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Abstract 
 

Photogrammetry can be applied to the results of UAS (Unmanned Aerial Systems) 

based photographic surveys to produce high resolution DEMs (Digital Elevation Models) 

of small areas (c. 1 km2).  However, this method has not been widely used in academia 

due to photogrammetric programmes working poorly with the ill constrained intrinsic 

and extrinsic properties that often accompany UAS based photographs.  In this study a 

PAMS (Personal Aerial Mapping System) SmartOne B UAS was used to provide image 

sets for testing a number of different photogrammetry packages; LPS, Bundler, 

PhotoSynth and PhotoScan, with the aim of producing sub-metric accuracy DEMs with 

a low complexity methodology and without significant financial investment. 

To demonstrate the potential use of a UAS photogrammetric survey methodology it 

was applied here to an investigation into scale dependant remote sensing of glacial 

geomorphology.  Subglacial bedforms, landforms produced by the flow of ice over land, 

are thought to ‘seed’ with a minimum horizontal dimension of 100 m.  This hypothesis 

is based on surveys of bedforms across the UK and Ireland using NEXTMap DEMs with 

1 m accuracy and 5 m resolution.  Here we test that hypothesis using sub-metric 

accuracy DEMs produced via photogrammetry of an area in the Eden Valley drumlin 

field, NW England. 

The UAS was found to be suitable for this type of survey, but only one of the four 

photogrammetry programmes provided an effective and low complexity methodology.  

This programme, PhotoScan, was shown to require minimal user training and could 

produce DEMs from the survey imagery on the day of flying with a standard high 

performance computer at a resolution of 0.12 m2.  The DEM produced was down 

sampled and validated against pre-existing 1 m LiDAR (Light Detection And Ranging) 

data of the same area.  It showed poor absolute accuracy due to a systematic parabolic 

error introduced during processing that made quantification of the DEM error 

problematic. However, estimates of the error additional to this systematic error put it 

at around 0.5 m which makes the DEM suitable for mapping low amplitude bedforms. 

Use of the DEM for mapping subglacial bedforms yielded ambiguous results.  17 

additional linear ridges were identified that were not visible on the NEXTMap DEM.  
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Their dimensions were not remarkably shorter than the 100 m limit, with only 6 

measuring <100 m, but their width was much narrower than those mapped previously.  

However, whilst these dimensions could suggest that bedforms do not ‘seed’ at a 

certain size and may fine into smaller features such as flutes, there was no way to 

demonstrate that they were in fact glacial in origin. This highlighted that whilst sub-

metric resolution DEMs are undoubtedly highly useful tools in the survey of glacial 

bedforms, they may require additional data from field investigations in order for 

robust conclusions to be drawn due to the numerous processes capable of produce 

geomorphic features at a sub-metric vertical scale.  
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Chapter 1 Introduction and Rationale 
 

1.1. Subglacial Bedforms 

It could be argued that remote sensing has progressed glacial geomorphology from a 

collection of local studies on individual or small populations of landforms, to the 

observation and interpretation of glacial landscapes on a continental scale (Bingham et 

al., 2010).  The study of subglacial bedforms, landforms produced by the flow of ice 

over land (Boulton et al., 1985; Boulton & Clark, 1990; Kleman et al., 1997) that cover 

vast tracts of previously glaciated areas, has perhaps benefited the most from remote 

sensing.  Subglacial bedforms are perhaps most striking in Canada where they cover 70% 

of the country, but with 50%, 40% and 15% coverage in Ireland, Scandinavia and 

Britain respectively they are ubiquitous.  Subglacial bedforms range in scale from 10-

105 m, but quantification of the upper end of this scale, e.g. mega-scale glacial 

lineations, was not possible before imagery from Earth observation satellites such as 

Landsat became available (Clark, 1993; Clark, 1994).  At smaller scales there is 

evidence to suggest that the resolution of our remote sensing techniques may still be a 

limitation to observation (Clark et al., 2009). Consequently, previous mapping studies 

using remote sensing without field investigation may have omitted the smallest 

bedforms and this potentially raises questions about the conclusions that are drawn 

(e.g. Clark et al., 2009).  

Study of subglacial bedforms began nearly 200 years ago and evolved from initial field 

based studies (e.g. Bryce, 1833; Close, 1867; Goodchild, 1875) to those supplemented 

by aerial imagery (e.g. Piotrowski & Smalley, 1987; Hattestrand et al., 1999), then 

satellite imagery (e.g. Clark, 1993, 1994, 1997; Stokes, 2002; Jansson & Glasser, 2005), 

and now digital elevation models (DEMs) of various origins (e.g. Jansson & Glasser, 

2005; Smith & Clark, 2005; Greenwood & Clark, 2008; Hess & Briner et al., 2009; 

Hughes et al., 2010). The availability of high (metric) resolution digital elevation 

models (DEMs) for mapping subglacial bedform features has dramatically increased 

our ability to make empirical conclusions about the shape, size and morphology of 



Chapter 1 – Introduction and Rationale 

 

 
 

2 
 

subglacial bedforms, and in particular, drumlins (Clark et al., 2009; Hughes et al., 2010; 

Spagnolo et al., 2010; Spagnolo et al., 2011).   

1.2. Drumlins 

Drumlins are the most common subglacial bedform (Clark, 2010), and are recorded in 

large numbers or ‘swarms’ with a similar long axis orientation (Benn & Evans, 2010). 

They have been described as having a multitude of different forms from lenticular 

(Hitchcock, 1876), elliptical (Chamberlin, 1883) and oval (Charlesworth, 1957) to a half 

torpedo (Alden, 1905), baguette (Rouk and Raukas, 1989) and cigar (Ebers, 1926). 

Current opinion has moved away from the more eccentric descriptions towards a 

comparison with a hemiellipsoid (Reed et al. 1962; Spagnolo et al. 2010) that conforms 

to the simple equation: 

                                                      
  

 
 
  

 
 
  

 
     Equation 1 

Drumlins are one of the most enigmatic landforms in glacial geomorphology and there 

is a wealth of literature, perhaps prompted by their widespread presence in 

deglaciated landscapes and the puzzles over their formation.  To date around 1400 

articles have been produced on them and there are no signs of this interest abating 

with over 27 published in the first three quarters of 2011 alone (Clark, 2010).  Despite 

the abundance of studies on drumlins, the variety in observation techniques and 

observer preconceptions are such that it is difficult to reach empirical conclusions 

about drumlin morphology and size from a review of previous work.  Because of this, 

extensive mapping efforts from DEMs of previously glaciated areas (e.g. Greenwood & 

Clark, 2008; Hess & Briner et al., 2009; Hughes et al., 2010) provide new opportunities 

to reach quantitative definitions and statistically valid observations of drumlins. 

1.3. A Scaling Law for Drumlins 

After analysing a dataset of drumlins mapped by Hughes et al. (2010) on the British 

Isles and bedforms mapped by Greenwood & Clark (2008) in the Republic of Ireland 

and Northern Ireland, Clark et al. (2009) noted that there appeared to be a threshold 

of c.100 m for minimum drumlin size.  If correct, this observation of a fundamental 
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threshold for drumlin form is a crucial piece of information in solving the drumlin 

problem, suggesting that they initiate at, or grow rapidly, to a relatively large size.  

However, this observation might also be an artefact of the resolution of the DEMs used 

in gathering the source data that may have meant they missed very small drumlins. 

The main aim of this study was to test the use of an unmanned aerial system for 

mapping subglacial bedforms but a further secondary aim was to examine whether this 

threshold is a feature of drumlins and their formation process or just a product of the 

resolution of the NEXTMap DEM (5 m contours, +/- 2.5 m horizontal accuracy, +/- 1.0 

m RMSE) (Getmapping, 2011) used by Hughes et al. (2010).  By remapping a small area 

from the Hughes et al. (2010) data set with higher resolution sub-metric DEMs, the aim 

is to investigate whether unmapped and possibly shorter bedforms are present. Such 

knowledge would be helpful for constraining current models of bedform evolution 

where the minimum size is a key factor (e.g. Fowler, 2010). In turn, these models help 

us understand how ice flows through developing our knowledge of the dynamic ice-

bed relationship. 

1.4. Photogrammetry 

NEXTMap data was produced with IfSAR (Interferometric Synthetic Aperture Radar) 

over a series of flights across the UK in 2002-3 (Getmapping, 2011). Its high accuracy is 

a result of a relatively low flying altitude of 20,000-28,000 ft.  Usually when a higher 

resolution DEM is required, LiDAR is used. This can produce centimetric resolution 

Digital Surface Models (DEMs) and provide additional information about the surface 

that allows creation of bare Earth DEMs. An alternative to these two methods is 

photogrammetry: “the art, science, and technology of obtaining reliable information 

about physical objects and the environment through processes of recording, 

measuring and interpreting photographic images and patterns of recorded radiant 

electromagnetic energy”  (Wolf & Drewitt, 2000). In recent years, progress in high 

resolution image acquisition from airborne or satellite platforms has enabled the 

production of sub-metric accuracy DEMs through photogrammetry with some degree 

of automation (Chandler, 1999; Marzolff & Poesen, 2009; Verhoeven, 2011; 

Neithammer et al., in press). 



Chapter 1 – Introduction and Rationale 

 

 
 

4 
 

To those with no prior knowledge of photogrammetry the instant appeal is the 

concept of producing DEMs from something as simple as a photograph.  The flexibility 

and low cost nature of such an approach obviously appears to have the potential to 

make DEMs freely available without the constraints of cost and technology that are 

associated with anything with laser or radio in the title.  But unfortunately 

photogrammetry is not without issues. It is, in essence, a complicated geometric 

calculation with three unknowns; the location of the ground, the location of the 

camera, and the distortion of light as it travels through the camera’s lens (Wolf & 

Drewitt, 2000). Therefore, to produce accurate information from images the unknowns 

must be solved or constrained.  This complicates matters as it can require the use of 

expensive calibrated cameras where focal length and lens distortion is known, fixed 

and ideally minimised, and it can require the use of survey grade differential GPS to 

monitor the location of images.  In addition, when one comes to process the images it 

traditionally requires a great deal of supervision to identify the same point on several 

images and so provide tie points for image triangulation and DEM construction. 

1.5. Potential for UASs 

In this study, high resolution aerial imagery of areas of subglacial bedforms was used 

to produced sub-metric resolution DEMs via photogrammetry.  The aerial surveys were 

conducted with a PAMS SmartOne B UAS (Unmanned Aerial System) 

(http://www.smartplanes.se/) using small format camera, a compact Canon Ixus10.  

This is a relatively novel technique, especially within glacial geomorphology.  UASs 

provide an excellent opportunity to conduct structured centimetric resolution aerial 

surveys with minimal user training required due to the automation of flight (Hardin & 

Jensen, 2011).  They provide a level of flexibility to a study, allowing repeat survey of 

an area, or a survey of a site too small to justify commissioning a standard flight.  

Imagery collected with UASs can be problematic to use in photogrammetry. Small 

format UAS cameras are generally not calibrated which leads to poor constraints on 

lens distortion and focal length.  Furthermore, the on board GPS, if available at all, is 

generally of low accuracy which in turn leads to low quality measurement of image 

acquisition locations.  As a result, the photogrammetric processing can suffer from an 

http://www.smartplanes.se/
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increase in the already high levels of supervision.  This is unfortunate as to maintain 

the advantages of the UAS in terms spatial and temporal flexibility, the post processing 

ideally should be equally quick and simple. 

Recent programmes based on Structure from Motion (SfM) computer vision 

techniques have provided an opportunity to circumnavigate these issues.  They 

perform ‘bundle adjustments’ which is a least squares minimisation of the error of 

reprojection (Szelsiki, 2010) and so do not require anything more than a rough initial 

value for camera parameters. This is not a new technique (Aber, 2010), but use of a 

SIFT style algorithm (Szelsiki, 2010) dramatically increases the numbers of points used 

in the bundle adjustment and is more accurate than previous feature matching 

algorithms.  This makes the least squares problem tractable despite the large number 

of unknowns and so initial GCPs and tie points are not required.  With user supervision 

no longer necessary at the feature matching stage the process of creating a model in a 

Euclidean co-ordinate system is essentially automatic, limiting supervision to adding 

control points in order to georeference the model.  This makes processing of large 

numbers of poorly parameterised images simple and fast. 

In this study four different programmes were tested, three of them based on SfM.  The 

aim was to establish whether it is possible to simply, effectively and cheaply, produce 

sub-metric accuracy DEMs of field sites on demand from UAS aerial survey imagery. 

The SfM based programmes used were Bundler, Microsoft PhotoSynth and AgiSoft 

PhotoScan.  The other programme that does not rely on SfM was LPS. This programme 

is widely available to GIS users and has been used in several previous studies (e.g 

Smith et al., 2008, Laliberte et al., 2011) so was included as a comparison to the more 

novel programmes. 

 

 

 

 



Chapter 1 – Introduction and Rationale 

 

 
 

6 
 

1.6. Aims and Objectives 

1. To create high resolution sub-metric accuracy DEMs using aerial photography 

from UAS surveys. 

2. To establish whether UAS based photogrammetry is a sufficiently low cost and 

low complexity methodology for producing DEMs for use in glacial 

geomorphology. 

3. To identify whether drumlinised areas require mapping at a higher accuracy 

than provided by existing DEMs. 
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Chapter 2  Remote Sensing & UASs 
 

2.1. Remote Sensing of Glacial Geomorphology 

Early studies on glacial geomorphology were understandably dependant on field 

mapping (e.g. Davis, 1884).  Thus the early literature is scattered with a variety of 

studies based on limited numbers of landforms. The pace of development in our 

understanding has accelerated rapidly since the mid-19th century due to the 

emergence of new remote sensing methodologies (see section 1.1). Remote sensing is 

well placed to aid geomorphology, and can help in four key areas (Smith & Pain, 2009): 

1) identifying the location and distribution of landforms; 2) establishing surface 

elevations; 3) mapping land surface composition; and 4) enabling none destructive 

subsurface investigations. This investigation was principally concerned with the second 

point with a view to refining the first. 

 

2.1.1. 2-D Sensing 

Early photographers were quick to realise the value of taking their cameras aloft. Aerial 

photography from balloons was adopted as early as 1858 by Gaspard-Felix Tournachon 

(also known as Nadar) (Carbonneau & Piégay, in press) and the imagery used for 

mapping by Aimé Laussedat via the application of perspective methodologies (Lo, 

1976). The major progressions in the subject came about through the two world wars 

where hundreds of aerial photography missions were flown and camera and analysis 

technology was understandably rapidly improved. In the post war period, the 

quantitative revolution of the mid-1960s combined with new levels of computing 

power resulted in the wide spread development of photogrammetry (Paine & Kiser, 

2003).  The use of stereoscopy that uses binocular vision to achieve 3-D vision had for 

some time been a major addition to the geomorphologists mapping arsenal, but 

photogrammetry allowed quantitative information to be extracted from the imagery. 
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Whilst aerial imagery had drastically changed the way we considered our landscape 

the advent of satellite imagery and movement towards full ‘Earth observation’ was 

also an important advance for glacial geomorphology.  The scale of the coverage 

revealed new landforms (Clark, 1993, 1994; Greenwood et al. 2010) and provided a 

more synoptic view of the landscape (Smith & Pain, 2009). However, whilst early 

satellite imagery was ground breaking in terms of coverage, the early Landsat imagery 

was not entirely suitable for morphological investigations due to it’s low spectral and 

spatial resolution (Millington & Townshend, 1987). Over the last 10 years the number 

of satellites available has expanded rapidly.  Satellites such as ASTER, IKONOS, GeoEye 

and World-View provide far higher resolution imagery than Landsat does and increase 

the opportunity for satellite imagery based photogrammetry (Smith & Pain, 2009). But 

whilst this new imagery is extremely useful, the older satellites should not yet be 

discounted. They still play a significant role in investigations examining temporal 

change due to the archives of now free imagery that extend back to 1972 

(http://landsat7.usgs.gov). 

2.1.2. Towards 3-D Sensing 

Stereoscopic vision is not a new technology and has been used extensively to improve 

mapping from aerial photography (e.g. Hattestrand et al., 1999) but use of DEMs for 

quantitative analysis of morphometry and volumetric changes is a relatively recent and 

ongoing development (Smith & Pain, 2009).  DEMs are most commonly produced - by 

three different methods; Synthetic Aperture Radar (SAR), photogrammetry and LiDAR 

(for a more complete summary see Oguchi et al., 2011).  Currently SAR provides the 

greatest coverage, LiDAR is most widely used for high resolution work and 

photogrammetry (covered later in the thesis) is rapidly developing as a cost efficient 

rival to both (Eisenbeib, 2007) through use of low resolution high coverage imagery 

from satellites such as ASTER (Toutin, 2008) and high resolution low coverage imagery 

from small format cameras (Neithammer et al., in press). 

The advantage of radar imagery is principally the longer wavelength’s usability 

independent of weather and lighting.  This weather independence allows repeat 

passes to be carried out and interferometric techniques to be used. Interferometric 

http://landsat7.usgs.gov/
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synthetic aperture radar (IfSAR) uses the phase differences of two or more synthetic 

aperture radar (SAR) images to produce DEMs or maps of surface changes (Rosen et al., 

2000). A variety of satellites are currently used for this, including archive images from 

the ERS Tandem Mission (e.g. Muller et al., 1996), ERS-2, ENVISAT ASAR and 

combination of ERS-2 and ASAR (Smith & Pain, 2009).  Satellites are significantly more 

expensive than terrestrial and airborne sensing alternatives, but the all weather 

day/night capabilities mean development is ongoing in this field with new sensors such 

as TerraSAR-X and satellites like TanDEM-X coming into use with higher 1-2 m 

accuracies and 10-15 m resolution (Palmann et al., 2008). One of the most important 

IfSAR uses for British Quanternary geomorphology has been the NextMap DEMs (5 m 

vertical accuracy) that was produced from airborne radar and initially for used in flood 

risk modelling.  It has been particularly important as it is freely available to academic 

institutions and sufficiently high resolution to be used for most mapping and modelling 

work (Hughes et al., 2010).  

For high resolution sub-metric accuracy work, terrestrial and airborne laser scanning is 

usually seen as a better option.  Pulsed laser systems record range and intensity which 

allows DEMs to be created from the point cloud data through interpolation, and a level 

of information about surface characteristics to be taken from the return (Rees, 2001). 

However, whilst producing accurate and dense point clouds, laser scanning remains 

expensive, particularly for those commissioning surveys rather than just obtaining 

previously processed data. The UK Environment Agency holds LiDAR data with 62% 

coverage of the country in resolutions between 0.25 m and 2 m (geomatics-

group.co.uk). This is sold commercially, albeit at a lower rate to academic institutions. 

However as most Environment Agency data collection is focused on flooding risk, 

coverage outside urban, coastal and river valleys, if it exists, is only available at a 

spatial resolution of 2 m which may not be a large enough improvement on NEXTMap 

DEMs to reveal subtle geomorphic features. 

2.1.3. Photogrammetry in Glacial Geomorphology 

Photogrammetry, is applicable to geomorphology and particularly studies of 

morphology across all scales of landforms.  As the DEM resolution is dependent on the 
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image resolution photogrammetry can be used to produce DEMs at the macro and 

micro scales (Chandler, 1999). Whilst photogrammetry is not a recent technique it 

required developments in computing power and programming in the 1990s that 

enabled automated or semi-automated DEM production before it became a useful 

technology for analytical geomorphology (e.g. Brunsden & Chandler, 1996; Pyle et al., 

1997; Butler et al.,1998).  

 Photogrammetry has three key benefits: 1) it is relatively cheap; 2) imagery is widely 

available and/or relatively easily gathered allowing a high temporal resolution and 

study of remote areas not covered by radar or LiDAR; 3) scale is only dependant on 

image resolution which can be varied easily via changing the proximity to the object or 

the quality of the camera (Chandler & Padfield, 1996). As with nearly every remote 

sensing method there are technical issues and limitations and these are presented in 

detail in the methodology section  5.2.  Here it will suffice to state that the advantages 

of photogrammetry must often be weighed up against processing difficulties that 

include potentially onerous levels of supervision and variable levels of error. 

In glaciology, perhaps the most obvious use of photogrammetry is to monitor mass 

change. It has been widely used for this purpose, initially in 2-D (e.g. Finsterwalder, 

1954) and later in 3-D (e.g. Reinhardt & Rentsch, 1986; Etzelmuller et al., 1993; Krabill 

et al., 1999; Keutterling & Thomas, 2006; Barrand et al., 2009) as computing power 

developed (Fox & Nuttall, 1997). One of the most effective uses of photogrammetry 

has been the exploitation of historical imagery to produce records of glacier change 

over time (e.g. Etzelmuller et al., 1993; Fox & Nuttall, 1997; Hubbard et al., 2000; 

Kohler et al., 2007). However analytical application in glacial geomorphology has been 

limited. In glacial monitoring images have been actively collected for the task (e.g. Ahn 

et al., 2010) but in glacial geomorphology studies have generally been carried out on 

pre-existing DEMs (e.g Clark et al., 2009; Hess & Briner, 2009; Spagnolo et al., 2010). It 

would be unrealistic to expect a glacial geomorphology study to have the resources to 

commission its own survey of a comparably large area to these studies, but it is worth 

noting that these data sets are not specifically designed for mapping bedforms. 
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2.2. UASs for Remote Sensing 

Unmanned Aerial Vehicles have existed since the First World War (Newcome, 2004) 

and have grown to become a staple military system that is used for gathering imagery 

and as a weapons platform (Hardin & Jensen, 2011). For the purposes of this 

investigation they can be defined as aircraft that fly without a human being on board 

and are capable of autonomous flight.  Civil and academic use of UASs has not been as 

extensive as the military use, largely due to legal reasons.  For exmple, in the USA it is 

extremely difficult to obtain permits for UAS usage, and often it is helpful for pilots to 

obtain full flying licenses despite the discrepancy in scale between manned aircraft and 

most UASs (Laliberte & Rango, 2011).  In the UK the CAA (Civil Aviation Authority) puts 

in place a series of regulations that limit, although do not prevent, the use of UAS’s. 

These include a weight limit of 20 Kg, a flying ceiling of 400 Ft (125 m), a stipulation 

that line of site must be maintained between the pilot and platform at all times and 

limitation on flying in controlled airspace e.g. urban areas (CAA, 2004).  In Europe 

similar rules apply and the EU are currently working on producing a full framework for 

UAS flying that will include additional stipulations about kinetic energy on impact that 

will effect airframe construction methods and materials (Hagner, 2011). 

The key advantages of using a UAS platform are often financial, temporal and spatial 

benefits over established remote sensing platforms.  These trade off against reduced 

flying time and consequential reduced coverage, weight and size related sensor 

limitations, platform stability and vibration issues, and weather related flight 

limitations (Hardin & Jensen, 2011). A common issue throughout the literature is 

maintaining spatial and temporal benefits and managing the difficulties without losing 

the financial benefits of using a UAS. 

 

2.2.1. Sensors  

UASs potentially could carry a variety of sensors, but weight is a key consideration.  It 

requires miniaturisation of some sensing devices (multispectral, hyperspectral, LiDAR) 

and often these products are not available for purchase, or not available at a 
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reasonable price. For this reason most remote sensing from UASs is done with small 

format off-the-shelf digital cameras (Hardin & Hardin, 2010) operating in the visible 

spectrum, ultra-violet or near infra-red.  They are both affordable and light, have long 

battery lives and data storage is simple and cheap. They can be used for a variety of 

purposes including simple image classification (e.g. Laliberte et al., 2011), NDVI 

classification (e.g. Hunt et al., 2010) and photogrammetry (e.g. Niethammer et al., 

2009). More complicated sensors have been used on UASs. For example, Rango et al. 

(2009) have made use of a Tetracam ADC-Lite (Tetracam, 2011) multispectral sensor, 

and Meggio et al. (2010) have used an AHS (airborne hyperspectral sensor) and 

thermal sensor. Active sensors have also been developed such as synthetic aperture 

radars (Zaugg et al., 2006; Edrich & Weiss, 2008) and LiDAR systems (Archer et al, 2004; 

Vierling, 2006; Sugiura, 2007; Lambers et al., 2007; Spiess et al., 2007). 

 

2.2.2. Applications in Photogrammetry & Geomorphology  

Early UAS application has been concentrated gathering spectral information for 

vegetation analysis (e.g. Meggio et al., 2010) or simple imagery for visual analysis (Aber 

et al., 2002). Photogrammetry has been used from the outset (Przybilla & Wester-

Ebbinghaus, 1979), but has only recently been widely used due to progress in 

photogrammetry that accommodates small format photography (Szeliski, 2010).  

Applications of UAS based photogrammetry in geomorphology have been limited and 

in glacial geomorphology there only appears to have been a few published examples of 

basic UAS use. They have been used for collecting oblique photography (Aber et al., 

2002; Aber & Ber, 2007; Smith et al. 2009; Aber, 2010) and some unpublished work on 

photogrammetry from UASs (Welty et al., 2010; Westoby, 2011), but little else. 

Possibly the first attempt at UAS based photogrammetry was by Przybilla & Wester-

Ebbinghaus (1979) with a fixed wing UAS. This was not a success with the combustion 

engine powered UAS proving to vibrate too much for reliable image acquisition. This 

led to experimentation with small helicopters (Wester-Ebbinghaus, 1980) that was 

more successful, but also more complicated. A more simplistic approach was 
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attempted by Vozikis (1983) with use of a balloon.  This was far less technical in terms 

of flying, but presented greater photogrammetric difficulty due to the unstructured 

and irregular nature of the images. A variety of balloon based (Marks, 1989; Johnson et 

al., 1990; Mori et al., 1996; Karras et al., 1999; Visnovcova et al., 2001), helicopter 

based (Miyatsuka, 1996; Tokmakidis et al., 1998; Zischinsky et al., 2000) and kite based 

(Aber, et al., 2002; Smith et al., 2009) platforms were used for photogrammetry, but 

overwhelmingly the application was for archaeology.  

As UASs became more available the applications expanded. For example in natural 

resource management (Horcher & Visser, 2004), traffic monitoring (Puri, 2004), 3-D 

crop mapping (Rovira-Mas et al., 2005), vehicle detection (Kaaniche et al., 2005), forest 

fire monitoring (Zhou et al., 2005), vegetation monitoring (Sugiura et al., 2005), 

hyperspectral imaging (Laliberte et al., 2011), precision farming (Reidelstuerz et al., 

2007; Meggio et al. 2010), river monitoring (Masahiko, 2007) and building inspection 

(Metni & Hamel, 2007). However, UAS photogrammetry has taken time to develop in 

geomorphology. Initial efforts were limited and largely restricted to kite based image 

capture (Muster & Boike, 2008; Smith et al., 2009; Marzolff et al., 2009) but whilst 

capable of carrying large payloads and working in remote areas this platform provides 

limited coverage. The complexity of using traditional photogrammetric methodologies 

with moderately unstructured image collections and normal cameras rather than the 

metric ones usually used in aerial photography certainly did not help the spread of UAS 

photogrammetry in geomorphology. Issues with exterior and interior information 

caused by low frequency GPS units, IMU inaccuracies and camera calibration 

discrepancies mean use of traditional photogrammetry packages is occasionally 

problematic, sometimes requiring alternative approaches and additional programming 

(Rango et al., 2009).  

In the last few years two key developments have opened UAS photogrammetry to a 

wider audience.  The first was the expansion of open source UAS platforms and 

autopilots that has made them far more affordable and accessible. Fixed wing (Welty 

et al. 2010) and quadrocopter based designs (Niethammer et al., 2009) have been used, 

and the variety of autopilots now available such as Paparazzi (Paparazzi, 2011) and 
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ArduPilot (diydrones, 2011) mean nearly any remote controlled airframe can be 

adapted through integration of thermocouples or an IMU.  As a result, kite based 

imaging (Aber et al., 2002; Smith et al., 2009), has now been superseded as a low cost 

option by these UASs that can provide more structured image sets with consistent 

overlap and cover greater areas (Niethammer et al., 2009). Kites will continue to play a 

role for some time though as they currently can take larger payloads than UASs, 

allowing better cameras, and can work in areas where UAS use is illegal (Muster & 

Boike, 2008) as well as sometimes being more practical for small scale projects 

(Verhoeven, 2009). The second development has been the use of SfM programmes 

that have simplified DEM production. 

 

2.2.3. Structure from Motion (SfM) 

SfM is a computer vision approach to photogrammetry that involves determining the 

3D structure of a scene from uncalibrated 2D perspectives (Szelsiki, 2010). As it does 

not require calibrated imagery it can be used with non-metric cameras and without 

ground control. Further detail on the exact methodology of the approach can be found 

in section 5.2.5.  There are obvious advantages for pursuing a method with a low level 

of supervision and low technological requirements, and a number of workers have 

started to explore the potential of this approach. Within physical geography the 

uptake has not been overwhelming. It has been used to estimate landslide volume 

(Neithammer et al., in press), ecohydrological research (Templeton et al., 2010), 

landform size estimate in unsurveyed remote areas (Westoby, 2010) and for 

preliminary glacial mapping (Welty et al., 2010). The method clearly has potential but 

is yet to fully integrate into the academic remote sensing repertoire.  As such, this 

study addresses the two most commonly used SfM programmes; Bundler and 

PhotoSynth that have been used in the studies mentioned above and are both 

freeware. A third programme, AgiSoft PhotoScan, was also used as it was a recently 

produced commercial programme, but had shown itself to be a polished, usable and 

affordable approach to SfM (Verhoeven, 2011) 
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Chapter 3  Subglacial Bedforms 
 

Work on drumlin formation can broadly be divided into three areas; modelling of the 

ice bed interface (e.g. Smalley, 1966; Boulton, 1987; Smalley & Warberton, 1994; 

Hindmarsh, 1998a, 1998b; 1999; Fowler 2000, 2009, 2010), sedimentological studies of 

drumlin internal structure (e.g. Slater, 1929; Hill, 1971; Dardis et al., 1984; Boyce & 

Eyles, 1991; Hart, 1997; Menzies & Brand, 2007; Stokes et al., 2011) and direct 

observation/instrumentation of the processes occurring at the glacier bed (e.g Smith et 

al., 2009; Hart et al., 2011). Of those three, the third is still in its infancy and so the 

subject lacks substantive input from the modern analogue.  

The lack of quantitative observation with statistically relevant sample sizes is an 

underlying problem with many theories of drumlin formation and Clark et al. (2009) go 

so far to dismiss the majority of drumlin theories as no more than “ideas, cartoons, 

concepts or diagrams” (Clark et al., 2009, p.679).  They propose that future studies 

should concentrate on models based on physical principles (e.g. Fowler, 2009) and 

assessed against quantitatively defined landforms (e.g. Clark et al., 2009; Spagnolo et 

al., 2010) rather than just developing concepts (e.g. Smalley et al., 2000).  Whilst 

recent work is encouraging, drumlins are yet to be modelled in 3-D, although 

recreation of 2-D ice-bed instabilities has been successful (Hindmarsh, 1998; Fowler, 

2000, 2009; Chapwanya et al., 2011) and the wavelengths match our best 

understanding of drumlin length (Clark et al., 2009). 
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3.1.1. Drumlin morphology 

Chorley (1959) suggested that the idealised drumlin shape can be described as half a 

lemniscate cosine function (Figure 1) and this was widely accepted (Smally & Unwin, 

1968) and defined as the ‘fundamental characteristic’ of drumlin form in Menzies’ 

review of drumlin literature (1979).  The ‘quantitative revolution’ (Church 2010) and 

the elegance of the mathematical description (Smally & Unwin, 1968) made this 

mathematical description highly attractive.  The concept of an ideal drumlin, featuring 

an asymmetric profile with a steep stoss face facing up ice and a gradual lee side facing 

down ice, is pervasive throughout the literature and in a variety of secondary 

education text books. However, this is an idealist view of the drumlin that does not 

reflect reality (Spagnolo et al., 2010).  It certainly has impacted the identification of 

drumlins with authors possibly ‘cherry picking’ only the drumlins with the idealised 

shape, but actually when in the early literature there is no particular consistency in the 

shape of the drumlins identified. For exmple Hubbard (1906) noted some drumlins had 

a stoss-lee form, but there was no coherence to the direction they faced.  Similarly, 

later papers (e.g. Reed et al. 1962; Barnett & Finke, 1971; Mills, 1980; Shaw, 1983; 

Shaw & Kvill, 1984; Harry & Trenhaile, 1987; Shaw et al. 1989; Shaw, 2002) noted 

departures from the lemniscates loop.  However, efforts to provide a quantitative 

assessment of shape and/or morphology (e.g. Reed et al., 1962; Smalley & Unwin, 

Figure 1: (Spagnolo et al. 2010). The lemniscite cosine function, which Chorley (1959) used half of as a 
representation of the idealised drumlin shape. 
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1968; Trenhaile, 1975; Doornkamp & King, 1971; Muller, 1974; Karczewski, 1976; Rose 

& Letzer, 1977; Evans, 1987; Coude, 1989; Stea & Brown, 1989) have arguably been 

hampered by assumption of a lemniscate loop, that may have influenced mapping, 

although some (Piotrowski & Smalley, 1987; Francek, 1991) do find significant 

departures from the traditional form. 

Recent mapping efforts that use relatively high resolution digital elevation models 

covering substantial areas (e.g. Greenwood & Clark, 2008; Hess & Briner et al., 2009; 

Hughes et al., 2010) have allowed a more statistically rigorous approach to 

quantification of drumlin size and morphology (Clark et al. 2009; Spagnolo et al., 2010).  

Spagnolo et al. (2010) examined drumlin shape over a sample of 44,500 drumlins from 

Northern Europe and Northern America.  They found very little evidence of a 

consistent asymmetric shape, and the majority demonstrated a near symmetrical long 

profile with the transverse axis intersecting the longitudinal axis close to the midpoint 

and little difference in the size of the ‘upstream’ or ‘downstream’ halves (Figure 2).  

They also noted that whilst drumlins with the classic form are present, the opposite 

form is just as common. Often drumlins can be found within the same field with 

opposing asymmetric forms. This level of variance in the form of drumlins provides 

Figure 2:  (Spagnolo et al., 2010). A frequency histogram of drumlin parameter Aspl in 0.05 bins.  If the front of a drumlin is 
labelled A, the end of the drumlin C, and the point that lies on the line A-C at the widest point of the drumlin is labelled B, 
then the calculation of AB/BC gives Aspl  Therefore the parameter is a measure of asymmetry with 0.5 being perfectly 
symmetrical, values >0.5 indicating a ‘classic’ drumlin relative to ice flow, and values <0.5 indicating a reversed drumlins. 
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further fuel for the debate over their formation.   It would appear to either support 

theories that include multiple types of drumlin formation (e.g. Hart, 1997; Clark, 2010; 

Stokes et al., 2011), or could just suggest that they undergo change or remoulding 

after their initial formation (Spagnolo et al., 2010).  

Clark et al. (2009) reviewed a large volume of literature that had quantified drumlin 

size alongside analysing the tens of thousands of drumlins mapped by Hughes et al. 

(2010) and Greenwood & Clark (2008) in order to produce a quantitative estimate for 

drumlin dimensions. They found a distinct cut off in horizontal length below 99 m (), a 

clear elongation/width limit of Emax = L1/3 and similar distributions in lengths across 

several field areas (Figure 3: (Clark et al., 2009).  Bedforms <900 m long mapped in the 

Britain and Ireland.  The data clearly trends towards an apex at ca 200 m with the shortest 

drumlins falling at 100 m.  Dotted and solid lines are best-fit functions r2 = 0.48.).  They 

recognise that the validity of this as a lower bound for drumlin size is questionable in 

light of the usage of limited resolution DEMs for mapping (discussed below).  However, 

they do speculate that finding an average size of 99 m with a 5 m DEM resolution 

suggests that resolution is not an issue as even at that resolution around 20 pixels are 

available to distinguish the feature.  It is possible that they are right, but there are a 

number of observations throughout the literature of drumlins with low relief (see 

Table 1), and clearly this would present an opportunity for a smaller length drumlin to 

go undetected in a NextMap DEM. Indeed, throughout the literature, there are also 

frequent references to ‘drumlinoid’ features smaller than the recorded drumlins (e.g. 

Hubbard, 1906; Stea, 1989; Zelcs & Dreimanis, 1997; Hattestrand, 1999). However, due 

to the wide range of terminology used in drumlin literature the term ‘drumlinoid’ lacks 

a consistent definition.  These would suggest that preconceptions about drumlin size 

have impacted sampling in a similar manner to the preconceptions of shape. 
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Figure 3: (Clark et al., 2009).  Bedforms <900 m long mapped in the Britain and Ireland.  The data clearly trends 
towards an apex at ca 200 m with the shortest drumlins falling at 100 m.  Dotted and solid lines are best-fit 
functions r

2
 = 0.48. 

 

Figure 4: (Clark et al., 2009).  Histograms of the distribution of drumlin dimensions for Britain, Ireland and the 
combined data set studied. As with Figure 3: (Clark et al., 2009).  Bedforms <900 m long mapped in the Britain 
and Ireland.  The data clearly trends towards an apex at ca 200 m with the shortest drumlins falling at 100 m.  
Dotted and solid lines are best-fit functions r

2
 = 0.48., this clearly demonstrates the cut off in drumlin length at 

around 100 m. 
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Table 1: A brief sample of papers from the literature that record drumlins with low relief. The raw data is not always 
presented so it is probably sensible to assume that these may have come from qualitative observations. 

Authors (year) Country Amplitude Length Width 

Haavistohyvarinen (1987) Finland 1 m 100 m 50 m 

Rouk (1989) Estonia <2 m N/A N/A 

Hattestrand (1999) Sweden 1 m 100 m 10 m 

Van Landeghem (2009) Irish Sea 1 m 100 m N/A 

Velic (2011) Croatia 5 m 71 m 25 m 

 

Quantification of drumlin form through mapping attempts (e.g. Hughes et al. 2010; 

Wellner et al., 2006) are of great importance. However, if they are limited by the 

resolution of the elevation models, then the data will need to be used carefully. Smith 

et al. (2006) demonstrate that a resolution of at least 5 m is required to produce a 

good replication of field mapping, and that it produces significantly better results than 

efforts using contoured map data. Napieralski & Nalepa (2010) suggest that using a 10 

m DEM might actually be the most effective for automated procedures. They show 

that for the area studied the features are still effectively extracted, and at with lower 

demands on computing power.  Their conclusion may not have significant application 

though as their sample area only included 16 drumlins, none of which could be 

considered particularly small at 244 – 1279 m long.  Perhaps the Smith et al. (2006) 

conclusion also has some vulnerability. Whilst the 5m DEM was shown to be suitable 

for identifying field mapped features with an effective resolution of 1 m, there is 

possibly a need to look at features that may not be distinguishable in the field. The 

ability to do so evidently is one of the primary benefits of remote sensing and so it 

would appear sensible to test Clark et al.’s (2009) conclusions by studying previously 

mapped areas with higher resolution DEMs. 
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3.1.2. Summary 

Drumlins are a subset of subglacial bedforms and are the most studied of any glacial 

landform (Lowe & Walker, 1997).  Despite this, an entirely satisfying theory of their 

formation is yet to be presented.  The development of a formational theory has not 

been helped by, until recently (e.g. Clark et al., 2009; Spagnolo et al., 2010), a lack of 

quantitative and thorough investigations into drumlin morphology and size. The 

analysis (Clark et al., 2009) of Hughes et al.’s (2010) mapping of drumlins in the British 

Isles suggested that a key characteristic of drumlins may be a minimum length of 100 

m, but potentially this characteristic is scale dependant due to the use of a 1 m 

accuracy 5 m resolution DEM in mapping. The minimum length of drumlins is 

potentially a key characteristic of their formation and is required for current modelling 

efforts (Fowler, 2009), therefore establishing whether Hughes et al.’s (2010) mapping 

was scale dependant is important.  High resolution DEMs may allow us to do this and 

so photogrammetry will be used in this investigation for producing sub-metric accuracy, 

centimetric resolution DEMs of a small study area in NW England which lies within an 

extensive drumlin field. 
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Chapter 4  Study Site 
 

The Eden Valley is well known for its complicated glacial history, with several flow 

reversals recognised during the Devensian and drumlins produced by ice flowing from 

the NW, W and SW (Riley, 1987; Clark, 2002).  Erratics from Scotland, The Lake District, 

and Howgills, are all present in the area, but the extent and duration of each flow is 

not well constrained (Clark, 2002).  Rosgill (Figure 5) lies to the west of possibly the 

most complicated area in the region, the Appleby Line, where drumlins appear to 

demonstrate convergent flow that produced now discredited theories of ice flowing in 

two directions (Evans et al., 2009).  Rather current ideas for the area around Appleby 

suggests over printing occurred due to variation in ice dispersal centres within a single 

glacial period (Rose & Letzer, 1977). 

 

 

Figure 5: Map of the SE section of the Eden Valley, with the Rosgill site highlighted in red. Reproduced 
with amendments from Mitchell et al. (2006). 
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Figure 6: © Microsoft Corporation 2012. Ordnance Survey map (1 grid cell = 1km
2
) showing the area around the 

flying site (centre). 

Early observations of flowsets, groups of coherent bedforms, in the area around Rosgill 

by Trotter (1929) suggested that it had been subject to ice flowing NW from the 

Howgills, and NE from the Lake District.  These ideas are supported and expanded on 

by Evans et al.’s (2009) modelling.  They show initial unrestricted dispersal from upland 

areas into the Eden Valley and NW into the Solway Lowlands.  With advance of 

Scottish Ice down the coast and into the Solway region, ice thickened in the Eden 

Valley resulting in a reversal and ice flowing over the Stainmore Gap.  When the 

Scottish ice retreated again in deglacation the process was reversed and ice flowed 

into the Solway region again, before receding southwards onto the North Pennine 

plateau (Clark et al., 2006). 
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Therefore, it is likely that Rosgill has been impacted by local flows of ice into the lower 

areas of the Eden Valley during glaciation and deglaciation of the area, and also the 

major flows into the Solway and Tyne Valley.  As deglaciation from the LGM is likely to 

have been rapid (Evans et al., 2009) the dominant flowsets are likely to have been 

from the two major flows.  This may explain why, from NextMap DEMs, the 

streamlining appears to be strongly focussed along a NW-SE axis, with little evidence of 

cross cutting composite landforms.   

4.2. Justification for selection of study site 

The survey area was chosen as the surrounding area suggests the presence of small 

drumlins. It was one of several areas where Hughes et al. (2010) mapped small (<200 

m length) drumlins in the UK and was accessible by car from Durham in <2 hours. This 

allowed windows of weather conditions favourable to UAS flying to be capitalised on 

at short notice.  The site is located relatively high within the Eden Valley and so will 

hopefully not have received as much postglacial fluvial erosion that can impact drumlin 

preservation (Riley, 1987). Its relatively high position in the valley also may have led to 

thinner ice and so smaller bedforms. The NextMap coverage of the area would appear 

to correlate with this and shows much less clear features. This could of course be due 

to a lack of bedforms in the area, but as bedforms surround the site in lower areas it 

would be sensible to hypothesise that was due to a reduction in amplitude of the 

features rather than a total absence.   

The site is also suitable for UAS flying.  It is largely open grass fields used for grazing 

livestock and divided by dry stone walls.  The fields provide easy sites for landings, and 

individual stones within the walls can be resolved in the imagery increasing the tie 

points available during photogrammetry. There is also very little woodland, making 

flying easier and reducing post-processing difficulties. An additional benefit was the 

existence of Environment Agency LiDAR data of the area with a 1 m resolution and 1 m 

accuracy.  The coverage of the site at Rosgill is due to its proximity to the River 

Lowther (approx. 1 km away) as the LiDAR was originally collected for use in the Eden 

Valley Rivers project. This data set is valuable as it provides a useful validation of the 

photogrammetric DEM produced in this study. 
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It is worth noting here that is not a large study site, with the survey area <1 km2.  This 

is a major limitation of the study from the perspective of the third aim. However, this 

study is primarily about establishing the suitability of the method, and this can be 

achieved without survey large areas, and indeed restricts the expansion of the study. 

Therefore, the choice of a small site is not a limitation to the study as a whole, but 

should be considered when drawing wider conclusions from the mapping of bedforms 

at the site. 
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Chapter 5  Methodology: Image Acquisition, Post 

Processing and Mapping 
 

The methods used in this study can be divided into three sections; image acquisition 

(section  5.1), post processing ( 5.2) & mapping (section 5.4). Image acquisition covers all 

usage of the UAS including an explanation of the flight process and technical details. 

Post processing involved the usage of four different photogrammetry programmes. 

The basic concepts of photogrammetry are presented followed by the key elements of 

the automated photogrammetry programmes used.  The background and particulars 

of each programme is then introduced along with the exact manner of operation 

where suitable.  Finally, mapping (section 5.4) covers the use of ArcMap to compare 

bedform sizes between the DEMs produced and pre-existing NextMap and LiDAR 

DEMs. 

 

Whilst the use of the four different photogrammetry programmes primarily focuses on 

simply producing DEMs from the imagery collected with the UAS, the requirement for 

the processing to be low cost and low complexity carries equal weight.  This is 

reflected in the progression through the four different packages used, and the 

balancing of complexity vs price.  Similarly it would have been more suitable to test a 

variety of UASs in varying conditions but unfortunately the project was restricted to 

one for financial reasons. With that in mind, and in the knowledge that UAS technology 

is improving constantly, the limitations of the UAS used are discussed and desirable 

future features are identified. 

 

5.1. Image acquisition 

5.1.1. General flying considerations 

Before application can be considered it is essential to have an airframe and flight 

system capable of operating in the study area.  Certain restrictions are mandatory. The 
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airframe must be capable of flying safely at or under 125 m. For fixed wing UASs, this 

means a high lift low stall speed airframe is required (Hardin & Jensen, 2011). Whereas 

flying at higher altitude allows for stalls to be corrected, at this lower altitude a stall 

could easily result in a crash.  An additional benefit of low stall speeds and slow flying 

is improvement in image capture (Walker & Devore, 1995). Aside from the obvious 

benefit of greater image numbers, exposure length can be increased, which allows for 

imaging to take place in poorer lighting conditions.  Sensors with long latency times, 

often a feature in meteorological applications, will also benefit (Reuder et al., 2009).  

However, low speed flying does require payloads to be kept low, and also sensors to 

add limited drag. This requires sensors to be kept light and miniaturised.  As well as 

limiting flying speed, payload also impacts range via fuel consumption and renders the 

already problematic take-off and landing phases even more difficult. 

Alongside the technical aspects of the airframe construction, piloting is an aspect to be 

considered. Take-off and landing are areas that present potential for damaging crashes 

and may require a degree of skill from the pilot.  An alternative to manual take off and 

landings is available with some autopilots (e.g. Kestrel: http://procerusuav.com).  Once 

altitude has been achieved, flying tends to be relatively simple. There are a variety of 

autopilots available that will work off GPS and thermopile or intertial (IMU) 

stabilisation systems (Hardin & Jensen, 2011). These have been shown to be capable of 

accurately flying preset flight lines and are a relatively mature technology (Rosenburg, 

2009). 

Flight conditions can be challenging for UASs but, under low clouds, they do present a 

significant advantage to manned aircraft. If the UAS uses an IMU and is capable of 

flying in low light conditions they can be used whilst manned aircraft are grounded 

(Tomlins, 1983; Sugiura et al., 2005; Jones et al., 2006; Lewis, 2007). But, as winds 

increase, UASs become difficult or impossible to fly and take off and landing becomes 

particularly dangerous (Hardin & Jensen, 2011). Their ability to fly in winds is 

dependent on engine power and airframe design. Whereas an airframe designed for 

low stall speeds will be very stable in calm conditions it will tend to be buffeted 
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uncontrollably in higher wind speeds. A faster airframe will tend to work in higher 

wind speeds, but there is a direct trade off with general stability. For this reason, most 

airframes will be designed with stability in mind in order to maintain air photo quality. 

However, this limits the conditions that can be flown in, and even then, the platform 

may become too unstable for quality photography, even in light winds (Rango et al., 

2006; Dunford et al., 2009). One approach to winds and thermals is to fly in the calm 

early morning and late evening. But whilst image blurring tends to be reduced, the 

long shadows caused by a low sun can effect image interpretation and impact analysis 

(Hardin & Hardin, 2010). Less obvious flight condition issues include difficulties with 

salt water (Jones et al., 2006), electromagnetic interference with navigation systems 

and telemetry interference from other radio controlled devices in populated areas 

(Hardin & Jensen, 2011). 

5.1.2. General imaging considerations 

The camera used for imaging has significant consequences for both the resolution and 

accuracy of the DEM producible via photogrammetry.  It may even impact whether the 

DEM creation is even a tractable calculation.  Essentially the choice is defined by the 

payload of the UAS, although occasionally there are additional technological 

implications.  For instance, aside from the payload restrictions of the UAS used in this 

study, the camera is controlled by a USB input from the UAS onboard control unit. This 

particular ‘hack’ is only available on Canon small format cameras. 

5.1.3. Undoubtedly a DSLR (Digital Single-Lens Reflex) camera provides the 

best images. They tend to have better sensors than compact cameras, 

there are a range of lenses available minimising distortion, and they can 

be calibrated ensuring internal geometry stability.  However, despite 

their clear advantages in terms of imagery they also weigh substantially 

more than compact cameras. As a result they are almost exclusively the 

preserve of platforms like kites (e.g. Aber et al., 2002; Smith et al., 2009).  

UAS information including previously known limitations 
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The PAMS (Personal Aerial Mapping System) Smart One B UAS  (Figure 7) is designed 

to collect aerial images and accompanying geospatial information, primarily for 

creating orthomosaics and DEMs via photogrammetry. The UAS has a wing span of 1.2 

m and weighs 1.1 kg including a Canon Ixus 70 camera. It is designed to be flown by 

one person, and is transported in a case measuring 0.85 x 0.40 x 0.15. It is capable of 

fully autonomous flight and it is controlled by a laptop via an 868 Mhz radio link.  The 

control software is the open source autopilot programme Paparazzi (Paparazzi, 2011) 

that is developed by a number of contributors and a research stream at ENAC (Ecole 

Nationale de l’Aviation Civile). Alongside the UAS module the kit includes a remote 

control, radio transmitter and ruggedized laptop, which holds flight and post-

processing software. 

 

Figure 7: The PAMS SmartOne B UAS assembled along with its case 

Flying at 200 m above ground level, it captures images with 0.10 m resolution. 

However, due to flying restrictions in the UK, UASs are required to be flown under 125 

m.  Whilst flying at 100 m produces imagery with 0.05 m resolution, there is a trade off 

with image sharpness due to the relative ground speed increasing. To balance these 

factors, flying at 125 m is generally the best compromise, but flying lower than this is 
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often necessary to reduce the impact of wind.  The UAS is powered by a 200 w electric 

motor run off an 11.1 v Li-Po battery and generally achieves a flight period of 30 – 45 

mins depending on the wind conditions.  Flying at 125 m and at an average 13 ms-1 this 

usually means imaging an area 400 x 400 m. 

The UAS airframe is relatively resistant and made of shock absorbing plastic and 

polystyrene parts. It does not have an undercarriage and is designed to be launched by 

hand and, effectively, ‘belly landed’.  Whilst it is very resilient and easily repaired, it 

helps to land it on soft and even surfaces to minimise damage through impact or 

snagging. If the surface is particularly rough or otherwise unsuitable, it is possible to 

catch the UAS rather than landing it. 

The autopilot system is dependent on infrared thermopiles for sensing attitude. Three 

pairs of sensors are used and cover the x, y and z axis in order to monitor pitch and roll 

(x and y) and provide absolute values (z).  The sensors work on the principal that the 

sky is cold relative to the Earth. Therefore at 0° pitch or roll there will be no difference 

in signal between the two sensors, but at 90° it will be at its maximum.  A linear 

regression can be calculated from this and pitch and roll can be calculated and 

corrected during flight.  Although earlier models of the PAMS UAS flew with just the x 

and y axis sensors, the z axis sensors further improve the accuracy through provision of 

a reference value for the ground and sky.  Furthermore, a safeguard is in place 

ensuring that a minimum radiative temperature difference exists between the ground 

and the sky, preventing the UAS from ‘arming’ if this is not met. In practice, this means 

that the UAS can only be flown on bright clear days or with sparse or thin clouds. With 

a low ceiling of relatively warm clouds, the thermal contrast with the ground drops and 

the platform becomes increasingly unstable. The UAS will automatically sense this and 

communicate the values back to the laptop via the radio link. This information is also 

recorded in the geospatial data used later for constructing DEMs and orthomosaics. In 

the latest version of the SmartOne, the thermopiles have been replaced with an IMU. 

As well as providing greater accuracy this also removes the lighting restrictions to 

flying. 
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The Canon Ixus 70 camera is perhaps the primary limitation of the platform.  Changing 

it is not possible due to the firmware in the UAS.  Whilst it has a relatively good sensor 

and lens, calibrations display that it is relatively unstable. The level of this instability 

has not been tested within this study, just the alteration from the initial calibration, 

but it is possible that within a survey the internal geometry changes due to lens 

retractions between flights and also landing impacts.  

 

5.1.4. UAS flying  

There are a variety of different UASs and autopilot systems available and so it is worth 

documenting the PAMS SmartOne B UAS flight process for comparison.   

1. Flight location choice. 

The first step is to identify a location for take-off and landing.  There are three factors 

to consider here.  It must be in a suitable and preferably central location if multiple 

flights are planned. For landing there should be a stretch ideally 100+ m of open grass 

that faces into the wind (if there is any). If there is wind, this will also be ideal for take-

off, but in the absence of wind it is useful to find a raised area for launch, to allow 

more time and vertical fall distance for the UAS to accelerate and develop lift. 

2. Set up and flying. 

With the area selected, the UAS is assembled. In its case it consists of: 2 wings, 2 wing 

tips, 2 joining rods for the wings, fuselage, camera with programmed SD Card, 2250 

mA Lithium Ion battery and laptop radio transmitter. In a separate case there is the 

remote control, a radio band checker and a variety of spares such as propellers, nose 

sections and fabric tape.  A laptop is required for the running of the flight programme, 

and a ruggedized lap top has been used for the flights in this study. The set up and 

flying procedure then continues as follows (Figure 8): 
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Figure 8: Flow chart of UAS flight process. 

Assembly 

 

 

•The wing joining rods are placed into one wing (figure), the second wing is slotted onto these 
rods (figure) and a Velcro strap is done up to hold the wings together (figure). 

•Wing tips are attached via a wire rod (figure) and a Velcro strap (figure). 

•The fuselage is slipped over the wings (figure) and secured at the nose with two Velcro straps 
(figure). 

•The battery is secured in the nose section (figure), connected (figure) and the nose section 
closed. 

•In the central section of the fuselage the wing servos are plugged in (figure). The camera is 
turned on, plugged in, and secured (figure). The UAV is then turned on (figure) and the fuselage 
closed and secured. 
 
 
 

Laptop 
set up 

•The radio link is attached and via usb. 

•The flight programme is launched. 

•A georeferenced image of the flight area is loaded (figure). 

•A ‘new flight’ is selected (figure). 

•The survey area is defined. This is done by setting the flight height and then dragging a box to 
the desired size and position.  If there is any wind the flight lines should be positioned across the 
wind. Flying with the wind will often result in the UAV going faster than desirable and increase 
motion blur in the images (figure). 

•A ‘park zone’ is selected. This is where the UAV will fly to when set under automatic control but 
not carrying out a survey or if contact is lost between the UAV and laptop. It is helpful to have it 
near the landing zone (figure). 

•The UAV is then turned on. This should establish a link to the laptop via the radio link.   

Pre-flight 
Checks 

•Battery levels should be checked, and if fully charged will be close to 12.5 v (figure). 

•The UAV should be placed a few metres away from the operators on the ground. It should then 
establish a GPS lock. This will result in a UAV symbol appearing on screen on the georeferenced 
image, and the GPS symbol going green (figure). 

•It will also detect contrast levels. If this is over 100 the contrast levels will be deemed suitable for 
flying and the contrast symbol will go green (figure). 

•The RC is now turned on and the UAV is ‘armed’.  The engine is revved to full throttle, and then 
the aerilon control is tested. 

Flight 

•The RC is set to ‘semi-auto’.  

•The UAV is thrown into the wind by one operator, and the second operator controlling the RC 
goes to full throttle and flies the UAV upwards. 

•Once altitude of around 25 m is achieved the RC can switch to ‘full auto’ and the UAV will fly to 
its ‘park’ zone. 

•The survey can then be started at from the laptop. 

•During the survey one operator is required to maintain eye contact with the UAV. Because of 
this it is useful to have the second operator watching the laptop to monitor battery levels. If the 
danger of collision with another aircraft does arise the UAV can be put down with the RC or the 
laptop. 

•Once the survey is completed the UAV will return to the ‘park’ zone. The operator then switches 
to semi-auto control, reduces the UAV altitude and lands the UAV. 

•Post flight checks (throttle, aerilons) are carried out again to check no damage was sustained in 
the landing. 

•The UAV is disarmed at the laptop, switched off at the fuselage, and packed away. 
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5.1.5. Rosgill Survey 

Imagery of the Rosgill field site was gathered in four separate flights on the 8th 

February 2011.  Due to the use of different age batteries with variable capacities, 

flights 1 and 2 were slightly larger than 3 and 4.  Inclement weather prevented flying 

until early afternoon, and Flight 4 suffered from slightly poorer lighting than the 

previous flights. This prevented further flying that might otherwise have been 

undertaken in addition to the planned flights.  As multiple flights cannot be planned 

out at once, it was judged sensible to err on the side of caution and plan overlap 

between each flight. The full area covered and level of overlap between flights is 

displayed in Figure 10. 

 

5.1.6. Ground Control 

Ground control was required for some stages of the post processing, namely image 

triangulation in LPS. Whilst not strictly necessary it was also a useful addition to 

PhotoScan.  A Leica differential GPS was used to collect 24 points across the study area. 

The DGPS was set to capture points with an accuracy of >0.025 m and so particular 

efforts were made to select location that would allow a similar level of accuracy to be 

maintained in the post processing stage whilst selecting the control points in the 

images. Due to the homogeneity of the area this largely meant the use of walls, drain 

covers, large rocks and fixed location farm machinery.  These were easily identifiable in 

the UAS imagery and a suitable spread across the site was still achieved. 
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Figure 9: Ground control was collected with a differential GPS with accuracy >0.025 m.  Due to the high resolution 
of the imagery, individual rocks were easily distinguishable and so these were used as control points during the 
survey. 

 

5.2. Post processing 

Photogrammetry was used to produce 3-D models from the imagery acquired with the 

UAS. A brief introduction to the technical principles of the subject is presented in 

section 3.3.2. A more specific section then covers the particular programmes used and 

their approaches to photogrammetry.  

5.2.1. A simple introduction to technical details of photogrammetry  

Photogrammetry can be thought of as a geometric problem.  For 2-D measurements 

that lie parallel to the plane of an image; distance on the image can be converted into 

real distance if the scale is known. 3-D measurements are more complicated and 

require two perspectives of the object under consideration.  Given the position of the 



Chapter 5 - Methodology 

 

 
 
 

36 
 

object on the image, the position and orientation of the camera (exterior orientation) 

and the properties of the camera (interior orientation), the position of the object can 

be calculated via triangulation.  If the interior and exterior parameters are known, the 

complexity of the process is primarily due to the repeated translation of coordinates 

through different Cartesian coordinate systems that refer to the object’s position on 

the image (image space) and in real life (object space). If the parameters are not 

known, the complexity increases significantly and requires a least squares approach to 

generating a solution. 

As photogrammetry is, these days, rarely done manually, the need to have an in-depth 

knowledge of the exact equations is not required to produce results, and so the topic is 

not covered here for the sake of brevity.  Understanding the interior and exterior 

parameters remains extremely important though as these continue to be user-

supplied. Thus, this section covers some of the technical details of the parameters, but 

for a more consummate and mathematical coverage of the subject Wolff & Dewitt 

(2000) provide an excellent account. 

 

5.2.2. Interior orientation 

The interior orientation regards five metric characteristics of the camera.  Cameras can 

be either metric or non-metric. For a metric camera internal orientation is highly stable, 

lens distortion is minimal, principal point offset is zero and there is an image 

coordinate system defined by fiducial marks. Using a metric camera for 

photogrammetric tasks is obviously preferable as it removes a number of unknowns 

from the calculations, but in the case of this study a non-metric camera digital camera 

is used. This means that at best, the interior orientation of the camera can be regarded 

as ‘initial’.  With most digital cameras this data is available as an .exif file associated 

with the images, but a more accurate initial set of values can be obtained by 

calibrating the camera before use. The parameters are: 

1. Focal length 
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2. Radial distortion 

3. Coordinates of the ficudial marks  

4. Position of the perspective centre respective to the fiducial marks 

5. Image resolution 

Essentially, these parameters allow the user to reconstruct how the points on an image 

relate to the actual points on the ground, or in more precise terms, how the photo-

coordinate system relates to the measuring coordinate system. A photo-coordinate 

system is used in addition to the measurement coordinate system because it is only 

defined mathematically and cannot be measured, preventing it from being described 

by the ‘real’ measurement coordinate system. 

We can depict the relationship between the two coordinate systems graphically or 

through a variety of mathematical transformations. At the simplest level, a similarity 

transformation can be used.  However, in most cases this does not consider all 

variables.  Therefore, in general, a more complicated transformation such as an affine 

transformation is used and additional calculations are done to correct for a variety of 

factors such as radial distortion, refraction and Earth curvature. 

 

5.2.3. Exterior orientation 

Exterior orientation defines the position of the camera within the measuring 

coordinate system.  It is defined by the location of the perspective centre, expressed in 

terms of the measuring coordinate system, and the attitude of the camera expressed 

as three angles. 

For an image with known position ‘control points’ it is possible to calculate the six 

exterior orientation parameters via a collinearity model. However, with only a single 

image, it is not possible to reconstruct the object space, but with the addition of a 

second image with a different perspective on the same area this is possible.  There are 

then a number of options for the user to use the collinearity model to convert the 

images into different coordinate systems. Generally, the procedure is to convert the 
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coordinates into a relative coordinate system based on the first image in a strip.  The 

entire image set can be converted into an absolute system based on ground control 

points.  

 

5.2.4. Automated photogrammetry 

Automated photogrammetry takes a number of forms. All use feature-based alignment, 

but do so with varying amounts of supervision and a number of unknowns.  The 

automated photogrammetry market is dominated by SOCET SET and LPS, but, in recent 

years a number of alternatives to classical photogrammetry have become available 

including Bundler (Snavely et al., 2008), PhotoSynth (PhotoSynth, 2011) and AgiSoft 

PhotoScan.  This study has used all of these programmes with the exception of SOCET 

SET which was not available and is prohibitively more expensive than the other 

commercial packages LPS and AgiSoft PhotoScan. 

There are four different methodologies that are used in automated photogrammetry, 

and all are versions of a non-linear parameter minimization (Szeliski, 2010).  Pose 

estimation regards the determination of a camera’s position with regard to a scene; 

intrinsic calibration involves the calculation of the internal camera parameters such as 

focal length and radial distortion; and triangulation regards estimating 3-D point 

structure from 2-D matches. The final method is Structure from Motion (SfM) that 

involves simultaneously estimating all of the above at once.  Of the programmes used 

LPS is the only one not capable of SfM.  

Structure from motion is a technique developed in the late 1980s, which involves 

reconstructing a 3-D scene whilst also constraining internal and external camera 

information via feature correspondence between images (Longuet-Higgins, 1981). 

Initially, this was for pairs of images (Longuet-Higgins, 1981) but it was further 

developed in to a multi-frame technique (Tomasi & Kanade, 1992) and then for global 

situations (Spetsakis & Aloimonos, 1991; Szeliski & Kang, 1994; Oliensis, 1999).  A key 

progression in the multi frame and global SfM approaches is the use of bundle 
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adjustment algorithms. These are responsible for the refinement that allows 

production of the jointly optimal 3-D scene and camera parameter estimates (Triggs et 

al., 1999). 

The primary advantage of the SfM approach is that it can be used for unstructured 

collections of images that may not initially have been taken for use in 3-D 

reconstructions.  The PAMS SmartOne UAS does record camera position and attitude, 

but the data is only available via PAMS processing the flight log files. Even when 

exterior information is available from the UAS issues such as a low frequency GPS unit 

can mean the positions are far less accurate than required (Laliberte & Rango 2011). 

Therefore, these programmes present an opportunity to circumnavigate these 

restrictions.  Reconstructions such as those by Neithammer et al. (in press) face similar 

issues as they do not have a structure to their imaging of the site, they only aim for 

coverage with some degree of overlap.  

Bundle adjustment is a robust non-linear minimization of the re-projection errors and 

the most accurate manner in which to recover SfM (Szeliski, 2010). It takes its name 

from the ‘bundles’ of light from 3-D features that converge on the camera centre 

(Triggs et al., 1999). Effectively it is a large sparse geometric parameter estimate 

problem, with the three parameters being 3-D feature co-ordinates, exterior camera 

information and interior camera orientation (Szeliski, 2010). This type of problem is 

used extensively throughout empirical sciences such as meteorology and surveying, 

and the principal remains exactly the same. To adapt the problem to suit a particular 

application just requires changing the optimization scheme to one that works best with 

the structure and sparsity of the application (Triggs et al., 1999).  Bundle adjustment 

has become the preferred adjustment method in computer vision/photogrammetry 

because of three characteristics (Triggs et al., 1999). It is flexible, coping with a variety 

of feature locations and types (points, lines, curves, surfaces), different and unusual 

cameras, and can cope with missing data. It is accurate, using a consistent and defined 

methodology that produces precise and easy to interpret results. And, finally, it is 

efficient, even with large problems, using the sparse nature of the problem to its 
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advantage. Bundle adjustment is not unique to SfM. It is used in all automated 

photogrammetry and so in all of the programmes used in this study.  The difference 

between LPS and the other programmes is that more unknowns are included in the 

bundle adjustment and so less information has to be provided to the programme 

(Szeliski, 2010). 

One potential issue with bundle adjustment is that it is not actually possible to 

recreate internal information entirely without some form of external information 

about the scene (Szeliski, 2010). Such information might be parallel lines converging on 

a point within the scene.  With three or more of these in the image, focal length and 

orientation can be recovered by establishing the homography of the plane at infinity. 

Without such information, it is not possible to fully recreate the internal camera 

information. Instead, assumptions, such as internal information not changing between 

frames, must be made (Hartley & Zisserman, 2004). This can lead to warping of the 

recovered scene, which then requires 3-D adjustment to control points. Most scenes 

do have the required features and so this is not always and issue, but it is worth noting 

why warping does occasional arise in SfM generated DEMs.  There are also a variety of 

algorithmic adaptations that must be used to help solve SfM problems and stop them 

become intractable.  These are too complicated to be usefully covered here, but 

Szeliski (2010) presents an excellent review of the subject.  

 

 

 

5.2.5. Programmes used for post processing 

Bundler and Photosynth are freeware and mostly opensource. AgiSoft PhotoScan is a 

commercial package, but it is priced affordably for academic use at around £350 and 

so is relatively accessible. LPS is included in the UK CHEST agreement and is therefore 

available to UK academia at a reduced cost. Here each piece of software is introduced 

and their processing methodologies explained. 
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5.2.5.1. Freeware packages 

5.2.5.1.1. Bundler toolkit (Bundler, CMVS, PMVS) 

The Bundler toolkit (PhotoTour, 2010) utilises three programmes to produce the 3-D 

reconstruction. Firstly, Bundler is used to calculate the camera positions and attitudes 

and produce a sparse 3-D construction, then CMVS (Clustering Views for Multi-view 

Stereo) removes unnecessary images with poor quality or lighting that duplicate areas, 

and finally PMVS2 (Patch-based Multi-view Stereo Software 2) uses these images to 

increase the point density of the initial sparse reconstruction (Snavely et al., 2007). 

The key to Bundler is, as the name suggests, bundle adjustment. Bundler somewhat 

improves on the basic bundle adjustment by providing camera information imbedded 

in the EXIF tags of images. This provides an initial set of values, but is not absolute, 

because they are often inaccurate due to limited initial calibration of variance over the 

camera’s lifetime.  There is no requirement here for expensive or highly calibrated 

cameras but, evidently, they will help.  

Bundler starts by using the Scale Invariant Feature Transform algorithm (SIFT) (Lowe, 

2004), a key point detector. This excels at finding features despite differences in 

scaling, rotation, illumination and 3-D viewpoint. Additionally, the features are 

distinctive, making matching between different images relatively reliable. Typically, a 

500 x 500 pixel image would yield around 2000 stable features (Lowe, 2004).  After the 

SIFT algorithm has finished, keypoints are matched between each pair of images using 

an approximate nearest neighbour approach (Arya, et al. 1998). This is then used to 

estimate a fundamental matrix for the pair using the RANSAC (RANdom Sample 

Consensus) algorithm (Fischler & Bolles, 1987).  Outlying matches are then removed 

from the fundamental matrix, and if the number of remaining matches drops to less 

than twenty, the pair is discarded.  With the remaining pairs, matches between pairs 

are then organized into ‘tracks’ of matching keypoints across multiple images.  This is 
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again vetted, and if a track contains more than one keypoint in a single image it is 

discarded. 

From this information, the camera parameters and the 3-D location for each track is 

determined. To improve the consistency of the reprojection error, the sum of the 

distances between the track and corresponding image feature positions is  minimized 

using  a non-linear least squares problem that is solved with the Levenberg-Marquardt 

algorithm (Nocedal & Wright, 1999). This stage is particularly helpful to the SfM 

algorithms, as they often get stuck due to poorly constrained local minima, and so this 

helps by providing the better initial values. 

Bundler then estimates camera parameters. To increase the robustness of this stage, 

this is not done en masse but, rather, the cameras are added incrementally.  The initial 

pair of cameras are selected based on the number of matches between them and also 

their baseline which helps improve the quality of the 3-D locations observed.  Next, 

any camera that observes 75% of the currently projected tracks is added, and tracks 

observed by this new camera are added into the optimization.  As well as the extrinsic 

parameter calculation, intrinsic parameters are also calculated for each camera. This 

does require the image file to include EXIF tags that provide an initial value for focal 

length, but this information can be added separately, if necessary.  This continues until 

all cameras are projected, and to increase the accuracy high reprojection error key 

points are removed between each camera addition. 

An additional tweak to the standard programme is the inclusion of radial distortion 

parameters for the camera.  Radial distortion can produce significant errors in the 

reconstruction and is quite common when not using expensive cameras and lenses.  

Therefore, by estimating two radial distortion parameter k1 and k2 the model is 

improved significantly. 

 

5.2.5.1.2. CMVS – Clustering view for Multi-View Stereo 
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CMVS is an important addition to the Bundler package because it improves the 

efficiency of the model reconstruction as more images are added.  The Bundler toolkit 

is already computationally intense, and PMVS2 (discussed below) uses a large amount 

of memory.  This means there are scaling issues as we progress to modelling larger 

areas.  CMVS improves the efficiency of the model in two ways (Furukawa et al., 2010). 

Firstly, it uses the SfM output to cluster groups of images into manageable chunks for 

processing. Secondly, it identifies whether images are present that have poor 

resolution or lighting, or duplicate another image, and so are not needed.  Therefore, 

the inclusion of CMVS in the toolkit limits the impact of scaling and allows models to 

be produced from large numbers of images without the need for very powerful 

computers. 

 

5.2.5.1.3. PMVS2 – Patch-based Multi-View Stereo software 

(version 2) 

PMVS2 is a multi-view stereo programme that produces dense 3-D reconstructions 

from calibrated images, which in this case are produced by Bundler.  It ignores non-

rigid structures such as pedestrians, cars and moving vegetation. The model outputs 

are a set of oriented points (Pi) with associated 3-D location, surface normal, the 

relevant images, and a photometric consistency score (Furukawa et al., 2010).  PMVS2 

can produce very dense clouds, but does struggle in two situations. If the area has little 

texture it struggles to find tie points. Similarly, if the area’s surface is not Lambertian 

then the results may be unreliable (Furukawa et al., 2010). 

 

5.2.5.1.4. Photosynth Toolkit 

Photosynth is an online photo-tourism website run by Microsoft (Photosynth, 2011). It 

is based on work by Noah Snavely that is also used in his Bundler programme (Snavely 

et al., 2006; Snavely et al., 2007), but also includes additional features for viewing 

photos that are aided by Microsoft Silverlight.  For 3-D reconstructions, Photosynth 
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can be used in the same manner as Bundler; to produce camera positions and 

information from unstructured sets of photos.  Photosynth does not work in the same 

co-ordinate system as Bundler, but the output can be converted with Henri Astré’s 

Photosynth Toolkit (Visual Experiments, 2010) and then used with PMVS2 to produce 

dense point clouds.  

 There are advantages and disadvantages apparent when using Photosynth rather than 

Bundler. It provides a relatively easy user interface and online processing that may 

reduce computer time providing a suitable internet connection is available. However, 

Microsoft reduce all images to 1.5 Megapixels and limit each ‘synth’ to around 300 

images to reduce the storage and processing burden on their servers.  Similarly, at this 

stage in its development, the Photosynth Toolkit does not use CMVS. Without CMVS 

the computational burden of PMVS2 is higher due to the inclusion of superfluous 

images.  This means that the method does not scale well. PhotoSynth’s most pressing 

limitation, however, is that it is designed for phototourism. Whilst this means that 

usability is high, it also may limit the potential quality of the point cloud generated. 

 

5.2.5.2. Commercial packages 

5.2.5.2.1. AgiSoft PhotoScan 

PhotoScan is a commercial SfM software package. It is produced by AgiSoft and 

advertised as ‘an advanced image-based solution for creating professional quality 

three-dimensional content from still images’ (AgiSoft LLC, 2010).  It is available in two 

editions, ‘standard’ for $179 and ‘professional’ for $549.  The main difference between 

the two editions is the geo-tools available in the professional version that allow 2-D 

and 3-D transformations of the models to match ground control or to georeference it. 

The main advantages over Bundler and Photosynth, and the reasons to pay for the 

programme, are usability and speed.  PhotoScan will work with a variety of image 

formats (JPEG, TIFF, PNG, BMP & MPO), has a simple three step approach to point 

cloud construction and can output the point cloud in a number of formats for further 
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manipulation including in PDF format for easy inclusion in reports.  Whilst it works in a 

similar manner to Bundler with an initial sparse SfM approach followed by a dense 

reconstruction, it uses different algorithms that achieve a faster and arguably higher 

quality reconstruction than the Bundler – CMVS – PMVS approach. 

 The initial feature identification is very similar to the SIFT algorithm but results in a 

slightly higher accuracy. The exact details of this are not known outside the company, 

but it is noticeable that it appears to map a higher number of features. For example, 

for a 3.5 MB .jpeg files run on ‘high’ alignment it will find 30-40,000 feature per image 

which is far higher than SIFT tends to manage at a similar computational burden, 

although running on ‘medium’ produces a more comparable 3-4,000 features.  Pushed 

to ‘ultra high’ it is even capable of getting close to one point per pixel.  Similarly, the 

process for calculating external and internal parameters is slightly different. Here, 

PhotoScan initially runs a greedy algorithm before refining results with a bundle 

adjustment algorithm.  The greedy algorithm is far simpler than the bundle adjustment 

algorithm, and will not be as accurate, but would appear to be a good way of 

decreasing the process time by giving the bundle adjustment algorithms an initial set 

of values to process.  Finally, the dense reconstruction does not use a multi-view 

approach, instead preferring a pair-wise depth map algorithm.  There is a multi-view 

approach available, but only for the ‘fast’ reconstruction that is less accurate, 

suggesting the pair-wise approach is a better way of approaching the process. 

PhotoScan provides a range of options for the dense reconstruction; exact, smooth, 

height field and fast. These allow the user to optimise the reconstruction for the task in 

hand as, evidently, reconstructions from close range images of an object will differ 

from aerial photography.  The two settings recommended for aerial photography are 

‘Height field’ and ‘exact’ (Verhoeven, 2011).  Exact produces the greatest level of 

terrain details, but also tends to have holes in the DEM. Height field automatically fills 

holes, potentially at the expense of some accuracy. It is possibly to run the exact 

reconstruction and then fill holes manually afterwards, if a precise knowledge of the 

DEM detail is required. If an image set is too large to be processed, it is possible to 
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process it in ‘chunks’ and then combine these afterwards. This can be done in Bundler, 

but is far more complicated because a third party programme such as MeshLab 

(Meshlab, 2011) has to be used for the chunk combination.  Meshlab is designed for 

viewing and manipulating point clouds, but the task here is non-trivial and the results 

are generally unimpressive.  At all stages (photo alignment, geometry densification, 

model texturing), it is also possible to adjust the reconstruction quality.  Settings 

available are; Very High, High, Medium, Low.  Similarly to quality choice when running 

PMVS these settings refer to using the image at full size (very high), ½ size (high), ¼ size 

(medium) and 1/8 size (low).  Therefore, there is a significant processing saving by 

switching down a category.  Alongside this, the final model size can be varied by 

choosing the number of faces present. This can be useful when exporting into some 

post processing programmes, for example MeshLab struggles with point clouds 

with >3,000,000 faces. 

 

5.2.5.1. Hardware requirements 

PhotoScan 0.8.3 is available in a 64-bit version and is optimised for multiple core use. 

RAM requirements are dependent on the amount of data being processed, which in 

turn is dependent on the number of images, image resolution, and quality of 

processing specified.  It is also Open CL (computer language) compatible and so is 

capable of using the graphics card for processing if a suitable one is available.  

Visualisation of point clouds is dependent on the graphics card size. The computing 

requirements can be summarised to the speed of the job being reliant on processor 

speed and number of CPUs, and the size of the job being dependant on RAM.   When 

processing, it is advisable to use all cores, if possible, but not to exceed the RAM limit 

and use page file memory. Doing this drastically slows the programme to the point 

where it is worth restarting the model. 

The computer used in this study is a Dell Precision T1500 running Windows 7 64-bit. It 

has an Intel i7 processor with 4 CPUs (8 virtual) running at 2.8 GHz, 16 GB RAM and a 4 

GB NVIDIA Quadro FX 580 graphics card. This is adequate for running models, but not 
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ideal. With the 500-1000 image data sets, some compromises over image quality have 

to be made in order to run the dense reconstruction stage. Preferably, the user would 

have access to 24 GB RAM or more for running UAS data sets on full resolution, and if 

more cores or a faster processor is available, then that is obviously beneficial. 

 

5.2.5.2. Programme settings for speed vs quality optimisation 

PhotoScan can potentially use a huge amount of RAM and take days to process even 

on the relatively quick computer used in this study. Because of the limits on UAS flying 

height in the UK, UAS surveys will always consist of a large number of images. For 

instance, one survey at Rosgill produced 353 images for an area spanning roughly 400 

x 400 m. Because of this, running multiple flight surveys through PhotoScan may not 

be possible due to limitations on the RAM available.  This leaves three options.  

Resolution can be reduced via the quality settings in ‘geometry reconstruction’, the 

number of images can be reduced effectively lowering the overlap, and the area can 

be processed as several chunks and then combined later. 

Evidently, it is preferable to process imagery at the highest resolution possible in order 

to generate the maximum number of tie points, constrain camera positions as 

accurately as possible, and produce the best resolution DEM.  This means the obvious 

processing power optimisation is to split the area into chunks. Unfortunately, there is 

currently a quality issue bug in the chunk process.  When combining the chunks there 

are no options for quality, and PhotoScan appears to run it at a preset low quality. This 

results in fairly significant down-sampling of the DEMs and, effectively, removes the 

incentive for initially running the chunks at a high resolution. This leaves the other two 

options, reducing quality and reducing the numbers of images processed.  The best 

option to pursue first is reducing the number of images. The PAMS UAS achieves 80% 

overlap but PhotoSynth will work quite comfortably with half that.  This means that a 

simple trim of the image collection to 50% of the original size decreases RAM usage 

drastically.  If processing time is not a concern, the next step is to identify the highest 

quality level it is possible to run the imagery at without using page file memory.  This 
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will generally be ‘medium’ for large collections of >400 images. If time is a 

consideration then ‘medium’ is again the best option. Run times will be in the order of 

3 hours for a 500 image set from our UAS (3.5 MB image files). Lifting the quality to 

high will generally result in an approximately 8 fold (also noted by Verhoeven, 2011) 

increase in processing time and so may not be feasible. 

The density of the final pointcloud is, effectively, graphics limited.  Although the user 

may specify the number of faces desired in the final point cloud, this only defines the 

decimation of the mesh and PhotoScan will actually produce a full density mesh 

regardless.   It is desirable, where possible, to try and output the full density point 

cloud, save it, and then decimate it to a workable size in order to leave the full version 

intact for archive purposes.   For the computer used in this study, a sensible size for 

smooth visualisation was around 5,000,000 points. This was used for georeferencing 

and quick visual checking, and the full model was used for DEM export. 

 

5.2.5.3. Georeferencing and export 

Models can be exported straight after production in a variety of formats with 

eucledian coordinates. But for export as a DEM in GeoTiff, Arc/Info ASCII Grid or band 

interlieved file format (BIL) spatial reference is first required. Georeferencing can be 

done in three ways.  Camera positions can be added, GCPs can be added to individual 

photos and/or GCPs can be placed on the model after it has been generated.  The 

latter approach was found to be the most effective. Using camera coordinates was 

ruled out due to concerns over the accuracy of the low frequency standard GPS; and 

placing markers directly on images was too laborious due to each control point 

appearing on 4 or more images.  Placing the GCP on the model also automatically 

places it on the relevant position within all images.  Initial accuracy was not that high, 

but it is quick and easy to adjust the marker positions within the image. 

The georeferencing process illustrates a key difference between SfM and 

photogrammetry. In photogrammetry, GCPs are introduced at the onset of the process 
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and the resulting DEM is directly produced in a georeferenced frame of reference. 

Errors in the GCPs will be minimised in a least-squares  sense but will still propagate in 

the DEM. However, in SfM, position information is only introduced after a DEM is 

produced in an arbitrary coordinate system. Therefore, the position of information in 

the GCPs is used in a least-squares sense in order to calculate a 7 parameter rigid 

transform that will translate, rotate and scale the DEM to the correct frame of 

reference. The crucial point is that errors in the GCPs will not introduce warp in the 

DEM. The 7 parameter transform is 100% rigid. 

With spatial data added and the arbitrary frame of reference transformed, the model 

can then be output as a georeferenced DEM. A variety of resolution and projection 

options are available at this stage but are generally not needed. Whilst a 5,000,000 

point model may be difficult to visualise smoothly in PhotoScan, the resulting 

c.4000x3000 is easily projected in ArcMap. 

 

5.2.5.3.1. Leica Photogrammetry Suite (LPS) 

Leica Photogrammetry Suite, now officially known as LPS, is a photogrammetry 

package associated with ERDAS. The workflow in LPS is triangulation, followed by DTM 

extraction and, finally, the use of stereo vision to edit the extracted DTM.  LPS is widely 

used by national mapping agencies and can produce extremely accurate results.  For 

users, this additional accuracy compared to SfM photogrammetry packages is balanced 

by the requirement for additional data and greater levels of supervision. For metric 

survey usage it is undoubtedly excellent, but whether it is suitable for non-metric use 

is less certain. The absence of a SfM approach means that although some parameters 

can be set as initial, and bundle adjusted to produce a result, LPS will not manage if too 

many parameters are set as unknown or initial.   

Triangulation, the first stage of processing, requires a high level of supervision.  LPS 

requires at least six tie points to be identified in each image, including three ground 

control points, before automatic tie point generation can then be implemented.  After 
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automatic tie point generation, points should also be checked manually to ensure no 

false ties have been created.  Further to this, LPS is principally designed to be used 

with metric cameras and so interior camera information is a requirement.  When 

working with un-calibrated small format cameras, this means a calibration must be 

carried out before triangulation begins.  LPS can deal with some error here, if the 

interior information is set as ‘initial’, but this increases the likelihood of error occurring 

elsewhere in the process. For the calibration, the Caltech camera calibration routine 

was used that runs in Matlab (Caltech Vision, 2010). 

It should be noted here that Laliberte et al. (2011) have had some success using UAS 

imagery with LPS by introducing two extra stages.  Firstly they use AutoPano Pro to 

produce automatic tie points across the image set. They then use a programme they 

have written themselves to convert the coordinates outputted by AutoPano Pro into a 

format suitable for LPS.  With this density of tie points across the data set they do 

manage to extract good DEMs from their small format photographs. Similarly 

Eisenbeiss et al. (2005) have had problems with LPS stemming from uncalibrated 

cameras, variable lighting conditions, and poorly constrained camera positions. They 

too have been able to extract DEMs from LPS but only after also introducing their own 

programme ‘BUN’ which carried out additional bundle adjustments to the initial tie 

points.  Smith et al. (2009) also used LPS successfully, but their workflow differs from 

the two projects above as the imagery was collected with a camera with a more stable 

interior orientation (a DSLR rather than a compact camera). They also benefited from a 

more structured flight line design.  Both of these elements helped them 

circumnavigate some of the difficulties encountered in this research. 

From this previous work it appears that the weakness in LPS’s workflow is in tie point 

generation and matching. LPS’s version is far less effective than the SIFT algorithm 

used in most SfM based programmes, and with poorer tie point generation it becomes 

difficult to accurately recreate image geometry.  It also appears to lead to a higher 

dependence on other information supplied, making LPS more dependent on precise 

inputs.  Unfortunately, in this study there was not have time to produce an additional 
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programme or combine AutoPano Pro into the workflow.  Therefore, LPS is tested in 

the project as a standalone piece of software. 

 

5.3. DEM validation 

Validation of the resultant DEM is an important step in the process of assessing the 

quality of any given software package.  Primarily, this was achieved by comparison to 

an existing LiDAR DEM of the area.  The LiDAR DEM has 1 m vertical accuracy, so the 

photogrammetric DEM with a sub-metric resolution has to be downsampled first to 

match the LiDAR DEM.  Error between the two DEMs will then be calculated in 

MATLAB and values will be given for the precision and strength of relationship of the 

photogrammetric DEM against the LiDAR DEM. 

 

5.4. Mapping  

Once the final DEM was produced, features that could be bedforms were mapped in 

ERDAS.  As with most previous mapping efforts from DTMs (e.g. Clark & Meehan, 2001; 

Smith & Clark, 2005) hillshading with five times vertical exaggeration was used to 

enhance the visibility of landforms. Features, roughly defined as any enclosed area of 

raised ground, were mapped as GIS vector polygons through identification of their 

bounding break in slope. 

Hillshading needs to be conducted with care as it can introduce bias into the mapping 

process. Smith & Clark (2005) make recommendations for illumination direction, but 

because this is a small area there was no need to limit the mapping to just a couple of 

angles.  Therefore, to insure full illumination of all features, eight hillshaded DTMs 

were produce at 45° intervals.  Mapping was then initially conducted on with a NW 

illumination, and then each feature was examined under each illumination angle and 

adjusted accordingly to reach the best representation of the bounding break in slope.  

Crestlines and the widest section of each feature were then identified and mapped to 
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provide the drumlin dimensions.  Spagnolo et al (2010) actually automatically extract 

width, but again as the area is small there was no need to replicate this, and they note 

that the tool achieved excellent correspondence to their manual measurements. 

It is worth noting that although utmost care was taken to capture the break in slope 

surrounding each feature, the mapping will probably be subtly different to mapping 

styles of previous workers (e.g. Greenwood & Clark, 2008; Hess & Briner et al., 2009; 

Hughes et al., 2010). A quantitative automated approach to mapping would be 

preferable to the inherently subjective approach used here and in most previous work. 

Whilst techniques for basic 2-D extraction (Napieralski & Nalepa, 2010) and 

quantitative extraction of 3-D morphology (Smith  et al. 2009) have been proposed, 

neither are implemented in this study as testing automated extraction methods was 

not a key aim.  If only minor differences exist between the features mapped in this 

study and previous work then the influence of mapping will be considered before 

making conclusions, but if the differences are relatively large the mapping influence 

will be assumed to be a negligible influence due to the care taken. Therefore whilst 

automated methodologies should certainly be a focus for future work in order to try 

and reach a level of standardisation, it is not entirely relevant to this work which could 

be seen more as a guide to design of future automated techniques. 
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Chapter 6  Results  
 

As with Chapter 4 this section is presented in three parts. In section 6.1 the imagery 

collected with the UAS is presented, section 6.2 presents the resulting outputs from 

each of the programs presented in section 5, and section 6.3 presents the final 

morphological maps. 

 

6.1. Imagery 

As detailed in section 5.1 the Rosgill site was surveyed over four separate flights on the 

8th February 2011.  Figure 10 shows the extent of each flight.  Again, as mentioned in 

the methodology, the light deteriorated towards the end of the day preventing any 

additional imagery from being collected. The impact of the lighting change is displayed 

in Figure 11 with a drop in saturation of the later images. 
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Figure 10: Projected mosaic of the Rosgill site, showing the overlap between each flight. 
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Figure 11: Mosaics of each flight at Rosgill that demonstrate the change in lighting conditions that eventually 
limited flying.  The mosaics do not have spatial data at this stage as no georeferencing has been carried out, but can 
effectively be judged an orthophoto in that the image positions are a product of the bundle adjustment calculations 
and actually projected rather than just simply mosaiced via stitching. 
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6.2. Photogrammetry 

As detailed in section 5.2.5, four programmes were used in this study to process the 

imagery collected with the UAS. Only PhotoScan and PhotoSynth actually produced 

any results, and only PhotoScan produced any useable results. Whilst, evidently, the 

three programmes not used do not contribute usefully towards the study, the steps 

undertaken in them and stage at which they were discarded is documented in order to 

provide a suitable rationale for the choice of PhotoScan. 

 

6.2.1. LPS 

LPS was not found to be suitable for DEM production.  The level of supervision in LPS is 

high, and for a project with 500-1000 images per site it was judged to be prohibitive. 

Additionally, triangulation was extremely problematic, to the extent that a suitable 

accuracy was not achieved for DTM extraction to occur.  

Numerous attempts were made to use the programme, and various approaches were 

used. For instance, re-calibrating the camera and running triangulation repeatedly with 

parameters set as initial, fixed or unknown.  The number of GCPs and inputted tie 

points was varied as well, with no success. The final attempt made was with a small 

subsection of the images collected, just 5 in total, with 3 GCPs visible in each image, 

and >8 tie points inputted per image. This still resulted in a total RMSE of 200.5 which 

was unacceptable considering the level of supervision relative to other software 

packages.  

 

6.2.2. Bundler 

Bundler was not pursued due to its lack of usability. Primarily this was due to the 

programme requiring a working knowledge of Linux programming and so being 

unfamiliar to the majority of potential future users.  Because of the command line style 

of operation, and lack of a debug option, the programme is also prone to bemusing 

and unexplained crashes, often frustratingly coming after several hours of processing.  
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6.2.3. Microsoft PhotoSynth 

Microsoft PhotoSynth was successfully used to produce a pilot point cloud (Figure 12 A 

and B), but not pursued due to the low quality.  This is at least partially due to the 

resolution limits (1.5 MPix) on the online ‘synths’, and also the algorithms used being 

optimised for photo-tourism rather than photogrammetry.  The low quality was an 

issue, not only because error was obviously high, but also because it appeared to 

prevent PMVS2 producing a dense reconstruction of anything other than the walls. 

Extensive post-processing of the initial sparse mesh may have improved the quality, 

but that level of supervision is not desirable and so the decision was made to not 

pursue the programme any further. 

B A 

Figure 12: Results from PhotoSynth processing of imagery from Flight 2 at Rosgill.  Figure 12 A is the basic coloured point 

cloud displayed in MeshLab. Figure 12 B is a section of the same point cloud again displayed in MeshLab but shown as a 
surface.  The level of noise is quite apparent from the lack definition of the walls.  Post processing issues are also aptly 
demonstrated by the edges of the surface. As mentioned elsewhere these are not insurmountable issues, but certainly 
impact the usability of the programme. 
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6.2.4. AgiSoft PhotoScan 

AgiSoft PhotoScan was successfully used to produce DEMs from the small format 

photographs taken from the UAS. It was more accurate, faster and far easier to use 

than any of the other programmes.  This more than merited its selection and the small 

cost of its purchase ($549 ex. VAT). Here the DEMs are presented along with their 

validation against GCPs collected with a differential GPS and pre-existing LiDAR data 

for the site. 

 

6.2.4.1. DEMs produced 

Figure 13 shows the DEMs final model of the Rosgill site in AgiSoft, with and without 

texture. To illustrate the level of detail achieved, Figure 14 shows the close up section 

of the model in an area with relatively complex terrain. Error! Reference source not 

found. again shows the whole DEM, but after export to ArcMap, and with a variety of 

different shading directions to illuminate the landscape. Although the DEM was 

outputted at roughly half the resolution that could be achieved with the imagery used 

due to computing constraints, resolution was 0.12 m2. 
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Figure 13: Final model for the Rosgill site, pictured after georeferencing has been carried out. Figure 13 A is the 
basic model with shading applied to the point cloud. Figure 13 B is the textured model. Labels on the model 
represent GCPs. 
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Figure 14: Displaying the level of detail achieved on a complex section of terrain within the final model, an 
abandoned quarry and lime kiln. Figure 14A shows one of the images used for this area of reconstruction and the 
level of detail captured. Figure 14B shows the wire mesh of individual points produced. Figure 14C shows the final 
shaded model.  Overall point density is good, but there is an obvious and understandable drop off in point density 
on vertical surfaces due to the relatively poor perspective achieved from the air.   

B 

C

  
C 

A 



 Chapter 6 - Results 

 

 

61 
 

 

 

Figure 15 The final DEM produced in PhotoScan (centre) shaded at 45° intervals from a 45° perspective with 5 times 
vertical exaggeration. 

 

6.2.4.2. DEM validation 

The DEM produced was validated against GCPs collected with a differential GPS, and 
pre-existing LiDAR data (1m vertical accuracy ).  The GCPs were used within PhotoScan, 
and so as such do not provide a proper validation of the programme.  Average vertical 
error against them was 0.761 ( 

 

Table 2) at the DEMs raw resolution of 0.12 m2 (DEM outputted at 5,000,000 points). 
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Table 2: Error between PhotoScan model and GCPs. 

Point X Error (m)  Y Error (m) Z Error (m) 

1 -0.077 0.071 -1.162 

2 -0.132 0.078 -0.391 

3 0.167 -0.054 -0.282 

4 -0.172 -0.161 1.74 

5 -0.253 0.097 1.099 

6 0.057 0.061 0.365 

7 -0.047 0.249 0.073 

8 -0.04 -0.098 -0.589 

9 0.197 0.423 -1.548 

10 0.009 -0.104 -1.226 

11 -0.033 -0.078 -0.365 

12 0.206 -0.026 0.785 

13 0.062 -0.088 0.222 

14 0.081 0.146 0.443 

15 -0.158 0.13 0.689 

16 0.046 -0.028 0.007 

17 0.201 -1.56 -0.228 

18 -0.16 0.402 -0.391 

19 -0.054 0.201 -0.285 

20 0.162 0.201 0.571 

21 0.056 0.044 0.073 

22 -0.104 -0.061 0.885 

23 -0.015 0.154 -0.486 

Average 0.129 0.366 0.761 
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Validation against the LiDAR data was done with a down-sampled version of the DEM 

so both had the same (1 m vertical) resolution. For further details see section 5.3. 

 

Figure 16: Scatter plot of the two DEMs along with a linear regression:            
+33.12  The R

2
 relationship of the datasets is 0.96. 
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Figure 17: DEM of difference showing the spatial representation of error between the LiDAR and PhotoScan DEMs. 

Grayscale DEM of Difference between LiDAR and PhotoScan DEMs
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Figure 18: Histogram of the error between the LiDAR DEM used for validation and the PhotoScan DEM. 

 

Average error of the UAS DEM against the LiDAR DEM is 51.58 m. 
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6.3. Bedform mapping 

All discernible features were mapped using the shading shown in Error! Reference 

source not found., and the results are presented alongside NEXTMap (Figure 19) 

and LiDAR data (Figure 20) for comparison in Figure 21. Care was taken not to map 

features that appear to be largely delineated by noise around the edge of the DEM, 

such as in the SW corner.  The dimensions of the features mapped can be seen in 

Table 3 below, with average values of 132 m, 43 m and 3.15 for length, width and 

elongation ratio respectively.  
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Figure 19: NEXTMap (5 m resolution, bare Earth) of area around the field site, hillshaded from the NW with five 
times vertical exaggeration (as used by Hughes et al. 2010 to map from). Bedforms mapped by Hughes et al. (2010) 
are included in pink, and the extent of figure 18 is depicted in light blue. 
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Figure 20: LiDAR bare Earth DEM of the area around the Rosgill Site, with the area flown depicted in blue.  
Hillshading has been applied with illumination from the NW and five times vertical exaggeration. 

 

Figure 21: Mapped features presented on top of the PhotoScan DEM shaded at 315° with five times vertical 
exaggeration. 
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Table 3: A table of the dimensions of the features mapped in Figure 24. 

Length Width Elongation Ratio 

303.4 134.3 2.3 

119.1 55.4 2.1 

239.6 47.5 5.0 

175.4 60.7 2.9 

72.2 31.9 2.3 

134.5 36.1 3.7 

173.9 65.0 2.7 

48.0 21.7 2.2 

75.3 26.0 2.9 

78.8 35.8 2.2 

165.0 38.0 4.3 

110.6 25.6 4.3 

112.4 29.5 3.8 

85.7 26.6 3.2 

84.9 31.0 2.7 

84.6 25.3 3.3 

186.8 52.3 3.6 
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Chapter 7  Interpretation & Discussion   
 

7.1. General remarks on the study 

This study has demonstrated the variety of pitfalls that await UAS photogrammetrists. 

Image acquisition was successful in terms of the application of UAS technology, but 

remains limited by legal barriers and aspects of the UAS design that are specific to the 

UAS used here.  Image processing was far more problematic, and three of the four 

programmes used were not suitable, mostly due to complexity and unreasonable time 

requirements.  Encouragingly though, PhotoScan demonstrated how SfM can produce 

high quality DEMs whilst also maintaining a simple and efficient workflow.  

Mapping from the DEM of Rosgill revealed a number of features that could be glacial 

bedforms, and generally a North West – South East streamlining of the landscape that 

is opposed to the more dominant North – South streamlining mapped on NEXTMap by 

Hughes et al. (2010). Equifinality remains a serious issue and without an additional 

investigation, perhaps into internal structure of the features, it is difficult to expand on.  

A number of mapped features were <100 m in length, but perhaps more significantly 

several were extremely thin at <40 m wide.  In the context of Clark et al.’s analysis the 

<40 m wide bedforms fall outside of two standard deviations of the mean width of 

drumlins, and very few drumlins with widths <100 m were mapped by Hughes et al. 

(2010).  

 

7.2. UAS use for image acquisition  

The PAMS SmartOne B proved to be an extremely effective tool for aerial survey. It is 

robust, simple, and easy to fly, and so carries a number of advantages over adapted 

amateur airframes (DIY Drones, 2011) and kite based methodologies (Aber et al. 2002; 

Smith et al., 2009). It does have a number of weaknesses related to restrictions on 

operating conditions, but, the alternative platforms largely share these due to 

common engineering difficulties and legal issues.  The principal issue to consider when 



Chapter 7 - Discussion 

 

  

71 
 

comparing it to other platforms is the financial penalty of opting for its off-the-shelf 

technology over cheaper experimental DIY options.  This discussion focuses on the 

technical issues, as financial considerations of future users are unknown. 

If UASs are considered as a survey method, and here we argue that they should be, 

then motorised fixed wing modules such as the PAMS Smartone B UAS are the best 

choice in a number of scenarios. Powered flight is much more efficient for surveying 

than unpowered options such as kites.  It allows larger areas to be covered and 

requires less user supervision.  For Rosgill, it also would not have been possible to 

carry out a survey with kites as the farmers specifically requested that we did not enter 

certain fields. Using a fixed wing airframe rather than a helicopter based model is 

preferable too. Whilst helicopters can be useful for sites with restricted flying areas, 

they also require far more power and so have shorter flight duration.  The fixed wing 

airframe is more efficient and so can cover greater areas or, at least, can cover the 

same area in a less fragmentary fashion and this simplifies photogrammetric 

processing. Therefore, for surveys of sites like Rosgill, where there are no 

topographical restrictions such as steep valley sides, or location restrictions that 

prevent access to power, it is the preferred platform. 

Aside from the airframe, other elements of the UAS need to be considered when 

selecting one.  In this study a major limitation of the PAMS SmartOne B was the use of 

thermopile stabilisation that prevents flying in overcast conditions. This placed 

unnecessary limitations on surveying in the UK due to the changeable weather.  

Thankfully, future editions of the SmartOne are to be made with an IMU, and so flying 

will become insensitive to lighting conditions.  When considering any form of UAS this 

should be a priority. With a good enough camera, image quality is generally suitable 

for photogrammetry in a wider range of lighting conditions than can be flown in with a 

thermopile stabilisation system.  

When considering the UAS as a whole, the ground control software is of some 

significance.  Here there was not a comparison of different software, but the software 

used was more than satisfactory.  It shows the UAS position, displays all relevant 

information such as contrast, wind speed, GPS signal, and battery charge, and it is easy 
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to define the survey area. It also works as a safeguard by not allowing the UAS to start 

until all essential elements such as GPS signal and contrast are good enough. In a more 

recent version of the software which has not been used, the same features are 

retained, but the presentation has been improved and a survey area can now be 

altered whilst the UAS is in flight which can sometimes be useful when surveying 

several small areas or reacting to a dynamic situation. 

In summary, the PAMS SmartOne B UAS is a simple to use survey tool, and its quality is 

commensurate with its price.  Its principal disadvantage is its dependence on 

thermopiles for stabilisation, but, for any future user this is not an issue due to the 

new versions replacing this with an IMU. There is no reason why any user could not 

use it for conducting aerial surveys of suitably sized and located sites. In some 

circumstances where the terrain prevents flying or location restricts access to power, 

other technologies such as kites would be more appropriate, but in every other 

situation powered UASs remain superior. 

 

7.3. Photogrammetry programme selection 

This study used both an established photogrammetry programme, LPS, and a variety of 

more recently developed programmes based on SfM techniques. From the results it is 

clear that the developments in SfM are the key reason that small format photography 

has become a viable surveying method.  Here, as with the discussion over image 

acquisition, we have focussed primarily on usability which is also heavily intertwined 

with accuracy in the SfM programmes.  The strength of the UAS survey method is its 

flexibility, and so in order to preserve that throughout the processing, the 

photogrammetry software ideally had to mirror that. SfM provides the opportunity to 

overcome technical difficulties with small format photogrammetry, such as an inability 

to constrain internal and external parameters, and because it achieves this through 

automated sections of programming it is easier to use than LPS’s workflow. 
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7.3.1. LPS   

LPS proved to be entirely unsuitable in this study. This was due to its inability to cope 

with the level of error in the intrinsic and extrinsic camera parameters. LPS performs 

poorly with too many unknowns, as noted by Aber (2010), due to a weak feature 

matching algorithm, limiting its ability to compensate for imprecise user inputs during 

triangulation. 

Efforts to calibrate the camera used with the Caltech calibration toolbox (Caltech 

Vision, 2010) were of limited use because while they did help constrain camera 

geometry, the results did not appear to be good enough to be used as a fixed known 

value within LPS.  Whilst small format cameras have been shown to be relatively stable 

(Laebe & Foerstner, 2004; Habib et al., 2004) there is still some variation and that may 

be enough to force the value to be set as initial within LPS.  The only way to 

circumnavigate this obstacle would be to either use a metric camera with a fixed lens 

(e.g. Smith et al., 2009), or perform a calibration after turning the camera on before 

each flight.  Both of these options are impractical. Whilst using a metric camera is 

evidently preferable, it is not possible due to weight restriction. Moreover, the nature 

of the UAS landing would more than likely change the calibration over time.  

Performing a calibration before flight is more feasible, and there are a number of SfM 

based automated calibration programmes that can be used with an object/scene of 

known dimensions, but this is still an additional layer of complexity that arguably does 

not need to be introduced to the flight process.  

The extrinsic parameters were more problematic.  Whilst the UAS collects camera 

positions and orientations the accuracy did not appear to be workably high enough. 

Other authors (Laliberte et al., 2011) have had issues with GPS accuracy due to a low 

sampling rate and it is likely that a similar issue is also present here.  This lack of 

camera positions can be overcome with good ground control and well constrained 

intrinsic parameters but, as discussed above, the intrinsic parameters are difficult to 

constrain and collecting suitably accurate GCPs is not always feasible.  

These issues were further compounded by the general difficulty of using LPS. It is not a 

user friendly system, and requires a relatively high level of training before a user 
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becomes competent. Whilst this is hardly unique amongst GIS programmes, it does 

pale in comparison to the ease with which users pick up AgiSoft PhotoScan and added 

weight to the decision not to pursue LPS further. It is not impossible to get LPS to work 

with UAS imagery, and Laliberte et al. (2011) demonstrate this, but this study did not 

have the resources or capability to introduce the additional layers of programming that 

their methodology required. 

 

7.3.2. Bundler 

Bundler is an attractive option for small format photogrammetrists. It is proven in 

numerous studies (Snavely et al., 2006; Snavely et al., 2007; Neithammer et al., in 

press) and also free.  Being 64-bit compatible, designed for multiple CPUs, and with the 

addition of CMVS, it provides an extremely scalable approach to photogrammetry. 

Bundler’s primary limitation, and the reason it was not pursued, was the complexity of 

the programme. Bundler has to be compiled before use, and then run from the 

command line. This is further complicated by the Linux nature of the programming 

which is not familiar to all potential users.  Additionally, it requires extra programmes 

to produce a final DEM, with a major problem being georeferencing (Westoby, 2011).  

Whereas in PhotoScan georeferencing markers can be adjusted on the actual photos, 

in Bundler georeferencing has to be done in a separate programme after the point 

cloud is created and so must be done on the DEM.  As the resolution of the point cloud 

is always lower than the source images, accuracy will be commensurately lower.  

Westoby (2011) has used meter square yellow markers for georeferencing to make 

spotting the markers in the point cloud easier, but this tends to limit the accuracy 

achievable to the size of the markers. 

Whilst Bundler remains an option for future users and will probably continue to 

improve due to its open source nature and popularity amongst online communities, it 

was felt that it does not provide the level of usability required and PhotoScan remains 

a better option despite its cost. 
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7.3.3. PhotoSynth 

PhotoSynth was initially a promising option because of its usability, but, whilst it is 

easy to produce a point cloud with it, the accuracy was lower than required for 

mapping purposes. This was partially due to the limit on the resolution of uploaded 

images, but also the algorithms used in the programme. Although these are based on 

those used in Bundler, they are understandably optimised for photo tourism rather 

than photogrammetry.  In photo tourism aligning the images is the primary concern 

and this requires a lower point density than used in photogrammetry. Therefore, cloud 

density is sacrificed to speed up the processing. 

As well as limiting the resolution of uploaded images, PhotoSynth limits the number 

that can be uploaded to around 300.  This is still a relatively large number and, by 

reducing the overlap between images from the UAS to the minimum required, it would 

be possible to cover a substantial area in one block. It should also be possible to 

combine multiple point clouds to cover a larger area.  Unfortunately, the process is 

complicated by the presence of severe warping on the DEM.  This means that it is 

basically impossible to create point clouds of large areas with PhotoSynth without 

carrying out complicated 3-D transforms to GCPs after they have been initially 

produced.  Whilst PhotoSynth was promising in that it was relatively easy to use, it 

clearly is not fit for purpose for high resolution photogrammetry. 

 

7.3.4. AgiSoft PhotoScan 

AgiSoft PhotoScan was the preferred programme for DEM production because it 

scores highly on usability, speed, and accuracy.  The SfM approach, combined with an 

interface that is intuitive and familiar to users, makes for an exceptionally easy to use 

software package. In addition, whilst the basic workflow is simple, there are 

opportunities to provide data for internal and external parameters if it is available.  

This means that if one is working with partially metric data that potentially could work 

in LPS, but with a significant processing time penalty, it can be quickly processed in 

PhotoScan. As well as being able to provide additional information, PhotoScan is 

preferable to other SfM based programmes because it deals with the data more 
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efficiently through use of slightly different algorithms and alternative approaches.  For 

instance, the use of a simplistic greedy algorithm before the bundle adjustment 

shortens the processing time by reducing the number of iterations required during the 

bundle adjustment. 

The spatial resolution of the DEMs produced is excellent.  Defined as pixel size, 

resolution is 0.12 m2 in the DEM produced.  However, this does not reflect the 

potential resolution attainable in PhotoScan, but rather the computational limits of the 

study.  The DEM was reduced, from a maximum raw output of 11,000,000 points, to 

5,000,000 points due to graphical restrictions.  An even higher resolution would have 

been possible had the model reconstruction been run on ‘ultra high’ rather than ‘high’ 

where there SIFT algorithm gets close to one point per pixel. Despite this the 

outputted model is an extremely high resolution for a DEM, although validation is 

problematic here due the lack of a comparable resolution pre-existing DEM. 

Validating the DEMs accuracy is problematic as there appears to be four different 

sources of error within the DEM and precisely defining the scale of each error is 

difficult. In order of scale, there is a systematic datum error introduced by the DGPS 

survey, a systematic error due to warping of the DEM by PhotoScan, variable levels of 

error due to misalignment of the two DEMs and error due to different handling of 

vegetation (predominantly trees) between the two methodologies. 

 

The datum error introduced by the DGPS survey is the most significant.  It was created 

due to a poor survey design that focused on relative positions rather than absolute 

positions. As a result, whilst the GCPs are relatively accurate (±0.0025 m) there is a 

large amount of error between them and the LiDAR data used for validation.  A key 

oversight in the research design here is the usage of all the GCPs in the production of 

the DEM. Had some been left unused they could have provided an additional 

validation which circumnavigated the datum issue.  Establishing the size of the error is 

difficult as whilst the GCPs are easy to identify on the imagery, and so easy to use in 

the production of the PhotoScan DEM, they are difficult to identify on the LiDAR 

dataset with any accuracy.  Given to suitable level of accuracy the error is 52 m. 
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With the deduction of 52 m, average error on the DEM is 0.58 m with a precision 

(defined as one standard deviation from the mean) of 1.68 m.  However, further 

analysis suggests that these are poorly applied metrics due to the nature of the data. 

The DEM of difference between the LiDAR and PhotoScan DEMs displays what appears 

to be an underlying parabolic trend of error across the DEM.  This is perhaps better 

displayed if a limited range of the data is plotted as seen below in Figure 22: A DEM of 

difference showing the distribution of error between the LiDAR and PhotoScan DEMs after the 

removal of the 52 m of systematic error introduced by the GCPs. The colourmap has been 

limited to -2 to 5 m in order to display the systematic nature of the error introduced by 

PhotoScan that appears to be parabolic. 

 

Figure 22: A DEM of difference showing the distribution of error between the LiDAR and PhotoScan DEMs after 
the removal of the 52 m of systematic error introduced by the GCPs. The colourmap has been limited to -2 to 5 m 
in order to display the systematic nature of the error introduced by PhotoScan that appears to be parabolic. 
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Therefore, due to this systematic polynomial error, ascribing an average error to the 

dataset is relatively pointless.  Equally, using one standard deviation from the mean as 

a definition of precision appears to be unsuitable as demonstrated by another DEM of 

difference below in Figure 23: A DEM of difference showing the distribution of error 

between the LiDAR and PhotoScan DEMs after the removal of the 52 m of systematic error 

introduced by the GCPs. The colourmap has been limited to one standard deviation from the 

mean and displays how this description of precision fails to properly categorise error within 

the DEM due to the systematic error introduced by PhotoScan. limited to those values: 

 

 

Figure 23: A DEM of difference showing the distribution of error between the LiDAR and PhotoScan DEMs after 
the removal of the 52 m of systematic error introduced by the GCPs. The colourmap has been limited to one 
standard deviation from the mean and displays how this description of precision fails to properly categorise error 
within the DEM due to the systematic error introduced by PhotoScan. 

 

This error is similar to the DGPS error in that it is systematic and so correctable.  

Although this will not be done in the course of this project, de-trending the DEM is 

essentially a simple task in MATLAB, and presumably as it is a systematic error 
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PhotoScan will at some point remove it from the programme. However, for the 

moment it is a key limitation of the software. 

 

The third and fourth sources of error in the DEM are difficult to separate at without 

the aforementioned de-trending. There is certainly error present due to inaccuracies in 

the co-registration of the two DEMs as features and terrain are visible in the DEMs of 

difference. There is also error wherever trees are present and these appear to count 

for the majority of outliers although it is difficult to quantify this.  This error will have 

occurred due to the differences in dealing with vegetation between photogrammetry 

and LiDAR, with LiDAR providing an option of including ground or vegetation returns 

and so the final DEM being dependant on the processing of the raw data.  This 

difference in data generation almost certainly manifests itself in error on the grassy 

areas, but both of these sources of error are inherent in photogrammetry and so 

difficult to use as a critique of PhotoScan based on this validation. 

 

In summary, the DEM produced in this study is not accurate, demonstrating systematic 

error of 52 m due to an error in the GCP survey design.  Even with this resolved the 

DEM is not accurate due to a systematic polynomial error introduced by PhotoScan 

during processing. Furthermore this is difficult describe in normal terms. However, 

whilst the validation technique does not have the means to quantify it, qualitatively 

the DEM is accurate with those systematic errors removed as evidenced by the rough 

validation via comparison of wall heights.  Clearly though, for moment the DEM 

remains classified as inaccurate.  

 

Aside from assessing PhotoScan by the quality of the data produced, the main 

disadvantage to using it is that it is a commercial package.   Fortunately, the cost is 

affordable under an education license, and considering the time saved in processing, 

which could easily be measured in hours if not days, it is more than merited. Cost apart, 

the commercial nature also impacts on the level of documentation on the software. 

Whereas Bundler has a number of papers published on its structure due to its 

academic nature (e.g. Snavely et al., 2006; Snavely et al., 2007), quite understandably 

there are no papers published by AgiSoft. Fortunately this is in some way compensated 
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by AgiSoft employees being particularly involved in the PhotoScan online community 

and being more than happy to answer any queries about the software.  

Alongside the substantially problem of the systematic error the programme appears to 

introduce, there are two additional bugs that restrict PhotoScan’s performance. 

PhotoScan does often struggle with visualisation of large point clouds, to the point 

where processing will crash at the final stage. Additionally, it cannot currently align 

‘chunks’ without a substantial drop in quality. Fortunately, and perhaps due to the 

programme being relatively young, AgiSoft are constantly producing new versions with 

bug fixes and are willing to provide advice when bugs such as visualisation can be 

circumnavigated within the current version. 

PhotoScan almost realises the potential of the SfM approach to photogrammetry. It 

provides the flexibility of the SfM approach, matched with an intuitive interface and 

the ability to provide known parameters where appropriate. However, unfortunately 

the existence of a bug that introduces a systematic polynomial error into the DEM 

means it is not currently fit for purpose as an all encompassing technique for 

producing DEMs and must rely on post-processing before the outputs can be used for 

many quantitative applications that rely on vertical accuracy. However, within the 

remit of this study the DEMs produced are suitable for mapping bedforms as the 

spatial resolution is very good, and whilst it is not quantified, the vertical accuracy 

without the systematic error appears very good. 

 

7.4. Decimetric resolution DEMs for drumlin mapping. 

The DEM produced (Figure 21) clearly shows a far higher level of detail than NEXTMap 

(Figure 19).  Around the edges of the DEM there are well defined areas of noise, where 

there has been sufficient image overlap or coverage to produce points, but not enough 

to constrain them accurately. These areas were not used when mapping and care was 

taken not to interpret features created by the boundaries of these areas. 

Before continuing the discussion, it is worth remembering the small size of the study 

area. As discussed previously (see section 4.2) this obviously limits the conclusions that 
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can be drawn. The size of the region is a consequence of the photogrammetric 

processing. Flying additional areas remained a secondary focus until the initial area 

could be processed, but with the processing methodology now certain, there is the 

option to easily expand on the discussion here by flying a variety of other areas in 

future studies. 

Clearly, from the mapping (Figure 21), and just looking at the DEM (Error! Reference 

source not found.), there are large numbers of potential bedforms present.  Initially all 

raised topographic features were mapped.  They vary in size from 48 m to 303 m and 

average 132 m ( 

 

Table 3).  Two flow sets appear to be present, with the features roughly grouping into a 

N-S alignment and a NW-SE alignment. Both of these make sense with a N-S alignment 

being very dominant in Hughes et al.’s (2010) mapping, and a deep river valley running 

NW-SE just to the west of the site.  As the NW-SE features are smaller, it is possible 

that these are a product of a later and less extensive phase of glaciations that skirted 

the high ground as Rosgill and was more topographically influenced than the earlier 

phase that produced the dominant N-S features. Hughes et al. (2010) do not pick up on 

a NW-SE trend in the immediate proximity of the site, but further up the same valley 

they map bedforms oriented in that direction. 

Are the features mapped in this study actually subglacial bedforms?  Whilst mapping 

resolution impacts the range of forms produced by a particular geomorphic process 

that are visible, it also impacts the number of geomorphic processes that are visible. 

When mapping with NEXTMap, the geomorphology can be assumed to be a product of 

tectonic, glacial or fluvial processes. These are usually relatively easy to differentiate 

between, but when mapping with this higher resolution there are far more processes 

that could have affected the landscape, making interpretation more difficult.  

 Figure 24 highlights three obvious examples. In the south of the DEM the blue box 

highlights a road cutting.  The cutting sits in the middle of two features. The two 

features may be one feature split by the cutting, but from the DEM it is not possible to 
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tell. Both features appear to taper out slightly before reaching the cutting, but this 

could be due to anthropogenic reworking around the road.  In the centre of the DEM 

the red box highlights a short feature, in fact the shortest feature mapped at 48 m long.  

It is an elongate form and tapered at each end, but it also runs perfectly orthogonal to 

two walls and sits roughly in the middle of a particularly long field. Therefore, it is quite 

possible it is the remnant of an old wall. In the north of the DEM, a yellow box 

highlights what appears to be to be an area of fluvial incision. It forms the boundary of 

the largest feature mapped (303 m in length).  Without further information it is 

particularly difficult to ascertain whether the clearly fluvial features have formed in the 

valley beside the feature after it was formed, or whether fluvial processes are solely 

responsible for forming the valley. If the former is true then the feature has been 

mapped correctly, but, if the latter is true then the mapping should interpolate over 

the valley. Evidently from this DEM alone it is not possible to reach a conclusion. 
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A further mapping complication involves potentially compound forms.  Several of the 

features mapped are in relatively close proximity on an area of high ground. If mapped 

on a lower resolution DEM they would be regarded as a single feature. Here they were 

mapped as individual features, but, potentially both the smaller and larger features 

could be mapped, or perhaps just the larger feature.  It is difficult to discern whether 

they represent the signature of different glacial phases, or just complex features (e.g. 

Clapperton, 1989).  Spagnolo et al. (2010) choose not to include superimposed and 

cross cut features in their analysis of drumlin form, and perhaps analysis of poorly 

resolved bedforms as compound forms resulted in many small drumlins being 

Figure 24: Issues with mapping from the DEM are highlighted in three locations.  The yellow box highlights an area 
of fluvial incision, the red box highlights a possible former field boundary, and the blue box highlights a road cutting. 
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discarded.  Obviously it is sensible to omit poorly resolved bedforms when attempting 

to quantify the true shape of drumlins, but at the higher resolution of the UAS DEM it 

is less a case of not being able to distinguish whether a form is a single bedform or not, 

and more a case of deciding which of several well defined forms to map. In this case it 

seems sensible to map the smallest form unless it evidently has been truncated by 

cross cutting, and here that never appears to be the case. 

Clearly, equifinality is a serious issue and one that remote sensing alone is unable to 

answer. Whilst mapping from remote sensing is appropriate at poorer resolutions, a 

field investigation may be required to establish the genesis of the features mapped.  It 

brings about an interesting question about what we can map as a bedform. Clearly 

there is a deficiency when mapping solely from remotely sensed data, but whether 

further data, such as feature sedimentology, is required is not clear, and even that 

might not clarify the issue. Despite the current deficiencies though, the sizes of the 

mapped features remain of interest. 

Discarding the particularly short 48 m long feature, there are six ‘short’ features that 

could be regarded as small ‘baby drumlins’ that are <100 m.  They are well within the 

resolution of the DEM, but average 80 m in length.  Whilst this is slightly less than the 

100 m lower bound established by Clark et al. (2009) it actually matches well to a 

number of published studies (e.g. Kupsch, 1955; Mitchell, 1994;  Velic, 2011). This is a 

particularly small study site, but none of these features were visible on NEXTMap. 

Perhaps this suggests that whilst there is no apparent need for a wholesale revision of 

drumlin length, it might be sensible to acknowledge a slightly lower bound. 

It is worth considering why the small features are not visible on NEXTMap DEMs. 

Largely it appears that the width is more significant than length. The average width of 

the mapped features is 43 m and because NEXTMap has a 5 m horizontal resolution, 

the features could be only be represented by 6-12 pixels. This is obviously difficult to 

map from, and the amplitude of the features makes the task even harder. Whilst 

NEXTMap has a 1 m vertical accuracy, the effective smoothing of the horizontal 

resolution means that the edges of the drumlin are not distinguishable and so the 

feature is actually only depicted by perhaps 2 pixels. Another possible complication is 



Chapter 7 - Discussion 

 

  

85 
 

the presence of bedforms on slopes, as seen in the Western section of the DEM.  In 

this situation, the smoothing of the 5 m horizontal makes the drumlins difficult or 

impossible to see because the magnitude of the slope is similar to the amplitude of the 

drumlins.  So certainly, it does appear that there are benefits to mapping at this higher 

resolution.   

 Although not included in the aims of this study, the width of the mapped bedforms 

could be just as significant a metric as the length, and there is more evidence that 

there the mapping on NEXTMap is less suitable.  Whereas Hughes et al. (2010) only 

mapped a small number of bedforms with a width <100 m (see Figure 3) the features 

mapped here have an average width of 43 m. Furthermore, eleven of the seventeen 

features mapped were <37 m wide and so outside two standard deviations of Clark et 

al.’s (2009) mean. Whilst they are particularly narrow, they remain similar in 

elongation (3.15) to Clark et al.’s (2009) bedforms (2.9) and so cannot be considered 

just a series of flutes, which would be expected to exhibit much higher elongation 

ratios. 

 As discussed above, narrow drumlins are difficult to map on NEXTMap, and the 

presence of 11 features <37 m wide within such a small area does suggest that there 

might be a number of bedforms across the UK of a similar size not mapped by Hughes 

et al. (2010). Additionally, whilst the literature review conducted by Clark et al. (2009) 

does correlate well with their findings about length (e.g. 8 sites from the literature 

were found where length was <100 m which is similar to their findings from mapping), 

the same cannot be said of drumlin width. For drumlin width, the literature review 

revealed 13 sites where drumlins with widths <100 m were mapped of which 12 were 

<56 m wide (Table 4). This seems at odds with the small number mapped in their study 

and so again suggests that NEXTMap’s resolution may have influenced the mapping of 

narrow drumlins. 
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Table 4: Selections from the literature review of observed drumlin sizes in Clark et al. (2009). Published work that 

records drumlins with widths <100 m. 

Authors (year) Site 

Length 

(min.) 

Width 

(min.) 

Spatial Resolution (if 

mapped) 

Kupsch (1955) Dollard, Saskatchewan, Canada 76 m 23 m 

Mapping in the field and 

fron unspecified resolution 

aerial photography 

Gluckert (1973) Central Finland 100 m 50 m Unspecified 

Rose & Letzer (1977) Glasgow and Vale of Eden, UK 100 m 50 m 1:10,560 

Kruger & Thomsen 

(1984) Myrdalsjokull, South Iceland 20 m 15 m 

Field mapping 

Zakrzewska Borowiecka 

& Erickson (1985) Eastern Wisconsin, USA 116 m 55 m 

Field mapping 

Clapperton (1989) Patagonia, Chile 200 m 80 m Field mapping 

Mitchell (1994) West Pennines, UK 135 m 50 m Unspecified 

  Upper Dentdale, UK 95 m 55 m Unspecified 

  Wensleydale, UK 90 m 40 m Unspecified 

Wysota (1994) Koziary, Poland 23 m 15 m 1:10,000 

  Gorzno, Poland 55 m 15 m 1:10,000 

  Trepki-Samin, Poland 50 m 25 m 1:10,000 

  Janowko, Poland 25 m 15 m 1:10,000 

 

 

7.5. Implications for future work 

7.5.1. Use of UASs & small format photogrammetry 

UASs currently are a niche remote sensing technology in the study of glacial 

geomorphology. This study shows that their technology has advanced to a stage where 

they are suitable for imaging applications in numerous studies of glacial 

geomorphology.  The technology has now become so accessible that arguably they 

extend the role of high resolution imagery beyond specialist users, and into the 

domain of any geomorphological researcher.  

Combined with photogrammetry tools such as AgiSoft PhotoScan, the glacial 

geomorphologist has the ability not only to quantify morphology, but simply to depict 

their site in 3-D. Whilst quantifying morphology and process impact over time is 
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obviously the primary scientific application of this technology, the wider implications 

of increased use of 3-D mediums for research dissemination are significant.  With 

growing use of alternative media online, the use of 3-D models will continue to expand 

and help make glacial geomorphology and geomorphology as a whole more accessible 

to the wider public.  

As discussed at length previously, neither photogrammetry nor UASs are new 

technologies, but it appears that finally they have reached a stage where they can play 

a larger role in this area of research. When available, and increasingly UASs are 

available, it would seem sensible to include them in research into glacial 

geomorphology wherever possible. 

 

7.5.2. Drumlin Mapping 

The scale of this study limits the strength of its findings, but it suggests there are 

several fruitful avenues for future work.  Primarily a larger scale study is needed to 

establish the dimensions of these features.  Clark et al. (2010) argue that their data 

suggests drumlins are a separate population of landforms unlike Rose’s (1987) 

proposal of a continuum of forms, but the results of this work hints that their 

conclusion may not be so clear.   The narrow features mapped in this study potentially 

are indicative of drumlins fining into flutes. Establishing whether this is the case would 

be a useful contribution to the development of instability based models of drumlin 

formation that assume ‘emergence’ at a given size (Clark, 2010). 

A second area that requires further work is on establishing an automated, or at least 

more thorough, mapping technique.  The difficulties surrounding mapping at high 

resolution stem both from equifinality and simply the number of forms that are visible. 

However, perhaps a more sensible approach here is to move away from the palaeo 

forms and to concentrate on the modern analogue where there is less potential for 

non-glacial geomorphic processes to contribute to the landscape. 

Therefore, the most appropriate extension to this work might be a series of high 

resolution studies of the glacial foreland of retreating Icelandic glaciers, and perhaps 
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particularly the foreland of Múlajökull where drumlins have recently emerged 

(Johnson et al., 2010).  That would limit the impact of equifinality when mapping, and 

offer the opportunity to examine the relationship between drumlins and flutes without 

having to worry unduly about whether the more delicate forms have been eroded 

from the landscape.  For future studies in the UK, now the method of UAS survey has 

been established, it would also be sensible to simply extend the coverage of this study 

and simply examine sub-metric DEMs of different drumlinised areas across the country. 

Unfortunately this study cannot scale its findings to identify the potential number of 

drumlins unmapped by Hughes et al. (2010) as no drumlins were mapped by her in the 

area surveyed.  This was essentially a product of the research design that focused on 

finding small bedforms outright rather than aiming to produced a scaled estimate.  

Initially a study covering just a few kilometres, and possibly over a variety of different 

sites, would allow a scaled estimate of unmapped bedforms in the UK, but there is 

merit in a full scale study mapping the entire glaciated area of the UK.   
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Chapter 8  Conclusions 

 

UAS based photogrammetry was shown to be a low cost, low complexity method for 

producing DEMs of small areas (circa 1km2) but accuracy remains a concern.  The use 

of a UAS provides flexibility to the glacial geomorphologist as it can be deployed 

quickly and easily to survey small areas that do not merit the commissioning of other 

methodologies such as LiDAR.  Specifically the PAMS SmartOne B proved simple to fly 

and suitably robust. It was limited by its thermopile based flight stabilisation that 

prevents flying in low light levels, but, as new versions now feature an inertial system 

this will not be an issue in future. 

Of the photogrammetry programmes tested, PhotoScan was shown to be the most 

suitable. It provides a simple interface, efficient processing, and requires minimal user 

training which satisfies this study’s aim to identify a low complexity method for 

photogrammetric DEM creation.  Frustratingly it currently introduces a systematic 

polynomial error into the DEMs produced, but this could be easily resolved by 

detrending the DEM in future work.  Because of this systematic error it was difficult to 

assess the accuracy of the DEM produced, but an estimate puts it at around 0.5 m 

after the systematic error has been resolved. Further work is required to establish the 

exact accuracy of this DEM. 

The DEM produced was successfully used for mapping geomorphic features, and 

demonstrated that NEXTMap imagery does not show a number of features that could 

be glacial bedforms. These features were measured and it was found that whilst they 

did not differ greatly from Clark et al.’s (2010) 100 m lower limit on drumlin length, 

they were considerably thinner than bedforms mapped in that study.  The 17 mapped 

bedforms had an average width of 43 m and 11 measured <37 m, which is outside two 

standard deviations of Clark et al.’s (2010) average.  Despite this, they remained within 

the elongation ratio of drumlins, and so could conceivably be considered as such, 

rather than flutes.   
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The presence of these features tentatively suggests that drumlins may fine into flutes 

as hypothesised by Rose (1987).  However, the sub-metric resolution of the DEM also 

highlighted that, alone, it may not be suitable for mapping glacial geomorphology. The 

noise in high resolution DEMs from small scale processes complicates mapping, making 

it difficult to determine whether bedforms are of a glacial origin.  This issue of 

equifinality prevents solid conclusions from being drawn from this mapping and 

highlights the requirement for such resolution DEMs to be used alongside other 

techniques such as field validation.  Despite this, the level of additional detail visible at 

this resolution does demonstrate the limitations of using DEMs such as NEXTMap, with 

lower resolution, for mapping of glacial geomorphology. 
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1 868895.1 6058989 327.9414 

2 868895.5 6059022 323.7663 

3 868912.7 6059056 323.0909 

4 869082.9 6058795 320.6131 

5 869040.4 6058661 321.8596 

6 869031 6058661 321.9493 

7 868868.4 6058746 331.0307 

8 868865.3 6058644 334.2759 

9 868826.1 6058615 338.2485 

10 868779.6 6058617 341.3897 

11 868738.6 6058596 340.6294 

12 868727.8 6058607 338.8145 

13 868534.7 6058692 337.3601 

14 868550 6058710 337.9867 

15 868606.9 6058763 336.1353 

16 868661.9 6058795 334.0866 

17 868757.5 6058947 327.0085 

18 868807.9 6058990 326.2157 

19 868623.8 6059067 327.2891 

20 868550.3 6059073 328.4777 

21 868480 6059091 328.2065 

22 868424 6059097 326.7517 

23 868424.9 6059089 328.1539 

24 868393.6 6059022 328.8007 
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