
Durham E-Theses

On Discontinuous Galerkin Methods for Singularly

Perturbed and Incompressible Miscible Displacement

Problems

CHAPMAN, JOHN,ROBERT

How to cite:

CHAPMAN, JOHN,ROBERT (2012) On Discontinuous Galerkin Methods for Singularly Perturbed and

Incompressible Miscible Displacement Problems, Durham theses, Durham University. Available at
Durham E-Theses Online: http://etheses.dur.ac.uk/5886/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5886/
 http://etheses.dur.ac.uk/5886/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

On Discontinuous Galerkin

Methods for Singularly Perturbed

and Incompressible Miscible

Displacement Problems

John Chapman

A Thesis presented for the degree of

Doctor of Philosophy

Numerical Analysis Group

Department of Mathematical Sciences

University of Durham

England

November 2012

Dedicated to
Laura, of course.

On Discontinuous Galerkin Methods for

Singularly Perturbed and Incompressible Miscible

Displacement Problems

John Chapman

Submitted for the degree of Doctor of Philosophy

November 2012

Abstract

This thesis is concerned with the numerical approximation of problems of fluid

flow, in particular the stationary advection diffusion reaction equations and the time

dependent, coupled equations of incompressible miscible displacement in a porous

medium.

We begin by introducing the continuous discontinuous Galerkin method for the

singularly perturbed advection diffusion reaction problem. This is a method which

coincides with the continuous Galerkin method away from internal and boundary

layers and with a discontinuous Galerkin method in the vicinity of layers. We prove

that this consistent method is stable in the streamline diffusion norm if the convec-

tion field flows non-characteristically from the region of the continuous Galerkin to

the region of the discontinuous Galerkin method.

We then turn our attention to the equations of incompressible miscible displace-

ment for the concentration, pressure and velocity of one fluid in a porous medium

being displaced by another. We show a reliable a posteriori error estimator for the

time dependent, coupled equations in the case where the solution has sufficient reg-

ularity and the velocity is bounded. We remark that these conditions may not be at-

tained in physically realistic geometries. We therefore present an abstract approach

to the stationary problem of miscible displacement and investigate an a posteriori

error estimator using weighted spaces that relies on lower regularity requirements

for the true solution.

iv

We then return to the continuous discontinuous Galerkin method. We prove in

an abstract setting that standard (continuous) Galerkin finite element approxima-

tions are the limit of interior penalty discontinuous Galerkin approximations as the

penalty parameter tends to infinity. We then show that by varying the penalization

parameter on only a subset of the domain we reach the continuous discontinuous

method in the limit. We present numerical experiments illustrating this approach

both for equations of non-negative characteristic form (closely related to advection

diffusion reaction equations) and to the problem of incompressible miscible displace-

ment. We show that we may practically determine appropriate discontinuous and

continuous regions, resulting in a significant reduction of the number of degrees of

freedom required to approximate a solution, by using the properties of the discon-

tinuous Galerkin approximation to the advection diffusion reaction equation.

We finally present novel code for implementing the continuous discontinuous

Galerkin method in C++.

Declaration

The work in this thesis is based on research carried out at the Numerical Analysis

Group, the Department of Mathematical Sciences, Durham University, England. No

part of this thesis has been submitted elsewhere for any other degree or qualification

and it all my own work unless referenced to the contrary in the text.

Copyright© 2012 by John Chapman.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged”.

v

Acknowledgements

I would like to thank my supervisor, Dr. Max Jensen. He has provided me with guid-

ance and support throughout my Ph.D. He has offered a disproportionate amount

of his time to discussion and explanation, as well as showing superhuman levels of

patience when presented with the nth (still incorrect) rewrite of a theorem.

Many thanks also to Dr. James Blowey who as my second supervisor has selflessly

agreed to sign forms in Max’s absence. The other members of the Numerical Analysis

Group have also made me, and the other students, feel very welcome and included

in the academic work of the group. Thanks must go particularly to Prof. Brian

Straughan who was kind enough to remember my 4th year MMath project and

assist me to return to Durham to read for a doctorate.

Outside of Durham special mention goes to Dr. Andrea Cangiani and Dr. Manos

Georgoulis at Leicester for many fruitful discussions. Being able to discuss math-

ematics with other academics has been among the most rewarding aspects of my

time in Durham.

I am fortunate to have made many new friends while studying. It is probably true

to say that the amount I have learned about numerical analysis is only marginally

more than the amount of trivia I have learned from my friends in the coffee room!

Finally all of the thanks remaining will go to my wife, Laura. She unhesitatingly

agreed to move from the South to the North East, little understanding the British

climate, but never-the-less has remained positive. Without her support I would have

been unable to begin, let alone finish.

vi

Contents

Abstract iii

Declaration v

Acknowledgements vi

1 Introduction 1

1.1 The Problems of Interest . 1

1.2 Research Objectives . 3

1.3 Notation and Useful Lemmas . 5

I The cdG Method and its Stability 12

2 Introduction to the Continuous Discontinuous Galerkin Method 13

2.1 The Continuous Galerkin Method and a Motivating Example 13

2.2 The Discontinuous Galerkin Method 17

2.3 The Continuous Discontinuous Galerkin Method 21

3 On the Stability of the cdG Method 26

3.1 Determining the Ω Decomposition . 26

3.2 Decoupled and Weighted Formulations 27

3.3 Bounds on the ṽε Component on TcG 32

3.4 Bounds on the ṽ0 Component on TcG 34

3.5 An Inf-Sup Condition on TdG . 35

3.6 Stability of the Decoupled and Weighted Approximations 39

vii

Contents viii

3.7 Numerical Experiments . 40

II A Posteriori Error Estimators for IMD 48

4 Introduction to Incompressible Miscible Displacement 49

4.1 Literature Review . 49

4.2 The Coefficients of the Problem . 51

4.3 Regularity . 52

4.4 The RT-dG Finite Element Method 54

5 A Posteriori Error Estimators for RT-dG 57

5.1 Notation and Preliminary Results . 57

5.2 An A Posteriori Estimator for the Pressure and Velocity 60

5.3 An A Posteriori Estimator for the Concentration 67

5.4 An A Posteriori Estimator for the Coupled Problem 76

6 A Posteriori Estimators in Weighted Spaces 77

6.1 An Abstract Discussion . 77

6.2 Stationary IMD . 80

6.3 The Case for an Alternative Approach 89

6.4 Some Results from the Theory of Weighted Spaces 90

6.5 Sobolev Imbeddings in Weighted Spaces 94

6.6 A Posteriori Error Estimators in the Weighted Spaces 96

6.7 A Review of Our Error Estimators 103

III Constraining the Jumps in the dG Method 105

7 On Local Super Penalization 106

7.1 An Abstract Discussion . 107

7.2 Non-Negative Characteristic Form . 110

7.3 Incompressible Miscible Displacement 114

7.4 Numerical Experiments . 119

Contents ix

8 On Determining the Th Decomposition 128

8.1 Continuity and Coercivity . 129

8.2 Determining the Th Decomposition 133

8.3 Numerical Experiments . 138

IV Implementation of cdG 146

9 Continuous Discontinuous Finite Element Code 147

9.1 A Note on Implementation in deal.ii 147

9.2 Commented Code . 151

9.3 Parameter File . 194

10 Summary 196

Glossary of Nomenclature 198

Bibliography 200

Chapter 1

Introduction

In this chapter we introduce the problems we will consider throughout this thesis.

We also outline our research objectives and describe the structure of the thesis, and

then introduce some basic notation and results which we will use frequently.

1.1 The Problems of Interest

We will study two problems: The stationary linear advection diffusion reaction

equations; and the non-linear, time dependent, coupled equations of incompressible

miscible displacement.

Linear Advection Diffusion Reaction Equations

Consider one fluid flowing through another, such as one chemical being injected

into a smooth flowing stream of a second chemical in some industrial process. A

simple model of the concentration of the first chemical should describe the random

movement (spreading out) of the molecules within the two chemicals (diffusion),

the bodily movement of the first chemical caused by the flow (advection or convec-

tion) and any interaction between the chemicals removing or adding the species of

interest (reaction). We do not discuss the derivation of mathematical models for

each part but direct interested readers to, e.g., [2]. We consider specifically the

case of an incompressible fluid which diffuses isotropically and reaches some steady

state. Therefore consider the stationary advection diffusion reaction equation with

1

1.1. The Problems of Interest 2

homogeneous Dirichlet boundary conditions in d dimensions:

−ε∆u+ b(x) · ∇u+ c(x)u = f(x) for x ∈ Ω ⊂ R
d,(1.1.1)

u = 0 on ∂Ω(1.1.2)

with real valued diffusion coefficient ε > 0, advection term b(x) = {bi(x)}, i =

1, . . . , d with entries that are Lipschitz continuous real valued functions, real valued

reaction term c(x) ∈ L∞(Ω) and real valued f ∈ L2(Ω). Throughout ∆ denotes the

Laplacian
∑d

i=1 ∂
2/∂x2i and∇ the divergence operator. This model is also applicable

to problems of, e.g., heat transfer and semiconductor physics.

For 0 < ε ≪ 1 the solution to (1.1.1) typically exhibits boundary or internal

layers [62, 106, 107, 117] and we refer to the problem as singularly perturbed with

perturbation parameter ε. The solution of this type of problem using analytic meth-

ods, e.g., [91, 103], has been thoroughly studied but in some cases the techniques

employed fail or are inefficient. The study of numerical approaches to these problems

is therefore necessary.

Equations of Incompressible Miscible Displacement

We consider the problem of finding the numerical solution to the coupled equations

for the pressure p = p(t,x), Darcy velocity u = u(t,x) and concentration c = c(t,x)

of one incompressible fluid in a porous medium being displaced by another. We

consider the miscible case where both fluids are in the same phase.

Consider the domain ΩT := (0, T]× Ω. The equations for the miscible displace-

ment are given by (e.g., [22, 24])

ϕ
∂c

∂t
+ u · ∇c−∇ · (D(u)∇c) + cqI = ĉqI ,(1.1.3)

∇ · u = qI − qP ,(1.1.4)

u = − K

µ(c)
(∇p− ρ(c)g)(1.1.5)

1.2. Research Objectives 3

with the boundary conditions on ∂ΩT := (0, T]× ∂Ω given by

u · n = 0,(1.1.6)

(D(u)∇c) · n = 0(1.1.7)

and the initial conditions

(1.1.8) c(0, ·) = c0.

We denote by: ϕ(x) the porosity of the medium; qI ≥ 0 and qP ≥ 0 the pressure at

injected (source) and production (sink) wells; K(x) the absolute permeability of the

medium; µ(c) the viscosity of the fluid mixture; ρ(c) the density of the fluid mixture;

g the constant vector of gravity; D(u,x) the diffusion-dispersion coefficient; ĉ the

injected concentration; and c0 the initial concentration. We define a−1(c) := K−1µ.

The coupling is non-linear through the coefficients D(u,x), µ(c) and the advection

term u · ∇c.
This model to describe incompressible miscible displacement has several eco-

nomically important industrial applications including enhanced oil recovery (EOR)

and groundwater flow [25, 94, 97]. In both of these examples an injected fluid (car-

bon dioxide resp. contaminated water) mixes with a fluid in a reservoir of porous

rock filled with a second fluid (oil resp. fresh water). The flow of the injected fluid

through the medium is often difficult to measure directly and therefore appropriate

numerical models form a major aspect of industrial research in these areas.

1.2 Research Objectives

This thesis has three main objectives:

(O1) To investigate to what extent the additional degrees of freedom in the (interior

penalty) discontinuous Galerkin method, compared to the standard continuous

Galerkin method, are required for the stability of the finite element approxi-

mation to (1.1.1) in the convection dominated regime;

1.2. Research Objectives 4

(O2) To present a posteriori error estimators for the finite element approximation

to (1.1.3)-(1.1.8) using discontinuous Galerkin methods and to consider in an

abstract setting general a posteriori error estimates for the stationary coupled

problems, including cases where the domain leads to unbounded solutions;

(O3) To demonstrate that we may practically reduce the number of degrees of free-

dom required to approximate (1.1.1) compared to the discontinuous Galerkin

method, without compromising stability, and to extend these ideas experimen-

tally to (1.1.3)-(1.1.8).

Each of these objectives is fully addressed in this thesis. We split the thesis into

four parts, the first three addressing (O1) to (O3) and the fourth detailing the novel

code written as part of the numerical experiments. Of course each objective is not

distinct and therefore there will be some overlap between parts. A review of relevant

previous work in the field will be presented in each part.

In Part I we define and discuss the continuous discontinuous Galerkin (cdG)

method and relate it to the continuous Galerkin and discontinuous Galerkin meth-

ods. We then proceed to show the stability of the cdG approximation to (1.1.1),

given some assumptions, by modifying the bilinear form.

We then in Part II turn our attention to the equations of incompressible miscible

displacement. We show an a posteriori error estimator for the coupled approxima-

tion on a convex domain where certain regularity requirements are assured. We

then present abstract analysis generating a posteriori error estimators for stationary

coupled equations. However industrial problems often arise with more complicated

domains. After applying the abstract theory to a simple problem with high regu-

larity and using continuous finite elements we discuss the potential of a posteriori

error estimators using Babuška Kondratiev spaces.

In Part III we discuss how the cdG method proposed in Part I is related to the dis-

continuous and continuous methods as the inter-element jumps in the discontinuous

method are more heavily penalized. We apply this approach both to the advection

diffusion reaction problem and that of incompressible miscible displacement. We

also present analysis showing that we can use a discontinuous approximation to

1.3. Notation and Useful Lemmas 5

determine an optimum (in a sense to be defined) space in which to find the cdG

approximation.

Finally in Part IV we discuss the implementation of the cdG method in C++

and provide annotated code to allow the reconstruction of the various results of this

thesis.

1.3 Notation and Useful Lemmas

Here we present our basic notation and recall some standard results. Results are

presented without proof, which can be found in most standard finite element texts,

e.g., [32, 34, 67]. Specialist notation and results will be introduced in each chapter,

and a glossary of selected notation can be found on page 199.

Throughout this thesis C represents a bounded generic constant that may depend

on the domain Ω and dimension d, but is independent of other parameters (unless

noted). It may change from expression to expression and line to line. The inclusion

of an argument, e.g., C(γ), shows a factor dependent on the argument, Ω or d, but

independent of the other parameters. By a . b we mean a ≤ Cb and similarly for

&.

Sobolev Spaces

We define all integration in the Lebesgue sense and all partial derivatives in the

‘weak’ sense, i.e., as distributional derivatives. We say a multiindex α = (α1, . . . , αn)

where each αi is a non-negative integer has order |α| = α1+ . . .+αn. We will denote

by ∂jxi
the jth partial derivative with respect to coordinate xi. Then define

Dαf(x) :=
∂|α|f(x)

∂xα1

1 . . . ∂xαn
n

.

Given Ω a Lebesgue-measurable subset of Rd with a non-empty interior and a real

valued function f on Ω that is Lebesgue measurable we define

‖f‖pLp(Ω) :=

∫

Ω

|f(x)|p dx

1.3. Notation and Useful Lemmas 6

for 1 ≤ p <∞ and

‖f‖L∞(Ω) := ess sup{|f(x)| : x ∈ Ω}

for p = ∞. Then the Lebesgue spaces are defined by

(1.3.1) Lp(Ω) := {f : ‖f‖Lp(Ω) <∞}.

The set of locally integrable functions is denoted by

L1
loc(Ω) := {f : f ∈ L1(E), ∀ compact E ⊂ interior Ω}.

If f ∈ L1
loc(Ω) and additionally the weak derivatives Dαf exist for all |α| < m ∈ Z

then we define

‖f‖pWm,p(Ω) :=
∑

|α|<m

‖Dαf‖pLp(Ω), |f |pWm,p(Ω) :=
∑

|α|=m

‖Dαf‖pLp(Ω)

for 1 ≤ p <∞ and

‖f‖Wm,∞(Ω) := max
|α|<m

‖Dαf‖L∞(Ω)

for p = ∞. Then the Sobolev spaces are defined by

(1.3.2) Wm,p(Ω) := {f ∈ L1
loc(Ω) : ‖f‖Wm,p(Ω) <∞}.

In the case p = 2 we use the equivalent notation Hm(Ω) ≡Wm,2(Ω).

For vector valued functions τ ∈ [Lp(Ω)]d we define the norm by

‖τ‖[Lp(Ω)]d = ‖ |τ | ‖Lp(Ω)

where | · | is the usual vector 2 norm |τ | = (τ ·τ)1/2. To simplify notation we interpret

‖τ‖Lp(Ω) as ‖τ‖[Lp(Ω)]d for vector valued functions. Define

(1.3.3) H (div; Ω) = {v ∈ [L2(Ω)]d : ∇ · v ∈ L2(Ω)}

1.3. Notation and Useful Lemmas 7

and

(1.3.4) H0(div; Ω) = {v ∈ [L2(Ω)]d : ∇ · v ∈ L2(Ω), v · n = 0 in H
−1/2(∂Ω)}.

The space Lp((0, T];Hm(Ω)) consists of all functions u : (0, T] 7→ Hm(Ω) such

that t 7→ ‖u(t)‖Hm(Ω) is in L
p((0, T]) with the norm

(1.3.5) ‖u‖pLp((0,T];Hm(Ω)) :=

∫ T

0

‖u(t)‖pHm(Ω) dt

for 1 ≤ p <∞ and

(1.3.6) ‖u‖L∞((0,T];Hm(Ω)) := ess sup
t∈(0,T]

‖u(t)‖Hm(Ω)

for p = ∞.

The dual of a Banach space V is written V ∗.

Triangulations

We assume throughout, unless otherwise stated, that Ω is a bounded, open polygon

(polyhedron) in R
d with a Lipschitz boundary denoted by ∂Ω. For time dependent

spaces define ΩT := (0, T] × Ω. Call the subdivision of a domain Ω into non-

overlapping shape regular d-simplices E a triangulation Th, each with boundary

denoted ∂E. Denote by Eh the union of edges e (or faces for d ≥ 3) of the mesh (the

skeleton) and the union of internal edges by Eo
h. Define Γ as the union of elemental

boundary edges, i.e., those lying in ∂Ω. The diameter of an element E ∈ Th is

denoted hE and h = maxE∈Th hE. Call the diameter of an edge he, defined by

he :=















min(hE+, hE−) for e = Ē+ ∩ Ē− ∈ Eo
h,

hE for ∂E ∩ ∂Ω ∈ Γ

for E+, E− ∈ Th.

We introduce the following notation describing the behaviour of functions that

may be discontinuous at interelement boundaries. Given a generic scalar field ν :

1.3. Notation and Useful Lemmas 8

Ω → R, that may be discontinuous across an edge e = Ē+ ∩ Ē− for E+, E− ∈ Th,

we set ν± := ν|E±, the interior trace on E± and similarly define τ
± = τ |E± for a

generic vector field τ : Ω → R
d. Define the average and jump for a generic scalar as

{{ν}} :=
1

2
(ν+ + ν−), JνK := ν+n+ + ν−n−, on e ∈ Eo

h,

and for a generic vector field as

{{τ}} :=
1

2
(τ+ + τ

−), Jτ K := τ
+ · n+ + τ

− · n−, on e ∈ Eo
h,

where n± is the outward pointing normal from E± on e. For e ∈ Γ the definitions

become

{{ν}} := ν, JνK := νn, {{τ}} := τ , Jτ K := τ · n, on e ∈ Γ.

Note that for an element v from a continuous space we have JvK = 0 and {{v}} = v

for every e ∈ Eo
h.

Given a vector b denote the inflow and outflow boundaries of Ω by

Γin := {x ∈ ∂Ω : b · n ≤ 0},

Γout := {x ∈ ∂Ω : b · n > 0}

and for an element

∂inE :={x ∈ ∂E : b · n ≤ 0},

∂outE :={x ∈ ∂E : b · n > 0}.

We denote the trace of a function ν on an edge by ν in (resp. νout) on the side of the

edge where b ·n ≤ 0 (resp. b ·n > 0). We construct the mesh so that the sign of b ·n
is the same for every x ∈ e.

All meshes are shape regular, i.e., there exists κ > 0 such that every E ∈ Th

1.3. Notation and Useful Lemmas 9

contains a ball of radius ΥE with

(1.3.7) ΥE ≥ κhE .

This implies that there exists C > 0 such that for e = ∂E+ ∩ ∂E− ⊂ Eo
h

he ≤
1

2
(hE+ + hE−) ≤ Che

and that there exists a constant Creg ≥ 1 such that

(1.3.8) C−1
reghE− ≤ hE+ ≤ CreghE−.

We will also require in some cases quasi uniform meshes. These are meshes

where there exists κ > 0 such that

min
E∈Th

{ΥE} ≥ κh.

Meshes that are quasi uniform are also shape regular, but the converse does not

generally hold.

We denote by (· , ·) the usual L2 inner product on Ω, and by (· , ·)E and (· , ·)e
the L2 inner product on elements and edges respectively.

Frequently Used Lemmas

We include the following inequalities for completeness. All are well known and we

state them without proof. We will use them frequently (both with and without

reference) throughout this thesis.

Lemma 1.3.9 (Trace inequality). Suppose that Ω has a Lipschitz boundary and that

1 ≤ p ≤ ∞. Then there is a constant C, depending on the shape of Ω and dimension

d, such that

(1.3.10) ‖v‖Lp(∂Ω) ≤ C‖v‖1−1/p
Lp(Ω)‖v‖

1/p

W 1,p(Ω) ∀v ∈ W 1,p(Ω).

1.3. Notation and Useful Lemmas 10

We may also apply this lemma elementwise, in which case C will depend on the

mesh regularity, and for v ∈ Pk(E), the space of piecewise polynomials on E of

degree at most k.

Lemma 1.3.11 (Inverse inequality). Let {Th} be a shape regular family of meshes

in Rd with 0 < h ≤ 1. Let V be a finite dimensional subspace of W l,p(E)∩Wm,q(E),

where 1 ≤ p, q ≤ ∞ and 0 ≤ m ≤ l. Then for all v ∈ V there exists C > 0 such that

(1.3.12) ‖v‖W l,p(E) ≤ Ch
m−l+d(1

p
− 1

q
)

E ‖v‖Wm,q(E).

where C is dependent on l, m, p, q, the space V , the dimension d and the element E.

Corollary 1.3.13 (Trace inequality for polynomials). With Lemma 1.3.9 applied

elementwise, take p = 2 = q and take k such that V = P
k(E) ⊆ H l(E) ∩ Hm(E).

Then we may use Lemma 1.3.11 to show

(1.3.14) ‖v‖2L2(∂E) ≤ Ch−1
E ‖v‖2L2(E) ∀v ∈ P

k(E)

where C depends on the polynomial degree and the mesh regularity.

Lemma 1.3.15 (Hölder’s inequality). For 1 ≤ p, q, r ≤ ∞ such that 1 = 1/p +

1/q + 1/r, if f ∈ Lp(Ω), g ∈ Lq(Ω) and h ∈ Lr(Ω) then fgh ∈ L1(Ω) and

(1.3.16) ‖fgh‖L1(Ω) ≤ ‖f‖Lp(Ω)‖g‖Lq(Ω)‖h‖Lr(Ω).

The case p = q = 2, r = ∞, h ≡ 1 is known as the Cauchy-Schwarz inequality and

can be written

(1.3.17)

∫

Ω

|fg| dx ≤ ‖f‖L2(Ω)‖g‖L2(Ω).

Lemma 1.3.18 (Minkowski’s inequality). For 1 ≤ p ≤ ∞ and f, g ∈ Lp(Ω) we

have

(1.3.19) ‖f + g‖Lp(Ω) ≤ ‖f‖Lp(Ω) + ‖g‖Lp(Ω).

1.3. Notation and Useful Lemmas 11

We will regularly apply the following version of Young’s inequality.

Lemma 1.3.20 (Young’s Inequality). For any δ > 0 and a, b non-negative real

numbers

(1.3.21) ab ≤ a2

2δ
+
δb2

2
.

Lemma 1.3.22 (Poincaré Friedrichs inequality). Let 1 ≤ p ≤ ∞ and let Ω be an

open bounded set. Then there exists C > 0 such that for all v ∈ W 1,p(Ω) satisfying

additionally v|∂Ω = 0 in L2(∂Ω) (i.e., the trace of v is 0) we have

(1.3.23) ‖v‖Lp(Ω) ≤ C‖∇v‖Lp(Ω).

Finally we present the following relationship which can be found in, e.g., [9].

Lemma 1.3.24. For a generic scalar ν ∈ L2(Ω) and vector τ ∈ [L2(Ω)]d that may

be discontinuous only at interelement boundaries of a triangulation Th defined on Ω

we may rewrite the sum of the integrals over the mesh skeleton in terms of the jumps

and averages as follows:

∑

E∈Th

∫

∂E

ντ · nE ds =
∑

e∈Eh

∫

e

JνK · {{τ}} ds+
∑

e∈Eo
h

∫

e

{{ν}}Jτ K ds.(1.3.25)

Part I

The Continuous Discontinuous

Galerkin Method

and its Stability

Chapter 2

Introduction to the Continuous

Discontinuous Galerkin Method

In this chapter we introduce the continuous discontinuous Galerkin (cdG) method for

(1.1.1). We first present the continuous Galerkin method and give a simple example

to motivate the study of other methods. We then proceed to introduce the interior

penalty family of discontinuous Galerkin (dG) methods and review their application

to singularly perturbed problems before proposing a method which combines ele-

ments of both the cG and dG methods which we call the continuous discontinuous

Galerkin (cdG) method.

2.1 The Continuous Galerkin Method and a Mo-

tivating Example

The smoothness of the classical solution to (1.1.1)-(1.1.2) depends on the smoothness

of the given data see, e.g., [77, 117] for a full discussion. Here we focus on the weak

solution of (1.1.1) and its expected regularity for Ω an open, bounded subset of Rd

and the assumptions on the parameters as introduced in Chapter 1.

We multiply (1.1.1) by an element v ∈ H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω},

where Hm is the usual Sobolev space defined in (1.3.2), and integrate the diffusion

term by parts, using the boundary conditions. The bilinear form associated with

13

2.1. The Continuous Galerkin Method and a Motivating Example 14

(1.1.1) is then given by

(2.1.1) B(u, v) :=
∫

Ω

ε∇u · ∇v + (b · ∇u)v + cuv dx

for u, v ∈ H1
0 (Ω). We say that u ∈ H1

0 (Ω) is a weak solution of (1.1.1)-(1.1.2) if

B(u, v) =
∫

Ω

fv dx

for all v ∈ H1
0 (Ω).

We introduce the concept of continuity and coercivity for bilinear forms.

Definition 2.1.2. A bilinear form B : H × H → R on a normed linear space H

with norm ‖ · ‖H is continuous if there exists a constant Λct such that

(2.1.3) |B(v, v̂)| ≤ Λct‖v‖H‖v̂‖H ∀v, v̂ ∈ H

and coercive on V ⊂ H if there exists Λcc > 0 such that

(2.1.4) B(v, v) ≥ Λcc‖v‖2H ∀v ∈ V.

We may use the Lax-Milgram lemma [67, 98] to show a unique weak solution

to the problem provided the bilinear form is elliptic (coercive) and continuous with

respect to the norm induced with respect to the usual inner product on H1
0 (Ω). To

ensure the coercivity we make the following standard assumption:

Assumption 2.1.5. We assume

(2.1.6) r(x) := c(x)− 1

2
∇ · b(x) ≥ ρ > 0 ∀x ∈ Ω

for some ρ ∈ R.

Higher regularity requires further assumptions on the coefficients and Ω. For a

complete description of the regularity of the weak solution and the requirements for

additional regularity, see [69, Chapter 6]. Note that a problem with non-zero Dirich-

let boundary conditions can easily be transformed into a problem with homogeneous

2.1. The Continuous Galerkin Method and a Motivating Example 15

Dirichlet boundary conditions in the weak setting.

We define the continuous Galerkin (cG) finite element space as follows:

Definition 2.1.7. Define the continuous Galerkin space to be

(2.1.8) V
cG

:= {v ∈ H1(Ω) : ∀E ∈ Th, v|E ∈ P
k, v|Γ = 0}

where Pk is the space of polynomials of degree at most k.

Then the classical finite element approximation (or standard cG approximation)

to (1.1.1) is defined by:

Definition 2.1.9. Define the continuous Galerkin finite element approximation to

(1.1.1)-(1.1.2) as uh ∈ V
cG

satisfying

Bε(uh, v) :=
∑

E∈Th

∫

E

ε∇huh · ∇hv + (b · ∇huh)v + cuhv dx

=
∑

E∈Th

∫

E

fv dx

(2.1.10)

for all v ∈ V
cG
.

Throughout ∇h refers to the piecewise gradient operator.

The standard cG method is relatively easy to implement. Consider, however,

the following one dimensional example.

Example 2.1.1 Let Ω = (0, 1). We seek to solve

−ε d2

dx2
u(x) +

d

dx
u(x) = 1

with boundary conditions u(0) = u(1) = 0. The solution is given by

u(x) = x− e(x−1)/ε − e−1/ε

1− e−1/ε
.

For 0 < ε ≪ 1 there is a boundary layer at x = 1 of width O(ε). In Figure

2.1.1 we plot the standard cG approximation to Example 2.1.1 with ε = 10−3 for

16 and 64 uniform intervals (Figures 2.1.1(a) and (b) respectively). In both plots

2.1. The Continuous Galerkin Method and a Motivating Example 16

the oscillations are clear. When we refine the mesh, i.e., use more intervals, the

oscillations are less severe (note the scales in each plot) and do not spread throughout

the entire region (although they do leave the region of the layer). By refining the

interval further we could achieve further reduction in the oscillations, but at the

cost of adding degrees of freedom and hence increasing the relative time to generate

the approximation.

(a) 16 intervals. (b) 64 intervals.

Figure 2.1.1: Example 2.1.1 with ε = 10−3 on uniformly refined intervals. The oscilla-
tions in the second plot are less severe and do not spread throughout the region.

We investigate these oscillations further by considering a simple error estimate

for the standard cG method using Céa’s lemma [34, (2.8.1)]. First note that Bε has

the same continuity and coercivity properties as B in (2.1.1) for functions in VcG. It

is straightforward to show

(2.1.11) ‖u− uh‖H1
0 (Ω) ≤

(

Λct

Λcc

)
1
2

inf
v∈V

cG

‖u− v‖H1
0 (Ω)

where Λcc and Λct are the coercivity and continuity with respect to the norm ‖ · ‖H1
0(Ω)

for Bε. However the coercivity constant depends adversely on ε and by using a

standard interpolation inequality, e.g., [34, Section 4.4] on the right hand side we

see that we may bound the error by O(h/ε)|u|H2(Ω). As h → 0 the error also tends

to 0 (for a fixed problem). However as ε → 0 we do not have a useful bound. In

addition we expect |u|H2(Ω) to grow as ε→ 0.

2.2. The Discontinuous Galerkin Method 17

2.2 The Discontinuous Galerkin Method

The non-physical oscillations shown for a simple one dimensional example in Figure

2.1.1 are seen also in higher dimensions. Numerical procedures to address this

behaviour are too numerous to survey entirely here, and we concentrate on the finite

element methods. For alternative approaches, such as finite difference methods,

readers are directed to [106, 107, 117] and the references cited therein.

In the field of finite element analysis we crudely divide the attempts to improve

the standard cG method into three areas (including combinations of the three):

Addition of stabilising terms; adaptation of the mesh; and adaptation of the space.

We discuss the first idea only briefly, and the second in more detail in Part II

with reference to incompressible miscible displacement. The final idea is of more

interest here as it includes the discontinuous and continuous discontinuous Galerkin

methods.

In order to stabilize the cG approximation to (1.1.1) we can add weighted residual

terms to the formulation, that is, terms originating from using a numerical approx-

imation in the original differential equation. In particular the streamline diffusion

finite element method, introduced by Hughes and Brooks [84], adds terms generated

by applying b ·∇hv, where v ∈ VcG is the test function, to −ε∆uh+b ·∇huh+cuh−f .
The stability properties are a consequence of the choice of the weight applied, which

we will discuss in detail when we apply this approach to the discontinuous Galerkin

method in Chapter 8. In short, by adding additional terms to the norm the os-

cillations can be controlled [118]. See [86, 87] for a thorough study of the choice

of weight and further adaptation of the streamline diffusion method. When the

true solution u to (1.1.1) satisfies the residual terms exactly we call the resulting

numerical method consistent. The streamline diffusion method is non-consistent as

the additional terms mean that the true solution does not satisfy the approximate

problem. However when we consider streamline terms in Chapter 3 we only add

terms to the norm, not the approximate problem, and so consistency is maintained.

The benefit of adapting the mesh can be seen from the O(h/ε) bound in (2.1.11).

As h→ 0 the error, for a fixed problem, will tend to zero. However such refinement

performed globally will be inefficient, adding far more degrees of freedom than re-

2.2. The Discontinuous Galerkin Method 18

quired for stability. More efficient schemes exist for singularly perturbed problems,

such as layer adapted meshes, e.g., [106, 122, 129] and anisotropic meshes, e.g.,

[7, 73, 72, 108]. Schemes for refinement of both mesh size and polynomial degree

(so called hp refinement) have also been studied extensively in the literature, e.g.,

[23, 74, 82, 81, 104, 119, 120].

The third approach is of most interest to us in this part. By selecting an ap-

proximation from a larger space we hope to be able to eliminate the oscillations

associated with the cG approximation. We first focus on the space of piecewise

discontinuous polynomials applied on a triangulation Th. These are polynomials

that may be discontinuous at interelement boundaries (including Γ, the exterior

boundary).

Definition 2.2.1. Define the discontinuous Galerkin space to be

(2.2.2) VdG := {v ∈ L2(Ω) : ∀E ∈ Th, v|E ∈ P
k}

where Pk is the space of polynomials of degree at most k.

Using discontinuous elements is a form of variational crime, so called as the

space VdG 6⊂ H1
0 (Ω). However we do have VcG ⊂ VdG, i.e., the dG space is larger

than the cG space defined in (2.1.8).

A discussion of discrete formulations for the diffusion term of (1.1.1) for discon-

tinuous spaces can be found in [9]. We consider the interior penalty (IP) family of

methods with parameter ϑ = {−1, 1} which are given by, for w, ŵ ∈ VdG,

Bd(w, ŵ) :=

∑

E∈Th

∫

E

∇hw · ∇hŵ dx

+
∑

e∈Eh

∫

e

σh−1
e JwK · JŵK − ({{∇hw}} · JŵK − ϑ{{∇hŵ}} · JwK) ds

(2.2.3)

where σ ∈ R is the penalty parameter chosen large enough to ensure coercivity of

2.2. The Discontinuous Galerkin Method 19

Bd. We discretize the advection term by

Ba(w, ŵ) :=
∑

E∈Th

∫

E

(b · ∇hw)ŵ dx

−
∑

e∈Eo
h

∫

e

b · JwKŵout ds−
∑

e∈Γin

∫

e

(b · n)wŵ ds
(2.2.4)

and the reaction term by

(2.2.5) Br(w, ŵ) :=
∑

E∈Th

∫

E

cwŵ dx.

The advection and reaction parts will frequently occur together and so for brevity

we also define Bar(w, ŵ) := Ba(w, ŵ) + Br(w, ŵ). With these definitions we define

the bilinear form Bε : VdG × VdG → R by

(2.2.6) Bε(w, ŵ) := εBd(w, ŵ) + Ba(w, ŵ) + Br(w, ŵ).

Note that we use the same notation Bε for the bilinear form for the dG method as we

did in (2.1.10) as (2.2.6) reduces to the standard cG method if we restrict ourselves

to elements of VcG.

Definition 2.2.7. Define the interior penalty discontinuous Galerkin finite element

approximation to (1.1.1)-(1.1.2) as wh ∈ V
dG

satisfying

Bε(wh, w) =
∑

E∈Th

∫

E

fv dx ∀w ∈ VdG.(2.2.8)

We introduce the mesh dependent norm ||| · ||| defined by

|||w|||2 := ε‖w‖2d + ‖w‖2ar,(2.2.9)

2.2. The Discontinuous Galerkin Method 20

where

‖w‖2d :=
∑

E∈Th

|w|2H1(E) +
∑

e∈Eh

σh−1
e ‖JwK‖2L2(e),(2.2.10)

‖w‖2ar := ‖r1/2w‖2L2(Ω) +
∑

e∈Eh

1

2
‖|b · n|1/2JwK‖2L2(e).(2.2.11)

The discontinuous Galerkin method was first introduced for the first order hyper-

bolic neutron transport problem by Reed and Hill [114]. For elliptic and parabolic

equations the first papers on the interior penalty method include [8, 14, 63, 127],

although their development was largely independent of methods for the hyperbolic

problem [9]. The idea behind interior penalty methods is that interelement continu-

ity may be weakly enforced by penalizing the jumps (as can be seen in the second

term of (2.2.3) with penalty parameter σ). Previous methods had been proposed

which weakly enforced Dirichlet boundary conditions [12], and hence the use of the

term interior penalty. The third term in the interior penalty formulation Bd arises

naturally from integration by parts. The additional term, multiplied by the param-

eter ϑ = {−1, 1}, has a different role depending on the sign. In particular when

ϑ = −1 we have the symmetric IP method with the advantage of a symmetric bilin-

ear form (when b ≡ 0) but the coercivity constant (with respect to ||| · |||) depending
on the choice of σ. When ϑ = 1 we have the non-symmetric IP method which is

unconditionally coercive but lacks adjoint consistency. We do not consider ϑ = 0,

the so called incomplete interior penalty method [60].

Several alternative dG methods are common in the literature, such as the local

discontinuous Galerkin (LDG) method [55], the method of Bassi and Rebay [21] and

that of Baumann and Oden [23]. All of these methods (for the elliptic part) can be

brought into the same framework as shown by Arnold et. al. [9]. For a review of the

development of the dG methods see [54] and the references included therein. Until

recently there were no text books dedicated to discontinuous methods, but increased

interest in the topic has led to several publications including [80, 112, 115].

Discontinuous Galerkin methods offer several attractive properties. They admit

good stability properties, even for singularly perturbed problems [10, 41] if some

streamline terms are added to the norm (but need not be added to the bilinear

2.3. The Continuous Discontinuous Galerkin Method 21

form, as we shall see in Chapter 3). They also allow the use of irregular mesh design

as hanging nodes are more easily incorporated than for conforming methods. This,

along with ready parallelization, allows for relatively simple hp adaptivity [82] and

a posteriori error estimation [81, 83].

However dG methods also have drawbacks when compared to standard cG meth-

ods and their conforming extensions such as the streamline diffusion method. They

are (in general) more difficult to implement and require an increased number of de-

grees of freedom. For instance, when using an axi-parallel quadrilateral mesh in two

dimensions with piecewise bilinear elements, for which the standard cG finite ele-

ment method has approximately n degrees of freedom (depending on the boundary

conditions) the dG method on the same mesh has 4n degrees of freedom.

2.3 The Continuous Discontinuous

Galerkin Method

Given the increased number of degrees of freedom associated with the interior

penalty dG method as opposed to the standard cG method we introduce the contin-

uous discontinuous Galerkin (cdG) method. It is our hypothesis that the additional

degrees of freedom are only required to achieve stability in regions where the so-

lutions of (1.1.1) have exponential layers. We therefore construct a space which

allows discontinuities in the approximation only in the region of layers and enforces

continuity elsewhere. To our knowledge this method was first proposed by Can-

giani, Georgoulis and Jensen [47] where a comparison was made between the interior

penalty dG method, the cdG method, the residual free bubble method [36, 38] and

the streamline upwind Petrov-Galerkin (SUPG) method [39, 41, 88].

Conceptually, somewhere between the standard cG and interior penalty dG

methods lies the continuous discontinuous Galerkin (cdG) finite element method,

whereby one seeks a Galerkin solution on a finite element space VcdG with

(2.3.1) VcG ⊂ VcdG ⊂ VdG.

2.3. The Continuous Discontinuous Galerkin Method 22

Behind our work is a question of optimality: Which approximation spaces allow

us to formulate a consistent and stable finite element method with a minimal number

of degrees of freedom. The motivation of this work is twofold: Firstly we wish to

improve our understanding of the current classical dG methods in response to the

criticism in the increased number of degrees of freedom. Secondly we seek insight

into the design of more efficient finite element methods in the future.

We define by Ω-decomposition the splitting of Ω into two regions ΩcG and ΩdG

such that for the closure Ω = ΩcG ∪ ΩdG, and we define by Th-decomposition the

splitting of Th into two sub-meshes TcG and TdG such that TcG ⊂ ΩcG and TdG :=

Th \ TcG. By abuse of language, we denote here by TcG not just the sub-mesh but

also the region it occupies. When we refer to TcG as a region we mean the interior

of the closure, i.e.,

(2.3.2) Int

(

⋃

E∈TcG

E

)

.

Define ΓcG (resp. ΓdG) to be the intersection of Γ with T cG (resp. T dG). Define

J := T cG ∩ T dG and by convention we say that the edges lying in J are only part

of the discontinuous Galerkin skeleton EdG, the union of faces in T dG, and not part

of the continuous Galerkin skeleton defined by EcG := Eh \ EdG.
In Figure 2.3.1 we illustrate a splitting for a problem where Ω = (0, 1)2 and

the solution exhibits layers at x = 1 and y = 1. The Ω-decomposition is labelled,

with the demarcation between the ΩcG and ΩdG regions given by a dashed line. A

Th-decomposition is shown with the TdG region shaded and the edges in J marked

with a heavy line. According to our hypothesis we place any layers inside the

discontinuous region. We discuss the location of ΩcG and ΩdG in Chapter 3 and

strategies for determining TcG and TdG in Chapters 3 and 8.

Definition 2.3.3. Define the cdG space to be

(2.3.4) V
cdG

:= {v ∈ L2(Ω) : ∀E ∈ Th, v|E ∈ P
k, v|ΓcG

= 0, v|TcG ∈ C(TcG)}.

Here C(TcG) is understood in the sense of (2.3.2). Also v|ΓcG
= 0 means that the

2.3. The Continuous Discontinuous Galerkin Method 23

Figure 2.3.1: An example of a cdG decomposition with ΩdG and ΩcG the regions to either
side of the dashed line, and TdG and TcG the shaded and unshaded regions respectively.

trace of v onto ΓcG vanishes. Note that with this definition VcdG ⊂ VdG and Bε

defined in (2.2.6) reduces to the form of the standard cG method defined in (2.1.10)

on TcG.

Definition 2.3.5. Define the interior penalty continuous discontinuous Galerkin

finite element approximation to (1.1.1)-(1.1.2) as vh ∈ V
cdG

satisfying

Bε(vh, v) =
∑

E∈Th

∫

E

fv dx ∀v ∈ VcdG.(2.3.6)

There is comparatively little published work using this approach. In a broader

sense Perugia and Schötzau [111] and Dawson and Proft [59] both consider coupling

the local discontinuous Galerkin (LDG) [55] and cG method, in the first case for the

Poisson equation, and in the second case for a time dependent transport equation

(which may exhibit layers). However in [111] conditions are imposed on the internal

boundary J which are then applied for the continuous elements. By imposing weights

on the jump at the interface and some further conditions [59] presents a stability

result and also error bounds on the cdG approximation. Further examples using

the cdG method for the stationary problem can be found in [61], but no additional

analysis is presented.

Our approach does not require any transmission conditions between the regions,

2.3. The Continuous Discontinuous Galerkin Method 24

other than those which occur naturally through the definition of the jump and the

average terms present in Bε defined in (2.2.6).

The paper of Burman and Zunino [43] contains the cdG method proposed here

as a special case. The authors propose a scheme with the aim of implementation of

the continuous Galerkin scheme for parallel solution using, e.g., multiple processors

on a single computer. We will see some aspects of their approach in Chapter 3 where

we will weight the averages in the bilinear form Bd entirely towards the continuous

domain, i.e., we redefine {{∇hw}} := ∇hw|TcG for the edges lying in J . The weighting

of the averages is also used by Ern, Stephansen and Zunino [68] to consider the case

of anisotropic, discontinuous diffusivity by introducing the Symmetric Weighted

Interior Penalty (SWIP) method. The authors in both papers remark that by careful

selection of the weights the stability properties of the method can be improved, but

offer no stability analysis. For convergence analysis and a priori error estimates see

in particular [43].

Our construction of VcdG is not the only space that can be chosen to make a cdG

type method satisfying VcG ⊂ VcdG ⊂ VdG. Becker et al. [26] propose a space in

which the standard continuous space (2.1.8) is enriched with the space of piecewise

constants, i.e., VdG with k = 0. Therefore for an axi-parallel quadrilateral mesh

in 2 dimensions where the standard cG method has n degrees of freedom using

piecewise bilinear finite elements, and the corresponding dG method has 4n degrees

of freedom, the method of [26] will have 2n degrees of freedom. Stability and error

estimates are shown. However for problems with sharp layers we will see that we can

reduce the number of degrees of freedom to considerably fewer than 2n using our

proposed method. There may be other choices of VcdG which are more appropriate

for other formulations, problems, or with more exotic finite elements.

2.3. The Continuous Discontinuous Galerkin Method 25

Additional Notation and Assumptions for cdG

Throughout we assume that we use the same polynomial degree for VdG and VcdG.

Let χ be the characteristic function on TdG, i.e., that defined by

(2.3.7) χ :=















1 x ∈ TdG,

0 x ∈ TcG.

Then define

VcdG(TdG) := {χv : v ∈ VcdG}

and

VcdG(TcG) := {(1− χ)v : v ∈ VcdG}.

Definition 2.3.8. We define the local mesh Péclet number [117] to be

P =
‖b‖L∞(E)hE

2ε
.

We stipulate that the diffusion coefficient satisfies 0 < ε ≤ εmax. We consider

meshes in the pre-asymptotic regime. More precisely:

Assumption 2.3.9. We assume that for εmax and every E ∈ Th the local mesh

Péclet number is greater than 1. Moreover, we require ‖hE/b‖L∞(TdG) ≤ 1.

As a consequence we have

(2.3.10) ε ≤ εmax <
1

2
min
E∈Th

hE‖b‖L∞(Ω).

This assumption, for a fixed b, restricts the refinement of the triangulation for a

given ε. If we allowed h → 0 for fixed ε > 0 any layers would be resolved by the

mesh and in the limit we would not see the non-physical oscillations associated with

the standard cG approximation.

Chapter 3

On the Stability of the Continuous

Discontinuous Galerkin Method

In this chapter we discuss the stability of the cdG method. In order to formulate

the Ω decomposition of the domain we introduce the reduced problem. To show

stability we first adapt the bilinear form for the diffusion term (2.2.3) by decoupling

and weighting the terms appearing on J , the interface between the continuous and

discontinuous regions. We then show the stability of the method on each of TcG

and TdG, in the first case by assuming that we have some additional smoothness,

and in the second case by proving an inf-sup condition by adapting the approach

of [10, 41]. We then combine these results to give a stability result on the whole

domain. The material in this chapter is being prepared for publication [44].

3.1 Determining the Ω Decomposition

To characterize admissible Ω-decompositions of the mesh we introduce the reduced

problem:

b · ∇u0 + cu0 = f on Ω,

u0 = 0 on Γin.
(3.1.1)

This is (1.1.1) with ε = 0 and the boundary conditions adjusted appropriately. We

define uε := u − u0, where u is the solution to the ADR equation (1.1.1) and u0 is

26

3.2. Decoupled and Weighted Formulations 27

the solution to the reduced problem.

The Ω-decomposition is chosen such that uε and u0 have additional regularity on

ΩcG. In general we do not expect that u0 ∈ H2(Ω), even if we place higher regularity

requirements on f , see, e.g., [18] and the references therein.

Assumption 3.1.2. The set ΩcG ⊂ Ω is chosen such that u0 ∈ H2(ΩcG) and for

every 0 < ε ≤ εmax

(3.1.3) ‖uε‖H2(ΩcG) . 1.

The expectation is that the Ω decomposition satisfying Assumption 3.1.2 will

consist of a relatively large ΩcG. For the ADR problem with b = (1, 0) Guzmán [78]

has shown that we can expect an improved convergence of the dG approximation in

L2 and L∞, independent of ε, on subdomains Ω0 ⊂ Ω provided that the boundary

of the subdomain is Ch log(1/h) away from the outflow boundary of Ω. This result

points to the additional smoothness of u away from the layers.

3.2 Decoupled and Weighted Formulations

We discretize the advection term by (2.2.4) and the reaction term by (2.2.5). We

present two alternative discretizations for the diffusion term, cf., (2.2.3). We first

introduce the decoupled bilinear form. For w, ŵ ∈ VdG this is

B̃d(w, ŵ) :=

∑

E∈Th

∫

E

∇hw · ∇hŵ dx

+
∑

e∈Eh\J

∫

e

σh−1
e JwK · JŵK − ({{∇hw}} · JŵK + {{∇hŵ}} · JwK) ds

(3.2.1)

and

(3.2.2) B̃ε(w, ŵ) := εB̃d(w, ŵ) + Ba(w, ŵ) + Br(w, ŵ).

3.2. Decoupled and Weighted Formulations 28

With this formulation there is no control on fluxes across J (hence the name decou-

pled). The utility of this approach will be apparent in Section 3.3. We now introduce

the weighted bilinear form. On the interface J we make two changes which reduce

but do not remove the coupling between the regions. Firstly the average of the

trace of the gradients is weighted entirely to the cG side of J (compare this to the

approach in [43] where the weighting varies from 0 to 1 on each side of J). With

this modification we will not need to consider the upstream gradient on J . Secondly

in the penalty term over J the dependence on h is removed. This will allow us at

a later point in the analysis to divide by h and still control the jump term. The

discretization for the diffusion term is therefore given by

Bd(w, ŵ) := B̃d(w, ŵ)

+
∑

e∈J

∫

e

σJwK · JŵK − (∇hw|TcG · JŵK +∇hŵ|TcG · JwK) ds.
(3.2.3)

We define the weighted bilinear form by

(3.2.4) Bε(ŵ, w) := εBd(ŵ, w) + Ba(ŵ, w) + Br(ŵ, w).

When restricted to the cdG space the decoupled and weighted forms become the

bilinear form for the standard cG method on the continuous region.

We introduce the following mesh dependent norm for w ∈ VdG, cf., (2.2.9):

|||w|||2 := ε‖w‖2d + ‖w‖2ar(3.2.5)

where

‖w‖2d :=
∑

E∈Th

|w|2H1(E) +
∑

e∈Eh\J
σh−1

e ‖JwK‖2L2(e) +
∑

e∈J
σ‖JwK‖2L2(e)

and ‖w‖2ar is defined in (2.2.11).

Recall that for the symmetric interior penalty method the parameter σ is selected

independently of Th such that Bd is positive definite with a coercivity constant which

is also independent of Th.

3.2. Decoupled and Weighted Formulations 29

Assumption 3.2.6. We assume that σ is such that for all w ∈ V
dG

we have

‖{{∇hw}} · JwK‖L1(Eh) ≤
1

2
‖∇hw‖L2(Ω)‖

√

σ/heJwK‖L2(Eh).

Then, by Young’s inequality,

1

2
‖w‖2d ≤ Bd(w,w).

We adopt for B̃d and Bd the same σ as for Bd.

We introduce a projection operator following the presentation of [10] which al-

lows us to consider non-constant b. For polynomial degree k ≥ 0 consider the

L2-orthogonal projection ΠD : L2(Ω) → VcdG(TdG) defined by

(3.2.7)

∫

Ω

ΠD(v)w dx =

∫

Ω

vw dx ∀w ∈ VcdG(TdG).

In particular ΠD(v)|TcG = 0. Furthermore, the projection has the following property:

With v ∈ L2(Ω) and E ∈ Th we have

(3.2.8) ‖ΠD(v)‖L2(E) ≤ C‖v‖L2(E) ∀v ∈ L2(E)

where C is independent of h but depends on the approximation properties of the

projection. As ΠD(v) ∈ VcdG(TdG) we have for all E ∈ Th the inverse inequality

|ΠD(b · ∇hv)|H1(E) . h−1
E ‖ΠD(b · ∇hv)‖L2(E)(3.2.9)

and using a trace inequality we have

(3.2.10)
∑

e∈Eh

‖JΠD(b · ∇hv)K‖2L2(e) .
∑

E∈Th

h−1
E ‖ΠD(b · ∇hv)‖2L2(E).

Define the streamline norm by

(3.2.11) ‖v‖2S := |||v|||2 +
∑

E∈Th

τE‖ΠD(b · ∇hv)‖2L2(E)

3.2. Decoupled and Weighted Formulations 30

where τE is defined by

(3.2.12) τE := τ min

{

hE
‖b‖L∞(E)

,
h2E
ε

}

and τ is a positive number at our disposal.

Definition 3.2.13. A decoupled cdG approximation to (1.1.1) is defined as ṽh ∈ V
cdG

satisfying

(3.2.14) B̃ε(ṽh, v) =

∫

Ω

fv dx ∀v ∈ VcdG.

Definition 3.2.15. A weighted cdG approximation to (1.1.1) is defined as vh ∈ V
cdG

satisfying

(3.2.16) Bε(vh, v) =

∫

Ω

fv dx ∀v ∈ V
cdG
.

We require that b points on J non-characteristically from TcG to TdG.

Assumption 3.2.17. The Th decomposition is such that for every e ∈ J

(3.2.18)
1

4
(b(x) · nC)|e > εmax

σ

he
∀x ∈ e

where nC represents the unit normal pointing from TcG to TdG.

Lemma 3.2.19. On V
dG

the bilinear forms B̃ε and Bε are coercive with respect to

|||w|||:

(3.2.20)
1

4
|||w|||2 ≤ B̃ε(w,w),

1

4
|||w|||2 ≤ Bε(w,w), w ∈ V

dG
.

3.2. Decoupled and Weighted Formulations 31

Proof. For the advection and reaction terms using integration by parts we have

Bar(w,w) =
∑

E∈Th

∫

E

−1

2
(∇h · b)w2 dx+

∫

∂E

1

2
(b · n)w2 ds

−
∑

e∈Eo
h

∫

e

b · JwKwout ds−
∑

e∈Γin

∫

e

(b · n)w2 ds

+
∑

E∈Th

∫

E

cw2 dx

=
∑

E∈Th

∫

E

(c− 1

2
∇h · b)w2 dx+

∑

e∈Eh

∫

e

1

2
(b · n)JwK · JwK ds.

(3.2.21)

For the diffusion term it follows from Assumption 3.2.6 and Young’s inequality

that

B̃d(w,w) +

∫

J

σ

he
JwK · JwK ds ≥ 1

2
‖w‖2d, Bd(w,w) +

∫

J

σ

he
JwK · JwK ds ≥ 1

2
‖w‖2d.

Combining the last inequality with (3.2.21), the result now follows with Assumption

3.2.17.

It follows that ṽh and vh exist and are unique. The final assumption permits the

use of an inverse inequality on the continuous Galerkin region. It is convenient to

define hTcG := ‖hE‖L∞(TcG).

Assumption 3.2.22. The mesh TcG is quasi-uniform.

We define ṽε, ṽ0 ∈ VcdG by the condition that for all v ∈ VcdG

B̃ε(ṽε, v) = B̃ε(uε, v),(3.2.23)

B̃ε(ṽ0, v) = B̃ε(u0, v).(3.2.24)

Observe that by linearity of the decoupled cdG method we have ṽε + ṽ0 = ṽh. We

now proceed to bound each of ṽε and ṽ0 on TcG.

3.3. Bounds on the ṽε Component on TcG 32

3.3 Bounds on the ṽε Component on TcG
We introduce the projection operator of Scott and Zhang, e.g., [121] and [67, Section

1.6.2].

Lemma 3.3.1. The Scott-Zhang operator SZh : W l,p(Ω) → V
cG

is a mapping with

the following properties: For l > 1
2
there exists a Csz > 0 such that for all 0 ≤ m ≤

min(1, l)

(3.3.2) ‖SZh(v)‖Hm(TcG) ≤ Csz‖v‖Hl(TcG) ∀v ∈ H l(TcG)

and provided l ≤ k + 1 for all E ∈ TcG and 0 ≤ m ≤ l we have the approximation

(3.3.3) ‖v − SZh(v)‖Hm(E) ≤ Cszh
l−m
E |v|Hl(∆E) ∀v ∈ H l(∆E).

where ∆E is the node patch of E, i.e., the set of cells in TcG sharing at least one

vertex with E.

Theorem 3.3.4. The decoupled cdG approximation ṽε is stable on the TcG region

in the sense that

(3.3.5) ‖ṽε‖H1(TcG) . 1.

Proof. We pick the auxiliary solution vA to be the Scott-Zhang projection of uε

on TcG and on the restriction to TdG to be the dG approximation with boundary

conditions given by SZh(uε) on ΓdG ∪ J , i.e.,

vA = SZh(uε) on TcG,

B̃ε(vA, v) = B̃ε(uε, v) ∀v ∈ VcdG(TdG).

Set η := uε − vA and ξ := vA − ṽε, so η + ξ = uε − ṽε. Notice that ξ ∈ VcdG. The

Galerkin orthogonality of (3.2.23) and Lemma 3.2.19 give

(3.3.6)
1

4
|||ξ|||2 ≤ B̃ε(ξ, ξ) = −B̃ε(η, ξ) = −B̃ε(η, ξ − χξ)

3.3. Bounds on the ṽε Component on TcG 33

where χ is the characteristic function defined in (2.3.7). Note that ξ − χξ is con-

tinuous except on J where Jξ − χξK = ξC · nC and {{ξ − χξ}} = 1/2ξC, where the

superscript C indicates the trace taken from the continuous Galerkin side of J .

We examine each term of B̃ε in turn. For the diffusion parts we use Young’s

inequality

−B̃d(η, ξ − χξ) ≤ 2|η|2H1(TcG) +
1

8
|ξ|2H1(TcG).

For the advection term we use Assumption 3.2.17 which ensures that flux terms on

J are zero as the upwind value of ξ−χξ vanishes. With Young’s inequality we have

−Ba(η, ξ − χξ) ≤ 4

ρ
‖b · ∇hη‖2L2(TcG) +

ρ

16
‖ξ‖2L2(TcG)

where ρ is defined in (2.1.6). Finally for the reaction term

−Br(η, ξ − χξ) ≤ 4

ρ
‖c‖2L∞(Ω)‖η‖2L2(TcG) +

ρ

16
‖ξ‖2L2(TcG).

Using the previous three results, (3.3.6), the definition of the norm (3.2.5), and

Lemma 3.3.1 we gather ξ terms on the left hand side to show, recalling that hTcG =

‖hE‖L∞(TcG),

1

8
|||ξ|||2 ≤ 2ε|η|2H1(TcG) +

4

ρ
‖b · ∇hη‖2L2(TcG) +

4

ρ
‖c‖2L∞(Ω)‖η‖2L2(TcG)

. (εh2TcG + h2TcG + h4TcG)‖uε‖2H2(ΩcG) . h2TcG(3.3.7)

where in the final step we have used (3.1.3). As ρ > 0 we may use (3.3.7) and an

inverse inequality to show

(3.3.8) ‖ξ‖2H1(TcG) . h−2
TcG‖ξ‖

2
L2(TcG) . h−2

TcG |||ξ|||
2 . 1.

Assumption 3.1.2 and (3.3.2) give ‖ṽε‖2H1(TcG) . 1.

3.4. Bounds on the ṽ0 Component on TcG 34

3.4 Bounds on the ṽ0 Component on TcG
We now pick the auxiliary solution vA to be u0 on TcG and on TdG to be the dG

approximation to u0 with boundary conditions given by u0 on ΓdG ∪ J , i.e.,

vA = u0 on TcG,(3.4.1)

B̃ε(vA, v) = B̃ε(u0, v) ∀v ∈ VcdG(TdG).(3.4.2)

Lemma 3.4.3. We have for all v ∈ V
cdG

that B̃ε(vA, v) = B̃ε(ṽ0, v).

Proof. Fix v ∈ VcdG. Then using (3.2.24)

B̃ε(ṽ0, v) = B̃ε(u0, v) = B̃ε(u0, v − χv) + B̃ε(u0, χv)

where χ is defined in (2.3.7). Observe that B̃ε(u0, χv) = B̃ε(vA, χv) by (3.4.2).

Notice that v − χv and u0 are continuous on TcG. Recall that integrands over J

do not appear in the definition of B̃d. For B̃a(ṽ0, v), the integral over J vanishes

since the value of (v − χv)out is zero because of Assumption 3.2.17. Therefore

B̃ε(ṽ0, v − χv) = B̃ε(u0, v − χv) = B̃ε(vA, v − χv).

Lemma 3.4.4. We have ‖ṽ0‖H1(TcG) . 1.

Proof. Define ṽπ to be

ṽπ :=















SZh(u0) on TcG,

vA on TdG

and let η := vA − ṽπ, ξ := ṽπ − ṽ0. With these definitions η+ ξ = vA − ṽ0, η|TdG = 0

and ξ and η are continuous on TcG. Then using Lemma 3.4.3 we have

1

4
|||ξ|||2 ≤ B̃ε(ξ, ξ) = −B̃ε(η, ξ)

= −
∫

TcG
ε∇hη · ∇hξ + (b · ∇hη)ξ + cηξ dx+

∫

J

b · JηKξout ds.

Due to Assumption 3.2.17 we have ξout = ξD, the trace from the dG side of J , and

JηK = ηCnC, the trace and normal from the cG side of J . We split each of the terms

3.5. An Inf-Sup Condition on TdG 35

using Young’s inequality, giving

1

4
|||ξ|||2 ≤ 2ε‖∇hη‖2L2(TcG) +

ε

8
‖∇hξ‖2L2(TcG) +

4

ρ
‖b · ∇hη‖L2(TcG) +

ρ

16
‖ξ‖2L2(TcG)

+
4

ρ
‖c‖2L∞(Ω)‖η‖2L2(TcG) +

ρ

16
‖ξ‖2L2(TcG) +

∫

J

(b · nCηC)ξD ds.

For the final term we note that ξ is a polynomial and so using Young’s inequality

and a trace and inverse inequality (with constant Cti) gives

∫

J

(b · nCηC)ξD ds ≤
4Cti‖b‖2L∞(Ω)

heρ
‖ηC‖2L2(J) +

ρ

16
‖ξ‖2L2(TdG).

Using (3.3.3) and a trace inequality gives

ρ‖ξ‖2L2(TcG) ≤ |||ξ|||2 . (εh2TcG + h4TcG + h2TcG)‖u0‖
2
H2(TcG) . h2TcG‖u0‖

2
H2(TcG)

and, by an inverse inequality, ‖ξ‖2H1(TcG) . 1. Now the result follows from the

stability of the Scott-Zhang operator.

3.5 An Inf-Sup Condition on TdG
The following theorem is an adaptation of related stability bounds in [41] and [10]

to fit the above assumptions. Indeed while the proof of the below inf-sup condition

follows the overall structure in [41] closely, we state it here in detail: It extends the

scope to non-constant advection coefficients via the incorporation of ΠD as [10]; it

deals with the modification of the bilinear form and streamline norm on J and it

only has streamline control on the TdG side. It is helpful to recall that ΠDv|TcG = 0

for any v.

Theorem 3.5.1. There exists a positive constant Λis which is independent of h,

and ε but may depend on the polynomial degree, σ and the constants in (3.2.9) and

(3.2.10) such that:

(3.5.2) inf
v∈V

cdG

sup
v̂∈V

cdG

B̃ε(v, v̂)

‖v‖S‖v̂‖S
≥ Λis.

3.5. An Inf-Sup Condition on TdG 36

Proof. Pick an arbitrary v ∈ VcdG. Then define

(3.5.3) v̂ := v + γvS, vS :=
∑

E∈Th

τEΠD(b · ∇hv)

where γ is a positive parameter at our disposal and τE is defined in (3.2.12). Note

that through the definition of ΠD we have v̂, vS ∈ VcdG. Theorem 3.5.1 is equivalent

to showing the following two results:

‖v̂‖S . ‖v‖S,(3.5.4)

B̃ε(v, v̂) & ‖v‖2S.(3.5.5)

Consider first (3.5.4). We examine each term of ‖vS‖2S in turn. We have

∑

E∈Th

ε|vS|2H1(E) .
∑

E∈Th

εh−2
E ‖τEΠD(b · ∇hv)‖2L2(E)

≤
∑

E∈Th

ττE‖ΠD(b · ∇hv)‖2L2(E) . ‖v‖2S.
(3.5.6)

Also

‖r1/2vS‖2L2(Ω) ≤ ‖r‖L∞(Ω)

∑

E∈Th

τ 2E‖ΠD(b · ∇hv)‖2L2(E) . ‖v‖2S.(3.5.7)

For the terms on the edges we use (3.2.10). This gives

∑

e∈Eh

‖|b · n|1/2JvSK‖2L2(e) .
∑

E∈Th

‖b‖L∞(Ω)τ
2
Eh

−1
E ‖ΠD(b · ∇hv)‖2L2(E) . ‖v‖2S.(3.5.8)

Similarly,

∑

e∈J
σε‖JvSK‖2L2(e) +

∑

e∈Eh\J

σε

he
‖JvSK‖2L2(e)

.
∑

E∈Th

τ 2E
σε

h2E
‖ΠD(b · ∇hv)‖2L2(E) . ‖v‖2S.

(3.5.9)

3.5. An Inf-Sup Condition on TdG 37

The final term of the streamline norm gives

∑

E∈Th

τE‖ΠD(b · ∇hvS)‖2L2(E) ≤
∑

E∈Th

τE‖b · ∇h (τEΠD(b · ∇hv))‖2L2(E)

.
∑

E∈Th

τ 3E‖b‖2L∞(E)h
−2
E ‖ΠD(b · ∇hv)‖2L2(E) . ‖v‖2S.

Combining the above results we have ‖vS‖2S . ‖v‖2S. Using a triangle inequality we

find

‖v̂‖S ≤ ‖v‖S + γ‖vS‖S ≤ C(τ, σ, γ)‖v‖S,

which concludes the proof of (3.5.4).

To prove (3.5.5) first consider the advection and reaction terms of the norm.

Using the linearity of Bar we have Bar(v, v̂) = Bar(v, v) + γBar(v, vS). The second

term equals

Bar(v, vS) =
∑

E∈Th

∫

E

cv(τEΠD(b · ∇hv)) + (b · ∇hv)(τEΠD(b · ∇hv)) dx

−
∑

e∈Eo
h

∫

e

b · JvK(τEΠD(b · ∇hv))
out ds

−
∑

e∈Γin

∫

e

(b · n)v(τEΠD(b · ∇hv)) ds.

Using the properties of ΠD given in (3.2.7) the second term above becomes

∑

E∈Th

∫

E

(b · ∇hv)(τEΠD(b · ∇hv)) dx

=
∑

E∈Th

∫

E

τEΠD(b · ∇hv)ΠD(b · ∇hv) dx

=
∑

E∈Th

τE‖ΠD(b · ∇hv)‖2L2(E).

(3.5.10)

Using Young’s inequality we have

∣

∣

∣

∑

E∈Th

∫

E

cv(τEΠD(b · ∇hv)) dx
∣

∣

∣
≤
∑

E∈Th

1

2
‖c‖L∞(E)‖v‖2L2(E) +

1

2
τ 2E‖ΠD(b · ∇hv)‖2L2(E)

3.5. An Inf-Sup Condition on TdG 38

and, where C arises from a trace inequality and the number of edges per element,

−
∑

e∈Eo
h

∫

e

b · JvK(τEΠD(b · ∇hv))
out ds−

∑

e∈Γin

∫

e

(b · n)v(τEΠD(b · ∇hv)) ds

≤
∑

e∈Eh

Cλ

2
‖|b · n|1/2JvK‖2L2(e) +

∑

E∈Th

τEτ

2λ
‖ΠD(b · ∇hv)‖2L2(E).

In conclusion, together with (3.2.21),

Bar(v, v̂) ≥
(

ρ− γ‖c‖L∞(Ω)

2

)

∑

E∈Th

‖v‖2L2(E) +

(

1

2
− γCλ

2

)

∑

e∈Eh

‖|b · n|1/2JvK‖2L2(e)

+ γ
∑

E∈Th

(

τE − τ 2E
2

− τEτ

2λ

)

‖ΠD(b · ∇hv)‖2L2(Ω).

(3.5.11)

Recall that ‖hE/b‖L∞(TdG) ≤ 1 via Assumption 2.3.9. Therefore τE ≤ 1 for all

E ∈ Th by (3.2.12). For general v, all terms on the right-hand side of (3.5.11) are

positive, provided λ is large enough, γ is small enough and γλ is small enough.

Assumption 3.2.6 ensures the continuity of B̃d with respect to ‖ · ‖d; thus

B̃d(v, v̂) ≤ C1‖v‖d‖v̂‖d(3.5.12)

for some C1 > 0. Note that the weaker penalisation of jumps on J does not cause

a problem as we consider the decoupled method. Recalling (3.5.6) and (3.5.9) it is

clear that ‖vS‖d ≤ C2‖v‖d for some C2 > 0. Hence

B̃d(v, v̂) = B̃d(v, v) + γB̃d(v, vS) ≥
1

4
‖v‖2d − γC1‖v‖d‖vS‖d.(3.5.13)

Thus if γ < C1C2/8 then B̃d(v, v̂) ≥ 1
8
‖v‖2d. Combined with (3.5.11) we have (3.5.5).

3.6. Stability of the Decoupled and Weighted Approximations 39

3.6 Stability of the Decoupled and Weighted Ap-

proximations

In summary, we learned that under the above assumptions the decoupled approxi-

mation satisfies the stability bound:

‖ṽh‖H1(TcG) . 1, ‖ṽh‖S . ‖f‖L2(Ω).(3.6.1)

The first bound is a consequence of Lemmas 3.3.4 and 3.4.4, and the second of

Theorem 3.5.1. So while we have streamline-diffusion stability on TdG, an even

stronger bound is available on TcG. This finding is quite intuitive given that we

expect the solution to have higher regularity in this region also.

Theorem 3.6.2. Suppose that the operator norm of the trace H1(TcG) → L2(J) is

bounded independently of h. Then the weighted cdG approximation vh is stable in

the sense that

hTcG‖∇hvh‖2L2(TcG) + ‖vh‖2S . 1 + ‖f‖2L2(Ω).

Proof. Set ζ := vh − ṽh. Using the coercivity of Bε, Galerkin orthogonality and the

norm of the trace H1(TcG) → L2(J), we have

1

4
|||ζ |||2 ≤ Bε(ζ, ζ) = B̃ε(ṽh, ζ)− Bε(ṽh, ζ) + Bε(vh, ζ)− B̃ε(ṽh, ζ)

= B̃ε(ṽh, ζ)− Bε(ṽh, ζ)

=
∑

e∈J
ε

∫

e

∇hṽh|TcG · JζK +∇hζ |TcG · JṽhK − σJṽhK · JζK ds

.
(

ε‖∇hṽh‖2L2(TcG) + εσ‖JṽhK‖2L2(J)

)1/2 (

ε‖∇hζ‖2L2(TcG) + εσ‖JζK‖2L2(J)

)1/2

and thus

|||ζ |||2 . ε‖∇hṽh‖2L2(TcG) + εσ‖JṽhK‖2L2(J).(3.6.3)

3.7. Numerical Experiments 40

Dividing through by hTcG and using an inverse inequality on ρ‖ζ‖L2(E) gives

hTcG‖∇hζ‖2L2(TcG) . h−1
TcG |||ζ |||

2 .
ε

hTcG
‖∇hṽh‖2L2(TcG) +

εσ

hTcG
‖JṽhK‖2L2(J).(3.6.4)

With Assumptions 2.3.9 and 3.2.17 as well as (3.6.1) we bound each of the terms in

(3.6.4). Using a triangle inequality on ‖∇hζ‖L2(TcG) we conclude that

hTcG‖∇hvh‖2L2(TcG) . 1.

To show that ‖vh‖S is bounded we establish an inf-sup condition for Bε. Indeed,

(3.5.4) may be used without change. It remains to transfer (3.5.5) to Bε. The in-

equality (3.5.11) is still available as the discretization is the same for both forms.

However we now use Bd(v, v̂) ≤ C1|||v||| · |||v̂||| in place of (3.5.12), justified by As-

sumption 3.2.6. By using (3.5.6)-(3.5.9), we have |||vS||| ≤ C2|||v||| for some C2 > 0.

Hence

Bd(v, v̂) = Bd(v, v) + γBd(v, vS) ≥
1

4
‖v‖2d − γC1|||v||||||vS|||.(3.6.5)

For γC1C2 small enough and λ sufficiently large, γC1|||v||||||vS||| is bounded by

1
8
‖v‖2d + 1

2
Bar(v, v̂), using again the positivity of the terms in (3.5.11).

Observe that due to Assumption 3.2.17 the effect of the weaker elliptic penalisa-

tion on J is compensated for by the jumps of the first-order terms in the considered

parameter regime.

3.7 Numerical Experiments

Example 3.7.1 Let Ω = (0, 1)2. We seek to solve

(3.7.1) −ε∆u+ (−x,−y) · ∇u = −x− y

3.7. Numerical Experiments 41

with Dirichlet boundary conditions chosen such that the solution is given by

(3.7.2) u(x, y) = x+ y −
Erf
(

x√
2ε

)

+ Erf
(

y√
2ε

)

Erf
(

1√
2ε

)

where Erf is the error function defined by

Erf(x) =
2√
π

∫ x

0

e−t2 dt.

For 0 < ε ≪ 1 this problem exhibits an exponential boundary layer along the outflow

boundaries x = 0 and y = 0 of width O(
√
ε).

Away from the layers the boundary conditions on the inflow boundaries x = 1

and y = 1 are well approximated by y − 1 and x − 1 respectively. The hyperbolic

solution with these boundary conditions is given by u0(x, y) = x+ y− 2. This gives

(3.7.3) uε(x, y) = 2−
Erf

(

x√
2ε

)

+ Erf
(

y√
2ε

)

Erf
(

1√
2ε

) .

We plot (3.7.2) and (3.7.3) for ε = 10−3 in Figure 3.7.1. It is clear that away

from the layers at the outflow boundaries the solution uε is close to zero.

1

0

-1

-2

(a) Solution u given by (3.7.2).

1

0

1

2

(b) Solution uε given by (3.7.3)

Figure 3.7.1: Example 3.7.1 solution u and uε for ε = 10−3. Away from the layers uε is
very close to zero.

We attempt to identify ΩcG by plotting ‖uε‖H2(D) on a region D = (1 − δ, 1)2,

3.7. Numerical Experiments 42

0 ≤ δ ≤ 1. If for a given D we have ‖uε‖H2(D) . 1 for all ε ≤ εmax for some εmax,

this D is an approximation for ΩcG. As we can see from Figure 3.7.2 smaller εmax

allow for larger continuous regions.

10-6 10-5 10-4 0.001 0.01 0.1 1

10-5

0.001

0.1

10

1000

ε

δ = 0.80

δ = 0.90

δ = 0.95

δ = 0.99

Figure 3.7.2: Example 3.7.1 plotting ‖uε‖H2(D) for various domains.

For this example c − 1/2∇ · b = 1, so Assumption 2.1.5 is satisfied. Consider

εmax = 10−6 and a uniform mesh of quadrilaterals of edge length 2−5. We will use

piecewise bilinear elements. Then the smallest value of ‖b‖L∞(E) for E ∈ Th is 2−5.

Therefore Assumption 2.3.9 is satisfied, the smallest local mesh Péclet number being

488.28.

We define TcG = [1− δh, 1]
2, where δh = n2−5, n ∈ {0, 1, . . . , 32}. Note that δh is

discrete whereas δ is continuous (it is not possible to have half a cell in TcG). The

interface J is composed of the edges lying on the lines y = δh for x ≥ δh and x = δh

for y ≥ δh. The smallest value of b · n is δh occurring on the edges containing the

point (δh, δh) and so Assumption 3.2.17 is satisfied for all possible Th decompositions

for this choice of εmax, h and σ = 10. From Figure 3.7.2 we can see that with TcG

as defined we have TcG ⊂ ΩcG for εmax = 10−6.

In Figure 3.7.3 we plot the L2(Th) norm,
√
ε weighted H1(Th) semi-norm and

L2 norm of the jumps on Eh (represented by J · K) for both the difference between

the dG and cdG approximations and the error in the cdG approximation. In Figure

3.7.3(a) we see that the difference in the approximations increases only very slowly

3.7. Numerical Experiments 43

until the final data point (where TcG = Th). When the continuous region covers

the layer non-physical oscillations pollute the approximation. The behaviour is even

more marked when considering the error in Figure 3.7.3(b). Note that in this plot

the jump terms have been scaled by a factor of 1/10.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

δh

‖w
h
−
v h
‖ L2

√
εH1

J · K

(a) Difference between cdG and dG ap-
proximations.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

δh
‖u

−
v h
‖

L2

√
εH1

J · K

(b) Error in the cdG approximation.

Figure 3.7.3: Comparing approximations for Example 3.7.1 for ε = 10−6. The change
as TcG covers the layer is apparent, with a large increase in the norms.

In Table 3.7.1 we show the number of degrees of freedom (dofs) as the continuous

region is increased. Reducing the degrees of freedom to approximately 30% of the

dG method results in only a very slight difference in the norm. For comparison with

Becker et. al. [26] where 2n degrees of freedom are required here we have 1.17n with

one row of elements in TdG (allowing for boundary conditions).

1− δ dofs % of dG dofs
√
ε‖∇h(wh − vh)‖H1(Ω)

dG 4096 100 0.0

8× 2−5 3361 82.1 3.1157e-08

16× 2−5 2417 59.0 6.8911e-08

24× 2−5 2121 51.8 8.7544e-08

30× 2−5 1457 35.6 1.7934e-07

31× 2−5 1276 31.2 2.7896e-07

cG 1089 26.6 1.2444e-02

Table 3.7.1: Degrees of freedom for Example 3.7.1 with ε = 10−6. A considerable
saving in degrees of freedom can be made without significantly increasing the difference
in performance between the cdG and dG approximations.

3.7. Numerical Experiments 44

We finally remark for this example that the choice of TcG leaving one layer of

elements at the outflow boundary is in some sense optimum. If we add even one

additional element we see the oscillations again pollute the region. For example, for

TcG = [2−5, 1]2 ∪ ([0.5, 0.5 + 2−5]× [0, 2−5]),

i.e., adding a single element to TcG halfway along the x-axis, we find

‖wh − vh‖L2(Ω) = 4.7966× 10−2,

√
ε‖∇h(wh − vh)‖L2(Ω) = 4.5008× 10−3,

a significant increase on the norms for TcG = [2−5, 1]2. This choice of TcG also violates

Assumption 3.2.17.

Example 3.7.2 Let Ω = (0, 1)2. We seek to solve

(3.7.4) −ε∆u+ (1, 1) · ∇u+ u = f

with homogeneous Dirichlet boundary conditions and f chosen such that the solution

is given by

(3.7.5) u(x, y) =

(

x− e(x−1)/ε − e−1/ε

1− e−1/ε

)(

y − e(y−1)/ε − e−1/ε

1− e−1/ε

)

.

For 0 < ε ≪ 1 this problem exhibits an exponential boundary layer along the outflow

boundaries x = 1 and y = 1 of width O(ε).

For this example f depends on ε. However f → x + y + xy as ε → 0 and the

solution to the hyperbolic problem with zero boundary conditions in the limit is

u0(x, y) = xy. This u0 is a good approximation to the hyperbolic solution for small

ε away from the layers. We identify ΩcG using uε given the limit solution u0 and u

defined above. Define D = [0, δ], 0 ≤ δ ≤ 1. In Figure 3.7.4 we plot ‖uε‖H2(Ω) for

various domains D. Note that compared to Example 3.7.1 the layer is sharper for a

given ε. Therefore we see that for a given domain we may choose a larger εmax, or

conversely for a given εmax the region ΩcG is larger compared to Example 3.7.1.

3.7. Numerical Experiments 45

10-4 0.001 0.01 0.1 1

10-5

0.001

0.1

10

1000

ε

δ = 0.80

δ = 0.90

δ = 0.95

δ = 0.99

Figure 3.7.4: Example 3.7.2 plotting ‖uε‖H2(D) for various domains.

For this example c − 1
2
∇ · b = 1, so Assumption 2.1.5 is satisfied. Consider

εmax = 10−3 and a uniform mesh of quadrilaterals of edge length 2−6 and we again use

piecewise bilinear elements. The value of ‖b‖L∞(E) is fixed at 1 and so Assumption

2.3.9 is satisfied with the local mesh Péclet number being 7.8125 for every E ∈ Th.

We define TcG = [0, δh]
2, where δh = n2−6, n ∈ {0, 1, . . . , 64}. The interface

J is composed of the edges lying along the lines y = 1 − δh for x ≤ 1 − δh and

similarly with the x and y interchanged. As b is fixed we see that Assumption 3.2.17

is satisfied for all possible J with this choice of εmax and h with σ = 1 provided

TcG ⊂ ΩcG.

In Figure 3.7.5 we plot the L2(Th) norm,
√
ε weighted H1(Th) semi-norm and L2

norm of the jumps on Eh for both the difference of the dG and cdG approximations

and the error in the cdG approximation. We see that there is little increase in the

norms for the difference in the approximations until the final two data points (Figure

3.7.5(a)). Looking at Figure 3.7.4 we see that ε = 10−3 gives an approximation to

ΩcG of (0, 0.99)2. For the continuous region covering all but the final row of cells we

have TcG = [0, 0.984]2, so the presence of some oscillations is as predicted. However

the increase is not large enough to register on a plot of the norms of the error (Figure

3.7.5(b)). Covering the layer with ΩcG entirely produces the expected large increase

in the difference and the error.

3.7. Numerical Experiments 46

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

δh

‖w
h
−
v h
‖

L2

√
εH1

J · K

(a) Difference between cdG and dG ap-
proximations.

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

δh

‖u
−
v h
‖

L2

√
εH1

J · K

(b) Error in the cdG approximation.

Figure 3.7.5: Comparing approximations for Example 3.7.2 for ε = 10−3. The change
as TcG covers the layer is apparent, with the final two data points showing an increase in
(a) and the final set showing an increase for (b).

In Figure 3.7.6 we investigate this difference further by plotting the error for

the fixed decomposition with TcG = [0, 1 − 2−6]2 as we decrease ε. We now plot

the unscaled H1(Th) semi-norm with the L2 and L2 jump norms. For ε = 10−1 to

10−3 this TcG partially covers the layer. When ε = 10−1 the refinement of the mesh

is sufficient to resolve the layer, and we see an increase in the H1(Th) semi-norm

between ε = 10−1 and 10−3 as we increasingly fail to resolve the layer but do not

contain the layer in TdG. As the layer sharpens as ε decreases further the L2(Th)

and H1(Th) norms decrease. The layer is not resolved but is entirely contained in

TdG. For the jumps we see different behaviour. The largest jump is at the outflow

boundary which is always in TdG. For relatively large ε this choice of TcG removes

some jumps away from the layer which would be present in the dG solution. However

this is at the expense of some stability as can be seen from the H1(Th) norm.

We look at the savings made in degrees of freedom in Table 3.7.2 for ε = 10−3.

A reduction to approximately 30% of the degrees of freedom required for the dG

method on this mesh does not cause a large increase in the difference between dG and

cdG approximations. We use 1.18n degrees of freedom for the cdG approximation

with two rows of elements at the outflow boundary in TdG, compared to 4n for the

dG method (allowing for boundary conditions) and 2n for the space enriched with

3.7. Numerical Experiments 47

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

ε

‖u
−
v h
‖

L2

H1

J · K

Figure 3.7.6: Reducing ε for a fixed TcG = [0, 1 − 2−6]2 for Example 3.7.2. Once the
layer is entirely outside of TcG the approximation improves.

piecewise constants as used in [26].

δ dofs % of dG dofs
√
ε‖∇h(wh − vh)‖H1(Ω)

0× 2−6 16384 100 0.0

16× 2−6 13377 81.6 9.2781e-05

32× 2−6 9569 58.4 1.7153e-04

61× 2−6 5344 32.6 2.4733e-04

62× 2−6 4977 30.5 2.8491e-04

63× 2−6 4604 28.1 2.0398e-03

64× 2−6 4225 25.8 5.4685e-01

Table 3.7.2: Degrees of freedom for Example 3.7.2 with ε = 10−3. A considerable
saving in degrees of freedom can be made without significantly increasing the difference
in performance between the cdG and dG approximations.

Part II

A Posteriori Error Estimators for

Incompressible Miscible

Displacement

Chapter 4

Introduction to the Equations of

Incompressible Miscible

Displacement

In this chapter we turn our attention to the equations of incompressible miscible dis-

placement (1.1.3)-(1.1.8) and introduce preparatory material for further discussion

of a posteriori error estimators in Chapters 5 and 6.

4.1 Literature Review

The existence and uniqueness of solutions to (1.1.3)-(1.1.8) was shown by Chen and

Ewing in 1999 [52], but the numerical approximation of such equations has been

discussed in the literature for considerably longer. We will not discuss anything

prior to the work of Peaceman [110], but direct the reader to that text and the

references therein which concern primarily a finite difference approach. For the

finite element method the first appearance in the literature is [70], developing an a

priori estimator for the pressure and concentration components.

Equations (1.1.4)-(1.1.5) can be shown to have a solution (u, p) ∈ H (div; Ω) ×
L2(Ω). We refer to numerical procedures to find approximations (uh, ph) ∈ U × P ,

where U and P are finite dimensional subspaces of H (div; Ω) and L2(Ω) respectively,

as mixed methods. See the book by Brezzi and Fortin [35] for a comprehensive

49

4.1. Literature Review 50

review. For the coupled problem of incompressible miscible displacement we refer

to, e.g., mixed-continuous methods where a mixed method is used to approximate

pressure and velocity and a continuous Galerkin method is used to approximate

concentration.

An approach using a mixed-continuous Galerkin method to solve for pressure,

velocity and concentration was introduced in [64] and the pressure-velocity compo-

nents were further studied in [65]. For a more complete history see the references in

[123] in which the mixed-discontinuous Galerkin scheme was introduced and a priori

results generated through the use of a cut off functional. Further results have been

shown a priori for the compressible case [56, 57]. Extensions to the case of minimal

regularity have been addressed in [20] and a Crank-Nicolson solution scheme for the

mixed-dG case proposed in [85].

For an overview of residual a posteriori error estimation see the book by Ainsworth

and Oden, [5]. Reliable a posteriori indicators for the mixed-cG case were introduced

in [51] and a dG-dG method for the compressible problem in [128]. For the case

of uncoupled Darcy flow approximated using a dG method, [19] proposes a reliable

and efficient estimator. By reliable we refer to an estimator that gives an upper

bound on the error. Estimators which give a lower bound on the error are referred

to as efficient, but we will not consider estimators of this type in this thesis. There

are also results using the dual weighted residual method [27] in the case of one way

coupling [95] where the refinement is formulated to achieve a particular numerical

goal. To our knowledge no papers have been published concerning goal oriented

adaptivity with two way coupling.

There has also been considerable contribution to this field from Wheeler and her

collaborators. In [123] the authors present an optimal a priori error estimate (in

L2((0, T];H1(Ω)) for concentration and L∞((0, T];L2(Ω)) for velocity) for a mixed-

dG scheme. For a dG-dG scheme Sun and Wheeler [124] present a priori error

estimates for a system of coupled equations that also include reaction terms. Sun and

Wheeler [125, 126] also consider a posteriori error estimators for dG approximations

to the reactive transport problem, i.e., similar to (1.1.3) with an additional reaction

term. Estimators in both L2((0, T];H1(Ω)) [125] and L2((0, T];L2(Ω)) [126] are

4.2. The Coefficients of the Problem 51

shown, and the authors remark that estimators of the second type are preferred for

the concentration.

4.2 The Coefficients of the Problem

We make the following assumptions on the coefficients of the problem (1.1.3)-(1.1.5)

(cf., [20, 52]):

(A1) We have K ∈ L∞(Ω;Rd×d) and there exists positive real numbers k◦, k
◦ such

that

k◦|ξ|2 ≤ ξ⊤K(x)ξ ≤ k◦|ξ|2

for all x ∈ Ω and ξ ∈ Rd. Moreover, K(x) is symmetric;

(A2) There exist positive real numbers µ◦, µ
◦ such that the Lipschitz continuous

function µ : R → R satisfies µ◦ ≤ µ(c) ≤ µ◦ for all c ∈ R;

(A3) There exist positive real numbers d◦ ≤ 1 ≤ d◦ such that the function D :

Rd × Ω → Rd×d satisfies the Carathéodory condition

D(u, ·) : x 7→ D(u, x) is measurable on Ω for all u ∈ R,

D(·, x) : u 7→ D(u, x) is continuous on R
d for almost all x ∈ Ω

and the two sided, u-dependent growth condition

d◦(1 + |u|)|ξ|2 ≤ ξ⊤D(u, x)ξ ≤ d◦(1 + |u|)|ξ|2

for all u, ξ ∈ Rd and x ∈ Ω. Furthermore, D(u, x) is symmetric for (u, x) ∈
R

d × Ω;

(A4) We have ϕ ∈ W 2,∞(Ω), and there are positive ϕ◦, ϕ
◦ ∈ R such that

ϕ◦ ≤ ϕ(x) ≤ ϕ◦;

4.3. Regularity 52

(A5) We have qI , qP ∈ L∞((0, T];L2(Ω)) satisfy qI , qP ≥ 0 in ΩT and

∫

Ω

qI(t, x)− qP (t, x) dx = 0

for t ∈ (0, T];

(A6) We have ĉ ∈ L∞((0, T]× Ω) and c0 ∈ L∞(Ω) satisfy 0 ≤ ĉ(t, x), c0(x) ≤ 1

in (0, T] × Ω and Ω respectively; additionally we assume for simplicity that

c0 ∈ VdG.

(A7) There exist positive real numbers ρ◦, ρ
◦ such that the Lipschitz continuous

function ρ : R → R satisfies ρ◦ ≤ ρ(c) ≤ ρ◦ for all c ∈ R. Also g is a constant

vector in Rd.

We make the common specific choice for the diffusion dispersion tensor, e.g.,

[52, 71, 123]

(4.2.1) D(u,x) = ϕ (dmI+ |u|dlE(u) + |u|dt(I− E(u)))

where E(u) = uu⊤/|u|2 and I is the identity matrix. We specify that the molecu-

lar, longitudinal and transverse diffusion coefficients dm, dl and dt are positive real

numbers.

4.3 Regularity

We will make frequent use of the regularity bounds for solutions of elliptic and

parabolic equations in convex domains. We therefore present a general discussion

of the regularity of such equations which can be found in, e.g., [69].

Consider a second order elliptic partial differential operator L given by

Lψ = −
d
∑

i,j=1

(aij(x)ψxi
)xj

+
d
∑

i=1

bi(x)ψxi
+ c(x)ψ

where aij , bi and c are given coefficient functions. Then we define the following

4.3. Regularity 53

boundary value problem on Ω

Lψ = f on Ω

ψ = 0 on ∂Ω
(4.3.1)

where f : Ω → R is a known function. Then we have the following theorem ([69,

Section 6.3]).

Theorem 4.3.2. Assume aij ∈ C1(Ω), bi, c ∈ L∞(Ω) and f ∈ L2(Ω). Suppose ψ

is the unique solution of (4.3.1). Then if ∂Ω is C2 or the region is convex we have

that ψ ∈ H2(Ω) and the regularity bound

(4.3.3) ‖ψ‖H2(Ω) ≤ C‖f‖L2(Ω)

where C depends on Ω, aij , bi and c.

If we have higher regularity in the coefficients and right hand side and domain

it is possible to show that the solution ψ also has higher regularity.

Suppose now we look at the parabolic problem

∂ζ

∂t
+ Lζ = f on ΩT

ζ = 0 on ∂ΩT

ζ(0, x) = g on Ω.

(4.3.4)

Then we have the following regularity theorem, e.g., [69, Section 7.1.3]:

Theorem 4.3.5. Assume aij ∈ L2((0, T];C1(Ω)), bi, c ∈ L2((0, T];L∞(Ω)) and

f ∈ L2((0, T];L2(Ω)). Also assume g ∈ H1
0(Ω), i.e., those functions in H1 with

zero trace on the boundary ∂Ω. Then for ζ ∈ L2((0, T];H1
0 (Ω)) the weak solution of

(4.3.4) we have the estimate

(4.3.6) ess sup
t∈(0,T]

‖ζ(t)‖H1
0 (Ω) + ‖ζ‖L2((0,T];H2(Ω)) ≤ C

(

‖f‖L2((0,T];L2(Ω)) + ‖g‖H1
0 (Ω)

)

where C depends on Ω, aij, bi, c and T .

4.4. The RT-dG Finite Element Method 54

With the Sobolev embedding Theorems [3] (see also Chapter 6) this means that

in two or three dimensions we have p, c ∈ L∞(Ω). For convex domains we have

additionally that u ∈ L∞(Ω) (see, e.g., [102, Chapter 7] for a full discussion), which

does not hold for non convex domains see, e.g., [77]. We will seek an alternative

approach in regions where u 6∈ L∞(Ω) in Chapter 6 through the application of

weighted spaces.

4.4 The Continuous Time Raviart-Thomas

dG Finite Element Method

Define

(4.4.1) L2
0(Ω) :=

{

w ∈ L2(Ω) :

∫

Ω

w dx = 0

}

.

The solution to the flow problem for pressure is unique only up to an addative

constant, which we determine by specifying p ∈ L2
0(Ω). We assume the solution

is smooth enough so the weak form of (1.1.3)-(1.1.5) is given by: Find (u, p, c) ∈
L∞((0, T];H0(div; Ω))× L∞((0, T];L2

0(Ω))× L2((0, T];Hn−1(Ω)) and

∂c/∂t ∈ L2((0, T];Hn−1(Ω)) such that

(

ϕ
∂c

∂t
, d

)

+
∑

E∈Th

(D(u)∇c,∇d)E

+
∑

E∈Th

[

(u · ∇c, d)E + (qIc, d)E
]

= (ĉqI , d)

(4.4.2)

for all d ∈ H1(Ω) and a.e. t ∈ (0, T], and

(∇ · u, w) = (qI − qP , w)(4.4.3)

(a−1(c)u, v)− (p,∇ · v) = (ρ(c)g, v)(4.4.4)

for all (v, w) ∈ H (div; Ω)×L2
0(Ω) and a.e. t ∈ (0, T]. The regularity of the solution

is given by n ≥ 2. Compare this to the discussion of the guaranteed regularity in

the previous section, Assumption 5.1.11 and the discussion in Chapter 6.

4.4. The RT-dG Finite Element Method 55

We solve for the pressure and velocity using a Raviart-Thomas (RT) procedure

[66, 113] and for the concentration using a dG method. We refer to the whole scheme

as a RT-dG method. For polynomial degree k ≥ 0 and restricting ourselves to two

dimensions we define the global Raviart-Thomas finite element space by

RT k(Th) := {v ∈ H (div; Ω) : v|E ∈ [Pk(E)]2 + xP
k(E) ∀E ∈ Th}.(4.4.5)

Recall the definition of H0(div; Ω) from (1.3.4). Then u is approximated in the space

U := RT k(Th) ∩H0(div; Ω).

For the pressure we define the approximation space

P := VdG ∩ L2
0(Ω)

where VdG is defined in (2.2.2). Then the velocity and pressure are approximated in

U ×P . Note that U ×P ⊂ H0(div; Ω)×L2
0(Ω). To simplify the presentation we use

the same mesh Th to solve for u, p and c numerically at a given time and stipulate

there is no refinement of the polynomial degree.

For the diffusion part of the concentration equation define the bilinear form

Bd(ch, dh; uh) =
∑

E∈Th

∫

E

D(uh)∇hch · ∇hdh dx+
∑

e∈Eo
h

∫

e

σJchK · JdhK ds

−
∑

e∈Eo
h

∫

e

JchK · {{D(uh)∇hdh}}+ JdhK · {{D(uh)∇hch}} ds
(4.4.6)

for all dh ∈ VdG. The penalty parameter σ is defined by [20]

σ : Eh → R, x 7→ Cpen

max{n⊤
EhD(u

+
h ,x)nEh , n

⊤
EhD(u

−
h ,x)nEh}

h

and Cpen is chosen such that it is larger than

sup

{

hmax

{‖νh‖2∂E
‖νh‖2E

,
‖D1/2∇hνh‖2∂E
‖D1/2∇hνh‖2E

}

: νh ∈ P
s, D ∈ [Ps]d×d

}

.(4.4.7)

4.4. The RT-dG Finite Element Method 56

The bilinear form for convection, production and injection is given by (cf.,

(7.3.2))

Balt
cq (ch, dh; uh) =

∑

E∈Th

∫

E

(uh · ∇hch)dh + (qIch)dh dx

−
∑

e∈Eo
h

∫

e

(uh · JchK)d∗h ds
(4.4.8)

where d∗h is defined by

(4.4.9) d∗h =















d−h if uh · n+ > 0,

d+h if uh · n+ ≤ 0.

Definition 4.4.10. Define the continuous time RT-dG approximation (uh, ph, ch) ∈
L∞((0, T];U)× L∞((0, T];P)× L∞((0, T];V

dG
) to (1.1.3)-(1.1.8) as that which sat-

isfies

(

ϕ
∂ch
∂t

, dh

)

+ Bd(ch, dh; uh) + Balt
cq (ch, dh; uh) = (ĉqI , dh)(4.4.11)

for all dh ∈ V
dG

and t ∈ (0, T],

(∇ · uh, wh) = (qI − qP , wh),(4.4.12)

(a−1(ch)uh, vh)− (ph,∇ · vh) = (ρ(ch)g, vh)(4.4.13)

for all (vh, wh) ∈ U × P and t ∈ (0, T], and

(ch, dh) = (c0, dh)(4.4.14)

for all dh ∈ V
dG

and t = 0.

Note that the equations (1.1.6)-(1.1.7) are satisfied for the approximation through

the definition of the RT space, i.e., by construction U ⊂ H0(div; Ω) so (1.1.6) is satis-

fied and the choice of the diffusion dispersion tensor (4.2.1) ensures (1.1.7) is likewise

satisfied.

Chapter 5

A Posteriori Error Estimators for

the Raviart-Thomas dG Finite

Element Method

In this chapter we introduce an a posteriori error estimator for the Raviart Thomas

dG finite element method as presented in Definition 4.4.10. To our knowledge no

estimator for this scheme exists in the literature. We however remark that Chen

and Liu have shown an estimator for the RT-cG scheme (using a different approach

to coupling the estimates), and Yang [128] has presented an estimate for a dG-dG

scheme for the compressible problem. Our analysis finds inspiration in these papers

but is significantly different. We also acknowledge that a posteriori estimators exist

for the uncoupled equations: For the velocity pressure components [48, 66]; and

for the concentration components [126]. Our analysis presents these estimates with

coupling and formulates a combined error estimator.

5.1 Notation and Preliminary Results

Define the error terms by Eu := u− uh, Ep := p− ph and Ec := c− ch.

We present the following construction of the Raviart-Thomas projection from

[66]. For an element E ∈ Rd the local Raviart-Thomas space of order k ≥ 0 is

57

5.1. Notation and Preliminary Results 58

defined by

RT k(E) = [Pk(E)]d + xP
k(E).

Then define the local interpolation operator ΠE : [H1(E)]d → RT k(E) via the

following lemma [66, Lemma 3.2].

Lemma 5.1.1. Given v ∈ [H1(E)]d there exists a unique ΠEv ∈ RT k(E) such that

for each edge e of E we have

∫

e

ΠEv · n p ds =
∫

e

v · n p ds ∀p ∈ P
k(e)

and if k ≥ 1
∫

E

ΠEv · p dx =

∫

E

v · p dx ∀p ∈ [Pk(E)]d.

Then we denote the global Raviart-Thomas projection

ΠRT
h : H (div; Ω) ∩

∏

E∈Th

[H1(E)]d → RT k(Th)

defined by

ΠRT
h v|E = ΠEv ∀E ∈ Th.

This projection satisfies (see [66, Lemma 3.5])

(

∇ · (v −ΠRT
h (v)), wh

)

= 0 ∀wh ∈ V k
dG(5.1.2)

and

‖v −ΠRT
h (v)‖[L2(Ω)]d ≤ Chm‖v‖[Hm(Ω)]d 1 ≤ m ≤ k + 1(5.1.3)

where C depends on the regularity of the mesh and k. Note that the local Raviart-

Thomas projection satisfies a similar inequality, cf., [66, Theorem 3.1] which can be

used to show (5.1.3).

We introduce the Clément interpolation operator Clh(·) [53]. See also [67, Section
1.6.1]. This is an operator L1(Ω) ∋ v → Clh(v) ∈ VcG, where VcG is the degree

r piecewise continuous polynomial approximation space defined in (2.1.8). The

5.1. Notation and Preliminary Results 59

Clément operator has the following interpolation properties [67]:

Lemma 5.1.4 (Clément Interpolation). There is a C such that for all 0 ≤ m ≤ 1

(5.1.5) ‖Clh(v)‖Hm(Ω) ≤ C‖v‖Hm(Ω) ∀v ∈ Hm(Ω).

If 0 ≤ m ≤ l ≤ r + 1 then for all h and all E ∈ Th we have the approximation

(5.1.6) ‖v − Clh(v)‖Hm(E) ≤ Chl−m
E |v|Hl(∆E) ∀v ∈ H l(∆E)

where ∆E is the set of elements in Th sharing at least one vertex with E. If m+1/2 ≤
l ≤ r + 1 then for all h and all e ∈ Eh we have the approximation

(5.1.7) ‖v − Clh(v)‖Hm(e) ≤ Chl−m−1/2
e |v|Hl(∆e) ∀v ∈ H l(∆e)

where ∆e is the set of elements in Th sharing at least one vertex with e.

We present the following lemma from, e.g., [124, Lemma 5.2].

Lemma 5.1.8. With the assumption (A3) and dl, dm, dt ≥ 0, dl, dt bounded and the

definition of D(u,x) from (4.2.1) we have

(5.1.9)
∑

E∈Th

‖D(u)− D(v)‖L2(E) ≤ C
∑

E∈Th

‖u− v‖L2(E)

for all u, v ∈ [L∞(Ω)]d where C is a fixed constant depending only on the bounds of

dt and dl, and the dimension.

We have the following approximation properties see, e.g., [11, 116]. For E ∈ Th

and Ψ ∈ Hλ(Th) we can find ΨI ∈ Pr(E) such that there exists a constant C

independent of hE and Ψ (but dependent on r and λ) for 0 ≤ i ≤ λ so that

‖Ψ−ΨI‖Hi(E) ≤ Chλ−i
E ‖Ψ‖Hλ(E) λ ≥ 0.(5.1.10)

We make the following assumptions on the regularity of the solution to the IMD

equations (1.1.3)-(1.1.8), cf., Section 4.3.

5.2. An A Posteriori Estimator for the Pressure and Velocity 60

Assumption 5.1.11. Assume that (u, p, c), the solution to (1.1.3)-(1.1.8), satis-

fies the following regularity requirements: For sp ≥ 2 and sc ≥ 2 we have p ∈
L2((0, T];Hsp(Th)), u ∈ [L2((0, T];Hsp−1(Th))]

d and c ∈ L2((0, T];Hsc(Th)). Ad-

ditionally assume that ∂c/∂t ∈ L2((0, T];Hsc−1(Th)) and that the initial condition

c0 ∈ V
dG
. Also assume that p, ∇p, c and ∇c are essentially bounded (and hence u

is also essentially bounded).

5.2 An A Posteriori Estimator for the Pressure

and Velocity

We first present an estimator for the pressure and velocity in terms of Ec and known

quantities. This is based on the presentation for the RT-cG method in [51] with

extensions for the discontinuous concentrations and gravity terms.

To begin the analysis we consider the problem: Find (ũ, p̃) ∈ H0(div; Ω)×L2
0(Ω)

such that for a.e. t ∈ (0, T]

(∇ · ũ, w) = (qI − qP , w) ∀w ∈ L2
0(Ω),(5.2.1)

(a−1(ch)ũ, v)− (∇ · v, p̃) = (ρ(ch)g, v) ∀v ∈ H0(div; Ω).(5.2.2)

This is similar to the weak form for the pressure and velocity equations (4.4.3)-(4.4.4)

but with the numerical approximation to concentration.

We now introduce the following dual problem with continuous coefficients:

∇ · ξ = p̃− ph on ΩT ,(5.2.3)

ξ = −a(Clh(ch))∇ψ on ΩT ,(5.2.4)

ξ · n = 0 on ∂ΩT .(5.2.5)

As ψ is defined only up to an additive constant we specify ψ ∈ L2
0(Ω). Then (5.2.3)-

(5.2.5) admits the following estimate on convex domains, e.g., [77, Chapter 3]:

(5.2.6) ‖ψ‖H2(Ω) ≤ C‖p̃− ph‖L2(Ω).

5.2. An A Posteriori Estimator for the Pressure and Velocity 61

Recall a−1(c) := K−1µ, and so by (A1) and (A2) we have α◦ ≤ a−1 ≤ α◦. From

(5.2.6) we can show ‖ξ‖H1(Ω) ≤ (1/α◦)‖∇ψ‖H1(Ω) ≤ C‖p̃−ph‖L2(Ω) where C depends

on the bound of a−1(ch).

We make the following assumption concerning the size of the difference between

the approximation ch and its Clément projection. As we expect the term to scale

with h if this assumption is not met it would be necessary to refine the mesh globally.

This should be taken into account during potential de-refinement in an adaptive

method.

Assumption 5.2.7. With the Clément projection defined in Section 5.1 and ch the

finite element approximation to concentration defined in Definition 4.4.10 we assume

that the lower bound of a−1 satisfies α◦ > C‖a−1(ch) − a−1(Clh(ch))‖L∞(Ω) where C

is the regularity coefficient of ‖ξ‖L2(E) ≤ C‖p̃− ph‖L2(Ω) derived from (5.2.6).

Theorem 5.2.8. Let the conditions of Assumptions 5.1.11 and 5.2.7 hold and let

(uh, ph, ch) be the approximation defined in Definition 4.4.10. Then there exist con-

stants C1 and C2 depending perhaps on the constants of the Clément approximation

in Lemma 5.1.4, a trace inequality, the regularity bound (4.3.3) (restated in (5.2.6)),

the polynomial degree of the approximation space and the bounds in (A1), (A2) and

(A7), but each independent of h, such that

‖Eu‖2L2((0,T];L2(Ω)) + ‖Ep‖2L2((0,T];L2(Ω))

≤ Eup +
C1

α2
◦

(

ρ◦‖g‖L∞(Ω) + α◦‖u‖L∞(Ω)

)2 ‖Ec‖2L2((0,T];L2(Ω))

(5.2.9)

where

Eup := C2

∑

E∈Th

(

(1 + h2E)‖a−1(ch)− ρ(ch)g‖2L2((0,T];L2(E))

+ (1 + h2E + h4E)‖qI − qP −∇ · uh‖2L2((0,T];L2(E))

)

(5.2.10)

Proof. By subtracting (5.2.2) from (4.4.4) we have

(a−1(ch)(u− ũ), v)− (∇ · v, p− p̃)

= ((ρ(c)− ρ(ch))g, v)− ((a−1(c)− a−1(ch))u, v) ∀v ∈ H0(div; Ω).

5.2. An A Posteriori Estimator for the Pressure and Velocity 62

By taking v = u− ũ ∈ H0(div; Ω) and using (4.4.3) and (5.2.1) we find

α◦‖u− ũ‖2L2(Ω) ≤ (a−1(ch)(u− ũ), u− ũ)

= (∇ · (u− ũ), p− p̃) + ((a−1(ch)− a−1(c))u, u− ũ)

+ ((ρ(c)− ρ(ch))g, u− ũ)

≤
(

ρ◦‖g‖L∞(Ω) + α◦‖u‖L∞(Ω)

)

‖Ec‖L2(Ω)‖u− ũ‖L2(Ω).

Using the boundedness of a−1(c) and a Poincaré inequality we have

‖u− ũ‖L2(Ω) ≥ C‖∇(p− p̃)‖L2(Ω)

≥ C‖p− p̃‖H1(Ω)

≥ C
(

‖p− p̃‖L2(Ω) + ‖u− ũ‖L2(Ω)

)

and by combining these two results we have

‖p− p̃‖2L2(Ω) + ‖u− ũ‖2L2(Ω) ≤ C‖u− ũ‖2L2(Ω)

≤ C

α2
◦

(

ρ◦‖g‖L∞(Ω) + α◦‖u‖L∞(Ω)

)2 ‖Ec‖2L2(Ω).
(5.2.11)

By subtracting (4.4.12) and (4.4.13) from (5.2.1) and (5.2.2) we obtain the or-

thogonality relationships

(∇ · (ũ− uh), wh) = 0 ∀wh ∈ P,(5.2.12)

(a−1(ch)(ũ− uh), vh)− (∇ · vh, p̃− ph) = 0 ∀vh ∈ U.(5.2.13)

The variational problem for (5.2.3)-(5.2.4) is

(∇ · ξ, w) = (p̃− ph, w) ∀w ∈ L2
0(Ω), a.e. t ∈ (0, T],

(a−1(Clh(ch))ξ, v)− (ψ,∇ · v) = 0 ∀v ∈ H0(div; Ω), a.e. t ∈ (0, T]

and then by setting v = ũ− uh and w = p̃− ph and subtracting the two equations

5.2. An A Posteriori Estimator for the Pressure and Velocity 63

from each other we find

‖p̃− ph‖2L2(Ω) = (p̃− ph, p̃− ph)

= −(a−1(Clh(ch))ξ, ũ− uh) + (ψ,∇ · (ũ− uh)) + (∇ · ξ, p̃− ph)

= −(a−1(Clh(ch))ξ − a−1(ch)vh, (ũ− uh))

+ (∇ · (ξ − vh), p̃− ph) + (∇ · (ũ− uh), ψ − wh)

where we have used (5.2.12) and (5.2.13). We now choose wh = ψI satisfying (5.1.10)

on each element and vh = ΠRT
h (ξ) ∈ U by construction of the projection. Then using

(5.2.2) with v = ξ − ΠRT
h (ξ) and (5.1.2) gives

‖p̃− ph‖2L2(Ω)

= −(∇ · (ξ − ΠRT
h (ξ)), ph)− (ρ(ch)g, ξ −ΠRT

h (ξ)) + (∇ · (ũ− uh), ψ − ψI)

+ (a−1(ch)uh, ξ − ΠRT
h (ξ)) + ((a−1(ch)− a−1(Clh(ch)))ξ, ũ− uh)

= (a−1(ch)uh − ρ(ch)g, ξ − ΠRT
h (ξ)) + ((a−1(ch)− a−1(Clh(ch)))ξ, ũ− uh)

+ (∇ · (ũ− uh), ψ − ψI)

where we have also used (1.3.25). For the first term we use (5.1.3) and the regularity

of ψ to show

∑

E∈Th

(

a−1(ch)uh − ρ(ch)g, ξ − ΠRT
h (ξ)

)

E

≤
∑

E∈Th

‖a−1(ch)uh − ρ(ch)g‖L2(E)‖ξ − ΠRT
h (ξ)‖L2(E)

≤ C

(

∑

E∈Th

h2E‖a−1(ch)uh − ρ(ch)g‖2L2(E)

)1/2(
∑

E∈Th

‖p̃− ph‖2L2(E)

)1/2

.

5.2. An A Posteriori Estimator for the Pressure and Velocity 64

For the last term we use (5.1.10) and (5.2.1) to give

(∇ · (ũ− uh), ψ − ψI)

≤ C
∑

E∈Th

h2E‖ψ‖H2(E)‖qI − qP −∇ · uh‖L2(E)

≤ C

(

∑

E∈Th

h4E‖qI − qP −∇ · uh‖2L2(E)

)1/2(
∑

E∈Th

‖p̃− ph‖2L2(E)

)1/2

.

For the remaining term we have

((a−1(ch)− a−1(Clh(ch)))ξ, ũ− uh)

≤
∑

E∈Th

‖a−1(ch)− a−1(Clh(ch))‖L∞(E)‖ξ‖L2(E)‖ũ− uh‖L2(E)

≤ C‖a−1(ch)− a−1(Clh(ch))‖L∞(Ω)

(

∑

E∈Th

‖ũ− uh‖2L2(E)

)1/2(
∑

E∈Th

‖p̃− ph‖2L2(E)

)1/2

.

By combining terms and cancelling by ‖p̃− ph‖ we we reach

∑

E∈Th

‖p̃− ph‖2L2(E) ≤ Rp + Ra

∑

E∈Th

‖ũ− uh‖2L2(E)(5.2.14)

where

Rp := C

(

∑

E∈Th

h2E‖a−1(ch)uh − ρ(ch)g‖2L2(E)

+
∑

E∈Th

h4E‖qI − qP −∇ · uh‖2L2(E)

)(5.2.15)

and

(5.2.16) Ra := C‖a−1(ch)− a−1(Clh(ch))‖2L∞(Ω).

5.2. An A Posteriori Estimator for the Pressure and Velocity 65

We now seek to bound ‖ũ− uh‖L2(E). We use (5.2.2) to show

(a−1(ch)(ũ− uh), v)− (∇ · v, p̃− ph)

= −(a−1(ch)uh, v) + (∇ · v, ph) + (a−1(ch)ũ, v)− (∇ · v, p̃)

= −(a−1(ch)uh, v) + (∇ · v, ph) + (ρ(ch)g, v).

We employ again the Raviart-Thomas projection. By choosing w = p̃ − ph and

v = ũ− uh − ΠRT
h (ũ− uh) we find

(a−1(ch)(ũ− uh), (ũ− uh)−ΠRT
h (ũ− uh))

−(∇ · ((ũ− uh)− ΠRT
h (ũ− uh)), p̃− ph) = −(a−1(ch)uh, (ũ− uh)− ΠRT

h (ũ− uh))

+ (∇ · ((ũ− uh)−ΠRT
h (ũ− uh)), ph)

+ (ρ(ch)g, (ũ− uh)−ΠRT
h (ũ− uh))

(5.2.17)

and using (5.2.1)

(∇ · (ũ− uh), p̃− ph) = (∇ · ũ, p̃− ph)− (∇ · uh, p̃− ph)

= (qI − qP −∇ · uh, p̃− ph).
(5.2.18)

With the boundedness of a−1 and using in turn (5.2.17), (5.2.18), (5.2.13) and (5.1.2)

5.2. An A Posteriori Estimator for the Pressure and Velocity 66

gives

α◦‖ũ− uh‖2L2(Ω)

≤ (a−1(ch)(ũ− uh), ũ− uh)

= (a−1(ch)(ũ− uh), (ũ− uh)− ΠRT
h (ũ− uh)) + (a−1(ch)(ũ− uh),Π

RT
h (ũ− uh))

= −(a−1(ch)uh, (ũ− uh)−ΠRT
h (ũ− uh)) + (∇ · ((ũ− uh)− ΠRT

h (ũ− uh)), ph)

+ (ρ(ch)g, (ũ− uh)−ΠRT
h (ũ− uh)) + (∇ · ((ũ− uh)− ΠRT

h (ũ− uh)), p̃− ph)

+ (a−1(ch)(ũ− uh),Π
RT
h (ũ− uh))

= −(a−1(ch)uh, (ũ− uh)−ΠRT
h (ũ− uh)) + (qI − qP −∇ · uh, p̃− ph)

+ (a−1(ch)(ũ− uh),Π
RT
h (ũ− uh))− (∇ · (ΠRT

h (ũ− uh)), p̃− ph)

+ (∇ · ((ũ− uh)− ΠRT
h (ũ− uh)), ph) + (ρ(ch)g, (ũ− uh)−ΠRT

h (ũ− uh))

= (qI − qp −∇ · uh, p̃− ph)

− (a−1(ch)uh − ρ(ch)g, (ũ− uh)− ΠRT
h (ũ− uh)).

We bound the first of the terms using Young’s inequality and (5.2.14) to give

(qI − qp −∇ · uh, p̃− ph)

≤ 1

2

∑

E∈Th

(

‖qI − qP −∇ · uh‖2L2(E) + ‖p̃− ph‖2L2(E)

)

≤ 1

2

∑

E∈Th

(

‖qI − qP −∇ · uh‖2L2(E) + Ra‖ũ− uh‖2L2(E)

)

+
1

2
Rp.

Using Young’s inequality and (5.1.3) we have

− (a−1(ch)uh − ρ(ch)g, (ũ− uh)− ΠRT
h (ũ− uh))

≤
∑

E∈Th

1

4ε
‖a−1(ch)uh − ρ(ch)g‖2L2(E) + ε‖(ũ− uh)−ΠRT

h (ũ− uh)‖2L2(E)

≤
∑

E∈Th

1

4ε
‖a−1(ch)uh − ρ(ch)g‖2L2(E) + Cεh2E‖ũ− uh‖2H1(E)

≤
∑

E∈Th

1

4ε
‖a−1(ch)uh − ρ(ch)g‖2L2(E) + Cεh2E‖qI − qP −∇ · uh‖2L2(E)

+ Cεh2E‖ũ− uh‖2L2(E)

5.3. An A Posteriori Estimator for the Concentration 67

where we have used |ũ− uh|2H1(E) = ‖∇ · (ũ− uh)‖2L2(E) = ‖qI − qP −∇ · uh‖2L2(E).

By Assumption 5.2.7 we may choose ε such that α◦ > Cεh2E + 1
2
Ra. Then by

combining the previous equations we find

∑

E∈Th

(α◦ − Cεh2E − 1

2
Ra)‖ũ− uh‖2L2(E) ≤ Ru +

1

2
Rp(5.2.19)

where

Ru =
∑

E∈Th

(

Cεh2E +
1

2

)

‖qI − qp −∇ · uh‖2L2(E)

+
∑

E∈Th

1

4ε
‖a−1(ch)uh − ρ(ch)g‖2L2(E).

(5.2.20)

We now use (5.2.19) to find a bound on ‖p̃− ph‖L2(E) in (5.2.14), i.e,

∑

E∈Th

‖p̃− ph‖2L2(E) ≤
Ra

α◦ − Cεh2E − 1
2
Ra

(Ru +
1

2
Rp) + Rp.

We now combine (5.2.11), (5.2.14) and (5.2.19) to give

‖Eu‖2L2(Ω) + ‖Ep‖2L2(Ω)

≤ ‖u− ũ‖2L2(Ω) + ‖ũ− uh‖2L2(Ω) + ‖p− p̃‖2L2(Ω) + ‖p̃− ph‖2L2(Ω)

≤ C

α2
◦

(

ρ◦‖g‖L∞(Ω) + α◦‖u‖L∞(Ω)

)2 ‖Ec‖2L2(Ω) + CuRu + CpRp

where Cu and Cp are the coefficients from (5.2.14) and (5.2.19). We show (5.2.9) by

integrating over time and using the definition (1.3.5).

5.3 An A Posteriori Estimator for the Concentra-

tion

We now present an a posteriori error estimator for the concentration. To do so we

use the approach of, e.g., [126] and employ a “backward” parabolic equation. The

coefficients of such an equation must be sufficiently regular to guarantee a bound

of the type (5.3.5). We therefore employ the Clément interpolant, although other

5.3. An A Posteriori Estimator for the Concentration 68

interpolants or projections with appropriate approximation properties could be used.

Consider the following dual equation with bounded, continuous coefficients via

the Clément interpolant:

ϕ
∂ζ

∂t
+∇ · (Clh(uh)ζ) +∇ · (D(Clh(uh))∇ζ)− qIζ = Ec on ΩT ,(5.3.1)

(D(Clh(uh))∇ζ) · n = 0 on ∂ΩT ,(5.3.2)

ζ(T, x) = 0 for x ∈ Ω.(5.3.3)

We have the following theorem which extends that presented in Theorem 4.3.5

and can be found in [126, Theorem 4.1].

Theorem 5.3.4. Given Assumption (A4) and the boundedness of qI , the definition

of D in (4.2.1), Ω a convex domain and Ec ∈ L2((0, T];L2(Ω)) there exists a unique

solution ζ satisfying (5.3.1)-(5.3.3) with the regularity bounds

(5.3.5) ess sup
t∈(0,T]

‖ζ(t)‖H1(Ω) + ‖ζ‖L2((0,T];H2(Ω)) ≤ C‖Ec‖L2((0,T];L2(Ω))

where C is a constant independent of Ec.

Theorem 5.3.6. Let the conditions of Assumption 5.1.11 hold and let (uh, ph, ch)

be the approximation defined in Definition 4.4.10. Then there exists constants C4,

C5 and C6 depending perhaps on the constants of the Clément approximation in

Lemma 5.1.4, a trace inequality, the regularity bound (4.3.6) (restated in (5.3.5)),

the polynomial degree of the approximation space and (5.1.9), but each independent

of h, such that

(5.3.7) ‖Ec‖2L2((0,T];L2(Ω)) ≤ Ec + C4

∑

E∈Th

‖∇c‖2L2((0,T];L∞(E))‖Eu‖2L2((0,T];L2(E))

5.3. An A Posteriori Estimator for the Concentration 69

where

Ec := C5

∑

E∈Th

(

h4E‖Rc‖2L2((0,T];L2(E))

+ ‖(D(Clh(uh))− D(uh))∇ch‖2L2((0,T];L2(E))

+ ‖(Clh(uh)− uh) · ∇ch‖2L2((0,T];L2(E))

+ ‖∇c‖2L2((0,T];L∞(E))‖D(Clh(uh))− D(uh)‖2L2((0,T];L2(E))

+ ‖∇c‖2L2((0,T];L∞(E))‖Clh(uh)− uh‖2L2((0,T];L2(E))

)

+ C6

∑

e∈Eh

(

h3e‖JD(uh)∇chK‖2L2((0,T];L2(e))

+ he‖JchK · {{D(uh)}}‖2L2((0,T];L2(e))

+ ‖JchK · {{D(uh)− D(Clh(uh))}}‖2L2((0,T];L2(e))

+ h3e‖uh · JchK‖2L2((0,T];L2(e)) + ‖JchK · (Clh(uh)− uh)‖2L2((0,T];L2(e))

)

(5.3.8)

and

Rc := ϕ
∂ch
∂t

+ uh · ∇ch −∇ · (D(uh)∇ch) + qIch − ĉqI .(5.3.9)

Proof. Using (5.3.1) we see

‖Ec‖2L2(Ω) = (Ec, Ec)

=

(

ϕ
∂ζ

∂t
+∇ · (Clh(uh)ζ) +∇ · (D(Clh(uh))∇ζ)− qIζ, Ec

)

= −
(

ϕ
∂Ec
∂t

, ζ

)

− d

dt
(ϕEc, ζ) + (Ec,∇ · (Clh(uh)ζ))− (qIζ, Ec)

−
∑

E∈Th

[

(D(Clh(uh))∇Ec,∇ζ)E +

∫

∂E

(D(Clh(uh))∇ζEc) · n ds
]

where we have integrated two terms. By chosing d = Clh(ζ) in (4.4.2) and dh = Clh(ζ)
in (4.4.11), and subtracting the two equations we find

0 =

(

ϕ

(

∂c

∂t
− ∂ch

∂t

)

, Clh(ζ)
)

+ Bd(c, Clh(ζ); u)− Bd(ch, Clh(ζ); uh)

+ Balt
cq (c, Clh(ζ); u)− Balt

cq (ch, Clh(ζ); uh)
(5.3.10)

5.3. An A Posteriori Estimator for the Concentration 70

where we have used the fact that the bilinear form for the approximate problem

reduces to the weak form (4.4.2) when using continuous arguments. We add this to

the above result giving

‖Ec‖2L2(Ω)

= −
(

ϕ
∂Ec
∂t

, ζ − Clh(ζ)
)

− d

dt
(ϕEc, ζ)− (qIEc, ζ − Clh(ζ))

+
∑

E∈Th

(D(u)∇c,∇Clh(ζ))E − (D(uh)∇ch,∇Clh(ζ))E − (D(Clh(uh))∇Ec,∇ζ)E

+ (Ec,∇ · (Clh(uh)ζ)) +
∑

E∈Th

(u · ∇c− uh · ∇ch, Clh(ζ))E

+
∑

e∈Eo
h

∫

e

JchK · {{D(uh)∇Clh(ζ)}} ds+
∑

e∈Eo
h

∫

e

uh · JchKClh(ζ) ds

+
∑

E∈Th

∫

∂E

(D(Clh(uh))∇ζEc) · n ds

(5.3.11)

where we have used the regularity of ζ and Clh(ζ) to simplify terms. We examine

each of these terms in turn. Using (1.3.25) we have

∑

E∈Th

∫

∂E

(D(Clh(uh))∇ζEc) · n ds

=
∑

e∈Eh

∫

e

JEcK · {{D(Clh(uh))∇ζ}} ds+
∑

e∈Eo
h

∫

e

{{Ec}}JD(Clh(uh))∇ζK ds

= −
∑

e∈Eh

∫

e

JchK · {{D(Clh(uh))∇ζ}} ds

(5.3.12)

where the negative sign comes from the definition of J · K. Combining this with the

similar term in (5.3.11) gives

∑

e∈Eo
h

∫

e

JchK · {{D(uh)∇Clh(ζ)}} − JchK · {{D(Clh(uh))∇ζ}} ds

=
∑

e∈Eo
h

∫

e

JchK · {{(D(uh)− D(Clh(uh)))∇ζ}} − JchK · {{D(uh)∇(ζ − Clh(ζ))}} ds.

5.3. An A Posteriori Estimator for the Concentration 71

For the next term in (5.3.11) we integrate and use (1.3.25) to find

(5.3.13) (Ec,∇ · (Clh(uh)ζ)) = −
∑

E∈Th

(Clh(uh) · ∇Ec, ζ)E −
∑

e∈Eh

∫

e

Clh(uh) · JchKζ ds.

Combining the first part with another of the terms from (5.3.11) gives

∑

E∈Th

(u · ∇c− uh · ∇ch, Clh(ζ))E − (Clh(uh) · ∇Ec, ζ)E

=
∑

E∈Th

[

(−u · ∇c, ζ − Clh(ζ))E + ((u− Clh(uh)) · ∇c, ζ)E

+ (uh · ∇ch, ζ − Clh(ζ))E + ((Clh(uh)− uh) · ∇ch, ζ)E
]

and as uh · n is continuous through the definition of the RT space we combine the

second part of (5.3.13) with the similar term in (5.3.11) giving

∑

e∈Eo
h

∫

e

uh · JchKClh(ζ)− Clh(uh) · JchKζ ds

= −
∑

e∈Eo
h

∫

e

JchK · ((ζ − Clh(ζ))uh + (Clh(uh)− uh)ζ) ds.

We rewrite the following term:

∑

E∈Th

(D(u)∇c,∇Clh(ζ))E − (D(uh)∇ch,∇Clh(ζ))E − (D(Clh(uh))∇Ec,∇ζ)E

=
∑

E∈Th

((D(u)− D(Clh(uh)))∇c,∇ζ)E + (D(uh)∇ch − D(u)∇c,∇(ζ − Clh(ζ)))E

+ ((D(Clh(uh))− D(uh))∇ch,∇ζ)E .

Now integrating the second inner product and using (1.3.25) we find

∑

E∈Th

(D(uh)∇ch − D(u)∇c,∇(ζ − Clh(ζ)))E

=
∑

E∈Th

(∇ · (D(u)∇c− D(uh)∇ch), ζ − Clh(ζ))E +
∑

e∈Eo
h

∫

e

JD(uh)∇chK(ζ − Clh(ζ)) ds.

Using the definition (5.3.9) and the original transport equation (1.1.3) we have

5.3. An A Posteriori Estimator for the Concentration 72

shown that (5.3.11) can be written as

‖Ec‖2L2(Ω)

= (Rc, ζ − Clh(ζ))−
d

dt
(ϕEc, ζ) +

∑

E∈Th

[

((D(u)− D(Clh(uh)))∇c,∇ζ)E

+ ((D(Clh(uh))− D(uh))∇ch,∇ζ)E + ((u− Clh(uh)) · ∇c, ζ)E

+ ((Clh(uh)− uh) · ∇ch, ζ)E
]

+
∑

e∈Eo
h

∫

e

JD(uh)∇chK(ζ − Clh(ζ)) ds

+
∑

e∈Eo
h

∫

e

JchK · {{(D(uh)− D(Clh(uh)))∇ζ}} − JchK · {{D(uh)∇(ζ − Clh(ζ))}} ds

−
∑

e∈Eo
h

∫

e

JchK · ((ζ − Clh(ζ))uh + (Clh(uh)− uh)ζ) ds.

(5.3.14)

We examine each of these terms using the Cauchy-Schwarz inequality, interpolation

approximations (5.1.5) and (5.1.6) and regularity bound (5.3.5). This gives

(Rc, ζ − Clh(ζ)) ≤ C
∑

E∈Th

‖Rc‖L2(E)‖ζ − Clh(ζ)‖L2(E)

≤ C
∑

E∈Th

h2E‖Rc‖L2(E)‖ζ‖H2(∆E)

≤ C

(

∑

E∈Th

h4E‖Rc‖2L2(E)

)1/2(
∑

E∈Th

‖Ec‖2L2(E)

)1/2

,

∑

E∈Th

((D(Clh(uh))− D(uh))∇ch,∇ζ)E

≤
(

∑

E∈Th

‖(D(Clh(uh))− D(uh))∇ch‖2L2(E)

)1/2(
∑

E∈Th

‖Ec‖2L2(E)

)1/2

5.3. An A Posteriori Estimator for the Concentration 73

and

∑

E∈Th

((Clh(uh)− uh) · ∇ch, ζ)E

≤
(

∑

E∈Th

‖(Clh(uh)− uh) · ∇ch‖2L2(E)

)1/2(
∑

E∈Th

‖Ec‖2L2(E)

)1/2

.

The following cell terms are trickier. We add and remove terms then use the ap-

proximation properties of the Clément interpolant and Lemma 5.1.8 to show

∑

E∈Th

((D(u)− D(Clh(uh)))∇c,∇ζ)E

=
∑

E∈Th

((D(u)− D(uh) + D(uh)− D(Clh(uh)))∇c,∇ζ)E

≤
∑

E∈Th

‖D(u)− D(uh)‖L2(E)‖∇c‖L∞(E)‖∇ζ‖L2(E)

+
∑

E∈Th

‖D(uh)− D(Clh(uh))‖L2(E)‖∇c‖L∞(E)‖∇ζ‖L2(E)

≤ C

(

∑

E∈Th

‖∇c‖2L∞(E)‖D(uh)− D(Clh(uh))‖2L2(E)

)1/2(
∑

E∈Th

‖Ec‖2L2(E)

)1/2

+ C

(

∑

E∈Th

‖∇c‖2L∞(E)

)1/2(
∑

E∈Th

‖Eu‖2L2(E)

)1/2(
∑

E∈Th

‖Ec‖2L2(E)

)1/2

5.3. An A Posteriori Estimator for the Concentration 74

and

∑

E∈Th

((u− Clh(uh)) · ∇c, ζ)E

=
∑

E∈Th

((u− uh + uh − Clh(uh)) · ∇c, ζ)E

≤
∑

E∈Th

‖u− uh‖L2(E)‖∇c‖L∞(E)‖ζ‖L2(E)

+
∑

E∈Th

‖uh − Clh(uh)‖L2(E)‖∇c‖L∞(E)‖ζ‖L2(E)

≤ C

(

∑

E∈Th

‖∇c‖2L∞(E)‖uh − Clh(uh)‖2L2(E)

)1/2(
∑

E∈Th

‖Ec‖2L2(E)

)1/2

+ C

(

∑

E∈Th

‖∇c‖2L∞(E)

)1/2(
∑

E∈Th

‖Eu‖2L2(E)

)1/2(
∑

E∈Th

‖Ec‖2L2(E)

)1/2

.

Now we examine the terms on the edges. Firstly using (5.1.7) and the shape

regularity of the mesh we have

∑

e∈Eo
h

∫

e

JD(uh)∇chK(ζ − Clh(ζ)) ds

≤
∑

e∈Eo
h

‖JD(uh)∇chK‖L2(e)‖ζ − Clh(ζ)‖L2(e)

≤ C
∑

e∈Eo
h

‖JD(uh)∇chK‖L2(e)

∑

E∈Th

h
3/2
E |ζ |H2(∆e)

≤ C





∑

e∈Eo
h

h3e‖JD(uh)∇chK‖2L2(e)





1/2
(

∑

E∈Th

‖Ec‖2L2(E)

)1/2

,

−
∑

e∈Eh

∫

e

JchK · {{(D(uh)∇(ζ − Clh(ζ))}} ds

≤ C

(

∑

e∈Eh

he‖JchK · {{D(uh)}}‖2L2(e)

)1/2(
∑

E∈Th

‖Ec‖2L2(E)

)1/2

5.3. An A Posteriori Estimator for the Concentration 75

and

−
∑

e∈Eh

∫

e

uh · JchK(ζ − Clh(ζ)) ds

≤ C

(

∑

e∈Eh

h3e‖uh · JchK‖2L2(e)

)1/2(
∑

E∈Th

‖Ec‖2L2(E)

)1/2

.

For the remaining terms we use a trace inequality on each element to show

∑

e∈Eh

∫

e

JchK · (Clh(uh)− uh)ζ ds

≤
∑

e∈Eh

‖JchK · (Clh(uh)− uh)‖L2(e)‖ζ‖L2(e)

≤ C
∑

e∈Eh

‖JchK · (Clh(uh)− uh)‖L2(e)

∑

E∈Th

‖ζ‖1/2
L2(E)‖ζ‖

1/2
H1(E)

≤ C

(

∑

e∈Eh

‖JchK · (Clh(uh)− uh)‖2L2(e)

)1/2(
∑

E∈Th

‖Ec‖2L2(E)

)1/2

and similarly

∑

e∈Eh

∫

e

JchK · {{(D(uh)− D(Clh(uh)))∇ζ}} ds

≤ C

(

∑

e∈Eh

‖JchK · {{D(uh)− D(Clh(uh))}}‖2L2(e)

)1/2(
∑

E∈Th

‖Ec‖2L2(E)

)1/2

.

We now integrate over time. The remaining term is zero via Assumption (A6),

i.e., c0 ∈ VdG so

− d

dt
(ϕEc, ζ) = (ϕ(c0 − c0,h), ζ(0)− Clh(ζ(0))) = 0.

We find (5.3.7) by combining each of the terms.

5.4. An A Posteriori Estimator for the Coupled Problem 76

5.4 An A Posteriori Estimator for the Coupled

Problem

We now combine the results of Theorems 5.2.8 and 5.3.6. We first make an assump-

tion about the size of the terms in those theorems.

Assumption 5.4.1. We assume that we can find constants Λup and Λc such that

C1

α2
◦

(

ρ◦‖g‖L∞(Ω) + α◦‖u‖L∞(Ω)

)2 ≤ Λup

1 + Λc
,

C4

∑

E∈Th

‖∇c‖2L2((0,T];L∞(E)) ≤
Λc

1 + Λup

where C1 and C4 are defined in Theorems 5.2.8 and 5.3.6 respectively.

We will consider conditions to achieve assumptions of this type more carefully in

Chapter 6, Lemma 6.1.6. For now we remark that we have control over the choice

of ε in (5.2.19) which may help us satisfy the assumption.

Theorem 5.4.2. Let the conditions of Assumptions 5.1.11 and 5.4.1 hold, and let

(uh, ph, ch) be the approximation defined in Definition 4.4.10. In the notation of

Theorems 5.2.8 and 5.3.6 we have

‖Ec‖2L2((0,T];L2(Ω)) + ‖Eu‖2L2((0,T];L2(Ω)) + (1 + Λc)‖Ep‖2L2((0,T];L2(Ω))

≤ (1 + Λup)Ec + (1 + Λc)Eup.
(5.4.3)

Proof. Multiply (5.3.7) by (1 + Λup) and (5.2.9) by (1 + Λc). Adding the resulting

terms and rearranging yields (5.4.3).

Chapter 6

A Posteriori Error Estimators for

the Incompressible Miscible

Displacement Problem in

Weighted Spaces

The regularity guaranteed (or assumed) in Chapter 5 may not hold in less regular

domains (such as those with re-entrant corners) or where the coefficients are discon-

tinuous or singular. In order to discuss such cases we consider stationary coupled

problems in this chapter, firstly in an abstract setting and then for a simple exam-

ple. This example motivates the use of weighted spaces, which are introduced and

described. We discuss aspects of weighted spaces which may be useful in the study

of a posteriori error estimators.

The work in this Chapter has been published in part in [49].

6.1 An Abstract Discussion

Consider the real vector spaces C ⊂ C and C+ as well as P ⊂ P and P+. Also

consider the operators Φ : P ×C → P+ and Ψ : C×P → C+. Then the continuous

77

6.1. An Abstract Discussion 78

problem is to find a solution (c, p) ∈ C × P of the system of equations

Φ(p; c) = f, Ψ(c; p) = g(6.1.1)

for some f ∈ P+, g ∈ C+. We assume that such a solution exists.

Suppose that Ch ⊂ C and Ph ⊂ P are finite dimensional spaces indexed by h.

Consider the operators Φh : Ph × Ch → P+ and Ψh : Ch × Ph → C+. The discrete

problem is to find a solution (ch, ph) ∈ Ch × Ph, solving

Φh(ph; ch) = fh, Ψh(ch; ph) = gh.(6.1.2)

It is assumed that discrete solutions exist.

The auxiliary problem is to find the solution (c̃, p̃) ∈ C × P of the system of

equations

Φ(p̃; ch) = f, Ψ(c̃; ph) = g.(6.1.3)

If (6.1.2) does not define ch and ph uniquely, then p̃ = p̃(ch) and c̃ = c̃(ph) may

depend on the choice of ch and ph. It is, however, assumed that for given ch and ph

there exist unique c̃ and p̃. The discrete spaces have mesh-dependent norms ‖ · ‖Ch

and ‖ · ‖Ph
which have extensions to C + Ch and P + Ph.

Assumption 6.1.4 (Coupling Assumption). Let (c, p) ∈ C × P be a solution of

(6.1.1). We assume that there exists γc, γp ∈ R such that γcγp < 1 and

Φ(w̃; dh) = f ⇒ ‖p− w̃‖2Ph
≤ γp‖c− dh‖2Ch

, ∀w̃ ∈ P, ∀dh ∈ C + Ch,

Ψ(d̃;wh) = g ⇒ ‖c− d̃‖2Ch
≤ γc‖p− wh‖2Ph

, ∀d̃ ∈ C, ∀wh ∈ P + Ph.

With the coupling assumption there is only one exact solution: Suppose there

are two solutions (c, p) and (c◦, p◦) of (6.1.1). Then with Assumption 6.1.4 we have

‖p− p◦‖2Ph
≤ γp‖c− c◦‖2Ch

≤ γpγc‖p− p◦‖2Ph
.

6.1. An Abstract Discussion 79

As γpγc < 1 this can only be satisfied if (c, p) and (c◦, p◦) coincide.

Assumption 6.1.5. Let (ch, ph) be a solution of (6.1.2) and (c̃, p̃) be a solution of

(6.1.3). Then we assume that there exist a posteriori error estimators Ep(ch, ph) and

Ec(ch, ph) such that

‖ph − p̃‖2Ph
≤ Ep(ch, ph),

‖ch − c̃‖2Ch
≤ Ec(ch, ph).

Lemma 6.1.6. There are positive constants Λp and Λc such that

γp ≤
Λp

1 + Λc
and γc ≤

Λc

1 + Λp
(6.1.7)

if and only if γpγc < 1.

Proof. The bounds (6.1.7) are satisfied as equalities if

Λp =
(1 + γp)γc
1− γpγc

, Λc =
(1 + γc)γp
1− γcγp

.

If γpγc < 1 then these Λp and Λc are positive. On the other hand, if (6.1.7) holds

then

γpγc ≤
Λp

1 + Λc

Λc

1 + Λp

=
ΛpΛc

1 + Λp + Λc + ΛpΛc

< 1.

Note the similarity of this result to Assumption 5.4.1.

We show that Assumptions 6.1.4 and 6.1.5 lead to an a posteriori error indicator

for the approximation of the solution of coupled system (6.1.1) using the discrete

problem.

Theorem 6.1.8. Let (c, p), (ch, ph) and (c̃, p̃) be as defined in (6.1.1)-(6.1.3) and

let Assumptions 6.1.4 and 6.1.5 hold. Then we have the following a posteriori error

bound:

(6.1.9) ‖p− ph‖2Ph
+ ‖c− ch‖2Ch

≤ (1 + Λc)Ep(ch, ph) + (1 + Λp)Ec(ch, ph)

6.2. Stationary IMD 80

where Λc and Λp are defined by (6.1.7).

Proof. We have with the triangle inequality and the assumptions that

(6.1.10) ‖p− ph‖2Ph
≤ ‖p− p̃‖2Ph

+ ‖ph − p̃‖2Ph
≤ γp‖c− ch‖2Ch

+ Ep(ch, ph)

and similarly

(6.1.11) ‖c− ch‖2Ch
≤ γc‖p− ph‖2Ph

+ Ec(ch, ph).

Then with these results and (6.1.7) we have

(1 + Λc)‖p− ph‖2Ph
+ (1 + Λp)‖c− ch‖2Ch

≤ Λp‖c− ch‖2Ch
+ (1 + Λc)Ep(ch, ph) + Λc‖p− ph‖2Ph

+ (1 + Λp)Ec(ch, ph)

and by rearrangement we have (6.1.9).

6.2 The Stationary Incompressible Miscible Dis-

placement Problem

In later sections we will discuss weighted spaces. In order to motivate that discussion

we introduce the stationary incompressible miscible displacement problem in two

dimensions and discuss a posteriori error estimators for the cG-cG problem (that

is where pressure and concentration are both approximated in VcG) in the abstract

framework of the previous section.

Define the following operators on a bounded C2-regular or convex polygonal

domain Ω ∈ R2:

Φ(p; c) := −∇ · (a(c)∇p) = qI − qP ,(6.2.1)

Ψ(c; p) := −∇ · (D(u)∇c) + 1

2
u · ∇c+ 1

2
∇ · (uc) + 1

2
(qI + qP)c = ĉqI ,(6.2.2)

u = −a(c)∇p(6.2.3)

6.2. Stationary IMD 81

subject to boundary conditions on ∂Ω

u · n = 0,(6.2.4)

(D(u)∇c) · n = 0.(6.2.5)

We make the same assumptions on the coefficients as in Chapter 4. Note that the

analysis that follows may be extended quite simply to three dimensions. We focus

on the two dimensional case to accommodate the weighted spaces in subsequent

sections.

In the notation of Section 6.1 for the miscible displacement problem we iden-

tify p as the pressure and c as the concentration. Therefore Φ describes Darcy’s

law and incompressibility and Ψ describes the concentration equation. In such a

context Ch and Ph are finite element approximation spaces, C and P are spaces

leading to a natural notion of regularity for Ψ and Φ respectively, and C and P are

spaces containing all Ch and Ph. Finally C
+ and P+ are the co-domain of Ψ and Φ

respectively. More specifically we have

C = W 1,∞(Ω), C = H1(Ω), C+ = L2(Ω) and Ch = VcG

for concentration and

P =W0(Ω), P = H1(Ω), P+ = L2(Ω) and Ph = VcG ∩W0(Ω)

where

W0(Ω) :=

{

w ∈ W 1,∞(Ω) :

∫

Ω

w dx = 0

}

.

We norm the approximation spaces with ‖ · ‖H1(Ω).

For all w ∈ W0(Ω) and d ∈ W 1,∞(Ω) the weak forms of (6.2.1) and (6.2.2) are

6.2. Stationary IMD 82

given by

Φ(p; c)[w] = (w 7→ (a(c)∇p,∇w)),(6.2.6)

Ψ(c; p)[d] = (d 7→ (D(u)∇c,∇d) + 1

2
(u · ∇c, d)

− 1

2
(uc,∇d) + 1

2
((qI + qP)c, d)).(6.2.7)

We assume that the exact solution (c, p) to (6.2.1)-(6.2.2) belongs to W 1,∞(Ω) ×
W 1,∞(Ω) (the well posedness of the model in H2(Ω) ×H2(Ω) is established [105]).

With the given boundary regularity (or convexity) this is not an unreasonable as-

sumption. Following the analysis in, e.g., [102, Chapter 7] we have that the solution

to each of (6.2.1) and (6.2.2) when uncoupled (with appropriate boundary condi-

tions) has bounded derivatives. As previously remarked this does not hold for elliptic

equations on non-convex domains and is a major motivator for development of an

alternative approach.

We then define the following problems for stationary IMD.

Definition 6.2.8. Define the continuous problem as: Find (c, p) ∈ W 1,∞(Ω) ×W0

such that

Φ(p; c) = qI − qP ,

Ψ(c; p) = ĉqI .
(6.2.9)

Given the regularity of the discrete solution the weak operator can be used to

define the discrete problem.

Definition 6.2.10. Define the discrete problem: Find (ch, ph) ∈ V
cG
×(V

cG
∩W0(Ω))

such that

Φ(ph; ch)[wh] = qIh − qPh ∀wh ∈ V
cG
(Ω) ∩W0(Ω),

Ψ(ch; ph)[dh] = ĉhq
I
h ∀dh ∈ V

cG
(Ω).

(6.2.11)

where qIh, q
P
h and ĉh are the L2 projections of qI , qP and ĉ onto the approximation

space.

Note that we now find the approximation for velocity via uh = −a(ch)∇ph.

6.2. Stationary IMD 83

Definition 6.2.12. Define the auxiliary problem as: Find (c̃, p̃) ∈ W 1,∞(Ω) ×W0

such that

Φ(p̃; ch) = qI − qP ,

Ψ(c̃; ph) = ĉqI
(6.2.13)

where (ch, ph) is the solution to the discrete problem.

For simplicity we specify that qI = qIh, q
P = qPh and ĉ = ĉh.

We now follow the steps of the abstract analysis for this problem. The methods

we use for the a posteriori estimators (Assumption 6.1.5) can be found in, e.g.,

[5], although many alternatives exist in the literature. The coupling assumption

(Assumption 6.1.4) follows using standard techniques which can be found in most

finite element analysis texts, e.g., [34, 67]. The primary purpose of presenting this

analysis therefore is not to prove that the stationary problem (6.2.1)-(6.2.3) fits into

the abstract framework as this is relatively straightforward. The main purpose is

to show the process in order to understand the restrictions we face in non-convex

domains and the properties we will have to duplicate (to follow this approach) in

weighted spaces.

We first show coercivity of Φ and Ψ when the coefficients of the problem satisfy

the assumptions of Section 4.2. Recall a = K/µ so using Assumption (A1) and

Assumption (A2) we have a◦ ≤ a ≤ a◦ for positive a◦, a
◦ ∈ R. For p ∈ W0 we have

Φ(p; c)[p] = (a(c)∇p,∇p)

≥ a◦‖∇p‖2L2(Ω)

≥ Ξp‖p‖2H1(Ω)

(6.2.14)

where in the final line we have used a Poincaré inequality and so Ξp depends on the

constant there and a◦. Using Assumptions (A3) and (A5) in a similar manner for

6.2. Stationary IMD 84

c ∈ H1(Ω) we find

Ψ(c; p)[c] = (D(u)∇c,∇c) + 1

2
(u · ∇c, c)− 1

2
(uc,∇c) + 1

2
((qI + qP)c, c)

= (D(u)∇c,∇c) + (
1

2
(qI + qP)c, c)

≥ d◦‖∇c‖2L2(Ω) +
1

2
min(qI + qP)‖c‖2L2(Ω)

≥ Ξc‖c‖2H1(Ω).

(6.2.15)

Note that if min(qI + qP) = 0 (as is usual) we require a Poincaré inequality as for

pressure.

Lemma 6.2.16. Let (c, p) ∈ W 1,∞(Ω)×W0 be the solution to the continuous problem

defined in Definition 6.2.8, and (c̃, p̃) ∈ W 1,∞(Ω)×W0 be the solution to the auxiliary

problem defined in Definition 6.2.12. Then we have

(6.2.17) ‖p− p̃‖2H1(Ω) ≤ γp‖c− ch‖2H1(Ω)

where

(6.2.18) γp =

(

a◦‖∇p‖L∞(Ω)

Ξp

)2

,

and

(6.2.19) ‖c− c̃‖2H1(Ω) ≤ γc‖p− ph‖2H1(Ω)

where

γc =

(

a◦
(

(d◦ + 1
2
)‖∇c‖L∞(Ω) +

1
2
‖c‖L∞(Ω)

)

Ξc

)2

.(6.2.20)

Proof. By subtracting the Φ terms in (6.2.9) from those in (6.2.13) we find Φ(p̃; ch)[w]−
Φ(p; c)[w] = 0 for w ∈ W0(Ω). Using this result with the coercivity from (6.2.14)

6.2. Stationary IMD 85

gives

Ξp‖p− p̃‖2H1(Ω) ≤ Φ(p− p̃; ch)[p− p̃]

= Φ(p; ch)[p− p̃]− Φ(p; c)[p− p̃]− Φ(p̃; ch)[p− p̃] + Φ(p; c)[p− p̃]

= ((a(ch)− a(c))∇p,∇(p− p̃))

≤ a◦‖c− ch‖H1(Ω)‖∇p‖L∞(Ω)‖p− p̃‖H1(Ω)

and by rearrangement we have shown (6.2.17).

Similarly by subtracting the Ψ terms in (6.2.9) from those in (6.2.13) we have

Ψ(c; p)[d]−Ψ(c̃; ph)[d] = 0 for d ∈ W 1,∞(Ω). Then using the coercivity from (6.2.15)

we have

Ξc‖c− c̃‖2H1(Ω)

≤ Ψ(c− c̃; ph)[c− c̃]

= Ψ(c; ph)[c− c̃]−Ψ(c; p)[c− c̃]−Ψ(c̃; ph)[c− c̃] + Ψ(c; p)[c− c̃]

= (D(uh)∇c− D(u)∇c,∇(c− c̃)) +
1

2
(uh · ∇c− u · ∇c, c− c̃)

− 1

2
(uhc− uc,∇(c− c̃))

≤ ‖D(u)− D(uh)‖L2(Ω)‖∇c‖L∞(Ω)‖c− c̃‖H1(Ω)

+
1

2
‖u− uh‖‖c− c̃‖H1(Ω)

(

‖∇c‖L∞(Ω) + ‖c‖L∞(Ω)

)

≤ a◦
(

d◦‖∇c‖L∞(Ω) +
1

2
‖∇c‖L∞(Ω) +

1

2
‖c‖L∞(Ω)

)

‖p− ph‖H1(Ω)‖c− c̃‖H1(Ω)

where we have used (6.2.3) and uh = −a(ch)∇ph. By rearrangement we have

(6.2.20).

The γc and γp found here may not be optimum. It may be necessary to formulate

sharper constants to satisfy γcγp < 1 (cf., Assumption 6.1.4). For the purposes of

this exposition we simply assume this is the case for the constants calculated above.

Assumption 6.2.21. We assume that γc and γp defined in Lemma 6.2.16 satisfy

γcγp < 1.

We now present simple a posteriori error estimators in the manner of Assumption

6.2. Stationary IMD 86

6.1.5. We remark that the literature in this area is very well developed and the

estimators presented here are by no means original or unique. We present them for

completeness and to motivate later sections. For alternative estimators see, e.g.,

[4, 17, 31] (this is not intended to be a comprehensive list).

Lemma 6.2.22. Let (c̃, p̃) ∈ W 1,∞(Ω) × W0(Ω) be the solution of (6.2.13), and

let (ch, ph) ∈ V
cG

× (V
cG

∩W0(Ω)) be the approximation defined in (6.2.11). With

qI = qIh, q
P = qPh and ĉ = ĉh we have the following a posteriori error estimators:

‖p̃− ph‖2H1(Ω) ≤ Cp

(

∑

E∈Th

h2E‖qI − qP +∇ · (a(ch)∇ph)‖2L2(E)

+
∑

e∈Eo
h

he‖Ja(ch)∇phK‖2L2(e)





(6.2.23)

and

‖c̃− ch‖2H1(Ω)

≤ Cc





∑

E∈Th

h2E‖Rc‖2L2(E) +
∑

e∈Eo
h

he‖JD(uh)∇chK +
1

2
JuhchK‖2L2(e)





(6.2.24)

where

(6.2.25) Rc = ĉqI −∇ · (D(uh)∇ch)−
1

2
uh · ∇ch +

1

2
∇ · (uhch)−

1

2
(qI + qP)ch.

Here Cp depends on the coercivity coefficient in (6.2.14) and Csz in (3.3.3), and Cc

depends on the coercivity coefficient in (6.2.15) and Csz.

Proof. Subtracting the Φ terms in (6.2.13) from those in (6.2.11) we have the

Galerkin orthogonality

(6.2.26) Φ(p̃− ph; ch)[wh] = 0 ∀wh ∈ VcG ∩W0(Ω).

6.2. Stationary IMD 87

Integration by parts on the weak form gives

Φ(p̃− ph; ch)[w]

= (a(ch)∇(p̃− ph),∇w)

= (qI − qP , w)− (a(ch)∇ph,∇w)

= (qI − qP , w) +
∑

E∈Th

(∇ · (a(ch)∇ph), w)E −
∑

e∈Eo
h

∫

e

wJa(ch)∇phK ds

where we have applied (1.3.25). By adding (6.2.26) with wh = SZh(w), the Scott-

Zhang projection introduced in Chapter 3, we find

Φ(p̃− ph; ch)[w] = Φ(p̃− ph; ch)[w − SZh(w)]

=
∑

E∈Th

(qI − qP +∇ · (a(ch)∇ph), w − SZh(w))E

−
∑

e∈Eo
h

∫

e

Ja(ch)∇phK(w − SZh(w))

≤
∑

E∈Th

‖qI − qP +∇ · (a(ch)∇ph)‖L2(E)‖w − SZh(w)‖L2(E)

+
∑

e∈Eo
h

‖Ja(ch)∇phK‖L2(e)‖w − SZh(w)‖L2(e).

By setting w = p̃−ph and using the coercivity of Φ from (6.2.14) and the properties

of the Scott-Zhang projection (3.3.3) we show (6.2.23).

For the Ψ terms of (6.2.13) and (6.2.11) by subtraction we have the Galerkin

orthogonality

(6.2.27) Ψ(c̃− ch; ph)[dh] = 0 ∀dh ∈ VcG.

6.2. Stationary IMD 88

Using (6.2.7) and integrating we find

Ψ(c̃− ch; ph)[d]

= (ĉqI , d)− (D(uh)∇ch,∇d)−
1

2
(uh · ∇ch, d) +

1

2
(uhch,∇d)−

1

2
((qI + qP)ch, d)

= (ĉqI , d) +
∑

E∈Th

(∇ · (D(uh)∇ch)−
1

2
uh · ∇ch +

1

2
∇ · (uhch)−

1

2
(qI + qP)ch, d)E

−
∑

e∈Eo
h

(JD(uh)∇chK +
1

2
JuhchK, d)e.

Combining this with the Galerkin orthogonality and dh = SZh(d) we find

Ψ(c̃− ch; ph)[d] = Ψ(c̃− ch; ph)[d− SZh(d)]

=
∑

E∈Th

(Rc, d− SZh(d))

−
∑

e∈Eo
h

(JD(uh)∇chK +
1

2
JuhchK, d− SZh(d))e

≤
∑

E∈Th

‖Rc‖L2(E)‖d− SZh(d)‖L2(E)

+
∑

e∈Eo
h

‖JD(uh)∇chK +
1

2
JuhchK‖L2(e)‖d− SZh(d)‖L2(e).

By choosing d = c̃ − ch, using the coercivity of Ψ in (6.2.15) and the properties of

the Scott-Zhang projection we recover (6.2.24).

Theorem 6.2.28. Let γp and γc defined in (6.2.18) and (6.2.20) resp. satisfy

Assumption 6.2.21. Then the solution (c, p) ∈ W 1,∞(Ω) × W0(Ω) to (6.2.9) and

(ch, ph) ∈ V
cG

× (V
cG

∩ W0(Ω)) defined by (6.2.11) satisfy the a posteriori error

estimate

‖p− ph‖2H1(Ω) + ‖c− ch‖2H1(Ω)

≤ C

(

∑

E∈Th

h2E

(

‖qI − qP +∇ · (a(ch)∇ph)‖2L2(E) + ‖Rc‖2L2(E)

)

+
∑

e∈Eo
h

he

(

‖Ja(ch)∇phK‖2L2(e) + ‖JD(uh)∇chK +
1

2
JuhchK‖2L2(e)

)





(6.2.29)

6.3. The Case for an Alternative Approach 89

where C depends on the constants defined in Lemmas 6.2.16 and 6.2.22.

Proof. Following the steps of the proof of Theorem 6.1.8 we combine the results of

Lemmas 6.2.16 and 6.2.22.

6.3 The Case for an Alternative Approach

If Ω ⊂ Rd is a smooth, bounded domain then the solution to a strongly elliptic

differential equation will be smooth on Ω provided the given data and coefficients

are smooth. This is a well known result which was referenced in Section 4.3 and is

used to show the a posteriori estimators in Chapter 5. In non smooth/non convex

domains there can be the loss of regularity and the smoothness of the data no longer

implies the smoothness of the solution.

Consider for example the case of an L-shaped domain in R2 as studied in [20,

Numerical Example 2] and shown in Figure 6.3.1. For injection and production wells

located at (1, 1) and (0, 0) respectively, and with discontinuous permeability, we see

a singular velocity field at (0.5, 0.5), the location of the re-entrant corner.

Figure 6.3.1: A numerical simulation showing an approximation to the unbounded ve-
locity field on an L-shaped domain with a re-entrant corner at (0.5, 0.5) and singular
injection/extraction points at (0, 0) and (1, 1) respectively.

We will outline an approach we believe can be used to address some of the

difficulties associated in generating a posteriori error estimators for such problems

6.4. Some Results from the Theory of Weighted Spaces 90

using the so called weighted (Babuška-Kondratiev) spaces as described in Section

6.4. Our analysis is incomplete and our intention is to highlight the difficulties still

faced while presenting some useful results which may be applied when dealing with

weighted spaces.

We face several problems in trying to extend the analysis of the previous section

to problems in non convex domains.� Existence and uniqueness. Existence and uniqueness in the weighted

spaces has been shown for a class of elliptic equations [100, 101]. However

no results exist for the coupled problem (6.2.1)-(6.2.2) in non convex domains

using weighted spaces. Extension to parabolic problems has been considered

by, e.g., [28, 29, 72, 92]. No results in weighted spaces exist for the coupled

problem (1.1.3)-(1.1.5).� Coercivity. It is not clear that coercivity results of the type (6.2.14) and

(6.2.15) exist in the weighted spaces. The coercivity was used to show both

the coupling assumption and the a posteriori error estimators (Lemmas 6.2.16

and 6.2.22) in Section 6.2, and as such it is a central tool in the analysis.� Boundedness of derivatives. We do not have c, p ∈ W 1,∞(Ω) (see for

example Figure 6.3.1). Therefore we cannot employ the methods leading to,

e.g., (6.2.18) and (6.2.20). Alternative bounds must be formulated in the

weighted spaces.

In the following sections we concentrate on the final item and show that if we

assume existence of a solution to (6.2.1)-(6.2.2) in some weighted space we may

generate an a posteriori error estimator for the stationary miscible displacement

problem when Ω is not convex.

6.4 Some Results from the Theory of Weighted

Spaces

We consider only problems where Ω ∈ R2 is a straight sided polygonal domain.

We do not allow cracks and assume that the domain is Lipschitz. In particular we

6.4. Some Results from the Theory of Weighted Spaces 91

consider problems with non smooth points on the boundary arising from corners

and from coefficients which are singular on the boundary. Both may give rise to

point type singularities, i.e., points where the solution or its derivative are singular.

We call these the collection of singular points.

For a general introduction to weighted spaces see the books by Kufner [93] or

Dauge [58]. Work on weighted spaces covers a variety of areas and an exhaustive

survey is not practical here. In the elliptic case we suggest that readers study

[6, 13] and the references contained therein. Less work has been undertaken for the

parabolic case. We refer readers to [28, 29, 72, 92] in particular. Our analysis in the

elliptic case will follow the notation of [6, 100, 101]. The work of [100, 101] shows

that we have only weighted control on the H2 semi-norm on regions such as the L

shaped domain above. However we have greater control on the lower order norms.

We introduce some results from the theory of weighted spaces following the

notation of Ammann and Nistor [6]. The collection of singular points Q is denoted

by V, also called the vertices. If rQ(x) is the distance from x to Q ∈ V (using paths

in Ω) then define the weight function by

ϑ(x) =
∏

Q∈V
rQ(x).

Let ~a = (aQ) be a vector with real components indexed by Q ∈ V. For t ∈ R denote

~a + t = (aQ + t) and note ϑ~a+t(x) = ϑ~a(x)ϑt(x). If we write, e.g., ~a = s, s ∈ R we

mean ~a = (s), a vector with length corresponding to the number of vertices with

each entry being s. Similarly by writing, e.g., ~a + 1 we denote the addition of 1

elementwise to ~a. We assume that 0 ≤ ~a ≤ 1 unless specifically stated otherwise.

Definition 6.4.1. We define the weighted Sobolev (Babuška-Kondratiev) space to

be

(6.4.2) Km
~a (Ω) := {f : ϑ|α|−~aDαf ∈ L2(Ω), ∀|α| ≤ m ∈ Z

+}

where Z
+ is the set of non-negative integers.

Note that L2(Ω) = K0
0(Ω) but that, e.g., H1(Ω) 6= K1

0(Ω) as the power of ϑ

6.4. Some Results from the Theory of Weighted Spaces 92

depends on the order of the derivative. The relationship between the weighted and

unweighted Sobolev spaces is key to our analysis.

Define the norm on the Babuška-Kondratiev space to be

(6.4.3) ‖v‖2Km
~a
(Ω) =

∑

|α|≤m

‖ϑ|α|−~aDαv‖2L2(Ω)

and the inner product

(6.4.4) (u, v)Km
~a
(Ω) =

∑

|α|≤m

∫

Ω

ϑ2(|α|−~a)(Dαu)(Dαv) dx.

The spaces Km
~a (∂Ω) on the boundary are defined similarly, i.e., where P is a

differential operator of positive integer order k on ∂Ω we have

Km
~a (∂Ω) := {f : ∂Ω → R, ϑk−~aP(f |∂Ω) ∈ L2(∂Ω), ∀m ∈ Z

+}

and

‖v‖2Km
~a
(∂Ω) =

∑

k≤m

‖ϑk−~aPv‖2L2(∂Ω).

We present the following lemma from [6, Theorem 3.8].

Lemma 6.4.5. On a polygonal domain Ω we have that the restriction to the bound-

ary extends to a continuous, surjective map

(6.4.6) Km
~a (Ω) ∋ u→ u|∂Ω ∈ Km−1/2

~a−1/2 (∂Ω)

for m ≥ 1.

A consequence of this result is that there exists a positive constant C, depending

on m and ~a, such that

(6.4.7) ‖v‖Km−1/2

~a−1/2
(∂Ω)

≤ C‖v‖Km
~a
(Ω) ∀v ∈ Km

~a (Ω).

6.4. Some Results from the Theory of Weighted Spaces 93

Consider the second order differential operator

(6.4.8) L = −
2
∑

i,j=1

∂xj
Aij∂xi

+

2
∑

i=1

bi∂xi
+ c

where Aij = Aji. We assume that we have strong ellipticity, namely,

(6.4.9)
2
∑

i,j=1

Aij(x)ξiξj ≥ C‖ξ‖2L2(Ω)

for some constant C > 0 independent of x ∈ Ω and ξ ∈ R2. We also assume as

previously that c− 1
2
∇·b > 0. We shall assume that the coefficients have singularities

only on the boundary but are otherwise smooth. Consider now the boundary value

problem

Lp = f in Ω,

p = gD on ∂ΩD,

∇p · n = gN on ∂ΩN ,

(6.4.10)

where the boundary ∂Ω is decomposed into Dirichlet and Neumann components

denoted by ∂ΩD and ∂ΩN respectively, ∂ΩD ∩ ∂ΩN = ∅ and ∂ΩD 6= ∅. We say this

problem has singular points only on the boundary and that ~a is known. By [101,

Theorem 3.2] there exists a positive constant ηQ such that for all |aQ| < ηQ there

exists a unique weak solution p ∈ K1
~a+1(Ω) with p = 0 on ∂ΩD. Then we have the

following theorem concerning the regularity of the solution p of (6.4.10) which is a

simplification of that in [101].

Theorem 6.4.11. Let m ≥ 1. Assume that gN ∈ Km−1/2
~a−1/2 (∂ΩN), gD ∈ Km+1/2

~a+1/2 (∂ΩD)

and f ∈ Km−1
~a−1 (Ω) for some straight sided polygonal domain Ω ∈ R2 with finitely

many singular points Q only on the boundary, each with associated paramater 0 ≤
aQ ≤ 1. Then for |aQ| < ηQ a positive constant we have that the solution p ∈
K1

~a+1(Ω) to (6.4.10) satisfies p ∈ Km+1
~a+1 (Ω) and we have the estimate

(6.4.12) ‖p‖Km+1
~a+1

(Ω) ≤ CBK

(

‖f‖Km−1
~a−1

(Ω) + ‖gN‖Km−1/2

~a−1/2
(∂ΩN)

+ ‖gD‖Km+1/2

~a+1/2
(∂ΩN)

)

6.5. Sobolev Imbeddings in Weighted Spaces 94

where CBK is a constant independent of f , gN and gD but perhaps depends on ~a.

In particular when m = 1 we have p ∈ K2
~a+1(Ω). If we also have ~a = 1 the

highest derivative in the weighted Sobolev space is unweighted, i.e., from (6.4.2) we

have |α| − (~a+ 1) = 0 for |α| = 2. Less regular domains have smaller aQ and when

~a < 1 the power of ϑ on the highest derivative is positive, i.e., |α| − (~a+ 1) > 0 for

|α| = 2. However for |α| = 0, 1 the power of ϑ is negative, e.g., ϑbp ∈ L2(Ω) for

b < 0, and similarly for the derivative. It is this property which we will exploit in

the next section.

6.5 Sobolev Imbeddings in Weighted Spaces

We wish to extend some results of Sobolev imbeddings to weighted spaces. Our

approach here is restricted to our particular problem and readers should refer to,

e.g., [40, 76] and the references therein for more general results on the imbedding of

weighted Sobolev spaces. Note that we assume that we have a sufficiently regular

boundary to apply these imbeddings, i.e., a Lipschitz boundary.

We first present a lemma (modifying the notation) from [13].

Lemma 6.5.1. Let ~a be as defined previously, b ∈ R and let L be a differential

operator of order k with smooth coefficients. Then for m ∈ Z we have that multipli-

cation by ϑb defines an isomorphism Km
~a (Ω) → Km

~a+b(Ω). Thus ϑ
bKm

~a (Ω) = Km
~a+b(Ω)

where ϑbKm
~a (Ω) = {ϑbv, ∀v ∈ Km

~a (Ω)}. In addition the map L : Km
~a (Ω) → Km−k

~a−k (Ω)

is well defined and continuous.

The proof of this lemma can be found in [6]. Useful in the proof is the additional

result from [100].

Lemma 6.5.2. For positive i, j ∈ Z the function ϑj+i−~a∂jx∂
i
yϑ

~a is bounded on Ω.

A consequence of Lemma 6.5.1 is that any first order derivatives of functions in a

given weighted Sobolev space will be in a weighted Sobolev space of one order lower

in each index, e.g., functions in Km
~a (Ω) have derivatives in Km−1

~a−1 (Ω). We will also

6.5. Sobolev Imbeddings in Weighted Spaces 95

frequently use the fact that for m ≥ m′ and ~a ≥ ~a′ we have in bounded domains

Km
~a (Ω) ⊂ Km′

~a′ (Ω).

In particular this means that K0
~a(Ω) ⊂ L2(Ω) for ~a ≥ 0 and K1

~a+1(Ω) ⊂ H1(Ω) for

~a+ 1 ≥ 1. We will use these results without justification throughout the text.

Recall the following Sobolev embedding theorem from, e.g., [3, Theorem 4.12].

Theorem 6.5.3. Let Ω be a domain in R2 satisfying the cone condition [3, Def-

inition 4.6]. Let j ≥ 0 and m ≥ 1 be integers and let 1 ≤ p ≤ ∞. If mp > 2

then

W j+m,p(Ω) → W j,q(Ω) for p ≤ q ≤ ∞,

and in particular

(6.5.4) H2(Ω) → Lq(Ω) for 2 ≤ q ≤ ∞

when m = 2, p = 2. If mp = 2 then

W j+m,p(Ω) →W j,q(Ω) for p ≤ q <∞,

and in particular

(6.5.5) H1(Ω) → Lq(Ω) for 2 ≤ q <∞

when m = 1, p = 2.

We want to relate these Sobolev imbeddings to weighted spaces. We begin by

asking: Given w ∈ K2
~a+1(Ω) how should we choose the real valued vector b so that

ϑbw ∈ H2(Ω)?

Lemma 6.5.6. If w ∈ K2
~a+1(Ω) then ϑ

1−~aw ∈ H2(Ω).

Proof. As w ∈ K2
~a+1(Ω) we have immediately that ϑ1−~aw ∈ L2(Ω). From Lemma

6.6. A Posteriori Error Estimators in the Weighted Spaces 96

6.5.1 we have ϑ1−~aw ∈ K2
2(Ω). Using the definition of the weighted spaces

‖ϑ1−~aw‖2K2
2(Ω) = ‖ϑ−1−~aw‖2L2(Ω) + ‖ϑ−1D1(ϑ1−~aw)‖2L2(Ω) + ‖D2(ϑ1−~aw)‖2L2(Ω).

Thus we see D2(ϑ1−~aw) ∈ L2(Ω) and D(ϑ1−~aw) ∈ L2(Ω). Each derivative of ϑ1−~aw

is in L2(Ω) and so ϑ1−~aw ∈ H2(Ω).

Lemma 6.5.7. For Ω ⊂ R2 satisfying the conditions of Theorem 6.5.3 if

w ∈ K2
~a+1(Ω) then ϑ

1−~aw ∈ L∞(Ω).

Proof. By Lemma 6.5.6 we have ϑ1−~aw ∈ H2(Ω). Then by using (6.5.4) we have

ϑ1−~aw ∈ L∞(Ω).

Of course we should not expect that the gradient of w ∈ K2
~a+1(Ω) will be bounded.

However we can show by a similar method that the weighted gradient is in a Lebesgue

space.

Lemma 6.5.8. For Ω ⊂ R2 satisfying the conditions of Theorem 6.5.3 if

w ∈ K2
~a+1(Ω) then ϑ

1−~a∇w ∈ Lq(Ω) for 2 ≤ q <∞.

Proof. By Lemma 6.5.6 we have ∇(ϑ1−~aw) ∈ H1(Ω). Using Lemma 6.5.2 gives

ϑ1−~a∇w ∈ H1(Ω). Then using (6.5.5) we find ϑ1−~a∇w ∈ Lq(Ω) for 2 ≤ q <∞.

Note that this result is not the weighted analogue of ∇w ∈ L∞(Ω) for solutions

of elliptic equations in convex domains, i.e., for w ∈ H2(Ω) the Sobolev embedding

gives ∇w ∈ Lq(Ω) for 2 ≤ q < ∞ but the approach of, e.g., [102] is used to show

∇w ∈ L∞(Ω). We have not been able to prove a result of the type ϑb∇w ∈ L∞(Ω)

for w ∈ K2
~a+1(Ω) for some b. If such a result could be shown it would be a very

useful contribution to the field.

6.6 A Posteriori Error Estimators

in the Weighted Spaces

In order to formulate a posteriori error estimators in the weighted spaces following

the abstract approach of Section 6.1 we must make some assumptions on the solution

to (6.2.1)-(6.2.2).

6.6. A Posteriori Error Estimators in the Weighted Spaces 97

Assumption 6.6.1. Let Ω ∈ R2 be a bounded straight edged polygonal domain

without cracks in which the Sobolev embeddings of Section 6.5 may be applied. Then

we assume that the problem (6.2.1)-(6.2.5) has singular points only on the boundary

and a unique solution (c, p) ∈ K2
~a(Ω) × K2,0

~a (Ω), where K2,0
~a (Ω) := {w ∈ K2

~a(Ω) :
∫

Ω
w dx = 0}. Furthermore we assume we have the bound (6.4.12) with m = 1 for

each of c and p with the boundary conditions as given.

As we have remarked to our knowledge there are no results concerning the solu-

tion to the coupled stationary IMD problem in the weighted spaces. The assumption

we make is therefore based on the regularity for the elliptic problem presented in

Section 6.4, with a condition on the pressure to ensure unique solutions.

The weak forms of (6.2.1) and (6.2.2) are given by, for all w ∈ K1,0
~a+1(Ω) and

d ∈ K1
~a+1(Ω),

Φ(p; c)[w] = (w 7→ (a(c)∇p,∇w)),(6.6.2)

Ψ(c; p)[d] = (d 7→ (D(u)∇c,∇d) + 1

2
(u · ∇c, d)

− 1

2
(uc,∇d) + 1

2
((qI + qP)c, d)).(6.6.3)

We must also make an assumption about the coercivity of the operators.

Assumption 6.6.4. The operators Φ and Ψ defined above are coercive in K1
~a+1(Ω),

i.e.,

(6.6.5) Φ(p; c)[p] ≥ Ξp‖p‖2K1
~a+1

(Ω)

and

(6.6.6) Ψ(c; p)[c] ≥ Ξc‖c‖2K1
~a+1

(Ω).

We define the continuous, discrete and auxiliary problem (cf., (6.1.1), (6.1.2) and

(6.1.3)):

Definition 6.6.7. Define the continuous problem as: Find (c, p) ∈ K1
~a+1(Ω) ×

6.6. A Posteriori Error Estimators in the Weighted Spaces 98

K1,0
~a+1(Ω) such that

Φ(p; c) = qI − qP ,

Ψ(c; p) = ĉqI .
(6.6.8)

Definition 6.6.9. Define the discrete problem as: Find (ch, ph) ∈ V
cG

×V
cG

∩L2
0(Ω)

such that

Φ(ph; ch)[wh] = qIh − qPh ∀wh ∈ VcG(Ω) ∩ L2
0(Ω),

Ψ(ch; ph)[dh] = ĉhq
I
h ∀dh ∈ V

cG
(Ω).

(6.6.10)

Definition 6.6.11. Define the auxiliary problem as: Find (c̃, p̃) ∈ K1
~a+1(Ω) ×

K1,0
~a+1(Ω) such that

Φ(p̃; ch) = qI − qP ,

Ψ(c̃; ph) = ĉqI
(6.6.12)

where (ch, ph) is the solution to the discrete problem.

We first consider Assumption 6.1.5 in the weighted spaces. We have K1
~a+1(Ω) ⊂

H1(Ω) for ~a ≥ 0. Therefore we may apply the Scott-Zhang interpolation operator

as we did in Lemma 6.2.22, using now Assumption 6.6.4.

Lemma 6.6.13. Let (c̃, p̃) ∈ K1
~a+1(Ω)×K1,0

~a+1(Ω) be the solution of (6.6.12), and let

(ch, ph) ∈ V
cG

× (V
cG

∩ L2
0(Ω)) be the approximation defined in (6.6.10) and assume

Assumptions 6.6.1 and 6.6.4 hold. With qI = qIh, q
P = qPh and ĉ = ĉh we have the

following a posteriori error estimators:

‖p̃− ph‖2K1
~a+1

(Ω) ≤ Cp

(

∑

E∈Th

h2E‖qI − qP +∇ · (a(ch)∇ph)‖2L2(E)

+
∑

e∈Eo
h

he‖Ja(ch)∇phK‖2L2(e)





(6.6.14)

6.6. A Posteriori Error Estimators in the Weighted Spaces 99

and

‖c̃− ch‖2K1
~a+1

(Ω)

≤ Cc





∑

E∈Th

h2E‖Rc‖2L2(E) +
∑

e∈Eo
h

he‖JD(uh)∇chK +
1

2
JuhchK‖2L2(e)





(6.6.15)

where Rc is as defined in (6.2.25). Here Cp depends on the coercivity coefficient in

(6.6.5) and Csz in (3.3.3), and Cc depends on the coercivity coefficient in (6.6.6) and

Csz.

Proof. Follow the steps of Lemma 6.2.22, using instead the coercivity given in As-

sumption 6.6.4 and the orthogonality generated from the terms of Definitions 6.6.9

and 6.6.11.

To show the coupling assumption in the weighted spaces is more difficult. As we

have already remarked we do not have a result concerning weighted boundedness

of ∇p. We cannot treat the term ((D(uh) − D(u))∇c,∇(c − c̃)) while keeping all

terms normed in K1
~a+1(Ω) (note that the term contains derivatives on all three parts

through the definition of u). We therefore have to reduce the norm imposed on c.

This leads to the unexpected appearance of K0
1−~a(Ω) control on c.

Lemma 6.6.16. Let (c, p) and (c̃, p̃) ∈ K1
~a+1(Ω) × K1,0

~a+1(Ω) be the solution to the

continuous problem defined in Definition 6.6.7 and the auxiliary problem defined in

Definition 6.6.11 respectively. Assume Assumptions 6.6.1 and 6.6.4 hold. Then for

1/3 ≤ ~a ≤ 1 and real 2 < q <∞ we have

(6.6.17) ‖p− p̃‖2K1
~a+1

(Ω) ≤ γp‖c− ch‖2K0
1−~a

(Ω)

where

(6.6.18) γp =

(

a◦‖ϑ1−~a∇p‖Lq(Ω)

Ξp

)2

,

and

(6.6.19) ‖c− c̃‖2K0
1−~a

(Ω) ≤ γc‖p− ph‖2K1
~a+1

(Ω)

6.6. A Posteriori Error Estimators in the Weighted Spaces 100

where

γc =

(

CBKa
◦
(

d◦‖ϑ2~a∇c̃‖Lq(Ω) +
1

2
‖ϑ2~a+1∇c̃‖Lq(Ω) +

1

2
‖ϑ2~ac̃‖L∞(Ω)

))2

(6.6.20)

where CBK is as defined in Theorem 6.4.11.

Proof. The proof for Φ closely follows that from Lemma 6.2.16. By subtracting the

Φ terms in (6.6.8) from those in (6.6.12) we find Φ(p̃; ch)− Φ(p; c) = 0. Then using

the coercivity of Φ from Assumption 6.6.4 we have

Ξp‖p− p̃‖2K1
~a+1

(Ω) ≤ Φ(p− p̃; ch)[p− p̃]

= Φ(p; ch)[p− p̃]− Φ(p; c)[p− p̃]− Φ(p̃; ch)[p− p̃] + Φ(p; c)[p− p̃]

= (ϑ2~a−1(a(ch)− a(c))ϑ1−~a∇p, ϑ−~a∇(p− p̃))

≤ ‖ϑ2~a−1(a(ch)− a(c))‖L2+δ(Ω)‖ϑ1−~a∇p‖Lq(Ω)‖ϑ−~a∇(p− p̃)‖L2(Ω)

≤ a◦‖c− ch‖K0
1−~a

(Ω)‖ϑ1−~a∇p‖Lq(Ω)‖p− p̃‖K1
~a+1

(Ω)

where we have used the Sobolev embedding theorems in the weighted spaces of

Section 6.4, chosen 2 < q < ∞ such that 1/2 + 1/(2 + δ) + 1/q = 1 and used

ϑ2~a−1(c− ch) ≤ ϑ~a−1(c− ch). With rearrangement we have shown (6.6.17).

For concentration our approach is similar to that in Chapter 5. First introduce

the dual equation on the domain Ω.

∇ · (D(u)∇ζ) + 1

2
u · ∇ζ + 1

2
∇ · (uζ)− 1

2
(qI + qP)ζ = ϑb(c− c̃) on Ω,

(D(u)∇ζ) · n = 0 on ∂Ω,

(6.6.21)

where b is a real valued vector at our disposal. Using Assumption 6.6.1 we have that

ζ ∈ K2,0
~a+1(Ω) for the same ~a as in Definition 6.6.7 and we have the regularity result

(6.6.22) ‖ζ‖K2
~a+1

(Ω) ≤ CBK‖ϑb(c− c̃)‖K0
~a−1

(Ω) = CBK‖c− c̃‖K0
~a−1−b

(Ω)

where CBK > 0 is a constant independent of c and c̃. Using (6.6.21), the regularity

6.6. A Posteriori Error Estimators in the Weighted Spaces 101

of u and ζ and integrating we find

‖c− c̃‖2K0
−b/2

(Ω) = (ϑb/2(c− c̃), ϑb/2(c− c̃))

= (∇ · (D(u)∇ζ), c− c̃) +
1

2
(u · ∇ζ, c− c̃)

+
1

2
(∇ · (uζ), c− c̃)− 1

2
((qI + qP)ζ, c− c̃)

= −(D(u)∇ζ,∇(c− c̃)) +
1

2
(u · ∇ζ, c− c̃)

− 1

2
(uζ,∇(c− c̃))− 1

2
((qI + qP)ζ, c− c̃).

Subtracting Ψ terms in Definition 6.6.7 and 6.6.11 and using the test function ζ in

the weak form gives Ψ(c; p)[ζ] − Ψ(c̃; ph)[ζ] = 0. By adding this to the previous

equation we find

‖c− c̃‖2K0
−b/2

(Ω)

= (D(u)∇c− D(uh)∇c̃,∇ζ)− (D(u)∇ζ,∇(c− c̃))

+
1

2
(u · ∇c− uh · ∇c̃, ζ)−

1

2
(uζ,∇(c− c̃))

− 1

2
(uc− uhc̃,∇ζ) +

1

2
(u · ∇ζ, c− c̃)

= ((D(u)− D(uh))∇c̃,∇ζ) +
1

2
((u− uh)∇c̃, ζ)−

1

2
((u− uh)c̃,∇ζ).

For the first term we find

((D(u)− D(uh))∇c̃,∇ζ) ≤ d◦a◦(ϑ−~a∇(p− p̃)ϑ2~a∇c̃, ϑ−~a∇ζ)

≤ d◦a◦‖ϑ−~a∇(p− ph)‖L2+δ(Ω)‖ϑ2~a∇c̃‖Lq(Ω)‖ϑ−~a∇ζ‖L2(Ω)

≤ d◦a◦‖p− ph‖K1
~a+1

(Ω)‖ϑ2~a∇c̃‖Lq(Ω)‖ζ‖K2
~a+1

(Ω),

where q and δ are chosen as above. Now we may apply Lemma 6.5.8 to the third

term provided 2~a ≥ 1 − ~a which holds as ~a ≥ 1/3. We repeat this process for the

6.6. A Posteriori Error Estimators in the Weighted Spaces 102

other terms, then using (6.6.22) we find

‖c− c̃‖2K0
−b/2

(Ω)

≤ CBKa
◦
(

d◦‖ϑ2~a∇c̃‖Lq(Ω) +
1

2
‖ϑ2~a+1∇c̃‖Lq(Ω)

+
1

2
‖ϑ2~ac̃‖L∞(Ω)

)

‖p− ph‖K1
~a+1

(Ω)‖c− c̃‖K0
~a−1−b

(Ω).

(6.6.23)

The optimum choice for b is when −b/2 = ~a − 1 − b ⇒ b = 2~a − 2 which gives

(6.6.19).

Assumption 6.6.24. We assume that γc and γp defined in Lemma 6.6.16 satisfy

γcγp < 1.

We may now combine the results (6.6.14), (6.6.15), (6.6.17) and (6.6.19) in the

manner of Section 6.1.

Theorem 6.6.25. Assume that Assumptions 6.6.1, 6.6.4 and 6.6.24 hold, and

that the conditions of Lemma 6.6.13 and 6.6.16 hold. Then the solution (c, p) ∈
K2

~a+1(Ω)×K2,0
~a+1(Ω) to (6.6.8) and (ph, ch) ∈ V

cG
× (V

cG
∩L2

0(Ω)) defined by (6.6.10)

satisfy the a posteriori error estimate

‖p− ph‖2K1
~a+1

(Ω) + ‖c− ch‖2K0
1−~a

(Ω)

≤ C

(

∑

E∈Th

h2E

(

‖qI − qP +∇ · (a(ch)∇ph)‖2L2(E) + ‖Rc‖2L2(E)

)

+
∑

e∈Eo
h

he

(

‖Ja(ch)∇phK‖2L2(e) + ‖JD(uh)∇chK +
1

2
JuhchK‖2L2(e)

)





(6.6.26)

where C depends on the constants defined in Assumption 6.6.4, 6.6.13 and 6.6.16.

Proof. Following the steps of the abstract proof of Theorem 6.1.8 we combine the

results of Lemmas 6.6.16 and 6.6.13. Note that the estimator (6.6.15) automatically

provides control on K0
1−~a(Ω).

Remark 6.6.27. This bound only offers control on c− ch in the K0
1−~a(Ω) norm for

the reasons discussed. If we make the additional assumption that we can bound the

6.7. A Review of Our Error Estimators 103

derivatives, e.g., ϑ1−~a∇p ∈ L∞(Ω) we can achieve the same control on both terms

in the manner of Section 6.2.

6.7 A Review of Our Error Estimators

We conclude this part with a brief review of the error estimators we have presented.

In Chapter 5 we formulated an a posteriori error estimator for the coupled,

time dependent problem of incompressible miscible displacement. In order to do

so we assumed that the derivatives of pressure and concentration were bounded,

the domain Ω was convex and that the coefficients which were derived during the

analysis satisfied a particular relationship (Assumption 5.4.1).

In the current chapter we considered first the fundamental aspects of the anal-

ysis. We identified several properties which, when possessed by a coupled system

of equations and their approximation, lead to an a posteriori error estimator for

the coupled problem. This abstract approach is applicable to stationary and time

dependent problems. Note however that the analysis of Chapter 5 does not follow

the scheme exactly. The estimator for the concentration in Theorem 5.3.6 is con-

structed using the dual equation (5.3.1)-(5.3.3), not with an auxiliary equation in

the manner of Section 6.1, and the control on Ec is in L2 not H1.

We derive an a posteriori error estimator for the stationary problem of incom-

pressible miscible displacement in Section 6.2, making the same assumptions on the

boundedness of the derivatives as in Chapter 5. We note however that the assump-

tion of boundedness is not attained for some domains or for some conditions on the

assumptions. This motivates the study of weighted spaces. The estimator that we

derive for the weighted case must be constructed without relying on the boundedness

of the derivatives and with only modified (i.e., weighted) control on the boundedness

of the solution. If it were possible to show that the derivatives were bounded after

application of some weight we could generate the same control on both p− ph and

c− ch. As it is we have to formulate the analysis to give control only in K0
1−~a(Ω) on

c− ch.

To compare the estimators (with reservation) we note that, e.g., ‖p−ph‖K1
~a+1

(Ω) ≥

6.7. A Review of Our Error Estimators 104

‖p − ph‖H1(Ω) (provided of course that p has sufficient regularity). Therefore, de-

pending on the values of the constants γp and γc for the weighted and unweighted

problem, we see that the weighted bound may be more reliable (in the sense that

the right hand side of (6.2.29) is a more distant predictor of error than the right

hand side of (6.6.26)). This suggests that there is some scope to introduce “artifi-

cial vertices”, i.e., vertices with no associated singularity, to achieve more reliable a

posteriori bounds.

Part III

Constraining the Jumps in the

Discontinuous Galerkin Method

Chapter 7

Continuous-Discontinuous

Galerkin Methods by

Local Super Penalization

The material included in this chapter has been published in part in [46].

We now return to discussion of the continuous discontinuous Galerkin method.

The control of discontinuities across element interfaces in the dG framework can be

exercised by introducing and/or tuning the, so-called, jump penalization parameters

(that is σ in (2.2.3) and (4.4.6)). Using excessive penalization within a dG approxi-

mation will be referred to as the super penalty method. It is natural to expect that as

the penalty parameter is increased the interelement jumps in the numerical approx-

imation decrease. It has been shown by Larson and Niklasson [96] for stationary

linear elliptic problems (using the interior penalty method) and by Burman, Quar-

teroni and Stamm [42] for stationary hyperbolic problems (penalizing the jumps of

the approximation for discontinuous elements and the jumps in the gradient of the

approximation for continuous elements) that the dG approximation converges to the

cG approximation as the jump penalization parameter tends to infinity.

Firstly, we present an alternative proof of the convergence of dG methods to

cG methods, using a far more general framework covering the cases considered by

[42, 96] and also non-linear and time dependent problems. Moreover, we show that

super penalization procedures can be localized to designated element faces, thereby

106

7.1. An Abstract Discussion 107

arriving at the cdG method as described in Chapter 2. As particular examples we

consider the limits of the interior penalty dG method for PDEs with non-negative

characteristic form [82] and the mixed Raviart-Thomas-dG method for the miscible

displacement system presented in Chapter 4.

7.1 An Abstract Discussion

Consider a (possibly non-linear) operator B : W × W → R where W is a finite

dimensional vector space with norm ‖ · ‖W . Suppose there exists a decomposition of

W such that V ⊕X =W for V,X ⊂W . In particular this means we can write any

w ∈ W uniquely as w = v + x for some v ∈ V and x ∈ X .

Assume that B is coercive, i.e., there exists ΛW > 0 (typically independent of

the dimension of W), such that

(7.1.1) B(w,w) ≥ ΛW‖w‖2W ∀ w ∈ W.

Consider another operator S : W×W → R, whose support is restricted to X×X
in the sense that

(7.1.2) S(v, v̂) = 0 ∀ v, v̂ ∈ V

and

(7.1.3) S(v, x) = S(x, v) = 0 ∀ v ∈ V, x ∈ X.

We require coercivity on X , i.e., there exists ΛX > 0 such that for all x ∈ X

(7.1.4) S(x, x) ≥ ΛX‖x‖2X ,

where ‖x‖X is a norm on X . In view of (7.1.2) this gives S(w,w) ≥ ΛX‖w‖2X =

ΛX‖x‖2X . We construct a further operator

(7.1.5) Bσ := B + σS

7.1. An Abstract Discussion 108

where 0 ≤ σ ∈ R, and call this the super penalized bilinear form.

Let ℓ be an element of the dual space W ∗ of W , independent of σ. Then choose

wσ ∈ W such that

(7.1.6) Bσ(wσ, w) = ℓ(w) ∀ w ∈ W.

Also choose vh ∈ V such that

(7.1.7) B(vh, v) = ℓ(v) ∀ v ∈ V.

Observe that for all σ ∈ R

(7.1.8) Bσ(vh, v) = B(vh, v) = ℓ(v) ∀ v ∈ V

using (7.1.2). Now with (7.1.1), (7.1.4) and (7.1.6) we have

ΛW‖wσ‖2W + σΛX‖wσ‖2X ≤ B(wσ, wσ) + σS(wσ, wσ)

= Bσ(wσ, wσ)

= ℓ(wσ)

≤ ‖ℓ‖W ∗‖wσ‖W .

Using Young’s inequality we see

(7.1.9)
Λ2

W

σ
‖wσ‖2W + 2ΛWΛX‖wσ‖2X ≤ 1

σ
‖ℓ‖2W ∗ .

Each of ΛW , ΛX and ‖ℓ‖W ∗ are independent of σ. We write wσ = vσ + xσ, the

unique decomposition with vσ ∈ V and xσ ∈ X . From (7.1.9) we see

(7.1.10) lim
σ→∞

‖vσ + xσ‖X = lim
σ→∞

‖xσ‖X = 0.

Therefore xσ → 0 as σ → ∞.

Now assume that B is continuous in the first argument in the following sense: If

7.1. An Abstract Discussion 109

limi→∞wi = w ∈ W then

(7.1.11) lim
i→∞

B(wi, v) = B(w, v) ∀ v ∈ V.

Suppose wσ 9 vh as σ → ∞. Then there exists ε > 0 such that there is some

sequence {wσ(i)}i with σ(i) → ∞ as i→ ∞ satisfying

(7.1.12) ‖wσ(i) − vh‖W > ε ∀i ∈ N.

Owing to (7.1.9) the sequence {wσ(i)}i is a bounded subset of W . Then by the

Heine-Borel Theorem there exists a convergent subsequence, also denoted {wσ(i)}i,
such that

(7.1.13) w̃ = lim
i→∞

wσ(i).

Considering (7.1.10) we know that w̃ ∈ V . We have that for all v ∈ V

B(w̃, v) = B
(

lim
i→∞

wσ(i), v
)

= lim
i→∞

B(wσ(i), v) by (7.1.11)

= lim
i→∞

Bσ(wσ(i), v) by (7.1.3)

= lim
i→∞

ℓ(v) by (7.1.6)

= ℓ(v).

Hence w̃ satisfies (7.1.7) and by (7.1.13) we have

lim
i→∞

‖wσ(i) − vh‖W = 0.

This contradicts (7.1.12) and we conclude that all subsequences {wσ(i)}i converge
to vh. Therefore

(7.1.14) lim
σ→∞

(wσ − vh) = 0.

7.2. Non-Negative Characteristic Form 110

We finally remark on the potential loss of stability due to super penalization.

It can be seen from (7.1.9) that as xσ → 0 when σ → ∞ the coercivity of Bσ is

increasingly compromised, which can lead to loss of stability and reduction on the

rate of convergence in various settings.

7.2 Equations of Non-Negative Characteristic

Form

In this chapter we examine a more general linear equation than that discussed in

Chapter 2, namely [82]

−∇ · (A(x)∇u) + b(x) · ∇u+ c(x)u = f(x) in Ω,

u = 0 on ∂Ω
(7.2.1)

with b a Rd valued function whose entries are Lipschitz continuous on Ω, c ∈ L∞(Ω)

and f ∈ L2(Ω) real valued functions. The diffusion coefficient A is a d× d symmet-

ric matrix with entries being bounded, piecewise continuous real-valued functions

defined on Ω, with

ζ⊤Aζ ≥ 0 ∀ζ ∈ R
d, a.e. x ∈ Ω.

With these conditions (7.2.1) is named a partial differential equation with non-

negative characteristic form. We consider this more general equation so that we

include the hyperbolic case (i.e., A = 0) and cases which may not be singularly

perturbed.

In the notation of Section 7.1 we identify W = VdG, V = VcdG and define VdG :=

VcdG ⊕ V⊥, so X = V⊥, the space of piecewise polynomials strictly discontinuous on

TcG and matching VdG on TdG. Note that the standard continuous space is obtained

by setting Th = TcG. When there is no diffusion term we adjust the cdG space so

that the boundary conditions are only imposed on the inflow boundary, i.e.,

VcdG := {v ∈ L2(Ω) : ∀E ∈ Th, v|E ∈ P
k, v|ΓcG∩Γin = 0, v|TcG ∈ C(T cG)}.

7.2. Non-Negative Characteristic Form 111

Define B : VdG × VdG → R, the bilinear form for the interior penalty family of

methods with ϑ ∈ {−1, 1} for (7.2.1), by

B(w, ŵ) := Bd(w, ŵ) + Bar(w, ŵ)(7.2.2)

with

Bd(w, ŵ) :=
∑

E∈Th

∫

E

A∇hw · ∇hŵ dx+
∑

e∈Eh

∫

e

mJwK · JŵK ds

−
∑

e∈Eh

∫

e

(

{{A∇hw}} · JŵK − ϑ{{A∇hŵ}} · JwK
)

ds

(7.2.3)

and

Bar(w, ŵ) :=
∑

E∈Th

∫

E

(b · ∇hw)ŵ + cwŵ dx

−
∑

e∈Eo
h

∫

e

b · JwKŵout ds−
∑

e∈Γin

∫

e

(b · n)wŵ ds.
(7.2.4)

This is reduces to (2.2.6) when A = εI and also adjusting notation on the penalty

term. We define m := Cp{{Ar2}}/he, A := ‖|
√
A|2‖L∞(E), with | · |2 denoting the

matrix-2-norm, and Cp(ϑ) ≥ 0 fixed for a given ϑ. The linear form is given by

(7.2.5) ℓ(w) :=
∑

E∈Th

∫

E

fw dx.

For e ∈ EcG we have the additional term S : VdG × VdG → R penalizing the jumps

where

(7.2.6) S(w, ŵ) :=
∑

e∈EcG

∫

e

MJwK · JŵK ds

and

M :=

(

Car + Cd
{{Ar2}}
he

)

with Car and Cd fixed constants independent of σ. Then we define Bσ(w, ŵ) :=

B(w, ŵ) + σS(w, ŵ). Notice that we have two penalty type terms, m and M . In

7.2. Non-Negative Characteristic Form 112

this way we can fix Cp large enough to ensure coercivity independently of σ → ∞.

Remark 7.2.7. Choosing A = εI, where I is the d× d identity matrix, returns the

singularly perturbed advection diffusion reaction equation (1.1.1). Observe that if we

take Car = Cd = 0 (or σ = 0) we recover the usual interior penalty method. If we

take Cp = Cd = Car = 0 and A = 0 we have the standard (unpenalized) bilinear form

for the purely hyperbolic equation (assuming of course that we adjust the boundary

conditions appropriately). Taking Cd = 0 and Car 6= 0 when A = 0 gives the method

proposed in [37], i.e., a method penalizing only the jumps in the solution, but not

the jumps in the gradient, cf., [42].

All functions in VcdG are continuous on edges in EcG (recall that by definition

edges in J are not included in EcG). Therefore conditions (7.1.2) and (7.1.3) are

satisfied for this S. That is, for any v, v̂ ∈ VcdG and x ∈ V⊥

(7.2.8) S(v, v̂) = S(v, x) = S(x, v) = 0.

We define the following norm for all w ∈ VdG.

|||w|||2 :=
∑

E∈Th

‖
√
A∇hw‖2L2(E) + ‖r1/2w‖2L2(Ω)

+
∑

e∈Eh

1

2
‖|b · n|1/2JwK‖2L2(e) +

∑

e∈Eh

‖√mJwK‖2L2(e)

(7.2.9)

where r := c− 1/2∇h · b. We also define for w ∈ VdG

(7.2.10) |w|2S :=
∑

e∈EcG

‖
√
MJwK‖2L2(e).

Notice that | · |S is a semi-norm on VdG but a norm on V⊥. To make this distinction

clear we will write ‖x‖S for x ∈ V⊥.

Lemma 7.2.11. If Cp is sufficiently large when ϑ = −1 then B is coercive on V
dG
,

i.e., for all w ∈ V
dG

(7.2.12) B(w,w) ≥ Λcc|||w|||2

7.2. Non-Negative Characteristic Form 113

with ΛW = 1 when ϑ = 1 and ΛW = 1/2 when ϑ = −1.

Proof. We will consider the coercivity in more detail in Chapter 8 for the interior

penalty method for (1.1.1). Given the definition of the norm (7.2.9) compared to

(2.2.9) we see that the proof for equations of non-negative characteristic form will

proceed in the same way.

From the definition it is clear that S is coercive with constant one on V⊥, i.e.,

for all x ∈ V⊥

(7.2.13) S(x, x) = ‖x‖2S .

Definition 7.2.14. Define a dG approximation to (7.2.1) as wσ ∈ V
dG

satisfying

(7.2.15) Bσ(wσ, w) = ℓ(w) ∀w ∈ VdG.

Definition 7.2.16. Define a cdG approximation to (7.2.1) as vh ∈ V
dG

satisfying

(7.2.17) Bσ(vh, v) = ℓ(v) ∀v ∈ VcdG.

Using (7.2.8) we see that vh also satisfies B(vh, v) = ℓ(v) for all v ∈ VcdG.

Theorem 7.2.18. The dG finite element approximation wσ converges to the cdG

finite element approximation vh as σ → ∞, i.e.,

lim
σ→∞

(wσ − vh) = 0.

Proof. Following the argument of Section 7.1 we use Lemma 7.2.11 and (7.2.13) and

note that (7.1.11) is satisfied as linear operators in finite-dimensional vector spaces

are continuous.

7.3. Incompressible Miscible Displacement 114

7.3 Equations of Incompressible Miscible

Displacement

Recall that in Chapter 4 we introduced the continuous time RT-dG finite element

method where we solved for the pressure and velocity using a Raviart-Thomas (RT)

procedure and for the concentration using a dG method. We now consider the

discrete time RT-cdG finite element method, solving for pressure and velocity as

before but modifying the approximation scheme for concentration. As we now use

discrete time we use the notation that, e.g., cjh now refers to the approximation of

concentration at timestep j.

As previously the velocity and pressure are approximated in U × P defined in

Chapter 4. To simplify the presentation we use the same mesh Th to solve for u,

p and c numerically at each time step and there is no refinement of the mesh or

polynomial degree. However TcG and TdG are not fixed so the cdG space used to

approximate c will vary with time. We define the time dependent cdG space by

V j
cdG := {v ∈ L2(Ω) : ∀E ∈ Th, v|E ∈ P

k, v|Γj
cG

= 0, v|T j
cG

∈ C(T j

cG)}

where T j
cG and Γj

cG are the TcG region and external boundary of T j
cG at time tj . As

we assert that no change to the shape of the mesh occurs in time we define the time

dependent dG space as in (2.2.2). Then we may define V j
⊥ via V j

dG = V j
cdG ⊕ V j

⊥.

Note that the degree l is the same for U and P but need not be equal to k, the

degree of the polynomials used to approximate concentration.

Let 0 = t0 < t1 < . . . < tN = T be a partition of the time interval [0, T]. For

simplicity we assume that each time step is of equal length and define ∆t := tj−tj−1

and the backward Euler operator dtc
j
h := (∆t)−1(cjh − cj−1

h) for j = 1, 2, . . . , N . To

keep our notation consistent with the abstract analysis in Section 7.1 we define (cf.,

7.3. Incompressible Miscible Displacement 115

(4.4.6) where we used σ for the penalty parameter)

Bd(c
j
h, d

j
h; u

j
h) =

∑

E∈Th

∫

E

D(ujh)∇hc
j
h · ∇hd

j
h dx+

∑

e∈Eo
h

∫

e

mJcjhK · JdjhK ds

−
∑

e∈Eo
h

∫

e

JcjhK · {{D(ujh)∇hd
j
h}}+ JdjhK · {{D(ujh)∇hc

j
h}} ds

(7.3.1)

for all djh ∈ V j
cdG. The penalty parameter m is defined by [20]

m : Eh → R, x 7→ Cpen

max{n⊤
EhD(u

j,+
h ,x)nEh , n

⊤
EhD(u

j,−
h ,x)nEh}

h

and Cpen is chosen as in (4.4.7). The bilinear form for convection, production and

injection is given by the non-standard form

Bcq(c
j
h, d

j
h; u

j
h)

=
1

2

∑

E∈Th

∫

E

(ujh · ∇hc
j
h)d

j
h − cjhu

j
h · ∇hd

j
h + (qI + qP)cjhd

j
h dx

+
1

2

∑

e∈Eo
h

∫

e

(ujh · JcjhK)dj,∗h ds

(7.3.2)

where dj,∗h is defined by

(7.3.3) dj,∗h =















dj,−h if ujh · n+ > 0,

dj,+h if ujh · n+ ≤ 0.

This formulation ensures that Bcq is semi-definite regardless of the properties of ujh.

We do not need to restrict sums over edges to cells in TcG as in this region elements

of VcdG are continuous and therefore the jump terms on that region are 0. Also

note that the dG method is a special case of the cdG method where TcG = ∅. The

formulation Balt
cq in Chapter 4 does not have the advantage of being semi-definite as in

(7.3.2) but matches the original equation (1.1.3) more closely. We can move between

the formulations using integration and the properties of ∇ · u as demonstrated in

[20, Section 4].

7.3. Incompressible Miscible Displacement 116

As previously define B(cjh, djh; ujh) := Bd(c
j
h, d

j
h; u

j
h) + Bcq(c

j
h, d

j
h; u

j
h) and

(7.3.4) S(cjh, djh) :=
∑

e∈Ej
cG

∫

e

MJcjhK · JdjhK ds

where

M :=

(

Cd
k2

he

)

.

Then for any cjh, d
j
h ∈ V j

cdG and xj ∈ V j
⊥

S(cjh, djh) = S(cjh, xj) = S(xj , cjh) = 0.

We define the following norm for ujh ∈ U and cjh ∈ V j
dG:

|||cjh|||2 :=
∑

E∈Th

‖
√

D(ujh)∇hc
j
h‖2L2(E) +

1

2
‖q0cjh‖2L2(Ω)

+
∑

e∈Eo
h

1

2
‖|ujh · n|

1/2JcjhK‖2L2(e) +
∑

e∈Eo
h

‖
√
mJcjhK‖2L2(e)

(7.3.5)

where q0 :=
√

qI + qP . For cjh ∈ V j
dG define

(7.3.6) |cjh|2S :=
∑

e∈Ej
cG

‖
√
MJcjhK‖L2(e).

Notice that (7.3.6) is a semi-norm on V j
dG but a norm on V j

⊥.

Lemma 7.3.7. If Cpen is chosen large enough then B is coercive for all cjh ∈ V j
dG

and ujh ∈ U , i.e.,

(7.3.8) B(cjh, cjh; ujh) ≥ ΛW |||cjh|||2.

Proof. For Bd we have using Hölder’s inequality

Bd(c
j
h, c

j
h; u

j
h) =

∑

E∈Th

‖
√

D(ujh)∇hc
j
h‖2L2(E) +

∑

e∈Eo
h

‖√mJcjhK‖2L2(e)

− 2
∑

e∈Eo
h

∫

e

JcjhK · {{D(ujh)∇hc
j
h}} ds

7.3. Incompressible Miscible Displacement 117

and then using the Cauchy-Schwarz inequality and an inverse inequality

∣

∣

∣

∣

∫

e

JcjhK · {{D(ujh)∇hc
j
h}}
∣

∣

∣

∣

=
1

2

∑

E∈{E+,E−}

∫

e

(√
mJcjhK

)

·
(

1√
m
{{D(ujh)∇hc

j
h}}
)

ds

≤ 1

2

∑

E∈{E+,E−}
‖
√
mJcjhK‖L2(e) · ‖

√

D(ujh)∇hc
j
h‖L2(E)

for all Eo
h ∋ e = E+ ∩ E− provided Cpen is large enough. Using Young’s inequality

we combine each term in |||cjh|||2.
For Bcq we have

Bcq(c
j
h, c

j
h; u

j
h) =

1

2

∑

E∈Th

∫

E

(qI + qP)(cjh)
2 dx+

1

2

∑

e∈Eo
h

∫

e

|ujn · n|JcjhK · JcjhK ds

where we have used uj,+h ·n+ = uj,−h ·n+ from the definition of U . Hölder’s inequality

completes the proof.

We have by construction that S is coercive with constant one on V j
⊥, i.e., for all

xjh ∈ V j
⊥

(7.3.9) S(xjh, xjh) = ‖xjh‖2S .

We discretize the time derivative with the backward Euler operator. Summing

over each discrete time step gives

N
∑

j=1

∑

E∈Th

∫

E

ϕ(dtc
j
h)c

j
h dx

=
N
∑

j=1

∑

E∈Th

∫

E

ϕ

∆t

(

cjhc
j
h − cj−1

h cjh
)

dx

≥
N
∑

j=1

1

∆t
‖ϕ1/2cjh‖2L2(Ω) −

1

2∆t

(

‖ϕ1/2cj−1
h ‖2L2(Ω) + ‖ϕ1/2cjh‖2L2(Ω)

)

=
1

2∆t

(

‖ϕ1/2cNh ‖2L2(Ω) − ‖ϕ1/2c0h‖2L2(Ω)

)

where we have used Young’s inequality.

Definition 7.3.10. Define the RT-dG approximation (uh, ph, cσ) ∈ ΠN
j=1U×ΠN

j=1P×

7.3. Incompressible Miscible Displacement 118

ΠN
j=1V

j
dG

to (1.1.3)-(1.1.8) as that generated by the algorithm: For 1 ≤ j ≤ N and

cj−1
σ ∈ V j

dG
find (ujh, p

j
h, c

j
σ) ∈ U × P × V j

dG
such that

(∇h · ujh, wj
h) = (qI − qP , wj

h),(7.3.11)

(a−1(cjσ)u
j
h, v

j
h)− (pjh,∇h · vjh) = (ρ(cjσ)g, v

j
h)(7.3.12)

for all (vjh, w
j
h) ∈ U × P and

∑

E∈Th

(
∫

E

ϕ(dtc
j
σ)d

j
h dx

)

+ B(cjσ, djh; ujh) + σS(cjσ, djh) =
∑

E∈Th

∫

E

ĉqIdjh dx(7.3.13)

for all djh ∈ V j
dG
.

Definition 7.3.14. Define the RT-cdG approximation (uh, ph, ch) ∈ ΠN
j=1U×ΠN

j=1P×
ΠN

j=1V
j
cdG

to (1.1.3)-(1.1.8) as that generated by the algorithm: For 1 ≤ j ≤ N and

cj−1
h ∈ V j

cdG
find (ujh, p

j
h, c

j
h) ∈ U × P × V j

cdG
such that

(∇h · ujh, wj
h) = (qI − qP , wj

h),(7.3.15)

(a−1(cjh)u
j
h, v

j
h)− (pjh,∇h · vjh) = (ρ(cjh)g, v

j
h)(7.3.16)

for all (vjh, w
j
h) ∈ U × P and

∑

E∈Th

(∫

E

ϕ(dtc
j
h)d

j
h dx

)

+ B(cjh, djh; ujh) + σS(cjh, djh) =
∑

E∈Th

∫

E

ĉqIdjh dx(7.3.17)

for all djh ∈ V j
cdG

.

Theorem 7.3.18. The solution cσ ∈ ΠN
j=1V

j
dG

defined in Definition 7.3.10 converges

to ch ∈ ΠN
j=1V

j
cdG

defined in Definition 7.3.14 as σ → ∞, i.e.,

(7.3.19) lim
σ→∞

(cσ − ch) = 0.

Proof. Following the argument of Section 7.1 we use Lemma 7.3.7 and (7.3.9). In or-

der to complete the proof using this argument we must show that for every sequence

7.4. Numerical Experiments 119

{cji}i with elements in V j
dG and limi→∞ cji = cj ∈ V j

dG we have

(7.3.20) lim
i→∞

B(cji , djh; uj(cji)) = B(cj , djh; uj(cj)) ∀djh ∈ V j
dG

as in (7.1.11), where uj(·) is the element in U solving (7.3.11)-(7.3.12) for a given

element of V j
dG. Note that u

j : V j
dG → U is a continuous map and so limi→∞ uj(cji) =

uj(limi→∞ cji) = uj(cj). This also holds for derivatives as they are taken piecewise.

Therefore (7.3.20) holds at each timestep and for the whole discrete solution in

time.

7.4 Numerical Experiments with

Super Penalization

We present numerical experiments to illustrate the results of this chapter. We focus

on the behaviour of the approximations as σ → ∞ on the whole domain, i.e., with

Th = TcG for equations of non-negative characteristic form. For the equations of

incompressible miscible displacement we introduce an algorithm to refine the Th

decomposition in time.

Equations of Non-Negative Characteristic Form

Example 7.4.1 Let Ω = (0, 1)2. We seek to solve

−ε∆u+ (1, 1) · ∇u = f.

Given homogeneous Dirichlet boundary conditions f is chosen such that the solution

is given by

u(x, y) :=

(

x− e(x−1)/ε − e−1/ε

1− e−1/ε

)(

y − e(y−1)/ε − e−1/ε

1− e−1/ε

)

.

For 0 < ε ≪ 1 this problem exhibits exponential boundary layers along the

outflow boundaries x = 1 and y = 1 of width O(ε). We consider a uniformly refined

7.4. Numerical Experiments 120

mesh of squares of edge length 2−4 and set k = 1 (piecewise bilinear polynomials).

We first look at an example without a layer by setting ε = 10. We set TcG = Th,

i.e., the cG method. Figure 7.4.1 shows the behaviour of the difference between the

dG and cG approximations in the L2(Th) norm, H1(Th) semi-norm and the L2 norm

of the jumps across edges (represented by J · K). As σ grows the difference in each

norm decreases linearly. The jumps in either approximation are already very small,

i.e., the dG approximation is very close to an element in the cG space. We do not

see oscillations polluting the continuous approximation.

10
0

10
1

10
2

10
3

10
4

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

σ

‖w
σ
−
v h
‖

L2

H1

J · K

Figure 7.4.1: Example 7.4.1 with ε = 10 and TcG = Th. As the penalty parameter is
increased the difference between the cG and dG approximations decreases linearly in the
given norms.

We now motivate the cdG method by choosing ε = 10−4 and again setting

TcG = Th. The example now has a sharp layer at the outflow boundaries. We see

in Figure 7.4.2(a) that increasing σ gives a linear response to the error as in Figure

7.4.1. When we look at the error in the dG approximation in Figure 7.4.2(b) we see

that the approximation becomes worse as the penalty is increased. The layer causes

non-physical oscillations to pollute the approximation. Although we see convergence

of the dG approximation to the cG approximation this property is not desirable.

7.4. Numerical Experiments 121

10
3

10
4

10
5

10
6

10
7

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

σ

‖w
σ
−
v h
‖

L2

H1

J · K

(a) The difference between the cG and dG
approximations.

10
3

10
4

10
5

10
6

10
7

10
−2

10
−1

10
0

10
1

10
2

σ

‖u
−
w

σ
‖

L2

H1

(b) The error in the dG approximation.

Figure 7.4.2: Example 7.4.1 with ε = 10−4 and TcG = Th. Now the problem has a
layer the error in the dG approximation grows as σ is increased. Non-physical oscillations
pollute the approximation.

Example 7.4.2 Let Ω = (0, 1)2. We seek to solve

(2− y2, 2− x) · ∇u+
(

1 + (1 + x)(1 + y)2
)

= f.

The inflow Dirichlet boundary conditions and f are chosen such that the solution is

given by

u(x, y) := 1 + sin
(π

8
(1 + x)(1 + y)2

)

.

This example is taken from [30, 82]. The solution does not exhibit layers. We

consider a uniformly refined mesh of squares of edge length 2−4 and set Th = TcG and

k = 1. Following Remark 7.2.7 we set Cd = 0 and Car = 1. We plot the difference

between the cG and dG approximations as σ is increased in Figure 7.4.3(a). For

small values of σ the difference between approximations is not overly affected by

increasing the penalty parameter. This is due to the penalization of the jump terms

coming from ‖|b · n|1/2JwK‖L2(2) in (7.2.9), the same term which enabled the analysis

in Chapter 3. The additional penalization due to σ does not significantly increase the

size of the penalty. As σ becomes larger the contribution to the penalization becomes

significant relative to the advection term and we see again the linear decrease with

increasing σ.

7.4. Numerical Experiments 122

In Figure 7.4.3(b) we plot the error in the dG approximation with increasing σ.

We do not see the same behaviour as in Figure 7.4.2(b) as the cG approximation does

not suffer from the same non-physical oscillations as it does for singularly perturbed

problems. There is however a slight dip in the error around σ = 1 corresponding to

the optimum amount of penalization, i.e., the dG approximation benefits from some

restriction on the size of the jumps.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

σ

‖w
σ
−
v h
‖

L2

H1

J · K

(a) The difference between the cG and dG
approximations.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

σ

‖u
−
w

σ
‖

L2

H1

(b) The error in the dG approximation.

Figure 7.4.3: Example 7.4.2 with TcG = Th. The increase in error associated with the
non physical oscillations of the cG approximation is not present as the problem exhibits
no layers.

We finally note that these results do not suggest that the cG method should

be chosen over the dG method for hyperbolic problems like Example 7.4.2. Other

factors must also be considered. For example with refinement of the mesh it can be

shown [99] that the standard cG method has an order of convergence of O(hk) in

L2 compared to O(hk+1/2) for the dG method, e.g., [37].

Equations of Incompressible Miscible Displacement

As well as verifying Theorem 7.3.18 we wish to show that if the region where con-

tinuous elements are used is chosen appropriately there is little difference in the

approximations via the RT-cdG or RT-dG method (where the concentration is ap-

proximated in the dG space).

7.4. Numerical Experiments 123

We study a standard example [20, 50, 123] to illustrate the performance of the

cdG method for the incompressible miscible displacement problem (1.1.3)-(1.1.8).

Example 7.4.3 Let Ω = (0, 1)2. The injection (resp. extraction) well is located

at (1, 1) (resp. (0, 0)). We represent the injection (resp. extraction) term by a

function which is constant on the element including the injection (resp. extraction)

point, and zero elsewhere, such that
∫

Ω
qI dx =

∫

Ω
qP dx = 0.018. In (4.2.1) we set

dl = 1.8 × 10−4, dm = 1.8 × 10−6 and dt = 1.8 × 10−5. The porosity is set to 0.1.

The concentration dependent viscosity is given by µ(c) = µ(0)(1 + (M1/4 − 1)c)−4

where M = 41.0 is the mobility ratio (the ratio of the viscosity of the fluids), and

µ(0) = 1. This commonly used relation is called the quarter-power mixing rule, e.g.,

[123, 124]. For the initial concentration we set c0 = 0 corresponding to Ω uniformly

filled with one fluid. Set K = 0.0288I.

We consider a uniform refinement of Ω into squares of side h = 2−4 with timestep

4×10−3 and time interval (0.0, 2.0). We use the lowest order RT elements, piecewise

constant approximation space for pressure and bilinear polynomials to approximate

concentration. With these values a sharp front in the concentration component

spreads from the injection to extraction point. As can be seen in Figure 7.4.6(d)

this causes oscillations in the continuous approximation.

First we present the difference between the dG approximation and the cG ap-

proximation (i.e., with TcG = Th) as σ → ∞. In Figure 7.4.4 we show ‖cσ − ch‖ in

both the L2 norm against time and the L2((0, T);L2(Ω)) norm against increasing σ.

In Figure 7.4.4(a) we see a sharp increase in the error over the first few iterations.

The initial conditions are in the continuous approximation space so the cG and dG

approximations are close. As the layer spreads through the domain the difference

between the cG and dG approximations for a given σ in the L2 norm increases slowly.

This is because the number of edges in the vicinity of the layer increases. Figure

7.4.4(b) shows the same behaviour as the stationary Examples 7.4.1 and 7.4.2.

Picking TcG in the examples in Chapter 3 was done via knowledge of the true

solution and hence knowledge of any layers. We do not have this luxury for the

problem considered in this section. We therefore undertake the following procedure

for determining TcG:

7.4. Numerical Experiments 124

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

t

‖c
j σ

−
c
j h
‖ L

2
(
Ω
)

103 105 107 109 1011

(a) Evolution of the difference between the
cG and dG approximations for σ = 103 to
1011 in L2 norm.

10
2

10
4

10
6

10
8

10
10

10
12

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

σ

‖c
σ

−
c
h
‖ L

2
(
(
0
,
T

)
;L

2
(
Ω
)
)

(b) Plot of the difference between the cG and
dG approximations in the L2(L2) norm as σ
is increased.

Figure 7.4.4: The effect of increasing σ for Example 7.4.3 with TcG = Th.

(1) Determine the initial pressure and velocity given c0h and the injection profile.

(2) Solve for the first time step using a RT-dG method to find a discontinuous c1h

(and also p1h and u1h).

(3) For all edges determine ‖JchK‖L2(e).

(4) Flag every cell where each edge satisfies ‖JchK‖L2(e) < tol.

(5) If every edge of a cell is flagged set that cell to be part of TcG in the next

iteration. Otherwise the element will be in TdG.

(6) For n iterations use the cdG mesh defined in the previous step.

(7) For the (n+ 1)th iteration reset the mesh to be entirely dG, i.e., T n+1
cG = ∅ for

the concentration component, then return to step (3).

The number of iterations between each cdG refinement and the tolerance should

consider the expected motion of the fluid and the time step. We do not consider

increasing σ for the cdG method, but rather study the performance of the method

as the tolerance is increased by comparing the cdG approximation with a dG ap-

proximation where Cpen = 10 and σ = 0. With these parameters we set the number

of iterations between redefining the cdG space to be 5.

7.4. Numerical Experiments 125

In Figure 7.4.5 we see that as the tolerance is decreased the difference between the

dG and cdG approximations in the L2 norm gets smaller. With a smaller tolerance

fewer cells are marked as being continuous. The difference introduced by using some

continuous elements does not seem to propagate in time.

In Table 7.4.1 we see that the number of degrees of freedom saved over the

simulation (500 steps with T = 2.0, ∆t = 4 × 10−3) is considerable. The effect on

the approximation is however small measured in the L2(L2) norm. The number of

degrees of freedom for the cG method is not 128,000 as would be expected (one

degree of freedom per vertex on a 16 × 16 square mesh for 500 timesteps) due to

every fifth iteration being discontinuous.

In Figure 7.4.6 we show the dG, cG and cdG approximations after 380 timesteps.

There is no visible difference between the plots for dG and cdG at each tolerance

(Figures 7.4.6 (a), (b) and (c)). However for the fully continuous approximation the

oscillations induced by the layer are clearly visible and distort the plot.

7.4. Numerical Experiments 126

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

t

‖c
j σ

−
c
j h
‖ L

2
(
Ω
)

cG

tol = 10−3

tol = 10−4

tol = 10−5

Figure 7.4.5: The behaviour of the cdG approximation for Example 7.4.3. Using some
continuous elements does not dramatically increase the error of the cdG approximation
compared to the dG approximation.

tol dofs ‖cσ − ch‖L2((0,T);L2(Ω))

cG 219,470 3.9970× 100

10−3 323,488 1.2073× 10−2

10−4 355,328 7.0904× 10−4

10−5 382,384 1.0455× 10−4

dG 512,000 0.0000× 100

Table 7.4.1: The number of degrees of freedom used for 500 timesteps in Example 7.4.3.
When tol = 10−5 only 74.6% of the degrees of freedom are used compared to 43% for the
continuous approximation.

7.4. Numerical Experiments 127

(a) The fully discontinuous approximation. (b) The cdG approximation with tol =
10−4.

(c) The cdG approximation with tol = 10−3. (d) The fully continuous approximation.

Figure 7.4.6: A plot of the cG method, cdG method and dG method at time 1.52 (380
time steps) for Example 7.4.3. The discontinuous region is marked in dark grey for the cdG
method. There is no appreciable difference between the first three plots. The oscillations
are clearly visible in the fully continuous plot.

Chapter 8

On Determining the Th
Decomposition using the

Discontinuous Galerkin

Approximation

The application of the analysis in Chapter 3 is limited by the assumptions made in

that chapter and the ability to identify the Ω decomposition. The work in Chapter

7 provides insight into the role of the degrees of freedom in the cG and dG methods.

However the super penalty method does not reduce the number of degrees of freedom

used. We therefore seek a practical approach to determining the Th decomposition.

Recall that the dG approximation to the advection diffusion reaction problem has

better stability properties than the cG approximation (although streamline terms

can be added to the dG method to show an inf-sup stability result as in, e.g., [41]).

It is of note that in general dG approximations have small interelement jumps away

from the presence of layers in the solution. In this chapter we show that where the

interior penalty dG approximation to a given ADR problem has small jumps we

can replace the discontinuous elements with continuous elements at a cost related

to the size of the jumps removed. We can use this approach to determine the best

Th decomposition for the problem (in the sense of reduction in degrees of freedom).

This offers a practical improvement over the approach of Chapter 3 although we

128

8.1. Continuity and Coercivity 129

have not been able to show a stability result using this approach.

8.1 Continuity and Coercivity

The continuity and coercivity coefficients (see Section 2.1 for a definition) may de-

pend on the parameters of the problem, in particular on ε and h. If this were not

the case we could formulate an ε independent stability result using the Lax-Milgram

theorem and an error bound using Céa’s lemma, which we know is not possible for

the continuous bilinear form (cf., (2.1.11)). To circumvent this problem for the dG

method it is possible to show an inf-sup stability result [10, 41].

We present a detailed analysis of the continuity and coercivity constants for the

interior penalty dG bilinear form. If we know the behaviour of the continuity and

coercivity coefficients with respect to ε, h and the other parameters we can devise

a computational method for selecting Th.

We assume the mesh Th is shape regular with regularity constant Creg as in

(1.3.8). We also recall the following result found by combining trace and inverse

inequalities (cf., Corollary 1.3.13):

‖∇hw‖2L2(e) ≤ Ctih
−1
E ‖∇hw‖2L2(E).

Lemmas 8.1.1, 8.1.4 and 8.1.8 are taken from [75]. We include the proofs here

to fully present the origin of the coefficients. Throughout this chapter ||| · ||| refers
to the norm defined in (2.2.9).

Lemma 8.1.1. There exists σ such that for every σ ≥ σ we have

(8.1.2) Bε(w,w) ≥ Λcc|||w|||2 ∀w ∈ V
dG
.

Specifically σ = 0 for ϑ = 1 with Λcc = 1 and σ = 4Cti/Creg for ϑ = −1 with

Λcc = 1/2.

8.1. Continuity and Coercivity 130

Proof. Using the definitions of the L2 norm and Bε we have

Bε(w,w) =
∑

E∈Th

ε‖∇hw‖2L2(E) +
∑

e∈Eh

σε

he
‖JwK‖2L2(e) + ‖r1/2w‖2L2(Ω)

+
∑

e∈Eh

1

2
‖|b · n|1/2JwK‖2L2(e) + (ϑ− 1)

∑

e∈Eh

∫

e

ε{{∇hw}} · JwK ds

where the advection reaction terms follow from integration by parts as in (3.2.21).

Thus when ϑ = 1 coercivity holds with Λcc = 1. For E+, E− as two cells sharing

and edge e, when ϑ = −1 we use the definition of the average to show

2

∫

e

ε{{∇hw}} · JwK ds

=
∑

E∈{E+,E−}

∫

e

ε∇hw · JwK ds

≤
∑

E∈{E+,E−}
C

1/2
ti εh

−1/2
E ‖∇hw‖L2(E)‖JwK‖L2(e)

≤ 1

2

∑

E∈{E+,E−}

(

ε‖∇hw‖2L2(E)

)1/2
(

σε

he
‖JwK‖2L2(e)

)1/2

≤ ε

8
‖∇hw‖2L2(E+) +

ε

8
‖∇hw‖2L2(E−) +

1

2

σε

he
‖JwK‖2L2(e),

(8.1.3)

where in the third step we have used the condition on the size of σ. We combine each

of these terms with |||w|||2, the final term being the determining factor. Therefore

coercivity holds with Λcc = 1/2 when ϑ = −1.

We would like to be able to show continuity independently of ε. For the advection

diffusion reaction problem this is not generally the case. However in our setting we

do not allow h → 0 unless ε → 0 (as the Péclet number must be greater than 1

via Assumption 2.3.9) and therefore we formulate the continuity independently of ε

(but depending on h) provided ρ > 0.

Lemma 8.1.4. Provided Assumption 2.1.5 holds and we have the conditions on the

size of σ from Lemma 8.1.1 then

(8.1.5) |Bε(w, ŵ)| ≤ Λct|||w||||||ŵ||| ∀w, ŵ ∈ V
dG

8.1. Continuity and Coercivity 131

where

(8.1.6) Λct := Cmax
E∈Th

{

1,

∥

∥

∥

∥

b

ρhE

∥

∥

∥

∥

L∞(E)

}

with C independent of the coefficients of Bε and mesh parameters but depending on

the shape regularity via the trace and inverse inequalities.

Proof. We rewrite the bilinear form by integrating the advection term on the cell

by parts and making use of the identity (1.3.25)

Bε(w, ŵ) =
∑

E∈Th

∫

E

ε∇hw · ∇hŵ + (c− 1

2
∇h · b)wŵ dx

+
1

2

∑

E∈Th

∫

E

(b · ∇hw)ŵ − (b · ∇hŵ)w dx

+
∑

e∈Eh

∫

e

(

1

2
|b · n|+ σε

he

)

JwK · JŵK ds

+
∑

e∈Eh

∫

e

ϑε{{∇hŵ}} · JwK − ε{{∇hw}} · JŵK ds

+
∑

e∈Eo
h

∫

e

JŵK · {{bw}} − JwK · {{bŵ}} ds

= I + II + III + IV + V.

(8.1.7)

For term IV we have, following the steps of (8.1.3) from Theorem 8.1.1, that

∫

e

ε{{∇hw}} · JŵK ds ≤ 1

4

∑

E∈{E+,E−}

(

ε‖∇hw‖2L2(E)

)1/2
(

σε

he
‖JŵK‖2L2(e)

)1/2

and similarly with w, ŵ interchanged. For term II we have, using an inverse in-

equality,

∣

∣

∣

∣

∫

E

(b · ∇hw)ŵ dx

∣

∣

∣

∣

≤ ‖b‖L∞(E)‖∇hw‖L2(E)‖ŵ‖L2(E)

≤ C

∥

∥

∥

∥

b

ρhE

∥

∥

∥

∥

L∞(E)

‖r1/2w‖L2(E)‖r1/2ŵ‖L2(E)

8.1. Continuity and Coercivity 132

and similarly with the terms interchanged. For each part of V we have

∣

∣

∣

∣

∫

e

JwK · {{bŵ}} ds
∣

∣

∣

∣

≤ ‖b‖L∞(e)‖JwK‖‖{{ŵ}}‖L2(e)

≤ C
∑

E∈{E+,E−}

∥

∥

∥

∥

b

ρhE

∥

∥

∥

∥

L∞(E)

‖r1/2w‖L2(E)‖r1/2ŵ‖L2(E).

For terms I and III we simply apply the Cauchy-Schwarz inequality. The proof is

concluded by summing up each of the terms and bounding by ||| · |||.

If r ≡ 0 then we may not proceed in this manner and the continuity is formulated

with an adverse dependence on ε.

Lemma 8.1.8. If r(x) ≡ 0 on Ω and we have the conditions on the size of σ from

Theorem 8.1.1 then

(8.1.9) |Bε(w, ŵ)| ≤ Λct|||w||||||ŵ||| ∀w, ŵ ∈ V
dG

where

(8.1.10) Λct :=
C

ε
max
E∈Th

{

1, ‖b‖L∞(E)

}

where C is independent of ε and h but depends on the mesh regularity.

Proof. Using the formulation (8.1.7) we may bound terms I, III and IV in the same

way as in Theorem 8.1.4 noting that the second part of I is zero. For term V we

have

∣

∣

∣

∣

∫

e

JŵK · {{bw}}
∣

∣

∣

∣

≤
∫

e

∣

∣

∣

∣

ε1/2

h
1/2
e

JwK

∣

∣

∣

∣

∣

∣

∣

∣

b

ε1/2

∣

∣

∣

∣

∣

∣h
1/2
e {{ŵ}}

∣

∣ ds

≤
∑

E∈{E+,E−}

1

ε1/2
‖b‖L∞(E)

(

σε

he
‖JwK‖2L2(e)

)1/2
(

‖ŵ‖2L2(E)

)1/2

with a similar result for the other part of the term. For II we have

∣

∣

∣

∣

∫

E

(b · ∇hw)ŵ dx

∣

∣

∣

∣

≤ 1

ε1/2
‖b‖L∞(E)

(

ε‖∇hw‖2L2(E)

)1/2 (

‖ŵ‖2L2(E)

)1/2

.

8.2. Determining the Th Decomposition 133

Summing over each element of the mesh we then use the Poincaré Friedrichs in-

equality as in [33, (1.8)] to show

(8.1.11) ‖w‖L2(Ω) ≤
C

ε1/2

(

∑

E∈Th

ε‖∇hw‖2L2(E) +
∑

e∈Eh

εσ

he
‖JwK‖2L2(e)

)1/2

.

Summing up each of the terms and using the Cauchy-Schwarz inequality gives

Bε(w, ŵ) ≤
C

ε
max
E∈Th

{

1, ‖b‖L∞(E)

}

(

|||w|||2 + ‖w‖2L2(Ω)

)1/2 (

|||ŵ|||2 + ‖ŵ‖2L2(Ω)

)1/2

and combining this with (8.1.11) concludes the proof.

Remark 8.1.12. Lemma 8.1.8 may give a smaller coercivity constant that Lemma

8.1.4. For our problems of interest, however, we consider ε ≪ h and sharpening

layers as ε→ 0 for a fixed h, and ρ > 0, so we make the assumption that the bound

of Lemma 8.1.4 is smaller.

8.2 Determining the Th Decomposition

Define by wh and vh the discontinuous and continuous discontinuous Galerkin ap-

proximations to the advection diffusion reaction equation as defined by (2.2.8) and

(2.3.6) (for a given TcG). By subtraction we have the following orthogonality result:

(8.2.1) Bε(wh − vh, v) = 0 ∀v ∈ VcdG.

Now suppose we decompose the cdG approximation by vh = vm + vk where vm,

vk ∈ VcdG. With the orthogonality result (8.2.1) and the coercivity and continuity

of the previous section we may show

Λcc|||wh − vh|||2 ≤ Bε(wh − vh, wh − vh)

= Bε(wh − vh, wh − vm)− Bε(wh − vh, vk)

≤ Λct|||wh − vh||||||wh − vm|||.

The decomposition of vh is not unique. For a fixed TcG we may rearrange the above

8.2. Determining the Th Decomposition 134

result to give

(8.2.2) |||wh − vh||| ≤
Λct

Λcc

min
vm∈V

cdG

|||wh − vm|||.

This is of course just a modified form of Céa’s lemma.

We seek to answer, therefore, two questions. Firstly for a given TcG how small

can we expect |||wh − vm||| to be? With an answer to this question we can then

proceed to ask if it is possible (or practicable) to choose TcG when wh is known such

that we have both |||wh − vm||| small and TcG relatively large compared to Th.

We introduce the Oswald interpolation operator [109].

Definition 8.2.3. Denote by Vh the set of vertices of a mesh Th. For any w ∈ V
dG

the Oswald interpolation operator Os(w) : V
dG

→ V
cG

is defined as follows: For all

ν ∈ Vh

(8.2.4) Os(w(ν)) = 1

nν

∑

E∈∆ν

w|E(ν)

if ν 6∈ ∂Ω and equal to the boundary conditions if ν ∈ ∂Ω. Here ∆ν denotes the set

of cells containing ν (the patch of ν) and nν the cardinality of the set ∆ν , i.e., the

number of cells in the patch.

The Oswald interpolant is therefore an averaging type operator. We have the

following theorem [89, 90] concerning the error of the interpolation.

Theorem 8.2.5. Let Th be a conforming mesh with boundary Γ. Let g be the

restriction to Γ of some function in V
cG
. Then for any w ∈ V

dG
and multi index α

with |α| = 0, 1 the following approximation result holds: There exists Os(w) ∈ V
cG

satisfying Os(w)|Γ = g and

∑

E∈Th

‖Dα(w −Os(w))‖2L2(E)

≤ Cm





∑

e∈Eo
h

h1−2|α|
e ‖JwK‖2L2(e) +

∑

e∈Γ
h1−2|α|
e ‖w − g‖2L2(e)





where Cm is independent of w and h.

8.2. Determining the Th Decomposition 135

Proof. See [89, Theorem 2.2] and the extensions in [90, Section 2].

Theorem 8.2.5 shows that when approximating discontinuous piecewise polyno-

mials with continuous piecewise polynomials (of the same degree) the error is de-

pendent on the jumps of the discontinuous function. It is also possible to formulate

the theorem for non-conforming meshes. The following corollary applies Theorem

8.2.5 to cdG spaces.

Corollary 8.2.6. Let TcG be the continuous region of Th, with ΓcG the boundary of

TcG and Γ the boundary of Th. Let g be the restriction to ΓcG of some function in

V
cG
(TcG) which is zero on Γ ∩ ΓcG. For all w ∈ V

dG
(TcG) and multi index α with

|α| = 0, 1 the following approximation result holds: There exists Os(w) ∈ V
cdG

(TcG)

which is zero on Γ ∩ ΓcG satisfying

∑

E∈TcG

‖Dα(w −Os(w)‖2L2(E)

≤ Cm

(

∑

e∈EcG

h1−2|α|
e ‖JwK‖2L2(e) +

∑

e∈J
h1−2|α|
e ‖wC − g‖2L2(e)

)(8.2.7)

where Cm is independent of w and h and wC is the trace of w on the continuous side

of J .

Proof. Recall that by definition EcG does not include J but does include the exterior

boundary. We therefore apply Theorem 8.2.5 and use the fact that g = 0 on the

exterior boundary and the definition of the jump for e ∈ Γ.

We now wish to specify g on J . To apply Corollary 8.2.6 we see that on any

points where J meets the exterior boundary we must have g = 0. Where Ve is the

set of vertices of TcG on the interior of J , denoted νe, (i.e., excluding vertices on the

exterior boundary) we specify

g(w(νe)) =
1

nνe

∑

e∈∆νe

wC|e(νe)

where ∆νe denotes the set of edges of TcG containing νe and nνe the cardinality of

∆νe, and wC denotes the trace of w from the continuous side of the edge. In this

8.2. Determining the Th Decomposition 136

manner g is the average of the values of wC at each vertex on the interior of J . We

can therefore modify Theorem 8.2.5 in one dimension to show for this g

(8.2.8)
∑

e∈J
‖wC − g‖2L2(e) ≤ Cm

∑

vertices

on J

he[w
C]2,

where [wC] = |wC,+ − wC,−| on the interior of J (i.e., the one dimensional jump at

each vertex), [wC] = |wC| at the exterior boundary and he is the average of the

diameter of the edges meeting at the vertex. We see that smaller jumps along J in

w control the term in (8.2.7). For d = 3 we have that g is the restriction to a 2

dimensional object and we will use the Oswald interpolant as defined previously.

Suppose now we seek to approximate wh, the dG approximation to (1.1.1) defined

in Definition 2.2.7, by an element of VcdG for some Th decomposition. Consider

vm ∈ VcdG defined by

(8.2.9) vm :=















Os(wh), on TcG,

wh, on TdG

whereOs(wh) is that described in Corollary 8.2.6 with homogeneous Dirichlet bound-

ary conditions on Γ ∩ ΓcG and on J boundary conditions described by g above.

Lemma 8.2.10. For a given Th decomposition and dG approximation wh, and with

vm defined in (8.2.9) (with g chosen as described above) we have

(8.2.11) |||wh − vm|||2 ≤ Λm

where

Λm =
∑

e∈EcG

Λe‖JwhK‖2L2(e) +
∑

e∈J
Λe‖wC

h − g‖2L2(e)

with

Λe := Cm(εh
−1
e + he‖r1/2‖2L∞(TcG)) + εσh−1

e +
1

2
‖b‖L∞(e)

and Cm as defined in (8.2.7).

Proof. We examine each term in |||wh − vm||| in turn using the properties of the

8.2. Determining the Th Decomposition 137

Oswald interpolant given in (8.2.7). This gives on cells

∑

E∈Th

ε|wh − vm|2H1(E) =
∑

E∈TcG

ε|wh −Os(wh)|2H1(E)

≤ Cm

(

∑

e∈EcG

εh−1
e ‖JwhK‖2L2(e) +

∑

e∈J
εh−1

e ‖wC
h − g‖2L2(e)

)

and

∑

E∈Th

‖r1/2(wh − vm)‖2L2(E)

≤ ‖r1/2‖2L∞(TcG)

∑

E∈TcG

‖wh −Os(wh|TcG)‖2L2(E)

≤ Cm

(

∑

e∈EcG

he‖r1/2‖2L∞(TcG)‖JwhK‖2L2(e) +
∑

e∈J
he‖r1/2‖2L∞(TcG)‖wC

h − g‖2L2(e)

)

.

NowOs(wh) is continuous on edges in EcG, i.e., JvmK = 0 for e ∈ EcG, and Jwh−vmK =

0 for e ∈ EdG \ J . On the discontinuous side of J we have wD
h − vDm = 0 via the

construction of vm. Therefore for e ∈ J we find Jwh − vmK = (wC
h − vCm) · nC =

(wC
h − g) · nC. So for the first edge terms we have

∑

e∈Eh

εσh−1
e ‖Jwh − vmK‖2L2(e) =

∑

e∈EcG

εσh−1
e ‖JwhK‖2L2(e) +

∑

e∈J
εσh−1

e ‖wC
h − g‖2L2(e)

and for the second

∑

e∈Eh

1

2
‖|b · n|1/2Jwh − vmK‖2L2(e)

≤
∑

e∈EcG

1

2
‖b‖L∞(e)‖JwhK‖2L2(e) +

∑

e∈J

1

2
‖b‖L∞(e)‖wC

h − g‖2L2(e).

Combining each of these results yields (8.2.11).

Thus we have answered our first question: Given TcG we have formulated an

upper bound on min |||wh − vm||| for a fixed problem. Now suppose we have an

approximation wh and wish to generate a cdG approximation using a Th decompo-

sition with the fewest degrees of freedom such that |||wh − vh||| ≤ (Λct/Λcc)δm for

8.3. Numerical Experiments 138

some δm using (8.2.2). We call δm the tolerance. Clearly if we pick δm too small

then it may be that the only choice of Th decomposition is Th = TdG. The best way

to illustrate the second question (in short, can we implement this method) is via

numerical experiments.

8.3 Numerical Experiments

We briefly recap our notation: Λm is the difference between a dG approximation

for a fixed problem and the Oswald interpolant for a given Th decomposition; δm is

the user chosen tolerance for a fixed problem which must be obtained through the

choice of Th. We wish to show that we can determine (at least a close approximation

to) the optimum decomposition automatically. We employ the following algorithm:

(1) Calculate the dG approximation wh.

(2) Post process wh, calculating Λm on each edge and for each cell, summing over

the edges which belong to that cell.

(3) Set the value tol, the required bound on |||wh − vh|||.

(4) Order cells by Λct/Λcc multiplied by the value found in (2).

(5) Add cells to the continuous region from smallest first as determined by step

(4) until the value of Λct/Λcc

∑

e∈EcG Λm reaches tol.

This algorithm will be conservative, i.e., it may return a Th decomposition which is

not optimum due to the final step. As we know the value of Λct/Λcc (up to a constant)

via Lemmas 8.1.1, 8.1.4 (or 8.1.8) we reasonably account for the sharpening of the

layer in the choice of tol. We use tol and not δm to highlight the difference between

the set and achieved value, i.e., by setting tol we will achieve δm < tol.

We present two examples with the aim of: Showing that the cdG method applies

when the assumptions on the location of the boundary J made in Chapter 3 do not

hold; demonstrating that the above algorithm and theory of the previous sections

provides a practicable way of determining the Th decomposition; and showing that

the reduction in the degrees of freedom seen in Chapter 3 can be achieved when

8.3. Numerical Experiments 139

the location of the layers is not know a priori. To these ends we present more

complicated examples than previously.

Example 8.3.1 Let Ω = (0, 1)2. We seek to solve

(8.3.1) −ε∆u(x, y) + (1, 5 sin(10πx)) · ∇u(x, y) + u(x, y) = 1

with homogeneous Dirichlet boundary conditions. This problem exhibits an exponen-

tial boundary layer at the outflow boundary x = 1 of width O(ε).

The streamlines defined by b = (1, 5 sin(10πx)) induce wave like behaviour in

the approximation along the lines y = 0 and y = 1 as can be seen clearly in, e.g.,

Figure 8.3.4(b). The streamlines enter and leave the domain along the edges. It is

not possible to determine a priori the hyperbolic approximation u0 (in the notation

of Chapter 3) or uε and therefore we cannot determine the Th decomposition a priori

using that approach. Even if we could determine these functions the construction

of the continuous region would not be straightforward especially given Assumption

3.2.17 and the sinusoidal nature of b for this problem.

We set ε = 10−3, σ = 1 and refine the domain uniformly into cells of edge length

2−5 and use piecewise bilinear elements. We have that ‖b‖L∞(E) is bounded below by

1 and above by 5 and ρ = 1. It is straightforward to calculate Λm for each possible

TcG.

In Figure 8.3.1 we plot the difference between the dG approximation wh and

cdG approximation vh for decreasing tolerance/increasing degrees of freedom. The

number of degrees of freedom for the fully discontinuous method is 4096 and for

the continuous method 1089. For a relatively large tolerance (tol = 1) we have

substantially fewer degrees of freedom but allow relatively large ‖wh − vh‖ in the

given norms. For a relatively small tolerance (tol = 10−5) we have very close

agreement between the approximations but do not save very many degrees of freedom

over the continuous method. We do not see a uniform linear relationship between

tolerance and ‖wh − vh‖ as the algorithm is conservative, i.e., it always returns a

Th decomposition with a smaller error than tol and does not attempt to refine its

estimate. Also note that some constants are unknown and so we do not recover

8.3. Numerical Experiments 140

|||wh − vh||| < tol but rather |||wh − vh||| < Ctol, where C depends on Cm and

the constant from the inverse inequality. This effect is more significant for smaller

values of the tolerance.

1000 1500 2000 2500 3000 3500 4000
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Degrees of Freedom

‖w
h
−
v h
‖

L2

√
εH1

J · K

Figure 8.3.1: Example 8.3.1 with ε = 10−3. The fully discontinuous method has 4096
degrees of freedom. From left to right tol = 100, . . . , 10−6.

In Figures 8.3.2-8.3.4 we plot the cdG mesh and the cdG approximation for

tol = 10−1, 10−3 and 10−5. We see in Figure 8.3.2(a) that the TcG region is large,

but in Figure 8.3.2(b) we see slight non-physical oscillations entering the approxi-

mation. Figure 8.3.4(a) and (b) shows the opposite result in that we do not have

any non-physical oscillations but we do not save a significant number of degrees of

freedom. Figure 8.3.3 represents a compromise between the two extremes. Even

with streamlines penetrating deeply into Ω from the boundary we can remove more

than 20% of the degrees of freedom compared to the discontinuous method.

Example 8.3.2 Let Ω = {(x, y) : 1 ≤ x2 + y2}. We seek to solve

(8.3.2) −ε∆u(x, y) + ux(x, y) +
1

10
u(x, y) = 0

8.3. Numerical Experiments 141

(a) Th decomposition, TdG region
darker.

(b) cdG approximation, TdG region
darker.

Figure 8.3.2: Example 8.3.1 with tol = 10−1 (1784 degrees of freedom).

(a) Th decomposition, TdG region
darker.

(b) cdG approximation, TdG region
darker.

Figure 8.3.3: Example 8.3.1 with tol = 10−3 (3350 degrees of freedom).

with boundary conditions given by u = 1 for x2 + y2 = 1, i.e., the inner boundary,

and u→ 0 for x2 + y2 → ∞.

This is the example proposed as a model problem by Hemker [79] with some

modifications. Firstly we have added a reaction term so ρ 6= 0. Secondly we

approximate the problem as x2 + y2 → ∞ by considering instead of the infinite

plane the region Ω = {(x, y) : 1 ≤ x2 + y2, |x| ≤ 10, |y| ≤ 10}. The motiva-

tion of [79] was to find a problem more closely matching problems of industrial

interest. The equation is simple but the more complex domain gives rise to an

exponential layer at {x2 + y2 = 1, x ≤ 0} and characteristic layers extending

8.3. Numerical Experiments 142

(a) Th decomposition, TdG region
darker.

(b) cdG approximation, TdG region
darker.

Figure 8.3.4: Example 8.3.1 with tol = 10−5 (3833 degrees of freedom).

from the edge of the interior boundary. We will use the deal.ii standard mesh

hyper_cube_with_cylindrical_hole to produce a 10× 10 square domain with

a radius 1 octagon removed from the centre (for further discussion of deal.ii see

Chapter 9). Note that for the problem with c = 0 the analytic solution can be

expressed in terms of modified Bessel functions.

We set ε = 10−3 and σ = 0.01 and again use piecewise bilinear approximating

polynomials. The mesh consists of 8192 quadrilaterals extending from the inner

boundary. The cell size therefore varies with distance from the centre (hence we pick

a smaller σ). Clearly ‖b‖L∞(Ω) = 1 but the norm for each edge must be calculated

on an edge by edge basis depending on its orientation.

In Figure 8.3.5(a) we plot a higher resolution dG approximation to the solution,

i.e., on a more refined mesh using in excess of 2 million degrees of freedom compared

to 32768 for the dG approximation on our standard mesh. The sharp layers at the

front (i.e., x ≤ 0) of the inner boundary and in the wake are apparent. In Figure

8.3.5(b) we plot the cG approximation on the standard mesh. The oscillations are

clearly visible both in the wake and propagating against the flow forward of the

inner boundary. Note that the scale is different in this plot and the oscillations

extend far above and below the boundary.

As can be seen in Figure 8.3.5(a) there is a large region of the domain where

the solution is almost identically zero and so we expect an approximation to have

8.3. Numerical Experiments 143

(a) High resolution dG approximation. (b) cG appoximation.

Figure 8.3.5: Example 8.3.2 with ε = 10−3. The oscillations in (b) are visible (note the
scale).

small jumps there. We therefore expect to be able to make a substantial saving

in degrees of freedom. We plot in Figure 8.3.6 the difference between the dG and

cdG approximations in the given norms against the degrees of freedom returned

for tolerances from 101 to 10−6. As with Example 8.3.1 we see a decrease in the

difference as the tolerance is decreased/degrees of freedom increased. Note now

however the saving is much greater. Even for a conservative tolerance of tol = 10−6

we only require 13852 degrees of freedom which is 42% of the number for a fully

discontinuous approximation (or conversely 164% of the degrees of freedom required

for the continuous method, compared to 388% for the discontinuous method).

In Figures 8.3.7-8.3.9 we plot the Th decomposition and the approximations on

TcG and TdG for tol = 10−1, 10−3 and 10−5. We shade the TdG region darker on

the plots of the Th decomposition∗. We can see for tol = 10−1 (Figure 8.3.7)

the algorithm not only selects the regions far from the layer but also a portion

between the characteristic layers. The region selected violates Assumption 3.2.17

from Chapter 3 as the streamlines are both inflow (to TdG) and outflow (from TdG)

on J , the interface between TcG and TdG. As the tolerance is decreased the TcG region

between the layers diminishes but the part of TcG away from the layers remains large.

∗It is not practical to plot the mesh as the thickness of the grid obscures the plot.

8.3. Numerical Experiments 144

0.8 0.9 1 1.1 1.2 1.3 1.4

x 10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Degrees of Freedom

‖w
h
−
v h
‖

L2

√
εH1

J · K

Figure 8.3.6: Example 8.3.2 with ε = 10−3. The fully discontinuous method has 32768
degrees of freedom. From left to right tol = 101, . . . , 10−6.

Finally in Figure 8.3.10 we show a closer plot of the region round the inner

boundary from Figure 8.3.9(c), the approximation on the TdG region when tol =

10−5. We can see that the discontinuous approximation still over or under shoots

around the characteristic layers and boundary but these oscillations to not propagate

outside of the discontinuous region.

(a) Th decomposition, TdG re-
gion darker.

(b) Approximation on cG re-
gion.

(c) Approximation on dG re-
gion.

Figure 8.3.7: Example 8.3.2 with tol = 10−1 (10208 degrees of freedom).

8.3. Numerical Experiments 145

(a) Th decomposition, TdG re-
gion darker.

(b) Approximation on cG re-
gion.

(c) Approximation on dG re-
gion.

Figure 8.3.8: Example 8.3.2 with tol = 10−3 (12038 degrees of freedom).

(a) Th decomposition, TdG re-
gion darker.

(b) Approximation on cG re-
gion.

(c) Approximation on dG re-
gion.

Figure 8.3.9: Example 8.3.2 with tol = 10−5 (13359 degrees of freedom).

Figure 8.3.10: Detail from Example 8.3.2 with tol = 10−5. It can be seen that the
discontinuous approximation does extend above 1 and below 0.

Part IV

Implementation of the Continuous

Discontinuous Galerkin Method

Chapter 9

Continuous Discontinuous Finite

Element Code

In this chapter we present the code used to solve for the cdG method for the linear

advection diffusion reaction problem. We first discuss the novel elements of the

code before presenting an annotated code listing allowing a reader to implement

this method.

9.1 A Note on Implementation in deal.ii

The work in this section has been previously published in part in [45]. We will

discuss the implementation of the cdG method in deal.ii , a C++ finite element

library. For more information about deal.ii see [1, 15, 16]. To make the code easier

to read C++ keywords are typeset in Maroon and deal.ii classes are typeset in

Navy Blue.

The cdG method poses several difficulties in implementation. In Chapter 7 (see

also [46]) we prove that the dG approximation defined in Definition 2.2.7 tends to

the cdG approximation defined in Definition 2.3.5 when the penalty parameter σ is

increased on the TcG part of the domain. This approach can be used to investigate

the behaviour of the cdG method by modifying code which solves for the dG ap-

proximation. There are however clear drawbacks. The number of degrees of freedom

(and hence the size of any matrices) will be equal in the cdG and dG methods using

147

9.1. A Note on Implementation in deal.ii 148

this approach. Those entries in the system matrix corresponding to the super pe-

nalised jump terms may be very large as σ is large. This could lead to inefficiencies

in numerical routines to invert the matrices. Thus when using the super penalty

method we employ the direct solver provided by the deal.ii interface with the

UMFPACKlibrary.

The primary difficulty in the implementation of a cdG method in deal.ii (and

other finite element libraries) is the lack of a native cdG element type. Without

this element deal.ii cannot initialise a Triangulation with the correct number

of degrees of freedom. Determining the number of degrees of freedom for the cdG

method is a difficult task as the number of degrees of freedom per cell (or per

edge for discontinuous elements) is determined by the type of shape function on

the neighbouring element/edge. One option is to code a cdG element type and

integrate it with deal.ii . However a more flexible approach is to use the existing

capabilities of deal.ii to distribute the degrees of freedom by making use of the

hp:: FECollection capabilities of the library as described below. An advantage of

this approach is that other capabilities of the library implemented for hp methods

are automatically available.

We require in particular three properties of the deal.ii library. The first is

the facility to group multiple finite elements into one data structure called a hp::

FECollection. As the syntax suggests the usual use is for hp refinement to create

a set of finite elements of the same type, e.g., scalar Lagrange elements FE_Q, but

with different polynomial degrees, e.g., linear, quadratic. The second is the class

FESystem. The purpose of this class is to create a vector valued finite element type.

Finally we will use the special finite element type FE_Nothing. This is a finite

element type with zero degrees of freedom. In Listing 9.1 we define FESystem and

hp:: FECollection objects and in Listing 9.2 we initialise those objects.

enum{CG_NOTHING = 0, NOTHING_DG = 1};
FESystem<dim> c_fe;
FESystem<dim> d_fe;
hp:: FECollection<dim> fe_collection;

Listing 9.1: Declaration of hp:: FECollection, FESystem

In Listing 9.2 c_fe is constructed as a two dimensional system of finite elements

with linear Lagrange elements in the first vector location and a FE_Nothing element

9.1. A Note on Implementation in deal.ii 149

in the second. The system d_fe is set up in opposition with FE_Nothing in the first

space and linear discontinuous shape functions in the second. This construction is to

avoid human coding error at a later stage as selecting the incorrect entry will produce

an obvious effect. These two systems are then inserted into fe_collection .

c_fe (FE_Q<dim>(1), 1, FE_Nothing<dim>(), 1);
d_fe (FE_Nothing<dim>(), 1, FE_DGQ<dim>(1), 1);
fe_collection.push_back (c_fe);
fe_collection.push_back (d_fe);

Listing 9.2: Initialisation of hp:: FECollection, FESystem

On a Triangulation each cell is flagged as being either in the continuous or

discontinuous region (we have assumed that the regions align with the mesh as with

the Th decomposition) using material_id . The active_fe_index is then set on

each cell as shown in Listing 9.3. As FE_Nothing has zero degrees of freedom the

total number of degrees of freedom for the method will be correct. Only one finite

element with degrees of freedom is active on each cell.

for (typename hp:: DoFHandler<dim>::active_cell_iterator
cell = dof_handler.begin_active();
cell != dof_handler.end(); ++cell)

{
if (cell_is_c(cell))

cell->set_active_fe_index (CG_NOTHING);
else if (cell_is_d(cell))

cell->set_active_fe_index (NOTHING_DG);
else

// ...throw exception...
}

Listing 9.3: Setting the correct active_fe_index

Now when we call dof_handler.distribute_dofs(fe_collection) the de-

grees of freedom will be correctly distributed to the triangulation. We could now

simply initialise a SparsityPattern with this dof_handler but we can save some

memory by assigning the coupling permitted between finite element types. Then

calling make_flux_sparsity_pattern does not assume coupling between every

element in the sparsity pattern.

Once we have initialised the relevant matrices we may now proceed to assembly.

It is important that on each cell the correct entry from fe_collection is used,

and in turn the correct element of FESystem on that element. In particular edges

in J , the boundary between TcG and TdG, have to be carefully considered. When

9.1. A Note on Implementation in deal.ii 150

assembling the jump between a dG and cG element on J it is not possible to initialise

an FEFaceValues object on the cG element. This is of course perfectly natural as

continuous Lagrange finite elements do not have support (in the deal.ii sense) on

the edges of cells. To work around this difficulty we must extract the locations of

the support points on the face and then calculate their values on the neighbouring

cG cell.

An interesting consequence of this approach is that we create two solutions: one

for the c_fe component and another for the d_fe component. We present a simple

example to demonstrate this but remark that the effect can also be seen in Figures

8.3.2-8.3.4.

Example 9.1.1 Let Ω = (0, 1)2. We seek to solve

−ε∆u(x, y) + (1, 1) · ∇u(x, y) = 1

with boundary conditions given by

u(x, y) = x+ y(1− x) +
e−1/ε − e−(1−x)(1−y)/ε

1− e−1/ε
.

This problem exhibits an exponential boundary layer at the outflow boundaries x = 1

and y = 1 of width O(ε).

Note that this example does not conform to the usual requirement that ρ > 0.

We set ε = 10−3 and calculate the cdG and dG approximations on a uniform 32×32

grid of squares. We select TcG = [0, 0.75]2. This is not optimum but our aim is to

illustrate the unusual appearance of approximations using FE_Nothing. In Figure

9.1.1 we plot the cdG approximation and the dG-FE_Nothing and FE_Nothing-cG

components of the cdG approximation. The approximation on TdG is shaded in each

case. The presence of the FE_Nothing component is apparent.

9.2. Commented Code 151

(a) The cG-FE_Nothing
component of the cdG ap-

proximation.

(b) The FE_Nothing-dG
component of the cdG ap-
proximation.

(c) cdG approximation.

Figure 9.1.1: Example 9.1.1 with ε = 10−3. The presence of the FE_Nothing compo-
nent is clear. The approximation on TdG in each case is shaded.

9.2 Commented Code

The code for cdG and incompressible miscible displacement runs to over 4000 lines

(excluding comments) and so inclusion of the complete code is not practical. In

Section 9.1 we have already explained the novel parts of the cdG code. Here we

introduce enough material to allow the reader to understand the important features

of deal.ii and in particular to understand and recreate the implementation of the

cdG method. The code presented generates an approximation to

− ε∆u+ b · ∇u+ cu = f in Ω,

u = g on ∂Ω

using the following interior penalty bilinear and linear forms:

(9.2.2) Bε(u, v) = Bd(u, v) + Bar(u, v) = ℓ(f, g; v)

where

Bd(u, v) =
∑

E∈Th

∫

E

ε∇u · ∇v dx

+
∑

e∈Eh

∫

e

σ
ε

he
JuK · JvK − (ε{{∇u}} · JvK + ϑε{{∇v}} · JuK) ds,

9.2. Commented Code 152

Bar(u, v) =
∑

E∈Th

∫

E

−(b · ∇v)u− (∇ · b)uv + cuv dx

+
∑

e∈Eo
h

∫

e

b · JvKu∈ ds+
∑

e∈Γout

∫

e

(b · n)uv ds

and

ℓ(f, g; v) =
∑

E∈Th

∫

E

fv dx+
∑

e∈Γ

∫

e

(

σ
ε

he
v − ϑε∇ · v

)

g ds−
∑

e∈Γin

∫

e

(b · n)vg ds.

The super penalty approach of Chapter 7, the decoupled and weighted forms of

Chapter 3, or using a file to generate the Th decomposition a priori can be imple-

mented with some minor modifications. For incompressible miscible displacement

our implementation is close to that of the deal.ii tutorial Step-21 [1] and we direct

readers there for a thorough discussion of the use of Raviart-Thomas elements, time

dependent problems and solution using the Schur Complement.

We do not include all detail from class declarations and function protoypes as

our purpose is not to describe how to write a program in C++ but how to write

one in deal.ii . It suffices to say that each described function and class must have

somewhere a prototype. The code is written favouring readability over efficiency.

This differs from professionally written code (in general) where efficiency takes a

prominent role. The code here is templated by dimension as it was written to make

expansion to higher dimensions possible. However many of the routines presented

here assume two dimensions as the dimension independent generalizations add com-

plexity without adding any insight for the reader.

Header files

The library is organized in multiple sections and is is necessary to include the fol-

lowing header files, along with some headers from the Standard Template Library

(STL) allowing us access to some common C++ routines.

#include <deal.II/base/quadrature_lib.h>
#include <deal.II/base/logstream.h>
#include <deal.II/base/function.h>
#include <deal.II/base/utilities.h>

9.2. Commented Code 153

#include <deal.II/base/parameter_handler.h>
#include <deal.II/base/parsed_function.h>
#include <deal.II/base/table_handler.h>
#include <deal.II/base/timer.h>

#include <deal.II/lac/vector.h>
#include <deal.II/lac/full_matrix.h>
#include <deal.II/lac/sparse_matrix.h>
#include <deal.II/lac/sparse_direct.h>
#include <deal.II/lac/constraint_matrix.h>
#include <deal.II/lac/precondition_block.h>

#include <deal.II/grid/tria.h>
#include <deal.II/grid/grid_generator.h>
#include <deal.II/grid/tria_accessor.h>
#include <deal.II/grid/tria_iterator.h>
#include <deal.II/grid/grid_refinement.h>
#include <deal.II/grid/grid_tools.h>
#include <deal.II/grid/grid_out.h>

#include <deal.II/dofs/dof_tools.h>
#include <deal.II/dofs/dof_accessor.h>

#include <deal.II/fe/fe_q.h>
#include <deal.II/fe/fe_dgq.h>
#include <deal.II/fe/mapping_q1.h>
#include <deal.II/fe/fe_nothing.h>
#include <deal.II/fe/fe_system.h>
#include <deal.II/fe/fe_values.h>
#include <deal.II/fe/fe_tools.h>

#include <deal.II/hp/dof_handler.h>
#include <deal.II/hp/fe_collection.h>
#include <deal.II/hp/fe_values.h>

#include <deal.II/numerics/vectors.h>
#include <deal.II/numerics/data_out.h>
#include <deal.II/numerics/error_estimator.h>
#include <deal.II/numerics/matrices.h>
#include <deal.II/numerics/fe_field_function.h>

#include <fstream>
#include <sstream>
#include <iostream>
#include <map>
#include <boost/lexical_cast.hpp>

To simplify the code we use the deal.ii namespace

using namespace dealii;

9.2. Commented Code 154

and so we need not prepend each function from the library with “dealii. ”.

Class: ParameterReader

We do not want to recompile the code to make simple changes to the parameters.

Fortunately the deal.ii library includes a class to interface with a parameter file,

and provides an interface via ParsedFunction to the (non-deal.ii) fparser

class. An example of a parameter file can be found in Section 9.3.

The inheritance of the Subscriptor class prevents the destruction of the

ParameterHandler object passed if the ParameterReader object still exists. Here

this is a sensible safety precaution as the ParameterHandler is passed by reference

and so its destruction before the ParameterReader object would break the reference

and most likely cause a segmentation fault.

class ParameterReader : public Subscriptor
{
public:

ParameterReader(ParameterHandler &);
˜ParameterReader () {};

void read_parameters(const std::string);

private:
void declare_parameters();
ParameterHandler &prm;

};

The constructor simply takes the given ParameterHandler and copies its at-

tributes (by reference) into an internal handler prm.

ParameterReader::ParameterReader(ParameterHandler ¶mhandler)
:
prm(paramhandler) {}

The parameters are grouped into subsections. On entering a subsection each

entry is declared by giving a name, default value, type (e.g., Patterns::Double

(0) declares a positive double) and short description. In the parameter file the

parameters must likewise be grouped into subsections but need not appear in the

same order. If a parameter is not declared it will take the default value and a warning

will be output to the console at run time. The variable names are self explanatory,

9.2. Commented Code 155

except for beta which is the advection coefficient b, chosen so to avoid single letter

variable names.

void ParameterReader::declare_parameters()
{

prm.enter_subsection ("Equation Data");
{

prm.declare_entry ("epsilon" , "0.001" , Patterns::Double(0),
"Diffusion coefficient");

prm.declare_entry("theta" , "1" ,
Patterns::Integer(),
"Switch between Interior Penalty types");

prm.declare_entry ("sigma" , "10.0" , Patterns::Double(0),
"Penalty parameter");

prm.declare_entry ("xmin" , "0.0" , Patterns::Double(),
"Domain minimum x");

prm.declare_entry ("xmax" , "1.0" , Patterns::Double(),
"Domain maximum x");

prm.declare_entry ("ymin" , "0.0" , Patterns::Double(),
"Domain minimum y");

prm.declare_entry ("ymax" , "1.0" , Patterns::Double(),
"Domain maximum y");

}
prm.leave_subsection ();
prm.enter_subsection ("Run Options");
{

prm.declare_entry("true present" , "true" ,
Patterns::Bool(),
"Is the true solution present?");

prm.declare_entry("print parameters" , "true" ,
Patterns::Bool(),
"print parameters at the start of the run?");

prm.declare_entry("L2 jump tolerance" , "0.0001" ,
Patterns::Double(0),
"L2 jump tolerance of dG solution "
"when refining grid for cdG");

prm.declare_entry("initial refinement" , "3" ,
Patterns::Integer(0),
"Number of refinements of basic grid");

prm.declare_entry("refinement steps" , "1" ,
Patterns::Integer(0),
"Number of refinement iterations");

prm.declare_entry("Fast" , "true" ,
Patterns::Bool(),
"If true do not calculate the dG norms");

prm.declare_entry("skipcdGNorm" , "false" ,
Patterns::Bool(),
"If true do not calculate the cdG norms");

}

9.2. Commented Code 156

prm.leave_subsection();

For functions the form is different. Each function is initialized as a ParsedFunction

object and at this point any constants and variables are read from the file. How-

ever the functions are only declared (with a default value, here x + y). They can-

not be used until initialized using parse_parameters . The second argument in

declare_parameters sets the number of components of the function (the default

being 1, a scalar function).

prm.enter_subsection ("Beta Data");
{
Functions:: ParsedFunction<dim>::declare_parameters(prm,2);
prm.set("Function expression" , "1; 1");

}
prm.leave_subsection ();
prm.enter_subsection("divBeta Data");
{
Functions:: ParsedFunction<dim>::declare_parameters(prm);
prm.set("Function expression" , "x+y");

}
prm.leave_subsection();
prm.enter_subsection("True solution");
{
Functions:: ParsedFunction<dim>::declare_parameters(prm);
prm.set("Function expression" , "x+y");

}
prm.leave_subsection();
prm.enter_subsection ("Right Hand Side Data");
{
Functions:: ParsedFunction<dim>::declare_parameters(prm);
prm.set("Function expression" , "x+y");

}
prm.leave_subsection();
prm.enter_subsection ("Boundary Data");
{
Functions:: ParsedFunction<dim>::declare_parameters(prm);
prm.set("Function expression" , "x+y");

}
prm.leave_subsection();
prm.enter_subsection ("Reaction Data");
{
Functions:: ParsedFunction<dim>::declare_parameters(prm);
prm.set ("Function expression" , "x+y");

}
prm.leave_subsection();

}

9.2. Commented Code 157

The parameters are read (and outputted, depending on the value of print

parameters) in the final code of this subsection.

void ParameterReader::read_parameters(
const std::string parameter_file)

{
declare_parameters();
std::cout << " Reading parameter file: "

<< parameter_file
<< std::endl;

prm.read_input (parameter_file);

prm.enter_subsection ("Run Options");
bool print = prm.get_bool("print parameters");

prm.leave_subsection();
if(print)
{

prm.print_parameters (std::cout, ParameterHandler::Text);
std::cout <<

"# **************** END OF PARAMETERS**************** "
<<std::endl;

}
}

Class: cdGMethod

The main body of the code consists of those routines for setting up the problem,

managing its execution and outputting any results.

In the class declaration we have shortened the function prototypes but leave the

variable declarations.

template <int dim>
class cdGMethod
{
public:

cdGMethod (ParameterHandler &, unsigned int);
˜cdGMethod ();

void run ();

private:
const static unsigned char c_boundary_id = ’b’ ;
const static unsigned char c_domain_id = ’c’ ;
const static unsigned char d_domain_id = ’d’ ;
enum {CG_NOTHING = 0, NOTHING_DG = 1};

9.2. Commented Code 158

//...function prototypes omitted...

ParameterHandler &prm;
Triangulation<dim> triangulation;
const MappingQ1<dim> mapping;
hp:: MappingCollection<dim> mapping_collection;
FESystem<dim> c_fe, d_fe;
hp:: FECollection<dim> fe_collection;
hp:: DoFHandler<dim> dG_dof_handler, cdG_dof_handler;
hp:: QCollection<dim> q_collection;
const QGauss<dim-1> face_quadrature;
ConstraintMatrix constraints;
SparsityPattern sparsity_pattern;
SparseMatrix<double> system_matrix;
const ADEquation<dim> ad_equation;
Vector<double> dG_solution, cdG_solution, system_rhs;
Functions:: ParsedFunction<dim> true_solution;
Functions:: ParsedFunction<dim> boundary_values;
double dG_time, cdG_time;
bool true_present;
bool cdG_run;
unsigned int run_number;
unsigned int refinement;

//...output variables omitted...
};

The constructor first uses an initializer list to set up what variables it can.

template <int dim>
cdGMethod<dim>::cdGMethod (ParameterHandler ¶m,

unsigned int refstep)
:
prm(param),

The triangulation details the mesh and nodes. The option maximum_smoothing

ensures that any hanging nodes present conform to deal.ii internal requirements.

The mapping is a default constructor of the MappingQ1 class for straight line map-

pings between the unit and general cell.

triangulation (Triangulation<dim>::maximum_smoothing),
mapping(),

The construction of two mismatched FESystem has been described in Section 9.1.

Here we pick linear continuous (FE_Q) and discontinuous (FE_DGQ) elements. Two

handlers for the degrees of freedom are required in the case of a Th decomposition.

c_fe (FE_Q<dim>(1),1,
FE_Nothing<dim>(),1),

9.2. Commented Code 159

d_fe (FE_Nothing<dim>(), 1,
FE_DGQ<dim>(1), 1),

dG_dof_handler (triangulation),
cdG_dof_handler (triangulation),
face_quadrature (2),

The object ad_equation governs the parameters of the advection diffusion reaction

equation. In principle changing this object will result in cdG methods for other

equations. The true_solution and boundary_values are initialized as length 2

vectors of scalar functions as declared in ParameterHandler. This is because we

have two approximations, two degree of freedom handlers, etc., corresponding to the

approximation on the continuous and discontinuous regions as described in Section

9.1.

ad_equation (param),
true_solution(2),
boundary_values(2)

{

Each of the continuous and discontinuous regions have their own quadrature for-

mula, fixed here to two points in each spatial dimension (exact for piecewise linear

functions).

const QGauss<dim> c_quadrature(2);
const QGauss<dim> d_quadrature(2);

The fe_collection , q_collection and mapping_collection behave like a vec-

tors taking taking the finite element systems, quadrature formula and mapping for

the continuous and discontinuous elements respectively.

fe_collection.push_back (c_fe);
q_collection.push_back (c_quadrature);
mapping_collection.push_back (mapping);

fe_collection.push_back (d_fe);
q_collection.push_back (d_quadrature);
mapping_collection.push_back (mapping);

Finally we look into the parameter file to see if any mesh or true solution has

been specified and store the data. If the true solution is present it must be parsed

by interfacing with the ParsedFunction class, which in turn interfaces with the

(non-deal.ii) fparser library. See the parameter file for more details of how to

declare functions in this way, but note that as we have initialized true_solution

9.2. Commented Code 160

as having two scalar components the parameter file must reflect this. Somewhat

confusingly this makes the declaration in the parameter file the same for a vector

valued function, e.g., the advection coefficient, and two scalar valued functions,

e.g., true_solution . The variable refinement will be used to refine the initial

triangulation, i.e., determine the mesh size.

prm.enter_subsection("Run Options");
true_present = prm.get_bool("true present");

prm.leave_subsection();

if(true_present)
{

prm.enter_subsection("True solution");
true_solution.parse_parameters(prm);

prm.leave_subsection();
}
prm.enter_subsection("Boundary Data");

boundary_values.parse_parameters(prm);
prm.leave_subsection();
prm.enter_subsection ("Run Options");
const int initrefinement

= prm.get_integer("initial refinement");
prm.leave_subsection ();
refinement = initrefinement + refstep;

}

We also need a destructor, which need not do anything as it will only be called

as the program completes. However to conform to good memory management we

release any memory allocated to the (potentially very large) degree of freedom han-

dlers.

template <int dim>
cdGMethod<dim>::˜cdGMethod ()
{

dG_dof_handler.clear ();
cdG_dof_handler.clear ();

}

Initializing triangulation in the constructor has only set up the internals. We

need to be able to associate a specific grid with this triangulation. We get the extent

of the grid from the parameter file (here fixed to two dimensions) and then use the

deal.ii GridGenerator to make a rectangle which is uniformly refined a number

of times as determined by the value of refinement .

template <int dim>

9.2. Commented Code 161

void cdGMethod<dim>::make_grid ()
{

prm.enter_subsection ("Equation Data");
const double xmin = prm.get_double("xmin");
const double ymin = prm.get_double("ymin");
const double xmax = prm.get_double("xmax");
const double ymax = prm.get_double("ymax");

prm.leave_subsection ();

const Point<dim> min(xmin,ymin);
const Point<dim> max(xmax,ymax);

GridGenerator::hyper_rectangle (triangulation,min,max);
triangulation.refine_global (refinement);

}

The code is written so that it always generates two approximations. Regardless

of any settings it produces a dG approximation. This is required in order to generate

the Th decomposition. The next function manages the Th decomposition of the mesh.

template <int dim>
void cdGMethod<dim>::modify_grid ()
{
if(cdG_run)
{

std::cout << "Trying to generate a mesh based on dG"
<< std::endl;

The Assert class is an effective way of tracking potential errors. If the assertion is

triggered the program terminates at the Assert in a controlled manner and outputs

to the console the nature of the exception.

Assert(dG_solution.size() != 0,
ExcMessage("You have tried to start a cdG run but no

dG approximation exists"));
Vector<double> dummy;

We calculate the size of the jumps at interelement boundaries in order to decompose

the mesh.

ad_equation.calculate_L2_jump_norms (dG_dof_handler,
q_collection,
mapping_collection,
face_quadrature,
dG_solution,
false,
L2_jump_norm,
dummy);

prm.enter_subsection("Run Options");

9.2. Commented Code 162

const double tol = prm.get_double("L2 jump tolerance");
prm.leave_subsection();

This is the first appearance of a loop over every cell. The Triangulation class

enables iterators to every cell (or active cell, i.e., those at the lowest refinement

level). To access faces we prefer to loop over every cell and then visit the faces

of that cell in turn by accessing cell->face(number) , although iterators for the

faces do exist. Here if every jump at the faces of an element is small we mark that

element as in the continuous region and use the user_flag attribute of the face to

store this. Cells are marked using the material_id flag, which is more flexible but

is not implemented for faces.

typename Triangulation<dim>::active_cell_iterator
cell = triangulation.begin_active(),
endc = triangulation.end();

for (; cell!=endc; ++cell)
{
unsigned int face_count = 0;
for (unsigned int face_no=0;

face_no< GeometryInfo<dim>::faces_per_cell;
++face_no)

{
if(L2_jump_norm(cell->face(face_no)->index()) < tol)

++face_count;
else

cell->face(face_no)->set_user_flag();
}

if(face_count == GeometryInfo<dim>::faces_per_cell)
{

cell->set_material_id(c_domain_id);
if (cell->at_boundary())
for (unsigned int f=0;

f< GeometryInfo<dim>::faces_per_cell;
++f)

if (cell->face(f)->at_boundary())
cell->face(f)->set_all_boundary_indicators(

c_boundary_id);
}
else
{

cell->set_material_id(d_domain_id);
for (unsigned int face_no=0;

face_no< GeometryInfo<dim>::faces_per_cell;
++face_no)

cell->face(face_no)->set_user_flag();

9.2. Commented Code 163

}
}

}

Now we cover the initial dG approximation by setting the entire domain to be in

the discontinuous region.

else if (!cdG_run)
{
for (typename Triangulation<dim>::active_cell_iterator

cell = triangulation.begin_active();
cell != triangulation.end(); ++cell)

cell->set_material_id(d_domain_id);
}

Finally in the case of a cdG approximation check that we do not have any isolated

continuous cells.

if(cdG_run)
{
typename Triangulation<dim>::active_cell_iterator

cell = triangulation.begin_active(),
endc = triangulation.end();

for (; cell!=endc; ++cell)
{
if(cell->material_id() == d_domain_id) continue;
else
{
unsigned int count = 0;
for (unsigned int face_no=0;

face_no< GeometryInfo<dim>::faces_per_cell;
++face_no)

{
if (cell->face(face_no)->at_boundary()) ++count;
else if (cell->neighbor(face_no)->material_id()

== d_domain_id) ++count;
}
if (count == GeometryInfo<dim>::faces_per_cell)

cell->set_material_id(d_domain_id);
}

}
}

}

The next two routines allow access to the material_id of a cell in safety, i.e.,

without the risk of changing the material_id .

template <int dim>
bool cdGMethod<dim>::cell_is_c

(const typename hp:: DoFHandler<dim>::cell_iterator &cell)

9.2. Commented Code 164

{
return (cell->material_id() == c_domain_id);

}
template <int dim>
bool cdGMethod<dim>::cell_is_d

(const typename hp:: DoFHandler<dim>::cell_iterator &cell)
{
return (cell->material_id() == d_domain_id);

}

Once we have marked each cell as either in the continuous or discontinuous

region we set the active_fe_index on the mesh so that the correct element of

fe_collection we be active on the cell (using the enumeration from the class

declaration).

template <int dim>
void cdGMethod<dim>::set_active_fe_indices (

hp:: DoFHandler<dim> &dof_handler)
{
for (typename hp:: DoFHandler<dim>::active_cell_iterator

cell = dof_handler.begin_active();
cell != dof_handler.end(); ++cell)

{
if (cell_is_c(cell))

cell->set_active_fe_index (CG_NOTHING);
else if (cell_is_d(cell))

cell->set_active_fe_index (NOTHING_DG);
else
Assert (false, ExcMessage("Unexpected cell type"));

}
}

One of the major advantages to using a library such as deal.ii to generate code

is the existence of routines to perform complicated tasks efficiently. Here we wish

to create a SparsityPattern for the problem representing the non-zero entries

in a sparse matrix and initialize our system_matrix and system_rhs (that is,

the mass matrix A and right hand side vector f representing the discrete problem

Ax = f , where x is the dG or cdG approximation we are calculating). We use

a CompressedSimpleSparsityPattern for the purposes of memory management

and as our problem has face (flux) coupling make_flux_sparsity_pattern . We

must also instruct the sparsity pattern that on the different regions (and on the

interface) we have different coupling, which we do using DoFTools::Coupling .

template <int dim>

9.2. Commented Code 165

void cdGMethod<dim>::setup_dofs (
hp:: DoFHandler<dim> &dof_handler,
Vector<double> &solution)

{

First inform the dof_handler of our active indices and then calculate the number

of degrees of freedom (recall FENothing contributes no degrees of freedom).

set_active_fe_indices (dof_handler);
dof_handler.distribute_dofs (fe_collection);

We have no constraints here but the ConstraintMatrix class is an efficient way

to handle the problem during assembly, so we make an empty constraints then

continue as described above.

constraints.clear ();
constraints.close ();
CompressedSimpleSparsityPattern csp (dof_handler.n_do fs(),

dof_handler.n_dofs());
Table<2, DoFTools::Coupling>

cell_coupling (fe_collection.n_components(),
fe_collection.n_components());

Table<2, DoFTools::Coupling>
face_coupling (fe_collection.n_components(),

fe_collection.n_components());
cell_coupling[NOTHING_DG][NOTHING_DG] = DoFTools::none;
face_coupling[NOTHING_DG][NOTHING_DG] = DoFTools::always;
cell_coupling[CG_NOTHING][CG_NOTHING] = DoFTools::always;
face_coupling[CG_NOTHING][CG_NOTHING] = DoFTools::none;
cell_coupling[CG_NOTHING][NOTHING_DG] = DoFTools::none;
face_coupling[CG_NOTHING][NOTHING_DG] = DoFTools::always;
cell_coupling[NOTHING_DG][CG_NOTHING] = DoFTools::none;
face_coupling[NOTHING_DG][CG_NOTHING] = DoFTools::always;

DoFTools::make_flux_sparsity_pattern (dof_handler, csp,
cell_coupling,
face_coupling);

constraints.condense (csp);
sparsity_pattern.copy_from (csp);

Then we can resize the matrix and right hand side vector, as well as the dG or cdG

approximation solution depending on the type of approximation we are perform-

ing.

system_matrix.reinit (sparsity_pattern);
solution.reinit (dof_handler.n_dofs());
system_rhs.reinit (dof_handler.n_dofs());

}

9.2. Commented Code 166

Now we come to the logical assembly of the mass matrix and right hand side.

This function interfaces with the ADEquation class where the actual calculation of

the weights for each entry in the matrix is performed. This construction allows for

a different equation or method to be interchanged with the interior penalty method

for the advection-diffusion-reaction equation.

template <int dim>
void cdGMethod<dim>::assemble_system(

hp:: DoFHandler<dim> &dof_handler)
{

The UpdateFlags manage which parts of the test functions need to be recalcu-

lated when moving to a new cell or face. For instance here we do not need to

know the Hessian of the test functions, so we simply do not calculate it. The flag

update_JxW_values refers to the Jacobian times the weight at each quadrature

point.

const UpdateFlags update_flags = update_values
| update_gradients
| update_quadrature_points
| update_JxW_values;

const UpdateFlags face_update_flags = update_values
| update_quadrature_points
| update_JxW_values
| update_normal_vectors
| update_gradients;

const UpdateFlags nbr_face_update_flags = update_values
| update_gradients;

The FEValues and FEFaceValues classes give an interface to the shape functions on

a cell or face. We need only one for the values on the cells which will take continuous

or discontinuous shape functions automatically depending on the active_fe_index

on the cell. The FEFaceValues are only required on discontinuous cells (and their

neighbours, denoted nbr). Finally on the interface we will always assemble from a

discontinuous cell to a continuous one, so we have a special FEValues object for the

continuous neighbour of a discontinuous cell.

hp:: FEValues<dim> hp_fe_v (fe_collection,
q_collection,
update_flags);

FEFaceValues<dim> d_fe_face_v(d_fe,

9.2. Commented Code 167

face_quadrature,
face_update_flags);

FEFaceValues<dim> d_fe_face_v_nbr(d_fe,
face_quadrature,
nbr_face_update_flags);

FEValues<dim> c_fe_v_nbr (c_fe,
q_collection[CG_NOTHING],
update_flags);

On each cell we construct local matrices which will be then fed into the global

system_matrix . In the most complicated case, that of two adjacent discontinuous

cells, we need four matrices representing the interior of the cell (i) and the exterior

(i.e., the neighbour, e) and the coupling between them.

FullMatrix<double> ui_vi_matrix;
FullMatrix<double> ue_vi_matrix;
FullMatrix<double> ui_ve_matrix;
FullMatrix<double> ue_ve_matrix;
Vector<double> cell_vector;
std::vector< unsigned int> cell_dof_indices;
std::vector< unsigned int> nbr_dof_indices;

In order to ensure we pick up the correct element of FESystem on each cell, we use

an extractor. Note that as we constructed each of c_fe and d_fe in the opposite

order these match the enumeration of fe_collection .

const FEValuesExtractors::Scalar continuous(CG_NOTHING);
const FEValuesExtractors::Scalar discontinuous(NOTHING_DG) ;

typename hp:: DoFHandler<dim>::active_cell_iterator
cell = dof_handler.begin_active(),
endc = dof_handler.end();

for (; cell!=endc; ++cell)
{

We visit each cell in turn and assemble either a discontinuous or continuous element.

hp_fe_v.reinit(cell);
const FEValues<dim> &fe_v = hp_fe_v.get_present_fe_values();

ui_vi_matrix.reinit (cell->get_fe().dofs_per_cell,
cell->get_fe().dofs_per_cell);

cell_vector.reinit(cell->get_fe().dofs_per_cell);
cell_dof_indices.resize (cell->get_fe().dofs_per_cel l);
cell->get_dof_indices (cell_dof_indices);

if(cell_is_c(cell))
ad_equation.assemble_cell_term (fe_v,continuous,

ui_vi_matrix,

9.2. Commented Code 168

cell_vector);
else

ad_equation.assemble_cell_term (fe_v,discontinuous,
ui_vi_matrix,
cell_vector);

Calling distribute_local_to_global is more efficient than adding each local

matrix and right hand side to the mass matrix and system right hand side, even

though constraints is empty.

constraints.distribute_local_to_global (ui_vi_matrix ,
cell_vector,
cell_dof_indices,
system_matrix,
system_rhs);

Although we visit each cell once, if we were to loop over each face we would end up

visiting each (except for the boundary) twice. At each face we therefore determine

if the face is at the boundary, and if not we assemble only if the neighbour has a

higher index. However if the neighbour is continuous we must assemble here as we

do not ever consider the neighbours of continuous cells. This is more efficient than

reformulating the interior penalty method (9.2.2) as a sum over cells and visiting

each edge twice.

if (cell_is_c(cell)) continue;
for (unsigned int face_no=0;

face_no< GeometryInfo<dim>::faces_per_cell;
++face_no)

{

Case 1: Face at boundary.

if(cell->face(face_no)->at_boundary())
{

d_fe_face_v.reinit(cell, face_no);
ui_vi_matrix.reinit (cell->get_fe().dofs_per_cell,

cell->get_fe().dofs_per_cell);
cell_vector.reinit(cell->get_fe().dofs_per_cell);
ad_equation.assemble_boundary_term(d_fe_face_v,

ui_vi_matrix,
cell_vector);

constraints.distribute_local_to_global(ui_vi_matrix ,
cell_vector,
cell_dof_indices,
system_matrix,
system_rhs);

}

9.2. Commented Code 169

else
{

Case 2: Neighbour is discontinuous and has higher index.

typename hp:: DoFHandler<dim>::cell_iterator nbr
=cell->neighbor(face_no);

if(cell_is_d(nbr) && (cell->index() < nbr->index()))
{
const unsigned int nbr_face_no

=cell->neighbor_of_neighbor(face_no);
d_fe_face_v.reinit(cell, face_no);
d_fe_face_v_nbr.reinit(nbr, nbr_face_no);
unsigned int cell_dofs = cell->get_fe().dofs_per_cell;
unsigned int nbr_dofs = nbr->get_fe().dofs_per_cell;

We do not allow different polynomial degrees on neighbouring cells. This is not

possible with the current code but we add an Assert here to remind us if the code

is altered in future. The extension to variable polynomial degree is possible using

existing deal.ii capabilities.

Assert(cell_dofs==nbr_dofs,
ExcMessage("Cell dofs must match nbr dofs"));

ui_vi_matrix.reinit (cell_dofs,cell_dofs);
ui_ve_matrix.reinit (cell_dofs,nbr_dofs);
ue_vi_matrix.reinit (nbr_dofs,cell_dofs);
ue_ve_matrix.reinit (nbr_dofs,nbr_dofs);
ad_equation.assemble_face_term (d_fe_face_v,

d_fe_face_v_nbr,
ui_vi_matrix,
ue_vi_matrix,
ui_ve_matrix,
ue_ve_matrix);

nbr_dof_indices.resize (nbr_dofs);
nbr->get_dof_indices (nbr_dof_indices);
constraints.distribute_local_to_global(ui_vi_matrix ,

cell_dof_indices,
system_matrix);

constraints.distribute_local_to_global(ui_ve_matrix ,
nbr_dof_indices,
cell_dof_indices,
system_matrix);

constraints.distribute_local_to_global(ue_vi_matrix ,
cell_dof_indices,
nbr_dof_indices,
system_matrix);

constraints.distribute_local_to_global(ue_ve_matrix ,

9.2. Commented Code 170

nbr_dof_indices,
system_matrix);

}

Case 3: Neighbour is continuous.

else if(cell_is_c(nbr))
{

c_fe_v_nbr.reinit(nbr);
d_fe_face_v.reinit(cell, face_no);
unsigned int cell_dofs = cell->get_fe().dofs_per_cell;
unsigned int nbr_dofs = nbr->get_fe().dofs_per_cell;

ui_vi_matrix.reinit (cell_dofs,cell_dofs);
ui_ve_matrix.reinit (cell_dofs,nbr_dofs);
ue_vi_matrix.reinit (nbr_dofs,cell_dofs);
ue_ve_matrix.reinit (nbr_dofs,nbr_dofs);

ad_equation.assemble_interface_term(d_fe_face_v,
c_fe_v_nbr,
ui_vi_matrix,
ue_vi_matrix,
ui_ve_matrix,
ue_ve_matrix);

nbr_dof_indices.resize (nbr_dofs);
nbr->get_dof_indices (nbr_dof_indices);
constraints.distribute_local_to_global(ui_vi_matrix ,

cell_dof_indices,
system_matrix);

constraints.distribute_local_to_global(ui_ve_matrix ,
nbr_dof_indices,
cell_dof_indices,
system_matrix);

constraints.distribute_local_to_global(ue_vi_matrix ,
cell_dof_indices,
nbr_dof_indices,
system_matrix);

constraints.distribute_local_to_global(ue_ve_matrix ,
nbr_dof_indices,
system_matrix);

}
}

}
}

Finally we apply the boundary values to only the continuous part of the domain. For-

tunately deal.ii has the capability to interpolate then apply boundary_values ,

a ParsedFunction object, to the system_matrix and solution.

if(cdG_run)

9.2. Commented Code 171

{
std::map< unsigned int, double> bvs;
VectorTools::interpolate_boundary_values (dof_handler,

c_boundary_id,
boundary_values,
bvs);

MatrixTools::apply_boundary_values (bvs,
system_matrix,
cdG_solution,
system_rhs);

}
}

We use a direct solver to invert our matrix. deal.ii provides an interface

with the library UMFPACK for this purpose, as well as many alternative numerical

algorithms.

template <int dim>
void cdGMethod<dim>::solve(Vector<double> &solution)
{

SparseDirectUMFPACK direct_solver;
direct_solver.initialize (system_matrix);
direct_solver.vmult (solution, system_rhs);
constraints.distribute (solution);

}

Given an approximation we now have we wish to calculate the norms. This is

not difficult using either VectorTools or our own code (one of the few cases of

where this is advisable as the VectorTools norm calculations are very slow as they

make no assumptions. We use skipdGnorm and skipcdGnorm in the parameter file

to avoid calculating the norms and accelerate the computation for, e.g., testing).

We therefore present a reduced example of the calculation showing the difference

between the true solution and approximation in the L2 norm, and the approximation

jump norm.

template <int dim>
void cdGMethod<dim>::calculate_norms(

hp:: DoFHandler<dim> &dof_handler,
Vector<double> &solution)

{
Vector<double> L2norms;

We pick a higher quadrature formula here in order to better resolve the layer in the

true solution.

9.2. Commented Code 172

hp:: QCollection<dim> q_collection_int;
q_collection_int.push_back(QGauss<dim>(4));
q_collection_int.push_back(QGauss<dim>(4));

The MaskFunction is required to switch between dG and cG regions. It is described

in detail later.

MaskFunction<dim> mask_function(2,dof_handler.get_tr ia());
VectorTools::integrate_difference (dof_handler,

solution,
true_solution,
L2norms,
q_collection,
VectorTools::L2_norm,
&mask_function);

The Vector L2norms is a cellwise list of the L2 norms. We now process it to a global

norm L2(Ω). The calculation of the jump norms is described with the ADEquation

class.

L2_norm = std::sqrt(L2norms.l2_norm());
ad_equation.calculate_L2_jump_norms(dof_handler,

q_collection_int,
mapping_collection,
face_quadrature,
solution,
false,
L2_jump_norm,
L2norms);

}

We now output the solution in .vtk format, as well as any norms we have calcu-

lated. As we have two FESystem objects in fe_collection we get two solutions

which gives the distinctive appearance as described in Section 9.1.

template <int dim>
void cdGMethod<dim>::output_results(

hp:: DoFHandler<dim> &dof_handler,
Vector<double> &solution)

{
std::string filename;
std::string extension;
if(!cdG_run) extension = "dG" ;
else extension = "cdG" ;
std::string reftext

= boost::lexical_cast<std::string>(refinement);

std::vector<std::string> solution_names;
solution_names.push_back ("uc");

9.2. Commented Code 173

solution_names.push_back ("ud");
std::vector<

DataComponentInterpretation::DataComponentInterpret ation>
data_component_interpretation;

data_component_interpretation.push_back
(DataComponentInterpretation::component_is_scalar);

data_component_interpretation.push_back
(DataComponentInterpretation::component_is_scalar);

DataOut<dim,hp:: DoFHandler<dim> > data_out_vtk;
data_out_vtk.attach_dof_handler (dof_handler);
data_out_vtk.add_data_vector (solution, solution_name s,

DataOut<dim,hp:: DoFHandler<dim> >::type_dof_data,
data_component_interpretation);

data_out_vtk.build_patches ();

filename = "solution" +extension+ "ref" +reftext+ ".vtk" ;
std::cout << " Writing solution to <"

<< filename << ">..." << std::endl;
std::ofstream solution_output (filename.c_str());
data_out_vtk.write_vtk (solution_output);
solution_output.close();

We also output the grid for cdG approximations with continuous edges coloured.

if(cdG_run)
{

filename = "grid" +extension+ "ref" +reftext+ ".eps" ;
std::cout << " Writing grid to <" << filename

<< ">..." << std::endl;
std::ofstream eps_grid_output (filename.c_str());

GridOut grid_out;
GridOutFlags::Eps<dim> eps_grid_flags;

eps_grid_flags.color_lines_on_user_flag = true;
eps_grid_flags.write_cell_numbers = false;
eps_grid_flags.write_cell_number_level = false;

grid_out.set_flags (eps_grid_flags);
grid_out.write_eps (triangulation, eps_grid_output);
eps_grid_output.close();

}

Finally output a table with any calculated norms, the number of degrees of freedom

used and the time taken to assemble and solve the problem.

TableHandler table;

table.add_value ("Norm" , std::string("$Lˆ2$"));
table.add_value ("Value" , L2_norm);
table.add_value ("Norm" , std::string("$Lˆ2$ jump"));

9.2. Commented Code 174

table.add_value ("Value" , std::sqrt(L2_jump_norm.l1_norm()));
double time;
if(!cdG_run) time = dG_time;
else time = cdG_time;
table.add_value ("Norm" , std::string("timer"));
table.add_value ("Value" , time);
table.add_value ("Norm" , std::string("dofs"));
table.add_value ("Value" , dof_handler.n_dofs());
table.set_precision("Value" , 4);
table.set_scientific("Value" , true);

filename = "table-" +extension+ "ref" +reftext+ ".txt" ;
std::cout << "Writing norms to <"

<< filename << ">..." << std::endl;

std::ofstream table_output_text(filename.c_str());
table.write_text(table_output_text);
table_output_text.close();

}

After each dG run we reinitialize the system_matrix , sparsity_pattern ,

constraints and system_rhs to be used again. Note that we do not destroy the

dof_handler as we will require this to compare the dG and cdG approximations

(for instance using an alternative implementation of integrate_difference).

template <int dim>
void cdGMethod<dim>::reset_system ()
{

constraints.clear();
sparsity_pattern.reinit(0,0,0);
system_matrix.clear ();
system_rhs.reinit(0);

}

The following routine manages the construction and solution for the approxi-

mations. As previously mentioned we always calculate both a discontinuous and

continuous solution. This is inefficient but no suitable format exists to save and

load an approximation including the DoFHandler.

template <int dim>
void cdGMethod<dim>::run ()
{

The Timer class allows us to measure time elapsed and simply interfaces with the

system clock of most unix systems.

Timer timer;

9.2. Commented Code 175

run_number=0;
cdG_run = false;

The grid need only be constructed once, but modified each time. The first time it

will automatically be set up for the dG approximation.

make_grid ();
modify_grid ();
setup_dofs (dG_dof_handler, dG_solution);

timer.start();
assemble_system (dG_dof_handler);
solve (dG_solution);
timer.stop();
std::cout << "Time for assemble and solve "

<< timer() << "s" << std::endl;
dG_time = timer();
std::cout << std::endl;
std::cout << "Calculating norms..." << std::endl;
prm.enter_subsection ("Run Options");
const bool skipdGnorm = prm.get_bool("Fast");
const bool skipcdGnorm = prm.get_bool("skipcdGNorm");

prm.leave_subsection ();
if(!skipdGnorm) calculate_norms (dG_dof_handler, dG_solu tion);
else std::cout << " skipping calculate as Fast==true..."

<<std::endl;
std::cout << "Output of results..." << std::endl;
output_results (dG_dof_handler, dG_solution);

This completes the calculation of the dG approximation. We reset the system and

advance the counters for the cdG approximation.

++run_number;
cdG_run = true;
std::cout << std::endl;
reset_system ();

As now cdG_run is true calling modify_grid prepares for a cdG approximation

based on the dG approximation.

modify_grid ();
setup_dofs (cdG_dof_handler, cdG_solution);

timer.restart();
assemble_system (cdG_dof_handler);
solve (cdG_solution);
timer.stop ();
std::cout << "Time for assemble and solve "

<< timer() << "s" << std::endl;
cdG_time = timer();

9.2. Commented Code 176

std::cout << std::endl;
std::cout << "Calculating norms..." << std::endl;
if(!skipcdGnorm) calculate_norms(cdG_dof_handler,

cdG_solution);
else

std::cout << "skipping calculate as skipcdGNorm==true..."
<< std::endl;

std::cout << "Output of results..." << std::endl;
output_results (cdG_dof_handler, cdG_solution);

}

The main routine simply reads the parameter file and passes the number of

refinement steps to attempt into run . The call to deallog.depth_console(0)

suppresses any internal deal.ii messages.

int main ()
{
try
{

deallog.depth_console (0);

ParameterHandler prm;
ParameterReader param(prm);
param.read_parameters("data.in");

prm.enter_subsection("Run Options");
const unsigned int ref_steps

= prm.get_integer("refinement steps");
prm.leave_subsection();

for(unsigned int i=0;i<ref_steps;++i)
{

std::cout << " ****************************** " <<std::endl;
std::cout << std::endl;
cdGMethod<DEAL_II_DIMENSION> cdg_method(prm,i);
cdg_method.run ();
std::cout << std::endl;

}
}
catch (std::exception &exc)
{

std::cerr << std::endl << std::endl
<< "--"
<< std::endl;

std::cerr << "Exception on processing: " << std::endl
<< exc.what() << std::endl
<< "Aborting!" << std::endl
<< "--"
<< std::endl;

9.2. Commented Code 177

return 1;
}
catch (...)
{

std::cerr << std::endl << std::endl
<< "--"
<< std::endl;

std::cerr << "Unknown exception!" << std::endl
<< "Aborting!" << std::endl
<< "--"
<< std::endl;

return 1;
}
return 0;

}

Class: ADEquation

The class ADEquation describes the interior penalty method for the advection-

diffusion-reaction equation (previous versions had no reaction, hence only AD) in-

cluding any coefficients. It also includes the calculation of the jumps of an approx-

imation, although for a more complicated example any norms should appear in a

separate class. Here the assembly and norms are declared at public scope so we

can access them from cdGMethod .

template <int dim>
class ADEquation
{
public:

ADEquation (ParameterHandler ¶m);
˜ADEquation() {};

//...Function prototypes for assembly omitted...
//...Function prototypes for norms omitted...

The coefficients are at private scope as we can take them locally from the param-

eter file passed to the constructor.

private:
ParameterHandler &prm;
Functions:: ParsedFunction<dim> rhs_function;
Functions:: ParsedFunction<dim> boundary_function;
Functions:: ParsedFunction<dim> beta_function;
Functions:: ParsedFunction<dim> divbeta_function;
Functions:: ParsedFunction<dim> reaction_function;

9.2. Commented Code 178

double epsilon,sigma;
signed int theta;

};

The main task of the constructor is to parse each function and make it available to

the class. Performing the task in this way is inefficient (as we could pass the already

parsed functions from the cdGMethod object) but it makes it easier to change to

other discretizations if the parameters are stored within the class using them.

template <int dim>
ADEquation<dim>::ADEquation (ParameterHandler ¶m)

:
prm(param),
rhs_function(1),
boundary_function(dim),
beta_function(dim),
divbeta_function(1)

{
prm.enter_subsection("Beta Data");

beta_function.parse_parameters(prm);
prm.leave_subsection();
prm.enter_subsection("divBeta Data");

divbeta_function.parse_parameters(prm);
prm.leave_subsection();
prm.enter_subsection("Boundary Data");

boundary_function.parse_parameters(prm);
prm.leave_subsection();
prm.enter_subsection("Right Hand Side Data");

rhs_function.parse_parameters(prm);
prm.leave_subsection();
prm.enter_subsection("Reaction Data");

reaction_function.parse_parameters(prm);
prm.leave_subsection();
prm.enter_subsection("Equation Data");

epsilon = prm.get_double("epsilon");
theta = prm.get_integer("theta");
sigma = prm.get_double("sigma");

prm.leave_subsection();
}

The assemble terms are called from cdGMethod::assemble_system and so

only assemble on one cell or face. For the cell terms the switch between continuous

and discontinuous assembly is controlled by the passed values of fe_v and the

extractor. If the two do not match an exception will be thrown when accessing, e.g.,

fe_v[extractor].gradient . The FEValues object is already initialized with the

quadrature points on the cell (and other values as determined by UpdateFlags in

9.2. Commented Code 179

cdGMethod::assemble_system).

template <int dim>
void ADEquation<dim>::assemble_cell_term(

const FEValues<dim>& fe_v,
const FEValuesExtractors::Scalar extractor,
FullMatrix<double> &ui_vi_matrix,
Vector<double> &cell_vector) const

{

It makes for readable code (but is slightly less efficient) if we populate vectors with

the values of the coefficients and Jacobians at each quadrature point.

const std::vector< double> &JxW_vec = fe_v.get_JxW_values ();
std::vector< Vector<double> > beta_vec(

fe_v.n_quadrature_points, Vector<double>(dim));
std::vector< double> divbeta_vec (fe_v.n_quadrature_points);
std::vector< double> reaction_vec (fe_v.n_quadrature_points);
std::vector< double> rhs_vec (fe_v.n_quadrature_points);

The ParsedFunction inherits vector_value_list from the Function class.

This is more efficient than calling vector_value for each quadrature point.

beta_function.vector_value_list (fe_v.get_quadrature _points(),
beta_vec);

divbeta_function.value_list(fe_v.get_quadrature_poi nts(),
divbeta_vec);

reaction_function.value_list(fe_v.get_quadrature_po ints(),
reaction_vec);

rhs_function.value_list (fe_v.get_quadrature_points(),
rhs_vec);

We now loop over each quadrature point on the cell.

for (unsigned int point=0;
point<fe_v.n_quadrature_points;
++point)

{
const double JxW = JxW_vec[point];

We copy beta from a std::vector to a Point. This is because ParsedFunction

does not support Point but it is easier to work with, in particular as * is overloaded

correctly.

Point<dim> beta;
for(unsigned int i=0;i<dim;++i) beta(i) =beta_vec[point](i);
const double divbeta = divbeta_vec[point];
const double reaction = reaction_vec[point];
const double rhs = rhs_vec[point];

9.2. Commented Code 180

We now loop over each degree of freedom and assemble its contribution for this

quadrature point. . .

for (unsigned int i=0; i<fe_v.dofs_per_cell; ++i)
{
for (unsigned int j=0; j<fe_v.dofs_per_cell; ++j)
{

. . . first for the diffusion term
∫

E
ε∇hu · ∇hv dx. . .

ui_vi_matrix(i,j) +=
epsilon * fe_v[extractor].gradient(i,point) *
fe_v[extractor].gradient(j,point) * JxW;

. . . then the advection terms
∫

E
−(b · ∇hv)u− (∇h · b)uv dx. . .

ui_vi_matrix(i,j) -=
(beta * fe_v[extractor].gradient(i,point)) *
fe_v[extractor].value(j,point) * JxW;

ui_vi_matrix(i,j) -=
divbeta * fe_v[extractor].value(j,point) *
fe_v[extractor].value(i,point) * JxW;

. . . and finally the reaction term
∫

E
cuv dx and right hand side

∫

E
fv dx.

ui_vi_matrix(i,j) +=
reaction * fe_v[extractor].value(j,point) *
fe_v[extractor].value(i,point) * JxW;

}
cell_vector(i) += rhs * fe_v[extractor].value(i,point) * JxW;

}
}

}

Now we assemble faces lying in ΓdG \J . Faces lying on the continuous boundary

are covered by the boundary conditions. Even though we are now on a face, the

construction is the same as on a cell. This is because FEFaceValues and FEValues

are both inherit from the general class FEValuesBase .

template <int dim>
void ADEquation<dim>::assemble_boundary_term(

const FEFaceValues<dim>& fe_v,
FullMatrix<double> & ui_vi_matrix,
Vector<double> & cell_vector) const

{
const std::vector< double> &JxW_vec = fe_v.get_JxW_values ();
const std::vector< Point<dim> > &normals

= fe_v.get_normal_vectors ();
std::vector< Vector<double> > beta_vec (

fe_v.n_quadrature_points, Vector<double>(dim));

9.2. Commented Code 181

std::vector< Vector<double> > g_vec(fe_v.n_quadrature_points,
Vector<double>(dim));

beta_function.vector_value_list (fe_v.get_quadrature _points(),
beta_vec);

boundary_function.vector_value_list
(fe_v.get_quadrature_points(), g_vec);

const double h
= std::sqrt(std::pow(fe_v.get_cell()->diameter(),2.) /2.);

double esbyh = (epsilon * sigma)/h;

The cell must be discontinuous as we do not assemble boundary terms for continuous

cells. As NOTHING_DGis not at this scope we have to use 1.

const FEValuesExtractors::Scalar discontinuous(1);
for (unsigned int point=0;

point<fe_v.n_quadrature_points;
++point)

{
const double JxW = JxW_vec[point];
const Point<dim> n = normals[point];
const double g = g_vec[point](0);
Point<dim> beta;
for(unsigned int i=0;i<dim;++i) beta(i) =beta_vec[point](i);

First the diffusion terms
∫

e
−ε{{∇hu}} · JvK − ϑε{{∇hv}} · JuK + εσ/hJuK · JvK ds. . .

for (unsigned int i=0; i<fe_v.dofs_per_cell; ++i)
{
for (unsigned int j=0; j<fe_v.dofs_per_cell; ++j)
{

ui_vi_matrix(i,j) -= epsilon *
fe_v[discontinuous].gradient(j,point) *
(fe_v[discontinuous].value(i,point) * n) *
JxW;

ui_vi_matrix(i,j) -= theta * epsilon *
(fe_v[discontinuous].value(j,point) * n) *
fe_v[discontinuous].gradient(i,point) *
JxW;

ui_vi_matrix(i,j) += esbyh *
fe_v[discontinuous].value(j,point) *
fe_v[discontinuous].value(i,point) *
JxW;

}

. . . and the right hand side terms
∫

e
ϑε∇hvg + εσ/hvg ds.

cell_vector(i) -= theta * epsilon *
fe_v[discontinuous].gradient(i,point) * n*
g* JxW;

cell_vector(i) += esbyh *

9.2. Commented Code 182

fe_v[discontinuous].value(i,point) * g

* JxW;
}

The advection terms are a little trickier as we have a different assembly for inflow

and outflow boundaries.

const double beta_n=beta * n;
if (beta_n>0)
for (unsigned int i=0; i<fe_v.dofs_per_cell; ++i)
for (unsigned int j=0; j<fe_v.dofs_per_cell; ++j)

We assemble the outflow boundary
∫

e
b · nuv ds.

ui_vi_matrix(i,j) += beta_n *
fe_v[discontinuous].value(j,point) *
fe_v[discontinuous].value(i,point) *
JxW;

else
for (unsigned int i=0; i<fe_v.dofs_per_cell; ++i)

We assemble the inflow right hand side
∫

e
(b · n)vg ds.

cell_vector(i) -= beta_n *
g *
fe_v[discontinuous].value(i,point) *
JxW;

}
}

For a dG face in Eo
h \ J there are for each term four different assembly matrices

corresponding to the coupling of the degrees of freedom on each cell and the coupling

between the cells. If we were to visit each face twice, once from each side, we would

only require two of these per visit.

template <int dim>
void
ADEquation<dim>::assemble_face_term(

const FEFaceValuesBase<dim>& fe_v,
const FEFaceValuesBase<dim>& fe_v_nbr,
FullMatrix<double> &ui_vi_matrix,
FullMatrix<double> &ue_vi_matrix,
FullMatrix<double> &ui_ve_matrix,
FullMatrix<double> &ue_ve_matrix) const

{
const std::vector< double> &JxW_vec = fe_v.get_JxW_values ();
const std::vector< Point<dim> > &normals

= fe_v.get_normal_vectors ();
std::vector< Vector<double> > beta_vec (

fe_v.n_quadrature_points, Vector<double>(dim));

9.2. Commented Code 183

beta_function.vector_value_list (fe_v.get_quadrature _points(),
beta_vec);

const double h
= std::sqrt(std::pow(fe_v.get_cell()->diameter(),2.) /2.);

double esbyh = (epsilon * sigma)/h;
const FEValuesExtractors::Scalar discontinuous(1);
for (unsigned int point=0;

point<fe_v.n_quadrature_points;
++point)

{
const double JxW = JxW_vec[point];
const Point<dim> n = normals[point];
Point<dim> beta;
for(unsigned int i=0;i<dim;++i) beta(i) =beta_vec[point](i);
for (unsigned int i=0; i<fe_v.dofs_per_cell; ++i)
{
for (unsigned int j=0; j<fe_v.dofs_per_cell; ++j)
{

First assemble the diffusion terms on each cell. . .

ui_vi_matrix(i,j) -= 0.5 * epsilon *
(fe_v[discontinuous].gradient(j,point) * n) *
fe_v[discontinuous].value(i,point) *
JxW;

ui_vi_matrix(i,j) -= 0.5 * epsilon * theta *
(fe_v[discontinuous].gradient(i,point) * n) *
fe_v[discontinuous].value(j,point) *
JxW;

ui_vi_matrix(i,j) += esbyh *
fe_v[discontinuous].value(j,point) *
fe_v[discontinuous].value(i,point) *
JxW;

. . . then between this cell and the neighbour. . .

ui_ve_matrix(i,j) += 0.5 * epsilon *
(fe_v[discontinuous].gradient(j,point) * n) *
fe_v_nbr[discontinuous].value(i,point) *
JxW;

ui_ve_matrix(i,j) -= 0.5 * epsilon * theta *
(fe_v_nbr[discontinuous].gradient(i,point) * n) *
fe_v[discontinuous].value(j,point) *
JxW;

ui_ve_matrix(i,j) -= esbyh *
fe_v_nbr[discontinuous].value(i,point) *
fe_v[discontinuous].value(j,point) *
JxW;

9.2. Commented Code 184

. . . then between the neighbour and this cell. . .

ue_vi_matrix(i,j) += 0.5 * epsilon * theta *
(fe_v[discontinuous].gradient(i,point) * n) *
fe_v_nbr[discontinuous].value(j,point) *
JxW;

ue_vi_matrix(i,j) -= 0.5 * epsilon *
(fe_v_nbr[discontinuous].gradient(j,point) * n) *
fe_v[discontinuous].value(i,point) *
JxW;

ue_vi_matrix(i,j) -= esbyh *
fe_v[discontinuous].value(i,point) *
fe_v_nbr[discontinuous].value(j,point) *
JxW;

. . . then on the neighbour cell.

ue_ve_matrix(i,j) += 0.5 * epsilon *
(fe_v_nbr[discontinuous].gradient(j,point) * n) *
fe_v_nbr[discontinuous].value(i,point) *
JxW;

ue_ve_matrix(i,j) += 0.5 * epsilon * theta *
(fe_v_nbr[discontinuous].gradient(i,point) * n) *
fe_v_nbr[discontinuous].value(j,point) *
JxW;

ue_ve_matrix(i,j) += esbyh *
fe_v_nbr[discontinuous].value(i,point) *
fe_v_nbr[discontinuous].value(j,point) *
JxW;

}
}

Now we do the same for the advection terms with the added complication of the

direction of flow.

const double beta_n = beta * n;
if (beta_n>0)
{
for (unsigned int i=0; i<fe_v.dofs_per_cell; ++i)
{
for (unsigned int j=0; j<fe_v.dofs_per_cell; ++j)
{

ui_vi_matrix(i,j) += beta_n *
fe_v[discontinuous].value(j,point) *
fe_v[discontinuous].value(i,point) *
JxW;

ui_ve_matrix(i,j) -= beta_n *
fe_v[discontinuous].value(j,point) *
fe_v_nbr[discontinuous].value(i,point) *
JxW;

}

9.2. Commented Code 185

}
}
else
{

Note that the signs do not change as we have b · n+ not b · n−.

for (unsigned int i=0; i<fe_v.dofs_per_cell; ++i)
{
for (unsigned int j=0; j<fe_v_nbr.dofs_per_cell; ++j)
{

ue_vi_matrix(i,j) += beta_n *
fe_v_nbr[discontinuous].value(j,point) *
fe_v[discontinuous].value(i,point) *
JxW;

ue_ve_matrix(i,j) -= beta_n *
fe_v_nbr[discontinuous].value(j,point) *
fe_v_nbr[discontinuous].value(i,point) *
JxW;

}
}

}
}

}

To assemble terms on the interface J requires a separate routine as the continuous

FEValues object will return an exception if called on a face (or alternatively a

FEFaceValues object cannot be initialized for a continuous element). We must

therefore manually find the location of each quadrature point on the unit cell and

extract the shape function values/gradients directly.

template <int dim>
void ADEquation<dim>::assemble_interface_term (

const FEFaceValuesBase<dim>& fe_v,
const FEValuesBase<dim>& fe_v_nbr,
FullMatrix<double> &ui_vi_matrix,
FullMatrix<double> &ue_vi_matrix,
FullMatrix<double> &ui_ve_matrix,
FullMatrix<double> &ue_ve_matrix) const

{
const std::vector< double> &JxW_vec = fe_v.get_JxW_values ();
const std::vector< Point<dim> > &normals

= fe_v.get_normal_vectors ();
std::vector< Vector<double> > beta_vec (

fe_v.n_quadrature_points, Vector<double>(dim));

Get the quadrature points in real space and transform them to the unit cell.

std::vector< Point<dim> > q_points

9.2. Commented Code 186

= fe_v.get_quadrature_points();
for(unsigned int i=0;i<q_points.size();++i)

q_points[i]
= fe_v_nbr.get_mapping().transform_real_to_unit_cell

(fe_v_nbr.get_cell(),q_points[i]);

beta_function.vector_value_list (fe_v.get_quadrature _points(),
beta_vec);

const double h
= std::sqrt(std::pow(fe_v.get_cell()->diameter(),2.) /2.);

const double sigmabyh = sigma/h;
const FEValuesExtractors::Scalar discontinuous(1);

for (unsigned int point=0;
point<fe_v.n_quadrature_points;
++point)

{
const double JxW = JxW_vec[point];
const Point<dim> n = normals[point];
const Point<dim> pt = q_points[point];
Point<dim> beta;
for(unsigned int i=0;i<dim;++i) beta(i) =beta_vec[point](i);

We still have four different routines for the various couplings inside and between

cells. Note that on continuous elements fe_v[discontinuous].value is replaced

by fe_v.get_fe().shape_value .

for (unsigned int i=0; i<fe_v.dofs_per_cell; ++i)
{
for (unsigned int j=0; j<fe_v.dofs_per_cell; ++j)
{

ui_vi_matrix(i,j) -= 0.5 * epsilon *
(fe_v[discontinuous].gradient(j,point) * n) *
fe_v[discontinuous].value(i,point) *
JxW;

ui_vi_matrix(i,j) -= 0.5 * epsilon * theta *
(fe_v[discontinuous].gradient(i,point) * n) *
fe_v[discontinuous].value(j,point) *
JxW;

ui_vi_matrix(i,j) += epsilon * sigmabyh *
fe_v[discontinuous].value(j,point) *
fe_v[discontinuous].value(i,point) *
JxW;

ui_ve_matrix(i,j) += 0.5 * epsilon *
(fe_v[discontinuous].gradient(j,point) * n) *
fe_v_nbr.get_fe().shape_value(i,pt) *
JxW;

ui_ve_matrix(i,j) -= 0.5 * epsilon * theta *
(fe_v_nbr.get_fe().shape_grad(i,pt) * n) *

9.2. Commented Code 187

fe_v[discontinuous].value(j,point) *
JxW;

ui_ve_matrix(i,j) -= epsilon * sigmabyh *
fe_v_nbr.get_fe().shape_value(i,pt) *
fe_v[discontinuous].value(j,point) *
JxW;

ue_vi_matrix(i,j) += 0.5 * epsilon * theta *
(fe_v[discontinuous].gradient(i,point) * n) *
fe_v_nbr.get_fe().shape_value(j,pt) *
JxW;

ue_vi_matrix(i,j) -= 0.5 * epsilon *
(fe_v_nbr.get_fe().shape_grad(j,pt) * n) *
fe_v[discontinuous].value(i,point) *
JxW;

ue_vi_matrix(i,j) -= epsilon * sigmabyh *
fe_v[discontinuous].value(i,point) *
fe_v_nbr.get_fe().shape_value(j,pt) *
JxW;

ue_ve_matrix(i,j) += 0.5 * epsilon *
(fe_v_nbr.get_fe().shape_grad(j,pt) * n) *
fe_v_nbr.get_fe().shape_value(i,pt) *
JxW;

ue_ve_matrix(i,j) += 0.5 * epsilon * theta *
(fe_v_nbr.get_fe().shape_grad(i,pt) * n) *
fe_v_nbr.get_fe().shape_value(j,pt) *
JxW;

ue_ve_matrix(i,j) += epsilon * sigmabyh *
fe_v_nbr.get_fe().shape_value(i,pt) *
fe_v_nbr.get_fe().shape_value(j,pt) *
JxW;

}
}

For the advection terms we must again consider the direction of flow.

const double beta_n = beta * n;
if (beta_n>0)
{
for (unsigned int i=0; i<fe_v.dofs_per_cell; ++i)
{
for (unsigned int j=0; j<fe_v.dofs_per_cell; ++j)
{

ui_vi_matrix(i,j) += beta_n *
fe_v[discontinuous].value(j,point) *
fe_v[discontinuous].value(i,point) *
JxW;

ui_ve_matrix(i,j) -= beta_n *
fe_v[discontinuous].value(j,point) *
fe_v_nbr.get_fe().shape_value(i,pt) *
JxW;

9.2. Commented Code 188

}
}

}
else
{
for (unsigned int i=0; i<fe_v.dofs_per_cell; ++i)
{
for (unsigned int j=0; j<fe_v_nbr.dofs_per_cell; ++j)
{

ue_vi_matrix(i,j) += beta_n *
fe_v_nbr.get_fe().shape_value(j,pt) *
fe_v[discontinuous].value(i,point) *
JxW;

ue_ve_matrix(i,j) -= beta_n *
fe_v_nbr.get_fe().shape_value(j,pt) *
fe_v_nbr.get_fe().shape_value(i,pt) *
JxW;

}
}

}
}

}

Deal.ii does not have a function to calculate the jumps of a discontinuous

function. The following function performs this task. Extensions to weighted L2

norms for, e.g., non constant b, are reasonably simple.

template <int dim>
void ADEquation<dim>::calculate_L2_jump_norms(

hp:: DoFHandler<dim> &dof_handler,
hp:: QCollection<dim> &q_collection,
hp:: MappingCollection<dim> &mapping_collection,
const QGauss<dim-1> &face_quadrature,
const Vector<double> &solution,
Vector<double> &norms) const

{
norms.reinit (dof_handler.get_tria().n_faces(),0.);
norms_with_sigma.reinit (dof_handler.get_tria().n_fa ces(),0.);

Each face has two values corresponding to the CG_NOTHINGand NOTHING_DGcom-

ponents. We will have to make sure that we pick the correct one on each face.

std::vector< Vector<double> > face_values;
std::vector< Vector<double> > nbr_face_values;
std::vector< double> g;
std::vector< Point<dim> > normals;
std::vector< double> weighting;
std::vector< Vector<double> > beta_vec;
double jumpterm = 0.;

9.2. Commented Code 189

The procedure is much like assembly (hence why it is included in this class). Now

however we do not need the function gradients.

const UpdateFlags cell_update_flags = update_values
| update_quadrature_points
| update_JxW_values;

const UpdateFlags face_update_flags = update_values
| update_quadrature_points
| update_JxW_values
| update_normal_vectors;

const UpdateFlags nbr_face_update_flags = update_values
| update_quadrature_points
| update_JxW_values
| update_normal_vectors;

hp:: FEValues<dim> hp_fe_v (dof_handler.get_fe(),
q_collection,
cell_update_flags);

FEFaceValues<dim> d_fe_face_v(dof_handler.get_fe()[1],
face_quadrature,
face_update_flags);

FEFaceValues<dim> d_fe_face_v_nbr(dof_handler.get_fe()[1],
face_quadrature,
nbr_face_update_flags);

FEValues<dim> c_fe_v_nbr (dof_handler.get_fe()[0],
q_collection[0],
cell_update_flags);

typename hp:: DoFHandler<dim>::active_cell_iterator
cell = dof_handler.begin_active(),
endc = dof_handler.end();

for (; cell!=endc; ++cell)
{

hp_fe_v.reinit (cell);
const unsigned int active_index = cell->active_fe_index();

If the cell is continuous we will either catch it from its dG neighbour or, if its

neighbour is continuous also, there will be no jump.

if(active_index==0) continue;
for (unsigned int face_no=0;

face_no< GeometryInfo<dim>::faces_per_cell; ++face_no)
{
const unsigned int face_index

= cell->face(face_no)->index();

At the boundary the jump is between the boundary conditions and the value of the

approximation.

9.2. Commented Code 190

if(cell->at_boundary(face_no))
{

d_fe_face_v.reinit(cell,face_no);
const std::vector< double> &JxW

= d_fe_face_v.get_JxW_values ();
face_values.resize (d_fe_face_v.n_quadrature_points,

Vector<double>(2));
d_fe_face_v.get_function_values (solution, face_value s);
g.resize(d_fe_face_v.n_quadrature_points);
boundary_function.value_list (

d_fe_face_v.get_quadrature_points(),g);

for (unsigned int p=0;
p<d_fe_face_v.n_quadrature_points;
++p)

{

Here we know we have a discontinuous cell, so we can pick out the NOTHING_DG

part (i.e., that part in position 1).

jumpterm = std::pow(face_values[p](1)-g[p],2.0);
norms(face_index) += JxW[p] * jumpterm;

}
}
else

We are on a discontinuous cell and need to act differently if our neighbour is con-

tinuous or discontinuous.

{
typename hp:: DoFHandler<dim>::cell_iterator nbr

=cell->neighbor(face_no);
const unsigned int nbr_active_index

= nbr->active_fe_index();
const unsigned int nbr_face_no

=cell->neighbor_of_neighbor(face_no);

if(active_index==1 and nbr_active_index==1
and nbr->index() > cell->index())

{

The neighbour is also discontinuous.

d_fe_face_v.reinit(cell,face_no);
d_fe_face_v_nbr.reinit(nbr,nbr_face_no);
const std::vector< double> &JxW

= d_fe_face_v.get_JxW_values ();
face_values.resize(d_fe_face_v.n_quadrature_points,

Vector<double>(2));
Assert(d_fe_face_v_nbr.n_quadrature_points

9.2. Commented Code 191

==d_fe_face_v.n_quadrature_points,
ExcNotImplemented());

nbr_face_values.resize
(d_fe_face_v_nbr.n_quadrature_points,
Vector<double>(2));

d_fe_face_v.get_function_values(solution,face_value s);
d_fe_face_v_nbr.get_function_values(solution,

nbr_face_values);

for (unsigned int p=0;
p<d_fe_face_v.n_quadrature_points;
++p)

{
jumpterm = std::pow(face_values[p](1),2.0)

+std::pow(nbr_face_values[p](1),2.0)
-2. * face_values[p](1) * nbr_face_values[p](1);

norms(face_index) += JxW[p] * jumpterm;
}

}
else if(active_index==1 and nbr_active_index==0)
{

The neighbour cell is continuous. We need to pick out the values “by hand” as we

did in assemble_interface_term .

d_fe_face_v.reinit(cell,face_no);
c_fe_v_nbr.reinit(nbr);
const std::vector< double> &JxW

= d_fe_face_v.get_JxW_values ();
face_values.resize(d_fe_face_v.n_quadrature_points,

Vector<double>(2));
d_fe_face_v.get_function_values(solution,face_value s);
std::vector< Point<dim> > q_points

= d_fe_face_v.get_quadrature_points();
for (unsigned int p=0;

p<d_fe_face_v.n_quadrature_points;
++p)

{
VectorTools::point_value(mapping_collection,

dof_handler,
solution,
q_points[p],
ptval);

Unfortunately VectorTools::point_value may not return the correct value on

the interface of continuous and discontinuous edges. We must therefore check which

entry is non-zero.

double nbr_face_value;

9.2. Commented Code 192

if(ptval(0)==0) nbr_face_value = ptval(1);
else nbr_face_value = ptval(0);

jumpterm = std::pow(face_values[p](1),2.0)
+std::pow(nbr_face_value,2.0)
-2. * face_values[p](1) * nbr_face_value;

norms(face_index) += JxW[p] * jumpterm;
}

}

The final logical combination is a discontinuous neighbour with a lower index, which

we will visit when we are on the neighbouring cell, and so we do nothing.

else {\\...empty... }
}

}
}

}

Finally we have to instruct the compiler to instantiate the class in two dimensions

as dim is used explicitly in the class.

template class ADEquation<2>;

Class: MaskFunction

This function acts as a component mask, hiding either component of an approxima-

tion from the integration, i.e., so comparison to the true solution is done with the

cG part on the continuous region and the dG part on the discontinuous region.

The class declaration shows the inheritance of Function. Therefore we only

need to overload the vector_value call.

template <int dim>
class MaskFunction : public Function<dim>
{
public:

MaskFunction (unsigned int components,
const Triangulation<dim> &tria);

virtual void vector_value (const Point<dim> &p,
Vector<double> &value) const;

private:
Triangulation<dim> triangulation;

};

9.2. Commented Code 193

We must copy the triangulation as vector_value needs to know about it but

it cannot be passed directly (as it must match the prototype in Function).

template <int dim>
MaskFunction<dim>::MaskFunction(unsigned int components,

const Triangulation<dim> &tria)
:
Function<dim> (components)

{
triangulation.copy_triangulation(tria);

}

The vector_value function simply works out whether the passed point is on

a continuous or discontinuous cell and sets value to be 1 or 0 respectively. When a

MaskFunction object is passed into VectorTools::integrate_difference the

value will be multiplied by the integration at each point.

template <int dim>
void MaskFunction<dim>::vector_value(const Point<dim> &p,

Vector<double> &value) const
{

First find the active cell to which this point belongs.

std::pair< typename Triangulation<dim>::active_cell_iterator,
Point<dim> > cell;

cell
= GridTools::find_active_cell_around_point(MappingQ1<dim>(),

triangulation,
p);

Assert(this->n_components==2,ExcNotImplemented());
value.reinit(this->n_components);
if(cell.first->material_id() == ’c’)
{

value(0) = 1;
value(1) = 0;

}
else if (cell.first->material_id() == ’d’)
{

value(0) = 0;
value(1) = 1;

}
else
{

std::cout << "Unknown material_id in MaskFunction"
<<std::endl;

Assert(false, ExcNotImplemented());
}

}

9.3. Parameter File 194

As the dimension dim is used we also have to instruct the compiler to instantiate

the two dimensional case.

template class MaskFunction<2>;

9.3 Parameter File

Here we include an example of a parameter file for Example 9.1.1. As explained

previously Boundary Data and True Solution have to have two identical com-

ponents to interface with fe_collection .

Listing of Parameters

subsection Beta Data

set Function constants = pi=3.141592
set Function expression = 1;1
set Variable names = x,y # default: x,y,t

end

subsection Boundary Data
set Function constants = e=1e-4
set Function expression = 0;0
set Variable names = x,y # default: x,y,t

end

subsection Equation Data
Diffusion coefficient
set epsilon = 1e-4 # default: 0.001
Penalty parameter
set sigma = 10.0
Switch between Interior Penalty types
set theta = -1 # default: 1
Domain maximum x
set xmax = 1.0
Domain minimum x
set xmin = 0.0
Domain maximum y
set ymax = 1.0
Domain minimum y
set ymin = 0.0

end

subsection Reaction Data
set Function constants =
set Function expression = 0.0
set Variable names = x,y,t

end

subsection Right Hand Side Data

9.3. Parameter File 195

set Function constants = e=1e-4
set Function expression = x+y-(exp(-1/e)-exp((x-1)/e))/ (1-exp(-1/e))

- (exp(-1/e)-exp((y-1)/e))/(1-exp(-1/e)) # default: 0
set Variable names = x,y # default: x,y,t

end

subsection Run Options
If true do not calculate the dG norms
set Fast = false
L2 jump tolerance of dG solution
set L2 jump tolerance = 0.001 # default: 0.0001
Number of refinements of basic grid
set initial refinement = 4 # default: 3
print parameters at the start of the run?
set print parameters = false
Number of refinement iterations
set refinement steps = 1
If true we do not calculate the cdG norms
set skipcdGNorm = false
Is the true solution present?
set true present = true # default: true

end

subsection True solution
set Function constants = e=1e-4
set Function expression = (x-((exp(-1/e)-exp((x-1)/e))/ (1-exp(-1/e)))

) * (y- ((exp(-1/e)-exp((y-1)/e))/(1-exp(-1/e)))) ; (x-((e xp(-1/e)-
exp((x-1)/e))/(1-exp(-1/e)))) * (y- ((exp(-1/e)-exp((y-1)/e))/(1-
exp(-1/e)))) # default: 0

set Variable names = x,y # default: x,y,t
end

subsection divBeta Data
set Function constants =
set Function expression = 0
set Variable names = x,y # default: x,y,t

end

**************** END OF PARAMETERS****************

Chapter 10

Summary

Here we summarise our analysis, paying particular attention to the objectives (O1)-

(O3) as presented in Chapter 1, Section 1.2.

In Chapter 3 we presented a modified bilinear form which allowed us to show a

stability result for the cdG method for singularly perturbed finite element problems.

To do so we made several assumptions about the coefficients of the problem and

splitting of the triangulation into continuous and discontinuous regions, in particular

that the flow was of a minimum strength and strictly from TcG to TdG. These

assumptions were sufficient to demonstrate that stability can be achieved using

considerably fewer degrees of freedom than required for approximations using the

interior penalty dG finite element method, cf., (O1).

In Chapters 5 and 6 we studied the equations of incompressible miscible dis-

placement, firstly in the time dependent case and then, for weighted spaces, in the

stationary case. Reliable a posteriori error estimators were shown for the contin-

uous time RT-dG finite element approximation (O2). As discussed, the regularity

required to generate such an estimator is higher than the regularity that can be

guaranteed in many industrial applications. We therefore continued our study of

Objective (O2) by presenting abstract analysis for a posteriori error estimators for

coupled problems. By simplifying the problem of interest to the stationary case,

and simplifying our finite element method by using continuous elements to approxi-

mate both the pressure and concentration we showed how an a posteriori estimator

could be constructed if both pressure and concentration belonged to W 1,∞(Ω). This

196

Chapter 10. Summary 197

motivated the discussion of weighted spaces. We showed that by making some (rea-

sonable) assumptions on the solution of a stationary miscible displacement problem,

and by using properties of the weighted spaces, we could outline an a posteriori er-

ror estimator in cases where the gradient of the pressure and concentration are

not bounded. The extension of the application of weighted spaces to discontinuous

methods and time dependent methods (for the coupled problem) remains open.

In Part III we considered the practical application of the continuous discontinu-

ous Galerkin method, and in doing so extended the application to the equations of

incompressible miscible displacement (O3). By locally super penalizing the jumps in

the discontinuous method we showed convergence to the cdG method (or cG method

by penalizing all jumps). This approach generalizes analysis already present in the

literature and provided a convenient way to further investigate the cdG method.

However a super penalized method has the same number of degrees of freedom as a

dG method. We therefore in Chapter 8 demonstrated that without a priori knowl-

edge of the solution to the advection diffusion reaction equation we can still achieve

a reduction in the required number of degrees of freedom for a reasonable approxi-

mation. Extension of this approach to the IMD equations (as opposed to using the

super penalty method) would be possible with some development with the deal.ii

library.

The work in Chapter 8 suggests that the assumptions used in Chapter 3 are

sufficient but not necessary to show stability. Generalisations of the stability proof,

or an inf-sup result for the cdG method, have not been possible to achieve in avail-

able time, but the author believes that with more study more general results are

achievable.

Glossary of Nomenclature

∇h Piecewise divergence operator. p.15

ρ Where b and c are the advection and reaction coefficients respectively,

c− 1
2
∇ · b > ρ . (2.1.6)

Bε Interior penalty bilinear form for the advection diffusion reaction equa-

tion. (2.2.6)

Bd Diffusion parts of Bε (similarly for IMD in (4.4.6)) (2.2.3)

Ba Advection parts of Bε . (2.2.4)

Br Reaction parts of Bε . (2.2.5)

S Penalty bilinear form . (7.1.2)

Bcq Bilinear form for convection, production and injection in IMD. .(7.3.2)

Balt
cq Bilinear form for convection, production and injection in IMD, alterna-

tive form . (4.4.8)

{{ · }} Average of discontinuous function . (1.3.6)

J · K Jump of discontinuous function . (1.3.6)

Clh(·) Clement interpolation operator . (5.1.7)

Os(·) Oswald interpolation operator . (8.2.4)

ΠRT
h (·) Raviart Thomas projection operator . p.58

SZh(·) Scott-Zhang projection operator . p.32

198

Glossary of Nomenclature 199

Lp(D) Lebesgue space order p on domain D . (1.3.1)

Wm,p(D) Sobolev space: Functions whose weak derivatives up to order m are in

Lp(D) . (1.3.2)

Hm(D) Equivalent to Wm,2(D) .p.6

Km
~a (Ω) The weighted Sobolev (Babuška-Kondratiev) space. (6.4.2)

Ω Domain . p.7

ΩT Domain in time, ΩT := (0, T]× Ω . p.7

Th Triangulation . (1.3.6)

Eh Mesh skeleton . (1.3.6)

Eo
h Internal mesh skeleton . (1.3.6)

Γ The union of elemental boundary edges . p.7

hE, he Diameter of cell E or edge e .p.7

h Maximum hE in Th . p.7

TcG, TdG Triangulation on the continuous or discontinuous region p.22

J The intersection of the continuous and discontinuous triangulations,

J := T cG ∩ T dG .p.22

EcG, EdG The continuous and discontinuous Galerkin skeletons (note EcG := Eh \
EdG so J is only in EdG) . p.22

ΓcG,ΓdG The intersection of Γ with T cG or T dG . p.22

VcG Continuous piecewise polynomial space . (2.1.8)

VdG Discontinuous piecewise polynomial space . (2.2.2)

VcdG Continuous-Discontinuous piecewise polynomial space (2.3.4)

Bibliography

[1] Deal.II : A finite element differential equations analysis library.

http://www.dealii.org/ .

[2] D. J. Acheson, Elementary Fluid Dynamics, Clarendon Press, Oxford,

3rd ed., 1990.

[3] R. A. Adams and J. J. Fournier, Sobolev Spaces, Elsevier, Oxford,

2nd ed., 2007.

[4] M. Ainsworth and J. Oden, A unified approach to a posteriori error esti-

mation using element residual methods, Numer. Math., 65 (1993), pp. 23–50.

[5] M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite

Element Analysis, Pure and Applied Mathematics, Wiley-Interscience, 2000.

[6] B. Ammann and V. Nistor, Weighted Sobolev spaces and regularity for

polyhedral domains, Comput. Method. Appl. M., 196 (2007), pp. 3650 – 3659.

[7] T. Apel and G. Lube, Anisotropic mesh refinement in stabilized Galerkin

methods, Numer. Math., 74 (1996), pp. 261–282.

[8] D. N. Arnold, An interior penalty finite element method with discontinuous

elements, SIAM J. Numer. Anal., 19 (1982), pp. 742–760.

[9] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, Unified

analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Nu-

mer. Anal., 39 (2001), pp. 1749–1779.

200

http://www.dealii.org/

Bibliography 201

[10] B. Ayuso and L. D. Marini, Discontinuous Galerkin methods for advection-

diffusion-reaction problems, SIAM J. Numer. Anal., 47 (2009), pp. 1391–1420.

[11] I. Babuska and M. Suri, The hp version of the finite element method

with quasiuniform meshes, RAIRO - Modélisation mathématique et analyse

numérique, 21 (1987), pp. 199–238.

[12] I. Babuška, The finite element method with penalty, Math. Comp., 72 (1973),

pp. 221–228.

[13] C. Bacuta, V. Nistor, and L. T. Zikatanov, Improving the rate of

convergence of high-order finite elements on polyhedra ii: Mesh refinements

and interpolation, Numer. Func. Anal. Opt., 28 (2007), pp. 775–824.

[14] G. Baker, Finite element methods for elliptic equations using nonconforming

elements, Math. Comp., 31 (1977), pp. 45–59.

[15] W. Bangerth, R. Hartmann, and G. Kanschat, Deal.II – A general

purpose object oriented finite element library, ACM. T. Math. Software, 33

(2007), pp. 24/1–24/27.

[16] W. Bangerth and G. Kanschat, Deal.II Differential Equations Anal-

ysis Library Technical Reference. http://www.dealii.org/ .

[17] R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic

partial differential equations, Math. Comput., 44 (1985), pp. 283–301.

[18] C. Bardos and J. Rauch,Maximal positive boundary value problems as lim-

its of singular perturbation problems, T. Am. Math. Soc., 270 (1982), pp. pp.

377–408.

[19] T. Barrios and R. Bustinza, An a posteriori error analysis of an aug-

mented discontinuous Galerkin formulation for Darcy flow, Numer. Math.,

(2011), pp. 1–39. 10.1007/s00211-011-0410-3.

http://www.dealii.org/

Bibliography 202

[20] S. Bartels, M. Jensen, and R. Müller, Discontinuous Galerkin finite

element convergence for incompressible miscible displacement problems of low

regularity, SIAM J. Numer. Anal., 47 (2009), pp. 3720–3743.

[21] F. Bassi and S. Rebay, A high-order accurate discontinuous finite element

method for the numerical solution of the compressible Navier–Stokes equations,

J. Comp. Phys., 131 (1997), pp. 267 – 279.

[22] P. Bastian, Numerical Computation of Multiphase Flows in Porous Media,

Habilitationsschrift, Christian-Albrechts-Universität Kiel, 1999.

[23] C. E. Baumann and J. T. Oden, A discontinuous hp finite element method

for convection-diffusion problems, Comput. Method. Appl. M., 175 (1999),

pp. 311 – 341.

[24] J. Bear, Dynamics of Fluids in Porous Media, Dover, New York, 1988.

[25] J. Bear and A. H.-D. Cheng, Modeling Groundwater Flow and Con-

taminant Transport, Theory and Applications of Transport in Porous Media,

Springer, 2009.

[26] R. Becker, E. Burman, P. Hansbo, and M. G. Larson, A reduced

p1-discontinuous Galerkin method, Tech. Rep. 2003-13, Chalmers University

of Technology, 2003.

[27] R. Becker and R. Rannacher, An optimal control approach to a posteriori

error estimation in finite element methods, Acta Numerica, 10 (2001), pp. 1–

102.

[28] M. Bertoldi, S. Fornaro, and L. Lorenzi, Gradient estimates for

parabolic problems with unbounded coefficients in non convex unbounded do-

mains, Forum Mathematicum, 19 (2007), pp. 603–632.

[29] M. Bertoldi and L. Lorenzi, Estimates of the derivatives for parabolic

operators with unbounded coefficients, Trans. Amer. Math. Soc., 357 (2005),

pp. 2627–2664.

Bibliography 203

[30] K. Bey and J. Tinsley Oden, hp-version discontinuous Galerkin meth-

ods for hyperbolic conservation laws, Comput. Method. Appl. M., 133 (1996),

pp. 259–286.

[31] F. Bornemann, B. Erdmann, and R. Kornhuber, A posteriori error

estimates for elliptic problems in two and three space dimensions, SIAM J.

Numer. Anal., (1996), pp. 1188–1204.

[32] D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid

Mechanics, Cambridge University Press, Cambridge, 3rd ed., 2007.

[33] S. C. Brenner, Poincaré–Friedrichs inequalities for piecewise H1 functions,

SIAM J. Numer. Anal., 41 (2003), pp. 306–324.

[34] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite

Element Methods, Springer, New York, 3rd ed., 2008.

[35] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods,

Springer-Verlag, New York, 1991.

[36] F. Brezzi, D. Marini, and E. Süli, Residual-free bubbles for advection-

diffusion problems: The general error analysis, Numer. Math., 85 (1998),

pp. 31–47.

[37] F. Brezzi, L. D. Marini, and E. Süli, Discontinuous Galerkin methods

for first-order hyperbolic problems, Math. Mod. Meth. Appl. S., 14 (2004),

pp. 1893–1903.

[38] F. Brezzi and A. Russo, Choosing bubbles for advection-diffusion problems,

Math. Mod. Meth. Appl. S., 4 (1994), pp. 571–587.

[39] A. N. Brooks and T. J. Hughes, Streamline upwind/Petrov-Galerkin for-

mulations for convection dominated flows with particular emphasis on the in-

compressible Navier-Stokes equations, Comput. Method. Appl. M., 32 (1982),

pp. 199 – 259.

Bibliography 204

[40] R. Brown, Some embeddings of weighted Sobolev spaces on finite measure

and quasibounded domains, J. Inequal. Appl., 2 (1998), pp. 325–356.

[41] A. Buffa, T. J. R. Hughes, and G. Sangalli, Analysis of a multi-

scale discontinuous Galerkin method for convection-diffusion problems, SIAM

J. Numer. Anal., 44 (2006), pp. 1420–1440.

[42] E. Burman, A. Quarteroni, and B. Stamm, Interior penalty continuous

and discontinuous finite element approximations of hyperbolic equations, J.

Sci. Comp., 43 (2010), pp. 293–312. 10.1007/s10915-008-9232-6.

[43] E. Burman and P. Zunino, A domain decomposition method based on

weighted interior penalties for advection-diffusion-reaction problems, SIAM J.

Numer. Anal., 44 (2006), pp. 1612–1638.

[44] A. Cangiani, J. Chapman, E. Georgoulis, and M. Jensen, On the

stability of continuous discontinuous Galerkin finite element methods for sin-

gularly perturbed advection diffusion reaction equations. In preparation.

[45] , Implementation of the continuous-discontinuous Galerkin finite element

method, in Numerical Mathematics and Advanced Applications 2011, A. Can-

giani, R. Davidchack, E. Georgoulis, A. Gorban, J. Levesley, and M. Tretyakov,

eds., Springer, 2012.

[46] A. Cangiani, J. Chapman, E. H. Georgoulis, and M. Jensen, On

local super-penalization of interior penalty Galerkin methods, Int. J. Numer.

Anal. Model., (2012). Submitted.

[47] A. Cangiani, E. H. Georgoulis, and M. Jensen, Continuous and

discontinuous finite element methods for convection-diffusion problems: A

comparison, in International Conference on Boundary and Interior Layers,

Göttingen, July 2006.

[48] C. Carstensen, A posteriori error estimate for the mixed finite element

method, Math. Comp., 66 (1997), pp. 465–476.

Bibliography 205

[49] J. Chapman and M. Jensen, Towards a posteriori error estimators for re-

alistic problems in incompressible miscible displacement, in Numerical Mathe-

matics and Advanced Applications 2011, A. Cangiani, R. Davidchack, E. Geor-

goulis, A. Gorban, J. Levesley, and M. Tretyakov, eds., Springer, 2012.

[50] G. Chavent and J. Jaffre, Mathematical Models and Finite Elements

for Reservoir Simulation Single Phase, Multiphase and Multicomponent Flows

through Porous Media, vol. 17 of Studies in Mathematics and Its Applications,

Elsevier, 1986.

[51] Y. Chen and W. Liu, A posteriori error estimates of mixed methods for

miscible displacement problems, Int. J. Numer. Meth. Eng., 73 (2008), pp. 331–

343.

[52] Z. Chen and R. Ewing, Mathematical analysis for reservoir models, SIAM

J. Math. Anal., 30 (1999), pp. 431–453.

[53] P. Clment, Approximation by finite element functions using local regulariza-

tion, Revue française d’automatique, informatique, recherche opérationnelle.

Analyse numérique, 9 (1975), pp. 77–85.

[54] B. Cockburn, G. Karniadakis, and C. Shu, The development of discon-

tinuous Galerkin methods, in Discontinuous Galerkin Methods: Theory, Com-

putation, and Applications, B. Cockburn, G. Karniadakis, and C. Shu, eds.,

vol. 11 of Lecture Notes in Computational Science and Engineering, Springer,

2000.

[55] B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method

for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35

(1998), pp. 2440–2463.

[56] M. Cui, A combined mixed and discontinuous Galerkin method for compress-

ible miscible displacement problem in porous media, J. Comput. Appl. Math.,

198 (2007), pp. 19 – 34.

Bibliography 206

[57] , Analysis of a semidiscrete discontinuous Galerkin scheme for compress-

ible miscible displacement problem, J. Comput. Appl. Math., 214 (2008),

pp. 617–636.

[58] M. Dauge, Elliptic Boundary Value Problems on Corner Domains: Smooth-

ness and Asymptotics of Solutions, vol. 1341 of Lecture Notes in Mathematics,

Springer, 1988.

[59] C. Dawson and J. Proft, Coupling of continuous and discontinuous

Galerkin methods for transport problems, Comput. Method. Appl. M., 191

(2002), pp. 3213 – 3231.

[60] C. Dawson, S. Sun, and M. F. Wheeler, Compatible algorithms for

coupled flow and transport, Comput. Method. Appl. M., 193 (2004), pp. 2565

– 2580.

[61] P. R. B. Devloo, T. Forti, and S. M. Gomes, A combined continuous-

discontinuous finite element method for convection-diffusion problems, Lat.

Am. J. Solids Struct., 2 (2007), pp. 229–246.

[62] E. Doolan, J. J. H. Miller, and W. H. A. Schilders, Uniform Nu-

merical Methods for Problems with Initial and Boundary Layers, Boole Press,

1980.

[63] J. Douglas and T. Dupont, Interior Penalty Procedures for Elliptic and

Parabolic Galerkin Methods, in Lecture Notes in Physics, R. Glowinski and

J. L. Lions, eds., vol. 58 of Lecture Notes in Physics, 1976, p. 207.

[64] J. Douglas, R. E. Ewing, and M. F. Wheeler, The approximation of

the pressure by a mixed method in the simulation of miscible displacement,

RAIRO Anal. Numer., 17 (1983), pp. 17–33.

[65] J. Douglas and J. E. Roberts., Global estimates for mixed methods for

second order elliptic equations, Math. Comp., 44 (1985), pp. 39 – 52.

Bibliography 207

[66] R. G. Durán, Mixed finite element methods, in Mixed Finite Elements,

Compatibility Conditions, and Applications, D. Boffi and L. Gastaldi, eds.,

vol. 1939 of Lecture Notes in Mathematics, Springer, 2008, pp. 1–44.

[67] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements,

Springer-Verlag, New York, 2004.

[68] A. Ern, A. F. Stephansen, and P. Zunino, A discontinuous Galerkin

method with weighted averages for advection-diffusion equations with locally

small and anisotropic diffusivity, IMA J. Numer. Anal., 29 (2009), pp. 235–

256.

[69] L. C. Evans, Partial Differential Equations, American Mathematical Society,

Rhode Island, 2008.

[70] R. E. Ewing and M. F. Wheeler, Galerkin methods for miscible displace-

ment problems in porous media, SIAM J. Numer. Anal., 17 (1980), pp. 351–

365.

[71] X. B. Feng, On existence and uniqueness results for a coupled system model-

ing miscible displacement in porous media, J. Math. Anal. Appl., 194 (1995),

pp. 883 – 910.

[72] S. Fornaro, G. Metafune, and E. Priola, Gradient estimates for

Dirichlet parabolic problems in unbounded domains, J. Diff. Equ., 205 (2004),

pp. 329 – 353.

[73] E. H. Georgoulis, Discontinuous Galerkin Methods on Shape-Regular and

Anisotropic Meshes, PhD Thesis, Oxford Univeristy, 2003.

[74] E. H. Georgoulis and A. Lasis, A note on the design of hp-version interior

penalty discontinuous Galerkin finite element methods for degenerate problems,

IMA J. Numer. Anal., 26 (April 2006), pp. 381–390.

[75] E. H. Georgoulis and D. Loghin, Norm preconditioners for discontinuous

Galerkin hp-finite element methods, SIAM J. Sci. Comp., 30 (2008), pp. 2447–

2465.

Bibliography 208

[76] V. Gol’dshtein and A. Ukhlov, Weighted Sobolev spaces and embedding

theorems, Trans. Amer. Math. Soc., 361 (2009), pp. 3829–3850.

[77] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Publishing,

Massachusetts, 1985.

[78] J. Guzmán, Local analysis of discontinuous Galerkin methods applied to sin-

gularly perturbed problems, J. Numer. Math., 14 (2006), pp. 41–56.

[79] P. Hemker, A singularly perturbed model problem for numerical computation,

J. Comput. Appl. Math., 76 (1996), pp. 277 – 285.

[80] J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin

Methods: Algorithms, Analysis, and Applications, Springer, New York, 2008.

[81] P. Houston, D. Schötzau, and T. Wihler, Energy norm a-posteriori

error estimation of hp-adaptive discontinuous Galerkin methods for elliptic

problems, Math. Mod. Meth. Appl. S., 17 (2007), pp. 33–62.

[82] P. Houston, C. Schwab, and E. Süli, Discontinuous hp-finite element

methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal., 39

(2002), pp. 2133–2163.

[83] P. Houston, E. Süli, and T. P. Wihler, A posteriori error analysis

of hp-version discontinuous Galerkin finite-element methods for second-order

quasi-linear elliptic PDEs, IMA J. Numer. Anal., 28 (2008), pp. 245–273.

[84] T. Hughes and A. Brooks, A multidimensional upwind scheme with no

crosswind diffusion, in Finite element methods for convection dominated flows,

T. Hughes, ed., vol. 34 of Applied Mathematics Division, Göttingen, 1979,

American Society of Mechanical Engineers.

[85] M. Jensen and R. Müller, Stable Crank-Nicolson discretisation for incom-

pressible miscible displacement problems of low regularity, in Numerical Math-

ematics and Advanced Applications 2009, G. Kreiss, P. Lötstedt, A. Målqvist,

and M. Neytcheva, eds., Springer Berlin Heidelberg, 2010, pp. 469–477.

Bibliography 209

[86] V. John and P. Knobloch, On spurious oscillations at layers diminish-

ing (SOLD) methods for convection-diffusion equations: Part I - A review,

Comput. Method. Appl. M., 196 (2007), pp. 2197 – 2215.

[87] , On spurious oscillations at layers diminishing (SOLD) methods for

convection-diffusion equations: Part II - Analysis for P1 and Q1 and finite

elements, Comput. Method. Appl. M., 197 (2008), pp. 1997 – 2014.

[88] C. Johnson and U. Nävert, An analysis of some finite element methods

for advection-diffusion problems, in Analytical and Numerical Approaches to

Asymptotic Problems in Analysis Proceedings of the Conference on Analytical

and Numerical Approaches to Asymptotic Problems, O. Axelsson, L. Frank,

and A. V. D. Sluis, eds., vol. 47 of North-Holland Mathematics Studies, North-

Holland, 1981, pp. 99 – 116.

[89] O. A. Karakashian and F. Pascal, A posteriori error estimates for a

discontinuous Galerkin approximation of second-order elliptic problems, SIAM

J. Numer. Anal., 41 (2003), pp. 2374–2399.

[90] , Convergence of adaptive discontinuous Galerkin approximations of sec-

ond order elliptic problems, SIAM J. Numer. Anal., 45 (2007), pp. 641–665.

[91] J. Kevorkian and J. Cole, Multiple Scale and Singular Perturbation Meth-

ods, vol. 114 of Applied Mathematical Sciences, Springer, 1996.

[92] K.-h. Kim, A W n
p -theory of parabolic equations with unbounded leading coeffi-

cients on non-smooth domains, J. Math. Anal. Appl., 350 (2009), pp. 294–305.

[93] A. Kufner and A.-M. Sandig, Some Applications of Weighted Sobolev

Spaces, B.G.Teubner GmbH, 1987.

[94] L. W. Lake, Enhanced Oil Recovery, Prentice Hall, 1996.

[95] M. G. Larson and A. Målqvist, Goal oriented adaptivity for coupled flow

and transport problems with applications in oil reservoir simulations, Comp.

Meth. Appl. Mech. Eng., 196 (2007), pp. 3546 – 3561.

Bibliography 210

[96] M. G. Larson and A. J. Niklasson, Conservation properties for the con-

tinuous and discontinuous Galerkin methods, Tech. Rep. 2000-08, Chalmers

University of Technology, 2000.

[97] M. Latil, Enhanced Oil Recovery, Institut Français du Pétrole Publications,

Éditions Technip, 1980.

[98] P. D. Lax and A. N. Milgram, Parabolic equations, in Contributions to the

Theory of Partial Differential Equations, L. Bers, S. Bochner, and F. John,

eds., vol. 33 of Annals of Mathematics Studies, Princeton University Press,

2000, p. 167190.

[99] P. Lesaint, Finite element methods for symmetric hyperbolic equations, Nu-

mer. Math., 21 (1973), pp. 244–255.

[100] H. Li, Elliptic Equations with Singularities: A Priori Analysis and Numerical

Approaches, PhD Thesis, The Pennsylvania State University, 2008.

[101] H. Li, A. Mazzucato, and V. Nistor, Analysis of the finite element

method for transmission/mixed boundary value problems on general polygonal

domains, Elec. Trans. Numer. Anal., 37 (2010), pp. 41–69.

[102] G. M. Lieberman, Second Order Parabolic Differential Equations, World

Scientific Publishing, Singapore, 1996.

[103] S. A. Lomov, Introduction to the General Theory of Singular Perturbations,

vol. 112 of Translations of Mathematical Monographs, American Mathematical

Society, 1993.

[104] J. M. Melenk, hp-Finite Element Methods for Singular Perturbations,

vol. 1796 of Lecture Notes in Mathematics, Springer, 2003.

[105] A. Mikelić, Mathematical theory of stationary miscible filtration, J. Differ.

Equations, 90 (1991), pp. 186 – 202.

Bibliography 211

[106] J. J. H. Miller, E. O’Riordan, and G. I. Shishkin, Fitted Numerical

Methods for Singular Perturbation Problems, World Scientific Publishing Co.,

Inc., River Edge, NJ, 1996.

[107] K. Morton, Numerical Solution of Convection-Diffusion Problems, Chap-

man and Hall, London, 1996.

[108] H. Nguyen, M. Gunzburger, L. Ju, and J. Burkardt, Adap-

tive anisotropic meshing for steady convection-dominated problems, Comput.

Method. Appl. M., 198 (2009), pp. 2964 – 2981.

[109] P. Oswald, On a bpx-preconditioner for p1 elements, Computing, 51 (1993),

pp. 125–133. 10.1007/BF02243847.

[110] D. W. Peaceman, Fundamentals of Numerical Reservoir Simulation, Devel-

opments in Petroleum Science, Elsevier Scientific Publishing Company, 1977.

[111] I. Perugia and D. Schötzau, On the coupling of local discontinuous

Galerkin and conforming finite element methods, J. Sci. Comp., 16 (2001),

pp. 411–433.

[112] D. A. D. Pietro and A. Ern, Mathematical Aspects of Discontinuous

Galerkin Methods, vol. 69 of Mathématiques et Applications, Springer, 2012.

[113] P. Raviart and J. Thomas, A mixed finite element method for second order

elliptic problems, in Mathematical Aspects of the Finite Element Method,

I. Galligani and E. Magenes, eds., vol. 606 of Lecture Notes in Mathematics,

Springer, 1977.

[114] W. Reed and T. Hill, Triangular mesh methods for the neutron transport

equation, Tech. Rep. LA-UR-73-479, Los Alamos Scientific Laboratory, Los

Alamos, NM, 1973.

[115] B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and

Parabolic Equations: Theory and Implementation, SIAM, Philadelphia, 2009.

Bibliography 212

[116] B. Riviere, M. F. Wheeler, and V. Girault, A priori error estimates

for finite element methods based on discontinuous approximation spaces for

elliptic problems, SIAM J. Numer. Anal., 39 (2001), pp. 902–931.

[117] H.-G. Roos, M. Stynes, and L. Tobiska, Numerical Methods for Singu-

larly Perturbed Differential Equations: Convection-Diffusion and Flow Prob-

lems, Springer-Verlag, Berlin, Second ed., 2008.

[118] F. Schieweck, On the role of boundary conditions for CIP stabilization of

higher order finite elements, Elec. Trans. Numer. Anal., 32 (2008), pp. 1–16.

[119] C. Schwab, p- and hp- Finite Element Methods: Theory and Applications in

Solid Mechanics, Clarendon Press, Oxford, 1998.

[120] C. Schwab and M. Suri, The p and hp versions of the finite element method

for problems with boundary layers, Math. Comp., 65 (1996), pp. 1403 – 1429.

[121] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth

functions satisfying boundary conditions, Math. Comp., 54 (1990), pp. 483–

493.

[122] P. Soĺın and J. Ávila, Equidistributed error mesh for problems with ex-

ponential boundary layers, J. Comput. Appl. Math., 218 (2008), pp. 157 –

166.

[123] S. Sun, B. Rivière, and M. F. Wheeler, A combined mixed finite ele-

ment and discontinuous Galerkin method for miscible displacement problem in

porous media., in Recent Progress in Computational and Applied PDEs, New

York, 2002, Kluwer/Plenum, pp. 323–351.

[124] S. Sun and M. F. Wheeler, Discontinuous Galerkin methods for coupled

flow and reactive transport problems, Appl. Numer. Math., 52 (2005), pp. 273

– 298.

[125] S. Sun and M. F. Wheeler, A posteriori error estimation for discontinuous

Galerkin approximations of reactive transport problems, J. Sci. Comp., 22-23

(2005), pp. 501–530.

Bibliography 213

[126] S. Sun and M. F. Wheeler, A posteriori error estimation and dynamic

adaptivity for symmetric discontinuous Galerkin approximations of reactive

transport problems, Comput. Method. Appl. M., 195 (2006), pp. 632 – 652.

[127] M. F. Wheeler, An elliptic collocation-finite element method with interior

penalties, SIAM J. Numer. Anal., 15 (1978), pp. 152–161.

[128] J. Yang, A posteriori error of a discontinuous Galerkin scheme for compress-

ible miscible displacement problems with molecular diffusion and dispersion,

Int. J. Numer. Meth. Fluids, 65 (2009), pp. 781–797.

[129] H. Zarin, Continuous-discontinuous finite element method for convection-

diffusion problems with characteristic layers, J. Comput. Appl. Math., 231

(2009), pp. 626 – 636.

	Abstract
	Declaration
	Acknowledgements
	Introduction
	The Problems of Interest
	Research Objectives
	Notation and Useful Lemmas

	I The cdG Method and its Stability
	Introduction to the Continuous Discontinuous Galerkin Method
	The Continuous Galerkin Method and a Motivating Example
	The Discontinuous Galerkin Method
	The Continuous Discontinuous Galerkin Method

	On the Stability of the cdG Method
	Determining the Decomposition
	Decoupled and Weighted Formulations
	Bounds on the Component on TcG
	Bounds on the 0 Component on TcG
	An Inf-Sup Condition on TdG
	Stability of the Decoupled and Weighted Approximations
	Numerical Experiments

	II A Posteriori Error Estimators for IMD
	Introduction to Incompressible Miscible Displacement
	Literature Review
	The Coefficients of the Problem
	Regularity
	The RT-dG Finite Element Method

	A Posteriori Error Estimators for RT-dG
	Notation and Preliminary Results
	An A Posteriori Estimator for the Pressure and Velocity
	An A Posteriori Estimator for the Concentration
	An A Posteriori Estimator for the Coupled Problem

	A Posteriori Estimators in Weighted Spaces
	An Abstract Discussion
	Stationary IMD
	The Case for an Alternative Approach
	Some Results from the Theory of Weighted Spaces
	Sobolev Imbeddings in Weighted Spaces
	A Posteriori Error Estimators in the Weighted Spaces
	A Review of Our Error Estimators

	III Constraining the Jumps in the dG Method
	On Local Super Penalization
	An Abstract Discussion
	Non-Negative Characteristic Form
	Incompressible Miscible Displacement
	Numerical Experiments

	On Determining the Th Decomposition
	Continuity and Coercivity
	Determining the Th Decomposition
	Numerical Experiments

	IV Implementation of cdG
	Continuous Discontinuous Finite Element Code
	A Note on Implementation in deal.ii
	Commented Code
	Parameter File

	Summary
	Glossary of Nomenclature
	Bibliography

