
Durham E-Theses

Evolutionary algorithms in arti�cial intelligence: a

comparative study through applications

Nettleton, David John

How to cite:

Nettleton, David John (1994) Evolutionary algorithms in arti�cial intelligence: a comparative study

through applications, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/5951/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5951/
 http://etheses.dur.ac.uk/5951/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

University of Durham

Evolutionary Algorithms in Artificial Intelligence
A Comparative Study Through Applications.

David John Nettleton

Laboratory for Natural Language Engineering,

Department of Computer Science.

Submitted in partial fu l f i lment of the

requirements for the degree of

Doctor of Philosophy

© 1 9 9 4 , David J. Nettleton

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

Abstract

For many years research in artificial intelligence followed a symbolic paradigm

which required a level of knowledge described in terms of rules. More recently

subsymbolic approaches have been adopted as a suitable means for studying many

problems. There are many search mechanisms which can be used to manipulate

subsymbolic components, and in recent years general secirch methods based on

models of natural evolution have become increasingly popular. This thesis exam

ines a hybrid symbolic/subsymbolic approach and the application of evolutionary

algorithms to a problem f rom each of the fields of shape representation (finding an

iterated function system for an arbitrary shape), natural language dialogue (tuning

parameters so that a particular behaviour can be achieved) and speech recognition

(selecting the penalties used by a dynamic programming algorithm in creating a

word lattice). These problems were selected on the basis that each should have a

fundamentally different interactions at the subsymbolic level.

Results demonstrate that for the experiments conducted the evolutionary algo

rithms performed well in most cases. However, the type of subsymbolic interac

t ion that may occur influences the relative performance of evolutionary algorithms

which emphasise either top-down (evolutionary programming - EP) or bottom-up

(genetic algorithm - GA) means of solution discovery. For the shape representation

problem EP is seen to perform significantly better than a GA, and reasons for this

disparity are discussed. Furthermore, EP appears to offer a powerful means of find

ing solutions to this problem, and so the background and details of the problem are

discussed at length. Some novel constraints on the problem's search space are also

presented which could be used in related work. For the dialogue and speech recog

nit ion problems a GA and EP produce good results w i th EP performing slightly

better. Results achieved wi th EP have been used to improve the performance of a

speech recognition system.

Acknowledgements

I would like to thank my supervisor Roberto Garigliano for his advice and

support throughout the three years over which this research has been conducted.

I am grateful to all members of the L N L E group for their proof reading of,

and comments (sarcastic and otherwise) on, this and other work. These include:

Rick, Andy, Yang, Case}', Mark , Kevin, Steve, Sengan, Simon and Bret t . I am

particularly indebted to Nigel, Russell and Jon for their patience in explaining,

what must have been to them, very simple aspects of computing.

Financial assistance for this project was received f rom EPSRC in the form of a

studentship award. I would also like to thank the executive officers of St. Aidan's

College for awarding me the St Aidan's College Graduate studentship.

Finally, I would like to thank my Mam, Dad and sister Andrea for put t ing up

wi th me throughout my time at University, and for keeping me constantly supplied

wi th chocolate biscuits.

Declaration

The material contained within this thesis has not previously been submitted for a

degree a.t the University of Durham or any other university. The research reported

wi th in this thesis has been conducted by the author unless indicated otherwise.

The copyright of this thesis rests w i th the author. No quotation f rom i t should be

published without his prior wri t ten consent and information derived f rom i t should

be acknowledged.

Contents

1 Introduct ion 1

1.1 Symbolic and Subsymbolic Representations 3

1.2 Search 6

1.2.1 Subsymbolic Processing using Evolutionary Algorithms . . . 6

1.3 Subsymbolic Interactions 7

1.4 Example Problems 9

1.5 Criteria for success 11

1.6 Thesis Structure 11

2 Evo lu t ionary Algor i thms 15

2.1 Introduction 16

2.2 Outline of an Evolutionary Algor i thm 19

2.3 Genotype and Phenotype 20

2.4 Genetic Algorithms 21

2.4.1 Cri t icism 24

2.5 Evolutionary Programming 25

2.5.1 Cri t icism 29

2.6 Evolution Strategies 30

2.7 Summary 32

C O N T E N T S 6

3 I t era ted Funct ion Sys tems 33

3.1 Metr ic Spaces 34

3.2 Mappings on a Metr ic Space 38

3.3 The Metric Space {H(X), h) 41

3.4 Mappings on the Metric Space (H(X), h) 48

3.5 Iterated Function Systems: Defini t ion and Properties 51

3.6 Summary 56

4 I terated Funct ion Sys tems and Shape Representat ion 57

4.1 Framework 58

4.2 Generating the Attractor 61

4.2.1 The Random Iteration Algor i thm 61

4.2.2 A Deterministic Algor i thm 65

4.2.3 The M i n i m u m Point Plot t ing Algor i thm 66

4.3 Robustness 67

4.4 The Inverse Problem 70

4.4.1 ISIS 70

4.4.2 Skeletonisation 71

4.4.3 Iterative Minimisat ion 72

4.4.4 Boundary Mapping 72

4.4.5 Evolutionary Algorithms 73

4.4.6 Moment Approach 74

4.4.7 Modelling One-dimensional Data 75

4.5 Other Applications of IFSs 76

4.6 Summary 78

5 Evo lu t ionary Algor i thms and the Inverse P r o b l e m 79

CONTENTS 7

5.1 The Inverse Problem 80

5.1.1 Environment 82

5.1.2 Solution Representation 83

5.1.3 Fitness Function 84

5.1.4 Cross-sections of the Search Space 86

5.2 Outline of a GA 89

5.3 Outline of EP 92

5.4 H i l l Cl imbing 94

5.5 Results 95

5.6 Discussion 125

5.7 Summary 126

6 Search Space Reduct ions 128

6.1 Preliminaries 129

6.2 Constraints on Mappings 131

6.3 Calculating Reductions 132

6.4 Eigenvalue Constraint 134

6.5 L i m i t Point Constraint 136

6.6 Constraint on Transforming the Bounding Box 140

6.7 Total Reduction 144

6.8 Summary 145

7 Evo lu t ionary Algor i thms and Dialogue 146

7.1 Introduction 147

7.2 Natural Language Processing 149

7.2.1 The L O L I T A System 149

7.3 Dialogue in L O L I T A 150

C O N T E N T S 8

7.3.1 Dialogue Situations 151

7.3.2 Dialogue Elements 152

7.3.3 Constraints and Plan Boxes 154

7.4 Tuning the Parameters 156

7.5 Target Dialogues 157

7.6 Application of EAs to L O L I T A 158

7.7 Results 159

7.8 Improving the Fitness Function 164

7.9 Discussion . 1 6 9

7.10 Summary 171

8 Evo lu t ionary Algor i thms and Speech Recognit ion 172

8.1 Spoken language understanding systems 173

8.2 The AURA1D System 176

8.3 Data Preparation 176

8.4 Word Lattice Generation 177

8.5 A U R A I D and EAs 181

8.6 Results 182

8.7 Discussion 188

8.8 Summary 190

9 Conclus ion 191

9.1 Research Directions 193

Glossary 198

References 201

C O N T E N T S 9

Bibl iography 216

A p p e n d i x A 223

A p p e n d i x B 226

List of Figure

2.1 Example of how hil l-cl imbing is dependent on the underlying repre

sentation 17

2.2 A n example of a mutat ion operator which acts on a binary string

to produce a new string. The point(s) of mutation is (are) usually

chosen uniformly at random 21

2.3 An example of a one-point crossover operator which combines two

(parent) binary strings to produce two new (child) binary strings.

The point at which the sections of the strings are exchanged is usu

ally chosen uniformly at random 22

2.4 Pictorial representation of the mapping functions suggested by Lewon-

t in (1974. p. 14) 26

2.5 A GA concentrates on the acquisition of structure. As (a) indicates

structurally similar solutions may result in very large differences i n

behaviour. EP emphasises the adaptation of behaviour. Part (b)

shows that although solutions may have a similar behaviour they

may be structurally very different 28

LIST OF FIGURES 11

4.1 Using the random iteration algorithm to generate a square, Sierpin

ski triangle and a Barnsley Fern. The diagrams show the algorithm

after 1000, 10000 and 100000 iterations. Even after 100000 iterations

the attractor for the square has not been completely generated, al

though this may not be clear in the diagram (the ful ly rendered

square consists of 19881 points) 63

4.2 A sequence of at tractors obtained by altering the coefficients of an

IFS for a Sierpinski triangle by various amounts. The top left attrac

tor is the original. The top right has a few of the original coefficients

altered only slightly. The bot tom left has all of the original coeffi

cients altered slightly. The bot tom right has most of the coefficients

altered sightly and the remainder altered by a larger amount. This

demonstrates the strong interaction which can occur between com

ponents when a real-valued subsymbolic representation is adopted. 68

4.3 The in i t ia l and goal states for the Towers of Hanoi problem. The

aim is to move all the rings f rom one peg to another. The rules are

that only one ring can be moved at a t ime, a ring can only be moved

when there are no rings on top of i t , and no ring may be placed on

a smaller ring 78

5.1 A square and a triangle each of which is decomposed into a colla,ge

of smaller copies of themselves 80

5.2 Cross section of the search space for the Sierpinski triangle wi th the

fitness funct ion of attractor and point coverage. Sixteen of the eigh

teen coefficients are fixed (at the opt imal) , the remaining translation

components of the 3rd mapping correspond to the X and Y axis (see

Table 5.2). (Note that due to interpolation of the data some detail

has been smoothed out.) 87

LIST OF FIGURES 12

5.3 Cross section of the search space for the Sierpinski triangle wi th the

fitness function of collage and point coverage. Sixteen of the eigh

teen coefficients are fixed (at the opt imal) , the remaining translation

components of the 3rd mapping correspond to the X and Y axis (see

Table 5.2). (Note that due to interpolation of the data some detail

has been smoothed out.) 88

5.4 An example of how two-point crossover combines the binary strings

of two parents to give two children. The two endpoints of the section

of binary string that is exchanged are chosen uniformly at random. 90

5.5 Outline of the genetic algorithm used in the experiments of this

chapter and those of Chapters 7 and 8 91

5.6 Outline of the evolutionary programming algorithm used in the ex

periments of this chapter and those of Chapters 7 and 8 93

5.7 The attractots of the IFSs given in Table 5.3. These are the target

shapes used in the experiments of this chapter 97

5.8 A sequence of attractors f rom the median t r ia l of the GA and EP

wi th a triangle as the target shape. The attractor and point coverage

was used as the fitness funct ion. The attractors shown are those of

the best solutions in generations 0, 5, 10, 20, 30, 40, 60, 80 and 100

(top left to bottom right) 101

5.9 Online and offline performance for the median tr ial of the GA and

EP wi th a triangle as the target shape. The attractor and point

coverage was used as the fitness function 102

5.10 Attractors of the best IFSs found when using each of the search

algorithms with a triangle as the target shape. The attractor and

point coverage was used as the fitness function 103

LIST OF FIGURES 13

5.11 A sequence of attractors f rom the median tr ial of the GA and EP

w i t h a triangle as the target shape. The collage and point coverage

was used as the fitness function. The attractors shown are those of

the best solutions i n generations 0, 5, 10, 20, 30, 40, 60, 80 and 100

(top left to bot tom right) 105

5.12 Online and offline performance for the median t r ia l of the GA and EP

wi th a triangle as the target shape. The collage and point coverage

was used as the fitness function 106

5.13 Attractors of the best IFSs found when using each of the search

algorithms with a triangle as the target shape. The collage and

point coverage was used as the fitness function 107

5.14 A sequence of attractors f rom the median t r ia l of the GA and EP

wi th a Sierpinski triangle as the target shape. The attractor and

point coverage was used as the fitness function. The attractors

shown are those of the best solutions in generations 0, 5, 10, 20,

30, 40, 60, 80 and 100 (top left to bot tom right) 109

5.15 Online and offline performance for the median tr ial of the GA and

EP wi th a Sierpinski triangle as the target shape. The attractor and

point coverage was used as the fitness function 110

5.16 Attractors of the best IFSs found when using each of the search algo

ri thms wi th a Sierpinski triangle as the target shape. The attractor

and point coverage was used as the fitness function I l l

5.17 A sequence of attractors f rom the median t r ia l of the GA a.nd EP

wi th a Sierpinski triangle as the target shape. The collage and point

coverage was used as the fitness function. The attractors shown are

those of the best solutions in generations 0, 5, 10, 20, 30, 40, 60, 80

and 100 (top left to bot tom right) 113

LIST OF FIGURES 14

5.18 Online and offline performance for the median t r ia l of the GA and

EP wi th a Sierpinski triangle as the target shape. The collage and

point coverage was used as the fitness funct ion 114

5.19 Attractors of the best IFSs found when using each of the search

algorithms wi th a Sierpinski triangle as the target shape. The collage

and point coverage was used as the fitness function 115

5.20 A sequence of attractors f rom the median t r ia l of the GA and EP

wi th a Dragon fractal as the target shape. The attractor and point

coverage was used as the fitness funct ion. The attractors shown are

those of the best solutions in generations 0, 5, 10, 20, 30, 40, 60, 80

and 100 (top left to bot tom right) 117

5.21 Online and offline performance for the median t r ia l of the GA and

EP wi th a Dragon fractal as the target shape. The attractor and

point coverage was used as the fitness function 118

5.22 Attractors of the best IFSs found when using each of the search

algorithms wi th a Dragon fractal as the target shape. The attractor

and point coverage was used as the fitness function 119

5.23 A sequence of attractors f rom the median t r ia l of the GA and EP

wi th a Dragon fractal as the target shape. The collage and point

coverage was used as the fitness funct ion. The attractors shown are

those of the best solutions in generations 0, 5, 10, 20, 30, 40, 60, 80

and 100 (top left to bottom right) 121

5.24 Online and offline performance for the median tr ial of the GA and

EP wi th a Dragon fractal as the target shape. The collage and point

coverage was used as the fitness function 122

LIST OF FIGURES 15

5.25 Attractors of the best IFSs found when using each of the search

algorithms wi th a Dragon fractal as the target shape. The collage

and point coverage was used as the fitness funct ion 123

6.1 The percentage of the search space remaining when the eigenvalue

constraint is applied to a,b,c and d (Constraint 1), and the l im i t

point constraint is applied to e and / (Constraint 2) for varying

sizes of the B B . Xmax = 10.0 and acc = 0.05 139

6.2 An example of each type of transformation which needs to be consid

ered when implementing the constraint on transforming a bounding

box (Constraint 3). The rectangles in each part represent a B B ,

while the other parallelogram is the T B B (a 2 x 2 matr ix satis

fying Constraint 1 applied to the B B) . Parts 1, 2 and 3(b) show

valid transformations of the B B . The transformation shown in 3(a)

is not valid since an edge of the T B B lies entirely outside the B B .

The horizontal and and vertical arrows indicate the magnitude of

the maximum displacement of the T B B which can occur before an

edge lies entirely outside the B B . These magnitudes are constraints

which can be imposed on e and / 142

6.3 The percentage of the search space remaining when the eigenvalue

and T B B constraints are applied to a,b,c and d (Constraints 1 and

3), and the T B B constraint is applied to e and / (Constraint 3) for

varying sizes of the B B . Xmax = 10.0 and acc = 0.05 143

6.4 The percentage of the search space remaining when the eigenvalue

and T B B constraints are applied to a, b, c and d (Constraints 1 and

3), and the l imi t point and T B B constraints are applied to e and /

(Constraints 2 and 3) for varying sizes of the B B . Xmax = 10.0 and

acc = 0.05 144

LIST OF FIGURES 16

7.1 Online and offline performance for a t r ia l of the GA and EP wi th

D I A L 1 as the target dialogue 161

7.2 Online and offline performance for a t r ia l of the GA and EP wi th

D I A L 2 as the target dialogue 162

7.3 Online and offline performance for a t r ia l of the GA and EP wi th

D I A L 1 as the target dialogue. The fitness function which takes into

account L O L I T A ' s additional information was used 167

7.4 Online and offline performance for a t r i a l of the GA and EP wi th

D I A L 2 as the target dialogue. The fitness function which takes into

account L O L I T A ' s additional information was used 168

8.1 Online and offline performance for the median t r ia l of the GA and

EP wi th the data file corrupt20 185

8.2 Online and offline performance for the median t r ia l of the GA and

EP wi th the data file corrupt30 186

8.3 Online and offline performance for the median t r ia l of the GA and

EP with the data file corrupt40 187

f b 1 T t o e s s SI

4.1 Coefficients of an IFS for a square 64

4.2 Coefficients of an IFS for a Sierpinski triangle 64

4.3 Coefficients of an IFS for a Barnsley Fern 64

4.4 Coefficients of an IFS for a Sierpinski triangle 69

4.5 Coefficients of an IFS for a Sierpinski triangle w i th a few small

changes (shown in bold) 69

4.6 Coefficients of an IFS for a Sierpinski triangle with many small changes. 69

4.7 Coefficients for a Sierpinski triangle w i t h many small and a few larger

changes (shown in bold) 69

5.1 The coefficients of the contraction mappings which produce the col

lages given in Figure 5.1 81

5.2 Coefficients of an IFS. Note all the values are fixed except for those

of 63 and which are each allowed to take a value f r o m the set

{—50, —49, . . . , 0 , . . . , 49,50}. The Sierpinski triangle used in the

fitness function is the attractor of the IFS for which X = 0 and

Y = 25. Figures 5.2 and 5.3 show IFS fitnesses, for a range of X

and Y values, when compared to the Sierpinski triangle 86

LIST OF TABLES 18

5.3 The IFSs used to generate the target shapes which are shown in

Figure 5.7. The triangle is generated w i t h four mappings rather

than the obvious three, because the M P P introduced some small

errors when plot t ing the attractor of the three mapping IFS which

was ini t ia l ly considered 96

5.4 The best solutions found by each of the search algorithms w i t h a

triangle as the target shape. The attractor and point coverage was

used as the fitness function. Each algorithm was run 31 times and in

the case of the GA and EP the generation at which the best solution

was found is shown in parenthesis. The fitness of the best solution

found by each algorithm is shown in bold 100

5.5 The best solutions found by each of the search algorithms wi th a

triangle as the target shape. The collage and point coverage was

used as the fitness function. Eaxr.h algorithm was run 31 times and

in the case of the GA and EP the generation at which the best

solution was found is shown in parenthesis. The fitness of the best

solution found by each algorithm is shown in bold 104

5.6 The best solutions found by each of the search algorithms wi th a

Sierpinski triangle as the target shape. The attractor and point

coverage was used as the fitness funct ion. Each algori thm was run

31 times and in the case of the GA and EP the generation at which

the best solution was found is shown in parenthesis. The fitness of

the best solution found by each algorithm is shown in bold 108

LIST OF TABLES 19

5.7 The best solutions found by each of the search algorithms wi th a

Sierpinski triangle as the target shape. The collage and point cov

erage was used as the fitness function. Each algorithm was run 31

times and in the case of the GA and EP the generation at which the

best solution was found is shown in parenthesis. The fitness of the

best solution found by each algorithm is shown in bold 112

5.8 The best solutions found by each of the search algorithms w i t h a

Dragon fractal as the target shape. The attractor and point coverage

was used as the fitness funct ion. Each algorithm was run 31 times

and in the case of the GA and EP the generation at which the best

solution was found is shown in parenthesis. The fitness of the best

solution found by each algorithm is shown in bold 116

5.9 The best solutions found by each of the search algorithms wi th a

Dragon fractal as the target shape. The collage and point coverage

was used as the fitness funct ion. Each algorithm was run 31 times

and in the case of the GA and EP the generation at which the best

solution was found is shown in parenthesis. The fitness of the best

solution found by each algorithm is shown in bold 120

5.10 Values of the t-test statistic, w i th the number of degrees of freedom

shown in parenthesis. The values in the lower left of grid are those

for when the attractor and point coverage was used as the fitness

function. The values in the top right are those for when the collage

and point coverage was used. The values are read: Is LHS better

6.1 The number of distinct combinations of a, 6, c and d for various values

than TOP? 124

of acc, 133

LIST OF TABLES 20

6.2 The percentage of the search space for a, 6, c and d which remains

when Constraint 1 is applied 135

7.1 The target dialogue, D I A L 1, which was produced in a single inter

action wi th L O L I T A 157

7.2 The target dialogue, D I A L 2, which is a collection of utterances f rom

different interactions 158

7.3 The incorrect utterances generated by the best parameters found

when GA and EP were used to optimise the plan box parameters

for D I A L 1 and D I A L 2 163

7.4 The additional information which the L O L I T A system makes avail

able for the first seven utterances of D I A L 1 165

7.5 Decomposition of the results achieved wi th the improved fitness func

tion. The opt imum value for each of the values is 11 169

8.1 A simplified example of a word lattice 175

8.2 Phoneme classes used by A U R A I D 179

8.3 The best solutions found by each the GA and EP for various levels

of phoneme corruption. Each algorithm was run 31 times (except for

the data file c o r r u p t 2 0 which was run 11 times) and the generation

at which the best solution was found is shown in parenthesis 184

Chapter 1

Introduction

Art i f ic ia l Intelligence (A I) lies at the intersection of many disciplines, including

computer science, psychology, philosophy, mathematics, engineering and linguis

tics. Several definitions of A I have been suggested, but for this work that given by

Beardon (1989) is adopted:

A I is the field of research concerned with making machines perform

tasks which are generally thought of as requiring human intelligence.

Although A I is aimed at solving problems which appear to require human in

telligence i t is not suggested that the methods used are identical to those used by

humans. The modelling of human mental mechanisms is known as cognitive sci

ence. The goals of A I and cognitive science are similar in that they both require a

computer program to be able to perform some task. In addition a cognitive model's

success is determined by how plausible a model of human mental mechanisms i t

provides. A I models of in te l l igent 1 behaviour typically use any means available and

make no claim that they are in any way similar to the processes used by humans.

Applications of A I are wide ranging and include (amongst many others) com

puter vision, game playing, automated reasoning, natural language understanding

and expert systems. Although the fields of applications are diverse there is often a

C h a p t e r 1 : I n t r o d u c t i o n 2

common reliance on techniques pertaining to knowledge representation and search.

The subject of knowledge representation is in itself a research area wi th in A I .

Many data structures have been suggested as suitable means of encoding informa

tion including: slot-and-filler structures, logical formulas and production rules. In

deciding which structure is the most suitable for representing the knowledge asso

ciated wi th a particular problem, there are two important features which must be

considered (Rich 1990). First of all i t must be decided whether the representation is

powerful enough to represent all of the required knowledge. A second consideration

is whether the representation is able to support a reasoning mechanism capable of

inferring the necessary conclusions f rom the represented knowledge.

Search is a process which can be viewed as the systematic exploration of a space

of states which represent solutions to a problem. There are five parts to such a

process: the state space, the in i t ia l state(s), a characterisation of the goal state(s),

the allowed transitions between states, and any information regarding the most

useful means of proceeding. Viewed in this way a search algorithm traverses the

space of possible solutions using legal moves (which may be guided by heuristics)

in an attempt to move f rom an in i t ia l state to a goal state.

The knowledge representation and search method used in tackling a problem

must complement each other since a particular representation determines the search

space which is to be searched. Some problems, although easily solvable in theory,

may be far more diff icul t to solve in practice i f a representation is chosen which

results in the need for a greatly increased search. Consider, for example, the

problem of determining whether or not an integer is contained wi th in some list of

integers. A n array, each element of which contains one of the integers, may be used

as a suitable data structure wi th which to represent the list. A linear search may

be used to check whether or not some integer is contained wi th in the array. Clearly,

however, such a search mechanism is not a very efficient means of approaching the

problem. By using a more suitable representation, e.g., a tree, a more efficient

search algorithm can be used, e.g., a. binary search.

C h a p t e r 1: I n t r o d u c t i o n 3

1.1 Symbolic and Subsymbolic Represent at ions

Traditionally a purely symbolic paradigm has been used in A I to represent knowl

edge. Symbols refer to objects and relations i n the domain of interpretation, and

the search mechanisms which are used to examine the space of the representation

are often heuristic in nature. Such an approach reflects the physical symbol system

hypothesis articulated by Newell and Simon (1976, p. 116):

A physical symbol system has the necessary and sufficient means for

general intelligent action.

By "necessary" we mean that any system that exhibits general in

telligence w i l l prove upon analysis to be a physical symbol system. By

"sufficient" we mean that any physical symbol system of sufficient size

can be organized further to exhibit general intelligence. By "general

intelligent action" we wish to indicate the same scope of intelligence as

we see in human action: that in any real situation behaviour appro

priate to the ends of the system and adaptive to the demands of the

environment can occur, wi th in some l imits of speed and complexity.

The argument is, therefore, that intelligence can be achieved by formal oper

ations which act on symbol structures. A challenge to this approach emerged in

the late 1980's wi th the advent of parallel distributed processing (PDP) (Rumel-

hart et al. 1986; McClelland et al. 1986), the paradigm of which contends that a

physical symbol system is neither necessary nor sufficient for a system to exhibit

intelligence. The philosophy underlying the emergence of PDP is beyond the scope

of this thesis and is discussed in detail elsewhere (see, e.g., Luger and Stubblefield

(1993)). However, one of the reasons that the PDP approach emerged is the lack

of f lexibi l i ty which is often inherent wi th in a purely symbolic system. For exam

ple, an expert system is able to perform perfectly adequately w i th in its domain

of application, but should i t encounter a problem outside of that domain i t wi l l

typically be unable to suggest a solution. On the other hand, human experts wi l l

attempt to answer the problem to the best of their ability. Rather than arguing for

C h a p t e r 1: I n t r o d u c t i o n 4

one approach to be applied in all situations Calmet and Campbell (1993, p. 13)

state that:

... i t is widely believed that there are some activities of intelligence

(e.g. recognition of multidimensional patterns) where an approach op

erating at some lower level than a level of description in symbols is more

appropriate than the traditional logical-symbolic approach.

A subsymbolic approach to knowledge representation is one in which the em

phasis is not on the use of symbols to represent objects and relations, but instead

on the collective behaviour produced by the interaction of a number of simple in

teracting components (Luger and Stubblefield 1993, p. 516). Such a paradigm

views knowledge as being represented impl ic i t ly in patterns of interaction between

components.

Neural networks are perhaps one of the best known examples of a PDP ap

proach. Inspired by biological brains, a neural network is a computational archi

tecture composed of a large collection of simple processing units. The units do not

correspond to concepts, and, i f examined in isolation, are capable of very l i t t l e .

A neural network is not programmed wi th information, but is instead trained by

exposure to large amounts of data, and typically uses a means of reinforcement to

alter the weights (loosely corresponding to the current experience) wi th in the net

work. Patterns of interaction emerge which represent the network's representation

of knowledge.

Luger and Stubblefield (1993, p. 693) argue that neural networks and symbolic

A I are simply different models of intelligence, each of which discuss intelligence in

a different language. The two approaches ask different questions, propose different

answers and interpret any results differently. Although i t is hoped that one day a

theory may be produced that can link the two approaches this is probably some

way off.

C h a p t e r 1: I n t r o d u c t i o n 5

To attempt intentionally to solve a problem using a purely symbolic or subsym-

bolic approach is often not really an attempt at f inding the best possible solution,

but rather to examine the l imits of the approach itself. One of the aims of this

thesis is to demonstrate that, for some problems at least, a combination of the sym

bolic and subsymbolic methods can result i n an approach which can enjoy some of

the advantages offered by each method.

As an example of such an hybrid approach consider how a computer can be

taught to pla3' a good game of chess. The symbolic approach would involve the

construction of a set of heuristics which were based on the knowledge that has been

accumulated over the centuries for which the game has been played. This would

include rules on standard openings, end games, controlling the centre of the board,

and using one piece to protect another. A subsymbolic approach would involve

the computer learning how to play by participating in a large number of games,

and learning f r o m the experiences encountered. In developing a modern chess

playing computer a vast amount of standard knowledge may be incorporated, yet

adaptation be allowed to occur so that the opponent's strengths and weaknesses

can be taken into account.

A symbolic approach is often favoured when the problem can be encoded

in terms of a 'convenient' representation. A 'convenient' representation can be

thought of as one which has a range of properties which offer advantages that may

include (amongst many others): a f i r m logical base, conciseness and maintainabil

ity. However, there are certain facets of knowledge which humans are unable to

encode. Reasons for this include: (1) humans don't have the knowledge and so

can't explici t ly encode i t , and (2) the level of knowledge is below that of conscious

knowledge (e.g., pattern recognition). In such situations a subsymbolic represen

tation is more appropriate.

C h a p t e r 1: I n t r o d u c t i o n 6

1.2 Search

Search methods generally fall into two categories, strong and weak. A strong search

method is one which is rich i n task-specific knowledge and often contains specialised

heuristics that help guide the search. Such a method is often l imi ted in application

to the task for which it is designed, and can be of l i t t l e or no use outside of that

domain. However, for appropriate domains, the method is generally efficient at

finding appropriate solutions. A weak search method is task independent, but is

usually less efficient, because of its lack of knowledge about the domain to which

i t may be applied.

Symbolic search methods typically use heuristics as a strategy by which a prob

lem space can be selectively searched.- Heuristics guide the search away f rom less

promising areas to those where i t is more likely to be successful. Although a good

set of heuristics can in many cases efficiently f ind an op t imum solution to a problem

they are not infallible.

Examining the mechanisms by which subsymbolic components can be manipu

lated (search) and selecting that which w i l l perform best for a particular problem

has become increasingly important . This is especially so when there are complex

interactions between the components. In recent years general search mechanisms

based on models of natural evolution have become increasingly popular i n attempt

ing to solve many optimisation problems.

1.2.1 Subsymbolic Processing using Evolutionary Algo

rithms

In at tempting to solve problems, the solutions of which are represented in terms

of subsymbolic components, some mechanism is needed by which the components

can be manipulated (Nettleton and Garigliano 1994e). The aim of the mechanism

C h a p t e r 1: I n t r o d u c t i o n 7

is to optimise the behaviour of the realisation of the encoded solution wi th in the

environment in which i t is to be tested. Neural networks offer one approach to

the manipulation of subsymbolic components based upon training. Evolutionary

algorithms approach the problem in terms of competit ion between alternative con

cepts, and aim to optimise the concept's performance wi th regard to a funct ion

that provides a measure of performance wi th in the environment.

Evolutionary algorithms (EAs) model natural evolution and are robust search

methods which have been applied to a wide range of problems. By maintaining

a population of solutions, an EA is able to exploit those which are promising

while exploring other regions of the search space. I n this way a parallel search is

achieved. New solutions are produced as variations of those which have survived

to that point in time, and the worst solutions are probabilistically culled using a

"survival of the fit test" strategy (analogous to natural selection). The population

iteratively evolves toward optimal solutions. Further details of EAs, together w i th

their philosophical underpinnings, are discussed in Chapter 2.

As has already been stated one of the aims of this thesis is to demonstrate that

symbolic and subsymbolic approaches can be successfully combined in at tempting

to solve problems. The second main aim of this work is to investigate and explain

the relative performance of different forms of EAs when applied to subsymbolic

manipulation problems for which there are varying types of complex interaction

between the subsymbolic components.

1.3 Subsymbolic Interactions

The behaviour of a solution is its response when tested in the corresponding envi

ronment. Interactions between the components of an encoded solution can result

in complex behaviour of the solution. In some problems the representation can

consist of blocks of components, combinations of which can represent whole or

C h a p t e r 1 : I n t r o d u c t i o n 8

partial solutions in their own right. I n other cases the blocks are just the indi

vidual components themselves. Two types of interaction between components are

distinguished.

1. 'Strong' interaction — changing the value(s) of a component (block of com

ponents) of an encoded solution can be expected to produce changes in the

solution's behaviour.

2. 'Weak' interaction — changing the value(s) of a component (block of compo

nents) of an encoded solution can be expected to have l i t t l e or no effect on

the solution's behaviour.

These forms of interaction are qualitative and no metric by which their strength

could be measured is provided. Different combinations of the above interactions at

the subsymbolic level are possible including:

1. S t r o n g - S t r o n g : There is a strong interaction between blocks of components,

and a strong interaction between the components wi th in each block.

2. S t r o n g - W e a k : There is a strong interaction between blocks of components,

and a weak interaction between the components wi th in each block.

3. S t r o n g : No blocks of components exist, but there is a strong interaction

between the components.

There are of course many other possible forms of interaction, but i t is felt that

the above selection offer a broad enough base for the performance of EAs on them

to be worthy of further investigation. Specific examples of problems which have

these interactions are now required. The subject of A l offers a field which contains

an example of each.

C h a p t e r 1: I n t r o d u c t i o n 9

1.4 Example Problems

The problems which are considered are all f r o m the subject of A I . There are sev

eral reasons why A I provides a suitable field of study. First of al l , much symbolic

work has been conducted in A I and some of this provides a framework on which

a subsymbolic approach can be bui l t . I t is, therefore, only necessary to develop

a subsymbolic representation for each of the problems considered, the symbolic

one existing already. Secondly, there has been much debate as to whether a sym

bolic or subsymbolic representation is the most appropriate for many A I problems.

This thesis provides some evidence that leather than concentrating on applying a

single paradigm an approach that emphasises the interplay between the two can

be successful (Garigliano and Nettleton 1994). Finally, i t is worth noting that

these problems were not selected on a purely ad hoc basis, but were chosen because

they are problems which have been researched wi th in the Department of Computer

Science at the University of Durham (Giles 1990; Jones 1994a; Collingham 1994).

The problems which exhibit the types of interaction between components dis

cussed above are briefly introduced below. Each problem is presented in greater

detail i n other more appropriate parts of this thesis.

S t r o n g - S t r o n g : Shape representation using Iterated Function Systems (IFSs) —

I n adopting an IFS representation, the shape to be encoded is represented by pr im

itive shapes (those f rom which the original is to be reconstructed) which are smaller

linearly deformed copies of the shape to be encoded. A symbolic means of manip

ulating the primitives could be used, but since the primitives can be described in

terms of contraction mappings a more flexible subsymbolic (real-valued) represen

tation is adopted.

The contraction mappings interact strongly to determine the shape that is pro

duced. The individual components of any particular contraction mapping also

interact strongly.

C h a p t e r 1: I n t r o d u c t i o n 10

S t r o n g - W e a k : Tuning the parameters of the dialogue module of a large scale nat

ural language processor — A symbolic based theory of dialogue has been proposed

which models the structure of a dialogue tha.t can be expected to occur in a partic

ular situation. In order to help order the appropriateness of particular responses

to a particular situation a subsymbolic (integer) representation is adopted.

There are blocks of parameters which control the type of response (e.g., happy,

angry) and there is a strong interaction between these. However, w i th in each block

the interactions are weak wi th the emphasis being on how a response is carried out

and not what is to be said.

S t r o n g : Selecting the penalties used by a dynamic programming algorithm in

word lattice creation — A word lattice is a symbolic data structure that can be

used at the acoustic matching stage of a speech recognition system. A dynamic

programming algorithm is used to assign ranks to elements of the lattice. The

dynamic programming algorithm contains penalties for the expected errors and

these are represented subsymbolically (real-valued).

Al ter ing the value of each of the penalties results in changes to the ranks of words

wi th in the word lattice created. There is, therefore, a strong interaction between

the penalties.

In order to examine the 'depth' of an approach to problem solving based upon

a hybrid symbolic/subsymbolic representation and the use of EAs, one of the prob

lems (the shape representation problem) is discussed in great detail. This includes:

a fu l l account of the underlying theory (Chapter 3); an examination of how this

theory can be applied in practice, and a comprehensive review of the literature on

other approaches to solving the problem (Chapter 4); an extensive set of experi

ments (Chapter 5); reductions i n the search space of the subsymbolic representation

(Chapter 6). The other two problems are f rom completely different fields (natural

language processing and speech recognition), and axe used to show the ' w i d t h ' of

the approach. As such these problems are discussed in much less detail.

C h a p t e r 1: I n t r o d u c t i o n 11

1.5 Cri teria for success

The success of this work wi l l be evaluated in terms of providing evidence for or

against the following statements:

1. A combination of symbolic and subsymbolic methods result in an approach

which can improve on the current approaches to several problems.

2. Evolutionary algorithms offer an approach to subsymbolic manipulation which

is able to overcome different forms of interaction that can occur between the

representation's subsymbolic components.

The method adopted in collecting evidence is to take several open problems

f rom different fields of A I , apply the above approaches to them, and evaluate the

results achieved.

1.6 Thesis Structure

Chapter 2 outlines the concept of an EA and in particular examines the paradigms

underlying the different models of the evolutionary process which have emerged.

Genetic algorithms, evolutionary programming and evolution strategies are three

of the models which have emerged. Although al l are based on evolutionary prin

ciples, each place a different emphasis on what drives the evolutionary process.

These models and some of their criticisms are discussed, but no details of their

implementation are given in this chapter (this being included in later chapters).

Two forms of interaction (pleiotropy and polygeny) which can occur between the

components of a subsymbolic representation are described, the effects of which

account (in part) for some of the results of later chapters.

Chapter 3 is the first of four chapters which discuss in detail the shape repre

sentation problem. The problem is discussed in detail to show the 'depth' of the

C h a p t e r 1: Introduct ion 12

approach adopted. This chapter is the first of two which formalise the problem

of using IFSs for shape representation. The chapter is purely theoretical and in

troduces the mathematics relating to the geometric properties of IFSs. The first

two sections of the chapter detail some basic concepts of metric topology, and can

be safely skipped by a reader acquainted wi th such concepts. The metric space

on which IFSs are defined is introduced, and the definition of an IFS given. The

remainder of the chapter discusses some properties of IFSs which are relevant to

their use as a shape representation scheme.

Chapter 4 completes the formal framework necessary for using IFSs in two-

dimensional shape representation. In particular two Lemmas show that a good

IFS representation can be found when the underlying space is either continuous or

discrete. The discrete case is of particular relevance to computer images. Methods

for generating a shape which is encoded as an IFS are discussed, and the subsym-

bolic interaction between an IFS's components is demonstrated pictorially. The

remainder of the chapter reviews the literature on using IFSs for shape represen

tation.

Chapter 5 is the first of the experimental chapters of the thesis, and describes

how EAs can be applied to the problem of finding an IFS for a shape. As this prob

lem is the one used to demonstrate the 'depth' of the approach, a comprehensive

set of experiments are conducted, and their results discussed in detail . Solutions

to the problem are represented subsymbolically, and details are given on how a ge

netic algorithm, evolutionary programming and three hil l-cl imbing algorithms can

be applied to the manipulation of the subsymbolic components. Three shape rep

resentation problems are considered, and the results of the experiments conducted

are presented and discussed.

Chapter 6 is the final chapter of the four which examine in depth the shape

representation problem. Several novel constraints are introduced which can be

used to reduce the search space for finding an IFS for an arbitrary shape. The

constraints are introduced since reducing a problem's search space is one way in

Chapter 1: In t roduc t ion 13

which to improve the search process. The constraints introduced although non-

trivial are of a low computational complexity, and can be expected to be of use to

a range of search algorithms which attempt to find an IFS for an arbitrary shape.

The constraints are not applied in the experiments carried out in Chapter 5 since

they might bias a comparison between the approaches in favour of evolutionary

programming.

Chapter 7 is the first of two chapters which demonstrate the 'width' of the

approach adopted. As such the problem examined in this chapter is not discussed

in as much detail as that for shape representation. A symbolic theory of dialogue

is introduced which is used as the basis for the dialogue module of a large-scale

natural language processor. However, so that the appropriateness of responses

to a particular situation can be ordered a subsymbolic (integer) representation is

incorporated. These parameters govern (in part) the behaviour of the processor

and have to date been selected by hand. The chapter outlines an approach to

using EAs in the fine-tuning of the parameters so that a particular behaviour can

be achieved.

Chapter 8 discusses the second (and final) problem which demonstrates the

'width' of the hybrid symbolic/subsymbolic approach. The concept of a word

lattice is introduced — a symbolic data structure which can be used at the acoustic

matching stage of a speech recognition system. A dynamic programming algorithm

is described which is used to assign ranks to elements of the lattice. The penalties

used by the algorithm are subsymbolic (real-valued) in nature and used to be

selected by hand. The chapter discusses how EAs can be used to optimise the

parameters. Evolutionary programming is then used to select parameters which

lead to the improvement of a speech recognition system.

Chapter 9 provides a conclusion to the thesis, the general results of which can

be briefly summarised as:

1. The method of adopting a symbolic approach when convenient, and then

moving to a subsymbolic approach to allow for greater flexibility and/or fine-

Chapter 1: I n t roduc t ion 14

tuning, has been successful applied to several problems. The examples came

from the field of A I .

2. Evolutionary algorithms are able to find 'good' solutions to problems which

exhibit different forms of interaction at the subsymbolic level.

More specific conclusions are that:

1. Evolutionary programming outperforms a genetic algorithm in finding an IFS

representation for several shapes, and offers a powerful means of tackling the

problem.

2. When a subsymbolic representation is adopted the search space of IFS encod

ings for an arbitrary shape can be greatly reduced by imposing non-trivial

constraints on the IFS's components. These constraints can be efficiently

implemented, and are expected to be of use to a range of search algorithms.

3. Evolutionary algorithms can be used to fine-tune the parameters within the

dialogue module of a large scale natural language processor.

4. Evolutionary algorithms provide a means of selecting parameters for use in

the dynamic programming phase of a speech recognition system. Results

achieved with evolutionary programming have been used to improve the per

formance of a speech recognition system.

Chapter 2

Evolutionary Algorithms

The chapter begins with a brief review of several subsymbolic search strategies and

discusses some of their shortcomings. The concept of an evolutionary algorithm

(EA) is introduced, and the relationship between the encoding of a solution and its

behaviour discussed. In particular Section 2.3 introduces the effects of pleiotropy

and polygeny, which are forms of interaction that can occur between the subsym

bolic components of a solution's representation. These effects account (in part) for

some of the results given in later parts of this thesis.

Several forms of EA are introduced. These algorithms are inspired by the search

process of natural evolution and have been successfully applied to a wide range of

problems. Three main streams of EAs have been independently developed: ge

netic algorithms (Holland 1975; Goldberg 1989), evolutionary programming (Fogel

et al. 1966; Fogel 1992a) and evolution strategies (recent review by Back et al.

1991). Although all are based on evolutionary principles, each place a different

emphasis on what drives the evolutionary process. The underlying paradigms of

these algorithms are compared and contrasted, and the chapter concludes with a

summary.

Chapter 2: Evolut ionary Algor i thms 16

2 . 1 Introduct ion

Subsymbolic approaches have been adopted in attempting to solve many A I prob

lems. Such a strategy is appropriate when it is necessary to operate at a level

below that of traditional logical-symbolic approaches. In situations such as these a

procedure is needed by which the subsymbolic components can be manipulated in

order to find a near optimal solution to the problem. This procedure must not only

be capable of producing near optimal solutions, i t must also be able to do so in an

efficient manner. Occasionally some specialised algorithm exists which can carry

out this manipulation in the optimal or near optimal number of steps. However,

it is often the case that no such procedure is available and some other approach

needs to be adopted.

Solutions which are coded by some underlying structure need to be tested in

the environment, and some measure of performance returned. The measure of

performance allows for a 'fitness landscape' to be envisaged and the aim of the

optimisation process is often intuitively considered as finding the solution which

corresponds to the 'highest peak' of the landscape. The process of optimisation

is often carried out by manipulating the coding of the structure and testing new

versions in the environment. Many alternative methods for this manipulation have

been suggested. The remainder of this section discusses some of the simplest meth

ods and briefly examines the concept of a fitness landscape.

It is often the case that the search space, in which solutions to a problem exist, is

extremely large and complex. For any search algorithm in such a space there exists

a fundamental trade-off between exploration and exploitation. An example of a

totally exploratory algorithm would be the enumeration of all cases, and selecting

the best. This procedure, although eventually yielding the optimum solution, is far

too inefficient to be of an}' practical use in addressing most real-world problems.

Chapter 2: Evolut ionary Algor i thms 17

Figure 2.1: Example of how hill-climbing is dependent on the underly

ing representation.

Representation Representation

I

B
X

Integer C Binary

0 4 8 12 16 00000 00010 00100 01000 10000

In order for an algorithm to search a space efficiently it must be able to ex

ploit opportunities for improved performance. This often involves making use of

information acquired from previous evaluations of possible solutions. If such in

formation is not used then the search could degenerate to the point at which it is

little better than a random sampling of the solution space. An example of a search

strategy which makes use of current information is a hill-climbing algorithm.

Hill-climbing algorithms concentrate the search effort around the best solution

found so far (exploitation), but it is likely that discovered solutions will be subop-

timal on non-convex surfaces, because the sequence of trials will stagnate at local

optima. Intuitive concepts such as 'peaks' and 'valleys' are often used to describe

how such algorithms traverse the fitness landscape. However, such analogies need

to be made with care, as Figure 2.1 and the following discussion demonstrates

(Spears 1994; Jones 1994b).

The objective of a hill-climbing algorithm is to maximise the (local) fitness,

i.e., climb one of the 'peaks'. The normal procedure for this involves making small

changes to the solution's representation and accepting as the new best a solution

which outperforms the current one. Following this method and using an integer

representation, climbs (with reference to Figure 2.1) such as those from X to X i ,

and from Y to Y i , would intuitively be how the search would be expected to

Chapter 2: Evolut ionary Algor i thms 18

proceed. With a binary representation a climb from A to B would be expected,

but what about one from A to C? In. fact both of these are equally likely since

B = 00111 and C = 00010 are both exactly one 'small change' (in the solution's

encoding) away from A = 00110. This would appear to contradict the idea of

a 'h i l l 1 climber since a 'valley' appears to have been traversed. The concept of

what constitutes a hill-climb is the cause of some debate and is dependent on the

representation and operators used.

Simulated annealing (Kirkpatrick et al. 1983) is a search algorithm with a nat

ural metaphor. Inspired by the process of annealing crystalline solids the algorithm

models the behaviour of thermodynamic state transitions. A starting temperature

T 0 is specified and an annealing schedule imposed such that T —> 0. The temper

ature can be viewed as a control on the random search of the space; the larger

the value of T, the larger the expected movement in the search space. One of

the important features of simulated annealing is a theory which provides sufficient

conditions for asymptotic convergence to the global optimum. The main criticism

of the approach is based on the setting of the initial temperature; too low and the

algorithm may converge to a sub-optimal solution, too high and the algorithm will

be slow.

Natural processes have also inspired a class of search algorithms known as evo

lutionary algorithms. A feature of both random search and hill-climbing is that

they discard much of the information which is presented to them during the course

of a search. In order to try and retain some of this information EAs maintain a

population of solutions.

EAs are loosely based upon the Darwinian principles of biological evolution and

in fact many of the strategies and operators used in their application bear similar

names to their biological counterparts, e.g., survival of the fittest, crossover and

mutation. An EA creates a set of possible (usually randomly generated) solutions

to the problem under consideration and calls this the initial generation. Successive

generations are produced via a series of operators which act on the previous gener-

Chapter 2: Evolut ionary Algor i thms 19

ation. The operators produce new solutions which are variations of those that have

survived to that point, and probabilistically culls the worst using a "survival of the

fittest" strategy. This process continues until the desired number of generations

has been completed. The solutions in the final generation are in effect the 'answers'

to the search problem. The main advantage of EAs is their ability to be able to

consider many solutions 'at the same time' and from these solutions produce other

solutions that converge to the optimal.

Over the past 30 years, three main streams of evolutionary algorithm have been

independently developed: genetic algorithms (Holland 1975; Goldberg 1989), evo

lutionary programming (Fogel et al. 1966; Fogel 1992a), and evolution strategies

(recent review by Back et al. 1991). Each of these have resulted in robust optimi

sation techniques that have been successfully applied to a wide range of problems.

The differences between the EAs stem from the primary forces modelled from nat

ural evolution. The underlying philosophies of EAs and how they model natural

evolution are discussed later in this chapter.

2 o 2 Outline of an Evolutionary Algorithm

The generic shell for an EA is given by Angeline (1993, p. 26) as:

function Evolutionary-Algorithm(population, s i z e) ;
begin

for i from 1 to s i z e do
f i t n e s s [i] := evaluate(population[i]);

while not(Tester(bestof(population, f i t n e s s))) do
begin

Select(population, f i t n e s s) ;
Reproduce(population);
for i from 1 to s i z e do

f i t n e s s [i] := eva l u a t e (p o p u l a t i o n [i]) ;
end
return bestof(population, f i t n e s s) ;

end;

Chapter 2: Evolut ionary Algor i thms 20

The inputs to the algorithm are a number, s i z e , of solutions and an array

which contains them. The array of solutions is known as a population and the

input array is called the initial population. A fitness function is used to evaluate

the performance of each member of the population, and the Tester function checks

to see if the best solution of the population satisfies some termination criteria.

If the termination criteria are not met then some solutions are selected from

the population (parents) and used to generate new solutions (children). The child

solutions either, directly replace members of the parent population, or compete

with them for places. (The size of the population is usually required to remain

constant.) Once the Reproduce function has been applied, the current population

of solutions is evaluated using the fitness function, and the selection, reproduction

process is then repeated until the termination criteria are met. Each cycle of the

Select-Modif y-Evaluate loop is known as a generation.

2.3 Genotype and Phenotype

In attempting to solve many optimisation problems for which a subsymbolic ap

proach has been adopted there is often more than one way in which solutions may

be represented. For example, if the solution is known to be numerical, a binary

or floating point representation may be adopted. The underlying representation

of a solution is known as the genotype and can be considered as a solution's 'en

coding'. The phenotype is the behavioural expression of the genotype within some

environment.

In natural evolution, genetic material contains the information required to gen

erate an organism (although its development depends in part on external environ

mental conditions). Pleiotropic and polygenic effects often make the understanding

of the genotype extremely difficult. Pleiotropy is the effect of a single gene affect

ing several phenotypic traits. Polygeny occurs when a single phenotypic effect is

Chapter 2: Evolut ionary Algor i thms 21

determined by the interaction of many genes. These effects occur in many different

subsymbolic representations and account for (in part) some of the results of the

experiments discussed in later chapters of this thesis.

2 o 4 Genetic Algori thms

Holland (1975) proposed a genetic algorithm (GA) as an efficient search mechanism

based upon modelling the evolutionary process in nature. GAs are perhaps the best

known EA and have been applied to a wide range of problems (e.g., Grefenstette

1985, 1987; Schaffer 1989; Belaw and Booker 1991; Forrest 1993). The underlying

coding of a population of individuals is manipulated in an attempt to find a struc

ture which maximises the performance of the corresponding phenotype within some

environment. The emphasis of the approach is on the bottom-up construction of

individuals by incorporating specific genotypic transformations.

There are many possible operators which can be used to manipulate the geno

type (a string of data) of an individual. Two of the simplest operators which are

commonly used are those of mutation and crossover. A crossover operator usually

acts on two strings to produce two strings, while the mutation operator acts on

one string producing one string. Figures 2.2 and 2.3 provide examples of these

operators acting on solutions encoded using a binary representation.

Figure 2.2: An example of a mutation operator which acts on a binary

string to produce a new string. The point(s) of mutation is (are) usually

chosen uniformly at random.

before mutation 1 1 0 1 0 1 0 1 1

mutation point *

after mutation 1 1 0 0 0 1 0 1 1

Chapter 2: Evolu t ionary Algor i thms 22

Figure 2.3: An example of a one-point crossover operator which com

bines two (parent) binary strings to produce two new (child) binary

strings. The point at which the sections of the strings are exchanged is

usually chosen uniformly at random.

parent 1 1 1 0 1 0 1 0 1 1

parent 2 1 0 1 1 0 0 1 0 1

section exchanged * * * * *

child 1 1 0 1 1 0 1 0 1 1

child 2 1 1 0 1 0 0 1 0 1

It would appear, at first, that a particular generation of a GA possesses only

a selection of possible solutions. However, each of these solutions is made up of a

string of data and within each string there are many smaller strings of data, usually

called schemata. A schema is a set of individuals which share common attributes.

In the case of a binary alphabet a schema is denoted by a string consisting of

elements taken from the set {0 ,1 , • } where • means "don't care". For example,

00101 and 00111 are both elements of the schema OOnni, but 10101 is not. Each

binary string of length k will be an instance of 2k schemata.

Each schema represents a subset of strings and so an average fitness can be

assigned to i t . In a given population of strings a schema's average fitness (some

times known as observed average fitness) is the average fitness of the strings which

contain that schema. A schema's average fitness can vary from population to pop

ulation since it is determined only by the instances of the schema currently within

a population.

The Schema Theorem of Holland (1992, p. 102) relates the number of instances

of a schema £ in two successive generations. If the expected proportion of schema

in one generation is P(£, t) then:

Chapter 2: Evolutionary Algorithms 23

P(t,t + l)>P{t,t) ^ [l-Po(t)] m
where i\(t) is the observed average performance of £, /t(i) the average fitness of

the schema £ and PD{£) is the probability of the loss of £ through the effect of

operators such as crossover and mutation.

Throughout a single generation the solutions present will contain many schemata

which can be combined (via crossover) to represent other individuals that are not

present in the population at that time. The power of GAs is believed to stem

from regarding the performance of a single solution as a test on the large num

ber of schemata of which it is an instance. Thus a test on a solution of length k

will simultaneously sample instances of 2k schemata. In a population consisting of

M solutions of length k there are between 2k and M2k schemata with instances

contained within the population. The proportion of each schema which survives

to the subsequent generation is largely dependent only on its own observed fitness

/}<;(/.) and is largely independent of what is happening to the other schemata in the

population.

An approach using a, GA allows for the highly fit short schemata to be propa

gated quickly through a population, while at the same time considering other less

fit possibilities. This is termed by Holland (1975) as intrinsic parallelism (more

recently known as implicit parallelism). The proportion of schema in a population

is in part dependent on its past performance, and so this serves as a record of the

performance.

In order to maximise the implicit parallelism, a binary approach to encoding

is often advocated (Holland 1992, p. 71; Goldberg 1989, p.80). Such an approach

allows for the maximum number of schemata to be represented and thus processed.

The success of GAs is described by Goldberg (1989, p. 41) in terms of the building

Chapter 2: Evolutionary Algorithms 24

block hypothesis — short highly fit segments of each binary string can be combined

to form larger, fitter segments of each binary string. The GA constitutes a bottorn-

up approach to solution construction.

While there is much experimental evidence to support a G A's success, a compre

hensive theoretical basis is lacking and research into this continues (Goldberg and

Rudnick 1991; Radcliffe 1991a; Davis and Principe 1993; Garigliano and Nettleton

1992; Garigliano et al. 1993d; Forrest and Mitchell 1993).

2.4.1 Criticism

Criticisms of GAs range from matters of detail to more fundamental questions

regarding the underlying paradigm. Radcliffe (1991a) and Mason (1993) state

that there is an overemphasis on a binary representation, and Mason objects to

Holland's analysis of intrinsic parallelism. Fogel (1991; 1992a; 1993) argues that

the GA's modelling of the evolutionary process is flawed.

Holland (1992, p. 71) and Goldberg (1989, p.41) advocate that solutions be

represented using a binary encoding, since this allows for the maximum number

of schemata to be represented. Radcliffe (1991a, p. 222) states that efforts "to

maximise the level of intrinsic parallelism available are frequently in conflict with a

desire to use natural representations and operators for the structures in the space

being searched." In an attempt to overcome this Radcliffe (1991a; 1991b; 1992)

generalises schemata to what are termed formae, and demonstrates that intrinsic

parallelism is a more general phenomenon.

Mason's (1993) principle objection to Holland's analysis of intrinsic parallelism

is that it does not compare like with like. The problem examined by Holland (1975)

is deemed to be tailor made for a schema processing approach and essentially a sub-

problem generated by the GA itself. Mason states that for progress to be made

in the understanding of GAs it is "essential that the focus of research move away

Chapter 2: Evolutionary Algorithms 25

from issues such as compliance with the Schema Theorem and the degree of intrinsic

parallelism and instead consider the methodology underlying the GA's exploration

of new points in the solutions space."

Fogel (1991; 1992a; 1993) argues that to model the evolutionary process at the

level of specific genotypic transformations is flawed, and that instead the emphasis

should be on examining phenotypic adaptation (see Section 2.5). Atmar (1994,

p. 142) although agreeing that GAs are basically a suitable model of Darwinian

evolution states that the philosophical emphasis is "put on genetic mechanism, not

on the process of phenotypic adaptation."

Common philosophical errors often lead to misinterpretations of the evolution

ary process. For example, Srinivas and Patnaik (1994, p. 18) state that "Specifically,

each feature (of an individual) is controlled by a basic unit called a gene." This

comment profoundly misinterprets the nature of genes, and incorrectly suggests

that there is always a one to one mapping between a gene and an attribute of

the individual. Such comments are unhelpful in the development of optimisation

algorithms which are based on models of natural evolution.

2 o 5 Evolutionary Programming

Evolutionary programming (EP) originated in the early 1960s, and was initially

applied to a population of algorithms in order to study the possibilities of evolving

artificial intelligence (Fogel et al. 1966). Since then, EP has been extended to cope

with real-valued variables (Fogel 1992a) and EP has been applied to a wide range

of problems (e.g., Fogel and Atmar 1992, 1993; Sebald and Fogel 1994). The EP

perspective of the evolutionary process is very different to the bottom-up building

block approach of GAs. The differences stem from the primary forces modelled

from natural evolution. While GAs incorporate specific genotypic transformations,

EP emphasises phenotypic adaptation. EP adopts a top-down approach to solution

Chapter 2: Evolutionary Algorithms 26

improvement, as opposed to the bottom-up approach of GAs.

In order to help explain the philosophy underpinning the EP approach Atmar

(1994) has modified the work of Lewontin (1974) and characterised the relationship

between the genotype and phenotype by four functions. The functions relate a

genotypic space G to a phenotypic space P. An additional set of environmental

symbols I is also defined.

/ i : I X G H P

h - P ^ P

f3 : P ^ G

U - G H G

The mapping f\ defines the development of the phenotype in terms of its geno

type and the current environmental conditions. The environmental component is

needed to model epigenesis (development sensitive to local conditions). For ex

ample, gender in turtles is influenced by the temperature at which development

occurs.

Figure 2.4: Pictorial representation of the mapping functions suggested

by Lewontin (1974, p. 14).

Genotypic Space

f I G
i

f f
Phenotypic Space

Chapter 2: Evolutionary Algorithms 27

The mapping J2 controls the selection, immigration and emigration of individ

uals from within the population. It is important to note that the selection process

does not act directly on an individual's underlying encoding, but on its behaviour.

The mapping fa maps the effects of f2 back to the genotypic representation.

The mapping / 4 controls the manipulation of the coding via operators acting

on the genotype. Such operators include mutation and recombination. Figure 2.4

provides a pictorial description of the interaction of the mapping functions.

Lewontin (1974, p. 15) warns that care must be taken in interpreting the re

lationship between the evolutionary dynamics of the spaces of the genotype and

phenotype. The relationship naively may be viewed as being that of two inde

pendent process, the first of which acts on the genotype and the second on the

phenotype. However, to assume independence of the processes is a dangerous over

simplification, which in all but the simplest cases is inaccurate. The functions

introduced above describe the interactions between the two spaces. The modelling

of the evolutionary process within this framework is of crucial importance and as

Atmar (1994, p. 133) points out "'Confusing the attributes of the two state spaces

lies at the root of much of the confusion that permeates evolutionary theory."

When the relationship between the phenotype and genotype is characterised as

above it is apparent that the selection mechanism acts only on the phenotype and

any change which may occur to the set of genotypes as a result of the selection is

incidental. In particular if two individuals have identical phenotypes the underlying

genotype may be very different (Figure 2.5). Such a difference in encoding is

irrelevant to the selection process.

Chapter 2: Evolut ionary Algor i thms 28

Figure 2.5: A GA concentrates on the acquisition of structure. As (a) indicates

structurally similar solutions may result in very large differences in behaviour. EP

emphasises the adaptation of behaviour. Part (b) shows that although solutions

may have a similar behaviour they may be structurally very different.

(a) Acquistion of structure (b) Acquistion of behaviour

Genotypic Space

Phenotypic Space

As discussed by Atmar (1994) adaptation in the phenotypic space is of the

whole behavioural structure. To say that separate traits of an individual evolve

independently is misleading since they are often highly interdependent. To model

this behavioural link, EP uses mutations as the reproductive operators. Specific

genotypic transformations such as crossover are deemed unnecessary.

Fogel et al. (1966) examined the evolution of finite state machines (FSMs) in

an effort to create artificial intelligence. The aim of the project was for the system

to be able to predict its environment, and to use this to produce a response which

was conducive to the goal to be attained. Five possible mutations (which naturally

follow from the definition of a FSM) are considered: change an output symbol,

change a state transition, add a state, delete a state, or change the initial state. The

number of mutations to occur is chosen with respect to a probability distribution

(e.g., Poisson), as is the the selection of the mutation (typically uniform). After

mutation those machines which score in the top half of the population are retained

Chapter 2: Evolut ionary Algor i thms 29

and the others discarded.

Fogel et al. (1966) described a series of symbol prediction tasks. Problems such

as the prediction of prime numbers from the sequence before them are considered

and the results for different payoff functions presented. This early work showed the

potential of the approach. Other applications of EP to FSMs have been considered.

For example, Fogel (1992a, 1994) evolves FSMs for the iterated prisoners dilemma

and shows that "evolving FSMs essentially learned to predict the behaviour (a

sequence of symbols) of other FSMs in the evolving population."

More recently, EP has been extended to cope with real-valued continuous op

timisations problems (Fogel 1991). Each real-valued component of an individual

is mutated by an amount which is distributed Gaussian normally. The variance

of the distribution is typically determined by the performance of the individual

within the environment. Relating the severity of the mutation to the fitness of the

solution ensures that fitter parents are less likely to be mutated to the same degree

as less fit parents. After mutation solutions are probabilistically culled and the

process repeated. Work on applying EP to real-valued problems includes that by

Fogel (1992a.; 1992b) and Nettleton and Garigliano (1994c).

Since the details of the mutation operator is dependent on the subsymbolic

solution representation which is adopted, further discussion of mutation, and the

selection mechanism, is left to later sections (e.g., Section 5.3).

2.5.1 Criticism

Initial criticisms of the EP approach included those by Solomonoff (1966) and

Lindsay (1968). These criticisms are based on a misunderstanding of the work,

but were in part responsible for the A I community largely rejecting research into

evolutionary systems during the 1970s.

Solomonoff (1966) argued that the method was only applicable to the simplest of

Chapter 2: Evolut ionary Algor i thms 30

problems and Goldberg (1989, p. 106) states that "The evolutionary programming

of Fogel, Owens and Walsh ... was insufficiently powerful to search other than small

problem spaces quickly." In fact a calculation of the number of possible solutions

to some of the problems considered by Fogel et al. (1966) shows that extremely

large spaces were considered, and these were successfully searched.

A more fundamental concern of Solomonoff (1966), Lindsay (1968) and Gold

berg (1989) is the lack of a crossover operator, and Lindsay goes so far as to state

that "...such a strategy [EP] amounts to random search... ." However, experimen

tal evidence indicates that a crossover operator is not necessary for the successful

solution of many problems (e.g., Fogel et al. 1966; Fogel and Atmar 1990; Nettleton

et al. 1993; Nettleton and Garigliano 1994c).

More recent criticisms argue that a top down approach to solution development

is not able to take advantage of combining coadapted sections of the subsymbolic

representation. Such criticisms may be relevant for some problems, but in general

problems of pleiotropy and polygeny make the identification of coadapted sections

difficult (Dawkins 1986; Mayr 1988).

2.6 Evolution Strategies

Evolution strategies (ESs) originated in the mid 1960's with early applications being

practically orientated. Early work concerned the optimisation of real-valued object

variables and the first experimental applications dealt with the shape optimisation

of a bent pipe and flashing nozzle (Rechenberg 1973). More recent analysis of ESs

has been carried out by, amongst others, Back et al. (1991) and Beyer (1993).

As with EP the emphasis of the ES approach is on the acquisition of a behaviour

which has a high fitness value. Although philosophically similar, EP and ES differ

in two important ways: (1) the operators used in generating the progeny, and (2)

the selection mechanism employed to select which solutions survive to a subsequent

Chapter 2: Evolut ionary Algor i thms 31

generation.

Unlike EP, in generating new solutions ES allows for the use of a recombination

operator. Back et al. (1991) discuss several recombination operators which have

been suggested for use in ES, including:

1. Discrete recombination — given two parent solutions the values of the off

spring are chosen uniformly at random from the corresponding values of their

parents. (This is identical to the uniform crossover operator suggested by

Syswerda (1989) for use in GAs.)

2. Intermediate recombination — the values of the offspring are the averages of

the corresponding values of the parents.

A mutation operator is also used extensively in ESs. This typically subjects

each value of an individual to a certain amount of Gaussian noise, the variance of

which is controlled by what is known as the 1/5-success rule (see, e.g., Back and

Schwefel 1993):

The ratio of successful mutations to all mutations should be 1/5. If

it is greater than 1/5, increase the standard deviation, if it is smaller,

decrease the standard deviation.

A successful mutation is one in which the resulting structure outperforms the orig

inal with regard to some measure of performance.

Fogel (1994) describes the different approaches to solution generation between

EP and ESs in terms of the level of the evolutionary process which is being mod

elled. In the case of EP, evolution is typically modelled at the level of the species,

while ESs usually models evolution at the level of the individual. A model based

at the level of the individual allows for the recombination of individuals. The

recombination of members of different species is, however, not permitted.

Chapter 2: Evolut ionary Algor i thms 32

The second essential difference between ESs and EP is in the selection mecha

nism employed. While EP adopts a stochastic means of determining which solutions

survive to a subsequent generation, ESs rely completely on deterministic selection

methods. The two methods most commonly used are the (//, X)-ES and (/z + A)-

ES. The methods select the best \i individuals from either, the set of A offspring

individuals ((fx, X)-ES), or the set of parents and offspring ((// + X)-ES). Back and

Schwefel (1993) recommend the use of the (fi,X)-ES since it is able to deal with

changing environments.

2o7 S u m m a r y

In adopting a subsymbolic approach for encoding solutions to a problem there

are often many different representations which can be used, e.g., binary or real-

valued. A range of algorithms (e.g., hill-climbing, simulated annealing) have been

suggested as a means of manipulating solution encodings in an attempt to optimise

the solution's behaviour within some environment. EAs are based upon models of

natural evolution and have resulted in robust optimisation techniques.

GAs rely on mimicking specific genotypic transformations and constitute a

bottom-up building block approach to solution discovery. EP, on the other hand,

emphasises phenotypic adaptation and adopts a top-down approach to solution

improvement. Results of applying these two algorithms to problems which have

different interactions at the level of the subsymbolic encoding are discussed in later

chapters of this thesis. ESs are not considered further. The details of the GA and

EP used in the experiments are introduced at the appropriate place.

Chapter

d I P u t ct t t e n 10 n e r Si y e m s

This chapter is the first of four which describe in detail various aspects of the shape

representation problem — the first of the problems considered in this thesis. This

very detailed account has been included to demonstrate the 'depth' of an approach

to problem solving based upon a hybrid symbolic/subsymbolic approach and the

use of EAs.

Giles (1990) suggests that IFSs be used as a shape representation scheme for

use in a machine vision environment, and includes the following as some of the

advantages: the theory of IFSs is well understood (Barnsley 1988) and the prob

lem of finding an IFS for an arbitrary shape has in theory been solved (there are

still practical difficulties); the primitives used to represent a shape are transfor

mations of the shape itself and hence no pre-defined set of primitives is needed;

the primitives used will automatically have the correct morphology, e.g., geometric

primitives are used for geometric shapes, and fractal primitives for fractal shapes;

any shape can be represented as an IFS the accuracy only depending on the al

lowed storage space; the pictorial representation of an encoded shape can easily be

rendered at any scale or orientation. Some of these features are discussed in detail

in this and the following chapter.

Chapter 3: I te ra ted Function Systems 34

Using TFSs for shape representation leads, initially, to a symbolic representation

— the shape is to be represented by a. collage of smaller copies of itself. However,

since an IFS is composed of a set of contraction mappings a subsymbolic (real-

valued) representation can be adopted. The purpose of this chapter is formally to

introduce the theory and terminology of IFSs. This includes results which formalise

the interactions that can occur between the subsymbolic components of an IFS's

representation.

In order to provide a complete derivation of the material which is presented

towards the end of the chapter it is necessary to review some basic concepts of

metric topology. The reader familiar with such concepts can safely skip Sections

3.1 and 3.2. A fuller account of metric topology is given by Edgar (1990). The

theory of IFSs was originally developed by Hutchinson (1981) and Barnsley and

co-workers (Barnsley and Demko 1985; Barnsley et al. 1986). Much of this chapter

is based on material in Barnsley's book 'Fractals Everywhere' (1988), where a more

comprehensive treatment can be found.

3.1 M e t r i c Spaces

Def in i t ion 3.1.1 A space, X , is a set. The points of a space are the elements of

the set.

The standard notation of R and R 2 is used to denote the real line and two-

dimensional Euclidean space respectively.

Def in i t ion 3.1.2 A metric space is a set X together with a function d : X x X t—>

[0, oo) which obeys the following axioms:

1. d(x,y) = d(y,x) V x,y E X

2. d(x,y) = 0 & x = y V x , y G X

3. d{x,y) < d{x, z) + d(z, y) V x,y, z e X .

Chapter 3: I te ra ted Function Systems

The last inequality is known as the triangle inequality. The non-negative real

number d(x,y) is called the distance between x and y. The function d is called a

metric on the set X , and a metric space is written (X , f /) .

Def in i t ion 3.1.3 Let (X, d) be a metric space with x £ X . Given e > 0 the set

B(x,e) is defined as:

B(x,e)={yeX:d(x,y)<e}.

Def in i t i on 3.1.4 A sequence of points {xn}^^ in a metric space X converges to

the point x 6 X if and only if for every e > 0 , there exists an integer N > 0 such

that d(xn, x) < e for all n > N.

The point x £ X to which the sequence { a ^ } ^ converges is known as the limit

of the sequence. In such cases:

x = lim xn.
n—>oo

A sequence is convergent if and only if it converges to some point.

Def in i t ion 3.1.5 A Cauchy sequence in a metric space (X, d) is a sequence {xn}^L^

such that for every e > 0 there is an integer N > 0 such that:

d(xn,xm) < e V n , m > N.

Theorem 3.1.1 Every convergent sequence is a Cauchy sequence.

Proof: Suppose { . T n } ^ converges to x. Given e > 0 there exists an integer > 0

such that d(xn,x) < | for all n > N. Using the triangle inequality with n, m > N

then:
6 C

d(xn, xm) < d(xn,x) + d(x,xm) < - + - - e

and so {x^^Ly is a Cauchy sequence.

Chapter 3: I tera ted Function Systems 36

Def in i t ion 3.1.6 A metric space (X , d) is complete if and only if every Cauchy

sequence in X converges (in X^ .

Def in i t ion 3.1.7 Let S C X be a subset of a metric space (K,d). A point i £ X

is called a limit point of S if there exists a sequence {x^J^Lj of points xn € S \

{x} such that limn_,oo xn — x.

Def in i t ion 3.1.8 Let S C X be a subset of a metric space (X , d) . The closure of

S ; denoted S, is defined to be S = SU {limit points o f S) . S is closed if it contains

all its limit points, i.e., S = S.

Def in i t ion 3.1.9 Let S C X be a subset of a metric space (X,</). S is compact if

every sequence { . T n } ^ = i * n S contains a subsequence having a limit in S.

Def in i t ion 3.1.10 Let S C X be a subset of a metric space (X , d) . Then S is

totally bounded if given £ > 0, there is a finite set of points {y\, t/2, • • •, yn} C §

such that for all x £ S, d(x, ?/,) < z for some //, 6 { j / i , J/2, • • • ? y-n] • The set of points

{y\, ij2, • • •, yn} is called an e-net.

Theorem 3.1.2 Let S C X be a subset of a complete metric space (X , d) . Then

S is compact if and only if it is closed and totally bounded.

Proof: Suppose that S is closed and totally bounded. Let { x , } ^ . x be a sequence

of points in S. I t is possible to construct an e-net, {j / i ,y2j • • • i Vn] C S, with e = 1

such that:

S C \ j B (y 3 , l) .

The e-net contains a finite number of points yet {x ,} is infinite and so there must

be a point yk in the e-net for which B(yk, 1) = B\ contains infinitely many points

of the sequence. Choose N\ so that x^x £ B\. Clearly S D B\ is totally bounded

Chapter 3: I te ra ted Function Systems 37

and so an e-net can be constructed for it with e — | . Again there must be a point,

ym, of this e-net such that B(ym, |) = B2 contains infinitely many points of the

sequence. Choose A^ so that x^2 £ B2 and A r

2 > A r

x . Continuing to halve the

value of e a subsequence {.'CA'n}$£U of the sequence {a : , - }^ is generated. Since:

(s n Bx) D (s n B2) D • • • D (S n Bn) D • • •

and given that the radius of Br is 2 1 _ r then:

d (x N k i x N k + 1) <22~k V f c > l .

Given a 6 > 0:
ln(6)

d(xNk, ^'yvfc+1) < 8 V k > 2 -
ln{2)

so { I ' A V I ^ L I is a Cauchy sequence which, using the closure of S, has a limit x E S.

Therefore, S is compact if it is closed and totally bounded.

To complete the proof, suppose S is compact and assume for a given e > 0 there

does not exist an e-net for S. Then there is an infinite sequence of points {xi}^

in S with d(x-i,Xj) > e for all i ^ j. However, due to the compactness of S this

sequence must contain a convergent subsequence with limit in S and so there is

a pair of integers Ni and A^ with A r

v ^ N2 such that dix^^x^) < e. This is a

contradiction and so an e-net does exist and hence S is closed and totally bounded.

Therefore S is compact if and only if it is closed and totally bounded.

Chapter 3: I te ra ted Function Systems 38

M a p p m M e t r i c o n pace s a

Def in i t i on 3.2.1 Let f : X t-> X ' be a function from a metric space (X, d) into a

metric space (X',t?'). If x £ X then f is continuous at x if and only i f , for every

e > 0, there exists a 8 > 0 such that:

d(x,y)<6 => d'(f(x),f(y))<£.

The function / is simply called continuous if and only if it is continuous at

every point .T £ X .

Def in i t i on 3.2.2 Let (X , d) be a metric space. A transformation on X is a func

tion / : X h X which assigns exactly one point f (x) £ X to each point x 6 X . If

S C X then / (S) = { f (x) : x £ S } . f is one-to-one if x,y £ X with f (x) = f (y)

implies x = y. f is onto if / (X) = X . / is invertible if it is one-to-one and onto,

and it is then possible to define a transformation f ~ l : X n X called the inverse

of f , defined by = x, where x £ X is the unique point such that y = f (x) .

Def in i t ion 3.2.3 A transformation w : R 2 R 2 of the form:

w(xi, x2) = (ax\ + bx2 + e,cxi + dx2 + f)

where a,b,c,d,e and f arc real numbers, is called a two-dimensional affine trans

formation. An alternative matrix representation is also used:

/

w(x) = IV
x2 J

a b

c d

1 ' Xi
+

\ a ' 2 /

Ax + t.

Def in i t ion 3.2.4 Let f : X i—> X be a transformation on a metric space. A point

xj £ X is called a fixed point of f if f (x j) = Xj.

Chapter 3: I tera ted Function Systems 39

Def in i t ion 3.2.5 A transformation f : X >—> X on a metric space (K,d) is a

contraction mapping if and only if there is a constant 0 < s < 1 such that:

d(f(x)J(y))<sd(x,y) V . T , y e X .

The number s is called the contractivity factor of the mapping / .

Lemma 3.2.1 Let w : X •—> X be a contraction mapping on the metric space

(X, d). Then w is continuous.

Proof: Let s > 0 be the contractivity factor of the mapping w and x, y 6 X . Then

given c > 0:

d(w(x),w(y)) < sd(x,y) < e

whenever d(x, y) < S where 6 = |.

The following theorem is often referred to as the contraction mapping theorem.

Theorem 3.2.1 A contraction mapping f : X >—> X on a complete nonempty

metric space (X,c?) has a unique fixed point xj G X . Further, for any point x 6 X :

l i m / " (*) = x/ V x e X .

Proof: Assume there is more than one fixed point. If xj and yj are both fixed

points then d (x j , y f) = d (f (x j) , f (y j)) < sd(xj,yf). But 0 < s < 1, so this is

impossible if d(xj,yf) > 0. Therefore, d(xj,yj) = 0 and so xj = yj.

Now let XQ be any point of X (recall that X is nonempty). Then define recursively:

z n +i = f (x n) for n > 0.

Chapter 3: I tera ted Function Systems 40

Claim that { x n } ^ is a Cauchy sequence. Writing a = d(x0,xi) it follows by

induction that d(xn, . i ' n+i) < asn. But then, if rn < n:

n - l

d (x m , x n) < ^2 d (x j , X j + i)
j=m
n-l

< a s j

j=m

1 - S

asm(l - sn~m)

l - s

< asm(l-s)-1.

Therefore, if e > 0 is given, N can be chosen such that asN(l — s)~l < e. Then for

n,m, > N, d(xm,xn) < e and is a Cauchy sequence.

Now (X, d) is complete and {#n}£Li is a Cauchy sequence, so it has a limit xj £ X

with l im r , _ t c o f n (x) = xj. Now since / is contractive it is continuous and hence:

/(*/) = /Ui™ A*)) = Jim P+\x) = xj,

xj is therefore a fixed point of / .

The above theorem not only shows the existence of a fixed point in a complete

metric space, but shows a way to construct the point.

Chapter 3: I te ra ted Function Systems 41

T h e M e t r i c Space (H (X) , h)

Def in i t i on 3.3.1 Let (K,d) be a complete metric space. Then 7i(K) denotes the

space whose points are compact subsets o / X other than the empty set.

If A and B are subsets of some metric space X , then A and B are within

Hausdorff distance r of each other if and only if every point of A is within distance

r of some point of B , and every point of B is within distance r of some point of

A . This can be made into a metric called the Hausdorff metric, h.

Def in i t i on 3.3.2 Let (X.,d) be a complete metric space with x £ X , and let B £

Then d(x, B) is the distance from the point x to the set B .

Def in i t i on 3.3.3 Let (X, d) be a complete metric space with A , B £ 7i(X.). De-

Then </(A,B) is the distance from the set A to the set B .

De f in i t i on 3.3.4 Let (X,</) be a complete metric space. The Hausdorff distance

between A , B £ W(X) is defined by:

H(X). Define:

d(x,B) = m'm{d(x,y) : y £ B } .

fine:

d (A , B) = max{d(x,B) : x £ A } .

h(A, B) = rnax{d(A, B) , rf(B, A)}•

An alternative definition of the Hausdorff distance, in terms of closed neigh

bourhoods, is also useful.

Chapter 3: I terated Funct ion Systems 42

Def in i t ion 3.3.5 Let A C X be a subset of the metric space (X , d) and e > 0,

then the closed e-neighbourhood of A is:

NE(A) = {y G X : d(x,y) < e for some x £ A) .

The Hausdorff distance h between A , B 6 7^(X) can then be defined as:

h(A,B) = in f{ r : A C JV r(B) and B C Nr(A)}

where inf is similar to min, but need not be attainable.

It is worth noting that in general h does not define a metric. For example in

the space R:

(a) What is the distance between {0} and [0, oo)? It is infinite and from the

definition of a metric this is not allowed. Use of h is therefore restricted

to bounded sets.

(b) What is the distance/i(0, {0})? 1 Again it is infinite and so h is restricted

to use on nonempty sets.

(c) What is the distance h((0,1), [0,1])? Now the distance is 0 even though

the two sets are not equal and so h is restricted to use on closed sets.

For the purposes of this thesis h will only be applied to the nonempty compact

sets H{X).

Theorem 3.3.1 The IIausdorff distance h is a metric on the space 7i(K).

Proof: Let A , B , C £ W(X). Clearly //(A, B) = / i(B, A) . Also:

/ i(A, A) max{</(A, A) , r/(A, A) } - d(A, A) = m&x{d(x,A) : x e A } = 0.

'By convention, inf 0 = oo.

Chapter 3: I tera ted Function Systems 43

Since A and B are compact they are bounded and so 0 < / t (A , B) < oo. Further

more if A ^ B then there is an a G A such that a£B and h(A , B) > d(a, B) > 0.

Finally, let e > 0. If x G A , then there is y G B with d(x,y) < h(A,B) + e

and a z G C with d(y,z) < / J (B , C) + e. This shows that A is contained in the

(h(A,B) + h(B,C) + 2e)-neighbourhood of C . Similarly, C is contained in the

(/ i (A , B) + h(B,C) + 2e)-neighbourhood of A . Therefore h(A,C) < h(A,B) +

h(B, C) + 2e. This is true for all e > 0, so h(A, C) < h{A, B) + />,(B, C) as desired.

The following is an important property of the Hausdorff metric that is required

for a future proof.

L e m m a 3.3.1 For all B, C, D and E in 7{{X):

h(B U C, D U E) < max{ / j (B ,D) , /t(C, E) } .

Proof: Let A <E H(X) then:

(/ (A U B , C) = max{d(a-,C) : x G A U B }

= max{max{t/(a-, C) : x G A } , max{c/(:r, C) : x G B }

= max{d(A,C) ,d (B ,C)} .

Also:

cf(A,B U C) = max{min{d(x,y) : y G B U C) : x G A }

giving d (A , B U C) < rf(A,B) and d (A , B U C) < d(A,C). Using this:

d (B u C , D U E) = m a x { d (B , D U E) , d (C , D U E) }

< m a x { d (B , D) , d (C , E) } .

Finally:

/ i (B U C , D u E) = m a x { d (B U C , D u E) , < / (D u E , B u C) }

Chapter 3: I tera ted Function Systems 44

< max{<i(B,B),d(C, E) , f / (E, C), d(D, B) }

< max{f t (B ,D) ,A(C,E)}

as required.

The remainder of this section is aimed at proving that the metric space (%(X) , h)

is complete. In order to do this several preliminary results are derived.

Lemma 3.3.2 Let (X,e?) be a metric space and A , B G 7f (X) . Given e > 0 then:

h(A,B) <e A C Ne(B) and B C JVe(A).

Proof: h(A,B) < e implies that d (A , B) < e and d(B, A) < e. Consider:

c/(A,B) = max{rf(o,B) : a G A } < e

then for each a £ A , a G iV £ (B) and hence A C 7V£(B). Alternatively, suppose

A C A r

E (B) . Then for each a £ A there is a b £ B such that d(a,b) < e and so

(/(a,B) < e. This is true for each a £ A and so </(A,B) < e. A similar argument

for d(J5, A) completes the proof.

The following Lemma concerns Cauchy sequences in 7i(K) and is necessary for

the forthcoming completeness proof. The Lemma is referred to by Barnsley (1988,

pp. 36-37) as the Extension Lemma.

Lemma 3.3.3 Let (X,t/) be a metric space and let {A n}JJL 1 be a Cauchy sequence

of points in ('H(X),h). L^et {nj}<jtl be. a sequence of integers such that 0 < nx <

n-2 < < Suppose that {xn- £ Anj}'jil is a Cauchy sequence in (X , d) , then

there is a Cauchy sequence {x'n G A , , } ^ such that x' = xnj for all j — 1,2,3,

Proof: For each n £ { 1 , 2 , . . . choose x'n G {x G A n : d(x,xni) = d(xni,An)}.

That is, x'n is the closest point (or one of the closest points) in A n to x n , . The

existence of such a closest point is ensured by the compactness of A„. Similarly

for each j £ { 2 , 3 , . . . } and each n G {'«j-i + l , . . . , n ; - } choose x'n G {x £ A n :

d(x,xni) ' d(xn],An)}.

C h a p t e r 3: I t e r a t e d F u n c t i o n Sys tems 45

Clearly f rom construction x'n = xnj and x'n G A n . Given an e > 0, there exists an

N\ such that d(xnk, x n j) < | for all n-k,rij > N\. Also, there is a number N2 such

that d(Am,A„) < | for all m,n > N2. Let N = max{AT 1 ,AT 2} and note that for

m , n > N:

d{x'mtx'n) < d{x'm1xnk) + d{xnk,x'n)

< d(x'm, x n j) + d(xnj, xnk) + d(xnh, x'n)

where 777, G { ^ j - i + 1, " j - i + 2 , . . . , iij} and n £ {nf.-i + 1, n t _ i + 2 , . . . , n ^ } . Since

fc(Am,An>) < § there exists y G A , n f\ N L ^ X ^ } ^) SO that ^ (a ; ^ , ^ .) < §.

Similarly d(xnk7 x'n) < | . Therefore c/(a-'m, a:'n) < e for all m,?z > N and hence the

sequence is a Cauchy sequence.

The following is the main theorem of this section.

T h e o r e m 3.3.2 Let (X,cZ) be a complete metric space. Then ('W(X) , / i) is a com

plete metric space. Moreover, if { A n G 'H(X.)}'^!-1 is a Cauchy sequence then

A = l im n _oo A n can be characterised as follows:

A = {x G X : there is a Cauchy sequence {xn G A N } ~ = 1 such that, l i m xn = x).

P r o o f : Define A as above. The proof is broken into the following parts:

1. A ^ 0 ;

2. A is closed and hence complete since X is complete;

3. for e > 0 there exists an N such that for all n > N, A C N£(AN);

4. A is totally bounded and thus by 2 is compact;

5. l i m , ! - , ^ AN — A.

C h a p t e r 3: I t e r a t e d F u n c t i o n Sys tems 46

P r o o f o f 1 : Let N\ < iV 2 < N3 < . . . < iV n < . . . be a sequence of positive integers

such that:

h(Am,An) < 2 _ i V m , n > Nt.

Therefore / i (A ^ , AA? 2) < | and so f rom the definition of the Hausdorff metric there

exists a pair of points £ A /Vj and x^2 £ A^2 such that d^x^^x^) < | . Hence,

a sequence of points {rc,v, £ A , v , } ^ i can be constructed such that rf(i'/v,,iA'j+1) <

2 - ' . Given e > 0, choose k such that 2 _ i < e. Then for n > m> k:

d{xNm,XNn) < d (x N m , x N m + l) + d (x N m + l , x N m ^) + • ••d{xNn_1,xNn)

00 1

•=* 2'

and so { # ; v , } ^ i is a Cauchy sequence. By the Extension Lemma (3.3.3) i t is

possible to construct a Cauchy sequence {.T' £ A , } ~ j w i t h x'N. = xjv,.. Since X is

complete, this sequence has a l i m i t in X . By definition this l imi t is in A and so

A f%.

P r o o f o f 2: Suppose {a, £ A } ^ T is a sequence that converges to a point a. For

each a, there exists a sequence {xit„ £ A „ } " = 1 such that l im n _oo = a<. There

exists an increasing sequence of positive integers { A r , } ' , ^ 1 such that the subsequence

{ a N . } i = i c a n D e chosen such that d(a^i,a) < j . Furthermore for each iV,- there

exists an integer m, such that the subsequence {£/v , ,m,-}~i can be chosen such that

d(zNi,m,; aNi) < 7- Thus d(xNiimi,a) < | which tends to zero as i —> 00. Setting

VNi = -fiVi.m, then (/AT, £ A/V, and l . i m j _ 0 0 = a. By the Extension Lemma

{ t / ^ } ^ , can be extended to a convergent sequence of points { 2 , £ A , } ? ^ w i th

l i m i t a. which by definition means a £ A , and hence A is closed.

P r o o f o f 3: Given e > 0 there exists an N such that for TO, n> N, h(AM,AN) < e.

Let n > N then for rn > n, AM C N£(AN). For a £ A there is a sequence

C h a p t e r 3: I t e r a t e d F u n c t i o n Sys tems 47

{a; G A , - } ^ that converges to a. Assume that N is large enough so that:

d(am,a) < e V m > N.

Then am G Ns(An) since A m C JV£(An). Since A„ is compact, i t can be shown

that A r

e (A n) is closed. Then since am G A r

e (A „) for rn > N, a G A r

e (A n) . Hence,

A C A j (A „) for n large enough.

P r o o f o f 4: Assume that A is not totally bounded, then for some e > 0 no f ini te

e-net exists. There then exists a sequence {a^ G A } ^ 1 such that rf(etj,aj) > e for

i ^ j . However, f rom 3, there exists an n for which A C A r | (A n) and so for each

a, G A there is a iji G A n such that d(cii,yi) < | . Since A n is compact some

subsequence { j / n , - } ^ of {yi}^ converges and i t is possible to choose points in the

sequence { y n , } ^ i as close together as desired. In particular choose two points yni

and y,,., such that d (y n i , y n j) < | . But then:

d{ani, a n j) < d(ani, ?/„,.) + d(yni, ynj) + d(y

This contradicts the in i t ia l assumption that d((ii,a.j) > e and hence A is total ly

bounded. I t has already been shown that A is closed and so i t is compact.

P r o o f o f 5: Given e > 0 there exists a sequence of positive integers h\ < N2 <

... < Nk < • • • such that:

h (A u \ j) < _ 1 _ V i , j > Nk.
2k+l

Choose n < J\\ such that h(AN, A^) < | , then taking y G A n there is a point

xyvj G A,v, such that (/ (y , ! ^) < ^. Similarly there is a point XN2 G AN2 such that

d(.TN1}XN2) < ^. The sequence x^, XN2, x^3,... can be constructed such that

d(x;vk,xNk+J) < ^ r p . Using the triangle inequality:

d(y,xNk) < d(y, x N l) + d(xNl, xN2) + • • • + dfapf^, x N k)

C h a p t e r 3: I t e r a t e d F u n c t i o n Sys tems 48

n=l 2"

< £•

Clearly the Cauchy sequence {^'WkltLi converges to a point a £ A for which

d(y,a) < e. Thus A n C N£(A) for large enough n. Combining this w i t h the

above result that A C N£(An) for large enough n, then h(A,An) < e for large

enough n. Thus l im n _oo A n = A .

The above discussion of the properties of the space 7Y(X) and its metric has

shown that that (? i (X) , h) can be treated like any other complete metric space.

3»4 Mappings on the Metr ic Space (7^(X), h)

This section extends the work of Section 3.2 to the space "W(X). In addition

properties of a mapping which is itself a union of mappings are derived.

L e m m a 3.4.1 Let w : X >—> X be a continuous mapping on the metric space

(X , d). Then w maps "H(X) into itself.

P r o o f : Let S be a nonempty compact subset of X . Then clearly w(S) = {w(x) :

x £ S} is nonempty. I t is now enough to show that iv(§) is compact. Let {yn =

'w(a . ' 7 i)}^ i be an infinite sequence of points in «;(S). Then { j ; n } ^ L i is an infini te

sequence of points in S. Since S is compact there is a subsequence {XN„}%LI which

converges to a point x £ S. The continuity of w implies that {yNn = w(xNn)}^Li

is a subsequence of {j/n}£Li which converges to a point y — iu(x) £ iv(S). Thus

w(§) is compact.

C h a p t e r 3: I t e r a t e d F u n c t i o n Sys tems 49

L e m m a 3.4.2 Let w : X i—• X be a contraction mapping on the metric space

(X , rf) with contractility factor s. Then w : 7 i (X) i—> 7 i (X) defined by:

w(B) = {w(x) : x G B } V B G 7<(X)

is a contraction mapping on ('H(X),h) contractivity factors.

P r o o f : From Lemma 3.2.1 w : X i—> X is continuous and hence by Lemma 3.4.1

w maps H(X) into itself. Now let B , C £ K (X) , then:

d(w(B), w(Cj) = max{min{d(«>(x),«>(y)) : y £ C } : x £ B }

< m a x { m i n { s : ?/ £ C } : x G B) = s d (B , C) .

Similarly, d(u>(C),u>(B)) < . W (C , B) . Hence:

fe(ti;(B),M;(C)) = m a x { i / (t i ; (B) , u ; (C)) , (i (« j (C) , w (B)) }

< s m a x { d (B , C) , < / (C , B) }

< s / i (B , C) .

L e m m a 3.4.3 Le/ (X , </) 6e a metric space. Let {wn : n — 1 ,2 , . . . , AT} be con

traction mappings on (?Y(X) , / i) . Let the contractivity factor for wn be denoted sn

for each n. Define W : H(X) H + H{X) by:

W(B) = t u i (B) U t u 2 (B) U . . . U wN(B)
N

= \Jwn{B) V B G ^ (X) .

Then W is a contraction mapping with contractivity factor s = max{,s n : n =

1 , 2 , . . . , ^ } .

C h a p t e r 3: I t e r a t e d F u n c t i o n Sys tems 50

P r o o f : A proof by induction is used. Let N = 2 and B , C £ ~H(JL) then:

h{W(B), W(C)) = fc(u>i(B) U w2(B),wl(C) U u? 2(C))

(by Lemma 3.3.1)

< max{h(w1(B),wi(C)),h(w2{B),w2{C))}

< max{s1 h(B, C) , a2 h(B, C) }

< s f t (B . C) .

Thus the. Lemma is true for N = 2. Now assume i t is true for N = m mappings.

Consider the addition of an extra transform wm+i to construct W such that:

W\B) = | J wn(B) = | J wn(B) U « ; m + 1 (B) = W(B) U u ; r a + 1 (B) .
n=l n=l

Then:

h(W'(B),W'(C)) = h(W{B)Uwm+l(B),W(C)Uwm+l(C))

(by Lemma 3.3.1)

< mw{h(W(B),W(G)),h{wm+1(B),wm+1{C))}

< max{s / i (B , C) , 5 m + 1 / i (B , C) }

< max{s , 5 m + l } / i (B , C)

= m a x { s i , s 2 , • • • , ^ m + 1 } / i (B , C) .

Hence, if the Lemma is true for m i t is true for m + 1. The Lemma is true for

m = 2 and so by the induction hypothesis the Lemma is true for al l m > 2.

C h a p t e r 3: I t e r a t e d F u n c t i o n Sys tems 51

3,5 Iterated Function Systems^ Defini t ion and

Properties

This section introduces iterated function systems and derives some of their prop

erties.

D e f i n i t i o n 3.5.1 An iterated Junction system (IFS) consists of a complete metric

space (X , d) together with a finite set. of contraction mappings wn : X H-• X with

respective contractivity factors sn for n = 1 ,2 , . . . , A r . The notation for an iterated

function system is { X , wn : n = 1,-2,..., N} and its contractivity factor is s =

m a x { s n : n = 1 ,2 , . . . , N).

The following theorem summarises some of the main features of an IFS.

T h e o r e m 3.5.1 Let [X.,iun : n = 1 ,2 , . . . , N) be an iterated function system with

contractivity factor s. Then the transformation W : 7Y(X) i—> 7i(X.) defined by:

N
W(B) = (J wn{B) V B e W (X)

is a contraction mapping on the complete metric space ("W(X),/t) with contractivity

factor s. Furthermore the unique fixed point A 6 "W(X) obeys:

N
A = W{A) = | J wn(A)

71 = 1

and is given by A = l im n _oo W n (B) V B <E H(X), where Wn(B) = W (W n - x (B))

and W°{B) = B .

P r o o f : The proof follows directly f rom those of Theorem 3.2.1 and Lemma 3.4.3.

C h a p t e r 3: I t e r a t e d F u n c t i o n Sys tems 52

D e f i n i t i o n 3.5.2 The fixed point A £ "H(X) described in the above theorem is

called the attractor of the iterated function system.

An important feature of an IFS is that there is a continuous dependence of the

attractor on the parameters which encode i t . This so-called robustness property

ensures that small changes in an IFS's encoding parameters produce correspond

ingly small changes in the attractor. Larger changes, however, can be expected

to produce large changes in the attractor. There is, therfore, a strong interaction

between the subsymbolic components of a mapping. A pictorial demonstration of

this is provided in Section 4.3.

L e m m a 3.5.1 Let (P,dp) and (X,c/) be metric spaces, the latter being complete.

Let w : P x X »—> X be a family of contraction mappings on X with contractivity

factor 0 < s < 1, i.e., for each p g P and x £ X , w(p, x) is a contraction mapping

on X . For each fixed x £ X let w be continuous on P . Then the fixed point of iv

depends continuously on p, i.e., xj : P i—» X is continuous.

P r o o f : Let xj(p) denote the fixed point of 10 for a fixed p £ P . Given p £ P and

e > 0 then for all q £ P:

d{xj(p),xj{q)) = d(w(p,Xj(p)),w(q,Xj(q)))

< d{w(p,Xf(p)),w(q,xf(p)))+d(w(q,xf(p)),w(q,xf(q)))

< d(w(p,xj(p)),w(q,Xf(p))) + sd(xs(p),Xf(q))

which implies:

d(xf(p),xf{q)) < (1 - s)-ld(w(p,xf(p)),w(q,xf(p))).

Since w is continuous on P , q can be chosen sufficiently close to p such that 0 <

dp{p,q) < 6 a n d s o :

d(iu(p, x), w(q, x)) < £dp(p, q) V a- £ X

C h a p t e r 3: I t e r a t e d F u n c t i o n Sys tems 53

and hence:

d(xj(p),xf(q)) < (! -*)~ldp{P,<l)

a.nd so xj : P f-» X is continuous.

L e m m a 3.5.2 Let (X , d) be a •metric space. Let wn : P x X i—> X for n =

l , 2 , . . . , i V be continuous transformations depending continuously on a parameter

p £ P, where (P,dp) is a compact metric space. That is, iun(p,x) depends contin

uously on p for fixed x £ X . Then the transformation W : "W(X) i—>• 7i(X) defined

by:

N

W{p, B) = U ivn(p, B) V B G W (X)
n=i

is also continuous in p, i.e. , W(p, B) is continuous in p for each B G 7Y(X), in //ie

metric space (7 i (X) , / i) .

P r o o f : For B £ W (X) w i t h p, g G P and given e > 0:

d(wi(p. B),wi(q.B)) = ma.x{miu{d(wi(p,x), Wi{q, y)) : y G B } : x G B }

< rnax{min{d(t« i (p , i -) , Wi(p,y)) +

rf(«'i(p»y)>«'i(9»tf)) : y £ B } : a- £ B } .

Since P x B is compact and u»i : P x B H X is continuous, then u>\ is uni

formly continuous. Hence there exists a 8 > 0 such that i f dp(p,q) < 8 then

d(wi(p,y),wi(q,y)) < e for all j / G B . Assuming dp(p,q) < 8 then:

</(i<->i(p, B) , tu i (< / ,B)) < max{min{d(t i ; 1 (p , x), wx(p, y)) + s : y £ B } : x £ B }

< d{wi{p,B),wi(p,B)) +e = e.

C h a p t e r 3: I t e r a t e d F u n c t i o n Sys tems 54

Similarly d(wi(q, B) , -Wi(p, B)) < e for all dp(p,q) < S and so:

h{w1{p,B),wx{q,B)) < e Vrfp(p,g) < 6.

Hence W(p, B) is continuous for TV = 1. This result can now be extended for TV > 1

using Lemma. 3.3.1, giving:

h(W(p, B) , W(q.B)) < ma,x{h(wn(p,B),ion(q,B))} = e'

< c' Vdp(p,q)<6

T h e o r e m 3.5.2 Let (X , d) be a metric space. Let { X , wn : n " 1,2, ...,N}

be an iterated function system such that wn depend continuously on a parameter

p £ P , where P is a compact metric space. Then the attractor A G ? i (X) depends

continuously on p £ P , with respect to the Hausdorff metric.

P r o o f : Follows f rom Lemma 3.5.1 and Lemma 3.5.2.

This section is concluded wi th the Collage Theorem which is of fundamental

importance to the possibility of using IFSs for shape representation.

T h e o r e m 3.5.3 Let (X,d) be a complete metric space. LM L G 'W(X) and choose

an iterated function system {X.,ivn : n = 1 ,2 , . . . , 7V} with contractivity factor

0 < s < 1 such that for some e > 0:

N

h(L, |J wn(L)) < e
n = l

where h is the Hausdorff metric. Then:

h(L,A) < e (l -s)~l

where A is the attractor of the iterated function system.

C h a p t e r 3: I t e r a t e d F u n c t i o n Sys tems 55

P r o o f :

n

h(L,Wn(L)) < £ h(Wm-l{h),Wm(L))
n

< Y , sm-lh(L,W(L))

1 - s
< h(L, W{L))

1 - s

which a,s n oo becomes:

h(L,A)< (1 - s) - l f c (L , W (L)) .

The implications of the Collage Theorem can be best appreciated by considering

its consequences in the case of a two-dimensional space. I f a set of the space

is to be represented as an IFS, each mapping of the set can be considered as a

reduced size, rotated, skewed copy of the original. These copies are then arranged

in an effort to form a collage of the original set — hence Barnsley's name for the

theorem. I f a collage can be found which exactly covers the original set then the

attractor of the IFS which consists of the mappings of the collage wi l l be exactly

the original set. Any differences between the collage and the original set result i n

the attractor differing by an amount related to the contractivity factor of the IFS.

The problem of finding an IFS which has some set as its attractor reduces to f inding

a suitable collage. Since the mappings of the collage can be represented by real-

valued coefficients the problem is now essentially one of subsymbolic manipulation,

i.e., searching the space of the subsymbolic representation.

C h a p t e r 3: I t e r a t e d F u n c t i o n Sys tems 56

$„(8 Summary

This chapter has introduced the terminology of iterated function systems and given

derivations of some of their important properties. The chapter began wi th a sec

tion on basic metric topology followed by one on mappings of a metric space. The

next section defined a space 7Y(X), the points of which correspond to non-empty

compact subsets of an underlying metric space (X , d). Important properties of

this space were derived and the Hausdorff metric, h, introduced. W i t h the pre

l iminary work complete definitions of an iterated function system and its attractor

were given. Other important results of IFS theory which were presented included

those of robustness and the Collage Theorem. The robustness property proves the

continuous dependence of an IFS's attractor on the IFS parameters themselves,

and formalises the strong interaction between the parameters. Barnsley's Collage

Theorem provides a, means of calculating an IFS for a given subset of the space for

which i t is defined.

hapter 4

I d Fu d t t net t e r a e on y s e m s a n

h R nt t e P re e a P e s ion

This chapter continues the detailed description of various aspects of the shape rep

resentation problem, and begins by introducing a formal framework for using IFSs

in two-dimensional shape representation. Two Lemmas show that a good IFS rep

resentation can be found when the underlying space is either continuous or discrete.

The discrete case is of particular relevance to computer images. Section 4.2 reviews

several of the methods which have been suggested as a means of generating the

attractor of an IFS. The m i n i m u m point plot t ing algorithm (used to generate the

attractors in the experiments of Chapter 5) is introduced.

The robustness property of IFSs is discussed and a pictorial demonstration

shows the strong interactions which can occur between the components of a real-

valued subsymbolic encoding of an IFS. Section 4.4 reviews the literature on the

problem of using IFSs for shape representation. This includes a discussion of several

methods which have been proposed for manipulating the subsymbolic components

of an IFS. The literature review is included since the results of Chapter 5 sug

gest that evolutionary programming offers a powerful means of approaching the

C h a p t e r 4: I t e r a t e d F u n c t i o n Sys tems a n d Shape R e p r e s e n t a t i o n 58

problem, and in order to best appreciate the problem's dif f icul ty a cri t ical review

of other approaches to solving i t is given. The chapter concludes w i t h a brief

overview of other applications of IFSs and a summary.

4.1 Framework

This section describes a formal framework for the use of iterated funct ion systems

as a two-dimensional shape representation scheme. The results derived are taken

f rom Giles (1990, pp. 58-64).

D e f i n i t i o n 4 .1 .1 Let (R 2 , d) be a metric space consisting of the Euclidean plane

R 2 equipped with a suitable metric, d. A shape S is any set S 6 7i(R2).

D e f i n i t i o n 4.1.2 Let {H2,wn : n = 1 , 2 , . . . , J V } be an iterated function system.

Then a shape S is represented by the IFS if:

\imWn(B) = § V B e M R 2) .
n—too ' v '

I n representing a shape by an IFS the aim is, therefore, to f ind an IFS which

has that shape as its attractor. The following Lemma shows that for any shape a

'good' IFS representation can always be found.

L e m m a 4.1.1 Given any shape S and e > 0 there exists an iterated function

system { R 2 , wn : n = 1 ,2 , . . . , N} with attractor A for which h(S, A) < e.

P r o o f : The Collage Theorem (3.5.3) gives:

h(S, A) < (.1 - s)~lh(S, W(S)) V S G H(H2).

Since S is compact i t is closed and totally bounded, and there exists an e-net

{yi} yz, • •. ,yw}. Since an e-net contains only a f ini te number of points i t is closed

C h a p t e r 4: I t e r a t e d F u n c t i o n Sys tems a n d Shape R e p r e s e n t a t i o n 59

and totally bounded and so {yn}n=i £ 7i(R- 2)- Furthermore:

MS, { » » } ~ = 1) < e .

Mappings are now chosen such that:

w„(x) = y. n M x G S and n = 1 ,2 , . . . , N.

Hence W(S) = {?/„} AT
n = l w i t h contractivity factor s = 0. Finally:

< e.

Clearly the above method is very inefficient. Each point of the e-net requires

one mapping and so when e is very small a large number of mappings is needed.

So far the discussion of shapes and IFSs has been for the case in which the

underlying space is continuous. I n reality computer images are usually represented

using a two-dimensional pixel array. The following Lemma shows that a good IFS

code can be found for any pixelised image.

L e m m a 4.1.2 Let P € W (X) be a finite rectangular array of points in the metric

space (R^.d), such that (P,d) is a complete metric space. Let S' = {pn f P : n =

1 ,2 , . . . , N} be a set of points such thai S' is the discrete approximation of a set

S G ? f (R 2) . Then there exists an IFS { P , wn : n = 1,2, . . . ,N] with an attractor

A' for which h(A',S') = 0.

P r o o f : Choose Wn such that:

wn(x) = p, 'n V x G S' and n = 1 ,2, . . . N.

C h a p t e r 4: I t e r a t e d F u n c t i o n Sys tems a n d Shape R e p r e s e n t a t i o n 60

The set of mappings {wn}!^=i has contractivity 5 — 0 and H / r(S') = S'. Hence f rom

the Collage Theorem (3.5.3):

h(A',S') = rlh(§',W{§')) = h(S',§') = 0.

As for Lemma 4.1.1 the number of mappings needed is large. In fact the map

pings used are l i t t l e more than a pixel list wr i t ten in terms of mappings. Again

this is very inefficient, but i t does show that any shape defined on a pixel array can

be represented by an IFS.

The problem of finding an IFS for an arbitrary shape is often referred to as

the inverse problem (Barnsley et al. 1986). Although the material of this section

shows that for pixelised images i t is always possible to solve the inverse problem,

the method is very inefficient. An obvious question is then: Is i t possible to produce

a good approximation using fewer mappings? Peitgen et al. (1992, p. 281) mention

the following difficulties which arise wi th in this context:

1. How can the quality of an approximation be assessed? How are the differences

between images quantified?

2. How can suitable transformations be identified?

3. How can the number of necessary affine transformations be minimised?

4. What is the appropriate class of images suitable for this approach?

The answers to each of these are research problems in their own right and

varying amounts of progress have been made. For example, question 2 has in theory

been solved by Barnsley wi th the Collage Theorem. The practical difficulties which

arise are, however, non-trivial and have resulted in a large body of literature on the

best way to proceed. Possible solutions to some of these questions are discussed

further in Section 4.4 and Chapter 5.

C h a p t e r 4: I terated Funct ion Systems and Shape Representat ion 61

4o2 Generating the At t ractor

In this section several methods for generating the attractor of an IFS are discussed.

These methods can be classified as either stochastic or deterministic. Examinations

of stochastic methods for generating attractors include those by Barnsley (1988),

Berger (1989), Goodman (1991), Hepting et al. (1991), Smith (1991), and Culik

I I and Dube (1993). Deterministic methods for attractor generation include those

by Barnsley (1988), Monro et al. (1990), Hepting et al. (1991), Kropatsch et al.

(1992) and Cohen (1992). In addition Sharp and Cripps (1991) describes a C I M P

(Communication Intensive Massively-Parallel) algorithm which is a deterministic

method of attractor generation most suited to implementation on a parallel archi

tecture.

Stochastic methods are usually simple to implement and can provide a quick

approximation of the attractor. However, due to their very nature, i t is often

diff icult to decide when they should be terminated. Deterministic algorithms on the

other hand are often harder to implement and can be computationally expensive.

The remainder of this section discusses an example of a stochastic and deterministic

method for attractor generation, and concludes wi th the algorithm that shall be

used to generate attractors in the experiments discussed in Chapter 5.

4.2.1 The Random Iteration Algorithm

The Random Iteration Algor i thm (R I A) developed by Barnsley (1988; Barnsley and

Sloan 1988) is perhaps the most commonly used method of attractor generation.

The R I A was developed by considering an IFS as a probabilistic dynamical system,

and as such being stochastic in nature. Each of the contraction mappings of an IFS

{wi : i = 1,2,...,??,} is assigned a probability p;. These probabilities are usually

calculated by wri t ing the mappings in the fo rm U > , (. T) = A{X +1{ (recall Defini t ion

3.2.3) and taking:

C h a p t e r 4: I terated Funct ion Systems and Shape Representat ion 62

det Ai\ click - kci
for i = 1,2,... ,n. Pi ~

£ " = 1 |det At\ En
» = 1

biCi

In other words the probabili ty is approximately proportional to the size of

the contraction that each mapping produces, and of course £ " = 1 p i ~ 1- The

approximation is needed so that i f , for some i, det / l , = 0, the probabili ty p, can

be assigned a small positive number, such as 0.001. The R I A then proceeds as

follows:

1. Choose an in i t ia l point xo £ X .

2. Select (wi th replacement) a mapping, to,-, of the IFS wi th a probabili ty p;.

3. Generate and store the point x\ = W^XQ).

4. Select (wi th replacement) a mapping, wj, of the IFS wi th a probabili ty p3

and apply i t to the point xx to generate x 2 .

5. Continue in this manner to produce the set of points {a ' 0 , x\,x2, • • •, XN}-

6. For large enough N the set {xi}fL0 is, almost surely, a good approximation

of the attractor of the IFS.

That the sequence of points converges (almost surely) to the attractor is ensured

by Elton's ergodic theorem (Barnsley 1988, p. 370). The ini t ia l point a'0 need not

lie on the attractor since the sequence wi l l converge to the attractor. I t is, therefore,

usual to disregard the in i t ia l part of the sequence while i t converges to the attractor.

A n obvious problem is deciding exactly how many points are to be disregarded.

This can easily be avoided by selecting the in i t ia l point .To to be a fixed point of

one of the mappings of the IFS. Since this point lies on the attractor so do all of

the subsequent points generated.

C h a p t e r 4: I terated Funct ion Sys tems and Shape Representat ion 63

The R I A is both simple to implement and has a certain aesthetic appeal, es

pecially i f used to generate colour attractors (Hepting el al. 1991; Smith 1991).

However, due to the stochastic nature of the algorithm i t is not possible to de

termine in advance the number of iterations required to generate the complete

attractor. Figure 4.1 shows examples of using the R I A to generate attractors of

the IFSs given in Tables 4.1 — 4.3.

• 1
r*1. '.>• • •
«..."' fc;. p. "t..r

r*1. '.>• • •
«..."' fc;. p. "t..r

4 4
Figure 4.1: Using the random iteration algori thm to generate a square, Sierpinski

triangle and a Barnsley Fern. The diagrams show the algorithm after 1000, 10000

and 100000 iterations. Even after 100000 iterations the attractor for the square

has not been completely generated, although this may not be clear i n the diagram

(the fu l l y rendered square consists of 19881 points).

C h a p t e r 4: I terated Funct ion Sys tems and Shape Representat ion 64

i bi Ci di et- Si Pi

1 0.5 0 0 0.5 35 35 0.25

2 0.5 0 0 0.5 -35 35 0.25

3 0.5 0 0 0.5 35 -35 0.25

4 0.5 0 0 0.5 -35 -35 0.25

Table 4.1: Coefficients of an IFS for a square.

i a, bi c, di e; fi Pi

1 0.5 0 0 0.5 -35 35 0.333

2 0.5 0 0 0.5 35 -35 0.333

3 0.5 0 0 0.5 -35 -35 0.334

Table 4.2: Coefficients of an IFS for a Sierpinski triangle.

i a-i k Ci di e< f i Pi

1 0 0 0 0.16 0 0 0.01

2 0.2 -0.26 0.23 0.22 0 1.6 0.07

3 -0.15 0.28 0.26 0.24 0 0.44 0.07

4 0.85 0.04 -0.04 0.85 0 1.6 0.85

Table 4.3: Coefficients of an IFS for a Barnsley Fern.

C h a p t e r 4: I terated Funct ion Sys tems and Shape Representat ion 65

4 . 2 o 2 A Deterministic A lgo r i t hm

The following algorithm for generating the attractor of an IFS was suggested by

Barnsley (1988, p. 88) and follows directly f rom the definition of an attractor.

If { X , W{ : i = 1,2,. . . , n } is an IFS then the algorithm proceeds as follows:

1. Choose a non-empty compact set Ao C R 2 .

2. Compute successively AN = W N (A 0) according to:

n
A N + i = (J Wi(AN) for A f = 0 , 1 , 2 ,

i= i

3. The sequence {AN C ^ (X) } ^ ^ converges to the attractor of the IFS in the

Hausdorff metric — Theorem 3.5.1.

Although no termination criteria has been specified for the above algorithm it

is easy to include one. For example, terminate when / i (A „ _ i , A n) < e for some

predetermined e > 0. A criteria such as this has the added advantage that i t allows

the attractor to be generated to any desired degree of accuracy.

The major drawback of this algorithm is that there is no guarantee as to the rate

of convergence of the sequence { A A T } , and so a large number of iterations may be

required. Furthermore, many unnecessary points w i l l often be plotted, especially

when the in i t ia l shape Ao is far larger than the attractor. This algorithm is,

therefore, usually slow in generating the attractor of an IFS and so is unsuitable

for the experiments discussed in Chapter 5.

C h a p t e r 4: I terated Funct ion Sys tems and Shape Representat ion 66

4 „ 2 o 3 The M i n i m u m Point P lo t t ing Algor i thm

The M i n i m u m Point Plott ing algorithm (MPP) was suggested by Monro et al.

(1990). I t was noted that the R I A "visits pixels many times so that i t wi l l eventually

leave all pixels by all possible routes." Monro et al. suggest a method for generating

an attractor based upon this fact. Given some points which lie on the attractor

the application of all the mappings of the IFS to these points generates all possible

paths f rom these points. A queue of new points to be transformed is created. Points

that have already been plotted are not added to the queue. When the queue is

empty the attractor has been generated. The fixed points of the mappings of an IFS

lie on the attractor and so can be used as starting points. This can be summarised

as:

1. Calculate the fixed points of the mappings {u>, : i = 1,2, . . . , n } plot them

and place them in the queue.

2. Take the point, x, f rom the head of the queue. For each of the mappings to,-,

* = l , 2 , . . . , n :

(a) Generate the point y = Wi(z).

(b) I f y is a point which has not been plotted, plot i t , and add to the back

of the queue.

3. Repeat 2 unt i l the queue is empty.

Although the above algorithm generates points which have already been gener

ated, these wi l l not be plotted or added to the queue. The checking of whether or

not a point has been generated can be efficiently implemented by use of an array —

although care must be taken to ensure that i t is large enough to record all points

generated.

It; is perhaps worth noting a potential problem (not considered by Monro et al.)

that may arise as a result of rounding errors. I f the attractor is large or complicated

C h a p t e r 4: I terated Funct ion Systems and Shape Representat ion 67

enough i t is possible that the rounding (or truncation) of fractional parts of values

may be enough to alter the value produced by the application of a mapping. In

such cases some spurious points may be plotted, and other points that are part

of the attractor may not be plotted. However, these potential difficulties can be

expected to produce only minor variations i n the attractor. I t is possible to reduce

the effect of rounding errors by refining the array so that i t takes into account

a number of decimal places. However, this can be expected to increase the t ime

taken to generate an attractor. Attractors shown on a computer are, in any case,

often only a,pproxima.tions since only a finite degree of accuracy is available.

The M P P algorithm is simple and fast when compared to the R I A (Monro et

al. 1990), and is used throughout the rest of this thesis to generate attractors.

4.3 Robustness

An important property of IFSs is that small variations in the mapping coefficients

result in small changes in the attractor. This property is referred to as robustness

and is a direct consequence of the results of Section 3.5. which establish that i f the

mapping coefficients are continuous in some parameter, then so is the attractor.

The robustness property is demonstrated in Figure 4.2. The sequence of at

tractors shows the affects on the attractor of altering, by varying amounts, the IFS

coefficients tor a Sierpinski triangle. The coefficients used are shown in Tables 4.4

— 4.7. I t can be seen that the introduction of a few small errors produces l i t t l e

discernible change in the attractor. When these small errors become more numer

ous appreciable differences in the attractor can be seen, although the shape is s t i l l

(to the human eye at least) recognisable. However, w i t h the introduction of a few

large errors the attractor begins to break up, and w i t h the introduction of more

large errors i t can be expected to degenerate further. This behaviour demonstrates

the strong interaction that can occur between individual components of a mapping.

C h a p t e r 4: I terated Funct ion Systems and Shape Representat ion 68

Interactions between the mappings themselves can be even more pronounced since

i t is the interaction of all of the mappings which determines the attractor.

Figure 4.2: A sequence of attractors obtained by altering the coefficients of an IFS

for a Sierpinski triangle by various amounts. The top left attractor is the original.

The top right has a few of the original coefficients altered only slightly. The bot tom

left has all of the original coefficients altered slightly. The bot tom right has most of

the coefficients altered sightly and the remainder altered by a larger amount. This

demonstrates the strong interaction which can occur between components when a

real-valued subsymbolic representation is adopted.

C h a p t e r 4: I terated Funct ion Systems and Shape Representat ion 69

i a, hi Ci di Si

1 0.5 0 0 0.5 -35 35

2 0.5 0 0 0.5 35 -35

3 0.5 0 0 0.5 -35 -35

Table 4.4: Coefficients of an IFS for a Sierpinski triangle.

i Cli bt
di e; f i

1 0.5 0.01 0 0.5 -35 36

2 0.5 -0.02 0 0.5 34 -35

3 0 .48 0 0 0.5 —33 -35

Table 4.5: Coefficients of an IFS for a Sierpinski triangle

wi th a few small changes (shown in bold).

i k c, di e,- f i

1 0.46 0.01 -0.03 0.52 -33 38

2 0.51 0.05 0.02 0.49 31 -36

3 0.47 -0.01 -0.02 0.48 -33 -37

Table 4.6: Coefficients of an IFS for a Sierpinski triangle

wi th many small changes.

i Cli bi Ci di e, /.•

1 0.46 0.01 -0.03 0.52 -33 20

2 0.62 0.05 0.02 0.49 31 -36

3 0.47 -0.01 -0.23 0.48 -33 -37

Table 4.7: Coefficients for a Sierpinski triangle wi th many

small and a few larger changes (shown in bold).

C h a p t e r 4: I terated Funct ion Sys tems and Shape Representat ion 70

4»4 The Inverse Problem

The inverse problem is the name often given to the problem of finding an IFS for

an arbitrary shape (Barnsley et al. 1986). This section discusses several methods

that have been suggested for solving two-dimensional inverse problems. The review

is not exhaustive, but provides an overview of some of the approaches which have

been considered. The literature review is included so tha.t the results presented in

the following chapter can be placed in the context of other work on solving inverse

problems.

The methods examined fal l into two main categories: interactive and automatic.

Interactive methods generally use a symbolic representation, while automatic meth

ods usually adopt a subsymbolic approach and some algorithm to search the space

of encodings. Interactive methods require a human to guide the search, and as such

are far f rom ideal. Automatic approaches on the other hand often need to resort to

s implifying assumptions in order to f ind solutions which usually makes them only

suitable for application to a subset of inverse problems.

4=4.1 ISIS

The Interactive System for Image Synthesis (ISIS) tool was developed by Horn

(1989) and is used for collage construction. The tool consists of two main parts:

a drawing surface for IFS design, and a drawing surface for image rendering and

viewing.

The IFS design process is carried out by the manipulation of a set of paral

lelograms. Each parallelogram represents a contraction mapping of the original

shape, and the manipulation is carried out by the use of a mouse which is used to

meta-skew a parallelogram by 'dragging' a vertex. Addi t ional parallelograms can

be created or current ones destroyed as required by the user. The set of mappings

of the parallelograms is an IFS, and, as alterations are made, the attractor of the

C h a p t e r 4: I t erated Funct ion Systems and Shape Representat ion 71

IFS is generated in the viewing window. The attractor generation is carried out

using a massively parallel computer and as such is extremely fast. At any t ime the

attractor may be overlaid over the drawing surface to aid design. The system can

be used to solve inverse problems, but being interactive has obvious l imitations.

4 o 4 o 2 Skeletonisation

Libeskind-Hadas and Maragos (1987) use the morphological skeleton of the shape

to be encoded as a tool to provide information on the values of the coefficients

necessary to produce a collage of affine maps (IFS) that cover the original.

I f A is a set in R 2 then the disc rDx is maximised wi th respect to A i f i t is

contained in A and is not properly contained in any other disc contained in A. The

skeleton of A, is defined to be the set of centres of all discs maximal wi th respect

to A. The skeleton can also be defined using morphological operations, and the

above concepts can be applied to finding the skeletons of discrete binary images.

When the tool is applied to an image, the skeleton is computed, and the user

locates the central branch point and outer branch points. These outer points

are then used to calculate the coefficients of mappings f rom which a collage is

bui l t . The system works well for perfect self-similar fractals (those which display

the same structure at al l scales) by enabling the discovery of collages which f i t

the image boundary. More generally, however, the mappings generated may not

cover the image and so the remainder is covered by discs. The system, although

useful, is not automatic and often requires the use of shapes that are not affine

transformations of the original.

C h a p t e r 4: I terated Funct ion Systems and Shape Representat ion 72

4 . 4 . 3 I terat ive Minimisat ion

Levy-Vehel and Gagalovvicz (1987) introduce several distance measures between

shapes and use thern to quantify the distance between a shape and a collage of

i t . A gradient based algorithm is used to iteratively minimise one of the distance

functions so that a suitable collage for the shape can be found. The results for some

of the distance functions are reported to be. i n general, poor, but one example of

a successful application of the procedure is given. The major drawback of the

approach is in the selection of the starting collage. I f this is badly chosen then the

algorithm is not able to f ind a good collage. To overcome this i t was necessary

to select the starting collage by hand, and as such the procedure is not totally

automatic.

4.4.4 Boundary Mapping

Giles et al. (1989) suggests reducing the collage construction process to an essen

tially one-dimensional problem by selecting mappings which match to the shape

boundary only, thus significantly reducing the search space complexity.

The input data for this algorithm is a digitised binary image of a simple geo

metric shape. The boundary points of the image are detected and the curvature K

at each point calculated. The boundary is segmented into arcs, the endpoints of

which correspond to K = 0. The arcs are then classified as either concave, convex

or linear. Contractive affine transformations are calculated which map arcs of the

same curvature type onto each other, the best being accepted as part of the IFS.

I f no suitable match is found, the unmatched arc is halved and reconsidered.

The best encodings produce attractors which give good approximations of image

boundaries. However, although an automatic system, the mappings used are in

general small and thus unable to cover adequately the image interior.

C h a p t e r 4: I terated Funct ion Systems and Shape Representat ion 73>

4 . 4 = 5 Evolutionary Algori thms

Previous applications of EAs to the inverse problem have considered both the use of

GAs and EP. Vrscay (1991a; 1991b) considered several approaches to solving inverse

problems, one of which involved the application of a GA. A brief overview of the the

ory of GAs and how they can be applied to inverse problems was given. Although

encouraging results were reported, only preliminary details for one-dimensional

problems were provided and there were no details of any results for two-dimensional

problems. Garigliano et al. (1993c) 1 and especially Giles (1990) discussed in some

detail the implementation of a GA to two-dimensional inverse problems and showed

some promising results for a selection of target shapes.

Levy-Vehel and Lu t ton (1993) presented the. application of a GA to some two-

dimensional inverse problems. Two target shapes were considered: a Barnsley Fern,

and a perturbed Sierpinski triangle. The algorithm was reported to be capable of

finding near optimal solutions, but no details of its mean performance was given.

Hoskins and Vagners (1992) have applied EP to the inverse problem wi th some

success. The approach taken assumed knowledge of the size of the linear defor

mations, and searched for the number of mappings required together w i th their

translation components. The technique used to achieve this "simulates the com

petitive dynamics on an array of mapping cells." Each element of a 192 x 192

array was used to represent a mapping, the fixed point of which corresponded to

its position in the array. The population consisted of individual mappings, and

the goal was the determination of an optimal population of individuals. Four test

cases were presented which showed that (wi th in its l imitat ions) the algorithm was

able to exactly solve two of the problems: a Sierpinski triangle, and a T w i n Dragon

fractal . The remaining two problems were a noisy image and two embedded ob

jects, the exact, solutions of which, were not known. Promising results for both of

these cases were given. Although the technique is useful i t is clearly l imi ted by the

' T h e sequence of results shown in Garigliano et al. (1993c) was for a population of 500, not
100 as implied.

C h a p t e r 4: I terated Funct ion Systems and Shape Representat ion 74

requirement of needing a priori knowledge of the linear deformations.

4.4<.6 Moment Approach

In addition to the geometric theory of IFSs they can be characterised in terms of

measures. A f u l l account of this approach is given by Barnsley (1988).

In the case of the measure approach a gray scale image is modelled as a proba

bi l i ty measure over its region of support. A contractive mapping is defined in terms

of a Markov operator and the metric used is known as the Hutchinson metric. The

successive application of the Markov operator to an arbitrary in i t ia l dis tr ibut ion

results in convergence to a. unique measure. This is termed the invariant mea

sure and obeys a fixed point condition w i t h respect to the Markov operator. The

support of the invariant measure is the attractor of the IFS.

For a target shape S the inverse problem for measures involves finding an IFS

whose attractor A minimises the Hutchinson distance dn{fi, v) where the support

supp(p) — A and supp{v) = S. A Collage Theorem for measures exists and is

conceptually similar to that for the geometric approach.

Vrscay (1991a; 1991b) examined the use of a gradient based approach for solv

ing one-dimensional inverse problems, but found i t to be very unstable. A two-

dimensional inverse problem was considered, and the results so bad that Vrscay

(1991a, p. 447) states, "This example shatters any hopes of using gradient meth

ods for moment matching as a global optimisation method." I t is suggested that

the method may prove useful as a fine-tuning procedure for a more global search

procedure.

The moment method has also been applied to the one-dimensional case by

Abenda and Turchetti (1989). A two-dimensional approach involving wavelets was

suggested by Rinaldo and Zakhor (1992), but the procedure is only applicable

to inverse problems whose IFS mappings are of a particular very restricted fo rm.

C h a p t e r 4: I terated Funct ion Systems and Shape Representat ion 75

In addition the mappings are assumed to be non-overlapping thus making the

technique unsuitable for many inverse problems.

In this thesis only black on white images are considered and a geometric ap

proach to the inverse problem is sufficient. Barnsley (1988) provides further details

of the measure theory of IFSs.

4.4=7 Model l ing One-dimensional Data

IFSs have been suggested as a means of modelling one-dimensional discrete data.

Vines and Hayes (1992) suggest two possible algorithms for this based on the

Collage Theorem. The algorithms split the data into smaller sections, and f ind

mappings which minimise the squared error between the original data and the data

when mapped into the smaller sections. The first algorithm encounters difficulties

in determining the endpoints of the smaller sections which are to be used. Although

some constraints are applied, the algorithm is required to exhaustively evaluate a

large number of possibilities, which results in much wasted computation. The

second algorithm uses a linear interpolation of the data to provide the endpoints

of the smaller sections, and a least squares approximation is used to optimise the

parameters of the individual mappings. As discussed by Mazel and Hayes (1992)

the above (self-a,ffine) fractal interpolation algorithms are only really suitable for use

on data which is itself self-affine. Since most real world data is not self-affine Mazel

and Hayes suggest a piecewise self-affine fractal model. Adopting this approach the

data is viewed as being composed of a collage of transformations of pieces of the

data and not transformations of the whole data set (as in the self-affine case). This

approach while being more general resulted in a large number of extra degrees of

freedom and restrictions needed to be placed on mappings. Using this model Mazel

and Hayes (1992) show successful models of several data sequences.

C h a p t e r 4: I t erated Funct ion Systems and Shape Representat ion 76

4o5 Other Applications of IFSs

The main aim of this chapter has been to continue the detailed description of how

IFSs can be used for two-dimensional shape representation, and to survey some

of the approaches which have been considered. There are, however, several other

useful applications of IFSs which rely on solving corresponding inverse problems,

and some of these are now briefly discussed.

Barnsley (1988; 1993) promoted a scheme for encoding images by using what

he called a fractal transform. The compression ratios achieved for images encoded

using such a scheme are reported to be very favourable. Barnsley has founded a

company, Iterated Systems, that produces software for compression/decompression

(Georghiades and Jacobs 1992), but has not released details of the method used.

Jacquin (review of the technique in Jacquin 1992) was the first to publish a ful l ac

count of a method for fractal compression and a block based approach was adopted.

(This requires that the image be broken up into small blocks, and the discovery

of mappings which map blocks of different sizes onto each other.) Recent reviews

and improvements of this technique include those by Waite (1990), Fisher (1992),

Beaumont (1990), and Monro and Dudbridge (1992). The advantage of this fractal

based approach, over some other methods of image compression, is that the en

coding/decoding process has no need to refer to any external library. The image

instead being encoded using parts of itself. While the decoding of images is very

fast, the time taken to carry out the encoding appears to be the major drawback

of the approach. Another method for fractal based encoding of images has been

suggested by Hollatz (1991).

Sharp and While (1992) suggest a means of automatically recognising and clas

sifying fractally encoded images. They state "The aim of fractal recognition is to

take an unknown image and determine which, if any, of a library of fractals was

used in its generation" (Sharp and While 1992, p. 6). Each element of their library

is an IFS encoding for a shape. The approach presented uses an algorithm which

C h a p t e r 4 : I t e r a t e d F u n c t i o n S y s t e m s a n d S h a p e R e p r e s e n t a t i o n 7 7

repeatedly applies an IFS f r o m the l i b r a r y t;o an u n k n o w n image. T h e a l g o r i t h m is

described as one which a t t e m p t s t o sustain images ra ther t h a n generate t h e m . I f

the image is i den t i ca l to the a t t r a c t o r of t he I F S i t remains i n t a c t . However , i f the

image is ' d i s t a n t ' f r o m the a t t r a c t o r of the I F S then ins tead of be ing t r a n s f o r m e d

i n t o the a t t r a c t o r i t g r adua l ly disintegrates and even tua l ly disappears. F i n a l l y , i f

the image is ' s i m i l a r ' to the a t t r a c t o r of the I F S t hen the a l g o r i t h m refines the

image t o w a r d the a t t r a c to r . T h i s allows for t he recogni t ion of images i n the pres

ence of noise. A n i m p o r t a n t extens ion to the a l g o r i t h m al lows f o r the r ecogn i t i on

of displaced, r o t a t e d and scaled images. T h e approach is, however, l i m i t e d b y the

fact t h a t i t is necessary to app ly the a l g o r i t h m to each of t he encodings i n t he

l i b r a r y u n t i l one is f o u n d w h i c h does not d i s in tegra te . For a large l i b r a r y th is cou ld

be p r o h i b i t i v e l y t i m e consuming . I n a d d i t i o n , for a shape to be added to the l i

b r a ry i ts IFS encoding needs t o be f o u n d , a n d no a u t o m a t i c means of do ing th is is

presented, i.e., to add a shape, the inverse p r o b l e m f o r t h a t shape s t i l l needs t o be

solved.

W a t t (1993) suggests the use of IFSs fo r m o d e l l i n g in t e l l i gen t behaviour . T h e

behaviour of b io log ica l systems is o f t e n complex , b u t th is m a y i n p a r t be a t t r i b u t e d

t o d y n a m i c a l processes conta ined w i t h i n the sys tem. T h e behaviour of d y n a m i c a l

systems can appear to be very complex , b u t may be con t ro l l ed by s imple rules

(Gle ick 1988). W a t t demonstra tes how a generic so lu t ion to the Towers of H a n o i

p r o b l e m (see F i g u r e 4.3) can be represented by an I F S . T h e a t t r a c t o r of the I F S is

a pa th t h r o u g h the p rob lem ' s s tate space. F r o m the collage of mapp ings , the phys

ical procedure f o r so lv ing the Towers of H a n o i p r o b l e m can be i n f e r r ed , and the

u n d e r l y i n g p r i n c i p l e for general is ing the m e t h o d is described as l o o k i n g " fo r pat

terns i n behaviour w h i c h a l low a s imple set o f rules to describe appa ren t ly c o m p l e x

behaviour ." T h e m a j o r d i f f i c u l t y w h i c h arises is the discovery of a su i tab le collage

to describe a p a t h t h rough a p rob lem's s tate space, i.e., so lv ing the cor responding

inverse p r o b l e m .

C h a p t e r 4 : I t e r a t e d F u n c t i o n S y s t e m s a n d S h a p e R e p r e s e n t a t i o n 7 8

Initial State Goal State

Figure 4.3: T h e i n i t i a l and goal states for the Towers of Hano i p r o b l e m . T h e a i m

is to move a l l t he r ings f r o m one peg to another . T h e rules are t h a t o n l y one r i n g

can be m o v e d at a t i m e , a r i n g can o n l y be m o v e d when there are no rings on t o p

of i t , and no r i n g m a y be placed on a smal ler r i n g .

4-6 Summary

T h i s chapter has comple t ed the f o r m a l i s m necessary f o r the use of IFSs as a shape

representa t ion scheme. A subsymbol ic representa t ion can be adopted w h i c h con

sists of the real -valued components of the mapp ings of an I F S . M e t h o d s f o r gener

a t i n g the a t t r a c t o r of an I F S have been discussed, a n d the M P P a l g o r i t h m selected

f o r use in the exper iments of t he f o l l o w i n g chapter . T h e robustness p r o p e r t y of

IFSs demonstra tes t h a t there is a s t rong i n t e r a c t i o n between the subsymbol i c com

ponents . A comprehensive review of t he l i t e r a t u r e on I F S shape representa t ion has

been i n c l u d e d so t h a t the w o r k i n the nex t chapter can be placed i n the con tex t of

o ther work on the sub jec t .

Chapter

Evolutionary Algorithms and the

Inverse Problem

T h i s chapter is t he f i r s t of the e x p e r i m e n t a l chapters of th i s thesis, and explains

i n de t a i l how a genetic a l g o r i t h m (G A) and e v o l u t i o n a r y p r o g r a m m i n g (E P) can

be app l i ed to the inverse p r o b l e m for two-d imens iona l shapes. T h e G A a n d E P

presented are o f t e n considered to be t he i r s imple versions — an account of the

a l te rna t ives w h i c h have been suggested is b ey o n d the scope of th is thesis. T h r e e

h i l l - c l i m b i n g a l g o r i t h m s are also i n t r o d u c e d .

Solut ions to inverse prob lems are encoded subsymbo l i ca l l y (b ina ry s t r i n g for t he

G A and h i l l - c l i m b i n g a lgo r i t hms , and real-valued for E P) and this results i n s t rong

in te rac t ions occu r ing between blocks of components as wel l as between i n d i v i d u a l

components of the encodings. T h e G A , E P and h i l l - c l i m b i n g a lg o r i t h ms are app l i ed

t o several inverse p rob lems . Results presented show the success of EP , b u t i nd ica t e

t h a t the G A and the h i l l - c l imbe r s a l g o r i t h m s are not as successful. Reasons fo r

th is d i s p a r i t y are discussed (N e t t l e t o n and Gar ig l i ano 1994c, 1994d, 1994g).

C h a p t e r 5: E v o l u t i o n a r y A l g o r i t h m s a n d t h e I n v e r s e P r o b l e m 8 0

5 o l The Inverse Problem

As discussed in Sect ion 3.5 a shape can be represented as an I F S by choosing

c o n t r a c t i o n mappings such t h a t they f o r m a collage t h a t exac t ly covers the o r i g i n a l

shape. I n essence t h e p r o b l e m is symbo l i c w i t h t he shape be ing recreated f r o m

a co l lec t ion of smal le r copies of t ha t shape. T w o examples of collages, one fo r a

square, the other f o r a t r i ang le , are shown i n F i g u r e 5 .1 .

T h e ' smal ler copies ' w h i c h are used i n the cons t ruc t ion of a collage can, however,

be represented as c o n t r a c t i o n mappings and a real -valued subsymbol i c represen

t a t i o n adopted . T h e coeff icients of the mapp ings used in F i g u r e 5.1 are g iven i n

Table. 5.1 and are of the f o r m :

x \
Wi

y J Ci d{

\ („ \ x +
\ y J

where i e { 1 , 2 , . . . , n } . (5 .1)

F igu re 5 .1 : A square and a t r i ang le each of w h i c h is decomposed i n t o a collage

of smal ler copies of themselves.

w w 1
w 1

w w w
w

IFS(a) IFS(b)

C h a p t e r 5: E v o l u t i o n a r y A l g o r i t h m s a n d t h e I n v e r s e P r o b l e m 8 1

Tab le 5 .1 : T h e coeff icients of the c o n t r a c t i o n mapp ings w h i c h p roduce the

collages g iven i n F i g u r e 5.1

I F S (a) IFS (b)

i «t bi Ci di e,- Si en k Ci di e,- Si

1 0.5 0.0 0.0 0.5 -25 25 0.5 0.0 0.0 0.5 0 25

2 0.5 0.0 0.0 0.5 25 25 0.5 0.0 0.0 0.5 -25 -25

3 0.5 0.0 0.0 0.5 -25 -25 0.5 0.0 0.0 -0.5 0 -25

4 0.5 0.0 0.0 0.5 25 -25 0.5 0.0 0.0 0.5 25 -25

T h e p r o b l e m is now one of m a n i p u l a t i n g the subsymbol i c components i n order

to find a su i tab le so lu t ion . T h e f o l l o w i n g s i m p l i f y i n g assumptions are made:

1. N u m b e r of mapp ings f i x e d i n advance — the n u m b e r of mapp ings w h i c h

an I F S contains is f i x e d p r i o r to an a l g o r i t h m ' s r u n . F i x e d l e n g t h so lu t ion

encodings can be used, thus a l l owing fo r the s imple versions of the G A a n d

E P to be app l ied . M o r e sophis t ica ted versions of these a lgo r i t hm s exist w h i c h

a l low fo r v a r y i n g l e n g t h encodings, b u t these are not considered i n th i s thesis.

2. M a p p i n g s coeff icients i n n o n - t r i v i a l ranges — no knowledge o f the m a p p i n g

coeff ic ients is assumed except t h a t they l ie w i t h i n some n o n - t r i v i a l ranges.

(T h e cons t ra in ts der ived i n the f o l l o w i n g chapter are no t app l i ed , since, a l

t hough they considerably reduce the search space, they are not necessary

when c o m p a r i n g the pe r fo rmance of a l g o r i t h m s . F u r t h e r m o r e , i f t hey were

t o be app l i ed , t hen the G A wou ld requi re p r o b l e m specific operators to en

sure t h a t mapp ings p roduced as a resul t o f crossover a n d / o r m u t a t i o n are

con t r ac t ive . T h e ranges used ensure tha t i n the cases of the G A and the

h i l l - c l i m b e r s al l t he possible b ina ry s t r ings represent va l id solut ions .)

Even w i t h the above s imp l i f i c a t i ons the search spaces fo r the prob lems discussed

are very large, and h i g h l y complex . The re are t y p i c a l l y several o p t i m a l and m a n y

s u b o p t i m a l solut ions — see Section 5.1.4. T h e r ema inde r of th is sect ion discusses

C h a p t e r 5: E v o l u t i o n a r y A l g o r i t h m s a n d t h e I n v e r s e P r o b l e m 8 2

how E A s can be appl ied to inverse p rob lems f o r w h i c h a subsymbol ic representa t ion

has been adopted .

5.1.1 Environment

T h e e n v i r o n m e n t of an E A is the source of i n f o r m a t i o n on w h i c h the fi tness of

solut ions is evaluated. A n e n v i r o n m e n t f o r shape representa t ion m u s t i n theory be

able t o cope w i t h any shape and hence 7 i (R 2) w o u l d be sui table . For convenience,

how rever, shapes are shown on a c o m p u t e r screen and so th i s is t he e n v i r o n m e n t

used f o r the deve lopment of solut ions to the inverse p r o b l e m . M o r e speci f ica l ly a

257 x 257 g r i d is used on w h i c h the shape t o be encoded is p l o t t e d . T h e elements

of t he g r i d w h i c h are labe l led 1 are po in t s o f the shape, t he r e m a i n i n g elements

be ing labe l led 0.

G i v e n an a r b i t r a r y ta rge t shape (the shape w h i c h is to be encoded as an I F S)

a s imp le image processing a l g o r i t h m is used t o calcula te t he f o l l o w i n g i n f o r m a t i o n :

1. T h e n u m b e r of pixels of the shape.

2. T h e coordinates of the cen t ro id of the shape.

3. T h e m a x i m u m ex ten t of the shape a long the abscissa and o rd ina t e axis .

W i t h o u t loss of genera l i ty the target shape is t r ans la ted so tha t i t s cen t ro id lies

at t he centre of the 257 x 257 g r i d .

C h a p t e r 5: E v o l u t i o n a r y A l g o r i t h m s a n d t h e I n v e r s e P r o b l e m 8 3

5.1.2 Solution Representation

I n n a t u r a l e v o l u t i o n , genetic m a t e r i a l contains the i n f o r m a t i o n r equ i red to generate

an o rgan i sm (a l t hough i ts development depends i n par t on ex t e rna l e n v i r o n m e n t a l

cond i t ions) . These genes can be considered as the b u i l d i n g blocks necessary fo r

the cons t ruc t ion of an i n d i v i d u a l . I n a s i m i l a r way, the con t r ac t i on mappings of

an I F S are the b u i l d i n g blocks necessary fo r so lv ing an inverse p r o b l e m , and each

c o n t r a c t i o n m a p p i n g can be encoded as a s t r i n g o f numbers — th i s t hen becomes

the genetic m a t e r i a l of t he inverse p r o b l e m . I n order to ensure tha t t he E A s always

produce va l id solut ions , t he coeff icients of the c o n t r a c t i o n mapp ings (see E q u a t i o n

5.1) are cons t ra ined such t h a t , f o r a l l i:

- 0 . 7 0 7 < ai,bi,a,di < 0.707

- XMAX < e t < XMAX - YMAX < / , < YMAX (5.2)

where XMAX and YMAX are the m a x i m u m exten t o f the shape i n the x and

y d i rec t ions (Gi les 1990, pp . 146). T h e cons t ra in ts on c,, 6,, c, and d{ ensure t h a t

the m a p p i n g w i l l be con t rac t ive . T h e const ra in ts on e, and f i are de r ived f r o m

n o t i n g tha t once the o r i g i n a l has been con t rac ted i t should not be m o v e d by an

a m o u n t exceeding the d imensions of the box con ta in ing the o r i g i n a l shape. Such a

t r a n s f o r m a t i o n w o u l d p roduce an unsu i t ab le collage since some p o i n t o f the collage

wou ld l ie outs ide of the o r i g i n a l shape.

T h e constra ints de r ived i n the f o l l o w i n g chapter are not app l i ed due t o t h e p rob

lems w h i c h wou ld occur i n the i r app l i ca t ion to the G A . W i t h a f i x e d l e n g t h b i n a r y

representa t ion, and no sophis t ica ted crossover operator , t he G A cou ld produce i n

va l id solut ions (w i t h respect to the cons t ra in ts) w h i c h E P cou ld never produce .

A l t h o u g h i n v a l i d solut ions are easily penalised th is m i g h t bias a compar i son of the

two approaches i n favour of EP.

C h a p t e r 5: E v o l u t i o n a r y A l g o r i t h m s a n d t h e I n v e r s e P r o b l e m 8 4

5.1.3 Fitness Function

T h e q u a l i t y (f i tness) of possible solut ions to the inverse p r o b l e m relies on a q u a n t i

t a t i v e measure of how closely t w o shapes resemble each o ther , and can be assessed

w i t h a var ie ty of techniques (L e v y - V e h e l and Gagalowicz 1987; M u m f o r d 1987).

T w o fitness func t ions shal l be considered, b o t h of w h i c h use p o i n t coverage. T h e

f o l l o w i n g piece of pseudocode demonstra tes how p o i n t coverage between two shapes

is ca lcula ted . Each of the t w o shapes t o be compared are. represented by a 257 x

257 g r i d . T h e elements of the g r i d w h i c h are labe l led 1 are po in ts of t he shape, the

r e m a i n i n g elements be ing labe l led 0. I f two shapes are represented us ing the gr ids

shape[x][y] a n d image[x] [y] t hen the p o i n t coverage be tween t h e m is ca lcu la ted

us ing:

f i t n e s s := 0 ;
for x := 0 to 256 do
begin

fo r y := 0 to 256 do
begin

i f image[x][y]=l and shape[x][y]=l then
f i t n e s s := f i t n e s s + 1 ;

el s e i f image[x][y]=0 and shape[x][y]=0 then
f i t n e s s := f i t n e s s ;

e l s e
f i t n e s s := f i t n e s s - 1 ;

end ;
end ;

G i v e n a shape to be encoded, A . a n d an I F S {lo-i, W2, • • •, t hen the the t w o

f u n c t i o n s used to calculate the fitness of the I F S are:

1. A t t r a c t o r and p o i n t coverage — calcula te the p o i n t coverage between A and

the a t t r a c t o r of the I F S .

2. Colla.ge a n d po in t coverage — calcula te the p o i n t coverage between A and

U L i ^ (A) .

C h a p t e r 5: E v o l u t i o n a r y A l g o r i t h m s a n d t h e I n v e r s e P r o b l e m 8 5

T h e usual stocha.stic m e t h o d f o r genera t ing the a t t r a c t o r (Barns ley 1988, p .

91) is unsu i tab le since there is no t e r m i n a t i o n c r i t e r i o n . T h e a t t r a c t o r is, there

fore, generated using the d e t e r m i n i s t i c M P P a l g o r i t h m (M o n r o et al. 1990) — see

Section 4.2.3. T h e g r i d o n w h i c h the a t t r a c t o r is p l o t t e d is of a fixed size and i t is

possible t h a t the a t t r a c t o r contains some poin ts w h i c h l ie outs ide of the g r i d . W h e n

such po in t s are generated a pena l ty of 5 is sub t rac ted f r o m the cu r ren t fitness and

the p o i n t discarded. A m o r e c o m p l e x s t ruc tu re t h a n an ar ray c o u l d be used t o keep

t rack of the poin ts p l o t t e d , e.g.. a b i n a r y tree, b u t th is is m u c h slower to access

when checking to see i f a po in t has been already p l o t t e d and w o u l d considerably

slow the a l g o r i t h m ' s execu t ion . B y ensur ing tha t t he target shapes are s m a l l and

cen t ra l w i t h regards to the g r i d th i s p r o b l e m is m i n i m i s e d .

T h e above fitness f u n c t i o n s can resul t i n b o t h pos i t ive and negat ive values,

and as such are not me t r i c s . T h e o p t i m u m fitness value w i l l be the m a x i m u m

pos i t ive value a t t a inab le , and w i l l be equal to the n u m b e r of pixels of the shape

which is to be encoded. T h e m a i n advantage of us ing p o i n t coverage i n the fi tness

f u n c t i o n is speed. One disadvantage is i t s lack of sens i t iv i ty to shape s t ruc tu re .

O the r measures, such as the Hausdo r f f distance, m a y be used. Each of these have

the i r o w n advantages and disadvantages over p o i n t coverage. For example , the

Hausdor f f dis tance is m o r e sensit ive to shape s t ruc tu re , b u t i t s ca l cu la t ion involves

considerably greater c o m p u t a t i o n a l expense.

T h e n u m b e r of ch i ld ren t h a t a parent I F S can produce is d i r e c t l y r e l a t ed to i t s

fi tness: the fitter the parent the greater the p r o d u c t i o n . Once the r equ i red n u m

ber of c h i l d IFSs have been p roduced they e i ther 1) i m m e d i a t e l y become a parent

p o p u l a t i o n (G A) or 2) are combined w i t h t he i r parent p o p u l a t i o n , the wors t p rob

ab i l i s t i c a l l y cu l led and the remainder then become a parent p o p u l a t i o n (E P) . T h e

process of c h i l d p r o d u c t i o n is repeated, and i n th i s way subsequent generat ions

evolve t o w a r d o p t i m a l solut ions . T h e detai ls of the G A and E P used i n the exper

iments of this thesis are g iven i n Sections 5.2 and 5.3 respect ively, b u t before t h a t

the fitness landscape is b r i e f ly inves t iga ted .

C h a p t e r 5: E v o l u t i o n a r y A l g o r i t h m s a n d t h e I n v e r s e P r o b l e m 8 6

5.1.4 Cross-sect ions of the Search Space

T h e search spaces fo r the inverse p rob lems considered in th is chapter are very large

and complex . I n th is sect ion some cross-sections of the search space f o r t he S ierp in-

ski t r i ang le are shown. T h e coeff ic ients of an I F S f o r a Sierp inski t r i ang l e are g iven

i n Tab le 5.2. T h e I F S consists of three mapp ings , and hence 18 coeff ic ients . A l l

of these are f i x e d except f o r the t w o t r ans l a t i on components of t he t h i r d m a p p i n g :

these are each a l lowed t o take a value f r o m the set {—50, — 4 9 , . . . , 0 , . . . , 4 9 , 5 0 } .

Figures 5.2 and 5.3 show I F S fitnesses w h e n the a t t r a c t o r and p o i n t coverage, and

the collage and p o i n t coverage, respect ively, are used as the fitness f u n c t i o n s . T h e

o p t i m u m fitness lies at t he p o i n t (0 , 2 5) , b u t th is is no t a c t u a l l y p l o t t e d since i n

t e r p o l a t i o n of t he da ta was r equ i r ed t o a l low the p lo ts to be v iewed m o r e easily.

T h e i n t e r p o l a t i o n has also resul ted i n m u c h d e t a i l be ing smoo thed ou t , and m a n y

local o p t i m a are not v is ib le . T h e real search space has m a n y m o r e local o p t i m a

t h a n the figures suggest.

Table 5.2: Coeff ic ients of an I F S . N o t e a l l the values are f i x e d except fo r

those of p-3 and fa w h i c h are each a l lowed to take a. value f r o m the set

{—50, — 4 9 , . . . , 0 , . . . ,49 , 5 0 } . T h e Sierp inski t r i ang le used i n the fitness f u n c t i o n

is the a t t r a c t o r of the I F S for w h i c h X = 0 a n d Y = 25. Figures 5.2 and 5.3 show

I F S fitnesses, fo r a. range of X and Y values, when compared to the S ierp inski

t r i ang le .

i a, bi di 6{ /,
1 0.5 0 0 0.5 -25 -25

2 0.5 0 0 0.5 25 -25

3 0.5 0 0 0.5 X Y

C h a p t e r 5: E v o l u t i o n a r y A l g o r i t h m s a n d t h e I n v e r s e P r o b l e m 8 7

F igure 5.2: Cross sect ion of the search space for the S ierp inski t r i ang le

w i t h the fitness f u n c t i o n of at tra.ctor and p o i n t coverage. Six teen of the

eighteen coeff icients are fixed (a t the o p t i m a l) , the r e m a i n i n g t ransla

t i o n components of the 3 rd m a p p i n g correspond to the X and Y axis

(see Table 5.2). (N o t e t h a t due to i n t e r p o l a t i o n o f the d a t a some de ta i l

has been smoothed o u t .)

ooo
05
C-.

0
->,0

6o 7 0 0 0 A O

2 P
2i 0 0

o

C h a p t e r 5: E v o l u t i o n a r y A l g o r i t h m s a n d t h e I n v e r s e P r o b l e m 8 8

F igure 5.3: Gross sect ion of the search space fo r t he Sierpinski t r i ang le

w i t h the fi tness f u n c t i o n of collage and p o i n t coverage. Sixteen of the

eighteen coeff ic ients are f i x e d (at the o p t i m a l) , t he r e m a i n i n g t ransla

t i o n components of the 3 rd m a p p i n g correspond t o the X and Y axis

(see Table 5.2). (N o t e t h a t due to i n t e r p o l a t i o n of the d a t a some d e t a i l

has been smoo thed o u t .)

,000
in 'a as 0 0

0 0 6° 0
A O

-so
0

o
ô

C h a p t e r 5: E v o l u t i o n a r y A l g o r i t h m s a n d t h e I n v e r s e P r o b l e m 8 9

502 Outline of a GA

I n a p p l y i n g a G A to the inverse p r o b l e m the subsymbol i c representa t ion adopted is

t h a t of a b i n a r y s t r i n g (H o l l a n d 1992, p . 7 1 ; Go ldbe rg 1989, p . 80) . T h e coeff ic ients

of the con t r ac t i on mappings are conver ted t o b i n a r y str ings and are concatenated

together t o f o r m one s t r i n g . Each coeff ic ient is represented by a b i n a r y s t r i n g of

l eng th e ight , thus each of the coeff icients can take one of 2 8 = 256 values. T h e size

of the search space fo r an IFS consis t ing of n mapp ings is therefore 2 8 x 6 x n — for

n = 3 there are m 2.23 X 10' 1 3 poss ib i l i t ies .

W h e n selecting solut ions f o r m a t i n g , a ' r ou l e t t e whee l ' t y p e of s amp l ing (G o l d

berg 1989, p . 11) is used i n order t o ensure t h a t be t t e r solut ions are more l i k e l y

to be chosen. T h i s proceeds by f i r s t eva lua t ing the fi tness of each so lu t i on i n a

genera t ion (us ing e i ther the a t t r a c t o r or collage and po in t coverage). These values

are then rescaled l inea r ly i n the range 10 t o 100, such t h a t the so lu t ion w i t h t he

wors t fitness has the value 10 a n d the best 100. T h e rescaling is necessary t o re

move negat ive fitness values, and the range was chosen to he lp m a i n t a i n so lu t ion

d ivers i ty . Sections of the rou le t t e wheel are then a l loca ted according t o th i s scaled

value. T h i s ensures t h a t w h e n the rou le t t e wheel is p r o b a b i l i s t i c a l l y spun, the fitter

the so lu t ion the more l i k e l y i t is to be selected.

Parents are combined using a t w o - p o i n t crossover opera tor (see F i g u r e 5.4) w i t h

the p r o b a b i l i t y of crossover pc = 0.6. W h e n app l i ed to a p o i n t i n the b i n a r y s t r i n g ,

the m u t a t i o n opera tor changes the value at t ha t p o i n t , i.e., 1 to 0, or 0 to 1.

I n order not t o be too d i s r u p t i v e , the p r o b a b i l i t y of m u t a t i o n was kep t low w i t h

Pro - 0.0005.

C h a p t e r 5: E v o l u t i o n a r y A l g o r i t h m s a n d t h e I n v e r s e P r o b l e m 9 0

Figure 5.4: A n example of how t w o - p o i n t crossover combines the b i

nary s tr ings of t w o parents t o give two ch i l d r en . T h e t w o endpoin t s of

the section of b i n a r y s t r i n g t h a t is exchanged are chosen u n i f o r m l y at

r a n d o m .

parent 1 1 1 0 1 0 1 0 0 1

parent 2 1 0 1 1 0 0 1 0 1

sect ion exchanged * * * *

ch i ld 1 1 1 1 1 0 0 0 0 1

c h i l d 2 1 0 0 1 0 1 1 0 1

T h e G A used is s u m m a r i s e d i n F igu re 5.5 and is o f t e n k n o w n as the S imp le

Genet ic A l g o r i t h m . M a n y var ia t ions on th is a l g o r i t h m have been suggested (see,

e.g., Go ldbe rg 1989; Beasley et al. 1993a, 1993b).

C h a p t e r 5: E v o l u t i o n a r y A l g o r i t h m s a n d t h e I n v e r s e P r o b l e m 91

Figu re 5.5: O u t l i n e of the genetic a l g o r i t h m used i n the exper iments of th i s

chapter a n d those of Chapters 7 a n d 8.

1. R a n d o m l y in i t i a l i s e a parent p o p u l a t i o n of b i n a r y s t r ings .

2. Eva lua te each m e m b e r o f the parent p o p u l a t i o n .

3. Select a so lu t ion f r o m the parent p o p u l a t i o n w i t h p r o b a b i l i t y i n p r o p o r t i o n

to fitness using a rou l e t t e wheel approach.

4. A p p l y the crossover opera tor w i t h a. p r o b a b i l i t y pc. I f crossover is n o t per

formed then place the so lu t i on i n t o the c h i l d genera t ion . Otherwise :

(a) Select a so lu t ion f r o m the parent p o p u l a t i o n w i t h u n i f o r m p r o b a b i l i t y .

(b) Select at r a n d o m t w o crossover poin ts t h a t are w i t h i n the b i n a r y s t r i n g .

(c) Us ing t w o - p o i n t crossover recombine the solut ions (sp l ic ing the respec

t i v e sections f r o m each s t r i n g i n t o each o the r) and place t h e m b o t h

i n t o the c h i l d genera t ion.

5. I f the n u m b e r of solut ions to be a l lowed i n the c h i l d genera t ion has not been

reached then go to step 3.

6. W i t h a p r o b a b i l i t y pm. m u t a t e each element of t he c h i l d solut ions .

7. Replace the parent p o p u l a t i o n w i t h the c h i l d p o p u l a t i o n . T h i s completes a

genera t ion.

8. I f the t e r m i n a t i o n c r i t e r i o n is not m e t then go to step 2.

C h a p t e r 5: E v o l u t i o n a r y A l g o r i t h m s a n d t h e I n v e r s e P r o b l e m 92

I n a p p l y i n g E P to the inverse p r o b l e m the subsymbol ic representa t ion adop ted is

t h a t w h i c h is most ' n a t u r a l . ' T h e coeff ic ients are. therefore , s tored as real numbers

(six dec imal places), and are cons t ra ined to the ranges g iven by Equa t ions 5.2. A

c h i l d is p roduced f r o m a parent by m u t a t i n g the coeff icients of t he I F S (for a l l i)

according to :

ai = a, + ^ (0 , 1) bi = hi + o" iA r (0 ,1)

d = a + <7iAr(0,1) di=di + aiN(Q. 1)

e, = ei + a2N(0,1) /,- = /,• + < t 2 J V (0 , 1)

where o\ and oi are s t andard dev ia t ions der ived f r o m the fitness of the paren t

(see Section 5.5) and A r (0 , l) is a s t anda rd n o r m a l r a n d o m variable . R e l a t i n g the

severi ty of the m u t a t i o n t o the fitness o f the so lu t ion ensures t h a t fitter parents

tire less l i k e l y t o be m u t a t e d to the same degree as less fit parents. I f as the resul t

of m u t a t i o n the constra ints of Equa t ions 5.2 are no t sat isf ied, the values t h a t are

ou t of the feasible range are set t o the nearest a l lowable values.

T h e E P a l g o r i t h m used is summar i sed i n F igu re 5.6. The re are m a n y var ia t ions

of the above a l g o r i t h m i n c l u d i n g , for example , m e t a - E P (Fogel 1992a).

C h a p t e r 5: Evo lu t ionary Algor i thms and the Inverse P r o b l e m 93

Figure 5.6: Outline of the evolutionary programming algorithm used in the

experiments of this chapter and those of Chapters 7 and 8.

1. Randomly initialise a parent population of solutions.

2. Evaluate each member of the parent population.

3. Mutate each member of the parent population, by an amount related to its

fitness, to generate a, member of the child population.

4. Evaluate each member of the child population.

5. For each member of the child and parent populations:

(a) Select at random a number, T O U R N , of solutions f rom the parent and

child populations.

(b) Count the number of these solutions whose fitness is less than or equal

to that of the current selected solution. This number is the score for

the selected solution.

6. Rank the scores of the solutions.

7. Select the solutions which rank in the top half of the list and replace the

parent population with these solutions. This completes a generation.

8. I f the termination criterion is not met then go to step 3.

C h a p t e r 5: Evo lu t ionary Algor i thms and the Inverse P r o b l e m 94

504 H i l l Climbing '

The performances of the EAs are to be compared to those of several hi l l-cl imbing

algorithms. Three commonly used hil l-cl imbing schemes are considered (Forrest

and Mitchel l 1992): steepest-ascent hi l l -cl imbing, next-ascent hil l-cl imbing and

random-mutation hil l-climbing. These operate on solutions which are encoded

subsymbolically as binary strings, and are implemented as follows:

Steepest-ascent hi l l -c l imbing (S A H C)

1. Choose a string at random. Call the string current-best.

2. Systematically mutate each bit in the string f rom left to right, recording the

fitnesses of the resulting strings.

3. I f any of the resulting strings give a fitness increase, then set current-best to

the resulting string giving the highest fitness increase.

4. I f there is no fitness increase, then return the value of current-best. Otherwise

go to step 2.

Next-ascent hi l l -c l imbing (N A H C)

1. Choose a string at random. Call the string current-best.

2. Mutate single bits in the string f rom left to right, recording the fitnesses of

the resulting strings. I f any increase in fitness is found, then set current-best

to that increased-fitness string. Go to step 2 wi th the new current-best, but

continue mutat ing the new string starting after the bit position at which the

previous increase was found.

3. I f there is no fitness increase then return the value of current-best. Otherwise

go to step 2.

C h a p t e r 5: Evo lut ionary Algor i thms and the Inverse P r o b l e m 95

Random-muta t ion hi l l -c l imbing (R M H C)

1. Choose a string at random. Call the string current-best.

2. Choose a position at random to mutate. I f the mutat ion leads to an equal or

higher fitness then set current-best to the resulting string.

3. I f the set number of funct ion evaluations have been performed return the

value of cuwent-best. Otherwise go to step 2.

5.5 Results

This section presents the results of applying a GA, EP and three hil l-cl imbing

algorithms to several inverse problems. Three target shapes were used: a solid

triangle, a Sierpinski triangle, and a Dragon fractal . IFSs for generating these

shapes are given in Table 5.3 and the shapes themselves are shown in Figure 5.7.

In the case of the triangle and Sierpinski triangle the number of mappings used

was set at three, and for the Dragon fractal two mappings were used (since there

are known theoretical solutions for these values).

C h a p t e r 5: Evo lu t ionary Algor i thms and the Inverse P r o b l e m 96

Table 5.3: The IFSs used to generate the target shapes which are shown in

Figure 5.7. The triangle is generated w i t h four mappings rather than the

obvious three, because the M P P introduced some small errors when plot t ing

the at tract or of the three mapping IPS which was in i t ia l ly considered.

Triangle

i cii bi Ci d{ e; f i

1 0.5 0 0 0.5 -25 -25

2 0.5 0 0 0.5 25 -25

3 0.5 0 0 -0.5 0 -25

4 0.5 0 0 0.5 0 25

Sierpinski Triangle

i a, bj c, di e,- f i

1 0.5 0 0 0.5 -25 -25

2 0.5 0 0 0.5 25 -25

3 0.5 0 0 0.5 0 25

Dragon fractal

i fli bi Ci di &i f i

1 0.59 -0.37 0.37 0.59 30 0

2 0.5 0 0 0.5 -30 0

C h a p t e r 5: E v o l u t i o n a r y Algor i thms and the Inverse P r o b l e m 97

Figure 5.7: The attractors of the IFSs given in Table 5.3. These are the target

shapes used in the experiments of this chapter.

Triangle Sierpinski triangle Dragon fractal

The GA and EP used are those given in Sections 5.2 and 5.3 respectively. For

both the GA and EP a population of 100 parents was used, and they were executed

over 100 generations. For EP, a tournament size of five was used, and the following

formulae were used to set the standard deviations:

val = (PIX - fit)/PIX

o\ = \Jval/500 a-i — y/val x 5

where PIX is the number of pixels of the target shape and fit is the fitness of

an IFS. A cut-off for ax of 0.1 and for cr2 of 5 was used to prevent large standard

deviations. These cut-off values allow for large amounts of mutat ion of shapes

that have extremely poor fitness, while l imi t ing the cha.nce of out of range values

occurring as a result of the mutat ion.

For each target shape and each fitness function, 31 trials of the GA, EP and

the hil l-climbing algorithms were carried out. Each pair of trials of the GA and

EP had the same randomly generated ini t ia l population (i.e., 31 different in i t ia l

C h a p t e r 5: E v o l u t i o n a r y Algor i thms and the Inverse P r o b l e m 98

populations were used) and each of hil l-climbing algorithms started wi th the. same

randomly generated binary string (i.e., 31 different starting strings were used).

The fitness of the best solution found in each of the runs is shown in Tables 5.4 —

5.9. The mean and standard deviation of each set of results is also given. In the

case of the GA and EP the generation at which the best solution was discovered is

shown in parenthesis.

The results for the median t r ia l of the GA and EP are shown in Figures 5.8,

5.9, 5.14, 5.15, 5.20 and 5.21 (attractor and point coverage) and Figures 5.11, 5.12,

5.17, 5.18, 5.23 and 5.24 (collage and point coverage). In Figures 5.8, 5.11, 5.14,

5.17, 5.20 and 5.23, a sequence of the best a,ttractors f rom various generations is

shown. The Figures 5.9, 5.12, 5.15, 5.18, 5.21 and 5.24 each show the online and

offline performance of the median run of the GA and EP. The offline performance

is the average fitness of all of the IFSs in a particular generation, while the online

performance is the average fitness of all IFSs that have been generated up to a

certain generation. Figures 5.10, 5.13, 5.16, 5.19, 5.22 and 5.25 show the best

solutions found for each taxget shape when using the GA, EP and the hil l-cl imbing

algorithms for each of the fitness functions used.

Table 5.10 contains the values of the test statistics which were used in compar

ing the performance of the algorithms, for all combinations of the target shapes

and fitness functions considered. These values were obtained by carrying out a

hypothesis test for two population means w i t h the nul l hypothesis that the means

are equal. The samples were assumed to be independent and normally distributed.

The variances of the two samples were not assumed to be equal and so a Srnith-

Satterthwaite modified one tailed /-test was used (Weiss and Hassett 1991, p. 504)

— this is used in all further pairwise comparisons in this thesis. The number of

degrees of freedom are the values in Table 5.10 which are in parenthesis.

C h a p t e r 5: Evo lu t ionary Algor i thms and the Inverse P r o b l e m 99

The results of the trials conducted showed that EP outperformed the GA, and

all of the hil l-cl imbing algorithms, for each of the target shapes considered wi th

both fitness functions. I n all of these cases the results were statistically significant

(P < 0.001).

A comparison of the performance of the GA and the hill-climbing algorithms

wi th the attractor and point coverage as the fitness function showed mixed results.

For the Dragon fractal the GA outperformed all of the hil l-climbing algorithms,

but w i t h the Sierpinski Triangle all of the hill-climbers outperformed the GA. I n

each of these cases the observed difference was statistically significant (P < 0.05).

Results for the triangle were varied; the GA outperformed N A H C (P < 0.05) and

R M H C (P < 0.1), but SAHC outperformed the GA (P < 0.1).

W i t h the collage and point coverage as the fitness function mixed results were

again achieved. For the Dragon fractal the GA outperformed all of the hil l -cl imbing

algorithms, although only the comparison w i t h SAHC was statistically significant

(P < 0.05). W i t h the Sierpinski Triangle two of the three hill-climbers outper

formed the GA, but wi th the triangle all of the hill-climbers performed better

(only the comparison wi th the SAHC was statistically significant).

The observed differences in the performance of the hil l-cl imbing algorithms were

not statistically significant (P > 0.05), except in the case of the triangle wi th the

attractor and point coverage as the fitness funct ion. In this case SAHC significantly

outperformed both N A H C (P < 0.01) and R M H C (P < 0.05).

C h a p t e r 5: E v o l u t i o n a r y Algor i thms and the Inverse P r o b l e m 100

Table 5.4: The best solutions found by each of the search algorithms w i t h a triangle

as the target sha,pe. The at tractor and point coverage was used as the fitness

function. Each algorithm was run 31 times and in the case of the GA and EP

the generation at which the best solution was found is shown in parenthesis. The

fitness of the best solution found by each algori thm is shown in bold.

Algor i thm EP GA SAHC N A H C R M H C

4574 (89) 3190 (96) 3570 3204 1602
4675 (78) 2480 (97) 2732 2077 2489
4584 (87) 3524 (77) 1781 2801 2606
4045 (99) 2625 (98) 3375 2508 3862
4751 (87) 3237 (75) 2564 2514 3503
4723 (91) 1991 (82) 2816 1324 2603
4787 (98) 2260 (96) 2746 2831 3152
4546 (95) 2245 (97) 1506 848 319
4250 (91) 3042 (69) 3823 1388 3433
4646 (94) 2876 (65) 3192 2859 2754
4068 (93) 3633 (62) 3036 2476 2077
4544 (100) 2928 (84) 3110 2788 3101
4273 (80) 2792 (99) 1803 436 2794
4660 (96) 2412 (22) 2806 2237 2696

Fitness of best 4564 (98) 2760 (100) 956 -439 166
solution found 4062 (100) 2037 (88) 3080 1963 2185

(Op t imum = 5101) 3709 (100) 2819 (82) 2854 2614 2797
4735 (96) 2308 (47) 4155 2338 3868
4271 (99) 3320 (80) 3425 2698 2318
4793 (82) 2801 (93) 2782 2068 1724
3855 (92) 2678 (100) 3382 3307 2473
4214 (95) 2551 (94) 3037 2714 2768
3789 (99) 2349 (100) 4112 1726 1972
4182 (100) 3564 (79) 2507 2446 2313

4808 (95) 1697 (83) 2558 2489 3400
4706 (98) 2916 (81) 2957 1590 2800
4612 (98) 2202 (48) 3355 3122 2466
4608 (95) 2951 (95) 3063 2157 3500
4427 (100) 2532 (85) 2760 870 -14
3982 (92) 2069 (96) 3217 1130 1864
4747 (98) 3046 (100) 3142 1214 1268

Mean (to 1 d.p.) 4425.5 2704.4 2909.7 2074.1 2414.8
SD (to 2 d.p.) 328.66 487.64 69.1.28 878.51 981.80

C h a p t e r 5: Evo lu t ionary Algor i thms and the Inverse P r o b l e m 101

Figure 5.8: A sequence of attractors f rom the median tr ial of the GA and EP wi th

a triangle as the target shape. The attractor and point coverage was used as the

fitness function. The attractors shown are those of the best solutions in generations

0, 5, 10. 20. 30, 40, 60, 80 and 100 (top left to bottom right) .

GA

*
1 * *

EP

* k
A • A

C h a p t e r 5: Evo lut ionary Algor i thms and the Inverse P r o b l e m 102

Figure 5.9: Online and offline performance for the median t r ia l of the GA and EP

wi th a triangle as the target shape. The attractor and point coverage was used as

the fitness funct ion.

Atiractor and Point Coverage
fitness x 10̂

5.00
1 1 1 1 1 1 optimal

5.00 EP offline

4.00 - - EP online
GA offline

3.00 GA online

2.00 -
1.00

0.00

-1.00

-2.00

-3.00

-4.00 — i /

* §

*' ' w

/ A A / , - " " " "
r ^ —

-5.00 • t

-6.00
i> - i' —

1 1 1 1 1 1 generation
0.00 20.00 40.00 60.00 80.00 100.00

generation

C h a p t e r 5: E v o l u t i o n a r y Algor i thms and the Inverse P r o b l e m 103

Figure 5.10: Attractors of the best IFSs found when using each of the search

algorithms wi th a triangle as the target shape. The attractor and point coverage

was used as the fitness funct ion.

G A EP

SAHC N A H C R M H C

C h a p t e r 5: E v o l u t i o n a r y Algor i thms and the Inverse P r o b l e m 104

Table 5.5: The best solutions found by each of the search algorithms w i t h a triangle

as the target shape. The collage and point coverage was used as the fitness function.

Each algorithm was run 31 times and in the case of the GA and EP the generation

at which the best solution was found is shown in parenthesis. The fitness of the

best solution found by each algorithm is shown in bold.

Algor i thm EP GA SAHC N A H C R M H C
5010 (100) 2982 (98) 3767 3704 3020
4786 (100) 3331 (81) 3923 4157 4503
4967 (95) 3518 (89) 3229 2621 4497
4594 (100) 3355 (66) 4456 4213 4166
4910 (98) 3802 (94) 3931 4241 4515
4842 (98) 3611 (55) 4687 3834 2808
4864 (99) 2993 (97) 4084 3830 3743
4854 (92) 3014 (56) 4537 3941 3542
4377 (96) 3798 (81) 4545 3422 3264
4890 (99) 3701 (38) 3900 2538 2463
4858 (91) 2766 (98) 1780 2926 3965
4742 (85) 3889 (98) 3476 3456 3546
4848 (100) 3497 (46) 4444 4418 3531
4840 (94) 3329 (99) 3956 3115 3385

Fitness of best 4872 (98) 3212 (98) 3991 4097 4081
solution found 4587 (94) 2990 (93) 3966 4199 3384

(Opt imum = 5101) 4806 (99) 3709 (82) 3803 3666 3377
4861 (98) 3597 (99) 4636 4606 3887
4947 (83) 3535 (100) 3551 3688 2706
4960 (87) 3342 (97) 4188 3747 3486
4626 (100) 3282 (93) 3873 2972 4404
4641 (95) 3579 (96) 2887 3677 3111
4290 (95) 4254 (82) 2337 2264 2061
4722 (99) 2691 (95) 2715 2212 3403
4874 (87) 3263 (64) 3851 2926 4609
4756 (83) 3623 (91) 4159 3936 3807
4620 (85) 3351 (91) 4109 4555 2205
4830 (99) 3762 (96) 4117 4192 4103
4601 (94) 3382 (90) 3150 1137 3210
4747 (100) 3554 (83) 3227 4118 3731
4735 (96) 4014 (98) 4031 4357 4390

Mean (to 1 d.p.) 4769.6 3442.8 3784.1 3573.1 3577.5
SD (to 2 d.p.) 164.83 356.10 674.43 802.23 680.95

C h a p t e r 5: Evo lu t ionary Algor i thms and the Inverse P r o b l e m 105

Figure 5.11: A sequence of attractors f rom the median tr ial of the GA and EP

w i t h a triangle as the target shape. The collage and point coverage was used as the

fitness funct ion. The attractors shown are those of the best solutions i n generations

0, 5, 10, 20, 30, 40, 60, 80 and 100 (top left to bot tom right) .

GA

4 4

EP

/

•4

A

C h a p t e r 5: Evo lu t ionary Algor i thms and the Inverse P r o b l e m 106

Figure 5.12: Online and offline performance for the median trial of the GA and EP

wi th a triangle as the target shape. The collage and point coverage was used as

the fitness function.

Coinage audi Poipl Coverage
fitness x ltP

5.00

4.00

3.00

2.00

1.00

0.00

-1.00

-2.00

-3.00

-4.00

/ '< /

rs
_ L

optimal
EPofflme"
EP online
GA offline
GA online

0.00 20.00 40.00 60.00 80.00 100.00
generation

C h a p t e r 5: Evo lu t ionary Algor i thms and the Inverse P r o b l e m 107

Figure 5.13: Attractors of the best IFSs found when using each of the search

algorithms wi th a triangle as the target shape. The collage and point coverage was

used as the fitness funct ion.

GA EP

SAHC N A H C R M H C

C h a p t e r 5: Evo lu t ionary Algor i thms and the Inverse P r o b l e m 108

Table 5.6: The best solutions found by each of the search algorithms w i t h a Sierpin

ski triangle as the target shape. The attractor and point coverage was used as the

fitness funct ion. Each algorithm was run 31 times and in the case of the GA and

EP the generation at which the best solution was found is shown in parenthesis.

The fitness of the best solution found by each algorithm is shown in bold.

Algor i thm EP GA SAHC N A H C R M H C

-1285 (98) -1734 (98) -2028 -2259 -1958
-1383 (95) -2058 (43) -1621 -1755 -1876
-1427 (98) -2032 (99) -1953 -1627 -2059
-1619 (94) -1980 (33) -2149 -1198 -2161
-1206 (97) -1960 (86) -2219 -2079 -1925
-1320 (85) -2097 (20) -1646 -2044 -1764
-1069 (87) -2087 (100) -1939 -1917 -1838
-1294 (76) -2110 (19) -2124 -1933 -1970
-1324 (78) -2062 (56) -2162 -2255 -2247
-1653 (96) -2003 (75) -1511 -1882 -1739
-1292 (99) -2036 (16) -2074 -2037 -1981
-790 (99) -2078 (25) -1941 -1795 -1561
-1415 (94) -2058 (82) -2151 -1762 -1947
-1164 (83) -1841 (100) -2048 -1842 -2162

Fitness of best -1232 (86) -1991 (74) -2298 -1685 -1761
solution found -1159 (72) -2147 (100) -1553 -2106 -2273

(Opt imum = 2411) -1436 (98) -2188 (6) -1971 -1905 -1659
-1400 (90) -2063 (94) -1732 -1783 -1617
-1280 (95) -2020 (91) -1819 -1823 -1805
-1462 (97) -2049 (96) -2015 -2250 -1562

-997 (74) -2185 (1) -1938 -2424 -2013
-1615 (95) -2047 (96) -2264 -1804 -2247
-1005 (96) -2091 (96) -1244 -2118 -2018
-1673 (50) -2084 (83) -1932 -2364 -1758
-1178 (72) -2089 (99) -2000 -1656 -1797
-1381 (41) -2132 (5) -1240 -1602 -1819
-1660 (93) -2128 (32) -1727 -2129 -2232
-1588 (87) -1768 (100) -1526 -2015 -1664
-1414 (97) -2179 (100) -1778 -2220 -1886
-1071 (75) -2055 (98) -1872 -1822 -1527
-1422 (85) -2053 (93) -2027 -2322 -2051

Mean (to 1 d.p.)
SD (to 2 d.p.)

-1329.5
215.17

-2045.3
105.10

-1887.2
274.05

-1948.8
267.96

-1899.3
215.73

Chapter 5: Evolutionary Algorithms and the Inverse Problem 109

Figure 5.14: A sequence of attractors from the median trial of the GA and EP with

a Sierpinski triangle as the target shape. The attractor and point coverage was

used as the fitness function. The attractors shown are those of the best solutions

in generations 0, 5, 10. 20, 30, 40, 60, 80 and 100 (top left to bottom right).

GA

V

U A

f
A

EP

<

Chapter 5: Evolutionary Algorithms and the Inverse Problem 110

Figure 5.15: Online and offline performance for the median trial of the GA and EP

with a Sierpinski triangle as the target shape. The at tractor and point coverage

was used as the fitness function.

Attractor and Point Coverage
fitness x 10̂

2.50 1 1 1 1 1 1 oplimal 2.50
EP offline

2.00 GA offline

1.50 - EP online

1.00 - GA online

0.50

0.00 -
-0.50 - -

-1.00 -
-1.50 -
-2.00 -
-2.50

-3.00

-3.50

•i
-4.00

•i
-

-4.50 - i

i
i i i i i -5.00

- i

i
i i i i i 1 generation

0.00 20.00 40.00 60.00 80.00 100.00
generation

Chapter 5: Evolutionary Algorithms and the Inverse Problem 111

Figure 5.16: Attractors of the best IFSs found when using each of the search

algorithms with a Sierpinski triangle as the target shape. The at tractor and point

coverage was used as the fitness function.

GA EP

SAHC NAHC RMIIC

Chapter 5: Evolutionary Algorithms and the Inverse Problem 112

Table 5.7: The best solutions found by each of the search algorithms with a Sier-

pinski triangle as the target shape. The collage and point coverage was used as the

fitness function. Each algorithm was run 31 times and in the case of the GA and

EP the generation at which the best solution was found is shown in parenthesis.

The fitness of the best solution found by each algorithm is shown in bold.

Algorithm EP GA SAHC NAHC RMHC
-1082 (90) -1473 (93) -1781 -1829 -1657
-851 (66) -1251 (99) -1127 -1068 -745

-1087 (100) -1620 (97) -1562 -1331 -927
-942 (39) -1218 (99) -970 -1156 -907

-1187 (59) -1502 (99) -1431 -1555 -1587
-1072 (94) -1090 (85) -1293 -1054 -1366
-1131 (79) -1568 (95) -890 -1476 -1657
-1097 (100) -1187 (90) -1149 -1476 -1974
-1009 (100) -1187 (83) -1456 -1350 -1735
-1364 (96) -1294 (92) -1321 -1677 -1664
-840 (67) -1426 (94) -1658 -1571 -1921
-907 (65) -1525 (96) -1783 -1127 -1715

-1032 (86) -1660 (46) -1246 -1436 -1413
-1039 (47) -1324 (98) -1221 -1100 -1618

Fitness of best -819 (100) -1362 (100) -1127 -988 -395
solution found -1015 (85) -1504 (87) -1026 -1698 -1731

(Optimum =2411) -1137 (98) -1659 (3) -1440 -1804 -786
-929 (68) -1763 (95) -1280 -929 -1554

-1094 (79) -1433 (98) -1395 -1465 -1509
-1074 (84) -1403 (45) -1400 -1839 -1591
-1066 (60) -1402 (77) -1414 -996 -1446
-1264 (49) -1394 (90) -1609 -1559 -1810
-970 (90) -1234 (82) -1192 -1508 -1518
-984 (50) -1277 (100) -856 -1488 -1670

-1421 (87) -1185 (96) -1633 -1595 -11.85
-1174 (63) -1037 (100) -659 -1659 -507
-1153 (84) -1429 (81) -1862 -777 -1064
-1111 (71) -1460 (96) -1567 -1212 -1208
-911 (88) -1437 (83) -1349 -1370 -1302

-1182 (96) -1324 (81) -1369 -1369 -1336
-880 (55) -1336 (96) -1222 -1525 -1231

Mean (to 1 d.p.) -1058.8 -1385.9 -1331.9 -1386.7 -1378.4
SD (to 2 d.p.) 143.02 171.07 282.51 281.49 401.69

Chapter 5: Evolutionary Algorithms and the Inverse Problem 113

Figure 5.17: A sequence of at tractors from the median trial of the GA and EP

with a Sierpinski triangle as the target shape. The collage and point coverage was

used as the fitness function. The attractors shown are those of the best solutions

in generations 0, 5, 10, 20, 30, 40, 60, 80 and 100 (top left to bottom right).

GA

V

r r
—-r

EP

/
A

/
\

Chapter 5: Evolutionary Algorithms and the Inverse Problem 114

Figure 5.18: Online and offline performance for the median trial of the GA and EP
with a Sierpinski triangle as the target shape. The collage and point coverage was
used as the fitness function.

Collage aid Point Coverage
o

fitness x 10-1

2.50
1 1 1 1 1 1 optimal

EP offline

2.00

1.50

EP online
2.00

1.50 -

GA offline
GA online

1.00 -
0.50 - -

0.00

-0.50 -

-1.00 - -

-1.50

-2.00

-2.50

-3.00
I S

- ;
: ii s

-3.50 - 1 1 1 1 1 1 - generation -3.50
0.00 20.00 40.00 60.00 80.00 100.00

generation

Chapter 5: Evolutionary Algorithms and the Inverse Problem 115

Figure 5.19: Attractors of the best IFSs found when using each of the search

algorithms with a Sicrpinski triangle as the target shape. The collage and point

coverage was used as the fitness function.

GA EP

1?

SAHC NAHC R.MHC

Chapter 5: Evolutionary Algorithms and the Inverse Problem 116

Table 5.8: The best solutions found by each of the search algorithms with a Dragon

fractal as the target shape. The attractor and point coverage was used as the fitness

function. Each algorithm was run 31 times and in the case of the GA and EP the

generation at which the best solution was found is shown in parenthesis. The fitness

of the best solution found by each algorithm is shown in bold.

Algorithm EP GA SAHC NAHC RMHC
4829 (93) 1043 (49) 854 100 1350
3485 (84) 525 (40) -134 199 -3655
2502 (86) 1135 (24) -458 -124 -352
2667 (77) 817 (73) -621 -1640 382
2229 (97) 702 (97) 1620 2052 -690
2405 (67) 932 (53) 1001 1712 238
3172 (95) 1420 (100) -33 2843 906
4567 (88) 1281 (90) -4504 -631 -2525
2584 (95) 1138 (74) -825 2285 419
4472 (100) 876 (97) 1677 1606 -1599
2597 (95) 993 (62) 1065 1952 494
3338 (98) 915 (61) 249 63 1504
2656 (95) 2178 (59) -689 506 949
2710 (72) 1467 (57) 1210 657 2685

Fitness of best 2683 (91) 542 (39) -444 778 276
solution found 2492 (78) 990 (14) -224 -1609 95

(Optimum = 6726) 2834 (88) 2731 (63) 1300 -1521 701
2752 (90) 1137 (23) -1036 -763 -388
2820 (81) -849 (40) 284 249 925
2694 (82) 362 (68) 1298 600 -1391
3701 (94) 1949 (67) 719 1223 913
4707 (91) 1253 (65) 656 -660 -591
2674 (94) 200 (15) 1706 536 -742
2759 (53) 2636 (68) 1227 1528 -613
3522 (90) 996 (31) 1754 795 447
2220 (61) 592 (97) 1658 725 254
3869 (94) 2576 (81) 37 366 2280
4046 (91) 1019 (26) 3256 1781 157
2532 (82) 218 (67) 301 338 667
2762 (95) 1540 (97) 1731 1047 1974
4597 (97) -4 (95) 436 -2213 -924

Mean (to 1 d.p.) 3157.3 1074.5 486.2 476.8 133.7
SD (to 2 d.p.) 798.42 774.53 1346.63 1228.40 1320.15

Chapter 5: Evolutionary Algorithms and the Inverse Problem 117

Figure 5.20: A sequence of attractors from the median trial of the GA and EP

with a Dragon fractal as the target shape. The attractor and point coverage was

used as the fitness function. The attractors shown are those of the best solutions

in generations 0. 5, 10, 20, 30, 40, 60, 80 and 100 (top left to bottom right).

GA

AM

•

* mm

EP

*¥
j

Chapter 5: Evolutionary Algorithms and the Inverse Problem 118

Figure 5.21: Online and offline performance for the median trial of the GA and EP

with a Dragon fractal as the target shape. The attractor and point coverage was

used as the fitness function.

Attractor and Point Coverage
fitness x 10-*

7.00

6.00

5.00

4.00

3.00

2.00

1.00

0.00

-1.00

-2.00

-3.00

-4.00

-5.00

-6.00

-7.00

-8.00

; /
/

/ /
/ / * * '

0.00 20.00 40.00
I

60.00
I

80.00

oplimal
E^offline"
GA offline
EP online
GA online

L
100.00

generation

Chapter 5: Evolutionary Algorithms and the Inverse Problem 119

Figure 5.22: Attractors of the best IFSs found when using each of the search

algorithms with a Dragon fractal as the target shape. The attractor and point

coverage, was used as the fitness function.

GA EP

SAHC NAHC RMHC

Chapter 5: Evolutionary Algorithms and the Inverse Problem 120

Table 5.9: The best solutions found by each of the search algorithms with a Dragon

fractal as the target shape. The collage and point coverage was used as the fitness

function. Each algorithm was run 31 times and in the case of the GA and EP

the generation at which the best solution was found is shown in parenthesis. The

fitness of the best solution found by each algorithm is shown in bold.

Algorithm EP GA SAHC NAHC RMHC
5391 (91) 2861 (100) 304 2154 1360
2102 (96) 2604 (27) 2986 3063 176
3060 (84) 1180 (78) 681 1141 697
1910 (78) 1163 (97) 3228 431 660
1808 (73) 2828 (95) 1293 1941 1917
1720 (99) 788 (92) 311 3412 289

5536 (82) 2640 (90) 951 1797 1745
2013 (84) 1290 (95) -163 1155 736
3168 (99) 1786 (84) 922 1661 1425
3139 (77) 1463 (77) 801 2884 4742
3162 (47) 1107 (32) 2328 1337 1243
3410 (99) 1015 (92) 828 1259 771
1973 (87) 906 (31) 1450 924 2922
3565 (83) 2642 (97) 2026 777 1124

Fitness of best 1791 (86) 979 (52) 1325 305 2429
solution found 3652 (88) 678 (48) 847 2750 1420

(Optimum = 6726) 1814 (77) 2746 (52) 17 -172 2730
3166 (98) 1549 (74) 3518 1787 1742
1933 (100) 997 (85) 317 478 1161
3293 (91) 732 (23) 758 1591 782
2805 (68) 2423 (70) 682 1.687 1825
3376 (50) 3535 (93) 1947 421 1419
3461 (87) 4613 (97) 1917 608 510
3330 (88) 1085 (48) 811 1932 3048
3343 (100) 681 (76) 1182 1679 1161
1790 (91) 1119 (97) 1020 2240 1555
5424 (76) 479 (96) 959 1209 1584
3466 (78) 1234 (92) 2901 1721 916
3209 (79) 1179 (99) 213 1867 1749
1839 (99) 1106 (95) 1506 1262 950
3649 (58) 2459 (58) 576 1353 -520

Mean (to 1. d.p.) 3009.6 1673.1 1240.1 1505.0 1428.0
SD (to 2 d.p.) 1069.68 990.12 953.18 838.82 999.91

Chapter 5: Evolutionary Algorithms and the Inverse Problem 121

Figure 5.23: A sequence of attractors from the median trial of the GA and EP

with a, Dragon fractal as the target shape. The collage and point coverage was

used as the fitness function. The attractors shown are those of the best solutions

in generations 0, 5, 10. 20, 30, 40, 60, 80 and 100 (top left to bottom right).

GA

EP

4*

Chapter 5: Evolutionary Algorithms and the Inverse Problem 122

Figure 5.24: Online and offline performance, for the median trial of the GA and

EP with a Dragon fractal as the target shape. The collage and point coverage was

used as the fitness function.

fitness x 10̂
Collage amd Point! Coverage

optimal
EP offline
EP onl ine
GA offline
GA online

1.00 -

0.00 20.00 40.00 60.00 80.00 100.00
generation

Chapter 5: Evolutionary Algorithms and the Inverse Problem 123

Figure 5.25: Attractors of the best IFSs found when using each of the search algo

rithms with a Dragon fractal as the target shape. The collage and point coverage

was used as the fitness function.

GA EP

SAHC NAHC RMHC

Chapter 5: Evolutionary Algorithms and the Inverse Problem 124

Table 5.10: Values of the t-test statistic, with the number of degrees of freedom

shown in parenthesis. The values in the lower left of grid are those for when the

attractor and point coverage was used as the fitness function. The values in the

top right are those for when the collage and point coverage was used. The values

are read: Is LHS better than TOP?

Triangle EP GA SAHC NAHC RMHC

EP 18.83 (42) 7.90 (33) 8.13 (32) 9.47 (33)

GA -16.30 (52) -2.49 (45) -0.83 (41) -0.98 (45)

SAHC -11.03 (42) 1.35 (53) 1.12 (58) 1.20 (59)

NAHC -13.96 (38) -3.49 (46) -4.16 (56) -0.02 (58)

RMHC -10.81 (36) -1.47 (43) -2.29 (53) 1.44 (59)

Sierpinski EP GA SAHC NAHC RMHC

EP 8.17 (58) 4.80 (44) 5.78 (44) 4.17 (37)

GA -16.64 (43) -0.91 (49) 0.01 (49) -0.10 (40)

SAHC -8.91 (56) 3.00 (38) 0.77 (59) 0.53 (53)

NAHC -10.03 (57) 1.87 (39) -0.90 (59) -0.09 (53)

RMHC -10.41 (59) 3.39 (43) -0.19 (56) 0.80 (57)

Dragon EP GA SAHC NAHC RMHC

EP 5.11 (59) 6.88 (59) 6.16 (56) 6.01 (59)

GA -10.43 (59) 1.75 (59) 0.72 (58) 0.97 (59)

SAHC -9.50 (48) -2.11 (47) -1.16 (59) -0.76 (59)

NAHC -10.19 (51) -2.29 (50) -0.03 (59) 0.33 (58)

RMHC -10.91 (49) -3.42 (48) -1.04 (59) -1.06 (59)

Levels of significance for a one-tailed /-test with 30 degrees of freedom.

/ test statistic 1.30 1.70 2.46 3.39 3.65

Level of Significance 0.1 0.05 0.01 0.001 0.0005

Chapter 5: Evolu t ionary Algor i thms and the Inverse Problem 125

5 06 Discussion

The results show that for the two fitness functions used, EP outperforms a GA

and the hill-climbing algorithms on the inverse problem for a triangle, Sierpinski

triangle and Dragon fractal. I t is probable that by changing the control param

eters, solution representation, and so forth, the performance of the GA could be

improved, but it appears that there is a fundamental problem with applying GAs

to inverse problems: the building block hypothesis that appears essential for their

success does not hold in general. The hypothesis appears to hold at the level of

contraction mappings, i.e., good individual mappings ca.n be propagated through

out a population. However, in generating an IFS's attractor, it is the interaction of

all the mappings that determines the shape produced. For a fitness function using

the attractor, the presence of some optimal mappings is not enough to guarantee

a good fitness. IFSs with some optimal mappings may, therefore, be assigned rela

tively low fitnesses and produce very few offspring. It appears that the GA cannot

overcome the strong interactions which can occur between the blocks of components

of the problem's subsymbolic representation. This problem is overcome somewhat

by using a fitness function that uses a collage of the mappings applied to the target

shape. Good mappings are then rewarded individually and there is no reliance on

other mappings of the IFS, i.e., the effect of the strong interaction between blocks

of components is reduced.

The above results show that even when using a fitness function based on a

collage of mappings, the GA does not perform all that well. The reason would

appear to be due to the need for the building block hypothesis to hold at all levels.

Not only should combining 'good' contraction mappings give 'good' IFSs, but also

combining 'good' coefficients should give 'good' contraction mappings. However,

a contraction mapping does not depend on individual coefficients, but on their

interactions, i.e., there is a strong interaction between subsymbolic components.

The poor performance of the GA is, therefore, attributed to the difficulty of being

able to construct solutions to the inverse problem from the bottom-up. The GA

Chapter 5: Evolu t ionary Algor i thms and the Inverse Prob lem 126

appears to be unable to overcome the strong interactions which can occur between

the components of the problem's .subsymbolic representation.

EP suffers from no such problems. By emphasising top-down phenotypic adap

tation over genotypic transformation, the building block approach is avoided. In

verse problems are often affected by pleiotropy (a single component affecting several

phenotypic traits) and polygeny (a single phenotypic effect being affected by the

interaction of many components), and so a subsymbolic search process based at the

genotypic level is more likely to be deceived than one which emphasises the pheno

typic relationship between each parent and its offspring. These results show that

EP not only outperforms a GA, but is able to overcome conditions of pleiotropy

and polygeny to obtain near optimal solutions to the inverse problem for a triangle

and Dragon fractal.

The hill-climbing algorithms occasionally find near optimal solutions to the

triangle and Dragon fractal inverse problems, but perform poorly on that for the

Sierpinski triangle. These results are as would be expected, since the search spaces

for the triangle and Dragon fractal inverse problems can be expected to contain

fewer locally optimal solutions than that for the Sierpinski triangle.

5o7 Summary

IFSs have been suggested as a suitable means of representing shapes for use in a

machine vision environment (Giles 1990). The primitives with which a shape is to

be encoded are smaller linearly deformed copies of the shape. A shape is represented

by an IFS if a collage of primitives can be found such that they exactly cover the

shape to be encoded. Finding such an IFS representation for a shape is known as

the inverse problem. A symbolic encoding can be adopted and the inverse problem

solved by symbolically manipulating the primitives. Approaches along these lines

usually greatly restrict the primitives allowed and/or require human interaction.

Chapter 5: Evolu t ionary Algor i thms and the Inverse Problem 127

A subsymbolic representation allows for a more flexible approach, but results in a

large search space with complex interactions between its components. There are

often strong interactions between blocks of parameters, and between the parameters

of each block.

Many methods have been suggested for solving inverse problems for which a

subsymbolic representation has been adopted. Many of these approaches, although

automatic, are very limited in application since in order to be successful they greatly

simplify the problem. This chapter has described how a GA, EP and three hill-

climbing algorithms can be applied to inverse problems for which a subsymbolic

approach has been adopted (binary for the GA and three hill-climbing algorithms,

and real-valued for EP). The main simplifying assumption which was made was to

fix in advance the number of mappings allowed — this allowed for the basic versions

of a GA and EP to be applied. Even with this simplification the subsymbolic

representations' search spaces for the problems considered are extremely large and

complex.

Results show that EP outperforms a GA and three hill-climbing algorithms in

finding solutions to the inverse problem. The reason for this appears to be the

difficulty the GA and hill-climbing algorithms have in being able to overcome the

strong interactions which can occur at the subsymbolic level between blocks of

components, and between a block's components. The bottom-up approach of a

GA is unable to construct suitable solutions. EP on the other hand emphasises

adaptation of the behaviour of solutions and is less likely to be deceived by the

strong interactions.

The conclusion of this chapter is that a move from a symbolic to a subsymbolic

representation can lead to a successful means of solving a shape representation

problem. The representations adopted have Strong-Strong interactions (see Section

1.3), but can be successfully tackled using EP. A GA is not so successful.

Chapter

h S R d t e FC C e fas P ue ion

This chapter is the final one of the four which examine in detail shape representation

using IFSs, and demonstrates how symbolic rules can be applied to the subsymbolic

representation to improve the search process. Two possible improvements to the

way in which a space can be searched are 1) improve the search algorithm and/or

2) reduce the size of the search space. The previous chapter discussed a search

algorithm (EP) which performs well in the space of the subsymbolic representation

of several inverse problems. This chapter examines reducing the search space.

In the case of two-dimensional shape representation an IFS is composed of a

set of contraction mappings, and so a real-valued subsymbolic representation can

be adopted. Each mapping is composed of six real-valued coefficients and although

some non-trivial constraints can easily be applied, the search space remains ex

tremely large. In order to help overcome this problem the number of degrees of

freedom is often reduced by fixing some of the coefficient values to those of a known

optima] solution. Clearly such an approach is of limited use since it requires a priori

knowledge of an optimal.

The work presented in this chapter reduces the search space by the imposition of

necessary constraints on the mapping coefficients (Nettleton and Garigliano 1993,

Chapter 6: Search Space Reductions 129

1994a). In order for the constraints to be of use to a range of search algorithms

they are required to need no a priori knowledge of any optimum, and to be of a

low computational complexity.

Three constraints are introduced which reduce the search space of four of the six

coefficients of a mapping by between 20% and 85%, and of the other two coefficients

by between 75% and 95% (the size of the reduction depends only on the size of the

bounding box of the target shape — see Section 6.5). Since these constraints apply

to each mapping of an IFS, the cumulative effect on the search space is substantial.

It is anticipated that these reductions in the search space can be used to aid a

variety of search algorithms. However, the constraints are not applied to the work

of this thesis since (as discussed in Section 5.1) they might bias comparison between

a GA and EP in favour of EP.

6.1 Preliminaries

Consider a space X C R n together with a set of constraints {Yi, Y?,..., Y m) such

that if x G X satisfies the constraint Y], then Y{(x) = 1, and if the constraint is not

satisfied then Y,{x) = 0. Let X ' C R n be the set {x £ X : ZiLi Y i (x) = rn}, i.e.,

the subset of X which satisfies all of the constraints. In order to select an element

of X ' one of the following strategies may be used:

Strategy 1 (Select and check)

1. Select x £ X .

2. Calculate sum = Z?=i Yi(x).

3. a) If sum — m then accept x. Exit,

b) If sum ^ m then goto 1.

Chapter 6: Search Space Reductions 130

Strategy 2 (Deterministically Select)

1. Select, x G X such that X X i Y{(x) = rn.

2. Exit.

In cases for which a strategy of type 2 is available it would appear to be the

most efficient means of selecting elements of X ' since no spurious elements are con

sidered. If , however, the (computational) complexity of the algorithm which gener

ates guaranteed valid solutions is high then this approach may not be suitable. The

complexity itself is largely determined by the interactions between the constraints.

For example, consider x = (xi.x?,..., xn) and the constraints : —0.5 < X{ < 0.5

for i = 1,2,... , n. In such a case the selection of x G X ' is trivial, with each a;,-

being selected independently. With complex interactions between constraints, the

range of valid values for some Xj, j G (1 ,2 , . . . , n), will often be dependent on the

values already selected for one or more of the other coefficients. The selection of

valid coefficients can, in some cases, be expected to require complex calculations,

and so lead to an increase in complexity.

Strategy 1 may be considered to be inefficient, due to the possibility of gener

ating spurious values. Furthermore, stage 1 requires the selection of some x G X ,

and it may be that the space X is itself constrained in some way such that the

selection of x is non-trivial. (For the purposes of this discussion the selection of

x G X is considered a trivial matter.) On the other hand if stage 1 has a high

probability of selecting x G X , such that x G X ' , and the complexity of checking

the constraints is low, then strategj' 1 may be preferred.

A further important feature of a selection strategy, which must also be consid

ered, is how the space X ' is sampled. Usually it will be necessary that the selection

strategy be capable of generating each element of X ' . A strategy which returns the

same value (of many possible) each time can be expected to be of limited use. In

many cases it will be preferable that each x G X ' should have the same probability

of being selected.

Chapter 6: Search Space Reductions 131

In practice a combination of the strategies 1 and 2 may be desirable. For

example, if some of the constraints are trivial then the coefficients satisfying these

may be selected according to strategy 2. The remaining coefficients are then subject

to strategy 1. with them being chosen and checked until valid values are found.

6„2 Constraints on Mappings

In constructing an IFS { X , W{ : i = 1,2, ...,N} for a two-dimensional shape, A ,

each of the transformations W; is of the form:

Wi

\ y J

(ii hi

Ci cU
+

V y J

(6.1)

and the Collage Theorem (3.5.3) provides the following necessary constraint:

Wi(A) C A V i e { 1 , 2 , . . . , 7 V } .

This constraint may easily be applied using a type 1 strategy. This would

involve selecting some mapping, applying it to each point of A and checking that

the resulting point, is an element of A . I f the application of the mapping to a point

has one unit of complexity then the above check has complexity 0(m) , where m

is the number of points in A. Although this constraint may be included in a set

of constraints, its checking would be computationally expensive when compared to

checks of constant complexity — providing the constant is considerably less than

m. In this chapter some necessary constraints on each of the transformations, to,-,

are introduced. Their main advantage is that they are of a low computational

complexity and result in a considerable reduction in the search space.

The constraints which are derived in this chapter apply to each of the mappings

of an IFS and so for ease of notation explicit reference to the coefficients of the i ' th

Chapter 6: Search Space Reductions 132

transformation is dropped.

The following non-trivial constraints are imposed on the coefficients of the trans

formation given in Equation 6.1:

a, b, c, d £ (—1,1) e £ [Xmin, Xmax] f £ [Ymin,Ymax] (6-2)

where Xmin, Xmax,Ymin and Ymax are the extent of the shape along the ab

scissa and ordinate axis. The constraints on e and / are derived from noting that

once the original shape has been contracted it should not be moved by an amount

exceeding the dimensions of the box containing the original. Such a transformation

would produce an unsuitable collage since some point of the collage would lie. out

side of the original shape. Without loss of generality the origin of the co-ordinate

system is chosen such that Xmin = — Xmax and Ymin — —Ymax. These con

straints are taken as the base case, a,nd all reductions referred to in the remainder

of this chapter are measured in terms of percentage reductions of this space.

Giles (1990) uses the constraints a,b,c,d £ [—0.707,0.707], e £ [Xmin, Xmax}

and / £ [Ymin, Ymax]. These ensure that the mapping is contractive, but do

so at the expense of excluding many valid contraction mappings. For example,

mappings with a = d — 0.8 and b — c — 0.0 are not permitted.

6.3 Calculating Reductions

Once a set of constraints have been identified and applied, some quantitative mea

sure of the size of the search space which remains is needed. For constraints such

as those of Equation 6.2 the actual volume of the search space can easily be cal

culated by integration. However, when there are complex interactions between

the coefficients the integration can become extremely difficult. In order to avoid

any symbolic integration problems a numerical approach can be adopted. This

Chapter 6: Search Space Reductions 133

although approximate is of use in evaluating search space reductions.

Each coefficient of Equation 6.1 is real-valued and can, in theorj', take one of an

infinite number of values in the ranges given by Equation 6.2. By approximating

each range of values to a finite set, the search space can be restricted to a finite set

of points. In the case of a, b, c and d the set of allowed values for each coefficient is

calculated as follows:

1. Select a required degree of accuracy acc < 2 such that ^ is an integer.

2. The set of allowed values for each of a,b,c and d is then { — 1 + acc, —1 +

2acc,..., 0 , . . . , 1 — 2acc, 1 — acc}.

For example, if acc = 0.5 the set of allowed values for each of a, 6, c and d

would be {—0.5,0,0.5}. By selecting progressively smaller values for acc the size

of the search space can be made as large as required. Following this approach the

search space for a, 6, c and d is approximated to a set of — I) 4 distinct points.

Table 6.1 shows the number of distinct combinations of a, 6, c and d (hence the

size of the a,b,c,d search space) for various values of acc. The robustness property

of IFSs (Section 4.3) indicates that the value of acc need not be less than 0.01.

For computational reasons the minimum value of acc considered in this chapter is

usually 0.05.

accuracy number of

(acc) combinations

0.2 65611

0.1 130321

0.05 2.3 x 106

0.02 9.6 x 107

Table 6.1: The number of distinct combinations of a,b,c and d for various

values of acc.

Chapter 6: Search Space Reductions 134

The percentage of values of a, 6, c and d which satisfy some given constraint(s)

can now be calculated in the following way:

1. Select the degree of accuracy, acc, of a, 6, c and d required.

2. For each distinct combination of values of a, b, c and d, determine whether or

not it satisfies the constraint(s).

3. If, TV, is the number of combinations of a, b, c and d that satisfy the con

straint^), then the percentage of combinations that satisfy the constraint(s)

for the chosen acc is:

100/V

(-2- - 1Y«
\ acc I

The coefficients e and / may be treat in a similar way — that is approximating

their range of values to a finite set of values. However, as will become apparent later

in the chapter the search space reductions for e and / (under the constraints to be

discussed), can be easily calculated symbolically without the need for a numerical

approximation.

6.4 Eigenvalue Constraint

The transformation given by Equation 6.1 can be written in the form iu5i = A/x + c

(dropping explicit reference to i) where M is a 2 x 2 matrix. The transformation

can be applied recursively such that x n = wx n _i and after n successive applications

to a point Xo:

x n = PDnp-lx0 + (Mn~l +... + /)£

where D is a diagonal matrix of the eigenvalues of M , P is the matrix of corre

sponding eigenvectors, and / is the identity matrix.

Chapter 6: Search Space Reductions 135

Since the transformation, w. must be contractive i t lias a single fixed point and

this is equal to lim n_,oo x n . The limit point must be independent of the starting

point and so P J D n P " 1 x 0 —> 0 as n —+ oo for all x 0 - This leads to:

Constraint 1: The eigenvalues of M , e\ and e2, must be such that |ei| , |e2| < 1.

The eigenvalues are the values of A for which the characteristic polynomial of

M is zero, i.e., A2 — (o + d)X + ad — be = 0 and so the following constraint can be

applied to a, b, c and d:

< 1. (6.3)

Table 6.2 shows the percentage of the search space for a, b, c and d which remains

when Constraint 1 is applied, for varying degrees of coefficient accuracy.

acc 0.2 0.1 0.05 0.02

% Remaining 86.1 82.4 80.2 78.8

Table 6.2: The percentage of the search space for a,b, c and d which remains

when Constraint 1 is applied.

The constraint on the eigenvalues can easily be implemented using a type 1

strategy. If the first stage of strategy 1 ensures that each combination of a, 6, c and

d (satisfying Equation 6.2) is equally likely to be selected then the expected value

of the algorithm generating a valid solution on the first pass is quite high (the exact

values are just those in Table 6.2 divided by 100). It is also possible to use a type

2 strategy to select values for a,b,c and d such that they satisfy Constraint 1. One

such algorithm is given in Appendix A.

a + d ± sj(a - d)2 + 4bc

2

Chapter 6: Search Space Reductions 136

(So5 L i m i t Point Constraint

The introduction to this chapter stated that the reductions achieved are dependent

only on the size of the bounding box of the target shape. A shape's bounding

box is now defined.

Def in i t i on 6.5.1 The bounding box (BB) of a shape S is defined as the box defined

by —Xmax < x < Xmax and —Ymax <y< Ymax.

The constraint introduced in this section is derived from noting that if the fixed

point of a contractive transformation lies outside of a shape, then that transfor

mation cannot be part of an IFS encoding for that shape. The calculation of the

fixed point of a transformation is a simple task (see below), as is checking if i t

lies within the shape to be encoded. This allows for a strategy of type 1 to be

implemented with the reduction in the search space being dependent on the tai'get

shape. By relaxing the condition, the following constraint is introduced for which

a computationally efficient type 2 strategy is easily developed:

Constraint 2: The limit point of a contraction mapping must be contained within

the bounding box of the target shape.

When this constraint is applied, it is possible to choose e and / (for given values

of a,b,c and d satisfying Constraint 1) such that the resulting transformation's limit

point lies inside the shape's BB (a type 2 strategy). This removes the part of the

search space of e and / for which the limit point lies outside the shape's BB and

hence can not lie on the shape to be encoded. The size of the reduction in the

search space when Constraint 2 is applied is now calculated.

The unique fixed point, (x, y), of a contractive transformation of the type given

by Equation 6.1 can be found by solving the simultaneous equations x = ax + by + e

Chapter 6: Search Space Reductions 137

and y — ex + dy + f . This gives:

(e(l-d) + bf f (l - a) + ce \

«)(! - d) - h c (1 - ~ d) - be)

where (1 - a)(l - d) - be £ 0.

Requiring the limit point to lie in a shape's BB requires that the following

conditions hold; x G [—Xmax, Xmax] and y G [—Yrnax,Ymax]. So:

- X < e (l - d) + bf < X - Y < / (l - a) + ce < Y (6.4)

where ,Y = ((1 - a)(l - rf) - bc)Xmax and F = ((1 - a)(l - d) - bc)Ymax. The

Equations 6.4 define a parallelogram since ^ (from above). Furthermore,

Equation 6.2 requires:

e G [—Xmax, Xmax) f G [-Fmfl2 : ,y 'ma4 (6.5)

For a given a, b, c. and d, the values of e and / (satisfying Equations 6.5) which

ensure the limit point of the resulting transformation lies in the BB are those

which lie in the intersection of the parallelogram defined by Equation 6.4 and the

rectangle defined by Equations 6.5. The area of intersection is just the size of the

search space of e and / remaining for a particular combination of a,b,c and d.

By calculating the sum of the areas for all combinations of a,b,c and d (satisfying

Constraint 1) the overall percentage of the search space of e and / remaining can

be easily calculated.

In order to find the area of the polygon which is the intersection of a rectangle

and a parallelogram, a clipping algorithm can be used to find the polygon's vertices

(Sutherland and Hodgman 1974; Newman and Sproull 1979; Foley and Van Dam

1982). Since both the parallelogram and the rectangle are convex and centred

at the origin, then so is the polygon of their intersection (by symmetry). The

Chapter 6: Search Space Reductions 138

polygon's vertices are sorted using polar coordinates so that they are clockwise

about the origin starting at the negative a;-axis. Once this ordered set of vertices

has been found, the area of the polygon, and hence the area of the search space of

e and / for a particular a, t, c and d can be found. The area is calculated using the

following algorithm which acts on the arrays x[n] and y[n], where n is the number

of vertices (x[i], y[i]) i 6 { 0 , 1 , . . . , n — 1} of the polygon of intersection.

procedure polygon_area(x[n],y[n])

{ c a l c u l a t e s area of polygon with

ordered v e r t i c e s (x [i] , y [i]) i=0,1,... , n - l } ;

area := 0.0;

fo r i:= 0 to n-2 do

area := a r e a + (x [i] * y [i + l] - y [i] * x [i + l]) ;

end;

area := area+(x[n-l] *y[0] - y [n - l] *x[0]) ;

area := area/2;

end {polygon_area}

The graph shown in Figure 6.1 shows the percentage of the search space of

e and / remaining when the constraint on the limit point of a transformation is

applied for varying sizes of the BB. The reduction in the search space of a, b, c and

d when Constraint 1 is applied is also shown (acc — 0.05).

Appendix B provides an algorithm which, given a,b, c and d (satisfying Con

straint 1), selects e and / such that the resulting transformation's limit point lies

within a shape's BB.

Chapter 6: Search Space Reductions 139

Percentage Remaining

original
100.00

20.00

0.00 -
Ymax

0.00 2.00 4.00 6.00 8.00 10.00

Figure 6.1: The percentage of the search space remaining when the eigenvalue

constraint is applied to a,b,c and d (Constraint 1), and the limit point con

straint is applied to e and / (Constraint 2) for varying sizes of the BB. Xmax

= 10.0 and acc = 0.05.

Chapter 6: Search Space Reductions 140

6»6 Constraint on Transforming the Bounding

Box

The final constraint introduced in this chapter is:

Constraint 3: After the application of a contractive transformation to the bound

ing box of a shape no edge of the resulting parallelogram can lie entirely outside

the original bounding box.

This condition must hold since each transformed edge of a shape's BB touches

the transformed shape, and so if an edge lies outside the BB then so does part of

the transformed shape. Such a transformation is not suitable (from the Collage

Theorem).

The implementation of this constraint is considered in two parts:

1. The 2 x 2 matrix in Equation 6.1 must never allow an edge of the BB to be

transformed outside the BB — a constraint on a, b, c and d.

2. The transformed bounding box (TBB), produced by applying a valid 2 x 2

matrix (with regard to 1. above) to the BB, can never be moved such that

an edge of it would lie outside the BB — a constraint on e and / .

The following procedure is used to check the validity of a, b, c and d (a type 1

strategy), and then calculate ranges for e and / such that Constraint 3 is satisfied

(a type 2 strategy).

Apply the matrix to two vertices of the BB {Xmax, Ymax) and (—Xmax, Ymax)

to give two vertices of the TBB, T° = (T°,T°) and Tl = (T*,Tj). Note that the

other vertices of the TBB are then T 2 = — T° and T 3 = - T 1 . Then if:

Chapter 6: Search Space Reductions 141

1. T° and T1 lie inside the BB

a, b,c and d are valid, and e and / are chosen such that:

e| < Xmax — min j jT j
X I J I X 1} l / l ^ y m o a r - m i n i l T ; ! , ! ^ 1 ! } .

2. One of T° and T 1 lie inside the BB

a,b,c and d are valid, and e and / are chosen such that if T' is the point

inside the BB:

\e\ < Xmax -mm{\Ti\,mzx{\I%\ll\}}

|/| < Yrnax-mm{\T^mzx{\I0

yl\ll\}}

where 7° is the point of intersection of the line from T° to T 1 and the BB,

and 7 l is the point of intersection of the line between T° and T 3 and the BB.

3. T° and T l lie outside the BB

The number, N\, and positions 7 2, 7 3, of the points of intersection of the line

from T° to T 1 and the BB are calculated. Similarly the number, iV 2 , and

positions 7 4, P, of the points of intersection of the line from T° to T 3 are

calculated. Then either:

(a) A\ = 0 or /V2 = 0. In which case an edge of the TBB lies outside the

BB and so a, b, c and d are not valid coefficients.

(b) A r i > 0 and A2 > 0. In which case a, 6, c and d are valid and:

Figure 6.2 provides an example of each case of the above cases. The graph

shown in Figure 6.3 shows the reductions achieved when Constraint 3 is applied to

shapes which have varying sizes of the BB (acc = 0.05).

e| < A'ma.x--max{|7| | , |7*|} | / | < K m a . T - m a x { | 7 j | , | 7 ; | }

where j and k are such that |7jJ

that \Il

x\ = 17™| = Xmax.

\Iy\ = Ymax, and / and m are such

Chapter 6: Search Space Reductions 142

1
i

BB
0 I

TBB 0

0 0 O

I

3(b) 3(a)
o

I I
0 I

O O I

I I

Figure 6.2: An example of each type of transformation which needs to be

considered when implementing the constraint on transforming a bounding box

(Constraint 3). The rectangles in each part represent a BB, while the other

parallelogram is the TBB (a 2 x 2 matrix satisfying Constraint 1 applied

to the BB). Parts 1, 2 and 3(b) show valid transformations of the BB. The

transformation shown in 3(a) is not valid since an edge of the TBB lies entirely

outside the BB. The horizontal and and vertical arrows indicate the magnitude

of the maximum displacement of the TBB which can occur before an edge

lies entirely outside the BB. These magnitudes are constraints which can be

imposed on e and / .

Chapter 6: Search Space Reductions 143

Percentage Remaining

100.00
original

Ymax
0.00 2.00 4.00 6.00 8.00 10.00

Figure 6.3: The percentage of the search space remaining when the eigenvalue

and TBB constraints are applied to a,b,c and d (Constraints 1 and 3), and

the TBB constraint is applied to e and / (Constraint 3) for varying sizes of

the BB. Xmax = 10.0 and acc = 0.05.

Chapter 6: Search Space Reductions 144

©07 Total Reduction

The constraints discussed in this chapter are combined to give the overall reduction

in the search space which has been achieved. The results are shown in Figure 6.4.

Percentage Remaining

100.00
original

80.00

70.00

50.00

20.00

0.00 2.00
Ymax

4.00 6.00 8.00 10.00

Figure 6.4: The percentage of the search space remaining when the eigenvalue

and TBB constraints are applied to a,b,c and d (Constraints 1 and 3), and

the limit point and TBB constraints are applied to e and / (Constraints 2 and

3) for varying sizes of the BB. Xmax = 10.0 and acc = 0.05.

Chapter 6: Search Space Reductions 145

608 Summary

Improving the performance of a search algorithm is one way in which a space may

be searched more efficiently. A second approach is to take advantage of the sub-

symbolic representation adopted in order to reduce the size of the search space.

This chapter has introduced several constraints on the components of an IFS with

a real-valued subsymbolic representation. These constraints are of a low computa

tional complexity and reduce the search space of four of the six components of a

mapping by between 20% and 85%, and of he other two components by between

75% and 95% (the size of the reduction depends only on the size of the bounding

box of the target shape). Since the constraints can be applied to each mapping

of an IFS their cumulative effect on reducing the search space is substantial. Fur

thermore, their low complexity allows them to be implemented efficiently, and it is

anticipated that they can be used by a wide range of search algorithms which op

erate in the space of an IFS's real-valued subsymbolic representation. Appendices

A and B provide algorithms for choosing values of IFS components so that they

satisfy some of the constraints introduced.

a p t e r 7

o n t h m 1 A 1 d E ut a r y s a vo ion n

1 D i a © u e

This chapter describes the second problem for which a hybrid symbolic/subsymbolic

approach is successful. Since the aim of the remainder of this thesis is to demon

strate the 'width' of the approach a less comprehensive treatment, than that for

the shape representation problem, is given.

LOLITA (Large scale, Object based, Linguistic Interactor, Translator and Anal

yser) is a natural language processor, the dialogue module of which is based upon

a symbolic theory. However, in order to rank the appropriateness of responses

to certain situations a subsymbolic (integer) representation is adopted. Blocks of

the subsymbolic components determine the type of utterance the system outputs,

while components within blocks determine how it is carried out. There are strong

interactions between the blocks of components, but weak interactions between a

block's components.

Tuning the subsymbolic components so that the system exhibits a certain 'per

sonality' can be carried out by hand. However, this is very time consuming and

an automatic means of tuning is desired. This chapter examines how a GA and

Chapter 7: Evolu t ionary Algor i thms and Dialogue 147

EP can be applied to the problem of tuning subsymbolic components. Although

successful for the dialogues discussed, limitations of the fitness function currently

restrict more general applications (Nettleton and Garigliano 1994b, 1994f, 1994h).

7ol Introduct ion

Everyday intelligent beings have to respond to a range of different situations. 'The

question, therefore, arises as to how a suitable behaviour is selected for a particular

situation. One explanation would be that there are rules so completely governing

possible behaviours that they cover all situations which may be encountered (a

purely symbolic model). Clearly, however, while there are certainly some rules

which help guide behaviour they certainly do not control it all, and simple counter

examples to the above explanation of behaviour are easily constructed. Another

extreme possibility would be that no rules are given, but are deduced (for future

application) by interacting with intelligent beings and other objects (a purely sub-

symbolic model). Again this clearly is not true of human behaviour in general.

More likely is it that some general rules are given and these, through learning, fine

tuned to respond to certain situations (a hybrid symbolic/subsymbolic model). In

effect there is an interplay between symbolic and adaptive techniques (Garigliano

and Nettleton 1994).

A particular example of a human behaviour, as described above, would be

the holding of conversations. Throughout the day one uses a different style of

conversation depending on the context, e.g., chatting to a friend, giving a lecture,

conducting an interview, etc. The use of rules such as being polite, needing to

initiate the conversation, etc, helps to constrain the content of the conversation.

These rules, however, do not cover all eventualities, and one learns to adapt them

to other contexts. Furthermore, as a conversation progresses it may be necessary

to change the style of the conversation, and so further adaptation takes place. It is

certainly not the case that humans learn conversational rules by interaction alone.

Chapter 7: Evolu t ionary Algor i thms and Dialogue 148

For example, one does not learn to be polite at a job interview by being rude at

others, and learning from the failures.

In developing a natural language processor able to analyse and respond to

natural language input, the application of either of the above extreme methods

would be unsuitable. A purely symbolic system can be produced, by specifying

a large number of rules, which operates within the domain of those rules. Such

systems are usually simple, and often fail when the input is not covered by the rules.

Alternatively it is possible to produce a purely subsymbolic system by exposing it

to large amounts of data, and hoping that rules can be inferred. This can result in

a huge amount of time and resources being expended on learning even the simplest

of linguistic rules, let alone more complex ones.

The method adopted at the University of Durham in developing the LOLITA

system (Garigliano et al. 1993a, 1993b, 1994a) has been to use a mainly symbolic

approach — see Section 7.2.1. However, in the dialogue module, situations often

arise in which several possible responses are available, and so the system uses a

subsymbolic (integer) representation to help select between them. This involves the

use of parameters to control the plan boxes which carry out responses. The tuning

of these parameters so that a particular behaviour can be achieved has so far been

carried out by hand. As this can be a very time consuming process, an automatic

means of tuning is desirable. The search space is, however, very large and there are

complex interactions between the subsymbolic components — strong interactions

occur between blocks of components and weak interactions occur between a block's

components. Furthermore, cases arise in which a single parameter can affect several

behavioural traits (pleiotropy), and other cases in which several parameters can

affect one behavioural trait (polygeny). Search algorithms such as hill-climbing are

unsuitable in such spaces.

In addition to demonstrating the success of a hybrid syrnbolic/subsymbolic ap

proach for dialogue, this chapter examines the use of evolutionary algorithms in

fine tuning the parameters controlling the dialogue module of LOLITA (Nettleton

Chapter 7: Evolut ionary Algor i thms and Dialogue 149

and Garigliano 1994b, I994f, 1994h). This is an example of a problem the repre

sentation of which exhibits Strong-Weak interactions at the subsymbolic level (see

Section 1.3).

7o2 Natural Language Processing

Natural language processing (NLP) lies at the intersection of disciplines such as

artificial intelligence, linguistics and cognitive science. A successful natural lan

guage processor must be able to automatically process, understand and generate

sections of natural language. Much Work in the field of NLP has concentrated on

1) implementing a linguistic theory to show that i t can account for the features

which it describes (computational linguistics) and 2) the modelling of the human

thought process by a computer (cognitive science).

Although these are of much interest, such systems are often so specialised, or so

cumbersome, that they cannot be exploited in any practical way. In recent years,

however, a more practical approach to NLP has emerged in the form of Natural

Language Engineering (NLE); indeed a journal is about to be launched dedicated

to this (Garigliano et al. 1994b). The paradigm of NLE is the development of

systems which are general enough, and quick enough to be of practical use. Such

a paradigm takes into account features such as scale, integration, flexibility, feasi

bility, maintainability, robustness and usability (Smith et al. 1994). NLE adopts a

pragmatic approach to achieving these goals, which is characterised by a readiness

to use any means in order to build serious speech and language processing programs

7.2.1 The LOLITA System

LOLITA is an example of a system created using an NLE methodology (Garigliano

et al. 1993a, 1993b, 1994a). LOLITA is built around a large semantic network of

Chapter 7: Evolu t ionary Algor i thms and Dialogue 150

some 60,000 nodes (capable of over 100,000 inflected word forms) which contain

data and world information. The system can parse text, semantically and prag

matically analyse its meaning, and alter the relevant information in the semantic

network. Information contained within the semantic network can be generated in

the form of natural language (Smith et ah 1994), and so a 'natural' interaction with

the system is possible. Having being developed using an NLE methodology the sys

tem is very general. Recently the underlying system has been used (with little in

the way of modification) as the base for a variety of prototype applications. These

include an Italian to English translator, contents scanning of newspaper articles,

Chinese tutoring, and dialogue analysis and generation.

The LOLITA system incorporates several logical and linguistic theories in its

general construction. However, in dealing with specific areas these theories are

often not strong enough, and so more localised theories are used. Even when these

localised theories are impractical (e.g., for efficiency reasons) the LOLITA system

resorts to a knowledge based approach, or uses heuristics, to solve problems. By

incorporating such a range of approaches LOLITA is able to enjoy the advantages

provided by a well constructed general theory. At the same time LOLITA is flexible

enough to use other approaches should these theories fail for particular problems.

7.3 Dialogue in LOLITA

This section discusses the theory of dialogue which is used within the LOLITA

system. An account of this theory is given so that its power can be appreciated.

First of all, however, definitions are given of some terms which may otherwise be

open to various interpretations.

The terms dialogue and discourse are usually used loosely by many workers in

the field. The definitions which are used in this chapter are those given by Jones

and Garigliano (1993). Discourse is taken to mean a set of sentences which are re-

Chapter 7: Evolut ionary Algor i thms and Dialogue 151

lated to each other both linguistically and contextually. Such a definition includes

newspaper articles, but an interaction between participants is not a requirement for

a discourse. Dialogue is taken to be the rich interaction between two or more par

ticipants, where 'rich interaction' is taken to include features such as sub-dialogues,

interruptions and complex shifts in focus.

Theories of dialogue can be broadly classified as: descriptive, prescriptive, pre

dictive and inferential. A descriptive theory is simply aimed at being able to

describe a known piece of dialogue in terms of some set of features. The other

types of theory are more useful since these can be used (with varying degrees of

power) to provide information on what is to happen next in the dialogue. In a gen

eral natural language processor once a piece of text has been analysed the system

needs to prepare a response. Rather than simply responding with the same style

of text for all situations, LOLITA is capable of producing a wide range of styles.

A theory of dialogue capable of providing information on a suitable response is

required. Such a theory has been developed over the past three years (Jones and

Garigliano 1993; Jones 1994).

7.3.1 Dialogue Situations

In many situations in which humans find themselves, the type of dialogue structure

that can be expected for that particular situation is known. The knowledge required

to determine this has been acquired through a mixture of given rules and learning

(Section 7.1). In order to take advantage of this knowledge Schank and Abelson

(1977) introduced the idea of scripts. A script is described by Schank and Abelson

(1977, p. 41) as "... a structure that describes appropriate sequences of events in a

particular context ... a predetermined, stereotyped sequence of actions that defines

a well-known situation." An example of a script would be the dialogue between

a waiter and customer in a restaurant. In such a situation both participants can

be considered to be filling in the slots of some pre-determined template which has

Chapter 7: Evolu t ionary Algor i thms and Dialogue 152

slots for actions such as ordering food.

Scripts are used to describe events from the physical world. The theory of

dialogue incorporated in LOLITA is aimed at modelling the actual structure of

the dialogue. This theory is based on the concept of a Dialogue Structure Model

(DSM), and is now described (Jones 1994).

A DSM is a schema which contains all of the information that can be expected

to be relevant in a particular situation, and thus can be used to guide the generation

of language to suit that situation. The DSM consists of dialogue elements, which

are factors that influence and control the structure of the dialogue. In a lecture,

for example, the lecturer can be expected to be in control of the dialogue, and to

speak for most of the lecture's alloted time. Factors such as these determine the

basic information required for a class of similar situations. Furthermore, a theory

of dialogue based on DSMs is not simply descriptive, for a DSM can prescribe the

manner in which the remainder of the dialogue is to be carried out.

7.3.2 Dialogue Elements

The Dialogue Elements (DEs) are the fundamental components of a DSM, and the

current set can be subdivided as follows.

External Elements — These are elements which are external to the language

itself. Although they are not part of the dialogue they influence its structure.

» N u m b e r — The number of participants involved in the dialogue.

9 T i m e L i m i t — Whether or not there is a specific limit on the amount of

time available within which the dialogue must be completed. Whether or not

the dialogue must terminate by a particular time.

» Temporal Progression — The stages through which the dialogue pro

gresses as time passes. For example, in a lecture one can expect an intro-

Chapter 7: Evolu t ionary Algor i thms and Dialogue 153

duction, a main body and a conclusion. In a, chat, however, there is far less

structure.

Mot iva t iona l Elements — All dialogues are started for some purpose, whether

it be to simply pass the time of day or to conduct an interview. The elements

discussed below are connected to the purposes for which a dialogue is being held,

and are linked to the goals, motivations and intentions of the participants in the

dialogue. Since a dialogue always has a motive, a DSM must always contain a

motivational dialogue element.

o Emot iona l Exchange — Whether or not any of the dialogue's participants

aim to change the emotional state of another participant, e.g., make them

laugh, cry or indifferent.

© Goal — This is divided into 'task' and 'process', and relates to the aim of

the dialogue. I f the aim is that of a task, then the goal is used to specify some

end result, e.g., verbal instructions for the assembly of a piece of machinery.

Process goals are achieved in stages as the dialogue progresses, e.g., a lecture

conveys information on some topic as it unfolds.

© I n f o r m a t i o n Seeking — Whether or not any of the dialogue's participants

aim to gain information during the dialogue.

e Persuasive — Whether or not the aim of any of the dialogue's participants

is to cause another participant to believe in the truth of some statement.

Verbal Elements — These are verbal properties of a dialogue, and may or may

not be present within the dialogue.

@ Colour — This relates to the style of language, e.g., use of adjectives, figures

of speech, analogies, etc.

Chapter 7: Evolut ionary Algor i thms and Dialogue 154
o D i s t r i b u t i o n of T i m e — The amount of speaking time that each participant

is allowed within the dialogue. In a lecture, for example, the students can be

expected to speak far less than the lecturer.

o Dominance — Determines the degree of control a participant has on the

structure of dialogue, content or direction.

o Fixed Topic — Whether the dialogue is constrained to be on one topic, or

whether the dialogue can cover several topics.

® Length — The length of sentences contained within the dialogue, e.g., long

or short.

© Register — This relates to the kind of vocabulary that is in use within the

dialogue, e.g., formal, informal, slang, etc.

© R h y t h m — The rhythm of the dialogue. If, for example, it is to progress in

short bursts or long flowing constructions.

Al l dialogues have some form of structure that is external to the situation or

participants. For example, all lectures can be expected to have a fixed timespan. In

the case of such a dialogue in a particular situation, the relationship, individuality

and character of the participants all play an important role in the development of

the dialogue. Furthermore, an individual's state of mind at a particular time (e.g.,

happy, sad) is important in determining how the dialogue progresses. I t is through

DSMs and DEs that the LOLITA system models these parts of human behaviour.

7.3.3 Constraints and Plan Boxes

Although the situation, character, etc, allows humans to place many constraints on

the responses which may be made in some situation, there are still many possibil

ities. The process of selecting an appropriate response is one which humans take

for granted. LOLITA like a human is capable of man)' responses, and therefore

Chapter 7: Evolu t ionary Algor i thms and Dialogue 155

needs some mechanism by which responses can be selected. Once a response has

been selected plan boxes are used to inform on how and when the output is gen

erated. There are currently some 124 plan boxes contained within LOLITA, and

some means of selecting a plan box from the many possibilities is requh'ed.

LOLITA is able to reduce the number of possibilities via. inference and heuristics.

Inference on the input is used to examine its emotional and intellectual value.

Heuristics are then used to ensure that certain plan boxes are not triggered. For

example, if LOLITA is forced not to be rude then blocks of plan boxes that would

result in a rude response are excluded. Once these processes have been performed

the LOLITA system is usually left with some 10-15 plan boxes which correspond to

different outputs. Some mechanism for determining how likely a certain response

is for a particular situation is needed. For example, one may not wish to answer a

question, and possible responses could involve replying with a question or simply

saying ' I don't want to talk about that'.

The problem that remains is how to order the possibilities, dependent on the

behaviour which is being sought. If, for example, the current DSM dictates that

dialogue participant X has a greater level of dominance than participant Y, it is

possible for X to terminate the dialogue. Although the termination of the dia

logue is permitted it may not be appropriate at particular points of a dialogue —

a lecturer has greater dominance in a lecture, but would not be expected to ter

minate the dialogue half way through without adequate explanation. So although

'terminate dialogue' is an option it would be inappropriate and must be marked

as such. In general no clear rules are available for ranking, and so a subsymbolic

approach is adopted. This involves attaching a parameter (an integer) to each plan

box to indicate how permissible an action is. Then in selecting a plan box (of those

allowed) with which to generate a response, the plan box with the lowest value is

used.

It is worth noting that it is not the absolute values of the parameters that is

important, but their relative values. Furthermore, as a dialogue progresses the

Chapter 7: Evolut ionary A lgo r i t hms and Dialogue 156

values of the parameters attached to plan boxes vary to take into account the

dialogue to that point. For example, if one participant of a dialogue, X, continually

annoys another, Y, then Y's terminate dialogue option can be expected to become

more likely as the dialogue progresses.

7A Tuning the Parameters

The parameters tha,t control the plan boxes contained within the dialogue module

of LOLITA have been fine tuned by hand to give a particular behaviour. The 124

plan boxes each have a single parameter attached which may be altered, and so the

search space of possible settings is very large. With experience it is possible to ac

quire an intuitive feel for the optimisation, but this process is very time consuming,

and an automatic means of tuning is required.

A method by which the usefulness of a tuning algorithm could be determined

would involve first of all tuning the parameters to give a particular series of utter

ances. Then starting with a random set of parameters, use the tuning algorithm to

try and optimise the parameters so that the same series of utterances is generated.

Results achieved when adopting such a method are presented later in this chapter.

This method ha.s the following advantages:

1. An optimum solution is known to exist for that situation, i.e.. the one ob

tained by hand.

2. A large number of previously untested parameter combinations will be gen

erated, and running LOLITA with these parameters will be a good test of

the robustness of the LOLITA system.

The main disadvantage of the above method is that even if the tuning algorithm

is successful in the particular situation studied, there is no guarantee that it would

be more widely applicable. If it were possible for the algorithms to optimise for a

C h a p t e r 7: E v o l u t i o n a r y A l g o r i t h m s a n d D i a l o g u e 157

predetermined behaviour, then i t would be possible to fmd parameter settings that

resulted in different styles of dialogue, e.g., polite or rude. The later part of this

chapter begins to examine the use of EAs in this wider role.

T o 5 Target Dialogues

The dialogues given in Tables 7.1 and 7.2 are the target dialogues for the opt imi

sation process. D I A L 1 (Table 7.1) is generated through a single interaction w i t h

the L O L I T A system for which the parameters were tuned. D I A L 2 (Table 7.2) is

made up of statements which i t is known the L O L I T A system can produce, and

were selected f rom dialogues which had several different parameter settings. In the

case of D I A L 2 i t is not known i f a single parameter setting exists that can produce

this entire dialogue.

Table 7.1: The target dialogue, D I A L 1, which was produced in a single inter-

action wi th L O L I T A .

DIAL 1 LOLITA 1: I desire a success.
INPUT 1: I like you.
LOLITA 2: I know; why do you like me?
INPUT 2: You are beautiful.
LOLITA 3: I am glad because you think I am beautiful
INPUT 3: Do you like me?
LOLITA 4: Yes, I like you.
INPUT 4: Do you like me?
LOLITA 5: I slightly am bored and emotional.
INPUT 5: You are a machine.
LOLITA 6: I do not believe that I am a machine.
INPUT 6: Are you a machine?
LOLITA 7: No.
INPUT 7: Are you beautiful?
LOLITA 8: I do not know if I am beautiful.
INPUT 8: I am tired.
LOLITA 9: Tell me things.
INPUT 9: I am tired.
LOLITA 10: I slightly am bored.
INPUT 10: Are you tired?
LOLITA 11: No.

C h a p t e r 7: E v o l u t i o n a r y A l g o r i t h m s a n d D i a l o g u e 158

Table 7.2: The target dialogue, D I A L 2, which is a collection of utterances

f rom different interactions.

DIAL 2 LOLITA 1: I desire a success.
INPUT 1: I like you.
LOLITA 2: Why do you like me?
INPUT 2: You are beautiful.
LOLITA 3: I am glad because you think I am beautiful.
INPUT 3: Do you like me?
LOLITA 4: Yes. I like you.
INPUT 4: Why do you like me?
LOLITA 5: I do not know why I like you.
INPUT 5: You are a machine.
LOLITA 6: I do not believe that I am a machine.
INPUT 6: Are you a machine?
LOLITA 7: No.
INPUT 7: I am tired.
LOLITA 8: I understand.
INPUT 8: I am tired.
LOLITA 9: I slightly am bored.
INPUT 9: Are you tired.
LOLITA 10: No.
INPUT 10: Tell me if you believe that I am tired.
LOLITA 11: Yes, you are tired.

7 , 6 Application of E A s to L O L I T A

The environment is the source of information on which solutions are evaluated.

In theory this must correspond to all natural language utterances. In practice,

however, the current implementation of L O L I T A acts only on literal meaning.

Metaphors, idioms and humour are, therefore, excluded f rom the environment.

In deciding which plan boxes are to be activated, i t is not their absolute values

that are important, but rather their values relative to each other. Therefore, i t is

not the explicit values of the parameters that are to be optimised, but a shift in

value f rom that of the current hand optimised setting. For each plan box a range

of shift values (simply referred to as parameter values f r o m now on) of [-63,64]

was deemed sufficient, since these allow for a large range of possible behaviours

(if necessary this range can easily be increased). A solution's representation is,

C h a p t e r 7: E v o l u t i o n a r y A l g o r i t h m s a n d D i a l o g u e 159

therefore, a string of 124 (the number of plan boxes) integers. Furthermore, a

solution w i t h al l of its values set to 0 is identical to the current hand optimised

setting. The parameters of the plan boxes which control utterances of a particular

type are grouped together in blocks. For example, the three plan boxes labelled

cause_Af f e c t i o n P l a t o n i c are grouped together, as are the six which are labelled

show_AngerQf f ense. The components wi th in a block determines how a utterance

is carried out, e.g., different ways in which anger can be expressed. There are strong

interactions between the blocks of parameters, but weak interactions between the

parameters wi th in any particular block.

As mentioned previously some measure of how closely utterances generated

match those of the target dialogue is needed. The results given in the next section

use a very simple fitness function. A solution's fitness is in i t ia l ly set at zero, and

then increased by one for each utterance that exactly matches that in the target

dialogue. For the target dialogues discussed in this chapter a solution's fitness

is, therefore, an integer in the range [1,11]. The total number of utterances that

L O L I T A generates is eleven, and so this provides the upper bound on the fitness.

Furthermore, all solutions wi l l have a fitness of at least one, since wi th the current

'personality' L O L I T A always initiates a conversation wi th the phrase " I desire a

success." A more sophisticated fitness funct ion is introduced in Section 7.8.

Comparing the results of runs of a GA and EP is diff icul t since the underlying

system is continually changing and the data files regularly updated. Only single

trials of each algori thm are carried out, but these are sufficient to show the validity

of the approach.

7 o 7 Results

This section presents the results of applying a GA and EP to the problem of

finding plan box parameters. Other than variations in solution representation and

the details of the EP's mutat ion operator (discussed below), the GA and EP used

C h a p t e r 7: E v o l u t i o n a r y A l g o r i t h m s a n d D i a l o g u e 160

are identical to those described i n Sections 5.2 and 5.3 respectively.

The parameters controlling the plan boxes can each take one of 128 distinct

values. In implementing the GA, the subsymbolic representation adopted is that

of a binary string. Each of the penalties is encoded as a binary string of length

seven, and these are concatenated together to fo rm one string. As there are 124

plan box parameters the size of the search space is 2 7 x 1 2 4 RS 10 2 5 1 .

In applying EP to the penalty optimisation problem an integer subsymbolic

representation is adopted. Each of the penalties are stored as integers, and are

constrained to the range [-63,64]. A child is produced f rom a parent by mutat ing

each parameter Xi (i = 1 , . . . , 124) according to (and then truncating):

x\ = xi + y/5 • (M A X - F I T - f i t n e s s (J O) • N{0,1) i G { 1 , 2 , . . . , 124}

where M A X - F I T is the maximum fitness attainable (11 for the work discussed in

this section), f i tness(X) is the fitness of solution X = { .T, : i — 1 , . . . , 124} (i.e., the

number of correct utterances) and A r (0 ,1) is a standard normal random variable.

The above formula was selected since i t allows for solutions wi th a poor fitness to

be mutated by a large amount, while at the same time reducing the chance that

the mutated parameters fal l outside of the permitted range.

For both the GA and EP a population of 50 was used and they were executed

for 50 generations. The tournament size for EP was set at three. A single t r ia l

of each algorithm was carried out. Figures 7.1 and 7.2 show the online and offline

performance of the GA and EP run, for the target dialogues D I A L 1 and D I A L 2

respectively. The offline performance is the average fitness of all of the solutions in

a particular generation, while the online performance is the average fitness of all

solutions that have been generated up to a certain generation.

C h a p t e r 7: E v o l u t i o n a r y A l g o r i t h m s a n d D i a l o g u e .161

Figure 7.1: Online and offline performance for a t r ia l of the GA and EP wi th

D I A L 1 as the target dialogue.

D I A L 1
fitness

11.00

10.50

10.00

9.50

9.00

8.50

8.00

7.50

7.00

6.50

6.00

5.50

5.00

4.50

4.00

3.50

' •

/ i' '
I '
///

IS*

o.oo

optimal
EPoffline"
GA"offfine"
EP online
GA online

10.00 20.00 30.00 40.00 50.00
generation

C h a p t e r 7: E v o l u t i o n a r y A l g o r i t h m s a n d D i a l o g u e 162

Figure 7.2: Online and offline performance for a t r ia l of the GA and EP wi th

D I A L 2 as the target dialogue.

fitness
D I A L 2

optimal
EPoffline
GA offline
EP online
GA online

10.50

0.00

0.00 10.00 20.00 30.00 40.00 50.00
generation

Chapter 7: Evolutionary Algorithms and Dialogue 163

D I A L L O L I T A ' s incorrect utterances

1

G A 2: Tell me things.

6: I slightly am bored and emotional. 1

EP 8: I do not know i f I am beautiful; tel l things to me.

2

G A 2: I could not speak to you i f you repeated you like me.

6: I desire a success.

J: I could not speak to you i f you repeated A m I a machine? 2

EP 2: I know; I could not speak to you i f you repeated you like me.

7: I could not speak to you i f you repeated A m I a machine?

Table 7.3: The incorrect utterances generated by the best parameters

found when GA and EP were used to optimise the plan box parameters

for D I A L 1 and D I A L 2.

In the case of D I A L 1 the GA was able to f ind a set of parameters which

produced a dialogue of fitness 9, i.e., two utterances incorrect. EP performed

slightly better, discovering a solution of fitness 10. When D I A L 2 was used as the

target dialogue the GA was able to f ind a solution of fitness 8, and EP a solution

wi th fitness 9. These results are summarised in Table 7.3.

In the case of EP the incorrect utterance for D I A L 1 was " L O L I T A 8: I do

not know i f I am beautiful; te l l things to me." Such an utterance should not be

considered as wrong, i t is simply that the fitness funct ion is not very sophisticated.

Similarly for the GA and D I A L 1. For both the GA and EP, wi th D I A L 2 as the

target dialogue, the incorrect utterances for the best parameters found indicate

that the parameter settings were such that the input caused L O L I T A to become

offended quite easily.

A n interesting feature of the EP results is how the average fitness of a generation

rose to that of the best solution to date (Figures 7.1 and 7.2). I t appears that when

a better solution was discovered the average generation fitness would rise gradually

for several generations and then quickly rise to that of the best. There is, however,

Chapter 7: Evolutionary Algorithms and Dialogue 164

one notable exception to this which occured at generation 46 when D I A L 1 was the

target dialogue — see Figure 7.1. A t this point a solution of fitness 10 was produced

in a population the remainder of which had fitness 9. The solution of fitness 10

was, however, subsequently lost and the reason for this is now discussed. Although

a solution wi th fitness 10 is guaranteed a score of three in the tournament, many

other solutions in that population also scored a fitness of three since all but one

solution against which they were competing had a fitness of 9. When the process

of sorting the scores took place there were more solutions wi th a score of three

than there were places for them in the next generation and so some were lost. This

included the solution of fitness 10. A similar occurrence took place in the run wi th

D I A L 2. A olution of fitness 9 was discovered at generation 25, retained for one

generation, and then lost.

The failure to retain an improved solution is in part attributable to the poor

discriminatory power of the fitness function used. Since many solutions can have

the same fitness a lot of solutions often perform very well in the tournament,

and solutions wi th a maximum tournament score may be lost f rom the following

generation. The following section examines a fitness function which is able to use

additional information which the L O L I T A system is able to provide. This improves

the fitness function's discriminatory power, rewarding not just the words produced,

but the underlying actions which lead to their generation.

7 c 8 Improving the Fitness Function

The fitness function adopted in the previous section is very simple and unable

to take into account additional information which the L O L I T A system is able to

provide. On analysing an utterance the L O L I T A system infers information on the

local goals, subgoals, utterance types and action types of the speaker. Table 7.4

shows this information for the first seven utterances of D I A L 1.

Chapter 7: Evolutionary Algorithms and Dialogue 165

Table 7.4: The additional information which the L O L I T A system makes avail

able for the first seven utterances of D I A L 1.

LOLITA 1:
(I desire a success.)

INPUT 1:
(I like you.)

speaker: lolita
local goal: ShowEmot ion Goal NeutralEmotion
subgoals:
utterance types: AllSame
action types: default_tacticPB

speaker: roberto
local goal: InformGoal
subgoals:
utterance types: Statement
action types:

LOLITA 2: speaker: lolita
(I know; why do you like me?) local goal: InformGoal

subgoals: AnyGoal, BelnformedGoal
utterance types: Statement, Noise, Question
action types: tellPB, why_questPB

INPUT 2:
(You are beautiful.)

LOLITA 3:
(I am glad because you think
I am beautiful.)

INPUT 3:
(Do you like me?)

LOLITA 4:
(Yes, I like you.)

speaker: roberto
local goal: InformGoal
subgoals:
utterance types: Statement
action types:

speaker: lolita
local goal: ShowEmotionGoal Serenity
subgoals:
utterance types: AllSame
action types: show .Serenity

speaker: roberto
local goal: BelnformedGoal
subgoals:
utterance types: Question
action types:

speaker: lolita
local goal: InformGoal
subgoals:
utterance types: Statement
action types: answerPB

Chapter 7: Evolutionary Algorithms and Dialogue 166

The fitness funct ion can be modified to make use of the additional information

given in Table 7.4. The fitness function used in this section calculates a solution's

fitness by in i t ia l ly setting i t to zero, and increasing i t by one for each utterance,

local goal, subgoal, utterance type and action type, which exactly matches that of

the target dialogue. This fitness funct ion is less sensitive to the utterance itself and

more sensitive to the behaviour required. For D I A L 2 the information associated

with the individual statements was used.

Using this additional information a fitness, which is an integer in the range

[5,55] can now be assigned to solutions — 5 forms the lower bound since L O L I T A

always initiates a conversation wi th the same utterance and associated information.

For each of the two target dialogues a single t r ia l of the GA and EP were carried

out. The GA and EP used the improved fitness funct ion and in addition two

modifications were made to EP. In the tournament phase of the algorithm i f two

solutions have the same fitness then a win is awarded wi th probabili ty 0.5. This

modification is aimed at helping to overcome the problem of EP 'losing' a solution

which arose in the experiments w i th the first of the fitness functions discussed.

Secondly, the EP's mutat ion operator is altered so that a child is produced f rom

a parent by mutat ing each parameter x, (i = 1 , . . . ,124) according to (and then

truncating):

x ' { = X i + ^ / (M A X - F I T - fitness(X)) • N(0,1) i e { 1 , 2 , . . . , 124}

where M A X - F I T is the maximum fitness attainable (55 for the work discussed in

this section), fitness(A') is the fitness of solution A' = {x{ : i = 1 , . . . ,124} and

./V(0,1) is a standard normal random variable.

Figures 7.3 and 7.4 show the online and offline performance of the GA and EP

run, for the target dialogues D I A L 1 and D I A L 2 respectively.

Chapter 7: Evolutionary Algorithms and Dialogue 167

Figure 7.3: Online and-offline performance for a t r i a l of the GA and EP w i t h

D I A L 1 as the target dialogue. The fitness function which takes into account

L O L I T A ' s additional information was used.

DEAL 1
fitness

optimal
EPoffline
EP online
GAofrilne
GA online

52.00

48.00

44.00

42.00

36.00

30.00

28.00

0.00 10.00 20.00 30.00 40.00 50.00
generation

Chapter 7: Evolutionary Algorithms and Dialogue 168

Figure 7.4: Online and offline performance for a t r ia l of the GA and EP w i t h

D I A L 2 as the target dialogue. The fitness funct ion which takes into account

L O L I T A ' s additional information was used.

fitness

56.00

54.00

52.00

50.00

48.00

46.00

44.00

42.00

40.00

38.00

36.00

34.00

32.00

30.00

28.00

26.00

/ / /
• I / *

i ' "

optimal
EPoffl'ine"
EP online
GAofrilne"
GA online

0.00 10.00 20.00 30.00 40.00 50.00
generation

Chapter 7: Evolutionary Algorithms and Dialogue 169

Addit ional
information

D I A L 1 D I A L 2 Addi t ional
information GA EP GA EP

utterance 9 9 8 7
local goal 10 10 8 9
subgoals 11 11 11 10

utterance types 9 9 8 9
action types 8 8 8 8

Fitness 47 47 43 43

Table 7.5: Decomposition of the results achieved wi th the improved

fitness funct ion. The op t imum value for each of the values is 11.

In the case of D I A L 1 the GA was able to f ind a solution w i t h a fitness of 47

by generation 15, and EP a solution of fitness 47 by generation 8. For D I A L 2 the

GA discovered a solution of fitness 43 by generation 7, and EP a solution of fitness

43 by generation 14. The breakdown of these results is shown in Table 7.5.

Again the exact matching of utterances resulted in statements such as " L O L I T A :

Why do you like me?" in place of " L O L I T A : I know; why do you like me?" being

scored as incorrect. Similar instances arose wi th the matching of the additional

information. For example, i f the utterance types are "Statement, Noise, Question"

then "Statement, Question" is currently scored as incorrect. A fitness value of

0.666 would be more appropriate. There is clearly much scope for improvement in

the discriminatory power of the fitness function.

7 . 9 Discussion

The results show that both a GA and EP were reasonably successful at the dialogue

optimisation problem presented. The problem is an example of one for which

the subsymbolic representation adopted has strong interactions between blocks of

subsyrnbolic components, but weak interactions between the components of any

particular block. These results, although preliminary, do lead to some interesting

points worthy of further consideration.

Chapter 7: Evolutionary Algorithms and Dialogue 170

For both the GA and EP the average fitness of solutions in subsequent gen

erations steadily improved. No attempt was made to tune the settings of the

evolutionary algorithms themselves. I n the case of the GA such settings include

the crossover and mutat ion probabilities. Other components of the GA that may

be altered include the solution representation (e.g., integers), crossover type and

selection mechanism. The performance of EP may be improved by altering the

tournament size, or the formula controlling the amount of mutat ion. Furthermore,

i t is likely that by increasing the population and generation size improved results

can be expected. This has not been studied to date since wi th a population and

generation size of 100, the runt ime (on a Sparc4 workstation) can be expected to be

of the order of two days. Furthermore, evaluating any differences i n performance

is diff icul t since the underlying system is continually being modified.

For the. dialogues and fitness functions considered the fact that both a GA

and EP are able to discover solutions which perform well indicates that both a

bottom-up and a top-down approach is a suitable means of solution construction.

The discriminatory power of the fitness function needs to be further improved.

Ideally some quantitative measure of semantic distance would be used (Short et

al. 1994a, 1994b). This would entail f inding some quantitative measure for the

similari ty of the meaning of two sentences. Another approach would involve making

better use of the information that the L O L I T A system is capable of producing.

W i t h an improved fitness function the current l imi ta t ion of having to apply the

EAs to known dialogues can be removed. Evolving the plan box parameters so

that the resulting dialogue exhibits a certain personality is the long term aim. e.g.,

finding the parameters which result in L O L I T A becoming easily offended. Once

sets of parameters for different behaviours have been determined they can be used

to run L O L I T A wi th that 'personality'.

Chapter 7: Evolutionary Algorithms and Dialogue 171

7,10 ummary

This chapter provides evidence that a hybr id symbolic/subsymbolic approach can

be successfully applied within the dialogue module of a large scale natural language

processor. Adopting such an approach allows the dialogue module to enjoy many

of the advantages of a well constructed theory, while at the same t ime allowing for

the flexibilit}' which a subsymbolic approach is capable of providing. The complex

dialogues which can be generated validate the approach.

Evolutionary algorithms have been applied to the problem of searching the

space of the subsymbolic representation so that a solution which exhibits a certain

behaviour can be found. The interactions between blocks of the subsymbolic com

ponents are strong, but those between individual components of a block are weak,

i.e., the subsymbolic representation displays Strong-Weak interactions (see Section

1.3). For the dialogues and fitness functions considered both a G A and EP were

able to overcome the interactions which may occur and construct solutions that

perform well. A more general application of the approach is currently l imi ted by

the poor discriminatory power of the fitness funct ion.

Evolutionary Algorithms and

h R
o t o .e CO e i 10

This chapter introduces the th i rd and final example of a problem for which a hybr id

symbolic/subsymbolic approach is successful, and as such provides fur ther evidence

for the 'w id th ' of its application. A s w i th the two problems considered previously

the approach taken to solving is to in i t ia l ly adopt a symbolic approach and then

move to a subsymbolic representation to allow for greater flexibil i ty. This problem

is an example of one for which there are strong interactions between the subsymbolic

components. The problem considered is f r o m the field of speech recognition and

involves t rying to improve the word matching stage of the A l I R A I D system — a

speech recognition aid for use by deaf students in lectures which is currently being

developed at the University of Durham (Collingham 1994).

A word lattice is a symbolic data structure which can be used to contain the

word hypotheses generated by the first stage of a speech recognition system. Sev

eral subsymbolic approaches have been suggested as a means of representing the

likelihood of a particular word occuring at a particular point, e.g., assigning proba

bilities. A U R A I D uses a dynamic programming algorithm to score the words in the

C h a p t e r 8: E v o l u t i o n a r y A l g o r i t h m s a n d Speech R e c o g n i t i o n 173

lattice — they are then ranked according to their score. The algorithm contains

several penalties, which are represented subsymbolically. These penalties can be

selected by hand, but there are strong interactions between the subsymbolic com

ponents and an automatic approach would be desirable. This chapter examines

how a GA and EP can be applied to the problem of penalty determination and

compares their performance. EP is then used to optimise the parameters for several

small data sets and the parameters are shown to be robust when applied to a large

set of unseen data (Collingham 1994; Nettleton and Collingham 1995).

8.1 Spoken language understanding systems

As improvements have been made in automatic speech recognition the assessment

tasks have become progressively more challenging (ARPA 1994). Systems capable

of continuous speech digit recognition, or isolated word recognition systems, are no

longer sufficient. A generic speech recognition system must be able to cope w i t h real

spontaneous speech, very large vocabularies and be domain independent. Modern

day systems are striving towards this goal. A further challenge for these systems is

that not only should they be capable of word recognition, but they should be able

to understand what is being said and act upon i t . In other words go beyond the

task of speech recognition, and attempt to understand spoken language.

A spoken language understanding system is one which integrates a speech recog

ni t ion system w i t h a text-based natural language (NL) understanding system. The

following are methods which may be used to produce an interface between the two

systems:

N - B e s t : the speech recogniser passes a list of the A r best sentence hypotheses

to the N L understanding system for analysis — a typical value for N would

be 10. The NL system then analyses these sentences to determine the most

likely recognition. The analysis typically includes making use of semantics

C h a p t e r 8: E v o l u t i o n a r y A l g o r i t h m s a n d Speech R e c o g n i t i o n 174

and pragmatics.

M u l t i p l e K n o w l e d g e Sources : the speech recogniser makes use of mult iple

knowledge sources. Some of these can be expected to be provided by the N L

system, e.g., semantics and pragmatics. Others are provided by the speech

recogniser. e.g., a bigram language model. During recognition each sentence

hypothesis is passed to each knowledge source for assessment.

S u m m a r y : the output of the speech recogniser is passed directly to the N L sys

tem for analysis. The N L systems attempts to parse and/or semantically and

pragmatically analyse the recogniser output . The N L system then outputs

a ' t id ied ' up version, or summary, of the recogniser output. This method is

particular^' suitable for the recognition of spontaneous speech.

A n appropriate data structure that may be bui l t prior to generating sentence

hypotheses is a word lattice (Murvei t et al. 1993; Baggia et al. 1992; Ljo l je and

Riley 1992). A word lattice is a symbolic structure that contains the set of word

hypotheses produced at the acoustic matching stage. Each word hypothesis is

characterised by the start and end points of the spoken utterance port ion against

which it has been matched, and a score representing its acoustic likelihood. The

word lattice contains many more word hypotheses than the number of actual spoken

words, and word hypotheses may overlap one another. A simplified example of a

word lattice is shown in Table 8.1.

The typical method of determining the acoustic likelihood of a word's pronun

ciation involves collecting a corpus of recorded speech for a particular domain. A

subsymbolic representation is then adopted which assigns to each word, or sub-

word (i.e., phoneme), the probability of i t being spoken. One disadvantage of this

approach is that the likelihood scores need to be re-calculated for each new do

main, and this involves collecting a new corpus of recorded speech. In addition, i t

is unlikely that the acoustic models generated wi l l be robust enough for vocabu

lary and domain independence. In order to overcome this a dynamic programming

algorithm is used to calculate a word's acoustic likelihood. The algorithm used in

C h a p t e r 8: E v o l u t i o n a r y A l g o r i t h m s a n d Speech R e c o g n i t i o n 175

spoken
input

this course is on software maintenance

spoken
phoneme
form

D I s k 0 s I z Q n s Q f t u e@ r m e l n t @ n @ n s

recognised
phoneme
form

D s k 0 I z Q s Q f t 1 e@ r m e l n t @ n n (9 s

word

lattice

this course is on software maintenance
word

lattice

earth ask us loss off tell room an to known as word

lattice
these call saw law may ten nice

word

lattice carry soft air main

word

lattice
courses meant

Table 8.1: A .simplified example of a word lattice

this work contains four acoustic parameters. The parameters can be represented

subsymbolically (real-valued) and the settings selected by hand (Collingham and

Garigliano 1993).

The approach outlined in this chapter is to use evolutionary algorithms to search

the space of the parameters' subsymbolic representation, and so automatically gen

erate the required acoustic parameters for word lattice generation. The evolution

ary algorithms discover a near-optimum solution for a small set of data (113 words

input and a 1984 word dictionary). These parameters give encouraging results on

a larger unseen set of data (5057 words f r o m the L U N D corpus (Svartvik 1992)

and a 2637 word dictionary) and shows that the parameters are robust enough

to withstand changes in vocabulary and domain. In fact the only dependence is

on the performance of the underlying continuous speech phoneme recognition sys

tem. Should this be improved, then the evolutionary algorithm may be re-run to

automatically generate a new set of parameters.

C h a p t e r 8: E v o l u t i o n a r y A l g o r i t h m s a n d Speech R e c o g n i t i o n 176

8 „ 2 The A U R A I D System

The A U R A I D system is a speech recognition aid for use by deaf students in lec

tures which is currently being developed at the University of Durham. A domain

independent syntactic sub-system is used for word recognition f r o m a continuous

sequence of phonemes. The front end processing is to be performed by the A U R I X

continuous speech phoneme recognition system developed by the D R A (Russell

1992). The dynamic programming stage matches the phoneme input wi th a dictio

nary to produce a word lattice. The parsing stage makes use of an 'anti-grammar'

in order to determine the best sequence of words through the lattice (Collingham

and Garigliano 1993). A U R A I D uses a vocabulary of up to 2637 words and works in

real-time using a simulated front end. Experiments are now taking place making

use of the Aurix f ront end, which is currently only a prototype. I n addition work is

in progress to integrate fu l ly wi th the L O L I T A natural language processing system

using all three of the interfacing methods described in the introduction, to provide

a complete spoken language understanding system.

8.3 Data Preparation

Several lectures f rom different courses on various aspects of software engineering

were recorded on to audio cassette. The text of these lectures was typed into a com

puter as accurately as possible and included partial words and f i l led pauses such

as, "urns" and "errs," together w i t h an indication of the location of short and long

pauses. The phoneme representation for each word in each lecture was obtained

f rom the Oxford Advanced Learner's Dictionary (M i t t o n 1986). The phoneme rep

resentation of each lecture was then corrupted in order to accurately reproduce

the performance of a continuous phoneme recognition system by using real data

figures obtained during the assessment of Armada (Browning el al. 1990) which

is the forerunner for Aurix. These corrupted phoneme lecture fdes form the basis

C h a p t e r 8: E v o l u t i o n a r y A l g o r i t h m s a n d Speech R e c o g n i t i o n 177

of the simulation and files containing approximately 20%, 30% and 40% phoneme

error rate were produced.

8 o 4 W o r d La t t i ce Generat ion

A word lattice is a symbolic data structure which holds detailed information re

sulting f rom the lexical matching (word hypothesis) routine of a speech recognition

system. Informally, each word of a dictionary is compared wi th acoustic/phonetic

data. Each word is assigned a score indicating how closely i t matches a particular

portion of data. Paths may be traced (parsed) through the word lattice by joining

up words that span consecutive portions of data to fo rm sentence hypotheses.

Dynamic programming is used to match each word in the dictionary w i t h a

series of phonemes in order to bui ld a lattice of spoken word hypotheses. Dynamic

programming is a mathematical concept that has been used for many years for

multistage optimal decision calculation. In the field of speech recognition (where i t

is also known as dynamic t ime warping) i t was used ini t ia l ly in isolated word recog

nit ion systems for comparison of segments of speech wi th stored word templates.

This was extended to continuous word recognition by storing each template as a

series of frames which wei-e then compared to the segments of speech. A detailed

description of dynamic programming for speech recognition is given by Silverman

and Morgan (1990). By assuming a continuous stream of phonemes as its input ,

A U R A I D does not deal wi th frames or segments of the speech signal. However,

dynamic programming can be used to match stored template words, made up of a

series of phonemes, wi th the input phonemes.

There are three main approaches which use dynamic programming in contin

uous speech recognition: the two level algorithm (Sakoe 1979), the level building

algorithm (Myers and Rabiner 1981), and the one pass algorithm (Bridle et al.

1982). Although each differs in detail, the two basic stages involved in each al-

Chapter 8: Evolutionary Algorithms and Speech Recognition 178

gorithm are word level analysis a.nd phrase level analysis. I n word level analysis,

each word in the dictionary is matched against all possible (consecutive) sequences

of the input phonemes. Phrase level analysis determines the best scoring sequence

of words that spans the entire phoneme input. These two stages comprise the two

level algori thm, the others being optimisations which integrate the two stages.

In A l l RAID a word level analysis using dynamic programming is undertaken,

and then a beam search used for the phrase level analysis. The word level analysis

algorithm models explicit ly the kinds of errors which may occur, both wi th in words

and between words. That is inserted phonemes, deleted phonemes, substituted

phonemes and word final phoneme deletion are considered. The distance or simi

lari ty score between phonemes can depend on a variety of factors, and varies f rom

algorithm to algorithm. Most algorithms group phonemes into classes according to

their confusability. The phoneme classes used by A lJRAlD are based on manner of

articulation and are shown in Table 8.2. The distance between phonemes wi th in

the same class is then less than that between phonemes f rom different classes. This

can be measured, for example, by absolute values or logarithms of the probabili ty

of confusing one phoneme for another based on experimental data. Collingham

(1994) found that long words were unduly penalised because of their length and

were not recognised as well as they should be. To overcome this inadequacy the

distance scores are normalised according to the length of the word being considered.

One of the base case equations used in the word level analysis algorithm is:

Chapter 8: Evolutionary Algorithms and Speech Recognition 179

Class Name Phonemes

0 Plosive p b t d k g
1 Affr icat ive tS dZ
2 Strong Fricative s z S Z
3 Weak Fricative f v T D h
4 Liqu id /Gl ide 1 r B j
5 Nasal . n m N
6 Vowel i I E { A q O U u 3 V ©

a l e l ol aU @U I® e® U@

Table 8.2: Phoneme classes used by A U R A I D

del ..pen sub^pen(w.l.t) . r„, „

W + * w ' + ™ { S (r ' " M -
2.0 X deljpen sub_pen(u\Lt) . . , r / x ^ v> ^

/vw + % L) + ™ « < S (r ' " (r) " 2 ' ' " 2)) } '

Other base cases are used for p = 2 and p = 3 (Collingham 1994) and the

general equation is:

. , insjpen sub-pen(w,p,t)
S(w,p, /,) = m m { + N ^ w)

) + S(w,p- 1, * - 2);

subjpen(iv,p,t)
1 K ' r 1 + S(w,p - l , t - 1); (8.2)

J V yw)
deLpen sub.pen(w,p,t)

A (i f j) A'(w)
2.0 x deLpen sub.pen(w,p,i)

N(w) + NH +S(-VP-3,t-2) }

where S(w. p,t) represents the score for phoneme p of word w when matched against

input phoneme t, R is the set of words in the dictionary used by A l i R A I D and N(r)

is the length in phonemes of the r ' t h word. The three penalties, insjpen, deLpen

and sub-pen are represented subsymbolically (real-valued). Each returns a value

Chapter 8: Evolutionary Algorithms and Speech Recognition 180

independent of the particular phoneme being considered, wi th the exception of

sub-pen which is divided into two separate cases. The first of these cases penalises

phonemes in which the substitutions are of the same class. The second case allows

a different penalty to be used for phonemes which are substituted wi th ones of a

different class. There are, therefore, four penalty values to be chosen. In previous

work (Collingham and Garigliano 1993) these settings have been selected by hand,

and this method of phoneme distance calculation produced better results than

other subsymbolic approaches, e.g., using logarithms which used the probability of

confusing one phoneme for another.

In both Equations 8.1 and 8.2, a min imum score choice is to be taken between:

the last input phoneme being an insertion error; the current input phoneme being

correct or a substitution error; a deletion of the previous phoneme of the current

word or the final phoneme of the previous best scoring word. I n addition, the last

line of each equation represents the occurrence of two consecutive deletion errors.

Consecutive insertion errors are not modelled because they are not produced by

the simulated phoneme recogniser (if required a simple extension to the equations

could model this). Finally, for each input phoneme the end score for each word is

adjusted to represent the local score for that word i f i t were to end at that point

in the input.

Given a string of phonemes and a dictionary, the application of the above

dynamic programming algorithm results i n a data structure called a word lattice,

a simplified example of which is shown in Table 8.1. The position of the words on

different levels in this simplified lattice is not too significant, in reality each word

in a box would have associated wi th i t a score representing how well i t matches the

phonemes spanned by the box. In addition to the correct path through the lattice

several other paths can be traversed f rom the beginning to the end. For example,

"this courses loss off tell air main to known as", or "these call us on soft law room

an ten nice" (Table 8.1). A phrase level analysis stage determines the best path

according to some criteria, and the text output f rom this stage is the the system's

Chapter 8: Evolutionary Algorithms and Speech Recognition 181

hypothesis as to what was spoken (Collingham 1994). The work of this chapter is

not directly concerned wi th the phrase level analysis. However, as the output of

the word level analysis is the input to the phrase level analysis, i t is important that

the word level analysis be as accurate as possible. This then reduces the number

of errors which may be propagated through the system.

To date the subsymbolic components which correspond to the penalties for

phoneme insertion, deletion, and the two for substitution have been selected by

hand. The use of EAs as an automatic approach to searching the space of the

subsymbolic representation is now discussed.

8 , 5 A U R A I D and EAs

The environment is a continuous stream of phonemes f rom which words are ex

tracted producing a word lattice according to the algorithms discussed above. To

create the phoneme string a piece of text consisting of 113 words was converted to

phonemes and corrupted by approximately 20%, 30% and 40% to create the data

hies corrupt20, corrupt30 and corrupt40 respectively. The dictionary used in

the dynamic programming stage contained 1984 words.

The penalties ms_pen, deLpen and both subjpens are represented numerically

and are constrained to be in the range [1,256]. I n applying EP i t isn't necessary to

restrict the range, but this was done in order to allow for comparison w i t h a GA

which uses a fixed length binary subsymbolic encoding.

A fitness measure is needed in order to determine the performance of the penal

ties used in the dynamic programming algorithm. For each input phoneme, dy

namic programming is used to calculated a score for each dictionary word on the

assumption that it ends at that phoneme. These words are then ranked according

to their score, a rank of 1 being the best. During penalty optimisation, the end

point of each correct word in the corrupted input phoneme sequence is known (this

Chapter 8: Evolutionary Algorithms and Speech Recognition 182

is not the case during actual recognition). The ranks of the correct words i n their

correct position are found and their average value used as the fitness value. The

optimisation process is aimed at minimising the fitness value wi th a fitness of 1

being the op t imum (although this may not be attainable).

This section presents the results of applying a GA and EP to the problem of

estimating the penalties of Equations 8.1 and 8.2. Other than variations i n solution

representation and the details of the EP's mutat ion operator (discussed below), the

GA and EP used are identical to those described in Sections 5.2 and. 5.3 respectively.

In implementing the GA, the subsymbolic representation adopted is that of

a binary string. Each of the penalties is encoded as a binary string of length

eight, and these are concatenated together to form one string. Since there are four

penalties to be encoded the size of the subsymbolic representation's search space

is 256 4 ft; 4 x 10 9.

In applying EP to the penalty optimisation problem a real-valued subsymbolic

representation is adopted. Each of the penalties are stored as real numbers (six

decimal places), and are constrained to the range [1,256]. A child is produced f rom

a parent by mutat ing each parameter X{ (?' = ! , . . . , 4) according to:

where fitness(A') is the fitness of solution X = {x{ : i — 1 , . . . , 4 } and /V(0,1)

is a standard normal random variable. The above formula was selected since i t

allows for solutions wi th a poor fitness to be mutated by a large amount, while at

the same time reducing the chance that the mutated subsymbolic components fa l l

8 . 6 Results

v/fitness(A') • A^(0,1) Xi + *G { 1 , 2 , 3 , 4 }

Chapter 8: Evolutionary Algorithms and Speech Recognition 183

outside of the permit ted range [1,256]. Should a mutat ion result i n a component

fall ing outside of this range then i t is set to the nearest allowable value.

For both the GA and EP a population of 50 was used, and they were executed

over 50 generations. The tournament size for EP was set at three. For each of the

GA and EP, 11 trials were carried out using corrupt20, and 31 trials for each of

corrupt30 and corrupt40. The fitness of the best solution found in each of the

runs is shown in Table 8.3 together w i th the generation at which the best solution

was discovered (in parenthesis). The mean and standard deviation of each set of

results is also given.

The Figures 8.1, 8.2 and 8.3 each show the online and offline performance of the

median run of the GA and EP for the data corrupt20, corrupt30 and corrupt40

respectively. The offline performance is the average fitness of all of the solutions in

a particular generation, while the online performance is the average fitness of all

solutions that have been generated up to a certain generation.

The results of the trials conducted wi th corrupt20 showed that i n each t r ia l

both the GA and EP found opt imal or near opt imal solutions. No difference in

performance was observed.

A comparison of the performance of the GA and EP for corrupt30 indicate

that EP outperformed the GA. The result was not statistically significant (t = 1.04

wi th DF = 52 gave P > 0.1) unless the EP outlier (2.3) and the GA outlier (2.0)

were removed (t = 2.36 w i t h DF = 56 gave P < 0.05).

W i t h corrupt40 the results obtained showed that EP outperformed the GA.

The result was not statistically significant (/ = 1.31 w i t h DF = 59 gave P > 0.1)

unless the EP outlier (2.9) was removed (/, = 2.17 wi th DF = 54 gave P < 0.05).

Chapter 8: Evolutionary Algorithms and Speech Recognition 184

Table 8-3: The. best solutions found by each the GA and EP for various levels of

phoneme corruption. Each algorithm was run 31 times (except for the data file

corrupt20 which was run 11 times) and the generation at which the best solution

was found is shown in parenthesis.

Corruption 20% 30% 40%
Algor i thm EP GA EP GA EP GA

1.1 (0) 1.1 (0) 1.4 (21) 1.4 (42) 2.3 (22) 2.6 (25)
1.0 (30) 1.0 (2) 1.4 (38) 1.5 (3) 2.5 (44) 2.4 (6)
1.1 (0) 1.1 (0) 1.6 (23) 1.5 (18) 2.4 (17) 2.4 (26)
1.1 (0) 1.1 (0) 1.6 (48) 1.4 (15) 2.6 (30) 2.2 (2)
1.1 (0) 1.0 (27) 1.5 (37) 1.6 (8) 2.4 (14) 2.4 (8)
1.1 (0) 1.0 (11) 1.4 (34) 1.5 (15) 2.9 (48) 2.3 (1)
1.0 (5) 1.1 (0) 1.4 (11) 1.5 (28) 2.3 (35) 2.4 (18)
1.0 (4) 1.1 (0) 1.5 (16) 1.6 (5) 2.3 (8) 2.4 (19)
1.0 (42) 1.0 (6) 1.5 (9) 1.5 (6) 2.4 (49) 2.6 (4)
1.0 (4) 1.0 (21) 1.4 (8) 1.5 (5) 2.4 (8) 2.4 (24)
1.0 (12) 1.0 (3) 1.6 (25) 1.5 (6) 2.3 (9) 2.4 (26)

2.3 (28) 1.5 (9) 2.3 (47) 2.6 (1)
1.4 (30) 1.4 (19) 2.3 (25) 2.1 (16)
1.5 (39) 1.7 (8) 2.3 (15) 2.2 (2)

Fitness of 1.4 (49) 1.6 (8) 2.3 (30) 2.6 (0)
best solution 1.4 (15) 1.4 (14) 2.2 (0) 2.2 (0)

found 1.4 (49) 1.5 (16) 2.3 (13) 2.2 (14)
1.5 (46) 1.5 (32) 2.3 (24) 2.4 (12)
1.5 (0) 1.5 (0) 2.3 (10) 2.5 (17)
1.4 (8) 1.5 (9) 2.3 (7) 2.4 (1)
1.5 (17) 1.6 (0) 2.4 (36) 2.4 (11)
1.7 (26) 2.0 (7) 2.1 (49) 2.2 (37)
1.4 (6) 1.7 (0) 2.3 (38) 2.4 (9)
1.4 (40) 1.5 (12) 2.3 (37) 2.4 (18)
1.4 (7) 1.5 (1) 2.2 (34) 2.4 (9)
1.6 (44) 1.6 (6) 2.2 (44) 2.4 (39)
1.4 (20) 1.5 (33) 2.4 (31) 2.4 (21)
1.4 (1) 1.5 (0) 2.3 (19) 2.5 (10)
1.6 (13) 1.6 (10) 2.3 (16) 2.4 (19)
1.5 (21) 1.5 (4) 2.4 (10) 2.6 (11)
1.4 (14) 1.5 (8) 2.4 (15) 2.3 (20)

Mean (2 d.p.) 1.05 1 .05 1.50 1.54 2.35 2.39
SD (3 d.p.) 0.052 0.052 0.172 0.114 0.139 0.133

Chapter 8: Evolutionary Algorithms and Speech Recognition 185

Figure 8.1: Online and offline performance for the median t r ia l of the GA and

EP wi th the data file corrupt20.

Corruption of 2©%
fitness

10.00 1 1 1 1 1 1 G A online
10.00 * OA offline
9.50 - t

i
E P online

9.00

8.50

tt

h
<\

_ li
'',

EP offline

optimal

8.00

7.50 _ V ' ,
• 1 ' 1

7.00

6.50

!l ' '
„ : \ i i ,

!V >!••

i \ A >•

• 1 ! t i * i • 6.00

5.50 _ li \i/vU i
1 >: I " '•

-
5.00

4.50

i 'if

_ ! \
i »

—

4.00
i »

* •' \

3.50 i
V 1 \

3.00

2.50

i
i

— i
i

* % *"**.

* * * _ \

—

2.00
i

_
 \

1.50

1.00

i

* * \
1.50

1.00
i i 1 I i 1 generation

0.00 10.00 20.00 30.00 40.00 50.00
generation

Chapter 8: Evolutionary Algorithms and Speech Recognition 186

Figure 8.2: Online and offline performance for the median t r ia l of the GA and

EP wi th the data file corrupt30.

Conriaptiom off 30%
fitness

130.00

120.00

110.00

100.00

90.00

80.00

70.00

60.00

50.00

40.00

30.00

20.00

10.00

0.00

1 1 1 1 i

— u
1'',
1 1 1

1 ''•
~ I l l h\

: \ i i

- iV '
* 1 *

-

" 1 *
• I 1

- j \ \

- \ l \ \ -

'i \\A
> \ \ / \
1 * 5 * * * • :

' \ \ :' •••

, V'*' •• -
' '•• .•

i
\

-
\
\

*•**'* —

-

1 1 i i i

G A online

GXofffine''

E P online

E P offline "

optimal

0.00 10.00 20.00 30.00 40.00 50.00
generation

Chapter 8: Evolutionary Algorithms and Speech Recognition 187

Figure 8.3: Online and offline performance for the median tr ial of the GA and

EP wi th the data file corrupt40.

Corruption of 4©%
fitness

GA online
GAoTfluie 300.00
EP online

EP offline

optimal

280.00

260.00

240.00

220.00

200.00

180.00

160.00

140.00

120.00

100.00

20.00

0.00 10.00 20.00 30.00 40.00 50.00
generation

Chapter 8: Evolutionary Algorithms and Speech Recognition 188

§ o ? Discussion

W i t h c o r m p t 2 0 the problem appears to be easy solvable. Solutions w i t h a near

op t imum fitness were often found in the in i t i a l randomly generated generation and

a wide range of parameter settings were able to produce near op t imum results.

This indicates that , for this low level of corruption, the search space contains

large 'plateaus' of near optimal solutions. W i t h such a low level of corruption the

amount of interaction between the subsymbolic components is low and the problem

although solvable using EAs could also be tackled by a range of other methods,

e.g, hi l l-cl imbing and random search.

As the level of corruption is increased the structure of the search space changes.

The degree of interaction between the subsymbolic components increases, and dif

ferences emerge in the relative performance of a GA and EP. A t 30% and 40%

levels of corruption, EP outperforms a GA. The reason for this appears to be that

the search spaces contains fewer op t imum solutions (than for 20% corruption),

and that by emphasising a top-down approach EP is able to overcome the strong

interactions which can occur between components.

The problem considered in the previous section used a data set of 113 words

corrupted to varying degrees and a dictionary of 1984 words. The results pre

sented show that EP outperformed the GA. Collingham (1994), and Nettleton and

Collingham (1995) have applied EP to larger problems and some of these results

are now discussed.

Two files of 113 and 112 words were converted to phonemes and corrupted

by 25.6% (f i l e l) and 26.0% (f i l e 2) respectively. A dictionary containing 1984

words was used by the dynamic programming algorithm to match the phoneme

input in the construction of a word lattice for each of these data sets. The fitness

function applied used the average rank of the words in the two lattices. EP (as

described above) wi th a population of 100 was executed over 100 generations using

a tournament size of five. The best solution found had the following settings (to

Chapter 8: Evolut ionary Algor i thms and Speech Recognit ion 189

1 d.p.) for the acoustic parameters: ins-pen = 96.7, del.pen = 95.1, a,nd the two

subjpens 94.7 (same class) and 214.8 (different class). The average rank of the

words in the lattice generated for f i l e l and f i l e 2 was 1.7 and 2.0 respectively.

To demonstrate the robustness of the parameters with regards to the vocab

ulary, the size of the dictionary was increased by almost 33% from 1984 to 2637

words. Using the above parameters the average rank of the words in the lattice

generated for f i l e l and f i l e 2 was 1.7 and 2.2 respectively. A further demonstra

tion of robustness concerning domain independence was also considered. A passage

from the LUND corpus (Svartvik 1992) which contained 5057 words was corrupted

by 25%, and a 2637 word dictionary used in the construction of the lattice. Using

the above parameters the dynamic programming algorithm created a word lattice

with an average word rank for the correct words of 2.2.

With the parameters generated Collingham (1994) demonstrated that for the

passage from the LUND corpus and a 25% phoneme error rate the word recognition

phase of A U R A I D is capable of almost 70% success. The results were in all cases an

improvement on those achieved when the parameters for the dynamic programming

algorithm were set by hand (Collingham and Garigliano 1993).

Chapter 8: Evolu t ionary Algor i thms and Speech Recognit ion 190

8o8 Summary

A word-lattice is a symbolic data structure which may be used at the word match

ing stage of a speech recognition system. The A U R A I D system uses a dynamic

programming algorithm for word level analysis in order that ranks can be assigned

to words in a lattice. The dynamic programming algorithm used contains four

penalties which can be represented subsymbolically (real-valued). There are strong

interactions between the subsymbolic components, and, although their values can

be set by hand, an automatic means of selection is prefered. A GA and EP can be

used to automatically select the penalties and EP was used to improve the perfor

mance of a speech recognition system. The results of this chapter provides further

evidence of the success of a hybrid symbolic/subsymbolic approach.

Chapter 9

Conclusion

The first part of this chapter examines if this thesis has satisfied the criteria for

success which were laid out in Chapter 1. The thesis concludes with some possible

directions for future research.

In order to determine the success of an approach to problem solving which uses

a combination of symbolic and subsymbolic methods, several open research prob

lems were examined. The examples taken were from fields of A I which have been

researched in the Department of Computer Science at the University of Durham:

shape representation, natural language processing, and speech recognition. In tack

ling these problems all benefited from a hybrid symbolic/subsymbolic approach.

The shape representation problem was examined in great detail so that the

'depth' of the approach could be demonstrated. The use of IFSs for shape repre

sentation allows for the results of a comprehensive theory to be brought to bear on

the problem. In particular a result of the theory proves that an IFS can always be

found for an arbitrary shape, and the Collage Theorem provides a means by which

one may be found. Adopting a subsymbolic approach allows for a flexible approach

to primitive selection. Furthermore, properties of the subsymbolic representation

adopted can be used to improve the search process by reducing the search space.

Chapter 9: Conclusion 192

The problems from natural language processing and speech recognition were

discussed in far less detail, but being from completely different fields help to show

the 'width' of a hybrid symbolic/subsymbolic approach. The use of a symbolic

approach to natural language dialogue analysis allows a range of well constructed

rules to be applied to certain situations, e.g., to be polite at an interview. However,

when a number of responses are suitable they need to be ordered in a way which

reflects their appropriateness — a subsymbolic representation offers this versatility.

In speech recognition a word lattice provides a symbolic data structure in which

words hypotheses are stored. A dynamic programming algorithm is used to score

the words in the lattice. For flexibility, the penalties used by the algorithm are

represented subsymbolically.

For each of the problems studied evolutionary algorithms were applied to ma

nipulate the components of a subsyrnbolic representation in an attempt to construct

suitable solutions. Each of the problems had fundamentally different interactions

between the subsymbolic components. For the shape representation problems con

sidered EP outperformed a GA in finding solutions, and the results were statis

tically significant. The difference in performance was attributed to the difficulty

a bottom-up (GA) approach had in overcoming the Strong-Strong interactions of

a solution's representation. EP on the other hand, by emphasising a top-down

approach, was less likely to be deceived by the interactions.

In tuning the parameters of the dialogue module, both a GA and EP found

'good' solutions and hence were able to overcome Strong-Weak interactions of the

subsyrnbolic components. However, the function used to assign a fitness to a par

ticular dialogue was very simplistic. A more sophisticated fitness function (perhaps

capable of using semantics) is needed for a more general application.

For the problem in speech recognition, both a GA and EP were able to overcome

the Strong interactions which could occur between the problem representation's

subsymbolic components and construct suitable solutions. However, EP outper

formed a GA on the more difficult problems examined, and was subsequently used

Chapter 9: Conclusion 193

to generate a solution which has improved the performance of a speech recognition

system.

9»1 Research Direct ions

The work presented in this thesis suggests the following areas for future research:

1. The application of a hybrid symbolic/subsymbolic approach in conjunction

with evolutionary algorithms to other problems. Problems which exhibit

different forms of subsymbolic interaction would be of particular interest.

2. The development of a theory which can account for how symbols reduce to

subsymbolic patterns.

3. Improving the absolute performance of optimisation algorithms for each of the

problems considered by extensive experimentation with the many variations

of algorithms which exist.

The first of the above points requires little additional explanation. The possibil

ity of applying a hybrid symbolic/subsymbolic approach should be borne in mind

when attempting to solve an optimisation problem, and that if such an approach

is to be adopted then evolutionary algorithms are a possible means of subsymbolic

manipulation. (The advantages of this approach are discussed in detail elsewhere

in this thesis.) Each of the remaining points are now discussed in greater detail.

The symbolic and subsymbolic paradigms offer alternate approaches to the

modelling of intelligence. A question which arises when two alternate methods of

problem solving are suggested is: When will one perform better than the other?

Luger and Stubble-field (1993, p. 693) argue that to ask such a question is often

unreasonable as the two approaches are simply different models of intelligence,

each of which discuss intelligence in a different language. The two approaches ask

Chapter 9: Conclusion 194

different questions, propose different answers and interpret any results differently.

Indeed the use of a purely symbolic or subsymbolic approach is often to examine the

approach itself and not to find the best solution to the problem. The work presented

in this thesis has demonstrated that, for some problems at least, a combination of

the two approaches can enjoy some of the advantages offered by each.

From a theoretical standpoint the symbolic and subsymbolic paradigms are

currently incommensurable. A theory which is able to show how symbols may be

reduced to patterns and how patterns equate to a symbol system would be a great

achievement which would allow many developments in A I . For example: network-

based perceptual and knowledge-based reasoning facilities may be incorporated

together into a single agent (Luger and Stubblefield 1993, p. 694); systems which

rely on an interplay between the two approaches may be provided with a theoretical

framework which helps determine how they may best be combined rather than the

relation depending on individual intuition. However, a theory that can link the

two approaches is probably some way off.

Perhaps the clearest direction of research based upon the work of this thesis

is in the improvement of the absolute performance of the evolutionary algorithms

used. As indicated previously no attempt has been made to tune the algorithms

to each of the problems which have been considered. In particular there are many

different forms of the subsymbolic solution encoding which can be adopted and of

the subsequent method of progeny generation.

A general framework in which algorithm improvement may be attempted would

be: 1) make an alteration, 2) carry out a series of trials, 3) compare the results

with those of the current best, 4) keep the algorithm which performs best, and 5)

iterate. In order to determine if a change to an algorithm results in an increase

in performance a means of comparison is required. For statistically significant

comparisons at least thirty trials should be performed. In such cases the Smith-

Satterthwaite modified one tailed £-test (Weiss and Hassett 1991, p. 504) which

is used in all of the pairwise comparisons in this thesis can be used to test for

Chapter 9: Conclusion 195

statistically significant changes.

To specify a framework which exactly determines the alterations to the algo

rithms that should be considered is unnecessary since although many possibilities

can be suggested only some may (when their performance is examined) be worthy

of further consideration. Furthermore, there can be expected to be a high degree

of interdependence among the alterations which may be considered. For exam

ple, each of several separate changes may result in a performance reduction, but

together they may produce an improvement in performance. As in many other at

tempts at improving the performance of evolutionary algorithms the decision as to

which alteration (combination of alterations) is worthy of investigation falls largely

on the intuition of the experimenter. (Dejong (1985) suggests that an evolutionary

algorithm could be used to optimise the parameters of an evolutionary algorithm.)

There are, however, several areas which are accepted as generally being worthy of

further investigation. The remainder of this section discusses some of these and

their justification.

As discussed in Section 2.4 the use of a binary coding for a GA is regarded by

some (e.g., Holland 1992; Goldberg 1989) to be the most suitable solution represen

tation as it maximises the implicit parallelism of the solution's encoding. However,

Radcliffe (1991a) argues that a binary coding is often 'unnatural,' and conflicts

with a desire to use natural representations and operators for the structures in the

space being searched. A further consequence of using a binary encoding is that the

magnitude of the effect of a single mutation on a binary string varies considerably

with regard to where in the string the mutation occurs (this can be avoided by the

use of a particular form of binary representation known as 'gray coding').

Solutions to the problems discussed in this thesis are not naturally represented

as binary strings. In implementing GAs for these problems a more natural rep

resentation would be the same as that used in the implementations of EP, i.e.,

floating point for the shape representation problem, and integer for the natural

language dialogue and speech recognition problems.

Chapter 9: Conclusion 196

A further consequence of using a binary representation for the GA is that a

fixed length encoding is adopted and hence solutions are only defined to a fixed

(low) degree of precision. While in the case of the shape representation problem

the robustness property of IFSs indicates that further accuracy is unnecessary,

this need not necessarily be the case for the other two problems. For the natural

language dialogue problem in particular an increase in a solution's resolution may

allow for more subtle effects to occur.

For the natural language dialogue and speech recognition problems the number

of parameters required for an optimal solution is fixed in advance by the respective

symbolic theory, i.e., 124 for dialogue and 4 for speech. Any changes to the number

of parameters used would require a change in the symbolic theory. This is not the

case for the shape representation problem. In finding an IFS for an arbitrary shape

a non-trivial problem is determining a priori the minimum number of mappings

which will be required to represent that shape to some given degree of accuracy. The

implementations of the evolutionary algorithms considered in this thesis require the

number of mappings which are to be used to be specified in advance. For the shapes

considered this could be easily done since each of the shapes was generated from a

known IFS. In a more general application such information may not be available and

it may be necessary to define operators which can add/remove mappings to/from

an IFS. Adding new mappings does, however, lead to a massive increase in the

search space and would need to be performed with care.

The operators used for progeny generation are often highly dependent upon

the solution representation on which they act. In the case of a GA if a differ

ent solution representation (i.e., not the binary one used in this thesis) is to be

adopted then operators more suited to that representation may be used. If, for

example, a floating point representation is adopted then there are many alterate

crossover operators including: averaging values, and uniform crossover (Syswerda

1989). Problem specific information may also be of use in defining operators, in

deed several complementary operators may be defined and used in parallel. For

Chapter 9: Conclusion 197

example, in implementing a GA for the shape representation problem a special

crossover operator may be introduced which can only interchange whole mappings

between IFSs. There are also many alternate schemes for progeny generation in

EP. Perhaps one of the most promising is meta-EP (Fogel 1991) in which the need

for scaling functions for the variance terms to be specified a priori is removed.

A further area in which the performance of the evolutionary algorithms may

be improved is in the 'survival of the fittest' strategy which is adopted. Many

methods of solution selection have been suggested including: stochastic remain

der sampling without replacement, stochastic universal sampling (Baker 1987),

fitness scaling, fitness windowing (Grefenstette 1984) and steady-state replacement

(Syswerda 1989).

An additional means of improving the absolute performance of the evolution

ary algorithms may be possible by combining them with other forms of search

algorithm, e.g., hill-climbing. From the above discussion it can be clearly seen that

there are many alterations which may result in improvements to the performance of

the evolutionary algorithms discussed in this thesis. A specific framework in which

these should be considered is difficult to specify (due to possible interactions), but

the above discussion has provided some general considerations.

It is clear that there is a great deal of research involved in addressing the research

directions suggested at the start of this section.

(See Giles 1990; Fogel 1992a.)

Allele — An alternative form of a gene that occurs at a given site on a chromosome

(locus).

Attractor - The limit point of an iterated function system.

A U R A I D — A speech recognition aid for use by deaf students in lectures which is

currently being developed at the University of Durham.

Behaviour — The response of an organism to the present stimulus and its present

state. It is the total sum of behaviours of an orga.nism which define the fitness

of the organism to its present environment and is thus the operative function

against which selection operates.

Chromosome — Bodies within a cell which contain the hereditary units of genes.

Collage — The name given to any shape specific set of contraction mappings the

union of which is equal to the shape itself.

Crossover — An operator on the population of a genetic algorithm which ex

changes information between solutions.

D E — An abbreviation for Dialogue Element, a constituent part of a. DSM, which

is a factor that influences and controls the structure of the dialogue.

Glossary 199

Dialogue — The rich interaction between two or more participants, where 'rich

interaction' is taken to include features such as sub-dialogues, interruptions

and complex shifts in focus.

Discourse - A set of sentences which are related to each other both linguistically

and contextually (an interaction between participants is not a requirement

for a discourse).

D S M — An abbreviation for Dialogue Structure Model, a schema which contains

all of the information that can be expected to be relevant in a particular

dialogue situation, and thus can be used to guide the generation of language

to suit that situation.

EP - An abbreviation for Evolutionary Programming.

ES - An abbreviation for Evolution Strategy.

G A - An abbreviation for Genetic Algorithm.

Gene - A unit of heredity located on a chromosome and composed of DNA

(deoxyribonucleic acid).

Genotype - The sum of inherited characters maintained within the entire re

producing population; often also used to refer to the genetic constitution

underlying a single trait or set of traits.

IFS - An abbreviation for Iterated Function System, a set of contraction map

pings on a metric space which when applied iteratively to any subset of the

space always produce the same subset in the the limit (the attractor).

L O L I T A - An acronym for Large scale, Object based, Linguistic Interactor,

Translator and Analyser, a natural language processor which is currently

being developed at the University of Durham.

M P P - An abbreviation for Minimum Point Plotting Algorithm, used for ob

taining the attractor of an iterated function system.

Glossary 200

Mutation - A genetic change.

Natural selection — The result of competitive exclusion as organisms fill the

available finite resource space.

Phenotype - The behavioural expression of the genotype in a specific environ

ment; the realised expression of the genotype; the functional expression of a

trait.

Pleiotropy — The effect of a single gene affecting several phenotypic traits.

Polygeny — A single phenotypic effect being determined by the interaction of

many genes.

Shape — Defined to be any compact subset of the Euclidean plane.

Species - A group of similarly constructed organisms that are capable of inter

breeding and producing fertile offspring.

Reference

Abenda S. and Turchetti G. (1989) Inverse Problem for Fractal Sets on the Real

Line via the Moment Method, H Nuovo Cimento, Vol. 104 B, No. 2, pp.

213-227.

ARPA (1994) Proceedings of the ARPA Spoken Language Systems Technology

Workshop.

Angeline P.J. (1993) Evolutionary Algorithms and Emergent Intelligence, PhD

Thesis, The Ohio State University, USA.

Atmar W. (1994) Notes on the Simulation of Evolution, IEEE Transactions on

Neural Networks, Vol. 5, No. 1, pp. 130-147.

Back T., Hoffmeister F. and Schvvefel I I . (1991) A Survey of Evolution Strategies,

Proceedings of the Fourth International Conference on Genetic Algorithms,

R.K. Belaw and L.B. Booker (eds.). pp. 2-9, Morgan Kaufmann.

Back T. and Schwefel H. (1993) An Overview of Evolutionary Algorithms for

Parameter Optimization, Journal of Evolutionary Computation, Vol. 1, No.

1, pp. 1-25.

Baggia P., Gerbino E., Giachin E. and Rullent C. (1992) Real-time Linguistic

Analysis for Continuous Speech Understanding, Proceedings of the 3rd Con

ference on Applied Natural Language Processing, pp. 33-39.

Baker J.E. (1987) Reducing Bias and Inefficiency in the Selection Algorithm,

Genetic Algorithms and Their Applications: Proceedings of the Second In-

References 202

ternational Conference on Genetic Algorithms and Their Applications, J.J.

Grefenstette (ed.), pp. 14-21, Lawrence Erlbaum Associates.

Ba.rnsley M.F. (1988) Fractals Everywhere, Academic Press.

Barnsley M.F. and Demko S. (1985) Iterated Function Systems and the Global

Construction of Fractals, Proceedings of the Royal Society of London A399,

pp. 243-275.

Barnsley M.F. and Hurd L.P. (1993) Fractal Image Compression, A.K. Peters

Limited.

Barnsley M.F., Ervin V., Hardin D. and Lancaster J. (1986) Solution of an Inverse

Problem for Fractals and other Sets, Proceedings of the National Academy of

Science USA, Vol. 83, pp. 1975-1977.

Barnsley M.F. and Sloan A.D. (1988) A Better way to Compress Images, BYTE,

January, pp. 215-233.

Beardon C. (1989) Artificial Intelligence Terminology: A reference guide, Ellis

Horwood Limited.

Beasley D., Bull D.R. and Martin R.R. (1993a) An Overview of Genetic Algo

rithms: Part 1, fundamentals, University Computing, Vol. 15, No. 2, pp.

58-69.

Beasley D., Bull D.R. and Martin R.R. (1993b) An Overview of Genetic Algo

rithms: Part 2, research topics, University Computing, Vol. 15, No. 4, pp.

170-181.

Beaumont J.M. (1990) Advances in Block Based Fractal Coding of Still Pictures,

IEE Colloquium on the Application of Fractal Techniques in Image Process

ing, London.

Belaw R.K. and Booker L.B. (eds.) (1991) Proceedings of the Fourth International

Conference on Genetic Algorithms, Morgan Kaufmann.

References 203

Berger M.A. (1989) Images Generated by Orbits of 2-D Markov Chains, Chance:

New Directions for Statistics and Computing, Vol. 2, No. 2, pp. 18-28.

Beyer H. (1993) Toward a Theory of Evolution Strategies: Some Asymptotical

Results from the (1 , + A)-Theory, Journal of Evolutionary Computation, Vol.

1, No. 2, pp. 165-188.

Bridle J.S., Brown M.D. and Chamberlain R.M. (1982) An Algorithm for Con

nected Word Recognition, Proceedings of the IEEE International Conference

on Acoustics, Speech and Signal Processing, Paris, pp. 899-902.

Browning S.R., Moore R.K., Ponting K . M . and Russell M.J. (1990) A Phoneti

cally Motivated Analysis of the Performance of the A R M Continuous Speech

Recognition System, Proceedings of the Institute of Acoustics Autumn Con

ference, Windermere, Cumbria, UK.

Calmet J. and Campbell J.A. (1993) Artificial Intelligence and Symbolic Math

ematical Computations, Proceedings of the Conference on Artificial Intelli

gence and Symbolic Mathematical Computations, Lecture Notes in Computer

Science, J. Calmet and J.A. Campbell (eds.), Vol. 737, pp. 1-19, Springer-

Verlag.

Cohen H.A. (1992) Deterministic Scanning and Hybrid Algorithms for Fast De

coding of IFS (Iterated Function System) Encoded Image Sets, International

Conference on Acoustics, Speech and Signal Processing, Vol. I l l , pp. 509-512.

Collingham R.J. (1994) An Automatic Speech Recognition System for use by Deaf

Students in Lectures, PhD Thesis (submitted), Department of Computer

Science, University of Durham, UK.

Collingham R.J. and Garigliano R. (1993) Using Anti-grammar and Semantic

Categories for the Recognition of Spontaneous Speech, Proceedings of EU-

ROSPEECH l93, the 3rd European Conference on Speech Communication

and Technology, Berlin, pp. 1951-1954.

References 204

Culik I I K. and Dube S. (1993) Balancing Order and Chaos in Image Generation,

Journal of Computers and Graphics, Vol. 17, No. 4, pp. 465-486.

Davis T.E. and Principe J.C. (1993) A Markov Chain Framework for the Simple

Genetic Algorithm, Journal of Evolutionary Compulation, Vol. 1, No. 3, pp.

269-288.

Dawkins R. (1986) The Blind Watchmaker, Clarendon Press.

De Jong (1985) Genetic Algorithms: A 10 year perspective, Proceedings of the

First International Conference on Genetic Algorithms and Their Applica

tions, J.J. Grefenstette (ed.), pp. 169-177, Lawrence Erlbaum Associates.

Edgar G.A. (1990) Measure, Topology and Fractal Geometry, Springer-Verlag.

Fisher Y. (1992) Fractal Image Compression, SIGGRAPH '92 Course Notes.

Fogel D.B. (1991) System Identification Through Simulated Evolution: A Machine

Learning Approach to Modeling, Ginn Press.

Fogel D.B. (1992a) Evolving Artificial Intelligence, PhD Thesis, University of

California, San Diego, USA.

Fogel D.B. (1992b) Using Evolutionary Programming for Modeling: An Ocean

Acoustic Example, IEEE Journal of Oceanic Engineering, Vol. 17, No. 4,

pp. 333-340.

Fogel D.B. (1993) On the Philosophical Differences between Evolutionary Algo

rithms and Genetic Algorithms, Proceedings of the Second Annual Conference

on Evolutionary Programming, D.B. Fogel and W. Atmar (eds.), pp. 23-29.

Fogel D.B. (1994) An Introduction to Simulated Evolutionary Optimization, IEEE

Transactions on Neural Networks, Vol. 5, No. 1, pp. 3-14.

Fogel D.B. and Atmar J.W. (1990) Comparing Genetic Operators with Gaus

sian Mutations in Simulated Evolutionary Processes Using Linear Systems,

Biological Cybernetics, Vol. 63, No. 2, pp. 111—114.

References 205

Fogel D.B. and Atmar W. (eds.) (1992) Proceedings of the 1st Annual Conference

on Evolutionary Programming, La Jolla., CA, Evolutionary Programming So

ciety, San Diego, USA.

Fogel D.B. and Atmar W. (eds.) (1993) Proceedings of the 2nd Annual Conference

on Evolutionary Programming, La Jolla, CA, Evolutionary Programming So

ciety, San Diego, USA.

Fogel L.J., Owens A.J. and Walsh M.J. (1966) Artificial Intelligence Through

Simulated Evolution, J. Wiley.

Foley J.D. and Van Dam A. (1982) Fundamentals of Interactive Computer Graph

ics, Addison Wesley.

Forrest S. (ed.) (1993) Proceedings of the Fifth International Conference on Ge

netic Algorithms, Morgan Kaufmann.

Forrest S. and Mitchell M. (1992) Relative Building-Block Fitness and the Building-

Block Hypothesis, Foundations of Genetic Algorithms 2, D. Whitley (ed.), pp.

109-126, Morgan Kaufmann.

Forrest S. and Mitchell M . (1993) What Makes a Problem Hard for a Genetic Algo

rithm? Some Anomalous Results and Their Explanation, Machine Learning,

Vol. 13, No. 3/4, pp. 285-319.

Garigliano R., Morgan R.G. and LOLITA group (1994a) The LOLITA Project:

The First Seven Years, under negotiation with After Hurst Limited.

Garigliano R., Morgan R.G. and Smith M.H. (1993a) The LOLITA System as a

Contents Scanning Tool, Proceedings of the Thirteenth International Confer

ence on Artificial Intelligence, Avignon, France.

Garigliano R., Morgan R.G. and Smith M.H. (1993b) LOLITA: Progress Report

1, Technical Report 12/92, Department of Computer Science, University of

Durham, UK.

References 206

Garigliano R. and Nettlelon D.J. (1992) Qualitative Mathematical Modelling of

Genetic Algorithms, Proceedings of the Conference on Artificial Intelligence

and Symbolic. Mathematical Computations, Lecture Notes in Computer Sci

ence, J. Calmet and J.A. Campbell (eds.), Vol. 737, pp. 29G-305, Springer-

Verlag.

Garigliano R. and Nettleton D.J. (1994) The Interplay of Symbolic and Adaptive

Techniques: Two Case Studies, IEE Colloquium on Symbolic and Neural

Cognitive Engineering, London.

Garigliano R., Purvis A., Giles P.A. and Nettleton D.J. (1993c) Genetic Algo

rithms and Shape Representation, Proceedings of the 2nd Annual Conference

on Evolutionary Programming, D.B. Fogel and W. Atmar (eds.), pp. 40-47.

Garigliano R.. Purvis A., Giles P.A. and Nettleton D.J. (1993d) An Adaptive

Plan, Proceedings of the International Conference on Neural Networks and

Genetic Algorithms, Innsbruck, Austria.

Garigliano R., Tate J. and Boguraev B. (eds.) (1994b) Journal of Natural Lan

guage Engineering, Cambridge University Press.

Georghiades P. and Jacobs G. (1992) The Big Squeeze, Personal Computer Mag

azine, October, pp. 231-235.

Giles P.A. (1990) Iterated Function Systems and Shape Representation, PhD The

sis, University of Durham, UK.

Giles P.A., Purvis A., Waugh D. and Garigliano R. (1989) Iterated Function

Systems and 2-D Shape Representation, Proceedings of Fifth Alvey Vision

Conference, Reading, UK, pp. 49-53.

Gleick J. (1988) Chaos: Making a new science, Heinmann.

Goldberg D.E. (1989) Genetic Algorithms in Search, Optimization, and Machine

Learning, Addison-Wesley.

References 207

Goldberg D.E. and Rudnick M. (1991) Genetic Algorithms and the Variance of

Fitness, Technical Report No. 90-011, Department of Computer Science and

Engineering, Oregon Graduate Institute for Science and Technology, 19600

NW von Neumann Dr., Beaverton, OR 97006-1999.

Goodman G.S. (1991) A Probabilist look at the Chaos Game, Fractal in the

Fundamental and Applied Sciences, H.O. Peitgen, J.M. Henriques and L.F.

Penedo (eds.), pp. 159-168, Elsevier.

Grefenstette J.J. (1984) GENESIS: A System for using Genetic Search Procedures,

Proceedings of the 1984 Conference on Intelligent Systems and Machines, pp.

161-165.

Grefenstette J.J. (ed.) (1985) Proceedings of the First International Conference on

Genetic Algorithms and Their Applications, Lawrence Erlbaum Associates.

Grefenstette J.J. (ed.) (1987) Genetic Algorithms and Their Applications: Pro

ceedings of the Second International Conference on Genetic Algorithms and

Their Applications, Lawrence Erlbaum Associates.

Hepting D., Prusinkiewicz P. and Saupe D. (1991) Rendering Methods for Iter

ated Function Systems, Fractal Geometry and Analysis, NATO ASI Series C:

Mathematical and Physical Sciences, Vol. 346, J. Belair and S. Dubuc (eds.),

Kluwer.

Holland J.H. (1975) Adaption in Natural and Artificial Systems, University of

Michigan Press.

Holland J.H. (1992) Adaption in Natural and Artificial Systems, MIT Press.

Hollatz S.A. (1991) Digital Image Compression with two-dimensional Affine Frac

tal Interpolation Functions, Technical Report 91-2, Department of Mathe

matics and Statistics, Lmiversity of Minnesota-Duluth, USA.

Horn A.N. (1989) IFSs and the Interactive Design of Tiling Structures, Proceedings

of the BCS Seminar on Fractals and Chaos, pp. 22-39, London.

References 208

Hoskins D.E. and Vagners J. (1992) Image Compression using Iterated Function

Systems and Evolutionary Programming: Image Compression without Image

Metrics, 26th Asilomar Conference on Signals, Systems and Computers.

Hutchinson J.E. (1981) Fractals and Self Similarity, Indiana University Mathe

matics Journal, Vol. 30, No. 5, pp. 713-747.

Jacquin A.E. (1992) Image Coding Based on a Fractal Theory of Iterative Con

tractive Image Transformations, IEEE Transactions on Image Processing,

Vol. 1, No. 1, pp. 18-30.

Jones C.E. (1994a) Dialogue Structure Models: An approach to Dialogue Analysis

and Generation by Computer, PhD Thesis, Department of Computer Science,

University of Durham, UK.

Jones C.E. and Garigliano R. (1993) Dialogue Analysis and Generation: A The

ory for Modelling Natural English Dialogue, Proceedings of EUROSPEECH

'93, the 3rd European Conference on Speech Communication and Technology,

Berlin, pp. 951-954.

Jones T. (1994b) A Model of Landscapes, Department of Computer Science, Santa

Fe Institute, 1660 Old Pecos Trail, Suite A., Santa Fe, NM 87505, USA.

Kirkpatrick S., Gelatt C D . and Vecchi M.P. (1983) Optimization by Simulated

Annealing, Science, Vol. 220, No. 4598, pp. 671-680.

Kropatsch W.G., Neuhauser M.A., Leitgeb I.J. and Bischof H. (1992) Combining

Pyramidal and Fractal Image Coding, Proceedings of the 11th International

Conference on Pattern Recognition, Vol I I I , pp. 61-64, IEEE Computer So

ciety Press.

Levy-Vehel J. and Gagalowicz A. (1987) Shape Approximation by a Fractal Model,

EUROGRAPHICS '87, G. Marechal (ed.), pp. 159-180, Elsevier.

References 209

Levy-Vehel J. and Lutton E. (1993) Optimization of Fractal Functions using Ge

netic Algorithms, Report No. 1941, Institut National de Recherche en Infor-

matique et an Automatique, Le Chesnay Cedex, France.

Lewontin R.C. (1974) The Genetic Basis of Evolutionary Change, Columbia Uni

versity Press.

Libeskind-Hadas R. and Maragos P. (1987) Application of Iterated Function Sys

tems and Skeletonization to Synthesis of Fractal Images, Visual Communi

cation and Image Processing II, SPIE Vol. 845, pp. 277-285.

Lindsay R.K. (1968) Artificial Evolution of Intelligence, Contemporary Psychol

ogy, Vol. 13, No. 3, pp. 113-116.

Ljolje A. and Riley M.D. (1992) Optimal Speech Recognition using Phone Recog

nition and Lexical Access, Proceedings of the International Conference on

Spoken Language Processing, Alberta, Canada, pp. 313-316.

Luger G.F. and Stubblefield W.A (1993) Artificial Intelligence: Structures and

strategies for complex problem solving, The Benjamin/Cummings Publishing

Company.

Mason A.J. (1993) Crossover Non-linearity Ratios and the Genetic Algorithm:

Escaping the. Blinkers of Schema Processing and Intrinsic Parallelism, Report

No. 535b, School of Engineering, University of Auckland, Private Bag 92019,

New Zealand.

Mayr E. (1988) Toward a New Philosophy of Biology: Observations of an Evolu

tionist, Belknap Press.

Mazel D.S. and Hayes M.H. (1992) Using Iterated Function Systems to Model

Discrete Sequences, IEEE Transactions on Signal Processing, Vol. 40, No. 7,

pp. 1724-1734.

References 210

McClelland J.L., Rumelhart D.E. and the PDP Research Group (1986) Parallel

Distributed Processing: Explorations in the microstructure of cognition. v2:

Psychological and biological models, MIT Press.

Mitton R. (1986) A Computer Usable Version of the Oxford Advanced Learner's

Dictionary, Technical report, Department of Computer Science, Birbeck Col

lege, Malet Street, London.

Monro D.M. and Dudbridge F. (1992) Fractal Approximation of Image Blocks,

International Conference on Acoustics, Speech and Signal Processing, Vol.

I l l , pp. 485-488.

Monro D.M., Dudbridge F. and Wilson A. (1990) Deterministic Rendering of Self-

Affine Fractals, IEE Colloquium on the Application of Fractal Techniques in

Image Processing, London.

Mumford D. (1987) The Problem of Robust Shape Descriptors, IEEE First In

ternational Conference on Computer Vision, pp. 602-606.

Murveit H., Butzberger J., Digalakis V. and Weintraub M . (1993) Large Vocab

ulary Dictation using SRI's Decipher Speech Recognition System: Progres

sive search techniques, Proceedings of the IEEE International Conference on

Acoustics, Speech and Signal Processing, pp. 319-322.

Myers C.S. and Rabiner L.R. (1981) A Level Building Dynamic Time Warping Al

gorithm for Connected Word Recognition, IEEE Transactions on Acoustics,

Speech and Signal Processing, Vol. 29, No. 2, pp. 284-297.

Nettleton D.J. and Collingham R.J. (1995) Word Lattice Optimisation using Evo

lutionary Algorithms, to be submitted to Journal of Natural Language Engi

neering, Cambridge University Press.

Nettleton D.J. and Garigliano R. (1993) Search Space Reductions in Deriving a

Fractal Set for an Arbitrary Shape, Adaptive and Learning Systems II, F. A.

Sadjadi (ed.), SPIE Vol. 1962, pp. 137-145.

References 211

Nettleton D.J. and Garigliano R. (1994a) Reductions in the Search Space for De

riving a Fractal Set of an Arbitrary Shape, in press Journal of Mathematical

Imaging and Vision, Kluwer.

Nettleton D.J. and Garigliano R. (1994b) Evolutionary Algorithms for Dialogue

Optimisation in the LOLITA Natural Language Processor, Seminar on Adap

tive Computing and Information Processing, pp. 810-815, London.

Nettleton D.J. and Garigliano R. (1994c) Evolutionary Algorithms and a Fractal

Inverse Problem, Journal of Biological and Information Processing Systems

(BioSystems), Vol. 33, pp. 221-231.

Nettleton D.J. and Garigliano R. (1994d) Evolving Fractals, in press Journal of

Computers and Graphics, Pergamon Press.

Nettleton D.J. and Garigliano R. (1994e) Subsymbolic Processing using Adaptive

Algorithms, Second International Conference on Artificial Intelligence and

Symbolic Mathematical Computations, Cambridge, UK, to be published in

Lecture Notes in Computer Science, Springer-Verlag.

Nettleton D.J. and Garigliano R. (1994f) Evolutionary algorithms for dialogue

optimisation as an example of hybrid NLP system, International Conference

on New Methods in Language Processing, Manchester.

Nettleton D.J. and Garigliano R. (1994g) Shape Representation and Evolutionary

Algorithms, IEE Colloquium on Genetic Algorithms in Image Processing and

Vision, London.

Nettleton D.J. and Garigliano R. (1994h) Dialogue Optimisation in the LOLITA

Natural Language Processor using Evolutionary Algorithms, The Applica

tions Handbook of Genetic Algorithms: New Frontiers, L. Chambers (ed.),

CRC Press, to appear.

Nettleton D.J., Garigliano R. and Siemens Plessey Defence Systems (1993) Large

Ratios of Mutation to Crossover: The example of The Travelling Salesman

References 212

Problem, Adaptive and Learning Systems II, F.A. Sadjadi (ed.), SPIE Vol.

1962, pp. 110-119.

Newell A. and Simon I I . (1976) Computer Science as Empirical Enquiry: Symbols

a.nd search, Communications of the ACM, Vol. 19, No. 3, pp. 113-126.

Newman W . M . and Sproull R.F. (1979) Principles of Interactive Computer Graph

ics, McGraw-Hill.

Peitgen H., Jiirgens H. and Saupe D. (1992) Fractals for the Classroom: Part One

Introduction to Fractals and Chaos, Springer-Veriag.

Radcliffe N.J. (1991a) Forma Analysis and Random Respectful Recombination,

Proceedings of the Fourth International Conference on Genetic Algorithms,

R.K. Belaw and L.B. Booker (eds.), pp. 222-229, Morgan Ka.ufm.ann.

Radcliffe N.J. (1991b) Equivalence Class Analysis of Genetic Algorithms, Complex

Systems, Vol. 5, No. 2, pp. 183-205.

Radcliffe N.J. (1992) Non-Linear Genetic Representations, Parallel Problem Solv

ing from Nature 2, R. Maenner and B. Manderick (eds.), North Holland.

Rechenberg I . (1973) Evolutionsstrategie: Optimierung technischer systeme nach

prinzipien der biologischen evolution, Frommann-Holzbood.

Rich E.A (1990) Artificial Intelligence, in Encyclopedia of Artificial Intelligence,

Vol. 1, pp. 9-16, John Wiley &; Sons.

Rinaldo R. and Zakhor A. (1992) Inverse Problem for Two-Dimensional Fractal

Sets using the Wavelet Transform and the Moment Method, International

Conference on Acoustics, Speech and Signal Processing, Vol. IV, pp. 665-

668.

Rumelhart D.E., McClelland J.L. and the PDP Research Group (1986) Parallel

Distributed Processing: Explorations in the microstructure of cognition, vl:

Foundations, MIT Press.

http://Ka.ufm.ann

References 213

Russell M.J. (1992) The Development of the Speaker Independent ARM Speech

Recognition System, Proceedings of the Institute of Acoustics Speech and

Hearing Conference, Windermere, Cumbria, UK.

Sakoe H. (1979) Two-level dp-matching — A Dynamic Programming-based Pat

tern Matching Algorithm for Connected Word Recognition, IEEE Transac

tions on Acoustics, Speech and Signal Processing, Vol. 27, No. 6, pp. 588-

595.

Schaffer J.D. (ed.) (1989) Proceedings of the Third International Conference on

Genetic Algorithms, Morgan Kaufmann.

Schank R.C. and Abelson R.P. (1977) Scripts, Plans, Goals and Understanding,

Lawrence Erlbaum Associates.

Sebald A.V. and Fogel L.J. (eds.) (1994) Evolutionary Programming - Proceedings

of the 3rd Annual Conference, World Scientific Publishing.

Sharp D.W.N, and Cripps M.D. (1991) Parallel Algorithms that Solve Problems

by Communication, Proceedings of the 3rd IEEE Symposium, on Parallel and

Distributed Processing, pp. 87-94.

Sharp D.W.N and While R.L. (1992) Pattern Recognition Using Fractals, Imperial

College Research Report DoC 92/30, Department of Computing, Imperial

College of Science, Technology & Medicine, London.

Short S.. Collingham R.J. and Garigliano R. (1994a) What did I say...? - Us

ing Meaning to Assess Speech Recognisers, Institute of Acoustics Autumn

Conference on Speech and Hearing, Windermere, Cumbria, UK.

Short S., Collingham R.J. and Garigliano R. (1994b) Making Use of Semantics

in an Automatic Speech Recognition System, Institute of Acoustics Autumn

Conference on Speech and Hearing, Windermere, Cumbria, UK.

Silverman H.F. and Morgan D.P. (1990) The Application of Dynamic Program

ming to Connected Speech Recognition, IEEE ASSP Magazine, pp. 6-25.

References 214

Smith H.F. (1991) A Garden of Fractals, Fractal in the Fundamental and Applied

Sciences, H.O. Peitgen, J.M. Henriques and L.F. Penedo (eds.), pp. 407-424,

Elsevier.

Smith M.H. , Garigliano R. and Morgan R.G. (1994) Generation in the LOLITA

System: An engineering approach, Seventh International Workshop on Nat

ural Language Generation, Maine, USA.

Solomonoff R.J. (1966) Some Recent Work in Artificial Intelligence, Proceedings

of the IEEE, Vol. 54, No. 12, pp. 1687-1697.

Spears W. (1994) Hills, Hamming Distance, and GAs, Genetic Algorithms Digest,

Vol. 8, Issue 11.

Srinivas M . and Patnaik L.M. (1994) Genetic Algorithms: A Survey, Computer,

Vol. 27, No. 6, pp. 17-26.

Sutherland I.E. and Hodgman G.W. (1974) Reentrant Polygon Clipping, Com

munications of the A CM, Vol. 17, No. 1, pp. 32-42.

Svartvik J. (1992) The London-Lund Corpus of Spoken English: Users' Manual,

distributed by the Norwegian Computing Centre for the Humanities, Depart

ment of English, Lund University.

Syswerda G. (1989) Uniform Crossover in Genetic Algorithms, Proceedings of the

Third International Conference, on Genetic Algorithms, J.D. Schaffer (ed.),

pp. 2-9, Morgan Kaufmann.

Vines G. and Hayes M.H. (1992) Fast Algorithm to Select Maps in an Iterated

Function System Fractal Model, Visual Communication and Image Process

ing, SPIE Vol. 1818. pp. 944-949.

Vrscay E.R. (1991a) Iterated Function Systems: Theory, applications and the

inverse problem. Fractals Geometry and Analysis, J. Belair and S. Dubuc

(eds.), pp. 405-468, Kluwer.

References 215

Vrscay E.R. (1991b) Moment and Collage Methods for the Inverse Problem of

Fractal Construction with Iterated Function Systems, Fractal in the Funda

mental and Applied Sciences, H.O. Peitgen, J.M. Henriques and L.F. Penedo

(eds.). pp. 443-461, Elsevier.

Waite J. (1990) A Review of Iterated Function System Theory for Image Com

pression, IEE Colloquium on the Application of Fractal Techniques in Image

Processing, London.

Watt S. (1993) Fractal Behaviour Analysis, Prospects for Artificial Intelligence,

A. Sloman et al. (eds.), IOS Press.

Weiss N.A. and Hassett M.J. (1991) Introductory Statistics, 3rd edition, Addison

Wesley.

i f o h o r a p

Anderson J.A.D.W., Sullivan G.D. and Baker K.D. (1988) Constrained Construc

tive Solid Geometry: A unique representation of scenes, Proceedings of the

Fourth Alvey Vision Conference, University of Manchester, pp. 91-96.

Andrews H.C. (1972) Introduction to Mathematical Techniques in Pattern Recog

nition, Wiley-Interscience.

Baker J.E. (1985) Adaptive Selection Methods for Genetic Algorithms, Proceed

ings of the First International Conference on Genetic Algorithms and Their

Applications, J.J. Grefenstette (ed.), pp. 101-111, Lawrence Erlbaum Asso

ciates.

Baker J.E. (1987) Reducing Bias and Inefficiency in the Selection Algorithm,

Genetic Algorithms and Their Applications: Proceedings of the Second In

ternational Conference on Genetic Algorithms and Their Applications, J.J.

Grefenstette (ed.), pp. 14-21, Lawrence Erlbaum Associates.

Barnsley M.F. (1989) Fractals and Chaos, Proceedings of the BCS seminar on

Fractals and Chaos, pp. 1-21.

Battle D.L. and Vose M.D. (1993) Isomorphisms of Genetic Algorithms, Artificial

Intelligence, Vol. 60, pp. 155-165.

Batty M. (1985) Fractals — Geometry between dimensions, New Scientist, Vol.

105, No. 1450, 4 April , pp. 31-35.

Bibliography 217

Batty M . (1989) Geography and the New Geometry, Geography Review, March,

pp. 7-10.

Beasley D., Bull D.R. and Martin R.R. (1993) A Sequential Niche Technique for

Multimodal Function Optimization, Journal of Evolutionary Computation,

Vol. 1, No. 2, pp. 101-125.

Berger M.A. (1988) Encoding Images through Transition Probabilities, Mathe

matical Computer Modelling, Vol. 11, pp. 575-577.

Berger M.A. (1992) Random Affine Iterated Function Systems: Curve Generation

and Wavelets, SIAM Review, Vol. 34, No. 3, pp. 361-385.

Bianchini R. and Brown C. (1992) Parallel Genetic Algorithms on Distributed-

Memory Architectures, Technical Report 436, The University of Rochester,

Computer Science Department, Rochester, New York 14627.

Booker L. (1987) Improving Search in Genetic Algorithms, in Genetic Algorithms

and Simulated Annealing, L. Davis (ed.), Pitman.

Bown W. (1992) Fractal Maths Adds up to a Clearer Vision, New Scientist, No.

1824, 6 June, p. 20.

Brooks R..A. (1981) Symbolic Reasoning among 3D Models and 2D Images, Arti

ficial Intelligence, Vol. 17, pp. 285-348.

Bryant V. (1987) Metric Spaces: Iteration and Application, Cambridge University

Press.

Bullock B.L. (1978) The Necessity for a Theory of Specialized Vision, in Computer

Vision Systems, A. Hanson and E. Riseman (eds.), Academic Press.

Canny J. (1986) A Computational Approach to Edge Detection, IEEE Transac

tions on Pattern Analysis and Machine Intelligence, Vol. PAMI-8, No. 6,

pp. 679-697.

Bibliography 218

Conrad M. (1993) Structuring Adaptive Surfaces for Effective Evolution, Proceed

ings of the 2nd Annual Conference on Evolutionary Programming, D.B. Fogel

and W. Atmar (eds.), pp. 1-10.

Cyganski D., Orr J.A., Cott T.A. and Dodson R.J. (1987) Development, Imple

mentation, Testing and Application of an Affine Invariant Curvature Func

tion, IEEE First International Conference on Computer Vision, pp. 496-500.

Davis L. (1991) Handbook of Genetic Algorithms, Van Nostrand Reinhold.

Davis L. and Steenstrup M . (1987) Genetic Algorithms and Simulated Annealing:

An Overview, in Genetic Algorithms and Simulated Annealing, L. Davis (ed.),

Pitman.

Dawkins R. (1976) The Selfish Gene, Oxford University Press.

Dewdney A.K. (1990) Mathematical Recreations: How to transform flights of

fancy into fractal flora or fauna, Scientific American, May, pp. 90-93.

Dorigo M . (1993) Genetic and Non-Genetic Operators in ALECYS, Journal of

Evolutionary Computation, Vol. 1, No. 2, pp. 151-164.

Dubuc S. and Elqortobi A. (1990) Approximations of Fractal Sets, Journal of

Computational and Applied Mathematics 29, pp. 79-89.

Duncan B.S. (1993) Parallel Evolutionary Computation, Proceedings of the 2nd

Annual Conference on Evolutionary Programming, D.B. Fogel and W. Atmar

(eds.), pp. 202-208.

Falconer K.J. (1993) Fractal Geometry, John Wiley.

Fischler M.A. (1978) On the Representation of Natural Scenes, in Computer Vi

sion Systems, A. Hanson and E. Riseman (eds.), Academic Press.

Funt B.V. (1980) Problem Solving with Diagrammatic Representations, Artificial

Intelligence, Vol. 13, No. 3, pp. 201-230.

Bibliography 219

Garigliano R. and Nettleton D.J. (1992) Shape Representation and Recognition

using Iterated Function Systems and Genetic Algorithms, Technical Report

7/92, Department of Computer Science, University of Durham, UK.

Garigliano R. and Nettleton D.J. (1994) System Transformation: A Formal Ap

proach, to be submitted to Journal of Theoretical Computer Science.

Goldberg D.E. (1994) Genetic and Evolutionary Algorithms Come of Age, Com

munications of the ACM, Vol. 37, No. 3.

Goldberg D.E. and Segrest P. (1987) Finite Markov Chain Analysis of Genetic

Algorithms, Genetic Algorithms and Their Applications: Proceedings of the

Second International Conference on Genetic Algorithms and Their Applica

tions, J.J.Grefenstette (ed.), pp. 1-8, Lawrence Erlbaum Associates.

Grefenstette J.J. (1993) Genetic Algorithms, Guest Editor's Introduction, IEEE

Expert: Intelligent Systems and their Applications, Vol. 8, No. 5, pp. 5-8.

Grefenstette J.J. and Fitzpatrick J.M. (1985) Genetic Search with Approximate

Function Evaluations, Proceedings of the First International Conference on

Genetic Algorithms and Their Applications, J.J. Grefenstette (ed.), pp. 112-

120, Lawrence Erlbaum Associates.

Grefenstette J.J., Gopal R., Rosmaita B. and Van Gucht D. (1985) Genetic Al

gorithms for Travelling Salesman Problem, Proceedings of the First Interna

tional Conference on Genetic Algorithms and Their Applications, J.J. Grefen

stette (ed.), pp. 160-168. Lawrence Erlbaum Associates.

Grossman S.I. (1987) Elementary Linear Algebra: Third edition, Wadsworth.

Hanson A.R. and Riseman E.M. (1978) VISIONS: A Computer System for In

terpreting Scenes, in Computer Vision Systems, A. Hanson and E. Riseman

(eds.), Academic Press.

Holland J.R.C., Oliver I .M. and Smith D.J. (1987) A Study of Permutation

Crossover Operators on the Travelling Salesman Problem, Genetic Algorithms

Bibliography 220

and Their Applications: Proceedings of the Second International Conference

on Genetic Algorithms and Their Applications, J.J. Grefenstette (eel.), pp.

224-230, Lawrence Erlbaum Associates.

Huxley J. (1963) Evolution in Action, Pelican Books.

Juliany J. and Vose M.D. (1993) The Genetic Algorithm Fractal, Proceedings of

the Fifth International Conference on Genetic Algorithms, S. Forrest (ed.),

Morgan Kaufmann.

Khuri S., Back T. and Heitkotter J. (1994) An Evolutionary Approach to Com

binatorial Optimization Problems, Proceedings of CSC9J, ACM Press.

Lamdan Y., Schwartz J.T. and Wolfson J. (1988) Object Recognition by Affine

Invariant Matching, Proceedings of the Computer Society Conference on Com

puter Vision and Pattern Matching, pp. 335-344, Ann Arbor.

Louis S., McGraw G. and Wyckoff R.O. (1993) CBR Assisted Explanation of GA

Results, Journal of Theoretical and Experimental Artificial Intelligence, Vol.

5, No. 1, pp. 21-37.

Mandelbrot B.B. (1977) Fractals: Form, chance and dimension, W.H. Freeman

and Co.

Mandelbrot B.B. (1982) The Fractal Geometry of Nature, W.H. Freeman and Co.

Mantica G. (1991) Techniques for Sol ving Inverse Fractal Problems, Fractal in the

Fundamental and Applied Sciences, H.O. Peitgen, J.M. Henriques and L.F.

Penedo (eds.), pp. 255-268, Elsevier Science Publishers.

Marsaglia G. and Zaman A. (1991) Random Number Generators, Annals of Ap

plied Probability, Vol. 1, No. 3, pp. 462-480.

Michalewicz Z. (1993) A Hierarchy of Evolution Programs: An experimental

study, Journal of Evolutionary Computation, Vol. 1, No. 1, pp. 51-76.

Bibl iography 221

Monk R. (1993) The End of Intelligence?, The Observer Magazine, 17 October,

pp. 12-18.

Miihlenbein I I . and Schlierkamp-Voosen D. (1993) Predictive Models for the Breeder

Genetic Algor i thm, Journal of Evolutionary Computation, Vol . 1, No. 1, pp.

25-50.

Nevatia R. (1978) Characterization and Requirements of Computer Vision Sys

tems, in Computer Vision Systems, A . Hanson and E. Riseman (eds.), Aca

demic Press.

Pearl J. (1985) Heuristics: Intelligent Search Strategies for Computer Problem

Solving, Addison-Wesley.

Penrose R. (1989) The Emperor's New Mind: Concerning computers, minds and

the laws of physics, Oxford University Press.

Pentland A.P. (1984) Fractal-Based Description of Natural Scenes, IEEE Trans

actions on Pattern Analysis and Machine Intelligence, Vol . PAMI-6 , No. 6,

pp. 661-674.

Pentland A.P. (1986) Perceptual Organization and the Representation of Natural

Form, Artificial Intelligence, Vol. 28, pp. 293-331.

Peterson I . (1988) The Mathematical Tourist, Freeman.

Peterson I . (1990) Islands of Truth: A mathematical mystery cruise, Freeman.

Pickover C.A. (1990) Computer Patterns Chaos and Beauty, Sutton.

Qi X . and Palmieri F. (1993) Adaptive Muta t ion in the Genetic Algor i thm, Pro

ceedings of the 2nd Annual Conference on Evolutionary Programming, D .B .

Fogel and W . Atmar (eds.), pp. 11-22.

Radcliffe N.J . and George F . A . W . (1993) A Study in Set Recombination, Proceed

ings of the Fifth International Conference on Genetic Algorithms, S. Forrest

(ed.), Morgan Kaufmann.

Bibl iography 222

Ridley M . (1985) The Problems of Evolution, Oxford University Press.

Samarabandu J., AcharyaR., Hausmann E. and Allen K . (1992) Analysis of Bone

X-rays using Morphological Fractals, International Conference on Acoustics,

Speech and Signal Processing, Vol . I l l , pp. 133-136.

Shapira Y . and Yl lman S. (1991) A Pictorial Approach to Object Classification,

12th International Joint Conference on Artificial Intelligence, J. Myopoulos

and R. Reiter (eds.), pp. 1257-1263, Morgan Kaufrnann.

Shonkwiler R. (1989) An Image Algor i thm for Computing the Hausdorff Distance

Efficiently in Linear Time, Information Processing Letters, Vol . 30, pp. 87-

89.

Sloman A. (to appear) The Emperor's Real M i n d , Artificial Intelligence.

Stevens R.T. (1988) Graphics Programming in C, M & T Publishing.

Stewart I . (1989) Does God Play Dice? The Mathematics of Chaos, Blackwell.

Stucki D.J . and Pollack J.B. (1992) Fractal (Reconstructive Analogue) Memory,

14th Annual Conference of the Cognitive Science Society, Bloomington, In

diana, USA.

Whi t ley D. (1993) A Genetic Algor i thm Tutorial , Technical Report CS-93-103,

Colorado State University, USA.

W i l f H . S. (1986) Algorithms and Complexity, Prentice-Hall International Edi

tions.

Wu C M . , Chou W.S. and Chen Y . C . (1991) Two-Stage Liver Tissue Classification

through Fractal Geometry, Journal of the Chinese Institute of Engineers, Vol .

14, No. 5, pp. 519-529.

Appendix A

This appendix describes A l g o r i t h m 1 which can be used to choose a,b,c,d 6
(— 1,1) such that they satisfy:

a + d± sj{a - d)2 + Abe

2 '

The selection algorithm consists of two parts. The first chooses a, b, c and d such
that the value inside the square root is negative. The second chooses values which
ensure the value is positive. Since only one of these two parts is needed, probabili
ties for the selection of each part are required. These are calculated by examining
the number of valid combinations of a, b, c and d which have yj(a - d)2 + Abe > 0

and the number which have ^J(a — d)2 + Abe < 0 for a given acc.

The table below shows the probabilities which should be used when deciding
whether to use P a r t 1 or P a r t 2 of A l g o r i t h m 1.

acc 0.2 0.1 0.05 0.02
P (P a r t 1)
P (P a r t 2)

0.337 0.364 0.376 0.383
0.663 0.646 0.624 0.617

A l g o r i t h m 1

P a r t 1 — a, b, c and d are to be such that (a — d)2 + Abe < 0.

Then since \x ± i\Jy\ — \ A ' 2 + y for y > 0, Equation AL becomes:

0 < sj(ad - be) < 1.

< 1. (Al)

A p p e n d i x A 224

Choose a £ (— 1,1) and d £ (— 1,1); b and c then need to be selected such that
they satisfy:

— 1 + ad < bc< ad.

1. I f ad > 0 then require — 1 - f ad < be < ad. Choose b £ (— 1,1), then:

(a) i f £> = 0 choose c 6 (—1,1),

(b) i f b > 0 choose c £ (m a x { - l , = ± ^ } , m i n { l , f ^) ,

(c) i f b < 0 choose c £ (m a x { - l , f } , m i n { l , ^4^}).

2. I f ad < 0 then require —1 < be < ad so wi th uni form probabili ty either:

(a) choose b £ (—l,ac/) then choose c £ [y , 1),

(b) choose b £ (—ad, 1) then choose c £ (— 1 , y] .

W i t h probability 0.5 exchange the values of b and c.

P a r t 2 — a, fe, c and r/ are to be such that (a — d)2 - f 4&c > 0.

Then f rom Equation Al both of the following must hold:

-2-a-d < yj{a- d)2 + Abc < 2-a-d -2+a+d < yj{a - d)2 + Abe < 2+a+d.

But (a - df + Abe > 0 so yj{a - d)2 + Abe > 0 and since —2 — a — d < 0 and
—2 - f a + c ? < 0 V a , c/ £ (— 1 , 1) the above equations become:

0 < y/(a-d)2 + 4bc < 2 - a - d 0 < yJ{a-d)2 + Abc < 2 + a + d.

These give:

0 < (a - df + 46c < (2 - a - d)2 ~(a ~ dY < & c < (i _ a) (j _ ^

0 < (a - d)2 + Abe < (2 + a + </)2 =» - (a ~ r f) < k . < ^ + ^ + ^

Therefore since both of the above must hold:

Appendix A 225

—- <bc< m i n { l . (1 - a) (l - rf), (1 + a) (l + d) } .

Choose a £ (- 1 , 1) , d 6 (- 1 , 1) and be (- 1 , 1) then:

1. i f b = 0 choose cG (- 1 , 1) ,

2. i f 6 > 0 choose c 6 (m a x { - l , ^ ^ } , r n i n { l , (1 ~ a M 1 - r f ^ (1 + a H 1 + d > }) ,

3. i f b < 0 choose c 6 (m a x { - l , (1 ~ a H l - r f) ; (i + ' W + ' O } , m i n { l , = i s ^ }) .

W i t h probability 0.5 exchange the values of b and c.

This appendix describes A l g o r i t h m 2 which can be used to choose values of e and
/ (for given a,b,c and d satisfying the constraints of Sections 6.4 and 6.6) such
that:

1. the l imi t point of the transformation lies in the bounding box,

2. no edge of the transformed bounding box lies entirely outside the bounding
box.

That is to choose e and / such that they satisfy:

—X < e (l - d) + bf < X -Y < f (l - a) + ce<Y (Bl)

ee[-Cl,Cl] fe[-C2,C2]

where X = ((1 — a) (l — d) — bc)Xrnax and Y = ((1 — a) (l — d) — bc)Ymax, and
where C l and C2 are constants which are the allowed ranges of e and / respectively
(calculated in Section 6.6).

As can be seen f rom Equations Bl the problem is to choose e and / so that they
lie in both the parallelogram and the rectangle defined. The algorithm presented
ensures that every valid e and / can be selected, but each possibility does not
have an equal probability of selection. Furthermore, the algorithm selects e first
and then / — this order of selection can easily be reversed by making suitable
substitutions.

A l g o r i t h m 2

Calculate the vertices of the parallelogram by finding the points of intersection
of ; r (l — d) + by = X w i th y(l — a) + cx — —Y and w i t h y(l — a) + cx = Y ,
and call these P° = (P ° , P°) and Pv = (P*,Py). Note that these must exist since

A p p e n d i x B 227

7^ ^ f - (see Section 6.5). The remaining two vertices are then P2 = — P° and
pa = _ p i

Calculate the number, A r i , and positions 7°, 7 1 of the points of intersection of
the line f rom P° to Px w i t h the box defined by the vertices (C l , C2), (C ' l , - C 2) ,
(— C l , —C2) and (— C l , C2). Similarly calculate, the number, N2, and the positions
I 2 , 7 3 , of the points of intersection of the line f rom P° to P3 w i th the box.

I f either Ni = 0 or yV2 = 0 (but not both) then:

1. I f Ni = 0. Calculate Ix = m a x { | 7 2 | , | 7 3 | } then choose e such that e 6
[- J i , Jx] .

2. I f A r

2 = 0. Calculate Ix = m a x { | 7 ° | , |7.J|} then choose e such that e £
[—7a', 7a;].

Otherwise, calculate Px = m a x { | P ° | , |PJ |} , then choose e such that:

e € [m a x { — C l , — T'a-}, m i n { C l , Px}]

Given that an e has been chosen, e say, a range of possible values for / now
needs to be calculated. Either:

1. 6 = 0 — parallelogram has two sides vertical.

Calculate points of intersection of x = e and y{\ — a) + cx — ± V and call
these 7° = (7°, 7°) and 7 1 = (7^, Then choose / such that:

/ e [m a , x { - C 2 , 7 ^ } , m i n { C 2 , 7 ; }]

where i and j are such that V > Py.

2. 6 ^ 0 .

Calculate the points of intersection of x = e wi th i / (l — a) + cx = ±Y and
x(l - d) + by = ±X and call these 7 ° , 7 \ 7 2 , 7 3 w i th P = (/ £ , / *) . Choose
i,j,k,l E { 0 , 1 , 2 , 3 } such that i f j ± k ± l and Py < Py < 7* < l'y. Then
choose / such that:

/ € [r n a x { - C 2 , ^ ' } , m i n { C 2 , / „ * }] .

