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Abstract

Gold occurrences in the Lupa goldfield, SW Tanzania, are typical of  the orogenic Au 

deposit type. Auriferous quartz veins and mylonitic shear zones cross cut Archean granitoids 

(ca. 2740 Ma) and Paleoproterozoic felsic-mafic intrusions (1960–1880 Ma) comprising a 

Paleoproterozoic magmatic arc at the Tanzanian cratonic margin. Lu-Hf  zircon results provide 

evidence for ca. 3.1 Ga basement beneath the Lupa goldfield and imply significant portions 

of  the Ubendian Belt represent re-worked Archean crust. A greenschist facies metamorphic 

mineral assemblage overprints all of  the magmatic phases and U-Pb dating of  syn-metamorphic 

titanite hosted by a foliated Archean granitoid at ca. 1950 Ma suggests the onset of  this tectono-

thermal episode occurred during the Paleoproterozoic. 

 The majority of  mineralization is hosted by a network of  brittle-ductile and mylonitic 

shear zones, which record evidence for transpressional deformation of  triclinic, or lower order, 

symmetry. Relacement of  igneous feldspar (plagioclase and K feldspar) with intrinsically weaker 

phyllosilicates, during sericitization of  the granitic wall rock, created the ideal conditions for 

strain localization and locally may have led to the onset of  crystal plastic deformation processes. 

Continued feedback between fluid, rock and deformation generated interconnected networks 

of  weak mylonitic shear zones that are subject to reactivation. Quartz veins are the other 

significant host for Au and possess geometries that imply mineralization occurred concurrently 

with episodic fluid pressure fluctuations.  

Re-Os molybdenite, pyrite and chalcopyrite geochronology ages record a protracted 

metallogenic history and provide evidence for at least two mineralizing events at ca. 1940 

and 1885 Ma. Each metallogenic event is represented in detail by a hydrothermal history that 

occurred at a time scale less than the resolution of  the Re-Os method. High precision U-Pb 

zircon ages for the Saza Granodiorite overlap with Re-Os ages and provide unequivocal evidence 

for magmatism concomitant with sulphidation, however the wide range of  Re-Os sulphide ages 

precludes a genetic relationship between any individual intrusion and Au. The goldfield-wide 

metallogenic event at ca. 1885 Ma occurred concurrently with eclogite facies metamorphism 

elsewhere in the Ubendian Belt and provides one of  Earth’s earliest examples of  subduction 

processes temporally linked to orogenic Au deposit formation. Mesoproterozoic Re-Os ages 

(ca. 1125 Ma) correlated to the Kibaran/Irumide Orogenies and compatible with inferred Pb-

loss events provide evidence for sulphidation during at least two discrete orogenic cycles and 

suggest mid-crustal mylonitic shear zones represent long-lived zones of  structural weakness.   
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– Chapter One –

Introduction

1.1 Orogenic Au deposits and the need for a four-dimensional approach 

Metamorphic belts are a major host for epigenetic Au deposits that have been variably 

classified as orogenic (Groves et al., 1998), mesothermal (Nesbitt et al., 1986), intrusion-

related (Sillitoe and Thompson, 1998; Lang and Baker, 2001), quartz-carbonate greenstone-

hosted (Dubé and Gosselin, 2007) and/or Archean lode Au deposits (Barnicoat et al., 1991; 

Hagemann and Cassidy, 2000). The orogenic Au deposit model was proposed as a unifying 

classification and is defined as shear and quartz-carbonate vein hosted, sulphide poor (< 5% 

pyrite ± pyrrhotite) and Au dominated deposits that result from structural focusing of  low 

salinity H2O-CO2 (± CH4) fluids at convergent margins (Groves et al., 1998). The deposits 

are temporally associated with periods of  Earth’s history dominated by convergent tectonics 

and spatially associated with accreted terranes within exhumed paleo-orogens (Goldfarb et al., 

2005). Precambrian metamorphic belts host the largest examples of  orogenic Au type deposits 

and are characterized by temporally distinct, but spatially overprinting metamorphic, structural, 

magmatic and metallogenic histories (Goldfarb et al., 2001).  

Previous studies have demonstrated the exceptionally complex structural and geologic 

settings of  these deposits and the exact mechanisms responsible for their formation remain 

equivocal (Groves et al., 2003). Many of  the uncertainties regarding the formation of  orogenic 

Au deposits are a consequence of  the dearth of  temporal constraints on the absolute timing 

of  mineralization relative to tectono-magmatic events. This has led to the so-called ‘intrusion-

related’ classification for deposits that are interpreted to be genetically related to igneous 

intrusions (Sillitoe and Thompson, 1998). Magmatic activity is a natural consequence of  the 

subduction zone processes operating at the accretionary orogens where both deposit types are 

associated. As a result, distinguishing intrusion-related Au deposits from orogenic Au deposits 

is especially challenging in the absence of  precise geochronologic constraints (Hart, 2005). 

The debate has important implications for mineral exploration efforts as each deposit model 

implies a distinct auriferous fluid source(s). Proponents of  ‘intrusion-related’ deposit models 

predict that mineralization is associated with locally derived and magmatic hydrothermal fluids, 

whereas orogenic Au deposit models emphasize the importance of  distal fluids of  probable 

metamorphic origin. The source of  fluid(s) and the role of  magmatic activity in the formation 

Au deposits in metamorphic belts remain uncertain (Jia and Kerrich, 1999; Phillips and Powell, 

2010).
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 The relative geologic histories of  orogenic Au deposits are well described and have been 

the subject of  comprehensive study (Hagemann and Cassidy, 2000). The results of  this research 

have highlighted the intimate relationship between deformation, hydrothermal alteration and 

metallogenesis (Phillips and Powell, 2010). Whilst mutually cross cutting relationships between 

quartz veins and mylonitic shear zones provide evidence for broad contemporaneity between 

hydrothermal fluids and deformation, the absolute timing of  these events are typically poorly 

constrained. Furthermore, the time scale(s) of  orogenic Au deposit formation has not been 

addressed. Most orogenic Au deposits are hosted by mid-crustal shear zones and provide an 

opportunity to investigate the architecture and ‘lifespans’ of  mid-crustal hydrothermal plumbing 

systems. The latter has important implications for the rheology and long-term weakening of  

crustal-scale faults. These large-scale faults also likely play a role in transporting hydrothermal 

fluids at depth to higher crustal levels where other ore deposits may develop (e.g., Hronsky, 

2012). 
The Lupa goldfield, SW Tanzania is one of  eight litho-tectonic terranes comprising the 

Paleoproterozoic Ubendian Belt (Daly, 1988; Lenoir et al., 1994). Meso- and Neoproterozoic 

tectono-magmatic events correlated to the Kibaran and Pan-African orogenic cycles, 

respectively, overprint Paleoproterozoic Ubendian orogenesis (Boniface et al., 2012). All three 

orogenic cycles are in turn reactivated by tectonism related to the development of  the western 

branch of  the Tertiary East African Rift (Theunissen et al., 1996). The protracted history of  the 

Ubendian Belt is recorded by regional-scale isotopic and structural studies with comparatively 

little geochronologic and geologic understanding of  the Lupa goldfield specifically. Therefore, 

it remains unclear how Au mineralization in the Lupa goldfield relates to the tectono-magmatic 

evolution of  the Ubendian Belt. Differentiating spatially overprinting, but temporally distinct 

orogenic events in the Ubendian Belt requires a precise temporal framework as part of  a four-

dimensional approach. This thesis attempts to address this issue by integrating several isotopic 

systems and multiple geochronometers with structural and lithologic mapping in order to 

develop a tectono-magmatic-metallogenic model for the Lupa goldfield. 

Throughout the thesis the Au occurrences in the Lupa goldfield are defined as “orogenic 

Au deposits”. The justification for this classification is built on the geochemical, structural 

and geochronologic data presented in the following thesis chapters. Our results demonstrate 

that Au is hosted by mylonitic shear zones and quartz veins at an evolving convergent margin 

concomitant with orogenesis and regional metamorphism. Furthermore, the geochronologic 

database developed as part of  this thesis prelcudes any genetic relationship between all of  

the identified metallogenic events and any of  the individual dated intrusive phases. The Au 

occurences therefore possess several of  the defining characteristics of  the orogenic Au deposit 

type and we suggest that this deposit model is the most favourable based on the available data.                   

1.2 Aims and Objectives
The Lupa goldfield has received very little scientific attention since the mid 20th century 

despite the region’s importance as an important Au producer in Tanzania (Grantham, 1931, 1932, 
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1933; Teale et al., 1935; Gallagher, 1939; Harris, 1961; Van Straaten, 1984; Sango, 1988; Kuehen 

et al., 1990). As a result, many basic questions regarding the geologic setting of  rocks comprising 

the Lupa goldfield remain unanswered. The impetus for this thesis is a renewed interest in the 

geology of  the Lupa goldfield driven by Helio Resource Corp.’s mineral exploration successes. 

Recent drilling by Helio Resource Corp. highlighted the need to develop a detailed U-Pb and 

Re-Os geochronologic framework in order to constrain the absolute timing of  major magmatic, 

tectonic and metallogenic events. In particular, the lack of  geochronologic constraints made it 

unclear as to which ore deposit type the ore bodies in the Lupa goldfield belonged (orogenic Au 

vs. ‘intrusion-related’). In this thesis, the precise timing of  felsic-mafic magmatism is constrained 

by utilizing U-Pb zircon ID-TIMS geochronology in conjunction with U-Pb zircon LA-MC-

ICP-MS geochronology. Lu-Hf  zircon LA-MC-ICP-MS and U-Pb titanite ID-TIMS results 

provide additional constraints on the petrogenesis and timing of  magmatic phases, whereas 

Re-Os sulphide geochronology  constrained the timing of  mineralization. Field observations, 

structural and lithologic mapping, petrography and lithgeochemistry are incorporated into 

this temporal framework in order to semi-quantify the tectono-thermal evolution of  the Lupa 

goldfield. The project set out with the following three objectives:

• Establish the timing of  magmatic phases and identify the geodynamic setting of  the Lupa 

goldfield. 

• Develop a temporal framework for metallogenesis 

• Determine the structural setting of  the Lupa goldfield and develop a genetic model for 

Au mineralization.

 

In addition to these three main objectives, the thesis also addresses several fundamental questions 

regarding the formation of  orogenic Au deposits hosted by metamorphic belts:

• Are Precambrian orogenic Au deposits exclusively associated with allocthonous terranes? 

• How connected are fluid conduits in the mid-crust? And on what time scale(s) do they 

operate?

• Are the brittle and ductile deformation processes that characterize auriferous shear zones 

truly contemporaneous?

• What is the timing relationship between Au, magmatism and metamorphism? How does 

the timing of  these processes relate to the timing of  subduction? And what does the time 

scale(s) of  each these processes tell us about Au deposit formation?     

1.3 Thesis Organization
The thesis is presented as five “journal-style” chapters with each chapter investigating 

at least one of  the aims and objectives described above. Chapter one, ‘Introduction’, describes 

the thesis aims and organization, summarizes the individual contributions of  the author 

and supervisors/collaborators to the overall thesis and introduces the concept of  analytical 
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uncertainty. Chapter seven, ‘Conclusions’, explores the implications of  the thesis results at 

varying scales of  mineral exploration, summarizes the findings of  the “journal-style” chapters 

and proposes areas of  future research.    

Chapter Two – Lithogeochemistry, Geochronology and Geodynamic Setting of  the Lupa Terrane, Tanzania: 

Implications for the Extent of  the Archean Tanzanian Craton

Chapter two sets out to constrain the timing of  magmatic phases and the geodynamic 

setting of  the Lupa goldfield. U-Pb zircon LA-MC-ICP-MS and ID-TIMS geochronology results 

are presented and integrated with Lu-Hf  zircon LA-MC-ICP-MS analyses in order to understand 

the timing and petrogenesis of  felsic-mafic intrusions. U-Pb, Lu-Hf  and lithogeochemistry 

are integrated with field observations and a new geodynamic model for the Lupa goldfield is 

proposed. Chapter Two has been submitted to the journal Precambrian Research. I completed 

all of  the fieldwork (four months on site), petrography, mineral separation (with the exception 

of  CL098 which was completed by Quentin Crowley at Trinity College, Dublin), sample 

preparation, zircon imaging (supervised by Tony Milodowski), LA-MC-ICP-MS analyses, 

REE modeling, data synthesis, data interpretation, figure production and wrote the chapter. 

Daniel Condon completed the ID-TIMS analyses (I completed a portion of  the chemistry) and 

assisted with data interpretation. Matthew Horstwood supervised the U-Pb zircon LA-MC-

ICP-MS analyses and assisted with data interpretation. Ian Miller supervised the Lu-Hf  zircon 

LA-MC-ICP-MS analyses and assisted with data interpretation. David Selby, Jonathan Imber 

and Quentin Crowley spent one week in the field. Activation Laboratories (Ancaster, Ontario, 

Canada) completed all lithogeochemistry analyses. The chapter benefitted from the editorial 

handling of  David Selby, Jonathan Imber, Daniel Condon, Matthew Horstwood and Quentin 

Crowley.

Chapter Three - Re-Os Geochronology of  Quartz Enclosed Ultrafine Molybdenite: Implications for Ore 

Geochronology

 Molybdenite is the ideal Re-Os geochronometer because of  its tendency to incorporate 

significant Re and exclude Os during crystallization (e.g., Stein et al., 2001). This property 

allows a Re-Os molybdenite model age to be calculated using a simplified isotope equation, t = 

ln(187Os/187Re +1)/λ; where t = model age, and λ = 187Re decay constant, 1.666 x 10-11; Smoliar 

et al. 1996). Molybdenite in the Lupa goldfield is present as veins and ultrafine disseminations 

within Au-bearing quartz veins and hydrothermally altered granitoids. Conventional mineral 

separation techniques were inadequate to separate sufficient quantities of  ultrafine molybdenite 

sample for Re-Os analysis. Chapter three outlines a novel chemical mineral separation technique, 

which takes advantage of  the disparate solubility of  silicates and sulfides in HF acid, in order 

to isolate ultrafine molybdenite from these difficult samples. The effects of  HF exposure on 

Re-Os molybdenite systematics are tested by exposing four reference materials to HF and 
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comparing Re-Os molybdenite model ages before and after exposure. The HF approach is then 

applied to six ultrafine molybdenite samples from the Lupa goldfield. Chapter three is published 

with the journal Economic Geology (v. 107, p. 1499–1505). I completed mineral separation, 

chemistry, ID-TIMS analyses, data synthesis, data interpretation, figure production and wrote 

the chapter. David Selby assisted with data interpretation and the chapter benefitted from his 

editorial handling. Chris Ottley assisted with ICP-MS analyses.  

Chapter Four – Re-Os Molybdenite, Pyrite and Chalcopyrite Geochronology, Lupa Goldfield, SW Tanzania: 

Tracing Hydrothermal Fluid System Connectivity and Metallogenic Time Scales at Mid-Crustal Shear Zones 

Hosting Orogenic Au Deposits

 

The timing of  Au mineralization at orogenic Au deposits is typically constrained by U-Pb 

zircon dating of  cross cutting dikes and/or host rocks. U-Pb zircon ID TIMS analyses possess 

exceptionally low analytical uncertainties, however cross cutting relationships rarely constrain 

the timing of  Au mineralization to within tens of  millions of  years (e.g., Kerrich and Cassidy, 

1994). Another approach taken by some authors has been to constrain the timing of  quartz 

veining by U-Pb hydrothermal zircon (± titanite ± monazite) geochronology (e.g., Lin and Corfu, 

2002; Ramussen et al., 2006). Hydrothermal zircons are not reported for a large number of  

orogenic deposits and the suitability of  this approach is limited. Re-Os sulphide geochronology 

provides a feasible alternative to U-Pb geochronology by directly dating sulphides that are co-

genetic with Au (Stein et al., 2000; Arne et al., 2001, Morelli et al., 2007; Selby et al., 2009; 

Kerr and Selby, 2012). Chapter four presents the results of  a detailed Re-Os study of  orogenic 

Au deposits that integrates several geochronometers (molybdenite, pyrite and chalcopyrite) in 

order to constrain the timing of  sulphidation in the Lupa goldfield. The results of  Chapter 

Four are used to investigate the time scale of  orogenic Au deposit formation and to trace the 

connectivity and time scale(s) of  fluid-conduits in the mid-crust. Chapter Four is submitted to 

the journal Economic Geology. I completed sample collection, mineral separation, chemistry, 

ID-TIMS analyses, data synthesis, data interpretation, figure production and wrote the chapter. 

David Selby completed three analyses (SZM01; SZM02 F1; SZM02-drill) and assisted with data 

interpretation. The chapter benefitted from the editorial handling of  David Selby and Jonathan 

Imber. 

Chapter Five – Fluid-Rock Interaction and Shear Zone Development in a Transpressional Setting: An example 

from the Lupa Goldfield, SW Tanzania

 

The structural settings of  orogenic Au deposits have been well studied and are known 

to be exceptionally complex (Robert and Poulsen, 2001). Despite this complexity, the majority 

of  deposits are interpreted within the context of  simple and/or pure shear models and the 

implications of  more complex styles of  deformation on ore body geometry are rarely considered 

(for an exception see Dubé et al. 1989). Chapter Five presents the results of  structural mapping, 
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micro-structural examination and shear zone geochemistry. The results suggest that the mylonitic 

shear zones followed a complex deformation path that is typical of  transpressional and triclinic, 

or lower order, symmetry shear zones (Jiang and Williams, 1998). A model for shear zone 

development is proposed and the scale(s) at which transpressional strain partitioning occurs 

is discussed. Chapter Five is submitted to the journal Economic Geology. I completed the 

fieldwork, sample collection, structural mapping, serial slicing of  oriented samples, petrography, 

ore body modelling, data synthesis, data interpretation, figure production and wrote the chapter. 

Jonathan Imber assisted with data interpretation and the chapter benefitted from his and David 

Selby’s editorial handling. David Holwell completed the Computer X Ray Tomography at the 

University of  Leicester.        

Chapter Six – U-Pb Titanite Geochronology: Implications for the orogenic Au deposit model from the Lupa 

goldfield, SW Tanzania

Orogenic Au deposits are associated with crustal-scale shear zones and their subsidiary 

structures at paleo-convergent margins (Kerrich and Wyman, 1990; Sibson et al., 1988; Weinberg 

et al., 2004; Bierlein et al., 2009). Most deposits occur relatively late in the orogenic cycle and 

post-date the majority of  metamorphism, magmatism and deformation (Witt and Vanderhor, 

1998; Groves et al., 2000). The absolute age of  metamorphism relative to mineralization and 

magmatism is poorly constrained at most goldfields due to the complex tectono-thermal 

history at paleo-orogens and the difficulty in reconstructing this thermal history from the rock 

record. One potential approach to this problem lies in the contrasting closure temperatures of  

accessory mineral phases, which record a distinct part of  the paleo-orogen’s thermal evolution. 

The U-Pb system lends itself  to this approach due to the wide variety of  U-bearing accessory 

mineral phases, which possess a range of  closure temperatures and occur in a wide variety of  

rock types (e.g., Hawkins and Bowring, 1999; Crowley et al., 2009). For example, the titanite 

geochronometer possesses a high closure temperature (550–650ºC; Frost et al., 2000) and is 

typically used to “see through” low temperature metamorphic episodes and overprinting low-

grade metamorphic events in order to date older igneous events and pro-grade metamorphism 

(e.g., Lucassen and Becchio, 2003). However, titanite neocrystallization during greenschist 

facies metamorphism is also demonstrated and can provide valuable information regarding 

the timing of  metamorphic mineral growth (Aleinikoff  et al., 2002). In Chapter Six, the 

increased reactivity of  titanite relative to zircon at greenschist facies metamorphic conditions 

is exploited by comparing U-Pb zircon and U-Pb titanite ages for the same samples. These 

U-Pb titanite ID-TIMS ages are integrated with the U-Pb zircon (Chapter Two) and Re-Os 

sulphide (Chapter Four) ages for magmatism and mineralization, respectively. Therefore, this 

thesis presents a comprehensive geochronologic database that constrains the timing of  each 

of  the important geologic events important to orogenic Au deposit formation (magmatism, 

deformation and metamorphism). The complete dataset provides an opportunity to test the 

relative importance of  different geologic events in the development of  orogenic Au deposits 
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based on their absolute ages. Chapter Six is to be submitted to a peer-reviewed journal that has 

yet to be decided. I completed the mineral separation, data interpretation, figure production and 

wrote the chapter. Daniel Condon completed the U-Pb titanite ID-TIMS analyses and assisted 

with data interpretation. The chapter benefitted from the editorial handling of  David Selby and 

Jonathan Imber 

1.4 Presentation of  research reported by this thesis
 In addition to submitted and/or published chapters, thesis research has been presented 

as poster and oral conference presentations:

Lawley, C.J.M., Selby, D., Condon, D., Horstwood, M., Crowley, Q., Imber, J., and MacKenzie, 
C., 2012, Geochronology of  gold, magmatism, and metamorphism at the Lupa goldfield, 
SW Tanzania: 34th International Geological Conference, Brisbane, August 5th to 10th, 
Student Oral Presentation.

Lawley, C.J.M., Imber, J., Selby, D., and MacKenzie, C., 2012, Structural setting of  orogenic 
gold deposits in the Paleoproterozoic Lupa goldfield, SW Tanzania, 34th International 
Geological Conference, Brisbane, August 5th to 10th, Student Poster Presentation. 

Lawley, C.J.M., Imber, J., Selby, D., and Mackenzie, C., 2011, Transpressional deformation and 
implications for ore body geometry of  orogenic gold deposits: Applied Earth Science 
(Trans. Inst. Min. Metall. B), v. 120, p. 69.

 
Lawley, C.J.M., and Selby, D., 2011, Re-Os geochronology of  quartz enclosed ultra-fine 

molybdenite: implications for ore geochronology: Applied Earth Science (Trans. Inst. 
Min. Metall. B), v. 120, p. 83.

Lawley, C.J.M., Selby, D., Condon, D.J., Horstwood, M.S.A., Crowley, Q.G., Imber, J., and 
MacKenzie, C., 2010, Geochronology of  Granites and Gold in the Lupa Goldfield, 
Southwest Tanzania: Applied Earth Science (Trans. Inst. Min. Metall. B), v. 119, p. 87.

Lawley, C.J.M., Selby, D., and MacKenzie, C., 2011, Genetic constraints for the Lupa goldfield, SW 
Tanzania: Implications from Rhenium-Osmium pyrite and molybdenite geochronology: 
Fermor Conference, September 7-9th, London, Student Poster.

 
Lawley, C.J.M., Selby, D., Imber, J., Crowley, Q., and Mackenzie, C., 2010, Preliminary investigation 

into the structural and geologic setting of  the Lupa Goldfield, Tanzania: Mineral Deposit 
Study Group Conference, January 6–7th, Glasgow, Student Poster.

1.5 A brief  note on analytical uncertainty 
A large proportion of  this thesis is dedicated to presenting isotopic age determinations 

and a brief  discussion on the intended meaning of  these ages and their associated analytical 

uncertainties is required. All scientific measurements are associated with uncertainty in the 

measured property’s true “value”. In the case of  geochronology, mass spectrometer measurements 

of  radiogenic isotope ratios provide a means to calculate the crystallization age of  specific 

minerals. Geochronologic age determinations are therefore associated with uncertainties that are 
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critical to assess the significance and geologic meaning of  the determined ages. The source of  

uncertainty varies from geologic sampling (e.g., geologic heterogeneity), isotopic measurements 

(e.g., mass spectrometer measurements), and age calculations (e.g., assuming molybdenite does 

not possess common Os in Re-Os molybdenite model age calculations). In this thesis, analytical 

uncertainties are reported at two standard errors of  the mean (i.e., two sigma; unless specified) 

and include but are not limited to uncertainty in sample weighing, spike calibration, isotopic 

composition and abundance of  the blank, decay constant uncertainty and reproducibility of  

standards. The contributions of  each individual analytical uncertainty were propagated following 

previously established protocols that are specific to each isotopic system (see individual Chapters 

for further discussion). For correlated analytical uncertainties, the assigned uncertainty is also 

reported with the error correlation function (rho; Ludwig, 2008). The assigned analytical 

uncertainty for each age is intended to encapsulate all sources of  analytical scatter and thus any 

remaining data-point scatter is interpreted to reflect geologic heterogeneity. 

Age determinations were calculated using Isoplot v. 4.15 (Ludwig, 2008) and are 

predominately based on reducing multiple age determinations to a single value (e.g., weighted 

average ages, isochron ages). In order to assess the suitability of  this approach, calculated ages 

are reported with their respective Mean Square Weighted Deviation (MSWD). The MSWD 

represents the distribution of  data points around the mean taking into account each data point 

uncertainty (Ludwig, 2008). A MSWD > 1 suggests the assigned analytical uncertainties do 

not account for the scatter of  data points (excess data point scatter) and/or that the assigned 

analytical uncertainties underestimate the true analytical uncertainty, whereas a MSWD < 1 

suggest the assigned analytical uncertainties overestimate the true analytical uncertainty. The 

acceptable range of  MSWD values is dependent on the size of  the dataset. In general, large 

datasets should possess MSWD ~ 1; whereas small datasets that possess minimal geologic 

scatter may possess MSWDs >>1. The presence or absence of  “excess” data point scatter can 

only be tested outside of  the assigned analytical uncertainties and datasets with MSWD ~ 1 may 

still possess geologic scatter that is unresolvable within the assigned analytical uncertainties.   
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– Chapter Two –

Lithogeochemistry, Geochronology and Geodynamic Setting of  the Lupa Terrane, 

Tanzania: Implications for the Extent of  the Archean Tanzanian Craton

Chapter Two is submitted to the journal Precambrian Research

Collaborators: David Selby1, Daniel J. Condon2, Matthew Horstwood2, Ian McDonald2, Quentin 

Crowley3 and Jonathan Imber1

1Department of  Earth Sciences, Durham University, Science Labs, Durham, DH1 3LE, UK
2Natural Environment Research Council Isotope Geosciences Laboratory, British Geological 

Survey, Keyworth, Nottingham, NG12 5GG, UK
3School of  Natural Sciences, Department of  Geology, Trinity College, Dublin 2, Ireland 

2.1 Introduction
Archean cratonic margins are complex geologic settings characterized by overprinting 

structural, magmatic and metamorphic events (e.g., Zhoa et al., 2002; Reddy and Evans, 2009). 

This is particularly apparent in the Ubendian and Usagaran metamorphic belts, which border 

the western and southern margins of  the Tanzania Craton, respectively. Existing models for the 

Paleoproterozoic tectonic evolution of  the Tanzanian cratonic margin invoke thrust-dominated 

accretion of  terranes comprising the Usagaran Belt coupled with lateral accretion of  terranes 

comprising the Ubendian Belt (Daly, 1988; Lenoir et al., 1994). However, recent geochronologic 

evidence suggests that the current configuration of  the Ubendian Terranes are the product of  

at least three discrete orogenic events that are correlated to the Ubendian (2.1–1.8 Ga), Kibaran  

(1.4–1.0 Ga) and Pan-African (650–450 Ma) orogenic episodes (Hanson, 2003; Boniface et 

al., 2012; Boniface and Schenk, 2012). The Paleoproterozoic tectonic history of  the Ubendian 

Belt and the Tanzanian cratonic margin therefore remains poorly understood due, in part, to 

Neoproterozoic and younger cover rocks, Meso- and Neoproterozoic metamorphic overprints 

and periodic reactivation of  geologic structures from the Paleoproterozoic until the present day 

(Theunissen et al., 1996). 

The Lupa Terrane is located adjacent to the Tanzanian Craton and is the least-understood 

of  the eight litho-tectonic terranes comprising the Ubendian Belt (Fig. 2.1; Daly, 1988). Hitherto 

voluminous granitoids intruding the Lupa Terrane and obscuring the southern extent of  the 

Tanzanian cratonic margin have been attributed to widespread Paleoproterozoic magmatic 
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1854 ± 26 Ma (eclogite)1 

1977 ± 40 Ma (ma�c granulite)1  
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Figure 2.1 – Regional geologic map showing Ubendian Terranes and previously reported geochronology sample 
locations (modified from Smirnov et al., 1973).

activity related to the Ubendian Orogeny (e.g., Sommer et al., 2005). Herein major lithologies 

comprising the Lupa Terrane are characterized and dated, which places new constraints on the 

Paleoproterozoic geodynamic evolution of  the Ubendian Belt. New U-Pb zircon LA-MC-ICP-

MS ages, coupled with Lu-Hf  zircon LA-MC-ICP-MS results, calls into question the SW extent 

of  the Tanzanian cratonic margin (Manya, 2011). Establishing the extent of  the Tanzanian 

Craton places important constraints on the prospectivity of  SW Tanzania for deposits associated 

with Archean Cratons. The temporal and geologic setting of  the Lupa Terrane are particularly 

important as it hosts a large number of  orogenic Au deposits (Sango, 1988). 

2.2 Geologic setting
2.2.1 Regional geology

The western margin of  the Tanzanian Craton is separated from the Congo Craton and 

the Bangweulu Block by the ca. 600 km long and 150 km wide zone of  granulite-greenschist 

facies meta-igneous and meta-sedimentary rocks known as the Ubendian Belt (McConnell, 1950; 

Sutton et al., 1954; Priem et al., 1979; Lenoir et al., 1994). Current tectonic models divide the 

Ubendian Belt into eight lithologic and structurally-defined terranes: Ubende, Wakole, Katuma, 

Ufipa, Mbozi, Lupa, Upangwa and Nyika (Fig. 2.1; Upangwa and Nyika are not shown in Fig. 2.1; 

Daly, 1988). Mesoproterozoic meta-sedimentary rocks, corresponding to the Muva Supergroup, 
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unconformably overlie the Ubendian Belt and have been subsequently metamorphosed during 

the Kibaran Orogeny (Cahen et al., 1984). These rocks are in turn overlain by Neoproterozoic 

clastic sedimentary rocks corresponding to the Bukoban Supergroup (Cahen et al., 1984). Meso- 

and Neoproterozoic cover sequences blanket large areas of  the Ubendian basement and obscure 

its northern and southern limits (Hanson, 2003).  

The Ubendian Belt formed through a series of  metamorphic and tectonic events that 

span ca. 300 Myr (Lenoir et al., 1994). The first tectonic event is constrained by U-Pb zircon 

and Rb-Sr whole rock dating of  syntectonic magmatic intrusions at 2093–2048 Ma (Dodson 

et al., 1975; Lenoir et al., 1994; Ring et al., 1997). The 2.1–2.0 Ga Ubendian tectonic phase 

corresponds with a period of  eclogite and granulite facies metamorphism, the development of  

a ductile E-W trending tectonic fabric and is concomitant with metamorphism in the adjacent 

Usagaran Belt (Lenoir et al., 1994; Collins et al., 2004). Eclogitic rocks with MORB-like chemistry 

from the Usagaran, dated at ca. 2.0 Ga, suggest that metamorphism and tectonism resulted 

from subduction zone processes analogous to modern-day accretionary margins and may have 

resulted from the collision between the Tanzanian and Congo Cratons and the Bangweulu Block 

(Möller et al., 1995).  Structural evidence associated with the 2.1–2.0 Ga Ubendian tectonic 

phase is largely overprinted by later deformation, with the exception of  the Mbozi Terrane 

(Theunissen et al., 1996). 

The 2.1–2.0 Ga Ubendian tectonic phase is overprinted by a 1.9–1.8 Ga tectonic phase 

that produced the characteristic terrane-bounding NW-SE trending shear zones and amphibolite 

facies metamorphism (Lenoir et al., 1994). The exact timing of  this deformation event is poorly 

constrained and is thought to have occurred at 1860 ± 23 Ma based on a weighted average 

age of  U-Pb and whole rock Rb-Sr ages of  late-kinematic granitoids (Lenoir et al., 1994; Fig. 

2.1). This age overlaps within analytical uncertainty with a weighted average Ar-Ar barroisite 

cooling age of  1848 ± 6 Ma from a mafic tectonite that is also interpreted to record the 1.9–1.8 

Ga Ubendian tectonic phase (Boven et al., 1999), whereas the Kate Granite post-dates the 

second Ubendian tectonic phase and suggests deformation occurred prior to ca. 1825 Ma (Rb-

Sr whole rock; Schandelmeier, 1983). These Rb-Sr and Ar-Ar ages are younger than recent U-Pb 

(SIMS) zircon dating of  eclogites with MORB-like chemistry that suggest high-pressure and 

low-temperature metamorphism, analogous to modern-day subduction zones, occurred within 

the Ubende Terrane at 1886 ± 16 and 1866 ± 14 Ma (Boniface et al., 2012). Paleoproterozoic 

granites and tectonites are in turn overprinted during Meso- and Neoproterozoic orogenic 

episodes (Theunissen et al., 1992; Ring et al., 1993; Ring et al., 1997; Theunissen et al., 1996). In 

particular, Meso- and Neoproterozoic-aged eclogites with MORB-like chemistry are thought to 

represent paleo-sutures and suggest that the current configuration of  Ubendian Terranes is the 

result of  at least three discrete orogenic cycles (Boniface, 2009; Boniface and Schenk, 2012). Our 

U-Pb ages place new geochronologic constraints on the timing of  metamorphism, tectonism 

and magmatism in the Lupa Terrane and provide new evidence to support the Ubendian Belt’s 

protracted Paleoproterozoic tectonic evolution. 
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2.2.2 Local geology

The geology of  the Lupa Terrane has been variably described as comprising high-grade 

gneissic, high-grade schistose rocks and granitic gneisses (e.g., Grantham, 1931, 1932, 1933; 

Teale et al., 1935; Gallagher, 1939; Harris, 1961; Van Straaten, 1984; Daly, 1988; Sango, 1988; 

Lenoir et al., 1994). The extent of  the Lupa Terrane is also unclear from the literature (e.g., 

Kimambo, 1984; Daly, 1988). For the purposes of  this study the Lupa Terrane is assumed to be 

coincident with the extent of  the Lupa goldfield which is defined as the triangular shaped block 

bounded by the Rukwa Rift Escarpment (or Lupa Border Fault; Kilembe and Rosendahl, 1992) 

to the west, the Mkondo Magnetic Lineament to the north (Marobhe, 1989) and the Usangu 

Escarpment to the east (Fig 2.2). The Rukwa and Usangu Escarpments represent Tertiary faults 

that are related to the East African Rift, whereas the nature of  the Mkondo Magnetic Lineament 

is more cryptic (Fig. 2.2; Marobhe, 1989). The field area for the current study is located in the 

western portion of  the Lupa Terrane and corresponds with the mineral exploration licenses 

currently controlled by Helio Resource (Fig. 2.3). These mineral exploration licenses contain a 

number of  Au occurences that possess geologic similarities with the orogenic Au deposit type 

and include the Kenge and Porcupine ore bodies (e.g., Simpson, 2012; Chapter Five).

Hitherto geochronology of  the Lupa Terrane has been limited to a K-Ar ages from a 

greisen and granite at 1802 ± 70 Ma and 1827 ± 70 (Cahen et al., 1984), respectively, and two 

poorly constrained U-Pb zircon ages from the Ilunga Syenogranite (1931 ± 44 Ma; MSWD = 

110; n = 4) and Saza Granodiorite (1936 ± 47 Ma; MSWD = 230; n = 4; Mnali, 1999). The Ilunga 

and Saza granitoids intruded into what has been previously mapped as a “highly-deformed acid 

schist” (e.g., Kimambo, 1984) and “gneiss” (e.g., Grantham, 1932; Teale, 1935; van Straaten, 

1984). We provide new geologic, geochemical evidence and geochronologic evidence to re-

classify these rocks and propose a geodynamic setting to explain their occurrence. 
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Figure 2.2 – Simplified geology of  the Lupa goldfield (modified from Kimambo, 1984).      
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2.3 Analytical methods
2.3.1 Lithogeochemistry

A representative suite (23 samples) of  magmatic phases were analyzed for major and 

trace elements using a combination of  fusion inductively coupled plasma-mass spectrometry 

(ICP-MS) and instrumental neutron activation analysis (INAA) by Actlabs (Ancaster, Ontario; 

method 4E-Research). Sample aliquants for ICP-MS analysis were first mixed with a lithium 

metaborate-tetraborate flux and fused in order to ensure complete digestion of  refractory 

minerals (e.g., zircon). As a result, fusion ICP-MS results are considered most representative 

and are used for plotting purposes. Detection limits for this assay package are in the low ppm 

and ppb range for most trace elements. 

2.3.2 Zircon mineral separation

Zircons were separated from their host rock by crushing ~5 kg of  rock in a jaw crusher 

and pulverizing in a disc mill before passing the sample through a 355 µm sieve. Samples were 

then placed on a Rogers shaking table and the heavy fraction dried (at 60ºC) before passing 

through a Frantz isodynamic magnetic separator. The non-magnetic fractions of  each sample 

were then density separated using methylene iodide before handpicking, under ethanol, of  the 

most crack- and inclusion-free grains.

2.3.3 U-Pb zircon ID-TIMS

All of  the analyzed zircons have undergone the “chemical abrasion” (thermal annealing 

and subsequent leaching) pre-treatment technique (Mattinson, 2005) for the effective elimination 

of  Pb-loss. This involved placing zircons in a muffle furnace at 900 ± 20°C for ~60 hours in 

quartz beakers before being transferred to 3ml Hex Savillex beakers, placed in a Parr vessel and 

leached in a ~5:1 mix of  29M HF + 30% HNO3 for 12 hours at ~180°C. The acid solution 

was removed and fractions were rinsed in ultrapure H2O, fluxed on a hot plate at ~80°C for an 

hour in 6 M HCl, ultrasonically cleaned for an hour and then placed back on the hot plate for 

an additional 30 min. The HCl solution was removed and the fractions (single zircon crystals 

or fragments) were selected, photographed (in transmitted light) and again rinsed (in ultrapure 

acetone) prior to being transferred to 300 µl Teflon FEP microcapsules and spiked with a mixed 
233U–235U–205Pb tracer. Zircon was dissolved in ~120 µl of  29 M HF with a trace amount of  

30% HNO3 with microcapsules placed in Parr vessels at ~220°C for 48 hours, dried to fluorides 

and then converted to chlorides at ~180°C overnight. U and Pb for all minerals were separated 

using standard HCl-based anion-exchange chromatographic procedures. 

Isotope ratios were measured at the NERC Isotope Geosciences Laboratory (NIGL), 

UK, using a Thermo-Electron Triton Thermal Ionisation Mass-Spectrometer (TIMS). Pb 

and U were loaded together on a single Re filament in a silica-gel/phosphoric acid mixture. 

Pb was measured by peak-hopping on a single SEM detector. U isotopic measurements were 

made in static Faraday mode. Age calculations and uncertainty estimation (including U/Th 

disequilibrium) were based upon the algorithms of  Schmitz and Schoene (2007) and plotted in 
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Isoplot (Ludwig, 2008).

2.3.4 U-Pb zircon LA-MC-ICP-MS

Laser Ablation Multi-Collector Inductively Coupled Plasma Mass Spectrometry (LA-MC-

ICP-MS) was conducted at the NERC Isotope Geoscience Laboratory (NIGL). Zircon mineral 

separates were mounted in epoxy, polished and imaged using cathodoluminesence (CL) on a 

scanning electron microscope (SEM) at the British Geological Survey (with the exception of  

CL098 which was prepared at the School of  Natural Sciences, Trinity College Dublin). CL 

imaging provided textural information that assisted zircon targeting. Zircons were ablated using 

a New Wave Research UP193SS Nd:YAG laser ablation system and an in-house built low-

volume rapid washout ablation cell. Ablated material was transported from the ablation cell 

using a continuous flow of  He gas to a Nu Plasma MC-ICP-MS equipped with a multi-ion-

counting array. 207Pb, 206Pb and 204Pb+Hg isotopes were measured on ion counters whereas U 

and Tl isotopes and 202Hg were measured using Faraday Cups. Data were collected using the Nu 

Instrument’s time resolved analysis software. Prior to analysis, the MC-ICP-MS was tuned and 

gains were measured using a Tl-235U solution co-aspirated using a Nu Instruments DSN-100 

desolvating nebuliser. At the start of  each run an instrument zero was measured for 30s and 

was followed by three 30s ablations of  three reference materials. The internationally recognized 

91500 reference zircon (Weidenbeck et al., 1995) was used as the primary reference material, 

whereas Plešovice (Sláma et al., 2008) and GJ-1 (Jackson et al., 2004) were used as validation 

materials. All three matrix matched materials were used to monitor instrumental drift and 91500 

was used to correct for instrumental drift. The nine standard ablations were followed by ca. 

twelve 30s sample ablations. Once data stability had been established, replicates were dropped 

to one to two for each reference materials. All ablations used a 25–30 µm static spot at 5 Hz 

and a fluence of  2.7 J/cm2. During each analysis, the co-aspirated Tl-235U solution was used to 

correct for instrumental mass bias and plasma induced elemental fractionation. The interference 

of  204Hg on 204Pb was monitored and corrected for by simultaneously measuring 202Hg and 

assuming a 204Hg/202Hg = 0.229887. U-Pb data were processed using an in-house spread sheet 

at NIGL.  

All presented 206Pb/238U dates (ID-TIMS and LA-ICP-MS) are calculated using the 238U 

and 235U decay constants of  Jaffey et al. (1971).  The consensus value of  238U/235U = 137.818 ± 

0.045 (Hiess et al., 2012) was used in the data reduction calculations.  Using this more accurate 

value with its associated uncertainty estimate has the effect of  lowering 207Pb/206Pb dates of  

ca. 2 Ga by 0.8 ± 0.6 Myr, compared to 207Pb/206Pb dates calculated using the consensus value 

of  238U/235U = 137.88.  For U–Pb dates of  this age the 206Pb/238U dates are the most precise 

and robust. In contrast, the 207Pb-based dates (207Pb/235U and 206Pb/207Pb) are considerably less 

precise and hence are only used to assess concordance of  the U–Pb (zircon) systematics.

2.3.5 Lu-Hf  zircon LA-MC-ICP-MS

Near concordant (>95% concordance) U-Pb zircon ablation sites from samples CL098, 
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Figure 2.4 – (a) Folded banding in Archean granite in sharp contact with non-foliated gabbroic dike; (b) well 
developed banding in foliated granite; (c) foliated Archean granitoid (CL098) cross cut by non-foliated granodiorite 
dike (CL0911); (d) weathered surface of  Ilunga Syenogranite that gives surface outcrops a grey appearance. When 
fresh, modally dominant pink K feldspar crystals are visible. Narrow aplitic dike observed crosscutting the Ilunga 
Syenogranite; (e) Ilunga Syenogranite in drill core from Porcupine ore body; (f) gold- and pyrite-bearing quartz 
vein cross cutting Ilunga Syenogranite; (g) mafic enclave suggesting the Ilunga Syenogranite is pre-dated by mafic 
intrusions; (h) porphyritic monzogranite showing characteristic K feldspar phenocrysts; (i) Saza Granodiorite cross 
cut by aplite dike. The pitted weathered profile is typical of  Saza Granodiorite outcrops; (j) Saza Granodiorite in 
drill core (CL1030).

CL109 and CL1020 were re-analyzed to measure their respective Lu-Hf  isotopic compositions. 

Isotope analyses were carried out at the NIGL using a Thermo Scientific Neptune Plus MC-

ICP-MS coupled to a New Wave Research UP193FX excimer laser ablation system and low-

volume ablation cell. Helium was used as the carrier gas through the ablation cell with Ar make-

up gas being connected via a T-piece and sourced from a Cetac Aridus II desolvating nebulizer. 

After initial set-up and tuning, a 2% HNO3 solution was aspirated during the ablation analyses. 

Lutetium (175Lu), ytterbium (172Yb, 173Yb) and hafnium (177Hf, 178Hf, 179Hf  and 180Hf) isotopes 

were measured simultaneously during static 30s ablation analyses (50 µm; fluence = 8–10 J/

cm2). A standard–sample–standard bracketing technique, using reference zircon 91500, was 

used to monitor accuracy of  internally corrected Hf  isotope ratios and instrumental drift with 

respect to the Lu/Hf  ratio. Hf  reference solution JMC475 was analyzed during the analytical 

session to allow normalisation of  the laser ablation Hf  isotope data.  Correction for 176Yb on 
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Figure 2.5 – (a) Typical example of  the diorite-gabbro suite in core; (b) finer grained example of  diorite-gabbro 
suite with more felsic enclaves; (c) plagioclase-amphibole intergrowths in diorite; (d) core photo of  an example of  
the undifferentiated diorite-gabbro-granodiorite unit (Fig. 2.2) showing variable grain-size and modal mineralogy 
at hand sample scale; (e) complex and poly-phase mafic enclave hosted by granodiorite. Note ductile flow evidence 
around the enclave; (f) late fine-grained and alkaline dike (CL0956) cross cutting foliated Archean granitoid.

the 176Hf  peak was made using reverse-mass-bias correction of  the 176Yb/173Yb ratio (0.7941) 

empirically derived using Hf  mass bias corrected Yb-doped JMC475 solutions following the 

principles of  Nowell & Parrish (2001). 176Lu interference on the 176Hf  peak was corrected by 

using the measured 175Lu and assuming 176Lu/175Lu = 0.02653. 

2.4 Results and data interpretation
2.4.1 Lithologies

All rocks within the field area have undergone hydrothermal alteration and greenschist 

facies metamorphism. Thus, all rock names are metamorphic and for the remaining discussion 

all rock names should have the prefix “meta-” (Figs. 2.4, 2.5 and 2.6). Non-foliated felsic-

mafic magmatic rocks intrude into a pervasively deformed granitic unit (Fig. 2.4a, b and c). 

This tectonic fabric varies in development at the outcrop scale but alternating chlorite rich 

and quartz-feldspar rich bands locally give the foliated granitoid a banded appearance. Crystal 

plastic deformation of  quartz (e.g., undulose extinction) is observed in all samples and a lack 

of  similar deformation processes in the other mineral constituents suggests deformation and 

metamorphism did not exceed greenschist facies temperature and pressure conditions (Fig. 2.6d; 

Chapter Five). The comparatively low-grade metamorphism inferred for the foliated granitoids 

is in contrast to the high-grade rocks that are characteristic of  other Ubendian Terranes (Lenoir 

et al., 1994). Rocks lacking this pervasive tectonic fabric have been classified according to the 

IUGS classification scheme (LeMaitre, 2002). Two granitoids, the Saza Granodiorite and Ilunga 

Syenogranite (named after their outcrop localities adjacent to the town of  Saza and the Ilunga 

Hills, respectively), are exceptions and their IUGS names are accompanied by the prefix Saza 

and Ilunga, respectively as a result of  their regional significance (Fig. 2.4). Intermediate and 
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Figure 2.6 – (a) Transmitted light photomicrograph of  primary Fe-Mg minerals in foliated Archean granite that have 
been replaced by chlorite, titanite, epidote and opaques (SZD23 at 32 m); (b) transmitted light photomicrograph 
of  rare relict amphibole in a granodiorite dike that has been overprinted by chlorite and epidote (SZD24 at 27 m); 
(c) transmitted light photomicrograph of  diorite dike showing characteristic mineral assemblage of  amphibole, 
plagioclase, quartz, titanite and epidote (504690, 9075531); (d) crossed nicols transmitted light photomicrograph of  
recrystallized quartz grain boundaries in foliated Archean granitoid. Quartz crystals also locally possess undulatory 
extinction and subgrain development (SZD23 at 32 m); (e) crossed nicols transmitted light photomicrograph of  
sericitized plagioclase (SZD71 at 10 m); (f) crossed nicols transmitted light photomicrograph of  micrographic 
texture in Ilunga Syenogranite. Locally, Ilunga Syenogranite samples possess gradational contacts with aplite dikes 
and are characterized by abundant feldspar intergrowth textures (GPD15 at 105 m). 

mafic rocks are difficult to classify using the IUGS scheme because the primary mineralogy 

has been partially to completely replaced by amphibole (± relict pyroxene) and plagioclase (Fig. 

2.5). The large range of  amphibole content (modes 15–60%) coupled with the large range 

of  SiO2 (50–60% SiO2; see below) and Mg# (44–73; see below) suggests that these rocks 

represent a compositional spectrum of  protoliths. Modal mineralogy for amphibole-plagioclase 

rocks is variable at the outcrop scale and these rocks are termed the diorite-gabbro suite in the 

following lithogeochemistry discussion (Mnali, 2002). Sample locations, descriptions and modal 

mineralogy are presented in Table 2.1.

2.4.2 Lithology descriptions

Foliated granitoids outcrop in the southern portion of  the field area (Fig. 2.3). K feldspar, 

quartz and plagioclase are the dominant mineral assemblage with lesser amounts of  chlorite 

± calcite ± titanite ± epidote. However, foliated granitoids exhibit a wide range of  modal 

mineralogy (e.g., the modal mineralogy of  foliated granitoids ranges from syenogranite to 

monzogranite) and likely represent several different lithologies, but have been grouped based on 

a distinct deformation fabric that is absent in the other identified granitoids. This characteristic 

foliation is defined by alternating quartz-feldspar and chlorite rich bands, which gives the rock a 
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banded to “gneissic” appearance (Fig. 2.4b). Compositional banding is accompanied by crystal 

plastic deformation of  quartz (Chapter Five) and both characteristics are dissimilar to the 

mineralogy and deformation processes that are typical of  the auriferous mylonites (Chapter 

Five) and high-grade rocks from other Ubendian Terranes (Lenoir et al., 1994). Non-foliated 

granitoids, dioritic-gabbroic intrusions/dikes and aplitic dikes are observed cross cutting foliated 

granitoids and suggest that fabric development occurred prior to widespread magmatism in the 

field area (Fig. 2.4c). Mylonitic shear zones, quartz veins and associated hydrothermal alteration 

(e.g., silicification and sericitization) are observed cross cutting and/or overprinting foliated 

granitoids (Chapters Four and Five). These cross cutting relationships suggest that foliated 

granitoids represent the oldest lithology in the field area. 

The Ilunga Syenogranite represents the dominant lithology in the northern portion of  the 

field area and corresponds with a topographic high referred to as the Ilunga Hills (Fig. 2.3). K 

feldspar, quartz and plagioclase comprise the primary mineral assemblage with lesser amounts 

of  chloritized biotite (typically less than 10% modal abundance). The Ilunga Syenogranite is 

typically equigranular and coarse grained, but locally grades into finer grained and more K 

feldspar rich zones with aplitic texture. The finer grain size and change in modal mineralogy 

is also accompanied with quartz-feldspar intergrowths in thin section (Fig. 2.6f). K feldspar-

plagioclase intergrowths are also locally observed in thin section and are unique to the Ilunga 

Syenogranite within the field area. Very few igneous contacts between the Ilunga Syenogranite 

and other lithologies were observed aside from cross cutting diorite-gabbroic intrusions at the 

top of  the Ilunga Hills, which coupled with mafic enclaves suggests diorite-gabbroic intrusions/

dikes pre- and post-date the Ilunga Syenogranite. The Ilunga Syenogranite is also cross cut by 

narrow aplite dikes and auriferous mylonitic shear zones (Chapters Four and Five). Several 

mineral alteration assemblages (e.g., sericitization and silicification; Chapter Four) are also 

observed overprinting the primary mineral assemblage.  

Syenogranite outcrops in the southeastern portion of  the field area, but is predominately 

delineated by Helio Resource Corp.’s unpublished radiometric survey (Fig. 2.3; Appendix 1). K 

feldspar, quartz and plagioclase are the dominant minerals with lesser amounts of  chloritized 

biotite. Auriferous mylonites and intermediate-mafic dikes cross cut the syenogranite in the 

southeast portion of  the map. 

The regionally significant Saza Granodiorite outcrops in the southern portion of  the 

field area as a coarse grained and equigranular intrusion (Fig. 2.3). Quartz, plagioclase and K 

feldspar comprise the dominant mineral assemblage with lesser amounts of  chloritized biotite 

and hornblende (Fe-Mg minerals generally constitute less than 5% modal abundance). Sericite, 

calcite and epidote are also observed overprinting the primary mineral assemblage. Abundant 

diorite-gabbroic enclaves/xenoliths, coupled with cross cutting dioritic-gabbroic dikes/

intrusions, suggests that the Saza Granodiorite was pre- and post-dated by dioritic-gabbroic 

magmatism (Fig. 2.5e). The Saza Granodiorite is also cross cut by auriferous mylonitic shear 

zones (Chapters Four and Five) and aplite dikes. 

The porphyritic monzogranite is a distinct granitoid outcropping in the SW corner of  
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the field area (Fig. 2.3). The granitoid was differentiated based on the abundance of  K feldspar 

megacrysts, which locally approach 3 cm in diameter (Fig. 2.4h). The porphyritic monzogranite 

was observed cross cutting the foliated granitoid but no other igneous contacts were observed. 

Epidote, sericite, chlorite and calcite collectively overprint the primary quartz-plagioclase-K 

feldspar-biotite mineral assemblage. Porphyritic monzogranite float was also observed during 

river traverses across the eastern part of  the field area and may suggest additional outcropping 

examples of  this unit are un-mapped.      

A variety of  granodiorite-tonalite dikes/intrusions were observed across the field area that 

are not distinguishable on the unpublished radiometric survey flow by Helio Resource Corp. 

and could not be correlated across to other river traverses. As a result, these are not plotted 

on the simplified geology map (Fig. 2.3). Quartz and plagioclase are the dominant primary 

minerals with lesser amounts of  chloritized biotite and rare chloritized amphibole (chlorite 

typically constitutes <10% modal abundance). Granodiorite-tonalite dikes are observed cross 

cutting foliated granitoids and diorite-gabbroic intrusions. The temporal relationship between 

granodiorite-tonalite and dioritic-gabbroic intrusions is complicated by abundant evidence for 

magma mixing textures, which suggest that both rock suites are broadly contemporaneous. This 

is particularly apparent in the western portion of  the field area where felsic segregations, which 

possess modal compositions similar to granodiorite-tonalite intrusions, are observed within 

dioritic-gabbroic intrusions (Fig. 2.2).  Granodiorite-tonalite dikes/intrusions are differentiated 

from the Saza Granodiorite based on the finer grain size and the lower modal abundance of  K 

feldspar of  the former.        

Dioritic-gabbroic dikes and intrusions represent a significant proportion of  the field area 

and are typically observed cross cutting and intruding granitoids (Fig. 2.3). Amphibole and 

plagioclase are the dominant minerals, whereas chlorite, epidote and calcite are typically present 

as accessory phases (Fig. 2.6c). Rare relict pyroxene crystals are also observed and are variably 

altered by a chlorite ± epidote ± titanite ± calcite alteration assemblage. A more siliceous and 

leucocratic variant of  the diorite-gabbro suite was mapped in the southeast corner of  the field 

area (Fig. 2.3; quartz diorite) and is also distinguishable in Helio Resource Corp.’s unpublished 

radiometric survey.  The presence of  diorite-gabbroic enclaves/xenoliths in all of  the identified 

granitoids is consistent with multiple dioritic-gabbroic intrusive events. However, dioritic-

gabbroic dikes are observed cross cutting the youngest granitoids and suggest that intermediate-

mafic dikes at least locally represent the youngest magmatic event.      

2.4.3 Lithogeochemistry results

For lithogeochemical results see Appendix 2 and Figs. 2.7, 2.8, 2.9 and 2.10. Hydrothermal 

alteration and greenschist facies metamorphism are ubiquitous features of  Lupa lithologies. 

Petrographic evidence such as partial to complete replacement of  feldspars with sericite (± 

calcite) and partial to complete replacement of  Fe-Mg minerals with amphibole (± chlorite, 

± epidote, ± clinozoisite, ± titanite, ± calcite, ± opaques) are likely related to this regional 

metamorphic event (Fig. 2.6). Chemical alteration is also inferred from large variations in certain 
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Figure 2.7 – Trace element rock classification diagram (modified from Pearce, 1996a). See text for discussion. 

major elements and Large Ion Lithophile Elements (LILE) which are considered to be more 

mobile during hydrothermal alteration and metamorphism (Cs, Rb, Ba, Sr and Pb; Grant, 2005). 

High Field Strength Elements (HFSE; Ti, Zr, Y, Nb, Hf, Ta, U and Th), transition elements 

(Ni, Cr, V and Sc) and Rare Earth Elements (REE; La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, 

Er, Tm, Yb, Lu) are least disturbed by hydrothermal processes (Floyd and Winchester, 1975; 

Winchester and Floyd, 1977). Thus, the following discussion is focused on trace elements that 

are considered to be more representative of  protolith composition.     

The trace element composition of  the felsic lithologies can be qualitatively divided into 

three REE patterns (inset Fig. 2.8a) and all phases share similar trace element patterns normalized 

to primitive mantle (Fig. 2.8a). Saza Granodiorite (CL1030; CL0975), granodiorite samples 

(CL0911; CL0921; CL0958) and porphyritic monzogranite (CL1029) possess Light Rare Earth 

Element (LREE) enrichment (La/SmCN = 5.2–11.7) and concave-up trends in the Medium 

and Heavy Rare Earth Elements (MREE and HREE, respectively). This pattern is in contrast 

to the REE pattern of  foliated granite samples (CL098; CL0925; CL0947), which possess 

LREE enrichment (La/SmCN = 3.8–8.1), steeply dipping patterns towards the HREE (La/YbCN 

= 20.9–64.6) and minor negative Eu anomalies (Eu/Eu* = 0.7–0.9). The third qualitatively 

distinct REE pattern is shown by the Ilunga Syenogranite (CL0931; CL0932; CL0934; CL0959), 

which exhibits LREE enrichment (La/SmCN = 2.9–5.3), deep negative Eu anomalies (Eu/Eu* 

= 0.08–0.36) and flat MREE and HREE patterns (Gd/YbCN = 0.9–1.3). On trace element 

plots normalized to primitive mantle, all felsic phases possess LILE enrichment, gently-dipping 

patterns towards the REE and are characterized by large negative Nb and Ti anomalies (Nb/

ThCN = 0.1–0.6; Ti/SmCN = 0.0–0.3; Fig. 2.8b).  

 The trace element compositions of  the intermediate and mafic magmatic phases can 

be qualitatively divided into two trace element groups (Fig. 2.8c and d). The diorite-gabbro 

suite (CL1021; CL1022; CL0913; CL0923; CL0928; CL0957; CL0981; CL0984) possess LREE 

enrichment (La/SmCN = 2.1–4.0) and gently-dipping slopes towards the HREE (La/YbCN = 

3.0–19.9) and minor positive Eu (Eu/Eu* = 1.5–1.1) anomalies. This distinctive REE profile is 
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Figure 2.8 – (a–b) REE and trace element plots plot of  felsic phases normalized to CL chondrite and primitive 
mantle, respectively (Sun and McDonough, 1989); (c–d) REE and trace element plots of  intermediate-mafic phases 
normalized to CL chondrite and primitive mantle, respectively (Sun and McDonough, 1989); (e–f) REE and trace 
element plots of  foliated Archean granitoids normalized to CI chondrite and primitive mantle, respectively (Sun 
and McDonough, 1989). Grey shadings area represents the range of  Archean granitoid compositions from the 
Tanzanian Craton (Manya, 2011). Sample symbols are the same as Fig. 2.6. 

complimented by LILE enrichment relative to HFSE, large negative Nb anomalies (Nb/ThCN 

= 0.1–0.2) and small negative Ti anomalies (Ti/SmCN = 0.2–1.2; only CL1022 has a positive Ti 

anomaly). Two samples, CL0956 and CL0996, are dikes that cross cut foliated granitoids and the 

diorite-gabbro suite, respectively and preserve their original clinopyroxene and orthopyroxene 

mineralogy. This suggests that these two dikes post-date greenschist facies metamorphism and 

are potentially the youngest rocks in the field area. These samples do not possess negative Nb 
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Figure 2.9 – (a) La vs. La/Sm plot of  diorite-gabbro suite. (b) Sm vs. Sm/Yb plot of  diorite gabbro suite. Melting 
curves are from the non-modal batch melting equations of  Shaw (1970). The modelling used spinel lherzolite 
(with mode = olivine53 + orthopyroxene27 + clinopyroxene17 + spinel3; melt mode = olivine6 + orthopyroxene28 

+ clinopyroxene67 + spinel11; Kinzler, 1997) and garnet lherzolite (with mode = olivine60 + orthopyroxene20 + 
clinopyroxene10 + garnet10; melt mode = olivine3 + orthopyroxene16 + clinopyroxene88 + garnet9; Walter, 1998) 
sources with depleted mantle (DMM; McKenzie and O’Nions, 1991) and primitive mantle (PM; Sun and 
McDonough, 1989) compositions. Mineral/matrix partition coefficients are from McKenzie and O’Nions (1991). 
N-MORB and E-MORB compositions were taken from Sun and McDonough (1989). The solid line represents 
the mantle array and is defined using the DMM and PM compositions. Lithology sample symbols are the same as 
Fig. 2.6.       

or Ti anomalies which is a consistent pattern shown by all other igneous phases in the sample 

suite. In addition, sample CL0956 possess an alkaline major element chemistry (K2O wt. % + 

Na2O wt. % = 6 % at 50 wt. % SiO2) which contrasts with the calc-alkaline nature of  all the 

other magmatic phases. The timing and petrogenetic significance of  these late dikes is unclear.

2.4.4 REE modelling

Our REE modelling used the non-modal melting equation of  Shaw (1970) to assess 

whether the diorite-gabbro suite could have formed from mantle sources with compositions 

typical of  volcanic arcs (e.g., McKenzie and O’Nions, 1991; Fig. 2.9). We chose primitive mantle 

(PM; Sun and McDonough, 1989) and the depleted mid-ocean ridge basalt (DMM; McKenzie 

and O’Nions, 1991) as starting compositions and then calculated the REE concentrations of  

melts at increasing degrees of  partial melting. N-MORB and E-MORB (Sun and McDonough, 

1989) are also plotted for reference. Mineral/matrix partition coefficients are from McKenzie 

and O’Nions (1991); whereas mineral modes and melt-modes for garnet lherzolite and spinel 

lherzolite are from Walter (1998) and Kinzler (1997), respectively.       

Our results suggest that, even at low degrees of  partial melting (<1%), the LREE 

composition of  the diorite gabbro suite cannot be explained by non-modal melting (Shaw, 1970) 

of  depleted mid-ocean ridge basalt or primitive mantle sources (Fig. 2.9a). Partial melting of  

spinel lherzolite sources produce magmas with Sm/Yb ratios similar to the source, whereas 

partial melting of  a garnet lhzerolite with residual garnet produces melts with higher Sm/Yb 

ratios than the DMM-PM “mantle” array (Fig. 2.9b). The diorite-gabbro suite of  this study 
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Figure 2.10 – Intermediate-mafic tectonic discrimination diagrams. (a) Basaltoid tectonic discrimination diagram 
modified from Shervais (1982). VAB = volcanic arc basalt, MORB = mid-ocean ridge basalt, BAB = back-arc 
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P-type MORB = primitive mid-ocean ridge basalt, N-type MORB = normal-type mid-ocean ridge basalt; (d) 
basaltoid tectonic discrimination diagram modified from Pearce (1983). S = subduction zone enrichment trend, 
C = crustal contamination trend, F = fractional crystallization trend (F = 0.5); (e) log-transformed basaltoid 
discrimination diagram modified from Agrawal et al. (2008). DF1=0.3518 Log(La/Th) + 0.6013 Log(Sm/Th) 
- 1.3450 Log(Yb/Th) + 2.1056 Log(Nb/Th) - 5.4763; and DF2 = -0.3050 Log(La/Th) - 1.1801 Log(Sm/Th) + 
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CRB = continental rift basalt, OIB = ocean island basalt; (f) log-transformed basaltoid discrimination diagrams 
modified from Agrawal et al. (2008). DF1 = 0.5533 Log(La/Th) + 0.2173 Log(Sm/Th) - 0.0969 Log(Yb/Th) 
+ 2.0454 Log(Nb/Th) - 5.6305 and DF2 = -2.4498 Log(La/Th) + 4.8562 Log(Sm/Th) - 2.1240 Log(Yb/Th) - 
0.1567 Log(Nb/Th) + 0.94. IAB = island arc basalt, OIB = ocean island basalt, CRB = continental rift basalt. 
Lithology symbols are the same as Fig. 2.6.    

possesses Sm/Yb ratios greater than even small degrees of  partial melting of  these potential 

mantle sources and is displaced from the mantle array (Fig. 2.9b). Thus, the diorite-gabbro suite 

requires a REE enriched source (e.g., a more differentiated source) and/or REE enrichment 

during magma-crust interaction. Furthermore, depleted Nb/Ta (18–5) and enriched Zr/Hf  

ratios (50–39) relative to chondritic values (Nb/Ta = 17.6; Zr/Hf  = 36.3) suggest that these rocks 

are not mantle-derived magmas (Green, 2006). Volcanic arcs are thought to possess depleted 

mantle sources that may be enriched in LILE and REE by a subduction component and/or 

interaction with the crust (Pearce, 1996a), whereas continental arcs are known to have sources 

that vary in composition from the upper mantle (i.e, fertile MORB mantle) to more enriched 

mantle (Pearce and Parkinson, 1993). Alternatively, REE enrichment within the diorite-gabbro 

suite may be due to the melting of  a differentiated source in the lower crust. The exact source 
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of  the diorite-gabbro suite is unclear because of  a lack of  petrogenetic constraints on melting 

processes, however our REE modelling results are consistent with the trace element evidence 

(discussed in more detail below) that supports the involvement of  crust-magma interaction.

2.4.5 U-Pb zircon ID-TIMS results

For all U-Pb zircon results see Appendix 2 and Fig. 2.11. Our interpreted crystallization 

ages are reported in Table 2.2 and were calculated using Isoplot v. 4.15 (Ludwig, 2008). The 

preferred crystallization age for each of  the three samples is a weighted average 207Pb/206Pb age 

of  concordant analyses because these zircons exhibit the least evidence of  disturbance and are 

the most likely to record crystallization ages. Sample CL0972 is a zircon mineral separate from 

the Ilunga Syenogranite that hosts the Porcupine ore body. Concordant zircons from CL0972 

yield a weighted average 207Pb/206Pb age of  1959.6 ± 1.0 (MSWD = 1.4; n = 5). Sample CL0975 

is a zircon mineral separate from the Saza Granodiorite. Concordant zircons from this sample 

yield a weighted average 207Pb/206Pb age of  1934.5 ± 1.0 (MSWD = 1.7; n = 5). Sample CL0911 

is a zircon mineral separate from a non-foliated granodiorite dike that is observed cross cutting 

the foliated granitoid at the Kenge ore body (CL098 dated by LA-MC-ICP-MS; Fig. 2.4c). 

Concordant zircons from sample CL0911 yield a weighted average 207Pb/206Pb age of  1958.5 ± 

1.3 (MSWD = 0.41; n = 2), consistent with the less precise upper intercept date of  1964.6 ± 5.4 

(MSWD = 3.6; n = 5). The lower intercept age of  1126 ± 150 Ma (MSWD = 3.6; n = 5) could 

represent a Pb-loss event during the Mesoproterozoic that is consistent with the timing of  the 

Kibaran Orogeny (Boniface et al., 2012). In addition to determining the crystallization age of  

CL0911, U-Pb ages also constrain the maximum age of  deformation for CL098 (see section 
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4.5).      

2.4.6 U-Pb zircon LA-MC-ICP-MS results

All cathodoluminesence images (CL) and ablation spot locations, reference material 

analyses and sample results are provided in Appendix 2. Concordia plots of  the data are shown 

in Figs. 2.13 and 2.14. Our preferred crystallization ages are reported in Table 2 and were 

calculated using Isoplot v. 4.15 (Ludwig, 2008). Zircons possess euhedral crystal shapes and 

complex magmatic oscillatory zoning characterized by truncated and resorbed growth phases. 

Zircon recrystallization is also suspected in weakly luminescent zircon zones that lack oscillatory 

zoning (Fig. 2.12). 

Sample CL098 is a foliated granitoid that hosts the Kenge Au ore body. Twenty six 

ablation analyses were measured from seventeen zircons. Two of  these analyses (zircons 12-1 

and 18-2) possessed significant common lead (1.7–3.8% f206Pbc) and are therefore not shown in 

Fig. 2.13a, b. The remaining twenty-four analyses constrain a Model-2 York fit regression with 

an upper intercept age of  2725 ± 8 Ma and lower intercept age of  337 ± 470 Ma (MSWD = 

3.9; n = 24). We consider the fifteen concordant (100 ± 2% concordance) analyses to reflect the 

best determination of  the actual crystallization age of  the sample and yield a weighted average 
207Pb/206Pb age of  2723 ± 10 Ma (± 40 2SD; MSWD = 5.8; n = 17). The large MSWD implies 

the assigned analytical uncertainties do not account for the observed U-Pb age range. Therefore, 

our dataset likely contains multiple zircon populations that possess similar but distinct ages that 

partially overlap within analytical uncertainty of  individual analyses. 

Sample CL109 is a foliated granitoid with a well-developed S- and L-fabric. Thirty seven 

ablation spots from seventeen zircons were analyzed. The majority of  imaged zircons from CL109 

possess a bright and very-narrow rim that was not possible to analyse with a 25 µm spot size 

(Fig. 2.12a).  Three of  these zircons (zircons C5-1, C6-1 and H1-2) possess significant common 

lead (1.5–1.8% f206Pbc) and are not shown in Fig. 2.13a, b. The remaining zircons constrain a 
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Model-2 York fit regression with an upper intercept age of  2754 ±14 Ma and lower intercept age 

at 512 ± 140 Ma (MSWD = 16; n = 34). The large MSWD reflects considerable scatter along the 

discordia curve and is indicative of  complex and non-zero Pb-loss. The youngest 207Pb/206Pb 

ages correspond to what appear from CL images to be recrystallized zircons; however several 

of  the younger 207Pb/206Pb ages correspond with magmatically zoned and pristine portions 

of  the zircons. One of  these analyses (J2-1) overlaps multiple growth zones, corresponds to a 

brightly-luminescent margin of  the zircon and possesses an anomalously low 207Pb/206Pb age at 

2620 ± 17 Ma. If  this analysis is excluded, a weighted average 207Pb/206Pb age for the remaining 

most concordant zircons (>98% concordance) is 2758 ± 9 Ma (± 28 2SD; MSWD = 2.8; n = 

11). The weighted average possesses a MSWD >1 and we interpret this to reflect multiple zircon 

populations included within the weighted average calculation. 

Sample CL1020 is a foliated granitoid with a weakly developed tectonic fabric. Fifty two 

ablation analyses were measured from eighteen zircon crystals. Seven of  these analyses (G2-1, 

G2-2, C5-1, H9-1, I1-2, Z4-1 and Z7 2) possessed significant common lead (1.5–4.6% f206Pbc) 

and are not shown in Fig. 2.13a, b. Concordant 207Pb/206Pb ages (>95% concordance) possess 

a 150 Myr age range that likely reflects at least two disparate age components and each has 

likely undergone non-zero Pb-loss. CL imaging provides textural support for an inherited zircon 

component with the oldest zircons corresponding to highly luminescent and resorbed zircon 

cores (Fig. 2.12c). The age of  this older population is unclear as inherited zircons are suspected to 

have undergone non-zero Pb-loss, however a weighted average 207Pb/206Pb age of  the five oldest 

and most concordant (100 ± 2% concordance) zircons that correspond to texturally distinct 

zircon zones represents a minimum age estimate of  inherited zircons at 2846 ± 7 Ma (± 9 2SD; 
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Sample Lithology Method Interpreted crystallization ages
(Ma) ±

CL0975 Saza Granodiorite ID-TIMS 1934.5a 1.0
CL0972 Ilunga Syenogranite ID-TIMS 1959.6a 1.1
CL0911 granodiorite dike ID-TIMS 1958.5a 1.3
CL098 Archean granite LA-MC-ICP-MS 2723a 10

CL1020 Archean granite LA-MC-ICP-MS 2739a 10
CL109 Archean granite LA-MC-ICP-MS 2758a 9

CL1019 porphyritic monzogranite LA-MC-ICP-MS 1942a 14
CL1021 quartz diorite LA-MC-ICP-MS 1891b 17
CL1022 gabbroic dike LA-MC-ICP-MS 1880b 17

aweighted average 207Pb/206Pb age of concordant zircons
bupper intercept age from Model-2 York fit regression

Table 2.1 - Interpreted U-Pb crystallization ages

MSWD = 0.31; n = 5). The crystallization age of  CL1020 is similarly open to interpretation as 

the younger age population likely includes inherited zircons that have undergone non-zero Pb-

loss; however, a weighted average 207Pb/206Pb age of  the fourteen most concordant (100 ± 2% 

concordance) zircons corresponding to magmatically zoned zircons provides our best estimate 

for the crystallization age of  CL1020 at 2739 ± 10 Ma (± 35 2SD; MSWD = 4.6; n = 14).             

Sample CL1019 is a porphyritic monzogranite that possesses K-feldspar megacrysts 

(locally several cm in diameter), which distinguish this lithology from the other granitic phases 

in the field. Thirty two ablations from sixteen zircons were analyzed. Seven of  these analyses 

(A10-1; B3-1; B10-1; C1-1; C4-1; E2-1; G10-1) contained significant concentrations of  common 

Pb (1.9–2.7% f206Pbc) and are not included in Fig. 2.14a, b. Two of  the remaining twenty five 

analyses are from zircon G1 and possess significantly older U-Pb ages (ca. 700 Myr). One of  

these analyses is near-concordant (96% concordance) and provides a 207Pb/206Pb age of  2671 ± 

17 Ma. This zircon possesses a resorbed and highly luminescent centre and weakly luminescent 

margin. The textural and isotopic evidence suggest that this zircon is consistent with an inherited 

zircon component that was derived from Archean basement (e.g., CL098, CL109 and CL1020). 

All other CL1019 zircons analyses possess Proterozoic U-Pb ages and constrain a Model-2 York 

fit regression with an upper intercept age of  1948 ± 16 Ma and lower intercept age of  87 ± 

150 Ma (MSWD = 13; n = 23). The high MSWD reflects significant scatter about the discordia 

curve that is likely related to Pb-loss and a range of  concordant U-Pb ages that may suggest 

multiple zircon populations were included in the regression. Concordant analyses are most likely 

to reflect the true crystallization age of  the sample and a weighted average 207Pb/206Pb age of  

the most concordant (>98% concordance) and Proterozoic zircons is 1942 ± 14 Ma (± 35 2SD; 

MSWD = 3.3; n = 8).

Sample CL1021 is a quartz diorite intrusion adjacent to the Saza granodiorite (CL0975). 

Thirty ablation spots were analysed from 14 zircon grains. Three of  these analyses (J1-23, J1-24 

and D9-16) possessed large counts of  common lead (1.5–2.1% f206Pbc) and are not presented 

in the concordia plots (Fig. 2.14a, b) or discussed further. The remaining zircons constrain a 

Model-2 York fit regression with an upper intercept age of  1907 ± 27 Ma and lower intercept 

age of  524 ± 140 Ma (MSWD = 5.8; n = 27). The dataset likely contains multiple zircon 
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populations that are unresolvable within the assigned analytical uncertainties based on the 107 

Myr range of  near-concordant (>95% concordance) 206Pb/238U ages coupled with the high 

MSWD of  the upper intercept age (Fig. 2.14b). Our best approximation to the crystallization of  

CL1021 is the upper intercept age of  all the analyzed zircons (except for those with excessive 

common lead and analysis J1-25 which plots significantly below discordia) at 1891 ± 17 Ma 

(MSWD = 4.8; n = 26).         

Sample CL1022 is a massive gabbroic dike that is observed cross cutting a foliated granitoid 

(CL109). Twenty one ablation spots from ten zircons were analyzed and constrain a Model-2 

York fit regression with an upper intercept age at 1880 ± 17 Ma and lower intercept at age 469 ± 

81 Ma (MSWD = 4.9; n = 21). Near-concordant (>95% concordant) zircons possess a 160 Myr 

range of  206Pb/238U ages and imply our dataset contain multiple zircon populations (Fig. 2.14b). 

Our best approximation of  the crystallization age of  CL1022 is the upper intercept age of  all 

analyzed zircons at 1880 ± 17 Ma (MSWD = 4.9; n = 21). The interpreted crystallization age also 

constrains the timing of  crystallization and provides a maximum possible age for deformation 

within the foliated granitoid (CL109).    

2.4.7 Lu-Hf  zircon LA-MC-ICP-MS results

 Three Archean foliated granitoid samples (CL098, CL109 and CL1020) were selected 

for LA-MC-ICP-MS Lu-Hf  isotopic analysis. These samples were chosen because of  their 

unexpected Archean ages and their poorly constrained petrogenetic history. Only near-

concordant (>95% concordance) zircon analyses were selected for Lu-Hf  analysis and, in 

the majority of  cases, the Lu-Hf  ablation sites were centred on top of  the pre-existing U-Pb 
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evolution line and typical 2σ uncertainty for an individual analysis are also shown. (c) Calculated εHf  for samples 
CL098, CL109 and CL1020 plotted against the corresponding 207Pb/206Pb age for each analysis. DM (MORB 
source depleted mantle, Griffin et al., 2000), Slave Craton mantle (Pietranik et al., 2008) and Neo-Mesoarchean 
mantle (Shirey et al., 2008) are also plotted. The typical 2σ uncertainty on individual 207Pb/206Pb ages and εHf  
values are also shown.   

ablation site (Fig. 2.12). For zircons where this was not possible (e.g., zircon growth zones were 

too thin), the Lu-Hf  ablation site was repositioned adjacent to the U-Pb ablation site in what 

is assumed to be a coeval growth zone of  the zircon. For ablation sites, CL images, reference 

material analyses and sample results see Appendix 2. 

Zircon crystals incorporate a small amount of  176Lu during crystallization which decays 

to 176Hf. As a result, each measured 176Hf/177Hf  ratio needs to be corrected for the interpreted 

crystallization age of  the sample (176Hf/177Hfinitial). We approached this problem by using the 
207Pb/206Pb age of  the ablation site and the measured 176Lu/177Hf  ratios to correct for the 

corresponding 176Hf/177Hf  analysis. Normalizing 176Hf/177Hfinitial ratios to the 176Hf/177Hf  value 

of  the present-day bulk earth (176Hf/177Hfp = 0.28295; Patchett and Tatsumoto, 1980) allows the 

calculation of  εHf  [(176Hf/177Hfinitial / 176Hf/177Hfpresent day earth) x 104]. Crustal residence ages were 

calculated following a 2-stage model age approach. The calculated 176Hf/177Hfinitial ratio of  the 

zircon at the time of  growth (207Pb/206Pb zircon age) and an average crustal 176Lu/177Hf  ratio of  

0.012 (Vervoort et al., 1999) were used to project back to the time of  intersection with depleted 
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mantle (with 176Lu/177Hf  = 0.0384, 176Hf/177Hf  = 0.28325; Chauvel and Blichert-Toft, 2001)

Forty-two Lu-Hf  analyses were performed on fourteen zircons from sample CL1020 

(Fig. 2.15a). The 176Hf/177Hf  analyses possess an approximately normal distribution and overlap 

within analytical uncertainty at the 2σ uncertainty level. Inherited zircons possess identical 
176Hf/177Hfinitial values (arithmetic average = 0.281010 ± 0.000045 at 2SD, n =26) within 

uncertainty but are generally lower than zircons that are thought to represent crystallization of  

CL1020 at ca. 2740 Ma (arithmetic average = 0.281032 ± 0.000029 at 2SD, n = 16). 

Nineteen Lu-Hf  analyses were performed on twelve concordant zircons from CL098. 
176Hf/177Hf  analyses possess an approximately normal distribution and largely overlap 

within analytical uncertainty at the 2σ uncertainty level (Fig. 2.15a). An arithmetic average of  
176Hf/177Hfinitial for this sample is 0.281048 ± 0.000046 (2SD, n =19). 

Fifteen Lu-Hf  analyses were performed on ten concordant zircons from CL109. One Lu-

Hf  analysis (H1-2) possesses an anomalously low 176Hf/177Hf. The significance of  this value is 

unclear and is not included in the following discussion but is plotted in Fig. 2.15. The remaining 
176Hf/177Hf  analyses possess a weakly bi-modal distribution (Fig. 15a). 176Hf/177Hfinitial values are 

largely within analytical uncertainty of  each other (arithmetic average = 0.281047 ± 0.000025 

at 2SD, n = 14) and the 176Hf/177Hfinitial values of  CL098 (0.281048) and CL1020 (0.281032). 

The four oldest U-Pb analyses possess the highest 176Hf/177Hfinitial values and overlap with 
176Hf/177Hfinitial values of  interpreted inherited zircon cores from CL1020 at the 2σ uncertainty 

level. 

2.4.8 Interpretation of  complex inheritance and Pb-loss systematics   

Concordant LA-MC-ICP-MS U-Pb zircon analyses possess age ranges that exceed the 

analytical uncertainty of  the individual measurements (e.g., near-concordant zircons from 

CL1022 possess a 160 Myr range; Figs. 2.13 and 2.14). Reference material analyses, run as 

part of  our standard-sample-standard bracketing protocol, overlap within analytical uncertainty 

and suggest that our analytical methodology cannot explain this age range and that real 

geologic scatter exists in our samples. The cause of  the concordant U-Pb zircon age range 

can be constrained by integrating the U-Pb and Lu-Hf  analyses with CL imaging for the same 

ablation pits. Previous studies provide empirical evidence to suggest the U-Pb and Lu-Hf  

isotopic systems are decoupled during metamorphism (e.g., Gerdes and Zeh, 2009; Kemp et 

al., 2009; Whitehouse and Kemp, 2010). As a result, the 176Hf/177Hfinitial remains unchanged 

even for zircons that exhibit U-Pb evidence for Pb-loss. The oldest 207Pb/206Pb ages from 

CL1020 correspond to highly luminescent and resorbed zircon cores that are interpreted to 

be inherited xenocrysts. Lu-Hf  isotopic data supports this interpretation as 207Pb/206Pb ages 

<2740 Ma possesses 176Hf/177Hfinitial ratios identical to zircons with 207Pb/206Pb ages at ca. 2740 

Ma, whereas inherited zircons with 207Pb/206Pb ages >2740 Ma possess generally less radiogenic 
176Hf/177Hfinitital ratios. Our results possess considerable overlap, but generally less radiogenic, 
176Hf/177Hfinitial values of  inherited and magmatic zircons suggest the source of  inherited zircons 

may have had a dissimilar Lu-Hf  composition compared to the source of  magmatic zircons. 
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Conversely, younger zircons that possess identical 176Hf/177Hfinitial ratios have likely undergone 

non-zero Pb-loss.  

2.5 Discussion
2.5.1 Archean granitoid petrogenesis

The results demonstrate that granites previously considered to be Proterozoic are in fact 

Archean (ca. 2740 Ma). Furthermore, inherited zircon ages provide evidence for >2740 Ma 

crust beneath the Lupa Terrane. Other metamorphic belts surrounding the southern and eastern 

margins of  the Tanzanian Craton (e.g., Mozambique and Usagaran) also contain Archean crust 

(Muhongo et al., 2001; Kröner et al., 2003; Reddy et al., 2003; Sommer et al., 2003). These 

studies proposed that large portions of  the metamorphic belts enveloping the Tanzanian Craton 

represent re-worked Archean crust and are consistent with a growing number of  deep seismic 

studies that demonstrate laterally extensive Archean lithosphere underlying many Proterozoic 

accretionary orogens (Snyder, 2002). Alternatively, the Archean rocks at depth may be unrelated 

to the Tanzanian Craton and may have been incorporated within these metamorphic belts 

during accretion (Muhongo et al., 2001). 

The SW extent of  the Tanzanian cratonic margin is a subject of  debate (e.g., Coolen, 

1980; Pinna et al., 2008). Manya (2011) proposed a possible location for the Tanzanian cratonic 

margin based on Sm-Nd isotopic evidence. However, a sample from Manya (2011) was taken 

from an outcrop in the Lupa Terrane and possessed an Archean Nd model age (2688 Ma). 

That Archean sample is ca. 150 km away from the newly proposed Tanzanian cratonic margin 

and Manya (2011) interpreted the anomalous age as either a sliver of  tectonically interleaved 

Archean material or re-melting of  Archean crust. Archean foliated granites in the Lupa Terrane 

are older (ca. 2740 Ma) than Rb-Sr and K-Ar ages for the Tanzanian craton (2.4–2.6 Ga; Cahen 

et al., 1984), but are in good agreement with re-worked Archean rocks in the Usagaran (ca. 

2700 Ma; Reddy et al., 2003) and Mozambique Belts [ca. 2740–2608 (Muhongo et al., 2001); 

ca. 2970–2500 Ma (Sommer et al., 2003)] and recent U-Pb zircon SIMS ages for the Tanzanian 

Craton (3.2–2.6 Ga; Kabete et al., 2012). 

U-Pb and Lu-Hf  isotopic evidence provides petrogenetic evidence that constrains 

the geologic setting of  the Archean granitoids. U-Pb zircon ages from CL098, CL109 and 

CL1020 record multiple zircon populations that have undergone non-zero Pb-loss, nevertheless 

interpreted crystallization ages are broadly within analytical uncertainty at ca. 2740 Ma. The 
176Hf/177Hfinitial ratios for interpreted magmatic zircons from all three samples are also largely 

within analytical uncertainty (2σ) and suggests that all three foliated granitoid samples possess a 

homogeneous 176Hf/177Hf  source. Calculated εHf  values (-2.2–2.8) plot lower than the depleted 

mantle (Griffin et al., 2000) and the Neo-Mesoarchean mantle (Shirey et al., 2008) evolution curve 

(Fig. 2.15c). Juvenile melts (mantle melts) are expected to possess 176Hf/177Hfinitial compositions 

that overlap with the 176Hf/177Hf  composition of  the mantle source and our results imply that 

foliated granitoids are not juvenile mantle melts, but likely formed from melting of  >2740 Ma 

crust (Fig. 2.15c). Melting was likely related to an Archean volcanic-arc that is consistent with 
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the subduction signature suggested by the Archean granitoids trace element compositions (e.g., 

LREE enrichment; steeply dipping REE patterns; negative Nb and Ti anomalies; Fig. 2.8e, f).

Crustal residence ages (CR) can be estimated from the calculated 176Hf/177Hfinitial values 

and assuming a Lu-Hf  composition of  the mantle source (e.g., Shirey et al., 2008 and references 

therein). Our two-stage Lu-Hf  model ages are subject to large uncertainties because of  176Lu 

decay constant uncertainty, the poorly constrained Lu-Hf  isotopic composition of  the source, 

uncertainty regarding the 207Pb/206Pb crystallization age of  the samples and uncertainties on 

individual Lu-Hf  measurements (e.g., Davis et al., 2005). As a result, a range of  model ages can 

be calculated from a single zircon crystal (e.g., Whitehouse and Kemp, 2010). The arithmetic 

average CR age for samples CL098, CL109 and CL1020 (not including inherited zircons) is 3.1 

Ga (± 0.9 Ga 2SD; n = 46). The significance of  this age is unclear because of  the limitations 

described above, but depleted mantle ages provide the first evidence for ≥ 3.1 Ga basement 

underlying the Lupa Terrane. The age of  this basement is consistent with Nd model ages (2.8–

3.1 Ga) from the Tanzanian Craton, Usagaran Belt and the Mozambique Belt (Maboko, 1995; 

Maboko and Nakamura, 1996; Möller et al., 1998).  

CL1020 includes inherited zircons with 207Pb/206Pb ages ca. 100 Myr older than the 

interpreted crystallization age at ca. 2740 Ma. The 176Hf/177Hfinitial values for suspected inherited 

zircons are generally lower (arithmetic average = 0.281010 ± 0.000045 at 2SD, n =26) but 

possess significant overlap with zircons that are thought to represent crystallization of  CL1020 

at ca. 2740 Ma (arithmetic average = 0.281032 ± 0.000029 at 2SD, n = 16). Therefore, in 

addition to older 207Pb/206Pb ages the suspected inherited zircons appear to have a different 
176Hf/177Hf  source than the magmatic zircons. Inherited zircons (≥ 2740 Ma) may have been 

sourced from several protoliths of  different ages or a single protolith that crystallized at ca. 

2850 Ma and subsequently underwent non-zero Pb-loss to produce a range of  207Pb/206Pb 

ages (Friend and Kinny, 1995). We favour the latter interpretation because the 177Hf/176Hfinitial 

ratios of  inherited zircons are largely within analytical uncertainty of  each other and suggest a 

common 176Hf/177Hfinitial source.

Previous workers have suggested that Archean rocks within the Ubendian and Usagaran 

Belts were tectonically interleaved during accretion (Muhongo et al., 2001; Manya, 2011). This 

hypothesis seems unlikely in the Lupa Terrane where magmatic contacts are clearly observed 

between the Archean and Paleoproterozoic granitoids (Fig. 2.4c). Seismic tomography models 

provide evidence for re-worked Archean crust and upper lithosphere extending SW from the 

Tanzanian Craton to the Bangweulu Block (see Fig. 2 of  Begg et al., 2009). If  correct, significant 

portions of  the Ubendian Belt may represent re-worked Archean crust. Our U-Pb and Lu-Hf  

support this hypothesis and we propose that the Tanzanian cratonic margin is located at least 

150 km SW from its currently accepted position (Manya, 2011; Fig. 2.1). Our proposed model 

implies that Archean granitoids are present between Lake Rukwa and currently known exposures 

of  the Tanzanian Craton near the town of  Rungwa but may be difficult to identify in the field as 

a result of  reworking and/or the intrusion of  voluminous Paleoproterozoic granitoids.
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2.5.2 Paleoproterozoic granitoid and diorite-gabbro petrogenesis

Ratios of  highly incompatible elements have been shown to remain unchanged during 

large degrees of  partial melting or crystal fractionation and thus incompatible elements can be 

used as tracers for magmatic processes (e.g., Pearce and Peate, 1995). One important element 

for tracing subduction zone processes is Nb, which is preferentially retained in the down-going 

slab within mineral phases (e.g., rutile; Pearce and Peate, 1995). Nb depletions, such as those 

exhibited by Lupa intrusive phases, are therefore characteristic of  melts generated in volcanic 

arcs (Fig. 2.8). The diorite-gabbro suite also displays other trace element compositions that 

are typical of  modern day volcanic-arcs. LREE enrichment (Hildreth and Moorbath, 1988), 

low TiO2 contents (<2.0 wt. %; Pearce and Cann, 1973), large Ba/Ta and Ba/Nb ratios (>450 

and >28, respectively; Gill, 1981), low Y/Cr ratios (Pearce. 1982), high Th/Nb and Ce/Nb 

ratios (Saunders et al., 1988) all suggest the diorite-gabbro suite are typical of  calc-alkaline 

subduction-related (volcanic-arc) magmas (Fig. 2.10). The diorite-gabbro suite also plots in the 

island-arc field of  La-Sm-Th-Yb-Nb log-transformed discrimination diagrams (Agrawal et al., 

2008; Fig. 2.10e, f). Paleoproterozoic granitoids also possess trace element characteristics typical 

of  volcanic arcs (e.g., Nb and Ti depletions, high Hf/Ta ratios range from 2–9; Pearce et al., 

1984; Harris et al., 1986). Furthermore, the concave-up pattern of  the granodiorite samples 

(CL0975; CL0911; CL0921; and CL0958) are typical of  volcanic-arc granites in which MREE 

strongly partition into hydrous phases, such as amphibole, during crystallization, whereas the 

flat REE profile and deep negative Eu anomalies of  Ilunga Syenogranite samples are indicative 

of  fractional crystallization (Pearce, 1996b; Fig. 2.8).  

Volcanic-arc melts, oceanic or continental, typically originate as a result of  partial melting 

of  depleted asthenosphere. Subduction processes (e.g., metasomatism in mantle wedge) and 

crust-magma interaction (e.g., Melting-Assimilation-Segregation-Homogenization; Hildreth 

and Moorbath, 1988) can then modify the trace element composition of  melt products (e.g., 

LILE and LREE enrichment).  Therefore, distinguishing source characteristics from crust-

magma interaction is difficult using only trace element compositions (e.g., Davidson, 2005). 

Paleoproterozoic granitoids and the diorite-gabbro suite are observed cross cutting Archean 

granitoids. Field observations and inherited zircons suggest that Paleoproterozoic magmatic 

phases likely interacted with this evolved Archean crust (e.g., La/Ybcn = 28.8–64.6) during 

emplacement. Crust-magma interaction is typical of  continental arcs and can explain the enriched 

LREE signature of  Lupa Terrane lithologies (REE modelling; Fig. 2.9). Large variations in 

LILE/HFSE ratios (e.g., Ba/La) between broadly contemporaneous and spatially overlapping 

magmatic phases are more readily explained by varying degrees of  crustal-magma interaction 

and magmatic processes rather than variability within melt sources (Hildreth and Moorbath, 

1998). Therefore, the trace element compositions of  Paleoproterozoic magmatic phases are 

typical of  continental arcs that exhibit evidence for crust-magma interaction and the low Ti-Nb-

Ta values argue against an intraplate tectonic setting.           
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2.5.3 Geochronologic constraints on deformation and metamorphism

The U-Pb geochronologic data from the current study constrains the absolute timing of  

deformation events within the Lupa Terrane. At least three, temporally distinct, deformation 

events (D1, D2 and D3) are recognized in the field. The first deformation event (D1) is only 

developed within the Archean granitoids. Undulating chlorite-rich bands separated by bands of  

K-feldspar, plagioclase and quartz give Archean granitoids a banded appearance. This tectonic 

fabric varies in intensity from outcrop to outcrop, but is consistently present across the field 

area. Archean foliated granitoids (2760–2723 Ma) are cross cut by non-foliated Paleoproterozoic 

granites, granodiorites, diorites and gabbros (1960–1880 Ma). Our U-Pb data broadly constrains 

the timing of  D1 to 2720–1960 Ma. Brittle-ductile mylonititc shear zones (D2) crosscut all of  the 

dated magmatic phases. This deformation event is economically important as these structures 

are the primary host for Au mineralization (Chapters Three and Four). Our U-Pb data constrains 

the timing of  D2 to <1890 Ma and is consistent with Re-Os dating of  syn-deformational pyrite 

at ca. 1880 Ma (Chapter Four). Greenschist facies metamorphism is characteristic of  the Au 

bearing shear zones and overprints all of  the dated igneous phases. The timing of  greenschist 

facies metamorphism is therefore <1890 Ma but likely related to D2 at ca. 1880 Ma. Gold- and 

pyrite-bearing quartz veins (D2) are locally crosscut by discrete brittle faults (D3). The timing of  

D3 is not constrained, however the brittle nature of  the faults is in contrast to the ductile nature 

of  deformation during D1 and D2 and suggests different geologic conditions during D3. The 

proposed temporally-distinct deformation events are only those which are readily distinguished 

in the field and it is expected that Paleoproterozoic structures have been reactivated during 

tectonism that has continued to the present day (Theunissen et al., 1996). 

2.5.4 Proterozoic Geodynamic model

Paleoproterozoic magmatic rocks in the Lupa Terrane possess trace element compositions 

that are typical of  continental volcanic-arcs. Based on the geologic, geochronologic and 

geochemical evidence presented above we propose that the Lupa Terrane was a continental-

arc during the Paleoproterozoic. In our model, the Lupa Terrane represents the continental 

margin (i.e., the Tanzanian cratonic margin) on to which allochthonous terranes (i.e., other 

Ubendian Terranes) were accreted. The 1960–1880 Ma magmatic events in the Lupa Terrane 

are younger than the 2.1–2.0 Ga Ubendian tectonic phase but are in good agreement with the 

second Ubendian Tectonic phase at 1.9–1.8 Ga. Current geochronologic constraints suggest 

that the Katuma-Ufipa-Lupa Terranes possess the oldest ages (>1900 Ma) and are separated 

by the disparately younger Ubende-Mbozi Terrane (<1900 Ma; Boniface, 2009). Our U-Pb 

crystallization ages (1960–1880 Ma) overlap with ages reported from each of  the lithotectonic 

terranes; however no ages reported in this study are comparable to the ca. 1860 Ma eclogites 

in the Ubende Terrane (Boniface et al., 2012). The Katuma Terrane (1977–1900 Ma; Boniface, 

2009) lies along strike of  the northwest trending Lupa Terrane and possess a similar magmatic 

history that suggests both terranes may have shared a similar tectono-magmatic evolution.         

Recent ages constraining the temporal evolution of  the Ubendian Belt are incompatible 
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with the existing tectonic model (Daly, 1988). For example, any geodynamic model must explain 

the juxtaposition of  greenschist facies metamorphism in the Lupa Terrane and contemporaneous 

amphibolite-granulite facies metamorphism in the other Ubendian Terranes. The existing model 

of  wrench-dominated tectonics would require several 100 kilometres of  lateral displacement to 

explain this juxtaposition (Daly, 1988). Alternatively, subduction-related thrusting could have 

brought high-grade metamorphic rocks in adjacent Ubendian Terranes to the same structural 

level as the contemporaneous greenschist facies rocks comprising the Lupa Terrane. Our model 

would imply that sub-horizontal lineations on the terrane-bounding shear zones may be related 

to strike-slip reactivation of  terrane sutures rather than Paleoproterozoic lateral accretion. 

The timing of  this juxtaposition is unclear as Mesoproterozoic, Neoproterozoic and Tertiary 

rifting all likely contributed to the current configuration of  Ubendian Terranes (Boniface, 2009; 

Boniface et al., 2012; Boniface and Schenk, 2012). The exact geodynamic evolution of  the 

Ubendian Belt remains enigmatic and requires additional constraints. Nevertheless, our results 

are consistent with the proposed diachronous and protracted accretion history during the 1.9–

1.8 Ga Ubendian tectonic phase (Boniface et al., 2009).     

2.6 Summary and conclusions
The Lupa Terrane’s magmatic history began in the Archean (ca. 2740 Ma) with the intrusion 

of  evolved, calc-alkaline and arc-type granites. Inherited U-Pb zircon ages and Lu-Hf  zircon 

isotopic evidence imply that these granites are the products of  partial melting and incorporation 

of  substantially older crust at depth (ca. 3.1 Ga). Archean granitoids were structurally deformed to 

produce a weakly developed fabric (D1; 2740–1960 Ma) and were then intruded by non-foliated 

Paleoproterozoic (1960–1880 Ma) calc-alkaline granitoids (syenogranites, monzogranites and 

granodiorites) and dioritic-gabbroic intrusions. Paleoproterozoic igneous lithologies are cross 

cut by Au-bearing and greenschist facies shear zones (D2) that host the orogenic Au deposits 

of  the Lupa Terrane. Based on the U-Pb, Lu-Hf, trace element and field evidence presented 

above we propose:

• At least a 150km SW extension of  the Tanzanian cratonic margin to the Rukwa escarpment. 

Our results are consistent with seismic tomography studies that provide evidence for 

Archean upper lithosphere extending SW from the Tanzanian Craton to the Bangweulu 

Block (Begg et al., 2009).   

• That Paleoproterozoic magmatic activity possesses trace element characteristics that are 

analogous to modern-day continental arcs. 

• That the Lupa Terrane acted as the continental margin onto which the other Ubendian 

Terranes were accreted during the Paleoproterozoic. Inherited zircons, trace elements and 

REE modelling suggest the diorite-gabbro suite underwent magma-crust interaction that 

is consistent with a continental arc setting.     
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• That Paleoproterozoic eclogites with MORB-like chemistry (Boniface et al., 2012) 

imply subduction and thrusting were important accretion processes in contrast to the 

wrench-dominated tectonics proposed by Daly (1988). Thrusting could also explain the 

juxtaposition of  contemporaneous greenschist facies metamorphism in the Lupa with 

amphibolite-granulite facies metamorphism characteristic of  the other Ubendian Terranes. 
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Re-Os Geochronology of  Quartz Enclosed Ultrafine Molybdenite: 

Implications for Ore Geochronology

Chapter Three is published with the journal Economic Geology

Lawley, C.J.M., Selby, D., 2012, Re-Os Geochronology of  Quartz Enclosed Ultrafine Molybdenite: 
Implications for Ore Geochronology, Economic Geology, v. 107, p. 1499–1505.

Collaborator: David Selby1

1Department of  Earth Sciences, Durham University, Durham, DH1 3LE, UK

3.1 Introduction

Molybdenite Re-Os geochronology is a well established geochemical tool in the study 

of  ore deposits (e.g., Stein et al., 1997; Selby and Creaser, 2001). The utility of  molybdenite 

as a geochronometer stems from: 1) its occurrence in a wide variety of  ore deposit types (e.g., 

porphyry, epithermal, skarn, orogenic gold and others); 2) its closed-system behaviour during 

hydrothermal alteration and regional metamorphism (e.g., Stein et al., 1998; Selby and Creaser, 

2001; Bingen and Stein, 2003; Ootes et al., 2007; Bingen et al., 2008); and 3) its geochemical 

tendency to incorporate ppm levels of  Re and exclude Os upon crystallization (e.g., Stein et al., 

2001 and references therein; Takahashi et al., 2007). The exclusion of  Os during molybdenite 

precipitation simplifies the dating process as all measured Os is radiogenic (187Osr) and results 

from the in-situ decay of  187Re (cf. Markey et al., 2007 and references therein). As a result, Re-

Os molybdenite model ages can be calculated from the following equation: t = ln(187Os/187Re + 

1)/λ (where t = model age and λ = 187Re decay constant, 1.666 x 10-11 a-1; Smoliar et al., 1996; 

and Selby et al., 2007). The advantages of  the molybdenite Re-Os geochronometer over more 

traditional radiogenic systems (e.g., K-Ar and Rb-Sr) has resulted in a proliferation of  precise 

and robust age-determinations that have greatly improved our understanding of  ore deposit 

genesis (e.g., Stein et al., 1997; Ballard et al., 2001; Brown et al., 2002; Selby et al., 2002; Barra et 

al., 2003; Mao et al., 2008).    

The starting point for any molybdenite Re-Os analysis is to acquire a pure molybdenite 

mineral separate. Molybdenite (MoS2) is a soft, platy, hexagonal and metallic lustred mineral. 
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Porphyry molybdenite deposits possess the largest concentrations of  molybdenite and are the 

most important economic source for the element molybdenum. However molybdenite is a 

common accessory sulfide phase for several other ore deposit types. Pure molybdenite min-

eral separates can be obtained using conventional mineral separation techniques. Rock samples 

are typically crushed and milled before passing through a sieve and using a combination of  

heavy liquids (e.g., methyl iodide), magnetic separation (e.g., Frantz isodynamic magnetic sepa-

rator) and high-purity water flotation. These time-tested mineral separation techniques have 

proved to be extremely successful for samples where molybdenite crystals are abundant and 

coarse grained (commonly >0.5 mm). However, in many situations molybdenite crystals are fine 

grained and are lost within the clay size-fraction during sieving or remain as composite grains 

encased by silicate minerals, particularly quartz. As a result, ultrafine molybdenite (i.e., molyb-

denite crystals with diameters less than <50 µm; Fig. 3.1) samples require a novel approach to 

mineral separation. Ultrafine molybdenite samples in this study were collected from orogenic 

Au deposits in the Lupa goldfield, SW Tanzania and similar molybdenite occurrences have been 

reported for other orogenic Au deposits (e.g., Ispolatov et al., 2008). In addition, very-fine mo-

lybdenite has also been reported in porphyry and other deposit types (e.g., Stevenson, 1940). 

A potential solution for these samples lies in the contrasting solubility of  sulfide and silicate 

minerals in hydrofluoric acid (HF; Neuerburg, 1961). Quartz and other silicates rapidly dissolve 

in HF, whereas most sulfide minerals (e.g., molybdenite) are known to be resistant to dissolution 

(Neuerburg, 1961). The effect of  HF on the Re-Os isotopic composition of  molybdenite has 

not been previously tested despite the potential applicability to isolating ultrafine molybdenite. 

We approach this problem by exposing four previously dated molybdenite mineral separates 

(e.g., NIST RM8599, in-house standards) to concentrated HF and demonstrate that the Re-Os 

isotopic composition of  molybdenite is unaffected by exposure to HF. Further we apply this ap-

proach to the study of  ultrafine molybdenite examples from the Lupa Goldfield, SW Tanzania. 

    

3.2 Samples
3.2.1 Molybdenite control samples and NIST 8599

We tested the effect of  HF exposure on Re-Os molybdenite systematics by comparing 

the Re-Os molybdenite model ages of  four previously dated and well-constrained molybdenite 

mineral separates before and after exposure. The location and characteristics of  each sample are 

presented in Table 3.1. Two of  these samples, National Institute of  Standards and Technology 

(NIST) RM8599 and HLP-5, are previously reported as Reference Materials (cf. Markey et 

al., 1998; Du et al., 2004; Selby and Creaser, 2004; Markey et al., 2007). Both reference 

materials have also been analyzed using the facilities at the Northern Centre for Isotopic and 

Elemental Tracing (NCIET) in the TOTAL Laboratory for Source Rock Geochronology and 

Geochemistry at Durham University (e.g., Porter and Selby, 2010 and references therein). As a 

result, the Re-Os molybdenite model ages for these two samples are well constrained and have 

been reproduced by several laboratories using different analytical protocols. The RM8599 and 

HLP-5 molybdenite powder samples have been produced by mixing crushed ore-rock with 
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Figure 3.1 – (a) Ultra-fine molybdenite within quartz vein; 
(b) ultra-fine molybdenite coating and enclosed within 
quartz grains; and (c) reflected light photomicrograph of  
molybdenite within and along quartz grain boundaries.

flotation oils at the Henderson and Huanglongpu deposit mills, respectively. The milling process 

produces fine-grained (similar to ultra-fine molybdenite grain size) and extremely well mixed 

samples that are ideally suited for Re-Os analysis (Stein et al., 1998; Selby and Creaser, 2004). 

However, the Re-Os ages of  milled samples represent an average age for ore mineralization and 

may mask subtle age variations related to the complex evolution of  most ore systems (e.g., Selby 

and Creaser, 2001).    

In addition to the reference material molybdenite samples we have also utilized samples 

from the previously dated MAX (Lawley et al., 2010) and Endako porphyry Mo deposits (Selby 

and Creaser, 2001). Molybdenite samples from the MAX and Endako deposits represent the 

potassic and phyllic stage of  mineralization, respectively and thus provide the absolute timing 

of  that period of  ore mineralization. The mineral separates were prepared using traditional 

mineral separation methods that included crushing, pulverizing, Frantz isodynamic magnetic 

separation, heavy liquids (i.e., LST [lithium heteropolytungstates] heavy liquid and methyl 

iodide) and MilliQ flotation. 

3.2.2 Ultrafine molybdenite samples

 Molybdenite samples are from the Lupa goldfield, SW Tanzania. The Lupa goldfield 
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is one of  eight litho-tectonic terranes comprising the Paleoproterozoic Ubendian Belt (Daly, 

1988). Gold is associated with pyrite, chalcopyrite and trace molybdenite within quartz veins and 

mylonitic rocks. Sample locations and characteristics are reported in Table 3.1. Molybdenite is 

present as fracture coatings, mono-mineralic stringer veins and as ultrafine grained disseminations 

within quartz veins and the granitic host rock (Fig. 3.1). The bulk of  the molybdenite from 

these samples is <50 µm in diameter within quartz crystals and along quartz crystal boundaries 

(Fig. 3.1c). Samples were crushed, pulverized, sieved and passed through a Frantz magnetic 

separator before heavy liquid separation. Composite grains (molybdenite encased by quartz) 

were concentrated in the light fraction of  the density separation whereas liberated pyrite and 

other sulfide grains were concentrated in the heavy fraction of  the density separation. 

Rhenium-osmium analytical methods utilises sealed borosilicate glass tubes using oxidizing 

acidic mediums, e.g., aqua regia to achieve tracer solution (185Re + isotopically normal Os) and 

sample Re and Os isotope equilibration. The latter is not capable of  digesting quartz and thus 

any encased molybdenite is also not digested. As a result, ultrafine samples were then chemically 

separated using the method described below.  

3.3 Analytical protocol
3.3.1 Ultrafine molybdenite chemical separation method

Our series of  HF tests indicates that approximately 8 mL of  32N HF will dissolve 0.750 

g of  quartz in 24 hours at room temperature (adapted from Neuerburg, 1961). For each control 

sample / reference material a known amount of  sample was placed into a Savillex Teflon digestion 

vessel, with 8ml of  32N HF (ROMIL Ltd. UpA high purity HF) and left at room-temperature 

for 24 hours. After this, the HF was removed by rinsing the molybdenite three times with 10 ml 

of  MilliQ. Finally the molybdenite was rinsed with ethanol and dried at 60˚C. High-purity HF 

(trace element impurities at ppt levels) was used in this study in order to maintain low analytical 

blanks, however less pure HF could also be used because the majority of  HF is removed in the 

rinsing process and we expect that any Re and Os impurities within the HF are insignificant 

relative to the ppm and ppb levels of  these elements within molybdenite. Sample recovery 

ranged from 80–90% during the rinsing procedure based on the difference in sample weight 

before and after rinsing. Sample loss is explained by minor amounts of  the sample adhering 

to the centrifuge tube and within the pipette during rinsing. This was particularly apparent for 

the two fine-grained mill samples, RM8599 and HLP-5. One of  the control samples, “CL100 3 

weeks”, was exposed to the HF protocol for three weeks prior to analysis in order to assess the 

longer term affects of  HF on the Re-Os systematics.    

The same protocol was followed to liberate molybdenite from the quartz-enclosed 

molybdenite. After the silicate (quartz) digestion, the sample typically contained molybdenite 

plus trace pyrite. The grain size of  these samples precluded hand picking as a means for removing 

trace amounts of  pyrite. However the Re and Os contribution of  trace pyrite is insignificant 

relative to the much larger concentrations of  Re and O present within molybdenite. Ultrafine 

molybdenite samples with more complicated mineralogy (e.g., quartz-feldspar-molybdenite 
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veins) typically possessed HF insoluble products after digestion. The majority of  these HF 

insoluble products were removed during the following MilliQ rinsing stage. Neuerburg (1961) 

reported that any remaining HF- and water-insoluble products can be removed by exposing the 

sample to aluminium chloride; however this was not deemed necessary for the sample suite. 

3.3.2 Re-Os isotopic analytical method

The Re and Os abundance and isotope composition determinations for molybdenite 

mineral separates follow those previously published (e.g., Porter and Selby, 2010). In brief, a 

weighed aliquant of  the molybdenite mineral separate and tracer solution (185Re + isotopically 

normal Os) were then loaded into a Carius tube with 11N HCl (1 mL) and 15.5N HNO3 (3 mL), 

sealed and digested at 220ºC for ~24 hrs. Osmium was purified from the acid medium using 

solvent extraction (CHCl3) at room temperature and micro-distillation methods. The Re fraction 

was isolated using standard anion column chromatography. Rhenium and Os were loaded onto 

coated Ni and Pt filaments, respectively, and their isotopic compositions were measured using 

negative thermal ionization mass spectrometry (Creaser et al., 1991; Völkening et al., 1991). 

Analyses were conducted on a Thermo Electron TRITON mass spectrometer with the Re and 

Os isotopic composition measured using static Faraday collection. Analytical uncertainties are 

propagated and incorporate uncertainties related to Re and Os mass spectrometer measurements, 

blank abundances and isotopic compositions, spike calibrations and reproducibility of  standard 

Re and Os isotope values. During the course of  this study Re and Os blanks were <4 pg and 1 

pg, respectively, with the 187Os/188Os of  the blank being 0.25 ± 0.02. 

 

3.4 Results
3.4.1 Re-Os control samples

All Re-Os results are listed in Table 3.1 and presented in Figure 3.2. 

RM8599 - Two aliquants of  approximately 100 mg of  RM8599 were analyzed and 

provided identical molybdenite Re-Os model ages of  27.6 ± 0.1 Ma. These ages are in excellent 

agreement with the arithmetic average of  this sample 27.7 ± 0.0 Ma (n = 48; Markey et al., 2007) 

and previously reported analyses 27.6 ± 0.1 Ma and 27.7 ± 0.1 (Porter and Selby, 2010). The 
187Re and 187Os concentrations are 7.2 ± 0.0 ppm and 3.3 ± 0.0 ppb, respectively and overlap 

within uncertainty with previously reported values (Markey et al., 2007; Porter and Selby, 2010).        

HLP-5 - One aliquant of  approximately 6 mg of  HLP-5 was analyzed and provided a 

molybdenite model age of  220.0 ± 0.9 Ma. This age is in excellent agreement with the accepted 

weighted average age of  220.5 ± 0.2 Ma (MSWD = 1.3; n =17; Selby and Creaser, 2004) and also 

the date reported by Porter and Selby (2010; 221.4 ± 0.9 Ma). The 187Re and 187Os concentrations 

are 201.1 ± 1.5 ppm and 738.3 ± 5.5 ppb, respectively and are significantly higher than the 187Re 

(~170 ppm) and 187Os (~600 ppb) concentrations previously reported (Selby and Creaser, 2004 

and references therein; Porter and Selby, 2010). The potential explanation for this discrepancy 

is discussed further below.  

2706SWB - One aliquant of  approximately 15 mg of  2706SWB was analyzed and provided 
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a molybdenite model age of  145.7 ± 0.6 Ma. This age is identical within analytical uncertainty 

with the weighted average age of  145.8 ± 0.4 Ma (MSWD = 2.8; n = 10; Selby and Creaser, 

2004). The 187Re and 187Os concentrations are 20.7 ± 0.1 ppm and 50.2 ± 0.2 ppb, respectively 

and are slightly higher (~19 ppm for 187Re and 45 ppb 187Os) than those reported in Selby and 

Creaser (2004).   

CL100 - Three aliquants of  molybdenite from the MAX porphyry deposit provide 

molybdenite model ages of  80.4 ± 0.3 Ma, 80.5 ± 0.3 Ma; and 80.8 ± 0.3 Ma. All three ages 

agree within analytical uncertainty with the previously reported Re-Os age for CL100 (80.5 ± 0.4 

Ma) and two other Re-Os molybdenite dates from this deposit (80.1 ± 0.4 Ma; and 80.2 ± 0.4 

Ma; Lawley et al., 2010). The 187Re and 187Os concentrations for the HF treated CL100 sample 

are 34.4 ± 0.2 ppm, 35.4 ± 0.1 ppm; 31.4 ± 0.1 ppm and 46.1 ± 0.2 ppb, 47.5 ± 0.2 ppb, 42.2 

± 0.1, respectively. All of  these concentrations are slightly higher (187Re = 27.8 ± 0.1 ppm; 187Os 

= 37.3 ± 0.1 ppb) than those reported in Lawley et al. (2010). One aliquant of  sample CL100 

was left in HF for three weeks at room temperature (CL100 3 weeks). The Re-Os model age 

for the latter is within uncertainty to the sample aliquants of  CL100 that were only treated for 

24 hours. However, the 3 week treated sample gave slightly less Re and Os abundances, which 

are nonetheless similar to those published for this sample by Lawley et al. (2010). In addition, 

Re-Os results are also in good agreement with U-Pb and Ar-Ar ages of  the host intrusion and 

associated hydrothermal alteration at MAX (Lawley et al., 2010).  

3.4.2 Re-Os ultrafine molybdenite

Ultrafine molybdenite results for the Kenge and Porcupine deposits are listed in Table 3.1 

and presented in Figure 3.3.  A weighted average Re-Os model molybdenite model age for the 

three samples from the Kenge deposit is 1953 ± 5 Ma (MSWD = 0.6; n = 3). A weighted average 

Re-Os molybdenite model age for the three samples and one repeat analyses from the Porcupine 

deposit is 1886 ± 5 Ma (MSWD = 1.5; n = 4). Total Re concentrations for samples from the 

Kenge deposit range from 7–13 ppm, whereas total Re concentrations for samples from the 

Porcupine deposit range from 1–10 ppm. These ranges are comparable with previously reported 

values from samples prepared using conventional mineral separation techniques (Chapter Four).   

3.5 Discussion
3.5.1 HF and Re-Os molybdenite systematics

 We tested the effect of  HF on Re-Os systematics by exposing previously dated 

molybdenite mineral separates (i.e., control samples) to HF and compared the molybdenite 

model age with and without HF exposure. Molybdenite model ages for analyses with and 

without exposure to HF overlap within analytical uncertainty and are shown graphically in 

Figure 3.2. In addition, one molybdenite mineral separate (i.e., CL100 3 weeks) was exposed 

to HF at room temperature for three weeks and possesses a Re-Os molybdenite model age 

that is indistinguishable to samples prepared using conventional mineral separation techniques. 

This suggests that HF at room temperature does not affect the Re-Os isotopic composition of  
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Figure 3.2 – (a) Molybdenite Re-Os model ages of  
RM8599 after exposure to HF and accepted age from 
Markey et al. (2007). Dotted error bars on arithmetic 
mean model age represents the typical uncertainty for 
an individual analysis; (b) molybdenite Re-Os model 
age of  HLP-5 after exposure to HF and accepted age 
from Selby and Creaser (2004). Dotted error bars on 
the weighted average model age represent the typical 
uncertainty for an individual analysis; (c) molybdenite 
Re-Os model age of  2706SWB after exposure to HF 
and accepted age from Selby and Creaser (2004). 
Dotted error bars on the weighted average model age 
represents the typical uncertainty for an individual 
analysis; and (d) molybdenite Re-Os model ages of  
CL100 after exposure to HF and previously reported 
ages from Lawley et al. (2010).
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Figure 3.3 – (a) Molybdenite Re-Os model ages of  ultra-
fine molybdenite samples from the Kenge deposit. All 
three analyses provide a weighted average molybdenite 
Re-Os model age of  1953 ± 5 Ma (MSWD = 0.6; n =3); 
and (b) molybdenite Re-Os model ages of  ultra-fine 
molybdenite samples from the Porcupine deposit. All 
four analyses provide a weighted average molybdenite 
Re-Os model age of  1886 ± 5 Ma (MSWD = 1.5; n = 4). 

molybdenite and that the proposed analytical protocol is suitable for isolating molybdenite from 

silicate enclosed molybdenite samples for Re-Os geochronology.

With exception to RM8599, the control samples (CL100, 2706SWB and HLP-5) possess 
187Re and 187Os concentrations that are either slightly higher or significantly higher than previously 

reported values. However, any variation in 187Re is coupled with 187Os as all control samples yield 

Re-Os model ages that are in excellent agreement with previously reported ages. Interestingly, 

the analyses of  sample CL100 reported in this study possess up to 7 ppm more 187Re than the 

previously published analysis (Lawley et al., 2010), however, the sample left in the HF for 3 

weeks gave values very similar to those for CL100 reported by Lawley et al. (2010).

 Re and Os concentration variations such as this should be expected from analysing 

aliquants of  natural molybdenite mineral separates and do not necessarily affect molybdenite 

Re-Os model ages (Selby and Creaser, 2004). HLP-5 is one such example where previous 

workers have reported a range of  total Re (240–290 ppm) whereas molybdenite Re-Os model 

ages for these analyses all overlap within analytical uncertainty (Markey et al., 1998; Suzuki et 

al., 2001; Du et al., 2004; Selby and Creaser, 2004). The HLP-5 analysis treated by HF prior to 

the traditional Re-Os analytical protocol possesses 320 ppm total Re and 738 ppb 187Os, thus 

possessing ~40 ppm more total Re and ~98 ppb 187Os than reported by previous workers. 

However, as noted above this difference in Re-Os abundance is coupled as Re-Os model age 

identical to reported values determined for not only HLP-5, but all control samples. Previously, 
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variations in Re and 187Os abundance with repeat analysis was suggested to relate to the non-

homogeneous nature of  Re and 187Os in molybdenite (Selby and Creaser, 2004). Alternatively, 

the variability of  Re and Os abundances could relate to sample impurities within HLP-5. 

Atomic absorption inductively couple plasma-mass spectrometry (AA-ICP-MS) and inductively 

coupled-atomic emission spectrometry (ICP-AES) analyses suggest HLP-5 contains significant 

(>1% m/m) Ca, Pb, Fe and Al which are unexpected in a pure MoS2 (molybdenite) mineral 

separate (Markey et al., 1998; Du et al., 2004). These additional elements could be present as 

mineral inclusions within molybdenite crystals or as free mineral phases that were incorporated 

into the molybdenite mineral separate during froth flotation. We consider the HF technique 

may have leached the sample and thus HLP-5 may contain higher Re and Os abundances than 

previously reported. This is supported by ICP-MS analyses of  the HF used in the HF treatment 

of  HLP-5, completed as part of  this study, which measured approximately 10 ppm Ca, 10 ppm 

Pb, 6 ppm Fe, 5 ppm Al and 3 ppm K within the HF leachate. Our results suggest that HF 

dissolution removes HF soluble mineral phases within HLP-5 or incorporated with the mineral 

separate and that the proposed method is a better approximation to the true Re content of  

HLP-5.         

   

3.5.2 Ultrafine molybdenite

Molybdenite from the Lupa goldfield is present as molybdenite coated fractures, mono-

mineralic stringer veins and as ultrafine disseminations within quartz veins and the host granite. 

Conventional mineral separation techniques were unable to separate sufficient quantities of  

molybdenite due to the ultrafine grained nature of  some molybdenite samples. The chemical 

separation technique developed here provided sufficient quantities (20–60 mg) of  ultrafine 

molybdenite for Re-Os analysis. Three Re-Os molybdenite model ages from the Kenge deposit 

all overlap within uncertainty as exemplified from the low MSWD of  the weighted average 

calculation (i.e., 1953 ± 5 Ma; MSWD = 0.6). The four Re-Os molybdenite model ages from 

the Porcupine deposit also overlap within error of  each other but possess slightly more scatter 

resulting in a slightly higher MSWD (i.e., 1886 ± 5 Ma; MSWD = 1.5). Both ages are supported 

by Re-Os pyrite and U-Pb dating reported in and Chapters Two and Four. 

      

3.5.3 Advantages of  chemical mineral separation

Improved sample recovery is the greatest advantage of  chemical mineral separation over 

conventional mineral separation techniques. High sample recovery is especially important for 

samples with low modal abundances of  molybdenite and/or for small volume samples. In the 

case of  ultrafine molybdenite, chemical mineral separation maintains high sample recovery 

regardless of  crystal size. Neuerberg (1961) measured that sulfide abundance is two to three 

times greater for mineral separates prepared using chemical mineral separation techniques when 

compared to mineral separates prepared by heavy media methods. The proposed method would 

likely generate higher sample recoveries than Neuerberg (1961) because it requires less sample 

handling which is where the majority of  fine grained sample material is lost.    
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Whole rock samples can also be digested, but typically require more time to digest and, 

depending on sample size, may require repeated applications of  HF. The advantage of  this 

approach is that molybdenite crystals are relatively undamaged when compared to mineral 

separates prepared using conventional techniques. Undamaged crystals are especially important 

for Re-Os molybdenite geochronology as Re and Os are susceptible to intra-grain decoupling 

(Stein et al., 2003). Selby and Creaser (2004) overcame Re-Os decoupling by increasing the 

analytical sample size utilised for Re-Os geochronology from a mineral separate. Larger sample 

sizes homogenize the sample and mask the decoupling in order to produce accurate and 

reproducible ages. Molybdenite mineral separates produced by chemical mineral separation 

provides another possible solution to Re-Os decoupling by preserving the original crystal 

morphology. 

Another advantage of  chemical mineral separation over conventional methods is the 

minimal time requirement. Once the samples are loaded with HF, no supervision is required 

during sample digestion. This differs from conventional techniques where constant supervision 

is required through the mineral separation process. Additional time savings are gained by the 

ability to digest multiple samples at the same time. As a result, the number of  samples that can 

be prepared at one time with chemical mineral separation is only limited by the number of  

digestion vessels. 

3.6 Conclusions
Conventional mineral separation techniques are not ideally suited for samples possessing 

fine grained molybdenite (< 50 µm) and thus hamper the application of  Re-Os geochronology 

for such samples. In this contribution we have demonstrated:

• The Re and Os isotopic composition of  molybdenite is unaffected by exposure to HF 

at room temperature and is thus capable of  isolating ultrafine molybdenite for Re-Os 

geochronology.

• The chemical mineral separation protocol described above is advantageous for samples 

with low modal abundances of  molybdenite and/or samples containing ultrafine 

molybdenite (e.g., <50µm).

• The proposed chemical mineral separation technique has produced six reproducible Re-

Os molybdenite model ages from samples that were unsuitable for Re-Os analysis using 

traditional mineral separation techniques.
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4.1 Introduction
The dearth of  geochronologic constraints on the absolute timing of  Au mineralization 

is a limiting factor in our understanding of  the orogenic Au deposit model (Groves et al., 

2003). Constraining the absolute age(s) of  Au mineralization is especially important in ancient 

poly-deformed metamorphic belts that host the largest examples of  this deposit type (Groves 

et al., 1998; Goldfarb et al., 2001). In these complex geologic settings, spatially overprinting 

tectono-thermal events are characteristic and identifying the causal relationship between 

Au mineralization and other geologic processes is generally equivocal in the absence of  

precise geochronologic constraints. The scarcity of  suitable minerals required for traditional 

geochronologic methods at most orogenic Au deposits has led previous studies to constrain the 

timing of  Au mineralization using U-Pb zircon dating of  cross cutting dikes (e.g., Kerrich and 

Cassidy, 1994). Re-Os geochronology provides a possible alternative to this approach by directly 

dating sulfide minerals present within the Au-bearing veins and shear zones. Most previous 

Re-Os studies utilize molybdenite and/or arsenopyrite geochronometers, which are now well-

established geochronologic tools that are known to provide robust age determinations up to 

amphibolite facies metamorphic conditions (e.g., Stein et al., 1998; Bingen and Stein, 2003; 

Morelli et al., 2010). The utility of  Re-Os pyrite and chalcopyrite geochronology have also been 

tested at a variety of  epigenetic deposits and are shown to provide robust age determinations 

up to upper greenschist facies metamorphism (e.g., Du et al., 1993; Stein et al., 2000; Barra et al., 

2003; Morelli et al., 2005; Feng et al., 2009; Selby et al., 2009; Scherstén et al., 2012). In contrast, 

very few Re-Os pyrite and chalcopyrite studies have investigated the timing of  mineralization 

at orogenic Au deposits despite the abundance of  these minerals and their inferred co-genetic 

relationship with Au at this deposit type (for exceptions see Arne et al., 2001; Bjerkgard et al., 
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2009; Ootes et al., 2011). 

Orogenic Au deposits are hosted by networks of  greenschist facies brittle-ductile mylonitic 

shear zones and provide an excellent opportunity to study mid-crustal hydrothermal plumbing 

systems (Groves et al., 1993). The architecture of  hydrothermal systems is poorly understood 

at most orogenic Au deposits and has important implications for mineral exploration efforts 

for this deposit type (Groves et al., 2003). In this study, we investigate sulfides from distinct 

paragenetic vein sets at five ore bodies hosted by shear zones of  disparate geometry and strike 

lengths in order to investigate the connectivity of  the shear zone-related hydrothermal system 

(Oliver, 2001). Understanding fluid connectivity in the mid-crust is important because the 

steeply dipping attitude and long strike length of  the Au-bearing structures suggests that shear 

zones possess a considerable vertical extent (10s of  km; Hammer et al., 2010) and may play a key 

role in transporting hydrothermal fluids from deep crustal levels to the upper crust where other 

economic ore deposits may develop (e.g., Hronsky, 2012). The time scale(s) of  hydrothermal 

processes at crustal-scale faults also have important implications for the rheology and long-term 

weakening of  crustal-scale faults (e.g., Jeffries et al., 2006). 

Here we present a detailed Re-Os molybdenite, pyrite and chalcopyrite geochronologic 

study that places new constraints on the timing and time scale(s) of  Au mineralization at 

orogenic Au-type mineral systems from the Lupa goldfield, SW Tanzania. Our Re-Os results 

demonstrate that mineralization and brittle-ductile deformation occurred contemporaneously 

within analytical uncertainty, but episodically over ca. 70 Myr and that second- and third-order 

Au-bearing structures (second order shear zones possess strike lengths ≥ 10 km, whereas third 

order structures possess strike lengths < 10 km) formed a connected hydrothermal fluid system 

in the crust during the Paleoproterozoic. 

4.2 Geologic setting
4.2.1 Ubendian geology

The Paleoproterozoic Ubendian Belt is a granulite-greenschist facies metamorphic belt that 

mantles the western margin of  the Tanzanian Craton (Grantham 1931, 1932, 1932; Teale et al., 

1935; Harris, 1961; Fig. 4.1). Current tectonic models divide the Ubendian Belt into eight litho-

tectonic terranes (Ubende, Wakole, Katuma, Ufipa, Mbozi, Lupa, Upangwa and Nyika), which 

resulted from a series of  tectono-thermal events spanning ca. 300 Myr (Daly, 1988). The earliest 

Ubendian tectonic phase (2.1–2.0 Ga) culminated in eclogite-granulite facies metamorphism 

and the development of  an east-west trending tectonic fabric (Lenoir et al., 1994). The 2.1–2.0 

Ga tectonic phase is overprinted by the 1.9–1.8 Ga Ubendian tectonic phase, which produced 

northwest-southeast trending terrane-bounding shear zones, amphibolite facies metamorphism 

and preserved ca. 1.9 Ga eclogites with MORB-like chemistry (Lenoir et al., 1994; Theunissen 

et al., 1996; Boniface et al., 2012). The latter represent Paleoproterozoic suture zones and record 

some of  Earth’s earliest evidence for high pressure and low temperature metamorphism that 

is analogous to metamorphic conditions at modern-day subduction zones (Boniface et al., 

2012). Paleoproterozoic metamorphism has been overprinted by Meso- and Neoproterozoic 
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metamorphic events that are correlated to the Kibaran (1.4–1.0 Ga) and Pan-African (650–450 

Ma) orogenic cycles, respectively (Hanson, 2003; Boniface, 2009; Boniface et al., 2012; Boniface 

ad Schenk, 2012). The trend of  the western branch of  the East African Rift System parallels 

the trend of  the Ubendian basement and suggests periodic reactivation of  Ubendian structures 

has occurred from the Paleoproterozoic until the present day (Kilembe and Rosendahl, 1992; 

Theunissen et al., 1996).       

4.2.2 Lupa goldfield geology

 The Lupa goldfield is a triangular shaped block bound by the Rukwa Escarpment to 

the west, the Usangu Escarpment to the east and the Mkondo magnetic lineament to the north 

(Kilembe and Rosendahl, 1992; Marobhe, 1989). The field area for the current study is located in 

the western portion of  the Lupa and corresponds with the mineral licenses currently controlled 

by Helio Resources Corp. (Fig. 4.2). All rocks within the field area have undergone hydrothermal 

alteration and greenschist facies metamorphism. Thus, all rock names are metamorphic and 

for the remaining discussion all igneous rock names should have the prefix “meta-”. Archean 

foliated granites (ca. 2750 Ma) are intruded by non-foliated and voluminous Paleoproterozoic 

(ca. 1960–1920 Ma) granitoids and dioritic-gabbroic intrusions (Chapter Two). U-Pb ages 

constrain three, temporally distinct, deformation events that have been defined on the basis 

of  observed field relationships (D1, D2 and D3; the characteristics of  each are summarized in 

Table 4.1).   

4.2.3 Au occurrence geology 

 The geology and mineral exploration history of  the Lupa goldfield is described by 

Gallagher (1939, 1941), Van Straaten, (1984), Sango (1988) and Kuehn et al. (1990). Gold was 
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first discovered in 1922 and led to the development of  commercial mine workings along the 

Saza shear zone and near what are formerly known as Razorback and Saza mines (Chapter 

Five; Gallagher 1939). Production declined after the 1950s once an estimated 25,000 kg of  

Au had been extracted (Kuehn et al., 1990). Lupa goldfield production figures are likely an 

underestimate of  total Au production as artisanal workers continue to extract small quantities 

of  Au in alluvial and lode-workings (Fig. 4.2). The geology and Au occurrences of  the Lupa 

goldfield are currently the subject of  renewed interest due to mineral exploration success in 

the western portion of  the goldfield by Helio Resource Corp. (Simpson, 2012). Five mineral 

exploration targets were investigated as part of  this study for Re-Os sulfide geochronology: 

Kenge, Mbenge, Konokono, Porcupine and Dubwana. These Au occurrences are representative 

of  the geology observed at a large number of  artisanal workings (Fig. 4.2). 

 Kenge and Mbenge - Kenge is hosted by a ca. 2 km long and ca. 20 m wide (up to 40 m 

wide), northwest-southeast trending (120º; Right Hand Rule; RHR), steeply-dipping (70º) and 

left-stepping shear zone. The Mbenge ore body is located adjacent to the Kenge shear zone 

and is hosted by an E-W trending (089º; RHR) and S dipping (70º) shear zone that shares 

many geologic similarities with Kenge. A NI-43-101 compliant resource (National Instrument 

43-101 is the mineral resource classification scheme used by companies listed on a Canadian 

stock exchange) of  Kenge, Mbenge and other nearby exploration targets includes a measured 

and indicated resource of  370,000 oz of  contained Au (8.7 Mt at 1.33 g/t Au using a 0.5 g/t Au 

cut-off; Simpson, 2012). Foliated Archean granite (ca. 2740 Ma) is the dominant hangingwall 

lithology and a non-foliated dioritic-gabbroic intrusion/dike(?) is the dominant footwall 

lithology (suspected to be Paleoproterozoic based on U-Pb zircon dating of  a cross cutting 

granodiorite dike CL0911; Chapter Two). Proximal to the shear zone boundary, hangingwall and 
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Figure 4.2 – Simplified local geology map showing the location of  Kenge, Mbenge, Konokono, Porcupine and 
Dubwana exploration targets. Artisanal workings visited during field seasons in 2010 and 2011 are also shown 
(closed circles) and do not include alluvial workings, which are present in the majority of  rivers in the field area. 
Eastings and northings are reported as UTM coordinates (WGS84, Zone 36S). Approximate lithologic contacts 
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magnetic highs.
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footwall rocks become veined (quartz ± calcite ± chlorite ± pyrite veins), intensely chloritized (± 

epidote) and possess a fracture cleavage that is oriented sub-parallel to the shear zone margins. 

However, the majority of  strain, hydrothermal alteration and Au-mineralization are confined to 

the Kenge shear zone. Hydrothermal alteration related to mylonitization (chlorite ± muscovite 

± calcite ± epidote ± quartz ± pyrite) overprints feldspar sericitization and silicification of  the 

Archean granite, which in turn overprints a hematite-magnetite alteration assemblage. Thus, 

Kenge host rocks are suspected to have undergone a series of  hydrothermal alteration events 

that may have played a role in rheologically weakening the wall rock by replacement of  feldspar 

with structurally weaker phyllosilicates, which in turn localized strain and triggered crystal plastic 

and fluid-assisted diffusion deformation processes (Chapter Five). The Kenge mylonitic shear 

zone is partially filled with a thick (locally 10 m wide), laminated, deformed and Au-bearing 

quartz vein (fault-fill quartz vein; Robert and Poulsen, 2001). Fragments of  mylonititzed granite 

are observed within the fault-fill veins and undulating pyrite ± molybdenite veins (stylolite-

like veins) locally gives the fault-fill veins a laminated appearance. The saw-tooth pattern of  

the sulfide veins is generally oriented sub-parallel to the steeply-dipping fault-fill vein margins 

and suggests stress-induced solution transfer may have been an important mineralizing process 

during sub-horizontal shortening (see below). Fault-fill veins also possess quartz slickensides on 

vein-mylonite contacts and complex fracture patterns. All of  the observed fault-fill vein fabrics 

are indicative of  a complex vein history and are typical of  the fault-fill vein type (Robert and 

Poulsen, 2001). Kinematic indictors at Kenge and Mbenge (asymmetric porphyroclasts and S/C 

fabrics) are consistent with transpressional deformation and record reverse oblique movement 

(south-side up; Chapter Five). The ore zone is inferred to have been subsequently offset by a 

northwest-trending and moderately dipping reverse fault. The timing of  this later deformation 

is currently unconstrained (Table 4.1).       

 Porcupine - Porcupine is hosted by a 300 m long and 50 m (up to 90 m) wide band of  

hydrothermally altered, veined and locally strained Paleoproterozoic Ilunga Syenogranite (ca. 

1960 Ma; Chapter Five). A NI-43-101 compliant resource of  the currently explored Porcupine 

Event Timing Characteristics

D1 2740 to 1960 Ma1

Foliated Archean granitoids; foliation varies in development at the outcrop scale; 
generally E-W to WNW-ESE trending and steeply dipping; chlorite-rich bands alternate 
with quartzofeldspathic bands; no high-grade minerals; crystal plastically deformed 
quartz; greenschist facies metamorphism suspected based on metamorphic mineral 
assemblage and temperature-pressure limits of quartz plasticity  

D2 ca. 1885 Ma2

Brittle-ductile and greenschist facies mylonitic shear zones cross cut all magmatic phases; 
main ore event; generally NW-SE and E-W trending and steeply dipping; all rocks in the 
field area have undergone greenschist facies metamorphism; replacement of Fe-Mg 
minerals with chlorite ± muscovite ± epidote ± calcite ± titanite 

D3 1885 Ma to present3 Brittle fault offsets Kenge ore body; brittle faults offset mineralized veins; unconsolidated 
fault gouge 

Table 4.1 - Structural framework

1Chapter Two
2this study
3Theunissen et al., 1996; this study



Chapter 4. Re-Os Sulfide Geochronology                                                                                                                                                      

– 81 –

and peripheral ore bodies includes a measured and indicated resource of  650,000 oz of  contained 

Au (15.4 Mt at 1.31 g/t Au; Simpson, 2012). Whilst the vast majority of  hydrothermal alteration 

and strain is restricted to mylonitic shear zones (059º / 64º; RHR), significant Au-mineralization 

is also associated with hydrothermally altered but unstrained Ilunga Syenogranite proximal to 

the shear zones and associated quartz veins. These quartz veins possess variable strikes, are 

moderately to shallowly dipping and are interpreted as oblique-extension veins (Robert and 

Poulsen, 2001). The flat orientation and the relatively undeformed nature of  the veins are 

in contrast with the sheared and sub-vertical attitude of  fault-fill veins (Robert and Poulsen, 

2001). The Ilunga Syenogranite has been overprinted by a quartz ± muscovite ± calcite ± pyrite 

alteration assemblage that forms at the margins of  Au-bearing quartz veins and overprints 

an earlier hematite ± magnetite alteration assemblage. Both hydrothermal alteration mineral 

assemblages are in turn overprinted by hydrothermal alteration related to the greenschist-facies 

mylonitic shear zones (chlorite ± muscovite ± calcite ± epidote ± pyrite). Kinematic indicators 

(asymmetric porphyroclasts and S/C fabrics) suggest reverse oblique movement along the shear 

zones hosting the Porcupine ore body (Chapter Five).

Konokono and Dubwana – Konokono and Dubwana are the least understood of  the five 

exploration targets. The main Au-bearing shear zone at Konokono parallels the Saza shear 

zone, trends ENE-WSW (075º; RHR) and dips steeply to the SE (70º). Archean granite is 

the dominant host rock and is cross cut by Au-bearing greenschist facies mylonitic shear 

zones. Quartz veins are another important host for Au at Konokono and possess a similar 

appearance and flat geometry to oblique-extension veins described at Porcupine. Dubwana is 

hosted by a major NW-SE trending shear zone cross cutting the Ilunga Syenogranite. Very little 

information is currently available for this exploration target other than five diamond drill holes 

that intersected hydrothermally altered and veined Ilunga Syenogranite hosting significant Au 

grade (e.g., 1 meter at 66 g/t Au) and located adjacent to a major NW-SE trending shear zone 

(strike length > 20 km). The currently understood geologic history of  Konokono and Dubwana 

possess many similarities with the Kenge, Porcupine and a large number of  Au occurrences 

across the field area.

  

4.2.3 Sulfiide and Au paragenesis  

The sulfide mineralogy at Au occurrences in the Lupa goldfield is relatively simple and 

consists of  pyrite with accessory chalcopyrite, molybdenite, galena, covellite, chalcocite and 

sphalerite (Gallagher, 1941; Simpson, 2012; this study). Pyrite is intergrown with chalcopyrite 

and molybdenite at Kenge and Porcupine and suggest that all three minerals may have been 

deposited during the same mineralization event. However, the genetic significance of  sulfide 

intergrowths is tentative, as auriferous veins locally possess complex cross cutting relationships 

that imply multiple hydrothermal and metallogenic events. Fault-fill veins at Kenge and 

Porcupine record exceptionally complex vein histories characterized by repeated crack-seal 

textures, poly-modal vein fractures and cross cutting fluid inclusion trails. Complex relationships 

between fault-fill vein development and deformation is also inferred from mylonitized wall rock 
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Figure 4.3 – (a) molybdenite stylolite-like vein hosted by fault-fill vein at Mbenge; (b) pyrite and molybdenite stylolite-
like veins within fault-fill veins at Mbenge; (c) molybdenite hosted by sheared Ilunga Syenogranite at Porcupine; (d) 
complex vein relationships at Konokono showing chalcopyrite-bearing quartz vein (with vein margins not shown) 
cross cut by unmineralized quartz-calcite vein. Narrow quartz-calcite veins are observed extending from the wider 
quartz-calcite vein at high-angles; (e) pyrite hosted by quartz veins in hydrothermally altered Ilunga Syenogranite 
at Porcupine; (f) pyrite hosted by quartz vein in hydrothermally altered Ilunga Syenogranite that is paragenetically 
similar to Fig. 4.2e, but records anomalously younger ages; (g) pyrite hosted by sulfidized mylonitic shear zone 
at Kenge; (h) pyrite hosted by sulfidized mylonitic shear zone, quartz vein, and Archean granite wall rock at 
Konokono; (i) scanning electron microscope (SEM) images of  Au observed as pyrite inclusions and fracture 
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inclusions within pyrite (SZD23 at 107 m); (k) scanning electron microscope (SEM) images of  Au observed as 
pyrite inclusions (SZD71 at 53 m).
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fragments intercalated with fault-fill veins (Fig. 4.3g) and slickensides on fault-fill vein contacts. 

The geologic and metallogenic history of  fault-fill veins is thus expected to be complex, but the 

absolute time scale(s) of  fault-fill vein development are poorly understood. Oblique-extension 

veins at Porcupine and Konokono are expected to possess comparatively simple geologic 

histories inferred from the absence of  complex vein textures (Fig. 4.3f). Quartz veining, 

hydrothermal alteration and deformation are interpreted as broadly contemporaneous at most 

orogenic Au deposits based on mutually cross-cutting field relationships, whereas the absolute 

temporal relationships between different vein styles have not been addressed (Hodgson, 1989; 

Robert and Poulsen, 2001). Distinguishing superficially similar sulfide generations in veins with 

complex hydrothermal histories is a continuing challenge at many orogenic Au deposits. Here 

we attempt to address this problem and quantify the time scale(s) of  hydrothermal events by 

sampling a variety of  sulfide minerals from different vein types at five Au occurrences.

Gold is present as native Au, Au-bearing tellurides and electrum (Simpson, 2012). The 

majority of  Au-bearing minerals observed in thin sections prepared for this study occur as 

pyrite inclusions, pyrite fracture-fills and free Au. Our results are also consistent with previous 

petrographic studies (Simpson, 2012). Native Au inclusions within pyrite points to a co-genetic 

relationship between the two minerals, whereas the association of  Au in pyrite fracture fills 

and pyrite grain boundaries may suggest Au at least locally post-dates pyrite deposition (Fig. 

4.3i–k). The micro-scale association of  Au and pyrite is partly supported by Helio Resources 

Corp.’s assay results, which suggest that the highest Au grades are associated with sulfidized 

mylonitic shear zones and quartz veins. As a result, pyrite and Au are considered to be at least 

locally co-genetic and Re-Os pyrite ages thus represent the best possible proxy to constrain the 

timing of  Au deposition (the paragenetic relationship between Au and Re-Os geochronometers 

is discussed further below). 

4.3 Sampling
4.3.1 Kenge and Mbenge

Molybdenite at the Kenge ore body is present as ultrafine (<50 µm) disseminations, 

undulating molybdenite veins (stylolite-like veins) hosted by fault-fill veins (Figs. 4.3a, b) and  

molybdenite coated fracture surfaces. The latter are interpreted as molybdenite veins that were 

reactivated as slip surfaces during later deformation. Three samples of  ultrafine disseminated 

molybdenite and six samples of  molybdenite from stylolite-like veins were analyzed. None 

of  the thin sections prepared for molybdenite-bearing veins contained Au and the genetic 

relationship between Au and molybdenite remains unclear. However, the molybenite-rich zone 

at Kenge corresponds with high Au grades and implies at least a spatial association between 

the two minerals. Pyrite is present as disseminations within mylonitic shear zones, stylolite-like 

veins within fault fill veins and disseminations within the hangingwall and footwall rocks. Six 

samples of  pyrite from mylonitic shear zones and six samples of  pyrite from fault-fill veins were 

analyzed. Pyrite hosted by mylonitic shear zones occurs as fine to medium grained (<250–5000 

µm) disseminations and are generally finer grained than pyrite samples hosted by fault-fill veins 
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(0.5–10 mm; Fig. 4.3f). Fine-grained native Au inclusions (<10–100 µm) hosted by pyrite grains 

from mylonite samples signifies a co-genetic relationship between the two minerals for this 

sample set. Furthermore, the highest Au grades are associated with mineralized stylolite-like 

veins hosted by fault-fill veins and suggest Re-Os pyrite geochronology provides the timing of  

Au mineralization in stylolite-like veins at Kenge.      

4.3.2 Porcupine

Molybdenite at the Porcupine ore body is present as stringer veins within the sheared 

Ilunga Syenogranite, as ultrafine disseminations (<50 µm) within quartz veins and as coatings 

on fracture surfaces. The latter are interpreted as molybdenite vein surfaces that may have been 

reactivated during subsequent deformation. Molybdenite and Au were not observed in the same 

thin section, but the highest Au grades at Porcupine are also associated with molybdenite-rich 

zones and suggest that Au mineralization was accompanied with molybdenite deposition. Pyrite 

is present as disseminations within mylonitic shear zones, stylolite-like veins within fault fill 

veins and disseminations within hydrothermally altered Ilunga Syenogranite. Four pyrite samples 

hosted by oblique-extension veins were analyzed from Porcupine. Pyrite crystals from these 

samples occur as fine to medium grained (<250–1000 µm) disseminations forming aggregates 

and coarse-grained cubic disseminations (1–30 mm; Fig. 4.3d, e). Oblique-extension veins are 

associated with high-Au grades and act to significantly widen the mineralized zone at Porcupine. 

The association between Au grade and sulphidized quartz veins indicates pyrite is a suitable 

proxy to constrain the timing of  Au mineralization at Porcupine.        

4.3.3 Konokono and Dubwana

No molybdenite was observed in the exploration drill core at Konokono or Dubwana. 

Pyrite is present as disseminations within quartz veins, mylonitic shear zones and within 

the hydrothermally altered wall rocks. At Konokono, one pyrite sample and one sample of  

chalcopyrite were collected from quartz veins, plus three pyrite samples were collected from 

the mylonitic shear zone and hydrothermally altered Archean granite. Grain size for all five 

samples ranged from <250–10,000 µm and pyrite samples are considered the best possible 

proxy to constrain the timing of  Au at Konokono. The Dubwana pyrite sample was collected 

from a 3 cm wide pyrite aggregate hosted by hydrothermally altered Ilunga Syenogranite. The 

relationship between Au and pyrite is unclear at Dubwana due to limited drilling at this early-

stage exploration target and the absence of  Au in the thin section prepared for this sample. The 

geology is very similar to the other shear-hosted deposits in the field area and pyrite is expected 

to represent a suitable proxy for the timing of  Au.    

4.4 Re-Os methodology
Re-Os analyses were conducted at the TOTAL laboratory for source rock geochronology 

and chemistry in the Northern Centre for Isotope and Element Tracing (NCIET) at Durham 

University. Re-Os pyrite and chalcopyrite analyses followed the analytical protocol of  Selby 
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et al., (2009), whereas Re-Os molybdenite analyses followed the analytical protocol of  Porter 

and Selby (2010). Molybdenite, pyrite and chalcopyrite samples (with exception of  ultrafine 

molybdenite samples) were prepared via traditional mineral separation methods (crushing, 

pulverizing in a ceramic disc mill, Frantz isodynamic separator, heavy liquids and hand-

picking). Ultrafine molybdenite samples (CL1115–CL1120) were separated using a novel HF 

acid chemical separation technique (Chapter Three). HF was used to dissolve silicate minerals 

encasing the ultrafine molybdenite at room temperature and is demonstrated not to affect the 

Re-Os molybdenite systematics (Chapter Three). 

Mineral separates were weighed, spiked with a Re-Os tracer solution and loaded into 

Carius tubes (Shirey and Walker, 1995). The Re-Os tracer solution used for molybdenite 

samples contains a known 185Re and isotopically normal Os composition and abundance. The 

majority of  pyrite and chalcopyrite samples were equilibrated with a different Re-Os tracer 

solution that contains a known 185Re and 190Os composition and abundance. Selected pyrite 

samples that contain insignificant common Os were also analyzed with the 185Re and isotopically 

normal Os tracer solution in order to test the suitability of  Re-Os pyrite model ages (discussed 

further below). Samples and tracer solution were digested in 11N HCl (1 mL for molybdenite; 

3 mL for pyrite and chalcopyrite) and 15.5N HNO3 (3mL for molybdenite; 8 mL for pyrite 

and chalcopyrite) in a sealed Carius tube at 220°C for 24 hours. Osmium was purified from 

the acid medium using solvent extraction (CHCl3) at room temperature and micro-distillation 

methods. The rhenium fraction was isolated using standard anion column chromatography. 

For pyrite and chalcopyrite samples, the rhenium fraction was further purified by single-bead 

chromatography. Rhenium and osmium were then loaded onto nickel and platinum filaments, 

respectively. Analyses were conducted on a Thermo Electron TRITON mass spectrometer with 

the Re isotopic composition measured using static Faraday collection mode. Osmium isotopic 

compositions of  molybdenite samples were also measured in static Faraday collection, whereas 

osmium isotopic compositions of  pyrite and chalcopyrite samples were measured in peak-

hoping mode using the secondary electron multiplier. 

Analytical uncertainties are propagated and incorporate uncertainties related to Re and 

Os mass spectrometer measurements, isotopic composition and abundance of  the blank, spike 

calibrations, reproducibility of  standard Re and Os isotope values, decay constant uncertainty 

(1.666 x 10-11 year-1; Smoliar et al., 1996) and are reported at the 2σ level. During the course of  

this study Re and Os blanks were <4 and 1 pg, respectively, with the blank 187Os/188Os ratio 

measured at 0.25 ± 0.02 (n = 4). Standard solutions of  Re and Os were analyzed during each 

analytical session in order to monitor long-term mass spectrometry reproducibility. The Re 

standard comprises 99.999% zone-refined Re ribbon, whereas the Os standard used in this study 

was the Durham Romil Osmium Standard (DROsS). The Os standard measurements recorded 

in this study (e.g., 187Os/188Os = 0.16102 ± 0.00039 2SD; n = 15) are identical to the long-term 

average 187Os/188Os = 0.16095 (± 0.00097 2SD; n = 172). The Re standard measurements 

recorded in this study (e.g., 185Re/187Re = 0.59697 ± 0.00216 2SD; n = 19) are similar with 

uncertainty to the long-term Re standard average 185Re/187Re = 0.59811 (± 0.00296 2SD; n = 
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256). Furthermore, Re-Os model ages of  molybdenite reference materials (NIST RM8599 = 

27.6 ± 0.1 and 27.6 ± 0.1 Ma; HLP-5 = 220.0 ± 0.9 Ma) analyzed during the course of  this 

study are in good agreement with their accepted values (Porter and Selby 2010 and references 

therein). All isochron and weighted average model ages were calculated using Isoplot v. 4.15 

(Ludwig, 2008).      

4.5 Re-Os results
4.5.1 Re-Os molybdenite results

Kenge molybdenite - Ten analyses of  nine samples from Kenge are reported in Table 4.2 

and Fig. 4.4. We note that the Re-Os data for the ultrafine molybdenite have previous been 

reported (Chapter Three); however their geological significance has not been discussed. All 

molybdenite samples possess a range of  187Re and 187Os abundances of  4,653–58,018 and 154–

1,896 ppb, respectively. Calculated Re-Os molybdenite model ages range from 1957–1937 Ma 

with the oldest and youngest ages corresponding to ultrafine disseminated and stylolite-like vein 

molybdenite samples, respectively. Individual analytical uncertainties on Re-Os model ages range 

from 10–14 Ma (including decay constant uncertainty; Smoliar et al., 1996; Selby et al., 2007) 

and thus the oldest and youngest ages partially overlap within analytical uncertainty. Ultrafine 

disseminated molybdenite yields a weighted average Re-Os molybdenite model age of  1953 ± 6 

Ma (MSWD = 0.4; n = 3; Fig. 4.4a) that is in good agreement with a three-point 187Re vs. 187Os 

Model 1 York regression isochron age for the same sample set at 1965 ± 25 Ma (± 27 including 

the uncertainty in λ; initial 187Os = -1.2 ± 2.4 ppb; MSWD = 0.01; n = 3; Fig. 4.4b). Molybdenite 

samples hosted by stylolite-like veins possess slightly younger ages and yield a weighted average 

DH / Depth sample wt. Re 187Re 187Os Model Age
(m) (g) (ppm) (ppb) (ppb) (Ma)1

CL091 Kenge Kenge pit stylolite 0.008 92.31 0.57 58018 359 1896.11 11.06 1930 10
CL0920 Kenge SZD71 / 65 stylolite 0.014 30.22 0.13 18994 84 623.41 2.49 1938 10
SZMO1 Kenge SZD23 / 110 stylolite 0.005 10.16 0.09 6384 59 209.24 1.90 1936 14
SZMO2 F1 0.022 46.39 0.18 29160 111 956.82 2.96 1938 10
SZMO2 F2 0.031 30.33 0.10 19063 66 625.28 1.76 1937 10
SZMO2b Kenge SZD24 / 151 stylolite 0.020 82.07 0.31 51581 193 1693.22 5.39 1939 10
SZMO2-drill Kenge SZD24 / 150 stylolite 0.030 31.22 0.11 19624 69 643.87 1.82 1938 10
CL1115 Kenge SZD71 / 66 ultrafine 0.022 7.40 0.03 4653 18 153.65 0.50 1950 10
CL1116 Kenge SZD71 / 65 ultrafine 0.015 8.55 0.04 5373 25 177.64 0.75 1952 12
CL1117 Kenge Kenge pit ultrafine 0.023 13.35 0.06 8391 36 278.02 0.85 1957 11

CL0916 Porcupine GPD18a / 140 sheared granite 0.018 7.56 0.03 4753 20 150.91 0.52 1876 10
CL103 Porcupine GPD1 / 54 sheared granite 0.102 0.48 0.00 303 2 9.60 0.04 1870 14
CL1038 F1 0.021 1.92 0.01 1205 6 38.13 0.13 1870 12
CL1038 F2 0.018 1.73 0.01 1088 8 34.49 0.23 1874 18
CL1039 Porcupine GPD18a / 162 stylolite 0.021 3.37 0.01 2119 9 67.32 0.23 1877 11
CL1042 Porcupine GPD10 / 99 altered granite 0.021 10.79 0.04 6780 26 214.41 0.69 1869 10
CL1118 F1 0.023 1.96 0.01 1232 5 39.26 0.13 1882 11
CL1118 F2 0.019 1.72 0.01 1084 5 34.66 0.13 1890 12
CL1119 Porcupine GPD18a / 163 ultrafine 0.020 3.35 0.02 2108 12 67.65 0.35 1896 15
CL1120 Porcupine GPD10 / 100 ultrafine 0.020 10.29 0.04 6469 25 206.09 0.68 1882 10

ultrafineGPD18a / 141

N.B. uncertainties are reported at the 2σ level

1 Model age calculated from the simplified isotope equation [t = ln(187Os/187Re + 1)/λ; where t = model age, and λ = 187Re decay 
constant] and assumes no initial radiogenic Os

Target Paragenesis

SZD24 / 150 styloliteKenge

styloliteGPD18a / 154 Porcupine

Porcupine

Table 4.2 - Re-Os Molybdenite Data

Sample ± ±
±

(Ma
)

±
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Re-Os molybdenite model age at 1937 ± 4 Ma (MSWD = 0.3; n = 7; Fig. 4.4a). This weighted 

average age is in good agreement with a 187Re vs. 187Os Model 1 York regression isochron age 

for the same sample set at 1937 ± 8 Ma (± 11 including the uncertainty in λ; initial 187Os = 0.1 

± 2.9 ppb; MSWD = 0.2; n = 7; Fig. 4.4c). 

Porcupine molybdenite - Ten analyses from eight samples of  the Porcupine deposit are 

reported in Table 4.2 and Fig. 4.4. We note that the Re-Os data for the ultrafine molybdenite of  

the Porcupine deposit have previous been reported (Chapter Three); however their geological 

significant has not been discussed. Samples possess 187Re and 187Os abundances that range from 

303–6,780 and 10–214 ppb, respectively and are significantly less than those for molybdenite 
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Figure 4.4 – (a) Re-Os molybdenite models age from ultrafine molybdenite samples (Chapter Three) and molybdenite 
from stylolite-like veins at Kenge. Weighted average (wtd. avg.) Re-Os molybdenite model age are reported for both 
sample sets; (b) Model 1 York regression 187Re vs. 187Os isochron from ultrafine molybdenite samples at Kenge; 
(c) Model 1 York regression 187Re vs. 187Os isochron of  molybdenite from stylolite like veins at Kenge; (d) Re-Os 
molybdenite model age from ultrafine molybdenite samples (Chapter Three) and molybdenite from sheared granite 
samples at Porcupine. Weighted average (wtd. avg.) Re-Os molybdenite model age are reported for both sample 
sets; (e) Model 1 York regression 187Re vs. 187Os isochron of  molybdenite from ultrafine molybdenite samples at 
Porcupine; (f) Model 1 York regression 187Re vs. 187Os isochron of  molybdenite from sheared granite samples at 
Porcupine.
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from the Kenge deposit. Calculated Re-Os model ages range from 1869–1896 Ma and provide 

evidence for two age populations that partially overlap within uncertainty at the 2σ level 

(individual analytical uncertainties on Re-Os model ages range from 10–18 Ma and include 

decay constant uncertainty). Finely disseminated molybdenite samples from quartz veins and 

hydrothermally altered, but unstrained Ilunga Syenogranite, possess the oldest ages and yield 

a weighted average Re-Os molybdenite model age at 1886 ± 6 Ma (MSWD = 1.2; n = 4; Fig. 

4.4d) that is in good agreement with a 187Re vs. 187Os Model 1 York regression isochron age of  

the same sample set at 1884 ± 13 Ma (± 15 Ma including the uncertainty in λ; initial 187Os = 0.1 

± 0.3; MSWD = 1.8; n = 4; Fig. 4.4e). Molybdenite from stylolite-like veins and sheared Ilunga 

Syenogranite samples yield a slightly younger, but partially overlapping within uncertainty at 

the 2σ level, weighted average Re-Os molybdenite model age at 1873 ± 5 Ma (MSWD = 0.4; n 

= 6; Fig. 4.4c). The latter is in good agreement with a 187Re vs. 187Os Model 1 York regression 

isochron age for the same sample set at 1874 ± 9 Ma (± 12 Ma including the uncertainty in λ; 

initial 187Os = -0.02 ± 0.08; MSWD = 0.5; n = 6; Fig. 4.4f).   

4.5.2 Re-Os pyrite and chalcopyrite results summary

 Pyrite and chalcopyrite analyses possess a wide range of  187Re (347–86,887 ppt) and 
187Os (11–2,863 ppt) concentrations with no systematic difference observed between ore 

bodies and/or vein types (Table 4.3). Nearly all of  the measured Os is radiogenic 187Os (>99% 

radiogenic 187Os) and, where coupled with high 187Re/188Os ratios (386–2,745,328), suggests 

that sulfide samples are typical of  Low-Level Highly Radiogenic (LLHR) sulfides (Stein et al., 

2000). Large and correlated analytical uncertainties (rho ~1; Ludwig, 2008) are associated with 

the highest 187Re/188Os and 187Os/188Os ratios due to the near absence of  common Os and the 

propagated blank uncertainties. Radiogenic Os concentrations (187Osr) were calculated using the 
187Os/188Osinitial ratio and its uncertainty based on the regression of  the 187Re/188Os vs. 187Os/188Os 

data. The relative abundance of  187Osr permits Re-Os model ages to be calculated from 187Re 

and 187Osr concentrations and the isotope equation t = ln(187Osr/187Re + 1)/ λ; where t = model 

age and λ = 1.666 x 10-11 (Smoliar et al., 1996; Selby et al., 2007). Calculated Re-Os pyrite and 

chalcopyrite model ages are analogous to Re-Os molybdenite model ages and represent the 

preferred method of  age determination for LLHR samples (Stein et al., 2000; Selby et al., 2009; 

Ootes et al., 2011). Isochron ages (187Re vs. 187Osr and 187Re/188Os vs. 187Os/188Os) were also 

calculated and can provide meaningful age determinations despite large and correlated analytical 

uncertainties for highly radiogenic samples (Stein et al., 2000; Morelli et al., 2005, 2007, 2010; 

Selby et al., 2009; Kerr and Selby, 2012). Several samples (CL095, CL0918b, CL0919, CL0927b, 

CL0969 and CL0951) possess exceptionally high 187Re/188Os ratios. The latter were re-analyzed 

with 185Re and isotopically normal Os tracer solution (i.e., the method for Re-Os molybdenite 

geochronology, see above). These samples possess Re-Os model ages that are in broad agreement 

with Re-Os model ages calculated for samples that were spiked with 185Re and 190Os and suggest 

Re-Os model age calculations are appropriate for our LLHR sample set.   
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4.5.3 Re-Os pyrite and chalcopyrite results

Kenge and Mbenge mylonite pyrite - Eleven analyses from five pyrite bearing mylonite samples 

from Kenge and two analyses from one pyrite (± Au) bearing mylonite sample (CL092) from 

Mbenge were analyzed and are reported in Table 4.3 and Figure 4.5. The 187Re and 187Osr 

concentrations range from 347–31,798 and 11–1,040 ppt, respectively (Fig. 4.5b). Almost all of  

the measured Os is radiogenic 187Os (>99% radiogenic 187Osr) and 187Re/188Os ratios range from 

386–369,409. Analyses with the highest 187Re/188Os ratios are associated with large analytical 

Location Re Os 187Re 187Osr

Drill Hole / Meter ppb ppt ppt ppt
CL092 F1 0.20041 4.19 0.20 93.26 22.16 2635.7 122.6 85.3 0.3
CL092 F2 0.30376 3.35 0.05 73.28 16.54 2107.8 28.7 67.7 0.2

CL0927 F1 0.30171 1.15 0.01 23.28 49.17 724.3 8.8 22.6 0.3
CL0927 F21 0.45651 17.66 0.36 - - 11100.7 225.0 348.6 7.0
CL0927 F3 0.30464 1.19 0.01 25.80 15.33 747.3 8.9 23.7 0.1
CL0945 Kenge SZD7 / 46 Py mylonite 0.41452 0.86 0.01 27.96 1.67 541.9 6.4 17.3 0.3
CL0966 F1 0.30697 1.25 0.01 30.90 5.88 787.0 8.7 25.1 0.2
CL0966 F2 0.40057 0.55 0.01 17.05 1.91 347.0 6.4 11.0 0.2
CL0966 F3 0.30319 1.41 0.01 38.61 3.69 888.2 9.1 28.1 0.3
CL0968 Kenge SZD59 / 58 Py mylonite 0.40453 1.93 0.02 43.00 8.87 1215.4 11.9 38.5 0.9
CL0969 F1 0.40567 7.06 0.03 142.76 58.75 4434.4 17.6 140.3 2.4
CL0969 F2 0.10728 7.10 0.33 146.24 6139.27 4464.9 208.0 146.1 0.6
CL0969 F31 0.40139 50.59 0.44 - - 31798.2 274.9 1039.9 8.8

CL0901 Kenge mine dump Py fault-fill vein 0.30319 1.41 0.01 38.61 3.69 888.2 9.1 28.0 0.2
CL095 F11 0.50402 7.23 0.07 - - 4541.8 44.1 143.4 1.2
CL095 F21 0.56275 9.25 0.09 - - 5812.7 53.6 184.4 1.6
CL0918 Kenge SZD71 / 60 Py fault-fill vein 0.50762 27.86 0.10 560.34 9429.59 17509.7 64.1 560.3 11.1
CL0918b F11 0.42679 37.88 0.40 - - 23807.7 250.5 796.5 8.3
CL0918b F21 0.40509 34.77 0.37 - - 21852.6 230.2 730.9 7.6
CL09191 Kenge SZD71 / 65 Py fault-fill vein 0.44385 138.24 0.54 - - 86887.4 339.3 2863.4 9.8
CL0927b Kenge SZD7 / 31 Py fault-fill vein 0.30464 1.19 0.01 25.80 15.33 747.3 8.9 23.7 0.1

CL0955 F1 0.40666 1.41 0.02 27.93 3.01 887.1 13.0 20.7 0.2
CL0955 F2 0.47723 1.22 0.01 25.80 2.22 767.3 6.0 18.4 0.2
CL0955 F3 0.47174 1.33 0.01 27.31 1.89 837.2 6.1 18.5 0.2
CL1023 F1 0.21201 10.84 0.04 116.33 45.93 6812.3 27.4 111.5 0.5
CL1023 F2 0.30090 8.30 0.11 90.34 25.29 5219.1 67.5 85.6 0.2
CL1025 F1 0.53766 4.26 0.02 137.61 1.26 2678.3 10.8 82.6 1.2
CL1025 F2 0.43526 3.81 0.02 139.88 1.23 2391.7 10.5 74.4 1.4
CL1026 F1 0.40070 3.19 0.02 89.02 2.59 2005.3 9.6 62.9 0.6
CL1026 F2 0.50681 3.06 0.01 91.82 1.76 1925.2 8.6 61.4 0.7
CL1026 F3 0.42341 3.28 0.02 100.16 2.04 2063.9 9.6 66.5 0.8
CL1028 F1 0.32010 10.12 0.04 218.67 16.63 6360.2 24.4 202.7 0.7
CL1028 F2 0.21447 7.58 0.03 158.81 44.98 4761.9 20.9 152.2 0.7
CL1028 F3 0.53970 9.28 0.03 212.45 5.75 5830.2 21.7 186.3 1.1
CL1028 F4 0.60501 8.87 0.03 192.63 8.44 5574.6 20.7 177.4 1.6

CL0939 F1 0.54287 2.70 0.01 27.55 9.48 1697.9 8.0 25.5 0.3
CL0939 F2 0.47170 3.31 0.01 34.70 12.85 2080.3 9.3 32.5 0.1
CL1032 Porcupine GPD50 / 22 Py quartz vein 1.03121 32.48 0.12 663.02 43.44 20411.9 74.1 654.7 19.4
CL1035 F1 0.30176 10.13 0.13 116.76 367.02 6365.8 82.1 116.3 0.6
CL1035 F2 0.30143 10.21 0.13 114.61 192.43 6417.2 82.7 113.8 0.5
CL1035 F3 0.47704 9.94 0.04 109.60 436.34 6247.7 23.3 109.4 1.1
CL1036 Porcupine GPD48 / 268 Py quartz vein 1.04500 1.10 0.01 27.67 2.07 691.9 3.5 22.2 0.9

CL0951 F11 0.44729 9.12 0.13 - - 5731.9 79.8 185.4 2.5
CL0951 F21 0.47234 13.48 0.19 - - 8469.6 116.9 272.4 3.7

 where t = model age, and λ = 187Re decay constant; 1.666 x 10-11 a-1; Smoliar et al., 1996]
3model age calculated from the isotope equation [t = ln(187Osr/187Re + 1)/λ

1analyses conducted using a mixed tracer solution of 185Re and isotopically normal Os (see text for discussion)
2calculated using initial 187Os/188Os value plus its uncertainty from 187Re/188Os vs. 187Os/188Os regression (see text for discussion)

quartz vein

wt. (g)

altered granite

SZD23 / 106 Cpy fault-fill vein

SZD71 / 66 Py fault-fill vein

Dubwana Py altered granite

SZD177a / 137

SZD177a / 104

quartz vein

quartz veinGPD15 / 193

GPD52 / 333 Py

Py quartz vein

MND02 / 348

Porcupine

Porcupine

Py

Py

Table 4.3 - Re-Os pyrite and chalcopyrite results

Min. Paragenesis

Total Re and Os 187Re vs. 187Osr Isochron2

± ±Sample Deposit ±

SZD74 / 44 Py mylonite

±

Mbenge

SZD7 / 31

SZD60 / 150

SZD57 /52 Py mylonite

Py mylonite

Py myloniteKenge

Kenge

Kenge

SZD177a / 79 Py

Kenge

Kenge

N.B. uncertainties are reported at the 2σ level; all data are blank corrected; blanks for Re and Os were 3.5 ± 2.0 and 0.7 ± 0.15 pg

Konokono

Konokono

Konokono

Konokono

Konokono

SZD177a / 53 Cpy fault-fill vein

SZD175 / 19 Py altered granite
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uncertainties and near-perfectly correlated errors (expressed by the parameter rho ~ 1). As a 

result, our samples are typical of  LLHR sample sets (Stein et al., 2000). Eleven analyses yield 

a 187Re/188Os vs. 187Os/188Os Model 1 York regression isochron age of  1880 ± 15 Ma (± 17 

Ma including the uncertainty in λ; 187Os/188Osinitial = 0.04 ± 0.18; MSWD = 0.8; n = 11; Fig. 

4.5a). The large correlated uncertainties on 187Re/188Os vs. 187Os/188Os plots are related to the 

difficulty in measuring small concentrations of  188Os that are close to the concentration of  the 

analytical blank (Stein et al., 2000; Selby et al., 2009; Morelli et al., 2010). To calculate model 

ages, the 187Osr is determined using the 187Os/188Osinitial and its associated uncertainty from the 
187Re/188Os vs. 187Os/188Os isochron. Although the calculated 187Os/188Osinitial (0.04 ± 0.18) is 

2512 475 81 15 0.97 1912 91 100
2865 496 92 16 1.00 1898 28 100

8703 13350 272 418 1.00 1848 34 100
- - - - - 1856 54 -

2696 1231 86 39 1.00 1874 25 100
386 26 12 1 0.98 1887 37 99
1031 170 33 5 1.00 1885 25 100
432 53 14 2 0.99 1867 47 99
640 59 20 2 0.99 1868 27 99
2041 330 65 11 0.99 1871 49 100
13770 4072 436 129 1.00 1870 34 100

369409 10972615 12092 359163 1.00 1933 92 100
- - - - - 1932 25 -

640 59 20 2 0.99 1862 26 99
- - - - - 1866 25 -
- - - - - 1874 25 -

2745328 32670332 87848 1045427 1.00 1891 39 100
- - - - - 1975 30 -
- - - - - 1975 30 -
- - - - - 1946 12 -

2696 1231 86 39 1.00 1872 25 100

945 96 22 2 0.99 1387 24 99
795 67 19 2 0.99 1423 18 99
724 51 16 1 0.99 1309 17 99

10898 3168 179 52 1.00 975 6 100
8498 1775 140 29 1.00 977 13 100
373 4 12 0 0.90 1824 28 99
280 3 9 0 0.88 1840 36 99
587 17 19 1 0.98 1853 21 99
485 10 16 0 0.95 1885 24 99
469 10 15 0 0.96 1902 24 99
3050 177 97 6 1.00 1883 11 100
5529 1154 177 37 1.00 1889 14 100
1704 37 55 1 0.96 1888 15 100
2809 93 90 3 0.96 1881 20 100

6267 1644 94 25 1.00 894 12 100
7113 1987 111 31 1.00 929 7 100

18722 789 601 31 0.81 1895 58 100
111241 248162 2033 4535 1.00 1087 16 100
60029 71766 1065 1273 1.00 1055 15 100

218200 615442 3820 10775 1.00 1042 12 100
953 57 31 2 0.83 1892 77 100

- - - - - 1911 37 -
- - - - - 1900 37 -

 where t = model age, and λ = 187Re decay constant; 1.666 x 10-11 a-1; Smoliar et al., 1996]
3model age calculated from the isotope equation [t = ln(187Osr/187Re + 1)/λ

1analyses conducted using a mixed tracer solution of 185Re and isotopically normal Os (see text for discussion)
2calculated using initial 187Os/188Os value plus its uncertainty from 187Re/188Os vs. 187Os/188Os regression (see text for discussion)

% 187Osr

Model age3187Re/188Os vs. 187Os/188Os Isochron
Table 4.3 - Re-Os pyrite and chalcopyrite results

187Re/188Os ± 187Os/188Os ± rho Ma ±

N.B. uncertainties are reported at the 2σ level; all data are blank corrected; blanks for Re and Os were 3.5 ± 2.0 and 0.7 ± 0.15 pg

Table 4.3 – cont’d
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lower than the 187Os/188Os composition of  the primordial solar system, the relatively large 

uncertainty on the calculated 187Os/188Osinitial overlaps within uncertainty with mantle values 

and was used for the calculation of  model age and 187Osr concentrations for mylonite samples 

(Shirey and Walker, 1998). Direct regression of  187Osr against 187Re is appropriate for LLHR 

samples, but a Model 1 York regression cannot be fitted to our results (probability of  fit = 0) 

because of  data-point scatter that is not accounted for by the assigned analytical uncertainties. 

A Model 2 York regression (a Model 2 York regression weighs all analyses equally) yields a 187Re 

vs. 187Osr isochron age of  1928 ± 17 Ma (± 19 Ma including the uncertainty in λ; 187Osinitial = -1.7 

± 2.8; MSWD = 1.8; n = 13). This age is outside of  analytical uncertainty of  the 187Re/188Os 

vs. 187Os/188Os Model 1 York regression due to the inclusion of  the disparately older “CL0969 

F3” analysis (1932 ± 25 Ma). If  this analysis is excluded, the remaining analyses yield a 187Re 

vs. 187Osr Model 2 York regression isochron age of  1884 ± 19 Ma (± 21 Ma including the 

uncertainty in λ; 187Osinitial = -0.11 ± 0.26; MSWD = 1.0; n = 12; Fig. 4.5b). The low 187Osinitial is 

consistent with our sample set containing insignificant common Os and warrants the calculation 

of  Re-Os model ages for individual analyses. Individual Re-Os pyrite model ages range from 

1933–1848 Ma (analytical uncertainty at the 2σ level on individual analyses range from 25–91 

Myr and include λ uncertainty; including CL0963 F3) and are in broad agreement with isochron 

age determinations. Because of  the virtual absence of  common Os, our preferred age for pyrite 

(± Au) mineralization hosted by mylonites at Kenge and Mbenge is the weighted average Re-Os 

pyrite model age of  all analyses at 1876 ± 10 Ma (MSWD = 0.86; n = 12 excluding CL0969 F3; 

Fig. 4.5c).

Kenge fault-fill vein pyrite and chalcopyrite – Eight analyses from five pyrite samples and one 

chalcopyrite sample (CL095) hosted by fault-fill veins at Kenge were analyzed (Table 4.3; Fig. 

4.6). Samples possess 187Re and 187Osr concentrations that range from 747–86,887 and 24–2,863 

ppt, respectively. Almost all of  the measured Os is radiogenic (>99% radiogenic 187Os) and 
187Re/188Os ratios range from 640–2,745,328. Three samples (CL0901, CL0918 and CL0927b) 

were analyzed with the 185Re and 190Os tracer solution. These analyses yield a 187Re/188Os vs. 
187Os/188Os Model 1 York regression isochron age of  1875 ± 30 Ma (± 32 Ma including the 

uncertainty in λ; 187Os/188Osinitial = -0.03 ± 0.43; MSWD = 0.03; n = 3; Fig. 4.6a). The negative 

lower intercept (187Os/188Osinitial) is spurious and is caused by the difficulty in measuring common 

Os concentrations that are close to the analytical blank. We evaluated the effect of  the assumed 
187Os/188Osinitial on model ages by varying the 187Os/188Osinitial between 0.1–1 and found that 

calculated model ages for samples CL1018 and CL0927 ranged from 1891–1890 Ma and 1872–

1853 Ma, respectively. Sample CL0901 is relatively more sensitive to the assumed 187Os/188Osinitial 

and model ages for this sample ranged from 1862–1781 Ma. The greater sensitivity of  CL101 to 

the assumed 187Os/188Osinitial is due to the greater concentration of  common Os in this sample 

compared to the more radiogenic samples (CL0918 and CL0927b). Nevertheless, we expect 

a mantle-like 187Os/188Osinitial is appropriate for this sample set (mantle = 0.115 ± 0.16 at 2.0 

Ga; Shirey and Walker, 1998) because of  the relatively unradiogenic 187Os/188Osinitial calculated 
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Kenge and Mbenge mylonite pyrite 
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Figure 4.5 – (a) Model 1 York regression 187Re/188Os vs. 
187Os/188Os isochron of  pyrite samples from mylonitic 
shear zones at Kenge (CL0945, CL0927, CL0966, 
CL0968 and CL0969) and Mbenge (CL092). Analyses 
with exceptionally high 187Re/188Os ratios possess 
large correlated uncertainties and are typical of  LLHR 
samples; (b) Model 2 York regression 187Re vs. 187Osr 
isochron of  pyrite samples from mylonitic shear zones 
at Kenge; (c) Re-Os pyrite model ages for samples from 
mylonitic shear zones at Kenge with weighted average 
Re-Os pyrite model age.

from the 187Re/188Os vs. 187Os/188Os isochron regression and the low 187Os/188Osinitial of  the 

mylonite pyrite sample set. Re-Os pyrite and chalcopyrite model ages provide evidence for two 

disparately aged sample populations from fault-fill veins at Kenge that are indistinguishable 

paragenetically and/or visually. Samples CL0918 and CL0918b are particularly noteworthy as 

they were collected from different parts of  the same fault-fill vein and yield disparate model 

ages (discussed further below). The oldest three samples yield a 187Re vs. 187Osr Model 2 York 

regression isochron age of  1936 ± 15 Ma (± 17 Ma including the uncertainty in λ; 187Osinitial = 



Chapter 4. Re-Os Sulfide Geochronology                                                                                                                                                      

– 93 –

CL
09

18

CL
09

27
b

CL
09

01

CL
09

5 
F1

CL
09

5 
F2

CL
09

18
b 

F1

CL
09

18
b 

F2

CL
09

19

wtd. avg. 1871 ± 12 Ma 
(MSWD = 0.4; n = 5)

wtd. avg. 1953 ± 37 Ma 
(MSWD = 2.8; n = 3)

Kenge fault-�ll quartz vein pyrite and chalcopyrite 

2σ uncertainty
1820

1860

1900

1940

1980

2020

Kenge fault-�ll quartz vein pyrite and chalcopyrite 

Kenge fault-�ll quartz vein pyrite

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

0 10,000,000 20,000,000 30,000,000 40,000,000

Re
-O

s 
m

od
el

 a
ge

 (M
a)

0

400

800

1,200

1,600

2,000

2,400

2,800

0 20,000 40,000 60,000 80,000

c)

CL0919

1874 ± 17 M
a (±

 19  M
a w

ith
 λ; M

SWD = 0.5; n
 = 5)

initia
l 
187 Os =

 -0
.1 ± 0.4

2σ uncertainty

1936 ± 15 M
a (±

 17 M
a w

ith
 λ; M

SWD = 0.04; n
 = 3)

initia
l 
187 Os =

 15 ± 12

CL0918

CL0918b F1
CL0918b F2

CL095 F1

CL095 F2

CL0901
CL0927b

187Re (ppt)

18
7 O

sr  (p
pt

)

b)

0

40

80

120

160

200

0 2,000 4,000 6,000

1875 ± 30 M
a (±

 32  M
a w

ith
 λ; M

SWD = 0.03; n
 = 3)

187 Os/
188 Os initia

l =
 -0

.03 ± 0.43

187Re/ 188Os

18
7 O

s/
18

8 O
s

a)

0
20
40
60
80

100
120
140

0 1,000 3,000 5,000
2σ uncertainty

2σ uncertainty

CL0901

CL0927b

CL0918

Figure 4.6 – (a) Model 1 York regression 187Re/188Os vs. 
187Os/188Os isochron of  pyrite samples from fault-fill 
veins at Kenge; (b) Model 2 York regression 187Re vs. 
187Osr isochron of  pyrite and chalcopyrite samples from 
fault-fill veins at Kenge; (c) Re-Os pyrite (CL0918a, 
CL0918b, CL0919, CL0966b; closed circles) and 
chalcopyrite (CL095; open circles) model ages hosted 
by fault-fill veins at Kenge. 

15 ± 12; MSWD = 0.04; n = 3; Fig. 4.6b). This age contrasts with a 187Re vs. 187Osr Model 2 

York regression isochron age of  the four younger samples at 1874 ± 17 Ma (± 19 Ma including 

the uncertainty in λ; 187Osinitial = -0.1 ± 0.4; MSWD = 0.5; n = 5; Fig. 4.6b). Because of  the near 

absence of  common Os our preferred age for both sample sets are the weighted average Re-Os 

model ages at 1953 ± 37 Ma (MSWD = 2.8; n = 3; includes uncertainty with λ) and 1871 ± 12 

Ma (MSWD = 0.4; n = 5; includes uncertainty with λ), respectively (Fig. 4.6c). 

Konokono pyrite and chalcopyrite – Thirteen analyses from four pyrite samples and one 
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Figure 4.7 – (a) Model-3 York regression 187Re/188Os 
vs. 187Os/188Os isochron of  pyrite samples (CL1023, 
CL1025, CL1026 and CL1028) and one chalcopyrite 
sample from Konokono. Two samples (CL1023 and 
CL0955) plot significantly off  the regression defined 
by the other analyses and are not included in the 
isochron regression calculation (plotted in grey); (b) 
Model-2 York regression 187Re vs. 187Osr isochron of  
pyrite and chalcopyrite samples from Konokono. Two 
samples (CL1023 and CL0955) plot significantly off  
the regression defined by the other analyses and are not 
included in the isochron regression calculation (plotted 
in grey); (c) Re-Os pyrite and chalcopyrite model ages 
for samples from Konokono. Weighted average Re-Os 
model ages are calculated for each of  the interpreted 
sample sets. 

chalcopyrite sample were analyzed from Konokono (Table 4.3; Fig. 4.7). Pyrite and chalcopyrite 

samples were collected from hydrothermally altered wall rock and fault-fill veins. Pyrite sample 
187Re and 187Osr concentrations range from 1,925–6360 and 62–203 ppt, respectively. These 

concentrations are greater than those possessed by the chalcopyrite sample (CL0955; 187Re = 

767–887 and 187Os = 19–21); however all samples are dominated by radiogenic Os (>99% 

radiogenic 187Os) and possess 187Re/188Os ratios from 485–10,898. Two samples (CL0955 and 

CL1023) possess anomalously young Re-Os model “ages” and plot significantly below the 
187Re/188Os vs. 187Os/188Os isochron regression defined by the other analyses and are not included 
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in the isochron age calculations. Both of  these samples are visually and paragenetically similar 

to the other Konokono samples and the significance of  these ages is discussed further below. 

The remaining analyses cannot be fitted with a Model 1 York regression (probability of  fit = 

0) because of  geologic scatter that is not accounted for by our assigned analytical uncertainties. 

The data were fitted with a Model 3 York regression (Model 3 York regression assumes scatter 

about the linear regression is a combination of  assigned uncertainties, including an unknown 

initial 187Os/188Os ratio variation) and yield a 187Re/188Os vs. 187Os/188Os isochron age at 1889 ± 

10 Ma (± 13 Ma including the uncertainty in λ; 187Os/188Osinitial = -0.07 ± 0.23; MSWD = 17; n 

= 9; Fig. 4.7a). The negative 187Os/188Osinitial is obviously spurious but overlaps within analytical 

uncertainty with mantle-like values. We tested the effect of  the assumed 187Os/188Osinitial on 

model ages by varying the value from 0.1–1 and found that model ages for samples CL1023 

and CL1028 were relatively insensitive to the assumed 187Os/188Osinitial and ranged from 974–970 

Ma and 1888–1866 Ma, respectively. Samples with relatively more common Os (e.g., CL0955, 

CL1025 and CL1026) are more sensitive to the assumed initial Os composition and varying 

the 187Os/188Osinitial from 0.1–1 for these samples results in model ages ranging by up to 190 

Myr. However, we expect a mantle-like 187Os/188Osinitial (mantle = 0.115 ± 0.16 at 2.0 Ga; Shirey 

and Walker, 1998) is appropriate for our sample set based on the unradiogenic 187Os/188Osinitial 

calculated from the 187Re/188Os vs. 187Os/188Os isochron regression and the low 187Os/188Osinitial 

calculated for the mylonite sample set. Furthermore, all of  the calculated values reported in 

Table 4.3 include uncertainty in the assumed 187Os/188Osinitial. The 187Re vs. 187Osr regression is 

more appropriate for LLHR sample sets and a Model 2 York regression of  Konokono pyrite 

analyses yield an isochron age of  1898 ± 30 Ma (± 31 Ma including the uncertainty in λ; MSWD 

= 4.7; n =9; Fig. 4.7b). Individual Re-Os pyrite model ages for samples CL1025, CL1026 and 

CL1028 range from 1902–1824 Ma (analytical uncertainty at the 2σ level on individual analyses 

range from 6–36 Myr and include uncertainty in λ), which are in excellent agreement with both 

isochron ages. Because of  the effective absence of  common Os, our preferred age determination 

for these samples is a weighted average Re-Os pyrite model age at 1885 ± 9 Ma (MSWD = 1.3; 

n = 9; 6c). This weighted average age differs from Re-Os pyrite model ages of  975 ± 6 and 977 

± 13 from replicate analyses of  CL1023 and Re-Os chalcopyrite ages of  1387 ± 24, 1423 ± 18 

and 1309 ± 17 Ma from replicate analyses of  CL0955. The significance of  these younger ages 

is unclear and is discussed further below. 

Porcupine pyrite – Seven analyses from four pyrite samples hosted by oblique-extension 

veins at the Porcupine were analyzed (Table 4.3; Fig. 4.8). Samples possess 187Re and 187Osr 

concentrations that range from 692–20,412 and 22–655 ppt, respectively. Almost all of  the 

measured Os is present as the radiogenic daughter product of  187Re (>99% radiogenic 187Os) 

and 187Re/188Os ratios range from 953–218,200. The two oldest samples yield a 187Re/188Os vs. 
187Os/188Os Model 1 York regression isochron age of  1895 ± 58 Ma (± 59 Ma including the 

uncertainty in λ; 187Os/188Osinitial = 0.0 ± 1.6; n = 2; Fig. 4.8a), whereas the five youngest analyses 

yield a 187Re/188Os vs. 187Os/188Os Model 1 York regression isochron age of  1096 ± 23 Ma (± 

24 Ma including uncertainty with λ; 187Os/188Osinitial = -20.8 ± 4.9; MSWD = 0.4; n = 5; Fig. 
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4.8a). Both of  the calculated 187Os/188Osinitial values are spurious and possess large uncertainties 

that are related to the difficulty in measuring common Os concentrations that are similar to 

analytical blank. Calculated model ages for Porcupine samples are relatively insensitive (varying 

the assumed 187Os/188Osinitial from 0.1–1 resulted in all of  the calculated model ages overlapping 

within analytical uncertainty at 2σ and ranging by up to 58 Myr) to the assumed 187Os/188Osinitial 

and so we assumed mantle-like 187Os/188Osinitial value (mantle = 0.115 ± 0.16 at 2.0 Ga; Shirey and 

Walker, 1998) in order to calculate model ages and 187Osr concentrations. The model ages and 
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187Osr concentrations reported in Table 4.3 include uncertainty in the assumed 187Os/188Osinitial 

value. A 187Re vs. 187Osr Model 2 York regression isochron age of  the oldest and youngest sample 

sets are 1895 ± 56 Ma (± 59 Ma including the uncertainty in λ; 187Osinitial = -0.1 ± 1.1; n = 2) 

and 1125 ± 77 Ma (± 78 Ma including the uncertainty in λ; initial 187Os = -6.8 ± 6.6; MSWD = 

7.2; n = 5), respectively (Fig. 4.8b). Our preferred ages for these samples are the more precise 

weighted average Re-Os model age at 1894 ± 45, 1057 ± 56 and 922 ± 190 Ma (Fig. 4.8c).  

Dubwana pyrite – Two replicate analyses of  one pyrite sample were analyzed from Dubwana 

(Table 4.3). Each replicate possesses similar 187Re (5,732 and 8,470 ppt) and 187Os (185 and 272 

ppt) concentrations. The 185Re and isotopically normal Os tracer was used for both analyses 

due to the near absence of  common Os. As a result, the calculated Re-Os pyrite analyses are 

analogous to molybdenite model ages and overlap within analytical uncertainty at 1910 ± 38 Ma 

and 1900 ± 38 Ma. 

4.6 Discussion
4.6.1 Timing of  sulfidation (Au) at Kenge, Porcupine, Konokono and Dubwana

Here, we provide the first Re-Os molybdenite, pyrite and chalcopyrite age constraints in 

SW Tanzania and provide evidence for a protracted metallogenic history at five shear zones that 

host orogenic Au deposits from the Lupa goldfield (Fig. 4.9). The oldest Re-Os ages correspond 

to ultrafine disseminated molybdenite samples at Kenge and yield a weighted average Re-Os 

molybdenite model age at 1953 ± 6 Ma, whereas molybdenite from stylolite-like veins at the 

same ore body possess nominally younger Re-Os weighted average age at 1937 ± 4 Ma. In 

broad agreement with these Re-Os molybdenite ages are three pyrite ages from fault-fill veins 

at Kenge that yield a weighted average Re-Os pyrite model age at 1953 ± 10 Ma. All pyrite and 

chalcopyrite samples were carefully selected to avoid molybdenite intergrowths and mineral 

separates were checked for molybdenite under stereoscopic microscope. As a result, the broad 

agreement between Re-Os molybdenite and pyrite ages suggests molybdenite deposition was at 

least locally contemporaneous with pyrite deposition. Re-Os molybdenite and pyrite ages at ca. 

1950 Ma and 1940 are 60–80 Myr older than Re-Os pyrite ages from veins and shear zones at 

the same deposit (Fig. 4.9). Disseminated pyrite hosted by mylonitic shear zones at Kenge and 

Mbenge yield a weighted average Re-Os pyrite model age at 1876 ± 10 Ma that overlaps within 

analytical uncertainty at the 2σ level with a weighted average Re-Os pyrite and chalcopyrite 

model age of  fault-fill veins from Kenge at 1873 ± 12 Ma. These younger fault-fill vein samples 

are visually indistinguishable from the ca. 1940 and 1950 Ma fault-fill veins samples and imply 

a complex history characterized by at least two mineralizing events at ca. 1940 and 1885 Ma. 

The complex metallogenic history at Kenge is particularly apparent for samples CL0918 and 

CL0918b that record both mineralizing events from different parts of  the same fault-fill vein. 

The disparately older CL0918b sample (ca. 1950 Ma) was collected from towards the middle of  

the fault-fill vein, whereas the younger CL0918 (ca. 1885 Ma) was collected towards the fault-

fill vein margin and possess a Re-Os model that is indistinguishable from the mylonite samples. 

The close proximity to the mylonite contact may have played a role in permitting the ingress 
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of  hydrothermal fluids related to mylonitization and precipitating sulfides. These samples are 

visually identical and suggest that fault-fill veins possess protracted histories that are consistent 

with complex fluid inclusions trails and vein textures at the micro-scale (e.g., Hodgson, 1989; 

Robert and Poulsen, 2001). Disseminated pyrite samples hosted by Kenge and Mbenge shear 

zones are interpreted as syn-deformational (pyrite lozenges are concordant with and wrapped 

by chlorite ± muscovite comprising the mylonitic fabric) and are interpreted to record the 

timing of  sulfidation and mylonitization at ca. 1880 Ma. Mylonite-hosted pyrite samples also 

possess native Au inclusions and Re-Os ages from this sample set are considered the best proxy 

for Au mineralization at Kenge and Mbenge (Fig. 4.3). The relationship between Au and the ca. 

1950 and 1940 Ma molybdenite and pyrite deposition event is less clear due to the absence of  

Au in thin sections prepared for this same set. Nevertheless, the association between the highest 

Au grades and fault-fill veins suggests Au mineralization is linked with both of  the recognized 

metallogenic events.        

Ultrafine disseminated molybdenite samples at Porcupine yield a weighted average Re-

Os molybdenite model age of  1886 ± 6 Ma that is slightly outside of  analytical uncertainty 

with weighted average Re-Os molybdenite model age for disseminated molybdenite hosted by 

stylolite-like veins and sheared granite samples at 1873 ± 5 Ma. Re-Os molybdenite model 

ages at Porcupine are broadly contemporaneous with a weighted average of  two Re-Os pyrite 
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model ages at 1892 ± 46 Ma from oblique-extension veins, but are significantly older than 

weighted average Re-Os pyrite model ages for samples CL0939 (922 ± 190 Ma) and CL1035 

(1057 ± 56 Ma), respectively. The ca. 1885 Ma molybdenite and pyrite ages at Porcupine are 

indistinguishable from the ca. 1885 Ma pyrite ages at Kenge and Mbenge and provide evidence 

for broadly contemporaneous mineralization at all three ore bodies (Fig. 4.9). The strong 

association between pyrite-bearing quartz veins and Au grade strongly suggests that Re-Os 

molybdenite and pyrite ages are a suitable proxy for constraining the timing of  Au mineralization 

at Porcupine. The significance of  Meso- and Neoproterozoic ages are discussed further below.

Re-Os pyrite ages at Konokono yield a weighted average Re-Os pyrite age at 1885 ± 9 

Ma that is in consistent with the ca. 1885 Ma metallogenic event identified at Kenge, Mbenge 

and Porcupine (Fig. 4.9). However, two samples (CL1023 and CL0955) from the same sample 

suite possess Meso- and Neoproterozoic ages (1423–975 Ma) that are similar to Re-Os pyrite 

model ages reported from oblique-extension veins at Porcupine. Finally, the ca. 1885 Ma age 

recorded at Kenge, Mbenge, Porcupine and Konokono overlaps within analytical uncertainty 

at the 2σ level with replicate analyses from one pyrite sample collected from the Dubwana 

exploration target (1910 ± 38 Ma and 1900 ± 38 Ma). Our Re-Os results provide evidence for 

at least two mineralizing events at ca. 1940 and 1885 Ma with the latter mineralizing event more 

widely distributed and recorded at all five of  the dated shear zones (Kenge, Mbenge, Konokono, 

Porcupine and Dubwana).  

         

4.6.2 Paleoproterozoic correlations

The Paleoproterozoic 2.1–1.8 Ga is one of  several periods of  Earth’s history important 

for the formation of  orogenic Au deposits (Goldfarb et al., 2001). Examples of  this deposit 

type can be found in a number of  Paleoproterozoic metamorphic belts and include several 

world-class deposits (e.g., Ashanti, Ghana; Oberthür et al., 1998). The Re-Os ages reported in 

this study are consistent with this globally correlated metallogenic event, but are significantly 

younger than the 2.1–2.0 Ga Eburnean orogenic Au deposits in West Africa (Oberthür et al., 

1998; McFarlane et al., 2011) and Archean orogenic Au deposits typical of  northern Tanzania 

(Kuehn et al., 1990; Foster and Piper, 1993). The Mpanda goldfield, Tanzania, lies along strike 

of  the Lupa goldfield and is suggested to be considerably younger than Re-Os ages reported 

in this study based on a Pb isochron age of  whole-rock and mineral separates (galena, pyrite, 

chalcopyrite, hematite and siderite) at 719 ± 38 Ma (Stendal et al., 2004). The significance of  

this ca. 720 Ma date is unclear given widespread evidence for Pb remobilization during the Pan-

African Orogeny and conflicting Pb model ages from galena mineral separates (1400 ± 150 Ma; 

Coomer and Robertson, 1974; Möller et al., 1998). Poorly constrained Pb model ages are also 

reported for galena mineral separates from the Lupa goldfield (2400 ± 150 Ma; Coomer and 

Robertson, 1974) and, in light of  the Re-Os results presented as part of  this study, we suggest 

that the significance of  Pb model ages should be interpreted with care (Robertson, 1973; Möller 

et al., 1998).  

The Re-Os ages here are in good agreement with the 1.9–1.8 Ga Ubendian tectonic phase 
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that is recorded by Rb-Sr whole-rock and U-Pb zircon dating of  gneisses and granitoids in other 

litho-tectonic terranes comprising the Ubendian Belt (e.g., Cahen et al., 1984; Lenoir et al., 1994; 

Boniface et al., 2012). In particular, eclogites with MORB-like chemistry dated at 1890–1860 Ma 

suggest high-grade metamorphism and subduction of  ocean crust in the Ubende Terrane was 

concomitant with greenschist-facies metamorphism, deformation and Au mineralization in the 

Lupa goldfield (Boniface, 2009; Boniface et al., 2012). The juxtaposition of  contemporaneous 

high- and low-grade metamorphic rocks implies significant displacement along the terrane-

bounding shear zones and also provides a temporal link between Au mineralization and 

subduction zone processes (Şener et al., 2005). The timing of  this juxtaposition is unclear due 

to overprinting Meso- and Neoproterozoic orogenic cycles coupled with Tertiary rifting, which 

all likely contributed to the current configuration of  the Ubendian Terranes (Theunissen et al., 

1996). 

U-Pb zircon ID-TIMS and LA-MC-ICP-MS ages of  felsic-mafic intrusions and dikes 

of  the Lupa goldfield constrain magmatic episodes ranging in age from 1960–1880 Ma and 

provide evidence for magmatic activity concomitant with sulfidation (Chapter Two). High-

precision U-Pb zircon ID-TIMS ages for the Saza granodiorite (weighted average 207Pb/206Pb 

age of  concordant zircons at 1934.5 ± 1.0; MSWD = 1.7; n = 5; Chapter Two) are in excellent 

agreement with Re-Os molybdenite ages from stylolite-like veins at Kenge (weighted average 

Re-Os molybdenite model age 1937 ± 4 Ma) and provide unequivocal evidence for sulfidation 

at least locally associated with magmatism at the Myr time scale. The timing of  the Ilunga 

Syenogranite (weighted average 207Pb/206Pb age of  concordant zircons at 1959.6 ± 1.1; MSWD 

= 1.4; n = 5; Chapter Two) is also concurrent with the weighted average Re-Os age of  ultrafine 

molybdenite samples (1953 ± 6 Ma) and pyrite samples (1953 ± 37 Ma) at Kenge. Furthermore, 

the ca. 1885 metallogenic event identified in this study is also compatible with two poorly 

defined U-Pb zircon LA-MC-ICP-MS ages of  a quartz diorite intrusion and gabbroic dike at 

1891 ± 17 Ma and 1880 ± 17 Ma, respectively (Chapter Two). The close spatial relationship and 

contemporaneity between magmatic activity and Au has also been satisfactorily demonstrated at 

a number of  Au deposits globally and has led to the so-called “intrusion-related” deposit type 

(Sillitoe and Thompson, 1988; Groves et al., 1998; Groves et al., 2003). The genetic significance 

of  this temporal overlap at the Lupa goldfield is less clear because of  the contrasting time 

scales of  magmatic auriferous hydrothermal systems and the observed Re-Os model age 

range presented in this study. Theoretical and empirical studies of  magmatic hydrothermal 

systems suggest hydrothermal circulation of  metallogenic fluids is typically sustained for ≤1 

Myr (Cathles et al., 1997; Ronacher et al., 2002; von Quadt et al., 2011). As a result, none 

of  the dated intrusions can explain all of  the observed Re-Os sulfide ages and we propose 

that the protracted metallogenic history developed here argues against a genetic link between 

mineralization and hydrothermal fluids exsolved purely from any individual magmatic phase. 

Further, all magmatic phases are cross cut by mylonitic shear zones dated at ca. 1880 Ma (Re-

Os pyrite ages, this study) and thus the regional metallogenic event occurred relatively late in 

the magmatic history of  the Lupa goldfield. The ca. 1950 and 1940 Ma molybdenite and pyrite 
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ages at Kenge are distinctly older than mylonitization at the same deposit and provide evidence 

for hydrothermal processes prior to mylonitization (D2; Table 4.1). Ingress of  hydrothermal 

fluids along pre-D2 fractures (Chapters Two and Five) resulted in replacement of  feldspar with 

rheologically weaker and finer grained phyllosilicates. Grain size reduction likely created the 

ideal conditions for strain localization and, locally, may have led to the onset of  crystal plastic 

deformation and fluid-assisted diffusion processes (Handy, 1990; Wintsch, et al., 1995; Imber 

et al., 2001; Chapter Five). The ca. 1950 and 1940 Ma metallogenic events appear to possess a 

restricted distribution (Kenge) compared to the interpreted regional metallogenic event at ca. 

1885 Ma (Kenge, Mbenge, Konokono, Porcupine and Dubwana).

4.6.3 Time scales of  metallogenesis at orogenic Au deposits

 The mylonitic shear zones that host orogenic Au deposits are considered to be permeable 

fluid conduits that are critical in focusing auriferous fluids from some source(s) at depth (e.g., 

upper mantle) to crustal levels (10 ± 5 km) where the majority of  deposits of  this type form 

(Groves, 1993). The spatial relationship between shear zones, of  varying dimensions, and ore 

deposits is well documented and is an important mineral exploration criterion (e.g., Weinberg et 

al., 2004; Micklethwaite et al., 2010). Shear zone intersections, step-overs and dilational jogs along 

second and third-order shear zones have been implicated as particularly important sites for the 

focusing of  fluids despite a dearth of  constraints on the timing of  these disparate shear zone 

segments (e.g., Sibson, 1989; Micklethwaite and Cox, 2004). The prospectivity of  second- and 

third-order structures (second order shear zones possess strike lengths ≥ 10 km, whereas third 

order structures possess strike lengths < 10 km) is in contrast to crustal-scale (i.e., first-order) 

shear zones that are typically devoid of  Au mineralization despite their regional significance and 

potential importance in transporting hydrothermal fluids from some source(s) to 10 ± 5 km 

depth (e.g., Neumayr et al., 2000). In the absence of  precise ages, discrete shear zone segments 

may have developed over a broad geologic history and may not have been connected at the time 

of  Au deposition (Neumayr and Hagemann, 2002). 

Our Re-Os results allow us to address these uncertainties by comparing the ages of  

sulfidation at five shear zones in the Lupa goldfield. The sampled shear zones range in strike 

length from 2 to >30 km and are of  contrasting geometry. The ca. 1885 Ma sulfide ages 

reported at all five mineral systems imply that all five shear zones were connected to the same 

fluid source at the time of  Au deposition and that second- and third-order shear zones formed 

an interconnected network of  relatively permeable fluid conduits during the Paleoproterozoic. 

The broad connectivity of  shear zones is further supported by the distribution of  artisanal 

workings, recorded as part of  the current study, suggesting that Au mineralization is semi-

continuous between the dated ore bodies (Fig. 4.2). As a result, intersections between the 

third-order shear zones (e.g., Saza shear zone) and second order structures (e.g., Mbenge shear 

zone) are considered to be attractive mineral exploration targets. The contemporaneity of  shear 

zones also has important implications for structural models and suggests that shear zones were 

kinematically linked during transpressional deformation (Chapter Five). 
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The protracted and episodic mineralization history identified at Kenge places new 

constraints on the time scale(s) of  orogenic Au deposit formation. Re-Os results provide 

evidence for at least two temporally distinct mineralizing events at ca. 1940 and 1885 Ma with a 

potential third Kenge metallogenic event at ca. 1950 Ma. Replicate analyses typically exhibit less 

scatter than the data-point scatter observed between samples and suggests subtle age differences 

between samples that partially overlap within analytical uncertainty at the 2σ level. Therefore, 

the weighted average calculations that define the three broadly identified sulfidation events likely 

include multiple mineralizing events of  slightly different age. Multiple hydrothermal events 

are also implied from the complex vein histories observed at all Au-bearing shear zones and 

artisanal workings. Orogenic Au deposits in the Lupa goldfield thus appear to have formed at 

multiple time scales with temporally distinct metallogenic events identified at ca. 1950, 1940 and 

1880 Ma, albeit represented in detail by a series of  veins that formed at a time scale less than 

the assigned analytical uncertainty at the 2σ level. The resolution of  our Re-Os data is unable 

to differentiate these individual vein histories to within several Myr. The association between 

Au and pyrite for each of  the identified metallogenic events remains tentative, but Au and 

pyrite are expected to be co-genetic for the mylonite sample set dated at ca. 1880 Ma. Three 

metallogenic events within a ca. 70 Myr history is consistent with the 100 Myr tectono-thermal 

history observed at other paleo-convergent margins associated with orogenic Au deposits (e.g., 

Yilgarn Craton; Groves et al., 2000).  

4.6.4 Source of  metals

The source(s) of  metal at orogenic Au deposits is uncertain despite extensive efforts 

and the integration of  multiple geochemical techniques (Groves et al., 2003). The lack of  

consensus is largely related to a dearth of  diagnostic isotopic tracers and the inevitable fluid-

rock interaction that masks the chemical composition of  the source. Re-Os studies play a pivotal 

role in this debate and have provided evidence, based largely on 187Os/188Osinitial values, for two 

possible metal sources and mixtures thereof  (e.g., crustal source vs. mantle source). Radiogenic 
187Os/188Osinitial values (i.e., >>0.1) greater than chondritic values are typically cited as evidence 

for some crustal-like source (e.g., Arne et al., 2001; Ootes et al., 2011; Sherstén et al., 2012), 

whereas chondrite-like 187Os/188Osinitial values (i.e., ~ 0.1) are typically cited as evidence for a 

mantle source (e.g., Morelli et al., 2007; Bjerkgard et al., 2009). The calculated 187Os/188Osinitial 

ratios reported in this study possess large uncertainties due to the difficulty in measuring such 

small concentrations of  common Os. The most precise and statistically robust 187Os/188Osinitial 

is calculated for pyrite samples from mylonitic shear zones at Kenge and Mbenge (0.04 ± 0.18). 

The relatively large uncertainty on the 187Os/188Osinitial for Kenge and Mbenge pyrite samples is 

consistent with an 187Os/188Os source as radiogenic as 0.22 and thus overlaps with the mantle 

value of  ca. 0.115 at 2.0 Ga (Shirey and Walker, 1998). The large uncertainty on all of  the 

calculated 187Os/188Osinitial ratios makes the source(s) of  metals in the Lupa goldfield equivocal, 

but a significant radiogenic source (e.g., crustal contribution) of  Os to the hydrothermal system 

is inconsistent with our results. 
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4.6.5 Geologic significance of  Meso- and Neoproterozoic Re-Os ages

Two samples from Konokono (CL1023 and CL0955) and two samples from Porcupine 

(CL0939 and CL1035) possess Meso- and Neoproterozoic Re-Os ages that are anomalously 

young compared to the interpreted Paleoproterozoic ages of  the ore bodies. All four samples 

are visually indistinguishable and are present within paragenetically similar vein types as pyrite 

samples dated at ca. 1940 and 1885 Ma (Fig. 4.3). The younger ages are particularly interesting 

as the sampled oblique-extension veins lack complex vein textures and were expected to possess 

relatively simple histories. Replicate analyses of  anomalous samples suggest the younger ages 

are not an analytical artifact and the relatively low analytical uncertainty on all ten analyses 

are definitively outside of  analytical uncertainty of  the ca. 1940 and 1885 Ma samples. The 

cause of  these younger ages is unclear but could be related to several possible scenarios: 1) 

the ages record open-system behavior with anomalously young ages representing Re gain and/

or Os loss. This scenario requires that open system behavior is relatively localized since most 

pyrite analyses overlap with Re-Os molybdenite ages at the assigned 2σ uncertainty level; 2) the 

younger ages may record mixing of  different pyrite generations; and 3) the ages are geologically 

meaningful and record a Mesoproterozoic metallogenic event(s). The latter is supported by 

the broad overlap between five of  the apparently younger analyses at Porcupine (CL0939 and 

CL1035), which define a 187Re vs. 187Osr isochron age at 1125 ± 77 Ma (Fig. 4.7b). This isochron 

age is in good agreement with a U-Pb zircon ID-TIMS lower intercept age of  a granodiorite 

dike at 1126 ± 150 Ma that likely records a Mesoproterozoic Pb-loss event (Chapter Two). 

Mesoproterozoic Re-Os and U-Pb ages in the Lupa goldfield are both poorly constrained but 

are consistent with metamorphic U-Pb ages of  meta-pelites at 1091 ± 9 and 1175 ± 10 Ma from 

other Ubendian Terranes. Kibaran (1.4–1.1 Ga; Cahen et al., 1984) and Irumide (1.05–1.00 Ga; 

de Waele et al., 2006) metamorphic ages have been reported elsewhere in the Ubendian Belt, 

but hitherto have not been reported for the Lupa goldfield (Lenoir, 2009). Our Re-Os ages 

may provide evidence for previously unidentified Mesoprotoerzoic tectono-thermal event in the 

Lupa goldfield. Furthermore, Meso- and Neoproterozoic aged sulfides were sampled from the 

main ore zone at Konokono and Porcupine, which may suggest ore grade in the Lupa goldfield 

benefitted from repeated metallogenic events related to two disparate orogenic cycles. Our 

results also imply that mid-crustal mylonitic shear zones represent long-lived zones of  structural 

weakness that act as permeable fluid conduits over a broad geologic history. Reactivation of  the 

mylonitic shear zones was likely favored over the development of  new shear zones because of  

the phyllosilicate rich nature of  the fault rocks (e.g., Jefferies et al., 2006).    

4.6.6 Utility of  Re-Os pyrite and chalcopyrite geochronology

The Re-Os pyrite and chalcopyrite results reported in this study add to a growing number 

of  relatively high-precision LLHR data sets (Stein et al., 2000; Arne et al., 2001; Morelli et al., 

2005; 2007; 2010; Selby et al., 2009; Liu et al., 2012; Kerr and Selby, 2012). However many 

questions regarding the effects of  overprinting hydrothermal alteration, metamorphism and 

metallogenic histories on Re-Os pyrite and chalcopyrite systematics remain (e.g., Stein et al., 
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1998; Mathur et al., 1999). The closure temperature of  the Re-Os arsenopyrite geochronometer 

is conservatively estimated at 400ºC and likely extends up to amphibolite facies metamorphic 

conditions based on robust age determinations for arsenopyrite samples from the Homestake 

Au deposit following peak metamorphism at 500ºC and 2–4.5 kbar (Morelli et al., 2010). 

Molybdenite Re-Os systematics are also demonstrated to be extraordinarily robust at amphibolite 

facies metamorphic pressure/temperature conditions and can be used as an independent 

check on pyrite and chalcopyrite closure temperatures in the absence of  U-Pb geochronologic 

constraints (Stein et al., 1998; Stein et al., 2001). Our Re-Os molybdenite ages from Porcupine 

and Kenge overlap with Re-Os pyrite and chalcopyrite ages at the same deposits and imply that 

pyrite and chalcopyrite Re-Os systematics are unaffected by greenschist facies metamorphic 

conditions. The upper temperature limit of  metamorphic conditions in the Lupa goldfield are 

based on the assumed limits of  quartz plasticity (300–450ºC; Scholz, 1988; Tullis 2002) and are 

consistent with fluid inclusion microthermometry results from Au-bearing quartz veins (H2O-

CO2 ± NaCL inclusions from Kenge, interpreted to best reflect the mineralizing fluid, possess 

a range of  homogenization temperatures from 259–419°C; Shaw, 2009). The inferred closure 

temperature of  pyrite and chalcopyrite are therefore similar to arsenopyrite and conservatively 

estimated at >400ºC (Selby et al., 2009; Kerr and Selby 2012). The three anomalously young 

Re-Os pyrite and chalcopyrite samples may exhibit localized open system behavior, but are 

equally likely to record previously unidentified Meso and Neoproterozoic metallogenic events 

(see above). Additional dating is required in order to assess the distribution of  these Meso and 

Neoproterozoic ages. The Re-Os results presented here record temporally distinct metallogenic 

events despite complex vein histories and multiple sulfide generations (Kerr and Selby, 2012). 

The latter requires careful sample selection and mineral separation techniques to avoid mixing 

superficially similar, but disparately aged samples (Chapter Three). Our results also highlight 

the need for detailed geochronologic studies that include multiple samples rather than replicate 

analyses of  a single sample. 

4.7 Conclusions
Gold occurrences in the Lupa goldfield possess many similarities with the orogenic Au 

deposit type and are hosted by a number of  greenschist facies brittle-ductile mylonitic shear 

zones. We have investigated molybdenite, pyrite and chalcopyrite from five Au occurrences 

hosted by five different shear zones in order to determine the time scale(s) of  orogenic Au 

deposit formation and to trace the connectivity of  hydrothermal conduits in the mid-crust. 

Contemporaneous Re-Os sulfide ages at ca. 1885 Ma from all five shear zones across the field 

area provide evidence for an interconnected network of  relatively permeable shear zones during 

the Paleoproterozoic. The goldfield wide sulfide event at ca. 1885 Ma is pre-dated by ca. 1950 

and 1940 Ma metallogenic events exclusively recorded at Kenge. Complex micro- and meso-

scale vein textures observed at all of  the Au occurrences and subtle age variations between 

samples suggests that all three metallogenic events are represented in detail by hydrothermal 

activity that occurred at a time scale less than the resolution of  the Re-Os method. The overlap 
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in Re-Os pyrite ages of  quartz veins (oblique-extension and fault-fill veins) and Re-Os ages of  

syn-deformational pyrite hosted by mylonitic shear zones provide new evidence for broadly 

contemporaneous brittle and ductile deformation processes at orogenic Au deposits that is akin 

to conclusions based on mutually cross-cutting relationships (Robert and Poulsen, 2001). 

The Re-Os age range reported in this study (1950–1880 Ma) are in good agreement with 

a global Paleoproterozoic metallogenic event (2.1–1.8 Ga), the 1.9–1.8 Ga Ubendian tectonic 

phase and U-Pb zircon ages for felsic-mafic intrusions in the Lupa goldfield (1960–1880 Ma). 

Specifically, Re-Os molybdenite ages at 1937 ± 4 Ma from Kenge overlap with a high-precision 
207Pb/206Pb zircon age of  the Saza Granodiorite at 1934 ± 1 Ma (Chapter Two). The genetic 

significance of  this temporal overlap remains tenuous due to the contrasting time scales of  

magmatically derived hydrothermal systems and the Re-Os age range reported in this study. We 

suggest none of  the dated intrusions can explain all of  the observed Re-Os sulfide ages and 

propose the protracted metallogenic history is inconsistent with the “intrusion-related” deposit 

model for Au occurrences in the Lupa goldfield.     

Replicate analyses of  four anomalously young Re-Os pyrite and chalcopyrite samples may 

record Meso- and Neoproterozoic metallogenic events. The Re-Os pyrite isochron age at 1125 

± 77 Ma is in good agreement an inferred Pb-loss event at 1126 ± 150 Ma (based on a ID-

TIMS zircon U-Pb lower intercept age; Chapter Two) and U-Pb metamorphic ages from other 

Ubendian Terranes correlated to the Kibaran/Irumide Orogeny (Boniface, 2009). If  correct, 

ore grade in the Lupa goldfield may have benefitted from repeated metallogenic events spanning 

at least two orogenic cycles (Ubendian and Kibaran Orogenies). An alternative explanation for 

these apparently younger ages may lie in Re-Os open system behavior, however the agreement 

between Re-Os molybdenite model ages and Re-Os pyrite and chalcopyrite model ages implies 

that any open system behavior must be relatively localized. As a result, we maintain that LLHR 

samples can provide robust age determinations and remain unaffected by greenschist facies 

metamorphic conditions (259–420 °C; 3.5–7.5 kbar).
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5.1 Introduction
Orogenic Au deposits are temporally associated with periods of  Earth’s history dominated 

by convergent tectonics and spatially associated with plate boundaries, terrane-scale mid-crustal 

shear zones and related subsidiary structures (e.g., Groves et al., 1998; Goldfarb et al., 2001). The 

first-order control on orogenic Au deposits is at a lithospheric scale related to subduction zone 

processes and potentially a fertile upper-mantle/lower-crust (Kerrich and Wyman, 1990; Bierlein 

et al., 2009; Hronsky et al., 2012). Transpressional deformation (strike-slip deformation with a 

component of  shortening orthogonal to the deformation zone; Dewey et al., 1998) is expected at 

convergent plate margins as a consequence of  oblique plate convergence and/or irregular plate 

boundaries (Harland, 1971). The significance of  transpressional deformation at the ore deposit-

scale is less clear as strain partitioning, facilitated by structurally anisotropic rocks, is predicted 

to compartmentalize transpressional strain into pure and simple shear-dominated deformation 

domains (Jones and Tanner, 1995; Jiang et al., 2001; Fig. 5.1). As a result, the deformation 

path of  individual Au-bearing shear zones may conform to pure and/or simple shear models 

despite transpressional deformation at the regional scale. Strain partitioning could explain the 

applicability of  simple shear models in correctly predicting the geometry of  vein and shear 

structures at a number of  orogenic Au deposits associated with oblique convergent margins 

(e.g., Sigma Mine; Robert and Poulsen, 2001; Daigneault et al., 2002). Whilst strain partitioning 

is observed at grain- to continent-scales, complete transpressional strain partitioning is unlikely 

given the widespread field evidence for oblique slip on shear zones of  varying dimensions 

(Fitch, 1972; Molnar, 1992; Teyssier et al., 1995; Jones et al., 1997; Jiang et al., 2001).  

The aims of  the current study are to characterize the geometry, mineralogy, micro-

structure and geochemistry of  Au-bearing structures that host orogenic Au ore bodies in the 

Lupa goldfield, SW Tanzania. We propose that the characteristics and geometry of  geologic 

fabrics/structures within the Au-bearing shear zones are indicative of  transpressional and non-
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coaxial strain of  triclinic, or lower, symmetry and are inconsistent with simple-shear deformation 

models (Jiang and Williams, 1998). The Lupa goldfield ore bodies, and their host shear zones, 

therefore provide a case study to examine the effects of  transpressional deformation on the 

development of  orogenic Au deposits at the meso- and micro-scales. 

Following this introduction, the paper is divided into four sections. The first section 

outlines the regional and local geologic setting of  the Lupa goldfield and describes each of  

the methods used in the subsequent sections. The second section summaries the fault rock 

characteristics at the meso- and micro-scales, investigates the lithogeochemical changes related 

to mylonitization and discusses shear zone kinematics. Section three outlines the geology of  the 

Au occurrences by describing vein and alteration characteristics and synthesizes new structural 

data collected from artisanal workings and oriented drill core. The final section integrates the 

results of  the previous three sections by discussing the evidence for strain partitioning and 

evaluating the role of  fluid-rock interaction with regards to deformation processes and shear 

zone development. 

5.2 Regional Geology
The Paleoproterozoic Ubendian Belt circumscribes the western edge of  the Tanzanian 

Craton and is divided into eight litho-tectonic terranes: Ubende, Wakole, Katuma, Ufipa, 

Mbozi, Lupa, Upangwa and Nyika (McConnell, 1950; Sutton et al., 1954; Daly, 1988; Lenoir 

et al., 1994; Theunissen et al., 1996; Boniface et al., 2009; Fig. 5.2). Amphibolite- to granulite-

facies meta-igneous and meta-sedimentary rocks are the dominant lithologies and have been 

z

Y

X

z

Y

X

a) non-partitioned transpression

b) partitioned transpression

simple shearpure shear

Figure 5.1 – (a) Schematic block model of  homogeneous, 
or non-partitioned transpression; (b) schematic 
block mode of  partitioned transpression where the 
wrench component of  the transpressional strain is 
compartmentalized into a discrete strike-slip fault 
(modified from Dewey et al., 1998).
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intruded by voluminous Paleoproterozoic granitoids (Cahen et al., 1984; Lenoir et al., 1994). 

Each Ubendian Terrane is bound by steeply-dipping shear zones with sub-horizontal mineral 

stretching lineations, which led to the current tectonic model invoking lateral accretion (dextral; 

Lenoir et al., 1994) of  Ubendian Terranes along the western margin of  the Tanzanian Craton 

(Daly, 1988; Lenoir et al., 1994). Lateral accretion in the Ubendian Belt is suspected to have 

occurred concomitant with thrusting and accretion of  the geologically equivalent Usagaran 

Belt, which lies to the east of  the current field area (Daly, 1988). 

Ubendian tectonism and metamorphism occurred diachronously with 2.1–2.0 Ga 

granulite facies metamorphism overprinted by 1.9–1.8 Ga amphibolite facies metamorphism 

(Lenoir et al., 1994). Paleoproterozoic metamorphism in the Ubendian belt is overprinted by 

Meso- and Neoproterozoic tectono-thermal events that are correlated to the Kibaran and Pan-

African orogenic episodes, respectively (Cahen et al., 1984; Boniface, 2009; Boniface et al., 2012; 

Boniface and Schenk, 2012). The current study is located adjacent to the Rukwa Rift, which is 

interpreted as a strike- to oblique-slip half-graben associated with the western branch of  the 

East Africa Rift system (Kilembe and Rosendahl, 1992). The trend of  the western branch of  the 

East African Rift System parallels the trend of  the Ubendian basement and suggests reactivation 

of  Ubendian structures has occurred from the Paleoproterozoic until the present day (Kilembe 

and Rosendahl, 1992; Theunissen et al., 1996). 

5.3 Local Geology
5.3.1 Lupa Terrane lithologies

The field area for the current study is located in the western portion of  the Lupa 

goldfield and corresponds to the mineral exploration licenses of  Helio Resource Corp. (Fig. 

5.3). All rocks within the field area have undergone hydrothermal alteration and greenschist 
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Tanzanian CratonNyika
Upangwa

Ubendian Terranes
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Terrane boundary
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Fig. 5.3

Figure 5.2 – Regional geologic map showing Ubendian 
Terranes and Tanzanian Craton. The star shows the 
location of  the field area for the current study (modified 
from Daly, 1988).
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facies metamorphism. Thus, all rock names are metamorphic and for the remaining discussion 

all igneous rock names should have the prefix “meta-”. Archean granitoids (ca. 2750 Ma) are 

the earliest magmatic phase observed in the field area and alternating quartzofeldspathic and 

chlorite bands give the rock its characteristic banded appearance (Chapter Two; Fig. 5.4). This 

compositional banding is steeply dipping, generally trends E-W to WNW-ESE and varies in 

development from outcrop to outcrop, but is consistently present across the field area. Flattened 

quartz crystals, undulose extinction and cuspate/lobate quartz crystal grain boundaries are 

indicative of  pressure solution and intracrystalline plastic deformation of  quartz, which coupled 

with syntectonic metamorphic reactions (chlorite ± epidote ± calcite ± titanite replacement 

of  primary Fe-Mg minerals), are the dominant deformation mechanisms (Figs. 5.4e, f). Crystal 

plastic deformation microstructures in quartz and the absence of  similar structures in feldspar 

crystals suggest that deformation occurred at greenschist facies pressure-temperature conditions 

(Scholz, 1988). Greenschist facies metamorphism is also consistent with the chlorite ± epidote 

± calcite metamorphic mineral assemblage (Fig. 5.4f), the absence of  higher grade metamorphic 

minerals, and contrasts with the amphibolite–granulite facies rocks that characterize the other 

Ubendian Terranes (Lenoir et al., 1994). Non-foliated equigranular to porphyritic granitoids 

(e.g., monzogranite, syenogranite and granodiorite) and a dioritic–gabbroic suite of  plutons and 

dikes intruded the Archean granitoids during the Paleoproterozoic (1960–1880 Ma; Chapter 

Two; Fig. 5.3). 

5.3.2 Deformation events in the Lupa Terrane

Chapter Two provided U-Pb ages that constrain three, temporally distinct, deformation 

events (D1, D2, D3) recognized in the field. The first deformation event (D1) is restricted to 

foliated Archean granitoids, which are cross cut by non-foliated Paleoproterozoic granitoids, 

diorites and gabbroic rocks that broadly constrain the timing of  D1 to 2750–1960 Ma (Chapter 

Two). Brittle-ductile mylonititc shear zones (D2) cross cut all of  the dated magmatic phases, 

are the primary host for Au mineralization and are the main focus of  the current study. Re-

Os dating of  syn-deformational pyrite suggest mylonitzation (D2) occurred at ca. 1880 Ma 

(Chapter Four). Pyrite (± Au) bearing quartz veins (D2) are locally cross cut by discrete brittle 

faults (D3). The timing of  D3 is not constrained, however the brittle nature of  the faults is in 

contrast to the crystal plastic deformation processes characteristic of  deformation during D1 

and D2 and suggests different geologic conditions during D3. The proposed temporally distinct 

deformation events are only those that are readily distinguished in the field and it is expected 

that structures have been periodically reactivated from the Paleoproterozoic to the present day 

(Kilembe and Rosendahl, 1992; Theunissen et al., 1996; Boniface and Schenk, 2012). 

5.4 Methods
5.4.1 Lithogeochemistry

Two samples of  Saza Granodiorite (Fig. 5.3) and two samples of  a mylonitic shear 

zone cross cutting the Saza Granodiorite were analyzed for major and trace elements using 
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a combination of  inductively coupled plasma-mass spectrometry (ICP-MS) and instrumental 

neutron activation analysis (INAA) by Actlabs (Ancaster, Ontario; method 4E-Research). Sample 

aliquants for ICP-MS analysis were first mixed with a lithium metaborate-tetraborate flux and 

fused in order to ensure complete digestion of  refractory minerals (e.g., zircon). Detection limits 

for this assay package are in the low ppm and ppb range for most trace elements. These analyses 

were completed as part of  larger geochemical study that included standards and duplicates as a 

means of  quality control. The results for the two samples of  un-altered Saza Granodiorite were 

previously reported in Chapter Two. 

5.4.2 Oriented core

Oriented diamond drill holes from Kenge SE, Mbenge and Porcupine were surveyed 

using a Reflex™ digital down-hole survey tool and diamond drill core intervals were oriented 

using a combination of  Ezy-Mark™ (of  2iC Australia™) and Reflex Act™ (of  Reflex™) tools. 

Ezy-Mark™ and Reflex Act™ orientation tools are highly accurate; however the majority of  

orientation error can occur during the aligning and “locking” of  oriented drill core sections 
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c d
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dike

feldspar rods
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banding

pyrite
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Figure 5.4 – (a–b) field photos of  Archean granite highlighting the variability in structure and grain size of  the 
lithologic unit; (c–d) core photos of  the Archean granite cross cut by a non-foliated porphyritic dikes and mylonitic 
fault rocks (D2) cross cutting pre-existing foliation (D1); (e) crossed nicols photomicrograph of  Archean granite 
showing undulatory extinction and cuspate-lobate quartz crystal boundaries; (f) crossed nicols photomicrograph 
of  Archean granite showing alignment of  chlorite and undulatory extinction in quartz. The alignment of  quartz, 
K feldspar, and chlorite gives the rock a banded appearance in the field. 
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down- and up-drill hole (e.g., Blenkinsop and Doyle, 2010). These errors were minimized by 

selecting intervals of  core where the orientation line at the beginning and end of  the drill 

hole interval were within 10º of  each other and avoiding intervals of  bad ground. Planar and 

linear measurements were obtained following the method of  Holcombe (2008). For planar 

measurements this involves measuring two angles (alpha and beta angle) relative to the core axis 

and the orientation line (the core bottom): 1) the alpha angle represents the angle between the 

core axis and the long axis of  the elliptical cross section of  the planar feature; and 2) the beta 

angle represents the angle between the long axis of  the elliptical cross section of  the planar 

feature extended down hole and measured clockwise from the orientation line. Alpha and beta 

measurements were converted to strike/dip (right-hand rule; RHR) and plunge/trend for planar 

and linear measurements, respectively using GeoCalculator©.

5.4.3 X-Ray Computed Tomography Scanning

Three-dimensional mineralogy analysis was completed on an oriented 1/4 core sample 

(SZD107 at 176 meters; drill hole azimuth = 360; dip = -49º) from the main ore zone at the 

Mbenge ore body. The sample is a greenschist facies mylonitic fault rock and is typical of  other 

Au-bearing shear zones within the Lupa goldfield and globally. X-ray Computed Tomography 

(CT) was completed using a XT225 Metris (Nikon) scanner at the University of  Leicester 

following the approach of  Holwell et al. (2012). CT scanning produces a high resolution 3D 

computer model of  the scanned sample that can be further processed to distinguish minerals 

based on their respective densities. The greater density of  pyrite relative to the other mineral 

constituents comprising the sample matrix (chlorite, muscovite and quartz) allowed us to isolate 

the 3D shape and distribution of  pyrite within the scanned sample. The latter provides valuable 

insight into grain-scale hydrothermal processes (discussed further below).   

  

5.5 Structural Framework
5.5.1 Fault rock characteristics

Mylonitic fault rocks - Au-bearing mylonitic rocks, which developed during the D2 deformation 

event in the Lupa goldfield possess a range of  matrix-porphyroclast modal proportions/grain 

sizes and represent the complete spectrum of  mylonitic fault rock types (Snoke and Tullis, 

1998; Figs. 5.5–5.8). Mylonite and protomylonite fault rock types are dominant and subordinate 

respectively, with rare ultramylonite observed as narrow <10 cm bands within mylonitic shear 

zones (Snoke and Tullis, 1998). The main mylonitic foliation is defined by millimetre-scale 

(locally centimetre-scale) bands of  alternating phyllosilicate-rich and quartzofeldspathic micro-

lithons. Shear band cleavages (C- and C’- types; Berthé et al., 1979) are locally observed and are 

characterized by a finer grain size and increased abundance of  phyllosilicates compared to the 

dominant mylonitic foliation (Figs. 5.5e, 5.6b, 5.6c, 5.7c and 5.7h). Multiple C’ planes observed at 

outcrop scale suggest either: 1) overprinting structural deformation produced temporally distinct 

shear band cleavages; and/or 2) ineffective flow partitioning during a single, but progressive, 

deformation event (Jiang and White, 1995). The latter is supported by a lack of  clear cross 
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cutting relationships between mylonitic shear zones (Fig. 5.3). The grain size and phyllosilicate-

rich nature of  the Au-bearing mylonitic fault rocks are comparable to fault rocks previously 

described as phyllonites (e.g., Jefferies et al., 2006a). Quartz and plagioclase porphyroclasts are 

wrapped by phyllosilicates, possess oblate shapes (as determined by qualitative shape comparison 

on serially sliced oriented samples on the interpreted XZ and YZ finite strain planes; Figs. 5.5, 6, 

7 and 8) and are consistent with flattening of  what are interpreted to be originally equant quartz 

crystal shapes in the Paleoproterozoic granite protolith. Foliated Archean granitoids possessed 

flattened quartz crystals (Fig. 5.4e) prior to mylonitization and thus were not used to infer 

flattening strain. Linear shape fabrics are variably developed, but are subordinate to planar shape 

fabrics in all observed Au-bearing mylonitic shear zones. Lineations, where present, consist 

of  quartz rods on fault-fill vein (discussed further below) and shear zone contacts, as ridges/

grooves on the mylonitic foliation plane and as chlorite slickensides on chlorite vein surfaces 

and mylonitic foliation planes (Fig. 5.5c). The timing of  lineation development is unclear and 

could represent reactivation of  foliation surfaces during subsequent deformation and/or may 

have developed contemporaneously with the planar shape fabrics (Theunissen et al., 1996). The 

latter is supported by common mineral assemblage between linear and planar fabrics.

All observed shear zones possess a similar fault rock mineral assemblage (muscovite 

± quartz ± chlorite ± calcite ± epidote ± pyrite ± graphite ± gold) that is consistent with 

metamorphism under greenschist facies pressure-temperature conditions (Figs. 5.7 and 5.8; 

discussed further below). Muscovite crystals (<0.01–5 mm) locally exhibit sweeping extinction, 

comprise the mylonite matrix and occur as fine-grained crystals (<10 µm) altering feldspar 

(plagioclase and K feldspar) porphyroclasts. Chlorite overprints muscovite, wraps quartz and 

feldspar porphyroclasts and gives a large proportion of  mylonitic fault rocks a green appearance 

(Figs. 5.7c and 5.7f). Quartz exhibits sweeping extinction and occurs as mantled porphyroclasts 

(σ- type; Passchier and Simpson, 1986), aggregates of  polygonal grains, quartz ribbons, pressures 

shadows and/or fringes, and veins (Fig. 5.8c). Feldspars (plagioclase and K feldspar) exhibit 

bent twin planes, are present as mantled porphyroclasts (σ- type), are associated with quartz 

within micro-lithons and are typically absent in high-strain shear zones (completely replaced by 

phyllosilicates; Fig. 5.8d). 

Non-foliated fault rocks - Non-foliated fault rocks observed in the current study represent 

the complete spectrum of  fault rocks classified by Snoke and Tullis (1998; Fig. 5.9). Unaltered 

cataclasites are locally observed becoming increasingly altered towards mylonite contacts and 

implies an early phase of  brittle deformation that pre-dates hydrothermal alteration related 

to mylonitization (D2). Pre-D2 brittle deformation is also suggested by vein-mylonite cross 

cutting relationships and Re-Os sulfide dating, which suggests quartz veins locally pre-date 

mylonitization by ca. 70 Myr (Fig. 5.9b; Chapter Four). Quartz vein and mylonite clasts observed 

within cataclasites cross cutting Au-bearing shear zones imply cataclasis also occurred after the 

D2 event (Fig. 5.9d) and is consistent with discrete brittle faults offsetting mineralized veins. 

Therefore, the temporal relationship between brittle and ductile deformation is complex, locally 

interpreted as contemporaneous and is consistent with progressive deformation at the level of  
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the brittle-ductile transition zone. Pseudotachylite fault rocks are also observed cross cutting 

Archean granites (Fig. 5.9a). These fault rocks possess a black fine grained matrix, angular granite 

clasts, offset quartz veins and are associated with injection veins. Devitrification structures and 

spherulites were not observed in pseudotachylite veins and mutually cross cutting relationships 

between pseudotachylite fault rocks and quartz (± calcite) may indicate that these fault rocks are 

in fact veins or cataclasites filled with dark minerals (suspected pseudotachylite veins are locally 

magnetic and could be in-filled with fine-grained magnetite). Unconsolidated gouge has also 

been observed at Kenge and is suspected to be related to near surface faulting in response to 

the Tertiary East African Rift System (Theunissen et al., 1996; Kilembe and Rosendahl, 1992). 

The temporal relationships between disparate non-foliated fault rock types remain unclear. 

Nevertheless the field evidence presented above and age dating supports periodic reactivation 

of  structures from the Paleoproterozoic to the present day (Boniface et al., 2012).                
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photomicrograph of  sharp and undulating mylonite-granite contact cross cutting muscovite ± calcite ± chlorite 
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contact cross cutting muscovite ± calcite ± chlorite veins (GPD44 at 212m); (c) crossed nicols photomicrograph 
of  quartz porphyroclasts (GPD44 211 m); (d) pyrite wirh quartz strain fringes (SZD74 at 58m); (e) crossed 
nicols photomicrograph of  muscovite included within a pyrite crystal that is concordant with mylonitic foliation 
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5.5.2 Shear zone geochemistry

Two samples of  mylonitic shear zones cross cutting the Saza granodiorite were analyzed 

for major and trace elements (see Table 5.1; Fig. 5.10) to compare against the chemical 

composition of  unaltered Saza Granodiorite (previously reported in Chapter Two) akin to 

the isocon analysis approach (Grant, 1986). Isocon analysis involves plotting the composition 

of  altered samples against unaltered equivalent samples in order to distinguish mobile and 

immobile elements during hydrothermal alteration related to mylonitization (Grant, 2005 and 

references therein). The approach is a graphical solution to Gresens’s (1967) zero concentration 

change equations and predicts that immobile elements will plot as a straight line extending 

from the origin, whereas mobile elements will plot off  this line. Our results show that many 

of  the elements considered to be immobile (e.g., TiO2, Al2O3, light rare earth elements, high-

field strength elements and transition elements) plot on or near the unit slope, whereas mobile 

elements (e.g., MnO and Sr) plot significantly off  the unit slope (Fig. 5.10). The significance of  

those elements that plot slightly above or below the unit slope is unclear since compositional 

heterogeneity between samples, especially for our small sample set, likely causes some immobile 

elements to plot off  the unit slope (Fig. 5.10a). Nevertheless, the majority of  elements plot on 

or near the unit slope and implies significant volume loss and elemental differentiation were not 

associated with mylonitization.

Several elements plot significantly below the unit slope, for example MnO and Sr, and imply 

that these elements were lost during hydrothermal alteration. The loss of  Sr is consistent with 

albite replacement during mylonitization and is supported by slight depletion and enrichment 

of  Na2O (plots slightly below the unit slope) and K2O (plots slightly above the unit slope), 

respectively (Fig. 5.10b). Other elements, for example Sb and Cr, plot considerably above the 

others and suggest that these elements were gained during hydrothermal alteration related to 

mylonitization. The dominant source of  Cr in the Lupa goldfield is present within gabbroic 

intrusions/dikes and we propose that fluids migrating through shear zones may have scavenged 

Cr from intermediate-mafic rocks and deposited them within mylonitized Saza Granodiorite. 

The enrichment of  Sb and As is typical of  many epigenetic Au deposits, however in this case Sb 

is not accompanied with any noticeable enrichment of  As and suggests these two elements were 

de-coupled during hydrothermal alteration associated with mylonitization (Craw et al., 2002).   

5.5.3 Shear Zone Kinematics

Shear zone kinematics were interpreted from inspection of  rock exposures within artisanal 

shafts and trenches, oriented drill core and serially sliced oriented hand samples (Figs. 5.5, 5.6, 

CONT’D... (SZD174 at 48m); (f) plane polarised light photomicrograph of  S/C fabrics consistent with reverse 
movement (south-side up; SZD74 at 58m); (g–h) crossed nicols photomicrographs of  pyrite with quartz strain 
fringes orthogonal to mylonitic foliation (SZD71 at 53m); (i) plane polarised light photomicrograph of  S/C fabrics 
consistent with reverse movement (south-side up; SZD71 at 53m)    
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5.7 and 5.8). The mylonitic foliation is considered here to approximately record the XY plane of  

the finite strain ellipsoid (Jones et al., 2004). As a result, sub-horizontal and sub-vertical planes 

perpendicular to the mylonitic foliation are interpreted as the YZ and XZ planes of  the finite 

strain ellipsoid, respectively. Most of  the observed shear zones are south-dipping structures that 

possess multiple kinematic indicators on the sub-vertical plane perpendicular to the mylonitic 

foliation (section view; XZ plane). Asymmetric porphyroclasts (σ-type; Hanmer and Passchier, 

1991), asymmetric pressure shadows, asymmetric boudins, and S/C textures are all indicative of  

reverse movement (south-side up). Kinematic indicators are also observed, but less abundant, 

on the sub-horizontal plane perpendicular to the mylonitic foliation (plan view; YZ plane). 

Asymmetric porphyroclasts, asymmetric boudins and S/C textures in plan view, where observed, 

are indicative of  sinistral movement. Together the observed kinematic indicators imply a finite 

oblique reverse slip displacement vector on northwest-southeast and east-west striking and 

south-dipping shear zones (Figs. 5.5 and 5.6). Mineral stretching lineations are variably oriented 

at outcrop scale despite the consistent kinematics inferred from kinematic indicators (Fig. 5.11). 

This is particularly apparent for the regionally significant Saza shear zone which is interpreted 

to have undergone reverse oblique slip despite possessing generally steep, but variably plunging, 

mineral stretching lineations (Fig. 5.11). The presence of  kinematic indictors on both planes 

perpendicular to the mylonitic foliation implies non-coaxiality of  both strike-slip and dip-slip 

strain components and are typical of  shear zones exhibiting triclinic, or lower, symmetry (Jiang 

and Williams, 1998; Jones and Holdsworth, 1998; Lin et al., 1998; Jones et al., 2004). Mineral 

stretching lineation orientations in transpressional shear zones can vary continuously from 

horizontal to sub-vertical and thus generally cannot be used to infer movement direction (Lin 

and Jiang, 2001). Furthermore, strain partitioning can further complicate the interpretation of  

mineral stretching lineation orientations in transpressional settings where pure- and strike-slip 

deformation components may vary across the shear zone (discussed further below).       

5.6 Mineral system and vein characteristics
Inspection of  artisanal workings and oriented core reveals a remarkable variability of  

Au-bearing structures in the Lupa goldfield. Most of  the exposed Au occurrences are hosted 

by steeply dipping quartz veins and mylonitic shear zones and are typical of  the Kenge and 

Mbenge ore bodies (Figs. 5.3, 5.11, and 5.12). Hydrothermal alteration, strain and mineralization 

at these Au occurrences are largely restricted to the host shear zone  (Fig. 5.13). Recent drilling 

by Helio Resource Corp. has identified a second, geologically distinct, mineral system type 

(e.g., Porcupine) that comprises a network of  narrow and discontinuous mylonitic shear zones 

separated by non-foliated but hydrothermally altered and veined granite (Fig. 5.14). The highest 

CONT’D... feldspars and quartz within the mylonitic matrix. Note dark brown, undulating pressure solution seams 
concordant with mylonitic foliation (502064, 9074181).
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Au grades at Porcupine are associated with shallow dipping quartz veins and intervals of  

sericitized, silicified and non-foliated Ilunga syenogranite (Fig. 5.14). Auriferous and shallow 

dipping quartz veins occur adjacent to the mylonitic shear zones, which significantly widen 

the mineralized zone at Porcupine, are notably absent at the Kenge and Mbenge ore bodies. 

Detailed geologic characteristics for Kenge, Mbenge and Porcupine are discussed further below.   
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5.6.1 Kenge and Mbenge

The Kenge and Mbenge ore bodies contain a measured and indicated resource of  370,000 

oz (8.7 Mt at 1.33 g/t Au using a 0.5 g/t Au cut-off; Simpson, 2012) and include what was 

known as Razorback mine (Figs. 5.11; van Straaten, 1984; Sango, 1988; Kuhen et al., 1990). The 

Kenge ore body is associated with NW–SE striking (ca. 120º), SW dipping (ca. 70º) and left-

stepping shear zones. Each NW–SE trending shear zone segment is connected to a more WNW 

trending shear zone segment and gives the ca. 2 km long ore body en-echelon geometry (Fig. 

5.11). The mineralization at Kenge is discontinuous down-dip and Helio Resource Corp., has 

hypothesized a NW–SE trending reverse fault offsetting the main mineralized zone (Fig. 5.13). 

The dominant NW–SE trend of  the Kenge ore body changes towards the SE and becomes 

more WNW trending (ca. 103º) and this segment is known as the “Kenge SE” zone (Harrison, 

2011). 

Examination of  diamond drill core has established that the Kenge shear zone occurs 

at the igneous contact between the Archean granitoid (hangingwall) and Paleoproterozoic 

diorite-gabbro intrusion (footwall; Fig. 5.13). Therefore, igneous contacts appear to have acted 

as zones of  pre-existing weakness and/or stress risers during deformation (Dubé et al., 1989; 

Lin and Corfu, 2002). Au is found as free grains and is also associated with pyrite hosted by 

mylonitic fault rocks and fault-fill veins (Robert and Poulsen, 2001 and references therein). The 

mylonitic foliation at Kenge and Mbenge varies in development and orientation, but is typically 
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CL1101 CL1102
Analyte Analysis Method1 Unit2 D.L. 499282 / 90732583 501137 / 90729693

SiO2 FUS-ICP % 0.01 67.44 62.77
Al2O3 FUS-ICP % 0.01 15.94 17.19

Fe2O3(T) FUS-ICP % 0.01 3.7 2.83
MnO FUS-ICP % 0.001 0.032 0.028
MgO FUS-ICP % 0.01 1.38 0.73
CaO FUS-ICP % 0.01 0.46 3.09

Na2O FUS-ICP % 0.01 1.83 4.06
K2O FUS-ICP % 0.01 4.32 3.73
TiO2 FUS-ICP % 0.001 0.445 0.46
P2O5 FUS-ICP % 0.01 0.13 0.14
LOI FUS-ICP % 3.06 4.13
Total FUS-ICP % 0.01 98.74 99.14
Au INAA ppb 1 < 1 40
Ag TD-ICP ppm 0.5 < 0.5 < 0.5
As INAA ppm 1 2 3
Ba FUS-ICP ppm 1 1553 1399
Be FUS-ICP ppm 1 1 2
Bi FUS-MS ppm 0.1 0.1 0.3
Br INAA ppm 0.5 < 0.5 < 0.5
Cd TD-ICP ppm 0.5 < 0.5 < 0.5
Co INAA ppm 0.1 7.7 9.4
Cr INAA ppm 0.5 128 118
Cs FUS-MS ppm 0.1 4.9 2.1
Cu TD-ICP ppm 1 32 47
Ga FUS-MS ppm 1 19 20
Ge FUS-MS ppm 0.5 1.7 1.7
Hf FUS-MS ppm 0.1 3.5 3.4
Hg INAA ppm 1 < 1 < 1
In FUS-MS ppm 0.1 < 0.1 < 0.1
Ir INAA ppb 1 < 1 < 1

Mo FUS-MS ppm 2 < 2 < 2
Nb FUS-MS ppm 0.2 4.7 5
Ni TD-ICP ppm 1 23 13
Pb TD-ICP ppm 5 < 5 11
Rb FUS-MS ppm 1 120 86
S TD-ICP % 0.001 0.003 0.004
Sb INAA ppm 0.1 2.7 2.6
Sc INAA ppm 0.01 5.78 6.37
Se INAA ppm 0.5 < 0.5 < 0.5
Sn FUS-MS ppm 1 1 < 1
Sr FUS-ICP ppm 2 94 178
Ta FUS-MS ppm 0.01 0.36 0.39
Th FUS-MS ppm 0.05 7.52 6.84
U FUS-MS ppm 0.01 1.56 1.37
V FUS-ICP ppm 5 60 74
W INAA ppm 1 3 9
Y FUS-ICP ppm 1 12 9
Zn  TD-ICP ppm 1 34 30
Zr FUS-MS ppm 1 139 140
La FUS-MS ppm 0.05 35.2 31.7
Ce FUS-MS ppm 0.05 68.1 63.1
Pr FUS-MS ppm 0.01 6.15 6.81
Nd FUS-MS ppm 0.05 21.8 23.8
Sm FUS-MS ppm 0.01 3.73 3.94
Eu FUS-MS ppm 0.005 0.994 1.01
Gd FUS-MS ppm 0.01 2.73 2.65
Tb FUS-MS ppm 0.01 0.4 0.38
Dy FUS-MS ppm 0.01 2.18 1.89
Ho FUS-MS ppm 0.01 0.4 0.35
Er FUS-MS ppm 0.01 1.08 0.98
Tl FUS-MS ppm 0.05 0.42 0.32
Tm FUS-MS ppm 0.005 0.158 0.142
Yb FUS-MS ppm 0.01 1 0.91
Lu FUS-MS ppm 0.002 0.148 0.142

1Analysis method abbreviations: FUS-ICP = Fusion Inductively Coupled Plasma Mass 
Spectrometry; INAA = Instrumental Neutron Activation Analysis; TD-ICP = Total 
Dissolution Inductively Coupled Plasma Mass Spectrometry; MULT INAA = Multi-element 
Instrumental Neutron Activation Analysis 
2Detection Limit
3eastings and northings are reported as UTM coordinates (WGS84, Zone 36S)

Table 5.1 - Lithogeochemistry Results
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Figure 5.11 – Map of  the Kenge and Mbenge shear zones showing the orientation of  individual mylonitic foliation 
measurements, shear zone boundaries and individual mineral stretching lineation measurements. The locations of  
artisanal trenches/shafts are shown and were used to interpret the continuity of  the mineralized shear zones (red 
polygons). The mylonitic foliation is generally more steeply inclined and oriented clockwise relative to the shear 
zone boundaries and suggests reverse (south-side up) and sinistral kinematics. Interpreted kinematics and shear 
zone orientations are summarized in the schematic block model.  



Chapter 5. Structural Setting                                                                                                                                                      

– 130 –

more steeply dipping and oriented clockwise relative to the shear zone boundary. The reverse 

and sinistral kinematics suggested by the obliquity between the mylonitic foliation and shear 

zone boundary are consistent with kinematics inferred from asymmetric porphyroclasts and 

shear band cleavage fabrics observed on both planes perpendicular to the mylonitic foliation 

regardless of  mineral stretching lineation orientation (Figs. 5.5 and 5.6). The observed kinematic 

indictors thus consistently imply a transpressional structural setting for the shear zones that 

is further supported by flattening strain inferred from quartz veins boudinaged in plane and 

section views, oblate-shaped quartz/feldspar porphyroclasts and variably plunging mineral 

stretching lineations (Jones et al., 2004).

Pyrite (± Au) crystals are locally observed concentrated in low-strain sites within the Kenge 

and Mbenge shear zones (e.g., quartz vein boudin necks) and also possess quartz strain fringes 
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Figure 5.12 – Quartz vein photos from non-oriented core: (a) boudinaged and potentially transposed quartz veins 
hosted by mylonitic shear zone at Porcupine; (b) fault-fill vein at Saza shear zone showing stylolite-like sulfide 
stringer veins; (c) oblique-extension veins at Porcupine; (d) oblique-extension vein at Porcupine; (e) crossed nicols 
photomicrogrpah of  fault-fill quartz vein. Note flattening and sub-grain rotation (SZD23 at 107m); (f) oblique 
extension vein at Porcupine. Not less deformed nature of  quartz compared to fault-fill veins (GPD1 at 54m). 
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that provide evidence for complex temporal relationships between sulphidation, greenschist 

facies metamorphism, pressure solution processes and deformation. For example, apparently 

unmodified quartz strain fringe fibres are observed in the same hand samples as transposed 

quartz strain fringe fibres and likely records strain fringe development during progressive 

deformation. The orientation of  apparently unmodified quartz strain fringe fibres perpendicular 

to the mylonitic foliation represents a paradox as previous studies have demonstrated that the 

long axis of  straight strain fringe fibres record the X axis of  the instantaneous strain ellipsoid 

(e.g., Durney and Ramsay, 1973; Köhn et al., 2003). If  the mylonitic foliation is assumed to 
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approximate the XY plane of  the finite strain ellipsoid, then quartz fringe fibres perpendicular 

to the foliation are oriented roughly parallel to the Z axis of  the finite strain ellipsoid (Figs. 5.7h 

and 5.7i). In the Lupa goldfield, quartz fibre growth on pyrite crystals potentially record the 

orientation of  the instantaneous strain ellipsoid at the time of  mineralization and thus provide 

valuable insight mineralizing processes and also shed light on the emplacement mechanisms of  

economically important fault-fill veins (discussed further below). 
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ellipsoid is assumed to lie 90° away from the Y axis 
and along the mylonitic foliation whereas the Z axis is 
fixed by the location of  the other finite strain axes (see 
text for further discussion). Structural measurements 
are from surface exposures (closed circles = mineral 
stretching lineations; open circles = mylonitic foliation 
poles to planes; mean mylonitic foliation pole to plane 
= red diamond; 95% confidence interval of  mean = red 
ellipse). K values are a measure of  the tendency of  linear 
data to fit a girdle or a cluster (K values approaching zero 
represent girdles, whereas K values approaching infinity 
represent clusters) following the approach of  Woodcock 
and Naylor (1983). 
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Steeply-dipping fault-fill veins are present throughout the Kenge and Mbenge shear zones 

and range in thickness from a few cm to over 10 m (Figs. 5.12a and 5.13). The mechanical 

coniditions requried to epxlain the development of  thick fault-fill veins are discussed further 

below. Stylolite veins comprising molybdenite and pyrite oriented parallel to fault-fill vein 

margins are consistent with a sub-horizontal compression setting and suggest stress induced 

solution transfer may have been an important mineralizing process (Fig. 5.12b). Slivers of  

mylonitized and hydrothermally altered wall rock, sheared vein margins, poly-modal fracturing/

fluid inclusion trails, and quartz rods on mylonite-vein contacts are all features which record 

complex feedback between hydrothermal fluids and deformation that is typical of  the fault-fill 

vein type at other orogenic Au deposits (Robert and Poulsen, 2001 and references therein). 

Fault-fill veins intersect the mylonitic foliation and the shear zone boundaries at low angles 

and possess steeply dipping and NW–SE trending geometries (Figs. 5.5 and 5.6). Prominent 

quartz rods are also present on fault-fill vein surfaces in contact with the mylonitic foliation 

and, similar to shear zone mineral stretching lineations, are variably oriented (Figs. 5.5c and 

5.11).  The highly-strained nature of  the fault-fill veins makes the structural significance of  the 

current vein orientation relative to the original vein geometry unclear. Furthermore, narrow 

quartz veins (less than 10 cm thick) with orientations at high angles to shear zone boundaries are 

locally observed becoming transposed sub-parallel to the mylonitic fabric within the shear zone 

(Figs. 5.5b and 5.9b). Vein transposition is likely an important process at Au occurrences across 

the Lupa goldfield and is to be expected in structural settings characterized by progressive 

deformation. However, narrow transposed quartz veins are distinct from the up to 10 m thick 

quartz veins characterized by crack-seal textures, stylolite-like surfaces and containing slivers of  

mylonitized and hydrothermally altered wall rock. The absence of  veins with the characteristics 

of  the latter outside of  shear zones suggests that main auriferous quartz veins at Kenge and 

Mbenge represent fault-fill veins (s.s. Robert and Poulsen, 2001). The mechanical conditions 

required for the development of  thick fault fill veins are discussed below.   

Narrow (1–5 cm) calcite and chlorite (± epidote) veins occur at the margins of  the shear 

zone and possess complex cross cutting relationships with the mylonitic fabric (Figs. 5.7a and 

7b). The majority of  calcite veins occur in the dioritic-gabbroic footwall of  the ore body and 

form a ca. 10 m wide damage zone (Fig. 5.13). The timing of  calcite veins is unclear, however 

they are suspected to be related to mylonitization as they are spatially related to the shear zone 

and are observed cross cutting and are in turn cross cut by the mylonitic shear zone. Similarly, 

chlorite veins are also present in the hangingwall and footwall of  the ore body and also exhibit 

mutually cross cutting relationships to the mylonitic shear zone. In the Kenge SE zone, chlorite 

and calcite veins possess variable dips but are generally NW trending and approximately parallel 

to the Kenge trend. Many of  the vein surfaces possess slickensides and suggest vein surfaces 

were reactivated as fault-slip surfaces during subsequent deformation. Chlorite slickensides are 

variably oriented at Kenge SE and may indicate mylonitic shear zones were reactivated as variably 

oriented oblique-slip brittle faults. Structural geometries observed at Kenge are summarized in 

Figure 5.16a.    
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Figure 5.16 – (a) Schematic block model of  Kenge summarizing structural fabrics; (b–g) lower hemisphere equal 
area contoured stereonets of  planar and linear fabrics measured from oriented core at Kenge SE; (h–m) lower 
hemisphere equal area contoured stereonets of  planar and linear fabrics measured from oriented core at the 
Mbenge; (n) schematic block model of  Porcupine summarizing structural fabrics; (o–s) lower hemisphere equal 
area contoured stereonets of  planar and linear fabrics measured from oriented core at Porcupine. All contours are 
plotted following the 1% area method using OSX Stereonet (v 1.4; contour intervals set at 1).   
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The Mbenge ore body is hosted by E-W trending (ca. 089º) and SW dipping (ca. 70º) 

mylonitic shear zones and fault-fill veins that share geologic similarities with the Au-bearing 

shear zone at Kenge. Kinematic indictors in the Au-bearing mylonitic shear zone, similar to those 

described above, imply reverse and sinistral movement (south-side up). The Mbenge ore body is 

poorly exposed at surface in several shallow artisanal workings and ore body characteristics are 

largely based on examination of  diamond drill core.  Archean granitoids and Paleoproterozoic 

granodiorite-diorite-gabbro are the dominant wall rocks and are cross cut by calcite ± chlorite 

± epidote veins. Veins cross cut and are in turn cross cut by the mylonitic shear zone, possess 

variable orientations and increase in density towards the shear zone boundaries. The temporal 

relationship between calcite ± chlorite ± epidote veining and mylonitization remains tenuous 

despite the close spatial relationship due the potential for shear zone reactivation during 

subsequent deformation. As a result, chlorite slickenlines on chlorite vein surfaces likely record 

shear zone reactivation as oblique slip faults (Fig. 5.16m).

The three dimensional distribution of  pyrite was investigated by X-ray CT scanning a 

sample of  the Au-bearing shear zone hosting the Mbenge ore body (SZD107 at 176m; drill 

hole azimuth = 360; dip = -49º; Figs. 5.11 and 5.17). Examination of  the three-dimensional 

distribution of  pyrite provides an opportunity trace paleo-fluid pathways in three dimensions 

and shows that pyrite (± Au) crystals are concentrated along the main mylonitic foliation and the 

associated shear band cleavage. The latter is oblique to the main mylonitic foliation in section 

and plan views and implies a transpressional deformation setting at the Mbenge shear zone. 

The obliquity of  the shear band cleavage with the mylonitic foliation also provides a three-

dimensional network of  relatively permeable fluid conduits that led to the disseminated style of  

mineralization at Mbenge and potentially other shear zones in the Lupa goldfield.   

5.6.2 Porcupine 

The Porcupine ore body contains a NI 43-101 compliant measured and indicated resource 

of  650,000 oz (15.4 Mt at 1.31 g/t Au using a 0.5 g/t Au cut-off; Simpson, 2012). The majority 

of  mineralization is hosted by an ENE–WSW trending (ca. 59°) and south-dipping (ca. 64°) 

band of  hydrothermally altered, veined and locally sheared Paleoproterozoic Ilunga Syenogranite 

(ca. 1960 Ma; Chapter Two). On surface, the Porcupine main zone is exposed in two artisanal 

workings and so the following ore body characteristics are largely based on observations from 

diamond drill core. 

Two types of  quartz veins are present at the Porcupine Main zone: 1) fault-fill veins with 

similar characteristics to those observed at the Kenge, Mbenge and artisanal workings (Fig. 

5.12a); and 2) shallowly dipping extension/oblique-extension veins (Robert and Poulsen, 2001; 

Figs. 5.12c). Both vein types are Au-bearing but the oblique-extension veins are economically 

important as they act to significantly widen the mineralized zone. Oblique-extension veins are 

shallowly dipping structures (mean vein strike / dip = 285º/02º; n = 714), possess parallel and 

planar vein margins, are composed of  massive quartz (bull quartz) and lack textural evidence 

to identify their opening vector (Fig. 5.12d). The latter makes it difficult to distinguish whether 
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quartz veins at Porcupine represent “true” extensional veins with opening vectors perpendicular 

to the vein margin or oblique-extension veins. Nevertheless, the massive and unstrained nature 

of  the veins coupled with the shallow dipping orientation makes quartz veins at Porcupine 

distinct from fault-fill veins at Kenge and Mbenge. 

5.7 Discussion
5.7.1 Strain Partitioning

 Kinematic indicators from auriferous shear zones in the Lupa goldfield record evidence 

for   transpressional deformation. The asymmetry of  kinematic indicators in plan and section 

views imply non-coaxility of  the strike- and dip-slip components of  deformation and are at 

odds with theoretical partitioned transpressional shear zones where transpressional strain is 

compartmentalized into pure and simple shear-dominated deformation domains (Dewey et al., 

1998). Complete strain partitioning into strike- and dip-slip components appears to be uncommon 

in natural shear zones and the scale(s) at which partitioning occurs remains poorly understood 

(Jones and Tanner, 1995). Evidence for deposit-scale strain partitioning at Kenge is potentially 

recorded by the orientation of  mineral stretching lineations, which vary from horizontal to 

vertical but display a weak and moderately NW plunging cluster (Fig. 5.15a). Mineral stretching 

lineations along strike of  the Saza shear zone show a similar range of  plunges but are more 
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Figure 5.17 –  (a) Perspective view of  a 3-D X-ray CT model of  a Au-bearing mylonite ¼ core sample from 
Mbenge. Pyrite is isolated based on density and shows the distribution closely follows the mylonitic foliation and 
associated shear band cleavage; (b) plan view of  the same CT model with colors based on relative mineral density 
(yellow and grey are low density minerals and correspond to muscovite, chlorite, quartz and calcite; whereas red 
represents high density phases and corresponds to pyrite ± Au); (c) section view of  the same CT model with colors 
based on relative density (same as previous). 
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generally steeply dipping (Fig. 5.11). The cause of  this variability is possibly explained by strain 

partitioning along strike and/or across the shear zones. In this model, shear zone segments 

with sub-horizontal mineral stretching lineation would reflect wrench-dominated finite strain, 

whereas shear zone segments with down-dip lineations would reflect a greater component of  

pure-shear. However, variably oriented mineral stretching lineations are also a hallmark of  

theoretical and natural examples of  non-partitioned shear zones (Jiang and White, 1995, Jiang 

and Williams, 1998; Lin et al., 1998; Jones et al., 2004). Shear zones following these types of  

deformation paths can exhibit mineral stretching lineation orientations that vary continuously 

from horizontal to vertical due to complex rotation of  the instantaneous strain axis during 

deformation and variations in the intensity of  finite strain along and/or across the shear zone 

(Lin and Jiang, 2001). No clear relationship between the intensity of  finite strain and mineral 

stretching lineation orientation was observed in the study area and the dearth of  constraints 

on the shear zone boundary conditions make assessing the extent of  strain partitioning at the 

deposit scale equivocal. Nevertheless, the observed obliquity of  the mylonitic foliation and 

kinematic indictors in plan and section view coupled with oblique mineral stretching lineations 

suggest transpressional deformation was incompletely partitioned at the outcrop scale. The 

subtle cluster of  mineral stretching lineations less than 90° away from the intersection of  the 

mylonitic foliation and shear zone boundary and Kenge is also typical of  shear zones with 

exhibiting triclinic symmetry and may suggest transpressional strain was incompletely partitioned 

at the deposit scale (Fig. 5.15a; Jones et al., 2004). 

The significance of  strain partitioning to mineral explorationists also remains unclear 

since shear zones are mineralized regardless of  mineral stretching lineations orientation and/

or variations observed in finite strain intensity (e.g., the obliquity of  the mylonitic fabric relative 

to the shear zone boundary). At Kenge, the thickest mineralized zone (i.e., Razorback mine) 

corresponds with a shear zone step-over, whereas shear zone intersections and splays appear to 

be important mineral controls along the Saza shear zone (Fig. 5.11). Dilational jogs and shear 

zone step overs/intersections are well documented sites of  increased permeability and fluid 

focusing and are suggested here to be important controls for gold mineralization in the Lupa 

goldfield despite the complex structural setting of  mineralization (Cox et al., 2001). 

5.7.2 Relationships between Au, hydrothermal alteration and deformation

Recent studies have demonstrated that phyllosilicate-rich mylonites (phyllonites) are weak 

relative to the granitic wall rocks and may give rise to long-term weakening and reactivation 

of  fault zones (e.g., Stewart et al., 2000; Collettini and Holdsworth, 2004; Jefferies et al., 

2006b). Mylonites in the Lupa goldfield are typical of  these “weak” shear zones and shear 

zone weakening may explain the periodic reactivation of  structures (Figs. 5.9c and 5.9d). The 

mineralogy and grain size of  the observed auriferous mylonites thus appears to have played a 

key role in strain weakening and promoting brittle reactivation of  ductile structures. However, 

brittle deformation is also observed pre-dating mylonitic shear zones and hydrothermal 

alteration, coupled with cataclasis in these pre-D2 structures, resulted in grain size reduction 
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and feldspar (plagioclase and K-feldspar) replacement with intrinsically weaker phyllosilicates 

(Fig. 5.8c). The finer grain size and mineralogy of  hydrothermally altered granitic host rocks 

(grain size reduction was also accomplished through dynamic recrystallization of  quartz and 

neo-crystallization of  quartz and feldspar) creates the ideal conditions for strain localization 

and, locally, may have led to the onset of  crystal plastic deformation and fluid-assisted diffusion 

processes (Fig. 5.8; Handy, 1990; Wintsch, et al., 1995; Imber et al., 2001). In this model, pre-D2 

cataclasis produced dilatancy, enhanced permeability and focused fluids (Reches and Lockner, 

1994; McCaig, 1997; Cox, 2005; Jefferies 2006b). Three samples of  Ilunga Syenogranite that 

exhibit varying degrees of  hydrothermal alteration and strain illustrate the proposed model in 

Fig. 5.18. Continued feedback between fluid, rock and deformation generated interconnected 

networks of  weak mylonitic shear zones that are prone to reactivation (e.g., Imber et al., 1997). 

The phyllosilicate rich nature of  the fault rocks may have also promoted deformation under 

conditions of  low differential stress and the implications of  low differential stress for Au 

mineralization are discussed further below.    

The geochemical evidence presented as part of  this study records the breakdown of  

plagioclase to phyllosilicates by the depletion of  Sr and minor depletion and enirhcment of  
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Figure 5.18 – (a–c) Crossed nicols photomicrographs of  three Ilunga Syenogranite samples exhibiting various 
degrees of  hydrothermal alteration and finite strain. Our proposed model for shear zone development would place 
these three samples into a progressive sequence from left to right. (a) Coarse grained, non-foliated and relatively 
unaltered granite becomes hydrothermally altered, potentially due to pre-D2 brittle fracturing, and results in the 
replacement of  feldspars with intrinsically weaker phyllosilicates (GPD44 at 251m); (b) continued hydrothermal 
promotes strain localization within the altered granite and leads to increasing finite strain and mylonitization 
(505500, 9081129); (c) complete replacement of  feldspars with further grain size reduction producing a quartz-
phyllosilicate mylonite (508512, 9080975)    
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Na2O and K2O, respectively. However, the general trend of  most elements plotting on or near 

the unit slope suggests mylonitization was relatively isochemical. The latter is at odds with the 

geochemical signature of  mylonites reported in other studies, which typically exhibit evidence 

for significant volume change associated with mylonitization. The unusual geochemical 

signature of  mylonites in the Lupa goldfield likely reflects, in part, high fluid rock ratios that 

effectively homogenized the geochemical composition of  the mylonites and the granitic wall 

rocks. The Miyamae shear zone provides a comparable example of  phyllonitic shear zones that 

are geochemically indistinguishable from their respective granitic wall rocks (Jefferies, 2006a). If  

correct, the isochemical signature of  the auriferous mylonites represents homogenization of  the 

geochemical signature and may mask any volumetric changes related to mylonitization.    

5.7.3 Micro-scale deformation processes and micro-structural/mineralogic constraints on P-T conditions of  

deformation and metamorphism during mineralization

Microstructural examination suggests a variety of  deformation mechanisms are responsible 

for the development of  mylonitic shear zones (e.g., Schmid 1983; Knipe, 1989; Williams et al., 

1994). Stylolitic veins and fibrous quartz in pressure shadows/fringes are indicative of  dissolution 

and precipitation, respectively (Figs. 5.7 and 5.8). Furthermore, stress-induced solution transfer 

appears to have occurred concomitant with brittle-failure and quartz vein formation. Undulose 

extinction, deformation lamellae, sub-grain rotation and grain boundary migration observed 

in quartz are indicative of  crystal plastic deformation mechanisms (Figs. 5.8b). Crystal plastic 

deformation is also suggested to be an important deformation mechanism for muscovite crystals 

(e.g., muscovite exhibits sweeping extinction, kinking and folding), whereas feldspar crystals 

exhibit comparatively little evidence for strain except for rare kinking and brittle fractures (Figs. 

5.8g and 5.8h). 

The disparate microstructures and deformation mechanisms observed between quartz, 

muscovite and feldspar provide first-order constraints on the P-T conditions of  deformation 

(Tullis and Yund, 1985). The onset of  quartz plasticity, as observed in Au-bearing shear zones, 

is expected to occur at 300ºC, whereas feldspar plasticity is expected to initiate at 450ºC (Scholz, 

1988). These temperatures are consistent with the Au-bearing shear zone mineral assemblage 

(muscovite ± quartz ± chlorite ± calcite ± epidote) that is typical of  other greenschist facies 

mylonitic shear zones (Goldfarb et al., 2001; Groves et al., 2003; Elmer et al., 2006). Fluid 

inclusion microthermometry from Au-bearing quartz veins implies a comparable temperature 

range for hydrothermal fluids (H2O-CO2 ± NaCL inclusions from Kenge interpreted to best 

reflect the mineralizing fluid possess a range of  homogenization temperatures from 259–419°C; 

Shaw, 2009). The depth at which the brittle-ductile transition occurs in average quartz-feldspathic 

crust provides a first-order estimate of  the depth at which deformation occurred (ca. 10 ± 5 km; 

Sibson, 1983; Scholz, 1988). However, geothermal gradients, strain rates, pore-fluid pressures, 

and fault rock composition all influence the temperature and pressure range of  the brittle-ductile 

transition zone (Sibson, 1983; Tullis and Yund, 1980; White et al., 1986, Handy, 1990; Imber et 

al., 2001). Fluid-rock interaction is a particularly important factor that has been demonstrated 
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to significantly shallow the brittle-ductile transition zone (ca. 5 km; e.g., Imber et al., 2001) and 

lower the temperature required for ductile deformation processes (e.g., hydrolytic weakening; 

Liu et al., 2002). A shallow brittle-ductile transition zone may have important implications for 

orogenic Au deposit models where brittle-ductile deformation is characteristic and is typically 

cited as evidence for deposit formation at mid-crustal levels (ca. 10 ± 5 km; Sibson, 1983). 

In this contribution we have emphasized that feedback between hydrothermal alteration and 

deformation may have, at least locally, led to the onset of  crystal plastic deformation processes 

for auriferous shear zones in the Lupa goldfield. The depth of  ore deposit formation in the 

Lupa goldfield remains equivocal and requires additional study but the deformation processes 

that characterize auriferous mylonites are suggested to be compatible with shallower crustal 

levels than previously expected. 

5.7.4 Fluid pressure and dilation mechanisms

Experimental and field-based studies emphasise the importance of  fracturing — at a 

variety of  scales — in generating permeable fluid conduits in brittle-ductile shear zones (e.g., 

Kolb et al., 2004; Zhang et al., 2008). The opening of  these fractures and the development 

of  meso-scale veins at Au occurrences in the Lupa goldfield requires specific conditions of  

differential stress, fluid pressure and fracture orientation (presented here as a schematic Mohr 

circle diagram; Fig. 5.19). In compressional settings, shallow-dipping extensional veins form 

when fluid pressure (Pf) exceeds the sum of  the wall rock tensile strength (Tgranite) and the near-

vertical least compressive stress (σ3). Oblique-extension veins, forming at angles less than 30º to 

the near-horizontal maximum compressive stress (σ1), develop during conditions of  high fluid 

pressure and differential stress that is greater than required for the development of  extension 

veins, but lower than the differential stress required for shear failure (Cox et al., 2001; Fig. 5.19). 

The opening of  sub-vertical fault-fill veins sub-parallel to the maximum compressive stress 

represents a paradox in compressional deformation settings and requires special conditions 

(Kerrich and Allison, 1978; Vearncombe, 1998). The tensile strength of  phyllosilicate-rich 

mylonitic fault rocks (Tmylonite) is lower than granitic wall rocks and, where coupled with low 

differential stress, can result in fluid pressures exceeding the normal stress (σn) on the shear 

fault-�ll veins; 2θ = 180˚
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zone (Cox et al., 1995; Fig 5.19). The development of  sub-vertical fault-fill veins thus requires 

the following conditions: 

(σ3 + Tgranite) ≥ Pf ≥ (σn + Tmylonite) Equation 1 (Cox et al., 1995)

The presence of  oblique-extension and fault-fill veins at Porcupine provides valuable 

insight into the transient fluid pressure conditions at Au occurrences in the Lupa goldfield. 

During oblique-extension vein formation, fluid pressures are inferred to have exceeded the 

sum of  the tensile strength of  the granitic wall rock and the least compressive stress (Pf ≥ σ3 

+ Tgranite); whereas fluid pressures during fault-fill vein formation must have been lower, but 

nevertheless sufficient to exceed the sum of  the tensile strength of  the fault and the normal 

stress acting on the shear zone (Equation 1). Mutually cross cutting relationships between both 

auriferous vein types demonstrates mineralization occurred concomitant with these episodic 

fluid pressures fluctuations. The absence of  oblique-extension veins at Kenge implies fluid 

pressures at this Au occurrence were lower and suggests the Kenge shear zone may have been 

more favourably oriented for shear failure, which prevented fluid pressure build-up (Sibson et 

al., 1988; Sibson, 1990, 2004). 

Meso-scale veins and micro-fractures provide clear evidence for the importance of  brittle 

fractures as fluid pathways at Au occurrences in the Lupa goldfield, however intergranular flow 

within phyllosilicate-dominated mylonite fault-rock matrix is also expected (Cox and Etheridge, 

1989; Knipe and McCaig, 1994). X-ray CT scanning of  an auriferous shear zone sample from 

Mbenge demonstrates the three-dimensional distribution of  pyrite is clearly concentrated parallel 

to the main mylonitic foliation and associated shear band cleavages at the grain scale (Fig. 5.17). 

The mylonitic fabrics therefore represent a three dimensional network of  relatively permeable 

fluid conduits that led to the disseminated style of  pyrite in Au-bearing shear zones. Dilation 

normal to the shear zone (during fault-fill vein formation) likely facilitated intergranular flow 

of  hydrothermal fluids as suggested by the paradoxical orientation of  quartz strain fringes and 

the ubiquitous association of  disseminated pyrite concordant with mylonitic fabrics (Fig. 5.17). 

Intergranular flow and micro-fractures are thought to be relatively ineffective at distributing 

large fluid fluxes and likely resulted in the fluid pressure necessary for the development of  

oblique-extension veins (Kolb et al., 2004). 

 

5.8 Conclusions
Examination of  rocks within Lupa goldfield artisanal workings and oriented core reveals 

a remarkable variability of  Au-bearing structures. Auriferous mylonitic shear zones and fault-fill 

veins characterize Kenge, Mbenge and the majority of  artisanal mines, whereas the highest Au 

grades at Porcupine are hosted by hydrothermally altered and veined but non-foliated granite. 

Widespread evidence for hydrothermal alteration is suggested to be the commonality between 

disparate Au-bearing structures and micro- to meso-scale observations imply feedback between 

hydrothermal alteration, deformation and mineralization. In particular, hydrothermal alteration 

led to the replacement of  strong, load bearing feldspars (plagioclase and K feldspar) with weak 

phyllosilicates locally producing the ideal conditions for strain localization, mylonitization and 
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further fluid flow. Pre-existing structural weaknesses (e.g., D1 foliation, lithologic contacts, 

and/or pre-D2 brittle deformation) likely played a key role during the initial localization of  

hydrothermal fluids and strain.  

Asymmetric fabrics in plan and section views imply non-coaxility of  the strike- and dip-

slip components of  strain and a transpressional deformation setting (reverse oblique movement 

vector) along the examined shear zones that is consistent with the flattening strain inferred 

from oblate porphyroclasts and the prevalence of  S-type tectonites. Variably oriented mineral 

stretching lineations may record strain partitioning along and across the examined shear 

zones, however kinematic indicators in plan and section view suggest strain was incompletely 

partitioned at the outcrop and deposit scales.   

The occurrence of  fault-fill and oblique-extension veins at Porcupine suggests fluid 

pressure fluctuations occurred concomitant with mineralization. Thick fault-fill veins with crack-

seal textures suggest fluid pressures may have locally exceeded the sum of  the tensile strength 

of  the fault and the normal stress acting on the shear zone. Shear zone normal dilation caused 

by these excess fluid pressures likely promoted intergranular flow and led to the disseminated 

style of  mineralization observed in auriferous mylonites. 
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Survey, Keyworth, Nottingham, NG12 5GG, UK

6.1 Introduction
Deciphering the superimposed tectono-thermal histories of  orogenic belts is a continuing 

challenge due to the difficulty in extracting the timing of  the different stages of  this thermal 

evolution from the rock record. The Lupa goldfield, SW Tanzania records evidence for at 

least three orogenic cycles spanning ca. 2 Byr and thus correlating deformation, magmatism 

and mineralization to a particular orogenic cycle is equivocal in the absence of  precise 

geochronologic constraints (Boniface et al., 2012; Boniface and Schenk, 2012; Chapter Two). 

The U-Pb titanite geochronometer is a valuable tool in these complex geologic settings because 

of  its occurrence in a wide variety of  rock types, the incorporation of  significant U (ppm levels) 

into its structure during crystallization and its relatively high closure temperature (550–650ºC; 

Frost et al., 2000). The latter makes U-Pb titanite geochronology particularly effective for dating 

igneous and prograde metamorphic events despite overprinting greenschist to amphibolite 

facies metamorphism (e.g., Lucassen and Becchio, 2003). Titanite is also highly reactive in 

metamorphic environments due to its chemical composition (CaTiSiO5) and is therefore locally 

observed as a mineral constituent of  metamorphic mineral assemblages and/or deformation 

fabrics. Thus, U-Pb titanite ages can record the timing of  metamorphism and/or deformation 

and provide insights into the tectono-thermal evolution of  a poly-orogenic setting.    

Here we present new U-Pb titanite ID-TIMS geochronology which, coupled with previously 

reported U-Pb zircon and Re-Os sulfide ages, establishes absolute ages for metamorphism, 

magmatism and metallogenesis at orogenic Au deposits in the Lupa Goldfield, SW Tanzania. In 

particular, comparing U-Pb titanite ages with U-Pb zircon ages for the same samples proves to be 

a powerful tool in constraining the metamorphic and structural evolution of  the goldfield. The 

absolute ages presented here quantify the time scale(s) of  tectonic, magmatic and metallogenic 
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events in the Lupa goldfield and contribute to a better understanding of  the tectono-thermal 

evolution of  East Africa. The results are further applied to address many of  the uncertainties 

related to the orogenic Au deposit models that are a consequence of  a dearth of  geochronologic 

constraints.

6.2 The chronology of  orogenic Au deposits
Determining the absolute age(s) of  magmatism, metamorphism and orogenic Au 

deposits is the subject of  concentrated study and continuing controversy (e.g., Groves et al., 

2003). Establishing the timing of  mineralization is particularly challenging due the dearth of  

suitable minerals for traditional geochronologic methods. Recent Re-Os studies utilizing sulfide 

geochronometers co-genetic with Au provide unequivocal examples of  Au mineralization 

concomitant with magmatic intrusions at the Myr time scale (e.g., Morelli et al., 2007; Ootes et al., 

2011; Chapter Four). These studies add to an expanding global database of  geochronologic ages 

that demonstrate broad contemporaneity between the absolute timing of  Au and magmatism at 

most world-class goldfields (e.g., Kerrich and Cassidy, 1994; Kerrich and Kyser, 1994; Oberthur 

et al., 1998; Arne et al., 2001; Davis and Lin, 2003; Bucci et al., 2004; Dziggel et al., 2010; 

McFarlane et al., 2011). The temporal relationship between magmatism and Au mineralization 

has led to the “intrusion-related” deposit model and is cited as evidence for the importance of  

magmatically derived hydrothermal fluids in the formation of  epigenetic Au deposits hosted by 

metamorphic belts (Groves et al., 1998; Sillitoe and Thompson, 1998; Groves et al., 2003). The 

inference of  magmatic and thus locally derived hydrothermal fluids is at odds with orogenic 

gold deposits, which are hosted in similar geologic settings, but form as a result of  distal 

hydrothermal fluids of  probable metamorphic origin (e.g., Phillips and Powell, 2010). Whilst 

the genetic relationship between magmatic fluids and Au is satisfactorily demonstrated at several 

deposits (e.g., Hemlo; Davis and Lin, 2003), the exact role of  magmatism in the formation of  

orogenic Au remains uncertain at most orogenic Au deposits (e.g., Charter Towers; Kreuzer, 

2005). 

Constraining the timing of  greenschist to amphibolite facies metamorphism is typically 

more problematic with pre-, post- and syn-metamorphic deposits all represented in the literature 

(e.g., Kerrich and Cassidy, 1994). Whilst all three relative-age scenarios are plausible, there is a 

general consensus that most Au deposits occur relatively late in the tectono-thermal evolution 

of  accretionary orogens (e.g., Kerrich and Wyman, 1990; Witt and Vanderhor, 1998; Groves 

et al., 2000). Au occurrences in the Lupa goldfield occur in Paleoproterozoic magmatic arc at 

the Tanzanian cratonic margin and thus share a close spatial and temporal relationship with 

granitic intrusions (Chapters Two and Four), whereas the timing of  metamorphism has not 

been previously constrained.     

6.3 Lupa goldfield geology
6.3.1 Regional and local geologic setting

The Lupa Terrane represents one of  eight litho-tectonic terranes comprising the 
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Paleoproterozoic Ubendian Belt (Daly, 1988; Fig. 6.1). The 2.1–2.0 Ga Paleoproterozoic 

Ubendian tectonic phase is characterized by rare granulite facies tectonites and is overprinted by 

a 1.9–1.8 Ga tectonic phase that resulted in the characteristic amphibolite facies metamorphism 

and NW-SE trending terrane-bounding shear zones (Lenoir et al., 1994). The Paleoproterozoic 

tectono-thermal event is overprinted by Meso- and Neoproterozoic orogenic cycles and later 

rifting associated with the western branch of  the East African Rift system, which all contributed 

to the current configuration of  the Ubendian Belt litho-tectonic terranes (Theunissen et al., 

1996; Boniface et al., 2012; Boniface and Schenk, 2012).

The field area for the current study is located in the western portion of  the Lupa 

goldfield, SW Tanzania (Fig. 6.1). Foliated Archean granitoids (ca. 2740 Ma) are intruded by 

non-foliated Paleoproterozoic granitoids (1960–1880 Ma; Chapter 2). The temperature and 

pressure conditions of  foliation development (D1; 2740–1960 Ma) occurred at greenschist 

facies metamorphic conditions based on crystal plasticity of  quartz and the chlorite ± muscovite 

± epidote ± calcite metamorphic mineral assemblage (300–450ºC; 1–3 kbar; Scholz, 1988). 

All magmatic phases have experienced greenschist facies metamorphism and are cross cut by 

mylonitic shear zones (D2; Chapters Four and Five). The latter occurred concomitant with a 

goldfield-wide sulphidation event dated by Re-Os syn-deformational pyrite geochronology at 

ca. 1885 Ma (Chapter 4). Individual Re-Os molybdenite, pyrite and chalcopyrite model ages 

range from 1950–1880 Ma and are thus broadly contemporaneous with the entire magmatic 

history (1960–1880 Ma).  
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Figure 6.1 – Simplified regional geology map showing the 
location of  goldfields in East Africa relative to Archean 
Cratons and Proterozoic mobile Belts (modified from 
CCGM/CGMW, 2002; UbB = Ubendian Belt; UsB = 
Usagaran Belt; KiB = Kibaran Belt; IrB = Irumide Belt; 
MzB = Mozambique Belt; KL arc = Katangan-Lufilian 
Arc; KaS = Karoo sedimentary rocks; BuS = Bukoban 
sedimentary rocks; SuD = surficial deposits; R = Lake 
Rukwa).
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6.3.2 Titanite paragenesis

Foliated Archean granitoids (2757 ± 10 Ma; sample CL109; Chapter 2) are characterized 

by alternating quartzofeldspathic and chlorite-rich bands produced during greenschist facies 

metamorphism (D1). The minimum age of  D1 is constrained by the U-Pb zircon ages of  non-

foliated cross cutting dikes (e.g., 1960 ± 1 Ma; sample CL0911; Chapter 2). Titanite crystals 

are concentrated within the D1 chlorite-rich bands and the greenschist facies metamorphic 

assemblage of  chlorite ± epidote ± calcite ± titanite ± opaques overprinting the protlith’s 

Fe-Mg minrals (Fig. 6.2a). The petrographic association of  titanite with the tectonic fabric 

and metamorphic mineral assemblage are consistent with titanite neo-crystallization during 

greenschist facies metamorphism (e.g., Frost et al., 2000). The nature of  this metamorphic phase 

transition is unclear, but could be related to the breakdown of  primary clinopyroxene and/or 

amphibole by the hydration reaction clinopyroxene + ilmenite + quartz + H2O = amphibole 

+ titanite and/or the oxidation reaction amphibole + ilmenite + O2 = titanite + magnetite + 

quartz + H2O (Harlov et al., 2006). 

 Primary Fe-Mg minerals of  the Paleoproterozoic Saza Granodiorite (U-Pb zircon ID-

TIMS weighted average 207Pb/206Pb age at 1934.5 ± 1.0; sample CL1035; Chapter Two) are also 

replaced to a greenschist facies metamorphic mineral assemblage of  chlorite ± epidote ± calcite 

± titanite ± opaques. The association of  titanite with the metamorphic mineral assemblage 

is consistent with titanite neo-crystallization during greenschist facies metamorphism, 

however euhedral titanite crystals isolated from the metamorphic mineral assemblage may 

represent relict magmatic titanite (Fig. 6.2b). Multiple titanite populations are characteristic of  

metamorphosed lithologies and are typically distinguished through a combination of  optical/

chemical characteristics and/or comparison of  titanite ages with independent estimates for the 

20 μm

b

a

50 μm

titanite
chlorite

apatite

chlorite

titanite

epidote Figure 6.2 – Plane polarized light photomicrographs: (a) 
photomicrograph of  titanite associated with greenschist 
facies metamorphic mineral assemblage and tectonic 
fabric (SZD23 at 32m); (b) euhedral titanite crystal 
from CL0975 (500237 / 9071994).  
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crystallization age of  the sample (Jung and Hellebrand, 2007). 

The titanite crystals present within the bulk mineral separate from sample CL109 and 

CL1035 are translucent, range in colour from brown to clear and are present as broken fragments 

and fine-grained wedge-shaped crystals in the bulk mineral separate. For samples CL109 and 

CL1035 translucent and clear titanite crystals devoid of  inclusions were selected for U-Pb ID-

TIMS analysis. 

6.5 U-Pb titanite ID-TIMS Methodology
All of  the analysed titanite crystals were ultrasonically cleaned for an hour before being 

placed on a hot plate for 30 minutes, photographed in transmitted light and rinsed in ultrapure 

acetone. After rinsing, titanite fractions were transferred to 300 µl Teflon FEP microcapsules 

and spiked with a mixed 233U–235U–205Pb tracer. Titanite was dissolved in ~120 µl of  29 M HF 

with a trace amount of  30% HNO3 within microcapsules, placed in Parr vessels at ~220°C 

for 48 hours, dried to fluorides and then converted to chlorides at ~180°C overnight. U 

and Pb for all titanite fractions were separated using standard HBr and HNO3-based anion-

exchange chromatographic procedures. Isotope ratios were measured at the NERC Isotope 

Geosciences Laboratory (NIGL), UK, using a Thermo-Electron Triton Thermal Ionisation 

Mass-Spectrometer (TIMS). Pb and U were loaded separately on a single Re filaments in a silica-

gel/phosphoric acid mixture. Pb was measured by peak-hopping on a single SEM detector. U 

isotopic measurements were made in static Faraday mode. Age calculations and uncertainty 

estimation (including U/Th disequilibrium) was based upon the algorithms of  Schmitz and 

Schoene (2007) and using the updated consensus value of  238U/235U = 137.818 ± 0.045 (Hiess 

et al., 2012)

6.6 U-Pb titanite ID-TIMS results
The analytical protocol and U-Pb data are reported in Table 6.1 and Fig. 6.3. For the 

foliated Archean granitoid (sample CL109), the three analyzed titanite fractions yield 238U/204Pb 

and 206Pb/204Pb ratios ranging from 112–555 and 39–172, respectively. The latter is indicative 

of  a significant contribution of  common Pb that was corrected for by using the model Pb 

composition at 1.9 Ga (Stacey and Kramers, 1975). All three fractions are discordant, but define 

a three-point Model 1 York regression with an upper concordia intercept age at 1947 ± 14 Ma 

and lower concordia intercept age at 475 ± 110 Ma (MSWD = 1.4; n =3; Fig. 6.3a). The analyzed 

titanite fractions contain significant common Pb that makes calculated ages highly dependent 

on the choice of  the initial Pb isotopic composition (Frost et al., 2000). We tested the effect of  

the assumed initial Pb composition on titanite ages by varying the Stacey and Kramer (1975) 

model age composition from 2.0–1.8 Ga and found that calculated 207Pb/206Pb titanite ages 

changed from 4–31 Myr. Titanite fraction S1 was the least sensitive to the assumed initial Pb 

composition, whereas titanite fractions S3 and S4 were considerably more sensitive. However, 

the upper intercept age at 1947 ± 14 Ma is in good agreement with the onset of  Paleoproterozoic 

magmatism (1960–1880 Ma; Chapter Two) and suggests that titanite neocrystallization occurred 



Chapter 6. U-Pb Titanite Geochronology                                                                                                                                                      

– 155 –

W
t.

U
Th

Pb
20

6 Pb
*

m
ol

 %
Pb

*
Pb

c
20

6 Pb
20

8 Pb
20

7 Pb
20

7 Pb
20

6 Pb
co

rr.
20

7 Pb
20

7 Pb
20

6 Pb
Sa

m
pl

e
m

g
pp

m
U

pp
m

x1
0-1

3  m
ol

20
6 Pb

*
Pb

c
(p

g)
20

4 Pb
20

6 Pb
20

6 Pb
%

 e
rr

23
5 U

%
 e

rr
23

8 U
%

 e
rr

co
ef

.
20

6 Pb
± 

23
5 U

± 
23

8 U
± 

(a
)

(b
)

(c
)

(d
)

(c
)

(e
)

(e
)

(e
)

(e
)

(f
)

(g
)

(g
)

(h
)

(g
)

(h
)

(g
)

(h
)

(i)
(h

)
(i)

(h
)

(i)
(h

)

C
L0

97
5

s1
1.

0
0.

9
7.

10
1

1.
0

12
.6

00
5

86
.9

5%
5

16
9.

8
11

8
2.

04
1

0.
11

82
51

0.
50

7
5.

75
10

13
0.

54
3

0.
35

28
84

0.
27

2
0.

38
0

19
29

.2
8

9.
08

19
39

.0
7

4.
70

19
48

.2
5

4.
58

s2
1.

0
0.

4
7.

02
4

0.
4

5.
56

66
87

.7
5%

5
69

.6
2

12
6

1.
98

8
0.

11
85

36
0.

46
2

5.
94

43
01

0.
50

5
0.

36
38

70
0.

25
1

0.
41

1
19

33
.5

7
8.

27
19

67
.7

3
4.

39
20

00
.3

9
4.

32
s3

1.
0

1
6.

54
5

0.
6

8.
66

24
95

.0
7%

13
40

.1
4

31
5

1.
77

4
0.

11
77

71
0.

21
4

6.
36

47
91

0.
29

2
0.

39
21

38
0.

14
1

0.
71

6
19

21
.9

5
3.

84
20

27
.4

3
2.

56
21

32
.6

5
2.

57
s4

1.
0

0
7.

63
4

0.
2

2.
32

94
93

.0
4%

10
15

.4
7

22
6

2.
20

0
0.

11
81

60
0.

28
9

5.
71

13
12

0.
37

9
0.

35
07

18
0.

17
8

0.
68

4
19

27
.9

2
5.

17
19

33
.0

8
3.

28
19

37
.9

0
2.

98
s5

1.
0

0
6.

95
0

0.
2

3.
52

24
94

.5
0%

13
18

.2
4

28
5

2.
01

3
0.

11
84

14
0.

24
8

5.
68

56
37

0.
37

3
0.

34
83

94
0.

22
3

0.
76

5
19

31
.7

4
4.

44
19

29
.1

9
3.

22
19

26
.8

2
3.

71

C
L1

09
s1

1.
0

0
8.

69
2

0.
2

1.
86

01
90

.0
5%

8
17

.5
5

17
2

2.
65

1
0.

11
71

58
0.

38
1

5.
04

70
31

0.
45

6
0.

31
24

38
0.

22
3

0.
55

6
19

13
.5

1
6.

83
18

27
.2

5
3.

87
17

52
.5

3
3.

42
s3

1.
0

0
5.

65
5

0.
1

0.
88

98
63

.2
6%

1
44

.2
6

46
2.

10
4

0.
10

58
22

5.
90

0
2.

66
03

28
6.

44
4

0.
18

23
29

1.
26

3
0.

51
0

17
28

.8
7

10
8.

30
13

17
.5

1
47

.5
5

10
79

.5
7

12
.5

5
s4

1.
0

0
8.

91
5

0.
1

0.
38

29
55

.9
9%

1
25

.7
4

39
3.

13
2

0.
10

60
00

3.
39

2
3.

05
14

59
3.

55
3

0.
20

87
85

1.
48

1
0.

31
5

17
32

.1
0

62
.2

4
14

20
.6

0
27

.1
8

12
22

.1
2

16
.4

9

(e
) P

b*
 a

nd
 P

bc
 re

pr
es

en
t r

ad
io

ge
ni

c 
an

d 
co

m
m

on
 P

b,
 re

sp
ec

tiv
el

y;
 m

ol
 %

 20
6 Pb

* 
w

ith
 re

sp
ec

t t
o 

ra
di

og
en

ic
, b

la
nk

 a
nd

 in
iti

al
 c

om
m

on
 P

b.
(f

) M
ea

su
re

d 
ra

tio
 c

or
re

ct
ed

 fo
r s

pi
ke

 a
nd

 fr
ac

tio
na

tio
n 

on
ly

.
   

  D
al

y 
an

al
ys

es
, b

as
ed

 o
n 

an
al

ys
is

 o
f N

B
S-

98
1 

an
d 

N
B

S-
98

2.

(h
) E

rr
or

s a
re

 2
-s

ig
m

a,
 p

ro
pa

ga
te

d 
us

in
g 

th
e 

al
go

rit
hm

s o
f S

ch
m

itz
 a

nd
 S

ch
oe

ne
 (2

00
7)

 a
nd

 C
ro

w
le

y 
et

 a
l. 

(2
00

7)
.

(j)
 C

or
re

ct
ed

 fo
r f

ra
ct

io
na

tio
n,

 sp
ik

e,
 a

nd
 b

la
nk

 P
b 

on
ly

.

C
om

po
si

tio
na

l P
ar

am
et

er
s

R
ad

io
ge

ni
c 

Is
ot

op
e 

R
at

io
s

Is
ot

op
ic

 A
ge

s
Ta

bl
e 

6.
1 

– 
U

-P
b-

Th
 ti

ta
ni

te
 ID

-T
IM

S 
re

su
lts

(a
) s

1,
 s2

 e
tc

. a
re

 la
be

ls
 fo

r f
ra

ct
io

ns
 c

om
po

se
d 

of
 si

ng
le

 ti
ta

ni
te

 g
ra

in
s o

r f
ra

gm
en

ts
; a

ll 
fr

ac
tio

ns
 a

nn
ea

le
d 

an
d 

ch
em

ic
al

ly
 a

br
ad

ed
 a

fte
r M

at
tin

so
n 

(2
00

5)
.

(i)
 C

al
cu

la
tio

ns
 a

re
 b

as
ed

 o
n 

th
e 

de
ca

y 
co

ns
ta

nt
s o

f J
af

fe
y 

et
 a

l. 
(1

97
1)

. 2
06

Pb
/23

8 U
 a

nd
 2

07
Pb

/20
6 Pb

 a
ge

s c
or

re
ct

ed
 fo

r i
ni

tia
l d

is
eq

ui
lib

riu
m

 in
 2

30
Th

/23
8 U

 u
si

ng
 T

h/
U

 [m
ag

m
a]

 =
 3

.

(b
) N

om
in

al
 fr

ac
tio

n 
w

ei
gh

ts
 e

st
im

at
ed

 fr
om

 p
ho

to
m

ic
ro

gr
ap

hi
c 

gr
ai

n 
di

m
en

si
on

s, 
ad

ju
st

ed
 fo

r p
ar

tia
l d

is
so

lu
tio

n 
du

rin
g 

ch
em

ic
al

 a
br

as
io

n.
(c

) N
om

in
al

 U
 a

nd
 to

ta
l P

b 
co

nc
en

tra
tio

ns
 su

bj
ec

t t
o 

un
ce

rta
in

ty
 in

 p
ho

to
m

ic
ro

gr
ap

hi
c 

es
tim

at
io

n 
of

 w
ei

gh
t a

nd
 p

ar
tia

l d
is

so
lu

tio
n 

du
rin

g 
ch

em
ic

al
 a

br
as

io
n.

(d
) M

od
el

 T
h/

U
 ra

tio
 c

al
cu

la
te

d 
fr

om
 ra

di
og

en
ic

 20
8 Pb

/20
6 Pb

 ra
tio

 a
nd

 20
7 Pb

/23
5 U

 a
ge

.

(g
) C

or
re

ct
ed

 fo
r f

ra
ct

io
na

tio
n,

 sp
ik

e,
 a

nd
 c

om
m

on
 P

b;
 u

p 
to

 1
 p

g 
of

 c
om

m
on

 P
b 

w
as

 a
ss

um
ed

 to
 b

e 
pr

oc
ed

ur
al

 b
la

nk
: 20

6 Pb
/20

4 Pb
 =

 1
8.

60
 ±

 0
.8

0%
; 20

7 Pb
/20

4 Pb
 =

 1
5.

69
 ±

 0
.3

2%
;

   
  2

08
Pb

/20
4 Pb

 =
 3

8.
51

 ±
 0

.7
4%

 (a
ll 

un
ce

rta
in

tie
s 1

-s
ig

m
a)

.  
Ex

ce
ss

 o
ve

r b
la

nk
 w

as
 a

ss
ig

ne
d 

to
 in

iti
al

 c
om

m
on

 P
b.



Chapter 6. U-Pb Titanite Geochronology                                                                                                                                                      

– 156 –

during the Paleoproterozoic (discussed further below).             

For the Saza granodiorite, five titanite fractions (sample CL0975) possess a range of  
238U/204Pb and 206Pb/204Pb from 294–859 and 118–315, respectively. These ratios imply that 

titanite crystals from CL0975 are more U rich and possess less common Pb than titanite analyses 

from CL109. As result, the choice of  the initial Pb isotopic composition using the model Pb 

composition at 1.9 Ga (Stacey and Kramers, 1975) has a smaller effect on the calculated ages 

(for example changing the model age Pb composition from 2.0–1.8 Ga results in 207Pb/206Pb 

titanite ages changing by 2–6 Myr). Three titanite fractions overlap with the Concordia curve, 

whereas two titanite analyses are 3–11% reversely discordant (Fig. 6.3b). The cause of  reverse 

discordance is unclear and could be related to U loss and/or represent an analytical effect. A 

weighted average 207Pb/206Pb age of  the three concordant titanite fractions at 1930 ± 3 (MSWD 
= 0.6; n = 3) is slightly younger, including uncertainty at the 2σ, than the weighted average 
207Pb/206Pb age of  concordant zircons from the same sample at 1935 ± 1 Ma (Chapter Two).                
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Figure 6.3 – (a) Concordia plot showing U-Pb titanite 
analyses and upper/lower intercept ages for sample 
CL109; (b) Concordia plots showing U-Pb titanite 
analyses (black ellipses) and upper intercept age for 
sample CL0975. Inset diagram shows concordant U-Pb 
titanite analyses and U-Pb zircon analyses (red ellipses) 
for CL0975 (Chapter Two).  
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6.7 Discussion
6.7.1 Geologic significance of  U-Pb titanite ages

Titanite crystals from the foliated Archean granite sample (CL109) are spatially associated 

with the metamorphic fabric/mineral assemblage and provide clear evidence for titanite neo-

crystallization during greenschist facies metamorphism and deformation. The absence of  

unambiguous magmatic titanite, which is expected given the chemical composition of  CL109, 

suggests all primary titanite crystals were recrystallized during subsequent metamorphism. 

The high common Pb and low 238U/204Pb ratios of  the analyzed titanite fractions support this 

interpretation and are consistent with the compositional characteristics of  metamorphic titanite 

reported in previous studies (e.g., Jung and Hellebrand, 2007). The three point Model 1 York 

regression upper concordia intercept age at 1947 ± 14 Ma is also significantly younger than the 

U-Pb zircon age for the same sample at 2757 ± 10 Ma (Chapter Two). Therefore, we interpret 

the U-Pb titanite age as a metamorphic age that provides a first-order constraint on the onset of  

greenschist facies metamorphism and the timing of  deformation (D1). Foliated Archean granites 

are cross cut by ca. 1960 Ma non-foliated granitoids and imply that deformation preceded the 

intrusion of  these magmatic phases (Chapter Two). Our U-Pb titanite age partially overlaps with 

this upper temporal constraint and, if  the U-Pb titanite age is presumed to represent a geologically 

meaningful age, suggests either: 1) deformation and the development of  the metamorphic fabric 

exhibited by Archean granites samples occurred immediately prior to ca. 1960 Ma magmatism; 

or 2) deformation and the development of  the metamorphic fabric exhibited by Archean granite 

samples occurred significantly prior to ca. 1960 Ma and the U-Pb titanite age records the most 

recent metamorphic overprint during the Paleoproterozoic. The latter is consistent with pre-

1960 Ma tectono-thermal events recorded in other Ubendian Terranes (Lenoir et al., 1994), 

however given the small number of  analyses and the large common Pb correction the precise 

age of  metamorphic titanite remains tentative. 

Titanite from the non-foliated Saza granodiorite (sample CL0975) are locally associated 

with the greenschist facies mineral assemblage overprinting the Saza Granodiorite and are thus 

similar to titanite crystals observed in the foliated Archean granitoid (sample CL109). However, 

euhedral titanite crystals isolated from the Saza Granodiorite provide evidence for a magmatic 

titanite population. The higher 206Pb /238U ratios and lower common Pb within the analyzed 

titanite fractions from the Saza granodiorite are distinct from titanite fractions from the foliated 

Archean granitoid and are more consistent with the composition of  magmatic titanite (e.g., Jung 

and Hellebrand, 2007). The weighted average 207Pb/206Pb titanite age of  the three concordant 

titanite analyses (1930 ± 3 Ma) are slightly outside of  analytical uncertainty of  the weighted 

average 207Pb/206Pb zircon age (1935 ± 1 Ma) of  concordant zircons for the same sample and 

support a magmatic origin for the analyzed titanite fractions. The slight discrepancy between 

the interpreted crystallization age and U-Pb titanite ages could be related to minor Pb-loss in 

the analyzed titanite fractions, later closure during cooling and/or sub-solidus recrystallization 

(Frost et al., 2000). If  the nominally younger ages represent cooling ages, our results would 

imply that the Saza Granodiorite cooled relatively quickly since U-Pb titanite and zircon ages are 
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only <1 Myr outside of  analytical uncertainty at 2σ level. Establishing the cooling history of  the 

Saza Granodiorite is particularly important for ore deposit models that invoke the importance 

of  magmatically derived hydrothermal fluids (discussed further below).           

     

6.7.2 Timing of  granites, Au and metamorphism in the Lupa goldfield

Here we integrate the new U-Pb titanite ages with previously reported U-Pb and Re-

Os ages to address some of  the outstanding uncertainties regarding Au occurences within the 

Lupa goldfield and explore the implications of  our results for other examples of  the orogenic 

Au deposit type globally. At least two metallogenic events at ca. 1940 and 1885 Ma have been 

identified in the Lupa goldfield (Chapter Four). Each of  these broad metallogenic events are 

represented in detail by complex vein histories that imply mineralization occurred at a time 

scale that is less than the resolution of  the Re-Os method. This episodic, but protracted 

mineralizing history (1950–1880 Ma) overlaps with the magmatic history of  the goldfield as 

determined by U-Pb zircon dating of  felsic-mafic intrusions/dikes (1960–1880 Ma; Chapter 

Two). Furthermore, high-precision U-Pb zircon ID-TIMS ages for the Saza Granodiorite 

overlap with Re-Os molybdenite ages and provide unequivocal evidence for sulphidation that is 

concomitant with magmatism at the Myr time scale. The genetic significance of  this temporal 

overlap is less clear since Re-Os model ages pre- and post-date individual magmatic phases and 

metallogenesis appears to occur at a time scale that is far greater than the expected duration 

of  magmatically derived hydrothermal fluid circulation (e.g., <1 Myr; von Quadt et al., 2011). 

Therefore, hydrothermal fluids exsolving from any of  the dated magmatic phases are unable to 

explain the entire range of  Re-Os sulfide model ages. The U-Pb titanite ages from the foliated 

Archean granitoid, suggests that greenschist facies metamorphism initiated at ca. 1950 Ma. 

All of  the rocks observed in the field area have undergone greenschist facies metamorphism 

and implies that greenschist facies pressure and temperature conditions either persisted until 

at least 1880 Ma or require a second metamorphic event at <1880 Ma. Pyrite crystals wrapped 

by the greenschist facies mylonitic fabric and, dated at ca. 1880 Ma, constrain the timing of  

mylonitization and also likely record the timing of  this younger metamorphic event. The 

broad temporal overlap between metallogenic (1950–1880 Ma), magmatic (1960–1880 Ma) 

and metamorphic (1950–1880 Ma) events in the Lupa goldfield are also well correlated to 

tectono-thermal events in other Ubendian terranes. Specifically, the Paleoproteorzoic MORB-

like chemistry eclogites (ca. 1890 and 1860 Ma; Boniface et al., 2012) in the Ubende Terrane 

demonstrates that high-grade metamorphism related to subduction of  oceanic crust occurred 

simultaneously with metallogenesis in the Lupa goldfield. Paleoproterozoic eclogitic rocks in the 

Ubende Terrane are amongst the oldest eclogites on Earth (Boniface et al., 2012). As a result, the 

orogenic Au deposits in the Lupa goldfield represent one of  the earliest analogs for Phanerozoic 

orogenic Au deposits. A holistic understanding of  Ubendian tectonics requires additional study, 

but the link between subduction processes and orogenic Au in the Lupa goldfield is implied.    
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6.7.3 Implications for the orogenic Au deposit model

Modern convergent margins are associated with protracted histories of  broadly 

contemporaneous metamorphism, deformation and magmatism. The temporal framework 

developed here suggests an analogous geologic setting for orogenic Au deposits in the 

Lupa goldfield. Our results preclude individual intrusions as the source of  Au at orogenic 

gold deposits in the Lupa goldfield, but also highlight the need to integrate geochronologic 

studies with other geochemical tools in order to identify the source(s) of  metalliferous fluids. 

Temporal relationships are generally not sufficient to determine genetic relationships between 

metamorphism, magmatism and metallogenesis as all three are intrinsically linked at accretionary 

orogens where orogenic Au deposits develop (Bierlein et al., 2009). 

Whilst the source of  metals remains uncertain, there is a growing consensus that a Au-

enriched upper-mantle is likely a first order control on orogenic Au deposit formation (e.g., 

Hronsky et al., 2012). A mantle source is also consistent with 187Os/188Osinitial values of  pyrite 

co-genetic with Au reported in the Lupa goldfield and other orogenic Au deposits (e.g., Morelli 

et al., 2007; Chapter Four). The enrichment of  the upper mantle is likely related to subduction 

zone processes and concentration of  incompatible elements during mantle melting (Richards, 

2009). The locus of  the Lupa goldfield at the Tanzanian cratonic margin may have had an 

important role in allowing upper-mantle fertilization over a protracted period and through 

multiple orogenic cycles. The latter is supported by Meso- and Neoproterozoic Re-Os model 

ages and lower intercept U-Pb ages recorded in the Lupa Goldfield that can be correlated with the 

Kibaran/Irumide and Pan African orogenic cycles (Chapter 2). Furthermore, Neoproterozoic 

and Paleozoic orogenic Au deposits are recorded to the NW and to the SE of  the Lupa 

goldfield and along strike of  the Ubendian Belt (e.g., Mpanda goldfield, Stendal et al., 2004; 

Niassa goldfield, Bjerkgard et al., 2009; Fig. 6.1). The cratonic margins bordering the Ubendian 

Belt are therefore highly prospective for orogenic Au deposits that may have developed during 

at least three discrete orogenic cycles and over a period of  at least 1.5 Byr. Our results affirm 

previous suggestions that the association of  orogenic Au deposits and cratonic margins may 

be related to Au-enriched upper mantle source that is long-lived and can be repeatedly tapped 

during temporally distinct orogenic cycles (Hronsky et al., 2012). The high permeability of  

mid-crustal shear zones relative to the wall rock likely transported hydrothermal fluids from 

some source(s) at depth during each orogenic cycle and led to overprinting sulphidation and 

potentially upgraded Au grade at pre-existing deposits. 

6.8 Conclusions
 Titanite U-Pb geochronology for a foliated Archean granitoid at 1947 ± 14 Ma provides a 

first order constraint on the onset of  greenschist facies metamorphism and deformation during 

the Paleoproterozoic. In contrast, U-Pb titanite ages for the non-foliated Saza Granodiorite at 

1930 ± 3 Ma are only nominally younger than the U-Pb zircon age (1935 ± 1 Ma) for the same 

sample. These U-Pb titanite ages, combined with previously reported U-Pb zircon and Re-Os 

sulfide geochronology, constrain the timing of  magmatism (1960–1880 Ma), metallogenesis 
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(1950–1880 Ma) and metamorphism (1947–1880 Ma) in the Lupa goldfield. The tectono-

magmatic-metallogenic evolution of  the Lupa goldfield occurred concurrently with amphibolite 

to eclogite facies metamorphism and subduction of  oceanic crust in other Ubendian Terranes. 

The Paleoproterozoic metallogenic events in the Lupa goldfield represent the earliest episode of  

orogenic Au deposit formation and are superseded by younger orogenic Au-type mineralization 

related to three discrete orogenic cycles. Cratonic margins bordering the Ubendian Belt are 

therefore highly prospective for orogenic Au deposits that may have formed during its 2.7 Byr 

tectono-thermal history. 
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– Chapter Seven –

Conclusions, Mineral Exploration Implications and Future Research

7.1 Conclusions
7.1.1 Chapter Two

•	 U-Pb results demonstrate that previously considered Proterozoic granitoids are in fact 

Archean	and	imply	that	significant	portions	of 	the	Ubendian	Belt	represent	re-worked	

Archean crust. Archean granitoids (ca. 2740 Ma) possess inherited zircon cores (ca. 2850 

Ma)	and	are	thought	to	represent	melting	of 	≥3.1	Ga	crust	based	on	176Hf/177Hf  results 

that	are	inconsistent	with	melting	of 	Neoarchean	mantle.	The	U-Pb	and	Lu-Hf 	results	are	

compatible	with	a	growing	number	of 	deep	seismic	studies,	which	demonstrate	laterally	

extensive Archean lithosphere underlying many other Proterozoic accretionary orogens 

(Snyder,	2002;	Begg	et	al.,	2009;	Hammer	et	al.,	2010). 
    

•	 Paleoproterozoic	 felsic-mafic	 plutons/dikes	 (1960–1880	 Ma)	 possess	 trace	 element	

characteristics	that	are	typical	of 	modern-day	continental	arcs	and	suggest	the	Lupa	Terrane	

represented	a	Paleoproterozoic	continental	magmatic	arc	onto	which	the	other	Ubendian	

Terranes	were	accreted.	The	U-Pb	results	are	consistent	with	previously	reported	U-Pb	

ages	from	other	Ubendian	Terranes	and	provide	evidence	for	a	protracted	and	diachronous	

magmatic	history	during	the	Paleoproterozoic	Ubendian	orogenic	cycle	(Boniface	et	al.,	

2011;	Boniface	and	Schenk,	2012).	The	 juxtaposition	of 	contemporaneous	greenschist	

and	 granulite-amphibolite	 facies	metamorphism	 implies	 significant	 displacement	 along	

the terrane-bounding shear zones.  

7.1.2 Chapter Three

•	 Re-Os systematics are not affected by exposure to HF at room temperature and the 

HF	mineral	separation	technique	can	be	used	to	isolate	sufficient	quantities	of 	ultrafine	

molybdenite	 samples	 for	 Re-Os	 geochronology	 that	 were	 previously	 unsuitable	 using	

conventional mineral separation techniques.

7.1.3 Chapter Four

•	 Re-Os	 molybdenite,	 pyrite	 and	 chalcopyrite	 geochronology	 provides	 evidence	 for	

contemporaneous	 sulphide	 deposition	 (ca.	 1885	 Ma)	 at	 all	 five	 of 	 the	 studied	 Au	

occurrences	(Fig.	7.1).	The	results	suggest	shear	zones	acted	as	a	connected	network	of 	

permeable	fluid	conduits	during	the	Paleoproterozoic.	Re-Os	sulphide	ages	at	ca.	1950,	
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Figure	7.1	–	(a)	All	Re-Os	molybdenite	(blue),	pyrite	(purple)	and	chalcopyrite	(yellow)	model	ages	reported	in	
Chapter Four. Uncertainties are reported at 2σ;	(b)	Paleoproterozoic	Re-Os	molybdenite	(blue),	pyrite	(purple)	and	
chalcopyrite	(yellow)	model	ages	reported	in	Chapter	Four.	Uncertainties	are	reported	at	2σ. With interpreted U-Pb 
zircon	ages,	minus	their	associated	analytical	uncertainties,	reported	in	Chapter	Two	(Gd.	=	granodiorite;	Ilunga	=	
Ilunga	Syenogranite)
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1940	Ma	and	ca.	1885	Ma	provides	evidence	for	a	protracted,	but	episodic	metallogenic	

history spanning at least 70 Myr (Fig. 7.1). A complex metallogenic history is also inferred 

from vein textures and suggests individual vein histories comprising each of  the broadly 

defined	metallogenic	events	occurred	at	a	time	scale	less	than	the	resolution	of 	the	Re-Os	

method.	The	temporal	overlap	between	Re-Os	ages	reported	in	this	thesis	and	U-Pb	ages	

of 	eclogites	(1890–1860	Ma;	Boniface	et	al.,	2012)	in	other	Ubendian	Terranes	supports	
a	genetic	link	between	subduction	processes	and	orogenic	Au.

•	 The	protracted	metallogenic	history	at	Kenge	(ca.	70	Myr)	provides	an	example	of 	a	long	

lived	and	periodically	reactivated	mylonitic	shear	zone.	Shear	zone	reactivation	was	likely	

coupled	with	increased	permeability,	which	may	explain	the	complex	sulphide	paragenesis	

inferred	from	outcrop	exposures.	The	resolution	of 	Re-Os	sulfide	geochronology	is		not	

sufficient	to	resolve	disparate	sulphide	events	occurring	at	time	scale	less	than	ca	10	Myr	

(i.e.,	the	typical	2σ uncertainty of  Re-Os molybdenite ages). 

•	 Re-Os	sulphide	geochronology	from	Kenge	and	Porcupine	provides	evidence	for	broadly	

contemporaneous	 brittle	 and	 ductile	 deformation	 processes.	 The	 results	 suggest	 that	

Kenge	and	Porcupine	should	be	regarded	as	part	of 	the	same	mineralizing	event	despite	

the	geologic	differences	between	the	two	Au	occurrence	types	(Chapters	Four	and	Five).	

•	 U-Pb	 zircon	 ages	 provide	 evidence	 for	 a	 protracted,	 but	 episodic	 Paleoproterozoic	

magmatic	history	 (1960–1880	Ma)	 that	broadly	overlaps	with	 the	metallogenic	history	
(1950–1880	Ma)	determined	by	Re-Os	sulphide	geochronology	(Fig.	7.2).	High-precision	

U-Pb	zircon	ID-TIMS	ages	for	the	Saza	Granodiorite	overlap	with	Re-Os	molybdenite	

model	 ages	 and	 provide	 unequivocal	 evidence	 for	 magmatism	 concomitant	 with	

mineralization	at	the	Myr	time	scale	(Fig.	7.1).	However,	none	of 	the	dated	intrusions	can	
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Figure	7.2	–	Diagram	summarizing	the	U-Pb	and	Re-Os	age	ranges	reported	in	Chapters	Two	and	Four.	Note	the	
broad	temporal	overlap	between	magmatism	and	mineralization.
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explain the range of  Re-Os ages observed at each Au occurrence and thus are inconsistent 

with	the	“intrusion	related”	deposit	model.	For	example,	the	high	precision	U-Pb	zircon	

age	of 	 the	Saza	Granodiorite	overlaps	with	several	Re-Os	molybdenite	ages	at	Kenge,	

but	is	clearly	outside	of 	analytical	uncertainty	with	Re-Os	molybdenite	ages	at	Porcupine	

(Fig. 7.1).

•	 Calculated 187Os/188Osinitial (0.04 ±	 0.18)	 for	Kenge	and	Mbenge	pyrite	 samples	overlap	
with	mantle	values	and	are	inconsistent	with	a	significantly	radiogenic	source	(e.g.,	crustal	

contribution) of  Os to the hydrothermal system.

•	 Meso-	and	Neoproterozic	Re-Os	ages	may	suggest	the	metallogenic	history	of 	the	Lupa	

goldfield	spans	two	distinct	orogenic	cycles	(Ubendian	and	Kibaran	Orogeny;	Fig.	7.1).			

    

•	 The	 overlap	 between	 Re-Os	 molybdenite	 and	 Re-Os	 pyrite	 and	 chalcopyrite	 ages	

demonstrate pyrite and chalcopyrite can provide robust age determinations despite having 

undergone greenschist facies metamorphism.      

7.1.4 Chapter Five

•	 Asymmetric fabrics on sub-horizontal and sub-vertical planes perpendicular to the 

mylonitic foliation imply a transpressional deformation setting and reverse oblique 

movement	 along	 the	examined	 shear	 zones.	Transpressional	deformation	 is	 consistent	

with	the	flattening	strain	 inferred	from	oblate-shaped	porphyroclasts,	variably	oriented	

mineral	elongation	lineations,	quartz	veins	boudinaged	in	plan	and	section	views	and	the	

prevalence of  S-type tectonites.

•	 Hydrothermal	alteration,	related	to	pre-D2	brittle	deformation,	led	to	the	replacement	of 	

strong,	load-bearing	feldspars	(plagioclase	and	K	feldspar)	with	weak	phyllosilicates	and	

local	produced	the	ideal	conditions	for	strain	localization,	mylonitization	and	further	fluid	

flow.	Pre-existing	structural	weaknesses	(e.g.,	D1	foliation,	lithologic	contacts)	also	likely	

played	a	key	role	during	the	initial	localization	of 	hydrothermal	fluids	and	strain.	

•	 The	 three-dimensional	 distribution	 of 	 pyrite,	 as	 determined	 by	 X-ray	 Computed	

Tomography	scanning,	highlights	the	importance	of 	the	mylonitic	fabric	and	associated	

shear	band	cleavages	as	fluid	pathways	during	sulphidation.	Intergranular	flow	explains	

the	disseminated	style	of 	mineralization	and	was	likely	facilitated	by	shear	zone	normal	

dilation	during	episodic	fluid	overpressures.	

7.1.5 Chapter Six

•	 Titanite	crystals	sampled	from	an	Archean	granitoid	(ca.	2750	Ma)	possess	Paleoproterozoic	

U-Pb	ages	(ca.	1950	Ma)	and	are	interpreted	to	constrain	the	onset	of 	greenschist	facies	
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metamorphism.	In	contrast,	 titanite	crystals	 from	the	Saza	Granodiorite	possess	U-Pb	

ages	that	are	indistinguishable	from	U-Pb	zircon	ID-TIMS	age	for	the	same	sample.	

•	 The	 results	presented	 in	Chapters	Two,	Four,	 and	Six	 imply	 that	Au	mineralization	 in	

the	Lupa	goldfield	occurred	at	greenschist-facies	pressure-temperature	conditions	in	an	

evolving	Paleoproterozoic	continental	arc	and	was	concomitant	with,	but	not	genetically	

related	to,	calc-alkaline	plutonism.	The	geologic	setting	of 	the	Lupa	goldfield	contrasts	

with	contemporaneous	eclogite-amphibolte	facies	metamorphism	that	is	characteristic	of 	

other	Ubendian	Terranes	(Lenoir	et	al.,	1994;	Boniface	et	al.,	2012).	

•	 Mesoproterozoic	Re-Os	ages	and	a	U-Pb	zircon	lower	intercept	age	are	similar	to	ages	

reported	for	the	Kibaran	Orogeny	(and/or	Irumide	Orogeny).	Three	Pan-African	lower	

intercept	 ages	 also	 provide	 evidence	 for	 a	 Pb-loss	 event	 during	 the	Neoproterozoic–
Paleozoic.	The	location	of 	the	Lupa	goldfield	at	a	cratonic	margin	was	likely	an	important	

factor	 in	 the	 tectono-thermal	 evolution	 of 	 the	 goldfield	 spanning	 multiple	 orogenic	

episodes.                       

7.2 Geologic evolution of  the field area

The	geologic	evolution	of 	 the	field	area	 is	 summarized	 in	a	 series	of 	 schematic	block	

diagrams	(Fig.	7.3).	U-Pb	ages	of 	inherited	zircons	and	in-situ	Lu-Hf 	zircon	geochemistry	suggest	

that	Archean	granitoids	(2760–2720	Ma)	intruded	into	older	Archean	crust	at	depth	(ca.	3.1	Ga).	

These	Archean	 granitoids	were	 later	 deformed,	 potentially	 during	 the	 Paleoproterozoic	 (ca.	

U-Pb	titanite	metamorphic	age	at	ca.	1950	Ma;	D1;	Chapters	Five	and	Six),	and	were	intruded	by	

non-foliated	granitoids	at	ca.	1960	Ma.	The	regionally	important	Ilunga	Syenogranite	(CL0972;	

Chapter	Two)	represents	an	example	of 	this	Paleoproterozoic	magmatic	event	along	with	non-

foliated	granodiorite-tonalite	dikes	(CL0911;	Chapter	Two).	Dioritic-gabbroic	dikes/intrusions	

are	observed	cross	cutting	the	Ilunga	Syenogranite,	but	intermediate-mafic	enclaves/xenoliths	

suggest	that	the	Ilunga	Syenogranite	is	also	pre-dated	by	intermediate-mafic	magmatism.	The	

Saza	Granodiorite	 intruded	 at	 ca.	 1935	Ma	 (CL0975	Ma;	Chapter	Two)	 and	 is	pre-dated	by	

porphyritic	monzogranite	 (ca.	1942	Ma;	CL1019;	Chapter	Two)	and	dioritic-gabbroic	dikes/

intrusions.	 Younger	 U-Pb	 zircon	 ages	 of 	 intermediate-mafic	 dikes/intrusions	 post-date	 the	

Saza	Granodiorite	 and	 are	 consistent	with	 cross	 cutting	 relationships	 observed	 in	 the	 field.	

In	particular,	a	U-Pb	zircon	age	for	a	quartz	diorite	intrusion	(ca.	1890	Ma;	CL1021;	Chapter	

Two)	overlaps	within	analytical	uncertainty	with	a	U-Pb	zircon	age	for	a	gabbroic	dike	(ca.	1880	

Ma;	CL1022;	Chapter	Three)	and	both	are	younger	than	any	of 	the	dated	granitic	intrusives.	

The	U-Pb	ages	reported	as	part	of 	this	thesis	are	thus	consistent	with	field	relationships	and	

collectively	 record	 a	 complex	 and	 protracted	 history	 of 	 granitic-gabbroic	 magmatism.	 The	

unpublished	aeromagnetic	map	flown	by	Helio	Resource	Corp.	also	shows	magnetic	lineaments	

that	 are	 interpreted	 to	 be	mafic	 dikes	 cross	 cutting	 all	 of 	 the	 dated	 intrusions	 and	 provide	
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evidence	 for	undated,	but	 younger	magmatic	events	 (also	 supported	by	undated	aplite	dikes	

cross	cutting	each	of 	the	main	intrusive	bodies	in	the	field	area).		

Re-Os sulphide ages directly date brittle-deformation events and further constrain the 

geologic	 evolution	 of 	 the	 field	 area.	Molybdenite-	 and	 pyrite-bearing	 quartz	 veins	 record	 a	

protracted	metallogenic	 history	 at	Kenge	 (1960–1880	Ma),	 whereas	 Re-Os	 sulphide	 ages	 at	

all	five	of 	 the	dated	Au	occurrences	demonstrate	a	broad	and	regional	mineralizing	event(s)	

at	 ca.	1885	Ma	 (Chapter	Four).	The	economic	 significance	of 	 these	disparately	older	Re-Os	

ca. 1960 Ma

ca. 2740 Ma

ca. 1935 Ma

ca. 1880 Ma

gabbro-diorite
Saza Granodiorite
Ilunga Syenogranite
granodiorite-tonalite
Archean granitoids

D1 - compositional banding

pre-D2 - brittle-ductile(?) deformation

D2 - auriferous mylonites
Block models are looking NE and not to scale

Au?

Au

a) b)

c) d)

Figure	7.3	–	Schematic	block	models	showing	the	geologic	evolution	of 	the	Lupa	goldfield	from	the	Archean	to	the	
Paleoproterozoic	(based	on	U-Pb	and	Re-Os	ages	presented	in	Chapters	Two,	Four	and	Six).	The	geologic	history	
of 	the	Lupa	extends	beyond	the	Paleoproteorozoic	(e.g.,	Meso-	and	Neoproterozoic	Re-Os	ages,	Neoproterozoic	
and	Paleozoic	U-Pb	lower	intercept	ages,	fauting	cross	cutting	ca.	1880	Ma	shear	zones,	etc.),	however	the	timing	
and characteristics of  these events remain poorly understood. See text for more details.     
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pyrite	and	molybdenite	ages	(ca.	1950	and	1940	Ma;	pre-D2	structures)	from	Kenge	remains	

equivocal,	 whereas	 auriferous	mylonites	 at	 Kenge	 (ca.	 1880	Ma;	 D2),	 represent	 the	 closest	

paragenetic	relationship	to	Au	(Chapter	Four).	Kinematic	indicators	from	auriferous	mylonites	

are	consistent	with	a	transpressional	setting	and	record	reverse	oblique	movements	along	the	

Saza shear zone and subsidiary structures at ca. 1880 Ma.

Anomalously	 younger	Re-Os	 ages	 (Meso-	 and	Neoproterozoic),	U-Pb	 lower	 intercept	

ages	 (Neoproterozoic	 and	 Paleozoic)	 and	 cross	 cutting	 field	 relationships	 all	 suggest	 the	

geologic	evolution	of 	the	Lupa	goldfield	continues	beyond	the	Paleoproterozoic.	However,	the	

characteristics and exact timing of  these younger (<1880 Ma) magmatic-tectono-metallogenic 

events remains poorly understood. 

7.3 Mineral exploration implications
The	 results	 and	 conclusions	 presented	 in	 Chapters	 Two,	 Three,	 Four,	 Five	 and	 Six	

have	 implications	for	on-going	mineral	exploration	efforts	 in	SW	Tanzania.	Several	of 	 these	

implications apply to regional and district scale mineral exploration for a variety of  deposit 

types,	whereas	other	implications	are	specific	to	orogenic	Au	deposits	within	the	Lupa	goldfield	

(Fig. 7.4).

7.3.1 Regional scale implications

•	 One	of 	the	important	results	of 	Chapter	Two	is	the	identification	of 	Archean	granitoids	

that	cast	doubt	on	the	currently	accepted	SW	extent	of 	the	Tanzanian	cratonic	margin.	

Establishing	 the	 extent	 of 	 the	 Tanzanian	 Craton	 places	 important	 constraints	 on	 the	

prospectivity	of 	SW	Tanzania	for	deposits	associated	with	Archean	Cratons.	The	results	

imply	 the	 Tanzanian	 Craton	 is	 larger	 than	 previously	 suggested	 and	 provide	 the	 first	

evidence	 to	propose	 that	portions	of 	 the	Ubendian	Belt	 represent	 re-worked	Archean	

crust.	SW	Tanzania	may	be	prospective	for	previously	unconsidered	deposits	associated	

with	Archean	Cratons.

•	 The	 results	 and	 conclusions	 presented	 in	 Chapter	 Two	 suggest	 the	 Lupa	 Terrane	

represented	a	Paleoproterozoic	 continental	 arc	 at	 the	Tanzanian	cratonic	margin.	This	

tectonic	setting	is	distinct	from	other	Tanzanian	orogenic	Au	deposits	that	are	associated	

with	 allochtonous	 terranes	 (Kuehn	 et	 al.,	 1990).	 Continental	 arcs	 are	 relatively	 under	

represented in the literature as important tectonic settings for Precambrian orogenic Au 

deposits	(Groves	et	al.,	1998).	The	results	highlight	the	need	to	re-evaluate	the	importance	

of  the position of  orogenic Au deposit formation relative to the position of  the evolving 

arc.      

•	 The	 ages	 reported	 in	 Chapters	 Two,	 Four	 and	 Six	 record	 evidence	 for	 at	 least	 three	

orogenic	cycles	in	the	Lupa	goldfield.	This	protracted	geologic	history	is	likely	related	to	

the	Lupa	goldfield’s	position	at	the	Tanzanian	Cratonic	margin	and	may	be	an	important	
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factor	in	orogenic	Au	deposit	formation	(Hronsky,	2012).	A	long-lived	source,	such	as	a	

fertile	upper	mantle	/	lower	crust,	could	be	repeatedly	tapped	during	multiple	orogenic	

cycles	 (Richards,	2009).	As	a	 result,	 cratonic	margins	bordering	 the	Ubendian	Belt	 are	

particularly attractive mineral exploration targets for orogenic Au deposits that may have 

developed during three discrete orogenic cycles.    

•	 The	tectono-magmatic	evolution	of 	the	Lupa	goldfield	proposed	in	Chapter	Two	possesses	

many	similarities	with	magmatic	ages	reported	from	the	western	limit	of 	the	Ubendian	

Belt	(eastern	Congo	Craton	and	the	Bangweulu	block).	Very	few	geologic	constraints	are	

currently	available,	but	these	areas	appear	to	possess	granitic	plutons	of 	comparable	age	

and	may	also	represent	important	settings	for	orogenic	Au	deposits	(Cahen	et	al.,	1984;	

Ring,	1993).	In	particular,	the	Bangweulu	Block	has	undergone	low	grade	metamorphism	

similar	 to	 the	 Lupa	 goldfield	 and	 contrasts	 with	 the	 high	 grade	 metamorphic	 rocks	

characteristic	of 	the	Ubendian	Terranes	(De	Waele,	2006).						

7.3.2 Goldfield and deposit scale implications 

•	 The	 results	 and	 conclusions	 presented	 in	 Chapter	 Four	 provide	 evidence	 for	

contemporaneous	 sulphidation	at	five	Au	occurrences	across	 the	field	area.	These	ore	
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Figure	7.4	–	Schematic	plan	view	of 	the	field	area	highlighting	potential	exploration	targets.	
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bodies are hosted by disparately oriented shear zones of  various scales (second order 

shear	zones	possess	strike	lengths	>10	km,	whereas	third	order	shear	zones	possess	strike	

lengths	<10	km)	and	suggest	that	mylonitic	shear	zones	represented	an	interconnected	

network	of 	 permeable	fluid	 conduits	 during	 the	Paleoproterozoic.	Therefore,	 second-	

and third-order shear zones are equally prospective for the focusing of  auriferous 

hydrothermal	 fluids.	 Flow	 localization	 also	 likely	 occurred	 at	 the	 intersection	between	

large-scale	faults	and	contemporaneous	subsidiary	structures	(Cox	et	al.,	2001).

•	 The	 unpublished	 aeromagnetic	 map	 flown	 by	 Helio	 Resource	 Corp.	 clearly	 shows	

magnetic	 lineaments,	 corresponding	 to	mylonitic	 shear	 zones,	 cross	 cutting	 all	 of 	 the	

major	lithologies	in	the	field	area.	However,	several	Re-Os	pyrite	and	molybdenite	ages	

at	Kenge	 are	 older	 than	 the	U-Pb	 age	 of 	 the	 Saza	Granodiorite	 (Fig.	 7.1b).	One	 of 	

the implications of  these older Re-Os ages to mineral exploration is that not all of  the 

identified	metallogenic/deformation	events	will	be	preserved	within	all	of 	the	intrusive	

phases.	Foliated	Archean	granitoids	are	the	only	dated	 intrusive	phases	which	pre-date	

all	of 	the	Re-Os	ages	and	if 	the	ca.	1950	Ma	sulphidation	event	was	associated	with	Au	

mineralization	than	Archean	granitoids	may	represent	favourable	exploration	targets.	The	

regional	metallogenic	event	dated	at	ca.	1885	Ma	is	consistent	with	the	traces	of 	mylonitic	

shears	cross	cutting	all	of 	the	major	intrusive	phases	on	the	aeromagnetic	map	and	also	

represents	the	closest	paragenetic	relationship	with	Au.										

 

•	 Comparison	between	structural	mapping	completed	as	part	of 	this	study	and	previously	

reported	 lithologic	maps	 (e.g.,	Kimambo,	1984)	highlight	 two	goldfield-wide	structural	

trends	for	Au-bearing	shear	zones:	1)	NW-SE	trending	(ca.	120º);	and	2)	E-W	trending	(ca.	

90º).	N-S	and	NE-SW	trending	shear	zones	are	also	present	but	are	generally	subordinate	

in	the	field	area.	Re-Os	results	suggest	that	NW-SE	and	E-W	trending	shear	zones	were	

kinematically	linked	during	reverse	oblique	movement	and	transpressional	deformation		

•	 One	of 	the	striking	differences	between	the	Kenge,	Mbenge	and	Porcupine	ore	bodies	is	

the	absence	of 	oblique-extension	veins	at	Kenge	and	Mbenge.	This	is	of 	particular	interest	

to	mineral	exploration	as	oblique-extension	veining	significantly	widen	the	mineralized	

zone	and	produce	ore	bodies	more	amenable	to	open-pit	mining	methods.	The	prevalence	

of 	oblique-extension	veins	at	Porcupine	 is	poorly	understood,	but	could	be	 related	 to	

the	orientation	of 	the	shear	zone	hosting	Porcupine	relative	to	the	regional	stress	field	

and/or	 the	discontinuous	nature	of 	 the	host	 shear	zone.	Sibson	 (1988)	proposed	 that	

supralithostatic	fluid	pressures	 are	 required	 for	 the	 development	 of 	 oblique-extension	

quartz	veins.	In	this	model,	favourably	oriented	low-cohesion	shear	zones	are	reactivated	

under	conditions	of 	low	differential	stress	and	prevent	fluid	pressure	build-up.	This	is	in	

contrast	to	mis-oriented	and	discontinuous	shear	zones	where	fluid	pressure	is	expected	to	

increase	in	the	absence	of 	shear	zone	reactivation.	If 	correct,	ENE-WSW	trending	shear	
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zones and other mis-oriented shear zones may be more attractive exploration targets. 

•	 The	 location	of 	Razorback	mine	at	 the	 termination	of 	one	of 	 the	 left-stepping	 shear	

zone	 segments	 suggest	 that	dilational	 jogs	and	shear	zone	 step-overs	are	 important	 in	

significantly	widening	the	mineralized	zone	of 	Au-bearing	shear	zones	(Fig.	7.4).			

7.4 Future research

•	 Limited	SEM	work	completed	in	this	thesis	supports	previous	findings	that	report	Au	

as	free	native	Au	grains	and	as	inclusions	hosted	by	pyrite	(Simpson,	2012).	Native	Au	

is	 also	observed	concentrated	within	pyrite	 fractures	and	could	suggest	Au	deposition	

at	 least	 locally	post-dated	 sulphidation.	More	work	 is	needed	 to	assess	 the	mineralogy	

and	 occurrence	 of 	Au	 in	 the	Lupa	 goldfield.	 This	 sort	 of 	 study	 is	 important	 from	 a	

metallurgical	perspective	and	would	also	further	constrain	ore	deposit	models.								

•	 The	 structural	data	 reported	 in	 this	 thesis	 represents	 a	first	 step	 in	understanding	 the	

structural	 setting	 of 	Au	mineralization	 in	 the	 Lupa	 goldfield.	Many	 questions	 remain	

unanswered	due	to	complex	cross	cutting	relationships,	three-dimensional	transpressional	

deformation	 paths,	 intense	 surface	 weathering	 and	 limited	 outcrop	 exposures	

(predominately	within	artisanal	mines).	The	thesis	focused	on	the	economically	important	

D2	event,	however	many	outstanding	questions	are	also	associated	with	the	nature	and	

significance	of 	the	D1	and	D3	deformation	events.	Future	structural	studies	would	benefit	

from	access	to	on-going	mineral	exploration	drilling,	expansion	of 	artisanal	mines	and/

or	increased	rock	exposure	after	commercial	exploitation	of 	the	delineated	ore	bodies.				

•	 Many	of 	the	outstanding	questions	in	the	Lupa	goldfield	are	a	consequence	of 	a	dearth	

of 	 constraints	on	 the	 regional	 evolution	of 	 the	Ubendian	 and	Usagaran	Belts.	Recent	

geologic	 studies	 have	 demonstrated	 the	 current	 configuration	 of 	 the	 Ubendian	 Belt	

developed	through	at	least	three	discrete	orogenic	cycles	and	was	likely	further	modified	

by	Tertiary	 rifting	 (Boniface	 et	 al.,	 2012;	Boniface	 and	Schenk,	 2012;	 this	 thesis).	The	

relationship	between	the	tectono-magmatic	evolution	of 	the	Lupa	and	other	Ubendian	

litho-tectonic	terranes	awaits	an	improved	understanding	of 	this	>2	Byr	of 	tectonism.	In	

particular,	the	area	of 	SW	Tanzania	between	the	Lupa	Terrane	and	the	Dodoma	Schist	

Belt	of 	the	Tanzanian	Craton	has	not	been	previously	studied.	The	relationship	between	

the	tectono-magmatic	history	of 	the	Tanzanian	Craton	and	the	Lupa	goldfield	also	needs	

to be re-examined in light of  the results presented as part of  this thesis.  

•	 One	of 	the	outstanding	questions	regarding	orogenic	Au	deposit	formation	in	the	Lupa	

goldfield	 is	 the	 source(s)	 of 	 hydrothermal	 fluids.	 Calculated	 187Os/188Osinitial provides 

evidence	for	a	mantle	Os	contribution	but	 the	source	of 	fluid(s)	remains	equivocal.	A	

detailed	fluid	 inclusion	study	 integrated	with	novel	and	 in-situ	 isotopic	study	(e.g.,	He)	
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could	provide	insight	into	the	composition	of 	the	auriferous	fluids	and	also	may	elucidate	

potential	fluid	source(s).																			
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Easting Northing Lithology Field Notes
491200 9073992 foliated granitoid foliated granite-diorite contact
491368 9076548 foliated granitoid foliated granite?; medium grained; K feldspar rich bands; weathers pink
491379 9072252 aplite aplite; 5 m wide; @ rift
491422 9076396 undifferentiated granitoid extremely silicified unit; purple; sheared?

491595 9073412 porphyritic granite porphyritic granitoid  cross cut by medium grained, muscovite and biotite granodiorite; at top 
of river

491919 9073684 undifferentiated granitoid complex relationships between granite and diorite; mostly foliated; spectacular outcrop; 
epidote throughout

491929 9073701 porphyritic granite porphyritic granite intruding diorite; granite looks strange at contact
491978 9074375 foliated granitoid diorite cross cutting foliated granite

491982 9073760 diorite
sample for lithogeochemistry; fine to medium grained; massive; black-dark green; cross cut by 
aplite dikes and intruded by porphyritic granite?; locally porphyritic; with pyroxene 
phenocrysts; grades back into foliated granite along river

492027 9074093 foliated granitoid foliated granite; strongly foliated; great outcrop
492065 9073825 foliated granitoid foliated granite; no k feldspar phenocrysts; weakly foliated
492103 9073994 foliated granitoid large foliated granite outcrop
492116 9073893 foliated granitoid massive diorite interlayered with foliated granite
492170 9074816 foliated granitoid back into foliated granite; river losses outcrop for several 100 m
492207 9074842 foliated granitoid foliated granite intrudes diorite
492273 9074990 undifferentiated granitoid coarse grained granite; weak jointing; cross cut by aplite dike
492295 9072264 porphyritic granite U-Pb sample; hill overlooking rift; very coarse grained; k feldspar phenocrysts
492409 9074980 diorite 5 m wide dike; magnetic; diorite?; fine grained; massive; black; strongly jointed
492451 9075139 undifferentiated granitoid strongly jointed granite

492462 9075272 granodiorite walking south from last stop has been diorite with more felsic layers; cross cut by aplite; 
massive; plagioclase rich; mica rich; medium grained

492536 9075979 granodiorite biotite granite; coarse granite; massive; u-pb sample
492738 9072568 aplite aplite; muscovite; bleached; no contacts; fine grained
492852 9072435 porphyritic granite very coarse grained; same porphyritic granite; giant k feldspar crystals 3 cm
492906 9072402 granodiorite medium grained; granodiorite; muscovite; rare mafic minerals; massive
493044 9076133 granodiorite massive; medium grained; mica rich; plagioclase rich; fresh biotite; chlorite altered; white
493075 9072451 porphyritic granite porphyritic granite in contact with medium grained aplite; several 100 meters exposed

493160 9072502 porphyritic granite spectacular porphyritic granite outcrop where porphyritic granite is cut by numerous <1m wide 
dikes; mostly massive

493705 9072557 porphyritic granite megacrystic granite; massive
493822 9072312 porphyritic granite megacrystic granite; massive
493892 9072558 foliated granitoid sheared granite; strong foliation
493916 9072483 undifferentiated granitoid granite and diorite; massive
493947 9073222 granodiorite coarse grained granodiorite; warty weathering; plagioclase dominated; minor mafics; massive

494099 9073472 undifferentiated granitoid granite outcrop; with quartz throughout; massive; medium to coarse grained; minor k feldspar; 
light grey; white; minor alteration

494241 9073659 undifferentiated granitoid extremely altered granite; pyrite; back to granodiorite
494248 9073501 undifferentiated granitoid extremely altered float; with sheared granite; slickensides on quartz vein; what is this?!?
494328 9074147 foliated granitoid foliation; mylonitized granite; rubble; very similar to black tree

494388 9073688 undifferentiated granitoid medium-coarse grained; bleached; plagioclase dominated; no mafics; locally chloritized; 
minor k feldspar

494461 9073688 undifferentiated granitoid massive; medium-coarse grained; bleached granite; brown mica; looks like granodiorite in 
Luika river; plagioclase dominated

494890 9071545 porphyritic granite sample of mega crystic granite for lithogeochemistry

494912 9071742 porphyritic granite good outcrop down here; mostly porphyritic granite but some fine-medium grained light grey 
granite

495175 9071389 porphyritic granite K feldspar porphyritic granite; massive; coarse very coarse grained; is this related to Saza 
granodiorite?

495257 9071280 undifferentiated granitoid altered granite; fracture cleavage; bleached; K feldspar alteration; hard to tell protolith; mostly 
subcrop

495307 9071188 Saza Granodiorite saza granite outcrop

495537 9071122 Saza Granodiorite saza granite; coarse grained; massive; plagioclase dominated with abundant K feldspar; and 
mafic enclaves; saza is  cross cut by aplite and may be coeval with diorite in river

495537 9071122 Saza Granodiorite saza granite; subcrop and outcrop
495661 9071131 granodiorite mixed granodiorite-diorite unit; mixing textures

495992 9072539 foliated granitoid foliated granite; fracture cleavage; medium grained; K feldspar, quartz, plagioclase, 
chloritized, what granite is this?

496070 9071829 undifferentiated granitoid in river spectacular outcrops; granite is medium grained; white; plagioclase dominated; minor 
mafics; minor K feldspar; cross cut by fine grained black dikes; also cross cut by aplite

496071 9071830 diorite dikes cross cutting medium grained white granite; fine grained black
496074 9071830 granodiorite spectacular outcrop with two big mafic dikes; massive; plagioclase rich

496075 9071830 diorite spectacular giant outcrop with two big mafic dikes cross cutting plagioclase rich massive 
granite

496290 9072353 foliated granitoid very strange outcrop; with folds; or just strongly sheared?; pretty sure it is similar to foliated 
granite elsewhere; coarse grained K feldspar

496345 9072248 granodiorite medium grained; light grey-white; massive; muscovite; minor mafics; may be same unit down 
stream; not sure

Mapping localities and field descriptions
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496352 9071622 Saza Granodiorite saza granodiorite; large boulders; massive; coarse grained; mafic xenoliths; plagioclase 

dominated
496457 9073511 foliated granitoid strongly cleavage; abundant sheared float; intense quartz veining

496478 9072498 foliated granitoid foliated granite; before was mostly granite (massive; coarse grained); here the granite is 
strongly hematized

496573 9072458 diorite dike; WNW trending; mafic; massive; fine grained

496583 9071335 Saza Granodiorite very large saza granodiorite outcrop; massive; coarse grained; plagioclase dominated; minor K 
feldspar; equigranular; no pervasive joints

496666 9071462 Saza Granodiorite coarse grained; massive; K feldspar; porphyritic; looks like saza?; epidote and chlorite 
alteration; pretty sure of saza

496713 9072677 foliated granitoid back into foliated granodiorite like rock; foliated; chlorite veins parallel to foliation

496738 9072611 undifferentiated granitoid outcrop with intense E-W quartz veins; lots of veins; look barren; altered; silicified; 
plagioclase rich

496747 9071242 Saza Granodiorite saza granite; coarse grained; mafic enclaves; massive; K feldspar poor; minor E-W trending 
veins with epidote alteration

496966 9072733 Saza Granodiorite massive; medium grained; white; plagioclase rich; harder than saza; could be saza
497036 9072793 Saza Granodiorite saza granite
497037 9072922 foliated granitoid hematite-chlorite altered; foliated; large K feldspar crystals
497060 9072872 Saza Granodiorite saza granite cross cut by quartz vein

497072 9072968 foliated granitoid strongly sheared; gneiss-like; chloritized; quartz lenses parallel with foliation; epidote veins 
crosscut

497373 9072890 granodiorite indurated granite; not saza granite; massive; medium-coarse grained; plagioclase rich; more 
altered

497415 9073026 Saza Granodiorite saza granite; coarse grained; warty weathering; plagioclase rich; strongly jointed

497665 9073421 diorite fine grained; black; dike; cross cuts granite; diorite?; joints appear more random and less 
pervasive; strongly magnetic; cross cuts massive diorite

497666 9073422 undifferentiated granitoid black dike cross cuts undifferentiated granite
497965 9073755 granodiorite granite; plagioclase rich; massive; medium-coarse grained
498430 9074383 granodiorite granodiorite; medium-coarse grained; white; plagioclase dominated

498479 9072397 Saza Granodiorite saza granite; outcrop; coarse grained; massive; quartz, plagioclase, K feldspar, chlorite clots; 
epidote veins

498809 9072898 Saza Granodiorite coarse grained; massive; equigranular; plagioclase, K feldspar, chlorite, quartz; saza
498831 9073001 Saza Granodiorite saza granite with chlorite stringers throughout
499012 9073051 Saza Granodiorite saza granite cross cut by mafic dike
499013 9073052 diorite dike cross cuts saza near magnetic anomaly
499021 9072739 undifferentiated granitoid granite cross cut by mafic dike
499022 9072740 diorite diorite cross cuts granite
499044 9073112 Saza Granodiorite back into saza granite; coarse grained; massive
499048 9072673 granodiorite coarse grained; massive; plagioclase rich; equigranular
499162 9072565 undifferentiated granitoid altered dike; bleached granite

499200 9072570 undifferentiated granitoid granite; medium grained; massive; strongly jointed; hard; much more K feldspar, chlorite, 
muscovite

499263 9073236 diorite 2m wide dike; massive; fine grained; magnetic anomaly?
499282 9073258 Saza Granodiorite saza shear; 30 m long; but only 5 m where intense; shearing saza
499314 9072474 Saza Granodiorite saza granite; coarse grained; massive
499418 9072364 Saza Granodiorite saza granite cross cut by microgranite
499418 9072312 aplite aplite dike
499419 9072365 aplite microgranite cross cutting saza
499527 9072299 Saza Granodiorite coarse grained; massive; plagioclase dominated; minor K feldspar, quartz; equigranular
499714 9072292 aplite aplite dike; cross cutting saza; sharp contacts
499715 9072293 Saza Granodiorite aplite dike cross cutting saza granite

499771 9072272 Saza Granodiorite coarse grained; massive; equigranular; mostly plagioclase; minor quartz and K feldspar; 
epidote veins; minor aplite

499857 9072132 diorite bleached granite cross cutting diorite
499857 9072241 aplite massive; pink-purple; siliceous; felsite; fine grained
499892 9072232 diorite mafic dike cross cut by aplite; complex relationships; dark; mafic; massive; fine grained
499898 9072210 aplite aplite dike; fine grained; massive; equigranular; felsic; pinkish; K feldspar, quartz, chlorite
499915 9072165 undifferentiated granitoid coarse grained; massive; equigranular; plagioclase, K feldspar, quartz; strongly jointed

499940 9071250 Saza Granodiorite coarse grained; massive; equigranular; plagioclase, K feldspar; warty weathering; weakly 
jointed

499995 9072127 aplite fine-medium grained; aplite dike; cross cutting granite
499996 9072128 Saza Granodiorite saza cross cut by aplite
500187 9072021 Saza Granodiorite coarse grained; massive; equigranular; plagioclase, K feldspar, quartz, chlorite; saza
500189 9072856 Saza Granodiorite dark mafic dike cross cutting saza
500189 9072856 diorite dark; mafic; massive; cross cutting saza; 10 m wide
500232 9071998 Saza Granodiorite coarse grained; massive; equigranular; plagioclase, K feldspar, quartz, chlorite
500237 9071994 Saza Granodiorite saza; massive; chlorite alteration; cross cut by alaskite; distinct weathering

500293 9072804 undifferentiated granitoid coarse grained; massive; plagioclase rich; very coarse grained K feldspar; pervasive epidote 
alteration; jointing throughout

500472 9073080 Saza Granodiorite saza granite; coarse grained; massive; plagioclase rich; minor K feldspar; abundant xenoliths
500573 9073109 Saza Granodiorite saza granite; chloritized with lots of mafic xenoliths; cross cut by aplite dikes
501545 9074076 aplite 2 m wide aplite/felsite
501555 9074044 diorite mafic outcrop; mostly fine grained.
501609 9074622 diorite dike sample; lithogeochemistry sample
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502265 9074596 foliated granitoid great foliated granite outcrop in stream; strongly developed foliation
502269 9074471 foliated granitoid diorite-foliated granite contact
502293 9074496 foliated granitoid strongly foliated granite
502293 9074496 diorite diorite contact
502306 9074530 foliated granitoid strongly foliated granite
502309 9074537 foliated granitoid strongly foliated granite
502335 9074588 foliated granitoid foliated granite?; mostly massive; slightly porphyritic; lots of chlorite; K feldspar rich
502452 9074635 foliated granitoid foliated granite; porphyritic; K feldspar phenocrysts; slightly foliated

502831 9071780 Saza Granodiorite saza; i have decided to stop walking along this river here and head west; it has been all saza 
except for diorite as shown on radiometrics

502935 9072240 Saza Granodiorite mafic sill cross cuts saza
502935 9072240 diorite sill cross cuts saza; fine grained
503000 9072505 Saza Granodiorite saza; coarse grained; massive; with aplite dikes
503184 9074518 foliated granitoid foliation; strong banded appearance
503184 9074518 foliated granitoid foliation; banded rock; does not look like foliated granite; bleached
503184 9074518 aplite aplite/felsite; 5 cm wide

503193 9074459 foliated granitoid sheared rock; looks like bleached granite; not foliated granite at Kenge; not coarse grained or 
texture

503207 9074468 aplite aplite; fine grained; massive; equigranular
503222 9074396 diorite gabbro; coarse grained; massive; green; equigranular
503229 9072943 Saza Granodiorite grey saza? sheared with E-W trending foliation; good cleavage
503251 9074178 Saza Granodiorite saza; chlorite alteration; coarse grained; warty weathering
503281 9074099 diorite diorite; fine grained; black; very hard
503342 9073087 Saza Granodiorite saza?; coarse grained; more pink than usual; but i suspect weathering; cross cut by aplite

503533 9073514 Saza Granodiorite
saza granite; as i have walked south along the river i have found rock that looks like saza 
granite; here i am sure it is saza; fresh; 10-15% biotite; plagioclase rich; hornblende bearing; 
coarse grained

503616 9074943 diorite mafic rocks; slight foliation; sheared metabasalt?
503627 9074702 porphyritic granite porphyritic granite float
503679 9074530 foliated granitoid aplite cross cuts foliated granite
503680 9074531 aplite aplite cross cut foliated granite
503711 9074532 porphyritic granite porphyritic granite float
503713 9074595 foliated granitoid weakly foliated granite
503868 9074681 porphyritic granite porphyritic granite float
503878 9074733 porphyritic granite porphyritic granite float
503954 9074890 porphyritic granite porphyritic granite float
503973 9074940 porphyritic granite porphyritic granite float
504099 9075383 diorite coarse grained diorite
504142 9079210 syenogranite fine grained Ilunga?; sample of acid volcanics? Or felsite?

504758 9075081 diorite good outcrop where  Ilunga granite? comes into contact with diorite; took lithogeochemistry 
samples; can see injections

504761 9075308 syenogranite Ilunga; medium grained; massive; pink; equigranular; homogeneous
504813 9071488 Saza Granodiorite Saza; coarse grained; white; mafic xenoliths; amphibole; chlorite; massive

504850 9072155 granodiorite more leucogranite; doesn't look like Saza; late granodiorite; coarse grained; massive; light 
grey; minor mafics; no xenoliths

504942 9080004 foliated granitoid sheared granite
505044 9073967 foliated granitoid foliated granite sample for U-Pb
505053 9079282 syenogranite fine grained Ilunga?
505092 9077892 syenogranite Ilunga? pink granite; minor hematization; massive
505894 9081525 foliated granitoid sheared granite; incredible ouctrop with folded foliation; veins
506169 9073736 foliated granitoid foliated granite; coarse grained; trends EW; cross cut by aplite
506267 9072429 diorite lithogeochemistry sample; gabbro from hill
506325 9081374 foliated granitoid oriented sample of sheared granite

506606 9073791 foliated granitoid granite; strongly foliated; almost gneiss; cross cut by mafic dike which is cross cut by aplite 
and veins/foliation trends E-W

506673 9072102 foliated granitoid changes from mafic rich granite to foliated granite; slightly foliated
506674 9072103 quartz diorite changes from mafic rich granite into foliated granite; slightly foliated

506768 9073466 foliated granitoid outcrop of weakly foliated granite; equigranular; K feldspar, quartz, plagioclase;  cross cut by 
microgranite and mafic dike

506769 9073467 diorite mafic dike cross cutting weakly foliated granite

506788 9072784 undifferentiated granitoid coarse grained; pink-green; silicified; epidote alteration; massive; coarse grained feldspar; 
tumbili

506806 9072251 quartz diorite coarse grained; 20% mafics; chloritized; looks like diorite but locally weathers pink; 
suggestive of K feldspar?

506822 9072213 quartz diorite coarse grained; 20% mafics; chloritized; looks like diorite
506855 9073783 foliated granitoid foliated granite with more felsic lenses

506894 9072209 quartz diorite U-Pb sample; quartz diorite; 20% mafics; chloritized; may be lineated; think this is the high 
thorium and low potassium unit near tumbili; cross cut by aplite 

506951 9072200 diorite fine grained; massive; black; weather orange; subcrop
506986 9072250 quartz diorite diorite? chlorite rich; 20% mafic; massive to slightly foliated

507002 9072324 granodiorite foliated; granodiorite; not sure what unit this is; but has amphibole; medium-coarse grained; 
strong foliation

507003 9072322 granodiorite magnetic granite with chlorite clots; black/white; foliated; chlorite throughout; epidote veins
507056 9073875 foliated granitoid sheared; strong foliation; gneiss?
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507153 9081105 foliated granitoid sheared granite
507202 9075086 foliated granitoid foliated granite outcrop; boulders; good foliation; porphyritic; K feldspar phenocrysts

507217 9072589 undifferentiated granitoid
coarse grained; massive; plagioclase, pink K feldspar; chlorite; epidote; finer grained version 
of foliated granite? or new granite? looks new to me; massive; oscillatory zoning in 
plagioclase

507262 9076125 syenogranite Ilunga no outcrop between here and last
507275 9072675 foliated granitoid new granite? extremely hematized with large chlorite clots; looks similar to Mbenge

507293 9072076 undifferentiated granitoid
spectacular outcrop; very large; well exposed; strong cleavage locally; slightly more coarse 
grained than previous; still mafic rich; more abundant K feldspar; but still plagioclase 
dominated

507356 9072735 foliated granitoid foliated; epidotized; chlorite granite; new unit?
507388 9072786 diorite dike cross cutting medium grained pink granite contact
507389 9072787 undifferentiated granitoid medium grained; pink; granite; in contact with dike
507422 9072112 foliated granitoid subcrop of strongly foliated granite; K feldspar rich; not sure what this is
507436 9072860 undifferentiated granitoid folded; medium grained; pink; granite; gentle folds; with moderately dipping hinge 
507450 9073098 foliated granitoid U-Pb foliated granite sample
507455 9073096 foliated granitoid more fine grained than typical foliated granite; w/ K feldspar megacrysts; almost massive
507496 9073449 foliated granitoid foliated granite?
507497 9073436 aplite aplite; siliceous; fine grained; indurated
507500 9073129 diorite fine-medium grained; mafic; dark green-black; minor plagioclase; minor veins; no jointing
507502 9072043 foliated granitoid strongly foliated granite?; K feldspar phenocrysts/ sheared quartz and K feldspar
507536 9073677 foliated granitoid foliated granite?
507569 9072018 diorite hill; fine grained; massive; black
507577 9073753 foliated granitoid strongly altered foliated granite? With quartz veins
507587 9073841 foliated granitoid foliated granite looks like it is cross cutting mafic dike with granodiorite fingers
507588 9073842 diorite non foliated mafic dike cross cutting foliated granite
507591 9073883 foliated granitoid foliated granite with gneiss like foliation
507929 9072846 foliated granitoid subcrop of foliated granite
508045 9072785 foliated granitoid coarse grained; foliated granite; K feldspar, plagioclase, quartz, chloritized mafics
508081 9072214 foliated granitoid strong foliation; coarse grained feldspar; mostly giant boulders
508181 9072724 undifferentiated granitoid coarse grained; massive; chloritized; abundant k feldspar; some coarse grained K feldspar

508216 9072117 undifferentiated granitoid subcrop?; coarse grained; K feldspar rich; minor mafics; mafic clots; epidote and chlorite 
alteration; much more free quartz than granodiorite

508342 9074674 foliated granitoid foliated granite outcrop; K feldspar; coarse grained; weak foliation; all along river much 
harder and more indurated than Saza; different weathering

508389 9072167 undifferentiated granitoid subcrop of coarse grained massive granite with K feldspar
508489 9074651 foliated granitoid foliated granite

508602 9074749 foliated granitoid foliated granite outcrop; cross cut by mafic dike; plagioclase; porphyritic; K feldspar rich; 
poorly defined foliation; chlorite clots

508701 9074843 foliated granitoid sheared granite
508751 9080981 syenogranite foliated Ilunga?
508821 9071920 undifferentiated granitoid granite; coarse grained; massive; pink; K feldspar rich

509022 9077308 foliated granitoid granite in river; strongly foliated; strongly sheared; pink/black; coarse grained; bleached at 
surface; quartz still visible; looks different than Saza

509139 9075282 foliated granitoid shearing; gneiss like fabric
509253 9077615 syenogranite Ilunga; large massive outcrop; equigranular
509555 9075584 foliated granitoid foliated granite
509573 9075708 syenogranite hematized; Ilunga granite; very pink; K feldspar rich; may be hematized foliated granite
509596 9075609 foliated granitoid foliated granite
509654 9080890 syenogranite foliated Ilunga?
513479 9078864 syenogranite Ilunga; poor cleavage
513650 9077477 syenogranite massive; outcrop of Ilunga; with strong jointing
513786 9078744 syenogranite Ilunga; slightly sheared
513885 9076502 aplite aplite; felsite; fine grained; K feldspar rich; sugary
514015 9078763 syenogranite Ilunga; subcrop
514088 9078315 syenogranite Ilunga; subtle foliation
514134 9078183 syenogranite Ilunga; massive; in river
514138 9078183 syenogranite Ilunga
514209 9078126 syenogranite Ilunga; massive; with cleavage
515234 9078213 foliated granitoid lots of altered granite; all subcrop
515360 9077960 undifferentiated granitoid extremely altered granite
515605 9078531 syenogranite Ilunga
515755 9078689 undifferentiated granitoid altered granite; maybe foliated
515766 9078419 foliated granitoid small hill of sheared rock
516966 9076658 aplite aplite; cross cutting Ilunga
516967 9076659 syenogranite aplite cross cutting Ilunga
518859 9079955 syenogranite foliated Ilunga
521354 9076818 undifferentiated granitoid sheared; silicified; hematized; granite
521372 9076843 syenogranite sheared Ilunga
521427 9076768 syenogranite hematized Ilunga
523022 9079091 syenogranite went looking for rapikivi granite; here is regular Ilunga
523735 9077366 undifferentiated granitoid pink granite; medium-coarse grained
523757 9076925 syenogranite Ilunga? coarse grained; plagioclase and K feldspar; weather pink

N.B. eastings and northings are reported as UTM coordinates (WGS84, Zone 36S)
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Analyte Analysis Method1 Unit D.L.2 CL099 CL0913 CL0915 CL0921 CL0923 CL0925 CL0928
SiO2 FUS-ICP % 0.01 65.68 50.88 71.72 75.41 58.85 67.99 53.98
Al2O3 FUS-ICP % 0.01 14.57 16.36 15.53 13.32 16.2 14.06 16.71

Fe2O3(T) FUS-ICP % 0.01 4.67 9.31 1.22 1.11 7.07 2.56 8.7
MnO FUS-ICP % 0.001 0.095 0.13 0.023 0.028 0.097 0.028 0.123
MgO FUS-ICP % 0.01 0.9 5.11 0.31 0.22 2.81 0.7 5.16
CaO FUS-ICP % 0.01 2.51 7.27 1.95 1.02 5.9 1.91 7.18
Na2O FUS-ICP % 0.01 4.23 3.78 4.93 4.03 4.04 5.39 4.07

K2O FUS-ICP % 0.01 3.74 1.06 2.65 3.19 0.95 3.4 0.63
TiO2 FUS-ICP % 0.001 0.717 1.234 0.123 0.107 1.003 0.339 1.014
P2O5 FUS-ICP % 0.01 0.29 0.26 0.02 0.02 0.3 0.11 0.19
LOI FUS-ICP % 1.41 3.23 1.38 1.55 2.49 1.92 2.58
Total FUS-ICP % 0.01 98.79 98.63 99.87 100 99.72 98.4 100.3
Au INAA ppb 1 2 2 < 1 < 1 < 1 < 1 < 1
Ag  TD-ICP ppm 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5
As INAA ppm 1 < 1 2 2 < 1 2 2 2
Ba FUS-ICP ppm 1 1117 433 2128 1550 596 1804 278
Be FUS-ICP ppm 1 2 < 1 < 1 < 1 1 < 1 < 1
Br INAA ppm 0.5 < 0.5 < 0.5 2.9 < 0.5 1.9 2.9 1
Cd TD-ICP ppm 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5
Co INAA ppm 0.1 25.1 46.2 23.9 31.6 24.6 18.1 41
Cr INAA ppm 0.5 < 0.5 116 1.6 < 0.5 20.6 13 97.6
Cu TD-ICP ppm 1 15 39 17 4 15 14 33
Hg INAA ppm 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Ir INAA ppb 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Ni TD-ICP ppm 1 6 70 4 6 22 17 59
Pb TD-ICP ppm 5 10 < 5 12 8 6 6 < 5
Sb INAA ppm 0.1 0.3 1.1 0.2 0.3 0.4 0.3 0.5
S TD-ICP % 0.001 0.075 0.189 0.079 0.006 0.065 0.021 0.1
Sc INAA ppm 0.01 6.26 18.1 1.16 1.21 11.9 4.73 22.8
Se INAA ppm 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5
Sr FUS-ICP ppm 2 316 545 481 197 650 176 500
V FUS-ICP ppm 5 39 190 8 < 5 120 27 158
W INAA ppm 1 224 71 185 254 60 107 63
Y FUS-ICP ppm 1 24 11 4 5 11 6 17
Zn TD-ICP ppm 1 60 66 21 11 52 22 55

Mass INAA g 1.577 1.603 1.448 1.443 1.605 1.531 1.656
Bi FUS-MS ppm 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
Cs FUS-MS ppm 0.1 0.2 0.3 0.3 0.7 0.4 0.2 0.2
Ga FUS-MS ppm 1 20 17 15 13 18 14 17
Ge FUS-MS ppm 0.5 1.3 1.3 1 1.1 1.3 0.6 1.3
Hf FUS-MS ppm 0.1 7.3 2 1.7 2.1 2.7 3.7 2.3
In FUS-MS ppm 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

Mo FUS-MS ppm 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2
Nb FUS-MS ppm 0.2 17.6 1.9 2.2 4.1 3.7 7.3 1.5
Rb FUS-MS ppm 1 54 23 47 55 22 41 17
Sn FUS-MS ppm 1 2 < 1 < 1 < 1 < 1 1 < 1
Ta FUS-MS ppm 0.01 1.51 0.33 0.77 1.08 0.52 0.78 0.3
Th FUS-MS ppm 0.05 3.75 1.45 3.2 4.83 4.53 16.3 0.75
U FUS-MS ppm 0.01 1.05 0.52 0.62 0.78 2.22 1.23 0.29
Zr FUS-MS ppm 1 330 98 80 82 134 169 96
La FUS-MS ppm 0.05 61.6 12 32.2 28.5 22.3 52.2 9.84
Ce FUS-MS ppm 0.05 135 24.8 50.6 47.9 43.8 91.1 21
Pr FUS-MS ppm 0.01 16.6 3.17 4.8 4.68 5.14 9.47 2.81
Nd FUS-MS ppm 0.05 60.1 13.1 13.7 13.7 18.8 29.2 11.9
Sm FUS-MS ppm 0.01 10.5 2.8 1.78 1.83 3.58 4.15 3.04
Eu FUS-MS ppm 0.005 1.88 1.28 0.625 0.479 1.39 0.968 1.12
Gd FUS-MS ppm 0.01 7.36 2.67 1.07 1.26 2.9 2.53 3.13
Tb FUS-MS ppm 0.01 1.01 0.42 0.14 0.17 0.43 0.3 0.54
Dy FUS-MS ppm 0.01 5.28 2.33 0.72 0.92 2.28 1.45 3.28
Ho FUS-MS ppm 0.01 0.97 0.44 0.14 0.19 0.43 0.26 0.65
Er FUS-MS ppm 0.01 2.54 1.23 0.45 0.58 1.21 0.73 1.84
Tl FUS-MS ppm 0.05 0.06 < 0.05 < 0.05 0.08 < 0.05 < 0.05 < 0.05
Tm FUS-MS ppm 0.005 0.344 0.175 0.07 0.091 0.178 0.098 0.276
Yb FUS-MS ppm 0.01 2.11 1.12 0.5 0.66 1.17 0.58 1.8
Lu FUS-MS ppm 0.002 0.316 0.176 0.092 0.121 0.184 0.085 0.29

Lithogeochemistry Samples
Lithogeochemistry results

1Analysis method abbreviations: FUS-ICP = Fusion Inductively Coupled Plasma Mass Spectrometry; INAA = Instrumental 
Neutron Activation Analysis; TD-ICP = Total Dissolution Inductively Coupled Plasma Mass Spectrometry; D.L. = detection 
limit
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CL0931 CL0932 CL0934 CL0947 CL0956 CL0957 CL0958 CL0959 CL0977 CL0981 CL0984 CL0996
73.64 75.94 74.91 66.83 47.58 55.5 72.94 77.46 68.23 52.09 50.22 42.13
12.08 12.59 12.26 14.4 14.71 17.02 14.22 11.02 14.67 13.41 14.99 9.51
3.12 1.76 2.85 4.1 14.57 7.78 1.92 1.79 3.27 7.8 9.46 13.39

0.046 0.022 0.04 0.033 0.312 0.112 0.032 0.012 0.048 0.146 0.159 0.338
0.54 0.11 0.18 0.72 4.95 3.9 0.4 0.07 1.32 10.53 9.72 17.42
0.76 0.38 0.95 2.26 4.05 6.8 1.99 0.19 2.5 7.62 8.96 8.9
3.42 3.62 3.54 4.7 3.1 3.87 4.5 3.28 4.11 2.09 2.44 0.89
4.42 4.8 4.54 4.22 2.62 1.19 2.3 4.83 2.9 2.59 1.52 0.2

0.332 0.154 0.277 0.614 2.503 0.957 0.168 0.105 0.406 0.621 0.7 1.47
0.02 0.02 0.02 0.23 0.43 0.2 0.04 < 0.01 0.11 0.18 0.13 0.16
1.25 0.62 1.21 2.03 3.55 2.37 0.93 0.48 2.4 2.94 2.61 6.3

99.63 100 100.8 100.1 98.36 99.71 99.44 99.23 99.95 100 100.9 100.7
< 1 < 1 < 1 < 1 5 2 2 < 1 < 1 < 1 < 1 < 1

< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5
< 1 < 1 < 1 2 5 2 < 1 < 1 2 2 < 1 6
896 811 714 1184 1266 492 1458 142 1258 836 442 55
2 2 3 1 2 1 1 4 1 1 < 1 < 1

< 0.5 < 0.5 1.8 4.3 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 1.2 < 0.5 1.8
< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.6
27.9 22.8 25.4 19.5 50.8 33.5 21 25.7 22.5 44.9 48.2 85.5
< 0.5 < 0.5 < 0.5 < 0.5 113 50.7 < 0.5 < 0.5 17.5 679 655 1840

8 1 5 2 101 46 18 15 12 12 21 135
< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1
< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1
5 4 4 5 77 35 5 5 15 360 186 817
10 12 18 < 5 < 5 < 5 12 10 7 11 < 5 7

< 0.1 0.2 0.2 0.3 1 0.4 < 0.1 < 0.1 0.9 0.9 < 0.1 0.8
0.008 0.001 0.015 0.036 0.039 0.053 0.003 0.002 0.002 0.003 0.01 0.111
3.89 2.74 3.94 5.67 34.9 16.4 1.73 0.39 5.63 22.1 30 23.2
< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5

51 41 60 181 251 548 464 33 385 298 271 105
8 < 5 5 37 332 155 14 < 5 47 126 185 220

216 196 198 117 7 71 175 213 126 23 20 5
68 42 88 17 33 16 8 94 8 9 19 13
51 29 73 25 154 72 31 42 40 91 99 223

1.447 1.269 1.322 1.298 1.443 1.479 1.424 1.39 1.436 1.431 1.527 1.689
< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
0.3 0.2 0.3 0.2 1 0.3 0.5 0.2 0.8 0.4 0.4 2
21 17 22 17 20 18 15 23 15 14 14 13
1.5 1.4 1.7 1 1.6 1.3 1.3 1.7 1.1 1.4 1.4 1.5
10 6.7 12.6 6.6 4.6 2.6 2.3 13.7 3.7 1.7 1.6 2.7

< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
2 2 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2

15.3 9.7 20.5 13.9 12.8 3.4 5.9 25.5 4 2.5 1.6 11.7
88 124 112 68 74 37 53 131 71 85 62 6
4 3 4 2 2 2 < 1 8 < 1 1 2 2

1.73 1.09 1.85 0.99 0.87 0.63 0.98 1.65 0.68 0.22 0.31 0.76
15.5 13.3 12.4 6.73 2.55 4.97 2.75 17.7 5.09 1.39 1.18 1.15
3.17 2.31 3.92 1.2 0.46 1.32 0.62 3.86 1.25 0.45 0.5 0.28
396 237 474 300 199 114 98 337 163 80 62 115
88.6 73.7 60 61.1 28.8 19 21.9 57.2 25.2 15.2 8.91 14.2
171 134 124 124 60.4 35.7 36.9 131 47 32.3 19.1 31.2
19.6 15.3 15.4 14.2 7.79 4.26 3.74 13.7 5.24 4.27 2.51 4.12
68 50.6 56.6 48.5 31.4 16.2 11.4 47 17.2 17 10.6 17

13.2 9 13.4 8 6.94 3.45 1.87 11.7 2.86 3.34 2.6 3.9
1.46 0.847 1.08 1.61 2.12 1.28 0.492 0.313 0.732 1.03 0.833 1.27
11.5 7.3 12.9 5.24 6.71 3.1 1.42 11.7 2.04 2.61 2.83 3.38
2.01 1.23 2.47 0.73 1.14 0.49 0.23 2.46 0.28 0.35 0.52 0.5
12.2 7.64 15.8 3.68 6.57 2.91 1.36 16.9 1.52 1.9 3.28 2.93
2.46 1.52 3.18 0.66 1.27 0.57 0.27 3.67 0.29 0.36 0.68 0.52
7.2 4.5 9.39 1.81 3.59 1.7 0.81 11 0.86 0.95 2.07 1.38
0.16 0.34 0.24 0.09 0.15 < 0.05 0.09 0.32 0.12 0.11 < 0.05 < 0.05
1.08 0.705 1.43 0.243 0.519 0.254 0.135 1.72 0.125 0.132 0.312 0.188
7.14 4.78 9.3 1.52 3.35 1.75 1.1 11.4 0.83 0.83 2.11 1.18
1.14 0.747 1.43 0.241 0.525 0.288 0.192 1.72 0.139 0.141 0.356 0.181

Lithogeochemistry Samples
Lithogeochemistry results
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CL1021 CL1022 CL1029 CL1030
59.96 49.6 67.55 67.63
14.51 17.29 15.09 14.89
6.86 11.36 3.5 3.51

0.103 0.139 0.048 0.057
4.88 5.93 1.46 1.31
6.11 7.85 2.4 3.19
3.71 3.18 3.78 4
2.5 1.03 3.84 2.53

0.673 1.433 0.444 0.405
0.25 0.22 0.16 0.12
1.36 2.62 1.59 1.21

100.9 100.7 99.86 98.84
< 1 < 1 < 1 < 1

< 0.5 < 0.5 < 0.5 < 0.5
2 4 2 3

1187 558 1272 1008
1 < 1 2 1

< 0.5 < 0.5 1.8 < 0.5
< 0.5 < 0.5 < 0.5 < 0.5
21.1 40.1 9 7.5
226 119 115 13.8
55 51 157 49
< 1 < 1 < 1 < 1
< 1 < 1 < 1 < 1
65 113 23 13
11 6 11 9
0.3 0.5 0.4 0.6

0.006 0.046 0.005 0.024
15.4 17.9 5.45 4.8
< 0.5 < 0.5 < 0.5 < 0.5
638 561 446 472
143 268 60 54
< 1 < 1 < 1 < 1
19 10 13 9
65 77 49 45

1.48 1.634 1.409 1.714
0.4 < 0.1 0.3 0.2
0.7 0.4 0.7 0.6
17 17 18 17
1.2 1.2 1.1 1.2
4.2 1.2 4.3 3.2

< 0.1 < 0.1 < 0.1 < 0.1
< 2 < 2 < 2 4
6.1 1.6 8.2 4.6
51 25 65 57
1 < 1 2 < 1

0.4 0.09 0.73 0.36
8.69 0.99 7.97 9.05
1.73 0.25 1.86 2.22
176 55 181 132
43.8 8.85 44.8 33
94.4 19.4 93 59.2
10.7 2.47 10 5.98
41.7 10.7 34.9 20.1
7.8 2.38 5.53 3.24
1.89 1.07 1.09 0.842
5.49 2.05 3.55 2.23
0.75 0.31 0.51 0.3
3.71 1.81 2.61 1.59
0.66 0.35 0.47 0.31
1.8 1 1.34 0.85
0.2 0.11 0.18 0.2

0.254 0.139 0.196 0.126
1.58 0.84 1.29 0.87

0.241 0.127 0.199 0.146

Lithogeochemistry Samples
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Appendix 2.10 – Lu-Hf  standards                                                                                                                                                      
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Appendix 2.11 – Lu-Hf  zircon LA-MC-ICP-MS samples and standards                                                                                                                                                      
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Re-Os GEOchROnOlOGy Of QuaRtz-EnclOsEd ultRafinE MOlybdEnitE:  
iMplicatiOns fOR ORE GEOchROnOlOGy

C. J. M. LawLey† and d. SeLby

department of Earth sciences, durham university, durham dh1 3lE, united Kingdom

Abstract
Re-Os molybdenite geochronology relies on the aliquant analysis taken from a mineral separate. Although 

suitable for coarse-grained molybdenite samples, traditional mineral separation techniques are not ideally 
suited for samples possessing fine-grained molybdenite (<50 mm) and thus hamper the application of Re-Os 
geochronology for such samples. Here, we demonstrate a room-temperature hydrofluoric acid (HF) chemical 
separation technique that is capable of isolating ultrafine molybdenite (i.e., <50 mm) for Re-Os geochronol-
ogy. Six Re-Os molybdenite model ages from four molybdenite in-house control and NIST reference material 
(RM8599) samples exposed to concentrated HF are indistinguishable from the Re-Os molybdenite model ages 
for aliquants not exposed to HF. Thus, HF exposure at room temperature has no effect on Re-Os molybdenite 
systematics. Our HF chemical separation technique was then applied to six ultrafine molybdenite samples from 
the Lupa goldfield, southwest Tanzania. Three samples from the Kenge deposit provide a weighted average 
Re-Os molybdenite model age of 1953 ± 5 Ma (MSWD = 0.6; n = 3), whereas three samples and one repeat 
analysis from the Porcupine deposit provide a weighted average Re-Os molybdenite model age of 1886 ± 5 Ma 
(MSWD = 1.5; n = 4). Our proposed analytical protocol has allowed us to determine reproducible ages from 
ultrafine molybdenite samples within the Lupa goldfield that were previously unsuitable for molybdenite Re-Os 
geochronology using conventional mineral separation techniques.

Introduction
Molybdenite Re-Os geochronology is a well-established 

geochemical tool in the study of ore deposits (e.g., Stein et 
al., 1997; Selby and Creaser, 2001). The utility of molybdenite 
as a geochronometer stems from (1) its occurrence in a wide 
variety of ore deposit types (e.g., porphyry, epithermal, skarn, 
orogenic gold, and others), (2) its closed-system behavior 
during hydrothermal alteration and regional metamorphism 
(e.g., Stein et al., 1998; Selby and Creaser, 2001; Bingen and 
Stein, 2003; Ootes et al., 2007; Bingen et al., 2008), and (3) 
its geochemical tendency to incorporate ppm levels of Re 
and exclude Os upon crystallization (e.g., Stein et al., 2001, 
and references therein; Takahashi et al., 2007). The exclusion 
of Os during molybdenite precipitation simplifies the dating 
process as all measured Os is radiogenic (187Osr) and results 
from the in situ decay of 187Re (cf. Markey et al., 2007, and 
references therein). As a result, Re-Os molybdenite model 
ages can be calculated from the following equation: 

t = ln(187Os/187Re + 1)/λ,

where t = model age and λ = 187Re decay constant, 1.666 
× 10–11 a–1 (Smoliar et al., 1996; Selby et al., 2007). The 
advantages of the molybdenite Re-Os geochronometer over 
more traditional radiogenic systems (e.g., K-Ar, Rb-Sr) have 
resulted in a proliferation of precise and robust age determi-
nations that have greatly improved our understanding of ore 
deposit genesis (e.g., Stein et al., 1997; Ballard et al., 2001; 
Brown et al., 2002; Selby et al., 2002; Barra et al., 2003; Mao 
et al., 2008).

The starting point for any molybdenite Re-Os analysis is to 
acquire a pure molybdenite mineral separate. Molybdenite 
(MoS2) is a soft, platy, hexagonal, and metallic mineral. Por-
phyry molybdenite deposits possess the largest concentrations 

of molybdenite and are the most important economic source 
for the element molybdenum; however, molybdenite is a 
common accessory sulfide phase for several other ore deposit 
types. Pure molybdenite mineral separates can be obtained 
using conventional mineral separation techniques. Rock sam-
ples are typically crushed and milled before passing through 
a sieve and being subjected to a combination of heavy liquids 
(e.g., methyl iodide), magnetic separation (e.g., Frantz isody-
namic magnetic separator), and high-purity water flotation. 
These time-tested mineral separation techniques have proved 
to be extremely successful for samples where molybdenite 
crystals are abundant and coarse grained (commonly >0.5 
mm). However, in many situations molybdenite crystals are 
fine grained and are lost within the clay size fraction during 
sieving or remain as composite grains encased by silicate min-
erals, particularly quartz. As a result, ultrafine molybdenite 
(i.e., molybdenite crystals with diameters less than <50 mm; 
Fig. 1) samples require a novel approach to mineral separa-
tion. Ultrafine molybdenite samples in this study were col-
lected from orogenic gold deposits in the Lupa goldfield, 
southwest Tanzania, and similar molybdenite occurrences 
have been reported for other orogenic gold deposits (e.g., 
Ispolatov et al., 2008). In addition, very fine molybdenite has 
also been reported in porphyry and other deposit types (e.g., 
Stevenson, 1940). A potential solution for the difficulties of 
processing these samples lies in the contrasting solubility of 
sulfide and silicate minerals in hydrofluoric acid (HF; Neuer-
burg, 1961). Quartz and other silicates rapidly dissolve in HF, 
whereas most sulfide minerals (e.g., molybdenite) are noted 
to be resistant to dissolution (Neuerburg, 1961). The effect of 
HF on the Re-Os isotope composition of molybdenite has not 
been previously tested, despite the potential applicability to 
isolating ultrafine molybdenite. We approach this problem by 
exposing four previously dated molybdenite mineral separates 
(e.g., NIST RM8599, in-house standards) to concentrated HF. 
Herein, we demonstrate that the Re-Os isotope composition 
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of molybdenite is unaffected by exposure to HF. Further, we 
apply this approach to the study of ultrafine molybdenite. 

Samples

Molybdenite control samples and nist 8599

We tested the effect of HF exposure on Re-Os molybdenite 
systematics by comparing the Re-Os molybdenite model ages 
of four previously dated and well-constrained molybdenite 
mineral separates before and after exposure. The location 
and characteristics of each sample are presented in Table 1. 
Two of these samples, National Institute of Standards and 
Technology (NIST) RM8599 and HLP-5, have previously 
been reported as reference materials (cf. Markey et al., 1998, 
2007; Du et al., 2004; Selby and Creaser, 2004). Both refer-
ence materials have also been analyzed using the facilities 
at the Northern Centre for Isotopic and Elemental Tracing 

(NCIET) in the TOTAL Laboratory for Source Rock Geo-
chronology and Geochemistry at Durham University (e.g., 
Porter and Selby, 2010, and references therein). As a result, 
the Re-Os molybdenite model ages for these two samples are 
well constrained and have been reproduced by several labo-
ratories using different analytical protocols. The RM8599 and 
HLP-5 molybdenite powder samples have been produced by 
mixing crushed ore rock with flotation oils at the Henderson 
and Huanglongpu deposit mills, respectively. The milling pro-
cess produces fine-grained and extremely well mixed samples 
that are ideally suited for Re-Os analysis (Stein et al., 1998; 
Selby and Creaser, 2004). However, the Re-Os ages of milled 
samples represent an average age for ore mineralization and 
may mask subtle age variations related to the complex evolu-
tion of most ore systems (e.g., Selby and Creaser, 2001).

In addition to the reference material molybdenite sam-
ples, we have also utilized samples from the previously dated 
MAX (Lawley et al., 2010a) and Endako porphyry Mo depos-
its (Selby and Creaser, 2001). Molybdenite samples from the 
MAX and Endako deposits represent the potassic and phyl-
lic stages of mineralization, respectively, and thus provide the 
absolute timing of that period of ore mineralization. The min-
eral separates were prepared using traditional mineral sepa-
ration methods that included crushing, pulverizing, Frantz 
isodynamic magnetic separation, heavy liquids (i.e., lithium 
heteropolytungstates [LST] heavy liquid and methyl iodide), 
and MilliQ flotation.

ultrafine molybdenite samples

Molybdenite samples are from the Lupa goldfield, south-
west Tanzania. The Lupa goldfield is one of eight lithotectonic 
terranes that constitute the Paleoproterozoic Ubendian Belt 
(Daly, 1988). Gold is associated with pyrite, chalcopyrite, and 
trace molybdenite within quartz veins and mylonitic rocks. 
Sample locations and characteristics are reported in Table 1. 
Molybdenite is present as fracture coatings, monomineralic 
stringer veins, and ultrafine-grained disseminations within 
quartz veins and the granitic host rock (Fig. 1). The bulk of 
the molybdenite from these samples is <50 mm in diameter 
within quartz crystals and along quartz crystal boundaries (Fig. 
1c). Samples were crushed, pulverized, sieved, and passed 
through a Frantz magnetic separator before heavy liquid sep-
aration. Composite grains (molybdenite encased by quartz) 
were concentrated in the light fraction of the density separa-
tion, whereas liberated pyrite and other sulfide grains were 
concentrated in the heavy fraction of the density separation. 

Rhenium-osmium analytical methods utilize sealed boro-
silicate glass tubes and oxidizing acidic mediums, e.g., aqua 
regia, to achieve tracer solution (185Re + isotopically normal 
Os) and sample Re and Os isotope equilibration. Aqua regia is 
not capable of digesting quartz, and thus any encased molyb-
denite is also not digested. As a result, ultrafine samples were 
then chemically separated using the method described below.  

Analytical Protocol

ultrafine molybdenite chemical separation method

Our series of HF tests indicates that approximately 8 ml 
of 32N HF will dissolve 0.750 g of quartz in 24 hr at room 
temperature and is adapted from Neuerburg (1961). For each 

Fig. 1.  (a) Ultrafine molybdenite within quartz vein; (b) ultrafine molyb-
denite coating and enclosed within quartz grains; (c) reflected-light photomi-
crograph of molybdenite within and along quartz grain boundaries.
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control sample/reference material, a known amount of sample 
was placed into a Savillex Teflon digestion vessel with 8 ml 
of 32N HF (ROMIL Ltd. UpA high-purity HF) and left at 
room temperature for 24 hr. After this, the HF was removed 
by rinsing the molybdenite three times with 10 ml of MilliQ. 
Finally, the molybdenite was rinsed with ethanol and dried 
at 60°C. High-purity HF (trace element impurities at ppt 
levels) was used in this study in order to maintain low ana-
lytical blanks; however, we expect that less pure HF could 
also be used because the majority of HF is removed in the 
rinsing process and we expect that any Re and Os impurities 
within the HF are insignificant relative to the ppm and ppb 
levels of these elements within molybdenite. We estimate that 
sample recovery ranged from 80 to 90% during the rinsing 
procedure, based on the difference in sample weight before 
and after rinsing. Sample loss is explained by minor amounts 
of the sample adhering to the centrifuge tube and within the 
pipette during rinsing. This was particularly apparent for the 
two fine-grained mill samples, RM8599 and HLP-5. One of 
the control samples, “CL100 3 weeks,” was exposed to the HF 
protocol for three weeks prior to analysis in order to assess the 
longer-term effects of HF on the Re-Os systematics.

The same protocol was followed to liberate molybdenite 
from enclosing quartz. After the silicate (quartz) digestion, 
the sample typically contained molybdenite plus trace pyrite. 
The grain size of these samples precluded handpicking as a 

means for removing trace amounts of pyrite. However, the Re 
and Os contribution of trace pyrite is insignificant relative to 
the much larger concentrations of Re and O present within 
molybdenite. Ultrafine molybdenite samples with more com-
plicated mineralogy (e.g., quartz-feldspar-molybdenite veins) 
typically possessed HF-insoluble products after digestion. 
The majority of these HF-insoluble products were removed 
during the following MilliQ rinsing stage. Neuerburg (1961) 
reported that any remaining HF- and water-insoluble prod-
ucts can be removed by exposing the sample to aluminium 
chloride; however, this was not deemed necessary for our 
sample suite.

Re-Os isotope analytical method

The Re and Os abundance and isotope composition deter-
minations for molybdenite mineral separates follow those 
previously published (e.g., Porter and Selby, 2010). In brief, 
a weighed aliquant of the molybdenite mineral separate and 
tracer solution (185Re + isotopically normal Os) were then 
loaded into a Carius tube with 11N HCl (1 ml) and 15.5N 
HNO3 (3 ml), sealed, and digested at 220ºC for ~24 hr. Osmium 
was purified from the acid medium using solvent extraction 
(CHCl3) at room temperature and microdistillation methods. 
The Re fraction was isolated using standard anion column 
chromatography. Rhenium and Os were loaded onto coated Ni 
and Pt filaments, respectively, and their isotopic compositions 

TabLe 1.  Sample Locations, Characteristics, and Re-Os Results

  Brief sample Sample Re  187Re  187Os  Model age ±
Sample no. Sample location description wt (g) (ppm) ± (ppm) ± (ppb) ± (Ma)1 (Ma)

Control samples
RM8599 Hendersen deposit, USA Molybdenite powder;  0.092  11.39 0.04   7.16 0.02   3.30 0.01  27.6 0.1
  molybdenite reference  0.103  11.36 0.04   7.14 0.02   3.29 0.01  27.6 0.1
  material

HLP-5 Huanglongpu deposit,  ~1- × 500-m calcite- 0.006 319.90 2.42 201.06 1.52 738.28 5.46 220.0 0.9
 China quartz-molybdenite veins

2706SWB Endako deposit, Canada Laminated quartz- 0.016  32.85 0.14  20.65 0.09  50.19 0.18 145.7 0.6
  molybdenite veins

CL100 MAX deposit, Canada Quartz-molybdenite vein 0.012  54.67 0.26  34.36 0.16  46.07 0.20  80.4 0.3
  from high-grade zone 0.021  56.26 0.21  35.36 0.13  47.47 0.15  80.5 0.3
CL100   0.021  49.89 0.19  31.36 0.12  42.23 0.14  80.8 0.3
3 weeks

Ultrafine molybdenite samples
CL1115 Kenge deposit, Lupa  Disseminated molybdenite 0.022   7.40 0.03   4.65 0.02 153.65 0.50 1950  8
 goldfield, Tanzania within quartz vein

CL1116 Kenge deposit, Lupa  Disseminated molybdenite 0.015   8.55 0.04   5.37 0.02 177.64 0.75 1952 10
 goldfield, Tanzania within quartz vein

CL1117 Kenge deposit, Lupa  Disseminated molybdenite 0.023  13.35 0.06   8.39 0.04 278.02 0.85 1957  9
 goldfield, Tanzania within quartz vein

CL1118 Porcupine deposit, Lupa  Disseminated molybdenite 0.023   1.96 0.01   1.23 0.01  39.26 0.13 1882  9
 goldfield, Tanzania within quartz-feldspar vein 0.019   1.72 0.01   1.08 0.01  34.66 0.13 1890 10

CL1119 Porcupine deposit, Lupa  Disseminated molybdenite  0.020   3.35 0.02   2.11 0.01  67.65 0.35 1896 13
 goldfield, Tanzania within granite

CL1120 Porcupine deposit, Lupa  Disseminated molybdenite 0.020  10.29 0.04   6.47 0.03 206.09 0.68 1882  8
 goldfield, Tanzania within granite

Analytical uncertainties are reported at 2σ
1Model age calculated from the simplified isotope equation [t = ln(187Os/187Re + 1)/λ, where t = model age and λ = 187Re decay constant], assuming no 

initial radiogenic Os
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were measured using negative thermal ionization mass spec-
trometry (Creaser et al., 1991; Völkening et al., 1991). Anal-
yses were conducted on a Thermo Electron TRITON mass 
spectrometer, with the Re and Os isotope composition meas-
ured using static Faraday collection. Analytical uncertainties 
are propagated and incorporate uncertainties related to Re 
and Os mass spectrometer measurements, blank abundances 
and isotopic compositions, spike calibrations, and reproduc-
ibility of standard Re and Os isotope values. During the course 
of this study Re and Os blanks were <4 and 1 pg, respectively, 
with the 187Os/188Os of the blank being 0.25 ± 0.02.

Results

Re-Os control samples

All Re-Os results are listed in Table 1 and presented in Fig-
ure 2.

RM8599: Two aliquants of approximately 100 mg of 
RM8599 were analyzed and provided identical molybdenite 
Re-Os model ages of 27.6 ± 0.1 Ma. These ages are in excel-
lent agreement with the arithmetic average of this sample, 
27.7 ± 0.0 Ma (n = 48; Markey et al., 2007), and previously 
reported analyses of 27.6 ± 0.1 and 27.7 ± 0.1 Ma (Porter and 
Selby, 2010). The 187Re and 187Os concentrations are 7.2 ± 
0.0 ppm and 3.3 ± 0.0 ppb, respectively, and overlap within 
uncertainty with previously reported values (Markey et al., 
2007; Porter and Selby, 2010).

hlp-5: One aliquant of approximately 6 mg of HLP-5 was 
analyzed and provided a molybdenite model age of 220.0 ± 
0.9 Ma. This age is in excellent agreement with the accepted 
weighted average age of 220.5 ± 0.2 Ma (MSWD = 1.3; n 
=17; Selby and Creaser, 2004) and also with the date reported 
by Porter and Selby (2010; 221.4 ± 0.9 Ma). The 187Re and 
187Os concentrations are 201.1 ± 1.5 ppm and 738.3 ± 5.5 
ppb, respectively, and are significantly higher than the 187Re 
(~170 ppm) and 187Os (~600 ppb) concentrations previously 
reported (Selby and Creaser, 2004, and references therein; 
Porter and Selby, 2010). The potential explanation for this dis-
crepancy is discussed further below.

2706sWb: One aliquant of approximately 15 mg of 2706SWB 
was analyzed and provided a molybdenite model age of 145.7 
± 0.6 Ma. This age is identical, within analytical uncertainty, 
with the weighted average age of 145.8 ± 0.4 (MSWD = 2.8; n 
= 10; Selby and Creaser, 2004). The 187Re and 187Os concentra-
tions are 20.7 ± 0.1 ppm and 50.2 ± 0.2 ppb, respectively, and 
are slightly higher (~19 ppm for 187Re; 45 ppb for 187Os) than 
those reported in Selby and Creaser (2004).
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Fig. 2.  (a) Molybdenite Re-Os model ages of RM8599 after exposure to 
HF and accepted age from Markey et al. (2007). Dotted error bars on arith-
metic mean model age represent the typical uncertainty for an individual 
analysis. (b) Molybdenite Re-Os model age of HLP-5 after exposure to HF 
and accepted age from Selby and Creaser (2004). Dotted error bars on the 
weighted average model age represent the typical uncertainty for an indi-
vidual analysis. (c) Molybdenite Re-Os model age of 2706SWB after exposure 
to HF and accepted age from Selby and Creaser (2004). Dotted error bars on 
the weighted average model age represent the typical uncertainty for an indi-
vidual analysis. (d) Molybdenite Re-Os model ages of CL100 after exposure 
to HF and previously reported ages from Lawley et al. (2010a).



– 217 –

Appendix 3.1 – Economic Geology Paper cont’d                                                                                                                                                      
 sciEntific cOMMunicatiOns 1503

cl100: Three aliquants of molybdenite from the MAX 
porphyry deposit provide molybdenite model ages of 80.4 
± 0.3, 80.5 ± 0.3, and 80.8 ± 0.3 Ma. All three ages agree, 
within analytical uncertainty, with the previously reported 
Re-Os age for CL100 (80.5 ± 0.4 Ma) and two other Re-Os 
molybdenite dates from this deposit (80.1 ± 0.4 Ma; 80.2 ± 
0.4 Ma; Lawley et al., 2010a). The 187Re and 187Os concentra-
tions for the HF-treated CL100 sample are 34.4 ± 0.2, 35.4 ± 
0.1, and 31.4 ± 0.1 ppm, and 46.1 ± 0.2, 47.5 ± 0.2, and 42.2 
± 0.1 ppb, respectively. All of these concentrations are slightly 
higher (187Re = 27.8 ± 0.1 ppm; 187Os = 37.3 ± 0.1 ppb) than 
those reported in Lawley et al. (2010a). One aliquant of sam-
ple CL100 was left in HF for three weeks at room tempera-
ture (CL100 3 weeks). The Re-Os model age for the latter 
is within uncertainty to ages of sample aliquants of CL100 
that were only treated for 24 hr. However, the three-week-
treated sample gave slightly lower Re and Os abundances, 
which are nonetheless similar to those published for this sam-
ple by Lawley et al. (2010a). In addition, our Re-Os results 
are also in good agreement with U-Pb and Ar-Ar ages of the 
host intrusion and associated hydrothermal alteration at MAX 
(Lawley et al., 2010a).

Re-Os ultrafine molybdenite

Ultrafine molybdenite results for the Kenge and Porcupine 
deposits are listed in Table 1 and presented in Figure 3.  A 
weighted average Re-Os molybdenite model age for the three 
samples from the Kenge deposit is 1953 ± 5 Ma (MSWD = 
0.6; n = 3). A weighted average Re-Os molybdenite model 
age for the three samples and one repeat analysis from the 
Porcupine deposit is 1886 ± 5 Ma (MSWD = 1.5; n = 4). 
Total Re concentrations for samples from the Kenge deposit 
range from 7 to 13 ppm, whereas total Re concentrations for 
samples from the Porcupine deposit range from 1 to 10 ppm. 
These ranges are comparable with previously reported values 
from samples prepared using conventional mineral separation 
techniques (Lawley et al., 2010b).

Discussion

hf and Re-Os molybdenite systematics

We tested the effect of HF on Re-Os systematics by expos-
ing previously dated molybdenite mineral separates (i.e., con-
trol samples) to HF and compared the molybdenite model 
age with and without HF exposure. Molybdenite model ages 
for analyses with and without exposure to HF overlap within 
analytical uncertainty and are shown graphically in Figure 2. 
In addition, one molybdenite mineral separate (i.e., CL100 
3 weeks) was exposed to HF at room temperature for three 
weeks, and possesses an Re-Os molybdenite model age that is 
indistinguishable from samples prepared using conventional 
mineral separation techniques. This suggests that HF at room 
temperature does not affect the Re-Os isotope composition 
of molybdenite and that our analytical protocol is suitable 
for isolating molybdenite from silicate-enclosed molybdenite 
samples for Re-Os geochronology.

With the exception of RM8599, the control samples (CL100, 
2706SWB, and HLP-5) possess 187Re and 187Os concentra-
tions that are either slightly higher or significantly higher than 
previously reported values. However, any variation in 187Re is 

coupled with 187Os variation as all control samples yield Re-Os 
model ages that are in excellent agreement with previously 
reported ages. Interestingly, the analyses of sample CL100 
reported in this study possess up to 7 ppm more 187Re than the 
previously published analysis (Lawley et al., 2010a); however, 
the sample left in the HF for three weeks gave values very 
similar to those for CL100 reported by Lawley et al. (2010a).

Re and Os concentration variations such as this should be 
expected when analyzing aliquants of natural molybdenite 
mineral separates and do not necessarily affect molybdenite 
Re-Os model ages (Selby and Creaser, 2004). HLP-5 is one 
such example where previous workers have reported a range 
of total Re (240–290 ppm), whereas molybdenite Re-Os 
model ages for these analyses all overlap within analytical 
uncertainty (Markey et al., 1998; Suzuki et al., 2001; Du et 
al., 2004; Selby and Creaser, 2004). Our analysis of HLP-5 
treated by HF prior to the traditional Re-Os analytical pro-
tocol possesses 320 ppm total Re and 738 ppb 187Os, thus 
possessing ~40 ppm more total Re and ~98 ppb more 187Os 
than reported by previous workers. However, as noted above, 
this difference in Re-Os abundance is coupled, as an Re-Os 
model age identical to reported values is determined for not 
only HLP-5, but all control samples. Previously, variations in 
Re and 187Os abundance with repeat analysis were suggested 
to relate to the nonhomogeneous nature of Re and 187Os in 
molybdenite (Selby and Creaser, 2004). Alternatively, the 
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molybdenite samples from the Porcupine deposit. 
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variability of Re and Os abundances could relate to sample 
impurities within HLP-5. Atomic absorption, inductively 
couple plasma-mass spectrometry (ICP-MS), and inductively 
coupled plasma-atomic emission spectrometry (ICP-AES) 
analyses suggest HLP-5 contains significant (>1% m/m) Ca, 
Pb, Fe, and Al, which are unexpected in a pure MoS2 (molyb-
denite) mineral separate (Markey et al., 1998; Du et al., 2004). 
These additional elements could be present as mineral inclu-
sions within molybdenite crystals or as free mineral phases 
that were incorporated into the molybdenite mineral separate 
during froth flotation. We consider that our HF technique 
may have leached the sample and, thus, HLP-5 may contain 
higher Re and Os abundances than previously reported. This 
is supported by ICP-MS analyses of the HF used in HF treat-
ment of HLP-5, completed as part of this study, which mea-
sured approximately 10 ppm Ca, 10 ppm Pb, 6 ppm Fe, 5 
ppm Al, and 3 ppm K within the HF leachate. Our results sug-
gest that HF dissolution removes HF-soluble mineral phases 
within HLP-5 or incorporated with the mineral separate and 
that our proposed method yields a better approximation of the 
true Re content of HLP-5.

ultrafine molybdenite

Molybdenite from the Lupa goldfield is present as molyb-
denite-coated fractures, monomineralic stringer veins, and 
ultrafine disseminations within quartz veins and the host 
granite. Conventional mineral separation techniques were 
unable to separate sufficient quantities of molybdenite due 
to the ultrafine-grained nature of some molybdenite samples. 
The chemical separation technique developed here provided 
sufficient quantities (20–60 mg) of ultrafine molybdenite for 
Re-Os analysis. Three Re-Os molybdenite model ages from 
the Kenge deposit all overlap within uncertainty, as exempli-
fied from the low MSWD of the weighted average calculation 
(i.e., 1953 ± 5 Ma; MSWD = 0.6). The four Re-Os molyb-
denite model ages from the Porcupine deposit also overlap 
within error of each other but possess slightly more scat-
ter, resulting in a slightly higher MSWD (i.e., 1886 ± 5 Ma; 
MSWD = 1.5). Both ages are supported by Re-Os pyrite and 
U-Pb dating reported in Lawley et al. (2010b) and are part of 
a broader geologic study that will be reported in Lawley et al. 
(in prep).

advantages of chemical mineral separation

Improved sample recovery is the greatest advantage of 
chemical mineral separation over conventional mineral sepa-
ration techniques. High sample recovery is especially impor-
tant for samples with low modal abundances of molybdenite 
or for small-volume samples. In the case of ultrafine molyb-
denite, chemical mineral separation maintains high sample 
recovery regardless of crystal size. Neuerberg (1961) meas-
ured that sulfide abundance is two to three times greater for 
mineral separates prepared using chemical mineral separation 
techniques when compared to mineral separates prepared by 
heavy media methods. The proposed method would likely 
generate higher sample recoveries than Neuerberg (1961) 
because our method requires less sample handling, which is 
where the majority of fine-grained sample material is lost.

Whole-rock samples can also be digested but typically 
require more time to digest and, depending on sample size, 

may require repeated applications of HF. The advantage 
of this approach is that molybdenite crystals are relatively 
undamaged when compared to mineral separates prepared 
using conventional techniques. Undamaged crystals are espe-
cially important for Re-Os molybdenite geochronology, as Re 
and Os are susceptible to intragrain decoupling (Stein et al., 
2003). Selby and Creaser (2004) overcame Re-Os decoupling 
by increasing the analytical sample size utilized for Re-Os 
geochronology from a mineral separate. Larger sample sizes 
homogenize the sample and mask the decoupling, yielding 
more accurate and reproducible ages. Molybdenite mineral 
separates produced by chemical mineral separation provide 
another possible solution to Re-Os decoupling by preserving 
the original crystal morphology.

Another advantage of chemical mineral separation over con-
ventional methods is the minimal time requirement. Once the 
samples are loaded with HF, no supervision is required during 
sample digestion. This differs from conventional techniques, 
where constant supervision is required through the mineral 
separation process. Additional time savings are gained by the 
ability to digest multiple samples at the same time. As a result, 
the number of samples that can be prepared at one time with 
chemical mineral separation is only limited by the number of 
digestion vessels.

Conclusions
Conventional mineral separation techniques are not ideally 

suited for samples possessing fine-grained molybdenite (<50 
mm) and thus hamper the application of Re-Os geochronology 
for such samples. In this contribution we have demonstrated 
the following:

1. The Re and Os isotope composition of molybdenite is 
unaffected by exposure to HF at room temperature; thus, 
HF is capable of isolating ultrafine molybdenite for Re-Os 
geochronology.

2. The chemical mineral separation protocol described 
above is advantageous for samples with low modal abun-
dances of molybdenite and/or samples containing ultrafine 
molybdenite (e.g., <50 mm).

3. Our proposed chemical mineral separation technique 
has produced six reproducible Re-Os molybdenite model 
ages from samples that were unsuitable for Re-Os analysis 
using traditional mineral separation techniques.
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