 

This chapter has looked at the earliest one-dimensional techniques used in 
geomorphology to search for the presence of self-similarity and estimate fractal 
dimensions. The more recent adaptations of these techniques have also been discussed. 

Some of the advantages of looking at surfaces as a whole have been mentioned 
and the value to this study of two-dimensional methods is clear. Unfortunately, the 
conceptually straightforward one-dimensional structured walk technique has not been 
adapted to work in two dimensions, and indeed it cannot be. This has led to the use in 
this study of the variogram method. 

FASTFRAC uses a new sampling approach which allows as much of the data 
available in a DEM to be used as is desired. This is somewhat different to the 
approaches of Mark and Aronson (1984) and Roy et al. (1987) which sample randomly. 
FASTFRAC has also been easily adaptable, because of the way it works, to keep the 
variance measured over a range of distances separate for four different directions. 



Chapter 4: Detecting Scaling Behaviour in Landsurfaces. 94 

Even when tested on simulated surfaces of known fractal dimensions, the results 
of only one method have their limitations. With the variogram method some of the 
behaviour of the results will be explainable by the method and not just by real 
characteristics of landsurfaces studied. It is for this reason that the use of more than one 
method to study scaling behaviour in landsurfaces is desirable. Correspondence 
between results from two methods can be used more safely as information on scaling 
rather than effects of the analysis technique. 

As a result of the amount of discussion on rescaled range analysis it seems 
appropriate to mimic this sort of analysis when studying landsurfaces. Although it is 
one-dimensional it has proved to be an easily used technique. 

Having established the methods to be used to study the fractal nature of 
landsurfaces the next chapters go on to discuss the results produced by these methods. 
The next chapter is a short one on the results obtained from FASTFRAC and RS.FOR 
when simulated fractal surfaces were used as input Chapter 6 will go into detail about 
the results obtained when a variety of real landsurfaces are analysed. 
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Chapter 5: The Fractal Nature of Simulated Fractal 
Surfaces 

5.1 Introduction 

Assessing the fractal nature of real landsurfaces by using the variogram method 
programmed in FASTFRAC and rescaled range analysis as it is implemented in 
RS.FOR are not the only ways of comparing real landsurfaces with the fractal model. 
By studying simulated surfaces which are supposedly fractional Brownian surfaces a 
comparison can be made between their properties, both fractal and traditional 
geomorphometric, and the properties of real landsurfaces. A useful by-product of this 
process is that the performance of FASTFRAC and RS.FOR can be assessed while 
studying surfaces that are already defined by their simulation and whose parameters are 
already known. 

This chapter briefly discusses simulated fractal surfaces before elaborating on 
the method used in this study. The surfaces simulated have been processed through: 
FASTFRAC; its adaptation for the study of anisotropic effects in surfaces; and 
RS.FOR. The results of this analysis will be presented and discussed in this chapter. 

5.2 Simulating Fractal Surfaces. 

There are three basic algorithms for generating fractal surfaces. Two of these 
developed under Mandelbrot's guidance while the third was proposed by Fournier et al. 
(1982). They are: the shear displacement method; the fast Fourier transform filtering 
method; and the random midpoint displacement or recursive subdivision algorithm. 

The first of these, the shear displacement method, was introduced by 
Mandelbrot (1975a). This algorithm is simple and easily visualised from Mandelbrot's 
first description of it: 

"Start with an earth of zero altitude, then break it along a succession of straight 
faults, and in each case displace the two sides vertically to form a cliff. The terms 
'fault' and 'cliff are to be understood in purely geometrical terms, with no tectonic 
implication" (Mandelbrot, 1975a, p.3826). The difference between the 'geometrical' 
meanings of fault and cliff and the 'tectonic' meanings, touches upon some of the issues 
raised in Chapter 1, the latter term suggesting faults as landforms rather than 
geometrical parts of a rough surface. 

95 
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To produce the irregularity necessary to make the simulated surfaces fractal, the 
positions of the faults must be randomly chosen so as to be mutually independent of one 
another and be isotropic, that is the direction of stike of the faults must also be random. 
The heights of the cliffs must also be randomly chosen and have zero mean and finite 
variance. If the cliffs are vertical Mandelbrot (1975a,b) explains how the relief obtained 
is a Brownian surface with the properties described in Chapter 2. A Brownian surface 
has the fractal dimension, D-2.5 and a Hurst exponent, H=0.5. 

Mandelbrot (1975a) hints at how this algorithm can be adapted by varying the 
profile of faults so as to produce surfaces with values of H from 0 to 1. He explains in 
much more difficult and rigorous style how the profiles must change in Mandelbrot 
(1975b). Fortunately many of the recent books on fractals and their graphical 
applications explicitly describe the adaptation required to vary the fractal dimension of 
the surfaces generated (Feder, 1988; Peitgen and Saupe, 1988; Bamsley, 1988). 

In the special case where H=0.5, on one side of the fault the altitude is 
incremented by the random cliff height selected, the other side of the fault stays at the 
original level. This ensures the independence of the points at any distance from the 
fault. If, however, H is not equal to 0.5 the effect of the increment must continue away 
from the actual line of the fault The algorithm used is: every point on one side of the 
fault is incremented by the points distance from the fault raised to the power of H - 1/2, 
all of which is then multiplied by the random cliff height selected; every point on the 
other side of the fault is incremented by the negative of this. Figure 5.1 illustrates the 
shape of faults with different values of H. 

The other methods of generating fractal surfaces are conceptually more difficult 
but take less computer time during the actual simulation and are therefore more popular 
with those involved with producing high resolution computer graphics. The fast Fourier 
transform filtering technique starts with a surface of Gaussian white noise and then 
filters this using fast Fourier transform techniques. This filtering produces a surface 
where the different frequencies are present in the amount necessary to give the form of 
power spectrum referred to in Chapter 4. 

The third method, random midpoint displacement, recursively subdivides an 
area calculating a random value at the midpoint the randomness of which is again 
controlled by H. Clearly the amount of displacement scales with the number of 
recursions. Fournier et al. (1982) admit that the surface produced is neither fully 
stationary, isotropic, nor self-similar. It is however the fastest method and is commonly 
used as an approximation of a fractional Brownian motion. 
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Figure 5.1 Shape of faults used in the Shear Displacement Method 
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The requirements of this study are fractional Brownian surfaces at a similar type 
of resolution as the DEMs of real landsurfaces that will be looked at. As a result the 
detail obtainable from the latter two methods is not required. Furthermore the shear 
displacement method is conceptually simple as far as the process which generates a 
shear displacement surface goes and bears some resemblance at least to very simplified 
tectonic processes. 

For these reasons the simple program FRACSIM.FOR (appendix 1) was written. 
It firstly initialises an array with zero values as a flat earth of zero relief. Inside a loop 
controlling how many shear displacements will be made, four random numbers within 
the dimension of the 'earth' array are obtained from a NAG function call. Pairs of these 
four numbers are then used as coordinates of points through which a fault shall pass. 
The 'earth' array's row index is taken as the Y direction of the flat earth while the X 
direction is obviously the column index. The variable B is the gradient of the fault line 
selected by the random number function in the X Y plane of the 'earth' array: variable A 
is its intercept A set of nested DO loops now allows a pass through the array. Each 
point is checked to see if its Y co-ordinate is greater or less than the Y co-ordinate of the 
fault line at that X co-ordinate position. If the Y co-ordinate is less, then the distance of 
the point from the fault line is raised to the power of H - 0.5 and then multiplied by the 
altitude which was randomly selected earlier in the program from a Gaussian 
distribution with zero mean and variance equal to 1. I f the Y co-ordinate was greater 
then the negative is taken. 

Eleven surfaces where generated with H increasing by 0.1 from 0.0 to 1.0. 

5 J The Visual Appearance of the Surfaces. 

Mandelbrot (1977) refers to the benefits of using visual evidence as a first 
judgement on the appropriateness of some of his theories. Therefore it is appropriate 
that when analysing the surfaces simulated by FRACSIM.FOR a visual inspection of 
the surfaces should be used as a starting point. Although all the comments here are 
based on subjective visual investigation, the comments are made in the light of 
experience of looking at similar representations of real landsurfaces; indeed, reference 
will be made to some of the real landsurfaces studied in this project. Full details of the 
real surfaces will be given in later chapters, perspective block diagrams of each of these 
surfaces are presented in Chapter 6. The surfaces generated are presented in figures 5.2 
to 5.12 as perspective block diagrams. 
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Figure 5.2 
Fractal surface, 
generated with 
H = l.O (D = 2.0) 
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Figure 5.3 
Fractal surface, 
generated with 
H = 0.9 (D = 2.1) 
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Figure 5.4 
Fractal surface, 
generated with 
H = 0.8 (D = 2.2) 
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Figure 5.5 
Fractal surface, 
generated with 
H = 0.7 (D = 2.3) 
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Figure 5.6 
Fractal surface, 
generated with 
H = 0.6 (D = 2.4) 
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Figure 5.7 
Fractal surface, 
generated with 
H = 0.5 (D = 2.5) 
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Figure 5.8 
Fractal surface, 
generated with 
/ / = 0.4(D = 2.6) 
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Figure 5.9 
Fractal surface, 
generated with 
H = 0.3 (D = 2.7) 
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Figure 5.10 
Fractal surface, 
generated with 
H = 0.2 (D = 2.8) 
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Figure 5.11 
Fractal surface, 
generated with 
H = 0.1 (D = 2.9) 
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Figure 5.12 
Fractal surface, 
generated with 
H = 0.0 (D = 3.0) 
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Starting with the surface simulated with the parameter H=1.0, which means D is 
equal to 2.0 (fig. 5.2), it is clear that the surface is very smooth . However there are 
several perturbations visible where large faults have stayed dominant in the generation 
procedure. The slopes that are present appear generally long and gentle. The real 
surfaces that are studied in this project that are most similar visually to this surface are 
those of the drainage basin areas of Wheeldale and Glaisdale. 

The surface with //=0.9 andD=2.1 (5.3) seems, immediately, much rougher 
than the //=1.0 surface. The effects of more of the faults have become obvious. The 
surface looks quite realistic with some definite ridges. There are one or two features that 
look something like valleys. Visually the nearest real landsurfaces to it are Canigou and 
the Uinta Mountains. 

The surface generated with //=0.8 (fig. 5.4) does bear some resemblance to real 
landsurfaces. The two cross sections visible on the diagram are for example quite 
realistic. There are however too many obvious linear features associated with the faults 
of the generation process. The simulated surface is visually closest to such surfaces as 
Devoluy, Nupur, and Galloway, although the vertical exaggeration in the diagrams of 
these surfaces is greater. 

Mandelbrot (1982) refers to surfaces generated with the exponent H set at 0.7 
(D=2.3) as being most similar to real landsurfaces based on the limited empirical 
evidence available to him. The generated surface (fig. 5.5) is obviously becoming 
rougher than the previous surfaces but again the cross sections look realistic. The 
number of faults visible divide the surface into depressions separated by narrow ridges. 
The closest real landsurface similar to the simulated surface is probably Devon, but this 
is purely from the point of view of dissection. 

With H=0.6 the generated surface begins to look rougher than most natural 
landsurfaces (fig. 5.6). Some of the masses of higher points look quite like mountains 
with very steep slopes reminiscent of rock slabs. The effects of the process used in 
generation can still be seen however and no coherent drainage pattern like those found 
on real landsurfaces can be found. The cross sections look too rough to be real. Any 
apparent valleys are occupied by scaled down versions of the major ridges which seem 
to be present. This surface visually portrays the scaling concepts of fractal Brownian 
surfaces. The closest real surface in this study would be the Mount Aigoual area of the 
Cevennes or Alarta, Saudi Arabia. 

The surface generated with //=0.5 definitely looks too rough to be real (fig. 5.7). 
It again demonstrates the concept of self -similarity well. From the cross section it can 
be seen that the variation in altitude over longer distances would seem realistic but there 
is too much short-distance variation. It seems clear from this surface that it is formed by 
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superimposing noises on top of one another. None of the real landsurfaces studied really 
resemble the simulated surface. 

Figure 5.8 shows the surface generated with H=0A. Again this surface appears 
too rough to be real. Some of the 'cliffs' appear as near vertical linear features. With 
reference to the cross sections the short-distance variation in altitude is more evident 
than in the last surface. There seems to be less long- distance variation. 

When H is set equal to 0.3 the surface can be seen to be composed of knife 
sharp ridges and troughs (fig. 5.9). The ridges and troughs have many spike-like 
summits and pits. The cross sections show yet more influence of short term variations in 
altitude. 

The //=0.2 surface, the surface that should have a fractal dimension of 2.8 (fig. 
5.10), shows similar features to those seen in figure 5.9. However the ridges and 
troughs are even more dissected by sharp spikes and pits. This progression from ridges 
and troughs being noticeable to spikes and pits being dominant can be seen continuing 
through figure 5.11, which is the H=0.l surface, and reaches its logical conclusion in 
figure 5.12. In this diagram short term variation is completely dominant; summits and 
pits alternate. The fractal dimension of 3.0 implies that the surface is space filling. This 
cannot be seen from the diagram but the process of generation has meant that the 
surface is full of short term but also small in altitude changes from pits to summits. As a 
result the relief of the surface appears small even though the surface is very rough. 

5.4 Results of Non-Directional Variogram Analysis. 

When using FASTFRAC to study whole surfaces in this project two runs of the 
program are used. In general the part of the variogram over shorter distances is the most 
linear part of the plot Therefore a run of FASTFRAC is made using the first ten 
diagonals for the first ten multiples of grid mesh size. This gives an exhaustive sample 
over the sixty shortest possible distances given the grid mesh. The resulting variogram 
allows least-squares linear regression to be performed on the linear part of the whole 
variogram. The second run of FASTFRAC uses the dimensions of the array necessary 
to store the surface to regulate the sampling method to produce a variogram which goes 
up to much larger distances. 

The results of the linear regressions performed on the output from the first runs 
are presented in table 5.1. It can be seen from this table that the values of D estimated 
from the surface by FASTFRAC are either over or under estimates according to the 
value of D that was specified during the generation of these surfaces. 
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Table 5.1: Results from regressions of 60 distance variograms and RIS analysis. 

Expected 60 Distance Variograms R/S Analysis 
D D Output Difference R2 SE D Output Difference R2 SE 

2.0 2.0480 0.0480 1.0000 0.0022 2.0310 0.0310 1.0000 0.0102 
2.1 2.1910 0.0910 1.0000 0.0086 2.1600 0.0600 0.9970 0.0278 
2.2 2.2450 0.0450 0.9900 0.0114 2.2160 0.0160 0.9930 0.0389 
2.3 2.3220 0.0220 1.0000 0.0028 2.2850 -0.0150 0.9990 0.0142 
2.4 2.4370 0.0370 0.9980 0.0129 2.3620 -0.0380 0.9910 0.0357 
2.5 2.5350 0.0350 0.9980 0.0091 2.4050 -0.0950 0.9990 0.0129 
2.6 2.5600 -0.0400 0.9990 0.0061 2.4480 -0.1520 0.9980 0.0154 
2.7 2.6740 -0.0260 0.9980 0.0072 2.4500 -0.2500 0.9980 0.0155 
2.8 2,7600 -0.0400 0.9970 0.0064 2.7800 -0.0200 0.9870 0.0281 
2.9 2.8600 -0.0400 0.9940 0.0056 2.8130 -0.0870 0.9820 0.0288 
3.0 2.9540 -0.0460 0.9700 0.0039 2.5970 -0.4030 0.9970 0.0137 
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However they are, with the exception of the surface generated to have Z>=2.1, 
not far out. The absolute mean difference between estimated D and programmed D is 
0.043. 

Having discovered that the variogram method does not estimate exactly the 
expected dimension for the fractal Brownian surfaces it is necessary to try and discover 
why. Studying the scatterplots of log (variance) against log (distance), for the 60 
distance runs of FASTFRAC presented in Appendix 2 it can be seen that many of them 
show some slight curvature. In Chapter 2 the concepts of scaling and calculating fractal 
dimensions were explained and for a completely self-affine fractal Brownian surface a 
perfect linear relationship of its variance to distance would be expected (2.16). 
Therefore, does the amount of curvature in these scatterplots show up in the error 
statistics associated with the least-squares linear regression equations fitted? 

Looking at the r 2 values from the regressions of log (variance) against log 
(distance) for the surfaces it can be seen that they are all above 0.994 except that for the 
surface generated with //=0.0. These high values would all seem indicative of linearity. 
However using r 2 = 0 as a reference level to measure the linearity of a relationship is 
not particularly relevant when the minimum hypothesis in this situation would seem to 
be that there is a monotonic relationship. It has been shown that r 2 for perfect non-linear 
monotonic relationships will often be very high (Good, 1972). Standard error, due to its 
sensitivity to small changes in r 2 , would seem to be a useful supplement to the 
indication of fit in this case and as a result standard errors are included in Table 1. 
However, from the variation in these statistics the magnitude of the difference between 
supposed and estimated fractal dimension can still not be explained. 

On closer reference to Table 5.1 it can be seen that all the estimates of D for 
generated surfaces with supposed fractal dimensions of up to 2.5 are over-estimates. 
Surfaces with supposed fractal dimensions of more than 2.5 have all yielded under­
estimates when run through FASTFRAC. For the first run of FASTFRAC the residuals 
of the regression were plotted against both distance and against the fitted values using 
'Minitab'. 

It is from these residuals that the relationship between the slight curvature of the 
scatter for the surfaces, the error statistics related to the regressions and the magnitude 
of discrepancy between estimated and supposed fractal dimension becomes apparent. 

The residuals show that all the scatterplots up to and including the plot for the 
surface with D=2.5 are slightly convex while all the surfaces with fractal dimension 
above 2.5 have slightly concave plots. The surface with D supposedly equal to 2.5 has 
in fact much less obvious curvature in its residuals than all the other surfaces except that 
with expected D of 2.3. 
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The residuals from the regression of the 2.5 surface are mainly grouped around 
zero in a cloud except for a small group of about five points about three quarters of the 
way along the scatter and also the first two points. It can be seen from the scatterplots in 
Appendix 2 that there is slightly wider scatter of points in the plot for the 2.5 surface 
about three quarters of the way along its length. At the distal end of the plot the scatter 
has decreased again and the plot appears linear with the original gradient. This widening 
of the scatter is probably the reason for the lower r 2 value of .998. 

All this evidence suggests that it is the curvature present in the relationship 
which makes the estimates of D either too large when the desired D is less than 2.5 or 
too small when the desired D is greater than 2.5. When D should be less than 2.5 the 
convexity means that the gradient of the plot is reduced as distance increases and as a 
result D is overestimated. I f on the other hand D is greater than 2.5 the concavity 
increases gradient thus producing an under-estimate of D. In producing the simulated 
surface 500 faults were used. This relatively small number of iterations was chosen as a 
result of considering computer time and expense. Mandelbrot (1975a) goes only as far 
as to say that the number of faults should have high average density. In the light of the 
slight curvature of the variograms obtained from the surfaces generated from these runs 
of FRACSIM.FOR it would seem that more iterations are required to make the surface 
tend to fractal Brownian surfaces. In the cases where D was meant to be less than 2.5 
low frequency effects were meant to dominate. It would seem that the smallish number 
of faults used has meant that variance over longer distances is not large enough. Where 
D was meant to be more than 2.5, high-frequency effects were meant to dominate; 
however the smallish number of faults has resulted in the variance over small distances 
not being great enough. 

The findings from the second set of runs of FASTFRAC where variance is 
sampled at longer distances confirm the findings from the 60 distance variograms. The 
convexity of plots for surfaces with expected D of less than 2.5 can be detected visually 
as can the concavity of plots for surfaces expected to have D > 2.5. It is what happens at 
the distal ends of the variograms that is most interesting. In all the plots there is either a 
widening of scatter or a maximum variance. Where widening of the scatter is the only 
thing that happens the way in which it widens is important. Although some of the points 
continue in line with the same gradient as the trend of points before the widening most 
of the wider scatter is caused by points being below the trendline. This effect that can be 
roughly equated with the variance reaching a maximum value at a certain distance.The 
maxima occur at distances between about 50 grid cells and 90 grid cells. Obviously 
these surfaces must have a maximum possible variance. Depending on the positions of 
the highest and lowest groups of points the maximum variance can occur from 50 grid 
cells upwards. I f the lowest points are in a corner while the highest points are in a 
diagonally opposite corner sampling will not go past a distance at which a maximum is 
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followed by a decrease in variance. The maximum can be around SO grid cells i f the 
lowest features in the surface are in the middle of the surface while the highest features 
are around the edges of the surface or vice versa. 

5.6 Directional Variogram Results 

The adaptation of FASTFRAC which writes the log (variance) and log 
(distance) for the row, column and two main diagonal directions to separate files was 
used with the simulated fractal surfaces as input. This section discusses the resulting 
variograms. Fractional Brownian surfaces are meant to be isotropic with the same order 
of irregularity and scaling in every direction. The method used to generate the fractal 
surfaces here would be expected to create an isotropic surface, as the strike directions of 
the faults used are randomly chosen. Table 5.2 presents the results of the 60 distance 
runs of the FASTFRAC adaptation in a similar form to the results presented in Table 
5.1. 

It can be seen from the estimated values of D in Table 5.1 that there is some 
variation in the fractal dimensions estimated for the four directions studied in each 
surface. However the row averages of difference between estimated and supposed D 
show a similar pattern to that found when treating the surfaces non-directionally. The 
row averages give an average absolute deviation of 0.041 compared with the average 
difference between estimated and supposed fractal dimensions for the surfaces treated 
non-directionally of 0.043. The directional and non-directional studies leave the 
surfaces in the same order as far as difference between estimated and supposed fractal 
dimension go, except for the surface with a supposed D of 2.5. For the directional 
variograms the absolute average difference is 0.047 which is greater than the difference 
obtained from the non-directional study. However the 2.5 surface has one directional 
estimate which is an underestimate of D and not an overestimate like all the other 
directions. If this is taken into account the average difference becomes 0.034 which is in 
line with the difference obtained in the non-directional study. 

The directional study also agrees with the findings of the non-directional study 
as far as curvature goes. Surfaces with supposed fractal dimensions less than 2.5 
consistently give overestimates of D from their variograms regardless of direction, 
while surfaces with expected fractal dimensions of greater than 2.5 give underestimates 
of D from their variograms. 

Therefore, although there are differences in the estimated fractal dimensions of 
the surfaces for different directions, they are only slight. This suggests that the surfaces 
are indeed isotropic. 
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5.7 Reseated range analysis results. 

page 112 

When the scatterplots produced from the results of RS.FOR are studied 
(Appendix 2) it can be seen that relationship between log (rescaled range) and log 
(distance) is linear to start with and then curves convexly until it almost levels out. The 
convex curvature and levelling out at longer distances is easily explained as a product of 
the algorithm used to calculate these points. 

As was explained in Chapter 4, RS.FOR 'spirals' through the DEM being 
processed. The spiral starts by considering the first row of the DEM. It then considers 
the last column, then the last row (last column to first column) and men the first column 
(last row to second row). Beyond the distance made up by these sides the series being 
studied almost repeats itself as the next set of two rows and two columns are 
geographically very close to the previous set. Rescaled range ceases to increase as 
rapidly beyond this distance and as a result the variograms produced by this algorithm 
begin to curve convexly and level off. 

Therefore when using this method to estimate fractal dimension, least-squares 
linear regression is performed on only the observations which make up the linear 
segments of the scatterplots. The estimated fractal dimensions for the simulated 
surfaces obtained from this process are presented along with the difference between 
them and the expected fractal dimension, the r 2 and standard error values in Table S.l. 

When rescaled range analysis is used to estimate fractal dimension from the 
surfaces generated with supposed fractal dimensions of 2.0 to 2.4 it yields estimates that 
are less than 0.07 different from the input values. The surface with a supposed fractal 
dimension of 2.8 also yields an estimate which is fairly close. However the other 
surfaces' supposed and estimated fractal dimensions vary by quite wide margins. The 
surfaces generated with fractal dimensions of 2.6 and 2.7 yield particularly inaccurate 
estimates. It would seem that the rescaled range method may have difficulties with the 
rougher surfaces. There seems to be no obvious reason for this. 

5.8 Conclusions. 

Simulated fractal surfaces are necessary in this study so that comparisons 
between simulated and real landsurfaces can be made in two ways: fractal surfaces can 
be compared visually with real landsurfaces; and real and fractal geomorphometry can 
be compared. The simulated fractal surfaces also provide surfaces with certain expected 
properties that can be used to test the analysis programs which are being used in this 
study. 
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The most suitable method for simulating fractal Brownian surfaces for this study 
would seem to be the shear displacement method. Although it is not as suitable as its 
alternatives for high resolution graphics, it produces surfaces of the required resolution 
by an easily understood process. The simplicity of the process means that the behaviour 
of the surfaces when subjected to analysis can be more easily explained in terms of that 
process. 

Visually the simulated surfaces with fractal dimensions of more than 2.4 are 
much too rough to be real landsurfaces. Even the surface with a fractal dimension of 2.4 
would be an unusually rough real landsurface. The faults which were used to produce 
the surfaces show through as linear features in the smoother surfaces. Although real 
landsurfaces often have linear elements, they are often orientated in the same direction. 
This is not the case with the fractal surfaces. The major visual difference between 
fractal surfaces and real landsurfaces is the lack of drainage networks in the simulated 
surfaces. 

The variogram method, employing FASTFRAC, yields estimated fractal 
dimensions which are close to the supposed fractal dimensions of the surfaces. More 
random faults would make the estimated and supposed values closer. Variance may 
reach a maximum value before the largest distance sampled due to the fact that the 
simulated surfaces are of finite area: variance must reach a maximum. The spatial 
distribution of the highest and lowest points determines at what distance variance 
reaches its maximum. 

Rescaled range analysis does not seem to be an effective method of assessing 
the possible self-affine nature of a surface. Results obtained from it do provide a rough 
guide to the relative roughness of surfaces but the major use of the method here is to 
indicate the benefits of using the apparently accurate variogram method. 
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Chapter 6: The Fractal Nature of Real Landsurfaces 

6.1 Introduction 

Testing the variogram and rescaled range analysis programs on surfaces with 
certain expected properties has revealed some of their possible limitations. For example, 
the inability of the rescaled range analysis program to estimate the fractal dimension of 
surfaces with expected fractal dimensions of greater than 2.5 means that results 
obtained from this method of analysis must be closely scrutinized and compared with 
those from the variogram method which seems to be more consistently reliable. 

With these limitations recognised it is possible to widen the study to examine 
digital elevation models of real landsurfaces. It is in this chapter that the results of 
variogram and rescaled range analysis are used to answer one of the original questions 
raised in Chapter 1: that is, whether or not landsurfaces are scale free. 

The concepts behind the ways in which this can be done have been developed in 
Chapters 2 and 4. To recap, perfect fractional Brownian surfaces would, i f submitted to 
variogram or rescaled range analysis, produce perfectly linear plots of log variance 
versus log distance and log rescaled range versus log distance. 

This would apply to all orientations and all sub-areas. Real landsurfaces must 
therefore be exposed to the same examination to see whether they produce linear plots 
or some other sort of structure. Other sorts of structure might include plots with linear 
sections of different gradients separated by steps or, as seen in the fault displacement 
surfaces of Chapter 5, convex or concave curvature. If, as previous geomorphological 
observation would seem to suggest, the fractional Brownian model should break down 
when considering real landsurfaces, any structures revealed in the plots should suggest 
possible reasons for this break down. The more traditional geomorphometric 
approaches of Chapters 7 and 8 may shed further light on these possible reasons. 

This chapter will therefore begin with a basic description of the 27 DEMs of real 
landsurfaces used. Chapter 7 gives details of the DEMs' geomorphometry. After the 
DEMs are introduced this chapter will follow a similar format to that of Chapter 5. The 
results of the non-directional 60 distance variograms will be presented first, followed by 
a comparison with the rescaled range analysis results. The non-directioeial variograms 
for larger distance ranges will then be discussed. After this, directional variogram 
results will be considered, and finally the analysis of subareas of the surfaces. 
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6.2 The Digital Elevation Models (DEMs) 

Table 6.1 presents some of the details about the DEMs used in the study. Due to 
the cost of purchasing ready-made DEMs from mapping agencies and the complexity 
and time involved in creating them, as was mentioned in Chapter 3, this study has used 
DEMs from several different sources. Fourteen of these DEMs existed in Durham at the 
beginning of the project, many having been used in geomorphometry studies included in 
the references by LS.Evans. The other thirteen DEMs have been acquired since the 
beginning of the project and therefore less is known about the geomorphology of some 
of the areas covered by these new DEMs. As a result the areas covered by the DEMs 
have not been chosen to try and represent as many types of geomorphologically 
different landscapes as possible but rather to give as large a sample as possible with the 
least input of expense and effort. Fortunately the sample does cover quite a number of 
different landsurface types. 

Table 6.1 DEM details 

Name Grid Mesh Area 
Torridon 100m 10.000km X 10.000km 
Keary 100m 5.000km X 5.000km 
Wind 200m 9.000km X 9.400km 
Nupar 100m 8.200km X 8.200km 
Thvera 100m 10.200km X 10.600km 
Dumfries 100m 7.100km X 15.100km 
Galloway 100m 7.100km X 15.100km 
Uinta 30m 13.950km X 10.620km 
Devoluy 50m 10.050km X 10.050km 
Canigou 50m 10.050km X 10.050km 
Aigoual 50m 16.700km X 16.700km 
Montoire 50m 10.050km X 10.050km 
LePuy 50m 10.000km X 10.050km 
LePorge 50m 10.050km X 10.050km 
Reunion 300m 66.300km X 51.600km 
S L Paul 50m 3.950km X 4.150km 
Booro Borotou 7m 1.505km X 1.358km 
Auchwick 30m 14.220km X 11.070km 
Belleville 30m 14.190km X 11.010km 
Allenville 30m 14.220km X 11.040km 
Netherhearth Sike 10m 1.500km X 2.350km 
Glaisdale 15m 0.750km X 0.750km 
Wheeldale 15m 0.750km X 0.750km 
Devon 100m 10.100km X 10.100km 
Gara 50m 8.000km X 8.100km 
Appleby 50m 8.000km X 5.000km 
Alarta 100m 10.100km X 10.100km 

There is a bias however of nine surfaces from glaciated mountain or upland 
areas due to the interests of the researchers who created or acquired them. Five of these 
have been produced by manual interpolation from contour maps in Durham. The file 
TORR contains a DEM, created by Iain Bain, of part of the Torridon area, N.W. 
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Scotland. The perspective block diagram (fig. 6.1) shows three north-south orientated 
ridges separated by well defined glacial troughs. The corner of mountain in the 
southeast belongs to Beinn Eighe, while the summits in the southwest make up part of 
Beinn Alligin. 

KEARY is a file containing a DEM, created by LS.Evans, of part of the Keary 
and Nosebag drainage basins, on the northeast slope of the Bendor range, British 
Columbia. The glaciated nature of this area is clearly visible in figure 6.2. 

The file WIND contains a small DEM produced by Don Alford of an area in the 
Wind River mountains, Wyoming. This DEM has a grid mesh resolution of 200m which 
is one of the coarsest resolutions used in this study. Figure 6.3 shows that despite this 
resolution the glaciated nature of the area can still be seen with well defined cirques 
clearly visible. 

NUPUR and THVERA are two DEMs of areas in Iceland, both produced by 
Jasbir Gill. Nupur is part of the West fjords penninsula, northwest Iceland. The DEM 
represents a glacially dissected plateau (fig 6.4). Thvera is in the central part of northern 
Iceland, southwest of Akureyri. Figure 6.5 shows the glacial landscape well including 
cirques, aretes, and troughs. 

Two areas of glaciated upland in the southwest of Scotland are used in the study. 
The DEMs DUMFRIES and GALLOWAY (fig. 6.6 and fig. 6.7 respectively) were 
produced by a semi-automated method involving the digitising of contours on 1/50000 
maps and then some interpolation routine from these to a regular grid. They are both 
long thin rectangular matrices. 

DUMFRIES (Evans, 1982) covers the area from Annandale to Nithsdale with its 
long axis parallel to the southern margin of the Southern Uplands of Scotland. The 
northern half of the DEM covers the glacially smoothed uplands dissected by the glacial 
troughs of Kinnel Water, the Water of Ae, Glenkill and Mollin Burns. The upland here 
is formed from Ordovician shales and Silurian shales and greywackes uplifted as an 
accretionary prism. The southern half of the matrix extends into lowlands of Permian 
sandstone and upper Carboniferous sequences. 

GALLOWAY (Evans 1982) is a DEM of an area in Galloway south of Girvan 
running northwest-southwest. Completely in the Southern Uplands this relatively low 
plateau of upper Ordovician greywackes, siltstones and shales is dissected by the 
troughs of the Duisk and Stinchar valleys. The geology of the northwest corner is 
complicated by submarine volcanism of lower Ordovician age. 
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UINTA is a U.S.G.S. produced DEM, interpolation to a regular grid being made 
automatically during the photogrammetry stage of the mapping process. UINTA 
represents the northern slope of the Uinta mountains, Wyoming. The area covered by 
the DEM is about 10.6km by 14km which is relatively large for this study and no 
features associated with glaciated mountains can be easily discerned from figure 6.8. 
There is some doubt as to whether the area was glaciated or not. 

DEVOLUY, in the extreme south western French Alps, is the final sizeable 
glaciated upland area studied (fig. 6.9). It is one of several French DEMs used and has 
been produced by a semi-automated interpolation routine from digitized contours using 
a Yoeli (1986) type method (as described in Chapter 3) with a slightly more complex 
spline fitting procedure (Breard, 1989). 

Five other diverse landsurface types from France are also studied. Two of these 
are mountain areas in the south of France. CANIGOU (fig. 6.10) is a DEM covering 
100km2, near the eastern extreme of the French - Spanish border and is part of the 
glaciated Pyrennes. The second mountain landsurface is of a larger area 280km2 in the 
Cevennes surrounding Mont Aigoual. The south-eastern corner of this DEM contains 
the upper part of the catchment of the river Gardon (fig. 6.11). The DEM AIG is 
produced using an Yoeli type method but has been made by hydrologists in Montpellier 
who use the Gardon as an instrumented catchment 

Al l three of the remaining French DEMs are produced in a similar manner, of 
these MONTOIRE is situated the furthest north. The area it represents is in the Loir 
valley around the town of Montoire-sur-Loir, near Vendome, and figure 6.12 shows 
clearly that it includes two incised meanders. 

Moving south the next French DEM, PUY, is of the Puy de Dome. The peaks in 
figure 6.13 illustrate the volcanic plugs of the Auvergne. The final DEM located in 
France is Le PORGE situated on the Atlantic coast, south of the Gironde estuary and 
north of Cap Ferret. The surface represented is made up of coastal dunes and then a flat 
forest area (fig. 6.14). 

Two other French produced DEMs are of volcanic islands. One is REUNION 
island in the Indian Ocean (fig. 6.15), the other ST.PAUL (fig. 6.16). The former is 
dominated by two volcanic peaks with several collapsed craters in their sides while the 
later is formed completely by a flooded crater. Another DEM with French origins is 
BOBOL, which is of the small Booro Borotou catchment in the Ivory Coast, West 
Africa (fig. 6.17). This DEM has the finest grid mesh (7m) used in this study. 

There is a set of three DEMs of Ridge and Valley type topography from the 
Appalachian mountains in Pennsylvania. AUGH, BELLE, and ALLEN (figures 6.18 to 
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6.20) are all USGS produced DEMs with a grid mesh of 30m representing the areas of 
Aughwick, Belleville, and Allenville. Aughwick is of particular interest as it is the same 
DEM as one of those Mark and Aronson (1984) studied in their assessment of the 
fractal nature of landsurfaces. 

Three further DEMs which existed previously to this study in Durham include 
NETHER, GLAIS, and WHEEL (figs. 6.21 to 6.23). All three are of small areas of 
glaciated upland drainage basins. The first mentioned is of Netherhearth Sike in 
Teesdale, Co. Durham; the second, Glaisdale, and third, Wheeldale, are both from the 
North York Moors. Each shows only a small part of the landsurface 

Unlike the others matrices DEVON and GARA (figures 6.24 and 6.25) are of 
areas not recently glaciated, and therefore widen the sample of areas studied from the 
British Isles. 

The final British landsurface included in the study is of an area of Drumlins in 
the Vale of Eden, Cumbria. The DEM APPLEBY is almost centred on the town of 
Appleby. The process of making this DEM was detailed in Chapter 3. Figure 6.26 
shows the drumlins quite clearly. 

The last DEM to be discussed is from Saudi Arabia. ALARTA represents an 
area of ephemeral drainage, with a very dissected nature. The apparent irregularity can 
be seen from figure 6.27. This DEM was manually interpolated by Hoda Al-Mazrooa 
(1989). 
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Figure 6.1: Torridon, N.W. Scotland. 

Figure 6.2: 

Bendor range, British Columbia 
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Figure 6.3: Wind River Mountains, Wyoming, USA. 
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Figure 6.4: Nupur, West Fjords penninsula, N.W. Iceland. 
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Figure 6.5: Thvera, North-Central Iceland. 

Figure 6.6: Dumfries, S.W. Scotland. 
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Figure 6.7: Galloway, S.W. Scotland. 

Figure 6.8: Northern slopes of Uinta Mountains, Wyoming, USA. 
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Figure 6.9: Devoluy, S.W. French Alps. 

Figure 6.10: Canigou, N.E. Pyrennes, France. 
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Figure 6.11: Mont Aigoual, Cevennes, S. France. 

Figure 6.12: Montoire, Montoire-sur-loir, France. 
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Figure 6.13: Le Puy, Puy de D6me, Auvergne, France. 
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Figure 6.14: Le Porge, W. France. 
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Figure 6.15: Reunion Island, Indian Ocean. 

Figure 6.16: St Paul Island. 
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Figure 6.17: Booro - Borotou, Ivory Coast, W. Africa 

Figure 6.18: Aughwick, Appalachian Mountains, Pennsylvania, USA. 
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Figure 6.19: Belleville, Appalachian Mountains, Pennsylvania, USA. 

J 

Figure 6.20: Allenville, Appalachian Mountains, Pennsylvania, USA. 
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Figure 6.21: 

Netherhearth Sike, 

Teesdale, Co. Durham, 

England. 

V 

Figure 6.22: 

Glaisdale, 

N . York Moors, England. 
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Figure 6.23: 

Wheeldale, 

N . York Moors, England. 

Af Figure 6.24: 

Devon, 

Part of Devon, 

S.W. England. 
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Figure 6.25: 

Gara, Devon, 

S.W. England. 

i 
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Figure 6.26: 

Appleby, Vale of Eden, Cumbria, England. 
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Figure 6.27: Alarta, Saudi Arabia. 
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6.3 Results of non-directional 60 distance variogram analysis. 

Table 6.2 presents the results of the least-squares linear regressions on the 
variograms for 60 distances, in order of decreasing fractal dimension, D. The r 2 values 
associated with the regressions again suggest that the relationships between log variance 
and log distance for these real landsurfaces are indeed linear. This would suggest that 
the surfaces are scaling over the relatively narrow range of scales investigated. However 
the argument used in Chapter 5 about r 2 being very high for perfect, but non-linear 
monotonic relationships still applies for these surfaces. Visual reference to the 
scatterplots of the variograms (Appendix 3) and to the plots of residuals produced by 
the linear regressions indicate that most of the surfaces yield a slightly convex 
relationship. However when considering D as an index of surfaces roughness the order 
in which it ranks the areas would seem to correspond generally with that of surfaces 
roughness given by a visual ranking of the perspective block diagrams (figures 6.1-
6.27). This is particularly so when considering the amount of dissection of each surface 
(regardless of process). ALARTA and AIGOUAL would immediately appear roughest 
when considering sharp features: summits, cols, V-shaped valleys. Nevertheless 
APPLEBY and DEVON, although possessing rounded summits and valley floors, are 
quite dissected with what would probably be high drainage densities. 
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Table 6.2 60 distance variogram results and rescaled range results 

DEM Variogram Method 

D R 2 SE 

Rescaled Range Method 

D R 2 SE 

Difference in 
D Between 
Methods 

WIND 2.5760 0.9500 0.4760 
ALARTA 2.5740 0.9570 0.0114 2.4240 0.9930 0.0275 0.1500 
ST. PAUL 2.4770 0.9720 0.0436 
APPLEBY 2.4430 0.9810 0.0378 
DEVON 2.4410 0.9810 0.0387 2.3280 0.9840 0.0464 0.1130 
AIGOUAL 2.4290 0.9820 0.0384 
KEARY 2.3690 0.9860 0.0365 2.2530 0.9960 0.0236 0.1160 
TORRIDON 2.3680 0.9910 0.0300 2.1970 0.9930 0.0329 0.1710 
REUNION 2.3670 0.9980 0.0124 
GARA 2.3540 0.9780 0.0472 
NUPUR 2.3110 0.9850 0.0415 2.1810 0.9920 0.0303 0.1300 
GALLOWAY 2.3060 0.9850 0.0422 22620 0.9820 0.0569 0.0440 
MONTOIRE 2.2810 0.9870 0.0403 2.1980 0.9940 0.0303 0.0830 
DUMFRIES 2.2730 0.9960 0.0237 2.2790 0.9920 0.0408 -0.0060 
THVERA 2.2600 0.9920 0.0336 2.1640 0.9930 0.0350 0.0960 
AUGHWICK 2.1850 0.9990 0.0104 
BELLE 2.1790 0.9990 0.0147 
ALLEN 2.1650 0.9990 0.0121 
UINTA 2.1590 0.9900 0.0133 
PUY 2.1540 0.9960 0.0262 2.1510 0.9980 0.0245 0.0030 
CANIGOU 2.1460 0.9980 0.0194 2.0790 0.9970 0.0262 0.0670 
DEVOLUY 2.1430 0.9980 0.0206 2.1340 0.9940 0.0368 0.0090 
GLAISDALE 2.1430 0.9970 0.0216 2.0270 0.9990 0.0118 0.1160 
BOORO 2.1360 0.9990 0.0126 
NETHER 2.1120 0.9980 0.0198 
WHEELDALE 2.0950 0.9960 0.0764 

Excluding Devoluy the four areas which yield the lowest fractal dimension 
would also seem to be the four smoothest surfaces visually although the exact order in 
which they would fall cannot really be judged by eye. 

GALLOWAY and DUMFRIES are visually similar surfaces and do possess 
similar fractal dimensions. NUPUR and MONTOIRE are also very similar to one 
another visually and the positions of all four of these surfaces in Table 6.2 would seem 
appropriate. It is the DEMs representing mountain areas, on either side of these in Table 
6.2, which are somewhat less understandable. THVERA looks at least as rough as 
TORRIDON and KEARY. AUGHWICK also appears rougher from its perspective 
block diagram than its estimated fractal dimension suggests. WIND certainly does not 
look like the roughest surface. 

The unexpectedly high fractal dimension of WIND can be easily explained. It is 
the surface which yields the variogram exhibiting the greatest convexity. WIND has a 
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200m grid mesh, the second coarsest used in this study, and as a result variance is 
considered for larger distances than in other DEMs when only 60 distances are studied. 
This means that if the landsurface is not perfectly scaling and the relationship between 
log variance and log distance is convex, least-squares regression for a scale range from 
200m to 2828m will produce a lower gradient and therefore a higher fractal dimension 
than least-squares regression of the same relationship for a scale range of 100m to 
1414m. 

It is therefore interesting to note that the 11 surfaces with the lowest fractal 
dimension also have grid mesh sizes of less than 100m, while the 15 surfaces which 
yield the highest estimates of D all have grid mesh sizes of 100m or greater except for 
APPLEBY, AIGOUAL, MONTOIRE, GARA and ST. PAUL (fig. 6.28). The least-
squares regression statistics of r 2 and standard error follow a similar, i f only slightly 
more complicated, pattern indicating greater convexity in the DEMs with larger grid 
mesh and higher fractal dimensions. 

Figure 628 Fractal dimension vs. grid mesh of DEMs. 
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Indeed visually this pattern can be detected in the scatterplots themselves. An 
exception to this is ALARTA, whose variogram is predominantly straight until slight 
convexity at the distal end. The variogram from KEARY is also noteworthy. It is 
slightly convex to about 1km (logio is 3), where the variogram becomes slightly 
concave, returning to the original gradient of the trend at about 1585m (logio is 3.2). 

The convexity present in the variogram of La Porge over the 60 distances makes 
least-squares linear regression of the variogram poindess. Looking at the structure of 
the curve in the variogram would seem to hold more chance of possible explanation and 
this surface will be considered more fully in a later section. 
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All of this evidence suggests that the estimated fractal dimension of a real 
landsurface, even when used as a simple index of surface roughness has definite 
limitations. One of these limitations may be the fact that different methods of estimating 
fractal dimension may produce different results particularly when the surface being 
studied may not have all the properties of a fractional Brownian surface. The next 
section compares the results obtained by another method, rescaled range analysis. The 
problem of the convexity of most of the variograms and of what may happen at longer 
distances in the variograms will be returned to in section 6.5. 

6.4 Rescaled Range Analysis results 

As was described in Chapter 5, when the rescaled range analysis of the 
simulated fractal surfaces was discussed, the analysis of a surface held as a DEM can 
only go up to a certain distance. This distance is the length of the outer perimeter of the 
DEM. After this, neighbouring points are used to calculate rescaled range. As a result 
only the linear parts of the rescaled range against distance plots were used in the least-
squares regressions and to estimate fractal dimension. In most cases this was 15 or 16 
observations. The fractal dimensions estimated from these observations are presented 
along with the non-directional 60 distance variogram results in Table 6.2. Also 
presented are the r 2 and standard error values for the regressions as well as the 
difference between the variogram fractal dimensions and the rescaled range fractal 
dimensions. 

The algorithm for calculating the rescaled range values for the different 
distances, as described in Chapter 4, 'spirals' around the DEM towards its centre. When 
measuring the mean and the cumulative departures from it the series must be 
continuous, with an altitude value at each interval in the series. Therefore, the algorithm 
cannot deal with irregularly shaped DEMs which are padded with a value for missing 
data. This means that Table 6.2 shows a lack of results for several irregularly shaped 
models. Only nineteen real surfaces are therefore studied using rescaled range analysis. 

The values of D calculated by the rescaled range method are in general lower 
than the values obtained when using the variogram method (fig. 6.29). The smallest 
difference between variogram fractal dimension and rescaled range fractal dimension is 
0.003 for the Puy de Ddme area. The largest difference is 0.171 for Torridon. The 
average difference is however 0.085 which, as the simulated surfaces have shown, 
would probably be a visible difference in the roughness of two surfaces represented as 
perspective block diagrams. There is only one surface which gives a rescaled range 
analysis D value greater than its variogram fractal dimension: Dumfries gives a 
difference of only -0.006. 
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Figure 629 D from variogram method vs. D from R/S method. 
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The order of the surfaces when ranked using the rescaled range D values is not 
quite the same as the order given by the variogram fractal dimensions. The rougher 
surfaces fall into a similar order, as do the smoother surfaces, but some of the surfaces 
in the middle of the rankings are further out of place. Similar surfaces such as Galloway 
and Dumfries have fractal dimensions calculated from the rescaled range analysis which 
are closer together than they were using the variogram method, although by the former 
method Dumfries is supposed to be very slightly rougher than Galloway as opposed to 
the reverse for the latter method. In addition, surfaces are supposed to be very slightly 
rougher than Keary, Torridon, Nupur and Montoire. 

Montoire is also out of order, having a higher fractal dimension than Torridon 
and Nupur. However Torridon, Nupur, Thvera and Le Puy keep in their order as regards 
to each other. At the smooth end of the order rescaled range analysis of Canigou yields 
a very much smoother fractal dimension than its variogram counterpart. It is therefore 
true to say that it is surfaces such as Galloway, Dumfries, Montoire and Canigou that 
have the most effect on the different orders of the two sets of estimated fractal 
dimensions. 

A clue to why this might be so is given by the fact that Galloway and Dumfries 
are both elongated rectangular DEMs. The rescaled range analysis algorithm works by 
spiralling through the DEM in a clockwise manner, first row followed by last column 
and so on. This means that the rescaled range is being considered for a profile which 
takes in only two directions. Certainly in the case of Dumfries, where the long axis of 
the DEM cuts across the valleys of the area at right angles, the rescaled range analysis is 
being dominated by that direction. As a result the fractal dimension estimated from this 
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method is actually very slightly higher than the fractal dimension estimated from the 
variogram of the area, which is more multi-directional. 

This raises the question, how much does this directional limitation of the 
rescaled range analysis method affect the estimated fractal dimensions of the other 
DEMs. Torridon is the DEM which has the largest difference in fractal dimension 
estimates between the variogram and rescaled range methods. I f its perspective block 
diagram is looked at (fig. 6.1) the track of the spiral can be visualized. 

It starts in the northwest corner progressing along the relatively low lying 
northern edge of the DEM. It then follows the eastern edge encountering its first major 
feature of terrain at the southeastern corner and then encountering another relatively 
important feature in the southwest corner before returning towards its starting point If 
this track is mentally continued it will follow along the length of the major ridges rather 
than across them, except in the cases of the ridge at the centre of the DEM and the ridge 
running northwest-southeast on the western side of the DEM. The maximum and 
minimum deviation from the mean of the increments in the calculation of the rescaled 
range for each segment will therefore not take into consideration the steepest sides of 
most of the ridges in the DEM, which are taken into consideration by the variogram 
algorithm. The fractal dimension given by the rescaled range analysis program is 
therefore lower than that given by the variogram method. 

The much smaller differences in fractal dimensions yielded by the two methods 
when considering surfaces such as Le Puy and Devoluy are also understandable when 
this problem of direction is taken into consideration. In the case of Le Puy the main 
landscape features appear reasonably symmetrical in a central belt across the DEM and 
therefore affect the measurements in each method in rather similar ways. For Devoluy 
the dominant landform is in the centre of the DEM, while other smaller features are 
distributed from perpendicular to parallel to the path of the profile used in the rescaled 
range analysis algorithm. This means that segments along the profile sample most of the 
gradients of slope present in the surface, as does the variogram program. 

From this evidence, the variogram method appears preferable to the rescaled 
range method. The variogram method is a more two dimensional method and can treat 
the surfaces without directional bias. 

6.5 Results of non-directional long distance variogram analysis. 

The variograms for longer distance ranges fall into three basic categories: those 
that produce straight plots; those that are often convex but sometimes nearly straight up 
to a maximum variance; and those that have a series of maxima and minima. 
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The immediate explanation that comes to mind for the surfaces which produce 
straight variograms is that they are completely self-similar. However in Chapter 5 the 
variograms for the simulated fractal surfaces showed that many fractal surfaces may 
produce a variogram with a maximum value of variance. This is due to the fact that the 
simulated surfaces are of limited area and as a result must have a local relief value. The 
reason why no maximum is reached in the variograms of these surfaces must lie in the 
shape of the surfaces themselves. 

It was seen in Chapter 5 that a maximum variance can be reached if the highest 
feature of the surface is somewhere in the middle of the DEM while the lowest features 
are around the edges of the surface or vice versa. This is generally not the case for the 
landsurfaces yielding variograms that do not reach a turning point. In this study they are 
Uinta, Glaisdale, Booro Borotou, Netherhearth Sike and Wheeldale which all have 
simple slopes. 

The latter three surfaces are all parts of, or entire, drainage basins. Glaisdale and 
Wheeldale are both square DEMs with the same number of rows and columns. The first 
row of each matrix is the upstream part of the basin while the last row is further 
downstream. The actual thalweg lines run roughly parallel to the column direction. The 
longest distance sampled to produce the variograms (Appendix 3) is about the width of 
the DEM. This means that the variance for that distance includes diagonal distances 
from the lowest part of the matrix to the highest part of the matrix and as a result the 
variance does not fall off. 

The Booro Borotou and Netherhearth Sike catchments are orientated diagonally 
across the matrix containing them. Again the largest possible variance therefore 
corresponds to the largest possible distances and although averaging of variance 
measurements in different directions is being performed, the orientation of all of these 
catchments is such that variance continues to increase with distance over the whole 
variogram. 

Uinta's continually increasing variance is less easily explained. However it can 
still be seen from figure 6.8 that there is substantial difference in altitude between 
diagonally opposite comers, leading to an upward trend to the north. 

All of these surfaces are unusual cases of the kind of surfaces whose variograms 
eventually show a decrease in variance with increasing distance. The surfaces in this 
study which reach a single maximum variance are Wind River, St. Paul, Gara, Reunion, 
Nupur, Galloway, Dumfries, Le Puy and Devoluy. 

The distance at which maximum variance occurs can be easily explained in the 
cases of Le Puy and Devoluy. In these examples the highest ground is in the centre of 
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the matrices, the lower ground towards the corners. As a result, at a distance of about 
half the width of these square matrices, the variance of each reaches a maximum value. 

For Nupur, Galloway and Dumfries the topography appears slightly more 
complicated. However the principle of a maximum relief being present in an area which 
leads to a maximum variance value in its variogram remains the same. The east side of 
the Dumfries DEM is at all points lower than the west side and the maximum altitude 
attained in this DEM is at about the centre of the west side. As a result the maximum 
variance recorded on its variogram is reached before the maximum distance over which 
variance is sampled. 

Galloway's highest point is in the northwest while its lowest point is clearly in 
the valley in the extreme south. The relief of the area in geomorphometric terms (Mark, 
1975) would therefore be measured between these two points which are separated by a 
distance nearing the maximum distance at which variance has been sampled. The 
maximum variance on the variogram is reached at a distance of 7km, not however at the 
length which separates the minimum and maximum altitudes. The reason that the 
maximum variance is at a somewhat shorter distance than the distance responsible for 
the relief of the surface is the averaging of the variance measurements for each distance. 
The most rapid changes over distance in elevation are in the valleys of the southern part 
of the matrix. Much of the rest of the surface is at the level reached at the top of these 
steep slopes. Averaging of the variances measured from both areas brings the distance 
at which maximum variance occurs down, away from the distance at which the relief is 
measured. 

Nupur is the most complicated of all of these surfaces to explain. Some effect of 
the averaging of variance for each distance must again be responsible for a maximum 
value of variance being attained within the maximum distance sampled. However the 
general appearance of the Nupur surface, with several cirques and troughs, would have 
suggested that it might display the third kind of variogram behaviour which must be 
discussed here. 

Ten of the surfaces studied have more than one local maxima and minima 
displayed in their variograms. These are Devon, Mont Aigoual, Torridon, Montoire, 
Thvera, Aughwick, Allenville, Belleville, Le Porge and Canigou. Of these surfaces the 
relationship shown in the variogram for Thvera reveals the most about the landsurface 
from which it is derived. The DEM of Thvera covers an area of 104km2. 

Its variogram has a local maximum at a distance of about 2800m (logio is 3.45). 
Variance then decreases to a minimum where points are separated by a distance of 
5600m (logio is 3.74). The next maximum is at 8400m (logio is 3.92) and another 
minimum may be present at 11200m (logio is 4.05). The obvious explanation of these 
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maxima and minima is periodicity in the spacing between valleys and ridges. In the case 
of Thvera, 2.8km would be somewhere near an average value for the distance between 
thalweg and interfluve. 

Torridon (Appendix 3)also produces this sort of effect with an average value for 
distance between thalweg and interfluve of about 1.7km. The fact that these apparent 
periodicities are not true mathematical periods but just characteristic scales of valley 
sizes in these areas is borne out by the lack of any definite period in the minima and 
maxima of the other variograms with more than one maximum. It must be noted that the 
characteristic scales are dominant enough to show through the isotropic nature of the 
sampling carried out to produce these variograms. Visually, Aughwick would be the 
surface most expected to yield some periodicity in relation to its ridge and valley 
topography. However it can be seen from figure 6.18 that the valleys, although parallel 
to one another, are of different widths. Likewise, for Montoire, Devon and Mont 
Aigoual, the irregular spacing of maxima and minima must be the result of the 
dominant length of slope in the DEM being revealed by the averaging process of 
calculating variance over different distances. 

The first maximum in the variogram of Le Porge occurs at 280m (logio is 2.45). 
This is likely to correspond to the slopes of the coastal dunes of the area. A minimum is 
found at 630m (logio is 2.8). The variogram then displays another maximum and 
minimum at distances beyond 4km. 

In the case of some of the variograms a widening of scatter at their distal ends 
obscures any quantifiable interpretation of their structure. Intuitively some widening of 
scatter is likely to occur with most surfaces. The concept of having a maximum 
variance, related to the concept of relief, at somewhere beyond half the width of the 
DEM points to the fact that there will often be a much wider range of possible 
differences in altitude between points separated by greater distances. For shorter 
distances the sampled variances are likely to be within a much narrower range, leading 
to less scatter at the proximal end of the plot. If there are characteristic scale ranges for 
features in the landsurfaces there might well be wider scatter where the scale ranges are 
larger than the characteristic scale ranges. This could be the reason for the widening of 
scatter in the variograms calculated from the DEMs of Appleby, Galloway, Dumfries, 
Canigou, Netherhearth Sike, and Wheeldale. 

Two of the surfaces already mentioned, Mont Aigoual and Montoire, as well as 
Alarta and Keary, may show signs of a step or kink in their variograms. It is these 
surfaces which may be of most interest in comparison with some of the results obtained 
by other workers finding two different values of D for different distance ranges for one 
surface (Mark and Aronson, 1984; Roy et al., 1987; Culling and Datko, 1986). 
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Mark and Aronson's (1984) analysis of 17 areas produced only one variogram 
which seemed visually self-similar, Shadow Mountain, Colorado. One of the remaining 
areas, Aughwick, seemed to have no straight segment. Mark and Aronson's scatterplot 
of Aughwick (fig. 6.30a) is not dissimilar to the scatterplot produced by FASTFRAC 
(Appendix 3). They speculated that the Aughwick plot demonstrates the periodicity of 
fold mountains with troughs of similar height at 3.5,7, and 11km, corresponding to lags 
of one, two and three ridges or valleys. The sampling pattern and scatter of the 
FASTFRAC variogram of Aughwick do not allow such estimation of the period of 
these valley spacings. However Mark and Aronson's findings clearly echo the results in 
this study of surfaces such as Thvera. The major difference in these two studies is that 
Aughwick was the only surface which they interpreted as having no 'straight' segment. 
In this study least-squares regression has been performed on the variance values for 
shorter distances and an evaluation of its fractal dimension has been made on the basis 
of this part of the relationship. As has been explained previously, Aughwick produces a 
reasonably typical variogram. Six other surfaces produce variograms with several 
maxima and minima. This has been explained by the fact that there are several 
dominating features in the surface instead of a single feature which may produce a 
single maximum or in the case of Glaisdale a variogram reaching no maximum. 

This discussion of the different interpretations in this study compared with Mark 
and Aronson's work may cast some light on why this study has only produced four 
variograms which show any evidence of a step between straight segments. Mark and 
Aronson suggested that fifteen of their sample areas produced straight segments 
divided by distinct breaks of slope in the variograms. Roy et al. (1987), in their study of 
part of the White Mountains at the border of Quebec, Maine and New Hampshire, also 
produced a variogram with what they perceived as a distinct break of slope (fig 6.30b). 
However it could be seen as a variogram which is approaching a maximum variance. 

Montoire is probably the variogram in this study which is most similar to those 
described by Mark and Aronson. The break of slope in the variogram at about 1km 
(logio = 3 in Appendix 3) probably represents the length of the steep slopes of the 
incised meanders. After this the slope of the variogram is more gentle up to about 
3.16km (logio is 3.5). If the slope of this segment of the variogram was used to 
calculate a fractal dimension it would give a much higher value for D than the previous 
segment. Altitude differences at this scale are alternating between small negative 
differences and small positive differences. This alternation is what is detected in a true 
fractal surface (as in Chapter 5) at all scales, if the surface has a fractal dimension 
higher than 2.5. However, this gentle segment is followed by another steeper section in 
the variogram caused by sampling between points positioned in different meanders but 
at quite different positions on their respective slopes. 
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Figure 6.30 Variogram produced by: (a) Mark and Aronson (1984) for DEMs in the 
Ridge and Valley Province, Pennsylvania and by : (b) Roy et al. (1987) 
for Moose Bog, Quebec/New England border. 
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In fact the step in the variogram is therefore caused by the same process which 
causes the apparent periodicity in DEMs such as Thvera. The effect on the variance 
caused by the slopes of the meanders has not been strong enough in the averaging of 
variances at those distances to produce a local maximum and have only produced what 
amounts to a kink in the variogram. 

In the cases of the Mont Aigoual region and the Keary and Nosebag basins, 
there are no features dominant enough in their effect on the average variance for certain 
distances to produce maxima and minima. As a result the trend in the variogram passes 
convexly through the scale range where this effect is happening, and concavely into the 
scale range where the sampling of different positions within slopes in different valleys 
is again occurring. 

Alarta produces a very different kind of step. In its variogram there is a gentle 
segment to start with followed by a much steeper segment at about 1.58km Gogio is 
3.2). Over the shorter scale range it may be more closely related to the generated fractal 
surfaces with D greater than 2.5. The surface is very rough at this scale giving some 
degree of antipersistence. However, more structure comes into the surfaces with a more 
regular drainage pattern after 1.58km. It is still irregular enough to give no sign of an 
average valley spacing. Perhaps in this variogram there are two different fractal zones. 

It would seem from the discussion so far that the fractal model breaks down 
over a very limited scale range in most cases. Valleys in each area where maxima and 
minima or breaks in slope are present in the variograms seem to have a characteristic 
scale range of slope lengths. However, the reasons for the existence of some type of 
linear relationship in many of the variograms (particularly those such as Uinta and 
Booro Borotou where the variograms are linear over all distance; Mont Aigoual and 
Keary where there are only slight kinks in the variogram; and of course Alarta where 
there are two very straight segments) must be investigated further by looking at the 
possible influences of the surfaces being anisotropic and also the effect of subdividing 
the areas. 

6.6 Results for directional variograms. 

The analysis performed to ascertain the effect of anisotropic properties of real 
landsurfaces was the same process of analysis used in Chapter 5 to study the possibility 
of simulated fractal surfaces being anisotropic. The only difference which immediately 
arises is that the directions being considered have a geographical context. 

First, separate variograms for a small range of distances (10) are calculated for 
the east-west, north-south, northwest- southeast and northeast-southwest directions. 
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These are of course the directions which are given by the rows, columns and diagonals 
of a square matrix. Obviously if the DEM is rectangular the two diagonal directions will 
not be northwest-southeast and northeast-southwest but for ease of discussion the 
terminology mentioned above will be used. Secondly, the same process is carried out to 
produce variograms of these directions including a larger scale range. 

Table 6.3 summarises the least-squares regression results of the small scale 
variograms. In general all the variograms are linear or near linear, with slight convexity, 
similar to the non-directional variograms for the surfaces. The most interesting feature 
of Table 6.3 is the variation in fractal dimension with direction for each landsurface 
studied. Variations of 0.1 between D values for different directions are common, for 
example Keary, Thvera, and Wheeldale. This immediately suggests that some of the 
surfaces are clearly anisotropic as far as variance is concerned. 

A further hypothesis would be that the fractal dimension obtained when treating 
the surface as isotropic (Table 6.2) is an average value taking into account the variations 
in topography among different directions. The mean fractal dimension for each 
landsurface calculated from the D values of each direction, together with the difference 
between it and the fractal dimension from Table 6.2, is given in Table 6.3. It can be 
seen from these that, although there exist quite major differences between the fractal 
dimensions for individual directions, the average value is indeed very close to the value 
obtained when treating the surface as a whole. The absolute average difference is only 
0.027, with all but one of the landsurfaces, Canigou, yielding a difference no greater 
than 0.05. 

It must be noted that all but six of the landsurfaces' mean fractal dimensions 
calculated from the four different directions are slightly less than the fractal dimensions 
from Table 6.2. This is probably due to the effect of using the variance calculated in 
only four directions as opposed to the much more exhaustive direction sampling 
performed when the surface is treated as a whole. 

As discussed in sections 6.3 and 6.5, various structures in the variograms can 
lead to convexity in the relationship between variance and distance and this in turn 
affects the values of D obtained from different portions of a slightly convex variogram. 

As a result this section will deal with the differences in D for different 
directions, at the same time as considering the variograms produced using the longer 
scale ranges so that any reference to a fractal dimension can be qualified by any 
structures found in the more complex part of the variogram. 
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Al l the types of structure which were discussed for the non-directional 
variograms can be detected in the directional variograms. However, for a particular 
landsurface the variograms for different directions may show up different types of 
structure. This leads to a classification into three groups, mainly to give order to the 
discussion, based on the types of structures found in the four variograms of each 
landsurface. There are those surfaces which produce variograms that either are slightly 
convex or reach one maximum. Included in this group are DEMs such as, Wind, 
Galloway, and Wheeldale. A second group includes , for example, Torridon, Nupur, 
Thvera, Canigou, Devoluy, and Aughwick. These surfaces produce four variograms all 
showing at least one maximum and minimum. The final group includes all those 
surfaces which produce variograms with a mixture of steps, maxima and minima. This 
mixture of features can occur either within one variogram or between the variograms 
for different directions. Examples of DEMs which fall into this group are: Aigoual, 
Alarta, Dumfries, Keary, Appleby, Montoire, Le Puy, and Uinta. 

Looking in more detail at the first group, there are two prominent effects, for 
example in the variograms for Wind River. The variogram for the northwest-southeast 
direction reaches a maximum value followed by a decrease in variance, while all three 
other directions do not. The variogram for the northeast-southwest direction is much 
more linear than the others. This is a result of the dominant feature in the surface being 
elongated in a northeast-southwest direction. Therefore maximum variance is reached 
first by the variogram for the direction perpendicular to it while the direction parallel to 
the elongation produces a more linear variogram as no maximum variance is being 
approached. The east-west and north-south variograms sample the dominant landscape 
feature obliquely, thus producing more convex variograms which do not quite reach a 
maximum. 

Galloway's four variograms each show different amounts of convexity. The 
most convex is the northeast-southwest variogram. This is the direction which is most 
closely aligned along the aspect of the slopes with the steepest gradients. In the case of 
Wheeldale, the lowest fractal dimension is produced by the variogram in the east-west 
direction. The highest in the north-south direction. It can be seen from the perspective 
block diagram of Wheeldale (fig. 6.23) that two small tributaries enter the main valley, 
one from the east the other from the west. The north-south variogram reflects the 
rougher profiles which are encountered when sampling in the north-south direction, 
caused by the tributary channels. Sampling in the east-west direction does not encounter 
the gradients associated with these tributaries. 

The second group of surfaces is one level of complexity up from the first group. 
In this group maxima and minima occur in different numbers and at different points 
within the variograms of an area depending on direction sampled. For instance, in the 



Chapter 6: The Fractal Nature of Real Landsurfaces 148 

case of Torridon there are three ridges orientated roughly north-south. On the east-west 
variogram for Torridon there are three maxima confirming the effect of these ridges. 
The other directions sampled only produce one or two maxima depending on whether 
they cut across parts of these ridges as well as the east-west orientated ridges of Beinn 
Eighe and Beinn Alligin. Nupur produces four variograms revealing structure similar to 
Torridon. Valley or ridge spacing is slightly different in each direction and the effect of 
certain valleys or ridges are missed completely by sampling variance parallel to their 
contours, allowing one variogram to only have one maximum and one minimum while 
another variogram has three maxima and two minima. 

In the case of Thvera, where the variogram which represents the surface with no 
preferred directional bias gives maxima and minima spaced very regularly, the 
directional variograms show maxima and minima at different positions and spaced less 
regularly. The northwest-southeast variogram produces the most regular spacing 
between maxima and minima. Canigou also follows the same kind of pattern as 
displayed by Thvera and Nupur, valley spacing being detected by each variogram but 
because of direction being sampled, valley spacings are all slightly different. 

The behaviour of the variograms produced from Devoluy are slightly less 
complicated and the structure in each direction can be visually related back to the 
perspective block diagram in figure 6.9. The clearest maximum and minimum are on 
the east-west variogram. In it, the high ground in the centre of the matrix is detected 
along with the river valley on the east side of the DEM. In all the other directions the 
variograms only reach a clear maximum. A clear minimum followed by another 
increase in variance cannot be clearly detected. 

Finally for this group, Aughwick shows obvious anisotropic effects. Al l 
directions except northeast-southwest show signs of maxima and minima in their 
variograms representing the ridge and valley topography. However, northeast-southwest 
is parallel to the ridges and valleys and so the variogram for this direction is straight to 
about 6.3km before reaching a maximum variance. 

The third group for discussion includes all those landsurfaces that produce 
variograms with kinks and turning points. Dumfries, which produced a non-directional 
variogram which was convex up to a maximum variance, produces two directional 
variograms with kinks. Northeast-southwest and north-south both have a convex to 
concave to convex kink. The variogram for the east-west direction is convex, while the 
northwest-southeast variogram is almost straight up to a slightly convex distal end. The 
north-south and northeast-southwest direction obviously cut across the grain of the 
surface slightly more than the other two directions giving higher fractal dimensions and 
the step around about the length of the steeper slopes of the valleys. The east-west and 
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northwest-southeast directions are orientated more closely along the grain and as a 
result give variograms approaching a single maximum value and showing no other 
structure. 

The Mont Aigoual area is much larger and more complicated than the Dumfries 
area. All of the directional variograms show a kink or break of slope. However, the 
most insignificant break of slope can be seen on the north-south variogram. The 
northeast-southwest variogram also shows a very weak break of slope. The strongest 
kink is found on the east-west variogram at about 1260m (logio is 3.1). The northwest-
southeast variogram also shows this sort of kink but it is situated nearer 630m (logio is 
2.8). Although the perspective block diagram in figure 6.11 shows a seemingly rough 
surface there does seem to be a north-south trend to many of the valleys. It may be the 
effect of some of the smaller valleys that trend in this direction which produces the 
stronger kink in the east-west and northwest-southeast variograms. The slight kinks in 
the other two variograms do suggest that there must be some smaller valleys 
perpendicular to the direction of sampling. 

Alarta produced a non-directional variogram which steepened after a break in 
slope, unlike any other variogram in the study. In the case of its directional variograms, 
all except one show a similar pattern. The break of slope is at about 1km in the east-
west and north-south variograms and at about 1585m (logio is 3.2) in the northeast-
southwest variogram. The variogram for the northwest-southeast direction is actually 
convex and reaches a maximum variance before it falls off at about 6310m (logio is 
3.8). In this direction two of the more clearly defined valleys seem to be crossed as well 
as the belt of higher ground running northeast-southwest between these two valleys. In 
the first three variograms mentioned it would seem that high frequency roughness is 
present in all these directions up to about 1km to 1.5km. Underneath this roughness the 
drainage pattern has more gentle trends which leads to a steepening of the variograms. 
Furthermore the high frequency roughness seems to be present in all directions except 
northeast-southwest. 

Keary's larger scale range directional variograms follow an apparently similar 
pattern to those of Alarta: two of them show a kink, while one is straight and the other 
shows signs of a maximum and a minimum. One of Keary's shorter scale variograms, 
the northwest-southeast variogram, shows a break of slope at about 790m (logio is 2.9). 
The direction perpendicular to this northeast-southwest looks almost completely 
straight. The remaining two variograms are slightly convex. The pattern in both the 
smaller and larger scale variograms is easily explained. The main valleys and ridges in 
the Keary DEM trends northeast-southwest. This leads to a linear variogram which 
reaches no maximum. Perpendicular to this, the northwest-southeast variogram shows 
up the ridge and valley spacing by producing a convex variogram with a break of slope 
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followed eventually by maxima and minima. The kinks in the variograms for the other 
two directions are produced by the averaging process, being only partially affected by 
the valley spacing. 

Appleby produces some of the most interesting directional variogram results. 
All of the larger distance variograms show some structure. The northeast-southwest 
variogram is convex until a maximum at 1410m (logio is 3.15), then a minimum at 
2510m (logio is 3.4) and finally another maximum at 3980m (logio is 3.6). This 
variogram samples across the major valleys in the DEM and also along the minor axes 
of the drumlins. The spacing of the maxima and minima in this variogram would 
suggest that the effect of the valleys dominate over the effect of the drumlins. The 
direction perpendicular to this, northwest-southeast, has a kink at 500m (logio is 2.7) 
and then another at 2510m (logio is 3.4). The first kink must surely be the effect on the 
variance of the drumlins' long axes which are orientated in this direction. The east-west 
variogram is slightly more difficult to interpret. It starts off showing a slightly convex 
relationship until between 500m and 790m (logio is 2.7 and logio is 2.9) where it seems 
to straighten out until about 1410m Gogio is 3.15) where there is a slight kink. The first 
kink in this variogram is related to the size and spacing of the drumlins, the second one 
is related to do with the underlying drainage pattern. The north-south variogram is 
simpler, it is convex until a local maxima at about 2240m (logio is 3.35) which must 
again be the effect of the spacing of the major valleys in the area. This surface's 
geomorphometry must be affected by its drainage pattern and its drumlins which makes 
it relatively easy to study with a view to looking at the size distribution of one particular 
landform. As a result this surface will be studied more closely in Chapter 8. 

In the case of Montoire, the northwest-southeast variogram almost reaches a 
plateau at 1260m (logio is 3.1), followed by rather confusing scatter beyond 5010m 
(logio is 3.7). This plateau is reached instead of a local maximum because only part of 
the incised meanders are orientated perpendicular to this direction. The north-south 
variogram is similar except that it reaches a maximum at 5620m (logio is 3.75). The 
northeast-southwest variogram reaches a maximum at 3980m (logio is 3.6). While the 
east-west variogram reaches a maximum at 5010m (logio is 3.7). 

Le Puy is another surface which shows clearly anisotropic variance. The north-
south variogram is convex until a maximum at 5010m (logio is 3.7). This variogram is 
produced by sampling across the central east-west belt of volcanic plugs. As a result the 
maximum is at half the width of the width of the matrix. The northwest-southeast 
variogram samples obliquely across this belt and thus produces a variogram with a 
maximum at about 6310m (logio is 3.8). The east-west and northwest-southeast 
variograms show a maximum and a minimum possibly related to the two channels 
through the belt of volcanic plugs. All the variograms would seem to show some sort of 
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kink at between 1km and 1260m (logio is 3 and logio is 3.1). This is probably related to 
the spacing of the plugs themselves. The averaging process of the sampling again leads 
to a slight kink, as opposed to a local maximum. 

Uinta produces two of the straightest variograms in the whole study. The north-
south and northwest-southeast variograms are very straight because they detect the 
northwest-southeast trend in altitude. The northeast-southwest variogram reaches a 
maximum at about 6310m (logio is 3.8). The east-west variogram has a kink at 3980m 
(logio is 3.6). Clearly the latter two variograms are produced by sampling across the 
ridges and valleys of the surface. The main valley runs nearly along the main northwest-
southeast diagonal of the DEM. The east-west sampling of this will, again as a result of 
averaging, produce a kink at a shorter distance than the maximum found in the 
variogram perpendicular to this valley. The other two directions would appear to be 
self-affine. Indeed for shorter scale ranges all the directions show the terrain to be self-
affine. 

From this discussion it would seem that the fractional Brownian model breaks 
down on the basis that all of the surfaces studied show some signs of anisotropy. 
However, some of the surfaces have produced quite linear directional variograms over a 
reasonable range of scales, suggesting that some profiles of terrain may well be 
considered as self affine. It now remains in this chapter to observe how fractal 
dimension and the concept of self-affinity hold when the areas represented by the 
DEMs are divided into subareas. 

6.7 Variogram results for the analysis of subareas. 

From the evidence studied so far, it would seem likely that the DEMs will yield 
variograms showing different structures and different fractal dimensions from subarea 
to subarea. In section 6.4 it was shown how a dominant feature in the centre of a DEM 
surrounded by lower or higher ground at the edges of the matrix can lead to a variogram 
with a maximum variance followed by decreasing variance with distance. The 
relationship may also become convex as it approaches the maximum variance. This 
behaviour will of course be expected in the subarea variograms as, for example, one 
subarea may be dominated by a central hill, even though the variogram for the whole 
area may have shown near periodic behaviour. Likewise it was also shown that a 
characteristic slope length for an area may show up as a series of maxima or minima on 
the variogram. The combinations of these structures found in the directional variograms 
also suggest that there may be some discrepancy between subarea results and whole 
area results. 
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Nevertheless all the DEMs were run through a program to divide them into nine 
near equally sized subarea DEMs. These-subareas were then run through FASTFRAC 
to obtain both 60 distance variograms and larger scale range variograms, as was 
explained in Chapter 4. 

The results for the 60 distance variograms are presented in Table 6.4. In it the 
fractal dimension, r 2 , and standard error values calculated from the least-squares 
regression of the 60 distance variograms for each of the subareas are given. Table 6.4 
gives the mean, the standard deviation and the range of the subarea fractal dimensions 
for each DEM, as well as the difference between the mean fractal dimension of the 
subareas and the fractal dimension of the surface as a whole. 

As can be seen from Table 6.4 some subareas have no information given for 
them. This is a result of the DEMs in question representing irregularly shaped areas 
which are padded out by missing data values to form matrices. I f there is a large 
percentage of missing values in a subarea it is obviously unfeasible to calculate a 
meaningful variogram. 

Perhaps the most dramatic results are the values for the ranges of subarea fractal 
dimensions. None is below 0.1. The smallest range, 0.119, is for the Mont Aigoual 
region. The highest is 0.612 for Galloway. This finding immediately opposes the 
concept of self-affinity and self-similarity. If a surface was self-affine, a subarea from 
that surface would be expected to yield the same fractal dimension as the whole surface. 
The standard deviation values merely agree with the range results. 

However to take Galloway as an extreme example is unjustifiable. If reference is 
made to the r 2 values for the subareas of Galloway it can be seen that two of the 
subareas have r 2 lower than 0.9. This is a pointer to the fact that the variograms for 
these subareas are confused by a wide scatter. If the range is recalculated, ignoring these 
two outliers, a value of 0.378 is obtained, which is of course still very high. 

Three other surfaces have r 2 values for subareas below 0.9. In the case of Wind, 
the variograms in question reach a maximum followed by a decrease in variance with 
distance. This is also the case for the Keary and Dumfries DEMs. When all of their 
summary statistics have been recalculated the surface showing the largest range of 
fractal dimensions yielded by its subarea variograms becomes Uinta, with a range of 
0.469. The revised statistics are given in Table 6.4. 
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Table 6.4 Variogram results for subareas of DEMs 

Torridon 
Keary 
Wind 
Nupur 
Thvera 
Dumfries 
Galloway 
Uinta 
Devoluy 
Canigou 
Aigoual 
Montoiie 
Puy 
St. Paul 
Booro 
Aughwick 
Belleville 
Allenville 
Nether 
Glaisdale 
Wheeldale 
Devon 
Gara 
Appleby 
Alarta 

D 
2.264 
2.327 
2.712 
2.429 
2.315 
2.283 
2.149 
2.183 
2.251 
2.151 
2.487 
2.295 
2.234 
2.582 
2.232 
2.207 
2.227 
2.131 

2.121 
2.077 
2.307 
2.151 
2.407 
2.504 

V9 
r 2 

0.986 
0.990 
0.615 
0.975 
0.984 
0.997 
0.998 
0.999 
0.988 
0.997 
0.977 
0.983 
0.985 
0.976 
0.985 
0.997 
0.995 
0.999 

SE 
0.0432 
0.0328 
0.1122 
0.0450 
0.0428 
0.0185 
0.0185 
0.0111 
0.0403 
0.0220 
0.0387 
0.0456 
0.0461 
0.0320 
0.0463 
0.0217 
0.0271 
0.0134 

0.983 0.0568 
0.996 0.0306 
0.992 0.0307 
0.997 0.0216 
0.993 0.0250 
0.997 0.0123 

D 
2.253 
2.566 
2.459 
2.435 
2.216 
2.238 
2.340 
2.122 
2.178 
2.221 
2.413 
2.265 
2.135 
2.270 
2.095 
2.247 
2.286 
2.151 
2.049 
2.164 
2.035 
2.508 
2.349 
2.387 
2.554 

2 / 9 

r 2 

0.997 
0.752 
0.962 
0.958 
0.966 
0.999 
0.994 
0.999 
0.995 
0.992 
0.984 
0.991 
0.991 
0.956 
0.978 
0.995 
0.998 
0.999 
0.995 
0.994 
0.975 
0.917 
0.980 
0.998 
0.993 

SE 
0.0194 
0.1226 
0.0532 
0.0586 
0.0727 
0.0093 
0.0250 
0.0112 
0.0288 
0.0342 
0.0366 
0.0339 
0.0395 
0.0766 
0.0671 
0.0264 
0.0161 
0.0103 
0.0319 
0.0324 
0.0762 
0.0724 
0.0460 
0.0174 
0.0188 

D 
1208 
1414 

1204 
1262 
2.734 
1723 
1.940 
2.131 
2.561 
2.496 
1439 
1232 
1235 
1163 
1231 
1088 
1069 
1055 
1045 
1049 
1399 
1184 
1414 
1522 

3 / 9 

r 2 SE 
0.999 0.0035 
0.774 0.1557 

0.992 
0.997 
0.527 
0.828 
0.984 
0.997 
0.903 
0.985 
0.946 
0.990 
0.998 
0.991 
0.998 
0.995 
0.999 
0.992 
0.997 
0.969 
0.973 
0.996 
0.986 
0.995 

0.0356 
0.0213 
0.1241 
0.0622 
0.0656 
0.0236 
0.1506 
0.0303 
0.0660 
0.0385 
0.0185 
0.0403 
0.0157 
0.0326 
0.0110 
0.0430 
0.0272 
0.0831 
0.0494 
0.0254 
0.0341 
0.0175 

4 / 9 5 / 9 

D r 2 SE D r 2 SE 
1311 0.976 0.0536 1275 0.983 0.0471 
1519 0.733 0.1426 1282 0.993 0.0372 
1547 0.975 0.0357 1661 0.814 0.0800 
1304 0.981 0.0475 1353 0.964 0.0620 
1288 0.992 0.0370 1214 0.995 0.0283 
1296 0.977 0.0535 1174 0.995 0.0284 
1361 0.961 0.0633 1287 0.986 0.0410 
1.721 0.942 0.1570 1.753 0.961 0.1244 
1170 0.996 0.0266 1184 0.992 0.0351 
1135 0.996 0.0269 1159 0.999 0.0149 
1377 0.986 0.0363 1446 0.979 0.4000 
1412 0.952 0.0646 1294 0.987 0.0398 
1099 0.998 0.0208 1221 0.987 0.0446 
1328 0.967 0.0614 
1123 0.996 0.0264 1143 0.997 0.0213 
1400 0.992 0.0260 1186 0.988 0.0441 
1113 1.000 0.0081 1108 0.996 0.0288 
1176 0.998 0.0170 1131 1.000 0.0087 
1161 0.991 0.0384 1159 0.999 0.0076 
1448 0.955 0.0900 1083 0.999 0.0152 
1271 0.987 0.0416 1045 0.921 0.1374 
1448 0.982 0.0363 1545 0.957 0.0477 
1391 0.944 0.0732 1412 0.968 0.0523 
1379 0.995 0.0212 1420 0.986 0.0341 
1578 0.990 0.0207 1492 0.995 0.0179 

Table 6.4 continued 

Torridon 
Keary 
Wind 
Nupur 
Thvera 
Dumfries 
Galloway 
Uinta 
Devoluy 
Canigou 
Aigoual 
Montoire 
Puy 
St. Paul 
Booro 
Aughwick 
Belleville 
All en ville 
Nether 
Glaisdale 
Wheeldale 
Devon 
Gara 
Appleby 
Alarta 

D 
2.176 
2.377 
2.433 
2.256 
2.276 
2.724 
2.527 
1.893 
2.106 
2.099 
2.435 
2.304 
2.179 
2.460 
2.099 
2.221 
2.265 
2.405 
2.083 
2.075 
2.038 
2.423 
2.386 
2.448 
2.606 

6 / 9 

r 2 

0.993 
0.978 
0.812 
0.993 
0.989 
0.830 
0.932 
0.979 
0.999 
1.000 
0.982 
0.982 
0.995 
0.962 
0.993 
0.999 
0.989 
0.988 
0.991 
0.981 
0.983 
0.986 
0.967 
0.985 
0.986 

SE 
0.0339 
0.0462 
a 1346 
0.0312 
0.0376 
0.0615 
0.0631 
0.0801 
0.0136 
0.0086 
0.0374 
0.0459 
0.0294 
0.0526 
0.0360 
0.0123 
0.0383 
0.0319 
0.0455 
0.0631 
0.0629 
0.0334 
0.0561 
0.0332 
0.0230 

7/9 
D r 2 SE 

2.399 0.994 0.0234 
2.672 0.709 0.1O35 

2344 
2.283 
2.425 
2324 
2.190 
2.186 
2.141 
1413 
2.123 
2.202 
2.329 
2.073 
2.110 
2.233 
2.126 
2.207 
2.161 
2.028 
2.449 

2.348 
2.668 

0.966 
0.993 
0.957 
0.985 
0.999 
0.995 
0.998 
0.983 
0.997 
0.995 
0.988 
0.999 
1.000 
0.994 
0.999 
0.999 
0.995 
0.994 
0.984 

0.980 
0.974 

0.0612 
0.0230 
0.0594 
0.0399 
0.0125 
0.0275 
0.0183 
0.0379 
0.0254 
0.0275 
0.0369 
0.0141 
0.0092 
0.0293 
0.0137 
0.0128 
0.0304 
0.0367 
0.0351 

0.0459 
0.0265 

8/9 »/9 
D r 2 SE D ? SE 

1394 0.989 0.0309 1458 0.981 0.0376 
1494 0.949 0.0576 1394 0.988 0.0328 
1414 0.837 0.1273 1432 0.973 0.0468 
1245 0.986 0.0444 1456 0.939 0.0685 
1220 0.992 0.0347 1166 0.999 0.0160 
1255 0.998 0.0141 1649 0.818 0.0815 
1274 0.977 0.0551 1761 0.613 0.0935 
1127 0.999 0.0118 1176 0.994 0.0323 
1082 0.989 0.0486 1180 0.995 0.0292 
1166 0.997 0.0233 1129 0.998 0.0205 
1484 0.975 0.0403 1494 0.986 0.0296 
1266 0.991 0.0353 1258 0.993 0.0304 
1142 0.996 0.0268 1129 0.998 0.0178 

1075 0.984 0.0582 1.962 0.988 0.0561 
1116 0.999 0.0143 1245 0.998 0.0146 
1293 0.998 0.0156 1291 0.995 0.0245 
1128 0.999 0.0100 1200 0.999 0.0134 
1075 0.988 0.0505 
1082 0.999 0.0091 1088 0.996 0.0271 
1135 0.995 0.0299 1139 0.995 0.0158 
1587 0.928 0.0566 1494 0.969 0.0443 
1168 0.990 0.0408 1341 0.975 0.0523 
1511 0.939 0.0613 1463 0.963 0.0521 
1609 0.989 0.0203 1656 0.975 0.0272 

D D 0 
D - D u Range 

1304 0.089 -0.064 0.282 
1449 0.117 0.080 0.390 
1523 0.112 -0.053 0.298 
1336 0.086 0.025 0.252 
1249 0.045 -0.011 0.149 
1419 0.210 0.146 0.560 
1416 0.197 0.110 0.612 
1012 0.178 -0.147 0.469 
1163 0.047 0.020 0.169 
1196 0.141 0.050 0.462 
1449 0.041 0.020 0.119 
1295 0.086 0.014 0.316 
1175 0.047 0.021 0.135 
1367 0.130 0.110 0.350 
1107 0.074 -0.029 0.159 
1218 0.080 0.033 0.290 
1212 0.085 0.032 0.205 
2.169 0.096 0.004 0.336 
1113 0.057 0.001 0.158 
1141 0.115 -0.002 0.403 
2.091 0.075 -0.004 0.243 
1494 0.790 0.045 0.280 
1298 0.110 -0.056 0.261 
1420 0.049 -0.023 0.163 
2.577 0.060 -0.017 0.176 
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As in the case of the fractal dimensions of the directional variograms, the fractal 
dimensions of the subareas generally have a mean value close to that of the fractal 
dimension of the surface when it is investigated as a whole. The average difference 
between the mean fractal dimension of the subarea for a DEM and the fractal dimension 
of the DEM as a whole is 0.031. 

The separate longer-scale variograms show the whole range of structures 
described in the earlier sections of this chapter. Rather than describing each of the 243 
possible subareas' larger-scale variograms in detail only a selection of DEMs will be 
discussed in depth here. It would seem sensible to discuss the DEM which gives the 
most variation in subarea fractal dimensions, along with the DEM with the least 
variation and, also another surface from somewhere in the middle of this range. This 
means that the surfaces chosen on the basis of range of subarea fractal dimension are 
Uinta,Nupur, and Mont Aigoual. 

However, along with these it would seem sensible to discuss some of the 
surfaces that have been most interesting in the earlier sections of this chapter: Alarta 
being perhaps the closest to a real fractal surface studied; Wheeldale, as it is one of the 
smoothest surfaces in the study; Aughwick, because of its link to the previous work 
performed by Mark and Aronson (1984). 

Looking first at the results for Uinta it can be seen immediately that something 
peculiar is happening as far as the fractal dimensions are concerned. The third, fourth, 
fifth and sixth subareas produce 60 distance variograms which give fractal dimensions 
of below 2, the Euclidean dimension of a plane. For the remaining subareas the order of 
decreasing roughness, according to their estimated fractal dimensions, is subarea 7 
followed by 1,9,8 and 2. Although all the variograms that yield D lower than 2.0 have r 2 

values better than 0.9, they do have wide scatter and have higher standard errors than 
most other regressions so far (0.157 in the case of subarea 4), which must be enough to 
throw the estimates of D below 2. 

A better reflection of what is producing this order of fractal dimensions is 
obtained by referring to the longer scale range variograms. The first subarea is in the 
northwest corner of the DEM. In its variogram (Appendix 3) the general trend is very 
straight. There is however a widening of scatter and signs of a maximum at 1990m 
(logio is 3.3). The value of D, 2.183, is quite believable for this subarea. The second 
subarea produces a somewhat similar variogram. The scatter widens at about 1km 
(logio is 3) after which there are possibly signs of a kink at about 2510m (logio is 3.4). 
This subarea certainly looks smoother than the first subarea and has a correspondingly 
lower fractal dimension. 
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It is with the third subarea that confusion is met. The cloud of scatter does 
follow a very linear trend; however its distribution must be such that it yields the 
spurious fractal dimension of 1.940 . The fourth, fifth and sixth subareas all produce 
this wide scatter. The seventh and eighth subareas give reasonable fractal dimensions, 
and subarea nine, although possessing a wide scatter, is linear throughout and gives a 
sensible fractal dimension. 

In the case of Nupur none of the fractal dimensions is below 2.0. It would be 
very difficult to put the subareas visually into order of fractal dimension or roughness. 
However there are still quite large differences in fractal dimension between certain 
subareas and it would be expected that this would be visible in the subarea perspective 
block diagrams of Nupur given in Figure 6.31. If the subarea variogram r 2 values are 
put in order, from lowest to highest, the order is identical to the subareas ordered by 
fractal dimension, highest to lowest. The differences in subarea fractal dimension are 
therefore partly due to the curvature of the variograms. 

The subareas of the Aigoual DEM have a range of 0.119. The supposedly 
roughest subarea according to estimated fractal dimension is in the northeastern corner 
while the smoothest subarea is the west-central portion of the DEM. The reason for this 
is not visually obvious. It suggests that in certain situations a 0.1 difference in fractal 
dimension between two surfaces may not be easily detected visually. 

The order of D for Alarta's subareas is partially related to the convexity of the 
variograms but may also be a true effect of roughness. Subareas 7 and 9 have the lowest 
r 2 values, clearly the most convex variograms, and have the highest fractal dimensions. 
After this the order might seem sensible, each of the other subareas showing more of the 
main drainage channels which are much smoother than the other features of the area. 

The subarea variograms for longer distances looked at in conjunction with the 
shorter range variograms give added insight. For subareas 7 and 9 the variograms are 
convex up to 1260m (logio is 3.1) and 1km (logio is 3.0) respectively, then there are 
kinks at which the variograms become concave and steepen. In the other cases most of 
the variograms are straight or slightly concave before they become steeper. The 
variogram for the first subarea shows the best formed structure. The short distance part 
of the variogram is quite straight, then convexity is reached at about 1260m (logio is 
3.1) until the variogram steepens again at about 1990m (logio is 3.3). Al l of these 
structures seem to detect some change in the way the landsurfaces' variances behave at 
around about 1km to 1.5km, probably the average slope length of the area. This 
corresponds to what was discovered earlier in the case of its overall variogram and its 
directional variograms. 
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Figure 6.31 (continued) Nupur subareas 7-9 
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The order of fractal dimensions for Wheeldale can, to a certain degree, be 
judged visually from its perspective block diagram (fig. 6.23). Certainly the roughest 
three ninths can be picked out. They are the western central subarea, the southeastern 
corner and the south central subarea. After this it becomes more difficult; however all 
the dimensions estimated from these remaining subareas fall into a range of 0.049. In 
the case of this high resolution surface it would seem that the fractal model can still 
break down at these smaller scales. 

Aughwick produces the most easily interpretable results of all the DEMs 
discussed so far. The order of the subareas according to their fractal dimensions is 
visually very plausible. Subarea 4 contains two ridges which seem to be disturbed by 
faulting across them; it is the subarea with the highest value of D. Likewise the next 
highest values of D are found for subareas 2 and 9 which seem to contain less regular 
structure than the subareas dominated by one ridge and its slopes such as subareas 5,8 
and 7. It is interesting to note that not all the larger distance subarea variograms produce 
similar patterns to those found in the overall variogram result of Mark and Aronson 
(1984). Subarea 3 would appear to have a break of slope at about 1260m (logio is 3.1). 
Subarea 4 has a kink starting at 630m (logio is 2.8) and subarea 9 has a less obvious 
kink at the same distance. These variograms must be detecting a large area of slopes 
shorter than the slopes of the major ridges. 

6.8 Conclusions 

This chapter has used two methods to investigate the concepts of self-affinity 
and self-similarity when applied to the form of real landsurfaces. In the process of doing 
so estimates of the fractal dimension for each of the surfaces have been calculated by 
both methods. Although the orders in which the two methods estimated fractal 
dimensions place the surfaces are believable i f D is thought of as an index of surface 
roughness, they are not in agreement with one another. The rescaled range analysis 
method gives, in general, a lower value of D than the variogram method as 
implemented in FASTFRAC. 

The disagreement between the results of the two methods begins to cast doubts 
on how close the real surfaces are to fractional Brownian surfaces. More serious doubt 
is raised by the curvature of most of the 60 distance variograms. When the analysis is 
extended to longer scale ranges this curvature gives way in many cases to a decrease in 
variance with distance or maxima, minima and steps in the variance indicative of 
characteristic slope lengths in the area. Therefore at a scale of around 2 to 3km the 
fractal model seems to break down in most cases. Perhaps surfaces such as Keary, Uinta 
and Alarta show behaviour which could be looked upon as fractal. 
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The break down of the fractal model as it is applied to real landsurfaces is 
apparent not only in the scale at which characteristic slope lengths may be encountered. 
It is also apparent in the fact that the roughness of real landsurfaces can be concentrated 
in certain directions, that is it is anisotropic. The variance of fractal Brownian surfaces 
is on the contrary isotropic. Indeed some of the difference between the rescaled range 
analysis results and the variogram results are due to the rescaled range analysis being 
limited to only two orientations (north-south and east-west) while the variogram for the 
surface as a whole takes into account all of the anisotropic distribution of roughness of 
the surfaces. 

The most simple of introductions to the concept of self-similarity describes the 
irregularity at one scale being similar to the irregularity of any part of the whole looked 
at in greater detail. The subarea analysis of the DEMs shows that in all cases the 
subareas may have quite different properties to those of the whole area and as a result 
the range of different fractal dimensions within subareas of a surface can be large. 

Overall, therefore, this chapter has drawn attention to the fact that, as expected 
from a geomorphological viewpoint, landsurfaces are in general not similar to fractional 
Brownian surfaces. It has not however proven that the concept of fractal dimension is of 
no use as a device to classify the roughness of a surface against some simulated 
standard. The next chapter will therefore investigate the relationship between fractal 
dimension and some other, more traditional geomorphometric indices. It will also try to 
ascertain some of the geomorphometric properties of simulated fractal surfaces. 
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Chapter 7: The Geomorphometry of Simulated and 
Real Landsurfaces. 

7.1 Introduction 

The previous chapter has shown that the real landsurfaces studied fail to fit the 
fractional Brownian model. They seldom show signs of self-similarity over a wide scale 
range. The areas covered by the DEMs generally comprise subareas of differing degrees 
of roughness, i f not of totally different topographies. Likewise the apparent orientation 
of features in the landsurfaces seems in many cases to be anisotropic. 

It would therefore seem sensible to find out what geomorphometric properties 
real landsurfaces may have that make the fractal model break down. This initially 
involves studying the general geomorphometry of the real landsurfaces. This may point 
at features of landsurface form which are immediately at odds with the fractal model. 
However, further to this study of the geomorphometry of real landsurfaces, it would 
also be of interest to look at the general geomorphometry of the simulated fractal 
landsurfaces discussed in Chapter 5. A study of this nature would allow comparison of 
the real and simulated landsurfaces to indicate what aspects of geomorphometry are not 
found in simulations of surfaces and to point to the less realistic features of fractal 
simulations of terrain. 

Although the fractal Brownian model was seen to break down in the 
investigation of the last chapter, the fractal dimension, D, calculated from the straight 
segments of the variograms, may still be of use as an additional geomorphometric 
variable providing information about surface roughness. As a result it is of interest to 
see how fractal dimension agrees with other more traditional indicators of roughness 
found in geomorphometry. 

This chapter will therefore first elaborate on the concepts of geomorphometry 
that were introduced in Chapter 1 and discuss how the various geomorphometric 
parameters to be used in this chapter are calculated. The results of these calculations for 
real surfaces will then be discussed, followed by a similar discussion of the 
geomorphometry of the simulated fractal surfaces. The relationships between the range 
of geomorphometric variables used and the fractal dimensions of the simulated 
landsurfaces will then be studied. Finally, the same range of variables will be correlated 
with the fractal dimensions of real landsurfaces. 
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7.2 Geomorphometry 

The analysis in this chapter will use tried and discussed techniques. These 
techniques will however be applied to new simulated surfaces as well as the more 
traditional DEMs. It is therefore necessary to give some discussion of the field of 
general geomorphometry (Evans, 1972) as well as the specific approach taken in this 
study. 

As discussed in Chapter 1, general geomorphometry studies the overall 
properties of landsurfaces rather than subjectively dividing the surface into a number of 
different landforms. Mark (1975) gives a review of most of the parameters which have 
been used in the attempts to characterise landsurfaces. Many of these date back to a 
period when computers were not used to store topographic surfaces in order to 
"perform detailed quantitative analysis of land surface form" (Mark, 1975, p. 165). 
Without the aid of computers, these parameters needed to be more easily calculated; 
notably the parameters of local relief, grain and texture can be readily obtained from 
contour maps. The concepts which they investigate have already been encountered 
when studying the variogram results. Since then, even personal computers have 
obtained the necessary capabilities to process representations of landsurfaces held as 
DEMs. As a result many workers have turned to calculating the first and second 
derivatives of altitude, certainly for mapping purposes but also to investigate, in more 
detail, some of the concepts mentioned above (Evans, 1980; Depraetere, 1989; O'Neill 
and Mark, 1987). 

The first derivative of altitude is slope. Slope, a vector quantity, can be resolved 
into two components. The vertical component is gradient, often incompletely termed by 
itself as 'slope'. Evans describes gradient as "the maximum rate of change of altitude 
(z) with horizontal displacement" (Evans, 1981, p.31). 

The second component of slope is the horizontal component and is mentioned in 
the literature using various terms such as exposure and aspect. Aspect is the term 
chosen here as it has fewer possible meanings in the context of the subject of this thesis. 
Aspect is the azimuth in which the gradient is found. 

The second derivative of altitude, curvature, also has two components. Again, 
one is the vertical component while the other is the horizontal component. The former is 
referred to by Evans (1979) as the profile convexity. This is the rate of change of 
gradient in the direction given by the aspect. The horizontal component of curvature is 
plan convexity. It is the rate of change of aspect, in other words, the curvature of a 
contour line. The term convexity is applied because it points to the fact that curvature 
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can be either positive or negative. Positive curvature is convexity, while negative 
curvature is concavity (Evans, 1981). 

In this study a program originally written for I.S.Evans (1979; 1980) by Margaret 
Young (1978) was readily available to calculate these attributes. The program uses a 
single pass of the entire DEM to calculate estimated altitude, gradient, profile 
convexity, plan convexity and aspect, along with descriptive and moment statistics for 
each of the first terrain attributes and vector statistics for aspect. In addition to these 
calculations, Pearson's product correlation coefficients between the first four attributes 
are calculated and details of extreme points and points with zero slope are recorded. 

Operations within the program are as follows. Only three rows of the DEM 
being processed are held at any time during the program's run. A pass is made along 
these three rows using a 3 by 3 window of points centred, in turn, on each point of the 
middle row, except obviously for the extreme right and left hand points. For each 
window a six parameter quadratic equation is fitted which allows estimated altitude and 
its four derivative attributes to be calculated. When one row of attributes has been 
calculated another row of the DEM is read in and the window passes along the next 
row, and so on. 

During the process the relevant summations are made to calculate the moment 
statistics both for the entire number of cases calculated and for the cases with non-zero 
gradient only. At the same time the vector measurements for aspect, the correlation 
coefficients, and the locations of the extreme values are calculated and recorded. 

Clearly the size of the grid mesh used in the DEM will have an effect on the 
gradient calculated (Evans, 1975; Evans, 1979). For example a cliff with a gradient of 
90 degrees will not be detected in the DEM and a lower gradient will be calculated 
between points on either side of the cliff separated by the grid mesh difference. Profile 
convexity will be similarly affected by grid mesh size. These sampling effects must be 
taken into account when looking at the resulting statistics. 

The moment statistics calculated for altitude and its derivatives can be very 
useful descriptors of the form and roughness of landsurfaces. Evans (1981) briefly 
suggests that the moment statistics, when used in conjunction with histograms of the 
attributes, are preferable to their quartile alternatives and also to any of the order 
statistics found in sedimentology. The most detailed description of the meaning of each 
statistic for each attribute, in terms of landscape, is given in Evans (1979). However a 
short summary will be provided here. 

Mean altitude merely gives a general description of the elevation of the area 
being studied. Standard deviation of altitude give an indication of the variability of 
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elevation in an area. It therefore gives similar information to the older notion of relief. 
While Mark (1975) prefers the range, Evans (1972) suggests that the standard deviation 
of altitude is more stable. Skewness of altitude indicates whether there is a tail of high 
altitudes (positive skew) or a tail of low altitudes (negative skew). Evans (1979) gives 
an area containing a plateau as an example of a landsurface which would yield high 
negative skew, while an area including an inselberg would produce high positive skew. 

Mean gradient indicates the roughness of the landsurface being considered. 
However, i f a particular value of mean gradient is to be understood fully it is useful to 
consider it in the context of the grid mesh size of the DEM, as well as in comparison 
with other surfaces of differing roughness. Standard deviation of gradient considered 
along with mean gradient gives a description of the distribution of slopes in the DEM 
area. I f the standard deviation is high it suggests contrasted topography such as 
inselbergs or a glaciated mountain area. Skewness of gradient for areas studied 
previously has varied from near zero to high positive skew. Steep, fluvially, dissected 
areas may be near Gaussian (Strahler, 1950; Evans, 1979,1981). In general steep slopes 
have a low frequency. 

The frequency distributions for profile convexity of an area can be quite 
informative about an area's topography. Mean profile convexity should be near zero as 
convexities are generally balanced by concavities (Evans, 1979), ridges are balanced by 
valleys. The standard deviation of profile convexity is an indicator of the 'magnitude' 
of the profile curvature within a surface (Evans, 1979). That is the higher the standard 
deviation the more extreme convexities and concavities present in the surface. This can, 
again, be seen as a measure of roughness in the surface. The skewness of profile 
convexity for a surface that was composed completely of sine waves would of course be 
zero. However many real landsurfaces tend to have a small number of very high 
convexities while the area taken up by concavities in a DEM is likely to be higher and 
less extreme than that for convexities. This leads to positive skew. Evans has found this 
in many DEMs of glaciated mountain areas, some of which are studied in this work 
(Evans, 1979; Evans, 1981). 

The moment statistics for plan convexity can be considered in a similar manner 
to the statistics for profile convexity. Means are again generally near zero. Standard 
deviation is a measure of the magnitude of plan curvature. Skewness should behave 
similarly to the skewness of profile convexity; however it is often quite sensitive to 
error in the original DEM (Evans, 1979) and may not give a good representation of 
what is happening in the actual landsurface as opposed to the model. 

These moment statistics would appear to be the most interesting when 
comparing fractal dimension considered as a geomorphometric index with the 
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derivatives of altitude. Evans (1984) in an extensive study of the interrelationships of 
the various statistics obtained from the derivatives of altitude produced by the program 
described above tried to answer this question: "at the most general level: what 
properties are important in distinguishing one part of the surface from another?" His 
aim was to provide understanding of a range of surface properties from which subsets 
could be selected for any particular terrain analysis purpose. A list of five main 
variables and a further four key variables was produced. This highlights the importance 
of, in the order given by Evans: mean gradient; skewness of altitude; standard deviation 
of plan convexity; weighted vector strength modulo 180 degrees; weighted vector 
strength modulo 360 degrees; vector strength modulo 90 degrees; standard deviation of 
gradient; skewness of profile convexity; and the correlation between altitude and profile 
convexity. 

When looking at fractal dimension as a possible index of surface roughness the 
first three of these variables are of definite interest. When considering whether 
landsurfaces are anisotropic one of the vector strengths of aspect would be interesting to 
study. Reference in this study will therefore be made to gradient-weighted aspect and its 
strength. The gradient weighting is of particular relevance when considering anisotropy 
as far as roughness is concerned. The aspect of a gentle slope is given less weight than 
that of a steep slope. Standard deviation of gradient and skewness of profile convexity 
are clearly important. The correlation of altitude with profile convexity may also be of 
interest. As well as real landsurfaces this study is looking at simulated fractal surfaces 
and so most of the other statistics will be included in the discussion. Therefore along 
with these key variables will be: standard deviation of profile convexity; skewness of 
gradient; mean and standard deviation of altitude; and the correlation between altitude 
and gradient. 

7.3 The geomorphometry of the real landsurfaces. 

With these considerations in mind it is now possible to look at the 
geomorphometry of the real landsurfaces studied. Table 7.1 presents the key variables 
discussed above for each of the 27 DEMs. Firstly the distributions of the statistics 
calculated for the derivatives of altitude, obtained from the sample of landsurfaces 
studied, can be discussed. 

Mean altitudes of the DEMs range from 3662m in the case of the Wind River 
Mountains, Wyoming to 17.5m for the DEM of the littoral area Le Porge, West France. 
Mean altitude serves to describe the general elevation of the area studied. Little can be 
stated about this statistic for each DEM. 
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Table 7.1 Geomorphometric statistics for real landsurfaces 
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Standard deviation of altitude qualifies each DEM's mean altitude figure. The 
variation of altitude around the mean value for the area indicates the extent of the range 
in altitude for an area. Reunion has the largest standard deviation, 647.3m and range in 
altitude, though not the highest mean altitude. The smallest standard deviation of 
altitude is for Le Porge which has both the smallest mean and range. Many of the lower 
lying areas have, as would be expected, lower standard deviations. Glaisdale and 
Wheeldale for instance are both small areas of drainage basins and are quite low lying 
with respect to the sample in this study, with little range in altitude. Booro Borotou is 
also a small drainage basin covering a fairly small area Fand although it is at a much 
higher average altitude it has a narrow range of altitude and low standard deviation. 
Uinta and Alarta are examples of areas which are at a high average altitude but have 
small standard deviations and ranges. 

The skewness of altitude for the DEMs ranges from -0.54 for Thvera to 1.262 
for Le Porge. The latter is a typical example of an area which would be expected to 
have high positive skewness of altitude and its skew is one of the statistics which best 
characterise it. Le Porge is a generally flat low-lying area which is perturbed at one side 
by coastal dunes. The summits of these dunes gives a tail of high altitudes to the overall 
altitude distribution, the bulk of which lies at lower altitudes. Torridon shows a similar 
effect except that instead of dunes the tail of high altitudes is provided by mountain 
ridges isolated from one another by wide glacial troughs. 

The three Appalachian mountain areas, Aughwick, Belleville and Allenville, are 
also classic examples of landsurfaces which will give highly positive skewed 
distributions. In their cases ridges are very narrow in comparison with the distance 
between the talwegs they separate. Furthermore, all the ridges are at similar altitudes, as 
are valleys. High positive skewness of altitude is therefore an important characteristic of 
ridge and valley topography. 

The reason for high positive skew in the case of Dumfries is the two contrasting 
topographies caused by two different lithologies. The lower altitudes of the Permian and 
Carboniferous sequences to the south dominate the dissected Silurian and Ordovician 
uplands to the north. At a smaller scale high positive skew in the case of Glaisdale can 
be explained by reference to two slopes in the DEM. The higher northwest and 
southeast corners provide the tail of high altitudes needed to produce the positive skew. 

Evans (1979) suggests plateau areas as examples of landscapes which would 
yield high negative skew of altitude. In the sample here, however, it is a glaciated 
mountain area which gives the highest negative skew of altitude. The two deepest 
glacial troughs in the Thvera area are substantially deeper than the other troughs and 
cirques in the area. They are therefore responsible for a tail of low values in the altitude 
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distribution. Similar situations occur in the DEMs of Keary, Wind and Canigou. 
However, as would be expected of a plateau area, Nupur has negatively skewed altitude, 
but because of the extent of glacial dissection the negative skew is less than for the 
surfaces previously mentioned. 

Galloway has a dominant area of upland dissected by several deep troughs and 
as a result has negative skew. Gara is similar and gives a very similar value for 
skewness of altitude. The other DEMs have either low positive or negative skew. In 
some cases the physical causes of the direction of the skew can be seen. However the 
failure of these features to dominate the altitude distribution can often also be seen as 
high or low areas balancing the distribution. 

As previously mentioned care must be taken when looking at statistics involving 
gradient,when differing sizes of grid mesh are used in different DEMs. This also applies 
to all subsequent derivatives to be dealt with here. In this study three grid mesh sizes are 
the most common. The U.S.G.S. DEMs are at a 30m resolution, while the French and 
two of the British DEMs, Gara and Appleby, are at 50m resolution. A resolution of 
100m is common to many of the earlier DEMs studied previously in Durham. Outside 
of these three main mesh sizes are: Booro Borotou (7m); Netherhearth Sike (10m); 
Wheeldale and Glaisdale (15m); Wind (200m); and Reunion (300m). 

The highest mean gradient, 33.5°, is found for a 30m mesh DEM, Aughwick. 
However, Keary, a 100m resolution DEM has a mean of 32.6°, while Wind, with a 
resolution of 200m, has a mean of 20.6°. All of these means are high, allowing for the 
resolution of the model they came from. Certainly Keary must be considered to have a 
higher mean than Aughwick given differing resolutions - however, whether the mean of 
Wind is higher is more difficult to say. For this sample of surfaces the following 
generalisations seem to apply: DEMs of mountain areas which have large enough 
altitude ranges to include complete mountains have mean gradients over 12°, regardless 
of grid mesh. Lowland areas have mean gradients of below 10°. 

Evans (1979) suggests that high standard deviation of gradient is an indication 
of contrasted topography, giving a wide spread of different gradients from gentle to 
steep. Again in this sample many of the mountain areas give higher standard deviations 
of gradient, generally greater than 10°. Lower areas with a more homogeneous set of 
slope forms seem to give standard deviations of gradient lower than 10°. The usefulness 
of the standard deviation of gradient as a distinguishing characteristic of particular types 
of landsurface will become more apparent when the statistical characteristics of 
individual surfaces studied here are discussed. 

Skewness of gradient helps to reveal the predominance of steeper or gentler 
slopes in an area. In this sample skewness ranges from 2.298 for Montoire to -0.296 for 
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Keary. All but two of the gradient distributions have positive values for skewness and 
most of these are noticeably, if not strongly, skewed. The results agree with most other 
studies of gradient, finding most areas to have either Gaussian distributions of gradient 
or else positively skewed distributions (O'Neill and Mark, 1987). In the case of 
Montoire the reason for its high positive skew of gradient is immediately apparent. The 
steep slopes of the incised meanders cover only a small area in comparison with the 
gentle slopes of the valley floor and surrounding surface. The DEM Aigoual has the 
gradient distribution which is nearest Gaussian. In this mountainous example there are 
enough steep slopes to balance the more gentle slopes of the limited valley floors. 

The first important moment statistic for the derivative, profile convexity, is the 
standard deviation. Mean profile convexity is always near zero, as expected, in the 
sample of DEMs in this study. Standard deviation of profile convexity ranges from 
54.97100m for Aughwick, with a grid mesh of 30m, to 2.4197100m for Devon, with a 
grid mesh of 100m. Al l the ridge and valley DEMs from Pennsylvania have high 
standard deviations even when grid mesh is taken into account (Uinta, for instance, has 
a standard deviation of 9.587100m and also has a 30m mesh). Reference to the 
perspective block diagrams of Chapter 6 (fig. 6.18-6.20) shows that there are several 
long ridges of high convexity in each, while each of the valleys is clearly concave. The 
amount of curvature in these areas is therefore of significance. Curvature in areas such 
as Dumfries, Galloway, Montoire, Le Porge and Devon is much less sharp leading to 
lower standard deviations. 

Skewness of profile convexity ranges from 2.252 for Thvera to -2.372 for Gara. 
Positive skewness of profile convexity is likely where there is more area of concavity in 
a surface than of convexity. Thvera and all the other typical glaciated mountain areas 
have wide and concave glacial troughs, while ridges and aretes separating these troughs 
are highly convex and narrow, thus producing a negatively skewed distribution. Gara, 
Devon, Montoire, Dumfries and Galloway on the other hand have gently convex hills 
which dominate the profile convexity distribution leaving a tail of higher concavities 
where the valley floors become the steeper slopes of the lower valley sides. 

As was the case for profile convexity, the mean plan convexities for each of the 
DEMs are near to zero (certainly in relation to the ranges of each of the distributions). 
Le Porge has the highest standard deviation of plan convexity of this sample 
(1,256,8977100m). Although this value is much too high and must be the result of 
outliers in the distribution caused by data error, the area would still be expected to have 
the highest value. The reason for this is visually immediately apparent. The coastal 
dunes of this area are the smallest clearly defined landforms encountered in the study. 
There is a large number of these convex features. Therefore within a very small distance 
contours are changing direction very rapidly, thus giving a wide range of plan convexity 
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and concavity. Reunion produces the lowest standard deviation of plan convexity, 
26.4°/100m. The overall island is a convex feature but it achieves its shape over a long 
enough distance to keep convexities small. 

Eleven of the DEMs yield positive skewness of plan convexity while sixteen 
exhibit negative skew. It is difficult to explain the extreme negative and positive values 
of skewness of plan convexity for this sample. Devoluy has the maximum negative 
skew -198.9 suggesting that there is more plan convexity than plan concavity. Certainly 
the dominant synclinal feature of the DEM shows some convexity as do the many spurs 
entering the main valley of the DEM. However it is difficult to perceive any obvious 
dominance of convexity over concavity. Aughwick with a skewness of 36.2 is the 
highest positive value. The linearity of ridges and valleys in this DEM does not bring to 
mind plan curvature at all and again the dominance of plan concavities is not visually 
obvious. 

In many of the more moderately skewed examples the reasons for positive or 
negative skew can be seen more clearly. The glaciated mountains Keary, Wind, Nupur 
and Thvera all have positive skewness caused by the concavities of glacial cirques. 
Dumfries, Galloway and Le Puy with their convex hills and Appleby with its drumlins 
have definite negative skewness of plan convexity. 

Looking briefly at the gradient weighted vector strength of aspect, it can be seen 
that most of the surfaces yield low strengths. The highest values are obtained for the 
DEMs which are sections of drainage basins. The means are in the direction of the main 
channels. Booro Borotou, Netherhearth Sike, Glaisdale and Wheeldale all fall into this 
category. The lowest strength is not surprisingly found in the case of Reunion Island. 
As a an island it has similar slopes in every direction. 

Of the Pearson's correlation coefficients between pairs of derivatives, the 
correlations between estimated altitude and gradient, and between estimated altitude 
and profile convexity, are the highest encountered. Glaisdale yields the highest 
correlation coefficient for estimated altitude and gradient, 0.72. This is caused by the 
simple form of the DEM's valley sides. The limited parts of the valley sides which are 
represented steepen with estimated altitude therefore producing this high correlation 
coefficient. As the areas under consideration become more complex in form the 
correlation coefficients become lower. In the case of Torridon which yields the second 
highest correlation coefficient, 0.547, the same principle applies as in the example of 
Glaisdale. Glacial trough floor gradients are low, followed by steep mountain sides. 
However the convexity of the ridges leads to more gentle slopes along the ridge tops, 
which brings down the correlation coefficient. 
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Montoire has the lowest correlation coefficient for estimated altitude and 
gradient, 0.013. This results from the fact that although there are gentle slopes on the 
valley floor and steeper slopes climbing out of the valley, there are further extensive 
gentle slopes above the main channel meanders. Thus no relationship between altitude 
and gradient is suggested by the resulting correlation coefficient. In fact the relationship 
between these variables for some idealised slope profiles could be considered almost S-
shaped. Keary, a glaciated mountain area, yields the second lowest correlation 
coefficient for these variables (0.036). In it and other mountain DEMs with low 
correlation coefficients such as Wind, Nupur, Thvera, Canigou and Aigoual, the steep 
slopes' absolute positions in terms of altitude vary over the areas of the DEMs, and 
although gentler slopes may be in the valleys and steeper slopes on the valley sides, 
different valleys and valley sides have different altitudes, resulting in these low 
coefficients. 

These are the reasons for most of the high and low positive correlations. In the 
cases of Gara, Galloway, and Devon the correlation coefficients are noticeably negative. 
In the case of Galloway the majority of gentle slopes are in fact on ridges, only a 
minority of gentle slopes make up the valley floors. The steeper slopes are therefore 
generally at lower levels than most of the gentle slopes. A negative correlation 
coefficient of -0.348 results. Similar situations occur in Gara and Devon. 

The other pair of variables producing noticeably high correlation coefficients are 
estimated altitude and profile convexity. The relationship between altitude and profile 
convexity follows logically from the relationship between altitude and gradient Having 
stated that the relationship between altitude and gradient can be S-shaped, given an area 
considered a valley bottom to a ridge top, the valley bottom possesses the greatest 
concavity, while the straight steep slopes of the valley side have near zero curvature and 
the ridge tops have the greatest convexity, giving a positive relationship between 
altitude and profile convexity. Of course many of the DEMs cover several valleys 
complicating the altitude part of the relationship while some, as was mentioned in the 
case of Glaisdale, only include the valley bottom sections of the drainage basin, thus 
limiting the amount of convexity associated with interfluves. Wind and Nupur have the 
joint highest correlation coefficient between the variables, estimated altitude and profile 
convexity, 0.469, for exactly the reasons suggested above. There are no negative 
correlation coefficients. 

7.4 The geomorphometric characteristics of different landsurface types. 

As a prelude to categorising the DEMs on the basis of their geomorphometry, a 
summary of the characteristics of each DEM will be made. This will proceed in the 
order in which the DEMs were introduced in Chapter 5. 
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The first important characteristic of Torridon is its high positive skew of 
altitude, caused by the much larger width of glacial troughs compared with ridges. In 
agreement with this is the positive skew of gradient, lower gradients in the dominant 
troughs, steeper slopes on the mountain sides. These values of skewness are consistent 
with the high (in terms of this study) positive correlation coefficient for estimated 
altitude and gradient, and also with the reasonably high coefficient between altitude and 
profile convexity. Moment statistics for profile convexity are not extreme: positive 
skew however corresponds to the large concave glacial troughs and the narrower 
convex ridges. Plan curvatures are small indicating the elongated peaks and their overall 
convex form. 

Keary's high standard deviation of altitude identifies this area as mountainous. 
Very high average gradient indicates the roughness and mountainous nature of the area. 
The correspondingly high standard deviation of gradient hints at the contrasted 
topography of glaciated mountains. Skewness of altitude being negative suggests that 
there may be a lower river channel or glacial trough that adds a tail of low altitudes to 
the distribution and indeed there is a flood plain in the northeast of the area. Profile 
convexity is positively skewed, in agreement with the curvature of cirques. The positive 
correlation between altitude and profile convexity is just noticeable. This weak 
correlation, considering the glaciated mountain nature of the DEM, the negative skew of 
altitude and the strength of the vector mean of aspect reveal that the area's slopes trend 
towards the northeast. 

Wind River also has high standard deviation of altitude, again classing it as a 
high mountain area. Low negative skew of altitude again indicates the area trends 
towards the lower extreme. High mean and standard deviation of gradient indicates the 
contrasted topography of glaciated mountains. Positive skew of profile convexity 
corresponds to glacial erosion of cirque forms and troughs. Fairly low standard 
deviation of profile convexity is caused by the dominance of straight steep slopes. Plan 
convexity has high positive skew, again related to the form of cirques. 

In the case of Nupur the high standard deviation indicates the mountainous 
nature of the DEM. The high standard deviation of gradient indicates the contrasted 
topography of glaciated mountains. Skewness of altitude is slightly negative. This is 
caused by the fact that Nupur is a plateau which is dissected by glacial troughs. 
Therefore, rather than the narrow ridges associated with many glaciated mountain areas, 
there are reasonably large areas at high altitude. Profile convexity and plan convexity 
are both positively skewed corresponding to cirque forms of the area. 

Thvera has reasonably high standard deviation consistent with the range of 
altitude associated with mountain areas. Negative skew of altitude is caused by the two 
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deepest glacial troughs of the surface. High mean and standard deviation of gradient 
corresponds with the mountainous topography. Profile convexity is positively skewed 
because of the concavity of glacial troughs. Likewise plan convexity has high positive 
skew because of the cirques in the DEM. 

Dumfries has a much smaller standard deviation of altitude compared with the 
mountain areas discussed above. High positive skew of altitude shows the effect of the 
lowland to the south. Mean of gradient is low with a corresponding high positive skew. 
The area to the south is formed by gentle slopes while at the top of the steeper slopes of 
the hills to the north more gentle slopes are found. The standard deviation of gradient is 
however high in relation to the mean. This is due to the contrast in topography between 
the lowlands to the south and the uplands to the north. Profile convexity is negatively 
skewed due to the convexity of the hills in the DEM. The surface has a strong negative 
skew for plan convexity. This is the result of the convexity of the spurs of the upland 
adjoining the lowland. These are not balanced by the concavity of valley heads which 
are not included in the DEM. There is a relatively high correlation for the variables 
altitude and gradient. 

Galloway again has negative skew of altitude. In this case most of the area is 
upland and only a few rivers dissect it deeply. A low mean of gradient reflects the small 
area taken up by the steep slopes of the river valleys. As in the case of Dumfries 
gradient has high positive skew and plan convexity is once more negatively skewed. 
Profile convexity has high negative skew due to the convexity of the hills in the area 
and the relatively small area of concavity in the valley bottoms. The vector strength of 
aspect is noticeable and can be visually perceived from the block diagram (fig. 6.7). The 
correlation for altitude and gradient is negative, the steepest slopes being in the river 
valleys of the lower part of the DEM. 

Uinta has the second highest mean altitude of the areas studied. It has a small 
standard deviation reflecting the small range in altitude. Low mean gradient with a low 
standard deviation indicates that the area is dominated by gentle slopes, this is the 
foothill zone of the mountains. Skewness of gradient is positive and high, the few 
steepest slopes can be clearly seen in figure 6.8. There is little profile curvature. Plan 
convexity has negative skew suggesting more convexity than concavity. 

Devoluy has high mean and standard deviation of altitude, as expected for a 
mountain area. Skewness of altitude is highly positive. Clearly a tail of high altitudes is 
provided by the dominant synclinal mountain. Mean of gradient is suitably high for a 
mountain area, while its standard deviation is low due to the homogeneous form of the 
surface with many slopes of similar gradient. Positive skew agrees in this case with the 
skewness of altitude. The distribution of profile convexity for Devoluy is near normal 
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with only moderate standard deviation. The standard deviation of plan convexity is very 
large and the associated high negative skew is difficult to explain. Plan convexity does 
not look that dominant. 

Canigou has the high mean and standard deviation of altitude of a mountainous 
area. The low negative skew is caused by the low lying valley in the north east corner. 
High mean and standard deviation of gradient also indicate the mountainous nature of 
the surface. The high positive skew of profile convexity is in keeping with the other 
glaciated mountains looked at so far. The high negative skew of plan convexity is 
however atypical of the glaciated mountains dominated by cirques. Many of the forms 
that might be cirques in the diagram of Canigou (fig. 6.10) possibly have quite low 
curvature while the spurs between them are reasonably wide and more strongly curved, 
convexly. This is perhaps the only explanation for this negative skew. 

Mont Aigoual is thought to be an unglaciated mountain area. Its high mean and 
standard deviation of altitude identify it as a mountain area. The skewness of altitude is 
noticeably positive as would be expected of sharp peaks rising from flatter, lower lying 
areas to the northwest, northeast and southwest. As with other mountain areas the mean 
gradient is high. Standard deviation is also high but in this case this may be caused by 
the contrast between the flatter areas in the corners and the main mountainous area. 
Profile convexity has a high negative skew. The valleys are V-shaped rather than the 
broader more slowly concave troughs and cirques of the glaciated mountains. Plan 
convexity has a high positive skew. 

Montoire has a low mean altitude with small standard deviation, reflecting its 
lowland position and relief. The mean and standard deviation of gradient are both very 
low indicating the gentle valley floors and low plateau areas. Gradient is positively and 
highly skewed. The tail of high gradient values of the distribution is provided by the 
steep meander sides. Profile convexity has noticeably negative skew: the convexity of 
the slopes at the top of, and above, the incised meanders dominates the distribution. The 
high negative skew of plan convexity must also be due to the convex nature of the 
undulations of the area, rather than the meanders themselves, as the curvature of one 
valley side should be approximately balanced by the other side. There is understandably 
a noticeable correlation for altitude and profile convexity. 

For Le Puy the standard deviation is somewhere in the middle of the range of 
the sample of surfaces studied here. The high positive skew of altitude is caused by the 
volcanic peaks providing a tail of high altitudes to the distribution. Mean gradient is 
correspondingly low, while standard deviation is reasonably large for the range. This is 
due to the contrast between the steep slopes of the volcanic necks and the overall gentle 
slopes of the surrounding area. High positive skew of gradient follows from this. Profile 
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convexities are generally gentle. Plan convexity has high negative skew due to the 
convex shape of the volcanic plugs. There is a noticeable correlation between altitude 
and gradient obviously caused by the fact that the steeper slopes are on the sides of the 
volcanic plugs while the majority of low gradients are on the surrounding flatter area. 

Le Porge has the lowest mean and standard deviation of altitude of the sample. It 
also has the highest positive skew of altitude. The dunes of this area act like the 
volcanic necks of Le Puy. Mean gradient is also the lowest of the study while standard 
deviation is also very low. Gradient in this DEM is limited by the angle of repose of the 
sediment making up the dunes and also smoothing caused by short steep slopes not 
being measured because of the grid mesh size. High positive skew is again inevitable as 
in Le Puy. Profile curvature is generally gentle. Standard deviation of plan convexity 
however is by far the highest in the study due, as previously mentioned, both error and 
the dunes being small convex landforms. This also leads to the very high positive skew 
of plan convexity. 

Reunion Island has the highest altitude standard deviation of all the areas 
studied. It does of course range from sea level to volcanic peaks. Positive skew of 
altitude is due to the distorted but still basically conical slope of the island. The mean 
gradient is high given the mesh size of the DEM. This is probably related to the 
volcanic growth of the island. It is also positively skewed. Profile curvature is gentle 
but has noticeably negative skew due to the convex ridge of the island. Plan convexity 
is, as expected, for an island negatively skewed. There is a noticeable correlation 
between altitude and gradient. 

In the case of St. Paul, standard deviation of altitude is relatively high in 
comparison to the mean. Clearly, as an island, the surface rises from sea level to the 
ridge of the volcanic crater visible in Figure 6. Skewness of altitude is high and 
positive, the ridge providing the tail of higher altitudes for the distribution. Mean 
gradient is reasonably steep, while the standard deviation of the distribution is quite 
high. The very steep inner slopes of the cauldera must raise the mean somewhat, and 
also must provide part of the tail of high gradients leading to the high positive skew of 
gradient.. Profile curvature is strong, and is accompanied by high positive skew. The 
slopes of the volcano are clearly concave. Plan convexity is also positively skewed, the 
reason for this being the strong concavities of the crater and some of the cliff lined bays 
of the island. 

Booro Borotou has low standard deviation of altitude reflecting the low relief of 
the area. Mean gradient is low, as is gradient's standard deviation. Again this DEM 
shows high positive skew of gradient. There are only a few areas of steeper slopes 
towards the side of the drainage basin and near the actual channel, the rest of the area is 
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taken up by gentler slopes. Negative skew of profile convexity indicates that apart from 
the area between the steep slopes near the channel, slopes are convex. The shape of the 
drainage basin assures high negative plan convexity. Vector strength of aspect is 
reasonably strong because the basin drains in one resultant direction. 

The ridge and valley topography of Aughwick displays the high mean and 
standard deviation of altitude associated with the mountain areas already studied. The 
sharp ridges and concave valleys ensure positive skew of altitude . The area has high 
mean and standard deviation of gradient; steep slopes up to the ridges are balanced by 
lower gradients in the valleys. Skewness is therefore low. High standard deviation of 
profile convexity is related to the almost constant change of gradient with altitude. 
Negative skew of profile convexity results from concave valleys being broader than 
convex ridges. High positive skew of plan convexity is difficult to explain and may be 
due to the quality of the DEM. There is a high correlation between gradient and altitude. 

The altitude distributions of Belleville and Allenville are similar to that of 
Aughwick. In fact, they have higher positive skew. The means and standard deviations 
of gradient are again high. Skewness of gradient is however positive suggesting greater 
influence of the valley floor slopes than in Aughwick. Standard deviations of profile 
convexity are high indicating the magnitude of the valley concavities and the ridge 
convexities. Skews are low suggesting that convexities and concavities occupy similar 
portions of the DEMs surface. Plan convexities also have high standard deviations in 
the case of Belleville with high negative skew, but in the case of Allenville with 
positive skew. Once more the correlations between altitude and gradient are high. 

Netherhearth Sike has a fairly low standard deviation of altitude as a result of 
the small range in altitude of the drainage basin. It has positive skew of altitude and 
gradient as a result of the much steeper upstream part of the DEM. Most of the rest of 
the DEM is lower lying with gentler slopes. Standard deviation and mean of gradient 
are both low, and the topography is very homogeneous. Profile convexity is negatively 
skewed suggesting that the steeper slope to the north of the DEM is convex as are the 
slopes out of the stream channel. Plan curvatures are very gentle. The vector strength of 
aspect is the highest in the sample due to the fact that the DEM is really a portion of one 
north facing slope of Teesdale (Bell, 1983). 

Glaisdale has an even lower standard deviation of altitude, reflecting the DEM's 
small area and altitude range. High positive skew of altitude is caused by the small area 
of valley side on the western edge of the model. Mean gradient is low, as is standard 
deviation, while skew is positive reflecting the steeper slopes of the west side and 
southeast corner of the DEM. Standard deviation of profile convexity is relatively high, 
and most of the slopes are curved. Plan convexity has high negative skew indicating 
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that the contours of the valley sides are convex. There is a high correlation between 
altitude and gradient. 

Once again, Wheeldale is another DEM with low standard deviation of altitude. 
For similar reasons to Glaisdale it also has positively skewed altitude. Mean and 
standard deviation of gradient are quite low. However skew of gradient is also low, the 
steeper slopes of the west side of the matrix balancing the gentler slopes of the rest of 
the matrix. Profile convexity and plan convexity are negatively skewed; again the 
slopes are convex both horizontally and vertically. 

Devon has a low standard deviation of altitude reflecting the small range of 
altitude in the area. Altitude has however a near Gaussian distribution. The mean of 
gradient is very low, and the distribution has high positive skew. The steep slopes are 
the valley sides which take up much less area than the interfluves and the valley floors. 
In agreement with this, profile convexity is negatively skewed. Plan convexity is not 
surprisingly, nearly Gaussian. Also in agreement with the profile convexity and gradient 
distributions is the relatively high correlation between altitude and profile convexity. 

Gara has certain similarities to Devon. Altitude is negatively skewed. Mean and 
standard deviation of gradient are quite high. Skewness of gradient is positive and along 
with high standard deviation indicates contrasted topography of the higher gentle 
plateau surface being .dissected by steep valleys. Profile convexity has high negative 
skew due to the large area of convex slopes at the top of the valleys and on the plateau. 
Plan convexity is also negatively skewed. Both gradient and profile convexity are 
highly correlated with altitude. 

Appleby has low mean and standard deviation of altitude. Gradient also has a 
low mean and standard deviation. However there is high positive skew of gradient 
corresponding to the large area covered by gentle slopes between and on top of 
drumlins. Profile convexity and plan convexity, as would be expected for an area of 
drumlins, have negative skew. 

Alarta has a low standard deviation of altitude. Mean gradient is very low as is 
standard deviation of gradient. It has relatively high positive skew, the channel floors of 
the DEM covering more than the steeper slopes. Alarata has low standard deviation of 
profile convexity which is positively skewed. The slopes in the DEM are reasonably 
straight but there must be a larger area taken up by concave valley floor to valley side 
slopes than convex summits. Positive skew of plan convexity indicates that there is 
slightly more concavity of contours than there is convexity. 
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Clearly from this DEM by DEM discussion, similarities in the geomorphometry 
of certain areas emerge. As a result, many of the surfaces can be grouped together into 
categories based on the geomorphometric statistics discussed. 

The glaciated mountain areas are one group which share certain characteristics. 
They have high mean and standard deviation of altitude and gradient, identifying them 
as mountainous. The cirque and trough forms result in positively skewed profile and, 
usually, plan convexity. Torridon, Keary, Wind, Nupur, Thvera and Canigou display 
either all or most of these properties. 

'Dissected lowland or upland areas' is a very loose grouping. It would include 
much of the non-mountainous area of Britain. The dissection could be that found in the 
mature stages of a river course or glaciated lowland or upland. The geomorphometric 
characteristics are: moderate standard deviation of altitude; high positive skew of 
gradient; low to negative skew of profile convexity; and often negative skew of plan 
convexity. DEMs falling into this class would be Montoire, Devon, Gara, Appleby, 
Dumfries and Galloway. 

Clearly the ridge and valley topography of the Appalachian mountain DEMs, 
Aughwick, Belleville and Allenville, gives rise to certain geomorphometric 
characteristics. High mean and standard deviation of altitude, as in all mountains, is 
present. High mean and standard deviation of gradient are also common to all mountain 
areas. Skewness of altitude is highly positive. Skew of gradient is either low or positive. 
Profile convexity has high standard deviation and there is high (for geomorphometry) 
correlation between altitude and gradient. 

The other category that several DEMs in this study fall into is determined by the 
small scale at which terrain is being studied. The high resolution DEMs representing 
parts of, or small drainage basins can be grouped together. This group tends to have: 
low standard deviation of altitude; positive skew of altitude; positive skew of gradient; 
negative skew of profile convexity; and high strength of vector mean of aspect. Booro 
Borotou, Netherhearth Sike, Wheeldale and Glaisdale are all DEMs in this category. 

These are loose groupings which could be more carefully defined given a larger 
sample of landsurfaces. Reunion, St. Paul, Uinta, Aigoual, Devoluy, Le Puy, Le Porge 
and Alarta are all unique in this study. It could be foreseen however that Aigoual would 
probably have typical statistics for a non-glaciated mountain range, while Le Porge 
might be typical of coastal dunes. This study of the form of real landsurfaces shows 
that, although complex, many of the landsurfaces show a certain order in the form of the 
characteristic geomorphometric statistics which they yield. This by itself does not go far 
in answering the question of why these surfaces do not demonstrate perfect fractal 



Chapter 7: The Geomorphometry of Simulated and Real Landsurfaces 179 

properties. It is therefore necessary to look at the geomorphometry of fractal surfaces to 
identify any major difference between real and simulated surfaces. 

7.5 The geomorphometry of fractal surfaces. 

One of the major purposes of looking at the geomorphometry of simulated 
fractal surfaces is to see how their geomorphometry changes with changing fractal 
dimension. The geomorphometric characteristics of simulated surfaces produced by 
FRACSIM.FOR cannot be directly compared because with each run the process used 
produces surfaces, with possibly widely varying 'altitude' ranges (altitude is an artificial 
term here and used to associate the z-value produced by the process with the real world 
concept of altitude). 

To allow comparison of surfaces, the altitude range of each surface was scaled 
to between 0 and 1. Furthermore to allow the geomorphometric values of the simulated 
surfaces to be more comparable to the kind of values found in real landsurfaces each 
rescaled altitude was multiplied by 500. Thus the eventual range of each simulated 
surface becomes 0 to 500, allowing comparison with real surfaces with an altitude range 
of 500m. To continue in making the values of the simulated surfaces' geomorphometry 
comparable to real landsurfaces, an arbitrary grid mesh of 50m was used when running 
the simulated surfaces through the terrain analysis program. 

As expected for surfaces that are produced by a process which produces a 
specified degree of irregularity and roughness, there are several relationships 
immediately evident between fractal dimension and geomorphometric variables. In 
order to look more closely at these relationships the Pearson's correlation coefficients 
between fractal dimension and each of the geomorphometric variables were calculated. 
The geomorphometric statistics for each simulated surface are presented in Table 7.2. 
The correlation coefficients are presented in Table 7.3, (a) and (b). One set of 
correlation coefficients is calculated using all the surfaces' results (Table 7.3a), while 
another set has been calculated without the influence of the two most common outliers, 
surfaces with fractal dimension 2.9 and 3.0. The reason for this will soon become 
apparent. 

Mean estimated altitude for the surfaces ranges from 393 to 229. Clearly the 
ranges are all similar. However it must be remembered that estimated altitude is 
calculated from 3x3 neighbourhoods of values in the models. The estimated altitude is 
therefore a smoothed version of the original altitude values. There is no real relationship 
between fractal dimension and mean estimated altitude. 
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Table 7.2 Geomorphometric statistics for simulated surfaces 

D ALT 1 ALT 2 ALT 3 GRAD 
1 

GRAD 
2 

GRAD 
3 

PROF 
2 

PROF 
3 

PLAN 
2 

PLAN 
3 

ALT. 
GRAD 

ALT. 
PROF 

3.0 393 7.977 0.729 4.388 3.551 3.344 22.819 -0.214 1023.7 61.454 -0.026 0.449 

2.9 232 21.518 0.116 9.864 5.933 1.193 39.942 0.207 5613 4.481 -0.08 0.395 

2.8 229 70.882 0.118 22.122 11.167 0.408 69.182 0.032 461.2 -1.325 -0.002 0.273 

2.7 258 75.668 0.035 21.163 10.94 0.514 58.682 -0.027 452.4 3.701 -0.072 0.249 

2.6 260 93.492 0.159 15.15 8.25 0.698 39.598 0.015 361.6 -1.09 -0.111 0.147 

2.5 232 104.685 0.242 16.02 8.848 0.693 37.473 -0.021 311.5 2.463 0.021 0.136 

2.4 243 96.098 0.019 17.743 9304 0.522 33.634 0.044 336.88 17.48 -0.109 0.171 

2.3 249 107.952 0.051 9.704 5386 0.732 18.209 0.007 2593 8.002 0.034 0.076 

2.2 251 112.712 0.088 12.506 7.011 0.76 17312 0.024 19434 1.899 0.067 0.133 

2.1 259 132.008 0.008 9.214 5355 0.877 11.19 0.021 158.95 -6.427 0.012 0.086 

2.0 292 121.637 0.349 5.314 2.649 0.791 3.568 0.057 64.53 2.801 -0.13 0.07 

D Fractal Dimension PROF2 
ALT 1 Mean Estimated Altitude PROF3 
ALT 2 Standard Deviation of Altitude PLAN2 
ALT 3 Skew of Altitude PLAN3 
GRAD1 Mean Gradient ALT.GRAD 
GRAD2 Standard Gradient ALTPROF 
GRAD3 Skew of Gradient 

Standard Deviation of Profile Convexity 
Skew of Profile of Convexity 
Standard Deviation of Plan Convexity 
Skew of Plan of Convexity 
Correlation between Altitude and Gradient 
Correlation between Altitude and Profile 
Convexity 
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Table 7.3(a) Correlations for all simulated surfaces 

D ALT 1 ALT 2 ALT 3 GRAD 
1 

GRAD 
2 

GRAD 
3 

PROF 
2 

PROF 
3 

PLAN 
2 

PLAN 
3 

ALT 1 0.237 
ALT 2 -0.916 -0.443 
ALT 3 0.362 0.879 -0.529 
GRADi 0.239 -0.623 0.101 -0.564 
GRAD2 0.312 0.593 0.032 0.532 0.992 
GRAD3 0.468 0.900 -0.678 0.862 -0.634 -0.566 
PROF 2 0.686 -0.370 -0396 -0.236 0.843 0.861 -0.270 
PROF 3 -0.211 -0.757 0.184 -0.650 0.153 0.113 -0.629 0.085 
PLAN 2 0.892 0.615 -0.929 0.639 -0.097 -0.015 0.796 0348 -0.510 
PLAN 3 0.487 0.855 -0.659 0.800 -0.419 -0362 0.899 -0.142 -0.704 0.811 
ALT.G -0.120 -0.113 0.181 -0.101 -0.002 0.039 0.041 -0.098 -0.245 -0.054 -0.050 
ALT.P 0.908 0.428 -0.980 0.495 -0.034 0.037 0.659 0.439 -0.197 0.922 0.630 

ALT. 
G 

-0.136 

Table 7.3(b) Correlations for simulated surfaces except for outliers 

D ALT 1 ALT 2 ALT 3 GRAD GRAD GRAD PROF PROF PLAN PLAN ALT. 
1 2 3 2 3 2 3 G 

ALT 1 -0.623 
ALT 2 -0.943 0.489 
ALT 3 -0.204 0.408 0.178 
GRADI 0.928 -0.687 -0.909 -0352 
GRAD 2 0.919 -0.725 -0.875 -0386 0.994 
GRAD 3 -0.835 0.539 0.937 0.215 -0.895 -0.849 
PROF 2 0.978 -0.610 -0.952 -0.215 0.958 0.938 -0.890 
PROF 3 -0.479 0376 0309 0.216 -0.405 -0.458 0.109 -0.410 
PLAN 2 0.979 -0.656 -0.938 -0372 0.952 0.948 -0.861 0.962 -0.482 
PLAN 3 0.016 -0.137 -0.190 -0.169 0.149 0.132 -0.368 -0.003 0.139 0.137 
ALT.G -0.068 -0.534 0.190 -0306 -0.032 0.024 0.213 -0.069 -0335 -0.060 -0.292 
ALT.P 0.877 -0.514 -0.922 -0.274 0.950 0.920 -0.911 0.950 -0.266 0.883 0.033 -0.093 

D Fractal Dimension PROF2 
ALT 1 Mean Estimated Altitude PROF3 
ALT 2 Standard Deviation of Altitude PLAN2 
ALT 3 Skew of Altitude PLAN3 
GRADI Mean Gradient ALT.G 
GRAD2 Standard Gradient ALT.P 
GRAD3 Skew of Gradient 

Standard Deviation of Profile Convexity 
Skew of Profile of Convexity 
Standard Deviation of Plan Convexity 
Skew of Plan of Convexity 
Correlation between Altitude and Gradient 
Correlation between Altitude and Profile 
Convexity 
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Standard deviation of estimated altitude is however closely related to fractal 
dimension. A correlation of -0.916 is obtained. As fractal dimension becomes smaller, 
that is the surfaces becomes smoother, standard deviation of altitude becomes larger. In 
the case of a fractal surface with fractal dimension 2.9, for instance, there are very few 
slopes formed by more than three grid points. The surface is formed from alternating 
pits and peaks. The faulting process used to create the surface ensures that it is unusual 
for the same point to be uplifted or displaced downward by several iterations. As a 
result the surface alternates up and down closely about the mean altitude. The resulting 
standard deviation is therefore small. For a fractal surface of 2.1 however trends have 
developed in the surface. Long slopes occur due to the shape of the perturbations used 
in the generation process. Therefore, altitude becomes more widely spread about the 
mean and the surface yields a high standard deviation. 

Skewness of altitude is generally low. There is a high negative skew for the 
surface with fractal dimension 3.0. This is because of the smoothing the surface goes 
through when estimated altitude is calculated. Reference to the perspective block 
diagram of this surface (fig. 5.12) reveals several large upward and downward spikes. 
The smoothing effect is particularly great on these extremes. The most extreme spike is 
downward and the removal by the smoothing process of this and possibly other outliers 
in the distribution is enough to give this negative skew and to push up the mean. Many 
of the other geomorphometric statistics are influenced by this smoothing effect and the 
two surfaces with the highest fractal dimensions, 3.0 and 2.9, are consistently seen as 
outliers in the distributions of the statistics for the sample of simulated surfaces. 

The surface with fractal dimension 2.0 has a noticeable positive skew. From 
Figure 5.2 this can be seen to result from the slight hump in the DEM left by one of the 
more extreme faults in the generation process. This slight perturbation of an otherwise 
smooth surface would probably have disappeared if the generation process had included 
more iterations. 

The correlation between mean gradient and fractal dimension, i f the two 
roughest surfaces are omitted from the calculations, is 0.928. Generally steeper slopes 
are associated with rougher surfaces of higher fractal dimension. Standard deviation of 
gradient declines with fractal dimension. The correlation without the influence of the 
two roughest surfaces is 0.919. Skewness of gradient is quite highly positively skewed 
in all cases. When the surfaces with fractal dimension 2.9 and 3.0 are set aside there is a 
correlation of -0.835 between skewness of gradient and fractal dimension. Fewer areas 
of lower gradient are found in the rougher surfaces. 

Standard deviation of profile convexity is also highly correlated with fractal 
dimension. A correlation of 0.686 with all the surfaces included, rises to 0.978 when the 
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two roughest surfaces are omitted. Clearly profile curvature is more extreme for the 
rougher surfaces. Interestingly skewness of profile curvature is always low. 

A similarly high correlation, 0.979, is obtained between fractal dimension and 
standard deviation of plan convexity (0.892 if all surfaces are included in calculations). 
The rougher surfaces can be seen from the perspective block diagrams to have a much 
greater degree of plan convexity. Skewness of plan convexity is always high, and it is 
negative for only two surfaces, the surfaces with fractal dimensions 2.6 and 2.1. The 
large ranges of plan convexity for the fractal surfaces and the generally high standard 
deviation of altitude hint at the fact that extreme values of convexity or concavity can 
lead to high skew. 

Of the correlations between derivatives of altitude, the variables altitude and 
profile convexity produced the highest. The surfaces with the highest correlation 
between these variables are in fact the two which have been outliers in most of the other 
distributions. For similar reasons to those given for real landsurfaces none of these 
correlations are particularly high: however they do vary consistently with fractal 
dimension. When all surfaces are included the correlation coefficient between fractal 
dimension and the correlation between altitude and profile convexity is 0.908. The 
alternation between peaks and pits in the rough surfaces with peak convexities and pit 
concavities occurring in two different bands of altitude separated by a band of altitude 
containing straight slopes results in the higher correlation than in the smoother surfaces 
where the altitudes of convexities and concavities vary more. 

Strength of vector mean of aspect increases with decreasing fractal dimension. 
This is because the smoother the surfaces the more dominant certain faults in the 
generation process become leading to trends in the direction of slopes in the surface. 

7.6 Differences in geomorphometry between real and simulated surfaces. 

Having described the basic geomorphometric properties of fractal surfaces of 
different fractal dimension, it is now possible to begin identifying the fundamental 
differences between the geomorphometry of real landsurfaces and the geomorphometry 
of fractal surfaces. As an aid to this the correlations between the geomorphometric 
statistics of the real landsurfaces were also calculated. As previously mentioned many 
of the geomorphometric statistics calculated are partially dependent on grid mesh size. 
As a result correlation coefficients were also calculated for the statistic of DEMs with 
grid mesh size of 30-50m and 100-200m. They are presented in Tables 7.4-7.6. 
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Table 7.4 Correlations for all real surfaces 

D ALT 1 ALT 2 ALT 3 GRAD GRAD GRAD PROF PROF PLAN PLAN ALT. 
1 2 3 2 3 2 3 G 

ALT 1 0.070 
ALT 2 -0.019 0.454 
ALT 3 -0.305 -0.336 -0.021 
GRAD 1 -0.030 0.418 0.750 -0.076 
GRAD 2 0.035 0.312 0.740 0.062 0.935 
GRAD 3 0.066 -0.388 -0.472 0.087 -0.778 -0.617 
PROF 2 -0.351 0.041 0.317 0.370 0.635 0.613 -0.535 
PROF 3 0.114 0.038 0.161 -0.282 0.231 0.244 -0.190 -0.209 
PLAN 2 -0.299 0.188 -0.202 0367 -0.239 0.244 0.200 -0.178 0.008 
PLAN3 0.160 0.174 0.198 0.177 0.287 0.258 -0310 0328 0.058 -0.530 
ALT. G -0.324 0.052 0.214 0.766 0.109 0.176 -0.109 0.210 0.112 0.184 -0.090 
ALT. P 0.540 0.082 0.001 -0.452 0.123 0.139 -0.075 0391 0.295 0.244 -0.238 -0.401 

Table 75 Correlations for real surfaces: grid meshes 30-50m 

D ALT 1 ALT 2 ALT 3 GRAD GRAD GRAD PROF PROF PLAN PLAN ALT. 
1 2 3 2 3 2 3 G 

ALT 1 -0.722 
ALT 2 -0.509 0.563 
ALT 3 -0.141 -0.282 0.087 
GRAD 1 -0.193 0.289 0.912 0.083 
GRAD 2 -0.036 0.158 0.816 0.191 0.950 
GRAD 3 0.240 -0.408 -0.891 -0.120 -0.898 -0.799 
PROF 2 -0.082 0.080 0.700 0384 0.839 0.849 -0.713 
PROF 3 -0.109 0.258 0.069 0.077 -0.081 -0.021 0.179 -0.252 
PLAN 2 -0.296 -0.326 -0387 0.446 -0.401 -0.445 0.271 -0307 0.069 
PLAN 3 0.162 0.290 0.412 -0.094 0318 0.544 -0.403 0374 -0.019 -0.501 
ALT.G -0.595 0.207 0347 0.782 0.135 0.152 -0.159 0.283 0.323 0.241 -0.054 
ALT. P 0.462 -0.633 -0.525 -0.240 -0358 -0.414 0.333 -0.473 -0.291 0.497 -0.575 -0.554 

Table 7.6 Correlations for real surfaces: grid meshes 100-200m 

D ALT 1 ALT 2 ALT 3 GRAD GRAD GRAD PROF PROF PLAN PLAN ALT. 
1 2 3 2 3 2 3 G 

ALT 1 0.598 
ALT 2 -0.149 0.489 
ALT 3 -0.099 -0.410 -0.403 
GRAD 1 -0.130 0.524 0.970 -0.449 
GRAD 2 -0.218 0.415 0.822 -0.268 0.919 
GRAD 3 -0.091 -0.538 -0.857 0.530 -0.905 -0.769 
PROF 2 -0.206 0.395 0.961 -0.420 0.986 0.911 -0.893 
PROF 3 -0.263 0.154 0.410 -0.405 0.507 0.563 -0.563 0300 
PLAN 2 -0.122 -0.485 -0.556 0.058 -0.688 -0.772 0.762 -0.648 -0324 
PLAN 3 0.151 0.453 0.324 -0.626 0.345 0.114 -0.585 0301 0353 -0.293 
ALT.G -0.057 0.001 0.069 0.745 0.054 0.209 0.009 0.059 0.138 -0.375 -0.271 
ALT. P 0.024 0.435 0.284 -0.431 0.489 0.636 -0.472 0.432 0.348 -0.652 0.267 -0.246 

D Fractal Dimension PROF2 
ALT 1 Mean Estimated Altitude PROF3 
ALT 2 Standard Deviation of Altitude PLAN2 
ALT 3 Skew of Altitude PLAN3 
GRAD1 Mean Gradient ALT.G 
GRAD2 Standard Gradient ALT.P 
GRAD3 Skew of Gradient 

Standard Deviation of Profile Convexity 
Skew of Profile of Convexity 
Standard Deviation of Plan Convexity 
Skew of Plan of Convexity 
Correlation between Altitude and Gradient 
Correlation between Altitude and Profile 
Convexity 
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Clearly mean estimated altitude for the simulated surfaces was made to be 
realistic and the associated standard deviations of altitude are well within a plausible 
range, given the range of altitude. For real landsurfaces altitude is often strongly skewed 
while in these simulated fractal surfaces there is no skew of altitude. The positive 
skewness of altitude in real landsurfaces is of particular interest in this study. 

In general positive skewness of altitude is caused by a landform or landforms 
rising above a more extensive lower lying area. This is immediately at odds with the 
fractal view of similar irregularities occurring at all scales. The fact that landforms of 
widely differing scales can produce high positive skew is rather ironic. The large 
synclinal mountain feature of Devoluy, the widely separated mountains of Torridon, the 
ridges of Aughwick, Belleville, and Allenville are all large scale examples of landforms 
producing high positive skew. The volcanic plugs of Le Puy are at a smaller scale while 
the dunes of Le Porge are the smallest of all. 

Although the mean gradients of the simulated surfaces are within reason in 
comparison with possible real surfaces, the nature of their decline with fractal 
dimension is not echoed in reality. Rather the real surfaces split into two groups: high 
mean gradient, generally in mountain areas; and much lower mean gradient found in 
upland and lowland areas. Indeed the correlations between the estimated fractal 
dimensions of the real landsurfaces and their mean gradients are very low (-0.03 for 
calculations including all surfaces, -0.13 for the 100-200m mesh surfaces and -0.193 for 
surfaces with meshes of 30-50m) 

In the case of standard deviation of gradient the simulated surfaces again 
produce a range of values similar to that of the real landsurfaces. Once more the 
correlation between gradient standard deviation and fractal dimension for the real 
landsurfaces is much lower than for the simulated surfaces (0.035 for all surfaces, 
-0.218 for the 100m to 200m grids and -0.036 for the 30-50m grids). 

Skewness of gradient for simulated surfaces, although always positive is never 
as high as the highest positive skew of the real landsurfaces. Neither does the skew of 
simulated surfaces become as small as for the real landsurfaces. This is again caused by 
effects of scale in geomorphology. For instance none of the simulated surfaces have 
steep-sided valley slopes within an area of much more gentle slopes such as is found in 
Galloway, Montoire or Devon. The irregularity, of an otherwise smooth surface, caused 
by features of the drainage network at one scale, have no equivalent irregularities when 
scale is changed: this is clearly evidence against the suggestion that real landsurfaces 
can be considered fractional Brownian surfaces. The correlations between fractal 
dimension and the skewness of gradient for real landsurfaces are all low, unlike the 
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strong negative correlation found between the same variable for simulated fractal 
surfaces. 

Once again the actual values produced by real landsurfaces and simulated 
surfaces for standard deviation of profile convexity are similar. This is of course partly 
due to the ranges of altitude being calibrated to range from 0 to 500. Perhaps the values 
for the rougher simulated surfaces are too high to be found in real landsurfaces, 
certainly in the landsurface types looked at in this study. Yet again the real landsurfaces 
show no signs of a relationship between fractal dimension and profile curvature. The 
highest correlation coefficient is -0.351, obtained when all the surfaces are included in 
the calculations. If any relevance was put on this figure it would have to be noted that it 
suggests that magnitude of plan curvature decreases as the surface becomes rougher. 
This is unlike the situation for simulated surfaces where there is an increase in the 
magnitude of curvature with an increase in fractal dimension. 

Skewness of profile convexity reveals the largest discrepancies between real and 
fractal surfaces as far as profile convexity is concerned. The lack of skew in the case of 
the simulated surfaces contrasts with the high positive and negative skews found in the 
case of real landsurfaces. Once again it is the forms of certain sets of landforms caused 
by certain sets of geomorphic processes which produce these skewed distributions of 
profile convexity. The concave glacial troughs and cirques of the glaciated mountain 
area of Thvera for example lead to very high positive skew of profile convexity. The 
convex dranlins of Appleby lead to negative skew in its case. Angle of bedding and 
rock type itself play an important part in the way the hills in the Dumfries DEM have 
been eroded into gently convex forms that push the distribution of profile convexity to a 
negative skew. Fractal surfaces on the other hand have pits balanced by peaks, ridges 
balanced by valleys. 

As for profile convexity, the standard deviations of plan convexity for fractal 
surfaces would not be seen as abnormal for real landsurfaces, although this is expected 
because of the imposed altitude range. Once again the differences become apparent 
when the correlations between fractal dimension and standard deviation of plan 
convexity for real and fractal surfaces are compared. The high positive correlation of 
the simulated surfaces is replaced by very weak correlations for the real surfaces (-0.299 
when all surfaces are used, -0.122 for the 100-200m grids and 0.162 for the 30-50m 
grids). 

Skewness of plan convexity for real surfaces was shown earlier to be related, yet 
again, to the shapes of the landforms created by certain processes. In the case of 
simulated fractal surfaces, although there is mainly positive skew, there seems to be no 
link between skew and fractal dimension. 
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The one statistic looked at in this approach to geomorphometry where there is 
agreement between fractal and real landsurfaces is the correlation between altitude and 
profile convexity which is not surprisingly high. 

7.7 Conclusions. 

Geomorphometric analysis, involving the derivatives of altitude calculated from 
a gridded DEM, allows detailed examination of landsurface form. When a real 
landsurfaces is studied by this method certain statistics are often found to be particularly 
characteristic of the landsurface form. The value of a particular characteristic statistic is 
often caused by forms which have been discussed by geomorphologist as particular 
landforms. 

Even with the small number of landsurfaces studied here, some classification of 
the surfaces can be made on the basis of their geomorphometric statistics. For instance 
the glaciated mountain areas become a clear grouping because of the influence on their 
statistics of glacial cirque and trough forms. 

The simulated fractal surfaces cannot be classified in this manner. Instead many 
of the geomorphometric statistics for the fractal surfaces have a close relationship to the 
fractal dimension of the surfaces. Correlations between geomorphometric statistics and 
fractal dimension for real landsurfaces are, however, all poor. 

Although the simulated surfaces are generated by the superimposition of planes 
with only one shape, the form of the plane on the geomorphometric statistics has 
nothing like the effect produced by landform types in real surfaces.on the statistics The 
combined effects of landforms on the geomorphometric statistics of landsurfaces are 
much more complicated than the effect of the superimposition of planes in the fractal 
surfaces. Their effect on the fractal dimensions estimated from landsurfaces is also 
much more complicated and as a result correlations between geomorphometric statistics 
and fractal dimension for real landsurfaces are low. 

The geomorphometry of fractal surfaces is therefore markedly different to that 
of real landsurfaces. Some of the differences arise from the effects of landforms. Some 
of these effects are related to the scale of these landforms. The next chapter looks 
briefly at the scale of certain landforms. 
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Chapter 8: The Scale of Some Specific Landforms. 

8.1 Introduction. 

The findings of the last chapter support the traditional approach of 
geomorphologists of subdividing landsurfaces into landforms. For example, chapter 7 
showed that there are certain geomorphometric characteristics common to most of the 
glaciated mountain landsurfaces studied. The domination of concave curvatures in these 
surfaces results from the presence in these areas of glacial cirques and troughs. These 
geomorphometric characteristics are absent in simulated fractional Brownian surfaces. 
Support for the traditional approach is further strengthened by the evidence given by the 
variograms. They suggest that real landsurfaces cannot be considered as irregular fractal 
surfaces when distances of kilometers are being considered. 

The difference in the geomorphometric characteristics of landsurface types and 
the behaviour of the variograms for complete areas, subareas and separate directions, 
indicate that landsurfaces have definite order to their complexity. This order would 
appear to be much greater than the self-affine irregularity of fractional Brownian 
surfaces. However, could a surface be made up of a landform type which occurs at a 
wide enough range of scales to produce fractal behaviour be envisaged? 

This possibility would seem remote to most geomorphologists. They would 
place most landforms in a more narrow scale range in accordance to the scale at which 
the processes thought to create them operate. Although most landsurfaces are not made 
up of only one landform type, there are examples in this study of surfaces which are 
dominated by one landform type. The DEM of the drumlinised area around Appleby, 
Cumbria was created mainly because of the domination of the area by drumlins. The Le 
Porge area is almost flat except for the belt of coastal dunes which make this surface of 
interest. Le Puy is also dominated by one landform type, volcanic peaks. 

It would therefore seem appropriate to analyse the landforms within these 
surfaces to find out over what scale range they exist in these particular areas. This will 
not prove that no landforms can occur over a wide range of scale, but i f these landforms 
do not exist over a wide scale range it is yet more empirical evidence in support of the 
more traditional geomorphological view of landforms. 

This chapter will review approaches towards identifying and studying the size 
distributions of landforms. On the basis of this discussion, methods to isolate drumlins, 
dunes and volcanic peaks from the three surfaces mentioned above will be developed 
and various aspects of the size of individual landforms will be studied. 
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8.2 Possible approaches to identifying landforms. 

Evans (1985) describes the study of the morphometry of landforms as specific 
geomorphometry. Due to the landform-based studies of many geomorphologists, there 
is a vast body of work studying the morphology of landforms, often trying to relate 
form to process. Some of this work has studied the distributions of various size 
parameters. 

The properties of these distributions of landforms may reveal stronger 
influences on a landsurface at one particular scale compared with at a larger or smaller 
scale. One example of a landform type which would be suspected of having more 
influence on a landsurface over a limited scale range would be the glacial cirque. 
Cirques can certainly be seen to have an effect on the geomorphometric statistics of the 
glaciated mountain areas studied in chapter 7. Much work has been done on the 
morphometry of cirques. As a result, the cirque as a landform has been carefully defined 
by the B.G.R.G. (Evans and Cox, 1974). 

Studies, such as that by Bennett (1990) of the cirques of Snowdonia, suggest 
that cirques in particular areas have quite limited size distributions. Bennet (1990) finds 
that cirque amplitude as well as having a limited distribution, possess bimodality which 
can be related to how well defined the cirque form is. Evans (1990) believes the Lake 
District cirques fall into quite a clearly definable scale range. Evidence such as this 
would therefore suggest that many landforms do not occur at a wide enough scale range 
to fi t conceptually with the fractal model. 

Clearly there are some common problems encountered when studying any 
landform. One of the immediate problems encountered in the study of individual 
landforms is the level of subjectivity which may be involved in deciding what is a 
particular landform and what is not. Evans (1985) in his discussion of the stages of 
specific geomorphometric analysis mentions several stages where subjectivity creeps in. 

Firstly in the conceptualization of landform types, geomorphologists call similar 
landforms by different names: "Landforms such as tors, bornhardts, inselbergs, castle-
kopjes and perched blocks overlap and grade into each other confusingly, as defined by 
different geomorphologists" (Evans, 1985, p.2). This problem may be associated with 
scale, certain groups of landforms could conceivably be a continuous group of basically 
the same form at different scales. Sandwaves, megaripples, and ripple marks might be 
one example of this.In Evans' second stage of analysis there are again dangers of 
subjectivity. The development of an operational definition for a particular landform type 
needs to be precise enough to allow consideration of not only textbook examples, but 
also of the much more marginal cases. 

189 
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The third stage of Evans discussion is the stage of delimiting the landform from 
the surrounding landsurface. It will become clearer during the course of this discussion 
that this is perhaps the most difficult of all stages in analysing landforms in which to be 
objective. Once these three stages of analysis are complete the further stages are much 
less of a problem as far as subjectivity is concerned. It is perhaps convenient in the light 
of the difficulties of the first three stages that this study has so far kept away from 
specific geomorphometry for as Evans (1985, p.4) warns: "if delimitation of landforms 
cannot be completed, we must resort instead to general geomorphometry". 

If some form of specific geomorphometry is to be performed in this study the 
first three stages of Evans discussion must be carefully considered and as much 
avoidance of subjective decisions as possible should be taken. In recent years one 
possible aid to objectivity in this kind of analysis is perhaps emerging. With the 
increase in the availability and use of DEMs many algorithms have been developed to 
automatically delineate features such as ridges and valleys in order to identify drainage 
basins (Douglas, 1986; Jensen and Dominigue, 1988; Riazanoff et al., 1988; Zhang et 
al., 1990). This work has encouraged geomorphologists to try to automatically delineate 
landforms (Dikau, 1989). 

Although the process of developing such algorithms and testing them is 
sufficient subject matter for a whole thesis, it would seem sensible to explore the 
possibility of using some of the simpler algorithms already available to extract the 
dominant landforms of the three surfaces chosen. Of these surfaces only Appleby was 
created specifically for this part of the study. However, the usefulness of Le Porge to 
this part of the study became apparent when the behaviour of its variogram indicated 
that the dunes of the area were the smallest landforms encountered and that the rest of 
the surface is not complicated by other landforms. The reason for the inclusion of Le 
Puy are similar to those of Le Porge, although the dominant landforms are much larger. 

There are several reasons for choosing the drumlinised area around Appleby for 
study. Clearly there has been a large amount of study into drumlins. The study of the 
form of drumlins has been used to attempt to explain the processes responsible for then-
development. Form, as a clue to process, has been important in the case of drumlins as 
subglacial processes are difficult to examine. As this study is about the scale free or 
scale bound nature of landsurfaces, a landform type which has had its shape so carefully 
studied would seem to be a suitable subject for enquiry into the fractal nature of 
individual landforms. 

The particular area of drumlins chosen has been studied several time before 
(Hollingworth, 1931; Rose and Letzer, 1977; Whiteman, 1981; Evans, 1985). Any 
interpretation of form in this area can therefore be compared to existing results. Rose 
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and Letzer (1977) describe how the dnimlins of the area overlap and are superimposed 
on top of one another. The possibility of superimposition of smaller drumlins on top of 
larger drumlins would at first seem to be in agreement with the concept of the 
landsurface appearing similar from what ever scale it is viewed. 

The last reason for choosing the area around Appleby was the availability of 
1:10000 scale O.S. maps of the area which represent the topography by means of a 5m 
contour interval. As the discussion in chapter 3 suggests, this resolution is really the 
minimum requirement for the creation of a DEM to represent drumlins at a 50m grid 
mesh. 

8.3 Methods of automating the extraction of landsurface features from DEMs. 

Douglas (1986) has provided a useful review of many of the earlier methods 
used to extract topographic features from DEMs. His discussion is aimed at finding the 
best method to select information-rich lines which can be used as a means by which to 
reduce the computer storage from the large amount required for gridded DEMs. This 
new, more compact DEM, it was hoped, would retain as much of the important terrain 
information as possible. 

Perhaps the most promising methods of extracting features such as hills and 
basins are methods which use the calculation of slope lines. The development of 
algorithms to derive accurate slope lines is, in itself, a major task and has attracted quite 
an amount of study (Bell, 1983; Douglas 1986). I f slope lines are traced from the 
summits in a DEM, a skeletal network of slope lines will represent 'hills', in the sense 
of an area of divergent flow from one summit point. Points not on the slope lines can 
be the starting points for slope lines traced upwards towards the existing slope lines, 
once they meet an existing slope line the point being studied is identified as belonging 
to a particular summit. This process allows each point in a DEM to be allocated to a 
summit therefore identifying individual hills in the model. The process can be reversed 
in an attempt to find basins. The drawback of this method is that it takes a large amount 
of computing, every point must have some form of slope line traced, at least a short 
distance, from it. 

Two of the simplest and most effective methods which Douglas discusses for 
the automation of ridge and channel extraction are local procedures. Local procedures 
use 3x3 windows to identify points with certain properties which lead to the 
identification of ridge and channel points. 

One is a method first discussed by Jensen (1985). It looks for V-shaped in local 
profiles of three points. I f a 3x3 window is studied two orthogonal and two diagonal 
profiles can be tested as well as the three points that form the triangles between two 
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adjacent corners and the central point of the window. If a V exists in one of these 
profiles, the point at the apex of the V is a channel point. This method produces 
complicated clouds of points which lie in valley bottoms. If A-shaped relationships 
between the sets of three points were flagged instead of V-shaped ones, this algorithm 
could be used to identify ridge-type points. 

The other local method mentioned by Douglas (1986) is to identify every point 
in a DEM that is not a ridge point and flag them, thus revealing the ridge points as 
unflagged. Similarly, channel points can be identified by flagging every point which is 
not in a channel. The method of identifying non-ridge points is simple. The lowest 
corner of every 3x3 neighbourhood cannot be on a ridge and because the window 
moves over every point, inside the edge rows and columns, non-ridge points are the 
lowest points in a window at some stage in the pass of the DEM. This method also 
leaves clouds of points representing ridges or valleys. However the clouds can be 
thinned by various algorithms (Douglas, 1986). Clearly both of these methods are much 
less computing-intensive than the slope line methods. 

In the case of trying to extract drumlins form a DEM it is necessary to identify 
their boundaries, which theoretically will be predominantly channel-type points. 
Therefore adaptations of these algorithms to identify channel points were written in 
Fortran to test on the Appleby DEM of this study. 

A Jensen type method was first attempted. However, this method looked for 
changes in the direction of slope in only the two orthogonal directions. To achieve this 
two passes of the DEM were carried out; one down the DEM and the other across. If, 
after a downward slope a channel point was found, it was flagged. As well as this a test 
for level sections followed by an up-slope was performed, and i f such a level section 
was found all of the points forming it were flagged as channel points. As can be seen 
from Figure 8.1, a bitmap of part of the Appleby area, the process leaves quite thick 
clouds of points in channel-type areas. The areas left unflagged can, in some instances, 
be seen to be drumlin shaped. However, complete boundaries are only visible for a few 
drumlin shapes. 

The true Jensen method was also attempted, using all the possible profiles and 
point relationships possible in the 3x3 window. Each of the different relationships was 
given a different flag so that the shape of the surface at that point was recorded. Such 
identification of different shapes in the landsurfaces is of continuing interest to 
geomorphologists such as Dikau (1989) demonstrates. The clouds from this attempt 
were very thick and complex and attempting to identify the boundaries of the drumlins 
by complicated cloud thinning algorithms would not necessarily find the real 
boundaries of the drumlins. 
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Figure 8.1 Bitmap of Appleby DEM. 

1 = Channel point flagged in one direction 
2 = Channel point flagged in two directions 
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A more important problem is following even thinned out suspected channel lines 
around a complete drumlin, even after thinning.The method of flagging non-channel 
points is easily programmed. Again the major problem is to follow the cloud of points 
around complete drumlins. Complete drumlin shapes do emerge but often the shape of 
the surrounding cloud of points suggests that there may be two or more adjacent or 
superimposed drumlins present. None of these approaches would therefore seem 
appropriate for the task of objectively identifying drumlins from the Appleby surface. 
This is because, like most other landforms, drumlins are not all 'perfect' examples in a 
'typical' situation. Although some of the drumlin boundaries are in channels, other 
boundaries are merely breaks of slope between the side of one drumlin and the side of 
another drumlin on top of which the other drumlin is superimposed. 

Such breaks of slope can be automatically found using the derivatives of 
altitude, particularly gradient, aspect and profile convexity. Once again various 
combinations of these detect some limited parts of drumlin boundaries; however 
complete boundaries were absent. The reason for the failure of these attempts is once 
again that drumlins and other hill forms are not bounded by changes from profile 
convexity to profile concavity or changes in aspect of 180 degrees, instead they are 
bounded by breaks of slope in the map of profile curvature. Only the use of certain 
'threshold' values of gradient or curvatures will detect a particular boundary; 
experimenting to find which threshold values are the most common would take a long 
time and would also require some knowledge of the real boundary to test the correctness 
of the thresholds. 

As in the case of manual creation of DEMs, the human interpretation of maps 
and displays of DEMs involves complex intelligent decision making using all of the 
available information in a particular situation. It has not yet been possible to make 
computer programs to mimic these decision making processes and such a task would be 
very sizeable. 

8.4 The analysis of the distribution of landforms. 

From the above study it appears that some human decisions about what is a 
drumlin and what is not will have to be made. There is still one way that such decisions 
can initially be lead by an automatic process. Most of the summits in the Appleby, Le 
Porge and Le Puy surfaces will be the summits of the landforms of interest in those 
particular surfaces. It is a simple task to automatically identify summit points using a 
computer. As well as this once the summits have been identified there is some 
automatic analysis of the distribution of the landforms which can be preformed. 
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Given the availability of the original source maps for the Appleby DEM, the 
first surface analysed was Appleby. Problems with using the automatic extraction of the 
summits could therefore be gauged before studying the other two surfaces. First a 
Fortran program was written which simply moved a 3x3 window over the DEM testing 
for pits, and filling them; and plain points and flagging them. A test for points where all 
eight neighbouring points were lower is carried out. If the latter condition was found it 
was flagged as a summit. The program then calculated the national grid coordinate of 
the summit so that these could be checked against the original maps. 

The process detected 89 summit points. Checking the output grid coordinates 
with the maps of the area revealed that only 53 of these are situated on drumlins. Of the 
summits on the drumlins, eight are what would be considered superimposed drumlins. 
During the process of checking the summit coordinates with the maps it was noticed 
that for several drumlins there were two or even three summits on the same drumlin. 
The shape of the highest contours on these drumlins were in agreement with the 
multiple summits. However, it would be impossible working at the map and DEM scale 
to determine if the summits are on superimposed drumlins, and which summit is the 
summit of the drumlin on which the others are superimposed. 

The first problem immediately apparent from the process is that not all drumlins 
identifiable on the map have produced a summit detectable by this method from the 
DEM. This may be caused by the way that the DEM is at a lm height resolution and 
some of the drumlins have broad tops. The test used to find summits only checks for 
single summit points. Therefore the test was change to consider points whose 
neighbours were either less than or equal to them. This produced a set of 1057 points. 
Clearly in many cases here a plain of points represents the drumlin tops. Thinning of 
these plains to only one point would be possible however the point left for each plain 
would not necessarily be the real summit. 

A second smaller problem also appears when comparing the detected summits 
and the map. A small number of the summits are likely to be errors in the DEM. The 
most obvious errors can be detected on the floor of the Eden valley. Summits in these 
areas where the contours give no indication of the likelihood of a summit must be 
suspected of being artificial; particularly in the light of the findings of chapter 3 which 
found the worst errors in the Appleby DEM to be on the Eden valley flood plain. 

Identifying summit points in the case of the Appleby model therefore proves to 
be a difficult task to automate. Perhaps in this case general geomorphometry is more 
appropriate to this study and certainly the variogram approaches of chapter 6 would 
appear to have been strongly influenced by the drumlin forms. 
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However, the same method has much more success with the simpler hill forms 
of Le Puy and Le Porge. In the case of Le Puy, when the simple test for summits is used 
68 summits are detected. Most of these are in the central volcanic peak area of the 
surface. Likewise, for Le Porge, when the simple test for summits is applied 309 points 
are detected. They are almost all coastal dune summits. 

Two simple pieces of analysis which reveal something about the size 
distribution and the spatial distribution of the landforms in these two French surfaces 
can easily be derived from the program which searches for summit points. The altitude 
of each dune, in the case of Le Porge, and each volcanic peak, in the case of Le Puy 
were written to files. As both surfaces appear to lack any obvious trend in the overall 
altitude of the area, the altitude distributions of the two landforms can be studied quite 
easily. 

The second piece of analysis is only slightly more complicated. The distance 
between each summit point and its nearest neighbour can be found by searching in 
concentric squares outward from the summit point under investigation until another 
summit is met. The distances between them can then be calculated and recorded. It may 
be possible to relate these distributions back to the variograms of the area, thus linking 
the landforms present in these landsurfaces, directly to the lack of self-affine behaviour 
demonstrated in the variograms. 

Figures 8.2 and 8.3 are histograms of the altitude distributions of the summits 
extracted from Le Porge and Le Puy, respectively. The histogram for Le Porge has had 
52 outliers, caused by missing altitude values at the inland edge of the DEM, removed, 
leaving 257 summits. Although the histogram for Le Porge would appear bimodal, the 
distribution has a very narrow range, 46m. The mean altitude of the summits is 24.91m, 
while the standard deviation is only 8.46m. The mean is noticeably higher than the 
mean of estimated altitude calculated in chapter 7 (17.5m). This is particularly so when 
the effect of the area of higher ground inland from the dunes on the mean of estimated 
altitude is considered (fig. 6.14). This difference suggests that the dunes are, as would 
be expected, a distinct group of landforms with summit altitudes in a narrow range. 
Similar, smaller or larger landforms, are not present in the surface. It is clear from these 
statistics that this set of landforms falls within a very narrow scale range. If the dunes 
were to be responsible for any self-affinity in the landsurface they are from, it could 
only be over such a limited range. 

The histogram of summit altitude for Le Puy shows the mode to be around 
1100m, while the mean is 1002m. The standard deviation of the distribution is 149.8m 
and the range of the distribution is 725.2m. In this case the mean of estimated altitude 
for the entire surface is 914.6m, only 87.4m less than the mean of the summit altitudes. 
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Therefore, although the distribution of summits would seem to suggest that the peaks in 
this area are another set of distinct landforms, reference to the altitude statistics for the 
overall surface suggest that summits are found at a wide range of altitudes given the 
relief of the landsurface. If reference is made to figure 6.13, smaller hills can be seen in 
the south of the area, as well as the larger volcanic peaks in the central belt of the DEM. 
The distribution of the summit altitudes of these, combined with the distribution of the 
larger peaks produces the distribution presented in the histogram. These peaks cannot 
on the basis of altitude distribution be considered as a set of distinct landforms, even 
though on the basis of lithology, plutonic and geomorphological process they would be 
grouped together as similar landforms. 

Figure 8.4 is a histogram of the distribution of distance between neighbouring 
summits, for the Le Porge area. It shows the strong positive skew to the distribution, 
which pulls the mean up to the value of 301m. 169 of the summits are separated by 
distances of less than 300m. Once more the dunes can be seen as a set of landforms with 
a dominant spacing of about 200-400m. If the variograms for Le Porge, calculated in 
chapter 6, are referred to ,the kink which prohibited a fractal dimension being estimated 
over any sizeable range of distance, is between 250m and 315m . It is, therefore, 
definitely the spacing of the dunes which causes the break down of the fractal Brownian 
model demonstrated by the curvilinear variogram. 

Although the distribution of distances between summits for Le Puy is also 
positively skewed, the skew is not nearly as extreme as in the case of Le Porge (fig. 
8.5). The distribution is also bimodal with one mode at 200m and another at 1.2km. 
Some of the more isolated summits which must contribute to the second mode can be 
spotted in figure 6.13 as conical peaks rising from the general level of the surface. 
However, neither of these modes, nor the mean summit spacing of 538m can be related 
back to the non-directional long distance variogram of chapter 6. In it, the variogram is 
slightly convex up to a maximum variance somewhere around 5-6km. This shows that, 
unlike the dunes of Le Porge, the peaks of Le Puy have a wide enough variety of 
heights and spacing that they do not have an obvious average slope length and therefore 
do not show up as a break of slope on the variogram. The break of slope on the 
variogram at around 5-6km is caused by the fact that the highest peaks are all situated 
across the centre of the DEM, as discussed in chapter 6. The peaks of the Le Puy area, 
considered as a set of landforms on there own, are not, therefore, responsible for a break 
down of the fractal model. It is only when the peaks are placed in their wider 
surroundings, where there is less relief, that the fractal model must be rejected. 
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Figure 82 Histogram of summit altitude: Le Porge 
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Figure 83 Histogram of summit altitude: Le Puy 
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Figure 8.4 Histogram of summit spacing: Le Porge 
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8.5 Conclusions. 

This chapter has tried to approach the question of how the geomorphological 
practice of delimiting landforms from landsurfaces might fit with the fractal concepts of 
self-similarity and self-affinity. I f the distributions related to the size of the dominant 
landform of a surface are very limited, it would be expected that the fractal idea of self-
affinity would break down at around the mean size of the dominant landform type. 
However, i f that landform type were to occur at a wide range of sizes, the concept of 
studying the surface at one scale and finding the same forms as at a different scale, 
might hold. 

One difficulty of studying the scale of landform types is that they may have been 
somewhat subjectively defined by geomorphologist who are more interested in the 
processes that have made a particular landform, than the range of sizes at which they are 
found; a few well formed examples may prove of more use in simplifying process than 
a large and complicated sample. Recent attempts to automate the detection of 
landsurface features from DEMs may be leading to the possibility of making landform 
delimitation more objective. As a result, attempts were made to automatically identify 
the drumlins from the Appleby DEM. Several previously proposed algorithms for ridge 
and channel line extraction were attempted. However, they were not successful in 
completely delimiting one type of landform, rather they identified probable channel 
lines which do not fully delimit the drumlin forms. 

In a further attempt to extract some information about the drumlins from the 
DEM, the summit points of the surface were identified. These were of little direct use 
for the study of the Appleby drumlins. The method was of more use when applied to the 
coastal dunes of Le Porge and the volcanic peaks of Le Puy. The altitude distributions 
of the summit points revealed the homogeneity of the set of landforms. The limited size 
distribution of the summit spacing also supported this. The mean summit spacing was 
found to be very close to the first break of slope in the areas variogram. This directly 
related the break down of the fractal model with summit spacing and average slope 
length. 

The distributions obtained for the summits of the Le Puy area did not challenge 
the concept of self-affinity. However their limited spatial distribution results in the 
break down of any possible self-affine behaviour at distances around S to 6km. 

The detailed study of landforms, therefore, still relies on some intelligent 
interpretation of the landsurface by a human operator. Limited size distributions of the 
landforms can prevent any possibility of treating the landsurface as a self-affine fractal. 
While the joint investigation of landform size frequency distributions and the 
variograms calculated from the surfaces in which they are present can be related to 
explain one another and the possible fractal form of a surface. 
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Chapter 9: Conclusions 

Fractal geometry has been developed as a new stochastic modelling tool by 
mathematicians. It is suggested that it might have applications within geomorphology. 
This thesis has attempted to assess, whether or not, the fractal model, used as a 
stochastic model of landsurface form, can be of use in the process of seeking further 
explanation in geomorphology. Furthermore, any measure of its use must be in relation 
to the explanation already achieved in geomorphology by existing, and often more 
physically based models. 

Theory in geomorphology already appreciates the complexity of landsurface 
form. However, the approach in geomorphology has generally been to isolate separate 
landforms, or facets of the landsurface, to study in an attempt to order and explain the 
complexity. This has resulted in considerable study at the "landscape scale" (Mark, 
1980). It is at this scale, tens of metres to kilometres, that proponents of the fractal 
model (Mandelbrot, 1982) have envisaged the use of fractal geometry in 
geomorphology. 

Fractal geometry at this scale treats the landsurface as an irregular collection of 
irregular shapes. Advocates of the fractal model argue that order can be brought to this 
irregularity, because the irregularity has certain scaling properties. This concept 
developed from the observation that a segment of a coastline, studied at high resolution, 
may visually resemble the entire coastline viewed at lower resolution. Likewise, it was 
suggested that parts of a landsurface, viewed at high resolution, resemble the larger area 
of terrain from which they are taken, viewed at lower resolution. The link between these 
observations and fractal geometry was made because Mandelbrot (1975) identified a set 
of mathematical processes, fractional Brownian noises, which produce curves and 
surfaces with the above visual properties, but which also show strict self-affine 
behaviour in the statistical sense. As a result, it is suggested that the roughness of 
landsurfaces at low resolution, is statistically the same as the roughness existing in the 
surface at a much higher resolution, when that roughness undergoes a scale related 
transformation. 

Therefore, the argument for applying fractal geometry to the study of 
landsurfaces at the landscape scale, has predominantly arisen from the visual 
similarities between real landsurfaces and simulated surfaces, produced using fractional 
Brownian processes. Very little empirical study of landsurfaces, for evidence of self-
affine behaviour, was carried out before the argument for applying fractal geometry to 
this area of study was proposed. 
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As far as the implications for geomorphometry are concerned, the most 
important property of fractal geometry is the self-affine nature of the irregularity in 
fractional Brownian surfaces. The self-affine nature of a fractional Brownian surface is 
described by its fractal dimension, and, as a result, it is this parameter which would be 
of most relevance to any use of fractal geometry in the field of geomorphometry. 
Indeed, i f landsurfaces were self-affine fractal Brownian surfaces then their fractal 
dimensions would become a very important geomorphometrie parameters. 

The usefulness of the concepts of self-affine form, and its associated fractal 
dimension, to geomorphometry, is proportional to how accurately the fractal model 
reflects reality. The fractal Brownian model would be at its most powerful i f all its 
properties were present in real landsurfaces. It rapidly loses usefulness i f it is diluted 
and "tweaked" to fit reality. The most likely dilution of the fractal model would seem to 
be the placing of limits on the scale range over which self-affine behaviour should be 
expected. For example, i f this scale range was large, from the resolution of part of an 
individual mountain to the entire mountain range, the fractional Brownian model would 
still be of great potential. If, on the other hand, the model was to be applied to the study 
of individual slopes, and it was found that the landsurface is only self-affine over part of 
the length of an entire slope, the model becomes almost useless. 

Another dilution of the pure fractal model suggests that surfaces be anisotropic, 
possessing different degrees of irregularity in different directions. The irregularity of 
simulated fractal surfaces should have the same self-affine behaviour in any direction. 
The fractal model might still be of descriptive use i f real surfaces had clearly 
identifiable self-affine behaviour, of differing fractal dimension, in different directions. 
However, application of the fractal model would immediately become much more 
complex. 

In this thesis, an attempt has been made, to find how accurately the fractal 
model fits reality at the landscape scale. As well as the reasons already given for 
focusing at the landscape scale, the availability of data at this scale, in the form of 
digital elevation models (DEMs), and the increasing interest in use and development of 
such models, has also been of consideration. DEMs have, therefore, been the data 
source used in this study. 

The creation of a DEM of drumlins in the vale of Eden, illustrates the 
difficulties involved in accurately modelling the form of the landsurface. The problems 
encountered in producing the Appleby DEM should serve as a warning to those about to 
use DEMs, particularly those which have come into their hands from a "black box" 
production method, even when the DEMs are produced by a national mapping agency. 
Much work must still be done in the areas of producing DEMs and also assessing their 
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accuracy. It seems that manually interpolated DEMs, still seem to be more accurate than 
those interpolated using semi-automated or automated techniques. This is because of 
the very complicated decision making process which a human interpolator can bring to 
bear on elevation data. A process which has not been sufficiently well mimicked by 
computer algorithms. 

This project required that many of the existing approaches to assessing the 
quality of DEM data were applied in this study. Indeed, it is error in DEMs and the lack 
of rigorously defined and codable rules for delimiting individual landforms, which 
hindered attempts to automatically extract sets of landforms. The inclusion of manually 
produced DEMs in this study serves to reassure that data error had no detrimental effect 
on the other methods used. Manually interpolated DEMs are seen to yield comparable 
results with the poorer quality semi-automatically derived models. 

Several methods designed to test real landsurfaces for the properties found in 
fractal Brownian surfaces have been considered. The best, and most flexible of these 
has proved to be the variogram method. There are several reasons supporting this 
conclusion. To start with, it would seem sensible when dealing with a phenomenon 
normally considered at a topological dimension of 2, to study it using a 2-dimensional 
technique. Mandelbrot (1975,1982) claims that a contour, profile or subarea, of a 
particular surface will exhibit the same self- affine behaviour as the surface when 
considered as a whole. However, i f these assertions are to be verified, it is useful to 
have an overall picture of the surfaces fractal behaviour, against which to consider more 
limited measurements. 

There are also certain disadvantages of using one- dimensional techniques. 
Automated, one dimensional, algorithms based on the Richardson (1961) walking 
dividers technique are usually based on only a small number of step lengths and line 
length measurements. Methods of analyzing the linearity of the resulting log-log output 
are, therefore, susceptible to deviations of the data from a straight line relationship. 
Furthermore, the variogram method and the rescaled range analysis method allow a 
larger scale range to be considered. Finding sufficient long contours, on which to run a 
walking dividers program, over a sensible range of altitudes for the area is another 
limiting factor, and one which does not lend itself easily to automation. Furthermore, 
the work of Goodchild (1982) makes it necessary, as he found that fractal dimension 
seems to vary with altitude. This amounts to the first inconsistency between the fractal 
model and reality. 

Although, a two dimensional walking dividers method has been proposed, it has 
definite theoretical failing. Clarke's 1986 method is not a true two-dimensional 
extension of any walking dividers algorithm, and to perform a tiling of a DEM, in a true 
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walking dividers fashion would be an extremely complicated procedure. I f achieved , 
such a method would still face the disadvantage of a small number of tile area and 
surface area measurements. 

The variogram method also proved to be more use than the rescaled range 
method. The extension of the approach taken to analyse geophysical time series, 
rescaled range analysis, to consider an "unravelled" landsurface is not a true two-
dimensional technique. This was emphasised when the effect of sampling the 
landsurface was considered. The effect of some of the landforms in DEMs was not 
considered by this method at all, because of their anisotropic spatial distribution. This 
resulted in lower estimated fractal dimension values than those produced by the 
variogram method. 

The major advantage of the variogram method, as implemented in FASTFRAC, 
over all the methods considered is its flexibility. All nodes in the grid of a gridded DEM 
become potential data points. FASTFRAC allows the altitude variance to be measured 
in every possible direction within a DEM, using points which are row, column and 
diagonal neighbours. Of course, this is a very computer intensive task, but this study has 
shown that enough information can be obtained for the variogram from only a relatively 
small sample of the available data. Unlike the implementations of Mark and Aronson 
(1984) and Roy et al. (1987), the structured sampling technique used in FASTFRAC 
allows control over the proportion of any particular set of row, column or diagonal 
relationships between points being used to calculate variance. Therefore, it can be easily 
adapted to calculate altitude variance in a surface, in one particular directions. 

One further advantage of the variogram method, is that the variograms produced 
are relatively simple to relate to the surfaces from which they are calculated. The effect 
of increased distance on expected elevation difference can be visually related to the 
surfaces being studied. This is particularly true when altitude variance in individual 
directions is being considered. 

The major conclusions about the fractal nature of landsurfaces made in this 
study are, therefore, based on the analysis of surfaces using the variogram technique as 
implemented in FASTFRAC. The reliability of this technique is illustrated by its 
application to simulated fractal Brownian surfaces generated by a well defined 
algorithm. The variograms produced by FASTFRAC for these surfaces reveal that the 
approach does produce estimates of the surfaces fractal dimensions, which are close to 
the fractal dimension used to generate the surfaces. For surfaces produced by the shear 
displacement method, the estimated fractal dimensions deviate by less than 0.05 from 
the fractal dimensions input to the generation program. Differences of this order would 
be difficult to discern visually. However, the benefit of studying the residuals from the 
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regression of points in the variograms was revealed as it allowed the detection of 
curvature in the variograms. The convex curvature for variograms of simulated surfaces 
with fractal dimension of 2.5 and below, and the concave nature of variograms with 
fractal dimensions of greater than 2.5, implied that a higher density of faults than the 
500 used for these surfaces should be used to make the surfaces truly fully self-affine. 

As expected, the directional variogram results for the simulated surfaces all 
produced values of D which are close to the input value of D. The roughness in 
simulated fractional Brownian surfaces is, therefore, isotropic. 

Visual inspection of the fractal surfaces shows that simulated surfaces with low 
fractal dimensions, of around 2.0 to 2.3, bear resemblance to real landsurfaces. 
However, at fractal dimensions of greater than 2.3, the simulated surfaces look much 
rougher than any of the landsurfaces considered in this study. Beyond a basic physical 
resemblance, the quantitative analysis of this study reveals that the real landsurfaces 
studied are very different to the simulated fractal surfaces. 

In the cases of all 27 landsurfaces considered in this study, the variograms 
produced from them show that reality does not exhibit the self-affine behaviour 
suggested by the fractal Brownian model. Variograms for the entire surfaces, for larger 
distance ranges, all reveal some form of non-linear structure, except for the high 
resolution DEMs which are of small sections of drainage basins. These high resolution 
DEMs all yield low fractal dimensions. In general, the breaks in slope in the variograms 
appear from approximately 1km to about 2km. Often there are several local maxima and 
minima of altitude variance. The structure in all of these variograms can be related 
back to the forms seen to be present in the landsurfaces. Most often the breaks of slope 
are caused by valley spacing. Altitude variance increases as points from different 
relative positions within slopes are considered. However, altitude variance begins to 
decrease when points froni the same relative positions within slopes are considered. 
This behaviour shows up as near periodic maxima and minima of variance in the 
variograms. On the basis of this evidence, the fractal model breaks down in reality when 
distance ranges greater than the average slope length in an area are considered. 

Investigation of residuals, from regression of the shorter distance parts of the 
variograms, reveal convex curvature in most of the variograms. As was explained in the 
case of the Wind River DEM, if the relationship between log (altitude variance) and log 
(distance) is convex, then least- squares regression of the longer distance section of the 
variogram would produce a higher fractal dimension than the portion of the variogram 
for the smaller distances. Therefore, due to the different grid mesh sizes of DEMs and 
the convex shape of the variograms, the descriptive power of the parameter D become 
severely limited. As a result, the order given to the landsurfaces in this study, although 
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approximately correct when considering surface roughness, is not purely an order of 
surfaces on the basis of their roughness. 

The convexity found at the smaller distance end of the variograms may also 
indicate the lack of fit of the fractal Brownian model to landsurfaces at the scale of 
single slopes. The convexity is an effect of sampling an increasing number of points 
which do not reside on the same slope facet as each other, with increasing distance, and 
as a result, the rate of increase of variance decreases with distance. This argument is 
strengthened by the fact that the most linear variograms are produced from DEMs 
covering only simple slopes: Glaisdale; Wheeldale; Netherhearth Sike; and Booro 
Borotou. These surfaces also yield the lowest fractal dimensions. Indeed, even smooth 
surfaces sampled at a finite grid interval will produce a fractal dimension slightly above 
2.0. Therefore, this study indicates that the fractal model probably breaks down at the 
scale of individual slopes. However, a further study of high resolution slope profiles, or 
DEMs like those mentioned above, would need to be carried out to investigate this more 
fully. 

The variograms for separate directions within DEMs echo the results for entire 
landsurfaces. In particular the structure in the variograms for different directions 
succeeds in tying the forms of the variograms more closely to the landforms being 
sampled across in the DEM. Therefore, as well as lending weight to the argument that 
landsurfaces are not self-affine, certainly over scale ranges beyond the length of 
individual slopes, the directional variograms expose the anisotropic nature of surface 
roughness in real landsurfaces. This is often seen to be the result of the drainage 
network of the surface. Valleys are sampled across in all directions, except in the 
direction parallel to the valley sides. The surface is roughest when considered in the 
direction perpendicular to the valley sides. In general, therefore, the fractal Brownian 
model is not realistic in its assumptions of an isotropic distribution of irregularity. 

The final failure of the fractal Brownian model to fit reality, revealed by the 
variogram analysis, is the way in which very different variograms are produced for 
subareas of any particular DEM. In a true fractal surface, the same self- affine 
relationship would hold for the entire area. This is clearly not the case for the DEMs 
used in this study. Even in areas of fairly homogeneous topography, such as in the 
Alarta and Devon DEMs, a wide range of variograms and, as a result, fractal 
dimensions, were produced. Once again most of the variograms revealed structure 
which could be related to the forms found in the subareas of the DEMs. 

All the results from applying the adaptations of the FASTFRAC variogram 
approach, indicate that the fractal Brownian model does not describe landsurfaces in 
reality. Its assumptions about self-affine behaviour do not hold for the surfaces studied 
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here. These results are in some conflict with the conclusions of Mark and Aronson 
(1984) and Roy et al. (1987). Both of these studies suggest that variograms produced by 
their methods show linear segments followed by a break of slope, which is in turn 
followed by another linear segment. Mark and Aronson (1984) have visually assessed 
where these breaks of slope are, and have then fitted straight lines to the segments, 
calculating fractal dimension in the process. On the basis of this rather subjective 
process, they suggest that certain processes, acting in a certain scale range, have 
produced a self-affine surface over that scale range. This, they suggest, is responsible 
for the first linear segment of their variograms. They then suggest that the next linear 
segment might correspond to a different set of processes, and that beyond a certain scale 
threshold the landsurface has a different fractal dimension. In the case of their 
variograms this fractal dimension is higher than that of the first segment. Roy et al. 
(1987) reach a similar conclusion, although they do show that areas of different 
topography, within subareas of a DEM, can produce different fractal dimensions. 

The evidence of this study would suggest that variograms for landsurfaces are 
generally convex up to a break of slope associated with average slope length, or the 
position of a dominant hill or valley in the area. Variograms have been produced in this 
study that have steep gradients, followed by a break of slope, and then have a more 
gende slope, all of which is eventually followed by another steep segment. In these 
cases the breaks of slope can be associated with the length of slopes which are visible in 
the landsurfaces, but which are not dominant enough during the sampling of altitude 
variance to produce full turning points in the variograms. On the basis of this evidence, 
it must be suggested that the segments found in the variograms of Mark and Aronson, 
either, result from the mistaken division of a convex variogram into segments, or, more 
probably, that the segments are produced by slopes that are not quite dominant enough 
on the sample of altitude variance to produce turning points. 

Culling (1986), and Culling and Datko (1986), although using a different 
analysis technique, suggest that landsurfaces may behave in a self-affine way, with a 
discernible fractal dimension, up to a certain scale, and then, beyond that scale, they 
have another fractal dimension. They suggest that the scale at which this change in 
fractal dimension occurs, is the scale at which the drainage network begins to effect the 
altitude distribution. The variogram results of this study would agree the drainage 
network does, definitely, cause a break down of the pure fractal model at a certain 
distance. However, the evidence of this study suggests that at scales beyond this, there 
is no further scaling behaviour of the landsurface, certainly not over distance of 
kilometres, and probably not at distances of tens of kilometres. The evidence also 
suggests that the landsurface may not be fractal at the level of individual slopes. 
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The assertion that the drainage network has a dominant effect on the variograms 
of the landsurfaces studied, is supported by the study of the geomorphometry of those 
landsurfaces. By calculating the derivatives of the altitudes in a DEM, associated with 
slope and the rate of change of slope, and from them calculating moment statistics, a 
detailed picture of the geomorphometry of an area can be revealed. When the 
landsurfaces in this study were analysed, they were placed into loose groupings, on the 
basis of their geomorphometry. The landforms responsible for the characteristic 
geomorphometry of these surface groupings, were often characteristics of the dominant 
processes which formed the areas. This was certainly the case for glaciated mountain 
areas, where glacial cirque and trough forms resulted in such characteristics as 
positively skewed profile and plan convexity. The geomorphometry of these areas are 
dominated by the pattern of glaciers that, at one stage, covered them. Of course, it is 
this pattern which is now used by the drainage network. The high positive skew of 
gradient, low to negative skew of profile convexity, and negative skew of plan 
convexity, found in the surfaces grouped together as "dissected lowland or upland 
areas", are obviously a result of the form of the drainage network. 

These sets of geomorphometric indicators, identifying areas dominated by 
certain processes are not found in simulated fractional Brownian surfaces. Instead, most 
of their geomorphometric parameters vary strictly in accordance with their fractal 
dimensions. Certainly, geomorphometric indicators of roughness, such as mean and 
standard deviation of gradient, and standard deviation of profile and plan convexity, are 
all highly correlated with fractal dimension. 

In these fractal surfaces, large scale irregularities are always accompanied by the 
appropriate number of smaller irregularities, depending on their fractal dimension. In 
the case of real landsurfaces, fractal dimension may be a function of the convexity of 
the variogram from which it is calculated. The convexity in that variogram is a result of 
the dominant roughness in the surface. This is often associated with the drainage 
network, but may also depend upon the presents of certain landforms. These 
roughnesses are not accompanied by other, suitably sized features at smaller and larger 
scales, which would produce the self-affine behaviour present in fractal surfaces. As a 
result, there is little correlation between the existing geomorphometric parameters 
calculated, and the fractal dimensions calculated, for the 27 landsurfaces in this study. 

Unfortunately, due to the difficulties of extracting individual landforms from 
DEM representations of landsurfaces using automated techniques, this thesis has not 
succeeded in relating the size distribution of sets of landforms to the breaks of slope 
detected in the variograms. It can be seen from the distances at which the breaks of 
slope occur on the variograms that individual slopes which may be associated with 
these landforms produce the deviations in the fractal model. However, only in the 



Chapter 9: Conclusions 209 

limited study of the sand dunes of Le Porge, was any sign of a limited size distribution 
of landforms detected. Given the size of the grid mesh in relation to the altitude and 
spacing of the landforms, the evidence collected cannot be considered as being 
particularly strong. More detailed gathering of geomorphometric information about 
individual sets of landforms is required before a definite link between the scale-bound 
size distributions of landforms, and the break down in the scale-free fractal model, can 
be made. 

This study has shown that although real landsurfaces bear some visual 
resemblance to fractal Brownian surfaces, they seem to possess none of their statistical 
characteristics. True self-affine behaviour is not conclusively detected over any scale 
range, in any landsurface studied in this thesis. Furthermore, the irregularity 
encountered in real landsurfaces is not isotropic. This evidence implies that a fractal 
dimension, calculated from such a landsurface, and used as a geomorphometric 
parameter contains little, if any, useful information about that surface. As a result it can 
not be related to other existing geomorphometric parameters. 

On the basis of these conclusions, the fractal Brownian model is of little use to 
the explanation of landsurface form in geomorphology. Fractal surfaces could be used 
as a stochastic input to a model which requires surfaces with certain known properties. 
However, any such surface could not be considered to be realistic in terms of 
landsurfaces found in reality. Methods for detecting fractal behaviour do provide 
information about the structure of form in the areas being studied. However, similar 
information has been collected previously, using older methods. For example, the 
concepts of grain and texture of topography are not new. This sort of information is 
traditionally linked to physically based, deterministic models, of processes which are 
more easily related to the structure of landsurface form. Therefore, it would seem that 
the stochastic approach of the fractal Brownian model, cannot better the traditional 
scale-bound approach of studying landforms in relation to physical processes. 
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Appendix 1: Important Fortran '77 Programs Listing 

DEM.FOR 

C PROGRAM TO FIND POINTS WHERE CONTOURS CUT XY GRID AND DIAGONALS 
C SET DIMENSIONS OF ARRAYS TO HOLD PROFILES X, Y AND DIAGONALS 

AFTER 
C ROTATION THROUGH 45 DEGREES 

REAL PROX(30000,3),PROY(30000,3),SMALL(30000,3) 
1 ,PRODX(30000,3),PRODY(30000,3),OMAX,ONAX,OMAY,ONAY, 
2 YT1,YT2,XT1,XT2,SS1(30000,3),SS2(30000,3),DEM(160,100), 
3 SS3{30000,3) , SS4(30000, 3),GR,W1(30000,3),W2 (30000,3), 
4 W3(30000,3),W4(30000,3),HT1(160,100),HT2(160,100),HT3(160,100), 
5 
HT4(160,100),WT1(160,100),WT2(160,100),WT3(160,100),WT4(160,100) 

C REAL*8 EO2BAF,XN(500),YN(500),WN(500),KN(500),WORKl(500), 
C 1 WORK2(4,500),CN(500),SS 

INTEGER XXI,XX2,YY1,YY2,ICOR(1000) 
C I N I T I A L I S E COUNTS FOR EACH CONTOUR INTERSECTION WITH PROFILES 

IC=1 
ICC=1 
IS=1 
ISS=1 

C GR-ID SIZE AND VALUE FOR P I , A ANGLE IN RADIANS 
B=2 .0 
GR=SQRT(B) 
PI=3.1415926 
A=PI*0.25 
E=PI*1.75 

C 
C READ IN FIRST POINT FROM CO-ORDINATE F I L E 
C 

READ(1,2)X1,Y1,Z1 
2 FORMAT(F10.6,1X,F10.6,1X,F3.0) 

C 
C CALCULATE VALUES FOR ROTATED CO-ORDINATE 

XR1=(Xl*COS(A))-(Y1*SIN(A)) 
YR1= (Yl*COS (A) ) + (X1*SIN (A) ) 

C CHECK TO SEE I F POINT L I E S ON DIAGONALS IN Y DIRECTION 
IF(AMOD(XRl,GR).EQ.0)THEN 

PRODY(IS,l)=XRl 
PRODY(IS,2)=YRl 
PRODY(IS,3)=Zl 
IS=IS+1 

END I F 
C CHECK TO SEE I F POINT L I E S ON DIAGONALS IN X DIRECTION 

IF(AMOD(YR1,GR).EQ.0)THEN 
PRODXdSS, 1)=YR1 
PRODX(ISS,2)=XRl 
PRODXdSS, 3) =Z1 
ISS=ISS+1 

END I F 
C DEALING WITH UNTRANSFORMED CO-ORDINATES 

XX1=INT(XI) 
YY1=INT(Y1) 

C CHECK TO SEE I F POINT L I E S ON X*N AXIS 
IF(XXI.EQ.XI)THEN 

PROY(IC,1)=X1 
PROY(IC,2)=Yl 
PROY(IC,3)=Zl 
IC=IC+1 

END I F 
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C CHECK TO SEE I F POINT L I E S ON Y*N AXIS 
IF(YY1.EQ.Y1)THEN 

PROX(ICC,l)=Yl 
PROX(ICC,2)=Xl 
PROX(ICC,3)=Zl 
ICC=ICC+1 

END I F 
C 
C BEGINS TO CHECK POINTS BESIDE EACH OTHER FOR BEING ON OPPOSITE SIDES 
C OF GRID AND DIAGONAL AXES 
C 

FIN=999999 
DO 1 1=1,FIN 

C READ NEXT POINT 
READ(1,2,END=3)X2,Y2,Z2 

C ROTATE POINT BY PI/4 RADIANS 
XR2=(X2*COS(A))-(Y2*SIN(A)) 
YR2=(Y2*COS(A))+(X2*SIN(A)) 

C CHECK TO SEE I F POINT L I E S ON X DIAGONAL 
IF(AMOD(XR2,GR).EQ.0)THEN 

PRODY(IS,1)=XR2 
PRODY(IS,2)=YR2 
PRODY(IS,3)=Z2 
IS=IS+1 

END I F 
C CHECK TO SEE I F POINT L I E S ON Y DIAGONAL 

IF(AMOD(YR2,GR).EQ.0)THEN 
PRODX(ISS,1)=YR2 
PRODX(ISS,2)=XR2 
PRODX(ISS,3)=Z2 
ISS=ISS+1 

END I F 
C CHECK TO SEE I F POINT L I E S ON X*N AXIS 

XX2=INT(X2) 
YY2=INT (Y2)' 
IF(XX2.EQ.X2)THEN 

PROY(IC,l)=X2 
PROY(IC,2)=Y2 
PROY(IC,3)=Z2 
IC=IC+1 

END I F 
C CHECK TO SEE I F POINT L I E S ON Y*N AXIS 

IF(YY2.EQ.Y2)THEN 
PROX(ICC,l)=Y2 
PROX(ICC,2)=X2 
PROX(ICC, 3)=Z2 
ICC=ICC+1 

END I F 
C CHECKS TO SEE I F ST I L L ON SAME CONTOUR 

DIFX=ABS(X1-X2) 
DIFY=ABS(Y1-Y2) 
IF(Zl.EQ.Z2.AND.DIFY.LT.2.AND.DIFX.LT.2)THEN 

C TESTS FOR POINTS ON OPPOSITE SIDE OF X*N GRID AXIS 
TESTX=XX2-XX1 
IF(TESTX.EQ.1.OR.TESTX.EQ.-1)THEN 

IF(TESTX.EQ.1)THEN 
X=XX2 

ELSE 
X=XX1 

END I F 
B=(Y2-Y1)/(X2-X1) 
Y=(B*(X-X1))+Yl 
PROY(IC,l)=X 
PROY(IC,2)=Y 
PROY(IC,3)=Zl 
IC=IC+1 
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END I F 
C TESTS FOR POINTS ON OPPOSITE SIDE OF Y*N GRID AXIS 

TESTY=YY2- YY1 
IF(TESTY.EQ.1.OR.TESTY.EQ.-1)THEN 

IF(TESTY.EQ.1)THEN 
Y=YY2 

ELSE 
Y=YY1 

END I F 
B=(X2-X1)/(Y2-Y1) 
X=(B*(Y-Y1))+Xl 
PROX(ICC,l)=Y 
PROX(ICC,2)=X 
PROX(ICC,3)=Zl 
ICC=ICC+1 

END I F 
C DEAL WITH INTERSECTED DIAGONALS 
C FIND MAX X 

IF(XR1.LT.0.AND.XR2.LT.0)THEN 
IF(XR1.GT.XR2)THEN 
OMAX=XR2 
ONAX=XRl 
YT1=YR2 
YT2=YR1 

ELSE 
OMAX=XRl 
ONAX=XR2 
YT1=YR1 
YT2=YR2 

END I F 
RESX=INT(OMAX/GR) 
TXl=OMAX-ONAX 
TESX=RESX*GR 
IF(TESX.LT.ONAX.AND.TX1.NE.0)THEN 

X=TESX 
B=(YT1-YT2)/(OMAX-ONAX) 
Y=(B*(X-OMAX))+YT1 
PRODY(IS,1)=X 
PRODY(IS,2)=Y 
PRODY(IS,3)=Zl 
IS=IS+1 

END I F 
ELSE 

IF(XR1.GT.XR2)THEN 
OMAX=XRl 
ONAX=XR2 
YT1=YR1 
YT2=YR2 

ELSE 
OMAX=XR2 
ONAX=XRl 
YT1=YR2 
YT2=YR1 

END I F 
C TEST TO SEE I F POINTS ARE ON OPPOSITE SIDES OF A DIAGONAL (X) 

RESX=INT(OMAX/GR) 
TXl=OMAX-ONAX 
TESX=RESX*GR 
IF(TESX.GT.ONAX.AND.TX1.NE.0)THEN 

X=TESX 
B=(YT1-YT2)/(OMAX-ONAX) 
Y=(B*(X-OMAX))+YT1 
PRODY(IS, 1)=X 
PRODY(IS,2)=Y 
PRODY(IS,3)=Z1 
IS=IS+1 
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END I F 
END I F 
IF(YR1.GT.YR2)THEN 
OMAY=YRl 
ONAY=YR2 
XT1=XR1 
XT2=XR2 

ELSE 
OMAY=YR2 
0NAY=YR1 
XT1=XR2 
XT2=XR1 

END I F 
RESY=INT(OMAY/GR) 
TYl=OMAY-ONAY 
TESY=RESY*GR 
IF(TESY.GT.ONAY.AND.TY1.NE.0)THEN 

Y=TESY 
B=(XT1-XT2)/(OMAY-ONAY) 
X=(B*(Y-OMAY))+XT1 
PRODX(ISS,1)=Y 
PR0DX(ISS,2)=X 
PRODX(ISS,3)=Zl 
ISS=ISS+1 

END I F 
C FINISHED CALCULATING INTERSECTIONS 

END I F 
C POINT 2 BECOMES NEW POINT 1 

XX1=XX2 
YY1=YY2 
X1=X2 
Y1=Y2 
Z1=Z2 
XR1=XR2 
YR1=YR2 

1 CONTINUE 
3 IC=IC-1 

ICC=ICC-1 
IS=IS-1 
ISS=ISS-1 
PRINT * , I C , ' ',ICC,' ' , I S , ' ',ISS 
CALL SORT(IC,PROY) 
CALL SORT(ICC,PROX) 
CALL SORT(IS,PRODY) 
CALL SORT(ISS,PRODX) 
DO 7 K=l,4 

ICO=0 
IF(K.EQ.1)THEN 

KC=IC-1 
CALL SMSORT(KC,PROY,ICO,KO,1.0,SS1,W1) 

C IF(KO.EQ.-l)GOTO 103 
DO 8 1=1,KO 

SSI(1,1)=NINT(SSI(1,1) ) 
SS1(I,2)=NINT(SS1(1,2) ) 
W1(I,1)=SS1(I,1) 
W1(I,1)=SS1(I,2) 

8 CONTINUE 
PRINT *,'HELLO' 
CALL DEMS(KO,SSI,Wl,HT1,WT1) 
PRINT *,'HELLO* 

END I F 
C 

IF(K.EQ.2)THEN 
KC=ICC-1 
CALL SMSORT(KC,PROX,ICO,KO,1.0,SS2,W2) 
DO 15 1=1,KO 
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TEX=SS2(1,2) 
TEY=SS2(I,1) 
SS2(I,1)=NINT(TEX) 
SS2(I,2)=NINT(TEY) 
W2(I,1)=NINT(TEX) 
W2(I,2)=NINT(TEY) 

15 CONTINUE 
CALL DEMS(KO,SS2,W2,HT2,WT2) 

END I F 
IF(K.EQ.3)THEN 

KC=ISS-1 
CALL SMSORT(KC,PRODX,ICO,KO,GR,SS3,W3) 
DO 19 1=1,KO 

ROTX=(SS3(1,2)*COS(E))-(SS3(I,1)*SIN(E)) 
ROTY=(SS3(1,2)*SIN(E))+(SS3(I,1)*COS(E)) 
SS3(I,1)=NINT(ROTX) 
SS3(I,2)=NINT(ROTY) 
W3(I,1)=SS3(I,1) 
W3 (I,2)=SS3(1,2) 

19 CONTINUE 
CALL DEMS(KO,SS3,W3,HT3,WT3) 

END I F 
IF(K.EQ.4)THEN 

KC=IS-1 
CALL SMSORT(KC,PRODY,ICO,KO,GR,SS4,W4) 
DO 21 1=1,KO 

ROTX=(SS4(I,1)*COS(E))-(SS4(1,2)*SIN(E)) 
ROTY=(SS4(1,1)*SIN(E))+(SS4(1,2)*COS(E)) 
SS4(1,1)=NINT(ROTX) 
SS4(1,2)=NINT(ROTY) 
W4(I,1)=SS4(I,1) 
W4 (I,2)=SS4(1,2) 

21 CONTINUE 
CALL DEMS(KO,SS4,W4,HT4,WT4) 

END I F 
7 CONTINUE 

60 F0RMAT(F11.6,1X,F11.6,1X,F11.6) 
C 
C 
C CALCULATE FINAL DEM FROM ALTITUDES AND WEIGHTS 
C 

DO 5 1=1,82 
DO 12 J=l,53 

ALT=0 
WGT=0 
IF(HT1(I,J).NE.-999)THEN 

ALT=HT1(I,J)*WT1(I, J) 
WGT=WT1(I,J) 

END I F 
IF(HT2(I,J).NE.-999)THEN 

ALT=(HT2(I,J)*WT2(I,J))+ALT 
WGT=WT2 ( I , J) +WGT 

END I F 
I F ( H T 3 ( I , J ) .NE.-999)THEN 

ALT=(HT3(I,J)*WT3(I,J))+ALT 
WGT=WT3(I,J)+WGT 

END I F 
IF(HT4(I,J).NE.-999)THEN 

ALT=(HT4(I,J)*WT4(I,J))+ALT 
WGT=WT4(I,J)+WGT 

END I F 
IF(ALT.EQ.0)ALT=-999 
IF(WGT.EQ.0)WGT=1 
DEM(I,J)=ALT/WGT 

12 CONTINUE 
5 CONTINUE 



Appendix 1: Important Fortran '77 Programs Listing 215 

DO 4 1=1,82 
WRITE(8, 6) (DEM(I,J),J=l,53) 

C WRITE(3,6)(HT2(I,J),J=l,53) 
C WRITE(4,6)(HT3(I,J),J=l,53) 
C WRITE(5,6)(HT4(I,J),J=1,53) 
C WRITE(8,6)(HT3(I,J),J=l,53) 
C WRITE(9,6)(WT3(I,J),J=l,53) 
C WRITE (10, 6) (HT4 ( I , J ) , J = l , 53) 
C WRITE(11,6)(WT4(I,J),J=l,53) 

4 CONTINUE 
6 FORMAT(20F9.2/20F9.2/20F9.2/20F9.2/20F9.2) 

103 STOP 
END 

C END OF MAIN PROGRAM BLOCK 
C 
C SUBROUTINES 
C 

SUBROUTINE SORT(ICOUNT,DIST) 
REAL RRA,RRB,DIST(30000,3) ,RRC 
INTEGER IR,ICOUNT 
L=ICOUNT/2+l 
IR=ICOUNT 

10 CONTINUE 
IF(L.GT.1)THEN 

L=L-1 
RRA=DIST(L,1) 
RRB=DIST(L,2) 
RRC=DIST(L,3) 

ELSE 
RRA=DIST(IR,1) 
RRB=DIST(IR,2) 
RRC=DIST(IR,3) 
DIST(IR,1)=DIST(1,1) 
DIST(IR,2)=DIST(1,2) 
DIST(IR,3)=DIST(1, 3) 
IR=IR-1 
IF(IR.EQ.1)THEN 

DIST(1,1)=RRA 
DIST(1,2)=RRB 
DIST(1,3)=RRC 
RETURN 

END I F 
END I F 
I=L 
J=L+L 

20 IF(J . L E . I R ) T H E N 
IF(J.LT.IR)THEN 

I F ( D I S T ( J , 1 ) . L T . D I S T ( J + l , 1 ) ) J = J + 1 
END I F 
IF(RRA.LT.DIST(J, 1) ) THEN 

D I S T ( I , 1 ) = D I S T ( J , 1) 
D I S T ( I , 2 ) = D I S T ( J , 2 ) 
D I S T ( I , 3 ) = D I S T ( J , 3 ) 
I = J 
J=J+J 

ELSE 
J=IR+1 

END I F 
GO TO 20 
END I F 
DIST(I,1)=RRA 
DIST(I,2)=RRB 
DIST(I,3)=RRC 

GO TO 10 
END 
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SUBROUTINE SMSORT(KC,PROF,ICO,KO,DIS,SVAL,W) 
REAL PROF(30000,3),SMALL(30000,3),SVAL(30000,3) 

1 ,W(30000,3) 
REAL*8 XN(500),YN(500),KN(500),WORKl(600), 

1 CN(500),X,S 
INTEGER M,NCAP7,IFAIL,NCA,IFA,ICO, 

1 LWRK,MM 
KO=0 
KI=0 
DO 9 1=1,KC 

IF(PROF(1,1).EQ.PROF(1+1,1))THEN 
IF(ICO.EQ.0)THEN 

I F L = I 
ICO=ICO+l 
SMALL(ICO,l)=PROF(I,2) 
SMALL(ICO,2)=PROF(I,1) 
SMALL(ICO,3)=PROF(1,3) 

END I F 
ICO=ICO+l 
SMALL(ICO,1)=PROF(1+1,2) 
SMALL(ICO,2)=PROF(1+1,1) 
SMALL(ICO,3)=PROF(1+1,3) 

ELSE 
IF(ICO.GT.3)THEN 

CALL SORT(ICO,SMALL) 
ICOL=ICO+IFL-l 
KK=0 
DO 11 J=IFL,ICOL 

J J = J - ( I F L - 1 ) 
PROF(J,1)=SMALL(JJ,2) 
PROF(J,2)=SMALL(JJ,1) 
PROF(J,3)=SMALL(JJ, 3) 
IF(SMALL(JJ,1).NE.SMALL(JJ-1,1))THEN 
KK=KK+1 
XN(KK)=SMALL(JJ,1) 
YN (KK) = SMALL ( J J , 3) 

END I F 
11 CONTINUE 

M=KK 
NCAP7=M+4 
LWRK=6*M+16 
IFAIL=*0 
CALL E01BAF(M,XN,YN,KN,CN,NCAP7,WORK1,LWRK,IFAIL) 
DO 17 L=l,999 

IF(L.EQ.1)THEN 
U=KN(4) 
UU=AMOD(U,DIS) 
IF(UU.EQ.0.0)THEN 

X=KN(4) 
c xx=x 

ELSE 
X=(INT(KN(4)/DIS)*DIS)+DIS 

c XX=X 
END I F 
DO 22 N=l,999 

IF(XN(N).EQ.X)THEN 
XFL=N 
WT=1/SQRT(DIS) 
GOTO 23 

END I F 
IF(XN(N).GT.X)THEN 
XFL=N-1 
WA=1/SQRT(X-XN(XFL)) 
WB=1/SQRT(XN(N)-X) 
WT=WA+WB 
GOTO 23 
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END I F 
22 CONTINUE 
23 CONTINUE 

ELSE 
X=X+DIS 
DO 24 N=XFL,999 

IF(XN(N).EQ.X)THEN 
XFL=N 
WT=1/SQRT(DIS) 
GOTO 25 

END I F 
IF(XN(N).GT.X)THEN 
XFL=N-1 
WA=1/SQRT(X-XN(XFL)) 
WB=1/SQRT(XN(N)-X) 
WT=WA+WB 
GOTO 25 

END I F 
24 CONTINUE 
25 CONTINUE 

END I F 
IF(X.GT.KN(NCAP7-3).OR.X.LT.KN(4))GOTO 30 
IFA=0 
CALL E02BBF(NCAP7,KN,CN,X, S,IFA) 

C CHECK SPLINE ESTIMATE TO CHECK FOR REALISM 
IF(YN(XFL).EQ.YN(N))THEN 

V=YN(N)-S 
I F (V.GT . 4) S=YN (N) -4 
I F (V.LT .-4) S=YN (N)+4 

END I F 
W=YN(XFL) -S 
V=YN(N)-S 
IF(YN(XFL).GT.YN(N))THEN 

IF(W.LT.-4)S=YN(XFL)+4 
IF(V.GT.4)S=YN(N)-4 

END I F 
IF(YN(XFL).LT.YN(N))THEN 

I F (W.GT. 4) S=YN (XFL) -4 
IF(V.LT.-4)S=YN(N)+4 

END I F 

C WRITE(5,*(F11.6,1X,F11.6)')YN(XFL),YN(N),S 
C IF(S.LT.100.OR.S.GT.200)THEN 
C IF(KI.EQ.1)THEN 
C PRINT *,XN(XFL),' ' ,XN(N),' ',S,' ',KO,X 
C DO 101 11=1,KK 
C WRITE(5,'(F11.6,1X,F11.6)')XN(II),YN(II) 
C DO 104 JJ=1,999 
C IF(XX.GT.XN(II).AND.XX.LT.XN(II+1))THEN 
C WRITE(5,*(F11.6) 1 )XX 
C XX=XX+DIS 
C ELSE 
C GOTO 105 
C END I F 
CI04 CONTINUE 
CI05 CONTINUE 
CI01 CONTINUE 
C KO=-l 
C GOTO 102 

• C ELSE 
C KI=KI+1 
C END I F 
C END I F 

KO=KO+l 
SVAL(KO,1)=PROF(J,1) 
SVAL(KO,2)=X 



Appendix 1: Important Fortran '77 Programs Listing 218 

51 
17 
30 

SVAL(KO,3)=S 
W(KO,l)=PROF(J,l) 
W(KO,2)=X 
W(KO,3)=WT 
FORMAT(4F12.3,IX,16) 

CONTINUE 
CONTINUE 

END I F 
ICO=0 
END I F 

9 CONTINUE 
102 END 

C 
SUBROUTINE DEMS(KO,SSS,W,HT,WT) 
REAL SSS(30000,3),W(30000,3),HT(160,100),WT(160,100) 
INTEGER KO 
DO 16 1=1,82 

DO 18 J=l,53 

16 CONTINUE 
DO 26 K=l,KO 

LY=SSS(K,2)-40 
LO=(82-LY)+l 
I=LY-(LY-LO) 
J=SSS(K,l)-47 
IF(I.GE.1.AND.I.LE.82.AND.J.GE.l.AND.J.LE.53)THEN 

HT(I, J)=SSS(K, 3) 
WT(I, J)=W(K,3) 

END I F 
26 CONTINUE 

END 

18 

HT(I,J)=-999 
W T ( I , J ) = - l 

CONTINUE 
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FASTFRAC 

c ********************************************* 
C PROGRAM TO CALCULATE LOG MEAN HEIGHT VARIANCE 
C FOR DIFFERENT DISTANCES 
C ********************************************* 
C 
C COLIN McCLEAN 1987 
C 
Q ****************** 
C MAIN PROGRAM BLOCK 
Q ****************** 
C 
Q ***************************** 
C DECLARATION OF VARIABLE TYPES 
Q ***************************** 

INTEGER GR,COL,ROW,L,K,HCOUNT,NCOL,NROW, 1 NR,NC,CD(2000),NCO,NRO,INC,INCA,FIN 
1 ,FINI,START,STAR 
REAL HT(500,500),DIST(2000),HV(2000), 
1 CONV,GS 
CHARACTER FMT*107 
CHARACTER*80 TITLE 

Q ********** 
C INPUT 
Q ********** 
C READ IN TITLE FOR GIMMS PLOTS 

READ(5, ' (A80) 1 ) T I T L E 
C 
C READ IN CONVERSION FACTOR 

READ(5,3000)CONV 
3000 FORMAT(F7.4) 

C 
C READ IN NUMBER OF ROWS IN MATRIX 

READ(5,3100)NROW 
3100 FORMAT(13) 

C 
C READ IN NUMBER OF COLUMNS IN MATRIX 

READ(5,3100)NCOL 
C 
C READ GRID SIZE 

READ(5,3100) GR 
READ(5,3100)IAG 
READ(5,3100)IAG 

C 
C READ IN DATA FORMAT 

READ(5,4000)FMT 
4000 FORMAT(A100) 

C 
C READ IN ALTITUDE MATRIX 

DO 500 1=1,NROW 
READ(10,FMT)(HT(I,J),J=l,NCOL) 

500 CONTINUE 
C 
C CONVERT TO METRES 

IF(CONV.NE.l)THEN 
DO 1500 1=1,NROW 

DO 1550 J=l,NCOL 
HT(I,J)=HT(I,J)*CONV 

1550 CONTINUE 
1500 CONTINUE 

END I F 
C **************************** 
C I N I T I A L I S E CONTROL VARIABLES 
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c **************************** 
NR=NROW-10. 
NC=NCOL-10 
NCO=NCOL/2 
NRO=NROW/2 
HCOUNT=0 
INC=(NC-5)/10 
START=INC+5 
INCA=(NR-5)/10 
STAR=INCA+5 
LUP=1 
KUP=1 

Q ******************************************* 
C INITIATE LOOP CONTROLLING SMALLER DISTANCES 
C ******************************************* 

DO 550 L=1,INC,LUP 
IF(L.EQ.5)LUP=2 
GS=GR*L 

C START CALCULATING HEIGHT DIFFERENCES 
COL=NCOL-L 
ROW=NROW-L 
CALL ABSOL(NROW,COL,HT,L,NCOL,ROW,HCOUNT,HV,CD 

1 ,NCO,NRO,NR) 
C CALCULATES HORIZONTAL DISTANCES 

DIST(HCOUNT)=ALOG10(GS) 
C INITIATE LOOP CONTROLLING DIAGONAL RELATIONSHIP 

DO 800 K=1,INCA,KUP 
IF(K.EQ.5)KUP=2 
CALL DIAGO(NROW,COL,NCOL,L, HT,HV,HCOUNT 

1 ,DIST,GR,GS,CD,K,NCO) 
800 CONTINUE 

DO 2500 K=STAR,NR,INCA 
CALL DIAGO(NROW,COL,NCOL,L, HT,HV,HCOUNT 

1 ,DIST,GR,GS,CD,K,NCO) 
2500 CONTINUE 
550 CONTINUE 

Q ****************************************** 
C INITIATE LOOP CONTROLLING LARGER DISTANCES 
Q ****************************************** 

DO 6000 L=START,NC,INC 
GS=GR*L 

C START CALCULATING HEIGHT DIFFERENCES 
COL=NCOL-L 
ROW=NROW-L 
CALL ABSOL(NROW,COL,HT,L,NCOL,ROW,HCOUNT,HV,CD 

1 ,NCO,NRO,NR) 
DIST(HCOUNT)=ALOG10(GS) 
DO 6100 K=l,5 

CALL DIAGO(NROW,COL,NCOL,L,HT,HV,HCOUNT 
1 ,DIST,GR,GS,CD,K,NCO) 

6100 CONTINUE 
DO 6200 K=STAR,NR,INCA 

CALL DIAGO(NROW,COL,NCOL,L,HT,HV,HCOUNT 
1 ,DIST,GR,GS,CD,K,NCO) 

6200 CONTINUE 
6000 CONTINUE 

Q ****** 
C OUTPUT 
Q ****** 
C SORT HV AND DIST BY DIST 

CALL SORT(HCOUNT,DIST,HV,CD) 
CALL AVWRIT(HCOUNT,DIST,HV,CD,TITLE) 
STOP 
END 

Q ************************* 
C END OF MAIN PROGRAM BLOCK 
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c ************************* 
c 
Q **************************************************** 

SUBROUTINE ABSOL(NROW,COL,HT,L,NCOL,ROW,HCOUNT,HV,CD 
1 ,NCO,NRO,NR) 

Q **************************************************** 
REAL HT(500,500),HR,HV(2000) 
INTEGER CM,COL,NROW,NCOL,L,ROW,HCOUNT,CD(2000) 
INTEGER INCB,INCC,NCO,NRO,NR 
HCOUNT=HCOUNT+1 
HR=0 
CM=0 
INCB=3 
INCC=3 
IF(L.GE.NCO)INCB=1 
DO 600 1=1,NROW 
DO 650 J=l,COL,INCB 

IF(HT(I,J).NE.0.AND.HT(I,J+L).NE.0)THEN 
HR= ( (HT ( I , J)-HT ( I , J+L) ) **2)+HR 
CM=CM+1 
END I F 

650 CONTINUE 
600 CONTINUE 

IF(L.GT.NR)GO TO 6300 
IF(L.GE.NRO)INCC=1 
DO 700 J=l,NCOL 
DO 750 1=1,ROW,INCC 

IF(HT(I,J).NE.0.0.AND.HT(I+L,J).NE.0.0)THEN 
HR=((HT(I,J)-HT(I+L,J))**2)+HR 
CM=CM+1 
END I F 

750 CONTINUE 
700 CONTINUE 

6300 HV(HCOUNT)=ALOG10(HR/CM) 
CD(HCOUNT)=CM 
RETURN 
END 

Q ********************************************* 
SUBROUTINE DIAGO(NROW,COL,NCOL,L,HT,HV,HCOUNT 

1 ,DIST,GR,GS,CD,K,NCO) 
Q ********************************************* 

REAL HT(500,500),HV(2000),HR,DIST(2000),DDIS,GS 
INTEGER CM,DIA,COL,GR,HCOUNT,NROW,NCOL,L,CD(2000) 
INTEGER K,INCD,NCO,JJ 
HCOUNT=HCOUNT+1 
DDIS=0 
DDIS=SQRT((GS**2)+((GR*K)**2) ) 
DIST(HCOUNT)=ALOG10(DDIS) 
DIA=NROW-K 
HR=0 
CM=0 
INCD=3 
IF(L.GE.NCO)INCD=1 
DO 850 1=1,DIA 
DO 900 J=l,COL,INCD 

JJ=NCOL-(L+(J-l)) 
IF(HT(I,J).NE.0.0.AND.HT(I+K,J+L).NE.0.0)THEN 

HR=((HT(I,J)-HT(I+K, J+L))**2)+HR 
CM=CM+1 

END I F 
IF(HT(I,NCOL+l-J).NE.O.0.AND.HT(I+K,JJ).NE.0.0)THEN 

HR=((HT(I,NCOL+l-J)-HT(I+K,JJ))**2)+HR 
CM=CM+1 

END I F 
900 CONTINUE 
850 CONTINUE 
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HV(HCOUNT)=ALOG10(HR/CM) 
CD(HCOUNT)=CM 

800 CONTINUE 
RETURN 
END 

Q ********************************** 
SUBROUTINE SORT(HCOUNT,DIST,HV,CD) 

Q ********************************** 
REAL RRA,RRB,DIST(2000),HV<2000) 
INTEGER IR,HCOUNT, RRC,CD(2000) 
L=HCOUNT/2+l 
IR=HCOUNT 

10 CONTINUE 
IF(L.GT.1)THEN 

L=L-1 
RRA=DIST(L) 
RRB=HV(L) 
RRC=CD(L) 

ELSE 
RRA=DIST(IR) 
RRB=HV(IR) 
RRC=CD(IR) 
DIST(IR)=DIST(1) 
HV(IR) =HV(1) 
CD(IR)=CD(1) 
IR=IR-1 
IF(IR.EQ.1)THEN 

DIST(1)=RRA 
HV(1)=RRB 
CD(1)=RRC 
RETURN 

END I F 
END I F 
I=L 
J=L+L 

20 IF(J . L E . I R ) T H E N 
IF(J.LT.IR)THEN 

I F ( D I S T ( J ) . L T . D I S T ( J + 1 ) ) J = J + 1 
END I F 
IF(RRA.LT.DIST(J))THEN 

D I S T ( I ) = D I S T ( J ) 
HV(I)=HV(J) 
CD(I)=CD(J) 
I = J 
J=J+J 

ELSE 
J=IR+1 

END I F 
GO TO 20 
END I F 
DIST(I)=RRA 
HV(I)=RRB 
CD(I)=RRC 

GO TO 10 
END 

Q ************************************ 
SUBROUTINE AVWRIT(HCOUNT,DIST,HV,CD,TITLE) 

C ************************************ 
REAL DIST(2000),HV(2000),DUM,BVAR,SVAR 
INTEGER HCOUN,COUNT,HCOUNT,CD(2 0 0 0),DUMB,KO 
CHARACTER*80 TITLE 
HCOUN=HCOUNT-1 
DUM=0 
DUMB=0 
BVAR=0.0 
SVAR=100.0 
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KO=0 
COUNT=0 
DO 60 I=l,HCOUN 

IF(DIST(I).NE.DIST(1+1))THEN 
IF(DUM.NE.0)THEN 
COUNT=COUNT+l 
HV(I)=(DUM+HV(I))/COUNT 
CD(I)=DUMB+CD(I) 

END I F 
COUNT=0 
DUM=0 
DUMB=0 
SVAR=AMIN1(SVAR,HV(I)) 
BVAR=AMAX1(BVAR,HV(I)) 
KO=KO+l 
WRITE(13,1000)HV(I),DIST(I),CD(I) 

ELSE 
DUM=DUM+HV(I) 
DUMB=DUMB+CD(I) 
COUNT=COUNT+l 

END I F 
60 CONTINUE 

1000 F0RMAT(1X,F12.4,1X,F12.4,I8) 
WRITE(13,1000)HV(HCOUNT),DIST(HCOUNT),CD(HCOUNT) 
BVAR=AMAX1(BVAR,HV(HCOUNT)) 
SVAR=AMIN1(SVAR,HV(HCOUNT)) 
KO=KO+l 
WRITE(15,1045)KO 

1045 FORMAT('*FILEIN DATAFILE ZONES=',13,1,VARS=2') 
WRITE(15,1010)SVAR,BVAR 

1010 FORMAT(IX,'YMIN=',F7.4, ',YMAX=',F7.4, ',YUNITS=0.5 *) 
WRITE(15,1020)DIST(1),DIST(HCOUNT) 

1020 FORMAT(IX,*XMIN=',F7.4,',XMAX=',F7.4,',XUNITS=0.2') 
WRITE(15,1030)TITLE 

1030 FORMAT(IX,'TITLE=',A50) 
RETURN 
END 
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RS.FOR 

C PROGRAM TO PERFORM R/S ANALYSIS OF LANDSURFACES 
REAL HT(201,201),OUT(50000),MAS,MIS,MEAN,RSJ(50000) 
1 ,RSD(50000),DIST(50000),DIF(50000) 
INTEGER X,Y,FIN1,FIN2,TEST,START,STAR,FINI,FIN,GR 
CHARACTER FMT*25,TITLE*50 

C READ DATA IN 
C 

READ(5,'(A50)')TITLE 
C PRINT *,'ENTER NO. OF COLUMNS:" 

READ(5, ' (13) ')NCOL 
C PRINT *,'ENTER NO. OF ROWS:' 

READ(5,'(13) 1)NROW 
READ(5, ' (13) 1 ) GR 

C PRINT *,'ENTER FORMAT STATEMENT IN BRACKETS:' 
READ(5,'(A25)')FMT 
DO 1 1=1,NROW 

READ(1,FMT)(HT<I,J),J=l,NCOL) 
DO 2 J=l,NCOL 

2 CONTINUE 
1 CONTINUE 

C 
C s p i r a l through dem making one s t r i n g of a l t i t u d e s 
C 

LEN=NROW*NCOL 
FINl=NCOL 
FIN2=NROW 
TEST=0 
Y=l 
X=0 
DO 3 1=1,LEN 

IF(TEST.EQ.0)THEN 
X=X+1 
OUT(I)=HT(Y,X) 
IF(X.EQ.FIND THEN 

FINl=NCOL-(FIN1-1) 
TEST=1 

END I F 
ELSE 

IF(TEST.EQ.1)THEN 
Y=Y+1 
OUT(I)=HT(Y,X) 
IF(FIN2.EQ.Y)THEN 

FIN2=(NROW+l)-(FIN2-1) 
TEST=2 

END I F 
ELSE 

IF(TEST.EQ.2)THEN 
X=X-1 
OUT(I)=HT(Y,X) 
IF(FINI.EQ.X)THEN 

FIN1=NC0L-FIN1 
TEST=3 

END I F 
ELSE 

IF(TEST.EQ.3)THEN 
Y=Y-1 
OUT(I)=HT(Y,X) 
IF(FIN2.EQ.Y)THEN 

FIN2=NROW-(FIN2-1) 
TEST=0 

END I F 
END I F 
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END I F 
END I F 

END I F 
3 CONTINUE 

PRINT *,LEN 
C 
C CALCULATE INCREMENTS 
C 

DO 10 1=2,LEN-1 
D I F ( 1 - 1 ) = O U T ( I ) - O U T ( 1 - 1 ) 

10 CONTINUE 
C 
C R/S ANALYSIS 
C 

I H A L F = ( L E N - 1 ) / 2 
KCC=0 
DO 4 1=1,4 

I F ( I . EQ . 1) THEN 
START=5 
F I N I = 1 0 
INC=1 

E L S E 
S TART=FINI*2 
F I N I = F I N I * 1 0 
INC=INC*10 

END I F 
DO 5 J = S T A R T , F I N I , I N C 

I F ( J . G T . I H A L F ) G O T O 100 
KCC=KCC+1 
N C A L S = ( L E N - 1 ) / J 
KC=0 
RS=0 
RS2=0 
DO 6 K=1,NCALS 

KC=KC+1 
I F ( K . E Q . 1 ) T H E N 

STAR=1 
F I N = J 

E L S E 
STAR=FIN+1 
F I N = F I N + J 

END I F 
SUM=0 
SUM2=0 
DO 7 L=STAR,FIN 

SUM=DIF(L)+SUM 
SUM2=(DIF(L)**2)+SUM2 

7 CONTINUE 
MEAN=SUM/J 
TERM1=J*SUM2 
TERM2=SUM*SUM 

C W R I T E ( 3 , 1 ( F 2 0 . 5 , 1 X , F 2 0 . 5 ) ' ) T E R M 1 , T E R M 2 
IF(TERM1.GT.TERM2)THEN 
S D = S Q R T ( ( ( J * S U M 2 ) - ( S U M * S U M ) ) / ( J * ( J - l ) ) ) 
MAS=0 
MIS=99999 
CSUM=0 
DO 8 M=STAR,FIN 

CSUM=(DIF(M)-MEAN)+CSUM 
MAS=AMAX1(MAS,CSUM) 
MIS=AMIN1(MIS,CSUM) 

8 CONTINUE 
RS=((MAS-MIS)/SD)+RS 
RS2=((MAS-MIS)**2)+RS2 

END I F 
6 CONTINUE 
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RMA=0 
RMI=9999 . 
RSJ(KCC)=ALOG10(RS/NCALS) 
R S D ( K C C ) = S Q R T ( ( ( N C A L S * R S 2 ) - ( R S * * 2 ) ) / ( N C A L S * ( N C A L S - 1 ) ) ) 
0=J*GR 
DIST(KCC)=ALOG10(O) 

5 CONTINUE 
4 CONTINUE 
C 
C OUTPUT 
C 
100 CONTINUE 

DO 9 1=1,KCC 
W R I T E ( 2 , • ( 1 X , F 1 2 . 4 , 1 X , F 1 2 . 4 ) ' ) R S J ( I ) , D I S T ( I ) 

9 CONTINUE 
W R I T E ( 3 , 1 0 4 5 ) K C C 

1045 F O R M A T ( ' * F I L E I N D A T A F I L E ZONES=',12, 1,VARS=2') 
W R I T E ( 3 , 1 0 1 0 ) R S J ( 1 ) , R S J ( K C C ) 

1010 FORMAT(IX,'YMIN=',F7.4,',YMAX=',F7.4,',YUNITS=0.5') 
W R I T E ( 3 , 1 0 2 0 ) D I S T ( 1 ) , D I S T ( K C C ) 

1020 FORMAT(IX,'XMIN= 1,F7.4,',XMAX=',F7.4,',XUINTS=0.2') 
W R I T E ( 3 , 1 0 3 0 ) T I T L E 

1030 FORMAT ( I X , ' T I T L E 5 5 ' , A50) 
STOP 
END 
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FRACSIM.FOR 

C PROGRAM TO SIMULATE FRACTAL BROWNIAN 
C SURFACES BY SHEAR DISPLACEMENT METHOD 

REAL H T ( 1 0 0 , 1 0 0 ) 
REAL*8 GO5DAF,GO5DDF 
REAL X Y ( 4 ) 
P I = 2 2 / 7 
DO 1 1=1,100 

DO 2 J = l , 1 0 0 
H T ( I , J ) = 0 

2 CONTINUE 
1 CONTINUE 

CALL G05CCF 
DO 3 K = l , 5 0 0 

DO 4 1=1,4 
X Y ( I ) = G 0 5 D A F ( 1 . 0 , 1 0 0 . 0 ) 

4 CONTINUE 
I F ( X Y ( 1 ) . N E . X Y ( 2 ) . A N D . X Y ( 3 ) . N E . X Y ( 4 ) ) T H E N 
ALT=G05DDF(0.0,1.00) 
B = ( X Y ( 1 ) - X Y ( 2 ) ) / ( X Y ( 3 ) - X Y ( 4 ) ) 
A = X Y ( 1 ) - ( X Y ( 3 ) * B ) 
H=0.1 
DO 5 1=1,100 

DO 6 J = l , 1 0 0 
Y=A+(B*J) 
X = ( I - A ) / B 
D I S T 4 = Y - I 
I F ( D I S T 4 . G T . 0 ) T H E N 

D I S T 1 = A B S ( D I S T 4 ) 
D I S T 2 = A B S ( X - J ) 
D I S T 3 = S Q R T ( ( D I S T 2 * * 2 ) + ( D I S T 1 * * 2 ) ) 
ANG=DIST1/DIST3 
DIST=DIST2*ANG 
H T ( I , J ) = H T ( I , J ) + ( A L T * < - ( D I S T * * ( H - 0 . 5 ) ) ) ) 

E L S E 
I F ( D I S T 4 . L T . 0 ) T H E N 

D I S T 1 = A B S ( D I S T 4 ) 
D I S T 2 = A B S ( X - J ) 
D I S T 3 = S Q R T ( ( D I S T 2 * * 2 ) + ( D I S T 1 * * 2 ) ) 
ANG=DIST1/DIST3 
DIST=DIST2*ANG 
H T ( I , J ) = H T ( I , J ) + ( A L T * ( D I S T * * ( H - 0 . 5 ) ) ) 

END I F 
END I F 

6 CONTINUE 
5 CONTINUE 

END I F 
3 CONTINUE 

DO 7 1=1,100 
W R I T E ( 1 , ' ( 5 0 F 1 2 . 3 ) ' ) ( H T ( I , J ) , J = l , 1 0 0 ) 

7 CONTINUE 
STOP 
END 
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Appendix 2: Variograms Calculated from Fractal 
Surfaces 
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s+ * **** 

FRACTAL 1.0: ALT.VARIANCE AGAINST DISTANCE 
LOG HEIGHT VARIANCE 

6.80 \ ^ 
6.60 
6.40 
6.20-j 
6.001 
5.80 
5.60 
5.40 
5.20 
5.00 
4.80 
4.601 
4.40 
4.20 
4.00 
3.80 
3.60: 
3.40-i 
3.20: 

«•»• 

+ 

— i 1 1 1 1 1 1 1 1 1 — 

1.7 1.9 2 2.3 2.5 2.7 2.9 3 3.3 3.5 3.7 
LOG DISTANCE 

FRACTAL 1.0: ALT.VARIANCE AGAINST DISTANCE 
LOG HEIGHT VARIANCE 

5.2 

5.0 

4.8 

4.6 

4.4 

4.2 

4.0 

3.8 

3.6 

3.4 

3.2 i 

* 

1 1 1 I : 1 

1.7 1.9 2 2.3 2.5 2.7 
LOG DISTANCE 

FRAC1.0: RESCALED RANGE Vs. DISTANCE 
LOG R/S 

1.8 A 

1.3 

0.8 

0.3 
0.7 1.7 2.7 

LOG DISTANCE 
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FRACTAL 0.9: ALT.VARIANCE AGAINST DISTANCE 
LOG HEIGHT VARIANCE 

6.00 
5.80 
5.60 
5.40 
5.20 
5.00-3 
4.80 i 
4.60 
4.40 J 
4.201 
4.00 
3.80 
3.60 
3.40 
3.201 
3.00 

1.7 1.9 2 2.3 2.5 2.7 2.9 3 3.3 3.5 3.7 
LOG DISTANCE 

FRACTAL 0.9: ALT.VARIANCE AGAINST DISTANCE 
LOG HEIGHT VARIANCE 

4.70 • 

4.50-
4.40- ^ 
4.30-
4.201 
4.10 
4.00 
3.90 
3.80 
3.70 
3.60 
3.50 
3.40 
3.30 H 
3.201 
3.10 
3.00 
2.90 

1 1 1 1 1 — 

1.7 1.9 2 2.3 2.5 2.7 
LOG DISTANCE 

FRAC0.9: RESCALED RANGE Vs. DISTANCE 
LOG R/S 

1.8 

1.3 

0.8 

0.3 
0.7 1.7 2.7 

LOG DISTANCE 
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FRACTAL 0.8: ALT.VARIANCE AGAINST DISTANCE 
LOG HEIGHT VARIANCE 

5.20 
5.00 
4.80-j 
4.60 
4.40 
4.20 
4.00 
3.80 
3.601 
3.40 
3.201 
3.00 

* 

1.7 1.9 2 2.3 2.5 2.7 2.9 3 3.3 3.5 3.7 
LOG DISTANCE 

FRACTAL 0.8: ALT.VARIANCE AGAINST DISTANCE 
LOG HEIGHT VARIANCE 

4.60-
4.50-
4.40 
4.30 
4.20 
4.10 
4.00 
3.90 
3.80-
3.70 
3.60-
3.50 • 
3.40: 

3.30 
3.20-1 
3.10 
3.00 
2.90 1 I 1 1 1 

1.7 1.9 2 2.3 2.5 2.7 
L06 DISTANCE 

FRAC0.8: RESCALED RANGE Vs. DISTANCE 
LOG R/S • * 

* * * ̂  * 

1.2 

0.7 

0.2 1 r 
0.7 1.7 2.7 

LOG DISTANCE 
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r * ****** 

FRACTAL 0.7: ALT.VARIANCE AGAINST DISTANCE 
LOG HEIGHT VARIANCE 

5.60: 
5.40 
5.20 
5.00 
4.80 
4.60 
4.40 
4.20 
4.00 
3.80 
3.601 
3.40 
3.20 
3.00 H 

i i i i i i — i — i — i — i — 

1.7 1.9 2 2.3 2.5 2.7 2.9 3 3.3 3.5 3.7 
LOG DISTANCE 

FRACTAL 0.7: ALT.VARIANCE AGAINST DISTANCE 
LOG HEIGHT VARIANCE 

4.40 
4.30 
4.20 H 

4.10 
4.00 
3.90 
3.80 
3.701 
3.60 
3.50 
3.40 
3.30 
3.20-
3.10-
3.00-
2.90 — i 1 1 1 1 — 

1.7 1.9 2 2.3 2.5 2.7 
LOG DISTANCE 

FRAC0.7: RESCALED RANGE Vs. DISTANCE 
LOG R/S 

1.2 

0 . 7 H 

0 . 2 
0 . 7 1 .7 2 . 7 

LOG D ISTANCE 
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FRACTAL 0.6: ALT.VARIANCE AGAINST DISTANCE 
LOG HEIGHT VARIANCE 
2.8-
2.7-
2.6-
2.5-

r • 
* + 

2A] ~ * 
2.3 
2.2 
2.1 
2.0 
1.9 
1.8 
1.7 
1.6 
1.5 
1.4-1 
1.3 
1.2H 

i.H 
1.7 1.9 2 2.3 2.5 2.7 2.9 3 3.3 3.5 3.7 

LOG DISTANCE 
FRACTAL 0.6: ALT.VARIANCE AGAINST DISTANCE 

LOG HEIGHT VARIANCE 
2.3 

2.2 

2.1 

2.0 

19-1 

1.8 

1.7 

1.6 

1.5 

1.4-

1.3-

1.2-

1.1 

1.7 1.9 2 2.3 2.5 2.7 
LOG DISTANCE 

FRAC0.6: RESCALED RANGE Vs. DISTANCE 
LOG R/S 

1.2 

0.7 

0 . 2 
0 . 7 1.7 2 . 7 

LOG DISTANCE 
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FRACTAL 0.5: ALT.VARIANCE AGAINST DISTANCE 
LOG HEIGHT VARIANCE 

• ****** 3.10 
3.00 
2.90 
2.80 
2.70 

* 2.50 
2.40 
2.30 -j 
2.20 
2.10 
200 \ VJ 

1.90 
1.80 
1.70 
1.60 
1.50 
1.40 
1.30 
1.20 
1.10 

• • 

1.7 1.9 2 2.3 2.5 2.7 2.9 3 3.3 3.5 3.7 
LOG.DISTANCE 

FRACTAL 0.5: ALT.VARIANCE AGAINST DISTANCE 
LOG HEIGHT VAAIANCE 
2.2-, 

2.1 

2.0 

1.9 

1.8 

1.7 

1.6-

1.5-

1.4-

1.3 

1.2 

1.1 

+•* 

*** 

1 1 1 r— 1 — 

1.7 1.9 2 2.3 2.5 2.7 
LOG DISTANCE 

FRAC0.5: RESCALED RANGE Vs. DISTANCE 
LOG R/S 

+ 

1.2 -I 

0.7 

0.2 
0.7 1.7 2.7 

LOG DISTANCE 
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* + • • 

FRACTAL 0.4: ALT.VARIANCE AGAINST DISTANCE 
LOG HEIGHT VARIANCE 

3.40-
3.30 i 
3.20 
3.10 
3.00 
2.90 H 
2.80 ] 
2.70 
2.60 
2.50 
2.40-
2.30-
2.20-
2.10 
2.00 
1.90 
1.80 
1.70 H 
1.601 
1.50 
1.40 
1.30 

• 
• * 

* 

1.7 1.9 2 2.3 2.5 2.7 2.9 3 3.3 3.5 3.7 
LOG DISTANCE 

FRACTAL 0.4: ALT.VARIANCE AGAINST DISTANCE 
LOG HEIGHT VARIANCE 

2.30 

2.20 

2.10 

2.00 

1.90 

1.80 

1.70 

1.60 

1.50-1 

1.40 

1.30 

+ 

1 1 1 1 1 — 

1.7 1.9 2 2.3 2.5 2.7 
LOG DISTANCE 

FRAC0.4: RESCALED RANGE Vs. DISTANCE 
LOG R/S 

1.2 H 

0.7 

0.2 

t + + + * + 

0.7 1.7 2.7 
LOG DISTANCE 
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FRACTAL 0.3: ALT.VARIANCE AGAINST DISTANCE 
LOG HEIGHT VARIANCE 

2.60-
2.50 

2.40 

2.30-1 

2.20 

2.I0H 

2.00 

1.90 

1.80-1 

1.70 

1.60-) 

1.50 

*+,* 

** 

+ 

i i 1 1 1 1 i 1 1 1 — 

1.7 1.9 2 2.3 2.5 2.7 2.9 3 3.3 3.5 3.7 
LOG DISTANCE 

FRACTAL 0.3: ALT.VARIANCE AGAINST DISTANCE 
LOG HEIGHT VARIANCE 

. + + 

2.15 
2.10-j 
205-1 tS 
2.00 i 
1.95 
1.90 
1.85H 
1.80-j 
1.75 
1.70 
1.65 
1.60-
1.55-
1.50 
1.45 

1.7 1.9 2 2.3 2.5 2.7 
LOG DISTANCE 

FRAC0.3: RESCALED RANGE Vs. DISTANCE 
LOG R/S 

1.2 H 

0.7 

0.2 
0.7 1.7 2.7 

LOG DISTANCE 
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FRACTAL 0.2: ALT.VARIANCE AGAINST DISTANCE 
LOG HEIGHT VARIANCE 

•V 2.50 
2.45 
2.40 
2.35 
2 301 
2 25^ } 

2.00 
1.95 
1.90 
1.85 
1.80 
1.75 
1.701 
1.65 
1.60 

* * 
2.201 
2.15 
2.10 
2.051 

1.7 1.9 2 2.3 2.5 2.7 2.9 3 3.3 3.5 3.7 
LOG DISTANCE 

FRACTAL 0.2: ALT.VARIANCE AGAINST DISTANCE 
LOG HEIGHT VARIANCE 

2.10 

2.00 

1.90 

.80 4 

1.701 

.60 

• 

1 1 1 1 1 — 

1.7 1.9 2 2.3 2.5 2.7 
LOG DISTANCE 

FRAC0.2: RESCALED RANGE Vs. DISTANCE 
LOG R/S 

0.7 -\ 

0.2 
0.7 1.7 2.7 

LOG DISTANCE 
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FRACTAL 0.1: ALT.VARIANCE AGAINST DISTANCE 
LOG HEIGHT VARIANCE 

* :**** 
* •* 

2.3 

2.2 

2.H 

2.0 

I • • 

t* t ** * 
+ * * * 

• * 

1.9-1 1 1 1 1 r -

1.7 1.9 2 2.3 2.5 2.7 2.9 3 3.3 3.5 3.7 
LOG DISTANCE 

FRACTAL 0.1: ALT.VARIANCE AGAINST DISTANCE 
LOG HEIGHT VARIANCE 

•f 
2.20-1 

2.I5H 

2.10H 

2.05 H 

2.00 H 

1.95H 

• 
+ + 

.90 
1.7 1.9 2 2.3 2.5 2.7 

LOG DISTANCE 
F R A C O . l : RESCALED RANGE Vs. DISTANCE 

LOG R/S 

0.7 H 

0.2 
0.7 1.7 2.7 

LOG DISTANCE 
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FRACTAL 0.0 ALT.VARIANCE AGAINST DISTANCE 
LOG HEIGHT VARIANCE 

2.7 

2.6 

2.5 

t * * 

; • * ++ 

* t ** *• 

• • • > • • . V 
* •» 

2. 4 1 1 1 1 1 1 1 1 1 r 
1.7 1.9 2 2.3 2.5 2.7 2.9 3 3.3 3.5 3.7 

LOG DISTANCE 
FRACTAL 0.0 ALT.VARIANCE AGAINST DISTANCE 

LOG HEIGHT VARIANCE 

2.55 

••• 

2.50 

2.45 

+ • 
++ + 

1.7 1.9 2 2.3 2.5 2.7 
LOG DISTANCE 

FRACO.O: RESCALED RANGE Vs. DISTANCE 
LOG R/S 

1.2 

0.7 H 

0.2 
0.7 1.7 2.7 

LOG DISTANCE 
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