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Studies of Final State Photon Radiation at LEP

Abstract

We consider two aspects of calculations involving the production of final
state photons at LEP. The first addresses photons produced in association with
hadrons. We motivate a measurement of the quark to photon fragmentation
function and show how it can be used to account for isolated and non-isolated
production rates. The second concerns the rare Z-decay to photons. We expose a
subtle relationship between its various contributions. Following its investigation,
we offer an improved method of calculation for weak processes at one loop.

Y



Contents

1 Introduction

1.1 High energy physics . . .
1.2 Anoutline . . ... ...
1.3 Some definitions . . . . .

2 A Review of Quantum Field Theory

2.1 Path integral quantisation and a representation for S
2.2 Feynman diagrams and rules . . . . . . ... oL 0oL
2.3 Building blocks of the S-matrix . . .. . ... ... ... ... 000
2.4 The Effective Action, I'[¢] . . . . . .. ... . oo
2.5 Gauge symmetries . . . . . .. ..o

2.5.1 Abelian gauge theories . . . . . .. ... o000
2.6 Ghosts . . . . . . L e

2.7 Gauge field polarisations

3 The Standard Model

i

11

12

14

17

19

21

23

25



3.1 The Standard Model Lagrangian . . . . . . .. .. .. ... ... ... ...

3.2 Spontaneous symmetry breaking . . . . . ..o oo o000
3.3 Masses forthefields . . .. .. ... . ... .. . o
3.4 Fixingagauge . . . . . . . e e
3.5 The Electroweak theory . . . . .. .. . .. o o
3.6 No flavour changing neutral currents . . ... ...
3.7 The Strong interaction . . . . . .. .. ... ... e

Simple Phenomenology for LEP

4.1 Parameters of the Standard Model . . . .. . . ... .. e
4.2 ete™ = ff
4.3 Ratios: more stable predictions . . . . . .. .. ... o 0oL
4.4 The self-energy of the photon . . . .. ... .. .. ... ... .. ..
4.5 The optical theorem . . . . . . . . .. ... . Lo oo
4.6 The Breit-Wigner propagator and the Z resonance . . . . . ... ... ...
4.7 Quarks and hadrons . . . . . ... L L Lo
4.8 The total hadronic width at next-to-leading-order . . . . . .. ... .. ...
4.9 IR finiteness and factorisation . . . . . ... .. . oo
4.10 SUMIMATY .« v+ v v v e e e e e e e e e e e e

Measuring the photon fragmentation function at LEP

5.1 Introduction . . . . . . . . . e e e e e e

vii



5.2 The n jet + photon cross section . . . . .. ... ... 78

5.3 Photon definition . . . . . . .. .. L 82
5.4 The photon + 1jetrate . . .. . .. . ... . ..o 83
5.5 The photon + 2 jetrate . . . . . . .. ... Lo 96
5.6 SUIMIALY . . v vt v vt e e e e e e e e e e e 101
5.7 Postscript . . . .. oL e e 103
Soft Gluon Radiation in Photon plus Single Jet Events at LEP 114
6.1 Introduction . . . . . . . . . e e 115
6.2 Radiative corrections to the one jet vrate . . . . . . .. ... ... 116
6.3 Lowestorderevents . . . . . . . . . . . ... e 117
6.4 The soft gluon distribution . . . . . .. ... ... o0 Lo o000 121
6.5 SUMIMATY . . . . . o v e e e e e 125
6.6 Postscript . . . . . . .. 127

The photon + 1 jet event rate with the cone algorithm in hadronic events

at LEP 129
7.1 Introduction . . . . . . . . . e e e 130
7.2 Photons defined with respect toacone . . . .. .. .. ... .. 132
7.3 SUMMATY . . o o o o v et e e e e e e e e 143
Z boson decay into photons 145
8.1 Introduction . . . . . . . . . . e 146

Vili



8.2 The Z~vy polarisation tensor . . . . . . . ... ..o 148

8.3 The Zvyyv helicity amplitudes . . . . . .. ... ... 154
84 Numerical results . . . . . . ... 157
8.5 SUIMMATY . . . . o v v o e e e e 159
9 The 2nd Order Formalism 162
9.1 Introduction . . . . . . . . . . . 162
9.2 Aformal approach . . . .. .. .. ... .. 163
93 Ahandsonapproach . . . . .. .. .. . ... e 165
9.4 Summary . . . . .. v e e e e 170

10 Supersymmetry Relations Between Contributions To One-Loop Gauge Bo-

son Amplitudes 172
10.1 Introduction . . . . . . . . L. e e 173
10.2 N = 4 supersymmetry relations . . . . ... ... ..o 175
10.3 Explicit example . . . . . . .. e 184
10.4 Other processes . . . . . . . . o o i i 190
10.5 Summary . . . ..o e e e e e 193
11 Conclusions 195
11.1 Summary . . . ... 195
11.2 Outlook . . . . . . . 198
A Useful Functions 209

1X



A.1 The Gamma function, I'(z) . . . . . . ..

A.2 The Beta function, B(z,y) . . . .. . ..

A.3 The symmetric Gram determinant, A(a,b, ...

A.4 The Spence function, Sp(z) . ... ...

B Integration Tools and Techniques

B.l The Wick rotation . .. .. .. .....

B.2 Dimensional regularisation . . . . . . ..

B.3 Feynman Parameters . . . . .. .. ...

B.4 Form Factor Reduction . . . . . ... ..
B.4.1 Reduction of the As . . ... ..

B.4.2

B.4.3

B.4.4

Reduction of the Bs . . . . . ..
Reduction of the Cs and Ds. . .

A note on simplifications . . . . .

C Analytic Phase Space Integrals

C.1 Two particle phase space . . . . . . . ..

C.1.1

....................

....................

....................

Massless two particle phase space in d-dimensions . . . . . . .. ...

C.1.2 Massive Particles in 4-Dimensions . . . . . . . . . . ... ... .. ..

C.2 Three particle phase space . . . . . . ..

C.2.1

Massless particles in d-dimensions

212

212

214

214

216

217

219

220

220

222

223

224

224

225

226

227



D Scalar Loop Integrals

D.1 The Tadpole: Ag . . . . . .« . o
D.2 The Bubble: By . . . . . . . . e e
D.2.1 Massless internal particles . . . . .. . ... .. ... oL
D.2.2 Equal Mass Internal Particles . . . ... ... ... ... ... ....
D.3 The Triangle: Co . . . . .« oo v v i o
D.3.1 Massless internal particles . . . . . ... .. ... 0oL
D.3.2 Constant internal masses . . . . . . . . .. ...
D.4 The Box: Do . . . . . e e

E Dirac Algebra
E.1 They Matrix . . . . . . ..
E.2 The Ditac Equation . . . . . . . .. .. ...
E.3 Coupling Fermions to a Gauge Field . ... . ... ... ...........

E.4 ChiralF‘ermions..............................;...

F Algebra for SU(2) and SU(3)

X1

229

229

230

231

232

233

234

235

237

237

239

241

241

243



Poets say science takes away from the beauty of the stars—mere globs of gas
atoms.

[ too can see the stars on a desert night, and feel them. But do I see less
or more? The vastness of the heavens stretches my imagination—stuck on this
carousel my little eye can catch million year old light. A vast pattern—of which
I am a part... What is this pattern, or the meaning, or the why? It does not do
harm to the mystery to know a little about it. For far more marvelous is the
truth than any artists of the past imagined it. Why do the poets of the present
not speak of it? What men are poets who can speak of Jupiter if he were a man,
but if he is an immense spinning sphere of methane and ammonia must be silent?

—Richard P. Feynman. [1]
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Chapter 1

Introduction

1.1 High energy physics

High energy physics is a study of high energy and small length scales. It is naturally an
extreme where the theories of Special Relativity and Quantum Mechanics are paramount.
A scale of distance and momentum at which observation and interaction are unified and

inseparable.

All of the quantities given in this thesis, other than those in this chapter are given in
the units that & = ¢ = 1, where h is the Plank Constant and c is the speed of light.
These constants with dimensions of [Energy x Time] and [Length/Time] directly relate three
dimensionful quantities. As a consequence we need only discuss dimensionful quantities in

terms of one dimensionful scale. We shall usually do so in terms of an energy.



Within the scheme of these natural units the reciprocal relationship between length and

energy is quite clear. The Compton wavelength for a particle,

=2 (1.1)

defines the approximate length scale for a particle traveling with a momentum, p. This length
defines the distance at which the particle can resolve structure with which to interact. As
we raise the momentum so we shorten the length scale. A convenient terrestrial example of
this inverse relation is the observation that radio waves (A ~ 100m) are well reflected by wire
netting, for which the spacing is ~ lem. Such material is used in the construction of radio
receiving dishes. Wire netting is, however, very poor at preventing the passage of shorter

wavelength light-—we can see through it!

By colliding particles whose relative momentum is very high (A very small) we can ex-
amine their small scale structure. Probing with energies of a few keV using electron micro-
scopes, we can resolve molecular structure. With electrons of MeV energies we can resolve
the nuclear constituents of atoms. At the level of a few GeV we can see deeper into the
sub-structure of individual nucleons. At this level a simple picture of elementary particles
emerges, of spin-1/2 fermions: leptons; quarks; and neutrinos. The various interactions of

these particles are mediated by spin-1 gauge bosons: the photon; gluon, W* and the Z.

This thesis documents a theoretical study centred around photons emitted in the final
state at the Large Electron-Positron collider (LEP). This experiment is designed to collide
electron and positron (anti-electron) beams at a centre of mass energy of around the rest-
mass of the Z-boson, ~ 91 GeV, per collision. In such collisions electrons and positrons
annihilate and frequently their energy finds a form in the creation of a Z-boson. After but
a small moment of time (~ 107% sec.), this unstable particle decays via the production of

elementary particles. In the original work of this thesis we account for ~ .05% of these

[ O]



Z-decays, which currently corresponds to ~ 500 events.

1.2 An outline

The original work of this thesis is contained in the six chapters, 5 to 10, and can be neatly
divided into two discrete studies. The former, is a phenomenological attempt at parame-
terising the collinear emission of photon radiation from quarks. The latter, a more formal
study of the internal field symmetries of perturbative calculations which is motivated by
the discovery of a simple relation between the fermionic and bosonic contributions to a rare

Z-decay.

Phenomenologically, the former is more interesting as it represents an observable signal,
but the latter has its own importance in exploring the more subtle aspects of perturbative

calculation.

The order of presentation is as follows. In Chapter 2, we review the framework of Quan-
tum Field Theory—the underlying tool of calculation for high energy physics. In Chapter 3,
we introduce the Standard Model of Particle Physics which is currently the most popular
theoretical model for elementary particle interaction. Chapter 4, contains a simple review

of the relevant phenomenology at LEP that is assumed throughout the rest of the thesis.

In Chapter 5, we highlight the difficulties of the straightforward perturbative calculation
of collinear photon emission in hadronic events at LEP and motivate a method of parame-
terising our ignorance of this problematic region. As a footnote to this chapter we review
the measurement, made by the ALEPH collaboration, of the proposed photon fragmentation

function. In Chapter 6, we discuss isolated photon emission in association with hadrons and



account for the apparently large variation in rediative corrections to the various definitions
for photon isolation. In Chapter 7, we again discuss isolated photon production and use the
ALEPH measurement of the fragmentation function to account for a previously measured

rate.

With Chapter 8 we address the second theme of this thesis. Prompted by an apparent
disagreement in the literature, we calculate the rate of decay of the Z-boson to three photons.
In so doing we notice a curious similarity in the fermionic and bosonic contributions to the
amplitudes. In Chapter 9, we introduce a novel technique for the calculation of fermionic
internal loops in amplitudes; the 2nd Order Formalism. Using this and the Background Field
Method in Chapter 10, we once again perform the above calculation but this time use the
internal super-symmetry present in such a calculation to optimise it. This symmetry is more

apparent with the set of more optimal Feynman rules.

In Chapter 11 we summarise our main results and discuss some future applications.

The appendices listed at the end of the thesis contain many useful formulae and outline
the methods used in the calculations of the main text. Appendix A contains the definitions
for a number of special functions and some of their relevant identities. Appendix B reviews
the relevant formalism for evaluating general loop integrals. Appendix C contains derivations
for various phase space integrals in both 4— and d—dimensions. Appendix D contains a
number of scalar loop integrals in integer and non-integer dimensions used in the text.
Appendix E is a brief review of the Dirac equation and lists some useful identities for v

matrices. Appendix F covers the structure of SU(n) groups.



1.3 Some definitions

The fine structure constant, «, as referred to throughout this thesis is the dimensionless

constant defined,

e? 1 1
= — N — 1.2
47w eghc 137 (1:2)

where, ‘—e’ is the natural unit of charge as carried by the electron, and ¢ is the permittivity

of free space.

Throughout this thesis we refer to the metric, for this we mean the flat Minkowski metric

of signature (+,—,—, —).
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Chapter 2

A Review of Quantum Field Theory

Quantum Field Theory (QFT) [2] is a generalisation of Quantum Mechanics (QM) [3] that
includes, in a manner consistent with Special Relativity, the creation and annihilation of

particles: the number of particles present in a state becomes just another quantum number.

In QM, we have the universal operator & that projects out the spatial position/distribution
of a quantum state [). QFT requires instead that we have separate position (density) op-
erators for each species (flavour) of particle. Indeed we construct such operators from more
fundamental field operators. In QM, the Hamiltonian (or equivalently the Lagrangian) is
built from generalised position and momentum operators. In QIFT, we construct Hamilto-
nian and Lagrangian (densities) from these elementary field operators. Individual terms in
these densities give rise to the particle interactions and calculable transitions; not just in the

exchange of energy but also of flavour.

Rather than addressing the evolution of initial states with respect to a prescribed Hamil-



tonian, it is the formulation of QM as hinted at by Dirac [4] and expanded by Feynman (5]
that QFT has adopted. Namely an emphasis on the computation of transition amplitudes
from some initial state (i) to a final state (f) by summing over all possible paths that one can
construct between them. Fach path is weighted according to how much energy is manipu-
lated in flight (how great the Classical Action [6] would be for such a trajectory). Within
the framework of QI'T this corresponds to the sum over all spatial, and particle flavour,
routes linking (i) and (f). These routes are merely constrained to lie along paths allowed by
the Lagrangian (density) of the theory, and again are weighted by the size of the associated

action.

The fields that build the Lagrangian density are of two types: bosons and fermions. The
distinction between them being whether they permit more than one physical state to have
identical quantum numbers (as is the case for bosons) or not (for fermions). In terms of the

field operators, bosonic fields, B(JL), are said to commute,

[B(x), B(y)] = B(2)B(y) - By)B(z) =0 (2.1)

High Energy Theory in its phenomenological aspect finds its focus in the calculation of the
S-matrix. This object is a Quantum Mechanical operator, S, that operates on asymptotically
free states (at a time well before any interaction) to project out each of its destinies (at a

time well after any interaction). Sis a unitary hermitian operator defined to satisfy,

Sli,t — —oo) => s

f

f,t — o) (2.3)



where s¢|> = 1. As one might imagine the final state is often unchanged with respect to
f g g g

the initial state, so interest in S is especially focused on it’s transition component, T' defined

by,
S =147 (2.4)

This simple rewriting has a very significant consequence that comes from the fact that S is

required to be hermitian and unitary, namely,
SS&=1=1+iT—-TH+ T (2.5)

or equivalently,

T =2 Im(7T) (2.6)

—a result that is fundamental to S-matrix theory and we shall return to an example of its

consequences in Chapter 4.

2.1 Path integral quantisation and a representation

for S

The Path Integral approach to QFT builds on the Feynman formulation of Quantum Me-
chanics to include the notion of a field. His approach was to directly calculate transition
amplitudes. The simplest of such objects is the vacuum to vacuum transition amplitude,
(0, +00]0, —o0). That is to say, the probability amplitude that the vacuum in the distant
past will become the vacuum in the distant future. It seems quite reasonable to postulate
that this occurs with probability 1, so we proceed by defining the arbitrary phase and set

the amplitude to 1.

@s]



In the presence of an external source field, J, this transition probability is not necessarily

unity, so we define it to be,

,_[Déexpifdia (£(8) + 87 + §¢%)
[ Doexpi [ dix (£(<;5) + %qﬁzc)

Z{J] = (0, +00]0, —o0) (2.7)
which clearly satisfies Z[0] = 1. We are using a somewhat general notation where ¢ represents
the set of fields in our field theory, and J a set of sources; one for each ¢. The ¢ and J given
here are not operator fields but rather what are termed classical (or c-number) fields; for each
path of integration |, 2) as summed over with D¢ the ¢(z) is really the expectation value of
that field operator at the space-time point of integration z. For bosonic fields Eqn. (2.1) the
c-numbers are simple commuting scalars, but for fermionic fields Eqn. (2.2) the c-numbers

are anti-commuting scalars—elements of a Grassman algebra.

Eqn. (2.7) is inherently difficult to solve for an arbitrary Lagrangian density, £(¢). How-
ever, it is in fact straight-forward in the simpler cases of free theories having no interactions
(where § = 1). Writing £ = Ly = —1/2 ¢ K40, where K4 is some differential operator acting

on ¢. The associated vacuum expectation value in the presence of a source is,

2

Zo[J] = exp (—5 / d'z d'yJ(z)As(x — y)J(y)) (2.8)

here A, is the 2 point Green’s function satisfying, KzA4(x —y) = —&*(a — y). Using this

result we can partially solve for Z[J], where £ = Lo + LynT to give,

210 - exp (i [ d'oLivr (5255)) ZolJ]

exp <z [d*aLinr (,-5J6(a:))) ZO[J]‘J:O‘

(2.9)

By expressing Z[J] as a series expansion in J, it is seen to generate the n-point Green’s

9



functions of the theory, i.e.

G (a1, 2a) = (0]g (1) ... B(2)[0) =

6 J (zy)...6J(x,) 2171 : (2.10)

Equivalently, we can define the fourier transformed Green’s functions,

Gy pa) = / (H d r,) Gz, .. za)expiy ] pj - 2;. (2.11)
=1

For a completely self contained theory, GU(zy,...z,) is translation invariant—it remains
unchanged after the transformation x; — @; 4 6x. As a consequence from the fourier integral
given here we require that >, p; - = = 0, or that 4-momentum is conserved. Accordingly,

G)(py,...pn) contains an implicit (27)464(33; p¥) factor.

The fields, ¢ also have fourier transformations. Writing the inverse of the above trans-

formation to obtain ¢ from its momentum space fields we have,

QAS( / (llll~42 —zkxA(\ })\)(k). (2.12)

Here &g\)(k) is an annihilation operator and qu ( ;) a representation of the field’s polarisation.

In order to avoid the existence of negative energy particle states, the k% < 0 contribu-

tions to &fﬁ'\)(k) are taken to be crealion operators for an anti-particle state of polarisation,

g(/\)( k)= f ( ¢), and conventionally we write,

b = | (‘“‘ ) S~ {em®=a (k) k) + =M DR} (2.13)

A

= dy(x) + ¢_(a). (2.14)

It is the operators, &fﬁ'\) and IA)I(Z;\), that carry the Bosonic (or Fermionic) nature of the fields,

10



i.e. they satisfy the (anti)commutation relations. They are defined such that they annihilate

the vacuum,

a0y =0 = BV o). (2.15)

In the simple case of hermitian fields, @!(x) = $i(a), we see that &&)(A) = i)r(/,’\l)(k) and

F9 k) = gQN (k).

These G functions correspond to general amplitudes connecting unphysical states (i.e.
they can be off mass-shell; their invariant mass is not equal to their rest mass) via interactions
of the theory. By removing (amputating) the external propagators, placing the external states
on mass-shell and attaching external (or asymptotically free—i.e. obeying the dynamics of

the free lagrangian) field operators, (;in-, we obtain the physical scattering matrix:

(2.16)

X T IR
S = :{exp/gﬁ;n[\(bm} : Z[J]

J=0

The colons : ... : impose normal ordering, namely that the expansion of the operators con-
tained within the colons, is performed such that their annihilation components act before
their creation components. The term in the exponential generalises to the sum of such
terms—one for each physical field of the Lagrangian density. We note that when the expo-
nential is expanded the 1/n! factor neatly removes the potential over counting due to the n!

identical terms generated by 8™/§J™.

2.2 Feynman diagrams and rules

A simplified method of calculation is arrived at through the use of Feynman Diagrams. These

are a pictorial representation of the expansion of the exponential in Eqn. (2.9). Namely, the



coefficient of each term in Lrnr is ascribed to a vertex and each factor of Ay corresponds to
a line {or propagator). The action of §/16J on Zy[J] gives rise to such a line truncated by a

source field, J.

The essence of the simplification is that each Green’s function is associated with a series
of diagrams, the form of which can be readily determined. Taking each diagram in turn and
using the rules for vertices and propagators, one can reconstruct the mathematical form of
the Green’s function. Over the laborious manipulation of Eqn. (2.9) the diagrams have an

intuitive appeal that aids in their construction.

Indeed, in the everyday work of high energy physics it is diagrams and optimised versions

of the rules that are used for calculation.

2.3 Building blocks of the S-matrix

Clearly Eqn. (2.16) includes the no scattering processes; the 1 of Eqn. (2.4). The interesting
physics is associated with the transition part of 5. Of the remainder of the S-matrix there
are two classes of contribution: thpse processes where all of the external states contribute to
a single extended interaction; and those where two or more subsets of the external states are
involved in simultaneous but factorisably independent interactions. In the former situation,
the corresponding Green’s functions are such that their (Feynman) diagrams have all lines

connected. These functions are generated from the functional,

WJ] = —ilog Z[J]. | (2.17)



(b) (c)

(d)

Figure 2.1: Diagrams representing the disection of a term from an n-point connected Green’s
function. (a) is the example Green’s function term (in this case from a 4-point function of
a “¢3” theory), (b) cutting a line that breaks the diagram into two m(< n)-point diagrams,
and (c¢) cutting an internal line that produces an (n + 2)-point diagram. (d) is an example
of a one-particle-irreducible contribution to the n(= 4)-point connected Green’s function.

They are named connected (or irreducible) Green’s functions,

6’".

(). s ) =
G (.’L1,.--:Ln) in&](;pl)...J(wn)

wiJ)| . (2.18)

J=0

In the latter case of factorisable sub-processes, the contribution to § is from products of

lower point connected Green’s functions.

A connected n-point Green’s function can be represented diagrammatically by an infinite
sum of diagrams each having n external lines (legs) and some number of internal lines.
Consider one such diagram (see [Figure 2.1a). We now notice the effects of cutting one
internal line of this figure. Clearly in doing this we will either create a diagram of two

separate m(< n)-point diagrams (Figure 2.1b) or create a single (n + 2)-point diagram

13



(Figure 2.1c). It follows that amongst the infinite sum of diagrams (in other words terms in
Eqn. (2.17)) associated with the connected n-point Green’s function, there exist a sub-set of
terms that only have the property associated with the cut of Figure 2.1c. For example that
of Figure 2.1d. We note that since Figure 2.1a can be cut in both ways it will not itself be
a member of this sub-set. The sum of such a sub-set is labeled the one-particle-irreducible

n-point Green’s function G(n) .
I 1 1PI

2.4 The Effective Action, I'[¢]

The connected Green’s functions describe the interactions of the theory. We have shown that
there is a more fundamental subset of these functions, namely the one-particle-irreducible
functions G{Y;. It transpires that we can construct the connected functions from just the
two-point connected function (G{?) and truncated Gg'}g),s, the so called vertex functions,
'™ (zy,...2,). In other words the sum of all Feynman diagrams leading to a given G can
be built from trees of vertices, I'™ | held together by G(* propagators. To define the vertex
functions we must reintroduce some representation of the field, since we have previously

integrated it out (see Eqns. (2.10 and 2.18)). We define,

_swJ]
28] (2)

é(z,J) (2.19)

where we assume that this is invertible leading to J(z, ¢) and we also note that for vanishing
GV, J =0« ¢ =0. In some sense this ¢(z,J) is a generalisation of what is removed by

the exponent in Eqn. (2.16) before it attaches an external field operator. Next we introduce



the effective action,

Pg] = W] = [ dad(2)é(x) = —log Z2[J] — [ d'sJ(2)d(2). (2.20)

which immediately leads to the relation,

ST (4]
J(z,¢) = — . 2.21
(z,¢) = —= () (2.21)
I'[¢] is the generating functional for the so called vertex functions,
o
r™(zy,...2,) = 9] (2.22)

dp(zy)...68(xy) $=0 .

By functionally differentiating Eqn. (2.19) once with respect to ¢ and taking the limit ¢ =

J = 0 we obtain the relation that,
/d‘*zr(?)(y, GO (z,x) = i6%(x — y) (2.23)

which in the free field theory, G(()2) = G = {A, (see the paragraph containing Eqn. (2.8)),

corresponds to I'® = — K.

Further differentiation of Eqn. (2.19) and the use of Eqn. (2.23) is seen to generate a
relation between G{™ and a series of tree like structures having I'™) for each m-point vertex
and a G propagator linking them; Figure 2.2 illustrates this point. Note, that there are no

explicit loops in such structures because that would over count contributions to the vertices.

I'[¢] is termed the effective action because it is, in the interacting theory, a generalisation
of the action, S = [d*zL. As was indicated, in the free theory, Fg") (and correspondingly the
simplest contribution to T'® in the full interacting theory), is §25/6¢*. Similarly, the simplest

contributions to the higher point I""22) vertices are terms of order ¢" in the coefficient of
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Figure 2.2: The 4—point connected Green’s function, G{*), expanded in terms of the n(<
4)—point vertex functions, I'™ (shaded circles), and the full propagator, G(*) (empty circles).

the associated term in the L£;yr part of the Lagrangian density. For example, the A¢3/3!

term in the Lagrangian of a “¢®” theory gives rise to a leading I'® contribution of \.

It is clear that vertices not present in the basic Lagrangian may come about at higher
orders (i.e. as connected Green’s functions containing at least one closed loop) and such a

process is discussed in the latter chapters of this thesis.

We conclude this section with a description of the full propagator, G{?)(z,, z;). Following
the discussion after Eqn. (2.10) we shall discuss the momentum space forms of G etc. i.e.
via Eqn. (2.11) we write f(z;,z3) — f(p1,p2) = f(p = p1 = —p2), where we have utilised
the implicit § function. We define the self-energy, X(p), which arises from the modification

that interactions make to the free theory by

PO (p) = —Ka(p) + S(p). (2.24)
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—O0- = — + +...

O

Figure 2.3: The full propagator, G* (with empty circle) is equivalent to the sum of free
propagators, ng) (straight lines), with all numbers of vertex functions, I'® (shaded circles),
inserted.

In momentum space for, |[2(p)| < [K4(p)|, Eqn. (2.23) leads to

(2) _ 1 o 1
Gl) r®(p) 1&'4)(7)){1 e). }

 K(p)

o (p) , X(p)?
= M@%+MM+M@J”}

= PP {1+ m +...+ (EEEPP) +... (2.25)

We have illustrated this series in Figure 2.3. In other words, the full propagator, G?), is
equivalent to an infinite sum of the free propagators, G((JQ), with all numbers of self-energy

2

insertions, ¥(p). Generically, we find that Fff) has the form, p? — m?, so ¥ gets its name

self-energy because, due to @’s interactions, an effective modification is made to the mass,

m, of the free theory.

2.5 Gauge symmetries

In considering a typical (term in a) Lagrangian density, g&f@“a”$, where qAﬁ is a multiplet of

some fixed number of fields, we note that it is invariant under the global transformation,
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¢ — P, where 6 may be expanded as'
=0T (2.26)
with respect to the generators, T, of some symmetry group, satisfying,
(72, 7%] = ifetere. (2.27)
The structure constants of the group are labeled as f*%.

The corresponding local (gauge) transformation is, [7]
$(2) = (), (2.28)

where 0(z) is required to be small. Unfortunately, this is not a symmetry of the given
Lagrangian (term). However, rather than reject this proposed symmetry transformation we
find that it is more fruitful to replace the partial derivative with a modified gauge covariant
partial derivative,

Du = 8“ + lgAM(x) (229)

and thus the contribution to the Lagrangian becomes
L~ ¢thtDHg. (2.30)

We do this at the expense of invoking a new (Bosonic) gauge field, A,. Both 0(z) and A, ()
can be expanded in terms of the generators, 7%, of the symmetry group; indeed it is the

component fields, A%(z), that commute with one another (are Bosonic see Eqn. (2.1)). The

constant generators, which together with ¢ define the coupling of ¢ to the gauge field, tend

1Since we are presenting a summary, we give the general non-abelian gauge theory from the start.
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to complicate the commutation relations of the multiplet field, A,(z). The transformation
of the gauge field with respect to 8(z) is constrained by requiring that lA)quS transforms in

the same manner as <2) For small 6(z) this leads to,

~

Alw) = Au(z) +i [0(z), Au(z)] - éaua(m). (2.31)

We find that mass terms of the form, mz/i“A“/Q, are not gauge invariant. It follows that we

cannot arbitrarily put put masses into a Lagrangian without breaking its gauge symmetry.

If A, is not to be an external field it must have a mode of propagation. This is facilitated

by terms quadratic in the field. The antisymmetric field strength tensor is defined by,

| =

Fu(@) = = D, D] = (3,A.(x)) — (B,Au(x)) +ig [Au(z), A(z)]  (2.32)

]

@

The square of I is a gauge invariant quantity, under Eqn. (2.31), so it facilitates the required

propagation term for a gauge invariant Lagrangian,
1 - a frapv
— ZF Y (2.33)

In this general non-abelian theory, this term does not give rise to free propagation since it

contains terms cubic and quartic in A, instead it defines a self interacting field.

2.5.1 Abelian gauge theories

In the simplified case of an abelian gauge symmetry, with the [ of Eqn. (2.27) identically
zero, two important results follow. The first is simply that self interactions are not present

in Eqn. (2.32), so abelian fields when not coupled to fields <fA) will freely propagate.
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The second is that it becomes possible to define different gauge transformations for

different (multiplet) fields. Given ¢ and ¥ say, we transform them as
d(z) — P9 §(z) and P(z) — e0Eh(z). (2.34)
The gauge covariant derivative is similarly altered,

but fortunately this leaves Eqn. (2.31), without the commutator term, unaffected. Eqn. (2.32)

is modified to read,

Fu () = z,gl% (D2, D¢ = ig;w (D%, D¢] = (8,4,(x)) — (B,A,(2)) (2.36)

Correspondingly, the only terms in a general Lagrangian, that are not guaranteed to be
gauge invariant are those that involve direct interactions between q?) and 1/;. Such terms are
typically of the form

B g i(@er-aus, (2.37)

Now, to actually be gauge invariant (for a small #), we require Q4 — $(Qy/r) = 0. In such
a scenario Qg/s = @, /r defines a convenient unit of charge, which may be factored into
a redefinition of the coupling, g. In summary, whilst it is possible for abelian gauge fields
to couple with different strengths to different fields, these couplings are always in integer

multiples of some more basic unit.



2.6 Ghosts

The gauge symmetry of a fully gauge invariant Lagrangian is a complete internal symmetry—
a gauge choice does not manifest itself in any physical amplitude. Consequently, we must
take care to treat it correctly in the Path Integral formalism. Having chosen a representation
of /i“ we have effectively selected a gauge. Thus in calculating the vacuum-to-vacuum
transition amplitude we should not allow the path integral to wander over different gauges.

Accordingly, we write the path integral over a c-number Aﬁ (of Eqn. (2.31)) field as?,
0
/’DAué 0)... (2.38)

where the action of the delta function is to select the untransformed gauge. Equivalently,
there is some gauge fixing function, f(A?), satisfying, f(A) = 0. Re-expressing the delta
function Eqn. (2.38) becomes,

| DAL det (‘;’éb H) §(£(AD)... = [ DA det (igl

) §(f(A)... (2.39)

In reaching the right hand side we have used the delta function to constrain the integration
region (much as we are able to write [©_&(z?)f(z) = [, 6(z?)f(z)). The determinant, as
indicated, is with respect to the component indices of f and 0 (see Eqn. (2.26)) and it is
simply the Jacobian required to compensate for the change of argument to the delta function.
Formally, the determinant can be rewritten in an exponential form. This is achieved by

introducing a complex multiplet of Faddeev-Popov Ghost (FPG) c-number fields that are

2More formally we introduce an unrestricted path integral over all §(z) (of Eqn. (2.28)) and show, by
gauge invariance, the following treatment leads to an overall factor in both the numerator and denominator
of Eqn. (2.7), thus leading to the same result.
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fermionic (they anti-commute) [8]. That is to say,

/...det (Mg) ... = /DCDCT . .expi/ﬁppg = /Dc’DcT . .expi/(l"ﬂ:d"ycl(:c)Mabcb(y)
(2.40)
where M, = 6f“/60"|0_0. It is also possible to write the gauge fizing delta function as an

exponential,

/...expi/ﬁcp :/...ex —%/d“:v{f(A(a:))}2 (2.41)

¢ is the gauge parameter. Although ¢ can be thought of as just altering the normalisation
of f(A) hence contributing, via the determinant, an overall factor (to the numerator and
denominator of Eqn. (2.7) and thus canceling), it does provide a convenient method of
obtaining different gauges for a single type of function, f(A) One of the favoured choices

for gauge (and directly related to that used for all calculations in this thesis) are those known

as covariant (or lorentz) gauges,

f(A) =8 A. (2.42)

This, and related choices, preserve the lorentz invariance of £, which after absorbing Eqns. (2.40

and 2.41) becomes the effective Lagrangian density, L.g = L + Lo + LrpG.

Since the FPGs have been artificially introduced to rewrite the determinant of Eqn. (2.39),
we do not expect them to be manifest as external fields. We do introduce an external source
(a fermionic c-number field) for both of the ghost multiplets. However, in addition to setting
these sources to zero when computing the Green’s functions (cf. Eqns. (2.10 and 2.18) etc.)

we also set ¢ and ¢t to zero too.

Another significant simplification, in the case of abelian gauge fields, is noted: from
Eqn. (2.31) it follows that in lorentz gauges det(éf/80) contains no terms in A*. Conse-

quently, the effective Lagrangian does not couple the FPG fields to any others. Accordingly,
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we may factor away the determinant and ignore ghost terms completely—they cannot con-

tribute to any Green’s functions in purely abelian gauge symmetric theories.

2.7 Gauge field polarisations

In lorentz gauges, the appropriate application of Eqn. (2.13) to massless gauge fields follows

from the requirement that physical states, |}, satisfy the weak gauge condition,
d-A,la) =0. (2.43)

Where A, , is the annihilation component (see Eqn. (2.14)) of the expansion Eqn. (2.13).

Since there are naively 4 orthogonal polarisation vectors for any gauge boson (in 4 dimen-

+

sional space-time) and the two physical (or transverse) polarisations €,

are orthogonal to

the 4-momentum £, it follows that Eqn. (2.43) reduces to the requirement,
B (a5 (k) + elaly (k) o) = 0, (2.44)

where we define € to be purely time-like, and €l to be space-like and parallel to the 3-
momentum of k. Since the time-like and space-like components of the Minkowski metric are
of opposite sign we find that for a massless gauge field, k* - © = —k* - ¢ll and consequently

all physical states have an equal number of €® and el polarisations:
a4 (k) o) = al(k) |a) (2.45)

It can be shown that these states have opposite (in sign) contributions to the Hamiltonian

(total energy) so they are unobservable.
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Aside from the fact that mass terms for gauge fields are not by themselves gauge invariant,
the modification for massive vector bosons is as follows. The introduction of mass, and thus
a defined rest frame for the particle, gives rise to another space-like polarisation. Eqn. (2.43)
is satisfied by a 4-vector, €, parallel to the direction of motion of k&, that transforms to
(0,k/|k]|) as k is transformed to its rest frame. It follows that massive vector boson states,
should they exist, have no time-like polarisations (the second term of the left-hand-side of

Eqn. (2.44) is not present).

In summary, massless vector particles will have two transverse physical polarisations and

massive vector particles will have three, all of which are space-like.
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Chapter 3

The Standard Model

The most popular current model for elementary particles, enjoying the greatest success in
describing High Energy Particle interaction data, has become known as the Standard Model
(SM). It embeds the extremely successful theory of Quantum Electro-Dynamics (QED); a
theory of Weak Interactions that predict the radioactive 3-decay of nuclei; and Quantum
Chromo-Dynamics (QCD), which successfully describes much hadronic experimental data.
As yet, there is compelling evidence for the existence of all but one of the constituent fields’
of the SM. It does however, not address all of nature’s interactions, making no statements
about the gravitational force, but in the face of an immense amount of high energy particle

data, it does represent a formidable model for nature at its most elemental.

Before we describe the calculation of various physical processes—the topics of all the

remaining chapters—we give the the Lagrangian density of the Standard Model, Lgp, and

1The most recent particle to be discovered is the heavy Top quark [9].
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Fermion, 1 Left-handed Yy, || Right-Handed | Y, p = Qy
[ v, vy 7
Leptons, [ \ e ) \u s -1 e, fy, T -1
Quarks, ¢; Uu; ¢ t; 41 diy, si, b _313‘
Ny=6and N, =3 d; P\ si P\ b 3 Ui, iy +%

Table 3.1: This is a table of Standard Model fermion hypercharge, Y,—the factor governing
the strength of the respective fermion’s coupling to the U(1) field, B,.

accompany it with some simple discussion.

3.1 The Standard Model Lagrangian

The SM is built from a system of 25 physical particle fields (i.e. observable directly or
indirectly). Twelve of these are spin-1/2 fermionic fields, broken into their left and right-
handed components (see Appendix E), that couple selectively to the 12 fields of three gauge
symmetry groups U(1) x SU(2) x SU(3). The remaining field is just one of the four real
fields of a complex scalar doublet. It is the only visible remnant of a mechanism invoked
to give masses to various fields of the theory, and also currently the only field for which
no direct experimental evidence exists. Superficially, however, the SM Lagrangian contains
mass terms for neither the fermions nor the gauge bosons; this is as required because it is

explicitly devised to be gauge independent.

With respect to the fermionic fields given in Table 3.1 the Standard Model Lagrangian

has the form,



Lsy =
57 - /Y ) T
LLI(zﬁp—g%ﬂ,,“gw/y)lll-i-z&( —J)RB)
1

N, Ng/2

+Z ZLI|(< ll_g qLﬁ;; Jvl/;t>51]_gs¢7 )Ll
1,7=1 q=1
N. Ny

+ 30 3 R (0, —ganb,) 8 901 R,

v 1 1 ipv 1 a 1a pv
_ZBWB“ — JWALW — GG

Ne Ng/2

=S b (Tid R+ RidtLy) = 30 3 by (Lrid R + Roi'Ly)
l =1 g=1
Nc N,/) S ~
_ Z Z h’q+N//'2,i (Lq','qﬁRq_va/z,i + Rq+Nj/2,i¢tLq,i)
i=1 g=1

(0 +ig 2B, +igW,) N7+ s,

(3.1)

For brevity we have neglected the operator hats on each of the fields. B, is the U(1) gauge
field coupling to both fermions and the complex scalar doublet field, ¢, proportional to their
respective hypercharge value, Y,,. VV,L is the SU(2) gauge field that couples only to left-handed
fermions and the complex scalar doublet field, é. éﬂ is the SU(3) gauge field of QCD. It is
noticeable that neither the lepton nor the ¢ (and its transformed variant, ¢) fields directly
interact with CA?“; indeed, only particles carrying colour (the indices, 7, of Table 3.1) feel this
gluonic field. The tensors Bu,,, 4% L and G,,,,, are just the field strengths, F,W of Eqn. (2.36)
(for B) and Eqn. (2.32) (for W and G).

Both the left and right-handed fermionic fields couple equally to the SU(3) gauge field, or
in other words, QCD is a chirally invariant theory. It follows that, if the quarks are considered
massless, then in the absence of U(1) x SU(2) or ¢ couplings there is no mechanism for the

different chiralities to interact: massless QCD is a chirally independent theory.
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From Table 3.1, the hypercharge, Yy, of a given flavour of fermion for the left and right-
handed fermions is not generally the saine. This differential coupling obeys gauge invariance
because the U(1) gauge field is an abelian one (see Section 2.5.1). Indeed, there is noticeably
an absence of right handed neulrino fields, a point we shall address in Section 3.5. The

hypercharge of the ¢ field is

Y, =1. (3.2)

We shall indicate the significance of the primes on the left-handed quark doublets in

Section 3.6; they are linearly related to the un-primed doublets.

3.2 Spontaneous symmetry breaking

The process we describe in this section has become known as the Higgs Mechanism [10], it

concerns the nature of the Higgs doublet field, ¢.

We consider the case that QAS in its un-ezxcited form is gb = ¢, for ¢g # 0. The excitations

of ¢ can be re-written as

$=do+¢. (3.3)

The first consequence of this is to ensure that the vacuum-expectation-value (0|¢|0) =
(0|¢0|0) is non-zero. This corresponds to quantum numbers belonging to the vacuum. To
constrain ¢o we require that rather than being zero, it minimises the last two terms of Lgps
as it is presented in Eqn. (3.1); these last two terms are called the Higgs potential. Whilst

#o = 0 clearly reduces this potential to zero, we find that, for x? > 0, the minimum of the
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potential is at ¢ldo = u?/2A. Correspondingly we define,

0 5 ¢
Po = ¢ = .
v/V?2 (H +1i%)/V2
with
_ e
=\
and the related field
J) = iT2<]A5*

or equivalently,

(3.5)

This choice of ¢ is not unique, but all other choices are related to this one by an SU(2)

rotation. Since this is a globally selected choice for ¢o, we can view the generators of the

rotation to another choice for ¢q as the 8 of Eqn. (2.26).

3.3 Masses for the fields

The Higgs potential does have a term quadratic in ¢ but it has the wrong sign to be a mass

term, cf. the text following Eqn. (2.25). We note, however, that the H component of é

develops a mass type term of the correct form with respect to p?.

A (318)" + 2 (419)

_5_2 (¢$¢o + ¢$<;’I + 973/1(]50 + lefqgly + p? (q?)'Tg;S' + .. )

29



A v s, N ) R
= ‘%[25(¢T¢)+(¢3¢ +¢"a) +...—v? (414 +)]
ﬁ(ﬁ+ii+ﬁ_ii’ 2+
V2 V2
= —N2]?12+...:—%m?,f12 (3.8)

where we have neglected terms not quadratic in a single component ficld. We see that it
is only the H component that develops a mass in this manner. We now consider how the

gauge bosons and fermions of the model acquire mass.

We shall find it useful to decompose the gauge field, Ifi/#, into its component fields in the

basis defined by the Pauli matrices, 7;, given in Section F.1. i.e.

~ A T
W, = Wis. (3.9)

From the covariant derivative squared terms for the Higgs doublet, we consider the gauge
field interactions (see Eqns. (3.1 and 3.2)),
L3 (g B+ gWin) (9 B+ gWin) & = 24t (676 B+ Wi Wi+ 299 - Wir) 4
710 W ButgW,mi) (g Butyg ,ﬁ;)qﬁ = 7¢ (g B+yg W Wi+ 2¢g°gB- m)sﬁ

(3.10)

where we have employed Eqn. (F.4). Concentrating on the @3 contribution (see Eqn. (F.1))

this becomes,
2

% { (g'B - gl/i/3>2 + g (ﬁ/f + Wf)} : (3.11)

This is of a form that strongly suggests mass terms for three vector fields—the minus sign
which we might expect to be preceding these bosonic terms is actually provided by the metric,

since when acting on any physical state, the field contributes only space-like polarisations,
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€y, 1. €-€ < 0.

With respect to the so called, Weak Mizing Angle, 8y, satisfying

!

. g g
sinfy = ———= and cosly = ————,
v 9“+yg v 9°+y
we define the transformed fields,
Au = B,L cos 0w + VAVEsin Ow Bu = /Al‘,_ cos Oy — ZA“ sin Oy
Z, = —B,sinfy + I/i/ff cosfw  and I/iff = A,sinOw + Z, cos Oy
WE = L (Wlgai?) Wi o= 3 (W4 W)
= W W2 = & (Wf-w;)

The new fields are mass eigenstates, the Z-boson field of mass,

WIS

MZ: 9 )

and the W*-bosons of mass

Mn/ = A4Z COS OW

The fourth of these transformed fields, A,, has no mass term.

(3.12)

(3.13)

(3.14)

(3.15)

We consider the fermionic terms that contain the v factor of Eqn. (3.5). The _L_L/,QASR,/, and

m@fl/d, terms, the so-called Yukawa couplings, reduce to terms of the form,

- h% (%@0}2 + %‘/’L)

(3.16)

which (cf. Section E.4) are chirality mixing mass terms for a fermion of flavour ¢ € {d;, s, b;}.

For the leptons of Lgpr, we see that this is the only included term giving rise to mass like
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terms. Correspondingly, there would be no mixing of left and right handed neutrino states,

even if we had included right-handed neutrino fields in Eqn. (3.1).

For the quarks, however, it is desirable for the wu;, ¢; and ¢; quarks to be massive. So,
a transformation is made of ¢ to ¢ (see Eqn. (3.6)) with which we obtain mass generating

Yukawa terms (see Eqn. (3.16)) for the remaining quarks, ¥ € {u;,¢;,t:}.

3.4 Fixing a gauge

We find that the covariant derivative terms for the qz field contribute awkward oscillation

2-point, vertices for the W, B (hence A, Z and ﬁ/i) and ¢’ fields of the form,
19’ ~ -
g B,(0"¢")o. (3.17)

It has been found [11] that such terms can be eliminated by the following choice of gauge

(see Section 2.6),
W) = W)+ g8 {gtri— alrie}

_ (3.18)
fa(B) = 0"B,+E%{¢"¢0— dle'}.
Where € is the gauge parameter, and correspondingly, cf. Eqn. (2.41),
Lor = ——1—{fw("V)2 + fB(B)2} . (319)
; STAL

Note, f? here refers to the straightforward square and not f1f.

The terms of the form Eqn. (3.17) are canceled by those from Lgr that are linear in

B(and W) The terms quadratic in the gauge fields are simply the normal lorentz gauge



fixing condition, Eqn. (2.42).

The remaining terms in Lgp are quadratic in the un-physical component fields to ¢'.

They give rise to gauge dependent mass terms of the form, (see Eqns. (3.8 and 3.15))

M gmat T 2
My 679" — L= (3.20)

It is clear that the ¢t (and ¢~ ) and y fields are deeply linked to the choice of gauge. It is for
this reason that they are said to be un-physical. Indeed, by choosing § — oo we can ensure
that they are unable to propagate. This gauge is called the unitary gauge and contains only

the physical fields.

3.5 The Electroweak theory

Firstly, we define the coupling,

e = ¢’ cos By = gsinOyy. (3.21)

The couplings of both the left-handed fermions and the ¢ field to the U(1) x SU(2) gauge

fields involve the generic contribution,

o

LB igW, = 9, + 5 (o' BuYarbus + gWirh) (3.22)

d, +1g'

where & 1s the appropriate field type. Expanding in terms of the transformed fields, Eqn. (3.13),
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and with Eqn. (3.21) this becomes, [12]

5 . i (Yoo + DA, + gri(cos? Oy — Yarsin?0w)Z, W} .
1w 7 . ) X . .
W (Yar— DA, — k=(cos? Ow + Y Lsin® Ow) Z,

Applying this to the fermionic sector we see that the flavour conserving interactions are with
the A, and Z, fields, since they form the diagonal of the matrix in Eqn. (3.23). We note
that the strength of the /Al“ couplings to the fermions is one unit of e larger for the upper

member of the left-handed doublet (v, v/, etc.) than for the lower member (e, ', etc.).

Concentrating on the Wt fields, we find that they couple the two flavours of fermion in
a single doublet, since they form the diagonal components of the matrix. As we have said,
this transition corresponds to a change of e in the A“ coupling—in a real sense it is the
Wﬂi that carries this difference. We note also that the W’f couple identically to all doublets
independently of the hypercharge: the Vifui fields are blind to the leptonic or quark nature of
the fermions. This is entirely as we would expect since the transformation of fields for them
has just been a rotation in SU(2) and they remain purely non-abelian (cf. Section 2.5.1).
Another consequence of the non-abelian nature of the SU(2) field is that it gives rise to
self-interaction (see the discussion following Eqn. (2.32)). 1t is the W3 component of A and
Z that cause W* to interact with them. The fact that B and W3 are mutually abelian
means that they do not interact without simultaneously coupling to two charged fields—A

cannot, interact without the presence of a charge.

The right-handed fermions do not couple to the SU(2) field. Instead, their covariant

derivative to the U(1) x SU(2) sector is,

Oy +ig'YarB, = 0, +ieYor [A, — tan 0w 2,] . (3.24)
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We define eQ, to be the value of the coupling for fermion & to the field Au, from Table 3.1

we observe that,

Qa.L = QQ,R - Ya,R- (325)

Since, Qe = Q... — 1, it follows via this relationship that Y, g = 0. This justifies our

exclusion of right handed neutrinos from Lsp (Eqn. (3.1)).

The A field is identified with the 4-vector potential for the classical E and B 3-vector
Electromagnetic fields, and e with the fundamental unit of charge as defined by the electron
having e x (—1). Historically, it was the knowledge of e and the relative charges of the
fermions, Qu,r(= Qa,1), that enabled the hypercharges to be deduced. Indeed, with the
benefit of hindsight, the choice 3e = ¢’ cosfw = gsinly for Eqn. (3.21), might have been
more natural-—in this way all particles would have had integer charges, n e. The massless

external states of the field fiu are called photons; particles of light.

We are now in the position to appreciate the significance of the choice Eqn. (3.4). The

covariant derivative for the Higgs doublet has the form,

+...0¢ (3.26)

where we have neglected the W' and W2(equivalently I/Vi) contributions. This leads to the

following terms expressed with respect to <]3’s component fields,

2
Iy S R ¢ 7 T+
¢ (8 (EA t tan 20w Z) ) ¢
| A e ., 1 ) et 4,
B EH (8  sin? 20 4 ) H - 2 X <8 sin® 20y, 27 x (3.27)

We note that none of the lower components to qAS couple to the fiu field. That is to say, the qAS
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field has no charge, either in its unexcited (vacuum) state or with a physical excitation, H.

The Zﬂ and I/Vui fields are those of the Weak force. The charged interactions, involving
the W‘f fields and left-handed fermions, are flavour changing, v, — e and v’ < d' etc. to each
of which it couples equally. The Zl, field couples to both the left and right handed fermions,
but differentially. This gives rise to the so-called V — A (Vector-minus- Axial-vector) coupling

of the Zu to fermions.

Multiplying Eqns. (3.23 and 3.24) by v* we can write the general fermion, &, to Zu

interaction vertex as,

ieZu (CLTJZ-7‘L£& + cR_]{A—a'y“]A{a) (3.28)

where cy(gr) are the left(right) couplings. Substituting Eqn. (E.19) into this expression we

can write the overall coupling as,

~

ieZ, (@y"av, — ay ys0a,) - (3.29)
where,
cL + CRr CL — CR
Vg = 5 and  a, = 5 (3.30)

—A wvector — axial vector current, cf. Section E.4. For the fermions whose left-handed
component is the upper member of a SU(2) doublet these coupling factors have the following
forms,

1 - (1 -+ Ya,L + QYQ‘R) Sill.2 0W 1- (1 + Y;Y,L - 2)/0, R) Sil]‘2 0w

a = : : 5 31
2sin 20w 4 + 2sin 20w (3.31)

Va =

and for the lower members,

1-— (1 - }/a,L - QYQ,R)SiIl2 OW 1— (l - /O, L + 2Ya R) Sil]2 9W

« = — - : . (3.32
2sin 20w “ 2sin 20w (3.32)

Vo = —
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3.6 No favour changing neutral currents

The use of Lfm, in Lspr (Egn. (3.1)), indicates that it is modified left handed doublets that

couple to the SU(2) gauge field. They are related to L, by,

[ u ! ¢ 14 t
di = ) di = ’ di — ) (3-33)
d s b

I

where the primed quarks are related to the unprimed ones by,

d d
s | =Uckm| s |- (3.34)
y b

Uckar is the unitary Cabibbo-Kobayashi-Maskawa [13] mixing matrix. The non-diagonal
form of Ugrar ensures that the quark mass eigenstates of the Lagrangian (terms containing
h,:) are not the same as those participating in interactions with the SU(2) field. This

transformation is global and unitary so the U(1) and SU(2) couplings are unaffected.

We have established the fact that W? interaction is associated with flavour change: for
example, a vertical transition will occur in Eqn. (3.33). The fact that the lower components to
these doublets are not the mass eigenstates prompts us to investigate whether an interaction
with the neutral fields, A and 7, can result in a horizontal transition. Assuming some neutral
combination, N, ~ /i# + ﬂZu, for the fermionic fields, ¢ € {d";, s, ¥;} and f € {d“,-,é,-,i)i},

we have a combined series of interaction terms of the form,

ol A

i ~ o -1 A ~
~ SN =Y T (Un) ™ NuUEen . (3.35)
¥ .f

37



Since N,L is diagonal with respect to Ucxpr, we can commute Uggpr through it to cancel

against Ugp . Thus, the neutral currents do not give rise to flavour changing interactions.

[14]

3.7 The Strong interaction

The Higgs field, é, is not. coupled to the gluonic gauge field, CAJ,” in Lspr. Thus, the SU(3)
field is not broken by the Higgs mechanism. Consequently, G’u remains massless and only
couples to quarks and itself. Having generated masses for the quarks, we write the SU(3)

relevant part of Eqn. (3.1) as,

N,

) C; . a»\’a » 1"a Ao v

L’QCD = E q; I:(Zﬂ — 777,,)) 61'1' —_ gSTi]'d'u:I qj - ZGHVG H . (336)
t,j '

The quark fields are, with respect to the gluons, each resolved into a triplet of fields, ¢;, which
couple to the 8 gluonic fields via the SU(3) generators Tj; and with a strength g,. These
generators, and the fact that G’fw 7% B contains cubic and quartic, G, self couplings are what

distinguish QCD from QED. An algebra for these generators is discussed in Section F.2.
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Chapter 4

Simple Phenomenology for LEP

A convenient phenomenology of the Standard Model is generated with respect to a perturba-
tive expansion in the couplings, e and g¢,. It is based on the assumption that these quantities
are small. Within this framework, the appropriate free Lagrangian density is taken to be the
(e,9s) — 0 limit of the full Standard Model Lagrangian, Eqn. (3.1). In this limit one estab-
lishes the propagators for the free theory, Eqn. (2.8). The interaction Lagrangian is simply
the difference of the full and free Lagrangians and naturally leads to the Feynman rules for
the vertices of the theory. The Green’s functions and hence the scattering amplitudes of the
theory can then be evaluated to some power in the couplings by expanding the exponentials

in Eqns. (2.9 and 2.16).

The success of this perturbative approach, in terms of making accurate predictions based
on the Standard Model Lagrangian, rides on an ability to identify physical quantities for

which these small coupling limits are a valid approximation.
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The basic process at LEP is the collision of a beam of electrons with a beam of anti-
electrous (posiirons) at a centre of mass energy for each particle collision equal to that of the
Z-boson at rest. Before addressing the high energy collision at the Z-mass we shall cover
collisions at lower energies. This will give us an opportunity to review some simple QED and

also indicate the need for renormalisation in a consistent picture of High energy behaviour.

4.1 Parameters of the Standard Model

World average values for the masses of the massive weak gauge fields and the leptons of the
Standard Model are as follows [15]. The weak gauge ficlds: the Z-boson is 91.1734+0.020 GeV;
and the W-boson is 80.2240.26 GeV. This combination leads to a value for sin? 8y of 0.226+
0.005, the error here is dominated by the uncertainty in the mass of the W. The masses of
the leptons are very well known and have the values: m, = 0.51099906 4 0.00000015 MeV;
m,, = 105.658389 4- 0.000034 MeV; and m, = 1784.1727 MeV. The masses of the quarks are
by comparison not well known because they are only observed in bound states—as hadrons.
For convenience, Table 4.1 contains approximate numerical values used in this chapter for

all of the fermions of the SM.

4.2 ete” > ff

We consider the 2 — 2 particle process of,

et (p)+e7(p2) = f(ps) + f(pa)- (4.1)
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| Fermion | Q| vy | ay | Mass [Me\/ﬂ

e 1] —0.048 | —0.504 0.5
0 —1| —0.048 | —0.594 100
T —1[=0.048 | —0.594 1800
Ve 0| 0594 | 0.59 0
v, 0 0594 0594 0
v, 0] 0.594| 0.594 0
d —1/3 [ —0.412 | —0.594 5
s ~1/3 | —0.412 [ —0.594 5
b ~1/3 | —0.412 [ —0.594 5000
u 2/3| 0230 | 0.594 5
c 2/3| 0230 0.594 1500
t 2/3| 0.230 | 0.594 170000

Table 4.1: A table of relevant properties for the fermions of the Standard Model. Containing
the electric charges, @y, the vector (vs) and axial («;) couplings, evaluated with respect to
a weak mixing angle satisfying, sin? 8y = 0.23, and the approximate masses.

. f

Figure 4.1: The Feynman diagram for the creation of a fermion-antifermion pair from the
annihilation of an electron-positron pair via a virtual photon.

That is to say, the annihilation of a electron-positron pair leading to the production of a

fermion-anti-fermion pair via a virtual photon.

With respect to a perturbative expansion in the coupling constant, e, the leading contri-
bution to the probability amplitude for this process can be deduced from the single appro-

priate Feynman diagram, Figure 4.1, as

Meess = Te(p1) (+iev“)ue(m):; Gur = (1= L2 Ty (ps) (—ieQ ") vg(pa).  (4.2)
q q
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The 4-momenta, p;, are defined in Eqn. (4.1) and, respectful of 4-momentum conservation,

we define

q=pi+p2=ps+ps (4.3)

In Eqn. (4.2), we have explicitly included the gauge dependence of the photon propagator.
The simplest choice for the gauge parameter would be ¢ = 1, the Feynman gauge. However,
in this case it is simple to use the on-shell condition for the electron, Eqn. (E.14), to show

explicitly that the gauge dependent, ﬂq&;'—“, contribution vanishes.

The generic two particle cross-section for incoming particle momenta, p; and pz, and

with invariant masses, m, and my, is,

Ogsg = (sym) — /dLips-z_,n (MTM)

- . (4.4)
4\/(]}1.1)2)4 — m2m? event

Here, M is the matrix element for the 2 — n process and (W)wmt 1s the matrix element
squared, which is averaged over degenerate initial states and summed over indistinguishable
final states. The factor, (sym), is a symmetry factor for averaging over identical bosons in
the final state. It is usually of the form 1/j!, where j is the number of identical bosons. The
appropriate symmetry factor for this process is 1. We shall take the limit that m, — 0. We
are not to observe the initial or final state polarisations, so we shall sum over the final states
and average over the initial ones. In this way,

42
(MTM)BBU _ 64§1f Tr {7517“7}27"} Tr {¢371L3b47'u - mi'yﬂ—yu} . (4.5)

The product of the traces can be evaluated from the identities in Section E.1 to be,

32 ((p1 - p2)m? + (p1 - pa)® + (p2 - p)?) (4.6)
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where we have also employed the momentum conservation of Eqn. (4.3). In the centre of

mass frame we can specialise to the following representation for the momenta of the process,

= (£,p1,0,0 ps = (E,pscos,pssind, 0
po= (Bipn00) ¢=(2E,0,0,0) (B, P> ’ ) (4.7)

p2 = (E,—p1,0,0) ps = (E,—pscosf,—p;sind,0)

With respect to this choice, the cross-section for the production of an ff pair becomes,

11 Q3 m3
g = - E—
Tete=f7 S TorE16hg2Y L~ m O E )

X /07r dfsin g {64E’2 ((E'2 +m3) + (E? — m}) cos? 0)} (4.8)

Substituting the 2 — 2 phase space integral for massive final state particles, Eqn. (C.10),
g g

we evaluate the total cross-section to be,

dra®Q 2m} o 4m}
Ogtemsf] = T 1+ ? 1 — 7 0 (\/;2_— 2mf) . (4.9)

Here, we have replaced e by the fine structure constant, o = ¢*/4r. Based on this formula

the total cross-section, oror, for the rate of production for all fermions (excluding the
electron) is plotted in Figure 4.2. The quarks have a colour degree of freedom, so they
appear to contribute 3 times the cross-section that a single fermion of the corresponding
charge would—in other words, with respect to QED there are 3 types of each quark. Note
from this expression that o4 .-_, 7 drops off sharply with increasing energy. This dramatic
shrinking of the effective target size is a common feature of high energy cross-sections (it is

driven by the force-mediating propagator contribution).

Plotting Eqn. (4.9) in the form of Figure 4.2 does show the general prediction for the
cross-section as a function of the beam energy (half the centre of mass energy). It gives

some indication of the ¢ quark, the 7-lepton and the b-quark thresholds, but these are
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Ef‘f Gz'e'—v/]' [n b]

T T TTT

0 2000 4000 6000 8000 10000
Beam energy [MeV]

Figure 4.2: The total cross-section for ete™ — fT verses half the centre of mass energy: at
leading order (full) and after renormalisation of the charge (dotted). To create this graph,
we have summed over all final state fermions, excluding the electron, with rest-masses below
10 GeV. The c-quark and 7-lepton thresholds can be seen at 1.5 and 1.8 GeV respectively.
The b-quark threshold is barely visible at 5.0 GeV—its contribution to oror is suppressed
because of its small electric charge.
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Figure 4.3: Two of the contributions at next-to-leading order (in «) that contribute to the
observed process ete™ — ff.

mostly swamped by the 1/¢*> damping. The experimental cross-section is actually larger
than this simple calculation would suggest. This is principally due to large corrections from

initial state photon radiation.

4.3 Ratios: more stable predictions

Extending the calculation of the process in Eqn. (4.1) to the next order in the coupling, a, we
must at least include the processes illustrated in Figure 4.3. This corresponds to an additional
photon being radiated off the incoming particles. For the inclusive ff cross-section, where
we sum over all additional particles in the final state, all such photons contribute to the
observable cross-section. Even when we attempt to exclusively measure the cross-section
for this process, such photons can significantly affect the rate. The observed final state is
that of a ff pair in any of the following situations: if the photon carries too little energy to
show up in an experimental measurement; or it travels so close to one of the fermions that
the two particles seem to be one and the same; or, as is most likely, it escapes detection
by accompanying the spectator electrons/positrons in the incident beams down the beam
pipe. Despite the fact that the radiation of a photon costs a power of «, such radiative

processes involving un-resolved particles can, in some cases, alter the observed cross-section
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considerably. In this case the effect of radiating an initial state photon reduces the ¢2 of the

virtual photon and (see Figure 4.2) significantly enhances the apparent cross-section.

A more stable calculation, i.e. one that is more likely to compare well at leading order in
the perturbative expansion with an experimental measurement, arises from calculating the

ratio of two processes with similar radiative corrections. One such observable is the ratio

2 fte Oetem g7

RTOT = (4.10)

0'e+e—_,#—u+ .

With respect to Eqn. (4.9), this ratio and the ratio with just quarks in the numerator (Ryap)
are plotted in Figure 4.4. The correction (often referred to as the K-factor) associated with
un-resolved radiation, such as that of Figure 4.3, is present in hoth the numerator and the
denominator of Eqn. (4.10) and cancels. We therefore expect the computed value to compare
with the experimental one. The measured contribution to Ryor from the strongly interacting
quarks (Rpap) is larger than this. At higher energies this is principally due to large O(a;)
corrections. Over most of the area of this graph, however, it can be understood in terms of

resonances associated with the production of quark-bound states (hadrons).

It is interesting to note that once we are clearly above each of the threshold regions
(¢ > 4m§) this quantity, Ryor, reduces to the sum of the squared charges for all active

fermions,
RTOTz ZQ?« (411)
J#e
Since we are going to be interested in such ratios, we shall explicitly try to calculate
only the final state contribution to the cross-section, and not include the complication of the
incoming ete~ state. We shall consider a quantity like the decay rate of a virtual photon,

corresponding to the diagram of Figure 4.5. We shall sum over the 3 helicities of the virtual
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Figure 4.4: The ratio, Rro7, is shown as a full line and the purely hadronic (just quarks)
Ry ap-ratio is shown dotted. Away from thresholds, these curves take the value of the sum
of the squared charges for the corresponding included fermions. Initial state radiation, being
similar for the cross-sections in the numerator and denominator of these quantities, makes
a comparison with experiment more meaningful.
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Figure 4.5: A Feynman diagram representing the decay of a virtual photon.
photon as if it were an on shell massive vector boson, using

v v, 9
Seiter = =g + = (4.12)

As was the case with the gauge dependent part of the propagator, a vector current will cancel

against the ¢#¢” contribution to this sum.

Correspondingly, the matrix element for this process is,

Mo = Us(ps) (—1€Q7") vs(pa)es- (4.13)

Which leads to the squared matrix element of the form,

MiMo = —EQ¥Te {p s,y —m3e™ } g

2m?
= 4e2Q%g? {1 + qu} : (4.14)

Integrating over the two particle final state phase space (see Eqn. (C.10)) we obtain

2m? 4m?
Folg?) = /Dlipslng:SMo = 2aQ%¢? <1 + :;f> 1 - —q.z—f-e (\/q_z— 2mf) ., (4.15)

which, apart from the factor 2r«/3¢*, has the same form as the total cross-section, Eqn. (4.9).

Clearly, a computation for the ratio of ete™ cross-sections Rror (see Figure 4.4), based on
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Fo instead of Eqn. (4.9) will yield the same result.

The generic n-particle decay width for an un-stable particle of a given invariant mass,

M, is given by,

Mo, = (sym /Dlzps]_.n (MTM) (4.16)

decay )

As was the case for the cross-section, the factor (sym) is the symmetry factor for averaging

over identical bosons in the final state.

The quantity Fy would simply be the decay-width for the virtual photon if we divided
by twice the invariant mass of this photon and a further factor 3 for each its independent

polarisations.

4.4 The self-energy of the photon

At the same order in e (or equivalently ) as the initial state radiative corrections associated
with Figure 4.3, there is another form of correction. This arises from the purely internal

process of v* — ff — ~* and can be viewed as a modification to the photon propagator.

Guided by the non-perturbative expansion of Eqn. (2.25), we evaluate the leading con-

tribution to the photon self-energy,

. m Tr {(g + £+ m)va(F+mp)v )
B (g) = —(en’) ZQ’/ (k4 q)2 —m?+e) (k? — m? + ¢)

(4.17)

which corresponds to the Feynman diagram in Figure 4.6. The various contributions to this

equation require some explanation.
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Figure 4.6: The photon self-energy or vacuum polarisation diagram. The virtual photon
splits into a virtual fermion-antifermion pair which then annihilate to re-form the photon.

Anticipating problems evaluating the integral in 4 space-time dimensions, we have ex-
pressed Eqn. (4.17) as a d-dimensional integral. By making a variable of the number of
dimensions over which we perform a divergent (in 4 dimensions) integral, it is possible to
parameterise the divergence as a {unction of the number of dimensions, dimensional trans-
mutation [16]. This method is just one of a number of ways to regulate divergent integrals
[17]. These methods are known as regularisation procedures and the one we adopt is that
of Dimensional Regularisation (DR). It has proved popular because it can regulate both
Infra-red (IR) and Ultra-violet (UV) divergences with a single parameter. It also preserves
many of the symmetries of a physical Lagrangian, such as gauge invariance and translational

Invariance.

Whilst we shall be altering the number of space-time dimensions, it is desirable to keep
the Action dimensionless. Since each term in the Lagrangian is thus required to have four
mass dimensions it becomes necessary to make the coupling e dimensionful. Rather than do
so implicitly, we introduce an arbitrary parameter, g, with the dimensions of mass. As we

have indicated in Eqn. (4.17), the generalisation of e is thus eu® where we define,

€= ——. (4.18)



The vanishingly small € term in the denominators is defined to be positive and is a
technical device to keep track of which side of a branch cut the integrand is positioned. The
momentum ¢, as in Section 4.2, is defined to be the momentum carried by the virtual photon.
The free momentum, &, that flows around the loop takes all values for its components. When
performing the trace we shall be using the convention that Tr{1} = d. With this convention

the numerator of the integrand in Eqn. (4.17) becomes,
d <((lu +ku) ke kg + k) — gulg+ k) -k + 7"3’9;“/) : (4.19)

It is clear that separating each of these terms will lead to a sum of separately divergent

integrals; going as k? or log(k?) in the UV limit (k? — oo).

By evaluating the integral with respect to a well defined regularisation scheme, we are
effectively able to quantify the form of each divergence in the integrals. In this way, we can
cancel one divergence with respect to another and establish how divergent the total integral

really is. Having done this, we can set about compensating for it: Renormalisation.

Using the method of Form Factor Reduction (See Appendix B.4 and [18]) we can re-write

Eqn. (4.17) in the form,

. ’ d g
Zzuu(q) = (6# )2 Z Q?’z(d — 1) ( ;2 - glw)
f

X (((d —2)¢* + 47113) By (q,my,m,) — 2(d — 2)Aq (mq)) (4.20)

- quqy
= (;_2 . gu,,) 2(q?). (4.21)

Here the scalar functions Ag(q) and By(q, m g, my) are defined in Eqn. (D.2) and Appendix D.2.2

respectively.

The photon propagator function for the free theory in the Lorentz gauge (as used in
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Eqn. (4.2)) is,

~(2) 4 - s e Hule
G =L — g, | —sgdude. 4.22
O;Ll/(q) q'z ( q2 gli ) 7’6 q4 ( )

Now, since (§,4,/9* — 9, )¢" = 0, it follows that the approximation of the connected (or full)

propagator (cf. Eqn. (2.25)) that results from Eqn. (4.20) is,

GO ()= —— (g, — D) _ e duly 4.23
c;u/(q) q2+2(q2) g;, q2 26 q4 ( )

As is clear from this expression, the choice £ = 1 is no longer the Feynman gauge. However,
this is not a problem since the gauge dependent terms, ~ ¢,q,, cancel when contracted into

a fermionic vector current.

Substituting for Ao and By in Eqn. (4.20) we have,

20)2 2\ ¢
) e’Q% dmp 2—c¢ 2 2
S it 74 omi(l —1.) — ¢*Z.(1 — ¢)) . .
¥(q%) - (1+6)( 2 ) G320 ( mi(l —I) — ¢°Ze(1 e)) (4.24)
Z, is defined in Appendix D.2.2.

The physical limit (d — 4) of this expression diverges, since this is the e — 0 limit and
¥(¢*) ~ 1/e. This represents the total UV divergence of :¥,,, as it is defined in Eqn. (4.17).
With respect to a series expansion in ¢, however, there are a number of finite terms, ~ €°.

It is these finite factors, and notably those which depend on ¢?, that contain the physics of

this expression.

To what extent we expand the various factors as a series in €, is a matter of conven-
tion. There are two popular choices: that of Minimal Subtraction (MS), where all contri-
butions containing the ¢ parameter are expanded; and the Modified Minimal Subtraction

(MS) approach where the ubiquitous factor (47)T'(1 + €) is not expanded. The divergence
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of Eqn. (4.24) in these two schemes is thus,

MS e’y
(4.25)

S ¢*So = X 5Ad® (L +logar) — vp + O(e)) .

In the MS term we have, for the purpose of comparison, expanded the factor I'(1+ ¢) (using

Eqn. (A.7)). Because it is more efficient, we shall adopt MS when regularisation is required.

We define,

¢*2'(¢*) = B(¢*) — ¢*Xo. (4.26)

The finite correction to the self-energy £'(¢?), is well behaved in € — 0 limit. In this limit it

takes the form,

, 62Q2 2m2 ‘uz 5
(¢ = Z 127r"f’ ((] + q2f) J + log (—5) — E) (4.27)

¥ m f

where, we define J = (Z, — 1)/e. We note that in the small ¢* limit, the term in J actually

converges and the above expression reduces to a constant.

Writing Z = 1/(1 + %), the full propagator, G2 (q), can be written in the following

cuv

manner,
-4

9.9 .
_ _ ey 4.9
¢*(1 + Z3'(¢?)) (g“" q? ) ¢ q* (4.28)

G, (q) =

¢ v

Recalling that whenever we use a propagator it is always to join two vertices which each
contribute a coupling, e. We see that this Z in both the numerator and the denominator is
always accompanied by a factor e?. Accordingly, we can redefine (renormalise) the coupling

by replacing it with e% = Ze?. The full propagator becomes,

_ ‘Iu(IU> 3 quqv

“Wq‘qm+sﬂw»@w &) 7

7 (4.29)



with respect to an effective set of Feynman rules that are valid to 1-loop, and have a coupling
of strength, eg. The value of eg is determined by our arbitrary choice for u (of Eqn. (4.17))
and an experimental measurement at one ¢?. As was the case with e in the more naive

first order identification of Section 3.5, we identify the ¢* — 0 limit (in fact we choose the

space-like point; ¢ = —m?) with the classical coulomb law,
Ry, (4.30)
= o. .
1 4+ YX5(—m2)

The fact that ¥'(¢?) reduces to a constant in the ¢> — 0 limit, implies that the photon

remains massless even after renormalisation.

An alternative, but equivalent interpretation of Eqn. (4.28), is to say that the cou-
pling runs with ¢*. Conventionally, we define g = e}/4m and use a normal propagator

(Eqn. (4.22)) with a varying coupling constant,

1/2
R /

T (4.31)

a(q?) = ‘

In the large |¢?| limit, this expression is found to reduce to the following simple form,

xR

al(q®) = I_JZ}'Q log( )

(4.32)

It is natural, in such a limit, to say that ap = o(p?), that is to say u is the renormalisation

scale.

For all of the charged quarks in the SM, we have plotted this running coupling constant
over the full range up to the LEP energy; Figure 4.7. We observe that a((Mz = 91 GeV)?) ~
1/128. The evolution is most sensitive to the masses of the lightest quarks—reducing their

masses from 5 to 1 MeV increases o( M%) to = 1/127. The contribution from the extremely
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Figure 4.7: The running coupling a(q) plotted as a function of /|¢?| for both time-like
(dotted) and space-like virtual photons (full). The two lines differ principally at the threshold

regions for ff production.
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Figure 4.8: The Electroweak modification to the self-energy of the photon. The ghost loops
(there are two of these diagrams) contain an implicit minus sign because the ghosts are
fermionic.

heavy top quark is negligible; < .01% at M.

Further, using the rules developed in Chapter 10, we can evaluate the W* contribution
to the self-energy, as represented in Figure 4.8—this corresponds to the extension of QED to
the full Electroweak theory. The corresponding contribution can be written as a modification

to the photon self energy, Eqns. (4.25 and 4.27), of the form,

— Te? 1 Te? 4 M} p
MS 3y = ez T +¢)= Zw(e") = ~ 155 ((1 * 7;) T +log My )
(4.33)

This contribution, like that of the top quark, is negligible in the range of energies accessible
to LEP. In the space-like region (¢ = —M2) it decreases the effective coupling by ~ 0.1%.
This is also true of the time-like contribution at energies well above twice the mass of the
W-boson. However, below the W*W = threshold, which occurs at ¢ = 4M% cos? Oy, there
is a small tail to the resonance in Ij, that actually increases the value of aq? = M%): the
resonance is of the same type as the fermionic ones, but enters with a relative minus sign.

The level of this effect is ~ 0.1%, and is insufficient to change the value a( M%) from = 1/128.

96



4.5 The optical theorem

We return to the unitary property of the S-matrix as it was expressed in Eqn. (2.6). In
matrix element language, contracted between two identical states, |&), it corresponds to the

expression,

(a

T17la) = ¥ [(BI1T 1| = 2Im(aT]e), (4.34)
B

where the sum is over all physical states, |3). This relation is known as the optical theorem.
We shall give an example of its validity related to the virtual photon of the previous sections

and then, in the next section, use it to motivate some Z-particle phenomenology.

If |a) is a virtual photon state decaying as in Figure 4.5, then this expression may be

rewritten in terms ol the decay-like quantity Fo (of Eqn. (4.13)),
Folg?) = 2Im (—¢**2,.(q)) . (4.35)

The imaginary contribution to ¥,,(¢) is all from the finite contribution to the self-energy
and accordingly is not divergent with respect to ¢. Applying —g"” to the (¢.q./¢° — g.)
part of ¥,, can be seen to give a factor of (d — 1). This equals the number of independent
helicities of the virtual photon. The consequence of this is that the imagina‘ry part of the
propagator’s denominator is directly proportional to the decay width for the propagating
particle. With reference to the definition of a particle’s decay width (Eqn. (4.16)) we see

that

Im £(¢?) = /¢? Trorar. (4.36)
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4.6 The Breit-Wigner propagator and the Z resonance

te~ — ff receives a significant contribution from the in-

At higher energies the process e
termediate creation of a Z-boson. For the massive Z-boson, the argument of Section 4.4 is
modified. The free Z-propagator (cf. that for the photon, Eqn. (4.22)) is,

()7 _ T (] ) u
GE20) = oz (o = (1 -2 (@37

This function is apparently singular at the point ¢ = M%. Neglecting the gauge dependent
terms (for a recent discussion of this part see [19]), the same analysis as before leads to a

full propagator with a denominator of the form,
q* — M% + £2(¢%). (4.38)

In this case it is the mass that we renormalise. By absorbing all of the real component
of £z(¢*), which includes the divergences, we create a running renormalised mass for the
Z-boson, Mz(q?). The renormalisation point for this mass is taken to be the experimental
mass of the particle; Mz ... = MZ(M%MP!). The experimental mass is determined from the
position of the peak in the ete™ — ff cross-section, which is associated with the vanishing
of the real contribution to this denominator—its resonance!. Here this denominator reduces

to the pure imaginary component of ¥z(¢?).

In the previous section, we established that the imaginary component is nothing other

than the decay width of the propagating Z. So we can formally re-write the above denomi-

!Unfortunately, radiative corrections of the type in Figure 4.3 can shift the resonance peak to higher
energies; we shall not address that complication here.
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nator in the region of the resonance, as
¢* — M3 op + Mz eopCrOT AL (4.39)
With this denominator we obtain the so called Breit-Wigner form for the Z propagator.

We can calculate the decay rate for the Z boson. It is the sum of the partial decays of the
Z to fermions lighter than Mz/2. The process is pictorially the same as that of Figure 4.5

but with a Z-boson instead of a virtual photon. The matrix element is given by,

MZ—%]T =T(p3) 1ev* (vy — asvu) v(pa)es. (4.40)

Taking the square and averaging over the three initial polarisations of the Z (with reference

to Eqn. (4.12) and Section E.1), the mean squared amplitude has the form,

(MTM) —EeQ('v2+a2)((Z 1 2 — 8e%aim? 4.41
;taslg + " e“afym;. (4.41)

Z—f7 3

The axial contribution does not cancel against the (¢*¢”) part of the helicity sum, leadin
g p Y g

to a modification of the simple vector result for the virtual photon decay, Eqn. (4.14). To
a good approximation, however, this additional term is negligible as it is suppressed by a
factor of m%/q* (which is ~ 3 x 1072 for the largest of the included quarks—the b). Indeed,
to a very good approximation we can neglect the fermion masses completely. In this limit

the partial decay width at the Z-resonance (¢* = M%) is simply, (see Eqns. (4.16 and

C.10))

A4Z16$ la(Mé,e:c )
FZ—»f? = 4 7 pt (v} + a:}) ) (4.42)
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Substituting the values contained in Table 4.1 yields the following statistics,

Fermion  Decay-width Branching

type in GeV ratio in %
quarks, ¢ 1.69 69
(4.43)
neutrinos, v 0.50 21
leptons, 0.25 10
all fermions 2.45 100

It is interesting to note that 21% of the decays are to neutrinos, which are massless and
without electric charge; they are extremely difficult to detect giving rise to an unseen decay.
They only reveal themselves in their contribution to the propagator; namely, in a reduction of
the resonant cross-section. The experimental measurements agree well with these numbers,
except for the hadronic width (decay via quarks) for which the observed width is 1.735 &+
0.011 GeV [15]. We shall see that this can be explained in terms of a O(«;) correction to

the hadronic decay width.

To give some idea of the enhancement in the cross-section for ete™ — ff, we have plotted
the cross-section in the region of the Z resonance using the theory reviewed in this chapter;
Figure 4.9. It includes both v and Z-exchange for the coupling, a(Mz) = 1/128. We indicate
the unseen neutrino contribution to the total cross-section. As was the case previously, this
cross-section receives significant modifications when initial state photon radiation is included.
It has the effect of modifying the Z peak: moving it to higher energies, reducing its height

and broadening it. The experimental cross-section reflects this.

By running the LEP collider at a centre of mass energy equal to the rest-mass of the
Z, a large number of events have been observed. By far the largest number of these events

(~ 90%) have been via quark production.
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Figure 4.9: The Z-resonance. Here we plot the total cross-section for ete™ — ff (again
we exclude the electron). The three contributions are plotted: all channels (full); just

v-exchange (dotted); just Z-exchange (dashed). The shaded region indicates the unseen
neutrino component to the total cross-section.
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4.7 Quarks and hadrons

The form of the W-loop contribution to the self-energy of the photon is given in Eqn. (4.33).
Although small, it is interesting from the point of view that it has the opposite sign to that of
the fermionic contribution, Eqn. (4.25). This is characteristic of non-abelian (self-coupling)
theories and leads to weakening contributions in the running of the effective coupling with

increased energy.

It follows in those theories where there are sufficient flavours of gauge boson, with re-
spect to the number of active fermions, that the overall sign accompanying the self-energy
contribution is positive. Such theories are said to be asymptotically free because with higher
and higher energies their constituent fields behave increasingly as if they are free particles.

QCD, with eight gluons and six quarks, is believed to be of this type. [20]

In spatial terms, this leads to the notion of confinement—when left unexcited, the
strongly interacting gluons and quarks, each possessing colour, freeze themselves into colour-
less (colour singlet) combinations known as hadrons. It is only with respect to small distance
scales (large probing momenta) that it becomes a good approximation to say that the quarks
and gluons behave as almost free particles. In such extremes, the first few terms of a pertur-
bative expansion in the (effective) coupling can be used to calculate observable interaction
probabilities. If we attempt to separate such particles, then they begin to interact/radiate
more strongly—to the point that they can confine themselves again with new particles created
from the resource of their enormous binding energy. The method of perturbative calculation,
at fixed order in the appropriate coupling, gs, is insufficient to describe this hadronisation.

For this reason, it is often said to be a non-perturbative process.

Whilst the dynamics of such a process is not currently understood, two important features



of this fragmentation are assumed to hold true. (a) Momentum conservation is obeyed, and
(b) fragmentaiion can be considered a lale time phenomena—it is a process governed by
relatively long distances (small |¢?|). These two notions lead to the observation that at
sufficiently high energy, the coloured quarks and gluons (pertons) dictate the subsequent
hadronic momentum flow after hadronisation. In eflect, for high enough energies the hard
process that underlies the formation of hadrons is nothing other than a simple partonic

event.

The experimental observation is that of jets of hadrons often in well collimated cones.
These jets are felt to be the footprint of their hard parton initiators. To some extent,
softer calculated partons will dictate the distributions of momentum with respect to the
predominant direction of the leading jets in an event. Complete fixed order calculations are
currently limited by technical difficulty to just three partons in the final state at next-to-
leading order?. This can be compared with twenty or more final state hadrons in a typical
event at LEP. By leading order, we mean that each parton separately leads to a jet in the
final state and by next-to-leading order that one of the calculated partons does not form
a jet—it is not resolved in the final state. The definition of what constitutes a jet in an
individual event is conveniently made with respect to a jet algorithm. We shall elaborate on

two of the more popular choices for these algorithms at LEP in the next chapters.

The difficulty of many parton calculations has led to the construction of hadronisation
models. These are models inspired by aspects of perturbative QCD calculations, but are
sufficiently flexible so as to produce realistic numbers of final state particles that can be
tuned to mimic experimental distributions. Such models provide a good working description

of the products of hadronisation and have become a valuable tool in high energy physics.

2Recently, progress has been made to the level of calculating five parton processes at next-to-leading
order [21, 22, 23]. But as yet, these calculations are for all massless external states which excludes them
from use in four-particle final state calculations at LEP.

63



[24]

The notion that at the heart of high energy hadronic interactions there is a governing
hard partonic event leads to a factorisation in the method of calculation. The interaction of
hadrons, in sufficiently energetic configurations, can be factored into probability distributions
describing the partonic content of the participating hadrons and a series of hard underlying
partonic interactions. The philosophy underlying this approach being that the hard partonic
process occurs over a characteristically short time period and is insensitive to the softer

physics of the hadron.

With respect to the initial state, we speak of parton (probability) density functions,
fasn(2), which each correspond to the probability of finding a given parton, «, in a given
hadron, . The quantity = is related to the fraction of A’s momentum that is carried by a.
For a recent set of such functions for the proton, as constrained by world data, we refer the
reader to [25]. For the final state, the relationship is reversed and the probability densities
are termed fragmentation functions®, D,_,(z), where this represents the probability that a

parton, a, will become a hadron, A.

*e~, interact overwhelmingly via the mediation

At LEP, incoming elementary particles, e
of a Z-boson and generally there is little need to introduce parton densities. At other
energies, the interaction of high energy bremsstrahlung photons that radiate off the incoming
electrons can provide a significant contribution to the observed cross-section. In such cases,
these photons can often be considered to be like neutral mesons and correspondingly they

can be parameterised in terms of parton densities, f,,(2) or the associated function Fy. For

a recent review we refer the reader to [26].

As for the hadronic final states, based on the fact that all hadronic final states must

3The notation D), /,(z) is also used.
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initiate from ¢ production, we can just consider the total hadronic cross-section where we
implicitly sum over all possible fragmentations, i.e. multiply by one! This is addressed in
the next section. More challenging is the calculation of jet production rates. With next-to-
leading-order calculations, where we begin to calculate the substructure of jets, the energy

distributions amongst such jets can also be calculated. [27, 28]

4.8 The total hadronic width at next-to-leading-order

The leading order hadronic decay width has been calculated above (see 4.43) and represents
~ T0% of the total decay rate. In this section, we calculate the leading, O(a, = ¢2/4r),
correction to this, with respect to the radiation of a single gluon. In this calculation, justified
by our previous results, we treat the final state particles as massless. In such a limit there
is no difference in the form of the decay rate of a virtual photon and a Z-boson, so we shall

concern ourselves with the virtual photon decay only.

The Feynman diagrams for the amplitudes we require are given in Figure 4.10. The
first four diagrams are for the 2-particle final states and have potential interferences. The
remaining two diagrams are for the 3-particle final state, involving the real emission of a

final state gluon.

We first address the two diagrams with fermion self-energy loops, Figures 4.10c¢ and 4.10d.

These figures contain factors of the form,

+ K
~ ﬂi(th“( 7,

m%t = (2 - d) (Bo(Pq) + B’l(pq))ﬁi(l)q)]bq, (4.44)

where By and By are lorentz invariant scalar functions of pg (see Eqns. (B.24, D.3 and E.6)).
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Figure 4.10: The Feynman diagrams required for the calculation of the O(«,) hadronic decay
width.
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Since the quarks are taken to be massless, these two amplitudes identically vanish.

It is the interference between the two diagrams 4.10a and 4.10b, and the squared sum of
4.10e and 4.10f that contribute to the O(«;) correction to the inclusive decay width. Except
for Figure 4.10a, each of these diagrams is divergent over some region of its integrated phase-
space. Unlike the divergences of Sections 4.4 and 4.6, these divergences are of the IR variety.
They correspond to the regions of phase-space where the invariant mass of the quark(or
antiquark) and gluon combined vanishes. As a consequence of the Bloch-Nordsiek [50] and
Kinoshita-Lee-Nauenberg [29] theorems, the divergences will be seen to be an artifact of our
method of calculation and in fact there is no overall divergence at each order in the coupling.
These theorems basically say that, if a calculated observable is insensitive to the IR limits,

then its complete calculation at each order in perturbation theory must be finite.

Because of the divergences, we shall calculate in (4 — 2¢)-dimensions. The leading order

amplitude is, (cf. Eqn. (4.13))

Mi(q) = —ilep’)Qq Wilpg )£, vi(ps) b (4.45)

where we have explicitly written out the colour indices for the quarks, (7). In (4 — 2¢)
dimensions, Eqns. (C.6, E.6 and E.7), the squared matrix element integrated over the final

state phase-space is

oy oz (AT T(L—€) (2—€)(1—¢)
Folg®) = aQgq N( " ) Mo (o2 (4.46)

Fé(q?) is the decay-like quantity we introduced previously, but calculated here for massless

quarks in (4 — 2¢) dimensions. It can be compared with Eqn. (4.15) in the m; — 0 limit.
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The correction to this vertex, I'igure 4.10b, in the Feynman gauge (£ = 1) is given by,

dik Etp +p §
=g (P )" —4 .
(27) (k+p, +p7)t+1e"7k? + e

V.05 (Py) &-Tﬁj-
(4.47)

Mi(a) = = (en)Qq (gu1s)* |

It corresponds to the emission and re-absorption of a virtual gluon across the photon vertex,
i.e. between the quark and anti-quark. This amplitude can be reduced (see Section B.4 and

Eqn. (F.13)) to the following form,

2

Ms(q) = +i(gsp)? oV

(3 + 2€) Bo(ps + p7) + 24*Colpy, p7) ) Mi(g) (4.48)

For a complex number, C, we note that |1 + ig?C|*> = 1 — 2¢*ImC + O(g?). We write
(—1)° = exp(+ime) and contract over the polarisations of the virtual photon with Eqn. (4.12)

to give the O(a; = g?/4w) integrated amplitude squared,

. _ a, N2 =1 (4rp?\ T(1 + )T?(1 — ¢) 3+ 2¢ 2 o 2
A0 = (1- 55 () ey et { g + 5 }) A

+0(a7), (4.49)

where the suffix 2 indicates that this is the O(g?) improved F§. The term of O(«,) is the

interference of Figures 4.10a and 4.10b.

Next, we turn our attention to the pair of three final state particle amplitudes of Fig-
ures 4.10e and 4.10f (which do not interfere with the previous two particle ones). The matrix

elements for the two processes sum to give,

Iba'_*-?g
(p7+pg) +1e

+
_%% vi(pg) TE. (4.50)

M;(q) = i(en)Qq (951°) Tlpy) |, ¢g—¢g(p +
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The helicity sum for massless gauge bosons in the lorentz gauge is,

S ebler = —gv. (4.51)
i
Using this and expressing the result in terms of the dimensionless invariants,

(pr + ps)? _ 2p.-ps
q* q?

TS

, (4.52)

the matrix element squared and summed over the helicities of the particles is,

N? -1 247 y Yq
4(ep)* Q) (gop)* 2—6)1—e{—""+1—6[ﬂ+ﬂ : 4.53
(en)" Qg (9s1°)” —5—( (1—¢) — ( )yag Voo (4.53)

We have neglected some O(¢€) terms from this expression. It is safe to do this because they do
not accompany any invariants in the denominator, and consequently they cannot contribute

finite terms in the limit, ¢ — 0.

We perform the phase space integrals to obtain the following expression for the integrated
amplitude squared (for reference this is via: Eqns. (C.15 and 4.46), a change of variables

T = Y4 With z = yz,/(1 — y,,) and repeated use of Eqn. (A.10)),

ooy [asN2—1 (4np®\"T?(1—¢) [ 1—¢€ (1 1—¢ o o
i) = (5o () T 1 (& a))) 7w

The divergences, as can be seen from Eqn. (4.53), correspond to the limits that y,, and ygz,

vanish.

Using the expansion for the function I'(1 + z) given in Eqn. (A.7), we find that

(1 — 2¢)
T(1 + oT(1 - 3¢)

= exp {—g((2)62 + 0(63)} . (4.55)
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. - 2
and since ((2) = % we have,

1 Tl +¢)
I(1—3¢)  T(1—2¢)

cos(me) + O(%). (4.56)
Thus we can add Fj and G5 to obtain the total, O(as), hadronic decay rate,

Hi(¢*) = F5(¢°) + Gs(q?)

elal—€ (1 1 —e€ 3+ 2e 2 ¢/ 2
- (1 +h [21 — 3¢ (2_ 6(2—36)) B (6(1 — 2¢) +§)J> Folg"), (4.57)

where,

cos(me). (4.58)

e a, N2 —1 (4np®\ T(1 4 )1 —¢)
T 2r 2N

- q? I'(1 — 2¢)
Expanding the contents of the square brackets of Eqn. (4.57) as a series in ¢, we find that

all the negative powers in € cancel. Indeed,

Ha(e?) = (14K [3 + 0] ) ol (4.59)

Since no negative powers remain in this expression, we can safely take the (¢ — 0) limit and

find (for N = 3 of QCD)

=1+ =1+ = (4.60)

In summary this correction represents an enhancement to the hadronic width of the
Z-boson. Reconciling the leading order calculation above for the decay rate and the experi-

mentally observed rate with this expression gives a value for a,(M3%) ~ 0.1.
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4.9 IR finiteness and factorisation

As required, the O(a,) correction to the total hadronic decay rate is finite, whereas the
individual terms in its calculation are not. In physical terms, this really says that a sim-
plistic picture of individual asymptotically free particles as described by the external legs
of individual feynman diagrams is not a good approximation in some parts of phase-space.
By summing over these regions and combining the result with other terms of the same per-
turbative order, we cancel the ambiguity of what is a virtual, force-mediating, vector boson
and what can be considered a free gauge field. We sum over oppositely divergent terms to
obtain a finite result: the real gluon emission is divergently positive and the virtual gluon

negatively so.

Attempting to resolve particles in these regions leads to difficulties: experiments find
large backgrounds when they look for fixed numbers of particles in confined regions; and
calculations run up against divergences. With regard to the latter, they are unable to
include the natural perturbative antidote—the appropriate virtual correction—as this by

definition does not contain the required particle in the final state.

As indicated above, real gluon divergences correspond to the regions of phase-space where
the invariant mass of the gluon with respect to the quark (or anti-quark) vanishes. With

regard to the quark this means,

: E,E
(P, :27’9) = 5 (1= coslyy) > 0, (4.61)

Ygg =

where E, is the energy of parton r and 8, is their angular separation. That is to say, the
gluon is soft (E, — 0), or the gluon is collinear with the quark—we define the soft quark

limit to be part of this region because the gg composite has the quantum numbers of a quark.
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In terms of the experimentally observed hadronisation, probing these regions is equivalent to
resolving the sub-structure of jets and since non-perturbative effects actually dominate here
we might expect a fixed order description to break-down. Extensions of perturbation theory
into these regions are attempted via Resummation techniques and the reader is directed
to the literature for more information [30]. In QED, an analogous break-down occurs that
corresponds to the probability for multiple photon emission to increase in collinear and soft
regions of phase space. The finite resolution of experiment justifies the need to sum over

these problematic regions. [31]

Despite these problems, it is desirable to test theory more stringently than by calculating
total event rates. A solution is to define what are called IR-finite observables. These are
insensitive to the softer particles in an event. The number of jets in the large resolution limit
is one such observable. Here the soft and collinear particles cannot make jets by themselves:
they are not resolved and it is therefore possible to include different numbers of final state
particles in a single calculation which allows for the type of IR cancellation discussed in the

previous section.

Unresolved emission of partons, as characterised by the invariant mass of the unresolved
cluster, is necessarily a late-time effect. This causes problems with the factorisation of
calculations involving non-perturbative distribution functions. The assumptions used to
factorise the process were based on the distinct time-scales for the two factors: prompt for
the hard part and delayed for the soft part. With unresolved emission, the hard partonic
process extends its intrinsic time scale into that of the soft physics of the hadron. The
remedy to this overlap is to renormalise the non-perturbative function by absorbing the IR
divergence into it. This is possible because, in the unresolved limits, the partonic sub-process

factors into a hard but finite piece and a soft but divergent piece.



4.10 Summary

It has been the purpose of this chapter to review some simple phenomenology of the Standard
Model with respect to the calculation of observables at LEP. The bias has been deliberately
weighted in favour of introducing the approximations assumed throughout this thesis. These
can be summarised in the following way: in general it is a good approximation to treat
quarks as massless; the overwhelming phenomenology at LEP can be derived from Z-decay,
or equivalently, after a modification of couplings, from the decay of an off-shell photon;
and that perturbative divergences can be canceled in a meaningful manner to yield stable

phenomenological predictions.
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Chapter 5

Measuring the photon fragmentation

function at LEP

Using an algorithm that treats photons and hadrons democratically, we discuss how the
quark to photon fragmentation function, D,_,., might be measured in ‘photon’ + jet events
at LEP. Simple analytic results are given at lowest order. The possibility of determining the
glion to photon fragmentation function, D,_,., in ‘photon’ + 2 jet events is also discussed,

however, the prospects for doing so seem bleak.
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5.1 Introduction

High energy hadronic events in ete™ annihilation are observed to contain sprays or clusters
of approximately co-moving hadrons. With the aid of a suitable jet algorithm, it is possible
to resolve the rather messy hadronic final state into a cleaner skeleton of vectors or jets along
which the majority of the observed energy flows. Events are then defined by the number of
jets they contain. This jet structure is a result of the high energy perturbative nature of QCD
and one can in principle calculate 1,2,3...n jet rates using perturbative QCD. Although
the quarks and gluons are not directly observed, the jet energy and jet axis is well modeled
by a shower of partons. It is thus possible to match theoretical parton level calculations to

experimental hadronic jet rates by subjecting both parton and hadron momenta to the same

impartial jet algorithm, generally characterised by some invariant cut yeye.

In a small fraction of events one may observe an energetic photon in addition to the jets
of hadrons [32, 33]. This photon may have originated early in the development of the parton
shower, thus reflecting the electric charge of the parent quark. These ‘direct’ or ‘internal’
photons are generally well separated from the hadronic debris formed by the quark shower.
Alternatively, the photon may have been radiated somewhat later during the hadronisation
process which includes both photon emission collinear with the quark and genuine non-
perturbative effects. Physical quantities are necessarily finite and the collinear divergence
may be factorised into the photon fragmentation function [34]. Such ‘non-prompt’ photons
are usually not isolated from the other hadrons in the event and generally suffer from large

experimental backgrounds.

Former studies of photon + jet events at LEP have focused on almost isolated photons
[35], (thus reducing the fragmentation contribution) with a view to extracting the electroweak

couplings of the quarks [36]. To identify the photon, a cone-type algorithm has been applied
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where photon candidates are required to have few hadronic tracks within a cone centred on
the electromagnetic cluster. The photon is then removed from the event and a jet algorithm
applied to the remaining hadrons. Theoretical studies [37, 38, 39] for the photon + 1,2 and
3 jet rates agree reasonably well at large y.,c with experimental results [40, 41, 42, 43] even
though the corrections are rather large for the 1 jet rate. As expected, the measured quark

couplings are in agreement with the standard model predictions [40].

It is the purpose of this chapter to advocate an alternative approach to the analysis
of such final states where the contribution from the photon fragmentation function is not
suppressed. Provided the experimental difficulties in identifying non-isolated photons can be
overcome, one can then in principle measure the photon fragmentation function. LEP offers
a very clean environment for such a measurement since there are relatively few hadrons in
the event. The necessary formulae for measuring the photon fragmentation function at LEP
using both the inclusive photon data and the cone-type photon definition were presented in
[39]. However, since the fragmentation function depends on the fraction of the parent parton
energy carried by the photon z, it is potentially more useful to formulate the cross section in
terms of z rather than the energy of the photon, E,. A photon with a given energy can have
a range of values of z depending on whether or not it is associated with a group of hadrons.
It therefore makes sense to keep track of the amount of hadronic energy associated with the
photon. Although this can be done within the context of the cone-type algorithm, in order to
make comparisons with purely hadronic data more straightforward we introduce a somewhat
different photon definition than that discussed in [39], so that photons and hadrons are
grouped together democratically into potentially mixed electromagnetic/hadronic clusters.
The precise algorithm for doing this can be any of those commonly used in the analysis of
hadronic data such as the JADE/EO [44] or Durham [45] schemes. The fraction z is then

the fraction of electromagnetic energy in the cluster.
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An additional advantage of analysing the photon data in terms of the number of clusters
or jets in the event is that it enhances the non-perturbative part of the fragmentation function
that we wish to measure. In the leading log approximation, the fragmentation function grows
as ~ log(p%/Adcp) due primarily to a kinematic evolution in transverse photon momentum
with respect to its charged (quark) source. Within this approximation, the lower limit of
integration is set as the appropriate mass scale for the quarks, Agep. As discussed in
[32], this leading log behaviour is a perturbative (i.e. calculable) one and breaks down in
the limit that the photon is emitted collinear to the quark (as |pr| — Agcp). The non-
perturbative (i.e. incalculable) hadronic component (characterised above by Agep) resides
in this collinear region corresponding to the delayed emission of the photon from within a
boosted jet of hadrons. The jet or cone-type algorithm limits the allowed p7 of the photon
thus exposing the non-perturbative contribution. In particular, photon + 1 jet events will
allow the measurement of the quark to photon fragmentation function D,_,,(z, ur) since it is
present at the first non-trivial order. This would then serve as an input to other calculations
in much the same way as measurements of the proton structure function are measured in
deep inelastic scattering and used in pp collisions. Particularly interesting is the application
to single [46] and double prompt photon [47] production at the Fermilab TEVATRON where
theoretical calculations appear to disagree with the data at small transverse momentum

[48, 49].

The structure of this chapter is as follows. In Section 5.2 we review the way in which the
photon fragmentation function enters in the n jet + photon cross section. We then propose
a suitable photon definition (Section 5.3) and show in Section 5.4, with simple analytic
calculations, how the quark to photon fragmentation function might be measured in photon
+ one jet events at LEP. The possibilities for extracting the gluon to photon fragmentation
function from photon + two jet events are briefly discussed in Section 5.5. OQur main results

are summarised in Section 5.6 while the relevant analytic formulae for the photon + one jet
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cross section are collected in an appendix at the end of this chapter.

5.2 The n jet 4+ photon cross section

Let us consider the ete™ — n jet + photon cross section, fully differential in all quantities,

which at lowest order is given by,
do©(n jets + “y7) = O déo(n p + 7). (5.1)

The n parton + photon cross section dég(n p+ ) is evaluated in the tree approximation and
O represents the experimental jet and photon definition cuts. In this way the theoretical
cross section can be matched onto the specific experimental details. At this order, however,

each parton is identified as a jet and the photon as a photon.

At next-to-leading order!, the situation is rather more complicated, since in addition to
QCD corrections to n parton processes including a photon, we admit the possibility of a

parton fragmenting into a photon,

do™MO(n jets + “47) = © { fl&l(nP+7)+/d6’o((n+ ) p+7)

dE,

a

Z doo((n +1) p) dE,dzdE6(F., — zE,) D, (2) }

(5.2)

The first term in this equation represents the one loop virtual corrections to the n parton

+ photon process while the second describes the tree level emission of an additional parton.

1By leading order we mean that each parton (which includes the photon) is separately resolved. For
next-to-leading-order up to two partons maybe un-resolved and appear as a single hadronic jet.
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In both cases, a ‘prompt’ photon is produced in the hard process. The third contribution is
trom the lowest order n 41 parton process where one of the partons fragments into a photon
and transfers a fraction z of the parent momentum to the photon. Each type of parton, a,
contributes according to the parton to photon fragmentation functions D,_., and the sum

runs over all partons.

Although the physical cross section is finite, the individual contributions are divergent.
The virtual graphs contain singularities due to soft gluons or collinear partons which cancel
against similar poles from the bremsstrahlung process once the phase space of the additional
parton is integrated out. The correct treatment of infra-red divergences is well known [50, 29]
and has been discussed widely in the literature. In order to make the cancellation of poles
explicit, we use the approach of [28] to remove the divergent part of the bremsstrahlung
phase space and include it with the virtual graphs. Nevertheless, after the purely QCD
infra-red poles have canceled, there remain quark-photon singularities as the quark and
photon become collinear. These mass singularities are factorisable and can be absorbed by

a redefinition of the fragmentation function so that,

do™MEO(n jets + “4") = © { deF(n p+~) + /d&f((n +1)p+7)

dE,

a

1
) Wol(" 1) P) 4 dd B, 6(E, ~ 2,)Do(2) }’(5-3)

where each term is now finite. The resolved parton cross sections, d6®, are given by dé where
the poles are regulated by s;; = (pi +p;)? > Smin. In other words, the partons are “resolved”.
A more precise definition of the resolved parton cross sections is given in refs. [28, 37]. Here,
we will first focus on the next-to-leading order effective quark fragmentation function D,_,,

for a quark of electric charge e, which in 4 — 2¢ dimensions is related to the lowest order

2The strong coupling constant is renormalised to remove the ultra-violet poles
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(bare) fragmentation function by,

€ Smin

Dyrr(2) = Do) = + (22 ) e (32 FU = A (54)
where,
Py(z) = iH L2 m e (5.5)

z

The second term in Eqn. (5.4), is the contribution where the photon is collinear with quark
a such that s,y < Smin [28]. It is conventional to factorise the explicit 1/¢ divergence into the

bare fragmentation function D(z) at the factorisation scale yur such that in the MS scheme

(see Section 4.4, Eqn. (A.7) and [34, 39]),

Dq_w(z>=Dm(z,pF)+l(4’”‘2> . (‘;‘jj)(”“‘z) ) (5.6)

e \ pk

so that,

Drmo) = Dynteone) 4 (52 ( (L) 1 (b)) e

z 3

It is worth noting that D should be independent of the unphysical factorisation scale, since
the factorisation scale dependence only arises through a shuffling of terms between the frag-
mentation function D and the perturbative contribution to D. This implies that at this

order D(z, ur) satisfies an evolution equation determined by the perturbative content of D,

0Dy (2, i) _ (aeg) (1 + (1 - z)2> | (5.8)

dlog(u%) 27 z

A measurement at a given factorisation scale can thus be related to a measurement at a
different scale. So far, we have ignored perturbative QCD effects which alter the z depen-
dence of the fragmentation function, however, as higher and higher orders are included, more

and more perturbative terms will appear in the effective fragmentation function D(z), thus
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modifying the evolution equation for D(z, up).

We see that in the M S scheme, an artificial pole as z — 1 is introduced in the perturbative
correction to D(z). This is entirely due to the way soft and collinear poles are regulated
in dimensional regularisation. For practical purposes, this means that D(z,pur) in the MS
scheme must contain a similar logarithmic divergence so that D(z) is well behaved as z — 1.
We note that different factorisation schemes such as the DI, scheme of ref. [51] can remove

this singularity.

We also note that the effective quark fragmentation function, D, depends on the unphys-
ical parton resolution parameter s,;,. For physical cross sections this cannot be the case,
and indeed, as we will show in the next section for an explicit example, when the fragmenta-
tion contribution is combined with the resolved (n 4+ 1) parton + photon cross section, any
dependence on s, cancels provided s,,, is chosen to be small and terms of O(sy;n) can be

neglected.

At this order, the effective gluon fragmentation function receives no correction, since

there is no gluon-photon collinear singularity,

Dyy(z) = Dyy(2). (5.9)

However, at higher orders, the gluon fragmentation {function becomes coupled with the quark
fragmentation function (through ¢ — ¢ — v splittings) and has a similar dependence on the
factorisation scale. It is thus conventional to use the factorised form, D, (z, ur) even at
lowest order. The first process that this fragmentation function enters is “photon” + 2 jet

production. As with the quark fragmentation function, this can in principle be measured at

LEP.
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5.3 Photon definition

In previous analyses of photon + jet events at LEP, the observed “photon” has been almost
completely isolated from the hadronic debris. This attempts to eliminate the fragmentation
contribution by requiring that,

2>1-86, (5.10)

3. What we propose here is experimentally more difficult, since

with § very close to zero
the backgrounds for non-isolated photons are much greater. However, a measurement of the
fragmentation functions may be possible. The essence of the algorithm is to treat hadrons
and “photon” candidates democratically and to cluster them according to a standard jet
algorithm. After clustering, one of the clusters will contain the electromagnetic shower and

can be deemed a “photon” if the fraction of electromagnetic energy in the cluster is larger

than some experimentally determined value z¢,,

B Egpm
Fen + Enap

<

> Zeat (5.11)

Equivalently, one can require that the hadronic energy in the cluster is smaller than some

fraction ey, of the electromagnetic energy,

Euap 1 — zew
E ECU( = . (5.].2)
EM Zeut

An additional advantage of such an algorithm is that comparisons between jet and pho-

ton+jet rates are rather more straightforward.

There are several distinct jet algorithms in use at LEP and here we will focus on the

38 cannot be zero either experimentally, due to finite detector resolution, or theoretically since a com-
pletely i1solated photon is not infra-red safe.



JADI/EO [44] (which we shall generally refer to as E0) and Durham [45] algorithms. The
essence of these algorithins is that a test variable d;; is constructed for all possible momenta
pi and p; in the event. The pair with the smallest d;; are then combined to form a pseudo-
particle with four momentum p{ + p% provided d;; is less than the jet resolution parameter
Yeut- Lhis process is then repeated until no further clusterings occur and the number of jets
in the event and their momenta are then given by the remaining pseudo-particles. In the EO

scheme at a centre-of-mass energy /s,

sij _ (pi +p;)°
(li]’ =Yy = -Tsi = —S—]—, (513)
while in the Durham or D scheme,
E; E;
d;; = min (F;’ —E-j-) Yij- (5.14)

This latter scheme is preferred on the grounds that the soft gluon contributions exponentiate

[52).

5.4 The photon + 1 jet rate

There is no ete™ — v + 1 parton process, so the lowest order cross section defined by
Eqn. (5.1) and the first term in Eqn. (5.2) both vanish. As a consequence, the first non trivial
contribution comes from ete™ — ¢gy and e*e™ — ¢ where one of the quarks fragments
into a photon. In this way, the fragmentation function is effectively present at leading order
rather than at next-to-leading order. This makes the photon + 1 jet rate especially sensitive

to Dy_iq.
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Rather than the full ete™ cross-section, we shall consider the ratio of single photon
proeduction in association with hadrons and the total hadronic rate. The contribution from
the ete™ — ¢gy process to the photon + 1 jet rate can be obtained by integrating the

differential cross section (for massless quarks of charge e,),

1 d%¢ _ aeg z? 4 2"
s

a_od:cd:c’ N

(5.15)

2T

where the quark energy-fractions are given by « = 2E,/+/s, ' = 2Fz/\/sand z., = 2—z—z'.

In terms of these energy fractions, the scaled pair invariant masses are given by,
Yyv=1-2', yzn=1—-2, yz=1-2,. (5.16)

Up to an overall coupling and the replacement v < g, Eqn. (5.15) is just Eqn. (4.53) in the
¢ — 0 limit. Note that all y;; > Smin/S = Ymin s0 that the singularities in the matrix elements
along z = 1 and 2’ = 1 are regulated by the parton resolution cut y;,. Therefore, the three-
particle contribution to the one jet rate will depend on y,,;,. However, when comhined with

the fragmentation contribution all y,;, dependence must vanish in the small y;, limit.

If we work in the EO jet algorithm with a jet resolution parameter ycy, < 1/3 then, for a
photon cluster electromagnetic energy fraction greater than z,, the 1 jet region is defined

by the following three regions of phase space,

1: Yo7 < Ygvsr Ygvs and Yo7 < Yem
E
20 Yor < Yoo Yaw Yoo < Yeuss and i > zaw (5.17)

. . . E
3: Yavy < Yei: Yovs Ygv < Yeut; and E.,—l:'E-q- > Zeute

The corresponding Dalitz plot is shown in Figure 5.1 for yo, = 0.1 and z¢,, = 0.7. In

region 1, the quark and antiquark combine to form the jet, while in regions 2 (3), the photon
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Figure 5.1: Dalitz plot for the ¢ + ~ final state in terms of the quark and antiquark energy

fractions =z and z'.

Yeut = 0.1 and zo = 0.7 in the EO scheme.

The regions 1, 2 and 3 show the photon + one jet phase space for
The dotted lines show regions 2 and 3 for

Zeut = 0.9. Region 1 where the quark-antiquark combine to form a jet is separated from the

regions where the quark (antiquark) combines with the photon by a dashed line.

coalesces with a quark (antiquark) to form a mixed electromagnetic/hadronic cluster.

In the Durham scheme, again with y., < 1/3, the 1 jet region is defined by,

1: min (
2 min (
3: min ( I

2’

IDEE

& &
2

<

8|8

v

3!
2

l‘iﬂl

=

’Y

Jqq <1 Yeuts

) Ygv <13 Yeut
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and

E’Y

E. + E,

n

~

E, +

Ez

> Zcut,

> Zeut-

(5.18)



Figure 5.2: Dalitz plot for the ¢7 + « final state in terms of the quark and antiquark energy
fractions = and z’. The regions 1, 2 and 3 show the photon + one jet phase space for
Yeut = 0.1 and z¢y = 0.7 in the Durham scheme. The dotted lines show regions 2 and 3 for
Zeut = 0.9. Region 1 where the quark-antiquark combine to form a jet is separated from the
regions where the quark (antiquark) combines with the photon by a dashed line.

The rather more complicated Dalitz plot is shown in Figure 5.2 for y., = 0.1 and z¢,, = 0.7.
As before, in region 1, the quark and antiquark combine to form the jet, while in regions 2
(3), the photon coalesces with a quark (antiquark) to form a mixed electromagnetic/hadronic

cluster.

In the region of phase space where the quark and photon combine (regions 2 and 3), the
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fraction of electromagnetic energy in the cluster, z, is related to x and 2’ by,

2-—z— g
7T (5.19)

2—za

™

in region 2 and by Eqn. (5.19) with z « z’ in region 3. By integrating over either z or z’
it is straightforward to obtain the 1 jet + photon cross section as a function of z in scheme

S =FE0, D*

dS Dot “an 2 ]+1—Z2
1doS(ljet+9") Qwawdw)+(a?>{( (~ ))bg(j)}

oo dz 5

1 déS(1 jet + “47)
0o dz

+ R56(1 — 2) + O(min). (5.20)

Here the dependence on the scale ur has been made explicit, while the quantity R represents
the contribution to the cross section where quark and antiquark combine, thus leaving the
photon completely isolated. In this case, the photon cluster has z = 1. An explicit form
for R in the two schemes is given in the Appendix. The scale independent contribution is

given by,

log (ysz(l — z)) z

3 1+(]—z)2(zys +y5(y5—2)+(1—2z)210g (z(1+ys)—y5>)

1 d65(1jet +49") (aez) [(1 +(1-2))

o dz i z

1 -z 1—-=z 2 z(1 —z)? 2
z(1 Sy — ¢S
- Ml—zw5—4mg((‘+i) y)y (5.21)

where yZ° and y” are determined by the lower boundaries of either the z or 2’ integration,

] — =2
Eo .
= cu s 5.22
Yy min (y t’]+z> ( )
1 -2z 1 —1
D . Yo
= f 2> 2=
v 1+2z | T 14y

*We have made the natural assumiption, Dy, (2, ftr) = Dg—y(2, pF).
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= 2 stherwise, (5.23)

1 -z

with,

\/ yzut + 8ycut — Yecut (5 24)

Yo = 1

As expected, the logarithmic dependence on s,;, has canceled and the limit sp,;,, — 0 can be

1—2

safely taken. We note that as z —- 1, y — -

and therefore, the perturbative contribution
grows as log((1 — 2)?). A similar behaviour is observed with other photon definitions such

as the cone-type algorithm.

In order to turn this analytic form into a physical cross section, it is necessary to know the
process independent fragmentation function, D,—.(z, sr) in the MS scheme. The general

form of the fragmentation function which satisfies the evolution equation is,
2
Dy (2, 05) = A (Z, 7) + B(z, o). (5.25)

Here the scale pp and the associated function B(z, o) are nothing more than the constants
of integration. However, a more physical interpretation of ug could be the scale below which
the physics is non-perturbative. As discussed above and in Section 5.2, in the MS scheme,
the perturbative contribution to D contains a logarithmic singularity as z — 1. This should

be balanced by a similar behaviour in D.

To give some idea of the possible size of the 1 jet 4+ photon cross section, we consider

two over simplified choices for the fragmentation function,

Dl (z,ur) = 0, (5.26)

ael\ 1+ (1 —2)? %
DIl (z,ur) = (#) ( log( 2(1f2)2>. (5.27)

z T
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Figure 5.3: The differential cross section in the EO scheme, 1/0odo/dz, for a single quark of
unit charge for D,_,, = 0 with pr = 10 and 100 GeV and y.u = 0.1. The scale independent
rate for the D! fragmentation function with gy = 10 GeV is shown dotted, while the dashed
lines show the D!! rate for ur = 10 and 100 GeV.

The first of these fragmentation functions is clearly unphysical and exhibits only the pertur-
bative contribution to the cross section. The result therefore depends strongly on pp and
becomes negatively divergent as z — 1. This is shown for the EO scheme in Figure 5.3 for a
single quark with unit charge and pp = 10 and 100 GeV. We see that there is a change in
slope at 1 —z = ff%“ ~ 0.18 because events with y,, > Yo are identified as “photon” + 2

cut

jet events where the photon cluster has z = 1.

On the other hand, the second fragmentation function is an exact solution of the leading
order evolution equation Eqn. (5.8), and therefore the factorisation scale dependence is
eliminated. Furthermore, the log(1—z) behaviour is canceled so that, as shown in Figure 5.3,

the differential cross section is positive for all values of z. Although this fragmentation
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function satisfies the leading order evolution equation it is not intended as a substitute for

an experimental determination of D,_,,.

As a final example, we take the large up solution of the next-to-leading order evolution

equations obtained by ref. [53], consistent with its use in [47],

« ) ( 22.21 —1.282 + 1.2922

2
I _ 0.049 _ ,\2.,—1.54 HE
D2 (z,pr) = (27r & 1163 og(1 —2) z +0.002(1 — 2)*2 ) log ( ) ,

Ajep
(5.28)
where Agep = 0.2 GeV. As shown in Figure 5.3, there is a significant scale dependence, since
this solution contains perturbative contributions that are not included in our calculation.
It is also interesting to note that as z — 1, this fragmentation function does not appear
to nullify the explicit log(l — z) appearing in the leading order perturbative contribution

and the rate becomes negative. We therefore drop this fragmentation function from further

consideration.

However, at present we do not know the fragmentation function and the purpose of
this chapter is to motivate such a measurement at LEP. Of course, at LEP, both up- and

down-type quarks are produced so that, in principle, the combination,

2 (V24 a2)Dyy(z,0r) + 3 (v} + a2) Dy (2, ur)
DLEP z = u i uU—y\ <y d d SANE 5.29
gy (%3 1F) 2 (v24a2) 43 (vi+dd) ’ 29

where v, and @, are the vector and axial vector couplings of quark ¢ with the Z boson, can

be determined in photon + 1 jet events.

The fragmentation function must contribute with respect to some scale pr. Unlike deep
inelastic scattering, there is no obvious choice for this scale, and the best one can do is
to choose pup of the order of a few GeV. We will take ur = 10 GeV and 100 GeV to be

representative choices. Measurements at different scales are related through the evolution
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Figure 5.4: The differential cross section, 1/g¢do/dz, for D, ., = 0 with yr = 10 and
100 GeV and yeu = 0.1. The data points show the distribution in bins 0.01 wide, while the
solid lines show the analytic result. The open square data points shows the distribution for
the D! fragmentation function with go = 10 GeV.

equation and in principle should yield identical results. Once a factorisation scale has been
chosen, the difference between the data a®*F and Eqn. (5.20) with D,_., = 0 provides a

lowest order measurement of the fragmentation function,

(2) 1 da(l jet +“9")

o dz 0o dz

1 (1 de"™ (1 jet + “y")
LEP
Dq-"y(zﬁ‘F) = 5 <—

(z,;LF)IDM:o). (5.30)

In Figure 5.4, we show the z distribution in the Durham scheme for the appropriate
mixture of up- and down-type quarks normalised to the total hadronic cross section for ete”
collisions at /s = Mz with pr = 10 GeV and 100 GeV. The smooth curve is the analytic

distribution of Eqn. (5.20), while the data points show the differential cross section integrated
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over bins 0.01 wide. As expected, this unphysical distribution depends strongly on pp and
is negative for quite a wide range of z. The divergent behaviour as z — 1 is clearly seen.
These effects are reflected in the highest bin of the histogram centred at 2 = 0.995, where
the Ra contribution from the quark combining with the antiquark is added to the integral
of the distribution from z = 0.99 to 1. Even though one would expect the end bin to be
insensitive to the fragmentation contribution, because of the way the M S scheme treats the
z — 1 region, there appears to be a sizable effect. This is largely due to cancellations that
should take place between D and the perturbative part of D. In a different scheme, such as
the DIS., scheme [51], this effect may be reduced. To give some idea of what a physical z
distribution might look like, we also show the rate for the D! fragmentation function, again
with po = 10 GeV. There is a sizable increase in the end bin because the log(1 — z) behaviour

of the perturbative contribution in D is canceled by that of the fragmentation function.

In the EO scheme, the z distribution looks rather similar, however there are two main
differences. First, at small z the cross section is slightly reduced due to the different definition
of y5. This occurs for z < i—::;ﬁ-:- = 0.82 and reduces the differential cross section by 0.0004
at z = 0.7 independently of the scale. Second, the quantity R is much larger in the Durham
scheme as can be deduced from the Dalitz plots shown in Figures 5.1 and 5.2. Once again,

the difference between the two schemes is scale invariant and decreases the distribution in

the end bin by 0.0043.

It is also straightforward to integrate over the allowed values of z to obtain the one jet

fraction,

o5(1 jet + “4”) /1 1 do(1 jet + “47)
o zeus O dz
1
= 2 D,_(z,pr) dz + F° + R3

Zeut

+ (%) { (l——;c_llt - 2(1 - ZC‘"’) - 210g(zcut)> 108 (;%") }(531)
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Figure 5.5: Photon + 1 jet rate in the Durham scheme as a function of the jet separation
parameter Yeye for zey, = 0.99 with D,,, = 0 and pr = 10 and 100 GeV. The dashed line
show RX in the Durham scheme while the rate for the D! fragmentation function with
to = 10 GeV is shown dotted.
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The scale independent function F'¥ is somewhat lengthy and is given in the Appendix. We
see that the scale dependence is the same for all schemes, reflecting the fact that it originates
in a subtraction in the collinear limit. The one jet fraction normalised to the total hadronic
cross section is shown in Figure 5.5 for the Durham scheme as a function of yy for Dy, = 0
with zey, = 0.99. As in the z distribution shown in Figure 5.4, even for this very restricted
range of z, the cross section does depend strongly on the factorisation scale. At small ycys,
the cross section diverges logarithmically in both schemes,

S 1iet W 2 1 — 22
o”(Ljet + ") (O‘eq> {( U 21 — Zew) —2log(zm)) log (ycuc)}, (5.32)

0o T 2

with a coefficient determined by z.,. For comparison, we show the scale independent Ra
contribution which tends to zero at small y.,,. Once again, we also show the total cross
section for the D!/ fragmentation function. Even for z > 0.99, the total rate is sensitive
to the form of the fragmentation function due partly to the log(1 — z) behaviour of the
perturbative part of D, but also to the additional log(1 — 2) term from the boundary of

phase space.

At large zcy, the cross section simplifies dramatically,

05(1 jet + “47)
(2]

— R3, (5.33)

which is simply the contribution when the quark and antiquark combine to form the cluster.
Figure 5.6 shows the one jet rate in the Durham scheme normalised to the total hadronic
cross section for fixed y.u as a function of 2.,. As expected, the unphysical prediction
(Dy—~ = 0) depends strongly on the choice of scale. The difference between the data and
solid curves with g = 10 or 100 GeV therefore represents a lowest order measurement of
the integral of the fragmentation function at that scale provided that the non-prompt #°

background has been correctly subtracted. As éxpected, we see that as z,, — 1, the rate
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Figure 5.6: Photon + 1 jet rate in the Durham scheme as a function of the electromagnetic
energy fraction ze,, with Dy, = 0 for pp = 10 and 100 GeV and ye,, = 0.1. RZ 1s shown as a
point on the right hand axis. The rate for the D'/ fragmentation function with po = 10 GeV
is shown dotted.

95



becomes independent of the choice of fragmentation function as described by Eqn. (5.33).

This is also true for the more physical D/ fragmentation function.

5.5 The photon 4+ 2 jet rate

Unlike the previous case, the e*e™ — v 4 2 parton process does not vanish and therefore,
the fragmentation function which appears at next-to-leading order is suppressed in the total
cross-section. The cross section is thus dominated by the lowest order contribution which
occurs at z = 1. On the other hand, the fragmentation function contribution comes from
the lowest order ete™ — ¢Gg¢ process and is potentially sensitive to the gluon fragmenta-
tion contribution. In fact, the two jet rate depends on a combination of quark and gluon

fragmentation functions,

Qg (2 D;Jfflyj(zuu'l") + Dg—»'y(ZHU‘F')) )

so that in addition to the particular combination of quark fragmentation functions as mea-
sured at LEP, a knowledge of the strong coupling constant is also required to have any chance

of extracting the gluon fragmentation function.

It 1s straightforward to compute the full next-to-leading order QCD corrections to this
process. The necessary resolved parton one loop ¢gy and bremsstrahlung ¢gyg matrix el-
ements have been described in [28, 37] and can be directly implemented in a Monte Carlo
program along with the fragmentation process as described by Eqns. (5.3 and 5.6). The
resulting z distribution in the Durham scheme is shown in Figure 5.7 for z < 0.99 and
Yeut = 0.1. As in the one jet case, the predictions with the unphysical choice D,_,, = 0 show

a dependence on the factorisation scale which should be compensated by a more physical
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Figure 5.7: The differential cross section in the Durham scheme, 1/oydo /dz, for photon + 2
jet events for D,_,, = D,_,, = 0 with pp = 10 and 100 GeV (dashed) and yey = 0.1. The
dotted line shows the distribution for the D! fragmentation function with pg = 10 GeV.
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choice such as that given by Eqn. (5.27). Nevertheless, the variation of the two jet rate with

the lactorisation scale is rather small,

NLO Tot “an LO(9 ; “an 1 — 2)2 2
6(_1_d0 (2 jets + “y )):4%0 (2 jets + “4™) ( + (1 )) log (i}) (5.34)

ol dz 3 o) z Tt

This indicates that even with a physical fragmentation function, the two jet rate for z < 0.99
is small. It is important to note that, once the fragmentation function DIEF has been

g—

established using the one jet data, it can be directly applied to estimate the two jet rate.

So far we have not discussed the gluon fragmentation function, which at lowest order
does not exhibit factorisation scale dependence and is merely a function of z. In principle

one can hope to make a determination of the lowest order gluon fragmentation function at

LEP,

3a 263(v2 4 a2) 4 3eA(vi 4 ad) oy
o (idaEXP(?’ jet + “,y»)(z) _ L(ZG’NLO(Q jet + “’7,,

Dg—w(z)

o dz o dz

)(z)lpgﬁﬁo) , (5.35)

where the measured quark fragmentation function is used as an input in o™£© and oEXP
represents the measured data. In practice, however, the event rate is rather small and it is

unlikely that such a measurement can be meaningfully carried out.

Because the lowest order process contributes at z = 1, as expected the z > 0.99 region
completely dominates the cross section. This is clearly seen in Figure 5.8 where the total
two jet + photon cross section at next-to-leading order for z > 2., is shown in the Durham
scheme as a function of z., for ye, = 0.1. The lowest order cross section, O'LO(2 jets +
“4")/ o0, is 0.0004. The bulk of the cross section, (81% for the D! fragmentation function),
exists at z > 0.99. While for smaller z,, the integrated rate is ext.remely flat reflecting the

rather small do/dz distribution shown in Figure 5.7.
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Figure 5.8: The photon + 2 jet rate in the Durham scheme as a function of the electro-
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function is shown dotted.
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Figure 5.9: The next-to-leading order photon + 2 jet rate for a; = 0.1087 divided by the
leading order rate in the Durham (solid) and E0 (dashed) schemes as a function of the jet
separation parameter Yy for zey = 0.99.

We also see that as zq,, — 1, the contribution of the fragmentation function is extremely
small, since the scale dependence almost vanishes. In other words, the nearly isolated photon
cross section is insensitive to the fragmentation function in the two jet case and can be
safely used to determine the quark electroweak charges [36, 40, 41]. For such purposes it
is instructive to compare the relative size of the next-to-leading order corrections compared
to lowest order. In Figure 5.9, we show this ratio for z > 0.99 as a function of y.,. In
the Durham scheme with o, = 0.1087, the correction amounts to about -12% at large ycu:,
eventually exceeding -50% at y.. = 0.005. For larger values of «,, the corrections are
relatively more negative. On the other hand, in the E0 scheme, the corrections are much
larger and imply that higher order corrections are necessary to have any reasonable prediction

of the two jet rate in this scheme for almost the whole range of ycy,.
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[t is interesting to compare the size of these corrections with the two step cone algorithm
used in previous analyses. Here the photon is required to be isolated within a cone typically
of half angle 15°. It is then removed from the event and the remaining hadrons clustered
according to a jet algorithm. Of course, the photon is not completely isolated and can
have 200-500 MeV of hadronic energy within the cone. This is approximately the same
as requiring z > 0.99. The radiative corrections in this scheme for the E0 algorithm are
relatively small [37). However, we now see that in the “democratic” E0 algorithm, the
corrections are large and negative. This is because the gluon is more often clustered with
the photon since the effective cone size is larger. The requirement of little hadronic energy
in the cluster then eliminates more events, thus reducing the cross section. Despite the fact
that the “democratic” EO scheme suffers large corrections, the “democratic” Durham scheme
seems perturbatively stable for a reasonable range of yc,.. We note that in all algorithms,
as yeu decreases the correction becomes large since the gluon is resolved as an additional jet

thus reducing the two jet rate.

5.6 Summary

Throughout this chapter we have focused on photon production where the “photon” carries
a large fraction of hadronic energy. This necessarily involves the photon fragmentation func-
tions, Dy, and Dy_,,. In photon + one jet events at LEP, the quark fragmentation function
enters effectively at lowest order. Such events can potentially provide an experimental deter-
mination of the fragmentation function at large z. With the aid of simple analytic results,
we have shown how the fragmentation function might be extracted at leading order for a
“democratic” algorithm where photons and hadrons are treated equivalently. It is important

to note that the fragmentation function measured with such a democratic algorithm should




be identical to that obtained from a cone-type definition. Furthermore, the fragmentation
function should not depend on the value of y.,, at which it is determined. This provides a

cross check on the measurement.

The gluon fragmentation function D,_,., enters into the “photon” + two jet rate. However,
it does so only at next-to-leading order. As a result, the cross section is only weakly sensitive
to the gluon fragmentation function and it seems unlikely that a useful measurement can be
made. On the other hand, the large z or almost isolated “photon” + two jet rate is largely
insensitive to either quark or gluon fragmentation function and it should be possible to use

these events to determine the quark electroweak charges.

We have seen that the next-to-leading order corrections to the photon + two jet rate
are quite large and negative in the democratic algorithm. For cone-type algorithms, the
corrections to the one jet rate are larger than for the two jet rate. One might expect that

they might be important here as well and should be investigated.

The most important question to answer, however, is whether or not it is experimentally
possible to observe the non-isolated photon signal at LEP. The main background is from r°
decay into two photons. By requiring large z, the number of 7%°s in the cluster can be reduced,
however it is still a significant experimental problem to resolve two almost collinear photons
from 7° decay when the cluster energy is close to Mz /2. This is a detector dependent issue
and requires much study. Nevertheless, provided that the non-prompt background from #°
decay can be experimentally controlled, events containing a single jet give an unparalleled
opportunity to measure D,_,.,. This may then be used as an input to other calculations
such as the inclusive photon spectrum at the Fermilab TEVATRON where the theoretical

uncertainty will be reduced. A determination of the small z gluon structure function may

then be possible.
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5.7 Postscript

Following the work contained in this chapter, the ALEPH collaboration have measured the
photon fragmentation function at LEP. With respect to Eqn. (5.25), they find a parameter-

isation of the form

D}, (z,up) = (Zf) {1 + (12* 2)° log (ug(lﬂ% 2)2) + B} ) (5.36)

is consistent with their data, where po = 0.16 £ 0.2 GeV and B = —12.9 & 2.9. This

function has been measured for a democratic photon definition and the Durham clustering
algorithm in the region 0.7 < z < 0.95. With respect to their fit, the preferred values for

these parameters are po = 0.2 GeV and B = —12.4. [58]

For comparison with Figure 5.4, we include graphs of this fit plotted with respect to the
ALEPH data, Figure 5.10, as it appeared in Ref. [58]. It is clear that our approach gives a
consistent description of the available data. Note the rise of the data over the fit for all but
the smallest value of y.,, shown. Following an analysis with the two hadronisation models
ARIADNE and HERWIG [24], ALEPH conclude that this rise is due to large hadronisation
corrections in this region. This point is illustrated by Figure 5.11, which is a comparison
of the z values for 1-jet + photon events at the parton level and then at the hadron level
as given by ARIADNE. In reaching the hadron level, they observe a significant fraction of
‘isolated’ parton level events populate the 0.95 < z < .99 bin. This spilling over of events is

noted to increase with ycu. For yeue = 0.1 there is a = 20% migration of events.

Accordingly, ALEPH choose to define ‘isolated’ 1-jet + photon events as those events
with z > .95 and a comparison of the data to the full calculation, including the above

parameterisation for the photon fragmentation function, is shown in Figure 5.12. Whilst
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Figure 5.10: Comparison between the 1-jet + “photon” data and the full calculation in-
cluding the ALEPH preferred fit for the photon fragmentation function. The large con-
tribution to the 0.99 < z < 1 bin is essentially the Ra contribution. The graphs
are for four different values of y.,. The quantity represented on the vertical axis is
10 X 1/omap do(1-jet + “photon”)/dz.
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Figure 5.12: The ‘isolated’ 1-jet + photon rate plotted as a function of y... This
graph shows the dependence of the “isolated” rate as a function of the jet resolu-
tion parameter y.,. Good agreement between the calculation of this chapter and the
ALEPH data is observed in the central region of this plot. The vertical axis is 10® x
1/ouap Jogsldo(1-jet + “photon”)/dz] dz.
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good agreement over the central range of y... is observed, taking the data as a whole it
would appear that the overall slope is steeper in ¥, than the calculation would suggest. It

is hoped that extending the calculation to the next order will address this difference.

The 2-jet + photon events (with a soft photon cut of £, > 5 GeV) are observed to be
mostly insensitive to the fragmentation process, as might be expected since the leading order
process is non-zero. For completeness, we show a comparison between the expe}‘imental rate
and the predicted rate which includes the fragmentation function as measured in 1-jet +
photon events. It is soft gluons that give the gentle slope to the high z region of the graphs,
but the isolated, z = 1, leading order (¢gy) contribution to the cross-section dominates the
end bin. The effect of a rise in the cross-section from the collinear ¢y region appears to be

suppressed over the whole range of z plotted.

The treatment of the asymptotic solution to the fragmentation function D! (z pup) of
Eqn. (5.28) [53], in the main text of this chapter was based on its apparent use in a calculation
of direct photon production [47]. Perhaps a more appropriate use of this function is as follows:
for a suitable choice of scale, up, chosen to characterise the size of a photon jet, we can hope
to obtain from D!!(z, ;) the fraction of all hadronic final states that contain a photon of
energy fraction z. In Figure 5.14, we have plotted the differential distribution in z of the 1-jet
rate for y.,, = 0.1. We include the ALEPH data and a number of curves. The full line is the
calculation documented above using the ALEPH fragmentation function. The dotted curve
is 2 x DMI(z, 4u* = M%) and as is to be expected this lies well above the observed rate. The
dashed curve is interesting in that it is simply the ALEPH measured fragmentation function
2 x D®(z,u? = yPM2%/3), where y° is the z dependent dimensionless invariant describing
the size of the quark-photon jet (it is defined in Eqn. (5.23)). The factor 1/3 is inserted
by hand and approximates the value of the non-logarithmic remainder to the complete

calculation. The agreement of this curve with the full calculation suggests p% = yPM2/3
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is an appropriate choice. The remaining (dash-dotted) curve is 2 x DT (2, p? = yPMZ/3).
Whilst the normalisation of this curve seems about right, it does appear to be somewhat
flatter than the data would suggest. Figure 5.15 is the same as the previous graph but for
a smaller jet resolution parameter, y., = 0.01. Again, 2 X D”I( TR JDM2/3) does not

compare well with the data.

Appendix

In this appendix we give explicit formulae for the integrated cross-sections for the one jet

plus photon events in various regions of phase space (see Figures 5.1 and 5.2).

The quantity Ea is the contribution from the region where the quark and antiquark
combine to form a jet. For the two schemes considered here we find that (for a quark of

charge e,),

f

REO (a_eg) /ycut Ay /1—2qu dys, (1 = yg7)* + (Yo7 + ¥34)?
2r J Jo Yo (1 — Y97 — ¥31) Vv
0162 3 cu ¢
= (Trl) [_281)(1 - ycut) - 2Sp(2 Yeut — 1) + y4 - (?'ycut - ]) + %

5 Yeut yzut
+ lOg(l - 2ycut) '8" - 2]Og(2 - 2ycut) + ]0g —_ Yeut + ,(537)

1 {)ycut 2

and,

.‘!cn\ .'l —

Rg = REO + (a_e_z.) / (quq /yc||\+yqq l - yﬁ’y)z + (yq.(i _+_ y_q_’y)2
Yeur Ya (1 — Yo7 — Yav) Yo

ae2

= (-ﬂi) [ (syw 9yo — 5 — 4(2 +y0)108(y0))%0‘ + (g - log(4)) log(1 — 2yo)

qut (2 + yO)yO)
+ lo 2log(1 — + —
¢ ((ycut 1 - 2JO)) ( g( ) 2
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Figure 5.15: A comparison of the ALEPH data (at yc, = 0.01) with a more intuitive use of
the DT and D® fragmentation functions.
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where,

ycut + yO 5 (3 + 2 log(ycut)) ycut
9 __ v — — —
("‘ IOg ( 2?/cut, ) + 4) ycut (l ycut) 4

Yeut — Yo Ycut Yo — Yeut
log | Yoot 20 (\/— —-)—2 D VIRt 210g%(1 — few
0g(1_~ycut) y t‘+ 2 Sp(l—' ycut> Og( y t)

\/ Yeut + Yo Yeut \/ycut + Yo 2
1 e — (\/ cut — ) - 28 ('——"— —21 1+\/7cu;
Og(1+\/ycut) Yout 2 P 1+\/ycut o8 ( Y ')
210&(1 - \/ycut) log(\/ycut h yO) +2 log(l + ycut) IOg(v Yeut + yO)

s

2
25p(2y0 — 1) — 4Sp(1 — yo) + Sp(1 — Yeue) + —],

3

1
Yo = Z( V y(?ut, + 8ycut - ycut)-

The Spence function, Sp, is given in Eqn. (A.14).

(5.38)

Where the photon and the quark (antiquark) combine to form a cluster with electromag-

netic energy fraction greater than z.,, we find that the scale independent part of the 1 jet

cross-section is given, in the EQ scheme by,

where,

F‘EO = [l(zcuta 3/)

. 1- Zcut
Yy = min { Yeut, T) .
“cut

In the Durham algorithm, for z,, > 0.5, we find,

with,

l—=z
14z

FP =1 (n:, ) + 0 (20 — zcur) {42(20) = T2(2cur) }

T = maXx (ZO, zcut) )
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and,
1 —yo
1+yo

20 —

The integral I)(a,b) has the following form,

L(a,b) = <fe—3){<1‘2“2 —2(1—a)—2]og(a)) log(b(l—a))+;(1—a)

T

b (Sa = (14— 2a)2) e (4 - (14—— a)z) L 95p ((1 —aa)b)

_ 2
—2S5p(2b) — 2Sp(1 —a) + (ﬂ—;—ﬂ> log(1 — 2b) — log*(a)

a? _2a o _(1=a)b ab
T () Ll (e R e

b? a?
— (—2- - 2b) log(a — (1 — a)b) — (—é— - 2(1) log(a)}, (5.41)
while,
_ . 1 2 ycu(.> (Z - 4) z
12(2) - (Z 9 (1 _ 2)2 + 1 — Z) Yeut (1 + 9 + ( 9 + 2 108(2) log(ycut)
Z2ycut (ycut - 4) Yecut
+ 4 + 1_ 2 + Yeue (3 + Yeue) log(l — 2) + 42 + (2 — 4) zlog(z)
1— 5—-6
+ (2 log(——) + e j)2> log(1 — yeur) + 2 log?(2). (5.42)
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Chapter 6

Soft Gluon Radiation in Photon plus

Single Jet Events at LEP

‘Isolated’ photon events at LEP have been defined using either a cone algorithm (where
the photon is isolated in a cone and the remaining particles clustered with a jet algorithm)
or a democratic algorithm (where all particles are clustered and the cluster containing the
photon is identified as the photon). By studying the flow of soft gluon radiation in ‘isolated’
photon + single jet events at LEP we give a qualitative explanation of the size of radiative

corrections in the different schemes.
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6.1 Introduction

Recently e*e™ annihilation events with hadronic final states containing an ‘isolated’ photon
have attracted both experimental [40, 41, 42, 43] and theoretical interest [35, 38, 37, 39]. The
physics motivation for studying such events is that the photon preferentially couples to up-
type quarks, and therefore this event sample is enriched in up-type quarks. A measurement
of the quark couplings to the Z boson [36] is thus possible. However, since a perfectly isolated

photon is not an infrared safe quantity, it is necessary to discuss exactly what is meant by

‘isolation’.

Exp‘erimenta]ly, the photon candidate has been defined in two ways. In the CONE
algorithm, the photon and all particles in a cone of half-angle 0. are removed from the event
to form the photon cluster. The remaining particles are then scanned for jets using a jet
algorithm such as the JADE/EOQ [44] or Durham [45] schemes with a jet resolution parameter
Yeus- In the democratic (DEMO) algorithm, the jet finding algorithm is applied to all particles
in the event. The ‘jet’ containing the photon is then interpreted as the photon candidate. In
both cases, in order to reduce the background from #® decay, the photon cluster is required

to contain little or no hadronic contamination and the variable

__ B
T E,+ Ey

Z

(6.1)

where E) is the hadronic energy in the cluster, is constrained to be close to unity. Since it
is very hard to detect very low energy particles, for practical purposes an ‘isolated’ photon

may be accompanied by O(500 MeV) of hadronic energy.

Theoretical calculations have used both the democratic [35] and cone-type [38, 37, 39]

algorithms. In order to cancel the infrared singularities associated with soft gluons, the soft
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gluon must be allowed within the photon cluster. However, if all coloured partons are to be
treated equally, then the quarks within the event should also be allowed inside the photon
cluster and may be collinear with the photon. The quark-photon collinear singularity 1s
regulated by the photon fragmentation function. To eliminate the uncertainty due to this
fragmentation function, the theoretical calculations have compromised by allowing a small
amount of gluonic energy into the photon cluster, but not allowing quarks to cluster with
the photon. Since different calculations allow different amounts of gluon energy inside the
photon cluster, the calculations are not in complete agreement [54]. To reconcile these dif-
ferences it is necessary to treat the quark and gluon equally and to involve the fragmentation
function properly [39, 55]. Even then, the region around z = 1 is problematic since radiating

additional soft gluons may change = significantly.

6.2 Radiative corrections to the one jet rate

The i1ssue we wish to address in this chapter is the size of radiative corrections in the different
photon algorithms for photon + 1 jet events. It has been noted [35] that in a democratic
scheme the corrections are small. In other words, the ratio of next-to-leading to leading
order cross sections (K factor) is close to unity. On the other hand, in the cone type scheme,
the corrections are quite large and negative [38, 37], K < 1. Clearly the absolute size of the
correction is determined by how the soft gluon region is treated, nevertheless, the relative
size of the correction is determined by how the isolation cuts affect gluons with an energy
above the energy allowed within the photon cluster. The K factors in both CONE and
DEMO schemes for both the E0 and Durham jet algorithms are shown in Figure 6.1 using

the theoretical definition of ‘isolation’ as described in ref. [37]. We see that for all ye., and
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for both jet algorithms,

Kpemo > Kconeg.

By dressing the lowest order e*e~™ — ¢gy matrix elements with a soft gluon and examining

the radiation pattern, we hope to show why this is so.

6.3 Lowest order events

The leading order contribution from the ete™ — ¢gy process to the photon + 1 jet rate

is given by integrating the differential cross section (for massless quarks of charge e,),

(Eqn. (5.15))

oo dzdz’ ~ \ 2x

1 d%o _ aeg x4+ 2"
(1—2)(1-2')’

over the allowed region of the Dalitz plot. Here x and z’ are the quark energy-fractions given
by z = 2E,/\/s, @' = 2Ez/\/s and ., =2 — x — 2’. In terms of these energy fractions, the

scaled pair invariant masses are given by,
Ypo=1—-0a', yzy=1—2, yz=1-2,, (6.2)
where Yij = (p,' +pj)2/8 = S,'J'/S = 2E1E7(1 — COS 0,‘_7')/3.

The Dalitz plots for “isolated” photons with the CONE and DEMO schemes are shown
in Fig. 6.2 for both the E0 and Durham algorithms. In the CONE scheme, the quark-photon
singularities at 0,, = 0 and 65, = 0 which lie along the sides of the Dalitz plot are regulated
by the photon isolation cut .. In the DEMO scheme, the effective cone size for the photon
cluster is much larger and consequently the cross section, for 8, < 90°, is much smaller [37].

Note that as is the case for pure jet analysis the Durham scheme [45] affords more phase
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Figure 6.1: The ratio of next-to-leading order to leading-order cross sections for ete™ —
1-jet + ‘isolated’ photon production at LEP energies in the CONE scheme (with 6, = 15°)
for the Durham (solid) and EOQ (dotted) jet algorithms and in the DEMO scheme also for
the Durham (dashed) and EO (dash-dotted) jet algorithms.
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Scheme E”V/ﬁ Eq lmrr]/\/g Eq so[t._/ \/E qu hard 07:} soft 09'?

CONE Durham 448 475 077 173 61 126
CONE EO0 .486 .468 047 176 81 103
DEMO Durham  .475 419 .106 169 126 65
DEMO EO0 487 427 .085 173 132 55

Table 6.1: The average value of energies and angles for 1 jet + ‘isolated’ photon events with
Yeur = 0.06 and 8, = 15° for the different schemes. All angles are in degrees.

space to the analysis for a given y.,, than that of the E0 scheme.

The topology of the average (planar) event in the CONE and DEMO algorithms are
quite different. As showﬁ in Table 6.1, in the DEMO scheme, the average energy of the
softest quark is larger than in the CONE scheme while the average angle between the quark
and antiquark is much smaller. In the CONE algorithm, the softest quark typically lies
relatively close to the isolation cone so that y,4sof 1s minimised. Momentum conservation
then requires 03 to be large while the requirement that the ¢ and § coalesce to form a jet
forces E, s to be relatively small. On the other hand, in the DEMO scheme, because the
photon is in principle allowed to cluster with the quark/antiquark, the isolation criterion
forces the 0,454 to be large. As a consequence, 85 is much smaller and E, o somewhat
larger. Within a given scheme, we see that 0, is smaller with the EQ jet algorithm than in
the Durham scheme. This reflects the extra phase space admitted by the Durham algorithm
which is principally at large angles. The difference in the average angle between quark and

antiquark will influence the colour flow in the event at higher orders.
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Figure 6.2: The Dalitz plots of isolated 1-jet 4+ photon events with ye,, = 0.1 for (a) the
CONE algorithm with 8. = 30° and (b) the DEMO algorithm. The 1-jet phase space is
the region enclosed by the main diagonal, the isolation cut (dashed line) and the clustering
algorithm - dotted line for EO clustering and the dash-dotted line for the Durham algorithm.
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6.4 The soft gluon distribution

The next-to-leading order corrections involve the addition of a gluon to the event in its real
and virtual forms. The physical cross section is the result of a cancellation between the
divergent (and positive) bremsstrahlung process and the divergent (and negative) virtual
process (cf. Eqn. (4.57)). The isolation cuts will play an important role in determining the
size of the bremsstrahlung process since they will veto the allowed configuration of the ¢gvg
final state. The radiative cross section is largest when the gluon is soft. In this case, the

matrix elements undergo the usnal soft factorisation in the limit £, — 0,
2 2
|Magyg® — SkIMgg |, (6.3)

where the soft eikonal factor S is given by,

Sp o~ 2 (6.4)

Yag¥aeq

One can therefore study the effect of the isolation cuts on the bremsstrahlung process by
fixing the energy of the gluon to be soft and examining the colour flow with respect to the
partons of the underlying ¢gy event. The more that the isolation cuts restrict the allowed
phase space for the soft gluon to be outside the photon cone, the smaller the radiative

contribution will be. The K factor will be correspondingly smaller.

In Fig. 6.3 we show radial plots, in the plane of the underlying event, of the soft eikonal
factor, SF, The ¢gy configurations chosen are the average final state energies and angles,
appropriate to (a) the CONE scheme and (b) the DEMO scheme for both the E0 and
Durham algorithms as given in Table 6.1. The shaded regions of the plots indicate the

forbidden region for gluon emission as dictated by the isolation cuts of the different schemes.
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(a)

(b)

Figure 6.3: Eikonal factor plots for a soft gluon lying in the plane of the underlying 1-jet +
photon event for yc,. = 0.06 in (a) the CONE scheme (with 8, = 15°) for the Durham (solid)
and E0 (dotted) jet algorithms and (b) the DEMO scheme for the Durham (dashed) and
EO0 (dash-dotted) jet algorithms. The ¢gy configuration represents the average configuration
as described in Table 1. For reference, the energy vectors for the Durham scheme are
also plotted. The scale is radially logarithmic and normalised to the minimum value of the
eikonal factor in the DEMO EOQ scheme. The shaded regions indicate the appropriate photon
isolation cut for each scheme. In (b) the darker shaded region corresponds to the E0 isolation
cut.

122



The quark and antiquark form a coloured antenna that radiates gluons [56]. The radiation
is greatest in the direction of the quark (antiquark) corresponding to the singularity in 1/s,,
(1/s47)- Nevertheless, there is significant soft gluon radiation at other angles. The radiation
patterns clearly reflect the differences between the CONE and DEMO schemes. In the CONE
scheme, the antenna is bent to one side of the exclusion cone surrounding the photon. As a
result, the radiation pattern is stretched on the side opposite the soft quark and compressed
between the quark and antiquark. The colour flow in such events is still relatively spread
out, and soft gluons are able to identify sources of colour flow all around phase space. In
the I50 scheme the average angle between quark and antiquark is smaller and this effect is

slightly enhanced relative to the CONE Durham scheme.

In contrast, in the DEMO scheme, the antenna has been bent much more—the average
angle between quark and antiquark is less than 90° and the compression/stretching of the
radiation pattern is much more significant. Together the quark and antiquark form a colour
singlet antenna out of which only hard gluons, with a small wavelength, are able to radiate;
i.e. soft gluons are unable to resolve the macroscopic dimensions of the jet. The physical
consequence of this is that the soft gluons are radiated in the region between the two quarks
where they can see two colour sources. In the limit that y., — 0, 8,7 — 0 and the antenna
closes up. The jet has no net colour and there should be no soft gluon radiation outside of
the jet. This is precisely what we are seeing in Fig. 6.3. As is true in the CONE case, the

effect is more marked with the EO jet algorithm than the Durham scheme.

We can now interpret these radiation plots in terms of the photon isolation cuts. When-
ever there is a significant overlap in the energy flow of soft gluons into the isolation cone,
those events will be vetoed by the isolation criterion. We can see that in the CONE algo-
rithm; there is a significant overlap in the energy flow of soft gluons into the isolation cone.

In contrast to this the soft gluon flow in the democratic events is almost exclusively away
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from the photon and relatively few soft gluon events will be eliminated by the isolation cuts.

We therefore expect that

}CDEMO > ,CCONE

We would also expect that hadronisation effects (and their influence on isolation) would be
relatively smaller in the DEMO scheme precisely because the colour flow is largely contained
within the jet. Experimentally, jet + photon events in the DEMO scheme should look rather
clean in the hemisphere containing the photon. Indeed, it would be an interesting test of
QCD to compare the energy flow (particle multiplicity) in ordinary two jet events where each
jet is nominally a colour triplet with the energy flow (particle multiplicity) in democratic jet

+ photon events where the jet is almost a colour singlet.

Finally, we can make some comments about the jet algorithm dependence of the K factors
within a given photon definition. In the democratic analysis, we see that (a) 8,z is smaller and
(b) the angular region excluded by the isolation cuts is smaller in the E0 scheme compared to
the Durham scheme. Crudely speaking, the EO scheme is better at reaching into the wrong
hemisphere to pull the gluon away from the photon and combine it with the quark-antiquark
pair. This is precisely the feature that made the EO scheme unattractive for purely hadronic
final states. These arguments indicate that the EO scheme will be more stable to radiative
corrections so that,

~DEMO DEMO
Kro > Kp , (6.5)

as is seen in Figure 6.1. In fact, unlike ordinary purely hadronic jet events (and the CONE
type photon + jet events where the éo]our antenna is relatively straight and the colour flow
is more spread out), as Yeue — 0, we do not resolve more jets because the radiation is largely
within the jet and the K factor does not diminish for small y.,.. This is more marked in the
DEMO EO scheme because the average value of 83 is smaller than in the DEMO Durham

scheme.
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In the CONE type algorithm, these simple arguments do not tell the whole story. We
see 1n Figure 6.3 that isolation cuts do play a more significant role in the Durham scheme,

however, contrary to our naive expectations, we see from Figure 6.1 that,
JKCONE , fcCONE

The reason for this discrepancy is that the typical energy of the soft quark is much lower in
the CONE EQ scheme than in all the other schemes. This is shown in Figure 6.4 as a function
of the jet resolution parameter ycy. Typical]y, the soft quark in this scheme has an energy of
only a few GeV, significantly less than in the other schemes. To understand how the isolation
cuts affect the isolated photon cross section, we have focused on soft gluon radiation with
an energy that is in principle resolvable by an experiment, which is typically of O(1 GeV).
This is not much less than the average energy of the softest quark in the CONE EO0 scheme.
Therefore, we might expect that the soft gluon approximation is not very reliable in this
case and, although the gross features are correct, the radiation pattern does not accurately
describe the distribution of soft gluons for this particular scheme. Consequently, the detailed
ordering of K-factors in the CONE scheme cannot be not explained by the rather qualitative

discussion presented here.

6.5 Summary

In this chapter we have attempted to understand the relative sizes of QCD corrections to
‘isolated’ photon + 1 jet events at LEP which depend quite dramatically upon the scheme
used to define the ‘isolated’ photon. To do this we have examined the colour flow of soft

gluons with respect to the underlying hard scattering and how the isolation cuts restrict the
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Figure 6.4: The average energy of the softest quark at leading order for ete™ — 1-jet +
‘isolated’ photon production at LEP energies as a function of y.,, in the CONE scheme (with
6. = 15°) for the Durham (solid) and EO0 (dotted) jet algorithms and in the DEMO scheme
also for the Durham (dashed) and E0 (dash-dotted) jet algorithms.
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allowed phase space of the soft gluon. While these arguments are rather qualitative, they do

describe the more quantitative results of Figure 6.1, namely,

}CDEMO > K:CONE

At the same time, we can understand the hierarchy of radiative corrections in the DEMO

scheme.

6.6 Postscript

Courtesy of the ALEPH collaboration, we include an example of a z = 1 isolated Durham
DEMO 1-jet + photon event, Figure 6.5. In accordance with the expectations of this chapter,
we note the extremely clean hemisphere associated with the photon. In addition, we note
that the event as a whole only contains 6 hadrons—which can be compared with the more
normal ~ 20+ for a purely hadronic event: This is consistent with notion of a colour confining

antenna of the form in Figure 6.3b.
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Figure 6.5: Courtesy of the ALEPH collaboration we present a z = 1 Durham DEMO 1-jet
event. Note that all of the hadrons are confined to the hemisphere not containing the photon.
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Chapter 7

The photon + 1 jet event rate with
the cone algorithm in hadronic

events at LEP

Using the recently measured photon fragmentation function, we make predictions for ‘iso-
lated’ photon + 1 jet events using a cone type algorithm at LEP energies. For small cone
half-angles, perturbation theory breaks down due to the presence of large logarithms. Fur-
thermore, large hadronisation corrections are present. We suggest a definition of an ‘isolated’
photon which avoids these problems at small cone sizes and can be extrapolated to the reli-

ably calculated large cone region.
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7.1 Introduction

As noted in the previous two chapters, there has been some recent interest in studying
‘isolated’ and non-isolated photon production in hadronic final states in ete™ annihilation at
LEP energies, /s ~ Mz [57, 41, 42, 43, 35, 37, 38, 39]. An ‘isolated’ photon is accompanied
by essentially no hadronic energy, while a non-isolated photon cluster is characterised by
the fraction z of electromagnetic energy compared with the total energy of the cluster,

(Eqn. (5.11))
L Epm
Eem + Enap
The original motivation for making this distinction was to try to measure the electroweak
couplings of the quarks using ‘isolated’ photons where the background from n° — v was
not severe [36]. It is difficult to resolve the two photons from an energetic 7° and the pion

0 is usually

can appear as a single electromagnetic shower in the calorimeter. Since a 7
accompanied by other hadronic debris, to reduce this background, it was required that few
(or no) tracks occurred close to the electromagnetic shower. In non-isolated language, this
corresponds to z ~ 1. From the theoretical standpoint, perfectly isolated photons are not
infra-red safe since the isolation is spoiled by the emission of soft gluons and consequently
soft hadrons into the photon direction. Provided that the non-trivial experimental problems
in removing m° background can be overcome!, it makes more sense theoretically to study
the production of non-isolated photons and subsequently define an ‘isolated’ photon cluster
as having z larger than some cutoff, z,. However, in allowing some hadronic energy to
accompany the photon, we admit the perturbatively divergent possibility that the photon

was emitted from a collinear massless quark. In reality, this happens at large times, cr ~

1/./S¢y, s0 that in practice the quark has already hadronised and this final state collinear

!The ALEPH collaboration claims to be able to remove the 7° background for z > 0.7 [58] and it may
prove possible to extend this to z > 0.5
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divergence can be factorised into a non-perturbative quark to photon fragmentation function
at factorisation scale gz in much the same way that initial state collinear divergences are
factorised into parton distributions [34]. The pr independent cross section then contains

two components,

o ~ o(v+ partons)(ur) + D o(partons) De_r(2, tF), (7.1)

a=quarks

often denoted ‘direct’ and ‘resolved’ respectively which individually depend on pp. It is
important to note that in order to correctly absorb the infra-red divergence, each con-
tribution should be evaluated at the same order in perturbation theory [59, 55], i.e. if
o(y + partons)(ur) is evaluated at O(aa?), then o(partons) should be evaluated at O(a®)
since D,_,.,(z, ptr) is O(a) in the presence of isolation [39] (and not O(a/ca;) as commonly
quoted in the literature). Once measured, the parton to photon fragmentation function,
Dyarton—ny(2, 1tr), can be applied to a wide range of processes just as the proton parton den-
sities are extracted from deep inelastic scattering experiments and used in hadron hadron

collisions.

Previously (see Chapter 5 [55]), we described how the quark to photon fragmentation
function could be measured in ‘photon’ + 1 jet events at LEP using a democratic algorithm
to define the photon cluster: all particles (including the photon) are subjected to a clustering
algorithm and the cluster containing the photon is designated the photon cluster provided
that z > z¢,,. This ‘photon’ + 1 jet rate is especially sensitive to the fragmentation function
since the lowest order process, ete™ — 4 + parton, vanishes, while the next-to-leading order

O(a®) ‘photon’ + 1 jet cross section, schematically given by,

o~0o(qqy)+ Y, o(qq) Daor(z,pr), (7.2)

a=4q,g
does depend on the fragmentation function.
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Following the ALEPH measurement of this function using a democratic photon definition
with the Durham clustering algorithm in the region 0.7 < z < 0.95 [58], one finds that the
‘photon’ + 1 jet data (after subtraction of the rather large 7° background) can be described

by a fragmentation function of the form, (Eqn. (5.36))

N _ ae\ [14+(1—2)° I
(B L ) o) o

where pg = 0.20 GeV and B = —12.40. The particular form of the fitting function is

motivated by requiring that (a) the cross section is independent of pp and (b) the cross
section is well behaved as z — 1. This latter point requires some further clarification: the
‘direct’ contribution acquires one factor of (1 — z) in the logarithm from using dimensional
regularisation and the MS scheme to isolate the divergence as s,, — 0. The second factor of
(1 —z) comes from the boundary between the phase space regions where either the quark and
antiquark combine to form the jet or the quark(antiquark) and photon combine to form the
photon cluster. By explicitly removing these factors with this form of fragmentation function
we ensure that the differential distribution is well behaved as z — 1. In this chapter, we
wish to make predictions for the ‘photon’ + 1 jet rate using the cone type photon definition
currently in use for ‘isolated’ photon studies at LEP. The fragmentation function as measured

by ALEPH should enable this quantity to be reliably predicted.

7.2 Photons defined with respect to a cone

The CONE algorithm for ‘isolated’ photon production [57, 41, 42, 43] can be straightfor-
wardly carried over into the non-isolated case. First, a cone of half angle é is placed around

the photon and all hadrons inside the cone are clustered with the photon to form the photon



cluster such that z > z.,.. Second, all hadrons outside the cone are subjected to a jet-finding
algorithm, typically the EO/JADE [44] or the Durham [45] algorithms, with a jet resolution
parameter yey.. Third, the photon cluster is resolved from the jets according to a resolution

parameter y_,.

As discussed above, the first non trivial contribution to the ‘photon’ + 1 jet rate comes

te™ — ¢gy and ete™ — ¢g where one of the quarks fragments into a photon. The

from e
Dalitz plot for the ¢gv final state is shown in Figure 7.1 for the Durham and EO0 jet algorithms
with § = 60°, yeur = y2ue = 0.1 and 2z, = 0.8 in terms of the quark and antiquark energy

fractions,
2E,
IR

where y;; = si;/s = (pi + p;)*/s and z, = 2F,[/\/s = 2 — z — z'. This plot is basically the

=1 —=yqgv, (7.4)

SIE

same as that of Figure 6.2b, the only difference is that here we indicate a non-unity z..
value. In region 1, the quark and antiquark coalesce to form the jet and the photon cluster
has z = 1, while in region 2 (3), the quark (antiquark) combines with the photon to form a
mixed cluster with 2z < 1. The dashed line separating regions 1 and 2, shows the effect of
the cone size in determining whether the quark combines with the photon or the antiquark.
The collinear divergence occurs at ¢’ = 1 and = 1 respectively and lies along the edge of
regions 2 and 3. This singularity can be absorbed into the ‘resolved’ photon contribution
from ¢q final states where one of the quarks fragments into a photon. The 1 jet + ‘photon’

cross section (for massless quarks of charge e,;) as a function of z in scheme S = F0, D is

then given by (Eqn. (5.20)),

L) gy () [0 2

oo dz I

1 dé(1 jet + “4”)
o dz

+ + R36(1 — 2). (7.5)
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Figure 7.1: Dalitz plot for the ¢g + v final state in terms of the quark and antiquark energy
fractions x and z'. The dotted and dash-dotted lines show the ‘photon’ + one and two
jet regions for § = 60°, yeu, = Yoy, = 0.1 in the Durham and EO schemes respectively. The
regions where the quark-antiquark combine to form a jet are separated from the region where
the quark (antiquark) combines with the photon by a dashed line. The boundary in z for
Zewt = 0.8 curtailing regions 2 and 3 is shown solid.
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Here the dependence on the scale ur has been made explicit, while the quantity R repre-
sents the jet algorithm dependent contribution to the cross section where quark and anti-
quark combine, thus leaving the photon completely isolated. In this case, the photon cluster
has z = 1. Unlike the democratic algorithms, Ra is the only scheme dependent contribu-

tion. The factorisation scale independent (but cone size dependent) contribution is given by,

(Eqn. (5.21))

Oo

(e o )

— 41~ z2)y —4 log <f_(ﬁi)_‘1)] . (7.6)

1d(1Jet+“ 2 ( [HI—Z))lOg(yz(l—z))“

z

Here y is the maximum value of y,, allowed when the photon and quark combine,

yz—(l— 1—21))—1 wherebzz(l-—z)(l—cosé). (7.7)

v

In the limit z — 1 this boundary is given by,
1
y—>:2-(l—z)(1—cos6), (7.8)

which is to be compared with the analogous large 2z boundaries in the democratic Durham
and EO schemes of y = (1 — z)/(1 4 z) (see Eqn. (5.23) [55]). We see that in both cases,
the boundary contains the same (1 — z) factor, so that with the choice of fragmentation
function given in Eqn. (5.36), the cross section should in principle be well behaved as z — 1.
Furthermore, for 6 = 90°, the large z limits for the cone and democratic algorithms are

identical.

There is a slight subtlety since there is a discontinuity in z across this boundary - for



Yoy > Y, 2 = 1, while for y,4 < y, z < 1. This causes a problem when hadronisation
effects are taken into account—the process of going from the parton level to the hadron level
can cause a sizable shift in z. Although this mismatch exists in both democratic and cone
algorithms, the problem is most severe when the matrix elements are largest - i.e. when y is
small. In the democratic case, analysed by ALEPH [58], this problem is visible in the data as
a spillover from the z = 0.99—1 bin to the adjoining z = 0.95—0.99 bin (see Figure 5.10). To
get round this problem and to make a sensible comparison with the parton level predictions,
ALEPH have defined an ‘isolated’ photon as having 2 > z,, = 0.95 and compared that
with the parton level prediction for z > 2. Since the z # 1 contribution (all the terms
in Eqn. (7.5) apart from Ra) tends to zero at high z in the democratic Durham scheme,
the result is dominated by Rs. By doing this, the uncertainty in z due to hadronisation
effects is reduced where the cross section is largest. Hadronisation corrections can still move
events from z = 1 to values of z < z,, however, this occurs at larger values of y,, where
the cross section is smaller. With this procedure, ALEPH find good agreement between the
theoretical predictions for the democratically ‘isolated’ photon + 1,2 and 3 jet rates [58].
In the cone algorithm, because y is somewhat smaller than in the democratic scheme, we
expect that the mismatch between the z measured at the parton and hadron levels where
the cross section is significant will extend over a larger range of z and that the corresponding

value of z;, should be smaller.

The differential cross section 1/ogdo/dz for the appropriate combination of light quarks
at LEP energies is shown in Figure 7.2 for the CONE algorithm (this contribution is inde-
pendent of the choice of hadron clustering algorithm) with yey, = v = 0.1 and § = 90°,
60°, 30° and 15". As noted earlier, for § = 90°, the cone and democratic algorithms merge at
large z so that it is no surprise that the z distribution for § = 90° is well behaved as z — 1.
However, for smaller cone sizes, although finite the distribution is negative for z close to 1.

This is balanced by the rapid increase ol Ra with decreasing cone size.
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Figure 7.2: The differential cross section 1/oodo/dz, in the CONE type schemes and yeue =
y2,. = 0.1 for the appropriate combination of light quarks at LEP energies with the ALEPH
determination of the fragmentation function. The cone size is § = 90° (solid), § = 60°

(dotted), § = 30° (dashed) and é = 15° (dash-dotted).
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Based on the previous discussion, we expect that after hadronisation corrections the Ra
contribution is partially smeared to lower z values, thereby filling in the negative region and
creating a physically sensible positive definite distribution. To make a sensible comparison
with experiment, it is necessary to introduce a suitable (§ dependent) choice of 2. Clearly,
for § = 90°, the ALEPH choice for the democratic algorithm would be appropriate, z;,, =
0.95. However, we see that as § becomes smaller, the negative region rapidly extends to
much smaller values of z so that a much smaller value of z, is required. We can understand

this by looking at the small 4 limit,

s = () )

™
1 do5(1 jet + “47) ae? (1 + (1 - Z)2> )
— - - = - log (7). (7.9)

The z = 1 contribution (Ra) grows logarithmically as § — 0 at the expense of the z < 1
fragmentation contribution. This is precisely the region in which perturbation theory breaks
down because we try to resolve the collinear region where the fragmentation contribution
is important. At small cone angles, the Ra contribution alone becomes meaningless. Note
that in many studies of ‘isolated’ photons, the cone size is chosen to be 10° — 20° so that it is
important to attempt to make a sensible prediction for ‘isolated’ photon + 1 jet production

with small cone angles at LEP energies.

To estimate the cross section in the small é limit it is vital to include the fragmentation
contribution. This can be done in a well defined way, that avoids the large logarithms of the
cone angle while simultaneously reducing the hadronisation corrections, by extending the
boundary between the ‘photon’ + two jet region and region 1 (the dotted and dot-dashed

lines in Figure 7.1) onto the 2 = 1 or 2’ = 1 axes such that,

D _ Vovoune
sto - 1_ Yeut,
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zfg = 1 = Yeus- (7.10)

With this choice, the log(1/6) from Ra precisely cancels with a similar logarithm from the
fragmentation region so that the cross section is almost independent of the cone size. This is
exactly what we would expect; varying the cone size within the fragmentation region should
not affect the cross section since we are unable to resolve any structure within this region.
Furthermore, hadronisation corrections which slightly change z (z') and move events from
region 1 to region 2(3) or vice versa, do not change the cross section. As a consequence, we
expect that the cross section for z > 23 (where S = D, EO0) is a reliable estimate of the

‘isolated’ photon + 1 jet rate at small cone angles.

Figure 7.3 shows the ‘isolated’ photon + 1 jet cross section normalised to the total
hadronic cross section as a function of the jet resolution parameter y.,. In Figure 7.3a,
the cone size is 20° and the data is taken from ref. [41], while in Figure 7.3b, § = 15° and
the data is taken from ref. [57]. In both cases, the solid lines show the lowest order Ra
contribution. As discussed in the previous chapter [37, 38, 60}, the O(«;) corrections to Ra
are large and negative (~ —45%), so that reasonable agreement with the data can be made
for a; ~ 0.12 [57, 41]. These large corrections reflect the confusion over the precise definition
of an isolated photon. On the other hand, the § independent ‘isolated’ photon + 1 jet cross
section for z > zj, defined by Eqn. (7.10) (dotted line) is significantly closer to the data
which suggests that (a) the hadronisation effects are modeled better and (b) that the higher

order corrections to both Ra and the fragmentation region are of a more reasonable size.

It is interesting to ask how the ‘isolated’ photon + 1 jet cross section varies as a function
of the cone angle. At large angles, 6 ~ 90°, the prediction merges with that for the demo-
cratic algorithm used to extract the fragmentation function while at small angles, we see

from Figure 7.3 that the prescription described by Eqn. (7.10) is reasonable. By measuring
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Figure 7.3: The ‘isolated’ photon + 1 jet cross section Ra (solid) and leiso 1/oodo/dz dz
(dotted) for (a) § = 20° in the EO scheme and (b) § = 15° in both Durham and E0 schemes
as a function of the jet resolution parameter y.u. 250 is given in the text, whilst the data is

taken from Refs. [57, 41]
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the cross section as a function of §, we can hope to extract further information about the
fragmentation region. To make a rough estimate of how the cross sectioﬁ varies for interme-
diate 8, we can adapt the phenomenological ALEPH approach to solving the hadronisation
problem and choose the value of z separating ‘isolated’ from non-isolated photons to be the
value of z where the boundary between the fragmentation and quark-antiquark combination

region takes the value y = yp such that for § > 6,

1 (1 — cos ég)

where,
8Yo

cosdg=1— ———.
0 (14 yo)?

(7.12)

For y > yo (2 < zp) we can in principle use perturbation theory to examine the fragmen-
tation region, however for y < yo (z > 20), we cannot reliably resolve the photon from the
accompanying hadronic debris and therefore assign the event to the ‘isolated’ photon cate-
gory. In the democratic scheme, ALEPH find zs, = 0.95 corresponding to yo = 0.025 to be
a suitable choice [58] which corresponds to a cone size of 8o = 35.9°, and an apparently large
invariant mass for the photon quark cluster of &~ 14 GeV. Therefore, as a first estimate of
the cone size dependence of the cross section, we define the value of z separating ‘isolated’

from non-isolated photons to be,
Ziso = max (2, z0). (7.13)

This is shown in Figure 7.4 for both the Durham and E0Q schemes with yeu, = yo,, = 0.1 and
Yo = 0.025. The solid lines show the iogarithmically increasing R contribution while the
dotted lines represent this approximation. At large values of §, ziso — 0.95, while for small
values of § (6 < 39° in the Durham scheme and § < 61° in the EQ scheme), zs, — 0.68 and 0.9

respectively. As expected from Eqn. (7.2), at large cone angles, the cross section integrated
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Figure 7.4: The ‘isolated’ photon + 1 jet cross section Ra (solid) and leiso 1/oodo/dz dz
(dotted) for z, given by Eqn. (7.13) in the Durham and EO schemes as a function of the
cone angle & for ycy, = ¥y = 0.1. The data is taken from Refs. [57, 41] and [58]



above zj, and Ra are rather close; perturbation theory is working well and the hadronisation
corrections are small. The z distribution tends to zero as z — 1 and the contribution from
1 > z > zje 1s small. On the other hand, for smaller values of § this is no longer the case
and the rapid growth of Ra is counterbalanced by the increasingly negative contribution
from 1 > z > z,,. Around é§ ~ 40° in the Durham scheme, the overall contribution from
1 > z > zjs 1s slightly positive resulting in a cross section slightly larger than Ra. The
available data from OPAL [57] and ALEPH [41] are also shown. For comparison, we also

show the ycu = 0.1 point from the democratic ALEPH analysis [58] at § = 90°.

7.3 Summary

In this chapter we have attempted to utilise the recent ALEPH measurement of the photon
fragmentation function to predict the ‘photon’ + 1 jet rate using the cone algorithm. How-
ever, at small angles there are large hadronisation corrections and large logarithms of the
cone size. To avoid these problems, we have defined an ‘isolated’ photon as having z > z,
where zj, is given in Eqn. (7.13). At small angles, we find rough agreement between our
lowest order prediction and the available data. This is quite remarkable since previously
large negative O(c,) corrections to the ‘perfectly’ isolated photon event rate (Ra alone)
were necessary to describe the data. We expect that the O(c,) corrections to the ‘isolated’

photon + 1 jet rate using our definition will be small.

At large cone sizes, the cone algorithm is very close to the democratic algorithm used
to extract the photon fragmentation function. Accordingly, we expect the prediction of the
large 8 cross section to be reliable. Motivated by the ALEPH data, we have also provided an

estimate of how the ‘isolated’ photon + 1 jet rate depends on the cone size. A measurement
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of this dependence should provide yet another probe of the fragmentation region.
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@hap‘ter 8

Z boson decay into photons

We perform a complete one-loop O(a*) calculation of the coupling of the Z-boson to three
photons via both fermion and W boson loops keeping the full dependence on the quark and
W masses. To evaluate the W boson contribution to the fourth rank polarisation tensor
we use the unitary gauge. We find that the contributions from fermion and boson loops
are remarkably similar. Expressions for the helicity amplitudes are presented. The results
are applied to the decay Z — ~vvyy where we find a partial width of about 1.35 eV for
Miop > 91 GeV and sin? y = 0.23, of which the W boson loops account for approximately

0.3 eV mainly through their interference with the fermion loops.
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8.1 Introduction

One interesting aspect of quantum field theories is the generation of interactions that are
not present at the classical level. Such interactions occur when a virtual pair of particles is
emitted, radiate further particles and are then reabsorbed. The most famous example of this
is the scattering of light by light which was first studied in the context of quantum electro-
dynamics [61]. Since the photon only interacts directly with charged particles, this process
first occurs at O(a*) when four photons are attached to a charged fermion loop. In other
words, at one-loop the effective action contains terms that couple chargeless fields. Within
the SU(2) x U(1) model of electroweak interactions, there is also a contribution at the same
order from charged boson loops. Although it has been shown that the boson contribution is
finite for photon-photon scattering [62, 63], as indeed it must be in a renormalisable theory,

the effects of the W loops have not been widely studied.

Recently, prompted by experiments at LEP, attention has focused on the decay of the Z
boson into photons [64, 65, 66]. The two photon decay is forbidden by Yang’s theorem, how-
ever the three photon decay is allowed and the fermion contribution is well known [67, 68, 69].
As dictated by the Appelquist-Carrazone decoupling theorem [70], the top quark contribu-
tion rapidly decouples for m,, > Mz/2 and can essentially be ignored. The remaining light
leptons and quarks give a contribution to the amplitude proportional to the vector coupling
with th;e Z boson, vy and the cube of the electric charge, ;. A closed form for the light

fermion contribution to the partial width can be found [71, 69],

21 My

3 3 7
F(Z — ’)”‘/"/) = oz (3Zq:€qu + ZI:GI 'U]) 6 E;g )x, (81)
where,
o T . a1,
X = 2000; — 8m7(s + Txm' — 1280 + —-n” — 124 ~ 14.954, (8.2)
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and (, is the nth Riemann zeta function. The factor 3 multiplying the quark contribution is
due to colour. For five flavours of light quarks, «(Mz) = 1/128, az = a(Mz)/ sin? Oy cos? Oy
and sin? Oy = 0.23, we find,

I'Z — yyy) =1.05eV. (8.3)

In addition to the fermion loop contribution, there is also a contribution from W# boson
loops which probes the non-abelian nature of the electroweak model. Both trilinear (WW+y
and WWZ) and quartic (WW~y and WW~Z) vertices contribute and in principle this
provides a test of these couplings. In practice, however, if these couplings deviate from the
structure dictated by the SU(2) x U(1) gauge theory, the W boson loop contribution is
incalculable. Three calculations exist in the literature. Baillargeon and Boudjema [64] use
a non-linear R gauge [72}], while Pham [65] and Dong et al. [66] use a linear R, gauge. By
making an approximation where My, is large compared to all other scales in the problem,
Refs. [64] and [66] find that the W loop alone contributes about 0.02 eV to the Z boson
width, approximately 50 times smaller than the fermion contribution. Pham, estimates that
the total Z — v~y width for both fermion and boson loops is about 2 eV. No estimate exists

where the exact dependence on both My and the unknown top quark mass is kept.

It is worth noting that in all three cases, the ’t Hooft-Feynman gauge is chosen so that

= 1. This gauge has the particular advantage that the k*k" part of the W boson propagator
is zero so that individual diagrams do not contain superficial divergences. On the other hand,
these gauges do contain many more diagrams than the unitary gauge due to the propagation
of the unphysical Goldstone boson and ghost fields. For the purposes of this chapter, we
choose to minimise the number of Feynman diagrams and use the unitary gauge. It is
straightforward to cancel the superficial divergences before reducing the tensor integral to

scalar integrals in the usual way [18].
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The organisation of our chapter is as follows. In Section 8.2, we construct the polarisation
tensor for the Z~v+v coupling. Due to gauge invariance and the possibility of exchanging
identical photons, this tensor be described by three independent scalar amplitudes (rather
than four [66, 73]). We find that the boson amplitudes are (surprisingly) closely related to
the fermion amplitudes. In order to translate the polarisation tensor into a physical decay
width, we introduce helicity amplitudes in Section 8.3. Numerical results for the Z — v~

partial width are given in Section 8.4, while the main results are summarised in Section 8.5.

8.2 'The Zvyvvy polarisation tensor

The matrix element, 7, for the scattering of an on-shell Z boson with three on-shell photons

can be written as,

T = ea(pa)en(pr)e(pa)e,(ps)T > (p1, p2, p3), (8.4)

where we denote the ingoing momenta and Lorentz indices of the photons by pf, p4, p§ while
the momentum and Lorentz index for the Z boson is p§. Using momentum conservation,

the momentum of the Z boson is related to the photon momenta by,
Py = =Py —p3 — PS5, (8.5)

so that the polarisation tensor for the Zyvy+v coupling, 7***?(p,, p2, p3), depends only on the

three photon momenta.

The most general fourth rank tensor contains 81 terms of the type p!p%pipf, 54 terms

®
1

of the type pi'p?g”® and 3 terms of the form ¢*“¢”*. However, the general tensor must

have certain properties which provide relations between the different terms and allow for a
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somewhat simpler expression. For example, using the fact that in the matrix element, the
tensor is always contracted with physical polarisations for on-shell photons allows us to make
the identification,

Py = py = p5 = 0. (8.6)

#
1

This drastically reduces the number of terms to 24 terms of the type p!'pZpipf and 30 terms

of the type p!p7g*® while the number of g**¢** terms remains 3.

We also note that the tensor must be completely symmetric under interchange of the

photon momenta and indices,

Py & py o ps e pi (8.7)

It is therefore useful to write the tensor in a manifestly symmetric way,

T"“""(P’hpz,]’s) - Z Ma“"p(Pl,P'z,Ps), (8.8)

perm

where the sum is over the six possible permutations of the photon four momenta. Gauge

invariance requires that the tensor is transverse,

p1x TP (p1,p2,p3) = paw T4 (p1,p2,03) = p3, T**(p1,p2,p3) = 0. (8.9)

This reduces the number of independent terms to 3 so that,

o 1 P5PY o\ of Ph Py
M lwp(PlaP:hP3) = + Al(Pth,Ps) ( 2 _g‘p P1 - !
P1:-p3 \P1-P3 P2-P3 DPi-P2

IV piry
+  As(p1,p2,p3) { ( L3 g ) |22 2 -9
P2.P3 \P1-P3 P1-P2

1 Pl P o o
( L =2 )(pfg“—plg“”)}

P1-p3 \Pv.P2 P2-P3
U (pips ) [(P3P2 L
+ As(p1,p2, ) ( gt | 22— ) (8.10)
P1-P3 \"-P3 P2-P3
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Finally, we note that the tensor is also transversal with respect to the Z boson momentum,

Pdo Tauup(plap%p3) =0. (811)

The three functions, A;, receive contributions from the fermion and boson loops such

that,

Ai(p1,parps) = Ais,t)
r o4
= o (ZQi‘«vf Al(s,t,my) + cot Ow A?(s,t,Mw)) . (8.12)
f

167

where the sum runs over fermions with mass my, electric charge )y and vector coupling to

the Z boson v;. We have also introduced the Mandelstam variables s, ¢ and u,

SZ(P1+P2)2=2P1.;02, 31 =3—M%,
t=(p2+ps)’ =2pps, t=1— Mg, (8.13)

w=(ps+p)’ =2pspr, wm=u—Mj

The different photon permutations are obtained by exchanging the Mandelstam variables in

the obvious way,

Ai(Ps’Pl,P2) = Ai(’lL,S), Ai(pl)pSaPZ) = Ai(uat)’ (814)
and so on.

It is straightforward to obtain the scalar functions A and A? using the standard tech-
niques for one loop integrals of reducing the tensor integral to a combination of scalar

integrals ([18] see Sections B.4 and B.4.4). There are three types of boson loop as shown
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Figure 8.1: Feynman diagrams in the unitary gauge for Z boson decay into three photons
(a) via fermion loops and (b) via W boson loops.
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in Figure 8.1 containing triple and quartic boson couplings. As mentioned earlier, we use
the unitary gauge so that only physical particles can propagate—there are no diagrams con-
taining ghosts or unphysical Goldstone bosons. As a penalty, each diagram is superficially

divergent. However, all graphs taken together are finite and we find that,

1 [ M2
A?(S,t,Mw) = Z(_]\TEZ;_ ) A{(s t Mw)
1 ( M2
Al(s,t, My) = Z(—va— ) Al(s,t, My)
;o Mz 10 (2Mevut H(My) - 3‘1 E(t,u MW)) — 2sut F(Mw),
1 ( M2
Ag(S,t,Mw) = Z(MZ _6> Ag(S,t,Mw)
w
1
v

(MZ + 10) { E(s,t, My) — u* E(u,s, My)

+2MEut(u —t) H(]\/IW)}, (8.15)
where the functions F and H are combinations of scalar integrals and are defined below.

As a consistency check, we have constructed the complete tensor to make sure that
reinserting the scalar functions into Eqns. (8.8 and 8.10) does indeed regenerate the full

tensor which is therefore automatically gauge invariant with respect to the external photons.

It is quite remarkable that the boson contribution is so similar to that of a fermion loop,

for which we find,

4st 8t 4M2L(s + 2u)t
Al(s,t,my) = % + — — (s Bi(s,my) — sy By(t, mf)) __Z—('t_z_)— By (t,my)
1
t(2t 8mit 4mit
+ w E(s,t,my) + Ty E(s,t,my) + Ty E(t,u,my)

+ 4m} <s C(symy) +1 C(t,myg) + uy Cl(u,mf))
8mi(s + 2u)t

Am2st(u + 2t
- ——— Ci(t,my) — / ( )
11 U

D(s,t,my)
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Ag(sa t, mf)

and,

Af(s,t,my)

— 2m} (ut D(t,u,my) + st D(s,t,ms) + us D(u,s,mf)) — 8mjt H(my),

(8.16)

4(2s —u)t  2s(u —8¢)

3t1 Ju
2t(3su — 4ut + 8ts) AMZut
Jsu Bilt,my) - t?

(3stu + 8st?)

3u?

2u(s + 4t)
3s

By(s,myg) — By(u,my)

Bl(tv Tn‘f)

4qt?

352
8m§ut

E(t,u,my) — % E(s,u,my) + E(s,t,my)

2mit(uty — 4st)
Cy(t,m !
tl 1( 77771') + Uu
8m2sut? /1 1
__‘L(E _Ij(t"(_[,,?’n,f)"*‘t—2 D(U,S,mj)‘*‘;]-iD(S,t,mf))

D(s,t,m) + 2miuu; D(u,s,m
i f f

3
4mit 8mit
T B(s,t,my) — —ee H(my) (8.17)
u
du  4s /2 —u 2s —u)t uyu?
'-3—' - ?( ; Bﬂs,m,) + -(—32—) B](t,TI?,f) -+ 3121‘, Bl(u,TI’Lf))
—34H)t t—2 2 2ult
-(-§—32—i E(s,t,m;) + (—3;—1—)& E(u,s,ms) + ;;2 E(t,u,my)
4mf»u

(s C(s,ms)+t C(t,my) + C’1(u,mf))

2m}(4st 4 6tu — IMFu) Dis.t.my) + 2miut(3s — 2u)
3 oo 35

2miu(3t? — 3tu — 5 8m
mu( - u — Hsu) (,5,m) — miu H(m,), (8.18)

D(t,u,my)

where the scalar integrals By, C, Cy, and D are defined as follows. The finite function By is

defined,

Bi(p*,m) = —i167* (Bo(p, m,m) — Bo(Mz,m, m)) (8.19)

with respect to Section D.2.2. The function C is defined as —i167°%x Eqn. (D.16). The



function C; follows from this definition as,

sC(s,m)— M2C(MZ%,m)
s — MZ '

Ci(s,m) = (8.20)

D(s,t,m), like C above, is defined to be —i16w*x Eqn. (D.18). As auxiliary functions we

also define,
E(s,t,m)=s C(s,m)+1t C(t,m)+ s, Ci(s,m)+1t; Ci(t,m)— st D(s,t,m), (8.21)

and,

H(m) = D(s,t,m) + D(t,u,m) + D(u,s,m). (8.22)

We have checked that this reproduces the result for the vector coupling of the Z boson

with three gluons given in ref. [68].

8.3 The Z~vvyv helicity amplitudes

Using the Z~yy~ polarisation tensor given in the previous section, we can construct the
corresponding helicity amplitudes. For simplicity, we work in the rest frame of the p, and

p2 system where the momenta are given in (E, p, py,p.) notation by,

p'llt = (_paOaOa _p)a
p‘2‘ = (—P,0,0,P),
Py = (g,qsin6,0,qcosb),

py = (F,—qsin,0,—qcosb), (8.23)
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where all momenta are ingoing and where E = (/¢% + m%. The appropriate helicity vectors

are then,

eft =e" = % (0,—1,1,0),
et =eft = 71_-2- (0,7,1,0),
edt = et = % (0,2cos8,1, —isin ),
ext =eit = \/L§ (0,—%cosf,1,7sin @),
e = L (¢,—Esin8,0,—E cos 0). (8.24)

3
N

Here e represents the \; = + polarisation vector of particle i while ey represents a Z boson

that is longitudinally polarised. It is useful to define the quantity,

—M?2
A= 23tuZ’ (8.25)

which occurs in all helicity amplitudes associated with a longitudinally polarised Z boson.

In terms of the three independent functions given in Eqns. (8.10 and 8.12) we find that

there are nine independent helicity amplitudes, 7y, x,05205, With Ay = + which are given by,

' L u,t) + A
Torr = —2 (Al(t,u):1 Al(u,t)) |
s = 2 (Al(s’t) = A t) — Aa(s,t) + Aa(u, ) + As(s, 1) _u As(u,t) + (t & u)> )
o u 881
e ( —Au(s )+ A t) + Axls t) = Aolw, 1) + Aa(t,s) t As(u,t) + (t & u)) ;
51 u 58,
T T 2( o) = Adton) = Aol ) + Aalts) J: Az(u, 3) + As(:,t) U A;s(u’t)) :
) ) 1
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Toy = —2 <A1(3,u) + t (Ag(s,u) + Ax(t,u)) + t A;;(u,t)) |

$1 Uusy 881 /

(8.26)

while for the amplitudes where the Z boson is longitudinally polarised,
2A [ su— tM?2
Tist0 = 7 ( Z Ai(t,u) + s (Ag(s,u) + Ag(t,u)) +
z S1

2A [ su —tM?2
Tiyo = e ( ¢ . Z (Ay(s,u) — Ayt u) + Ag(t,u) — Ax(s,u)) + 51 (Ay(t,8) — Ay(t, s))

su As(u,s)
t

~ (o)

2
5 Ao, 1) = Ag(ty ) + 2 M) oy (o ))
u 851
2A — t M2 t(s + M2
Tyevo = (su Z Ay(s,u) — s Aqy(u,s) + Us + Mz) (Az(s,u) + Az(t,u))

M3 S1 81

t M2
+ ut(s + M%)

SS1

—t (Aa(t,8) + Az(u, s)) — %t As(s, 1) Ag(ll,t)). (8.27)

The other three helicity amplitudes with A, = + are obtained by exchanging u and ¢!

Tiey = Ty (t o u),
Tieo = Tiyy (tou),
Ticco = Thoqo (Lo u), (8.28)
while the amplitudes with A\; = — are obtained by the parity relations,
T—,\z,\;‘/\Z = T—}- N2 —=A3 =Xz (829)
for Az = %, and,
T—,\z,\go = _T-}-—/\z —A30> (8'30)

for longitudinally polarised Z bosons.

INote that in Appendix B of ref. [68], the amplitude V,___ is incorrectly given and should read
Vieeo(8,t,u) = Vi 44 (s, u,1).
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8.4 Numerical results

Using the helicity amplitudes, from the previous section and the explicit forms for the scalar

integrals given above, it is straightforward to calculate the Z — ~yvyv decay rate,

1

F(Z - 777) - m / ,\Z\ l’]:\])\zz\ax\4|2d'5 dt du 6(1\4§ —s—t- u)‘ (831)
1e0.AZ

The factor 1/3! is the identical particle factor for the photons. The coupling constants and

the masses of the particles in the loop are contained in the definition of the A; in Eqn. (8.12).

For the numerical results, we take Mz = 91.175 GeV, a(Mz) = €?/(47) = 1/128 and
sin?fy = 0.23 while the W boson mass is given by the relation, My = My cosfy =
80.0 GeV. The vector couplings, vy, are defined in Eqns. (3.31 and 3.32) and are listed in
Table 4.1. For very light fermions, the amplitudes are essentially independent of the precise
value of the fermion mass. For computational reasons we choose m, = my = m; = m, =
me = m, = m, = 100 eV. Varying this mass between 100 eV and 2 GeV does not change
the results by more than the monte-carlo error on the integration, which is less than 1%.

For the bottom quark, we take m, = 5 GeV.

The only unknown parameter is the top quark mass, m,,,, and in Figure 8.2, we show
I'(Z — ~7vv) in the interval 0 < my,p < 200 GeV. The latest experimental bound on the
mass of the top quark from CDF is 174 + 10%]2 GeV and from LEP is 177 £ 11713 GeV [9).
Nevertheless, we show the whole range of m,, in order to exhibit the threshold behaviour
around me,, = Mz/2 where the possibility of making two on-shell top quarks vanishes.

Above the threshold, the top quark rapidly decouples as is well known [71].

At small m,p, the top quark makes a sizable contribution. This is because each quarks

contribution is proportional to the cube of the quark charge and therefore quarks with
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Figure 8.2: The partial width for Z — yv7 in eV as a function of the top quark mass my.
The total (fermion + boson) width is shown as a solid line, while the fermion contribution
alone is shown dotted.

158



Qs = +2/3 dominate. The lepton contribution is suppressed both by colour and by the
fact that vy is small for charged leptons. The rate at small m,, is therefore approximately
50% larger than at large my,, where the up and charm quark contribution dominates. The
monte-carlo estimate of the partial width at small 7., agrees with the analytic formula of

Eqn. (8.1).

Figure 8.3 shows both the total Z — vy partial width (including both fermion and
boson loops) and the fermion contribution alone. On its own, the W loop contribution is
0.026 eV, in rough agreement with the estimates of {64, 66], however, the interference with
the larger fermion loop contribution is significant and increases the width by about 27% or

0.3 eV over the whole range of mp.

We note that the decay rate does depend quite sensitively on the precise choice of sin? Oy
through the vector couplings of the Z boson with the fermions. Allowing sin®fy = 1 —
M%,|M% to vary between 0.20 and 0.25 (i.e. 81.5 GeV > My > 78.9 GeV) causes the total
three photon decay width to vary up or downwards by a factor of about 2. The W loop

contribution alone remains almost constant at 0.026 eV.

8.5 Summary

In summary, we have computed the polarisation tensor for the Z~yvv coupling including both
fermion and W boson loops using the unitary gauge. The three independent amplitudes
describing this tensor have not appeared in the literature before. It is remarkable that the
boson and fermion contributions are so similar, bearing in mind the non-supersymmetric
nature of the standard model. By projecting out the different helicity amplitudes we have

obtained the Z — vy decay width keeping the full dependence on the top quark and W
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Figure 8.3: The partial width for Z — 447y in eV as a function of sin® fy for m,, = 120 GeV.
The total (fermion + boson) width is shown as a solid line, while the fermion contribution
alone is shown dotted.
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bosbn masses. For the allowed range of Miop, the entire one-loop standard model contribution
to the Z — v decay is 1.35 eV. In other words, one such decay would occur for every 10°
hadronic Z boson events. Such a rate is clearly beyond even the high luminosity option at
LEP. It is interesting to compare this rate with that for the two loop process Z — yH — v+,
which is heavily dependent on the mass of the Higgs particle, H. The product of the branching
ratios for these two processes are: 2 x 1071 for a Higgs mass of my = 60 GeV; and 7 x 107!
for mg = 70 GeV [76]. The current limit on the mass of the Higgs is my > 62.5 GeV [77)

so our calculation represents the majority of the SM signal.

In fact, three photon events have already been observed at LEP [78, 79, 80], however,

they are completely consistent with the purely QED process,

ete” — yyy. (8.32)
This tree level process provides an irreducible background to the rare decay discussed here.
Expressed as an effective partial width at the Z-pole, this has a value of about 10 keV [81]
and makes the observation of the standard model process described here completely unlikely.
. Nevertheless, many extensions to the Standard Model such as models where the Z boson is a
bound state of charged constituents do allow an anomalously large three photon decay rate
[82, 81] analogous to the decay of the J/% into photons. Any disagreement with the QED

prediction cannot be due to standard model processes and must indicate some new physics.
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Chapter 9

The 2nd Order Formalism

Here we describe, in two distinct ways, a re-interpretation of the Dirac algebra of interaction

in QED; the 2nd Order Formalism.

9.1 Introduction

Fermionic calculations, at their most elementary, are just strings of 4, (Appendix E) matrices
over which we must eventually perform a trace. The 2nd Order Formalism is in essence a re-
writing of the conventional Ist Order Feynman rules for the calculation of processes involving
gauge bosons coupled to fermions that form a closed loop. A general property of complete
perturbative calculations at any fixed order in the coupling is that they are gauge invariant.

These rules ensure that explicit gauge invariance is present at the level of small subsets of
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diagrams and not just when all of the diagrams for a given process are summed.

The discussion of Section 9.2 will show that this approach does generalise to non-abelian
theories, indeed from its string inspired origins [83, 84] it was originally directed at problems
in QCD, but for the purposes of this thesis (namely the content of Chapter 10) all that is

required is an abelian analysis.

The calculation of fermion processes in quantum field theories necessitates the extensive
manipulation of Dirac algebra. Specifically, we are required to manipulate so called gamma
matrices, v,. Section 9.3 will explicitly relate the 2nd Order Feynman rules to the more

conventional /st Order ones.

9.2 A formal approach

The contribution to Z (of Eqn. (2.7)) from a fermion coupled to an abelian field is a factor,

~ /Dwﬂ. ..exp [i/%(ub —m,) 1/)} (9.1)

which, with reference to Eqn. (2.40), may be formally re-written as,

det (zE - m¢) = det [(zl) - m,l,) (z$ + m¢)]1/2 = [det (—1)2 - mfp)]ln. (9.2)

We recall that the vertex functions of a theory are generated from the Effective Action
Eqn. (2.20). So in calculating amplitudes for a theory containing this determinant we should
expect the power of 1/2 to reveal itself as an overall factor. With this in mind we discard

it—only to divide by two when we finish an amplitude calculation. Using Eqn. (2.40) again,
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wé raise the operator to obtain,
det (=" —m3). / DUDT .. . exp [ / T (D +m \p] (9.3)

Note, that these U fields are clearly not the same as the o fields since £ by definition
must have dimension [M]*. Indeed, they bare a closer resemblance to regular scalar fields,

fermionic ones.

This exponent may be re-written (see Eqns. (E.1, E.3 and 2.32)),

. 1 ) ; )
m +m12;z = 5{7“77}D#Du+mfp+—7u77]DﬂDV

2z'[

1
= D2+mfp+-2—U”V[DM,D,,]

- D'+ ¢+9Q"’ o F,,. (9.4)

Provided we do not forget the factor of —1/2, from the log det(. . .) of the Effective Action,
we can deduce a set of 2nd Order Feynman rules (from Eqn. (9.4)) for closed fermion loops—
the minus sign being the conventional fermion loop factor. The fact that the fermions are in

closed loops ensures that we need not address the question of how W is physically manifest.
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k+p

Figure 9.1: The basic unit of contribution to a gauge boson-fermion calculation; Ay .

9.3 A hands on approach

On close inspection we see that all gauge field-fermion interaction calculations are built from

sequences of the following form!?,

I

A . Ak
—_— (—20( ) By = — lq,) —r 9.5

with

Dy = — (k?* — m?) , (9.6)

Here, we define A}, to be the lorentz structure carrying part and Diy, the denominator of
the normal (st Order) product of a fermion propagator, and a gauge vertex. Here g is the
coupling and @y is the charge of the fermion, f, with respect to the gauge field that carries

—p from the vertex. This is shown explicitly in Figure 9.1. In QED ¢ = e and @y = —1.

We can manipulate this expression into the following useful form,

AL, = (E+p+mg)y" (9.7)

% (2 (2k* + p*) + py* — (2]( +p- me))

1We are considering only those processes not involving the 5 matrix.
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= (K" +p") = (k") — % ‘[7“,;/}] -y (lé - mf) (9.8)

We note that the contracted v matrices, p and k, are now separated. The first is present
in a conveniently minimal form, i.e. for massless, or massive, gauge bosons it identically

obeys the gauge invariance condition for externally polarised gauge fields, namely,

(eu + Apu) (7", Pl = €uly", p). (9.9)

As we shall see, the second gives rise to a different simplification when it is followed by

another A.

For transparency we define By ,, Cf and E*” for this fermion (with Eqn. (E.3)),

BE, = (K +p) — (—k*) +i0™p, (9.10)
Cy = ++* (lé — mf) (9.11)
EY = AfyY (9.12)
such that,
Ay, =B, — Cf (9.13)
and,
CrypAkp = —E" Diyp. (9.14)

We shall now consider the consequences of partially expanding two or more consecutive

As in terms of these new objects, (see Figure 9.2a)
A;:"l'pvq szp e = (Bi:"'pyq - C;:'“P) A;:,p e
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< G—2eoooo- < G-
k+p+q k+p k+p+q k+q

Figure 9.2: A consecutive pair of A} type objects; generalising to a fermion spin line
connected to a number of gauge bosons. (a) and (b) correspond to the two “orderings” of
coupling the fermion to the bosons.

_ v B _ o oA _pu b
- (Bk-H’»q k,p Ck+P k,p Bk-{-p,qck)"'

= (BlypoBl, + E™ Diyyp — BYy, ,CF) ... (9.15)

where we have used the property Eqn. (9.14). We note that only the last term in the

numerator contains the object C.

The above process of exchanging As for Bs, Fs and Ds generalises immediately for n
consecutive As. The obvious complication, however, is that we do require a C factor to
truncate a fraction of the terms. We note that such terms are always preceded by a minus

sign.

In the case that the fermion line is closed (i.e. a fermion loop) the string of As is actually
traced over. For this reason we are permitted to move a trailing C to come at the left of the
sequence (the cyclic property of the trace operation). It is then possible to all but completely
remove the Cs from the trace, by simply replacing all Bs that are to the immediate right
of a C with the appropriate A + C and then using Eqn. (9.14) to remove the A. The
only offending term that remains after exhaustively repeating such a replacement is a single

sequence of Cs. For example, in the simple case of two As in a closed loop (the vacuum
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polarisation cf. Eqn. (4.17) and Figure 4.6) we have,

—Tr {Aﬁ,q Ail:+q,—q} = —Tr {Bll:,q Biyg—q + E* Dy — Bll:,q CIZH}

—Tr {Bll:,q Bk+q,-q + E* Dy — C;;-f-q ( ;:"1 + Cf)}

~Tt{Bf, Bitgq + E" Dy + E™ Dyy, ~ C¥,, CL}.

(9.16)

The minus sign accompanying the sequence of C's is the one noted after Eqn. (9.15). This

form solves the problem of removing the Cs completely, see Eqns. (9.7 and 9.11), since
Tl'{Cn010203. } =Tr {A1A2A3.. An} (917)

where again we have used the cyclic property of the trace. Accordingly, Eqn. (9.16) may be

written,

3 v l y 4 v 14
~Te{A}, Alyoy) = —5Tr{Bl, Brrgg + B* D+ E™ Dy} (9.18)

The effect of removing the C's can be seen as simply pinching the first and last As to
give an ED term and an overall factor of 1/2 outside the trace. We find that compared with
the conventional —1 for the Ist Order fermion rules the 2nd Order rules require a factor of

~1/2 for a fermion loop.

In this simple case we can perform a change of loop momentum (change the variable
of integration in Eqn. (4.17)) k¥ — —k — ¢ in the third term (of Eqn. (9.18)) to make the

coefficients of the E terms the same.

In the more general case (for a larger loop) some more analysis is required. Returning to
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the level of Eqn. (9.15) we write the spinor line where the gauge couplings are reversed (see
Figure 9.2b) as

Aoy ALy o= (Blyy Bl + E* Diyy — Bl ,CF) .. (9.19)

In any physical (gauge invariant) process, diagrams of both this and Eqn. (9.15) forms
must be included when calculating the associated observable. Accordingly, we are at liberty,
in an attempt to rewrite the Feynman rules, to immediately sum these two contributions.
Including the associated propagators (Ds), the E parts of the two orderings of As sum to

give,

v [l H v vk ny Vi
k+pyg Ak,p Ak+qm ka _ B+ B — + 2g
Diypsg D DigprqDrrq Dicypiq Diypig

... (9.20)

The effect of this combination of terms is then to pinch the fermion propagator between
the two gauge couplings and invoke a four point interaction type term—since the only
surviving propagator is that which is common to both diagrams. Thus, in a gauge invariant
set of diagrams with all possible orderings of the gauge bosons, all pairs of bosons will give
rise to pinched four point terms. More generally, with a factor of —gQ)s for each gauge
coupling, the objects B, D and 2¢g** provide a complete set of Feynman rules for fermion

loop calculations.
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Figure 9.3: The Feynman rules for QED type interactions—all momenta are directed out-
wards. In addition to the rules given here a factor of —1/2 is required for a closed fermion
loop. Care should be taken to remember the implicit unit matrix (say 7o2) present in those
parts of the rules not containing an explicit *# matrix.

9.4 Summary

In summary, a closed spinor line may be computed from a 2nd order set of Feynman rules
namely those given in Figure 9.3. These rules, although equivalent to, are significantly
different from the standard ones. Notably they only include the anti-symmetric object o*¥

and no individual 4 matrices.

In the figure the 4 sign accompanying the o*? contribution to the 3-point interaction
term is the discrepancy between the two derivations of Sections 9.2(4) and 9.3(—). At
first sight this might appear to be an inconsistency, but it actually highlights a curious and
currently empirical, subtlety in the rules. Namely, that all terms in a traced fermion loop

that contain an odd number of ¢’s are canceled in the complete amplitude. We have checked
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this is the case up to the level of a fermion box.
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Chapter 10

Supersymmetry Relations Between
Contributions To One-Loop Gauge

Boson Amplitudes

We apply ideas motivated by string theory to improve the calculational efficiency of one-loop
weak interaction processes with massive external gauge bosons. In certain cases “super-
symmetry” relations between diagrams with a fermion loop and with a gauge boson loop
hold. This is explicitly illustrated for a particular one-loop standard model process with
four-external gauge bosons. The supersymmetry relations can be used to provide further

significant improvements in calculational efficiency.
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10.1 Introduction

Even the simplest one-loop gauge boson amplitudes can be rather formidable to compute.
Recently, an advance in the calculation of one-loop gauge boson amplitudes has been made
based on string theory [85, 83]. Using this technique, the first calculation of the one-loop
five-gluon amplitude has been performed [21, 22]. As another example, one-loop graviton
scattering calculations have been shown to be relatively simple once the corresponding QCD

calculations have been performed [86].

In the case of QCD, the string-based rules have been interpreted in terms of a particular
set of vertices and organisations whose main feature is that they lead to relatively efficient
computations. As a bonus, the various contributions to the one-loop amplitude exhibit

simple relations between the gluon and fermion contributions at the level of the integrands.

In the usual Feynman diagram approach, the initial lorentz structure of the various
diagrams bear little resemblance to each other. Each of the different types of Feynman
diagrams are then separately evaluated. This may be contrasted to string theory, where the
various particle states are treated more uniformly, making relationships between the various
types of contributions apparent. In the calculation of the five-gluon amplitude [21], a striking
manifestation of this is that the gluon loop contribution is rather easy to obtain from the
fermion loop contribution since the two calculations are almost identical. These relations
hetween fermion and boson loop contributions are connected to the remarkable simplicity
of one-loop amplitudes in N = 4 super-Yang-Mills, which was first pointed out with the
aid of string theory [87]. Supersymmetry relations have become a standard tool in QCD
calculations [88]. The conventional supersymmetry relations are between amplitudes with
differing numbers of external fermions. The relations we discuss here are between diagrams

with the same type of external particles but with differing internal particles.

173



Here we explain how to reorganise one-loop gauge boson amplitudes involving W’s and
Z’s to mimic the efficient reorganisation for gluons. As an added bonus in certain cases the
manifest relations between gauge boson and fermion loops are preserved. These relations
can then be used to provide further significant reductions in the amount of work involved in
a computation. To do this, we will make direct use of the field theory lessons obtained from
string theory [84, 89]. The approach presented here is helpful whenever a one-loop diagram

contains a non-abelian vertex.

As a particular example, we will discuss the calculation of the process Z — 3v [90,
91] (which is of some interest for compositeness searches). From the results of a unitary
gauge calculation (Chapter 8 [91]) the striking relationship between the boson and fermion
contributions to the amplitude has already been noted. Here we explicitly show how to make
use of this supersymmetry relationship to significantly improve calculational efficiency for
this process. With the superstring-motivated reorganisation nearly the entire result for the
W-loop contributions can be obtained from the fermion loop contribution. In processes such
as 2y — 2Z [92] (which is of some interest for searches for ultra-heavy fermions at future
photon-photon colliders) there are additional mixed scalar and gauge-boson loops. However,
one can still use the supersymmetry relations to significantly reduce the computational
difficulty of the gauge-boson loop contributions. For processes with external W’s, one loses
simple supersymmetry relations due to the flavour changing in the loop, but there are stilj

significant advantages to the gauge choices which we describe.

In Section 10.2, we review the supersymmetry relations for the diagrams that appear in
one-loop gauge boson scattering calculations and describe the application to spontaneously
broken theories such as the standard model. In Section 10.3, we present the calculation of
Z — 3v as an explicit example. In Section 10.4, we comment on other processes such as

2y — 27 and provide tables containing the coupling constants for the various vertices.
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10.2 N =4 supersymmetry relations

Although derived from string theory, the string-based organisation, can be understood in
ordinary field theory [84, 83]. Besides the inherent advantage of obtaining simpler diagrams
with an efficient organisation, as an added bonus one obtains relations, connected to the
simplicity of N = 4 super-Yang-Mills amplitudes, between gauge-boson and fermion loop
diagrams. The use of these N = 4 supersymmetry relations as a computational tool was
pointed out in ref. [21] for the one-loop five-gluon amplitude. With the string-based or-
ganisation the relations are manifest at the level of the integrands of diagrams and can be
effectively used as a computational tool to obtain most of the gauge boson loop contribution

from the fermion loop contribution.

Following the discussion of refs. [84, 83] the key field theory ingredients for obtaining a

good fraction of the gluon amplitude simplifications of the string-based approach are:

e The Feynman rules should be colour ordered [93, 83]. To a large extent this simply
amounts to rewriting the Yang-Mills structure constants in terms of traces of commuta-
tors of fundamental representation matrices and considering only one colour structure
at a time (see Appendix F). This concept is useful in QCD because it reduces the

number of diagrams to be considered.

e The background field Feynman gauge [94] should be used in calculations where a non-
abelian vertex appears in the loop. This gauge is used to construct the one particle
irreducible diagrams describing a gauge invariant effective action (see Section 2.4). The
background field Feynman gauge is advantageous to use because the propagators are
the normal ones but the vertices are more simple than in the conventional Feynman

gauge. For the N = 4 supersymmetry identities to be manifest it is essential for all
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vertices of the one-particle irreducible diagrams to be background field gauge vertices.

The second order formalism should be used for the vector part (no vs) of one particle
irreducible diagrams with fermion loops (see Chapter 9 and ref. [84]). This formalism
amounts to rewriting the usual Dirac determinant with Eqn. (9.2). With this for-
malism, the fermion loop contributions are very similar to those of the gauge bosons.
Additionally, there is considerable overlap with the calculation of ghost or scalar loop

contributions.

The scattering amplitudes are constructed by sewing trees onto the one-particle irre-
ducible diagrams. One can use standard Feynman gauge for the trees if one desires. For
gluons, a particularly convenient gauge for the trees is the non-linear Gervais-Neveu
gauge [95, 84] because of the simple vertices. It is obviously advantageous to use dif-
ferent gauges for the tree and loop parts of the computation since one can optimise
the gauge choices to minimise the computations required in the different parts of the
diagrams. (Although it might seem strange that two different gauge choices are used
for the loop and tree parts of the Feynman diagrams, in the background field method

this has been justified by Abbott, Grisaru and Schaeffer [94]).

With the background field Feynman gauge and second order fermion formalism for
the one-particle irreducible diagrams, virtually the entire calculation of a gauge boson
loop is contained in the fermion loop calculation. This can be used to avoid pointless

duplication of significant portions of the calculation.

Finally, a decomposition into gauge invariant tensors [96, 91] or spinor helicity methods
[97] can be used. In this paper we use the former method. With the tensor decom-
position method one can use the usual Passarino-Veltman technique for performing
tensor integrals ([18] see Section B.4). To use the spinor helicity technique, one first

performs those spinor simplifications which are not obstructed by the presence of loop
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momentum. Then a Feynman parameterisation is performed to eliminate the loop
momentum; the remaining spinor helicity simplifications can then be performed. (One
can use an electric circuit analogy [98] to arrive at the same integrand if one desires.)

The Feynman parameter integrals can then be evaluated using the integration method

of ref. [22].

Here we apply the latter five ideas to weak iIltGI‘&CtiOllS and demonstrate that the gain in
computational efficiency is quite significant. The application of these ideas is straightforward
since it mainly involves using a different set of Feynman rules than the conventional ones
and then observing a set of relationships between the integrands of certain diagrams. In
the string-based approach of refs. [85, 84] these relations are an inherent property of the
string-based rules. In the above field theory approach, the relations are found after the trace
over y-matrices has been performed and the integrands of the various loop contributions are

compared. We now present the application of the above ideas to weak interactions.

First consider the case of no fermions. In the background field Feynman gauge [94] this

sector of the SU(2) x U(1) Lagrangian is given by £y + Lo + Ly7 + Lypost Where,

L, = —i(ﬂ*‘"(WJrW))?_i(FW(BJFB))Z (10.1)
Ly, = (Dm)T(D“aﬁ)—/\(¢*¢)2+u2¢*¢ (10.2)
Loy = —5(0 wfugeiﬂ*w WWE + (#1700 — #hr'))
——(3 B* + (¢’*¢o ¢$¢’))‘ (10.3)
Eotont =~ (325”—gaﬂe”’(W;‘HT’f‘)+ge“‘vif;5u+g2ﬁf“(W*‘+W,¢;) kb

2 2
G S ) ER G SO D)
—wi%(¢TTi¢o + </>o7'i¢)b - ngZg'(ﬁﬁf"'lQﬁo + 45(];7'1(15)‘—0! (10.4)
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where 7¢ are the Pauli spin matrices and W* and B are respectively the SU(2) and U(1)
hypercharge background fields and W* and B are the corresponding quantum fields. The
covariant derivatives appearing in L, are covariant with respect to both quantum and back-
ground fields. The field tensor, F**(A + A) is that of Eqn. (2.32), for the appropriate gauge
group, where we have explicitly replaced the single field A* with the sum of quantum field,
A* and background field, A* [94]. The ghost Lagrangian may be obtained by the usual
Faddeev-Popov technique. In order to obtain the usual fields of the standard model we shift

the Higgs field as in Section 3.2. We transform the B and W background fields,

B, = A,coslw — Z,sinbw

W3 = A,sinfw + Z, cos

g (10.5)
Wi o= s (Wt+W-)
W2 o= (W — W)

with similar equations for the quantum and ghost fields (cf. Eqn. (3.13)).

After performing the above shifts of field variables in the various Lagrangian terms, we
obtain the gauge sector of the standard model Lagrangian in background field Feynman
gauge. The Feynman rules generated by this Lagrangian relevant for the calculation of
Z — 37 are depicted in Figure 10.1. Only those vertices with two quantum fields attached
are given since those are the only contributing ones at one loop. These Feynman rules satisfy
the property that there is no AgW= coupling, considerably reducing the number of diagrains
which must be considered in the Z — 3 calculation, since diagrams with mixed ¢-W loops
do not appear. (This is similar to the absence of such couplings in the non-linear R¢ gauges
discussed in refs. [99].) For generality the coupling constants in the rules of Figure 10.1 have
been removed since the various types of gauge bosons couple with different strengths. The

various coupling constants required for the calculation of Z — 3+ are given in Table 10.1.
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Figure 10.1: The vertices, with coupling constants removed, needed for the calculation of
the boson loop contributions to Z — ~vy~.
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Vertex Coefficient
AW-W+ e
ZW-Wwt e/ tan Ow
Ap=¢t, Awtlwt, Aw-w=T —e
Z¢_¢+ ~—6/ tan 201/[/
Zwtlot, Zw w™! —e/ tan Oy
AAgt ¢, AdwtTw® e?
AZdT ¢~ e?/ tan 20w
AZwE E e?/ tan Oy
AAW-Wt, e?
AZW-WH, e?/ tan Oy

Table 10.1: The coupling constants of the vertices needed for the calculation of Z — 3~.

Now consider the inclusion of internal fermions with no flavour changing in the loop.
Because the relationship between the fermion and boson loop that we are interested in does
not involve the s in the fermion coupling, we divide the fermion loop computation into
a part which contains a 95 and a part which does not contain a ~5. This can be done by
considering the one-particle irreducible diagrams in the conventional (first order) formalism;
one then collects all the v5’s together so that the fermion trace contains no more than a
single 5. This is then split into the axial part containing the s and the vector part which
does not contain the v5. The axial part may be evaluated in the usual way since this part
does not play a role in the supersymmetry identities. The diagrams of the vector part of
the one-loop effective action may be described by the familiar Dirac determinant which is
rewritten in the second order form Eqn. (9.2). It is this form which makes the relationship
of the fermion loop to the gauge boson loop manifest in the integrands. For the case where
there is flavour changing within the loop, and necessarily different masses appear inside it,
the relationship to the gauge boson loop is more obscure and one loses the added bonus of
simple supersymmetry relations; the advantage of simpler background field vertices is, of

course, not lost.
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In particular, for the case of Z — 3+, the s contributions all drop out because of
cancellations between diagrams where the fermion circulates in one direction and diagrams
where the fermion circulates in the opposite direction. This means that for this process, the
relevant fermion loop can calculated with the rules of the 2nd order formalism depicted in
Figure 9.3. The coupling associated with each background field is the same as the appropriate
effective vector coupling of the first order formalism with an accompanying loop factor —1/2,
where the minus sign is the familiar one for a fermion loop. One obvious feature of these
second order fermion rules is that they bear a much greater resemblance to the boson rules
than the conventional (1st order formalism) Feynman rules for fermions; this is important

for making the supersymmetry relations hold diagram-by-diagram.

With the rules given in Figures 10.1 and 9.3 the integrands of diagrams for one-loop n
gauge boson scattering satisfy a N = 4 supersymmetry constraint [21, 83]. This relationship
between diagrams with fermions in the loop and gauge bosons (and associated ghosts) in the

loop is depicted in Figure 10.2 and is given by

Dsca]ar(ms) = OsS(ms)
Dfemﬁon(ﬂlf) = —Cy(25(my) + F(my)) (10.6)

pege boson(yy ) = CU((1 — 8re)25(my) 4+ 4F (my,) + G(m,))

where the particle labels refer to the states circulating in the loop, the m, are the masses
of the particles circulating in the loop and the C; are coupling constant factors which de-
pend on the processes under consideration. The D all refer to the same diagram types,
but with different particles circulating in the loops. For two or three legs attached to the
loop the simple quantity G' vanishes at the level of the integrand. (The dimensional reg-
ularisation parameter is g = 1 for either conventional dimensional regularisation or for

the ’t Hooft-Veltman scheme [16] while 6g = 0 for either the dimensional reduction [100]
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» = Simple

Figure 10.2: The N = 4 supersymmetry relations. These relations hold in the integrands of
the diagrams. (For simplicity the ghost loop is implicitly included in the gauge boson loop.)
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or four-dimensional helicity [85] schemes.) In cases where all types of diagrams satisfy the
supersymmetry identities Eqn. (10.6) (such as Z — 3v), the sum over all diagrams — namely

the amplitude — also satisfies this identity.

The connection of these identities to N = 4 supersymmetry is that for N = 4 super-
Yang-Mills (one gluon, four Weyl fermions, and 6 real scalars) everything but G cancels after
summing over the various loop contributions. (The regulator factor ég = 0 is necessary so

that supersymmetry is not broken). That is,

DN=4 susy _ g4G (107)

where ¢ is the coupling. The other terms all cancel.

In performing the calculation, instead of calculating the diagrams directly it is more
efficient to calculate S, F' and (. The importance of the above identities is that each part
of the calculation is successively easier to perform; S is the most complicated part, F' is
the next most complicated part and G is by far the easiest part of the calculation. In a
conventional approach one would effectively be recomputing the S and F parts since one
computes the gauge boson loop directly. This leads to a significant computational advantage
for the gauge boson loop beyond the already large simplifications of Feynman background
field gauge. (With conventional gauge choices, like 't Hooft-Feynman or unitary gauge, the
unnecessary re-computation of 5 and F' is actually significantly more complicated than the

direct computation of these quantities from scalar and fermion loops.)
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Figure 10.3: The diagrams needed for the calculation of Z — 3v: the loops can be either
fermions, gauge bosons or scalars.

10.3 Explicit example

Consider the process Z — 3. This process has already been discussed in refs. [90, 91] (see
Chapter 8) using more conventional techniques. We show here how to reduce the W-loop
computation to a very simple one once the fermion loop is calculated. The four one-loop
diagram types required for calculating Z — 37 are depicted in Figure 10.3. The complete

amplitude is obtained by summing over the six permutations of external legs.

From ref. [91] we have the general tensor consistent with gauge invariance and crossing
symmetry for the three photons as Eqn. (8.10). The amplitude is obtained from this tensor
by dotting it into the external polarisation vectors. In this method one only computes the
scalar quantities A;, Aj, Az thereby eliminating the redundant information contained in a
gauge invariant expression, in a way analogous to what happens with spinor helicity methods.

Factoring out the coupling constants we obtain an expression for the A;’s in terms of the
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scalar, fermionic and gauge boson Feynman rules of Figures 10.1 and 9.3,

zet

Az‘(Plsz,p:'») = W (Z Q?va{(s, i, mf)
f

+ cot By AY (s, £, Myy) + cot 20w A (s, 1, MW)> (10.8)

cf. Eqn. (8.12). Here the fermionic A;’s are defined to include their overall minus sign. For
the gauge loop, A, we note that the inclusion of both ghosts, wt and w*?, is straightforward
since they are just (fermionic) complex scalar fields. In fact, in background field gauge,

AY® (s,t, M) = —A%(s,t, M), and thus AY, which we take to include both the W and
Faddeev-Popov ghost contributions, is obtained by application of the Feynman rules of
Figure 10.1 minus twice the scalar A? result. We therefore only need to compute the three

separate contributions A?, A/ and AY. Further discussion of the tensor decomposition

method can be found in ref. [96].

In order to minimise the duplication of effort, we make use of the supersymmetry relations
Eqn. (10.6) to systematise our evaluation of the above scalar A; functions. Since all of the
diagram types in this calculation satisfy the supersymmetry relation Eqn. (10.6), the sum
over the diagrams or amplitude will satisfy the relation. As mentioned previously, it is
not difficult to verify that the 5 contribution in the fermion loop drops out because of
cancellations between diagrams where the fermion circulates in one direction and diagrams
where the fermion circulates in the opposite direction.. This means that the entire fermion

loop contribution is of the vector type and therefore included in the supersymmetry identity.

The first step is to compute the scalar loop contribution. After summing over diagrams

and reducing the tensor integral down to scalar ones (see Section B.4) the result is

1
A‘f(s,t,m) = Sl(s,t,m):—iA{(s,t,m),
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1 t
Ag’(s,t,m) = S(s,t,m) = ——§A£(3,t,m) — 7”

(2m2H(m) - éE(t,u,m)), (10.9)
1 1
Al(s,t,m) = Ss(s,t,m)= ——§A§(3,t,m) - E{t("E(s,t,m) — u?E(u,s,m)

+2mPut(u — t)H(m)}

where the functions A{ , etc. are defined in Chapter 8. The mass, m, is that of the scalar

going around the loop and the arguments s, etc. are defined in Eqn. (8.13).

The scalar loop is the most complicated piece to integrate since the graphs contain the
most powers of loop momentum in the numerator. In general, because of the explosion
of terms which occurs in the evaluation of tensor integrals [18, 22], factors of loop mo-
menta cause the largest complications; this is reflected in the complexity of this result, see

Eqns. (8.16-8.18).

The next stage of the computation is to subtract out the part of the fermion loop pro-
portional to the scalar loop in the integrand of each diagram; after integration this yields

the F; which after summing over diagrams are as follows

Fi(s,t,m) = —A{(s,t,m) —28;1(s,t,m) = 0,

Fals,t,m) = —Af(s,t,m) —28,(s,t,m) = tu(27n2H(m) — lE(t,u,m)), (10.10)
s

Fs(s,t,m) = —Af(s,t,m)—28s(s,t,m) = %—{tzE(s,t,m) — u?E(u,s,m)

+2mPut(u — t)H(m)}.

The required integrals are much simpler quantities than for S; since the integrands contain
at most two powers of loop momentum instead of four. The relative simplicity of the com-
putation as compared to the scalar loop calculation is reflected in the relative simplicity
of the results. Plugging the S; and F; into the second of the supersymmetry relations in

Eqn. (10.6) reproduces the results for fermion loops of ref. [91].
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To obtain the W¥ loop contribution in each diagram we subtract the integrands associ-
ated with 28(s,t, M) + 4F(s,t, My ) from the full expression for the W* loop (including
Faddeev-Popov ghosts); this leaves only box diagrams to be evaluated since all other inte-
grands cancel by the supersymmetry relations given in Figure 10.2. Furthermore, the only
terms in the vertices which contribute are those which contain no loop momentum. The
ones containing loop momentum manifestly cancel in the calculation of G(s,¢, My ). This
cancellation is a direct consequence of the N = 4 supersymmetry relations. Since the terms
with loop momentum cancel, G is reduced to a relatively simple algebraic expression times a
scalar box integral, which may be obtained from ref. [101]. Since there is no need to evaluate
a tensor integral, this part of the computation is relatively trivial. (Indeed, by using rules of
the string based type [85, 83] it is possible to write down the answer without calculation.)
For the diagrams with a 1,2,3,4 and reversed ordering of legs the remaining kinematic tensor

is simple and given by

G***(1234) = —D(s,t) (8( gl su + g™ st + g*g “"uz‘)
+ 165(g*p5p5 + ph (9" — 9P + P9 pT — g*f))
+ 16t (g™ pipt + Y (9"p5 — 9°°Ps) + Pi(9ps — 9™ ph))

+ 16u (J““p‘z‘pz + p5(g" s — 9%py) + Py (9" ps — g"‘”P%))) (10.11)

where we have organised the terms to exhibit manifest gauge invariance. The other orderings
of external legs are obtained by a relabeling of legs. After summing over the independent

orderings, comparing to the kinematic tensor Eqn. (8.10) and using

gi(sat,A4W) = A}/V(S,t,Mw) - (ZSi(S,t,MW) + 4E(S’t1 M"V))
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the result can be summarized in terms of the three scalar functions

gl(sataMW) = 0,
Ga(s,t, M) = —2stuH(Myw), (10.12)

g3(8,t,Mw) = 0.

Again the simplicity of the calculation is reflected in the simplicity of the result. Inserting
these functions into the supersymmetry identities Eqn. (10.6), reproduces the results of
Chapter 8 for the gauge boson loop. In particular, eliminating for S; in favour of A{, and

using the following SM identity,
1
cot 20w = 5 cot 0w (2 — MZ/ME), (10.13)

(cf. Eqn. (3.15)) we find that the non-fermionic contribution to the Zyvv scattering tensor

. cos20
Al =AY A (10.14)
1/ M2 ) 1 1(M§ )
. —6)Al + (22 1 10)F + 6. 10.15
4.<M3V ctalag, T10)FiH9 (10.15)

This then provides an explanation for the empirically observed relations Eqn. (8.15) of

Chapter 8: namely that they are supersymmetry identities.

As a simple check on the results for G, we have verified that for external mass Mz — 0
the kinematic coefficient of the box diagram given in Eqn. (10.11) is proportional to the
colour ordered Yang-Mills tree. This is in agreement with expectations from superstring
theory with N = 4 space-time supersymmetry [87] where the one-loop four-point amplitude

1s also proportional to the tree.

The calculation we have presented for the W loop may be compared to the unitary gauge
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calculation presented in ref. [91]. In that paper, the unitary gauge was used because of
the significant reduction in the number of diagrams as compared to the standard ’t Hooft-
Feynman gauge. In the string-motivated organisation presented here we have retained all
the diagrammatic advantages of the unitary gauge. In addition, since it has been possible
to use a simple Feynman type background field gauge it has not been necessary at any stage
to cancel superficial ultra-violet divergences arising from the extra powers of momentum
in the unitary gauge propagator. (This was the most time consuming part of the tensor
reduction of ref. [91]). Furthermore, the vertices of background field 't Hooft-Feynman
gauge are simpler than those of the unitary gauge. Finally, by making use of the N = 4
supersymmetry relations we have reduced the W-loop calculation to that of simple scalar
box integrals which are given in refs. [101]. The reorganisation we have presented therefore

represents a clear computational advantage.

What about the fermion loop part of the calculation? Superficially it might seem that,
since there are four diagram types in the second order formalism (Figures 9.3 and 10.3)
instead of a single diagram type in the more usual spinor based (first order) formalism, this
represents a retrograde step in the calculational technique. In fact, the use of the second
order formalism significantly improves the calculational efficiency of the fermion loops since
most of the calculation can be directly obtained from the calculation of scalars or ghosﬁs
in the loop. The similarity in structure of the fermion to scalar vertices (Figures 10.1 and
9.3) ensures that when calculating the F;, the cancellations between the scalar and fermion
loops implied by the supersymmetry equations of Eqn. (10.6), occur on the first line at the
level of the integrand and before the evaluation of any tensor integrals. (Even if one were
not interested in scalar or gauge boson loop contributions, it is generally still advantageous
to break the fermion loop contribution into two separate pieces since it is usually easier to
handle smaller physical pieces in a large calculation.) The second order formalism therefore

also represents a considerable advance in calculational efficiency for the vector part of fermion
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Figure 10.4: Two extra rules. The three point rule for a mixed scalar gauge boson internal
loop and the non-abelian four-point vertex where the internal fields are not interchangeable.

loops (with no flavour changing).

10.4 Other processes

The string-motivated reorganisation discussed above is useful for other amplitudes. For
completeness the coupling constants for the various other vertices with external gauge bosons

are presented in Tables 10.2-10.4.

Table 10.2 contains the coupling constants associated with other three point vertices.
Those involving an odd number of gauge fields may be found in Figure 10.1 and the remaining

vertices that involve only two gauge fields are to be found in Figure 10.4.

Table 10.3 contains the remaining four-point couplings that obey the rules of Figure 10.1.
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Vertex Coeflicient
WHAW-, W-W+A e
WrzZzw-, W-WwW+z e/ tan Oy
ZWEpF —e?v/ sin O sin 20y
ZZH 2e2v/ sin® 20y
WEtW+H e?v/2sin? Oy
WEW¥y Fiev/2sin® Ow
WEAST e?v/ sin Oy
W*Z¢F e*v/ tan 20w sin Oy
WYHé, W-¢tH e/2sin Oy
Wy oF te/2sin Oy
ZxH —1e/ sin 20w

lable 10.2: The coupling constants associated with other three point vertices as represented
in Figures 10.1 and 10.4.

Vertex Coefficient
WHW-AA e?
WYW-Az ¢?/ tan Oy
ZIW-W+ WrW-22Z e2/ tan? Oy
WEWEWFWF —e?/sin’ Oy
W -wAlw! e’

W AwtTwd W AwA ¥

—e

WHW-wilwt

e?/ sin? Oy

WEW 2T ,F

—e?/sin Oy

WEZwElwA, WiZw’”wq:,

Wt Awt *wZ, W Aw? ¥

—e?/ tan Oy

ZZHH, ZZxx

e?/ sin? 20y

ZZot g™ e/ tan? 20y
WAW-g7 6=, WAW-HH, W W-xx | ¢/4sin’ by
WEAH $F e?/4 sin Ow
WEZH¢F —e?/4 cos Oy
WAy oF +ie? /4 sin Oy
WEZyo¥ Fie? /4 cos O
WHW-w?lwA, WHW-wAlw? e2/ tan Oy

W+W‘ ZT Z ZZw:i:T +

e/ tan® Oy

W*Zuﬁ“wz, VViZwZTw:F,

—e?/tan? Oy

Table 10.3: The remaining four-point vertices represented by Figure 10.1.
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Vertex Coefficient
WEAWTA e?
WEZWFA, WEAWFZ e?/ tan Oy
WEZW¥Z2 e?/ tan? Oy
Wtw-w+w- —e?/sin® Oy

Table 10.4: The coupling constants associated with non-abelian four-point vertex as repre-
sented by Figure 10.4.

Besides the vertex structures already encountered in Figure 10.1 there is an additional
non-abelian vertex given in Figure 10.4; the coupling constants associated with this vertex

are presented in Table 10.4.

Uéing these tables, one could for example consider the one-loop process 2y — 27 [92]
(which is of some interest to future photon-photon colliders). In this i)l'ocess one can again
use the N = 4 supersymmetry relations of Figure 10.2 to relate the diagrams with the W
going around the loop to the diagrams with fermions going around the loop. In this case,
however, there are mixed diagrams with both W’s and ¢’s in the loop. Although such
diagrams are apparently not simply related to fermion loop diagrams they are simpler to

evaluate since they have a maximum of two powers of loop momentum in the numerator.

Due to the simplicity of the background field vertices as well as the supersymmetry
relations Eqn. (10.6), one can expect a significant efficiency over previous calculations of
2y — 27 [92]. For example in the one performed by Berger in standard 't Hooft-Feynman
gauge, there were 188 diagrams to evaluate for the boson loop contributions. Since each of
the vertices is relatively complicated compared to background field vertices, this calculation
is significantly more complicated than one which follows the above strategy. Indeed, Bajc in
his paper states that there are 608 terms in the W box diagram alone. We may also contrast
the above strategy to the non-linear gauge used by Jikia in his calculation; we retain the

advantage of eliminating the A¢*W¥ vertex and have the additional advantages of having
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simpler vertices and supersymmetry relations between diagrams. A third alternative is the
non-linear gauge used by Dicus and Kao which has the advantage of eliminating all remaining
diagrams with mixed W-¢ loops, but then the vertices are more complicated and one loses the
supersymmetry relations for the un-mixed diagrams. Due to the supersymmetry relations,
the main part of each of these calculations only reproduces pieces already computed for the

fermion loops.

The ideas discussed above can also be applied to the case of external fermions. In
particular, background field Feynman gauge is still advantageous to use even when some
external legs are fermions. As for the purely external gauge boson case it is also useful to
identify parts of the calculation which are duplicated in the various diagrams. This type of
strategy has already been successfully applied in the calculation of the one-loop corrections

to four- [102] and five-parton [103] processes.

10.5 Summary

Various contributions to gauge boson amplitudes have relations between them connected to
the fact that amplitudes in N = 4 super-Yang-Mills have extremely simple forms. These
relations were first applied in the string-based calculation of gluon amplitudes [21, 83]. In
order to make practical use of the supersymmetry relations one needs a formalism where the
relations hold between the integrands of diagrams. The guidance for constructing such a for-
malism is provided by string theory and amounts to special gauge choices and organisations

of the diagrams.

In this chapter we have described the supersymmetry relations in weak interaction pro-

cesses which involve gauge bosons. These types of relationships were observed to hold in the
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explicitly computed weak interaction process Z — 3« [91], although in the unitary gauge
where the calculation was performed the relations seem mysterious. We have shown how to
reorganise this calculation as well as other processes so that the supersymmetry relations are
manifest in all stages of the calculation. Important ingredients for making the relationships
manifest in the diagrams are the background field Feynman gauge for the gauge-boson loops
and the second order formalism for fermion loops. In this way the gauge boson and fermion
loop computations have considerable overlap. The parts of the calculation which overlap do

not need to be recomputed for the gauge boson loop contributions.

A practical consequence of the reorganised calculation and the manifest supersymmetry
relations is that instead of the I/V-loop contribution being the most complicated part of the

calculation it is relatively easy to obtain it using results from the fermion loop contribution.
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Chapter 11

Conclusions

11.1 Summary

In this thesis we have reviewed the path integral approach to Quantum Field Theory, the
Standard Model of Particle Physics and some simple phenomenology appropriate for the
Large Electron-Positron Collider (LEP). The remainder of the text has been devoted to a

study of final state photon radiation at LEP.

Firstly, we have discussed photons produced in association with hadrons. We have es-
tablished that fixed order perturbation theory is unreliable in describing photon radiation
collinear to its partonic radiator. We have invoked the mechanism of factorisation to re-
move the divergence associated with a perturbative collinear emission. To do this we have

had to introduce a non-perturbative contribution to photon production. This photon frag-
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mentation function accounts for the hadronic component to photon emission—necessarily
in the collinear region. It is irrevokably (via factorisation and the regularisation scheme)
tied to the perturbative divergence it is required to absorb. By itself it has little physical
meaning, much like the single diagram of virtual gluon emission in Figure 4.10b. Indeed, it
contains a divergence! Only when it is combined with an appropriately regulated perturba-
tive calculation does it make possible a good description of prompt and non-prompt photon
emission. Following this work, the ALEPH collaboration have succeeded in measuring the
fragmentation function at LEP, and we have seen that our approach satisfactorily describes

the observed data, both isolated and non-isolated.

Struck by the apparent sensitivity of calculations to the different methods of isolating
photon in photon+1 jet rate at LEP (see Figure 6.1), we have investigated the flow of soft
gluons in such events. The collinear photon/gluon region does not contribute a divergence
to the calculation. In spite of this, we find that depending upon which photon definition is
chosen, a large fraction of the gluon radiation can reside inside the photon’s effective cone
of isolation. This naturally leads to large radiative corrections, and in the least, signals
a need for a more complete calculation. This is especially acute for the cone-type photon
definitions. The ‘democratically’ defined photon events, however, have smaller and generally
more stable radiative corrections. The cuts tend to favour more energetic photons and
consequently the quarks are forced into a more confined configuration. Such a configuration
leads to a suppression in soft gluon radiation in the direction of the photon because here
the quarks appear as a colour singlet. This tendency can be seen clearly in actual hadronic

events and also apparently leads to a suppression in the number of emerging hadrons (see

Figure 6.5).

We have used the ALEPH measurement of the photon fragmentation function to make

non-isolated cone predictions. In studying this result, we have uncovered an extreme break-
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down in the isolated perturbative photon prediction: a breakdown that previously required
large and negative O(a;) radiative corrections to a,greé with data. Motivated by ALEPH’s
observation of apparently large hadronisation corrections at the high photon energy end of
the fragmentation region, we have made a pseudo-isolated prediction for the 1-jet rate that
coincide with the democratic isolated rate for 90° and the fully non-isolated 1-jet rate for

small cone angles. This prescription agrees with existing isolated data.

Secondly, we have made a study of the rare Z-decay to three photons within the Standard
Model. Initially motivated by disagreements in the literature over the observability of such
a process at LEP, we have calculated it and found it to be unobservable. In the process
of calculation, however, we found that there was a striking similarity in the analytic form
of the boson and fermion amplitudes (Eqn. (8.15)). This observation has stimulated much

further study.

Following a string theory inspired rewriting of the Dirac determinant, we have derived a
set of 2nd Order Fermionic Feynman rules that are valid for gauge invariant effective one-
loop vertex functions. We have found a derivation of these same rules from a manipulation
of the conventional Feynman rules that has suggested a further symmetry within them. We
have applied the Background Field Method to the Electroweak sector of the Standard Model
to obtain a gauge invariant Effective Action. From which we have obtained a set of Feynman

rules for the calculation of gauge invariant vertex functions.

Using these calculational improvements, we are able to see the sorts of symmetry observed
in the above calculation at the level of individual diagrams, and not just at the level of the
complete amplitude. The symmetry observed above is inherent in all field theories involving
fermions and gauge fields, but was first noted in a supersymmetric theory with the aid of
string theory. We have sketched a method of calculation based on these principles which

removes the redundant parts of calculations at an early stage.
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11.2 Qutlook

This thesis has two aspects: a phenomenological one and a more formal field theoretic one.

The results of both lead naturally to further questions and topics for further study.

Having an ideal test-bed of high statistics at LEP, there is suflicient reason for extending
the Measurement of the photon fragmentation function to a higher order calculation. This
necessitates the inclusion of doubly collinear radiation into the formulation, to extend the
calculation to next-to-next-to-leading order. This may provide an explanation for the shoul-
der observed at high photon energy, in the ALEPH data. Furthermore it may give an insight
into the possibility of resumming the collinear region. Also of interest, is the prospect of
using the measured fragmentation function at other colliders, such as the Tevatron at Fer-
milab. Following the appropriate calculation it may prove possible to measure the gluon
structure function from non-isolated photon data, where the statistics are higher and, if our

observations about ‘isolated’ photons carry over from LEP, more reliable.

With regard to the Fermion methods developed in this thesis, there is some prospect
for extending them to general fermion calculations. In doing this it may prove possible
to calculate internal loops of mixed fermions and gauge bosons in a more transparent and

interchangeable manner.

In conclusion, it is the opinion of the author that there has been, and will continue to

be, more to the photon than meets the eye!
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Appendix A

Useful Functions

A.1 The Gamma function, ['(2)

The Gamma Function, ['(z), is defined in the following way,

1
['(z) :/0 dte t1*71. (A.1)

The function I'(2) is defined to satisfy the following identity,
2l(z) =T(z + 1). (A.2)

It can be seen to be a natural extension to the factorial function since for integer arguments,
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n>0
I'(n+1) = nl (A.3)
It follows from the gaussian integral that,

) — /7. (A.4)

A useful identity is,

(A.5)

An alternative, but equivalent, definition for this function is the so called Euler Repre-

sentation:
1:2-3---n
I(z) = li 7. A.
(2) N z(1+z)(2+z)...(n+z)n (4.6)

The advantage of this definition is that it enables one to write the gamma function in
exponential form,
= (=2)
P(1+4z)=exp{ 276+ —].—C(]) (A7)
7=2
where ((j) is the jth Riemann-Zeta function and 4g the Euler constant. The Gamma

Function is a fundamental tool in the application of Dimensional Regulation, where it is

used to generalise the notion of nl.
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A.2 The Beta function, B(z,y)

The Beta Function is defined as follows,
B(z,y) = =—— (A.8)

As for the Gamma function this combination is useful in the evaluation of non-integer di-

mension integrals.

From a manipulation of Eqn. (A.1) we obtain,

w2
/ d0C057n08i1’1n0:%B(7n+1 n+1).
0

)
% (A.9)

With respect to this integral form and a change of variables to z = cos?#, we obtain an

alternative integral form,
1 : :
/ dz (1 — 2y = Bi +1,§ +1). (A.10)
0

From this identity with the change of variable, ¢ = w/(1 + u), we obtain

/oo( ¢ = ! B(m+1,n—m—1) (A.11)
0

U + (L)” an—m—]
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A.3 The symmetric Gram determinant, A(a,b,...c)

The Gram Determinant, A, is defined,

a-a a-b - a-c
b-a b:b -+ b-c

Afa,b,...c) = det (A.12)
\c-a cb ... ¢cc

Three of its most useful properties are immediately apparent,

Aa,b,...) = A(bq,...)
Ala,b+ da,...) = Afa,b,...) (A.13)

A(—a,b,...) = Afa,b,...)

A.4 The Spence function, Sp(z)

The Spence Function (or dilogarithm) [104, 101} is defined,

Sp(z) = — /01 d—zlog(l —zz). (A.14)

z

It is a frequently recurring function in high energy physics calculations, and is used exten-

sively in this thesis. The following two identities are found to be useful,

2

Sp(z) = =Sp(1 — z) + -%— — log()log(1 — ) (A.15)
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and

—z). (A.16)
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Appendix B

Integration Tools and Techniques

In this appendix we have collected a number of integration tools and techniques that we

have referred to in the text and cross-referenced in other appendices.

B.1 The Wick rotation

The Wick Rotation is a technique used to turn four dimensional Minkowski space integrals
into four dimensional Euclidean space integrals. This procedure has the effect of making
coordinate transformations more transparent, and consequently simplifies the method of

solution for the following class of integrals,

/ (ddk 1 (B.1)

27) (k2 — m? 4 ig)>’
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Figure B.1: The contour of integration used in performing the wick rotation. The poles are

indicated by crosses and lie outside the contour.

We note the positions of potential poles in the integrand. These poles satisfy, (k°)* =

kZ +m? —ig;

K = (k2 + m?)? Fi6
(6 = €/2|k°| > 0) and thus (see Figure B.1),

1
Ak =0
){c (kT — m? + i¢)°

hence (for a real mass m),

/ X ! = [ ke !

0 (k2 —m?+ie)*  Joieo  (K*—m?4ig)>

For a moment we define the quantity k=% = 2k° such that

k2

I
!
—_—
I

o
e
L&)

1
o
[ =]

i

|
?\l
[\
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(where k is an Euclidean d-vector). Changing variable from k° to £=° we can write (B.1) as

an integral over Euclidean space:

i / (dd—]‘-“' ! (B.6)

Qﬁ)d (—E2 — mZ)a

We are free to drop the ie because the potential poles do not lie close to the real (k7°) axis.

In summary then, for real m,

dk 1 ' . dék 1
/ (2m)¢ (k% — m? +1e)~ =i(=1) / (2m)¢ (EQ T _,_nz)a" (B.7)

B.2 Dimensional regularisation

We find that the following result is very useful [16]. We consider the following integral,

dik 1
/(27r)“(k2 +2k-p+C + i)™ (B.8)

Completing the square and making the substitutions ¢ = k+p and a? = p? — C? this integral

takes the form,
diq 1
(2m)* (¢* — a® + 1e)°

(B.9)

performing a Wick Rotation (B.7) and noting that the integrand becomes symmetric about

g = 0 we separate out the radial and angular integrals;

d-1

. N dq q

T G4 ™
with, / dfl, = / do, / d6,sin 6, . .. / dfy sin=1 0, (B.10)
0 0 0
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Using the identity (cf. Eqn. (A.9))

g T n—’H
/ZdﬂsiH"O:B<l n+1) = vrl() (B.11)
0

52 ) T TED)
we have
27ri:2ti
/de - T (B.12)

and making the substitution u = ¢* (B.8) becomes

i(~l)°‘ o0 y us-1
(47r)§I‘(;_f.)/o d (v + a?)° (B.13)

Finally, we use Eqn. (A.11) to obtain the result,

/ dik 1 _ (—_1) —§ (C — )i (B.14)
@r)e (2 +2k p+C +ie)*  \4r/) ~I(a) b= '

B.3 Feynman Parameters

It is often the case in loop calculations that one must integrate over a string of denominators
each of which is quadratic in the loop momentum. A favourite method for dealing with such

calculations is to employ Feynman Parameters.

We note that (by simply integrating out z and y),

51—z —y)
A1A2 / ‘h’/ WA T oAt 7;A1+yA) (B.15)
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The general case, for any positive integer N, is

1 1 — I —ZTqy. — IEN)
—_—_— d / d / d . B.16
A1A2 Cee AN / o v2- TN :BlAl + 132/42 + . 'L'NAN)N ( )

We can show this to be so by induction. The zx integral is trivial giving,

1 _ I“ N 1 l 11—z l l—2y—x2...~T N2 l B 17
m = ( )./(; (fl,]\/0 (.’112...‘/0 QTN -1 ( . )
1

(z1(A1 = AN) + .. .an_1(An-1 — An) + ANV

and the xy_; integration is simply performed to yield

N 1 d 1-2; l l—z1—z2...—xN_3 d —1
)/o ““/o “’“’2‘“/0 NN D) (Ano — An)

l l-z;—22...~T N2
X
[(371(/41 —An)+...zny_1(Anos — AN) + AN)Y — ]
[V _1 1- .’L‘1 1-z1-z3...—xNn_3
T
L —
1

X {+ ~

(z1(A1 — AN) + ...+ an2(An—2 — AN) + ANV — 1

1
(z1(A1 — An_y) + o+ oy_e(Anoe — Anoy) + Ay )V = } .

Comparison of these two terms with the form of B.17 reveals that we may write this result

as,

d // /l.:_6 ... — 2N
ANI—AN/ Tq g . (7N1(1 Tq T9 TN 1)
1

X
{(fﬂlA] oot TN AN+ an1 AN)Y — 1

1
_({ClAl oot ZI?N_-ZAN_Q + $N—1AN—1)N -1 } .



In the case N = 3 both of these terms have the form of B.15 and this expression reduces to

1 1 1 1
— = B.18
Ag - A3 {A1A3 A]AQ} A1A2A3 ( )

and hence by induction we conclude that B.16 is true.

B.4 Form Factor Reduction

This technique is essentially a method of reducing loop integrals which possess a lorentz

structure to a sum of scalar integrals with tensor coefficients.

Firstly we make some definitions, (for brevity we have made the infinitesimal transfor-

; 2 _ 2
mations m; = m; —

1e —see for example (D.14) )

N
Ao(mo) = %k?—jm—g (B.19)
d Tk o b ke
Boanelinomom) = | Gt s iy ()
Coipspuipwo(P1, P2, Mo, M1, M) =
/ d*k Lk, kukys k kK, (B.21)
(2m)? (k2 — mg) ((k + p1)? — m}) ((k + p1 + p2)? — m3)
Dopspviwvpiwvos (P> P2y P3, Mo, My, Mg, m3) =
/ d'k | U ks kukys Rk, Ky Kk by kg
(2m)® (k% = mg) ((k + p1)? — m}) ((k + p1 + pa)? — m3) ((k + p1 + p2 + p3)? — m3)
(B.22)

219



B.4.1 Reduction of the As

As indicated by the exclusion of the fermion-type tadpole integral from the above set of

definitions the following integral,

A
/(27r)d__k2 s =0 (B.23)

simply because the integrand is antisymmetric about k& = 0.

B.4.2 Reduction of the Bs

Whilst the C' case is more representative we shall first consider the B form factor reduction.

The only vector available to provide the tensor structure of B, is its argument momentum
pyi. We may write,

B*(p1, mo,m1) = pi B1(p1,m0,m1) (B.24)
Further if we consider the identity,

kep = % ([(k +p1)? — mf] - [/c2 - mg] - [pf —m? 4 mg]) (B.25)

and contract B, with p; then the result can be obtained in two ways. Firstly as p?B(...)
and secondly, by canceling the denominators occurring in B, (B.20) against the alternative

form of the contracted numerator (B.25), as

(Ao(mg) — Ag(ma) — (p2 — m? + m?)Bo(p1, mo, ml)) (B.26)

N —

Py B.(p1,mo,my) =
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In the case that p? # 0 we can use this observation to write B, in terms of the scalar integrals

Ag and By (see Appendix D). Expanding B,,;

B = pip| Bas + ¢" Bao (B.27)

and contracting in d dimensions with p,, and g,, we obtain a new set of relations for By,

and By. A summary of the relations concerning these scalar coeflicients is:

1
Bao(p1,mo, m1) =1
X (Ao(ml) + 2Bo(p1, mg, my)mi + (p? + m2 — m?) B, (p,, mo, ml))
1
i Bas(py, mo, m1) 2@d=1) (B.28)

X ((d — 2)Ag(my) — d(p? + mE — m3)Bi(p1, mo, 1) — 2m2 Bo(p1, mo, ml))

1 .
p2By(py, Mo, my) = 5 (Ao(mo) — AO(my) — (p? + md — mf)Bo(p,,mo,ml))

For massless external particles these equations become insufficient to reduce all of the Bs
to By and the distinction between By and Ag is blurred. A new set of relations emerges; if

2 _ 02
mj = mg,

1

By(p1,mo,m0) = —EBO(Pl,mo,mo)
1
BZO(pl , Mo, 7n0) = §A0(7n0) (B29)
d—2
BO(p'l , Mg, 7710) WAO(THO)
0

We note that the first of these three relations also holds in the m3 = m?2, p? # 0 case.
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B.4.3 Reduction of the Cs and Ds

The masslessness of external particles does not affect the form factor reduction of C and
higher integrals. The two simultaneous equations that arise from contraction with pf, p%,

etc. and (where appropriate) g*” form a matrix equation, for example!

R’y _ Pt P12 Cazo (B.31)
R, P2 Py Cau
with,
1
R, = 3 (—20200 + Bo(p2, m1,ma) — (P? +mj — mf) Ci0 + Bi(p1 + p2,mo, m2))
1
Ry, = ~3 ((p% + 2py - py +mi— mg) Crio — Bi(ps + p2,mq, ma) + By(p1, Mo, ml))
1 2 2 2 2 2 2
Ca00 = 2d=2) (+ (P1 +mg — 7”1) Crio + (Pz + 2p1 - p2 +my — m2) Cinn

+Bo(p2, my1, ma) + Zm?,Co)

Inverting the matrix we do not encounter a problem when an external invariant mass goes
to zero because the inverse of the matrix (B.31) is not identically singular here. Indeed when
the associated Gram determinant (see appendix A.3) goes to zero we encounter the IR poles

that are dealt with by our regularisation procedure.

In a very mechanical way we can reduce each of the integrals of Eqns. (B.20 to B.22)

IThe adopted convention for labeling the expansion coefficients associated with each tensor integral is as
follows.

CHP = | +C, abpi#pjupkp + . (BSO)

where n is the number of ks appearing in the numerator of the corresponding integral, 7, j and k take the
values 1 or 2 and a is the number of p;’s multiplying the scalar coefficient; b is that for ps (this convention
is also abeyed by the Bjys of the previous section—although By one might argue should be written as Byj).
For example,

C* = Caopy p} + Co02phph + Cor1(pi'ph + phpY) + Ca009™” .

This is not the same notation as employed in Ref. [18].

222


file:///P/-P2

down to a sum of Dy, Cy, By and Ag integrals. Using the symbolic manipulation language

FORM [105] this process has been automated.

B.4.4 A note on simplifications

We note the following property of general integrals with an odd power of loop momenta in

the numerator. Consider the following integral,

dk ko kB kY
o e (R ok (B:32)

The method given above would have to be extended beyond the integrals B.20 in order to
handle this form. Instead we can consider the effect of making the momentum transforma-

tion, k — —k — p;. After such a change we have,

(k4 )k 4 )Pkt pr)T
(@) (B —m?) ((k + pr ) — m?)

[= (B.33)

where the denominators have effectively swapped over and the leading term in numerator
powers of k has changed sign. By taking this contribution to the left hand side we obtain
an expression for 27 in terms of integrals with only 2 powers of k£ in the numerator. This
technique generalises to the higher point integrals, and was used extensively in the unitary
gauge calculation of Chapter 8, where there were initially 12 powers of k in some boz nu-
merators! It should be noted that this technique fails to work if the masses of the internal

propagators of the loop differ.
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Appendix C

Analytic Phase Space Integrals

For many of the calculations in this thesis it is required that we integrate over the two and
three particle phase space [106] of our out going particles. The derivations of the relevant

integrations in terms of invariants are presented here.

C.1 Two particle phase space

We present the 1 — 2 particle phase spaces for massless particles in d-dimensions and that

for massive particles in 4-dimensions.
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C.1.1 Massless two particle phase space in d-dimensions

The basic integral for massless out going particles is

>d d
/Dlip51—>2--- =/é:)ld/é:;d(27r)5(pf)(27f)5(733)(27r)d5d(po—p1 —-p2)...  (C1)

Where pp is the in going d-momentum and p, and p, are the out going d-momenta.

Performing the p, integral using the §% function, integrating over p,° and rewriting the

remaining d¢~!p, integral as a radial-angular integral we have that

. 1 _ §(p2
/ Dlipsiz.- = oy / dE, E? 3de_2—%—"’-)—... (C.2)

<

P2=po—p1

where we have chosen a particular frame in which to do our integral, namely one in which

py = (M,0,0,...) and E; is the magnitude of the energy of the out going particle.

We have that

’ ) M? - 5,
ps = (po—p1)? = So1 = M* —2ME, le. = TOI (C.3)

and thus (see Eqn. (B.10)),

| 1 % M? — S5\
/Dlzpsl_,g L. = W b dS(n (—WOI> (le_26(501) e (04)

We use the identity of Eqn. (A.5) to write (see Eqn. (B.12)),

47r#11 d=2
/clﬂd_zz( )r(d-g)z ) (C.5)

In the case that the integrand (...) is independent of Sy, the integration becomes a pre-
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factor, expanding about 4 physical dimensions d = 4 — 2¢, it has the form,

, 1 T(1-¢) (47r>f 1
/thsl—’z"'_—é—q;f‘(l—k) ) Toe (C.6)

C.1.2 Massive Particles in 4-Dimensions

For massive out-going particles the two particle phase space integral (cf. Eqn. (C.1)) gener-

alises to
. 14 14 ‘
/thsl_.z o= / ((2:)1d / %(27r)6(p% — m2)(2m)8(p2 — m2)(27)%6% (w0 — pr — p2) - ..
d*y d?
- (zf)ld (2:)211(2”)5(1’% —m3)(2m)6((po — p1)* —mj)... (C.7)

We choose the centre of mass frame to evaluate this integral, (E > m,)
po=(M,0,0,0) p; =(E,pcosb,psinb,0), (C.8)
where it becomes,

/ Dlipsis = Z—gjr—)z / dQ, /oo dE dpp* §(E* —p* —m3)6(M* —2ME +m? —m?)... (C.9)

ni

In the case of the 2 — 2 process we must retain one of the angles of integration from df1, to
correlate the initial and final state directions. Changing the arguments to the delta functions,

we obtain,

m 2 2 _ 2
/Dlipsl.ﬂ = ﬁ/{) do sin0/dEdpp§<p—\/E2 —mf) § (E— M +277‘} m2)

(C.10)
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In the case of 1 — 2 the 8 integral may be performed, i.e. it is replaced by a factor 2.

C.2 Three particle phase space

All of the processes involving 3 particles in the final state that are studied in this thesis are
for massless ones. Accordingly we give an analytic form for the d-dimensional 1 — 3 phase

space integral only.

C.2.1 Massless particles in d-dimensions

Having utilised a §¢ function and integrated away the d-momentum of the third particle the

integral the massless three particle phase space integral takes the form,

o 1 d—2
/d ¢, 2m)8(p5) (C.11)

/DIZPS]_,3... = (27‘{' 4E1E2

P3=Po—pP1—p2

(we have chosen the special frame of reference in which p§ = (M,0,0,...), p{ = (£, F4,0,...)

and py = (Fy, £, cosby,, E;sin by, ...)).

Writing this as a radial/angular integral, but singling out the angle between p, and ps;

61,2, we obtain

| 1 o
/ Dlipsios. = gy / d0l_,d0%_, / dE,dE;d0ys (B Eysin 612)° 6(p2)  (C.12)



The two solid angle integrals if evaluated become, (see Eqns. (B.12 and A.5))

4 d-32 d—2
/ ol Ld0: . = ( — _ 20dm) (C.13)

PG T (&) T-9)

In order to be of use we transform the remaining integral into one over the invariants S;,, Si3

and Sy3 the associated Jacobian, J for this change of co-ordinates satisfies, (see Eqn. (A.13))

(81\4‘7)_2 = (ME1E2 sin 912)2 = A(Po,Pl,Pz) = A(P] +p2 + ps,P1,p2) = A(]91,102,1?3)

1, ,
- 1512523513. (614)

Defining y.; = %& and expanding about d = 4 the form of the integral is

M? 1 4r\* 1
/Dl?:])Sl_,;; . ( " )

12873 (1 — 2¢) \M?) 1 —2¢

1
X /0 dy12dy23dy136(1 — y12 — Y23 — y31)(V12y2sys1) ©...  (C.15)
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Appendix D

Scalar Loop Integrals

As is shown in Section B.4 the technique of form factor reduction is in essence a method by
which one may reduce complicated Lorentz tensor loop integrals down into a sum of more
elementary scalar loop integrals with tensor coeflicients. The following sections include the
evaluation of the first four scalar loops needed in the main text, in order of increasing

complexity; Ag, Bg, Co and a selected Dy. [22]

D.1 The Tadpole: Aj

We consider the simplest loop integral,

d'k 1
Ao(m) = / (27) k% — m? + e (D-1)

229



which is clearly (simply counting powers of momentum) divergent in d = 2 and 4 dimensions.
As indicated by the use of d we evaluate the loop keeping tabs on the divergences using

Dimensional Regularization.

Directly from (B.14) we may write

18

Ag(m) =1 (;_7:) : (_m2)g_1 F(IE(I)%)

and expanding about 4-physical dimensions d = 4 — 2¢ we have that,

im? (4r\“T(1 +¢)
A()(’ITL) = 1672 <-T_n_2> 6—(1'tz)- (DZ)
As a special case we observe that in the limit m — 0, Ag(m) — 0.
D.2 The Bubble: B,
Bo mm)=/ddk ! (D.3)
OPLTROTN) = | @m)E (K = m3 + ie) ((k + p1)? — md + ie) |

This integral is logarithmically divergent in d = 4 dimensions. To calculate it we use Feyn-

man parameters (Section B.3) to re-write the integral in the form of (B.8).

d*k 1 1
Bo(p1,7n07"nl) = /WF(Q)/O dCE/o dy5(1 —x — y)
1

X .
(w(k? — md +ie) + y(k? + 2k - py + p} — m +1¢))’”
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Performing the trivial z integration we obtain,

1) /ld / ak !
o VS @ 2k pry + y(E + mi — mE) — md + ey

Following the discussion in Section B.2 and substituting into (B.14) we perform the integral

over k to obtain,

4—-d

d
. —1\2 1 | st
Bo(py, mo,mq) =T (T) (27—1_-) /0 dy (y(p:f +md —md) —m?2 — y*p? + ze) :

and expressing in terms of € ( d = 4 — 2¢ ) this may be written

-1

2—e 51 —c
Bo(p1,mo,m1) =1 I'(e) (E) /Ody (y(p? +m2—md) —md —y"p?+ie) . (DA4)

D.2.1 Massless internal particles

We consider the m2 = m? = 0 limit of Eqn. (D.4). When p? # 0 (D.4) becomes,

B, 0,0) = i1 (1) D [ a1 - )

. (-}7})2_5 (p))"T()B(1 — ¢, 1 — ¢)

= (ﬁ) e ;(i)ﬂi)_ : g - %) (;?)E (D-5)

In the case that p? = 0 it is not immediately apparent what the value of this integral is.

Considering the associated integral we have,

d'k 1 dk 1
Bo(p1) = / (2m) k2 (k + p1)? = / 2m) (k — a)? (k + a)’
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where we have made a change of variable k = & — ¢ with a = %pl. Using partial fractions

this may be written,

&k 1 1 !
Bo(p1) = (27m)d (4 k - a) ((k — a)2 B (k+ a)2>

and since, for any A, (k + Xa) - @ = k - @ we find that both of these integrands become
anti-symmetric about k£ = 0. In summary, for p} = 0, By(p1,0,0) = 0 in dimensional
regularization. When we compare this result with (D.5) we see that have made the statement

that (0)~¢ = 0.

D.2.2 Equal Mass Internal Particles

For the case of equally massive internal fields we return to Eqn. (D.4) and make the simpli-

fication mZ = m? = m?. In this limit,

i 47T ¢ Ie ’

_ 4n L D.

Bo(p1,m,m) 6 (mz) [(1+¢) c (D.6)
where 7, = fol dy(f(y))~*
2 P% P%

for f(y) = 1 m—y;ﬁ‘Fl_“ (D7)
. n D.8
= -y -v-) (D-8)

] amz
with yi=§<1i,/1—%+ze> (D.9)
1
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Note, that the ie term fixes the sign of the imaginary part of the square root for yi to be

+ve. Expanding to O(e?) and performing the integrations we obtain the following result,

I =1+¢ [2+ vy log (1 _Jy+) +y_log <1 — y")] + O(e?). (D.10)
+

We can consider each of the physical regions for Z, with respect to the invariant mass squared,
p?, of the external particle, being careful to analytically continue where necessary. In terms

of the positive quantity, = = |1 — ‘“—pz”i|1/2, 7. is as follows:
1

z—1
P<0(e>1) TL=1 +e{2+:r:log (f;—H)} +0(&) (D.11)

© 0 < p?<dam? (00 >z >0) Ic———1+e{2—w(W—Ztallnlw)}-i-o(g) (D.12)

1 —: 2
dm* <pl<oo (0<z<l) Z.=1+c¢ {2 + zlog (ﬁ) + i7ra:} + O(€e°). (D.13)

The quantity J = (Z. — 1)/e, is the finite correction to the divergence of By(pi, m, m).

D.3 The Triangle: ()

d'k
Co(Pl,p2,7no,ml,m2) = /W

1
X ; ; :
(k2 — m +ie) (k + p1)? — mi +ie) ((k + pr + p2)? — mj + ie)

(D.14)

This integral is not ultra-violet divergent in d = 4 dimensions however we evaluate it in
4 — 2¢ dimensions as before in order to account for the infra-red divergences associated with

the soft limit of the loop integration. As before we use Feynman parameters to re-write this
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integral in a more straight forward way;

(ldk
Co(p1,p2, Mo, M1, m3) = / / cl'z:/ dJ/ dz6(l —z —y — 2)

X

(z (F —mg+ie) +y ((k + p1)? —ml+ze)+z((k+pl+p2> "+ ie))

—y d
/ ./ i (217rk d

(k2 + 2k - (pry + (91 + p2)2) +y (p} + md - 777‘1) + 2 ((p1 + p2)? + md — md) — m3 +ie’)’
and then substituting into equation (B.14) we obtain,
-1 § 1- y
D o(o-d) ]
4 ) ( ) Y

2 2 2 2 2 2 2 2\5-3
X (y (pl + mg — ml) +z ( P+ pe)t +mg — m2) —mg — (py + (p1 + p2)2) )

TERR I wl d
—za)(—f-e W/cy/

x (y (p} +md —ml) + 2 ((pr +p2)? +mg —md) = md = (pry + (p1 + p2)2)")

Col(p1, p2, mo, M, my) = 1

~—~

—(1+4¢)

o~

D.3.1 Massless internal particles

We give the case for p? = p2 = m2 = m? = mZ = 0. In this limit we have,

Co(p'l,p?) 07 O’ 0) =
(LY 4 (2, - )~ [ o oy — ~(14e)
l I(1 +¢€) (—4m)" (2p;s - p2) dy dz((1 -y —2)2)
4T 0 0
making the change of variable to x = 2/(1 — y) and the double integral becomes
(140)

../Oldy/Olda:(l—y) (1= )21 - 2)2) " =
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/ dy(1 -1- 2‘/ dz (( )0+ = B(1,-2¢) B(—¢, —e),

where B is the Beta function satisfying Eqn. (A.10). Hence we obtain,

1N 1 TA4+er?1—e)1 [ —dr \°
0) = — —_ . .
Co(Pl,pz,0,0, ) 13 (47T> 2p1 Py P(l — 26) 2P1 by (D 15)

D.3.2 Constant internal masses

We consider Eqn. (D.14) in the limit, p? = p2 = 0 and my = m; = my; = m. This function

is finite in four-dimensions so we evaluate it straightforwardly,

¢ dx , s
ol ) = 5505 [ o (1= = pal1 =)
i1 -z \1?
= — |1 .
1672 25 [Og (1 —z)] ! (D-16)
where s = (p; + p2)? and,
1 im?
2= <1+ - —i—ie). (D.17)
s

D.4 The Box: Dy

Finally there is the four-point function with three massless and one massive external line,

p? = pl = p% =0, p? = M% and an internal mass m, (we suppress the ic on the first line)

DO(p17p27p37 m,m,m, m) =

d* 1
/ (2m)* (¢ = m?)((g + p1)* — m?)((g + p1 + p2)* — m?)((q — pa)? — m?)
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1 1 dx M?
= ir?= —log {1 —ie — —Za(1 - )
" st/o :c(l—a:)—i-m?u/ts{ og( T e (1 —2)

7/

+ log (1 — 1€ — i"c(l — ’E)) + log (1 — 1€ — —t——r(l — 7,))},

m?2 m?

(D.18)

for s = (py + p2)?, t = (py + p3)* and v = (p3 + p1)>.

This result can be expressed in terms of Spence functions (see Equn. (A.14)) via the

relation,

[ =3 log (1 — e — —a(1 - z)
o z(1—z)+ miu/ts o8 re m}m v

1+ 4m2ufis T-—y Ty —13 Yy — T4 Y —x_
—z_ . vu

where,
1
TE =g (1 + /1 4+ 4m2ufts ) , (D.20)

and,

y:

(1 +/1 — 4(m? —ie) /v ) . (D.21)

DO |
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Appendix &

Dirac Algebra

E.1 The v Matrix

The ubiquitous « matrix is defined by the following two relations,

{7u7 'Yu} = 29uu (El)

and the hermiticity condition,

7 = 4944, (E.2)

Along with the definition there are a number of conventional constructions that are



referenced throughout the text of this thesis, these are,

?
Ouv = 5 [7;1,, 71/] (Eg)

and

» .
T = € vy = 0V =4 = (E-4)

Further, we frequently use the Feynman slash notation,

]lj =p-vy= p“'y“ (E5)

From these definitions we have the following relations: we list them (where they do not

involve «s) for d space-time dimensions and also the conventional d — 4 limit.

d d— 4
Sl d 4
T, (2 = d)y —2"
By, 4g°F — (d — 4)y*4P 4g°B (E.6)

YNV v | =299 + (d — 4y Py | —2974P 4

Y575 1

['75a 7U] 0

All Dirac fermion calculations at some level require a trace to be taken over the implicit
spinor indices of a string of 4 matrices. As for the above table, we give the following results

in d dimensions, where we take the dimension for the representation of the gamma matrix

to be d.
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Tr{...} d d=4

(odd number of ¥’s) 0 0

74P dgh 49"

W, d ( geB g — gerght 4 gaﬁng?) 4 (gaﬁg% — go7gPb 4 gaﬂg'w?) (E.7)
Vs 0

757" 0

20t e e —dienP?

E.2 The Dirac Equation

The y-matrix finds its place in high energy formalism through its defining role in the Dirac
Equation, a relativistic equation for the fermionic wave function [3]. That is to say, free

Dirac fermion sates, |, p), obey

(p—m) 1, p) = 0. (E.8)

The observation that such states are on-shell or,

PPl p) = m?|,p), (E.9)

leads to the definition of v; Eqn. (E.1). We can expand the field operator associated with

such states, ¥, as a sum over creation and annihilation operators (cf. Eqn. (2.13))

¥(e) = / (;lwl;a(k% ij {e™a,(kyu; (k) + =Bl (k)v; (k) } . (E.10)
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Here, a; b} obey fermionic statistics, and the spinors u; and v; define the polarisations of

the fermion states. In coordinate space, where p, — 20, the free field Dirac Equation is,

A

(i — m) ¥(z) =0 (E.11)

which follows from a Lagrangian term of the form ] (z@ — m) ¥. In terms of the fourier

components,

(36 - m) u;(p)e™P%a; = 0 (E.12)

- (]é + m) vj(zJ)ei”'mb;- = 0. (E.13)

With respect to the hermiticity condition of Eqn. (E.2), the hermitian conjugate of these
equations in terms of the adjoint field, ¥ = \11770, combines with the above to give the

following spinor properties,

(115 - m) u;(p) = 0 = <}5 + m) v;(p)

(E.14)
T(p) (p-m) = 0 =5(p) (p+m).
We shall take the normalisation of the spinors to be that defined by,
T () = 5 and o T)s(p) = —6 (E.15)
il (D) = & , — T {p) = —6.. )
2mu‘ plus;\p ij alld 27nv1 P)Y;\I is

where p? = m?.

For the summed u spinors in the reverse order, we find that multiplication on the left or

right by the operator (p —m) must yield zero. This leads to, 3, u;(p)@; o< (p+m). From the
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normalisation condition above (and a similar argument for the vs) we obtain the following,

SueTE) = @rm) X vE)we) = (- m) (E.16)

7

E.3 Coupling Fermions to a Gauge Field

The coupling of a Gauge field, AN, to a fermionic field is enabled by the replacement of the

d, with the Gauge covariant derivative Eqn. (2.29). The coupled Dirac Equation is thus,
(izbu - m) (x) = (mu —gA () - m) ¥(a). (E.17)

This leads to the Feynman rule for a fermion-gauge vertex of the general form —igT®, where
T are the structure constants of the group. Note, that mass terms for a gauge field are

gauge invariant, unlike those for the gauge field itself.

.4 Chiral Fermions

We define the left and right-handed projection operators,

1 - 1
AL=—27E and Agp= -;75.

(E.18)
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With respect to these projection operators (ALAy = Ap), we define the left and right handed
spinors!,
ur, = Apu u;, = TUAp

UL +Uup=1u . (E.19)
up = Agu TUg = TAp

The following currents can be written with respect to these component spinors as,

scalar: Tu = Tpugp + TUgrur
pseudo-scalar:  Uysu = TUrLYsur — TRYsUL
(E.20)
vector: Yyt = upyfur + Upytun
axial-vector:  Wytysu = —Tpy*ysurp + TrY*YsuR.

From this list we see that the Lagrangian terms that give mass to the fermions are like

chirality-mizing vertices.

1For the remainder of this section the u will stand for either u or v.
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Appendix F

Algebra for sU(2) and SU(3)

The three gauge groups of the Standard Model are U(1), SU(2) and SU(3). The first of these
is an abelian group corresponding to a simple phase symmetry of the Lagrangian fields. The
remaining two groups constitute more complex internal symmetries of the Standard model

Lagrangian.

We note that the number of generators required for the SU(N) groups is (N? —1). In

this appendix we review some useful results for these algebras.

F.1 SU(2)

The structure constants for the generators of the SU(2) symmetry group are fe%¢ = eb¢

so, with reference to Eqn. (2.27), we find that the Pauli Matrices, 7;/2, form a suitable

243



representation for the generators of this group.

The Pauli Matrices are defined to be hermitian and are as follows,

They satisfy the following relation,
[Ti, Tj] = 2ieijka (F2)

which is sufficient to ensure that 7;/2 is a generator for SU(2). They also satisfy the following

anti-commautator relation,

{Ti,Tj} = 26,']'. (F3)

Combining these two relations we obtain the following useful result,

TiT; = 1€6:5Tk + 6i5. F.4
J J J

F.2 SU(3)

The algebra of SU(3) is more complex than that of SU(2) it contains 8 instead of 3 gener-
ators. It remains an un-broken symmetry of the fields of the Standard Model so it is not
necessary to write out an explicit representation for it. Instead, we shall consider some gen-
eral arguments for fundamental generators of arbitrary groups and use only the dimension

of the group as a parameter.
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The defining equation for a group is Eqn. (2.27):
[Ta, Tb] — ?:fabcTc.

The normalisation of the fundamental representation (hermitian, N x N matrices) of this
group is given by,

Te{T*T’} = %5“”. (F.5)

These two relations are sufficient to calculate the effect of the group structure of SU(N)
in all Feynman diagrams. It is conventional to compute colour factors for such diagrams:
these correspond to an overall factor to accompany the lorentz structure associated with

general fermions and general gauge bosons.

The members of the SU(n) group have unit determinant from which we can deduce the

tracelessness of the generators;

det (7'T) = 1 4+i0°Tx {T°} + O(0°?) =1 = Tr{T°} = 0. (F.6)

Now, we consider the general form of the product of two identical T's,

a

Tl?l = a&-j(sk, + ﬂ6i16jk (F7)

where o and f are to be determined and we implicitly sum over the index a. We exclude the
6i16; term from this sum because the first and second indices on T7; are not interchangeable;
they correspond to colour and anti-colour. The neglect of this term simply expresses colour

conservation at each vertex, and hence throughout all Feynman diagrams.
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Contracting the indices (¢7) and using Eqn. (F.6) we obtain,
0= (aN + ﬂ)5k1 = o= —%. (F.S)

Contracting instead the indices (il) and (jk) we obtain §**x Eqn. (F.5), and in terms of 3,

4 . N?-1 1
NN+[3N = :>,3—2. (F.9)
Thus, we can write Eqn. (F.7) as follows,
| 1 '
TiTh =5 {5,-,5jk _ N&jék,} . (F.10)

We can represent the structure constants f°* in terms of the generators too. Multiplying

Eqn. (2.27) on the right by T we obtain,
|12, 7*] T = i feteTeT (F.11)
and taking the trace of this expression (with respect to Eqn. (F.5)) we find,

febe = —2Te { [T, 1] T°} . (F.12)

Relations Eqns. (F.10 and F.12) are sufficient to compute any colour factor, either par-
tially where the free indices are given in terms of the generator indices, @ for external gluons,
and @ for external quarks, or completely as for the cases of fully contracted squared ampli-
tudes. The terms resulting from the former application of these rules is often termed a colour

decomposition. It has proved very useful as a tool to break up large QCD calculations into
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~ smaller, gauge invariant, sub-amplitudes that can be evaluated more readily. [93, 83]

To keep track of the many indices in the application of these two rules it is both convenient
and efficient to represent the two equations in the form of diagrams—this is in the spirit of
Feynman diagrams, but rather than as an aide to writing down a colour structure they can

be used to evaluate a colour factor.

The basic diagram unit is

Te= " .

l J

which is an angularly ordered unit. With respect to this unit the relation, Eqn. (F.10), can

be written,

Ti‘F TI?I =

J

We give an example of using this diagrammatic algebra to evaluate the colour factor

associated with the virtual correction to the hadronic branching ratio in Figure 4.10b. The
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appropriate diagram is as follows,

<[+ O(-4(
“(

which in terms of the SU(3) generators (a closed loop evaluates to N) is,

N? -1

ﬁchgj = 9N

5. (F.13)

The structure constants in this diagrammatic representation have the form,

c c
a b
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