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ABSTRACT 

Genesis of Collision-Related Volcanism on the Erzurum-Kars Plateau, 
Northeastern Turkey 

Mehmet Keskin, University of Durham, 1994 

The Eastern Anatolia Region exhibits one of the world's best exposed and most complete 
transects across a volcanic province related to continent-continent collision. Within this 
region, the Erzurum-Kars Plateau is of particular importance since it contains the full record 
of post-collision volcanism from 11 to 1.5 Ma. 

The volcanics of the Erzurum-Kars Plateau cover a broad compositional range from 
basalts to rhyolites displaying a calc-alkaline character. They show a distinctive subduction 
signature represented by selective enrichment of the large ion lithophile and light rare earth 
elements. Among trace elements, Y behaves in a quite different way forming two distinct 
trends against silica named as the low- and high-Y series. Lavas of the high-Y series are 
characterised by a distinct bimodal volcanism (from basalt to rhyolite), in contrast to the low-
Y series which comprises an unimodal andesitic volcanism. Trace element systematics 
together with modelling of theoretical Rayleigh fractionation vectors suggest that the low-Y 
series underwent a hydrous crystallisation dominated by amphibole as the mafic phase, 
whereas the high-Y series was dominated by anhydrous (POAM) crystallisation. Al-in-
amphibole geobarometer calculations on the plateau volcanics reveal that the low-Y series 
evolved in magma chambers located between 20 and 28 km. In contrast, magma chambers of 
the high-Y series were much shallower, around 14-22 km. The high-Y series dominates early 
and late stages of the volcanic activity, whereas the low-Y series dominates the middle 
(between 7.5 and 5 Ma) stage, probably coinciding with the most intensive stage of crustal 
thickening. 

Sr, Pb, Nd and 8 1 8 0 isotopic systematics also show significant differences between the 
high- and low-Y series. Lavas of the high-Y series are always more radiogenic with respect to 
the lavas of low-Y series. Results of assimilation combined with crystallisation (AFC) 
modelling suggests that the low-Y series assimilated a lower crustal material which is 
compositionally similar to the granulitic xenoliths from the Pannonian Basin in Hungary and 
from Central Europe. In contrast, the high-Y series assimilated two different upper crustal 
materials. In both the low- and high-Y series, the maximum assimilation rate was around 40% 
of the fractional crystallisation rate. 

Trace element and isotopic differences between the low- and high-Y series are not 

significantly dependent upon variations in the source. These differences appear to have been 

extensively controlled by the AFC processes. 
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Chapter 1: Introduction 

Chapter 1 
INTRODUCTION 

Collision volcanism is one of the least studied types of continental volcanism, 
even though it is a common phenomenon in orogenic systems. A systematic 
geochemical approach to collision volcanism can provide a better understanding of 
magma genesis, the evolution of the magma plumbing system and the extent of 
crustal assimilation and fractional crystallisation in collision systems. Another prime 
objective in attempting to understand the nature of collision volcanism is to explain 
the relationship between the chemistry of the magmatism and the compression^ 
tectonic setting in which it occurs. 

Recent examples of collision-related volcanism are located in two main regions 
in the world: the Tibetan Plateau in the Himalayas and Eastern Anatolia. Compared 
to the Tibetan Plateau, Eastern Anatolia offers an easily accessible and well exposed 
traverse of large volumes of collision-related volcanics. 

1.1. Tectonic setting of the Eastern Anatolia Region 

Eastern Anatolia offers the world's most complete transect across a volcanic 
province related to continent-continent collision. The region lies between the Pontides 
to the North, the Fold and Thrust belt of the Arabian foreland to the south and 
extends as far as the Turkish-Iranian and Turkish-Russia state boundary. The 
collision took place in the Eocene time (Robertson and Akta§, 1984), between the 
Arabian and Eurasian plates giving rise to an extensive crustal shortening. As a result 
of this shortening, in the Middle Miocene, the region was uplifted to form a plateau, 
Eastern Anatolia Plateau, over half of which lies 2 km above sea level. According to 
Camtez and Toksoz (1980), the thickness of continental crust reached 45 km. 
Collision-related volcanism began at about 11 Ma ago, immediately after the rapid 
uplift of the area and continued up to the historical times covering almost two third of 
the region and reaching up to 1 km in thickness in places., 

After a certain amount of crustal uplift, thickening slowed down because of 
excessive lithostathic pressure, and this event gave way to the formation of a pair of 
transform faults which take up westward lateral movement. Since the Middle-Late 
Miocene, some of the compressional stress in the region has been converted into the 
extensional movement in the west by means of right-lateral strike-slip along the 
North Anatolian Transform Fault (NATF) combined with left-lateral strike-slip along 
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the East Anatolian Transform Fault (EATF). Formation of these faults in the Mid-
Late Miocene was the manifestation of the last major wholesale change in the 
tectonic style of Turkey, namely "the neotectonic episode" as defined by §engor and 
Yilmaz (1981). The palaeotectonic episode includes all the tectonic elements formed 
before the neotectonic episode, namely structures older than the Mid-Late Miocene. 
The NATF and EATF are termed "transforms" because they transform compressional 
deformation in Eastern Anatolia into the extensional deformation in the Aegean 
Region of western Turkey through the "Ova regime" (§engor, 1980) in the Central 
Anatolia Region by means of strike-slip movement. The area bounded by these two 
faults is called "the Anatolian Wedge". It is driven westwards to override the oceanic 
lithosphere of the Mediterranean along subduction zones. Lateral displacement along 
these faults (throws) are calculated as 85±5 km for the NATF and 22±5 km for the 
EATF (Seymen, 1975; Arpat and $aroglu, 1972; Seymen and Aydin, 1972). The 
current rates of slip calculated from geophysical studies are about 0.9 cm a 1 for the 
NATF and 0.2 cm a 1 for the EATF. These rates give the Anatolia Wedge a westward 
escape rate of 0.5 cm a 1 (McKenzie, 1976). Tectonic escape along these faults can 
only remove a small part of the strain induced by the convergence of the Arabian 
plate about 1.4 cm a"1 (Dewey et al., 1986). Thus, the rest of the strain has been 
accommodated in the Eastern Anatolian crust via crustal shortening. Diffuse and 
complex strike-slip faulting (§aroglu et al., 1980, Yilmaz et al., 1987) provides 
evidence for continuing shortening across the region. These faults are either SE-
trending with a dominantly right-lateral strike-slip displacement (e.g., Varto, Caldiran 
and Balik Golii faults) or NE- to NNE trending with dominantly left-lateral strike-
slip displacement (e.g., Malazgirt and Kagizman fault) (Pearce et al., 1990). 

1.2. Previous studies in Eastern Anatolia 

Most of the previous work carried out in the Eastern Anatolia region has 
concentrated on the stratigraphy and neotectonism. Only a small number of studies 
have focused on the geochemistry and petrology of the neovolcanic rocks in the 
region. Studies related to the stratigraphy of the region have been listed in Figure 1.1. 
together with the generalised stratigraphic columns from different parts of Eastern 
Anatolia and a N-S cross section interpreted by Sahitiirk and Kasar (1980) which cut 
through all the region from the Pontides in the north to the Arabian foreland in the 
south. It is beyond the scope of this thesis to discuss the details of the stratigraphic 
division of the older formations and the evolution of the basins in which these 
formations were deposited. Some researchers who worked in different parts of the 
region gave the same formations different names. In order to overcome this 
confusion, a correlation table for some of these formations is presented in Table 1.1. 

2 



Chapter 1: Introduction 

Table: 1.1. Correlation table showing the names and lithologies of the Oligocene and the Early Miocene 
formations in the Eastern Anatolia Region. 

ERZURUM-KARS 
BASIN TEKMAN BASIN MURAT BASIN 

1 Erzurum-
Area 1 Pasinler-

| Horasan 

Kagizman 
-Tuzluca 

Tekman-
Karayazi 

Bingol-
Karliova 

Hinis 
Area 

Zirnak 
Area 

Mus Area Ahlat-
Adilcevaz 

Early 
Miocene 

Hane$diizu 
limestone 

(1) 

Hane$diizu 
limestone 

(2) 

Adilcevaz 
limestone 

(3) 

Guzelbaba 
limestone, 

Aktuzla fm: 
gypsum, 

limestone, 
sandstone 

(4) 

Guzelbaba 
limestone, 

Aktuzla fm: 
gypsum, 

limestone, 
sandstone 

(5) 

Adilcevaz 
limestone, 
Ebulbahar 
fm: Cleyey 
limestone & 

marl 
(6) 

AdUcevaz 
limestone 

(7) 

Oligocene Cigdgan 
nil: marl, 

sandstone, 
conglomer. 

(1) 

Cigilgan 
fm: marl, 

sandstone, 
conglomer. 

(2) 

Ahlat 
conglomer. 

(7) 

Researchers: (1) Akku?(1965); Toker (1965); Rathur (1966) and Tutuncu (1966), (2) Rker (1966b); Erdogan 
(1966) and Tanrtverdi (1977), (3) faroglu and YAmaz (1987), (4) Tutiincu (1967); Ozcan, (1967); Erdogan 
(1967) and Sungurlu (1967), (5) Birgili (1968); fcnalp (1966) and Rker (1966a), (6) Yilmaz et al. (1987a), 
(7) Demirtafliand Pisoni (1965) 

1.2.1. Previous studies on the collision-related volcanics of Eastern 
Anatolia 

The first geochemical study in the Eastern Anatolia region was carried out by 
Lambert et al. (1974) on a suit of lavas from Mt. Ararat. Their study involves a 
number of important petrologic results on the collision-related volcanism of North
eastern Anatolia, which were supported by later studies including that of Pearce et al. 
(1990). They recognised two distinct series, the high- and low-Y series, each 
consisting of andesite, dacite and rhyodacite of calc-alkaline character. Lambert et al. 
(1974) suggested that a multi-stage evolution of primitive upper mande material has 
occurred, involving equilibration of a liquid containing about 2-5% H 2 0 with garnet 
and amphibole followed by subsequent fractionation of anhydrous phases in 
shallower depth. They pointed out that the parental magma was andesitic in 
composition and that differentiation of this magma led to the more silicic types. 
According to these authors, the low-Y series were generated under more hydrous and 
deeper conditions than the high-Y series. They maintain that the source of water 
could be the former subduction zone, or a slow moving and seismically undetectable 
modern subduction zone. On the basis of the geotectonic setting of Mt. Ararat, they 
argued that subduction zone theory could not be applied to this area. In their 
geotectonic model they suggested the presence of a lithospheric shear-zone at a 
complex plate junction. They also inferred that, pre-Mesozoic sialic crust could not 
be a parental material, because Sr isotopic ratios are much lower than that can be 
expected from the partial fusion of crustal material. 
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Figure: 1.2. 

The map showing the locations and correlations of the drill- wells from the Eastern Anatolia Region, Turkey. 
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Chapter 1: Introduction 

The studies o f Innocenti et al. (1976, 1980, 1982b) showed that the volcanic 

products erupted in the Kars-Ararat area belong to calc-alkaline series and are 

dominated by andesitic members. These authors suggested that the earliest volcanism 

was calc-alkaline and that this was followed by alkaline volcanism. However, the 

results of Pearce et al. (1990) show that this is not true for the collision-related 

volcanism of Eastern Anatolia. Innocenti et al. (1982a) argued that, even though the 

data they had were inadequate to draw a conclusion about the pedogenesis of the 

volcanism, the rare earth elements (REE) and Sr isotope ratios suggested magma 

genesis by partial melting o f mantle anomalously enriched in large ion lithophile 

elements ( L I L ) . They suggested on the basis o f their dating that the andesitic volcanic 

front migrated northward for 150-200 km during the Pliocene. They interpreted this 

observation as an evidence o f the detachment o f the subducted slab immediately after 

continental collision and argued that this detachment continued to induce magma 

generation o f progressively lower intensity beneath an area corresponding to the 

Erzurum-Kars Plateau, located progressively further f rom the continental suture. 

However, as Pearce et al. (1990) pointed out, there are no intermediate or deep-focus 

earthquakes that are indicative o f a subducting lithospheric slab. 

Giilen (1980) argued that alkaline and calc-alkaline volcanism spatially and 

temporally coexisted in the Tertiary to Quaternary volcanic province in Eastern 

Turkey. According to Giilen, the low values o f 8 7 Sr/ 8 6 Sr, the constancy of these ratios 

over a wide range of S i 0 2 , and the lack o f correlation between the Sr isotopic 

composition may imply that Ararat lavas have not been modified by crustal 

contamination. In 1982, he presented an abstract in EOS where he argued that 
1 4 3 N d / 1 4 4 N d and 8 7 Sr/ 8 6 Sr data for all Ararat suites fa l l within the Nd-Sr mantle array 

without any significant crustal contamination whereas data f rom Siiphan volcano fa l l 

on a trend towards low 1 4 3 N d / 1 4 4 N d and high 8 7 Sr/ 8 6 Sr values indicating a strong 

evidence for crustal contamination. His ratio for Ararat volcano varies 

in a wider range with respect to ^Fhf^Fb and 2 0 8 Pb/ 2 0 4 Pb ratios. About half the 

data plot within the normal oceanic mantle array while the other half is more 

radiogenic in Pbr Pb extending toward the alkaline suite. He also mentioned the 

presence of systematic variations between isotopic ratios and major and trace element 

contents o f lavas f rom Mt . Ararat such as that of 8 7 Sr/ 8 6 Sr and MgO. He interpreted 

his results as an indication o f mixing o f MORB-type mantle wi th an alkali-basalt 

magma in the Mt. Ararat province. According to him, crustal contamination of this 

mixture generated Siiphan volcanics. 

Tokel (1984) suggested that the data f rom dril l ing cores in the Eastern Anatolia 

region indicated the presence of E-W oriented Upper Miocene-Pliocene basins which 

are bounded by gravity faults and f i l led by at least 2000 m of limnic and f luvial 
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