
Durham E-Theses

Simulation of packet and cell-based communication

networks

Earnshaw, Richard William

How to cite:

Earnshaw, Richard William (1992) Simulation of packet and cell-based communication networks,
Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/5998/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5998/
 http://etheses.dur.ac.uk/5998/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

SIMULATION OF PACKET- AND CELL-BASED
COMMUNICATION NETWORKS

Richard William Earnshaw,

B.Sc. (Dunelm)

A THESIS SUBMITTED IN PARTIAL

FULFILMENT OF THE REQUIREMENTS

OF THE COUNCIL OF THE UNIVER­

SITY OF DURHAM FOR THE DE­

GREE OF DOCTOR OF PHILOSOPHY

(PH.D.).

APRIL 1992

Declaration

I hereby declare that this thesis is a record of work undertaken by myself, that

it has not been the subject of any previous application for a degree, and that all

sources of information have been duly acknowledged.

In the course of this research the following was included in an approved pro­

gramme of advanced studies:

• A working visit to the Performance Engineering Division of British Telecom

Research Laboratories, Martleshitm Heath, Ipswich, August-September 1989.

R. W. Earnshaw, April1992

© Copyright 1992, R. W. Earnshaw

The copyright of this thesis rests with the author. No quotation from it should

be published without his written consent, and information derived from it should

be acknowledged.

11

Abstract

This thesis investigates, using simulation techniques, the practical aspects of im­

plementing a novel mobility protocol on the emerging Broadband Integrated Ser­

vices Digital Network standard.

The increasing expansion of telecommunications networks has meant that the

demand for simulation has increased rapidly in recent years; but conventional sim­

ulators are slow and developments in the communications field are outstripping

the ability of sequential uni-processor simulators. Newer techniques using dis­

tributed simulation on a multi-processor network are investigated in an attempt

to make a cell-level simulation of a non-trivial B.-I.S.D.N. network feasible.

The current state of development of the Asynchronous Transfer Mode stan­

dard, which will be used to implement a B.-I.S.D.N., is reviewed and simulation

studies of the Orwell Slotted Ring protocol were made in an attempt to devise a

simpler model for use in the main simulator.

The mobility protocol, which uses a footprinting technique to simplify hand­

offs by distributing information about a connexion to surrounding base stations,

was implemented on the simulator and found to be functional after a few 'special

case' scenarios had been catered for.

lll

Acknowledgements

I would like to acknowledge the invaluable help of my supervisor, Professor Philip

Mars for his encouragement and suggestions during my work on this project; also

to Steve Johnson, of British Telecom Research Labs (B.T.R.L.), who was my

industrial supervisor. I am indebted to many people at B.T.R.L. for numerous

detailed technical discussions on some of the finer points of performance engineer­

ing in telecommunications networks: notable amongst these are John Adams, who

was involved in the early work on the Orwell protocol and who is a proposer of

the mobility protocol discussed in chapter 6; and Garry \iValley who spent sev­

eral hours explaining the details of the Orwell protocol when both it and A.T.M.

were still closed books to me. Thanks must also go to my colleagues and friends

within the Telecommunication Networks and Music Technology research groups,

whose humour and companionship have made my stay in Durham so enjoyable;

also to the numerous technicians within the school who have kept the computers

running. Finally, thanks must go to my parents and family, without whose love

and encouragement this work would never have been possible.

The following trademarks are acknowledged: B.T. and British Telecom are

trademarks of British Telecommunications p.l.c.; IMS and occam are trademarks

of Inmos Limited; l.B.M. and P.C./ A.T. are a trademarks of International Busi­

ness Machines Corp.; 3L is a trademark of 3L Limited; VAX is a trademark of

Digital Equipment Corp.; Sun is a trademark of Sun Microsystems Corp.; Xerox

and Ethernet are trademarks of Xerox Corp.; and Sim++ is a tradem~rk of Jade

Simulations International Corp.

IV

To my parents

All the business of war, and indeed all the business of life, is to

endeavour to find out what you don't know by what you do; that's what

I called {guessing what was at the other side of the hill'.

Duke of Wellington (1769-1852), Croker papers.

v

Contents

Abstract

Acknowledgements

1 Introduction

1.1 Outline of the Thesis

2 Simulation Techniques

2.1 Distributed Simulation Objects

2.1.1 Conservative Synchronization Techniques .

2.1.2 Optimistic Synchronization Techniques

2.1.3 Hybrid Techniques

2.2 Concurrent Simulation ..

2.3 Other Parallelizing Techniques .

2.3.1 Replicated Experiments

2.4 Event List Management

2.4.1 Improved Pending-event Set Manipulation

2.4.2 Distributing the Pending-event Set

3 A Distributed Simulator for a Transputer Network

3.1 The Transputer Network

3.2 The Multiplexor ...

3.2.1 Flow Control

3.2.2 Implementation of Flow Control .

VI

Ill

IV

1

3

5

6

8

13

17

18

19

20

20

21

22

25

26

27

29

33

3.2.3 Livelock A voidance 36

3.3 The Packetizer 37

3.4 The Synchronization Mechanism . 38

3.4.1 Characteristics of A.T.M. Networks 38

3.4.2 Implementing the Available Look-ahead 39

3.4.3 Local Simulation Time . . 40

3.4.4 Managing Multiple Links . 42

3.5 The Event Manager 45

3.5.1 Event List Management 45

3.5.2 Synchronizing the Event Managers 45

3.6 Configuring the Simulator 46

3.6.1 The User Interface 47

3.6.2 Booting the Simulator 50

3.6.3 Loading the Simulation Parameter File 51

3.7 Performance Analysis of the Simulator .. 54

4 Asynchronous Transfer Mode Techniques 62

4.1 Background 65

4.1.1 Fast Packet Switching 66

4.1.2 Asynchronous Time Division . 67

4.2 Asynchronous Transfer Mode 68

4.2.1 Cell Structure . 69

4.2.2 Routeing 71

4.2.3 The A.T.M. Adaptation Layer . 72

4.3 Enabling Technology 72

4.3.1 Fibre Optics . 73

4.3.2 Switching Technology . 73

4.4 Traffic and Services 76

4.4.1 Connexion Control 77

4.4.2 Charging and Policing 78

Vll

5 Orwell Model Simplifications for Network Level Simulation 79

5.1 Overview of the Orwell Protocol . 81

5.1.1 Ring Actions 81

5.1.2 Slot Format 83

5.1.3 The Orwell Torus 83

5.1.4 Calculation of the d-value 84

5.2 First model ... 86

5.2.1 Algorithm 86

5.2.2 Results. 88

5.3 Second Model . 97

5.3.1 Algorithm 97

5.3.2 Results. 98

5.4 Third Model . . 98

5.4.1 Algorithm 98

5.4.2 Results. 104

5.5 Summary ... 108

6 Support of Mobility using A.T.M. Techniques 109

6.1 The Local Network 111

6.2 The Basic Protocol 113

6.2.1 The Time-critical Hand-off . 114

6.2.2 Footprints 115

6.2.3 Implementation of Footprints using A.T.M. 117

6.2.4 The Basic Hand-off Message 120

6.2.5 Concurrent Hand-offs 121

6.2.6 Data Continuity During Hand-off 123

6.2.7 Call Establishment 125

6.2.8 Call Disconnexion . 127

6.3 Simulator Modifications 127

6.3.1 Communication Between Traffic Generators 127

Vlll

6.3.2 Multicasting Using the Orwell Protocol . 129

6.4 A Practical Implementation of the Protocol 129

6.4.1 Loss of Hand-off Signal Due to Jitter 130

6.4.2 Duplicate Acknowledgements Generated in Response to

Hand-off . 131

6.4.3 Remote's Handoff-request Arrives Before Acknowledge-

ment of Local Hand-off 132

6.4.4 Arrival of Handoff-request for a Session Just Deleted 133

6.5 Summary

7 Conclusions and Suggestions for Further Work

7.1 Distributed Simulation and the A.T.M. Simulator

7.2 Asynchronous Transfer Mode and Orwell

7.3 Mobility Using A.T.M. Networks

Bibliography

A Published Papers

B Source Listing of Mobile Functions

B.1 Mobile.h

B.2 Mobile.c

IX

134

136

137

140

141

144

152

153

1-53

156

List of Figures

1 A feed-forward network of processes that can deadlock during con­

servative simulation if NULL messages are not used. 9

2 Jones' algorithm for concurrent simulation. . . 19

3 The overall hierarchy of the simulation model. 26

4 High-speed transputer-based network simulator- Hardware con­

figuration. 28

5 Multiplexor processes run on each node to provide virtual links

between each task in the simulator. 29

6 A simple network that can lead to deadlock with message passing 33

7 Threads running in a multiplexor process 35

8 Detail showing the threads associated with each input-output link

pair in the multiplexor. 36

9 Simple network with explicit and implicit synchronization routes. 44

10 Petri-net showing the state transitions while determining the

download path for the simulator. 53

11 Network topology used for the simulator performance analysis runs. 55

12 Simulation time for the twelve-node network on twelve transputers. 57

13 Speed-up for the 150 Mbit/s ring carrying mixed mobile and voice

traffic.

14 Speed-up for the 600 Mbit/s ring carrying voice traffic.

15 Speed-up as a function of Null-message ratio ..

16 Null-message ratio as a function of load .

17 The layers of the A.T.M. protocol stack.

X

58

59

60

61

69

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

The cell-header format for the U.N.I.; dimensions in bits.

The cell-header format for the N.N.I.; dimensions in bits.

2-input, 2-output switching element.

Connexion graphs for the two main phases of a Starlite switch

Stages of a Starlite switch

A simple Orwell ring

Slot format

Torus of Orwell rings

Reset interval for first model and 'backed off' resets

Queue Lengths for first model and 'backed off' resets

Reset interval for first model and 'totally idle' resets .

Queue Lengths for first model and 'totally idle' resets

Reset interval for first model with neg. exponential service time

Queue Lengths for first model with neg. exponential service

Reset interval for second model .

Queue Lengths for second model .

34 Graph showing the number of cells switched as a function of the

70

71

74

75

76

82

83

84

90

91

93

94

95

96

99

100

size of reset interval for the model 101

35 Graph showing the number of cells switched as a function of the

size of reset interval for the Orwell protocol

36 Reset interval for the third model

37 Mean queue lengths for the third model .

38 CPU requirement for the third model

39 Radio cells covering a region.

40 Tree structure of a B.P.O.N ...

41 Footprint about a mobile station.

42 A footprint can normally be covered by one local-broadcast net-

102

105

106

107

110

112

116

work from the ATM trunk network. 118

43 In the worst case it should not be necessary for a footprint to be

divided between more than three local-broadcast networks. 118

XI

44 A single tree-structure is defined for the A.T.M. Multicast. 119

45 Fields in the hand-off message. 121

46 Cell duplication and loss during a handoff. 124

XII

List of Plates

I Basic hand-off message . .

II Data cells during hand-off

III Concurrent hand-offs

IV Call set-up signalling

V Loss of hand-off signal due to jitter

VI Duplicate hand-off acknowledgements due to jitter .

following page

122

122

122

122

122

122

VII Acknowledgement from old end-point over-writes correct status 122

VIII Hand-off request arrives before acknowledgement . 122

IX Hand-off request to old footprint is delayed 122

Xlll

Chapter 1

Introduction

T ELECOMMUNICATIONS HAS UNJ)ERGONE ENORMOUS GROWTH during the

last twenty years which correlates well with the development of the inte­

grated circuit and progressively cheaper electronic systems. In 1970 communica­

tion networks in Britain were almost entirely used for ordinary telephony and the

technology used was predominantly analogue; data communication was mainly

conducted using telex machines, whilst in the U.S.A. new wide-area networks,

such as ARPANET, were just being introduced. Today telephony networks, with

the exception of the local distribution networks, are almost entirely digital; and

high-speed data networks now span the world. Networks are being developed

that integrate several services onto a single connexion, making more efficient use

of the communications media. Data communication rates have increased by a

factor of about a million in this time, whilst at the same time reliability has

been improved. In the mid 1980's new services were introduced that enabled

telephone conversations to be made and received without the need to remain in

the same place; the scarce radio spectrum required for this was managed more

efficiently by dividing the covered area into small cells, each with a different set

of frequencies. The future also offers exciting developments: services that, even

now, require significantly more bandwidth than those already integrated into a

common network, will also be added to form a new Broadband Integrated Ser­

vices Digital Network (B.-I.S.D.N.); it will be sufficient to provide bandwidths

of several mega-bits per second to each customer and new services such as video

telephony and audio-quality sound will be possible.

1

1. INTRODUCTION 2

However, these new networking techniques still require a large amount of de­

velopment and testing before they can be implemented; and a major tool in

this process is simulation. Despite the increasing power of computers used for

simulation they are not keeping pace with the increases in network speed (per­

sonal computers are about one hundred times faster than they were ten years

ago, networks are between five- and ten-thousand times faster). To some extent

this difference has been compensated for by the development of better modelling

techniques and more appropriate computer languages that make expression of

the problem more straightforward, but a large amount of 'brute-force' simulation

is still needed when the system being studied is not yet fully understood. The

falling cost of computer hardware now means that the differences between the

development rates of the two technologies can be further reduced by throwing

more hardware at the problem; this takes the form of getting several processors

to co-operate in their simulation of a single task and, in the ideal situation, using

k processors to simulate a network will produce the results in 1/kth of the time.

The von Neumann bottleneck of conventional computers is avoided by simply

adding further processors each time more computing power is needed: however,

in taking this approach the processing power problem is exchanged for a data

interaction and synchronization problem.

Broadband communications is likely to form the next major growth area for

the telecommunications industry and significant sums of money are being ex­

pended on the development of the new protocols and switching techniques that

will be required. Many of the long established concepts that have been applied

to conventional technologies (such as circuit-switching and packet-switching) no

longer apply, or at best need careful re-examination. The high reliability of fibre­

optic communications will still need to be pushed to the upper limits if the per­

formance constraints that are being proposed are to be attained. The new broad­

band networks will mark an important move away from circuit switching with the

introduction of the Asynchronous Transfer Mode (A.T.M.) as the paradigm for

1.1. OUTLINE OF THE THESIS 3

broadband communications. Despite the similarities between A.T.M. and packet­

switching, existing architectures cannot be used because the required capacities

are orders of magnitude higher. New load control algorithms are being developed

and one of these is included in the Orwell Slotted Ring protocol: it gives fair dis­

tribution of the ring's resource whilst still guaranteeing adequate delay bounds

to permit the carrying of delay-sensitive services.

As already mentioned mobile communications is a relatively new service, but

it is showing phenomenal growth characteristics; indeed the rate of growth is

currently limited not by demand but by the rate at which the networks can

be expanded. Further, the technology limitations of current implementations

will shortly form a block to additional increases in network capacity: the cells

covering an area are normally made smaller in areas of high demand, so that

the frequencies in use for the radio link can be re-used more often; but there is

a lower limit to the size of a cell that is determined by interference levels from

neighbouring cells. Digital transmission techniques will help to overcome some

of the interference problems; but then the size of the cells can be reduced to the

point where the hand-off mechanism, which is used to pass a mobile from one cell

to another, will be unable to cope with the increased load.

1.1 Outline of the Thesis

The main body of the thesis can be divided into three parts, which are covered in

the following chapters. The first part covers simulation using distributed comput­

ing techniques: chapter 2 reviews some of the major techniques that have been

used to ensure that the results obtained in this manner are not corrupted by

the processing approach; while chapter 3 describes in detail a parallel simulator

that was developed for the study of B.-I.S.D.N. networks and analyses its per­

formance. The second part covers a data encapsulation and switching technique

called Asynchronous Transfer Mode (A.T.M.), which is the transmission mecha­

nism that will be used in a B.-I.S.D.N.: chapter 4 describes A.T.M. encapsulation

1.1. OUTLINE OF THE THESIS 4

and switching techniques, while chapter 5 reviews a particular switch architec­

ture, the Orwell ring, and presents simulation results from attempts to model

the ring actions in a less computationally expensive manner. The final part, in

chapter 6 covers a service that will have to be provided by a B.-I.S.D.N. network:

the A.T.M. network simulator was used to test a novel mobility protocol that

uses footprints to alleviate the signalling load presented to the network during

hand-offs between cells.

Chapter 2

Simulation Techniques

T HE DRAMATIC FALL IN THE COST OF COMPUTERS over the past ten years,

coupled with the bottlenecks associated with single processor systems, has

encouraged a new approach to computing techniques to be considered. Instead of

concentrating all the financial resources of a computer in one, ultra-fast, central

processing unit, multiple units can now be employed and made to work in paral­

lel. New programming techniques, however, are required to exploit the concepts

since a conventional programming language provides little scope for expressing

parallelism (indeed, the opposite was encouraged in that potentially parallel tasks

had to be expressed in a sequential manner).

One task that can benefit greatly from parallel-architecture computers is sim­

ulation: these often model many tasks that would operate in parallel in the real

system so there is a natural parallelism that can be exploited. Unfortunately, the

approach most commonly adopted, discrete-event simulation, is a good example

of how a programming methodology has been developed to suppress expression -------of the parallelism. The whole process is reduced to a series of events that occur

one after another; each event is assumed to occur at a definite point in time,

and the effects are transitive; multiple events that occur at the same time and

interfere with each other are not permitted. This makes discrete-event simulation

highly applicable to telecommunication networks where the system operates in

a sequential-state mode (a connexion is established, a message is sent etc.); but

is a poor approach when time-continuous systems (such as fluid flow) are being

studied.

5

2.1. DISTRIBUTED SI1\1ULATION OBJECTS 6

There have been several approaches proposed for implementing discrete-event

simulation concepts on multi-processor architectures so that the parallelism of

the problem can be exploited. By far the most common approach is to split the

objects of a simulation that would in reality run in parallel into separate tasks and

to simulate each of these in parallel. An orthogonal approach, however, is to split

up the processes involved in simulating the entire problem, such as generating

random numbers or manipulating the event set, and to run each of these on

a separate processor. It is commonly found in simulation work, particularly of

telecommunication networks, that the same problem must be simulated many

times in order to gain an insight into the statistical stability of the system; so

another approach that can be adopted is to run copies of the same simulation

with different random-number sequences on separate processes: each result will

take just as long to extract as before, but the degree of confidence in it should be

available immediately instead of several runs later.

This chapter reviews techniques that have been used in structuring the soft­

ware used for simulation on parallel machines: it concentrates most upon the

technique of distributing the simulation objects amongst several processes and

the various techniques that can be used to do this whilst maintaining the integrity

of the results. The final section considers how the event set for a simulation is

manipulated and how this is affected by distributing the simulation objects.

2.1 Distributed Simulation Objects

The aim when parallelizing a simulation using distributed simulation objects is to

extract from the system being simulated those processes that run concurrently in

the real system, and to simulate these processes in parallel. A telecommunications

netvvork is an ideal example of a system that can be parallelized in such a manner:

each node in the real network operates independently and in parallel with all of

the other nodes. Hence, if each of the nodes in the real network can be simulated

2.1. DISTRIBUTED SIMULATION OBJECTS 7

on a separate processor then significant speed-ups may be possible, particularly

for large networks.

However, by simulating a system in such a manner a processing power problem

is exchanged for a synchronization problem. In a conventional, serial, simulator

the pending-event set is maintained as a single entity: the simulation consists of

picking from the pending-event set the event with the earliest time, simulating

it, and then repeating this process until some termination condition becomes

true. As a result of simulating an event more events may be generated which

are stored in the pending-event set; since the new events are always generated

for some interval of time after the one currently in progress, the net effect is

that the simulation as a whole moves monotonically forward in time towards

its completion. When the simulation is distributed ideal speed-up is obtained

when each of the processes in the simulation is able to execute the event at the

head of its event list. Unfortunately, simply processing each of the lists entirely

independently can lead to causality errors.

In a discrete-event simulator changes in the state of the system occur at

discrete points in time (hence the name); when there are no changes in state there

are no events in the pending-event set and, hence, the simulator is very efficient

in that it only considers the times of interest, skipping over the idle periods. For

a distributed simulation it is possible for one process to have a series of events

with large jumps in time, while a neighbouring process might have a set of events

very closely spaced in time; it is then also possible for the one with events with

small time increments to issue a message to the other process and for this message

to be scheduled for execution at a time prior to the currently active event's: if

earlier receipt of this message would have altered the way in which the current,

or previous events should have been processed then a causality error is said to

have occurred; in such cases the fidelity of the simulation is compromised and

the results must be regarded as suspect. Clearly such a scenario is unacceptable

in the general case and some of the potential speed-up needs to be sacrificed in

order to guarantee the validity of the results. There has been much research in

2.1. DISTRIBUTED SIMULATION OBJECTS 8

this field and generally the results can be divided into two categories known as

conservative and optimistic synchronization.

2.1.1 Conservative Synchronization Techniques

The initial work on conservative synchronization methods was performed by

Chandy, lVIisra and Holmes [1, 2] and simultaneously by Bryant [3]. Chandy's

method uses the Communicating Sequential Processes (C.S.P.) approach devel­

oped by Hoare [4], enabling the amount of memory required to be tightly bounded.

The simulation model consists of three basic types of object: queues, which have

exactly one input and one output and pass messages with some delay function;

forks, which have a single input and two or more outputs; and merges, which

have two or more inputs and exactly one output. In addition there are sources,

which generate messages, and sinks, which absorb them: both of these are sim­

ply special cases of the queue object. The simulation can then be constructed

using these objects as building blocks. During the simulation each object has

three phases: a link accessibility phase, during which the links eligible for com­

munication are determined; a simulation phase in which messages are processed

and new messages are prepared for the links eligible for communication; and a

message exchange phase during which period the object forwards messages over

the output links that were enabled during the first stage, and receives messages

from those input links that were enabled. Both transmission and reception must

operate concurrently to avoid deadlock - all the links determined as eligible dur­

ing the first phase must complete a communication before the next iteration can

begin. Time within the simulator is fully distributed in that there is no global

clock and there is no single process that directs an object to process a message:

therefore, to avoid causality errors, a merge object can only select a message

for processing when each of its input links has a message available; each of the

messages is marked with a time by the transmitting object and hence the merge

process simply selects the message with the smallest time-value for processing.

If the simulation model is totally loop free, then it is a trivial matter to show

2.1. DISTRIBUTED SIMULATION OBJECTS 9

that the simulation will run to completion, provided that a special termination

message is generated when the simulation completes; this is propagated through

the network to flush out the remaining messages. However, if the network of

objects contains a fork that is followed by a merge (possibly with intermediate

objects), for example :figure 1, then such a simulation can deadlock due to the

Figure 1: A feed-forward network of processes that can deadlock during conser­
vative simulation if NULL messages are not used.

synchronizing approach provided by the C.S.P. model: this can occur if a series

of messages are sent along one of the paths but another path remains idle: the

merge object cannot process the first of the messages until it receives a message

on all of the other links and consequently cannot receive a second message on a

link for which it already has a message waiting; the fork object cannot send a

message along the idle link until it has finished sending messages along the busy

link. To avoid deadlock in such circumstances each output link that is determined

during the first phase to be eligible for a communication, but has no real message,

transmits a NULL message.

As already noted, each message that is transmitted between two objects is

associated with a simulation time, which is the time at which the entity that the

2.1. DISTRIBUTED SIMULATION OBJECTS 10

message represents would have moved from one object to the other in the physical

system: the message and its time are commonly represented by the tuple (t,m).

A NULL message, the tuple (t, NULL), does not represent any entity moving

between processes and hence has no counterpart in the physical system: it is

used simply to inform another simulation object of the time elsewhere in the

simulation; this can enable the merge process to carry on accepting messages

on a link safe in the knowledge that no new message will arrive on that link

with a time-stamp earlier than the last NULL message received. One of the main

drawbacks of the the NULL-message approach is the number of such messages that

can be in the system relative to useful messages; it is a particular problem when

simulating low loads or when feedback loops exist within the simulation (indeed,

Chandy and Misra do not mention simulations of such a nature in their original

work). Misra (5] has established several conditions under which NULL messages

can be annihilated: these include, for example, a second message arriving on

a link before a prior NULL message has been processed; in this case the NULL

message can be safely ignored since the timing information it carried has now

been outdated by the new message. Other techniques involve delaying, in real

time, the transmission of the NULL message in the hope that the above will occur

more often.

Significant improvement in the performance of a distributed system can be

achieved if, instead of holding a message in an object until the clock times on all

of the inputs reach the time of departure, the message is processed and passed on

to the next object as soon as the causality of the simulation can be ensured. In

doing this the simulation objects loose the information of the queue length and

additional calculations are required if the length of the simulated queue needs

to be known (1]. It should be noted, however, that such a technique cannot be

used with priority-queueing structures or pre-emptive messages since the message

processing order cannot be determined in advance. The ability to pipeline and

pre-calculate the output messages in this manner was formalized as the look­

r~.head capability of the simulation by Fujimoto (6, 7]. The look-ahead of the

2.1. DISTRIBUTED SIMULATION OBJECTS 11

simulation is defined as the interval of time during which the output events can

be determined solely from information already received. If an event arrives at a

time icause and generates an output event at time teffect then the look-ahead ratio

(L.A.R.), is defined as:

L.A.R. = teffect - icause.

look-ahead
(1)

A physical system that is well suited to simulation in this manner will have a

low L.A.R. value, since this corresponds to a high degree of look-ahead. \Vork

by Reed, Malony and McCredie [8) and by Reed and Malony [9) has suggested

that central server queueing systems were unsuited to this type of simulation

algorithm, but Fujimoto has since shown that simulations of this form are possible

provided that the look-ahead is exploited effectively [6].

Nicol (10) showed that it is sometimes possible to improve the look-ahead

of a simulation (and, therefore the indications provided by the NULL messages)

by calculating a futures list: this is a list of the job processing times of future

jobs that have yet to arrive at this node. For the Chandy-Misra algorithm to

work, each logical process must have a minimum service time, E, so that NULL

messages flowing round a loop will increase in time and move the simulation

forward; in practice, however, since a large number of statistical distributions

have no minimum processing time, E has to be quite small and this can lead to

very poor performance: the futures list can enable a node with no jobs pending

to predict the minimum time at which a job would leave the node if it were

to arrive immediately. Nicol has implemented the Futures List scheme, along

with an appointments protocol, on a shared-memory, multi-processor system and

reports that the speed-up can often approach the ideal, even at relatively low

loads, provided that the connexion topology of the simulated network is not 'too

rich'.

A significant reduction in the population of NULL messages has been achieved

by Cai and Turner [11). By adding to some of the NULL messages information

about the route that the message has followed and details of look-ahead elsewhere

in the network, real messages can be accepted earlier by merge tasks; fewer NULL

2.1. DISTRIBUTED SilviULATION OBJECTS 12

messages need to be generated since the minimum increment of E can be improved

upon. Su and Seitz [12] have used several variations of the basic Chandy-Misra

scheme ranging from Eager Message Sending (the original technique) to Demand­

driven (where the messages are only transmitted at the request of the receiver for

more information) and include self-adaptive variants in between. It was found

that, while it was usually possible to find an algorithm that was better than

the basic scheme, no single algorithm was consistently better for all simulation
. ~ .

configurations. De Vries [13], however, uses decomposition techniques when par­

titioning the simulation elements to assist in predicting message arrival times

when an input link has no message; in this way the only time a simulation el­

ement must block is when the link with the lowest input time has no message:

this leads to fewer NULL messages at the expense of adding more knowledge of

the simulated environment to the synchronization model.

Chandy and Sherman [14] have proposed the use of conditional events in

place of NULL messages for advancing the simulation. In a sequential simulation

a conditional event is defined as any event that will be executed next, provided

that there are no events scheduled for earlier execution; this means that for a

sequential simulator there is one definite-event and many conditional-events. In

a distributed simulation, each logical process does not necessarily have a definite

event at the head of its list since messages may still arrive from other processes

that will pre-empt them. However, there will be at least one, and probably

more, definite events somewhere in the simulation; it is the task of the simulation

controller to promote as many conditional-events as possible by sharing timing

information between the tasks. Good speed-ups have been obtained for scenarios

that usually showed poor results using conservative algorithms.

Several researchers have developed environments for producing general-purpose

conservative simulators. These include the Object Library for Parallel Simula­

tion (O.L.P.S.) by Abrams [15] which is a set of C++ classes; a development

on top of this library is the Common Programming Structure (C.P.S.), again by

Abrams [16] which is a programming structure, as opposed to a language, that

2.1. DISTRIBUTED SIMULATION OBJECTS 13

enables the simulation to be structured in a manner that permits the simulation

to be run under either a conservative environment or an optimistic one. The

approach adopted by Nicol [17J was called YAWNS (Yet Another ·windowing Net­

work Simulator) and was an attempt to allow several distributed simulation tech­

niques to be compared experimentally without the need to recode large sections

of the model under simulation. A third technique, called YADDES (Yet Another

Distributed Discrete Event Simulator) [18, 19J, uses a compiler pre-processor in

a similar manner to the well known yacc language compiler to permit the sim­

ulation hooks to be added to the detailed parts of the simulated model in an

implementation independent manner; the resulting YADDES script can then be

compiled and linked for either sequential, conservative or optimistic simulation.

2.1.2 Optimistic Synchronization Techniques

The essence of a conservative algorithm is that the simulation proceeds only

when the integrity of the results can be guaranteed: conversely, an optimistic

algorithm always proceeds, but saves the state of the simulation regularly so

that, if an error is detected, the results can be rolled back to a known state and

then re-simulated taking into account the new information. The advantage of this

approach is that, in the absence of messages from other processes, the simulation

can proceed without large numbers of NULL messages or the resynchronizations

that they imply; this can mean that performance is substantially better than

conservative techniques when the look-ahead is poor. The penalty is the overhead

of storing copies of the simulation state at regular intervals and restoring one of

these when an error is detected: in addition to mlling-back the local state any

messages that were transmitted during the period being re-simulated may have to

be cancelled; this is done using anti-messages which annihilate the corresponding

original message.

The initial work on optimistic algorithms was performed by Jefferson [20)

which led to the first version of the Time vVarp simulation environment. This

was implemented in GLisp (a dialect of Lisp) on a network of Xerox SIP-1100

2.1. DISTRIBUTED SIMULATION OBJECTS 14

processors [21]; more recent implementations, known as the Time Warp Oper­

ating System (T\V'OS), have been written in C and run on various hardware

architectures but notably the Caltech Hypercube [22].

Optimistic algorithms are commonly said to be running using Virtual Time

(after Jefferson's original paper (20]). This is an analogy between the method by

which they manage time and the paging method of Virtual lVIemory computing

architectures: with virtual memory the processor is gambling, when a page of

memory is switched to disk, that the page is not likely to be referenced again

before those that have been kept; with virtual time the gamble is that by simu­

lating an event before the causality effects can be guaranteed, no causality errors

will in fact occur: the penalty in both cases is that time is lost when the gamble

does not pay off.

The implementation of virtual-time algorithms requires not only that the list

of future events needs to be stored, but that copious amounts of information about

earlier states that the simulation has passed through must also be kept against

the eventuality of a roll-back. Such information includes copies of the state tables

taken at periodic intervals during the simulation (these are the check-points -

when a roll-back is required the state is restored to the last check-point earlier

than the time required and simulation restarted from there); the list of events to

be processed, which will usually be the messages received from other processors;

and copies of the messages sent to other processors, to enable anti-messages to

be created if required. \V'ith simulations consisting of thousands (perhaps mil­

lions) of events then clearly it would be impossible to continue to keep all of this

information throughout the entire run, since it would rapidly consume the entire

amount of memory on a processor. As the simulation progresses each process's

Local Virtual Time (L.V.T.) moves forward and backwards and a time known as

Global Virtual Time (G.V.T.) can be calculated based on the minimum of all of

these across the entire network (slight complications arise in the calculation due

to the delays that messages incur whilst traversing the network). Any saved in­

formation about the past state of the simulation that is earlier than the last state

2.1. DISTRIBUTED SI1\1ULATION OBJECTS 15

saved before G. V. T. can be safely destroyed since a process can never roll back

to an earlier time; the process of releasing memory in this way is known as fossil

collection. Results of the simulation earlier than G.V.T. are said to have been

committed; in particular, any messages destined for output to a device outside of

the virtual-time mechanism (for example, a disk or a terminal) can only be safely

written once the time on the message is less than G.V.T ..

The single largest overhead of this technique_ is the saving of the simulation

state at regular intervals throughout the simulation; this involves making a copy of

potentially large amounts of state information that may or may not have changed

since the state was last saved. In an attempt to reduce this overhead dedicated

hardware has been designed to perform this operation in a near transparent man­

ner [23, 24]. The Roll-back Chip (R.B.C.) maps frames of memory into the same

address space with each frame representing a saved state. Each time the state is

saved a new frame is mapped in, but the state information is not copied across,

thereby saving valuable bus bandwidth. Instead a tagging technique is used that

marks a memory location in a particular frame as containing valid data: a write

to the state memory is always made to the current frame, causing the valid-flag

to be set; a read consists of selecting the most recent frame with the valid-flag

set and returning its contents. Care must now be taken when undergoing fossil

collection: state information that has remained unchanged for a long period must

not be destroyed but copied into one of the remaining valid frames. Other limita­

tions lie in the finite number of frames that can be managed by the R.B.C. (16 in

the version described in the literature), problems associated with the interaction

with a cache (particularly if the cache is of the delayed-write type) and its use in

a virtual-memory management system; all of these can be overcome with care.

As mentioned earlier the calculation of Global Virtual Time plays a vital role

m the commitment of results and the reclamation of memory from previously

saved states. Unfortunately this calculation requires some indication of the state

of the entire simulation (the virtual time at each processor) and is not amenable

to a truly distributed calculation. In practice a single processor (usually labelled

2.1. DISTRIBUTED SIMULATION OBJECTS 16

zero) is responsible for establishing new estimates of G.V.T. and for informing

the other processors of these. The calculation is based on the minimum of each

node's virtual time and the message receipt time (in practice, since flow control

in the simulator is commonly implemented by returning a message to its origi­

nator, the message transmission time is used in place of the receipt time); using

conventional G.V.T. calculations it takes, typically, 5 message acceptances and

3 to 5 message transmissions per processor taking 0 (N) time using a broadcast

algorithm supported by the simulation hardware. Bellenot has shown [25] that it

is possible to reduce this to less than 4 message transmissions and, without using

a hardware broadcast, to reduce the time taken to O(Iog N).

The overall aim of distributed simulators is to minimize the total simulation

time by extracting the maximum amount of concurrency from the model. In an

optimistic simulation a processor proceeds whenever it has tasks to process, based

on the assumption that if it were blocked it could never do useful work but if it

were to continue with 'speculative' work this might also be useful. However, this

can lead to a substantial amount of work that needs to be undone when it is found

to be incorrect. Reiher et al. [26] suggested that it might be possible to improve

the performance of virtual-time mechanisms (such as Time Warp) if the optimism

were limited in such a way that tasks doing work that was likely to be undone at

a later date were discouraged in favour of tasks that were more likely to be doing

useful speculative work. The two methods tested were a windowing mechanism

which throttled back processes whose local virtual time was far into the future

and a penalty technique that penalized process that did poor speculative work

(i.e. that was subsequently rolled back) in favour of processes that had done useful

work. Neither technique was found to produce significantly better results and it

was found that performance gains were unpredicatable.

Several of the simulation environments mentioned previously in conjunction

with conservative simulation also have alternative libraries that can be linked in

to make the simulation run in an optimistic manner: notable among these are

YADDES [18, 19] and the O.L.P.S.jC.P.S. systems [15, 16]. However the two

2.1. DISTRIBUTED SIMULATION OBJECTS 17

most significant implementations are Twos (a U.S. D.o.D. funded project and

as such with restricted access) and the commercially available Sim++ system by

Jade Simulations [27].

2.1.3 Hybrid Techniques

The techniques of conservative and optimistic simulation described so far repre­

sent merely the extremes of a whole myriad of different approaches; in practice it

is possible to 'borrow' aspects of one of the techniques for use in a methodology
-

that lies predominantly towards the other extreme. Reynolds [28] categorized

these as a whole spectrum of different options and classified several of the ap­

proaches already taken: he also identified several other approaches that, as yet,

remain unexplored.

A typical example of a hybrid technique is Gimarc's Hierarchical Roll-back [29].

The simulation is structured as a tree such that each process can only communi­

cate with its parent and any children. Within each node the process proceeds in

an optimistic manner and can roll back as required; however, non-local roll-backs

are restricted to sub-trees and the sub-trees themselves interact in an essentially

conservative manner. Time messages (effectively NULL messages) propagate up

and down the tree and provide for overall advancement in simulation time and

for fossil collection. Another example is Lubachevsky's Filtered Roll-back ap­

proach (30] which applies his own Bounded Lag algorithm [31] on top of an op­

timistic simulator in an attempt to contain the amount of roll-back that may be

required during a simulation run. (He presents an example where the amount of

time spent rolling back increases with each step forward in the simulation when

a purely optimistic algorithm is used.)

The overall aim, of course, with all the techniques presented here is that the

simulation itself should run as quickly as possible. Lipton and Mizell [32) present

calculations that show that under some simplifying assumptions, Time Warp can

out-perform the Chandy-Misra algorithm by a factor p for a p-process model, but

that the reverse does not hold: the Chandy-Misra model can never outperform

2.2. CONCURRENT Sil\IIULATION 18

Time vVarp by more than a constant factor. In an attempt to establish the

optimum performance that can be obtained from a parallel simulator, Swope

and Fujimoto [33] have developed a tool that uses an oracle to establish whether

or not it is safe to proceed. The system works by making two passes through

the simulation: during the first pass, which is performed using some traditional

method the causality information is loaded into the oracle; during the second

pass the oracle is used to control each local process so_ that it runs the optimal

sequence of computations and only blocks when it knows that a causality error

will occur. The time taken for the second pass can be used as the optimal value

for running the simulation in a distributed manner.

2.2 Concurrent Simulation

One of the main alternatives to distributed simulation is a technique developed

by Jones (34, 35, 36]. In this method the processors co-operate in manipulating

a single event list; for this reason the technique is best suited to shared memory

multi-processing systems. A discrete-event simulation has three distinct phases

associated with the simulation of each event: extracting the next event from the

pending-event set; manipulating the state space of the simulation; and scheduling

future events. If a causality constraint similar to the look-ahead in distributed

simulation is applied to events in the pending-event set, then the causality rela­

tionship between events scheduled during some time interval, t:, from the time of

the head event is defined. A multi-processor system may therefore co-operate in

the processing of the event set: the event selection and manipulation of the state

space must be performed as a single atomic action (to preserve causality and data

integrity), but several processors may be adding new events to the event set while

one processor is manipulating the state space.

The algorithm can be improved upon if the state space is subdivided and a

processor is able to 'lock' access to those values it is referencing: each process can

then proceed with the algorithm in figure 2.

2.3. OTHER PARALLELIZING TECHNIQUES

repeat
lock event set
extract event
lock areas of state space
unlock event set
manipulate state space
unlock state space
schedule new events

until (termination condition is reached)

Figure 2: Jones' algorithm for concurrent simulation.

19

Provided two (or more) consecutive events in the set require mutually exclusive

areas in the state space then concurrent simulation may be performed in this

region as well. (Note that area in the state space must be locked even if the

value is only being read since otherwise an event scheduled for later execution

may change the value prematurely and cause a causality error.)

2.3 Other Parallelizing Techniques

So far, only a couple of decomposition methods have been discussed, but there

exist several other techniques, each with its advantages and proponents.

The advent of local- and wide-area networks has, in general led computing

systems away from centralized machines to a more distributed network of slightly

less powerful, but significantly less expensive, processing elements such as work­

stations and personal computers. Such networks of processors can be used as a

simulation system and many of the decomposition methods already mentioned

can be used to synchronize the simulation: but other factors also apply, notably

that different processors in the network have different characteristics that make

them best suited to different aspects of the simulation. In addition, the bandwidth

available for inter-processor communication is generally lower and the message

delivery time is often significantly higher (particularly if guaranteed delivery is

2.4. EVENT LIST MANAGEMENT 20

required - the usual assumptions of error-free delivery is only available at the

expense of a substantial protocol overhead). Techniques such as dead reckoning

(predicting the future behaviour on past experience) are often used to reduce

the synchronization overhead. Such simulation techniques are often termed Het­

erogenous Distributed Simulation [37].

2.3.1 Replicated Experiments

Simulation is commonly used for the study of statistical or stochastic systems;

it is therefore necessary that either very long runs, or many shorter runs, of a

single experiment be performed in order to establish the degree of confidence in

the results obtained. This has led to the proposal that replicated experiments

be used: instead of several processors contributing towards a single simulation

run, each processor runs an independent copy of the simulation with its own set

of random number seeds. The potential advantage of this approach is that there

is no synchronization required between the processors, and variance reduction

techniques can be used to tighten the bounds on the results [38, 39]. Against

these, it should be noted that significantly greater computing resource may be

required at each node than when all the processors are working on parts of the

same task: an extreme example of such a processing network is the transputer

tree developed in Durham [40, 41, 42] which has about 160 processing elements,

but only four kilo-bytes of memory for each processor.

2.4 Event List Management

The central feature of a discrete-event simulation is the pending-event set: this

is the set of known tasks that must be performed at various times in the future.

The set is dynamic in that events are removed from it as they are simulated and

further events are added to it as a consequence of performing the simulation.

Each event in the set requires three parameters: the time at which the event

is to be executed; the function to be performed; and a data-set to manipulate,

2.4. EVENT LIST MANAGE1VIENT 21

which may be empty for some functions that manipulate the global state of the

simulation. The principle behind the manipulation of the event set is that the

simulation moves monotonically forward in time by selecting the event that is

the least distance into the future: the result of simulating each event will be to

generate zero or more subsequent events for execution at some later time (clearly

it is impossible to generate an event that should have been executed before the

current one).

To facilitate rapid selection of the next event from the pending-event set, the

'obvious' approach is to maintain a sorted list: this means that selecting the next

event is trivial since it is at the head of the list (i.e. it takes 0(1) time), while

inserting an event will typically involve searching through half the list to find

the correct position (this assumes that events in the pending event set are evenly

distributed) hence the insertion takes O(n) time for a pending-event set of size n.

2.4.1 Improved Pending-event Set Manipulation

For large simulations n can become large (perhaps a few thousand events) and

hence the time spent searching the event list to insert new events can form a

significant proportion of the simulation time, particularly if the number of ma­

nipulations of the simulation state is small for each event simulated. There has,

therefore, been significant effort expended on attempts to manage the pending­

event set in a more efficient manner: a review of several of the most common

techniques is given by Jones [43]. Jones presents results showing that for very

small sets (< 10) a linear list is optimal, that for medium sized sets (< 200) the

Two List [44] procedure performs very well (this gives 0(yin) search time), while

for large sets the Splay Tree method [45] gives probably the best performance

(0 (log n) search time).

In the two-list method the pending-event set is divided into a small set of

sorted events and a larger set of unsorted events, the sorted set contai_ning those

events that will be simulated in the near future. The intention is that the majority

of events will normally be placed in the larger, unsorted, set requiring 0(1) time

2.4. EVENT LIST MANAGEMENT 22

for a store; however, the sorted list will occasionally become empty, whence a new

threshold time is calculated and all those events in the unsorted set with time

less than the. threshold are transferred to the sorted list. Blackstone et a/. [44]

show that the optimum size for the sorted set is J'ii, leading to 0(J'ii) searching

time on average.

The splay-tree method, as with most attempts to store the event set so that

search times are of order better than 0(J'ii), organizes the event set in the form

of a tree structure (a balanced tree giving a search time of O(logn)). However, a

static tree-structure would rapidly become very poorly balanced since insertions

would primarily take place on one side of the tree, whilst deletions would be from

the other side: to overcome this problem the tree needs to be re-organized as each

insertion or deletion is made to ensure that the balance is kept. Producing a fully

balanced tree after each change would clearly require far too much time, and is,

in fact, unnecessary; instead a re-balancing heuristic, known as splaying, is used

that has the effect of bringing the referenced item in the tree to the root and, in

the process, roughly halving the depth of each of the nodes in the path between

the root and the referenced node. It has been shown (45] that the amortized

search time1 using this heuristic has a bound of O(log n).

2.4.2 Distributing the Pending-event Set

When the simulation is distributed between several processes using distributed

simulation objects each process maintains its own event set containing those

events that that processor must execute (in the pure Chandy-Misra form this

is the list of input channels and their lower time bounds). Jones [34], when ar­

guing in favour of concurrent simulation states that partitioning the total event

set in this manner leads to inefficiency. The total size of the event set, n, when

distributed over m processes would be njm events per process, leading (with an

optimal searching algorithm) to a speed-up, S, of

1 Amortized time is the time per operation averaged over a series of worst-case operations.

2.4. EVENT LIST MANAGEMENT 23

S = logn.
log r: (2)

Solving this for S = 2, he claims that to double the speed of the event-set

processing would require m = y'ri processors. This speed-up, however, is the per

transaction speed-up, and fails to take into account the fact that the number of

references by each process to its local event list in the distributed case is further

reduced by a factor of m. If there are k events simulated during the simulation,

then on average each processor in the distributed version will only process kim

of them. This leads to a speed-up of

I.e.

S _ klogn
- .li.log..!!.'

m m

(3)

S = mlogn;
log~ (

4
)

hence the speed-up is better than simply linear. It must be noted, however, that

the speed-up of the entire simulation is unlikely to approach this bound since

the time spent simulating each individual event is unlikely to be reduced as a

result of distributing the simulation and, in addition, time spent resynchronizing

the processors must also be taken into account: it can, however, be taken as

a reasonable upper bound on the potential speed-up that could be obtained.

Situations such as this are discussed by Helmbold and McDowell [46].

Perhaps the validity of equation 4 requires some notional justification; this can

be seen by considering the manner in which the performance improvements were

obtained for the conventional system. All of the methods used for this involve par­

titioning the event set so that fewer accesses were required to store or retrieve an

event; partitioning the pending-event set between several processes clearly takes

this partitioning process one stage further - this leads to the log(n) I log(n I m)

term in the speed-up. In addition each processor only handles llmth ~f the total

number of events simulated, leading to the factor of m in the speed-up. Parti­

tioning the pending-event set in this manner for a conventional simulator would

2.4. EVENT LIST MANAGEMENT 24

be detrimental since the event scheduler would have to check each of the sets be­

fore it would be able to select the event to simulate; this would take O(m) time,

more than cancelling out the other benefits. The result shown in equation 4 is

based on the use of a splay-tree event-storage scheme; for the two-list scheme the

speed-up would be mfo,; and for a linear-list scheme it would be m 2
• Further,

since the size of the sets is reduced by the partitioning the simulation, it might

be beneficial to consider using a less complex storage scheme which has a lower

per-iteration overhead.

Chapter 3

A Distributed Simulator for a
Transputer Network

T O ISOLATE THE SIMULATION MODEL, as far as possible, from the imple­

mentation details of the hardware, the simulator was structured in a hi­

erarchical manner; each layer builds on the abstraction of the layer below in a

similar approach to that of the I.S.O. seven-layer model. At the lowest layer

lie the transputer processors in a dynamically reconfigurable array. On top of

this a multiplexor task 1 on each processor provides the abstraction of virtual

channels between each task in the simulation, regardless of where the tasks are

mapped in the processor network. A simple packetizer layer hides the fact that

the channels in the multiplexor (and, indeed, the physical channels of the trans­

puter itself) work most efficiently when presented with large packets as opposed

to a series of very small ones. A synchronization layer uses the packet-layer pro­

cesses; it ensures that each message is correctly marked with a time-stamp on

dispatch; and uses this at the receiver to maintain synchronization: the layer is

optional; if there is no definable synchronization between two tasks (for example,

diagnostic messages destined for the console) then the channel can be declared

asynchronous and the packet layer accessed direct. Finally, in parallel with the

simulation model and the synchronization layer, an event manager is responsible

for scheduling components of the simulation model in the correct sequence. The

overall hierarchy is summarized in figure 3.

1The terms 'task' and 'process' are used interchangeably: a process runs on a processor; but
to avoid ambiguity in such circumstances, 'task' is normally used.

25

3.1. THE TRANSPUTER NETWORK 26

Model

Async Sync

Packetizer

Multiplexor

Figure 3: The overall hierarchy of the simulation model. The Event scheduler is
a control-plane for the upper layers.

Given an array of unbooted processors, the non-trivial problem of how to

configure the simulation is then considered, along with how the information nec­

essary for this can be obtained from the user. Finally, the performance of the

simulator, known as the A.T.M. Network Simulator, is briefly discussed in terms

of its efficiency and the degree of concurrency achieved.

3.1 The Transputer Network

The transputer network used for this project was originally designed for use as a

high speed circuit-switched network simulator, with code written in occam; subse­

quently, a traditional packet-switched network simulator was also developed using

the same language [4 7, 48]. The processor network consists of up to 31 simula­

tion, or worker, transputers, each with up to 16Mbytes of memory (the current

implementation consists of 13 such processors each with 1Mbyte of memory);

3.2. THE .MULTIPLEXOR 27

the original T414 transputers were replaced with TSOO processors approximately

half-way through this project, leading to the speed of the simulator being more

than doubled. The transputers are connected with a double layer of C004 link

switches which enables any link on each of the worker processors to be connected

to a link on any of the other processors; this flexibility enables the network to be

configured to almost any topology (including those without linear chains through

the processors, as some other hardware configurations enforce) so that the system

being simulated maps closely onto the processor network, and enables the path

length required when passing messages between processors to be kept to a mini­

mum. Finally, a layer of control processors are used to connect between the host

transputer (inside an I.B.M. P.C./ A.T. compatible) and the link switches; one is

connected to the link-switch programming interface, while both can be connected,

via the switches, to any of the worker transputers. An optional transputer-based

graphics card can also be connected at this layer. Figure 4 shows a functional

representation of the hardware used.

3.2 The Multiplexor

The multiplexor is the lowest layer of the simulator kernel; it is responsible for

the delivery of messages from one task in the simulator to another, regardless of

the topological mapping of either the tasks or the processors upon which they

are runnmg.

Each transputer m the network is allocated exactly one multiplexor task;

all other tasks desiring to communicate with tasks on another processor do so

by communicating indirectly via the multiplexor (figure 5). If two tasks that

communicate are on the same processor then it is, of course, possible for them

to be directly connected. The result is that for large simulations a simulation

task may have many of its channels connected to the multiplexor; the routeing

decisions that the multiplexor makes are based solely upon the channel from

which each message is received.

3.2. THE }.1ULTIPLEXOR

.....
::;;~

==~

• •

28

~
~
::J
0..

"' ~
f-.
c:::

.$2
;g
::J

.§
en

Figure 4: High-speed transputer-based network simulator - Hardware configu­
ration.

3.2. THE MULTIPLEXOR

. . .
• • •

Key

I I Transputer

Link

Logical Path

Virtual Connexion

•
• • • .

29

Figure 5: Multiplexor processes run on each node to provide virtual links between
each task in the simulator.

3.2.1 Flow Control

The flow control mechanism has to ensure two things: firstly that the multi-

plexor routeing, as a whole, can operate within a fixed amount of memory, i.e.

a finite number of buffers (deadlock free); and secondly that all messages will be

eventually delivered, regardless of the other traffic in the multiplexor (livelock

free).

The algorithm adopted for the implementation of the deadlock- and livelock­

free routeing is based on that of Toueg and Ullman [49], using a Forward State

(F.S.) controller. A network is characterized by the longest route, k, that a packet

3.2. THE MULTIPLEXOR 30

may travel, in terms of hops, from its source to its destination. A node, v, in the

network has b buffers, giving a general description of a controller for the network

as FS(b, k). The state of node vis described by j, where

J (5)

and where j; is the number of messages in v that are i steps from their destination.

It has been shown [49) that, provided b > k, a FS(b,k) controller is deadlock

free if it bases its acceptance of a message j hops from its destination on the set

of inequalities:

{ (j, j) ViE{O···j},
k

i < b- Lir 1\
r=t

O~j~k 1\
k

0 ~ Lir ~ b- 1 }.
r=O

(6)

(7)

(8)

Condition 7 states that only messages of a state for which the controller has

been dimensioned may be accepted. Condition 8 is a simple statement of the

conservation of the buffer resource: a packet may only be accepted if there is a

buffer available. It is straight forward to show that the upper bound of condition 8

is simply a special case of condition 6 with i = 0. Condition 6 expands to j + 1

inequalities, all of which must be satisfied if the packet is to be accepted by the

node.

Since message passing is effectively a background task for the transputer (the

main task is simulation), an important feature of any implementation of the flow

control mechanism is that the processor should not "busy wait" when a message

fails to meet the acceptance criteria; instead, it should block by descheduling the

thread until it is permissible to proceed.

By labelling the inequalities generated from condition 6 for a state j message

as I0 through Ij, the acceptance function for a state j message, Acc(j) is

3.2. THE MULTIPLEXOR 31

Acc(j) Ii 1\ Ii-1 1\ · · · 1\ Io

and

Acc(j- 1) Ii-1 1\ · · · 1\ Io.

Hence, expressing recursively

. { Ii 1\ Acc(j - 1), if j > 0
Acc(J) =

Io, if j = 0.
(9)

It is clear, therefore, that if, for some r, Ir would not hold true if the message

were accepted, then all messages of state j ~ r would fail on the same inequality.

Further, if the subset of inequalities

{ Ix : x E { r + 1 · · · j}} (10)

have already been satisfied, they need not be re-tested provided that no further

messages of state ~ r are accepted before the current one. (The value of the

summation may only decrease due to transmission of messages that already have

a buffer.)

It is important to note that a potential race condition exists: as expressed in

condition 6, all the inequalities need to be tested in an unbreakable sequence; but

a single semaphore cannot be used to guarantee this atomicity since this would

lead to 'busy waiting'; to permit other messages to have fair access, each time a

test fails the semaphore would have to be released, and then reclaimed, before

testing again. Not using a semaphore, however, would lead to the race condition:

two messages contending for access may test an inequality and find it valid when

only one of them should have done so (which one is not important untillivelock

avoidance is being considered); one of the messages would then be granted a

buffer under incorrect conditions, leading to the possibility of deadlock later on.

Consider, as an example, a state j message, mj, and a state l message, m,, where

j, l ~ s and both are trying to gain acceptance to the node at the same time.

3.2. THE MULTIPLEXOR 32

Assume, for inequality Is that

r=s

then either ffij or m1 might be accepted, but not both. If mi were initially selected

and passed all the tests, but before the state table, j, could be updated, m1 were

also to test the same inequality, then it too could (incorrectly) pass all the tests

when it should have failed at least one: a message would then be allocated a

buffer to which it was not entitled and deadlock might follow.

To prevent the race condition, each of the inequalities is modified so that it

now sums, not the number of messages accepted by the node, but the number

accepted by itself, Z 8 • If the order of testing is arranged to start with the inequality

representing the highest state and to progress towards the lowest then the two

summations are related by
k s-l

Z 8 = LJr + L count({Blocked messages at Ir: state(msg) 2': s}). (11)
r=s r=O

It can be seen that if Z 8 > I:! Jr then the message acceptance would have

subsequently failed when testing some other inequality; otherwise, Zs is degenerate

to the original form.

Maintaining Zs is simply a matter of incrementing the summation after the

test has succeeded, and decrementing it when the message is subsequently trans­

mitted. To avoid race conditions it is now only necessary to ensure that the

test-and-increment of each individual inequality is atomic. Condition 6 can now

be rewritten as

Z < b- Zj

=} 0 < b- i- Zj. (12)

Since each inequality should cause the message to block when the test fails,

condition 12 can be implemented by a semaphore2 with the initial value b- i.

2The n-value semaphore is a locking mechanism that permits at most n program threads to
have access to a critical section, whilst any additional threads are forced to wait until another
thread releases its lock. Semaphores are a generalization of token schemes where access is only
granted to the holder of the token. In circumstances where the order of granting access to those
threads forced to wait is important, the term fair semaphore will be used to indicate that access
is granted using a first-come first-served scheme.

3.2. THE MULTIPLEX OR 33

Figure 6: A simple network that can lead to deadlock with message passing. More
buffers must be made available to messages nearer to their destination than to
messages that still have further to travel.

3.2.2 Implementation of Flow Control

The entire state of the controller can be represented by an array of k + 1 sema­

phores with initial values of b, b- 1, ... , b- k; the acceptance algorithm consists

of starting with the j + 1 th semaphore and working downwards, obtaining a lock

on each one. When a buffer is freed, after the message has been transmitted,

each of the semaphores waited upon is signalled.

To allow the flow-control mechanism to have complete control over the order

in which messages are accepted, a node currently holding the message cannot

forward it until the receiving node can guarantee its acceptance; it does, how­

ever, forward information stating that a message of a particular state is ready for

transmission. To understand fully why this is the case, consider the rather con­

trived network of figure 6 in which each node passes all its messages in a clockwise

direction, regardless of the destination to which it is intended. Each of the nodes

generates messages to its anti-clockwise neighbour, necessitating that each mes­

sage pass through all of the processors en route to its destination. Assuming that

there are three buffers on each processor (the minimum, since the maximum path

length is two), then all the buffers may be filled with state 0 messages, but at most

two of them may contain state 1 messages and if one of them contains a state 2

3.2. THE MULTIPLEXOR 34

message then not more than one of the remainder may contain a state 1 message.

Given time, state 0 messages will clearly be absorbed (since these messages have

reached the destination node), guaranteeing that, eventually, there will always be

at least one free buffer in each node. If the sending node is permitted to select

which message is transmitted then a cyclic deadlock can occur very rapidly. For

example, each node receives a state 2 message from a source, leaving each node

with two free buffers that may be used to hold two state 0 messages or a state

0 and a state 1 message; however, no more state 2 messages may be accepted

at this time. Each node is able to forward the message to the next node in the

chain, whereupon the messages are promoted to state 1, enabling another state

2 message to be accepted by each node. In this situation the remaining buffer

in each node may only contain a state 0 message; this means that the state 1

message in the preceding node must be forwarded before the state 2 message. To

prevent livelock we must guarantee to accept the state 2 message sometime; so it

is not sufficient always to select the message at the highest priority.

For the receiving node to be able to determine when a message of a particular

class may be accepted it needs to be told by the sending node that there is a

message of this class available for transmission; when a buffer of the appropriate

state becomes available a reply is sent and the message is transmitted: care needs

to be taken when there are multiple links that races cannot occur between two

or more links over the allocation of a single buffer; for this reason semaphores

are used to provide an atomic 'test-and-allocate' routine. Figures 7 and 8 show

details of the program threads running. When a node receives a buffer of a par­

ticular class (greater then 0) then the output link is selected and a request is

generated to the next node in the chain; upon receipt of this request the receiv­

ing program thread initiates a further program thread to perform the acceptance

control described above (this enables the receiving thread to return immediately,

and without blocking, to its primary task of receiving messages across the link).

The acceptance thread performs its work by waiting on the appropriate set of se­

maphores; when a 'lock' has been obtained upon each one it generates a 'reverse

3.2. THE 1vfULTIPLEXOR

Input
lbreads

Link
1'---VIr Receiver

r

. .

Semaphore

rk k-Value Semaphore

Key:

Output
lbreads

Transmitter
lbreads
(various)

35

r ~.-> --t<~

Queue (current length= k)

Transputer Link

Figure 7: Threads running in a multiplexor process. The input and output
threads receive messages from tasks on the local transputer; the link threads
communicate with other multiplexors via the transputer's links. The grey-shaded
area represents the threads associated with a single link and is shown in more
detail in figure 8.

3.2. THE MULTIPLEXOR

Receive Requestor

Global
Node
State

36

Figure 8: Detail showing the threads associated with each input-output link pair
in the multiplexor.

message' across the link, back to the sending node, indicating that a message of

the appropriate class may be transmitted. Again the 'receiving program thread'

initiates a further thread to perform the transmission so that it is impossible

for the two 'receiving threads' to be trying to send messages to each other si­

multaneously. Once the message has been transmitted, both the buffer and the

semaphore locks that were claimed before allocating it are released.

3.2.3 Livelock Avoidance

Livelock avoidance is achieved naturally by the algorithm, provided the sema­

phores used are all fair (i.e. they grant access on a strictly first-come first-served

basis).

Theory The implementation of the FS(b, k) controller is livelock free, provided

that the semaphores used are fair.

3.3. THE PACKETIZER 37

Proof Assume that all state i messages are livelock free. Hence, a state i mes­

sage waiting for access to a node must be able to claim each of the semaphores

representing the inequalities derived from Zi, Zi-l, ... , z0 (equation 11 and condi­

tion 12) in a finite period of time. A state i + 1 message needs in addition, and

first, to satisfy the inequality derived from Zi+l· If this first semaphore blocks

acceptance of the message then there exists at least one message of state i + 1

that has already achieved a lock on that semaphore (because the initial value of

· the semaphore is set to one greater than the inequality derived from Zi+2): such

messages are then treated in an identical manner to state i messages and must

consequently obtain locks on all the remaining semaphores; having done this they

seek acceptance as state i messages at a remote node, and state i messages are

livelock free. Therefore, a state i + 1 message that has claimed a lock on the first

semaphore is livelock free; since the semaphore is fair any state i + 1 messages

that ·are waiting for a lock on the first semaphore must be granted access in a

finite time. Hence, state i + 1 messages are livelock free. State 0 messages are

clearly livelock free since they are at their destination and must be consumed in

a finite time; so, by induction, all messages are livelock free. 0

3.3 The Packetizer

Messages between the simulation tasks commonly consist of several small pieces

of information: for example, a cell has associated with it not only the time of

·.transmission and the data and header fields but also the time of creation, the size

of the data field in use (for efficiency) and an optional series of trace-information

packets that can be used when debugging the simulator. If each item were to

be transmitted individually across the processor network then the efficiency of

the multiplexor would be extremely poor; each packet in the multiplexor would

contain perhaps as little as four bytes of information and an overhead of eight

bytes (four bytes for each of the packet-header and the packet-size fields). To

overcome this inefficiency, each simulation message (e.g. a cell) is concatenated

3.4. THE SYNCHRONIZATION MECHANISM 38

into a single packet (or a series of packets if this would exceed the maximum size

of a single multiplexor packet) which is then transmitted to the receiving process.

In addition to the inefficiency associated with using the multiplexor with small

units of data there would also be an overhead due to the establishment of the

the occa m channel for passing data between one task and the next. Each com­

munication requires that both ends (the sender and the receiver) are ready to

proceed before any data can be sent: if one end is not ready the other task blocks

whilst waiting. Because of the way in which the transputer's process scheduler

works this can mean a large number of process switches, each switch having a

small overhead in terms of C.P.U. time; more importantly, each time a process

is descheduled it is placed at the back of the relevant queue (either high or low

priority) and has to wait its turn for further access to the C.P. U .. It is clearly

more efficient if the number of times a channel communication has to be initiated

is kept to a minimum; work by Gould et al. [50] has shown that the throughput

of the channels increases dramatically as the size of the data block is increased.

3.4 The Synchronization Mechanism

As mentioned in chapter 2, the correct choice of synchronization algorithm is

critical for optimal performance of the simulator: such a choice can only be made

when some aspects of the system being modelled are known.

3.4.1 Characteristics of A.T.M. Networks

A more comprehensive review of Asynchronous Transfer Mode (A.T.M.) networks

and protocols will be given in chapter 4, but a few aspects of the protocol that

are relevant to the synchronization model are given here.

A.T .M. networks use a fixed-size data packet, known as a cell, which consists of

48 octets of data and 5 octets of header, giving a total cell size of 53 octets. They

are typically transmitted, within the network, using multi-megabit-per-second

media, such as fibre-optic links; such links will usually be running at data rates

3.4. THE SYNCHRONIZATION MECHANISM 39

in excess of 150 Mbitfs. It is possible to derive a simple formula that describes

the number of cells that will be in transit across a link of a given length at any

one time (the link can be considered as a delay line):

N= LSn
lc '

(13)

where Lis the length of the link, Sis its speed (adjusted to account for overheads

such as framing), n is the refractive index of the transmission medium (typically,

about 1.5 for a glass fibre), 1 is the cell size and cis the speed of light. Considering,

for example, a 15km link running at laO Mbit/s, then there may be up to twenty­

six cells in transmission across the link at any time; longer, or faster, links would

have correspondingly larger numbers of cells in transit. This 'pipe line' can be

used to advantage as a method of look-ahead within the simulator.

3.4.-2 Implementing the Available Look-ahead

In conventional packet-switched networks the delay between a bit in a packet

being transmitted at the start of a link, to its arrival at the end of the link

is insignificant when compared to the size of the packet and the speed of the

link. For distributed simulators, therefore, it is of little importance to consider

in detail whether the packet is transferred from the source to the destination at

the departure time, or the arrival time. For A.T.M. networks this is no-longer

the case.

If the cells are held in the source module until they are scheduled to arrive

at the destination in the simulated system then valuable information about the

future state of the destination's input queue is being withheld and the destination

process is unable to make efficient decisions about what may be happening next.

The converse situation is to transmit a cell immediately that it becomes ready

and to queue it at the destination until its arrival time is reached: this gives

more information about the processing order within the destination itself, but

does not provide any further information about when the next cell will arrive on

each link. Both these approaches use an assumption, which appears regularly in

3.4. THE SYNCHRONIZATION MECHANISM 40

implementations of the Chandy- Misra model, that the departure and arrival times

of messages is the same in simulated time; for example, De Vries states [13] "The

send time of a message is also the receive time of the message at the next process."

For an A.T.M. network it is possible to relax this assumption to read 'the receive

time of a message at the next process is the send time of the message plus a

constant delay.' The constant delay may be non-zero provided that the behaviour

of any items being represented by the message is deterministic (independent of

all external influences) during the period of the delay.

The net result of the change to this assumption is that whilst a message may

depart from the source process at a certain point in simulation time, it is not

needed at the destination process until a known later point in time. The message

is dispatched from the source process at the time that the cell is transmitted;

as soon as it arrives at the destination the destination process knows the entire

history of the link up to the scheduled arrival time of the cell (since the link is

deterministic and cells cannot change order whilst in transit across it). Effectively,

the destination can see a small amount of future behaviour for the link: this can

be exploited for two ends; the avoidance of deadlock with fewer NULL messages

and the improvement of concurrency between the processes.

3.4.3 Local Simulation Time

Given that messages can have different time stamps at their points of departure

and arrival, it is now necessary to show that the simulation time of each local

process can :fluctuate, relative to its neighbours, within the bounds given by the

time difference of the message's departure and arrival times. Further, it can be

shown that the constant may be local to an individual connexion and need not

apply to the network as a whole.

Two processes, P and Q, which are at simulation times Tp and TQ respectively,

are synchronized if their simulation times satisfy the inequalities

TQ- Tp < tpQ

Tp- TQ < iQP,

(14)

(1.5)

3.4. THE SYNCHRONIZATION MECHANISM 41

where tpQ and tQP are the constant delays associated with messages passing from

P to Q and from Q to P respectively. Process Q is restrained using (14) and P

using (15). That this is the case can be seen by considering a message leaving P

for Q at time Tp: the message arrives at Q at Tp + tpQ which lies outside the

bounds of (14) and hence cannot affect the current state of Q. It is trivial to

show that the reverse also applies. If an inequality would be violated by further

simulation of a particular process then that process must block.

Unfortunately, it is not possible for Q to know the exact value of Tp, or for

P to know TQ, since this would require the times to be global values. Instead, a

lower bound on the time at a remote process can be maintained (for example Q

would maintain the value TP,Q for its estimate of Tp) that is sufficient to ensure

that the appropriate inequality can never be violated. TP,Q is simply the time

at which the last message from P was transmitted to Q; it is maintained by

both P and Q; P is able to calculate when Tp - TP,Q would otherwise exceed

t PQ and cause a NULL message to be sent to Q. Similarly, Q must block if

TQ = TP,Q + tpQ until a message is received. This corresponds to the situation

where the link becomes entirely quiet along its whole length: it can be seen that

the number of NULL messages on a link cannot exceed one message for every N

cell transmission intervals and that as the cell arrival rate increases the number

of NULL messages drops rapidly; if the cell arrival rate were Poissonian then the

number of NULL messages would drop as a negative-exponential function of the

load. 3

One final constraint is required to ensure that deadlock is not possible under

any circumstance: the transmission of NULL messages must take priority over

blocking, given that the two events are scheduled for the same time. \Vhile this

condition is unlikely to occur whilst the simulator is in the main phase of the

3 The cell arrival rate could never be a perfect Poissonian function since this would imply
events being able to occur at infinitesimally close, but non-overlapping, times: since the cells
are of finite size a better function for describing traffic on the link would be the output of a
M/D/1 queueing process; such a system would require slightly fewer NuLL messages since the
queue acts as a smoothing function.

3.4. THE SYNCHRONIZATION MECHANISM 42

simulation, it occurs quite often during the initial transition phase when a link

has not yet had a cell transmitted and when tpQ = tQP·

3.4.4 Managing Multiple Links

In extending the above discussion to a multi-process network with arbitrary in­

terconnexions in a sparse (i.e. not fully connected) topology, two main areas need

to be considered: firstly, that the synchronization remains valid between two un­

connected processes which communicate indirectly using a third, and possibly

subsequent, process; and secondly that a network of processes also synchronizes

correctly and can never deadlock. Given these two proofs it is possible to build

any arbitrary topology of processes that are synchronized; a fully-connected net­

work is simply a special case.

Consider a three process network, PQ R, where Q is connected to both P and

R, but P and R can only send messages to each other using Q as an intermediary.

Each process maintains its own local time, namely Tp, TQ and TR.

Theorem If P is synchronized with Q and Q is synchronized with R then P is

implicitly synchronized with R. i.e. no event occurring at P can cause a causality

error at R, and vice versa.

Pmof P can only communicate with R by sending messages to Q: since P and

Q are synchronized then there can be no causality error when the message is

processed at Q; after this the message is processed in the same way as messages

from Q to R. Q is synchronized with R so any messages from Q to R cannot

cause causality errors at R. Hence messages from P toR cannot cause causality

errors. The reverse is trivial to show; hence, P and R are implicitly synchronized.

Mathematically:

TQ- Tp < tpQ

TR- TQ < tQR,

hence, summing the two inequalities

3.4. THE SYNCHRONIZATION MECHANISJ\!I 43

Any message from P to R will take tpQ + 8Q + tQR time to get from P to R,

where 8Q (2: 0) is the time taken to process that message at Q: since this is

at least as great as the time difference between them there can be no causality

errors. 0

Theorem If Pis synchronized with an arbitrary, synchronized, sub-network, S,

and S is synchronized with R then P is implicitly synchronized with R. I.e. no

event occurring at P can cause a causality error at R, and vice versa.

Proof Since S is synchronized we may consider two of its access points, S 1 and

S2 (which may be discrete points in the sub-network, or the same node if S is

a trivial sub-network): by definition sl and s2 are synchronized, so messages

arriving at sl can be forwarded to s2 without generating a causality error; in

doing so, they encounter a (possibly variable) delay of 8S (8S 2: is, where is is

the minimum propagation delay between S1 and S2). If P communicates with S

using S1 , and R with S using S2 , then since P & S, and S & R, are synchronized,

hence, summing gives

Ts1 - Tp < ips

TR- T~ < isR

Ts2 - Ts1 < ts,

A message from P to R will encounter a delay of ips + 8S + tsR which is at

least as great as the time difference between the two en~ points, ensuring that no

causality error can occur. The reverse is trivial, since the network is symmetric,

hence P and R can be shown, by induction, to be synchronized. 0

Theoren1 In a network of synchronized processes at least one process is always

able to proceed.

Proof The solution for one- and two-node sub-networks is degenerate to the initial

situations covered earlier. For networks of three, or more, nodes closed loops can

occur and it is necessary to show that these cannot deadlock. It has already been

shown that a multi-node route has associated with it implicit synchronization

3.4. THE SYNCHRONIZATION MECHANISM 44

between the end processes. Consider the nodes A and C in the three node network

shown in figure 9: there is explicit synchronization across the link AC and implicit

synchronization using the route ABC.

Figure 9: Simple network with explicit and implicit synchronization routes.

The proof proceeds by considering the dependencies between the blocked pro­

cesses and showing, by reductio ad absurdum, that such a chain can never form a

loop. This leaves at least one process that cannot be blocked by any other, and

which must be able to proceed.

Assume that there is no node able to proceed. Consider a node, J, in the

network that is blocked at time TJ: this node is unable to proceed since it is

waiting for a message from a remote node, say K, which is at time TK. TK

cannot be greater than TJ since otherwise J would not be blocked; further, if

TK = TJ then some message must be generated from]{ to J, since the two

processes are synchronized, and on receipt J will be able to continue (because

for J to be blocked at time TJ, the last message from]{ to J must have been at

time TJ- tKJ): therefore, TK < TJ. Similarly, due to the time constraints,]{

must be blocked on a node that has not yet been considered. This is repeated

until a node is found where all its neighbours are at times greater than itself (in

the limit this is the only node not yet considered): this node cannot be blocked

by any other process and, hence, must be able to proceed. 0

3.5. THE EVENT lviANAGER 45

3.5 The Event Manager

The event manager is the heart of each simulation process: it maintains a list of

pending events along with the simulation time when the event should be scheduled

for execution. Rather than give the event manager detailed knowledge of the type

of each event, all events are given a common form: a C function that takes a time

value (the execution time) and an arbitrary pointer to the function's data space;

the function returns the time at which it should be rescheduled, or the negative

number NOEVENT if no rescheduling should take place. The functions are managed

by the event scheduler as pointers to the function that should be executed. In

addition, each scheduled event is given a priority (default 0) which can be used

when two events are scheduled at the same time, i.e. highest priority first; events

at the same priority will be processed in arbitrary order if their times are identical.

Routines are available to schedule new events at either the default, or some

arbitrary priority; once the priority is set it persists across rescheduling. A routine

is also available to remove events that have previously been scheduled.

3.5.1 Event List Management

The event list is normally maintained using the twin list method (44], but it is

possible to convert the procedures to be functionally the same as a single list

manager by setting the initial length of the first list to infinity. It ·was found that

for the T4 series of transputers (which do not support floating-point arithmetic

in hardware), using the twin list method approximately halved the amount of

time spent maintaining the event list, but for the TSOO transputer (which does

support floating-point arithmetic) the change was negligible; indeed, for some

configurations, the twin list procedure was slower by about 0.5%.

3.5.2 Synchronizing the Event Managers

In the Chandy-Misra simulation model there is not normally an event processor in

the classical sense. Instead, events are replaced exclusively by messages and the

3.6. CONFIGURING THE SIMULATOR 46

order of processing is determined by selecting the message with the oldest time­

stamp: there must be a message available from each incoming link in order to be

able to do this; the absence of a message causes the node to block. In the A.T.M.

Network Simulator an event manager is used; consequently, in addition to adding

dependence on the link mechanisms to the code of the event manager, monitoring

for messages would be inefficient. To overcome this, the synchronization routines

are implemented as normal events that run in the same manner as all other events

in the simulator: two events are required for each link to a remote process; these

are a NULL-message generator and a process blocker.

The NULL-message generator runs on the output of a link: it compares the

current simulation time with the time when a message was last sent to the remote

process; if this is less than a propagation delay it simply reschedules itself to a

time one propagation delay later than the time at which the last message was

sent; otherwise, it must be exactly one propagation delay since a message was last

sent, so a NULL message is generated to the remote process and the generator

reschedules itself one propagation delay later. The process blocker compares the

simulation time against the time when a message was last received across a link

from the remote process; if this is less than a propagation delay then it simply

reschedules itself for one propagation delay after the time the last message was

received; otherwise it blocks the current process until a message is received and

then reschedules itself accordingly. The process blocker appears to the rest of

the simulation as a routine that takes just sufficiently long to execute that the

process remains in synchronization with its neighbours; however, while blocking,

it consumes no processing time.

3.6 Configuring the Simulator

For any simulation tool to be useful it must be capable of being run with a series

of different configurations, the extent of which has to be borne in mind when the

simulator is designed. For a truly flexible system it is not normally sufficient for

3.6. CONFIGURING THE Siiv!ULATOR 47

these to be parameters that are 'hard coded' into the simulator itself; instead,

they should be made available from a separate file (or by interactive prompting) at

the time the simulator is invoked. In the ultimate case, not only parameters such

as load and various delays should be configurable, but also the entire topology of

the network itself: this can require substantial effort being expended on making

the simulator easier to use, but, consequently, significantly more powerful.

3.6.1 The User Interface

'Hard coding' simulation variables into the simulator has already been dismissed

as highly undesirable: not only does the simulator become hard to use, requir­

ing recompilation between runs, but maintaining the simulator code becomes

extremely difficult since modules are being constantly updated and modified.

Maintaining a single module that contains all the variable parameters is almost

as bad since most of the drawbacks already mentioned still apply and, given

a small amount of extra work, it is normally possible to improve the situation

significantly.

The next easiest method of obtaining the simulation parameters is to read a

separate file when the simulator starts to execute: the file contains information,

in a predefined format, which the simulator can use to configure various variables

and data structures. Maintaining the code is significantly simplified and perform­

ing multiple simulation runs now simply requires that the simulator is re-run with

a different configuration file each time. The main problem associated with such

an approach is that the configuration file often appears, to anyone who is not

well versed with that particular simulator, as a highly terse table of apparently

meaningless numbers; mistakes in generating the file are easy to make, but are

hard to detect, and they may often lead to bad results that have to be discarded

after several hours of processing (if the user is lucky then the simulator may spot

a bad configuration file and reject it).

An alternative to reading the configuration direct from a file is to prompt

the user for the information as the simulator starts up: this can lead to requests

3.6. CONFIGURING THE SIMULATOR 48

suchas'Enter the propagation delay for the link between nodes 5 and

6:' to which the user can insert a value. The advantages of such an approach are

its flexibility over the 'hard coded' variant and the fact that the prompts describe

what the value entered refers to: the disadvantages lie in the tedium of entering,

by hand, large numbers of variables, many of which may be the same for similar

elements and for subsequent runs, and in the difficulty of making corrections when

mistakes are made. Interfaces of this type often require that the run is aborted

in such a case, making it necessary for all the values to be re-entered next time

the simulator is run: the probability of entering all the values correctly clearly

falls as the simulator becomes more complex.

A significantly better method is to use a parsable grammar that describes the

simulation parameters (and some of their dependencies) in a human comprehen­

sible format: in such environments it is rarely necessary for the information to

be in a totally fixed order since each parameter will have a tag associated with it

that describes it uniquely. Comments are normally easily supported. An example

entry might contain:

link 5:

prop_delay = 100u S

speed = 100M bitps

% Link between nodes 1 and 6

Parsers for grammars of this type are easily produced using tools such as

yacc and lex and would, probably, be implemented using a pre-processor for the

simulator that produces the configuration tables that the simulator itself reads.

Another advantage of this approach is that default values can now be used: a

special entry (for example 'link default:') might contain a series of fields that

should be used when a real definition omits a parameter.

Perhaps the ultimate solution is to use C.A.D. techniques and a graphical

interface to allow the user to 'create' the network that is to be simulated. The

simulation consists of elements such as nodes, links and traffic generators, which

3.6. CONFIGURING THE Sii\1ULATOR 49

are represented by icons; these can be added to the screen using a pointing device,

such as a mouse, until the required network is obtained. As each element is added

the default values appropriate to it are inserted: a data window containing these

values can be opened, enabling individual parameters to be fine-tuned as desired.

Many topological checks can be performed as the network is created, for example

a traffic generator must be connected to a node, and a point-to-point link must

be connected to exactly two nodes at all times. Commonly used features, such

as the icons, are available from a permanent menu on the screen; less frequently

used options can be made available from a series of pull-down menus that can

be arranged in a hierarchical manner to reflect their relationships. Mistakes are

easy to rectify: items can be inserted or deleted, and fields can be re-edited

if a wrong value is inserted. A checkpointing (undo) facility can also be used

to allow certain errors to be immediately rectified, provided no further changes

have been made. Once the configuration is complete the information is saved in a

format that is easily parsable by either the configuration routine or the simulator.

·whilst still being a separate program, the simulator can be invoked, if desired,

by selecting a menu option from the configurer; this obviates any need to return

to the operating system, but makes it possible to invoke the simulator direct,

using a set of previously prepared files, if a series of runs need to be performed

without operator intervention. All the features described in this section (with the

exception of the undo option) have been implemented by the author in a simulator

interface program designed to work with a traditional packet-switched network

simulator running on a single processor: extension of the system to work with

a multi-processor simulator would either require additional information from the

user to map the various elements of the simulation onto the processors, or would

require quite complex algorithms and heuristics to do this automatically; such

algorithms would require information on load balancing and other parameters of

the simulator, and fall outside the scope of this thesis.

The A.T.M. Network Simulator currently parses two files when it starts to

run: the first describes the topology of the network being simulated and how

3.6. CONFIGURING THE SI!v!ULATOR 50

the individual processes should be mapped onto the processors of the transputer

network; the second contains the various parameters required by each individ­

ual process. Both files are of the 'table of values format'. A parser is available

for generating the first file that understands a superset of the 3L configurer lan­

guage [51); the e:\.iensions are mainly aimed at supporting the reconfigurability

of the transputer array used. The second file has to be generated by hand, but a

built in pre-processor parses the special symbols '%date' and '%seed', replacing

them with the current date and a unique random-number seed respectively. The

seeds are generated using a different random number generator from the one used

during simulation in order to avoid, as far as possible, correlations between the

random number streams.

3.6.2 Booting the Simulator

The compiler package supplied by 3L Ltd [51) consists of three main components

for use with multi-transputer networks: the compiler, which produces object

modules from the source files; a linker, which links object modules and libraries

to create tasks; and a configurer, which binds several tasks together to form an

executable application. A task is a program in its own right: it is allocated a stack

and an area of memory, and has its own global variables; it must always run on

one processor, but can spawn threads which execute part of the code of the task in

parallel and share the memory (they each, however, have their own stack); a task

can only communicate with other tasks by using the occa m channels implemented

in the processor hardware: the collection of program threads in a task are referred

to collectively as a process. The configurer is responsible for allocating tasks to

processors, creating initial stacks and heap areas, and for mapping the connexions

between tasks onto occam channels (both internal and external).

Unfortunately the configurer supplied with the compiler does not support the

link-switch mechanism in the transputer network used and, therefore, cannot be

used in the traditional sense to boot the entire network. Instead, there are two

approaches available to overcome this limitation.

3.6. CONFIGURING THE SIMULATOR 51

In the first approach two applications are configured: the first runs on the fixed

topology part of the network (the transputers to the left of the link-switches in

figure 4), this sets the link switches to the topology used by the second application

and then loads it into the network; the second application is configured for a

particular topology in the traditional sense. This approach is straight-forward to

implement, but has two main drawbacks: firstly the second application has to be

pre-configured before the simulator is run (this comes very close to 'hard coding,'

which was rejected as being undesirable in the last section); and secondly two

configuration files are required simply to boot the network, the first to set the

switches and the second to configure the application.

The second approach, which was used in the simulator, is to use a small main

application, that runs on the fixed topology part of the network, and a series

of un-configured tasks. The main application does on-the-fly configuration of

the remainder of the application using a single file that describes the simulation

run. To do this it uses the low-level configurer execution primitives that are

documented in the manual to load the tasks directly into each processor. The

procedure is, relative to the alternative, more complex to implement, but has

neither of the disadvantages. The main drawback is the possibility that such an

approach might not be available in future releases of the compiler package.

3.6.3 Loading the Simulation Parameter File

Once each task has been loaded and has started to run, the simulation parameter

files have to be loaded. Unlike traditional simulators this poses a large problem:

part of the information contained in the parameter file is used by the multiplexors

to control the switching of messages; until this is loaded they cannot operate

properly. Similarly, none of the other tasks knows any information about where

it lies in the overall topology, since to provide this information would require

'hard coding'. Indeed, the only information that each process has is its own

array of channels for use in communicating, but even this has little meaning

unless some conventions are used. Fortunately, 'false' channels can be created

3.6. CONFIGURING THE SIMULATOR

during the configuration process and their values set to represent something other

than a genuine channel. 4 vVith this information, known as a 'tag', each task

in the simulator can be uniquely identified, enabling it to extract the relevant

information from the parameters file.

At this stage a task still does not know on which input channel it will receive

the configuration information; further, it does not know on which output channels,

if any, it must forward the information so that it can reach its neighbours. To

obtain this information a boot-tree is built which starts at the task connected

to the fixed topology part of the network (there is exactly one such task) and

extends outwards until all the tasks know their parent, and any children they

might have. The protocol for doing this in the presence of loops is quite complex

if the use of timeouts are to be avoided; the petri-net in figure 10 represents the

code running on just one channel pair of one task (all of the channels in the

simulator are paired, one input and one output, to the same remote task), the

same code runs on each channel pair throughout the simulator.

The parameters file contains a few lines of global information, such as the

title of the simulation run, the size of the network, and for how long the run

must last, followed by a series of entries, one for each task in the simulator. To

avoid the need for each task to have to be able to interpret information for other

tasks (which may well be of a different class), each task scans the parameters

file looking for a string of the form 'class xxx: ', where the class is the type

of task ('SRCE' for a traffic generator, 'MUX' for a multiplexor, etc.) and xxx

is the tag-value that was bound to the false link. On finding this string, the

task then interprets the following parameters as its personal configuration file.

Special routines are used to parse the file while ensuring that at the same time

the entire file is passed on to its children in the boot-tree without modification or

4 A channel is implemented as a memory location that contains a pointer to the block of
memory that is to be moved; the D.M.A. controller in the transputer hardware performs a
block move when both ends become valid. Special locations exist for the external links, but
the principle of operation is the same. The array of channels given in the parameters passed
to main() when the task starts are simply lists of addresses of the pointers (i.e. pointers to
pointers): false channels are created by using illegal addresses; instead of being an address, the
item in the list is given a numerical meaning which can be interpreted direct.

3.6. CONFIGURING THE SIMULATOR 53

Offer of Bootfile
(One for each thread

on

I_sent_rejection

He does need

Become_transmitter

I_am_receiver I_am_terminated I am transmitter

Key:

• Local token state I i I Global token state

e Initial token Position

Figure 10: Petri-net showing the state transitions for a single channel while de­
termining the download path for the simulator. The 'square' states are shared
by all of the channels, which have been omitted for clarity, making it impossible
for more than one channel to be activated as a receiver.

3.7. PERFORMANCE ANALYSIS OF THE SIMULATOR 54

loss. Once the entire file has been read and interpreted, the configuration process

is complete and the simulation can begin.

3. 7 Performance Analysis of the Simulator

·with distributed simulation, the ultimate goal is to obtain a simulator that runs

as quickly as possible; if the speed of the distributed simulator is less than that

of a conventional simulator then there is no reason for using it (and many good

reasons for not doing so). However, it is normally impossible to compare directly

distributed and conventional simulators since the two are written in an entirely

different manner and the programmer rarely wants to write both. A good indi­

cation of the possible behaviour of the conventional simulator can sometimes be

obtained, though, by running an optimized version of the distributed simulator

on a single processor. The time taken for the single processor version to run can

be compared with that for the multi-processor version and the speed-up of the

simulator is then the ratio of the time for the multi-processor version to that for

the single processor: normally this should lie in the range between one and n,

when the multi-processor version is run on n processors; a speed-up of n is said

to be linear.

The performance results given here are for the A.T.M. Network Simulator

configured as shown in figure 11: the network consists offour A.T.M. exchanges in

a fully connected trunk network and eight 'local' exchanges each of which is dual­

parented onto two trunk exchanges; each local exchange has two traffic generators;

the exchanges were all running the Orwell ring protocol (see chapter 5). Two sets

of results \Vere recorded using differing switch capacities and traffic mixes. In

both cases the links were running at 150 Mbit/s and the propagation delay was

set to 1 x 10-4 s (equivalent to about 20 km of glass fibre, or about 3.5 cells).

The results for the very low traffic load were taken using 150 Mbit/s Orwell rings

for the switches and with a mixture of voice and mobile traffic (see chapter 6);

the results for the higher loads used purely voice traffic and a ring speed of

3. 7. PERFORMANCE ANALYSIS OF THE SIMULATOR

6_ Trunk Exchange

0 Local Exchange

Q Traffic Source

0 Transputer

55

Figure 11: Network topology used for the simulator performance analysis runs.
The basic processor assignments are also shown; a traffic source presents a very
small load to a processor so it may be safely combined with a local exchange
without unduly affecting the load balance.

600 Mbit/s. With the smaller capacity switches the maximum link loading was

about 15%, but this was increased to about 50% for the high-capacity switches.

Two single-processor simulations were run for each load: one with identical code

to the multi-processor version; the other with the redundant multiplexors removed

to speed message transfer. In the following graphs, when the load is shown it is

expressed as the average percentage of the capacity of a link.

Figure 12 shows the time taken to simulate the two models on the full array of

processors. The fact that the two curves do not pass through the origin has two

causes: the NULL-message trc.Jfic for low loads and the overhead of simulating

3. 7. PERFORMANCE ANALYSIS OF THE SIMULATOR 56

the ring slot-rotation action for the Orwell protocol. That it is the second of

these that represents the largest factor can be inferred from the fact that the

NULL-message traffic generated for each of the two curves is identical for a given

link loading; so for this to be the cause the two curves should cut the axis at the

same point. Results similar to· these, from work on a simulator for the Orwell

protocol on a sequential machine, provided the motivation behind the work in

chapter 5.

Figure 13 shows the speed-up of the simulator as a function of load; it shows

that, even for a load of just 15% of maximum capacity, the speed-up is approach­

ing the ideal value of 12 for the unoptimized version, and is starting to level

out at just over 10 when compared with the optimized version. The difference

between the two curves represents the proportion of the processing time that is

taken up in switching the messages from one processor to another. The speed-up

of the simulator relative to the unoptimized version can also be estimated from

the CPU activity monitoring of each of the transputers in use: the results from

doing this agree well with the upper curve shown. Figure 14 shows the speed-up

for the 600 Mbit/s ring at the higher loads. In comparison with the unoptimized

single-processor version the speed-up is greater than 10 for all loads simulated,

and for link loads greater than 30% it is nearly 'ideal'.

It can be seen from figure 15 that the speed-up degrades gracefully with

increasing NULL message ratio; but, fortunately, as can be seen from figure 16,

the NULL message ratio remains very low for a large range of the load.

3. 7. PERFORMANCE ANALYSIS OF THE SIMULATOR 57

16000

14000

12000

10000

-en
:::::::,

Cl)

E
I=

8000 c::
0

:.;::::;
c
::;
E

Vi

6000
•

4000 /
./

./
./ -•- 150 Mbit/s Ring

2000 ----o--- 600 Mbit/s Ring

0

0 5 10 15 20 25 30 35 40 45

Link Load (/% of capacity)

Figure 12: Simulation time for the twelve-node network on twelve transputers.

3.7. PERFORMANCE ANALYSIS OF THE SIMULATOR 58

12

•
10

8

4

2
-•- Unoptimized

--o-- Optimized

0

0 2 4 6 8 10 12 14 16

Link Load (%of capacity)

Figure 13: Speed-up for the 150 Mbit/s ring carrying mixed mobile and voice
traffic. The Unoptimized curve is when the single processor runs identical code to
the multi-processor version; for the Optimized curve the redundant multiplexors
in the single processor version have been removed.

3. 7. PERFORMANCE ANALYSIS OF THE SIMULATOR 59

12
_____ , ____ .

10

8

"2'
'Vi'
c:
::I
I

" Q)
Q)

6 c..
V'l

4

2 -•- Unoptimized

--o- Optimized

0

0 5 10 15 20 25 30 35 40 45

Link Load (%of capacity)

Figure 14: Speed-up for the 600 Mbit/s ring carrying voice traffic.

3.7. PERFORMANCE ANALYSIS OF THE SIMULATOR 60

12

10

8

4

2 -•- 150 MbiVs ring

-o-- 600 MbiVs ring

0

0.0001 0.001 0.01 0.1

Null Message Ratio (NMR)

Figure 15: Speed-up as a function of NULL-message ratio. The difference between
the two curves represents the extra parallelism that can be extracted from the
higher speed rings.

3.7. PERFORMANCE ANALYSIS OF THE SIMULATOR

0.1

0.01

0.001

0.0001

\
\
\

0 5 10

-•- 150 Mbit/s ring

-----{)- 600 Mbit/s ring

15 20 25 30 35 40 45

Link Load(/% of capacity)

61

Figure 16: NULL-message ratio as a function of load. As might be expected, the
ratio is independent of the ring speed.

Chapter 4

Asynchronous Transfer Mode
Techniques

TELECOMMUNICATIONS STANDARDS have usually followed some time after

the development of products for a particular need. This has led to subtle,

or sometimes gross, incompatibilities between two functionally similar products,

making interworking both inefficient and expensive. When telecommunication

networks were largely considered as a local, or national, resource then the incom­

patibilities were not particularly significant; but, in many respects, the public

network now needs more and more to be regarded as an international resource

and such matters as interworking cannot be 'put on one side' until the local net­

work is functioning. The cost of designing and installing the equipment is now so

great that to justify replacing the current network with a new one requires that

significant benefit be obtained by doing so and, further, that a similar need must

not occur again for a long time (if ever).

The first telecommunication networks were entirely analogue and catered

purely for voice communication; but the advent of digital electronics, particularly

with development during the nineteen-fifties and -sixties of the transistor and the

integrated circuit, made the eventual change to a digital communications net­

work almost inevitable. By 1991, for example, the entire B.T. trunk network had

been converted to digital switching and transmission, but substantial amounts of

the local network, and in particular the final connexion to subscribers (the latter

known as the copper pair), remain analogue; so far, it is primarily large users who

have received direct digital connexion to the network. Digital networks, however,

62

4. ASYNCHRONOUS TRANSFER MODE TECHNIQUES 63

can carry many more services than voice communications alone, the most obvi-

ous of which is computer data (for example, file transfer): such data networks,

normally categorized as Local, Metropolitan and vVide Area Networks (LANs,

MANs and WANs, respectively), usually have an inverse relationship between

their capacity and coverage region.

Unfortunately, traditional digital voice networks and data networks use in-

compatible transmission techniques and have different performance criteria: voice

telephony requires only moderate levels of data integrity, but has stringent con­

straints on the delay that may be incurred while passing through the network;

for data communication, on the other hand, the constraints are the other way

round. To resolve these differences voice communication uses synchronous tech­

niques such as time division multiplexing (T.D.M.) 1 which has low latency at

the exchanges since no queueing is involved: data communication is normally

packetized; the traffic characteristics of the data being transmitted are hard to

quantify in advance, so unlike voice, where a fixed amount of the communications

resource can be allocated to each call, the data are split up into variable length

packets and given access to the entire available bandwidth; transient overloads

at the exchanges (switches) are handled by queueing.

It was clearly desirable for the services provided by the two systems to be

merged into a single network using a single access point: the capital value of the

local network is immense, and the cost of duplicating it, including the disruption

this would cause, to provide data services is almost unimaginable. Fortunately,

recent advances in technology have made it possible to use each copper pair in

the access network (which was originally designed to support a single 3kHz band­

width channel) at a transmission rate of 144 kbit/s (sufficient for two 64 kbit/s

voice channels plus some spare). In 1984 the C.C.I.T.T. published a series of

recommendations (the !-series) that defined an integrated services digital network

1T.D.M. and its more analogue counterpart, frequency division multiplexing (F.D.M.), are
classed as synchronous transfer mode (S.T.M.) techniques: the interpretation of the data re­
ceived at the destination is based entirely on some pre-arranged time (frequency) allocation.

4. ASYNCHRONOUS TRANSFER MODE TECHNIQUES 64

(I.S.D.N.) which were subsequently refined in 1988. The recommendations stan­

dardized a total of six different types of channel (labelled A toE and H), the most

important of these being: the B channel, a 64 kbit/s channel for voice or data;

the D channel, a 16 or 64 kbit/s channel for signalling or packetized data; and the

H channel, which can run at 384, 1536 or 1920 kbit/s for higher-rate access. To

standardize access further, two main channel combinations were defined: the basic

rate, which contains 2B + 1D channels and is suitable for use with the standard

copper pair; and a primary rate, which contains 30B + 1D channels in Europe

and 23B + 1D channels in the U.S.A. and Japan. 2 The I.S.D.N. defines the B

channel purely in terms of its size and position in the frame for transmission to

the exchange (O.S.I. layer 1); no meaning is attached to any of the bits within the.

channel: this makes it suitable for use with any service requiring not more than

64 kbit/s bandwidth; services requiring more than this must use either multiple

circuits or one of the H channels (the two are not interchangeable), but in either

case the network does not 'see' any of this higher-layer protocol adaptation.

There are several problems, however, with the I.S.D.N. architecture that make

it potentially unsuitable for many communication needs in the not too distant fu­

ture. The internal workings of an I.S.D.N. do not naturally form a single network,

once information reaches the exchange it is normally split into the appropriate

data class and routed on the appropriate type of network (for example, voice

traffic over a T.D.M. network and data over a packet-switched network); the B

and H channels are highly restrictive in nature as they each have a fixed capacity

that cannot be exceeded, whilst if a service requires less than the capacity of a

channel the balance is wasted; in a similar manner, the suitability of the channels

for packetized data is very poor, the D channel has very low capacity and the

B and H channels do not support their stochastic traffic nature very efficiently.

The addition of new services is also quite complex; this follows from the individ­

ual carrier-networks that tend to make up an I.S.D.N.; adding a new service may

2This is a classic example of the subtle interworking problems that exist when standards
are defined to follow existing technology: the European configuration is compatible with the
C.C.I.T.T. standard 2 Mbit/s connexions; the U.S. configuration with the frame structure of
A.T.&T.'s Tl system, using 1.5 Mbit/s links.

4.1. BACKGROUND 65

well require a new type of network in addition to more software at each exchange.

Finally, and perhaps most importantly, the I.S.D.N. does not define any access

rate higher than 2 Mbit/s, this means that services such as high definition video

cannot be carried. Most of these problems can be solved with the newly emerging

standards for a Broadband I.S.D.N. (B.-I.S.D.N.); this defines both the interface

and the network itself in a far more flexible manner which provides not only for

much higher data transfer rates but also makes the installation of new services

much simpler for network managers.

This chapter describes in detail the background and functionality of a

B.-I.S.D.N., showing how both new and old, error-sensitive and delay-sensitive,

services can co-exist on a single network. The prospects of implementing such a

network are still a few years in the future, and it will not appear 'over night': in

the interim it will be necessary for the new and old networks to interoperate. At

present, the plain old telephony service (POTS) is still, by far, the largest revenue

earner for the network operators and such a service must continue to be provided

with an equivalent, or higher, grade of service (GOS, or quality of service, QOS)

in any new system that is installed.

4.1 Background

When a broadband version of the I.S.D.N. was first proposed it was unclear

what mechanism would be required to support the new services which it would

provide. At that time most of the high- bandwidth services that would need to

be carried by such a network (for example video based services) could only be

encoded using constant bit-rate (C.B.R or F(ixed).B.R.) techniques, so it was

suggested that the best approach should be to define yet more higher access rate

channels, similar to the H channels: however, another of the main services that

the network would have to support is high-speed connexion between LANs, which

tends to have a bursty traffic characteristic. vVhen it subsequently became pos­

sible to encode video signals using a variable bit-rate (V.B.R.) scheme it became

4.1. BACKGROUND 66

obvious that fixed channel allocations would be far too wasteful when segment­

ing the communications resource: further, for efficiency of channel allocation, it

would probably be necessary to partition the S.T.M. frames in a fixed manner

with each class of channel only being allowed to start on the appropriate bound­

ary within the frame; this can lead to fragmentation, making it impossible to

carry the higher-rate channels even when there is theoretically sufficient spare

capacity.

It became clear that a new transfer mechanism would be required to make

more efficient use of the capacity of the network. Two differing schemes were

under investigation in the United States and Europe (with different applications

in mind); it was proposed that the two should be analysed in more detail and a

common solution adopted: the solution was initially referred to as the new trans­

fer mode but was subsequently changed to asynchronous transfer mode (A.T.M.)

because of the analogy with S.T.M .. The American proposal, fast packet switch­

ing (F.P.S.), was originally aimed at producing a high speed network suitable

for connecting LAN s together: the European proposal was more concerned with

handling packetized voice samples in a delay-critical environment and is known

as asynchronous time division (A.T.D.).

4.1.1 Fast Packet Switching

The C.C.I.T.T.'s X.25 and associated protocols were originally designed with

relatively poor-quality copper-based transmission techniques in mind: the error

rates are high, so the probability of a packet being transmitted from one end of the

network to the other without some errors creeping in is not negligible; complex

retransmission policies are employed across each link in the transmission path

so that each packet is received correctly on one link before it is forwarded to

the next; and windowing techniques are employed to enable sufficient throughput

when the link delays are high. All these techniques require substantial amounts

of software for verification and management of the protocol, and memory for

buffering: as the reliability of the links increases to the extent that errors are

4.1. BACKGROUND 67

no-longer likely over the end-to-end path, the protocol becomes a hindrance to

efficient use of the network. It has been shown that when the bit error ratio drops

below 10-5 the use of end-to-end retransmission becomes no less efficient than

link-by-link [52]3.

When fibre-optic links are used the bit error ratio can be reduced to levels

significantly below 10-5 , so the proposal for fast packet switching involved the

use of end-to-end retransmission. Moving error control and, also, flow control to

the edges of the network significantly simplified the link protocols; the remaining

functions were then easily implemented using hardware, resulting in extremely

fast switches, and made it possible to carry delay-sensitive services such as voice.

Since a primary service for the network was to be high-speed LAN interconnexion,

variable sized packets were proposed.

4.1.2 Asynchronous Time Division

Whilst F.P.S. was being derived from traditional packet switching techniques,

asynchronous time division was evolving from the synchronous time division

(S.T.D.) techniques used for traditional circuit switching. By adding more in­

telligence to the switch and by adding short headers to each block of data, the

need for time-position dependence was removed and the flexibility of the system

enhanced. Research was performed to enable A.T.D. to be defined as a layer 1

protocol in the O.S.I. reference model; the functionality of the header was reduced

to the absolute minimum required for switching the frame of data: fixed sized

frames of between 8 and 32 octets were proposed, so the header needs to con­

tain only connexion (routeing) and priority information. Because of its origins,

A.T.D. was always intended primarily as a low-latency transport mechanism for

delay-sensitive services such as voice and video, with the emphasis on video [54].

3 This reference cites [53) for this result.

4.2. ASYNCHRONOUS TRANSFER MODE 68

4.2 Asynchronous Transfer Mode

Rather than select one of the two alternatives, the C.C.I.T.T. elected to choose

a compromise solution: some of the features of each of the proposals were chosen

to form the A.T.M. implementation to be used for a Broadband I.S.D.N .. It was

decided, for example, that fixed-size packets, known as cells (to avoid confusion

with traditional packet switching, where the packets are of variable length), would

be used, but their size would be longer than proposed in the A.T.D. definition; a

small amount of extra functionality was added to the header over that proposed

for A.T.D., but explicit priority information was omitted.

In O.S.I. parlance, A.T.M. provides layer 1 and some layer 2 functionality; the

precise relationship between the A.T.M. reference model and the O.S.I. model is

still to be fully defined (C.C.I.T.T. recommendation 1.321) and, in any case,

the mapping is fairly vague: many functions which have traditionally been part

of the data-link layer are now omitted entirely or moved to functions in the

transport layer. In traditional packet-switched networks the protocol stack at

intermediate nodes in a packet's route covered layers one, two and three; for an

A.T.M. network, however, the A.T.M. layer is the highest protocol layer within

intermediate nodes. Figure 17 shows the layers within the A.T.M. protocol stack.

The Physical Layer has two sub-layers: the physical media sub-layer, which is

the lower layer and is responsible for bit timing and transmission; and the upper

layer is the transmission convergence sub-layer, which handles aspects such as

cell delineation and header error control. The A. T.M. layer has further sub­

layers of its own, which include: Generic Flow Control, which only operates at

the edges of the network and is used to throttle back sources when the network is

in danger of overload; cell header generation and extraction; virtual-circuit and

virtual-path number translation when switching the cells; and cell multiplexing

or demultiplexing between supported services.

4.2. ASYNCHRONOUS TRANSFER MODE 69

Management Plane

Higher Layers Higher Layers

A TM Adaptation Layer

ATMLayer

Physical Layer

Figure 17: The layers of the A.T.M. protocol stack.

4.2.1 Cell Structure

The A.T.M. cell structure is defined m Recommendation !.361; the cell is of

fixed size with a 48 octet payload field and a 5 octet header. The format of

the payload remains fixed and unmodified during the whole time that the cell

remains in the A.T.M. network; since error control is performed at the edges, and

then only when a service requires such a feature, the field does not contain an

explicit error-correcting, or -detecting, capability. The header has two formats,

depending on where the cell is within the network: between user equipment and

the network (U.N.I., user-network interface) provision is made for generic flow

control; for communication between nodes within the network (N.N.I., network­

network interface) no such provision is made and the relevant bits are made

available to increase the number of virtual circuits.

The header at the U.N.I. is shown in figure 18; it contains:

G.F .C. Generic Flow control. This field is to enable the network to regulate the

arrival of cells from a source external to the network. Details of the values

to be used have yet to be defined. 4 bits.

4.2. ASYNCHRONOUS TRANSFER MODE 70

GFC VCI VPI HEC

12---:>t<~-12 >K 2-?+E--1-?+E--1 >K 8)f

Figure 18: The cell-header format for the U.N.I.; dimensions in bits.

V.P.I.jV.C.I. Virtual Path Indicator, Virtual Circuit Indicator. These fields

are normally used in conjunction with each other; together they are used

to route cells through the network from one edge connexion to another.

The values assigned have only local significance and may change at various

intermediate nodes. 8 bits V.P.I., 12 bits V.C.I..

P.T. Payload type. This field is used to describe the type of data that the cell

contains; assignments of the values have yet to be made, but it might,

for example, be used to distinguish signalling traffic from user data, or to

indicate some form of priority. 2 bits.

C.L.P. Cell Loss Priority. A cell with this field set is more likely to be discarded

at times of network overload than one with the field cleared. 1 bit.

H.E.C. Header Error Control. This field contains a CRC-8 code which is used

to protect the header (only) against corruption during transmission. \Vhilst

it is part of the A.T.M. header, it is computed and tested in the Physical

Layer functions before cells are passed up to the A.T.M. layer. 8 bits.

res Reserved. A single bit field that is reserved for future use. 1 bit.

The header for use at the N.N.I. is shown in figure 19; it is identical to the

header for the U.N.I. with the following exceptions:

• There is no G.F.C. field.

• The V.P.I. field is expanded to 12 bits to provide increased routeing capacity

within the network.

4.2. ASYNCHRONOUS TRANSFER MODE 71

VCI VPI HEC

JE=:K--12-____;::>K~--12-----"l>K~·27fcE-17fcE-l >K 8

Figure 19: The cell-header format for the N.N.I.; dimensions in bits.

4.2.2 Routeing

The primary role of the cell header is to provide sufficient information for the

cell to be routed through the network. Since the size of an international network

has to be considered it is impractical to use datagram headers and destination

addresses within each cell (the 20 address bits available in the header at the

U .N .I. would provide for approximately 1 million possible destinations, which is

insufficient to cover the needs of U.K. alone), so a virtual circuit approach has

been adopted. To simplify routeing of connexions at the trunk exchange, the

routeing bits have been partitioned into two parts: a virtual circuit, with each

connexion having its own circuit identification, and a virtual path, which is then

used to group connexions using the same route, or part of a route, through the

network. At the trunk exchanges,' connexions are routed solely on their virtual

path identifier, but at local exchanges and elsewhere the full address part may

be used: normally, at an exchange the circuit number will change to represent

the value required for the local link; at trunk exchanges only the V.P.I. changes,

while the V.C.I. remains constant; elsewhere, both the V.P.I. and the V.C.I. may

change between input and output.

For some services, notably user-network and intra-network signalling, estab­

lishing a virtual circuit before communicating might be inefficient, or even impos­

sible (the signal to create the circuit would need to be sent, but this requires that

a circuit already exists ...); in such cases permanent, or semi-permanent, circuits

can be established. It is even possible that some user-user services will also work

better in a connexionless environment; in this case a connexionless type service

can be established by reserving a V.P.I. value and then assigning the V.C.I. values

4.3. ENABLING TECHNOLOGY 72

to represent individual destinations within the network: individual communicat­

ing pairs are resolved using the A.T.lVI. adaptation layer. To implement this the

network has to be partitioned into zones [5.5].

4.2.3 The A.T.M. Adaptation Layer

The A.T.M. adaptation layer is the functional layer above the A.T . .M. layer; as

such, it strictly lies outside the formal definition of the A.T.M. network: its func­

tionality is service dependent and the fields that it 'defines' are only interpreted

by equipment that lies beyond the edges of the network itself. However, despite

the fact that implementation is not mandatory, all services will require some form

of adaptation, and most are likely to fall into one of the four classes of adaptation

layer framing. The layer handles such functions as: segmentation and reassembly

of messages; error recovery and retransmission; handling of lost or misinserted

cells; flow control; and timing control.

Four basic classes of adaptation are defined in Recommendations I.362 and

I.363. The features supported are shown in table 1.

Class A I Class B Class C I Class D
Timing relation
between source and Required Not Required
destination
Bit Rate Constant I Variable
Connexion Mode Connexion Oriented I Connexionless

Table 1: Suggested A.T . .M. Adaptation Layer classes.

4.3 Enabling Technology

The ability to build the high-speed networks required for broadband I.S.D.N. is

a direct result of advances in hardware technology. Not only is greater capacity

available because of the increase in the speed at which it works but, also, the

probability of failure is decreasing: if the rate of failure were not to decrease then

4.3. ENABLING TECHNOLOGY 73

a system running ten times as fast would be likely to fail ten times as often; in

practice the situation is better than this.

4.3.1 Fibre Optics

One of the main technologies that makes a B.-I.S.D.N. possible is the use of

fibre optics with semiconductor-laser technology. Copper-based communication

links have always been subject to electromagnetic interference (E.M.I.), which

is commonly of a bursty nature and can distort the connexion for several bit

periods so that the signal is beyond recovery; single bit errors tend to be more of

a secondary issue, but they can still cause problems. The non-negligible resistance

and leakage of the copper connexion causes attenuation; on runs of more than a

few kilometers repeaters are required to boost the signal back to its original level

and to 're-shape' the pulse edges.

With fibre optics the primary source of interference, E.M.I., no-longer applies,

so the probability of an uncorrectable burst of data occurring is almost zero.

Attenuation within the fibre is significantly lower than for an equivalent length of

copper and consequently repeaters are needed less frequently, thereby increasing

the reliability of a link. In addition, mono-mode fibres have (as their name

implies) only one mode by which the light signal can propagate down the fibre;

this eliminates multi-path distortion and further increases the possible distance

between repeaters. The current capacity of fibre-optic systems is not limited by

the fibre itself, but by the speed with which the lasers and detectors can be made

to operate reliably; it is to be expected that this will continue to increase in the

future as the technology matures.

4.3.2 Switching Technology

To support the very large amount of traffic that a B.-I.S.D.N. will be required

to carry, new types of switching technology are necessary. The concept of a cir­

cuit running through an exchange, carrying a single call from input to output,

4.3. ENABLING TECHNOLOGY 74

a b

Figure 20: 2-input, 2-output switching element that forms the basis of the Starlite
switch. a) crossed over outputs, b) straight through.

was weakened with the introduction of digitized voice services: it is almost to­

tally destroyed by the packetization of the samples; circuits no-longer exist in

any physical sense, only the logical sense remains. In traditional packet-switched

networks the amount of processing that was performed on each packet at each

switch in the network made it feasible for the switching process to be performed

in software, without the need for complex hardware to parallelize the process. In

order to achieve the higher throughput of a B.-I.S.D.N. the lower layers of soft­

ware were simplified to the extent that most of the remaining functions could be

implemented in hardware; the switching routines would be swamped if a software

process were used.

A highly parallel switching architecture is the Starlite switch [56]. It uses

fixed-size packets and routes these in parallel waves across the switching archi­

tecture; it is non-blocking provided that two, or more, packets are not routed to

the same destination at the same time. The basic element is a 2-input, 2-output

switching device that can either pass both inputs straight through or can cross

them over to the opposite outputs (figure 20): the main features of the switch

are built up from replicas of this element, making the whole fabric well suited

to implementation using V.L.S.I. technology). There are two main phases to the

switching process (figure 21): a sort phase, which uses the elemental switches

arranged as a Batcher network to perform a 'perfect shuffle', and an expansion

phase, which switches the sorted packets to the correct outputs. The expansion

phase is sometimes known as a Banyan Network, leading to the whole switch

being known as a Batcher-Banyan Network. To cope with packets addressed to

4.3. ENABLING TECHNOLOGY 75

-----DataAow jlo

X

X

X

Figure 21: Connexion graphs for the two main phases of a Starlite switch. The
top graph performs the perfect shuffle to sort the inputs into order (the arrows
point to the output that should have the larger of the two inputs); the lower graph
is the expansion phase that uses the bit fields of the output port to determine
the route.

the same output a trap phase has to be used between the sorter and the expander

(figure 22); this re-routes packets, that would otherwise be lost, back to the input

of the sorter for processing on the following pass; the loss rate of the exchange can

be determined by the amount of capacity within the trap that can be re-routed

in such a manner. The concentrators are used to keep the number of switching

elements as low as possible: the sort phase requires n(log2 n)(log2 n + 1)/2 basic

elements for n inputs; the expander requires m(log2 m)/2 basic elements for its

m inputs: for large switches the probability that all inputs would be active at

once is very small and large economies can be made by using concentrators to

reduce n.

Another possible switch architecture that has beea proposed IS the Orwell

4.4. TRAFFIC AND SERVICES 76

-
Figure 22: Stages of a Starlite switch. The concentrator phase is used to reduce
the number of inputs to the sorter; the trap phase to catch two or more cells that
are routed to the same output which would get blocked in the expander; all but
one are recycled back to the input for switching on a subsequent pass.

Torus [57]; this would be used mainly in low capacity exchanges where its greater

flexibility would be more important than very high throughput. The protocol uses

multiple slotted rings, running in parallel, and novel access control mechanisms,

to bound access delays for time-critical services. The protocol is discussed in

more detail in the next chapter.

4.4 Traffic and Services

In order to dimension correctly the capacities of vanous elements within a

B.-I.S.D.N. the types and expected loads of services offered need to be analysed

in detail; provision for future growth of the services also needs to be included;

this is likely to prove extremely difficult to calculate since the services requiring

most bandwidth are, as yet, untried, and their likely penetration into the market

are, at present, unknown. It is the necessity to reduce the risk of forecasting er­

rors that makes the requirement for a single transmission network so important;

errors in under-forecasting for growth in one service may well be compensated by

over-forecasting in another.

4.4. TRAFFIC AND SERVICES 77

4.4.1 Connexion Control

If all the services carried by a B.-I.S.D.N. used constant bit-rate encoding then cal­

culating whether a service could be safely carried without affecting the delays and

causing overloads would be a relatively simple extension of the techniques used for

traditional voice networks (the main difference being that services could require

differing amounts of bandwidth and that these would not be integral multiples

of some base rate); in such circumstances connexion control is not particularly

difficult. However, some services, such as interactive computer-data transfer, are

naturally bursty in nature and others, such as compressed video signals, often re­

quire a variable bit-rate coding scheme; when several of these services are carried

simultaneously on a single network then some network capacity can be saved by

understanding the statistical processes involved· and working out the likelihood

of an overload occurring.

There are three statistical parameters to a variable bit-rate coding scheme that

are of interest to network operators: mean, standard deviation (or variance) and

peak bit rates. It is, at present, unclear which of the latter two is the most impor­

tant in terms of dimensioning the network: one approach suggested for connexion

control is for the call to be accepted purely on the basis of its peak bandwidth

requirement; while this would enable cell loss due to overload to be completely

avoided, significant benefits available from statistical multiplexing would be lost,

making the network inefficient. ·when connexion acceptance is based on statistical

calculations then the 'acceptance surface' (a multi-dimensional surface indicat­

ing the load limits for various combinations of traffic) is no-longer a plane, but

becomes distorted due to the differing standard deviations: attempts have been

made to calculate this surface in advance [58], and others have suggested that

the surface might be determined when the network is in operation (for example,

by using neural networks [59]).

4.4. TRAFFIC AND SERVICES 78

4.4.2 Charging and Policing

Two areas that are still a major subject of debate are charging customers for

use of the network and policing connexions, particularly V.B.R. connexions, to

ensure that they do not try to transmit more than had been originally stated.

The two areas are similar in that the same techniques and problems apply to

both, although different techniques may be applied. The main options available

are to monitor the mean rate or the peak rate, or possibly some function of

both: charging only for the peak bandwidth used is, however, difficult to justify

unless the bandwidth is guaranteed; conversely, charging for the mean bandwidth

used does not reflect the spare capacity that has to be set aside to cope with

the statistical fluctuations. Policing is important, particularly when statistical

connexion acceptance is performed, to ensure that the traffic load presented to

the network matches that which was negotiated when the call was initiated. The

problems in both cases are concerned with the shear bulk of information that

has to be processed; a simple network may well be carrying several million cells

every second, and to monitor each one presents an insurmountable burden for

the policing and charging functions.

Chapter 5

Orwell Model Simplifications for
Network Level Simulation

Rings form one of the three basic types of L.A.N. topology (the others being star

and bus) and three basic types of protocol have been developed for use with them.

By far the most popular of these are token based protocols, whereby the node

holding a token is given exclusive access to the ring. Register insertion is another

alternative; messages can be inserted onto the ring, delaying any existing traffic

by passing it through a shift register. The third, but nowadays less favoured,

approach is to use a slotted ring protocol: the ring is divided into slots which

circulate around the ring; a node wishing to transmit a message waits until an

unfilled slot is found, changes the header and transmits the message in the body

of the slot.

Slotted ring protocols were unpopular for several reasons: a monitor node is

required to ensure that slots that become corrupted can be identified and regen­

erated (correct behaviour of the ring is critically dependent on correct behaviour

of the monitor); to get a reasonable number of slots onto the ring delays have to

be inserted at each node and one node, normally the monitor, has to be able to

adjust its delay so that there are an integral number of slots; and the efficiency

of slotted rings is generally poor since the ratio of header to body is normally

high. Its greatest advantage over token-based protocols, however, is that more

that one node can be transmitting information at a time, using different slots on

the ring. Acknowledgement of delivery is normally made by releasing the slot at

79

5. ORWELL JviODEL SIMPLIFICATIONS ... so

the source (correct receipt there is taken to imply correct delivery at the desti­

nation); the node may not refill a slot that it has just released, ensuring that the

slot is passed to the next node and thereby ensures fair access to all nodes on the

ring. A typical implementation of a slotted ring is the Cambridge Ring protocol

(British Standard BS6531).

Examination of existing protocols has indicated that those based on a slotted

ring are probably the best suited for carrying delay-sensitive speech, but sim­

ulation studies of high-bandwidth Cambridge Rings have indicated that there

are still significant limitations when operated under high load [60] and, further,

load control is difficult since there is no relevant parameter that can easily be ex­

tracted from the ring. The Orwell protocol was developed after making a detailed

study of the limitations of the Cambridge Ring protocol: it was found that by

introducing destination release of slots, and by adding a novel, distributed, load

control mechanism to bound access delays, a viable level of performance could be

obtained [61, 62]. For higher capacity networks multiple, synchronized, rings can

be used and such a network is known as an Orwell Torus.

·whilst detailed simulations of a single ring have been made, under a variety

of load and traffic services, there has, as yet, been very little investigation made

into the behaviour of an Orwell torus, or ring behaviour in multi-ring systems.

The reason for this, at least in part, is because of the large amount of simulation

time required to investigate networks of Orwell rings: a single simulation run of

one ring takes, typically, a couple of hours on a VAX, or three times as long on a

Sun 3/50 work-station for just a couple of seconds of simulated time.

There are three main options available to try and reduce the amount of time

required for simulation. The first and, almost certainly, least feasible option is

to use a larger and faster conventional computer than a VAX; this may reduce

the amount of C.P.U. time required, but it is unlikely to decrease the total time

for one simulation because of the higher demand placed on such machines. The

second option is to break down the simul"ation model into processes t.hat occur

5.1. OVERVIEW OF THE ORvVELL PROTOCOL 81

concurrently and to redesign the model to take advantage of parallel process­

ing architectures such as the transputer; this option looks promising, despite the

fact that an individual processing element will have less power than some single

C.P.U. machines, because the total power can be increased by simply using more

processors. The third option is to create a new model that has the same exter­

nal functionality as (or as close as possible to) the original model, but to make

simplifications internally in order to reduce the computational requirements: if

successful this third option can either be used on its own, with the original com­

puter, or with either of the other options to reduce simulation time still further.

This chapter considers various simplifications of the model of the Orwell protocol

that were investigated while attempting to reduce the amount of computation re­

quired during simulation. All the results included here are based on simulations

using the Orwell simulator [63, 64], written in Simula '67, and on modifications

made to that program.

5.1 Overview of the Orwell Protocol

The full specification of the Orwell protocol, detailing its running actions, start-up

procedures and details for ensuring slot integrity is available in the specification

document [57), but an overview of the running actions is given below for com­

pleteness.

5.1.1 Ring Actions

An Orwell ring consists of a series of nodes connected by a closed communications

loop, figure 23. A number of slots circulate around the loop in a single direction.

Each of the slots may be in one of three states: full, empty (known as trial) or

reset; these states are explained below.

Each node maintains a counter, known as a d-counteT, whose initial value is

an indication of the traffic that the node has agreed to carry. Each time a cell

arrives at a node it is placed in an input queue; when a node finds an empty slot

5.1. OVERVIElV OF THE ORWELL PROTOCOL 82

then, provided the d-counter is greater than zero, it places the first cell in the

slot and decrements the d-counter by one: if the d-counter is already zero then

the node is barred from using the slot and must leave it empty for subsequent

nodes; in this way 'hogging' of the ring is prevented.

vVhen a node finds a full slot addressed to itself it removes the cell from the

slot and marks it as empty but with its own address (it is barred from immediately

refilling the slot). If a slot makes a full revolution of the ring without being seized

by another node, the ring is declared to be idle and the slot is converted into a

reset slot (for this reason the empty slot is usually referred to as a trial slot). A

node seeing a reset slot restores the d-counter to its original level; the reset slot

is passed on to each node until the whole ring has been reset.

In this way, the ring can undergo a reset for either of two reasons, although

the single method is used to detect both: either all the nodes on the ring have

become idle and have no traffic for the ring, or because they are blocked from

accessing the ring because their d-counter has reached zero. In either case the ring

will rapidly approach a time at which all of the nodes are either idle or blocked;

a reset then occurs and the whole process is repeated.

Ring

Figure 23: A simple Orwell ring

5.1. OVERVIEW OF THE ORWELL PROTOCOL 83

~ 8 + 4 -+-I - 8 ---f- 4 -t- 40 -+--- 384 ---~

Figure 24: Slot format (field sizes in bits)

·when a new call requests use of the ring, the node makes a decision, based on

the current rate at which resets are occurring, as to whether carrying the new call

is likely to reduce the reset rate below an acceptable minimum. If this is likely to

happen the call is blocked, otherwise the call is accepted and the original value

for the d-counter is adjusted accordingly.

5.1.2 Slot Format

\Vhen carried on an Orwell ring a prefix to the cell has to be added, the complete

entity then being known as a slot, figure 24. The JK field has a unique format

to guarantee synchronization at the nodes. The Cl field is further subdivided

into four fields, the first two of which are used to define the type of slot; the

third bit, called the monitor bit is used to prevent corrupted cells from clogging

up the ring; and the fourth bit is called a broadcast bit, when set the cell will

be copied by more than one node as it passes around the ring. The C2 field is

mainly concerned with error protection on the slot header, and with other control

and signalling functions; its behaviour is not important within the context of the

work covered here.

5.1.3 The Orwell Torus

To enable Orwell rings to carry very large volumes of traffic the protocol has been

designed to allow a number of rings to be able to operate together, in parallel, and

in a synchronous manner: such a network is known as an Orwell Torus. Figure 25

5.1. OVERVIEW OF THE ORWELL PROTOCOL 84

ARM

ARM

ARM

ARM

Figure 25: Torus of Orwell rings

shows an example of the torus, each individual loop of glass fibre between the

nodes is known as an Arm. The slots on individual arms are staggered so that

ordering is always preserved between slots on different arms of the torus (there

are fairly strict limits in the different fibre lengths that can be used on each arm).

All of the rings operate using a single d-counter, and a cell awaiting access to

the torus is placed in the first slot to become available; resets operate similarly,

a reset on one ring causing all the rings to be reset (65, 66).

Another advantage of the torus is the increase in reliability due to replication

in the network: if a single ring or sub-node fails then the system can simply carry

on operating at a reduced capacity; careful isolation between the node controller

and the sub-nodes can ensure that, should a node controller fail, the sub-nodes

can become transparent repeaters that take no further action on the torus other

than to forward slots.

5.1.4 Calculation of the d-value

In practice, traffic on an Orwell ring is divided into three classes, each at a

different priority level; in this way, traffic which is highly delay sensitive (for

example, voice and signalling traffic) can be given a higher priority. To ensure

that all classes of traffic still have some access to the network, the d-counter

is also divided into three counters, each representing one of the priority levels.

When a cell arrives at a node and is waiting for access to the ring it is placed

5.1. OVERVIEW OF THE ORWELL PROTOCOL 85

in the queue appropriate to its priority: when an empty slot is received the cell

in the highest priority queue that still has an unused d-allocation is selected and

the appropriate counter adjusted downwards; since the node as a whole is only

barred from further access when all of the queues are either idle or blocked all

classes of traffic are guaranteed some access to the ring during each reset interval,

but delay sensitive services always get the highest priority.

In order to bound the delay at a ring within acceptable limits the amount of

traffic carried has to be carefully controlled. There is no need, however, for a

centralized call-control mechanism since the total load being carried by the ring

can be determined from the reset rate provided that the ring has time to reach

equilibrium between call attempts: calls are only accepted if the reset rate is

sufficiently low to guarantee sufficient capacity for that call. For each new call

the d-allocation is adjusted accordingly; there are several methods available for

determining what value this should be and two possible methods are given here.

The static allocation scheme bases the calculation on the arrival rate of cells

for that type of call, A, and the maximum permissible interval between resets

(Maximum Reset Interval, M.R.I.): for each call,

A
{jd = '

M.R.I.
(16)

and the d-allocation for a single priority is the sum of all the appropriate {jd's

rounded to the next largest integer; for V.B.R. calls, A is not necessarily the mean

cell arrival rate, but may be slightly higher to allow for statistical variation. In

the dynamic allocation scheme the d-allocation is adjusted based upon whether

it was fully used over the preceding reset intervals: if the full d-allocation were

used over, say, the preceding three intervals then the allocation is increased by

one; if it were not fully used in each of the intervals then its value is decreased

by one. This is subject to a maximum which is based on the capacity of the ring:

the allocation for the lowest priority queue can either be a fixed constant or be

adjusted to represent the difference between the maximum for the ring and the

amount claimed by the other queues.

5.2. FIRST MODEL 86

Computer-data traffic, which is usually the service with the greatest delay

tolerance is normally allocated to the third queue which commonly has a perma­

nent d-allocation of 1 or 2. This ensures that while the reset rate is high a large

proportion of the ring bandwidth is available for such services, but as the reset

rate drops (i.e. occur less often) then such services are 'throttled back' and pri­

ority given to those that are delay sensitive; some bandwidth, however, is always

guaranteed.

5.2 First model

5.2.1 Algorithm

This model emulates the behaviour of the ring by using an array filled with

random node numbers to represent the searching action of slots. The algorithm

is reproduced below.

Each node, i, on an Orwell ring has an amount of bandwidth allocated to it

that is stored in its 'd-counter', di; di being proportional to the number of calls

being carried. Then, assuming that there are N nodes on the ring, let

An array, Q, of size Sis then filled using the following algorithm:

for each node, i

end

repeat di times

end

j := random number between 1 and S

if Q j is filled then

increment j until Q j is unfilled

fi

(17)

5.2. FIRST MODEL 87

Once the array has been filled, it is scanned in order usmg the following

algorithm. This simulates the random manner in which the slots are accessed

by the nodes waiting on the loop. A complete pass of the array with no cells

switched represents a trial slot traversing the entire loop without being claimed

and a reset occurring.

j := 1

repeat

if Q i filled then

fi

if cell waiting on node Qi then

switch cell

Qj :=empty

fi

j := (j mod S) + 1

until All Qx are empty or one pass of j with no cells switched

Since, on average, a slot is filled by a cell for one half of one ring rotation, and

because the slot cannot be filled again until the slot has reached the node after

the one at which it was released, then the slot is in use for, on average, 1 + N /2

nodes and the proportion of each ring rotation for which the slot is in use is

1 +N/2
N

(18)

If there are J(slots on each ring in the torus, and R rings, there will be a total

of J(R slots. If the slot rotation time is t seconds, then the number of cells that

are carried in one second is
1 NKR

-
T t(1 + N/2)

(19)

giving r as the mean time between each cell being switched.

To take account of the fact that the first time the ring is found to be idle

would probably not cause a reset to occur, the algorithm was implemented in a

slightly modified manner to permit this feature to be incorporated: the searching

5.2. FIRST MODEL 88

algorithm was augmented with a status counter that was reset to zero each time

a reset occurred; the ring was not reset until the status counter had incremented

to a pre-calculated limit (this calculation being based on the minimum time that

a real ring takes to reset when completely idle, i.e. one slot rotation time plus

the time required to get to following node). Several algorithms were used for

determining how the status counter should be incremented. The first was to

reset the status counter to zero each time a cell was carried; the second to allow

the counter to increment to a certain value each time a cell was switched, and then

to pause it at this value until the ring became idle before letting it increment up

to the limit; the third was simply to allow the status counter to increment up to a

fixed distance from the limit and pause it at this level until the ring became idle.

Initially the delay between switching each cell was maintained as the con-

stant, T.

5.2.2 Results

Simulations were performed on an eight node network connected by a 140Mbit/s

ring. Only voice traffic was offered to the ring, and the auto-reset mechanism

within Orwell was disabled. The cells used were of a different size to the now

adopted values of 45 octets body and 5 octets header, at 16 octets body and

5 octets header: these values were maintained throughout this series of simula­

tions so that comparisons could be made. The mean call holding time was set to

a tenth of a second.

From these values the theoretical capacity of the ring can be calculated. The

usable bandwidth, B' (efficiency) of the ring is given by

B' = fc B
I! ' s

(20)

where, B is the bandwidth of the ring, fc is the size of the cell and 1! 8 is the size

of the slot. Since each cell uses a slot for an average of (1 + ~)/N of a rotation,

then the carrying bandwidth, B", is given by

B"- B'
- (1 + ~)/N. (21)

5.2. FIRST MODEL 89

Since each voice call requires a bandwidth, Bv, of 64 Kbits/s (the simulator only

generates traffic in one direction), then the call capacity, C of the ring is

c = B"

Bv
fc N B
fs . 1 + N/2 . Bv. (22)

This value is an upper bound on the carrying capacity of the ring, and it ignores

the reduction in available bandwidth caused by the trial and reset slots.

For the ring simulated in these experiments, therefore, the maximum traffic

capacity of the ring is equivalent to 2,666 calls. This is an absolute maximum for

the ring; ~n practice the load control mechanism would limit the number of calls

carried to somewhat less than this in order to hold the queueing delay within

acceptable bounds.

Initial runs on the algorithm were done over a simulated time of 0.1 seconds

after a warm-up period of 0.1 seconds; whilst these times are very short, and it is

clear that the ring has not been given time to reach equilibrium, it is the relative

performance of the simplified model when compared with the full model of the

protocol that is of interest. The first set of simulations were performed using the

'backing off' technique for the status of the loop, holding the status counter at

two less than the maximum value; intuitively this can be justified in that as a

loaded ring approaches a reset, there are some empty slots circulating around the

ring, whilst some slots are still carrying data. Figure 26 shows the mean reset

interval as a function of carried load; it is clear from these graphs that the model

has a significantly lower mean, enabling it to accept a much higher number of

calls than the full protocol. Figure 27 shows the mean of the queue lengths as a

function of carried load, and again it is clear that the amount of queueing caused

by the model is significantly lower (the queues in Orwell are approximately a

factor of ten longer).

The 'backing off' of the status counter appeared to be causing the ring to

reset more rapidly than was desired, so some simulations were performed at the

other extreme, i.e. the reset status counter was returned to zero after each cell

5.2. FIRST MODEL 90

0 Orwell 0 Model 1

120

100

80
R
e
s
e
t

60
n
t
e

v
a
I

40

20

0

0 500 1000 1500 2000 2500

Carried Load (Calls)

Figure 26: Graph showing the mean reset interval (in J1S) against carried load for
Orwell and the first model using 'backed off' resets

5.2. FIRST MODEL 91

0 Orwell 0 Model 1

10

M
e 0.1

a
n

Q
u
e
u 0.01
e

L
e
n
g
t
h

0.001

0.0001

0.00001

0 500 1000 1500 2000 2500

Carried Load (Calls)

Figure 27: Graph showing the mean queue length against carried load for Orwell
and the first model using 'backed off' resets

5.2. FIRST MODEL 92

that was switched; in this way the ring only resets after a prolonged period of

idleness. Figures 28 and 29 show the reset behaviour and queueing behaviour

of this variant. They show that for low and medium loads, the reset interval

is larger than that of Orwell, while for high loads the ring is still resetting too

rapidly. The queueing can be seen to be significantly closer than for the 'backed

off' model, but the queues are only of identical length at the point where the

reset behaviour is least accurate.

In an attempt to match the queue lengths more accurately, it was decided to

introduce a random element into the delay between switching cells, the justifica­

tion being taken from the fact that an M/D/1 queueing system has a mean queue

length half that of an M/M/1 system. Obviously the service time on Orwell can­

not be a negative exponential, since the cell is of fixed size and the propagation

delay around the ring (part of the service time in this model) has an upper bound

of one rotation delay. However, as a first approximation to the service charac­

teristic, a negative exponential service time was used, since this should form an

upper bound on the degree of randomness of the service time.

The results of runs using the exponential service characteristic are shown in

figures 30 and 31. It can be seen that the effect is to reduce the reset interval

slightly at all loads, but has only affected the queueing at low loads; at high loads

the amount of queueing is unaffected.

The results correlation obtained thus far, was fairly poor, particularly when

it is considered that the reset interval determines the maximum load that the

ring can accept. In addition to this, the model was taking significantly longer

to execute than simulations of the full protocol, and since the carried loads at

certain offered loads were similar this could only be explained as the result of

using a poor algorithm. It was realized that the array filling and searching was

very inefficient; in particular, at low loads a large array was being filled with

random numbers and then not used because the ring was idle. In addition, the

searching algorithm for the array was inefficient: to discover that the ring was

in fact idle, the algorithm would have to check all the locations in the search

5.2. FIRST MODEL 93

D Orwell 0 Model 1

120

100

80
R
e
5

e
t

60
n
t
e

v
a
I

40

20

0

0 500 1000 1500 2000 2500

Carried Load (Calls)

Figure 28: Graph showing the mean reset interval (in J-LS) against carried load for
Orwell and the first model using 'totally idle' resets

5.2. FIRST MODEL 94

0 Orwell 0 Model 1

10

M
e
a
n

0.1

a
u
e
u
e

L
e 0.01
n
g
t
h

0.001

0.0001

0 500 1000 1500 2000 2500

Carried Load (Calls)

Figure 29: Graph showing the mean queue length against carried load for Orwell
and the first model using 'totally idle' resets

5.2. FIRST lv!ODEL 95

0 Orwell <> Model 1

120

100

80
R
e
s
e
t

60
n
t
e
r
v
a
I

40

20

0

0 500 1000 1500 2000 2500

Carried Load (Calls)

Figure 30: Graph showing the mean reset interval (in fLS) against carried load
for Orwell and the first model with negative exponential service time and 'totally
idle' resets

5.2. FIRST !vJODEL 96

0 Orwell 0 Model 1

10

M
e
a
n

0.1

Q
u
e
u
e

L
e 0.01
n
g
t
h

0.001

0.0001

0 500 1000 1500 2000 2500

Carried Load (Calls)

Figure 31: Graph showing the mean queue length against carried load for Orwell
and the first model with negative exponential service time and 'totally idle' resets

5.3. SECOND MODEL 97

array, regardless of whether the indicated node had already been checked. A new

algorithm was developed in an attempt to rectify these problems.

5.3 Second Model

5.3.1 Algorithm

Since the first algorithm had been proved to be inefficient partly due to generating

too many random numbers, an approach that avoided the redundant generation

of random numbers was required, in addition it was necessary to avoid checking

a node several times when trying to decide whether it was idle.

Both of these problems were avoided by using the algorithm below; in addition

the overhead at each reset is reduced to that of resetting the no?e itself.

reset ring

while ring is not idle

generate a random node number

while (node is paused or idle) and there are unchecked nodes

check the next node

end while

if we have a cell to switch

switch the cell

next status value

else

next status value

fi

wait for delay

end while

The 'next status value' is calculated by one of the methods mentioned in the

first model. Switching the cell now also involves updating the d-counter at the

node, a process that was not needed in the first model.

5.4. THIRD A10DEL 98

5.3.2 Results

The results for the above algorithm, using simulation runs of 1.0 seconds after

0.5 seconds warm-up are shown in figures 32 and 33. These results indicate that

the behaviour of the second model is almost identical to that of the first, i.e. the

ring was accepting a far greater load than the Orwell protocol. This discrepancy

can be explained by inspecting the number of cells switched as a function of the

size of the reset interval, figures 34 and 35. From these graphs it becomes clear

that the service time of Orwell cannot be a constant, but must be a function

of the offered load: an interesting, and advantageous, feature of the protocol

is that this function is such that the service rate for the ring increases as the

load increases; this should be compared with a C.S.M.A./C.D. type protocol (for

example, Ethernet) where the opposite occurs, leading the network to become

less efficient at high loads.

Having noted that the service rate of the ring is not a constant, the explanation

1s readily apparent: in Orwell the slots circulating around the ring have two

phases. In the first, the slot is carrying a cell and the distribution of this phase is

as noted before. In the second phase, an empty slot is searching for a load, and

it is the distribution of this phase that is not a constant, but a function of the

number of active nodes. Therefore, if accurate behaviour is to be obtained, the

model needs to be modified to take this search period into account.

5.4 Third Model

5.4.1 Algorithm

The previous two models have both been characterized by having a fixed average

for the service time on the ring. In order to enable a load dependent service

time to be implemented a couple of changes had to be made to the simulation

program. These changes entailed keeping a record of the number of nodes that

had cells ready for switching (and that were not in the paused state); alterations

5.4. THIRD MODEL 99

I Oorwell 6. Backed off 0 Totally Idle

120

100

80
R
e
s
e
t

60
n
t
e
r
v
a
I

40

20

0

0 500 1000 1500 2000 2500

Carried Load (Calls)

Figure 32: Graph showing the mean reset interval (in fLS) against carried load for
Orwell and the second model

5.4. THIRD 1\IIODEL 100

0 Orwell i:s. Backed off 0 Totally Idle

10

M
e
a
n

0.1

a
u
e
u
e

L
e 0.01
n
9
t
h

0.001

0.0001

0 500 1000 1500 2000 2500

Carried Load (Calls)

Figure 33: Graph showing the mean queue length against carried load for Orwell
and the second model

5.4. THIRD .MODEL 101

160

140

120

c
e 100

I
I
s

s 80 w

c
h
e 60
d

40

20

0

0 0.00002 0.00004 0.00006 0.00008 0.0001 0.00012 0.00014 0.00016

Reset Interval

Figure 34: Graph showing the number of cells switched as a function of the size
of reset interval for the model

5.4. THIRD !viODEL 102

160

140

120

c
e 100

I
I
s

s 80 w

c
h
e 60
d

40

20

0

0 0.00002 0.00004 0.00006 0.00008 0.0001 0.00012 0.00014 0.00016 0.00018

Reset Interval

Figure 35: Graph showing the number of cells switched as a function of the size
of reset interval for the Orwell protocol

5.4. THIRD MODEL 103

to the simulator entailed modifying the code so that all changes to the status of

a node were performed by a single sub-routine.

To take advantage of the knowledge of the state of activity of the ring thereby

obtained, one small approximation is needed, namely that the delay before switch­

ing the following cell can be determined as the current one is being switched (in

practice this will mean that the algorithm will slightly under-estimate the activity

on the ring since nodes may well become active while a cell is being carried).

In addition to this a further simplification can now be made to the model

without any loss of accuracy: if all the nodes are either idle or paused, then there

is no need to do any inspections on the ring and, hence, time can be saved.

reset ring

while ring is not idle

if there are active nodes

else

fi

generate a random node number

while (node is paused or idle) and there are unchecked nodes

check the next node

end while

switch the cell

next status value

calculate delay based on number of active nodes

calculate delay when ring is idle

next status value

wait for delay

end while

An exact value for the average hold time as a function of the number of active

nodes is very difficult to calculate. The following values were used to 'test out'

the model, and seem to give reasonable results. When the ring is totally id!e,

5.4. THIRD 1viODEL 104

the delay is simply the time it takes for a slot to go around the ring, divided by

the number of slots, tj J{ R. ·when a slot is seized it is held on average for half

a rotation, so for J{ R slots the average hold time is tj2K R (cf. equation 19, the

fact that the slot cannot be seized until the following node is now accounted for

by the search period). The search period is proportional to the number of idle

nodes, and any particular slot will, on average, be half way to that node, giving

the proportion of a rotation spent searching as 1-a/ N if there are a active nodes

on the ring. The total delay is simply the sum of these two parts,

T

(23)

5.4.2 Results

The model was simulated over a period of 1.0 seconds after a warm-up time of

0.5 seconds, using 'totally idle' resets. Figure 36 shows that the reset interval is

now much more closely matched to the original protocol and, in particular, the

maximum load is almost identical. Figure 37 shows that, while queueing is now

much more closely matched, there is still a factor of two difference on the results

obtained so far.

Finally, figure 38 shows the total processing requirements for simulating the

Orwell protocol and the third model (warm-up time and running time); it can be

seen that, for any particular carried load, the model is marginally faster (though

for very high offered loads the fact that the model still accepts slightly fewer calls

means that the total simulation time is likely to be longer). To assess in detail

the contribution to simulation time added by the nature of the Orwell protocol

more simulations are required at very low loads. It is notable that the simulation

time requirement is not linear with respect to the carried load, but increases

significantly as the load carried increases; presumably this can be attributed to

the processing of failed call attempts.

R
e
s
e
t

n
t
e

v
a
I

5.4. THIRD MODEL 105

120

100

80

60

40

20

0

0 200 400 600

0 Orwell 0 Model 3

800 1000 1200 1400 1600 1800 2000

Carried Load (Calls)

Figure 36: Graph showing the mean reset interval (in J.lS) against carried load for
Orwell and the third model using 'totally idle' resets

M
e
a
n

Q
u
e
u
e

L
e
n
g
t
h

5.4. THIRD MODEL 106

10

0.1

0.01

0.001

0.0001

0 Orwell <> Model 3

0 200 400 600 800 1 000 1200 1400 1600 1800 2000

Carried Load (Calls)

Figure 37: Graph showing the mean queue length against carried load for Orwell
and the third model using 'totally idle' resets

5.4. THIRD MODEL 107

0 Orwell 0 Model 3

40000

35000

30000

25000

c
p
u

T
20000

m
e

15000

10000

5000

0

0 200 400 600 800 1 000 1200 1400 1600 1800 2000

Carried Load (Calls)

Figure 38: Graph showing the processor requirements on a Sun 3/50 work-station,
in CPU seconds, as a function of carried load for the Orwell model and the third
model

5.5. SUMMARY 108

5.5 Sumn1ary

The pressing need to try and reduce the amount of simulation time required for

simulating large networks has led to several models being created that simplified

the details of the Orwell protocol, whilst still trying to maintain its outward

functionality. It was found that the behaviour of the ring had two contributory

factors: a service time, during which the slots were carrying cells around the ring;

and a search time, while they were looking for new cells to carry. The service time

had a constant average, while the search time was a function of the instantaneous

load carried by the ring.

A detailed insight has been obtained into the behaviour of the Orwell protocol

and, in addition, some reductions in the simulation time required have been

achieved. However, it was decided that the model could not be incorporated into

the A.T.M. network simulator without much further study.

Chapter 6

Support of Mobility using
A. T .M. Techniques

M OBILE TELEPHONY has undergone phenomenal growth since the first truly

flexible systems were introduced in the first half of the 1980's. These, for

the first time, allowed both incoming and outgoing calls, and enabled the sub­

scriber with a hand-held, portable, telephone to wander almost at will anywhere

in the coverage area whilst the call was in progress. Support for a practical den­

sity of traffic was made possible by dividing the coverage area into small zones,

called cells 1 (figure 39), and by re-using the scarce frequency spectrum at reg­

ular intervals; unrestricted wandering thus required that the transmission and

reception frequencies had to be changed as a mobile moved from one radio cell to

another. The rate of growth of these services, however, has meant that despite us­

ing smaller and smaller radio cells the network has already reached saturation in

some areas; radio cells cannot be made still smaller using the technology of current

networks due to the interference between them and the minimum transmission

power. Introduction of digital transmission methods should reduce co-channel

interference and allow better re-use of frequencies.

The use of smaller radio cells, however, poses a further problem: hand-offs

from one frequency to another have to occur more often. vVhen this is coupled

with the fact that signal degradation, for digital transmission at the reception

boundaries of a radio cell, is extremely rapid and that smaller cells are necessitated

1 Not to be confused with A.T.M. cells: to avoid confusion the zones in mobile communica­
tions will be referred to as 'radio cells'.

109

6. SUPPORT OF MOBILITY USING A.T . .l\1. TECHNIQUES 110

Figure 39: Radio cells covering a region. In areas where traffic is expected to be
higher the cells are made smaller so that the re-use interval can be increased.

by higher load then the hand-off becomes both more common and time critical.

For example, an express train, travelling at 200 kilometres per hour through

the centre of cells 100 metres in diameter, would require each mobile on the

train to perform a hand-off approximately once every two seconds. With current

implementations, the hand-off is one of the most likely reasons for a call to be

dropped by the network; although lack of a new channel is one of the most

common causes for this, signalling failures are also a problem.

New forms of mobility are also being proposed. One example is for a customer

to require access to a range of computer terminals each with different features:

the customer would require that he be able to move from one terminal to another

and for a connexion to a remote machine (or machines) to be already established

with all the appropriate information that was available at the previous terminal;

in this case the active point of the call would move from one terminal to another,

but information about the status of the call must be transmitted to each of the

6.1. THE LOCAL NETvVORJ(111

possible end-points at all times.

This chapter investigates a proposal that would implement mobility on an

A.T.M. network, providing both better hand-off reliability and the new forms

of mobility that are being proposed by using a footprint technique to perform a

multicast delivery to multiple end-points in the network. Features of the local

network are covered first, followed by the basic protocol that is required to enable

the footprints to track the active point across the network. The protocol was

implemented on the A.T.M. Network Simulator and the modifications required

to permit this are then described. The final section uses results from running the

simulator to indicate potential weaknesses in the protocol and to suggest wa.ys in

which these might be overcome.

6.1 The Local Network

The change from basic telephony to an I.S.D.N. was possible without the need

to replace the existing local network: the copper pair was found to be able to

carry more than twice the amount of information for which it had been originally

designed. In the move to a B.-I.S.D.N. a new local network is unavoidable: the

higher access rates demanded of such a network simply cannot be carried on a

copper pair. Fortunately, in some areas the copper pairs are now reaching the end

of their serviceable life and replacement is now becoming necessary. To provide

a dedicated glass fibre to every house in the country would be overkill, since the

full bandwidth of the fibre could never be fully exploited. Instead, a single fibre

connexion to the exchange can be shared with several households by use of either

a loop that visits each building, or by use of a tree structure and passive optical

splitters: the latter technique is known as a Broadband over a Passive Optical

Network (B.P.O.N.) [67, 68] and is one of the favoured approaches (figure 40).

One of the aims of the B.P.O.N. is to reduce the amount of electronics required

m the street 'cabinet': the passive optical splitters copy the signal from the

exchange to each customer's fibre, and interleave the signals from each customer

6.1. THE LOCAL NETvVORK 112

r---------
Downstream

,,,,., c
u
s

Local Optical Fibre t
Exchange 0

Dist m
Point e

r
s

Upstream .__ ___ ----
Figure 40: Tree structure of a B.P.O.N .. Both the cabinet and the distribution
point contain passive optical splitters so that no additional electronics and lasers
are needed.

for transmission to the local exchange; the limit of thirty-two customers is based

on a power-budget for the transmitting laser. The broadcast feature of the system

makes it well suited to distribution services such as television. Further, a load­

control mechanism, like the one used in Orwell, can be used to allow dynamic

allocation of both the up-link and down-link bandwidth for the A.T.M. connexion:

a 150 Mbit/s channel split between 32 customers gives an average allocation of

approximately 4 Mbit/s, but it is expected that there will be a high probability

of obtaining much greater capacity on demand (for example, 15 Mbit/s) and that

peaks approaching the full bandwidth of the channel should be possible.

The broadcast feature of B.P.O.N., as will be seen from the next section, makes

it well suited for use as a final distribution mechanism to the base stations of a

mobile network. An alternative approach could use ring technology, Orwell for

example, as a metropolitan area network using a broadcast technique to achieve

the same results: the Orwell protocol provides for broadcast addressing as part

of its standard header; and multicast addressing (sometimes known as group

addressing) as part of the media-access control layer.

6.2. THE BASIC PROTOCOL 113

6.2 The Basic Protocol

In conventional mobile systems 2 a call to a mobile handset starts with the network

interrogating the home location register (H.L.R.) of the destination mobile. This

register, amongst other things, contains the last known location of the called party

and this is used as a starting point when paging for the mobile (this information

is kept up-to-date by occasional registration by the mobile). If the initial page

fails then successively larger areas can be paged until either the mobile is found

or it is deemed to be unreachable. Once the mobile has been precisely located

a connexion can be established in a conventional manner, very similar to that

used in non-mobile telephony (for example, POTS). Establishing a call from a

mobile to elsewhere is much more straightforward, since the paging phase is not

required.

As a mobile approaches the edge of the coverage area of a radio cell, the base

station, which is responsible for measuring signal strength, can either instruct

the mobile to transmit at increased power or, if the power limit of either the

radio cell or the mobile has been reached, 3 it can decide that a hand-off to a

neighbouring cell is required. The base station instructs its neighbours to monitor

the signal strength from the mobile and the one with the best reception is elected

to handle the call; a connexion is established through the network to the new base

station, either by re-routeing the old one or by establishing a new one, and the

mobile is then instructed to start transmitting and receiving on new frequencies.

Terminating the call is very similar to conventional telephony. In order to simplify

network management and billing procedures a single node is selected when the

call is initiated to form an 'anchor node'; this node remains the same and the

circuit passes through it at all times regardless of where the calling or called

parties might roam during the call. Alternative approaches to letting the base

2 A general implementation is intended here, but the approach is based loosely on that used
in TACS (Total Access Communication System), the analogue system currently in use in the
U.K.

3 Radio cells have limits to prevent interference, the mobile for safety and power consumption
considerations

6.2. THE BASIC PROTOCOL 114

station determine that a hand-off is required include the mobile sending a request

to the base station that a new one be found, but at present almost all systems

require that the base station itself select where, and eventually when, the hand­

off should occur; in this way tighter control can be maintained over allocation of

radio channels and other network resources.

6.2.1 The Time-critical Hand-off

The hand-off is clearly the most important distinguishing feature of the mobile

system, so it is important that it works reliably and quickly: with the existing

TACS, for example, there is a noticeable break in communication each time a

hand-off occurs; for a digital system that may well be used for carrying loss­

sensitive data this is clearly unacceptable and steps must be taken to ensure this

does not happen. Further, from detecting that a hand-off is required to com­

pleting the process is a time-critical procedure; failure to complete it sufficiently

quickly can result in the mobile moving out of communication range and the call

being lost. The problem is exacerbated by Rayleigh fading, which is a complicated

function of the distance between the mobile and the base station and is caused

by multipath interference of signals reflected from buildings; this is in addition

to normal fading due to distance and the basic terrain between the transmitter

and the mobile (69].

The following steps have to be taken once it has been decided that a hand-off

is required:

1. Poll surrounding base stations to establish which is receiving the signal most

clearly;

2. Create a new connexion across the network to the new base station;

3. Instruct mobile to start transmitting over new radio channel;

4. Clear old connexion.

6.2. THE BASIC PROTOCOL 115

The time-critical parts are steps one and two: the first step involves sub­

stantial amounts of signalling across the network to establish which of the sur­

rounding base-stations can best receive the mobile; the second requires further

signalling (this time end-to-end) to establish the new channel before the hand­

off can take place. If either of these can be simplified, or moved outside of

the time-critical period then the speed of a hand-off can be significantly im­

proved.

Whilst not strictly essential to the implementation of the new mobility pro­

tocol, moving the decision about initiating a hand-off from the base station to

the mobile could significantly reduce the amount of signalling required: the mo­

bile is able to monitor each of the neighbouring base stations using the signal

strength of the common signalling channels (each base station transmits con­

tinually using such a channel to enable mobiles calling up the base station to

detect collisions on the reverse link); the selected base station can then be sig­

nalled by the mobile indicating that it wishes to transfer control of the call. A

further advantage of such an approach is that it may be possible to continue

a call even when contact with the previous base station has been completely

lost: the main disadvantage is that the intelligence has to be passed down to

the mobile, making optimizations from global knowledge hard to implement, and

performance tweaks to the hand-off algorithm impossible once the network has

been installed.

6.2.2 Footprints

The time delay associated with establishing a connexion to the new base station

can be minimized by creating a passive connexion in the time before a hand-off is

required. Since, at this stage, the appropriate base station is not known, passive

connexions have to be established to each of the potential hand-off points, form­

ing a 'footprint' that surrounds the current position of the mobile4 (figure 41).

4The basic footprint technique was originally proposed by John Adams of B.T. Research
Laboratories; to the author's knowledge, there is no formal definition of the procedure currently
available in the literature.

6.2. THE BASIC PROTOCOL 116

Figure 41: Footprint about a mobile station. The dark-shaded areas are the
periphery of the footprint, but the mobile is normally in communication with
the radio cell at the centre. \Vhen the mobile moves to one of the cells in the
periphery the call information is already established.

·when a hand-off is required, the connexion is already established and simply

has to be activated, a much faster process than establishing one that is new:

once control has been transferred, the old connexion and the unused passive con­

nexions can be cleared and a new set of passive connexions established around

the new position of the mobile; the footprint tracks the mobile in the manner

of a spotlight, except that the movements are discrete jumps instead of being

continuous. A passive connexion receives all signalling and data from the re­

mote end of the network, but transmits none in reply: only the active connexion

transmits; performing a hand-off requires simply that the active connexion be

changed.

6.2. THE BASIC PROTOCOL 117

6.2.3 Implementation of Footprints using A.T.M.

Footprints can be easily implemented on an A.T.M. network using a multicast

facility. Connexion management across the network can be simplified by making

the network level connexionless (see section 4.2.2); cells travelling across the net­

work are destination addressed and this can be used to generate the appropriate

multicast duplications that are required to cover the footprint. Each footprint is

labelled by the destination address of the radio cell at its centre. Normally the

entire footprint will lie entirely in the region of a single local distribution system

(for example, a B.P.O.N. or an Orwell ring used as a MAN) so no multicasting is

required within the main network (figure 42): occasionally a footprint might be

split between two or three distribution systems (it should never be necessary to

have more than three, as in figure 43); if all of the local networks are connected

to the same local exchange then a multicast is needed at the local exchange;

otherwise a multicast is needed one step further back in the network (it should

never be necessary to go further back than this) making it possible to implement

broadcasting on a network of trunk and local exchanges with the local exchanges

dual-parented.

By structuring the multicasts in a hierarchical manner it is possible to create a

single tree to cover each footprint. Provided that all cells destined for a footprint

are routed via the same tree root then it is possible to guarantee that loops leading

to infinite duplications are avoided. Simple duplication rules can be applied to

ensure that multicasting works correctly even when the data cells originate at a

leaf within the footprint: a cell should be duplicated back from an exchange to a

leaf (local network) within the footprint, but should not be duplicated back to an

exchange from which it has already come. Figure 44 shows how this rule works

in practice, the local-broadcast networks within the footprint are shaded grey

(local networks w, x and y) and since these lie on two, separate, local exchanges

a multicast is required at the trunk-exchange level. The general case is shown

in figure 44a; cells normally arrive at node A from exchanges elsewhere in the

network and are multicast to nodes Band C; cells arriving at B are transmitted

6.2. THE BASIC PROTOCOL

A 1M
Network

118

Figure 42: A footprint can normally be covered by one local-broadcast network
from the ATM trunk network.

Figure 43: In the worst case it should not be necessary for a footprint to be
divided between more than three local-broadcast networks.

6.2. THE BASIC PROTOCOL 119

a b

Figure 44: A single tree-structure is defined for the A.T.M. Multicast. a) The
normal broadcast route, for cells originating outside a node connected to a node in
the footprint. b) A special case when the transmitting mobile is in the periphery
of the footprint.

solely to the local network w, while those arriving at C are again multicast to

local networks x and y. A peculiar case is where the cells originate from a local

network within the footprint as shown in figure 44b; in this case, cells arriving

from the local network w at the node B have to be duplicated back to w (since

it is a leaf in the footprint) and also copied to node A; at A the cells have to be

sent to C, but not back to B, and it is possible to cater for this since the cells

arrived from B in the first place. To simplify construction of the routeing and

multicasting tables it is quite important that variants are not required for each

input of an exchange: by applying the duplication rule given above it is possible

to see that a single routeing and multicasting table can be used for each node.

In particular, using the example given, it is possible for node B to differentiate,

sufficiently, cells destined for the shaded footprint that originated at w from those

that originated elsewhere in the network and to treat them appropriately; this is

6.2. THE BASIC PROTOCOL 120

despite the fact that both bear identical destination addresses in the cell-header.

Further consideration also shows that cells originating from local exchange v

would also be treated correctly by B and multicast tow and A since neither was

the origin of the cells.

6.2.4 The Basic Hand-off Message

Since the connexion to the new end-point in the network has already been estab­

lished before a hand-off is required, there is no cross-network signalling during

the hand-off itself. Instead, after the hand-off has taken place new passive con­

nexions have to be established in the footprint of the mobile's new position.

Further, since the network level is connexionless a new destination address has

to be used to ensure that cells are sent to the new footprint. Finally, any pas­

sive connexions that then lie outside of the current footprint have to be deleted.

The A.T.M. adaptation layer of each cell contains a connexion-identifier that is

sufficient to resolve uniquely each call: since cells are multicast to a footprint,

which overlaps with other footprints, it is necessary to be able to resolve between

identical connexion-identifiers in different footprints; full resolution of the con­

nexion requires use of the connexion-identifier in conjunction with the address

of the destination footprint. When the destination address is changed, therefore,

a new connexion-identifier must also be generated to ensure that the connexion

can still be fully resolved.

The change of connexion identifier and footprint address is effected by trans­

mitting a Hand-off Update message across the network to the remote footprint 5

that contains both the old and new connexion-identifiers, and instructing that,

in future, cells should be sent to the new destination. A response message is gen­

erated by the active receiving point of the original message (it was multicast to

a footprint, like all other cells); it contains the same information fields (corrected

5The end at which the hand-off occurred will be referred to as the local footprint, the other
as the remote footprint. When considering situations where both ends are updating connexion
information from hand-oft's simultaneously the local footprint will refer to the end which started
the process first.

6.2. THE BASIC PROTOCOL 121

as required, see below) but is addressed to the new footprint; this is sufficient to

create the new passive connexions at each of the remaining points in the foot­

print. Finally, a message is sent from the new local active point to the old local

footprint informing it that the new connexions have been correctly established

and that the old ones can be released. Plate I shows the signalling involved in a

simple hand-off: when the mobile moves from the old to the new controlling point

a new connexion-identifier is generated and the hand-off message, with the fields

shown in figure 45 is transmitted across the network. Reception of this message

Old connexion-identifier
Old footprint address

New connexion-identifier
New footprint address

Remote connexion-identifier
Remote footprint address

Figure 45: Fields in the hand-off message.

by the remote footprint causes all the remote tables to be updated with regard

to the connexion-identifiers. Additionally, the active remote point generates the

acknowledgement, which in this case is identical to the original message, and

sends it back to the new local footprint; receipt of the acknowledgement by the

new active point is taken as an acknowledgement that the signal traversed the

network successfully, receipt by other end-points in the footprint is taken as an

instruction to establish a new passive connexion for the call; the final action of

the new active end-point is to generate a message that is sent to the old footprint

to clear the old passive connexion. Plate II shows how the cells being transmit­

ted from the remote end change connexion-identifier after the hand-off message

is received.

6.2.5 Concurrent Hand-offs

It will occasionally happen that both mobiles will attempt to change footprints

at the same time: more accurately, that both ends will be trying to update their

6.2. THE BASIC PROTOCOL 122

Explanatory Notes to Plates

In the following plates a diagrammatic convention has been adopted to clarify the
representation of the signalling information. Each diagram is divided vertically
into two halves: the left-hand side represents the local mobile transmitter and two
of the transmitters in its covering footprint; the right-hand side represents the
remote mobile. The only transmitters of interest during a hand-off are the old
active transmitter and the passive transmitter that will become active as a result
of the hand-off occurring: signals destined to the other passive transmitters will
be identical to whichever of the two represented here is not active at a particular
time; the actions taken by the remaining passive transmitters form a sub-set of
those given here.
Within each side of the diagram two signal origins are indicated: the left hand
representing the station that was originally active; the right that which was orig­
inally passive. Colours are used to indicate the origins of a signal chain in terms
of the connexion-identifier used: all signals generated as a direct result of an
initial message are associated with the colour assigned to the initial connexion­
identifier. Vertical lines of colour within a transmitter indicate the existence of a
session associated with the identifier at that point.

Local Remote

Old New Active Passive

Plate I Basic hand-off message

Local
Old New

I
I
I

Handoff
Request

~

Data
Cells

Handoff
Acknowledge

Plate II Data cells during hand-off

Remote

Local

Old New

l

Delete
Footprint

Delete
Footprint

Plate ill Concurrent hand-offs

Remote
Old New

Local
Active Passive

Create
Footprint

Plate IV Call set-up signalling

Remote
Active Passive

Local Remote

Old New Old New

I I
I I

Plate V Loss of hand-off signal due to jitter

Local Remote

Old New Old New

lfiit} •
doll:. •• I I ~c~· .•

04-j, •
edge I I

I I

Plate VI Duplicate hand-off acknowledgements due to jitter

Local Remote

Old New Old New

•

•

Plate Vll Acknowledgement from old end-point over-writes correct status

Local Remote

Old New Old New

Plate VIll Hand-off request arrives before acknowledgement

Local Remote
Old New Old New

Plate IX Hand-off request to old footprint is delayed

6.2. THE BASIC PROTOCOL 123

footprints and connexion-identifiers simultaneously; when this occurs the initial

hand-off messages are transmitted across the network towards the old remote

footprint, and some care is required to ensure that the acknowledgement message

comes from the correct place and contains the correct connexion-identifier infor­

mation. Plate III shows the signalling messages for such a situation: the local

mobile is the first to initiate a hand-off and generates a hand-off message to the

remote mobile's footprint, but before it arrives the remote mobile also initiates

a hand-off and generates a message to the old local footprint. On receipt of the

hand-off message at the old remote footprint the currently active base station

recognizes that the message arrived using a superseded connexion-identifier and

generates an acknowledgement message that contains the corrected values; since

it is the acknowledgement message that is used to establish the new local foot­

print the correct values will then be used; by the time the active local end-point

receives the acknowledgement it will have already received the remote's hand-off

message and updated its connexion-identifier table accordingly.

6.2.6 Data Continuity During Hand-off

When the mobile transfers from using one fixed point to another then the route

that data flowing towards the mobile takes through the network changes and the

time taken to negotiate the two paths is slightly different. Even when the path

lengths of two different routes are the same the time taken to negotiate them

will differ slightly because of queueing delays at the intermediate nodes. With

any packetizing scheme for constant bit rate data some reassembly and retiming

of the cells is required to eliminate cell jitter, which is caused by the queueing;

and the same reassembly process can be used in the mobile to eliminate the

differential path delay that is incurred from the change of end-point. There is,

however, an additional hazard, resulting from the duplication process used within

the network, which means that it is possible for a cell to be received twice, or

possibly not at all. The path lengths and jitter delays combine to make slightly

different end-to-end delays for two copies of the same cell, so it is possible for the

6.2. THE BASIC PROTOCOL 124

remote mobile to hand-off from one end-point to another at a time immediately

after a cell has been received from the local mobile; it is then possible to start

using the new end-point sufficiently quickly for the duplicate of that cell to be

received from the new end-point: in this situation the mobile receives the same

cell twice. Conversely, it is also possible to initiate the hand-off immediately

before a cell arrives, and to start using the new end-point just after the copy

of the same cell has been discarded because the end-point was in the passive

state; in this case the cell is lost. The two situations are shown in figure 46.

a b

Figure 46: Cell duplication and loss during a handoff. a) Two copies of the same
cell are received because the copy going towards the periphery of the footprint is
delayed. b) The cell is lost entirely because the copy going towards the centre of
the footprint is delayed until after the mobile has handed off.

The cell loss is clearly the more important problem to solve: rece1vmg a

cell twice can easily be detected, and duplicates eliminated, by using a two­

or three-bit cyclic counter; once a cell has been lost it can only be recovered by

retransmission, and this is not an option for delay-sensitive networks. Fortunately,

the system can be easily modified so that this situation never causes cells to be lost

at the expense of more duplications occurring: each passive end-point maintains

a copy of the last data-cell that it has received, and immediately a hand-off takes

6.2. THE BASIC PROTOCOL

place forwards this cell to the mobile which can then eliminate duplicates as

before. vVith this approach it is possible for the stored-and-forwarded cell to

have a sequence number one less than that of the last cell that was received from

the old end-point, so a minimum of two bits is required for the cyclic counter; in

practice more bits may be used to make the system more flexible for other uses.

6.2. 7 Call Establishment

The protocol as described so far has considered only cases where a call has already

been established so that connexion-identifiers and footprint addresses have been

known to both ends. vVhen the call is still being established this information is

not known to both ends (or, at least, not known to all of the end-points within a

footprint), so complications exist if full mobility is required at this time. The basic

principles of the call establishment protocol are shown in plate IV: it is assumed

that the remote mobile has been tracked-down to a footprint by interrogation

of the H.L.R., and, if necessary, by a paging process to cope with any roaming

that has taken place since the last registration. A connexion-request message is

transmitted by the end-point associated with the initiating mobile to the footprint

identified as being the last known position of the called mobile. It is quite possible

that in the time between the paging process completing and the connexion-request

message arriving the mobile will have moved from the centre to the periphery of

a footprint; but since the connexion-request message is multicast in the same

manner as all other messages establishment of the connexion is still possible, the

response coming from the end-point in contact with the mobile as opposed to the

end-point at the centre of the footprint.

The connexion-identifier to be used when sending cells to the remote mobile

is generated on receipt of the connexion-request message. Because the algorithm

used to do this is manipulating a dynamic set of identifiers (other calls are setting

up, handing off and clearing down simultaneously), and because the mobile may

not be at the centre of the footprint addressed by the connexion-request message,

it is not possible to generate the number automatically at the other end-points in

6.2. THE BASIC PROTOCOL 126

the remote footprint. Instead, a message is sent by the remote mobile to its own

footprint informing it that a new call has been accepted and includes the relevant

connexion information. A connexion-acknowledgement message is sent back to

the initiating footprint and this contains sufficient information to configure the

end-points in the periphery of the local footprint.

Contingencies covering roaming of the remote mobile during call-setup have

been covered above, but those covering roaming of the initiating mobile present

greater problems and these fall into two categories. If the mobile wishes to hand­

off before the connexion has been established then the hand-off message cannot

be generated by the new end-point since the connexion-identifier for the remote

end is not yet known. Further, at this stage the end-point in the periphery of the

local footprint does not know the connexion-identifier for its own end, since it

gets this information in the connexion-acknowledgement message; consequently it

is unable to accept the mobile in any case. There are two alternatives that allow

this problem to be overcome whilst still permitting roaming during call-setup: the

first involves sending a message from the end-point associated with the initiating

mobile to the local footprint providing the local connexion information; the second

requires that mobiles setting up a call be permitted a tentative hand-off without

the local connexion-identifier being recognized. The first option provides a more

robust approach, but suffers from the fact that there is still a period, from the

start of the setup until the local-connexion message arrives, during which a hand­

off is still not possible, and, further, that this period of time does not have a known

bound. The best approach, therefore, would appear to be tentative hand-offs; the

hand-off message would not be generated until the connexion-acknowledgement

message had been received but would then be handled in the usual way. The

process limits the mobile to just one hand-off during the call setup, but this

should be adequate. Roaming of mobiles during setup was not implemented on

the simulator.

6.3. SIMULATOR .MODIFICATIONS 127

6.2.8 Call Disconnexion

Disconnecting a call when it terminates is not a difficult problem. Only the end

that initiated the call in the first place is permitted to generate a disconnexion

message, the remote end may generate a request for this message to be sent if

it should require disconnexion; this simplifies the interactions with the hand­

off mechanisms and eliminates entirely any situation where multiple disconnect

messages can be passing through the network. Disconnexion is performed with­

out reference to the mobiles (the two processes can be entirely separated); and

this makes it impossible for a hand-off sequence to be initiated once the dis­

connexion procedure has started. If the remote mobile starts a hand-off and

an acknowledgement has not been received when a disconnect message arrives,

then no acknowledgement will ever be received since the local mobile will sim­

ply ignore the hand-off signal: in this way the periphery of the new remote

footprint is never established and, therefore, the cleaning up process is much

simpler.

6.3 Simulator Modifications

To implement the mobility protocol on the A.T.M. Network Simulator several

modifications had to be made, the most complex of which were associated with the

traffic-generator modules; previously these were synchronized only with the node

into which they fed cells, but now needed connexions to other traffic generators

to enable hand-offs to take place. The node models were modified to provide

the broadcasting and multicasting capabilities that had previously been omitted

from the initial model.

6.3.1 Communication Between Traffic Generators

In a fixed-terminal network, traffic generators in a distributed simulation model

can communicate adequately using the signalling messages that would be used in

6.3. SIMULATOR lv!ODIFICATIONS 128

the real network. ·with mobile terminals that are permitted to initiate hand-offs

without consultation with the network this is no-longer the case; the signalling

messages can only be used to indicate that the mobile has moved and not that

it is about to do so. It was not practical to model each mobile station as an

individual task in the simulator since this would require the simulator topology

to be made dynamically reconfigurable to represent the mobile moving about;

instead, each mobile was modelled within the fixed traffic-generators as a data

structure attached to the active end-point within the footprint. A hand-off was

modelled by copying the data structure across a pseudo-connexion between two

adjacent traffic generators (adjacency of generators is defined in the configuration

file so that han d-offs can occur).

Unfortunately, the movements of the mobile requires that it can only be con­

nected to one end-point at any one time, i.e. that the change of end-point occurs

at a unique point in time; and to implement this fully would require that two

adjacent traffic generators be synchronized with zero time difference (i.e. no look­

ahead). This conflicts with the synchronization policy adopted in chapter 3 where

an amount of look-ahead is required to permit the processes to run concurrently.

Fortunately, the look-ahead can be achieved by calculating in advance the time at

which the hand-off will occur; a copy of the mobile's data structure is then sent to

the new active point a fixed time before the hand-off itself takes place. Work by

Ling [70, 71] suggests that a reasonable model for hand-offs is that they occur with

negative-exponential intervals,6 and this model was adopted with a small mod­

ification: the negative-exponential model has a minimum interval of zero which

is not acceptable for the synchronization model; a small, constant, time-interval

was added to each hand-off interval so that the traffic-generator tasks could be

synchronized. This does have a small impact on the distribution function, but

6 Ling was considering conventional radio-cells where the coverage area is fairly large and
geographic features within the area have only secondary importance. In micro-cellular networks,
such as are likely in an A.T.M. environment, cells are likely to be individually tailored to suit
geographic features (such as a road), making it likely that the negative-exponential model will
be a poor one. Despite this, the model was adopted for use within the simulator; all that is
required for testing the protocol is for a sufficient density of random hand-offs to occur so that
the signalling mechanism can be stressed to its utmost.

6.4. A PRACTICAL IMPLElviENTATION OF THE PROTOCOL 129

since the interval is extremely small in relation to the mean handoff-interval the

effect is negligible. A more important consequence of using this technique is that

the exact state of the call at the time of the hand-off cannot be passed across the

link; and this means that it is difficult to establish whether or not cells from the

data stream are lost or duplicated during the hand-off phase. The information

can, however, be calculated retrospectively by sending a second message to the

new traffic generator at the time that the hand-off actually occurs and by com­

paring this with the state as it was perceived by the new traffic-generator at the

time of the hand-off.

6.3.2 Multicasting Using the Orwell Protocol

Modifications to the Orwell protocol were straight forward. The broadcast ca­

pability was implemented, allowing cells to be delivered to all of the nodes on a

nng. Multicasting was implemented using special routeing and duplicating ta­

bles: cells to be multicast were broadcast round the ring; each node copied the

cell to its output link if there was an entry in the multicasting table corresponding

to that node and the destination in the cell's A.T.M. header; non-legal values in

the multicasting table were indicated with -1. The decision as to whether a cell

should be echoed back to the link upon which it was received could be imple­

mented using the Receive Own Broadcast feature of Orwell; in the simulator it

was implemented using a flag at the Media Access layer that over-rode the entry

in the multicasting table.

6.4 A Practical Implementation of the

Protocol

The basic protocol, as already described, was implemented on the simulator. For

initial testing hand-offs were restricted to just one end at a time: first the call

6.4. A PRACTICAL I.iVIPLEMENTATION OF THE PROTOCOL 130

initiator; and then the call acceptor. Once each of these were working satisfac­

torily it was possible to enable both to do this simultaneously. Several problems

were rapidly identified with the protocol once both ends were made mobile and

these were generally detected by the simulator aborting a run with a diagnostic

message. It was not possible to enable the full set of diagnostic messages all

of the time since, firstly, the simulator runs much more slowly when producing

diagnostics (all of them have to be handled by a single processor and eventually

written to either the screen or disk), and secondly the shear volume makes such

a brute-force approach impractical; diagnostics are generated at a rate of about

1 Mbyte per minute of real time, and the simulator runs for about thirty minutes

for each second of simulated time. Instead, after a problem run has been iso­

lated the time of the error is noted and the simulator re-run with the same set of

random-number seeds; shortly before the error occurred the full diagnostics are

enabled for the areas of interest, a snap-shot of the status of the simulator can

then be taken for analysis. From the results obtained it was possible to establish

what the simulator had been doing at the time and, hence, the reason for the pro­

tocol failing. Errors usually manifested themselves in one of two ways: different

end-points within a footprint having a different understanding about the status

of a call; and one end using an incorrect connexion-identifier to that assigned by

the other. Individual defects uncovered, and possible solutions, are described in

the following sections.

6.4.1 Loss of Hand-off Signal Due to Jitter

Section 6.2.6 noted that it was possible for cells to get lost during a hand-off, and

that special measures are required to overcome this. A similar problem applies

to the hand-off signals and is shown in plate V: a handoff-request signal from the

local mobile can be lost if the remote mobile initiates its own hand-off sequence at

the time that the incoming hand-off signal arrives. If the signal arrives at the new,

remote, active point just before the hand-off takes place then it will be ignored;

similarly if it arrives at the old, remote, active point shortly after the hand-off

6.4. A PRACTICAL IMPLE.MENTATION OF THE PROTOCOL 131

takes place then it will be ignored there also. Unlike the data cells, copies cannot

be taken and forwarded to the mobile upon hand-off since information about

roaming of the remote mobile is handled entirely within the network-endpoints.

The partial solution to the problem involves delaying the old end-point from

becoming passive so that it continues to respond to incoming handoff-request

messages even after a hand-off has taken place. This will lead to duplicate

handoff-acknowledgement messages being generated when just one would have

been generated before; but, as will be seen in the next section, this can happen

anyway so the full solution involves no further modifications. The old end-point

now finally becomes passive on receipt of the handoff-acknowledgement message.

6.4.2 Duplicate Acknowledgements Generated in

Response to Hand-off

If the jitter delays that caused signal loss in the above case are reversed then,

instead of failing to generate the acknowledgement signal, the acknowledgement

is generated by two end-points. The conditions required for this to occur are that

the handoff-request signal from the local footprint arrives at the old end-point

in the remote footprint shortly before the hand-off takes place (i.e. while the

end-point is still active) and this causes an acknowledgement to be generated;

if the request arrives at the new end-point shortly after the hand-off has taken

place then this too is now active and a second acknowledgement is generated;

the signal-flow is shown in plate VI. The two acknowledgement signals contain

differing information in the 'remote' fields, the one coming from the old footprint

containing details about the connexion prior to hand-off, the other containing the

details after hand-off.

Since the two acknowledgement signals are generated almost simultaneously,

but travel by different routes back to the local footprint (they come from different

places), it is impossible to pre-determine their order of arrival: yet their order is

critical to correct interpretation. If the order of arrival of the signals is the same as

6.4. A PRACTICAL IMPLEIV!ENTATION OF THE PROTOCOL 132

shown in plate VI then the signals are all interpreted correctly, the second handoff­

acknowledgement signal being ignored. If, however, the acknowledgement signal

from the old remote end-point arrives after the handoff-request signal from the

remote, or even worse, after the acknowledgement signal from the new remote end­

point (plate VII) then the outdated connexion-information that it contains will

overwrite the correct remote connexion-information leaving the tables corrupted:

it is essential, therefore, that the acknowledgement from the old end-point be

ignored if it arrives after either of the signals from the new end-point.

Unfortunately, the original signalling protocol contained no information to

make it possible to detect situations such as this, so new fields were necessary: it

is not possible to base the acceptance decision on the 'previous value' since this

might cause rejection of legal hand-offs that were back to the previous footprint.

The new fields in the protocol are simply counters (2-bit, or longer, cyclic counters

can be used) that count the number of local and remote hand-offs that have

occurred: each end-point within the footprints keeps track of both the local and

remote counters and increments the local counter by one when a hand-off to that

end-point occurs. ·when a call is established the initial value of each counter is

set to zero, and a particular value of the local counter remains associated with

the connexion-identifier whilst the identifier is associated with that call. When

signals arrive from the other mobile a simple check will show whether the remote­

count indicated in the message is less than the last remote-count known: if it is,

then provided that the signal is a hand-off acknowledgement it can be ignored;

otherwise it should be flagged as erroneous. A signal with a higher remote-count

than previously known indicates that a hand-off has taken place at the remote

end, even if the signalling has yet to catch up.

6.4.3 Remote's Handoff-request Arrives Before

Acknowledgement of Local Hand-off

This problem can occur when the remote mobile performs a hand-off shortly after

receipt of a handoff-request message from the local mobile; it affects end-points

6.4. A PRACTICAL INIPLEMENTATION OF THE PROTOCOL 133

in the periphery of the new footprint, plate VIII. The handoff-request message

from the local mobile is handled correctly by the old remote end-point which is

still active when the signal is received, and an acknowledgement is generated;

shortly afterwards a hand-off occurs and a handoff-request message is generated

and directed towards the new local footprint; because the two messages take

different routes then the hando:ff-request message from the remote footprint can

arrive before the handoff-acknowledgement message. There are two results of

this: at the active end-point in the local footprint the handoff-request message

containing new data arrives before the acknowledgement containing the outdated

data, but this can be resolved in the same way as in the previous section; and

at the passive end-points in the periphery of the footprint, the handoff-request

message from the remote mobile contains a connexion-identifier for which the end­

point has not received an allocation instruction (the instruction will arrive in the

acknowledgement message), and when it does arrive it will also contain outdated

information. To overcome this problem the end-point needs to be permitted

to make a temporary allocation of the designated connexion-identifier subject to

confirmation by the pending acknowledgement; the acknowledgement should only

be used to confirm that the allocation should have taken place, the information

regarding the remote connexion-identifier is outdated by the time it arrives, but

this can be detected as before.

6.4.4 Arrival of Handoff-request for a Session Just

Deleted

When the network is heavily loaded then delays and jitter effects can become

significant; signals taking different routes can become quite widely separated in

arrival time and a scenario such as that shown in plate IX can occur. In this case

a local hand-off occurs and generates a handoff-request message to the remote

footprint. This message arrives at the remote footprint very shortly after a hand­

off has occurred there also, but before the old end-point has been passivated.

6.5. SUMA1ARY 134

The old remote end-point generates an acknowledgement that manages to pass

through the network significantly more quickly than the handoff-request message

coming from the new end-point; the former message has time to be processed by

the local mobile and for a footprint-delete message to be issued, and acted upon,

by the old local footprint before the handoff-request message arrives. When the

handoff-request message finally does arrive from the remote mobile the situation

is indistinguishable from that described in the previous section: a request has

been received designating a local connexion-identifier that has not been allocated;

only the end-point at the centre of the footprint is able to tell that the request

is a delayed one, but the data associations to the new connexion-identifier will

probably have been cleared by this time. The solution to this requires that old

connexion identifiers be given some persistence after a deletion message has been

received so that any stragglers are given time to be flushed from the network.

The time period need only be a few milliseconds so the effects on the number of

available identifiers should not be significant. This is the only time that it was

found to be necessary to implement some form of time-out into the basic protocol.

6.5 Summary

The mobility protocol was sucessfully implemented on the simulator, which made

posible rapid identification of a series of potential weaknesses; as each of these was

diagnosed a work-around was established and implemented. The use of simulation

made it possible to test the protocol with scenarios that had not previously been

anticipated. The use of distributed simulation enhanced this approach by making

it possible to generate results much more quickly than would otherwise have

been possible; this in turn makes it less likely that protocol errors have remained

undetected.

The fact that the simulator has been seen to successfully complete several

simulations is not in itself proof that the protocol is totally free of errors; it is

always possible that a particular sequence of events could still lead to an error;

6.5. SUMA1ARY 135

and since the simulator generates events in a random manner it is impossible to

guarantee that all such sequences have been covered. All the errors that were

detected occurred when both ends were simultaneously in the process of handing

off from one end point to another; and the hand-off rate for the simulator was set

at a level that was significantly higher than would be seen in a real network. It

would seem likely, therefore, that the protocol described here is sufficiently robust

for it to be used in a real network.

Chapter 7

Conclusions and Suggestions for
Further Work

The work described in this thesis can be broadly divided into three main cat­

egories and this chapter will, similarly, summarize them separately. The first

section considers distributed simulation and the transputer-based simulator that

was designed and implemented as part of this project. Any programming task as

large as this always leaves many avenues of interest unexplored; some of these,

particularly those related to obtaining better performance, which was only of

secondary interest to the main project, are highlighted for further study. The

second section considers broadband techniques and the Orwell protocol, whose

novel load-control algorithm makes it an extremely interesting topic of study for

use in networks with distributed control algorithms. The attempt to find a simu­

lation model for the protocol that used less processing time than the current one

was not particularly successful, but remains of great interest even when parallel

simulation is being employed. Finally, the mobility protocol is considered. De­

spite its successful implementation on the simulator, some aspects related to the

hand-off make it a little cumbersome and, therefore, potentially fragile: an alter­

ation to the approach is suggested that should remove these frailties and make

the whole system significantly easier to implement; at the same time, it should

also ease the implementation of network-management and accounting procedures

related to the mobile protocol.

136

7.1. DISTRIBUTED Silv!ULATION AND THE A. T.M. SIMULATOR 137

7.1 Distributed Simulation and the A.T.M.

Network Simulator

Simulation has become an essential weapon in the arsenal of the telecommuni­

cations performance engineer; but the dramatic increase in both the physical

size of, and the load carried by, networks has meant that conventional simu­

lation technology is finding it hard to cope whilst keeping the computing cost

within acceptable bounds. Multi-processor simulators have been proposed that

use an array of smaller, cheaper, microprocessors to attack a large simulation

in unison to achieve results faster and at significantly lower cost. Several basic

decomposition methods have been proposed in the literature and some of the

most common were discussed. By far the most popular approach is to break the

system being modelled into separate sub-processes and to simulate each of these

on a different processor; the processors communicate with each other, passing

information about the tasks being processed and the simulation time they have

reached: simulation techniques based on this approach are generally termed dis­

tributed simulation. An important requirement of the approach is that causality

between events occurring within the simulator is maintained; a whole spectrum

of approaches aimed at ensuring this have been proposed, but all lie within two

basic extremes. At one end of the spectrum, each processor is only permitted

to proceed when it can guarantee that the causality of the simulation can be

preserved; this approach is generally termed conservative distributed simulation:

at the other end, each processor carries on regardless until an error is actually

detected, whereupon it restores the local simulation to a previously saved state

and restarts from there; not surprisingly this approach is known as optimistic

distributed simulation. Conservative algorithms are usually the easiest to im­

plement, but unfortunately normally tend to give poorer performance than their

optimistic counterparts; in their favour, however, they can usually run with less

memory, are easier to debug, and, with sufficiently good look-ahead, can g1ve

quite reasonable performance.

7.1. DISTRIBUTED SIMULATION AND THE A. T.M. SIMULATOR 138

In discrete-event simulators written prior to the early nineteen-eighties very

little consideration was given to how the event set should be maintained: the 'ob­

vious' approach was to maintain a linear list sorted in order of increasing time. As

the size of simulations grew, the length of the list made it impractical for the use

of such a naive approach to be continued and more sophisticated list-management

techniques were adopted. Consideration of the partitioning technique used when

a distributed simulator is written shows that, when considering the processing

requirements for the event set alone, super-unitary speed-up is possible; this con­

tradicts an earlier claim in the literature.

It has been found from experience that single-processor computers are only

able to simulate in great detail, and in a realistic time-frame, single nodes of very

high-speed networks. A simulation package, the A.T.M. Network Simulator, was

written to enable high-speed simulation of Broadband I.S.D.N. networks at the

cell level; the package runs on a reconfigurable array of Inmos TSOO transputers

with each processor simulating one node in the network. The code for the sim­

ulator was written in 'C' and was developed in a hierarchical manner. At the

bottom layer was a multiplexor system that was both deadlock and livelock free;

and which provided a virtual interconnexion network between each task running

in the simulation. A packetizer layer was used to make efficient use of the com­

munications bandwidth of the network. Finally, a synchronization layer was used

to perform a form of conservative synchronization between the tasks: the layer

was proved to be deadlock free and to maintain causality relationships between

the tasks at all times. The performance of the simulator was found to be very

good, giving near-ideal speed-up over a large range of loads when identical copies

of the code were run on first a single processor and then on the multi-processor

network.

The simulator uses a 'backing-off' approach to generating NULL messages.

vVhen such a message has been generated the simulator reschedules the gener­

ation event to re-run one look-ahead period later on. If, on the next occasion

that the event runs it is found that in the meantime a 'real' message has been

7.1. DISTRIBUTED SIMULATION AND THE A. T.M. SIMULATOR 139

transmitted then the event can be backed off until one look-ahead period after

that message was transmitted, and so on. When there is a large population of

real messages this means that the number NULL messages required falls almost to

zero. However, when the real-message density is low then if the last real message

to be transmitted was sent only very shortly after the last NULL message then

backing off the NULL message for just a short period of time may be less efficient

than sending a NULL message immediately and backing off for longer. Within

the bounds of the synchronization approach (that at least one message should be

transmitted each look-ahead period), any NULL message generation algorithm is

acceptable: perhaps the best approach might be an adaptive one that bases its

decision as to whether it is better to back off or to send a non-essential message;

the trade off is between work required to reschedule the event and work required

to transmit a message; greater concurrency might also be achieved by sending

more messages since it is then less likely that the remote process will block.

Another feature of the simulator that still has scope for expansion is the traffic

generator model. At present only voice and mobile traffic are generated (with

some signalling), and both of these are fixed bit-rate services; variable bit-rate

services such as computer data and compressed video would greatly enhance the

adaptability of the simulator. Connexion management within the network is

another area where the current simulator implements only minimal functionality:

since the use for the simulator in this project was to study end-to-end protocols

over an A.T.M. environment, this was not a major limitation; but for studies of

the network itself, more development in this area would be required.

The parallelism extracted from the systems simulated exceeded all expec­

tations, giving near-ideal speed-up over a very wide range of loads. This can

probably be attributed, at least in part, to the low efficiency of the model used

for the Orwell protocol: much time is spent by each ring rotating slots for which

there is little or no traffic; this creates a large number of events between each

synchronization and is sufficient to keep a processor busy for a large part of the

time.

7.2. ASYNCHRONOUS TRANSFER MODE AND ORWELL 140

7.2 Asynchronous Transfer Mode and Orwell

A novel switching technique is being actively developed throughout the world in

an attempt to establish an international standard for broadband communications

using public networks. The technique is known as Asynchronous Transfer Mode

(A.T.M.) because each data packet, or cell, contains sufficient information in its

header to enable it to be independently routed through a network. Unlike con­

ventional circuit-switched networks connexions can be allocated for any amount

of bandwidth that is required, rather _than as multiples of a basic rate. Further,

statistical multiplexing can be used to merge variable bit-rate connexions together

so that it is not necessary to allocate the peak bandwidth requirement to each.

Conventional packet-switched networks have often used statistical multiplex­

ing to achieve reductions of the bandwidth requirement within the network, but

for ;£\ .. T.M. conventional store-and-forward networks are too cumbersome, and

indeed their link-level protocols are no longer required for high-reliability fibre­

optic links. New switching architectures are also required to support the very

high throughputs that will be required of A.T.M. networks; traditional packet­

switching architectures simply do not have the capacity and throughput to sup­

port them. A new protocol that has been proposed for use in high-speed local and

metropolitan area networks, and for use in low-capacity A.T.M. exchanges, is the

Orwell ring protocol; this uses a rotating slot principle as its access mechanism.

Earlier slotted ring protocols had fallen into disfavour because they commonly

had high header-to-data ratios and poor load balancing capabilities; but Orwell

has no worse header-to-data ratio than any other exchange protocol as this is

defined by the A.T.M. standard; and it provides a novel access control mecha­

nism to guarantee bandwidth in accordance with the needs of each node on the

ring. Simulation times for ring protocols tend to be high, since much time must

be spent simulating the slot rotation action; attempts were made to reduce sim­

ulation times required to simulate the Orwell protocol by substituting the slot's

seeking action with a simpler system that requires less computation. Unfortu­

nately substantial performance gains could not be achieved and in the process the

7.3. MOBILITY USING A. T.J\1. NET1-VORI\S 141

queueing characteristics of the ring were slightly changed. Two distinct phases

were found to be involved with the switching of each cell: during the first phase

an empty slot is seeking traffic that it can carry, and the time for this is depen­

dent on the load offered to the ring; during the second phase a slot has found

traffic and is carrying it round the ring to its destination, this is independent of

the load offered to the ring and is, typically half a rotation delay.

7.3 Mobility Using A.T.M. Networks

Mobile communication is one of the fastest-growing fields of the expanding telecom­

munications industry; so it is important that services such as this should be con­

sidered when defining the A.T.M. protocols. It has been proposed that mobile

communications could be supported in a micro-cellular radio environment by us­

ing a footprinting technique: instead of disseminating information about a call to

just the base stations handling each end of the call, all the information (including

the incoming data stream) is duplicated within the network and sent also to base­

stations that surround the one that is currently active. Handing a call from one

base-station to another then no-longer requires a ne>v connexion to be established

in the time between detecting that the current one is fading and total loss of com­

munication: the connexion information already exists and simply needs updating.

Once a hand-off has taken place, a new footprint is established around the new

location of the mobile so that the next hand-off can also be in any direction; this

is a far less time-critical process than exists in current mobile protocols. Further,

such an approach can also be extended to other mobility environments, for exam­

ple when a user is communicating with a single computer using several terminals:

each terminal needs to receive data from the main computer, but the user may

be moving rapidly from one to another; a footprint multicasting technique can

be used here also.

The proposed protocol was implemented on the A.T.M. network simulator in

an attempt to test the signalling capabilities in a realistic environment, where

7.3. 1\!IOBILITY USING A. T.M. NETvVORKS 142

signalling delays along divers paths are all different and can lead to messages

arriving out of order. It was found that the basic hand-off protocol worked

reliably when just one end was moving at a time; and adequately when both ends

moved simultaneously. Problems occurred, however, when the signal indicating

that a mobile had handed off arrived at the remote mobile at approximately

the same time that it too was initiating its own hand-off sequence; depending

upon the exact sequence of events each end would determine a different state

of the connexion and the effect was in some respects similar to crossed lines

in conventional telephony (a problem now largely eradicated). These problems

could only be overcome with some difficulty and at the expense of burdening the

protocol with additional clauses.

One of the problems with mobile communications is that the customers keep

moving! This makes network management (and particularly call charging cal­

culations) especially difficult: one way of overcoming this problem has been to

introduce the concept of an anchor node; this is selected when the call is estab­

lished, and remains fixed throughout the duration of the call. The current pro­

posals for implementing the new mobility protocol have not, so far, implemented

the concept of an anchor node so one mobile station has been communicating

directly with another and there has been no reference point within the network.

Some of the difficulties found with the protocol, however, could almost certainly

be eliminated by using an anchor node in the communications path: the protocol

proved to be highly reliable when only one end was permitted to move at a time;

so introducing an anchor node, and having the mobiles communicate indirectly

with each other by using it, would make movement of the 'remote' mobile totally

transparent to movement of the 'local' one. The anchor node, in effect, acts as

a fire wall to shield the movements of the mobiles from each other. This would

require that the base stations generate cells addressed to the anchor nodes and

would further require the anchor node to process cells at the A.T.M. adaptation

layer (in a similar way to zone boundaries in the A.T.M. zone concept); but the

advantages would seem to make further investigation of this approach worthwhile.

7.3. NIOBILITY USING A. T.M. NETWORKS 143

Finally, the protocol still needs to be tested under conditions where cells are be­

ing dropped by the network causing signals to be missed; the anchor node may

also be beneficial here, shielding the mobiles from each other and simplifying the

recovery mechanism by reducing the number of possible state-transitions in the

system.

Bibliography

[1] K. M. Chandy, V. Holmes, and J. Misra, "Distributed Simulation of Net­

works," Computer Networks, vol. 3, pp. 105-113, 1979.

[2] K. M. Chandy and J. Misra, "Distributed Simulation: A Case Study in

Design and Verification of Distributed Programs," IEEE Transactions on

Software Engineering, vol. SE-5, pp. 440-452, September 1979.

[3] R. E. Bryant, "Simulation of Packet Communication Architecture Com­

puter Systems," tech. rep., M.I.T., Cambridge, MA, November 1977.

MIT,LCS,TR-188.

[4] C. A. R. Hoare, Communicating Sequential Processes. Prentice Hall Inter­

national, 1985. I.S.B.N. 0-13-153289-8.

[5] J. Misra, "Distributed Discrete-Event Simulation," Computing Surveys,

vol. 18, pp. 39-65, March 1986.

[6] R. M. Fujimoto, "Lookahead in Parallel Discrete Event Simulation," in Pro­

ceedings of the IEEE International Conference on Parallel Processing, vol. 3,

pp. 34-41, 1988.

[7] R. M. Fujimoto, "Performance Measurements of Distributed Simulation

Strategies," in Distributed Simulation, pp. 14-20, February 1988.

(8] D. A. Reed, A. D. Malony, and B. D. McCredie, "Parallel Discrete Event

Simulation Using Shared Memory," IEEE Transactions on Software Engi­

neering, vol. 14, pp. 541-553, April1988.

144

BIBLIOGRAPHY 145

[9] D. A. Reed and A. D. Malony, "Parallel Discrete Event Simulation: The

Chandy-Misra Approach," in Distributed Simulation, pp. 8-13, February

1988.

[10] D. M. Nicol, "High Performance Parallelized Discrete Event Simulation of

Stochastic Queueing Networks," in Proceedings of the 1988 Winter Simula­

tion Conference, pp. 306-314, 1988.

[11] W. Cai and S. J. Turner, "An algorithm for Distributed Discrete-event Simu­

lation- The "Carrier Null Message" Approach," in Distributed Simulation,

pp. 3-8, January 1990.

[12] W. K. Su and C. L. Seitz, "Variants of the Chandy-Misra-Bryant Distributed

Discrete-event Simulation Algorithm," in Distributed Simulation, pp. 38-43,

March 1989.

[13] R. C. De Vries, "Reducing Null Messages in Misra's Distributed Discrete

Event Simulation Method," IEEE Transactions on Software Engineering,

vol. 16, pp. 82-91, January 1990.

[14] K. M. Chandy and R. Sherman, "The Conditional Event Approach to Dis­

tributed Simulation," in Distributed Simulation, pp. 93-99, March 1989.

[15] M. Abrams, "The Object Library for Parallel Simulation," in Proceedings of

the 1988 Winter Simulation Conference, pp. 210-219, 1988.

[16] M. Abrams, "A Common Programming Structure for the Bryant-Chandy­

Misra, Time-Warp, and Sequential Simulators," in Proceedings of the 1989

Winter Simulation Conference, pp. 661-670, December 1989.

[17] D. M. Nicol, C. C. Micheal, and P. Inouye, "Efficient Aggregation of Multiple

LPs in Distributed Memory Parallel Simulations," in Proceedings of the 1989

Winter Simulation Conference, pp. 680-685, 1989.

BIBLIOGRAPHY 146

[18] B. R. Preiss, vV. M. Loucks, and V. C. Hamacher, "A Unified Modelling

Methodology for Performance Evaluation of Distributed Discrete Event Sim­

ulation Mechanisms," in Proceedings of the 1988 Winter Simulation Confer­

ence, pp. 315-324, 1988.

[19] B. R. Preiss, "The Yaddes Distributed Discrete Event Simulation Specifi­

cation Language and Execution Environments," in Distributed Simulation,

pp. 139-144, March 1989.

[20] D. R. Jefferson, "Virtual Time," ACM Transactions on Programming Lan­

guages and Systems, vol. 7, pp. 404-425, July 1985.

[21] D. Jefferson and H. Sowizral, "Fast Concurrent Simulation using the Time

vVarp Mechanism," in Distributed Simulation, pp. 63-69, January 1985.

(22) D. Jefferson, B. Beckman, S. Hughes, E. Levy, and T. Litwin, "Implemen­

tation of Time Warp on the Caltech Hypercube," in Distributed Simulation,

pp. 70-75, January 1985.

(23] R. M. Fujimoto, J. J. Tsai, and G. Gopalakrishnan, "The Roll Back Chip:

Hardware Support for Distributed Simulation using Time vVarp," in Dis­

tributed Simulation, pp. 81-86, February 1988.

[24] C. A. Buzzell, M. J. Robb, and R. M. Fujimoto, "Modular VME Rollback

Hardware for Time Warp," in Distributed Simulation, pp. 153-156, January

1990.

[25] S. Bellenot, "Global Virtual Time Algorithms," in Distributed Simulation,

pp. 122-127, January 1990.

(26] P. L. Reiher, F. Wieland, and D. Jefferson, "Limitation of Optimism in the

Time Warp Operating System," in Proceedings of the 1989 Winter Simula­

tion Conference, pp. 765-770, 1989.

BIBLIOGRAPHY 147

[27] D. Baezner, G. Lumow, and B. W. Unger, "Sim++: The Transition to

Distributed Simulation," in Distributed Simulation, pp. 211-218, January

1990.

[28] P. F. Reynolds Jr, "A Spectrum of Options for Parallel Simulation," in

Proceedings of the 1988 Winter Simulation Conference, pp. 325-332, 1988.

[29] R. L. Gimarc, "Distributed Simulation using Hierarchical Rollback," in Pro­

ceedings of the 1989 Winter Simulation Conference, pp. 621-629, December

1989.

[30] B. Lubachevsky, A. Shwartz, and A. Weiss, "Rollback Sometimes Works

... If Filtered (Abstract)," in Proceedings of the 1989 Winter Simulation

Conference, pp. 630-639, December 1989.

[31] B. D. Lubachevsky, "Bounded Lag Distributed Discrete Event Simulation,"

in Distributed Simulation, pp. 183-191, February 1988.

[32] R. J. Lipton and D. W. Mizell, "Time Warp vs. Chandy-Misra: A Worst-case

Comparison," in Distributed Simulation, pp. 137-143, January 1990.

[33] S. M. Swope and R. M. Fujimoto, "Optimal Performance of Distributed

Simulation Programs," in Proceedings of the 1987 Winter Simulation Con­

ference, pp. 612-617, December 1987.

[34] D. W. Jones, "Concurrent Simulation: An Alternative to Distributed Simula­

tion," in Proceedings of the 1986 Winter Simulation Conference, pp. 417-423,

December 1986.

[35] D. W. Jones, Chien-Chun Chou, D. Renk, and S. C. Bruell, "Experience

with Concurrent Simulation," in Proceedings of the 1989 Winter Simulation

Conference, pp. 756-764, 1989.

[36] C. Hughes, U. Chandra, and S. V. Sheppard, "Two Implementations of a

Concurrent Simulation Environment," in Proceedings of the 1987 Winter

Simulation Conference, pp. 618-623, December 1987.

BIBLIOGRAPHY 148

(37] P. F. Reynolds Jr, "Heterogenous Distributed Simulation," in Proceedings of

the 1988 Winter Simulation Conference, pp. 206-209, 1988.

(38] P. Heidel burger, "Statistical Analysis of Parallel Simulations," in Proceedings

of the 1986 Winter Simulation Conference, pp. 290-295, December 1986.

(39] P. W. Glynn and P. Heidelburger, "Analysis of Parallel Replicated Sim­

ulations Under a Completion Time Constraint," A.C.M. Transactions on

Modeling and Computer Simulation, vol. 1, pp. 3-23, January 1991.

(40] N. J. Bailey, On the Synthesis and Processing of High Quality Audio Signals

by Parallel Computers. PhD thesis, University of Durham, October 1991.

(41] N.J. Bailey, A. Purvis, I. W. Bowler, and P. D. Manning, "An Highly Paral­

lel Architecture for Real-time Music Synthesis and Digital Signal Processing

Application," in Proceedings of the International Music Confe1·ence, Glas­

gow, 1990.

(42] N. J. Bailey, A. Purvis, I. W. Bowler, and P. D. Manning, "Some Obser­

vations on Hierarchichal, Multiple-Intruction-Multiple-Data Computers," in

Proceedings of Euromicro, Vienna, September 1991.

(43] D. W. Jones, "An Empirical Comparison of Priority-Queue and Event-Set

Implementations," Communications of the AC1l1, vol. 29, pp. 300-311, April

1986.

(44] J. H. Blackstone Jr, G. L. Hogg, and D. T. Phillips, "A Two-List Synchro­

nization Procedure for Discrete Event Simulation," Communications of the

ACM, vol. 24, pp. 825-829, December 1981.

[45] D. D. Sleator and R. E. Tarjan, "Self-Adjusting Binary Search Trees," Jour­

nal of the Association for Computing Machinery, vol. 32, pp. 652-686, July

1985.

BIBLIOGRAPHY 149

[46] D. P. Helmbold and C. E. McDowell, "Modeling Speedup (n) Greater than

n," IEEE Transactions on Parallel and Distributed Systems, vol. 1, pp. 250-

256, April1990.

[47] S. J. Nichols, Simulation and Analysis of Adaptive Routeing and Flow Con­

trol in Wide Area Communication Networks. PhD thesis, University of

Durham, March 1990.

[48] R. T. Clarke, S. J. Nichols, and P. Mars, "Transputer-based Simulation Tool

for Performance Evaluation of Wide Area Telecommunications Networks,"

Microprocessors and Microsystems, vol. 13, pp. 173-178, April1989. Special

issue on transputer applications.

[49] S. Toueg and J. D. Ullman, "Deadlock-Free Packet Switching Networks," in

Proceedings of the ACM Symposium on the Theory of Computing, Atlanta,

Georgia, pp. 89-98, May 1979.

[50] L. Gould, I. Bowler, and A. Purvis, "Real-Time, Multi-Channel Digital Fil­

tering on the Transputer," in Pmceedings of the 1989 International Sympo­

sium on Computer Architecture and Digital Signal Processing, 1989.

[51] 3L Ltd, Parallel C User Guide, Version 2.1. Peel House, Ladywell, Liv­

ingston EH54 6AG, Scotland, 1989.

[52] M. De Prycker, "Data Communication in an ATM Network," Electrical Com­

munication, vol. 62, no. 3/4, pp. 333-337, 1988.

[53] C.C.I.T.T. S.G.XVIII, Brasilia, Load Increase Under Link-By-Link and End­

To-End Error Recovery, February 1987. Contribution 987 (U.S.A.).

[54] J. Dupraz and M. De Prycker, "Principles and Benefits of the Asynchronous

Transfer Mode," Electrical Communication, vol. 64, no. 2/3, pp. 116-123,

1990.

BIBLIOGRAPHY 150

(55] G. Foster and J. L. Adams, "The ATM Zone Concept," in IEEE Globecom

1988, vol. 2, pp. 21.4.1-21.4.3, 1988.

[56] A. Huang and S. Knauer, "Starlite: A Wideband Digital Switch," in IEEE

Globecom Vol. 1 of 3, Atlanta, Georgia, pp. 121-125, November 1984.

(57] J. Chauhan, T. King, and A. C. Micallef, Specification of the Orwell Protocol.

British Telecom Research Laboratories, Martlesham Heath, Ipswich, Suffolk,

UK. IP5 7RE, May 1990. Revision C.1(05/90).

(58] J. Appleton, "Traffic Shaping in Asynchronous Transfer Mode Networks," in

Proceedings ofthe Eighth U.K. Teletraffic Symposium, pp. 19/1-19/4, April

1991.

(59] J. R. Chen and P. Mars, "Adaptive ATM Call Access Control Using Learn­

ing Algorithms," in Proceedings of the Eighth U.K. Teletraffic Symposium,

pp. 18/1-18/5, April1991.

(60] R. M. Falconer, J. L. Adams, and G. M. Walley, "A Simulation Study of the

Cambridge Ring with Voice Traffic," British Telecom Technology Journal,

vol. 3, April1985.

[61] J. L. Adams and R. M. Falconer, "Orwell: A Protocol for Carrying Integrated

Services on a Digital Communictions Ring," Electronics Letters, vol. 20,

pp. 970-971, November 1984.

(62] R. M. Falconer and J. L. Adams, "Orwell: A Protocol for an Integrated Ser­

vices Local Network," British Telecom Technology Journal, vol. 3, October

1985.

[63] S. A. Johnson, "Description of Orwell System Simulation Model," tech. rep.,

British Telecom Research Laboratories, Martlesham Heath, Ipswich, Suffolk,

U.K. IP5 7RE, January 1988.

BIBLIOGRAPHY 151

[64] D. J. Miller, "Orwell Simulation User Guide," Tech. Rep. 379.2.2, British

Telecom Research Laboratories, Martlesham Heath, Ipswich, Suffolk, U.K.

IP5 7RE, July 1989.

[65] I. D. Gallagher, "Multi-Service Networks," British Telecom Technology Jour­

nal, vol. 4, pp. 43-49, January 1986.

[66] M. Littlewood, I. D. Gallagher, and J. L. Adams, "Evolution Toward an

ATD Multi-Service Network," British Telecom Technology Journal, vol. 5,

April1987.

[67] J. L. Adams, "Support of ATM on a Passive Optical Local Access System,"

in Workshop on Asynchronous Transfer Mode,. (CICG, Geneva), pp. 6.4.1-

6.4.9, June 1988.

[68] B. M. McGeeney, "Performance of an Integrated Services ATM Protocol

over a Broadband Passive Optical Network," in Proceedings of the Sixth UK

Teletraffic Symposium, pp. 12/1-12/8, May 1989.

[69] W. C. Y. Lee, Mobile Cellular Telecommunication Systems. McGraw-Hill,

1989. I.S.B.N. 0-07-037030-3.

[70] Y. K. Ling, "Second Technical Report of "Wide Area Roaming in Cellular

Mobile Radio"," tech. rep., University of Essex, Department of Electronic

Systems Engineering, April1989.

[71] Y. K. Ling, "Third Technical Report of "Wide Area Roaming in Cellular

Mobile Radio"," tech. rep., University of Essex, Department of Electronic

Systems Engineering, December 1989.

Appendix A

Published Papers

The following papers have been published, or have been submitted for future

publication, as a result of this work:

• R. W. Earnshaw, A. Titchmarsh and P. Mars, "Design and Implementation

of a Packet-switched Network Simulator," in Pmceedings of the Sixth I.E.E.

U.K. Teletraffic Symposium, May 1989.

• R. W. Earnshaw and P. Mars, "Simulation of A.T.M. Networks on Trans­

puter Arrays," in Proceedings of the Seventh I.E.E. U.K. Teletraffic Sym­

posium, pp. 1/1-1/5, April1990.

• R. W. Earnshaw and P. Mars, "Footprints for Mobile Communications,"

in Proceedings of the Eighth I.E.E. U.K. Teletraffic Symposium, pp. 22/1-

22/5, April1991.

• R. W. Earnshaw and A. Hind, "Parallel Simulation of Asynchronous Trans­

fer Mode Networks," to be presented at The Fourth I.E.E. Bangor Com­

munications Symposium, University of Wales, Bangor, May 1992.

• R. W. Earnshaw and A. Hind, "A Parallel Simulator for Performance

Modelling of Broadband Telecommunications Networks," submitted to the

I.E.E.E. Winter Simulation Conference, Arlington, Virginia, December

1992.

152

Appendix B

Source Listing of Mobile
Functions

This appendix contains the source listings for the mobility functions on the

A.T.M. network simulator. For reasons of space the whole code for the sim­

ulator (about 20,000 lines) cannot be included: a floppy disk is included with

the thesis containing source listings for the simulator and several utilities; it is

formatted for an I.B.M. P.C.-A.T ..

B.l Mobile.h

I********************************
* * ATM Network Simulation Package

* * Traffic Generator Model: MOBILE.H

* * Author: R. W.Earnshaw, University of Durham

* * Date: 29th October, 1990

* * Copyright (C) 1990, University of Durham, All rights reserved.

*
*##############################
* * MOBILE.H: Structures for mobile calls within a source

*
*******************************I

#ifdef MOBILITY
#ifndef STATSJIOPS..LIM
#define STATSJIOPS..LIM 3

#endif I* STATSJJOPS-LIM *I

153

B.l. MOBILE.H

#define MS..ACCEPT 1
#define MS-FAILED 2
#define MS_CLEAR 3

#define FTPRNT _1\1ASK OxOOOOffffi

#define SESSION _MASK OxffffOOOOl
#define SESSION -OFFSET 16

typedef struct mobile ...calls MOBILE-CALLS;

typedef struct m_call M_CALL;

typedef struct m..session M..SESSION;

typedef struct ses.header SES..HEADER;

typedef struct ho...chan HO_CHAN;

struct ho...chan
{

RADIO-CHANNEL *rad...chan;
};

struct ses.header
{

};

M..SESSION **Sessions;
HO_CHAN *handoff;

struct mobile...calls
{

STATS_FN holdJunc;
STAT ..DIST hold..dist;
long hold..seed;
STATS_FN create_func;
STAT ..DIST create..dist;
long create..seed;
double sample...rate;
int setup...rnesJen;
int setup...ackJen;
int clear ...rnesJen;
int clear ...ackJen;
int footprintJen;
int handoffJen;
NET _CHANNEL *channel;
M_CALL *running...calls;
1\LCALL *IDY _calls;
D..STATS *d..stats;
int num..dests;
SES..HEADER *session_table;
int max..sessions;
int *ftprntJkup;
long ftprnt..seed;

154

B.l. MOBILE.H

};

int num.ftprnLcells;
STATS..FN handofUunc;
STAT ..DIST handofLdist;
long handoff.seed;
Til'viE del.session_wait;

struct m_call
{

};

M_CALL *next;
M_CALL *prev;
M_CALL *Ca!L.next;
M_CALL *ca!Lprev;
unsigned long state;
unsigned long session;
int master;
int handoffs...done;
TIME time...next;
TIME time_term;
RADIO-CHANNEL *handoff..on;
TIME handoff..at;

struct m.session
{

};

M..SESSION *next;
M..SESSION *new.session;
M..SESSION *old.session;
M_CALL *call;
FRAME *last.frame;
int last.frame.size;
unsigned long my .sessionid;
unsigned long your.sessionid;
int active;
unsigned long state;
int handoff...no..txed; I* The tag on my last handoff *I
int handoff...no..rxed; I* The tag on last remote handoff *I

PUBLIC TIME inform.l:!andoff (M-CALL *call, TIME time);
PUBLIC TIME mobile..ca!Lcreate (void *data, TIME time);
PUBLIC void ms..connect..confirm (M-CALL *call, int status,

unsigned long session, TIME time);
PUBLIC void ms..connectindication (unsigned long session, TIME term, TIME time);
PUBLIC void ms_dataindication (M_CALL *call, FRAME *frame, int size,

TIME time);
PUBLIC TIME send.mobile..cell (MOBILE-CALLS *m..calls, TIME time);
PUBLIC TIME m..terminate..call (M-CALL *call, TIME time);
PUBLIC void ms..releaseindication (M_CALL *call, int reason, TIME time);
PUBLIC void ms..release..confirm (M-CALL *Call, int reason, TIME time);
PUBLIC void ms..connect..request (unsigned long address, M_CALL *Call, TIME term,

TIME time);
PUBLIC void ms_connect..response (unsigned long session...no, M_CALL *Call,

155

B.2. 1\10BILE.C

int state, TIME time);
PUBLIC void ms_data.request (unsigned long sessionJio, FRAME *frame, int size,

TIME time);
PUBLIC void ms.release.request (unsigned long sessionJlo, int reason,

TIME time);
PUBLIC void ms.release.response (unsigned long sessionJio, int status,

TIME time);
PUBLIC void mobile..setup.req (FRAME *frame, int size, TIME time);
PUBLIC void mobile..setup_ack (FRAME *frame, int size, TIME time);
PUBLIC void mobile_term.req (FRAME *frame, int size, TIME time);
PUBLIC void mobile_term...a.ck {FRAME *frame, int size, TIME time);
PUBLIC void mobile_footprint (FRAME *frame, int size, TIME time);
PUBLIC void mobile..cell.rx {CELL *cell, TIME time);
#endif I* MOBILITY *I

B.2 Mobile.c

I*****************************

* * ATM Network Simulation Package

* * Traffic Generator Model: MOBILE.C

* * Author: R. W.Earnshaw, University of Durham

* * Date: 1Oth December, 1990

* * Copyright (C) 1990, University of Durham, All rights reserved.

*
*############################
* * MOBILE. C: Mobility functions traffic generator, second attempt.

*
*****************************I

#ifndef lint
static char rcsid[] =
"$Id: MOBILE.C 1.1 91/03/19 10:28:07 erich Exp Locker: erich $";

#endif I* lint *I

I*
*$Log: MOBILE.C $
* Revision 1.1 91/03/19 10:28:07 erich
* Initial revision

*

#include" .. /include/atm. h"
#include" .. /include/timeout. h"
#include" .. /include/allocate. h"
#include " .. /include/stats. h"

156

B.2. MOBILE. C

#include" .. /include/io. h"
#include" .. /include/net'llork.h"
#include" .. /include/radio. h"
#include" .. /include/protocol.h"
#include " . ./include/ cell. h"
#include" .. /include/mac.h"
#include "mobile.h"

#ifdef DEBUG
#define dbg(a) {if (debug & 128) {a}}
#else
#define dbg(a) {}
#endif I• DEBUG •I

I• Define a few functions for access to the structures •I

I• The following function may be made to do a more elaborate search for a
* mobile within the network. Currently we assume that this has all been
* done in the background and simply return an address.

* * Syntax:

* * unsigned locate_mobile (unsigned mobile_id};

* * mobile_id is the mobile's identiy number.

•I

#define locateJilobile(num) ((int) ((num) % m..calls_data.num_dests))

I• Overload status operations •I

#define get..status(ent) ((ent) -.state)
#define set..status(ent,status) ((ent)-.state =(status))

I• Running call information •I

#define link_f..call(call ,nxtcall) ((call) -.call ..next = (nxtcall))
#define Iink..b..call(call,prvcall) ((ca!l)-.call..prev = (prvcall))

#define get_f..call(call) ((call)-.call..next)
#define get_b_call(call) ((call)-.calLprev)

I• Other call information •I

#define set..terminate(call,time) ((call)-.time..term =(time))
#define geLterminate(call) ((call)-.time..term)
#define ismaster(call) ((call)-.master)

#define get..generate_time(call) ((call)-.time..next)
#define set ..next ..generate(call,delay) ((call)-.time..next += (delay))
#define init..generate(call,time) ((call)-.time..next =(time))

157

B.2. MOBILE. C

#define generate...mobilejd() (vprng (m_calls_data.hold..seed))

#define getJast..arrival(call) ((call)--+last..arrival)
#define setJast ..arrival(call, time) ((call)---+ last..arri val = (time))

#define geLrunning..calls() (m_calls..data.running..calls)
#define set ..running ..calls(call) (m..calls..data.running..calls = (call))

#define geLcallsJist() (m..calls..data. my _calls)
#define set ..calls Jist(call) (m_calls..data.my _calls = (call))
#define gen_new .footprint() \

(m..calls..data.ftprntJkup[((int) ((m_calls..data.ftprnt..seed =\
vprng (m_calls..data.ftprnt..seed)) % m..calls_data.num.itprnt..cells))])

#define get.iootprint(sessjd) ((int)((sessjd) & FTPRNT ..MASK))
#define get..session_no(sessjd) \

((int)(((sessjd)&SESSION ...MASK)~SESSION _OFFSET))
#define set..sessionjd(id,ftprnt,no) (•(id) = (ftprnt) !((no)«:SESSION _OFFSET))

#define in.iootprint(ftprnt) \
(m_calls..data.session..table[ftprnt].sessions == NULL ? 0: 1)

#define which..session(sesjd) \
(get..session_no(sesjd) < m_calls..data.max..sessions ? \
m_calls..data.session ..table[get .footprint(ses jd)]. \

sessions[get..session_no(sesjd)] : NULL)

#define mobilejn.footprint(ft,add) ((ft) == sourcejd ? 1 : 0)

#define new _call(call) if ((•(call) = m..call..alloc ()) ==NULL) \
{ \

}

root...message ("Unable to create new mobile call");\
terminate..sim (); \

#define new.irame(frame) if ((•(frame) = frame..alloc ())==NULL) \
{ \

}

#define add..callsJist(call) { \

root...message ("Unable to create new frame");\
terminate..sim (); \

}

link.iorward(call,m..calls_data.my ..calls); \
link..backward(call, NULL);\
if (get..callsJist () :j:. NULL) \

link..backward(get..callsJist (), call);\
set ..calls Jist (call); \

#define start..timeout(what,when)\
add_timeout(&what##..timeout, what, ((what)--+time..out = (when)))

/•######################################•/

158

B.2. MOBILE.C

I* Mobile level status definitions *I

#define M..SETUP ..STATE Ox00000001
#define MJWNNING..STATE Ox00000002
#define M_CLEAR..STATE Ox00000004

I* Session level status definitions *I

#define S..SETUP ..STATE OxOOOOOOOl
#define SJWNNING..STATE Ox00000002
#define S_CLEAR..STATE Ox00000004
#define SJIANDOFF ..F ..STATE Ox00000008 I* This session has gone inactive *I

I* during handoff *I
#define SJIANDOFF _T ..STATE Ox00000010 I* This session has gone active *I

I* during handoff *I
#define SJIANDOFF ..E..STATE Ox00000020 I* For recovery purposes *I
#define S..DELETE..STATE OxOOOOOOOlOO I* Set when the session is about *I

I* to expire *I
#define S..DUPLICATE..SENT Ox00008000

#define M..SETUP -REQ 1
#define M..SETUP _ACK 2
#define M_CLEAR-REQ 3
#define M_CLEAR_ACK 4
#define M_CREATE..FOOTPRINT 5
#define M..DELETE..FOOTPRINT 6
#define MJIANDOFF -REQ 7

#define SES..FORCE 0
#define SES_GENERATE 1

#define HANDOFF _LEAVING 0
#define HANDOFF _ARRIVING 1

#define NOT -RUNNING 0
#define MOBILE..SETUP 1
#define MOBILE.DATA 2
#define MOBILE_CLEAR 3

#define SETUP _OK 101
#define SETUP ..FAILED 102
#define MOBILE.DROPPED 103

#define MJ\1ASTER TRUE
#define M..SLAVE FALSE

1*#####################################*1

PRIVATE void unlink..call (M-CALL *call);
PRIVATE void mobile..callinsert (M-CALL *call, TIME time);
PRIVATE void new...session (M..SESSION **Session, int generate,

unsigned long footprint);

159

B.2. J.v!OBILE.C

PRIVATE void unlink..session (M.SESSION *session);

PUBLIC TIME release..session (M.SESSION *Session, TIME time);

PUBLIC MOBILE-CALLS m..calls..data;

PUBLIC extern int sourceid;

PUBLIC int mobile.bandoffs = 0;

extern void (*make.beader) ();

allocator (PRIVATE, M_CALL, m..call, {})
allocator (PRIVATE, M.SESSION, m..session, {})

f************ Mobile Level (user) calls**************/

PUBLIC TIME mobile..ca!Lcreate
(

)
{

void *data,
TIME time

1\LCALL *call;

}

if (time > 0.80)
debug I= 128;

new ..call (&call);
call--+master = M_\1ASTER;
call--+handoffs...done = 0;
add ..calls Jist (call);
linkJ..call (call, NULL);
link..b..call (call, NULL);
seLterminate (call, time+ distribution (&m..calls...data, hold));
set..status (call, M.SETUP .STATE);
dbg (rootJUessage ("MOBILE: Call created");)
ms_connect.request (generateJUobileid (), call, get ..terminate (call),

time);
return (time+ distribution (&m_calls...data, create));

PUBLIC void ms_connect..confirm
(

)
{

l\LCALL *call,
int status,
unsigned long session,
TIME time

dbg (rootJUessage ("MOBILE: Received Acknowlegement, Session %x",
session);)

switch (status)
{

160

B.2. 1\IIOBILE.C

}

case MS..FAILED:
unlink...call (call);
m_calL.free (call);
break;

case MS..ACCEPT:

}

if (get .status (call) f. M..SETUP ..STATE)
{

}

root...message ("MOBILE: Not in setup when received ack");
terminate.sim ();

call-session = session;
mobile...calUnsert (call, time+ CELL.JNFO I m...calls..data.sample.Iate);
dbg (root...message ("MOBILE: Setting handof:f time");)
gen.next.l!andoff (call, time);
break;

PUBLIC void ms...connectindication

)
{

unsigned long session,
TIME term,
TIME time

M_CALL *call;

}

dbg (root...message ("MOBILE: Received connect indication. Session %x",
session);)

new...call (&call);
call-master = M..SLAVE;
call-handoffs..done = 0;
call-time..term = term;
add...callsJist (call);
call-session = session;
link.Lcall (call, NULL);
link..h...call (call, NULL);
set..status (call, M..RUNNING..STATE);
mobile_callinsert (call, time + CELL.JNFO I m...calls..data.sample.Iate);
I* send the response message *I
ms_connect.Iesponse (session, call, MS..ACCEPT, time);
gen.next.l!andoff (call, time);

PUBLIC TIME send...mobile...cell
(

)
{

MOBILE_CALLS *m...calls,
TIME time

M_CALL *call;
FRAME *frame;

161

}

B.2. MOBILE.C

if ((call= get.IUnning...calls ())==NULL) I* This should never happen *I
{

}

rootJnessage ("Error: Mobile scheduled to send with no calls");
terminate...sim ();

if (get.b...call (geLf...call (call)) # call)
{

}

rootJnessage ("MOBILE: Forward link corrupt Y.x Y.x Y.x", call-+session,
(get_f...call (call))-+session,
(get .b _call (get .I ...call (call))) -+session);

terminate...sim ();

if (get.b...call (get_f...call (call)) # call)
{

}

rootJnessage ("Backward link corrupt Y.x %x Y.x", call-+session,
(get.b...call (call))-+session,
(get.f...call (get.b_call (call)))-+session);

terminate...sim ();

if (get..generate..time (call)== time) I* In case current call terminated *I
{

}

new.frame (&frame);
dbg (rootJnessage ("MOBILE: Sending data on Y.x (Y,x) ", call-+session,

call);)
ms_data_request (call-+session, frame, 0, time);
setJiext..generate (call, CELL.JNFO I m_calls..data.sample...rate);
if (ismaster(call) && get..generate_time (call) > get..terminate (call))

activate ((EV ...FUNC) m..terminate_call,
get ..terminate (call) < time ? time : geLterminate (call),
call);

set _running_calls (get .I ...call (call));

return (get ..generate ..time (get ..running ..calls ()));

PUBLIC void ms_datajndication
(

)
{

}

M_CALL *call,
FRAME *frame,
int size,
TIME time

dbg (rootJnessage ("MOBILE: Received data");)
frame_free (frame);
return;

PUBLIC TIME m_terminate...call
(

M_CALL *call,
TIME time

162

B.2. A10BILE.C

{

}

dbg (root..message ("MOBILE: Call completing (1), session Y.x (i~x)",

call-session, call);)
set..status (call, get..status (call) I M_CLEAR.STATE);
ms..release..request (call-+session, MS_CLEAR, time);
unlink...call (call);
return (NO..EVENT);

PUBLIC void ms..releaseindication

)
{

}

M_CALL *call,
int reason,
TIME time

dbg (rooLmessage ("MOBILE: Call completing (2), session Y.x",
call-+session);)

unlink...call (call);
ms..release..response (call-+session, MS_CLEAR, time);
m_calUree (call);

PUBLIC void ms..release...confirm
(

)
{

}

M_CALL *call,
int reason,
TIME time

dbg (root...rnessage ("MOBILE: Call completing (3) Y.x", call-+session);)
m_calUree (call);

PRIVATE void unlink...call
(

)
{

if (geLforward (call) ::fi NULL)
link ..backward (get .forward (call), get...backward (call));

if (get ..backward (call) ::fi NULL)
link.forward (get .backward (call), get..forward (call));

else
seLcallsJist (get _forward (call));

I* Unlink the call from the running calls list, if required *I
if (getLcall (call) ::j; NULL)
{

if (get..running_calls () == call)
{

if (getLcall (call) == call)
{

163

}

B.2. MOBILE. C

}
else
{

}
}

}
else
{

}

set.IUnning..calls (NULL);
if (deactivate ((EV _FUN C) sendJnobile..cell, &m..calls...data))
{

}

rootJnessage ("MOBILE: Failed to deactivate only call");
terminate..sim ();

set ..running ..calls (IinkJ"..call (get...h ...call (call),
get J" ...call (call)));

link...h....call (getJ"....call (call), getJLCall (call));

link...h....call (getJ"....call (call), get..b_call(call));
IinkLcall (get...h....call (call), getJ"....call(call));

IinkJ"orward (call, NULL);
Iink...hackward (call, NULL);
IinkJ"_call (call, NULL);
Iink...h....call (call, NULL);

PRIVATE void mobile....callinsert
(

)
{

M_CALL *call,
TIME time

M_CALL *w....call;

init..generate (call, time);
if ((w..call = get..running....calls ()) == NULL)
{

}
else
{

set..running....calls (call);
link J"..call (Iink..b ..call (call, call), call);
activate ((EV -.FUNC) sendJnobile....cell, time, &m..calls...data);

if (get..generate..time (w....call) >time)
{

}

deactivate ((EV _FUNC) sendJnobile_cell, &m....calls_data);
link...h ...call (call, get ...b ...call (w ...call));
linkJ"..call (call, w....call);
linkJ"..call (get..b..call (call), Iink...h....call (w....call, call));
set ..running ..calls (call);
activate ((EV _FUNC) sendJnobile....cell, time, &m_calls...data);
dbg (rootJnessage ("rescheduled mobile generator");)

164

B.2. NIOBILE. C

}

else
{

}
}

while (getgenerate ..time (get...b...call (w ..call)) > time)
w ..call = get.J)_(:all (w _call);

link...b...call (call, get...b...call (w...call));
link_f_call (call, w_call);
link_f...call (get...b_call (call), link...b...call (w...call, call));

dbg(rooLmessage("MDQ: %.7f, %.7f, %.7£ (%.7£)",
get....generate_time (geLb_call (call)),
get....generate_time (call),
get....generate_time (geLf...call (call)),
getgenerate _time (get ..running...calls ()));)

I**************** HANDOFF MECHANISMS *******************I
PUBLIC void gen.nexLhandoff
(

)
{

M_CALL *call,
TIME time

TIME when;
RADIO-CHANNEL *where;
inti;

}

when = time+ distribution (&m_calls...data, handoff);
i = gen.new_footprint ();
where = m_calls...data.session..table[i].handoff--rad...chan;
if (when + where-;.io...chan.look...ahead > call-time_term)

return; I* Dont inform of handoff when call will have terminated *I
activate ((EV ..FUN C) inform.handoff, when, call);
call-handoff...on = where;
call-+handoff...at =when + where-+io...chan.look..ahead;
dbg (root...message (

return;

"MOBILE: Warn handoff time is %.7£, to %x, real %.7t, (%x)",
when, where, call-+handoff..at, call);)

PUBLIC TIME do.handoff_from
(

)
{

l\LCALL *call,
TIME time

if (get..terminate (call) < getgenerate ..time (call))
{

deactivate ((EV _FUN C) m_terminate...call, call);

}
dbg (root...message ("MOBILE: Call handed oft ~ %. 7t", time);)
unlink...call (call);

165

B.2. MOBILE. C

}

I* ####Send call state information ####*I

I* Create a new session connexion *I
ms_handoff..request (call---.session, HANDOFF ..LEAVING, time, call,

call---. handoffs...done);
I* The following free message should be after the handoff message
* protocol has been observed (?)
*I

m_ca!Lfree (call);
return (NO..EVENT);

PUBLIC TIME do_handoff..to
(

)
{

}

M_CALL *call,
TIME time

call---.session = ms_handoff.Iequest (call---.session, HANDOFF _ARRIVING, time,
call, call---.handoffs_done);

while (get...generate_time (call) < time)
set...next..generate (call, CELLJNFO I m_calls...data.sample.Iate);

dbg (rootJUessage ("MOBILE: Call handed oii to here <a %. 7i", time);)
dbg (rootJUessage ("MOBILE: inserting handoii call in run list <a %.7£",

get..generate..time (call));)
mo bile_ca!Unsert (call, get ..generate ..time (call));
gen..next_handoff (call, time);
return (NO..EVENT);

PUBLIC TIME informJ-Jandoff
(

)
{

M_CALL *call,
TIME time

char hand.nffimm = HANDOFF JMM_TYPE;

dbg (rootJUessage ("Sending warning of handoii at time %. 7i %x (%x) ", time,
call---.session, call);)

out...trans (&call---.handoff.nn ---.io...chan.io_queue, &hand.nffimm,
sizeof (hand.nffimm));

ouLtrans (&call---.handoff.nn->io...chan.io..queue, &time, sizeof (TIME));
ou Ltrans (&call---. handoff.nn-> io...chan .io..queue, &call-> handoff...at,

sizeof (call-> handoff...at));
ou Ltrans (&call---. handoff.nn ->io...chan.io..queue, &call---.master,

sizeof (call-> master));
out...trans (&call->handoff.Dn->io...chan.io..queue, &call---.time_term,

sizeof (call-> time..term));
ou Ltrans (&call-> handoff.nn->io...chan.io..queue, &call->session,

sizeof (call ->session));
out...trans (&call->handoff.nn---.io...chan.io..queue, &call->time..next,

sizeof (call---.time..next));

166

B.2. MOBILE.C

}

ouLtrans (&call-+handofLon-+io..chan.io_queue, &call->handoffs..done,
sizeof (call->handoffs..done));

trans _flush (&call-+handoff...on->io_chan.io...queue);
call-+handoff...on-+io..chan.lasLtime...out = time;
activate ((EV ..FUNC) do.handoff_from, call-+handoff....at, call);
return (NO..EVENT);

I* SchedJwndoff (} returns 1 on failure (there is no memory left)
* this permits deadlock avoidance to be undertaken.

*I

PUBLIC int sched.handoff
(

)
{

RADIO-CHANNEL *rad..chan,
NET _pACKET *packet,
TIME time

M_CALL *call;
TIME handoff....at;

if ((call = m_call....alloc ()) == NULL)
return {1);

add_callsJist (call);
in_trans (packet, &handoff....at, sizeof {handoff....at));
in_trans (packet, &call-+master, sizeof(call-+master));
in_trans (packet, &call-+time_term, sizeof (call-+time_term));
in_trans (packet, &call-+session, sizeof (call-+session));
in_trans (packet, &call-+time..next, sizeof (call-+time..next));
in_trans (packet, &call-+ handoffs..done, sizeof (call-+ handoffs..done));
call-+ handoffs..done++;
dbg (root_message (

"Scheduling handoff at time %.7f;\n session is %x;\n master? %c\n term
%.7f\n\

}

next %. 7f",
handoff....at, call-+session, call-+master ? 'Y' : 'N',
call-+time..term, call-+time..next);)

activate ((EV ..FUNC) do.handoff..to, handoff....at, call);
return (0);

I************* SESSION LAYER FUNCTIONS *****************I

PRIVATE void show.status
(

)
{

M..SESSION *Session,
TIME time

unsigned long status;
char stat.str[lOO];

167

}

B.2. MOBILE.C

status = get..status (session);
root ...message ("MOBILE: Status of session 'l.x at 'l.. 7f: ",

session-+ my ..session id, time);
sprintf (stat..str," STATUS = 'l.x: ",status);
if (status & S..HANDOFF _T .STATE)

strcat (stat..str, "SJIANDOFF..T ");
if (status & S..HANDOFF ..F .STATE)

strcat {stat..str, "SJIANDOFF..F ");
if (status & S..HANDOFF -.E.STATE)

strcat (stat..str, "SJIANDOFF..E ");
if (status & S_CLEAR.STATE)

strcat {stat..str, "S_CLEAR ");
if (status & SJWNNING.STATE)

strcat (stat..str, "S..RUNNING ");
if (status & S.SETUP .STATE)

strcat (stat..str, "S..SETUP ");
if (status & S..DELETE.STATE)

strcat (stat..str, "S..DELETE ");
root ..message (stat ..str);
root ...message (" Session (Q 'l.x", session);
root ...message (" Call (Q 'l.x", session-+call);
root ...message (" Remote session is 'l.x", session-+your ..sessionid);
root ...message (" Local Handoff s: 'l.d. Remote Handoffs 'l.d. ",

session-+ handotfJlo...txed, session-+ handotfJlo ..rxed);
root...message (" 'l.s", session-+active? "Active" : "Passive");

I* ms_connecLrequest ()

* * This proceedure is called by the calling-mobile wishes to create a
* connexion to another mobile. It creates a local session structure and
* then sends a MS_CONNECT.REQ frame to the mobile session layer at the
* remote end.

*I

PUBLIC void ms_connect..request
(

)
{

unsigned long address,
M_CALL *call,
TIME term,
TIME time

M.SESSION *session;
int your ..footprint;
union
{

FRAME *frame;
struct m..setup...msg
{

int mtype;
unsigned long my ..sessionid;
int your..footprint;

168

B.2. MOBILE.C

unsigned long address;
TIJII'!E term;

} *data;
. } fblock;

new ..session (&session, SES_G ENERATE, sourcejd);
if (session == NULL) I* No local session available *I
{

}

root..message ("MOBILE: Insufficient local sessions");
ms..connect..confirm (call, MS..FAILED, OL, time);
return;

set...status (session, S.SETUP ..STATE);
your _footprint = locate ..mobile (address); I* First guess *I
dbg (root..message ("MOBILE: Call to %d", your_footprint);)
session---+call = call;
session---+active = TRUE; I* I am handling this end of the call *I
new_frame (&fblock.frame);
fblock.data---+mtype = M.SETUP .REQ;
fblock.data---+my ...sessionjd = session---+my ...sessionjd;
fblock.data---+your_footprint = your _footprint;
fblock.data-+address = address;
fblock.data-+term = term;
I* now transmit the cell to the destination and wait for a reply *I
(*mac_f..tx) (fblock.frame, sizeof (struct m...setup..msg) I sizeof (int),

MOBILE..SETUP ..FRAME, m_calls..data.setup..mesJen,
your_footprint, time);

}

I* ms_connecLresponse ()

* * This proceedure is called by the called-mobile in response to receiving
* a MS_CQNNECT.REQ frame, and gives the result of this message. If the
* call is accepted then a MS..FOOTPRINT.ADD message is sent to this session,
* via the network, to establish the footprint with the correct session
* numbers. If the call is rejected then the MS_CQNNECT.RESP message is
* returned with the failure reason, and the footprint is not established.

*I

PUBLIC void ms_connect..response
(

)
{

unsigned long session.no,
M_CALL *call,
int state,
TIME time

M.SESSION *session;
UniOn

{
FRAME *frame;
struct m...setup..resp
{

169

B.2. MOBILE. C

int mtype;
unsigned long my ..sessionid;
unsigned long your..sessionid;
int state;

} *data;
} fblock;
union
{

FRAME *frame;
struct m_footprint.rnsg
{

int state;
unsigned long my ..sessionid;
unsigned long your ..sessionid;

} *data;
} fftprnt;

if ((session= which..session (session.llo)) ==NULL)
{

}

root.rnessage ("Error during connect response - no session");
terminate..sim ();

if (get..status (session) :p S..SETUP ..STATE)
{

root.rnessage (
"MOBILE: Session (%x) not in setup state when sending

response",

}

session-+my..sessionid);
show ..status (session, time);
terminate..sim ();

if (state :p MS..FAILED)
{

}

dbg (root.rnessage ("MOBILE: Footprint creation (%x-%x)",
session-+my..sessionid, session-+your..sessionid);)

new_frame (&fftprnt.frame);
fftprnt.data-+state = M_CREATE..FOOTPRINT;
fftprnt.data-+my ..sessionid = session-+my ..sessionid;
fftprnt.data-+your ..sessionid = session-+your ..sessionid;
(*mac_f_tx) (fftprnt.frame, sizeof (struct mJootprint.rnsg) I

sizeof (int), MOBILE..FOOTPRINT, m..calls...data.footprintJen,
get_footprint (session-+my..sessionid), time);

session-+call = call;

new_frame (&fblock.frame);
fblock.data-+mtype = M..SETUP ..ACK;
fblock.data-+my ..sessionid = session-+my ..sessionid;
fblock.data-+your..sessionid = session-+your ..sessionid;
fblock.data-+state = state;
(*macJ..tx) (iblock.frame, sizeof (struct m..setup....resp) I sizeof (int),

MOBILE..SETUP ..ACK, m..calls...data.setup..ackJen,
get_footprint (session-+your ..sessionid), time);

if (state == MS..FAILED)

170

B.2. MOBILE. C

}

unlink..session (session);
else

set..status (session, S..RUNNING..STATE);

PRIVATE void send..aJTI..cell
(

)
{

int footprint,
FRAME *frame,
int size,
NET _CHANNEL *neLchan,
TIME time

CELL *cell;

if ((cell = cell..alloc ()) == NULL)
{

}

rootJTiessage ("MOBILE: Unable to generate cell");
terminate..sim ();

cell-+birth = time;
cell-+now = time;
(*make.header) (&cell-+headerl, &cell-+header2, BROADCAST _CELL, footprint);
cell-+body = frame;
cell-+body .size = size;
if (debug & Ox800)
{

}
else
{

}

add_trace (cell, time, -2);
cell-+trace..size = 1;

cell-+trace..size = 0;
cell-+trace..packet = NULL;

(*neLchan-+o...enq_func) (net..chan, cell, time);
}

I* ms_data_request (}

* * Called by either mobile to send a data sample, the call must be in the
* running state, or an error is generated.

*I

PUBLIC void ms_data..request
(

unsigned long sessionJlo,
FRAME *frame,
int size,
TIME time

171

B.2. MOBILE. C

{
M...SESSION *session;
struct ms...data..req
{

unsigned long your..sessionid;
} *data;

if ((session = which..session (session.no)) == NULL)
{

}

root ...message ("Error during data transmission - no session (%x) ",
session .no);

terminate..sim ();

if ((get..status (session) & S..RUNNING...STATE) :j; S..RUNNING...STATE)
{

}

root...rnessage (
"MOBILE: Attempt to send cell on non-running session (%x)",
session->my ..sessionid);

show..status (session, time);
terminate..sim ();

data= (struct ms_data..req *) (((int *)frame)+ size);
data-> your ..sessionid = session ->your ..session id;
dbg (root...rnessage ("Data on %x - %x", session->my..sessionid,

session--+ your ..session id);)
send..a...rn..cell (get.footprint (session->your..sessionid), frame,

size + sizeof (struct ms...d.ata..req), m..calls...data.channel, time);
}

I* ms_release_request ()

* * Sent by the calling-mobile to terminate a call. To simply the protocol
* only the calling mobile may actually send this message (the called mobile
* can send a request for this message to be issued, if required) this
* prevents possible problems with termination messages crossing and creating
* odd states within the session protocol.
* A MS..RELEASE.REQ message is sent to the called mobile requesting that it
* terminate the call. It is an error for the session not to be in the
* S..RUNNING..STATE state, although a handoff may be outstanding.

*I

PUBLIC void ms..release..request
(

)
{

unsigned long session.no,
int reason,
TIME time

M...SESSION *session;
union
{

FRAME *frame;
struct m_clear ..req

172

B.2. MOBILE. C

{
int mtype;
unsigned long your..sessionjd;
int reason;

} *data;
} fblock;

if ((session= which..session (session_no)) ==NULL)
{

}

root.Jnessage ("Error during disconnect request - no session");
terminate..sim ();

dbg (root.Jnessage ("MOBILE: Releasing session %x - %x",
session->my..sessionjd, session->your..sessionjd);)

if ((get..status (session) & SJWNNING.STATE) # S..RUNNING..STATE)
{

root.Jnessage (
"MOBILE: Release request when session (%x) not in running

state",

}

}

session->my ..sessionjd);
show ..status (session, time);
terminate..sim ();

set..status (session, (get..status (session) & "'S..RUNNING.STATE) I
S_CLEAR..STATE);

new.frame (&fblock.frame);
fblock.data mtype = M_CLEAR..REQ;
fblock.data->your..sessionjd = session->your ..sessionjd;
fblock.data->reason = reason;
(*mac.f..tx) (fblock.frame, sizeof (struct m_clear.req) I sizeof (int),

MOBILE_TERM..REQ, m..calls..data.clear.JTiesJen,
get.footprint (session->your..sessionjd), time);

I* ms_release_response ()

*
*Sent by the called mobile in response to receiving a MS_TERMINATE.REQ
* message. The session must normally be in the S_CLEAR..STATE state.
*If the session is still in the S_RUNNING..STATE state then it must also
* have the SJ!ANDOFF_T STATE set, and the termination request was received
* on the old session: in this case the old session should be in the
* S_CLEAR..STATE, and have the SJ!ANDOFF..FSTATE set; since no acknowlegement
* will ever be received on the new session, both session modules need to be
* cleared (footprinted sessions for the new session do not exist).
* If the session is in the S_CLEARSTATE then an old session may still exist
* due to the FOOTPRINT.DEL message still being in transit through the
*network: in this case the session will have the SJ!ANDOFF_T..STATE cleared,
* but the SJ!ANDOFF ..F STATE will still be set for the old session.

*I

PUBLIC void ms..release..response
(

unsigned long session_no,

173

B.2. MOBILE.C

)
{

int status,
TIME time

i\LSESSION *session;
M..SESSION *old..ses;
Union
{

FRAME *frame;
struct ms...clear..resp
{

int mtype;
unsigned long your..sessionjd;
int status;

} *data;
} fblock;

Y.x"'

if ((session = which..session (session...no)) == NULL)
{

}

root.Inessage ("Error during release response - no session");
terminate..sim ();

dbg (root.Inessage ("MOBILE: Release response %x", session...no);)
dbg (show..status (session, time);)
if ((get..status (session) & S_CLEAR..STATE) "# S_CLEAR..STATE)
{

}

I* release request must have come on old session *I
if (((old..ses = session--+old..session) == NULL) II

{

}

((get..status (old..ses) & (S_CLEAR..STATE I SJIANDOFF ..F ..STATE))
"# (S_CLEAR..STATE I SJIANDOFF ..F ..STATE)))

root.Inessage (
"MOBILE: Not in clear state when sending terminate ack on session

session--+ my ..session jd);
show ..status (old..ses, time);
terminate..sim ();

I* OK, so delete old session *I
old..ses--+new ..session = NULL;
session--+old..session = NULL;
dbg (root.Inessage ("MOBILE: Deleting old session (%x) ",

old..ses--+my ..sessionjd);)
if (get..status (old..ses) "# S..DELETE..STATE)
{

}

set..status (old..ses, S.J)ELETE..STATE);
activate ((EV ..FUN C) release..session, time+

m...calls..data.del..session _wait, old..ses);

if (session--+new..session "# NULL)
{

root.Inessage (

174

B.2. MOBILE.C

}

"MOBILE: session O~x) has a new session ('lox) during clear",
session-->my ...sessionid, session-->new ...session-->my ...sessionid);

terminate...sim ();

new .frame (&fblock.frame);
fblock.data-->mtype = M_CLEAR-ACK;
fblock.data-->your...sessionid = session-->your ...sessionid;
fblock.data-->status = status;
(*mac_f...tx) (fblock.frame, sizeof (struct ms...clear..resp) I sizeof (int),

MOBILE_TERM-ACK, m_calls...data.clear ...ackJen,
get _footprint (session -->your ...sessionid), time);

if (session-->old...session -:/: NULL)
{

}

dbg (root .message ("MOBILE: warning - old session ('lox) still exists",
session-->old...session-->my ...sessionid) ;)

if ((get...status (session-->old...session) -:/: S_J)ELETE..STATE) &&
(get...status (session-->old...session) & S..HANDOFF ..F ..STATE) -:/:

{

}

S..HANDOFF ..F ..STATE)

root .message ("MOBILE: Old session ('lox) not cleared properly",
session -->old ...session----> my ...sessionid);

show ..status (session -->old ...session, time);
terminate...sim ();

session-->old...session-->new ..session = NULL;
session-->old...session = NULL;

if (get...status (session) -:/: S..DELETE..STATE)
{

}

set...status (session, S..DELETE..STATE);
activate ((EV ..FUNC) release...session, time+

m...calls...data.del...session _wait, session);

}

I* mobileJwndoff_req (}

* * This proceedure is called by the MAC layer when a MSJ!ANDOFF.REQ message
* is received. The session should not be in the SSETUP STATE. If the
* session is not active then the signal is ignored. If the session is in
* the S_CLEARSTATE then the signal is ignored and the reply message is not
* sent, otherwise the response message is sent. If there is a new session
* then the reply is sent using the new session id.

*I
PUBLIC void mobile_handoff..req
(

)
{

FRAME *frame,
int size,
TIME time

M..SESSION *session;

175

B.2. lviOBILE. C

union
{

FRA.l'viE *frame;
struct msllandoff
{

int mtype;
unsigned long my ..old...sessionid;
unsigned long my JleW ..sessionid;
unsigned long your..sessionid;
int my llo..cnt;

} *data;
} fblock, fresp;

}

fblock.frame = frame;
if (!in_footprint (get_footprint (fblock.data--+your..sessionid)))
{

frame_free (frame);
return; I* Not really in this footprint *I

}
if ((session = which..session (fblock.data--+your..sessionid)) == NULL)
{

I* Under VERY rare circumstances (handoffs occuring at both ends) it
* is just possible for a HANDOFF.REQ message to arrive on a new
* session before the HANDOFF.RESP message has returned- since the
* two messages come from different places. This only affects the
* periphery of the footprint where the new sessions have yet to be
* created, but the HANDOFF.REQ message contains enough information
* to build a new session- and we must check for the HANDOFF.RESP
* message arriving later. The temporary session is never active
* so no message will be sent to the other side.

*I

root.message (

"**");
root.message ("* MOBILE: Session (X6x) doesn't exist during handoff

fblock. data-+ your ..session id);
root.message (

"* Creating temporary session *");
root.message (

"**");
new ...session (&session, SES-FORCE, fblock.data--+your...sessionid);
if (session == NULL)
{

}

root.message ("MOBILE: Unable to create..session");
terminate...sim ();

set...status (session, SJWNNING..STATE I SJIANDOFF £..STATE);
session--+handoffJlo..txed = 0; I* Don't know this *I
session--+handoffJlo...rxed = fblock.data--+my _ho_cnt;

dbg (root.message ("MOBILE: received handoff request <II X. 7f", time);)
if (get...status (session) == SJ)ELETE..STATE)

*" '

176

}

B.2. MOBILE.C

root_message ("MOBILE: Rxed handoff on session (%x) in delete state",
session---+mysessionjd);

if (session--+ handoff.no....rxed > fblock.data---+my JJ.O_cnt)
{

}

dbg (root_message (
"MOBILE: Bogus count number in req -ignored request");
show....status (session, time);)

frame_free {frame);
return;

session---+yoursessionjd = fblock.data---+my .newsessionjd;
session---+handoff.no....rxed = fblock.data-+myJJ.O_cnt;
if (session---+new....session) I* Have I done a handoff? *I
{

}

dbg (root_message (
"MOBILE: Outstanding handoff during remote handoff");)

session = session-+new ..session;
session---+ your ..session jd = fblock .data---+ my .new ..session jd;
session---+ handoff.no....rxed = fblock .data---+ my .ho_cnt;

if ((get....status (session) & S_CLEAR..STATE) == S_CLEAR..STATE)
{

}

dbg (root_message (
"MOBILE: Session is clearing when handoff received");)

frame_free (frame);
return; I* Don't send reply, we are terminating *I

if (session---+active)
{

}
else

I* Correct the entry for my session id, in case I have moved *I
fblock.data---+your....sessionjd = session-+mysessionjd;
fblock .data--+ my .ho...cnt = session---+handoff_no_txed;
(*mac_f...tx) (fblock.frame, sizeof (struct ms.handoff) I sizeof (int),

MOBILE.JIANDOFF ..RESP, m...calls..data.handoffJen,
get_footprint (session---+your....sessionjd), time);

frame_free (frame);
dbg (root_message ("MOBILE: My session: %x, His old %x His new %x",

session---+my....sessionjd, fblock.data-+my.Dld....sessionjd,
fblock.data---+my .newsessionjd) ;)

I* mobile.ltandoff_resp ()

* * This procedure is called by the MAC layer when a MS.JIANDOFF.CONF message
* is received. If the session exists {ie this node initiated the
* handoff) then it must be in either the S-RUNNING..STATE state or the
* S_CLEAR..STATE state; in both cases the SJ!ANDOFF_T..STATE flag must be set:
* the handoff state is cleared and a FOOTPRINT.DEL message is sent to the
* old footprint to delete it. If the session does not exist then a new one
* is created with that number and set to the 5-RUNNING..STATE state.

*I

177

B.2. 1\IIOBILE.C

PUBLIC void mobilel:!andoff...resp
(

)
{

FRAME *frame,
int size,
TIME time

M.SESSION *session;
UniOn
{

FRAME *frame;
struct msl:!andoff
{

int mtype;
unsigned long my.Dld..sessionJd;
unsigned long my Jiew ..sessionJd;
unsigned long your..sessionJd;
int my l:!o_cnt;

} *data;
} fblock;
union
{

FRAME *frame;
struct m_footprint.msg
{

int state;
unsigned long my..sessionJd;
unsigned long your..sessionJd;

} *data;
} fftprnt;

fblock.frame = frame;
if (!in_footprint (get _footprint (fblock.data--+myJiew ..sessionJd)))
{

frame_free (frame);
return; I* Not really in this footprint *I

}
if ((session= which..session (fblock.data--+myJiew..sessionJd)) ==NULL)
{

dbg (root.message (
"MOBILE: New session Y.x (old Y.x) in response to handoff <D Y..7f",

fblock .data-+ my Jiew ..session Jd,
fblock.data--+my .Dld..sessionJd, time);)

new ..session (&session, SES..FORCE, fblock.data--+myJiew ..sessionJd);
if (session == NULL)
{

}

root.message ("Unable to create session");
terminate..sim ();

set..status (session, S..RUNNING.STATE);
session--+ your ..session Jd = fblock .data-+ your ..session jd;
session--+handotfJio...rxed = fblock.data--+myl:!o..cnt;

178

B.2. MOBILE.C 179

session--+handoff.no..txed = 0; I* Don't know this yet *I
}
else I* We are running this session, so make sure it is right *I
{

}

dbg(root.n1essage("MOBILE: received handoff response <ll%.7f %x %x (%d)",
time, session--+my ..sessionjd, fblock.data--+your..sessionjd,
fblock .data-+ my J10....cnt);)

if (session--+my ..sessionjd f: fblock.data--+my.new ..sessionjd)
{

}

root.n1essage ("MOBILE: error! sessions do not match");
terminate..sim ();

if (session--+handoff.no....rxed > fblock.data--+myJw....cnt)
{

if ((get..status (session) & S..HANDOFF _E...STATE) f: S..HANDOFF £..STATE)
{

}
else
{

}

if ((get...status (session) & S..HANDOFF _T ..STATE) ==
S..HANDOFF _T...STATE)

{

}

dbg (root.n1essage ("MOBILE: Using that 'goto'!!! !");)

goto MAJOR_KLUDGE..FIX; I******* YUK! ********I

dbg (root.n1essage (
"MOBILE: Bogus count number in ack -ignored request");
show..status (session, time);)

I* We have recovered from the special case that occured in
* mobileJwndoff_req (). NOTE: We must NOT update
* "your _session_id" because the message contains an out-of­
* date copy.

*I
root.n1essage (

"***");
root.n1essage ("* MOBILE: Session (%6x) has been recovered *",

session--+my ..sessionjd);
root.n1essage (

"***");
set...status (session, S.RUNNING...STATE);

else
{

if (((get..status (session) & S...SETUP ..STATE) f: 0) II
((get..status (session) & S..HANDOFF_T ..STATE) f:

{
S..HANDOFF _T ..STATE))

if (session--+handoff.no....rxed < fblock.data--+myJlo_cnt)
{

dbg (root.n1essage (
"MOBILE: Multiple handoff acks -updating 'your...session...id'");

show ..status (session, time);)

B.2. MOBILE. C

}

session--+handoffJlo.rxed = fblock.data--+my Jw...cnt;
session--+your _sessionjd = fblock.data--+your_sessionjd;
frameJree (frame);
return;

dbg (root_message (

180

"MOBILE: Multiple handoff acks - ignoring old/same aged");
show_status (session, time);)

frameJree (frame);
return;

}
session_.handoffJlo.rxed = fblock.data_.my.110_cnt;
if (session_.your_sessionjd :f. fblock.data_.your_sessionjd)
{

dbg (show_status (session, time);
root_message (

"MOBILE: (%x) remote session ids do not match- replacing %x (%d) with %x
(%d)",

}

session__. my _sessionjd, session__. your _session jd,
session__. handoffJlo.rxed, fblock. data_. your _session jd,
fblock.data_.my..ho...cnt);)

session _.your _session jd = fblock .data--+ your _session jd;
MAJOR..KLUDGE...FIX:

}
}

if (session--+active) I* Only sent by the active session *I
{

}

set _status (session, get _status (session) & -SJIANDOFF _T ..STATE);
new..frame (&fftprnt.frame);
fftprnt.data-+state = MJ)ELETE...FOOTPRINT;
fftprnt .data--+ my _session jd = fblock .data_. my ..old _session jd;
fftprnt.data_.your _sessionjd = session_.your _sessionjd;
(*mac..f..tx) (fftprnt.frame, sizeof (struct m..footprint_msg) I

sizeof (int), MOBILE...FOOTPRINT,
m_calls..data.footprintJen,
get ..footprint (fblock.data_.my ..old_sessionjd), time);

frameJree (frame);
}

I* ms..handoff_request ()

* * Called by the mobile to initiate a hand off. One of two states may be
* specified: if the reason is that the call is leaving then the session is
*passivated and the SJ!ANDOFF_F STATE state added (the call must be in the
* running state with no outstanding local handoff); otherwise the call implies
* that a mobile is moving to this node and that a new session is required,
* a new session is created in the S-RUNNINGSTATE with the SJIANDOFF_TSTATE
* attribute and a MSJIANDOFF.REQ message sent to the remote mobile. The old
*session is linked to the new one and the SJ!ANDOFFJ'STATE attribute is

* added.

*I

B.2. MOBILE.C

PUBLIC unsigned long ms_handoff...request
(

)
{

unsigned long session.no,
int reason,
TIME time,
l\LCALL *call,
int handoffs..done

M..SESSION *session;
M..SESSION *new..ses;
union
{

FRAME *frame;
struct ms_handoff
{

int mtype;
unsigned long my ..old..sessionjd;
unsigned long my .new ..sessionjd;
unsigned long your..sessionjd;
int my _ho..cnt;

} *data;
} fblock;

if ((session = which..session (session .no)) == NULL)
{

}

root...message ("Error during handoff request - no session");
terminate..sim ();

switch (reason)
{
case HANDOFF _LEAVING:

if (get..status (session) ::/; S..RUNNING..STATE)
{

}

root ...message ("MOBILE: bad status during handoff request (%x) ",
session);

show ..stat us (session, time);
terminate..sim ();

I* session->active = FALSE; *I
session-+call = NULL;
set..status (session, get..status (session) I S..HANDOFF ..F ..STATE);
return (session-+my ..sessionjd);

case HANDOFF -ARRIVING:
if (get..status (session) ::/; S..RUNNING..STATE)
{

root...message (

181

"MOBILE: session is not running with handoff request (%x)",
session-+my ..sessionjd);

show ..stat us (session, time);
terminate..sim ();

}

}

B.2. MOBILE.C

}

new..session (&new..ses, SES_GENERATE, sourceid);
if (new..ses :j; NULL)
{

set ..status (new ..ses, S..RUNNING .STATE I S..HANDOFF _T .STATE);
set..status (session, get..status (session) I S..HANDOFF ..F .STATE);
new..frame (&fblock.frame);
fblock.data-+mtype = M..HANDOFF ..REQ;
fblock .data-+ my ..nld..session id = session--+ my ..session id;
fblock.data-+myJiew ..sessionid = new ..ses-+my ..sessionid;
fblock.data-+your..sessionid = session-+your ..sessionid;
fblock.data-+my.ho...cnt = new ..ses-+handoffJio....txed = han doffs ..done;
new ..ses-+ your ..session id = session--+ your ..session id;
new ..ses-+old..session = session;
session-+new ..session = new ..ses;
session-+call = new ..ses-+call = call;
new ..ses-+active = session-+active = TRUE;
dbg (root..message ("MOBILE: Sending handoff crnd %x, %x, %x !D %. 7f",

new ..ses-+my ..sessionid, session-+my ..sessionid,
new ..ses-+your ..sessionid, time);)

(*mac..f....tx) (fblock .frame, sizeof (struct ms.handoff) I sizeof(int),
MOBILE..HANDOFF ..REQ, m...calls..data.handoffJen,
get .footprint (new ..ses-+ your ..session id), time);

I* The old session is not deleted until the reply is received,
* since data may still be arriving on the old session identifier.

* * However, new data is sent using the new session id.

*I
return (new ..ses-+my ..sessionid);

else
{

}

root..message ("MOBILE: No free sessions during handoff");
terminate..sim ();

default:

}

root..message ("MOBILE: Bad handoff type request");
terminate..sim ();

I* mobile_setup_req ()

* * Called by the MAC layer on receipt of a MSJJANDOFF.REQ message. If the
* mobile is connected to this source (mobile_in_footprint) then the
* routine tries to allocate a session, otherwise it does nothing; if
* sucessful passes the remainder of the message upstairs (ie to the mobile
* part) otherwise a reject message is sent. The call is put into the
* SSETUPSTATE.

*I

PUBLIC void mobile..setup..req
(

182

B.2. MOBILE. C

)
{

FRAME *frame,
int size,
TIME time

M...SESSION *session;
union
{

FRAME *frame;
struct m..setup...msg
{

int mtype;
unsigned long my ..session id;
int your _footprint;
unsigned long address;
TIME term;

} *data;
} fblock;
Union
{

FRAME *frame;
struct m..setup...resp
{

int mtype;
unsigned long my ..sessionid;
unsigned long your..sessionid;
int state;

} *data;
} freply;

fblock.frame = frame;
if (!in_footprint (fblock.data-+youdootprint))
{

frame_free (frame); I* Not really in this footprint *I
return;

}
dbg (root..message ("Received connect request (???Y.04x-Y.x) ",

fblock .data-+ your _footprint, fblock. data-+ my ..session id) ;)
if (mobilein_footprint (fblock.data-+your _footprint, fblock.data-+address))
{

new..session (&session, SES_GENERATE, fblock.data-+your_footprint);
if (session== NULL) I* No sessions left *I
{

I* We must only send one reject frame => pick the controller *I
new _frame (&freply.frame);
freply.data-+mtype = M...SETUP ..ACK;
freply.data-+my..sessionid = 0;
freply.data-+your..sessionid = fblock.data-+my ..sessionid;
freply.data-+state = MS..FAILED;
(*mac_f_tx) (freply.frame,

sizeof (struct m..setup ...resp) I sizeof (int),
MOBILE ...SETUP ..ACK, m..calls...data.setup...ackJen,
get_footprint (fblock.data-+my..sessionid), time);

183

B.2. MOBILE.C

}

}
else
{

}

}
else
{

}

set ..status (session, S.SETUP ..STATE);
session-+active = TRUE;
session-+your ..session id = tblock.data-+my ..sessionid;
ms_connect indication (session-+my ..sessionid, tblock.data-+term,

time);

dbg (root..message ("MOBILE: Setup req ignored in footprint");)

frameJree (tblock.frame);

I* mobile.setup_ack ()

* * Called by the MAC layer upon receipt of a MS_CONNECT.CONF message.
* If the session exists then it must be in the S....SETUP ..STATE state.
* If the message is a rejection then the structure is cleared and the
* mobile informed. Otherwise a new session is created with the supplied
* session numbers. All the sessions are put into the S..RUNNING....STATE.

*I

PUBLIC void mobile..setup...ack
(

)
{

FRAME *frame,
int size,
TIME time

M..SESSION *session;
UlllOll

{
FRAME *frame;
struct m..setup..resp
{

int mtype;
unsigned long my..sessionid;
unsigned long your..sessionid;
int state;

} *data;
} fblock;

fblock.frame = frame;
if (!inJootprint (get_footprint(tblock.data-+your..sessionid)))
{

}

frameJree (frame); I* Not really in this footprint *I
return;

184

}

B.2. MOBILE. C

dbg (root..rnessage ("MOBILE: Received setup acknowledge ('l.x-'l.x)",
fblock.data-+your ..sessionjd, fblock.data-+my ..session jd) ;)

if ((session= which..session (fblock.data->your..sessionjd)) ==NULL)
{

}

I* In footprint, but not controlling the call *I
if (fblock.data-+state == MS..ACCEPT)
{

}

new..session (&session, SES..FORCE, fblock.data->your..sessionjd);
set..status (session, S..RUNNING..STATE);
session->active = FALSE;
session-+my ..sessionjd = fblock.data->your..sessionjd;
session->your ..session jd = fblock.data->my ..session jd;
session-+call = NULL;

else
{

}

if (get ..status (session) :j; S..SETUP ..STATE)
{

}

root..rnessage ("MOBILE: session ('lox) not in setup on rx of ACK",

session->my ..sessionjd);
show..status (session, time);
terminate..sim ();

if (session->active :j; TRUE)
{

}

root..message (
"Error - previous session ('l.x-'l.x) not properly cleared",
session-+my ..sessionjd, session->your ..sessionjd);

terminate..sim ();

session->your ..sessionjd = fblock.data->my..sessionjd;
ms..connect...confirm (session->call, fblock.data->state,

session->my ..sessionjd, time);
if (fblock.data-+state == MS..FAILED)

unlink ..session (session);
else

set..status (session, S..RUNNING..STATE);

frame_free (fblock.frame);

I* mobile_term_req ()

* * Called by the MAC layer upon receipt of a MS-RELEASE.REQ message. The
* call must be in the S..RUNNINGSTATE state, but there may be an outstanding
* handoff All the difficult cases are now handled by the acknowledgement

* message.

*I

PUBLIC void mobile_term..req
(

FRAME *frame,

185

B.2. MOBILE. C

)
{

int size,
TIME time

M..SESSION *session;
UniOn

{
FRAME *frame;
struct m_term..req
{

int mtype;
unsigned long your..sessionJd;
int reason;

} *data;
} fblock;

fblock.frame = frame;
if (!inJootprint (getJootprint(fblock.data->your..sessionJd)))
{

frameJree (frame); I* Not really in this footprint *I
return;

}
if ((session= which..session (fblock.data->your..sessionJd)) == NULL)
{

}

root ..message ("Error during terminate indication - no session (Xx) ",
fblock .data-> your ..session Jd);

terminate..sim ();

dbg (root..rnessage ("MOBILE: mobile term req Xx", session-+my..sessionJd);)
dbg (show..status (session, time);)
if ((get..status (session) & S..RUNNING..STATE) :j: S..RUNNING...STATE)
{

}

root..rnessage ("MOBILE: session (%x) not running during terminate req",
session->my ..sessionJd);

show ..status (session, time);
terminate..sim ();

if (session-+call) I* If we really are controlling the call *I
{

}
else
{

set..status (session, (get..status(session) & -.S..RUNNING..STATE) I
S_CLEAR...STATE);

dbg (show..status (session, time);)
ms..release Jndication (session ->call, fblock. data-. reason, time);
I* Do not unlink the session here - the response message hasn't
* been sent yet so it will do it

*I

if (get ..status (session) :j: S..DELETE..STATE)
{

set..status (session, S..DELETE..STATE);
activate ((EV ..FUN C) release..session, time+

186

B.2. 1\10BILE.C

m....calls..data.deLsession _wait, session);
}

}
frame_free (fblock.frame);

}

I* mobile_ierm_ack ()

* * Called by the MAC layer upon receipt of a MS-RELEASE.CONF message.
* The active node should be in the S_CLEAR..STATE state, otherwise the
* call must be in the S_RUNNING..STATE; there should not be any
* handoff outstanding (although the old footprint may still exist if
* the FOOTPRINT.DEL message is still in transit through the network).
* The session is cleared and if the call was active the confirmation is
* passed up to the mobile.

*I

PUBLIC void mobile_term..ack
(

)
{

FRAME *frame,
int size,
TIME time

M..SESSION *session;
UniOn

{
FRAME *frame;
struct m_term..req
{

int mtype;
unsigned long your.sessionid;
int state;

} *data;
} fblock;

fblock.frame = frame;
if (!in_footprint (get _footprint(fblock.data--+your.sessionid)))
{

frame _free (frame); I* Not really in this footprint *I
return;

}
if ((session = which.session (fblock.data--+your.sessionid)) == NULL)
{

}

root..message ("Error during terminate confirm - no session (Xx)",
tblock.data--+your.sessionid);

terminate.sim ();

dbg (root ..message ("Terminating session (Xx-Xx) ", session--+my .sessionid,
session--+your .session id);)

if (session--+active)
{

if (get .status (session) -::f S_CLEAR..STATE)

187

}

B.2. MOBILE.C 188

{
rootJUessage (

"MOBILE: active session O:x) not in clear state when acked",
session-+my ..sessionjd);

show..status (session, time);
terminate..sim ();

}
ms..release..confum (session-+call, fblock.data-+state, time);

}
else if (get..status (session) # S..RUNNING.STATE)
{

}

rootJUessage ("MOBILE: Footprint o:f session (%x) not running at clear",
session-+my ..sessionjd);

show ..status (session, time);
terminate..sim ();

I* It is just possible that a handoff has recently occurred, but that
* the FOOTPRINT.DEL message has not got through the network yet
* so clean up the connexion to any old sessions

*I
if (session-+old..session)
{

}

session-+old..session-+new ..session = NULL;
session-+old..session = NULL;

mobile...handoffs += session-+handoff...no..txed + session-+handoff...no..rxed;
if (get..status (session) # S..DELETE.STATE)
{

}

set..status (session, S..DELETE.STATE);
activate ((EV _FUNC) release..session, time +

m_calls...data.del..session _wait, session);

frame_free (fblock.frame);

PUBLIC TIME release..session
(

)
{

M.SESSION *session,
TIME time

dbg (rootJUessage ("MOBILE: Releasing session %x ~ %.7:f", session, time);)
if (get ..status (session) # S..DELETE.STATE)
{

}

rootJUessage ("MOBILE: trying to release an active session (%x)",
session-+my ..sessionjd);

show..status (session, time);
terminate..sim ();

if (session-+new ..session # NULL)
{

I* Now release the old session. It will not be used any more *I
session-+new ..session-+old..session = NULL;

B.2. MOBILE. C

}

session-new ..session = NULL;
}
unlink..session (session);
return (NO..EVENT);

I* mobile-footprint (}

* * Called by the MAC layer on receipt of a FOOTPRINT.? message. ? may be
* either ADD or DEL. If it is ADD then a new session is created in the
* run state provided that it does not already exist {if it does then it
* must be in the run state). If it is DEL then the session (which should
* be running) is deleted.

*I

PUBLIC void mobile_footprint
(

)
{

FRAME *frame,
int size,
TIME time

M...SESSION *Session;
union
{

FRAME *frame;
struct m_footprint.msg
{

int state;
unsigned long my ..session id;
unsigned long your...sessionid;

} *data;
} fblock;

fblock.frame = frame;
if (!in_footprint (get_footprint(fblock.data-my...sessionid)))
{

frame_free (frame); I* Not really in this footprint *I
return;

}
dbg (root.message ("MOBILE: Received footprint cmd %d, (%x-%x)",

fblock.data-state, fblock.data-my..sessionid,
fblock.data-your ..session id);)

if ((session= which...session (fblock.data-my..sessionid)) ==NULL)
{

dbg (root.message ("New session");)
if (fblock.data-state == M_CREATE_FOOTPRINT)
{

new..session (&session, SES_FORCE, fblock.data-my..sessionid);
if (session == NULL)
{

root.message ("Unable to build a footprint session");
terminate..sim ();

189

}

B.2. MOBILE.C 190

}

}
set..status (session, S..RUNNING..STATE);
session-+ your ..session id = fblock.data-+ your ..session id;

}
else if (fblock.data-+state == M_DELETE..FOOTPRINT)
{

}

root .message ("Missing session during footprint delete ('lox)",

fblock.data-+my ..sessionid);
terminate ..sim ();

else f* We already have a copy of this session; make sure it is right *f
{

}

dbg (root.message ("Old session");)
if (session-+my ..sessionid -:j: fblock.data-+my ..sessionid)
{

}

root .message ("MOBILE: Error sessions do not l"(latch ('l.x-'l.x), ('l.x-'l.x) ",
session-+my ..sessionid, session-+your..sessionid,
fblock.data-+my ..sessionid, fblock.data-+your..session id);

terminate..sim ();

if (fblock.data-+state == M.DELETE..FOOTPRINT)
{

}

if (((get..status (session) & S..RUNNING..STATE) -:j: S..RUNNING..STATE)
&& (get..status (session) -:j: S.DELETE..STATE))

{

}

root.message (
"MOBILE: delete footprint: session ('lox) not running",
session-+my ..sessionid);

show ..status (session, time);
terminate..sim ();

if (get..status (session) :j:. S.DELETE..STATE)
{

}

set..status (session, S.DELETE..STATE);
activate ((EV ..FUNC) release..session, time+

m_calls...data. del ..session _wait, session);

else if ((get..status (session) & S..RUNNING..STATE) -:j: S..RUNNING..STATE)
{

}

root .message ("MOBILE: add :footprint: Old session O~x) not running",
session-+my ..sessionid);

show ..stat us (session, time);
terminate..sim ();

frameJree (frame);

PUBLIC void mobile..cell...rx
(

CELL *cell,

B.2. MOBILE.C

)
{

TIME time

M.SESSION *Session;
struct ms..data..req
{

unsigned long your...sessionid;
} *data;
int size;

}

size= cell-+body...size- sizeof(struct ms..data..req);
data= (struct ms_data..req *)(((char*) cell-+body) +size);
if (!in..footprint (get ..footprint(data-+your..sessionid)))
{

cell..free (cell); I* Not really in this footprint *I
return;

}
if ((session= which...session (data-+your...sessionid)) == NULL)
{

}

dbg (root..rnessage ("Warning: data indication - no session ('lox)",
data-+your..sessionid);)

cell ..free (cell);
return;

if (session-+call "# NULL)
{

}
else
{

}

d..entry (m...calls..data.d..stats, time - cell-+birth);
ms..dataindication (session-+call, cell-+body, size, time);

I* Keep a copy of the last data frame received *I
if (session-+last..frame)

frame..free (session-+last..frame);
session-+last..frame = cell-+body;
session-+last..frame...size = size;

cell-+body...size = 0;
cell-+body = NULL;
cell ..free (cell);

PRIVATE void new ...session

)
{

M..SESSION **session,
int generate,
unsigned long sesid

inti;
M..SESSION **Ses;

if ((ses = m_calls..data.session..table[get..footprint(sesid)).sessions) ==

191

}

B.2. MOBILE. C

{

}

NULL)

rootJnessage ("Request to create session outside footprint (Y.d) ",
sesjd);

*Session = NULL;
return;

if (generate)
{

}
else
{

}

I* Find an unused session *I
for (i = m...calls_data.max_sessions- 1; i ~ 0 && ses(i] # NULL; i--)

if (i < 0)
{

}

*Session = NULL;
return;

i = get..session..no (sesjd);
if (ses(i] # NULL)
{

}

rootJnessage ("Trying to duplicate existing session");
terminate..sim ();

if ((ses(i] = m..session..alloc ()) == NULL)
{

}

rootJnessage ("Unable to allocate session");
terminate..sim ();

*Session = ses(i];
(*Session)--+call = NULL;
(*Session)--+last.frame = NULL;
(*Session)--+last.frame..size = 0;
set..sessionjd (&(*Session)--+my ..sessionjd, get.footprint(sesjd), i);
(*Session)--+your ..sessionjd = 0;
(*Session)--+new ..session = (*session)--+old..session = NULL;
(*Session)--+active = FALSE;
(*Session)--+handoff..no.J;xed = 0;
(*Session)--+handoff..no...rxed = 0;

PRIVATE void unlink..session
(

)
{

M.SESSION *session

dbg (rootJnessage ("MOBILE: Deleting session Y.x (Y.x) ",
session--+my ..sessionid, session);)

m_calls..data.session ..table(get.footprint(session--+ my ..session jd)].
sessions[get..session..no(session--+my ..sessionid)J = NULL;

192

B.2. MOBILE. C

}

if (session-+new ..session II session-+old..session)
{

}

root .message ("MOBILE: Unlinking partly completed hando:f:f: Xx Xx Xx",
session-+my ..sessionid,
session-+new..session? session-+new..session-+my..sessionid: 0,
session-+old..session ? session-+old..session-+my ..sessionid : 0);

terminate..sim ();

session-+active = FALSE;
if (session-+lasLframe)
{

}

frameJree (session -+lasLframe);
session-+last.irame = NULL;

m..session .free (session);

193

