
Durham E-Theses

Cloning and characterisation of genes determining

pod morphology in pea

Drew, Janice Elizabeth

How to cite:

Drew, Janice Elizabeth (1994) Cloning and characterisation of genes determining pod morphology in

pea, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/5882/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5882/
 http://etheses.dur.ac.uk/5882/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Cloning and Characterisation of Genes Determining Pod 

Morphology in Pea 

by 

Janice Elizabeth Drew 
(BSc. Hons. University of Strathclyde) 

thesis submitted for the degree of Doctor of Philosophy 
in the University of Durham. 

Department of Biological Sciences 

October, 1994 

The copyright of this thesis rests with the author. 

No quotation from it should be published without 

his prior written consent and information derived 

from it should be acknowledged. 



ABSTRACT. 

Genes expressed in developing pea pods were isolated as cDNAs by 
differential screening techniques. The cDNAs were characterised by DNA 
sequencing and expression studies were used to investigate the role of isolated 
cDNAs in pod development. 

A clone isolated from a pea (Pisum sativum L.) pod cDNA library was shown 
to contain the complete coding sequence of a polypeptide with considerable 
homology to various members of the Rab subfamily of small ras-related GTP-
binding proteins. Conserved sequences in the isolated clone include the 
GTP-binding site, GDP/GTP hydrolysis domain and C-terminal Cys residues 
involved in membrane attachment. The high percentage amino acid identity 
suggests that this cDNA may be the product of a gene, designated Psa-rab, 
which is the plant counterpart of Rab7. Rab/Ypt proteins are thought to be 
involved in intracellular transport from the endoplasmic reticulum to the 
Golgi apparatus and in vesicular transport. If Psa-rab is a functional 
counterpart of yeast YPT7 (RabT) it should be able to complement a yeast 
YPT7 mutant. An attempt was made to demonstrate that this was the case. 
Northern analysis showed invariant expression of Psa-rab in developing pods 
with different phenotypes, indicating an essential function for Psa-rab in 
developing pods. Hybridisation of the Psa-rab cDNA to pea genomic DNA 
showed that this protein is probably encoded by a single gene. 

Nearly isogenic pea lines were selected to investigate the genetic basis for 
lignification of the pea (Pisum sativum L.) pod endocarp. The development 
of the pod endocarp in the normal and mutant pea pod phenotypes was 
examined by histochemical staining and light microscopy. The effect of 
plant growth regulators on endocarp development was also investigated. 

A pea pod cDNA library representing poly ( A ) + RNA purified from L59 pea 
pods (genotype, PV; phenotype, lignified endocarp) was differentially 
screened with total cDNA probes prepared from total pod RNA from L59 and 
LI390 (genotype, pv; phenotype, no lignification of endocarp) pods 4 - 6 
days after flowering (DAF). Two clones, designated pLP18 and pLP19, were 
selected for further characterisation on the basis of hybridisation to the L59 
cDNA probe, but not the L1390 cDNA probe. 

Northern blotting was used to show that pLP18 represented a mRNA of 0.95 
kb. The predicted polypeptide from the LP18 cDNA encoded a putative blue 
type I copper protein. The expression pattern of LP 18 mRNA in pods and 
tissues of the experimental pea lines was determined using RT-PCR 
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quantitation. Hybridisation of the cDNA to pea genomic DNA showed that 
this protein is probably encoded by a single gene. 

Clone pLP19 yielded a 1.02 kb cDNA fragment encoding the C-terminal 
portion of an Hsp70 homologue belonging to a highly conserved family of 
proteins found in a number of eukaryotic species. Northern analysis of RNA 
from lignified and unlignified pods showed the presence of differentially 
expressed LP19 transcripts of varying lengths, which may represent 
differentiy processed transcripts. Southern analysis confirmed the presence 
of a single hybridised band in genomic digests of L59, L58 arid LI390. 
Several mRNA transcripts of the LP19 gene were isolated which differ in the 
length of their 3' untranslated regions. 
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I. INTRODUCTION. 

1.1 General Introduction and Aims of the Project 

Peas (Pisuin sativum L.), belonging to the family Leguminosae, sub­
fami ly Faboideae, are one of the most important crop legumes. They 
consist ot a collection of domesticated races originating f rom human 
instigated and selected genetic variations wi th a diploid chromosome 
number of fourteen. The pea plant is part icularly suitable for 
biological research and has a long history of studies, as a representative 
of dicotyledonous plants, dating f rom Mendel's work in the nineteenth 
century. Pea seed is available throughout the year, and wi l l germinate 
easily when placed in suitable conditions. Dormancy, hard seed coats 
and special conditions for germination are not a problem. The l i fe 
cycle of the pea proceeds rapidly, facilitating studies of any stage of 
growth wi th in relatively short time periods. Germination is initiated 
after approximately 25 hours at 20 °C - 25 °C. The appearance of lateral 
roots usua' iy occurs after about 75 hours and the epicotyl after 
approximately three to four days. Flower initiation may proceed f r o m 
as early a-, the two leaf stage. The first flower may occur after the 
second up to the thir tyfourth sterile node. 

There is also great genetic variation wi th in peas which may be a result 

of its long history of collection by research workers or a natural 

phenomenon (translocation and chromosome rearrangements are 

common in pea). A large number of mutant pea lines has been 

recorded and the controll ing genes identif ied e.g. seed colour and 

shape; flower colour; pod dehiscence, shape, size and colour. There 

are around 1000 cultivars wi th catalogued variations (Pea Gene Bank 

Catalogue, 1989). The pea line 110 in the Weibullsholm collection has 

been chosen to represent the normal chromosome structure. 

Capitalised symbols indicate a dominant character relative to line 110 

and lower case symbols represent a character recessive wi th respect to 

line 110. Each mutant is assigned a type line (usually the line in which 

the mutant was first identified). Loca are then determined by def ining 

the position and effect of a particular gene in its type line. Pea has a 

relatively large genome size (4.8 x 10^ bp per haploid genome), which is 
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comparable to the human genome. However, it is thought that up to 
90% of the pea genome is secondary D N A and, therefore, not essential 
for basic functions such as coding and gene regulation. Its large 
genome size has made a pea a less favoured subject for plant molecular 
b iology, despite its advantages as a subject for biochemical and 
physiological invest igat ion. Nevertheless, extensive molecular 
characterisation of genes in this species have been carried out. 

Pods f u l f i l a number of important biological functions. They m o d i f y 
and ameliorate the environment of the developing seeds and provide 
a route for passage of minerals and nutrients to the seeds. The pod is a 
m o d i f i e d leaf, retaining many leaf-like characteristics, such as the 
capacity to photosynthesise (Atkins et al, 1977). Thus, it provides a 
carbohydrate reservoir, mobilised in later stages of seed development 
(Flinn and Pate, 1968). During desiccation of senescing pod tissue 
protein is mobilised and translocated to the developing seeds (Pate and 
Flinn, 1977). 

A m o n g the catalogued pea cultivars there are twenty-six ident i f ied 
genes determining dis t inct pod characteristics. Several of the 
ident i f ied pod genes alter pod structure e.g. n, pod wal l thickness 
(Wehner and Gritton, 1981); the P and V loci, l ignification of the pod 
endocarp (Lamprecht, 1948); Pu and Pur, colour (Lamprecht, 1948); and 
gp, chlorophyll mutant w i t h yellow pods (White, 1917). 

Investigation of pod mutants assists in elucidating the mechanisms 

involved i n normal pod funct ion. Possible breeding strategies to 

improve pod features and increase productivi ty can be planned. In 

addi t ion, study of the mechanisms of pod development may have 

implications and relevance to the whole plant. 

This study involves the investigation of the characteristics of the P and 

V loci, which affect pod endocarp development. The P and V loci are 

w o r t h y of inves t iga t ion for a number of reasons. The 

sclerenchymatous layer, which develops i n the pods of peas w i t h 

genotype PV, has a significant effect on the optical properties of the pod 

wal l . Reflection, transmission and absorption spectra are radically 

altered as a consequence of the presence, or absence of the 
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sclerenchymatous layer of the p o d endocarp. The layer of 
sclerenchyma cells has been shown to exhibit a high UV-B absorbance 
and l o w transmission of light below 370 nm (Donkin and Price, 1990). 
UV-B irradiances can have a deleterious effect on the developing seeds. 
Light scattering due to reflection may also increase light capture by 
chloroplasts of the inner mesocarp (Donkin and Price, 1990). The 
l ignif ied tissues in the pericarp of pods remain an effective UV filter as 
the pod desiccates (Price et al., 1994) and may play a role in p o d 
dehiscence (Fahn and Zohary, 1955; Meakin and Roberts, 1990). The 
sclerenchymatous layer in the pod also acts as a protective layer 
preventing attack by insects which may eat the seeds or lay eggs 
(Walter, 1992). 

The effects of mutations at the P and V loci on the process of 

lignification is another aspect worthy of investigation. Lignin is a very 

complex polymer, which is of economic importance. It is extremely 

d i f f i cu l t to degrade chemically and biochemically (Crawford, 1981). 

The presence of l ignin interferes w i t h the release of cellulose f r o m 

wood dur ing pulp and paper production and its removal by chlorine 

and chlorine derivatives gives rise to toxic waste constituting an 

e n v i r o n m e n t a l haza rd (Er iksson , 1990). The l i g n i f i e d 

sclerenchymatous layers are indigestible by animals, which do not have 

the necessary enzymes in their gut to digest such tissue (Goto et al., 
1992). Its presence in animal fodder decreases digestibil i ty and 

nutr i t ional value. A t present, although a number of genes encoding 

enzymes involved in the l ign in synthesis pathway are k n o w n the 

process of initiation and regulation is poorly understood. There are 

only a few mutants i n the general phenylpropanoid pathway (Chappie 

et al., 1992), therefore i t is d i f f icul t to determine the exact nature of the 

process whereby cells are induced to differentiate and l ignify. L ign in 

has also been found to have a role in disease resistance and plant 

structure (Delmer and Stone, 1988; Walter, 1992). Hence, there are a 

number of potential advantages to genetic manipulat ion of l i g n i n 

quality and quantity i n crop and forest species. 

Finally, the orderly development of the pod requires correct temporal 

and spatial expression patterns of mul t ip le genes. Molecular 

mechanisms of plant development may be more f u l l y understood by 
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isolat ing and characterising tissue-specific and developmental ly 
expressed genes. 

1.2 Pea Lines L59,L58, L1390 and Feltham First 

The alleles of interest i n L59, L58, and L1390 are P and V (White, 1917), 
which are located on chromosomes 6 and 4 respectively (Lamprecht, 
1948) (Figure 1.1). A l l of these lines are maintained by the 
W e i b u l l s h o l m Plant Breeding Ins t i tu te , w i t h strict selection 
maintained to keep the genotype as defined i n the Pea Gene Bank 
Catalogue (1989). The cultivar L58 has the alleles Pv. L59 is a mutant 
v to V f r o m L58. L1390, a pedigree line derived f r o m a cross between 
L58 and L966, is doubly recessive and has the alleles pv. Feltham First 
is a commercially available variety assumed to have the alleles PV, as 
indicated by histochemical staining. P and V alter the structure of the 
pod wal l . The recessive alleles of the P and V loci individually reduce 
the parchment layer and in combinat ion remove it altogether 
(Lamprecht, 1948) (see Table 1.1). Most of the sclerenchymatous 
membrane is removed f r o m the inner pod wall of lines carrying the v 
allele. Small patches of sclerenchyma having a sl ightly shiny 
appearance on the inside of the pod wal l or a th in layer, unevenly 
distributed, often only towards either end of the pod may be apparent 
in lines carrying one recessive P or V allele. 
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Table 1.1 Pod genotypes and corresponding phenotypes (Pea Gene 
Bank Catalogue, 1989) 

Genotype Phenotype 

PV normal parchmented pod 

pV strip of sclerenchyma 

Pv inner membrane reduced to patches of sclerenchyma 

pv entirely without parchment 

Spontaneous m u t a t i o n rates p to P are 0.05% - 0.2% and 
correspondingly 0.3% - 3% for v to V (Pea Gene Bank Catalogue, 1989). 

1.3 Purple-podded Pea Lines 

Purple-podded pea lines are commercially available (Sutton's Seeds) 

and were chosen as good growers. They carry the dominant genes Pu 

on chromosome 3 and Pur on chromosome 1 as indicated by the 

purple-podded phenotype (both Pu and Pur are necessary for this 

character). The purple-podded character is variable in expression and 

unstable. A differential screen of this purple-podded line has already 

led to the isolation of mRNAs which encode enzymes thought to be 

involved in the anthocyanin pigment biosynthesis pathway (Bown, 

1992). In addition mRNAs encoding pectinesterase (Bown, 1992) have 

also been isolated and are thought to play a role in pod dehiscence of 

the purple pods. 

1.4 Pod Wal l Anatomy 

There are three distinct layers of the pea pod wal l (pericarp) i.e. the 

exocarp, mesocarp and the endocarp (Fahn, 1974; Mauseth, 1986) (see 

Plate 1.1). The exocarp consists of an epidermis, which is about 3 % of 

the pod wa l l thickness. The mesocarp consists of th in wa l l ed 

parenchymatous cells (18 - 20 layers of cells), which have large 
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Plate 1.1 Pod wall anatomy. Ex, exocarp, 3% of the pod wall 

thickness, layer of epidermal cells; M , mesocarp, approximately 

84% of the pod wa l l thickness, 18 - 20 layers of th in walled 

parenchymatous cells containing the bulk of the pod chlorophyll, 

mid to outer mesocarp contains the main vascular network; En, 

endocarp, 13 % of the pod wal l thickness, consists of an outer region 

of 2 - 3 layers of sclerenchymatous cells which contribute to 

dehiscense on drying and separated f r o m the epidermis of the 

endocarp bv thin walled parenchyma; V, main veins; vt, vascular 

tissue. 
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vacuoles. The outer layers of the mesocarp contain the bulk of the pod 
chlorophyll (Atkins et al, 1977), while the inner layers often contain 
large quantities of starch. The m i d to outer mesocarp contains the 
main vascular network. Calcium rich crystals i n the cells of the 
innermost mesocarp layer may indicate the presence of calcium 
oxalate, which have a developmental association w i t h fibrous tissue. 
The mesocarp is approximately 84 % of the pod wa l l thickness. The 
endocarp consists of an outer region of sclerenchymatous (fibrous) 
tissue (commonly three to five layers of cells), wh ich contributes to 
dehiscense on drying. Thin walled parenchyma (three to four cell 
layers) may be present between the fibre layers and the epidermis of 
the endocarp. The endocarp contributes to approximately 13 % of the 
pod wa l l thickness. I t is probable that fibre layers were thicker i n 
ancestral forms of present day pods, which have been selected for non-
shattering characters. Chloroplasts are present in the inner epidermis 
of Pisum and may have a role in assimilation of CO2 f r o m the 

r ipening seeds. The inner epidermis lacks stomata and has a 
hydrophil ic cuticle in contrast to the outer epidermis (averaging 20 
stomata/mm2) (Pate and Kuo, 1981). 

Pea pods have typical legume vasculature (see Plate 1.1). A pair of 

veins equivalent to the marginal veins of the carpel and l y i n g 

longitudinally supply nutrients to the seeds. A th i rd vein equivalent 

to the m i d rib of the carpel runs along the pods lower (adaxial) surface. 

The three veins converge at either end of the pod. A network of 

minor veins traverse the side walls of the pod, interconnecting w i t h 

the main longitudinal veins. Xylem vessels are less obvious in the 

branches supplying the individual seeds. 

1.5 Sclerenchyma 

Sclerenchymatous tissue consists of hard l ignified cells wi th secondary 

wall thickening. Between 18 % and 35 % of the secondary wal l may be 

composed of lignin. Sclerenchyma provide a support function similar 

to collenchyma, bu t may be distinguished by their absence of 

protoplasts when mature. The secondary wal l (interior to the pr imary 

wall) provides elasticity and resiliency., 
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There are two types of sclerenchyma cells found in plants i.e. sclereids 
and fibres (Fahn, 1974). Sclereids are usually isodiametric cells 
associated w i t h xylem and phloem or parenchymatous tissue. They 
are found singly, or in groups and exhibit great variation in shape. 
Fibres consist of sclerenchyma cells of varying lengths (usually more 
elongated than sclereids). They are found in various tissues e.g. root, 
stem, leaves and f ru i t . They may be associated w i t h vascular tissue or 
the parenchymatous tissue of pith or cortex. They may occur singly, 
but are more commonly found i n bundles. A complete layer of 
sclerenchyma may be present in the pea seed coat (Harris, 1984) and a 
layer or discrete patches may be present in the pea pod wall endocarp 
(Lamprecht, 1948). 

Sclerenchyma may originate f rom parenchyma, or collenchyma, and 

can only be readily identif ied when differentiation proceeds and they 

elongate, branch, or f o r m lobed ends. Such cells grow rapidly and 

branch in to ne ighbour ing tissue. Cell w a l l development i n 

d i f f e ren t i a t ing sclerenchyma is associated w i t h transparent and 

electron dense vesicles, coated vesicles and a proliferation of polysomes 

on the ER (Lawton et cil., 1979; Harris, 1983). These observations are 

indicative of the intense activity in differentiating sclerenchyma. The 

vesicles accumulate at the cell surface and are involved in discharge of 

materials destined for the cell wal l (Harris, 1984). Maturation of the 

cell coincides w i t h the deposition of a lignified secondary wal l , which 

varies between cells. The majority of mature sclerenchyma cells die 

post l ignificat ion of the secondary cell wall . However, there are a few 

instances of long l ived sclerenchyma, particularly fibres (Fahn and 

Leshem, 1963). Osmotic pressure and hormonal factors have been 

implicated in the different ia t ion of sclereids (Garcia-Martinez and 

Carbonell, 1980). 

1.6 Cytodifferentiation Sequence Leading to Development of a 

Sclerenchymatous Pod Endocarp 

Cytodifferent ia t ion of the pod endocarp fol lows a sequence of co­
ordinated steps f rom anthesis to maturity. The developmental stages 
f rom anthesis to maturi ty may be designated sequentially as the ini t ia l , 
elongation and maturation phases and have been characterised by 
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Vercher et al., (1987). The cells which are about to differentiate to 
f o r m sclerenchyma enlarge ini t ia l ly . Secondary wal l monomers 
(nucleotide diphosphate sugars of the D-glucose series) are produced 
concomitant wi th diminished epimerase activity. Epimerase enzyme 
act ivi ty may shif t metabolism f r o m product ion of pr imary w a l l 
monomers to secondary wall monomers dur ing cytodifferentiat ion. 
Microtubules, which are often observed to be associated wi th the cell 
wal l at this stage, may plav a role in orientat ion of cellulose 
microfibrils. Cellulose and hemicellulose synthesis proceeds, fol lowed 
by l ignin metabolism, involving the activation of enzymes associated 
wi th l ignin synthesis and synthesis of l ignin precursor pools prior to 
deposition of l ign in . The controls for fu ture cell autolysis and 
hydrolyase activation of the lignified cells wi l l also be set. 

The endocarp structure during the initial phase of pod development, 
two to three DAF, consists of three layers (Vercher et al., 1987): a 
transition layer of typically parenchymatous cells, smaller and denser 
than the mesophyll, w i t h thin walls and a large vacuole; a middle 
zone, which consists of three to four strata of meristematic cells, which 
later differentiate to form sclerenchvma in pea lines wi th genotype PV; 
and the epidermis. 

As the initial phase ends the middle zone increases its number of strata 

by increased cell division. At around four to five DAF the elongation 

phase is initiated and the endocarp consists of the three layers described 

above, together w i th a fourth pre-sclerenchyma layer, which originates 

f rom the middle zone (Vercher et al., 1987). The cells of the pre-

sclerenchyma layer then characteristically develop large nuclei, large 

numbers of ribosomes, dense cytoplasm, wel l developed rough 

endoplasmic reticulum (RER) and Golgi wi th electron transparent and 

electron dense vesicles observed close to the cell wall . The cells of this 

f o u r t h layer commence d i f f e ren t i a t ion by elongating. The 

plasmalemma is undulating, vesicles, RER and Golgi continue to be in 

close proximity to the cell wall . 

Five to six DAF the pre-sclerenchyma layer of elongated cells have 

thickened walls, dense cytoplasm with large numbers of polysomes and 

highly developed Golgi. The transition layer cells increase in size and 
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the epidermal cell walls thicken and enlarge perpendicularly to the cell 
wall . Pods at around nine DAF typically have two to three layers of 
sclerenchyma. 

1.7 The Regulation of Pea Pod Development 

The plant hormones, gibberellins, auxins and cytokinins, are thought 
to play major roles in the pod developmental processes outlined above 
(Eeuwens and Schawbe, 1975; Carbonell and Garcia-Martinez, 1980; 
Garcia-Martinez and Carbonell, 1980; Vercher ct at., 1987). Cytokinins 
are thought to play a role in the initial phase of cell division, while 
auxins and gibberellins are thought to be involved in the elongation 
and cell wall thickening stages. 

Gibberellins play a central role in regulating pod development and 

appear to be a major stimulus for the initiation of a series of complex 

developmental phases controlled bv different levels of plant growth 

regulators. Gibberellins are svnthesised in young tissues of the shoot 

(Pereto et al., 1988) and developing seeds and f ru i t and in roots 

(Sponsel, 1988), and may be transported throughout the plant in 

phloem and xylem. The initiation of pod development f rom f lower 

buds is thought to result f rom gibberellin stimulation from pollination 

and, or, fertilisation. Peas are self fertilised one day before anthesis 

(Blixt, 1974). The fertilised ovule is thought to supply gibberellins, 

w h i c h then ini t iate and regulate pod development. H i g h 

concentrations of GA3 have been observed in ovules (Garcia-Martinez 

and Carbonell, 1980), and fertilised ovules are a major site of GA1 and 

GA3 synthesis, wi th a maximum at the stage of rapid pod elongation 

(Garcia-Martinez and Carbonell, 1980). Addit ional gibberellin may be 

supplied by vegetative plant parts, including tissues of the pod wal l at 

later stages of development (Garcia-Martinez and Carbonell, 1980). 

Pods at four DAF have been observed to synthesise gibberellins f r o m 

GA12 and GA20 (Ozga and Brenner, 1990). Gibberellins appear to 

induce transformation of the unpollinated pea ovary into a developing 

pod in two significant ways. The mesocarp cells enlarge considerably 

and the typical differentiated endocarp is formed. If the gibberellin 

stimulation is not received by the pea ovary a degenerative process is 

in i t ia ted in most pea ovaries. Unpol l ina ted ovaries exhibi t a 
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senescence process which produces degeneration of the endocarp cell 
layers ini t ial ly, and ultimately the whole pod (Vercher et al., 1987). 

However, some pods may develop parthenocarpically. Parthenocarpic 
development results f r o m a failure to pollinate, or embryo abortion 
after fer t i l i sa t ion and may be natural (Haan, 1930) or induced 
(Gustafson, 1936). Parthenocarpy can occur under certain 
environmental conditions (Gustafson, 1942). Parthenocarpy has 
provided a means of ident i fy ing the role of plant hormones i n the 
early stages of f r u i t development (George et al., 1984). Exogenous 
application of hormones, such as gibberellins, cytokinins, or auxins to 
the ovary of emasculated flower buds (Garcia-Matinez and Carbonell, 
1980), or to the leaf adjacent to the emasculated f lower bud (Pereto et 
al., 1988), are known to induce parthenocarpy. Appl ica t ion of 
gibberellins, GA1 and GA3, was observed to be the most effective, 
producing f r u i t of similar size and morphology to pollinated f ru i t s 
(Vercher et al., 1984). Threshold levels of gibberellin must be supplied 
to induce development of f ru i t in unfertilised ovaries (Talon et al., 
1990). 

The metabolic pathway for biosynthesis of gibberellins is complex, w i t h 

much branching (for review, see Graebe, 1987). Different pathways are 

observed in different plants and in different organs of the same plant 

(Sponsel, 1988). Gibberellin biosynthetic pathways may be activated 

and inactivated to regulate normal plant development dur ing the 

normal l ife cycle of a plant. 

The f i r s t stage of biosynthesis of gibberellins is the conversion of 

mevalonic acid ( M V A ) via the terpenoid pathway to geranylgeranyl 

pyrophosphate (GGPP) (Graebe et al., 1965), which is then converted to 

ent-kaurene (Figure 1.2). Microsomal monooxygenases then catalyse 

reactions producing GA12-aldehyde f r o m ent-kaurene (Sponsel, 1988). 

The biosynthetic pathway up to GA12-aldehyde appears to be identical 

i n higher plants, and diverges considerably thereafter (Graebe, 1987; 

Sponsel, 1988). A number of gibberellin metabolic pathways have been 

observed in pea (Figure 1.2). The origin of GA3 i n plants is not we l l 

understood, but studies have shown that labelled GA5 is metabolised 

to GA3 (Graebe, 1987). 
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Mevalonic acid is the precursor of myriad isoprenoid entities, and is 
essential for cell growth and division (for review see, Beytia and Porter, 
1976; Bach, 1987). Mevalonic acid is differentially utilised by major 
and m i n o r routes of the mul t i -branched isoprenoid pa thway 
depending on developmental demands of plant organs or tissues (Bach 
and Lichtenthaler, 1983) (Figure 1.3). Synthesis is catalysed by 3-
hydroxy-3-methylglutaryl-CoA reductase (HMGR), which is closely 
regulated by a number of mechanisms inc luding phytohormones 
(Brooker and Russell, 1979) and feedback mechanisms (Russell and 
Davidson, 1982). 

H M G R is high in tomato f ru i t dur ing the rapid cell division and 
membrane expansion phases of early development (Gillaspy et al., 
1993) and inhibi t ion leads to a disruption of normal development of 
tomato f ru i t . Exogenous application of M V A can be utilised by tomato 
f ru i t s to sustain cell d iv is ion and expansion producing mature 
parthenocarpic f ru i t , which are phenotypically normal (Gillaspy et al., 
1993). H igh levels of HMGR are also found in young, developing pea 
tissue and tissues w i t h high levels of gibberellin. Immature pea 
cotyledons are competent to synthesise GA20 and GA29 f r o m M V A 
(Kamiya and Graebe, 1983). 

Absicic acid (ABA), a sesquiterpene derived f r o m M V A , has been 

observed to have an inhibi tory effect on f ru i t set and development 

(Garcia-Martinez and Carbonell, 1980). It is transported f rom leaves i n 

the phloem (Davies, 1988; Walton, 1988). It is thought that ini t iat ion 

of f r u i t set and development, or, conversely, degeneration of the ovary, 

occurs in response to the respective gibberel l in/ABA ratio in the ovary. 

Thus, gibberellin application to ABA treated emasculated ovaries has 

been observed to counteract the inhibi tory effect of ABA. Whils t , 

removal of the developing leaves of pea, thought to be a source of A B A 

(Jordan et al., 1975), can induce parthenocarpic f r u i t set, supporting the 

role of the developing leaves as sources of ABA, which inhibits f r u i t 

set and development (Carbonell and Garcia-Martinez, 1980). 

Cytokinins are also associated w i t h pod development, and l i ke 

gibberellins and A B A are produced via the M V A pathway (Short and 

Torrey, 1972) (Figure 1.3). Cytokinins are produced by biochemical 
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modif icat ion of adenine. They are produced in root apices and 
developing seeds and are transported in plants via the xylem f r o m 
roots to shoots (Forsyth and Van Staden, 1981; McGaw, 1988). Their 
mode of action is poorly understood, but they are characterised by their 
abil i ty to stimulate cell divis ion and determine different ia t ion in 
combination wi th auxin. Cytokinin is a cell division factor and can 
replace the role of M V A in initiating D N A replication. Cytokinins 
have been demonstrated to play a l imi t ing and regulating role in fibre 
d i f fe ren t ia t ion in the presence of auxin and GA3, s t imula t ing 
differentiation of secondary xvlem fibres (Aloni, 1982). Fruit set may 
be achieved wi th exogenous application of benzyladenine (6-BAP) to 
emasculated flowers. However, the pods obtained are considerably 
smaller than normal pods or parthenocarpic pods treated w i t h 
gibberellin (Garcia-Martinez and Carbonell, 1980). 

The application of gibberellins is known to stimulate endogenous 

levels of auxin-like compounds in various frui ts (Sastrv and M u i r , 

1963; Mainland and Eck, 1971). I A A (indole-3-acetic acid) is the major 

auxin in most plants and is synthesised from tryptophan, primari ly in 

leaf primordia, young leaves and in developing seeds. Transport of 

I A A proceeds f rom cell to cell and via the phloem to roots. I t is 

thought that the ovary develops in response to specific levels of 

gibberellin-stimulated auxin (Gillaspv ct al., 1993). Pollen grains are a 

rich source of auxin, which in some species is sufficient to induce f ru i t 

set (Gustafson, 1937). Parthenocarpic frui t have higher gibberellin and 

auxin levels than normal f r u i t (Mapell i ct al., 1979; Mapel l i and 

Lombardi , 19S2). Parthenocarpic f ru i t development may also be 

induced by blocking the outward f l o w of auxin f r o m the ovary 

(Robinson et al., 1971; Beyer and Quebedeaux, 1974). However, 

exogenous application of I A A had no effect on f ru i t set of pea pods, 

whi le N A A (napthaleneacetic acid) had a slight effect at h igh 

concentrations. The most effective auxin for inducing f ru i t set and 

development was observed to be 2,4-D (2, 4-dichlorophenoxyacetic 

acid). Fruits were of similar length to normal pods, but at higher 

concentration 2,4-D produced deformed pods (Garcia-Martinez and 

Carbonell, 1980). 
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The sterol intermediates of the M V A pathway, FPP (farnesyl 
pyrophosphate) and GGPP, are required for modification and biological 
act iv i ty of signal transduction proteins, the receptor-coupled G-
proteins, and the proteins which control secretory functions (Schafer 
and Rine, 1992). I t has been suggested that these prenylated GTP-
binding proteins may be induced by plant hormones (Zaina et al., 1990). 
The Rab /Ypt proteins, a sub-family of the ras superfamily, have 
recently been iden t i f i ed as having a regulatory role in vesicular 
t raff icking through the exocytic and endocytic pathways of eukaryotic 
cells (Wichmann et al., 1992; Cheon et al., 1993; Bednarek et al., 1994). 
Isoprenylation is necessary for biological func t ion of the Rab /Ypt 
proteins (Molenaar et al., 1988). Mevalonate starvation prevents 
isoprenylation and membrane binding of Rab proteins (Khosrayi-Far et 
al., 1991; Kinsella and Maltese, 1992). A number of Rab proteins have 
now been isolated f rom plants (Dallman et al., 1992; Palme et al., 1992; 
Drew et ah, 1993; Nagano et al., 1993). It has been speculated that the 
Rab proteins may play a role in transport of cell wall proteins, 
carbohydrates and enzymes involved in synthesis of new cell wa l l 
materials. High expression of one of the Rab family members has been 
observed in the early, but not the late phase of tomato f r u i t 
development (Gillaspy et al., 1993). Expression has also been observed 
in a number of actively growing pea pods f r o m different pea lines 
(Drew et al., 1993). 

1.8 L ign in Biosynthesis 

Lignins are natural polymers derived f rom phenylpropane units l inked 

in a 3D network. The l ignin polymers formed are often associated 

w i t h polysaccharides in cell walls and sometimes w i t h phenolic acids. 

Biosynthesis of l ignin occurs via the shikimic acid pathway (Figure 1.4). 

The f i r s t commit ted step in phenylpropanoid metabolism is the 
reaction catalysed by the homotrimeric enzyme, L-phenylalanine 
ammonium lyase (PAL; EC 4.3.1.5), which results in the conversion of 
L-phenylalanine to trans-cinnamic acid w i t h the loss of N H ^ + . 
C innamic acid is the parent pheny lp ropane f r o m w h i c h 
phenylpropane derivatives, such as l ignin, are obtained. Several 
PAL genes have been isolated and characterised (Liang et al, 1989a). 
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Figure 1.4 Lignin biosynthesis via the shikimic acid pathway, , 
adapted f r o m M a n n (1987) and H a r b o u r n e (1980). 
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PAL is highly regulated during development associated wi th cell-type 
specific synthesis of l ignin. PAL activity is also stimulated by elicitor 
molecules f rom fung i (Farmer, 1985), UV (Chapell and Hahlbrock, 
1984; Kuhn et al, 1984) and wounding and infection (Lawton and 
Lamb, 1987). Induction of mRNAs which encode PAL occurs de novo 
immediately tissues are exposed to the stimulants mentioned above 
(Ishizuka et al, 1991). A family of PAL genes have been found in 
plants, w i t h each gene encoding distinct polypeptide isoforms. This 
selective synthesis of funct ional variants may indicate d i f fe ren t 
biological functions e.g. wound-protectant cinnamic acid esters; l ignin 
synthesis as a stress induced barrier or as a structural polymer in 
sclerenchyma and vascular tissue (Bevan et al., 1989); UV protectants; 
or antimicrobial phytoalexin synthesis (Bohvell et al., 1985). 

Other l ignin biosynthesis enzymes which have been investigated are 
cinnamyl-alcohol dehydrogenase (CAD) (Kutsuki et al., 1982); caffeic 
acid 3-O-methyltransferase (COMT; EC 2.1.1.6) (Kuroda et al., 1975); 
h y d r o x y c i n n a m a t e : C o A ligase ( L u d e r i t z et al., 1982); and 
cinnamoyl.CoA reductase (Luderitz and Grisebach, 1981) . CAD is a 
molecular marker specific for lignin biosynthesis ( Walter et. al., 1988). 
The branch pathway specific for the production of lignin monomers 
involves two reductive steps catalysed by cinnamoyhCoA reductase 
and cinnamyl-alcohol dehydrogenase giving lignin precursor alcohols. 
C A D isoenzymes f r o m angiosperms utilise coniferaldehyde and 
sinapaldehyde, whereas C A D isolated f rom gymnosperms can only 
reduce c o n i f e r a l d e h y d e substrate ( K u t s u k i et al., 1982). 
CinnamoyhCoA reductase and CAD from soybean use both sinapoyl 
and feruloyl CoAs as substrate. COMT is also a lignin specific enzyme 
involved in production of l ignin monomers and may also be induced 
by exposure to fungal pathogens and yeast (Dalton et al., 1990). The 
very rapid induction of CAD and COMT transcripts, together w i t h the 
production of dehydrodiconiferyl glucosides, which exhibit cytokinin 
like activi ty, may indicate a role in the generation of secondary 
messengers and a role in signal production, as wel l as l ignif icat ion 
(Binns et al, 1987). 

Expression of PAL and COMT has been observed to occur preferentially 

in roots, stems and petioles (Gowri et al., 1991). This observation 

39 



perhaps reflects the extent of l ignificat ion in these tissues. Petioles 
undergo sclerification as the plant ages (Fahn, 1982), while stems and 
roots undergo d i f fe ren t ia t ion of tissue to f o r m support ing and 
conducting tissue which is l ignified. Reduced expression of COMT is 
observed in root nodules, which do not have large amounts of 
vascular tissue and do not exhibit the wound response. Expression of 
the PAL and COMT genes has been investigated using gene fusion i n 
transgenic plants (Bevan et al., 1989; Liang et al, 1989b; Peleman et al, 
1989). COMT-GUS fusion genes correlate the presence of COMT in 
vascular tissue w i t h the demand for methylation of hydroxycinnamic 
acids i n l ignin biosynthesis. Many of the enzymes discussed are 
thought to play a regulatory role in the formation of guaiacyl and 
syringyl lignins (Shimada et al., 1973; Kutsuki et al 1982; Luderitz et 
al, 1982). 

There is evidence that some enzymes involved in l ignin biosynthesis 
are cytochrome-P-450-dependent. PAL and cinnamic acid hydroxylase 
activity was observed to increase on irradiation wi th red light (Russell, 
1971). Suspension cultures of parsley showed induction of shikimic 
acid pathway enzymes on i l luminat ion (McCue and Conn, 1990). 
Grand (1984) showed cytochrome P-450 dependent enzyme activity for 
ferulic acid 5-hydroxylase and cinnamic acid 4-hydroxylase, which are 
involved in synthesis of sinapic acid. 

The l i g n i n precursor alcohols p-hydroxyc innamyl , coniferyl and 

sinapyl are synthesised in the protoplast and accumulate as (3-D-

glucosides. The (3-D-glucosides are later hydrolysed to monomeric 

species which cross the plasmalemma and permeate the cell w a l l 

where they are oxidatively polymerised forming C-C and C-0 linkages 

(Figure 1.5). The mode of oxidative polymerisation is not k n o w n , 

however, i t is thought to be a free radical or an ionic process 

(Marcinowski et al., 1979; Burmeister and Hosel 1981). Lignin is then 

deposited wi th in the cellulose framework of the lamellae. Progressive 

l ignif icat ion then occurs f rom this region and between adjacent cells, 

unt i l f inal ly, the secondary wall becomes lignified. 

Dicotyledons have an abundance of synapyl alcohols and the 
corresponding polymer i n dicots is termed syringyl l ignin. L ign in 

40 



CH?OH 

K) 
CH 

HOCH 

OMe 

xr 
0 

Figure 1.5 Representation of an idealised 
structure of polymerised l ign in , adapted f r o m 
Mann (1987). 
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monomer composition is also dependent on its site of deposition i n 
various tissues. Sclerenchyma have a higher percentage of syr ingyl 
l ign in compared to xylem (Grand et al., 1983). I t is thought that 
various isoenzymes may play a role in controll ing the monomeric 
composition of l ignin . Two forms of hydroxycinnamate:CoA ligase 
f rom poplar were found to have distinct patterns of location in xylem 
and sclerenchyma. Form I was essentially located in xylem (Grand et 
al., 1983). Low amounts of form I I could be a contributing factor to low 
percentages of guaiacyl units in this tissue. Isoenzymes of 4-
coumarate:CoA ligase f r o m soybean cultures have also shown substrate 
specificity. One isoenzyme activates sinapic acid to fo rm lignin, while 
another is thought to be involved in the flavonoid pathway (Luderitz 
et al., 1982). 

The last enzymatic step in l ign in biosynthesis involves oxidat ive 
polymerisation of free radicals catalysed by cell wa l l peroxidases 
(Williams, 1988; McDougal l , 1991; O'Malley et al., 1993; Sato et al., 
1993). Extracellular peroxidases are known to be involved in 
polymerisation of l ignin and suberin precursors, I A A catabolism and 
regulation of the tightening of cell walls by modulation of cross-linking 
of extensin and polysaccharide-bound phenols (Fry, 1986). The 
peroxidases exist as mul t ip le isoenzymes. Four isoenzymes of 
peroxidase (EC 1.11.1.7) have been found in cell walls of pea (Gibson 
and Lui.. 1981). Peroxidase is a heme containing enzyme w h i c h 
catalyses oxidative polymerisation of monomeric precursors to f o r m 
lignin complexes in the cell wall (Stafford, 1974). 

It is thought that phenolic compounds may be electron donors for the 

inactive peroxidase intermediates. On activation the active peroxidase 

proceeds to oxidise N A D H (nicotinamide-adenine dinucleot ide 

phosphate, reduced form) (Mader and Fussl, 1982). N A D H oxidation 

by peroxidase isoenzymes gives rise to H2O2V In vitro studies on the 

peroxidatic oxidation of N A D H , g iv ing rise to H2O2, followed by the 

peroxidatic polymerisation of cinnamyl alcohols to produce a l ign in -

like substance may indicate dual roles for peroxidases in l i g n i n 

production in vivo (Gross et al., 1977). Further support for the role of 

peroxidase in l ignificat ion was illustrated by histochemical techniques 

by H e p l e r ^ al. (1972). Histochemical staining localised peroxidase i n 
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primary and secondary cell walls and in the dictyosomes. Peroxidase 
and l ign in were found together in secondary thickenings and areas of 
the pr imary wall where the secondary wal l attaches. A fine textured 
stain was also observed throughout the secondary wa l l (Hepler et al., 
1970). Hepler et al. (1970) also observed that peroxidase staining was 
greatest i n the recently formed part of the cell wa l l . The positive 
staining for peroxidase in dictyosomes agrees w i t h the observation that 
acidic peroxidases are transported as secretory proteins, possibly as 
glycosides, to the cell wa l l (Schlob et al., 1987). Peroxidase act ivi ty 
significantly increases i n prel ignifying tissue (Bowling and Crowden, 
1973). However, the precise relationship between l ignificat ion and 
peroxidases is obscure. Pea lines carrying the alleles pV, PV and Pv 
show an init ial increase i n wall-bound peroxidase activity during pod 
development fol lowed by a decline as the pods mature. The actual 
maximum varies between each genotype. Lines carrying pv exhibit 
cont inued increase i n wa l l bound peroxidase act ivi ty d u r i n g 
development. Cells undergoing l ignificat ion in lines carrying the 
alleles pV and Pv show more intense staining for peroxidase activity. 

A numoer of other oxidases have been associated w i t h lignification in 

plants (Dean and Eriksson, 1992; O'Malley et al., 1993). Laccase, a 

copper oxidase, has been demonstrated to induce polymerisation of 

l ignin precursor molecules in vitro (Freudenberg, 1965; Sterjiades et 
al., 1992). Laccase and laccase like activity has been observed i n 

l ign i fy ing tissues of a number of plant species (Driouich et al., 1992; 

Sterjiades et al., 1993). Ascorbate oxidase is a copper enzyme related to 

laccase and exists p r ima r i l y in cell walls (Ohkawa et al., 1989). 

Polyamine oxidase and diamine oxidase have also been localised i n cell 

walls of l igni lying tissue (Slocum and Furey, 1990). 

1.9 Blue Type I Copper Proteins 

Copper, an essential element for plant growth, is known to be an 

important factor in several plant biochemical processes (Walker and 

Webb, 1981; Williams, 1988; Hay, 1992; Kendrick et al., 1992). The 

funct ion of some of the plant copper proteins, such as cytochrome 

oxidase, laccase, plastocyanin, ascorbate oxidase, and copper amine 

oxidase are now k n o w n to be involved i n a diverse range of 
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biochemica l processes i n c l u d i n g resp i ra t ion , photosynthes is , 
l ignif icat ion, cellular defence mechanisms and hormone metabolism 
(Bussler, 1981; O'Malley et al ., 1993). A number of blue copper 
proteins have, as yet, no known biological funct ion e.g. stellacyanin 
(Sc) (Bergman et al., 1977), cucumber basic blue protein (CBP) (Murata 
et al., 1982) and cucumber peeling cupredoxin (CBC) (Mann et al., 1992). 
These are known as blue type I copper proteins and belong to the 
family of blue copper proteins. 

Blue type I copper proteins are around 10 - 22 kDa in size and have a 
"type I " bound copper atom characterised by unique spectroscopic 
features w i t h an intense absorption band at 600 nm in the oxidised C u l l 
fo rm (Solomon et al., 1992; Malmstrom, 1994). The C u I / C u I I couple 
has a useful redox potential and the blue type I copper proteins are 
thought to be involved in electron transfer. They may accept electrons 
to generate free radicals in polymerisation reactions. Most of the 
copper proteins are found in association w i t h cell walls or cell 
membranes rather than the cytoplasm (Frausto da Silva and Wil l iams, 
1991). 

The copper ion in blue type I copper proteins has a tetrahedral 

configurat ion, as determined by electrochemical and spectroscopic 

studies. Crystallographic studies confirmed that the geometry was that 

of a distorted tetrahedron facilitating electron transfer. The Cu^+-

methionine bond distance is extended in comparison to the other three 

Cu^+ - l igand bond lengths. Cu l l and Cul have an almost identical 

position i n blue copper proteins. This results in a reduction i n 

structural changes of the protein and minimal geometric change 

during electron transfer. Proposed structures for the blue single copper 

proteins stellacyanin and cusacyanin consist of a B. barrel w i th a single 

domain and possible reaction sites either side for substrates (Murata et 
al., 1982; Fields et al., 1991). The four ligands involved in b ind ing 

copper are two His, one Cys and one Met (Adman, 1985). 

I t has been observed that the monocopper proteins exhibit enhanced 

oxidation i n the presence of multicopper oxidases, such as ascorbate 

oxidase and laccase. Stigbrand (1971) demonstrated an increase i n 

velocity of reoxidation of umecyanin, a single copper blue protein f r o m 
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horseradish peelings, i n the presence of multicopper oxidases. The 
single copper blue proteins may func t ion as electron carriers i n 
connection w i t h other oxidases. Blue copper proteins have been 
isolated in crude extracts wi th other oxidases. Umecyanin was isolated 
in crude extracts containing laccase, peroxidase and ascorbate oxidase 
(Stigbrand, 1971). Crude extracts of mavicyanin, a single blue copper 
protein f r o m the skin of green squash, also contained ascorbate oxidase 
and peroxidase (Marchesini et al., 1979). 

1.10 Directing Proteins to the Cell Wal l or Membranes 

Signal sequences are highly hydrophobic, N-terminal sequences (15 - 30 
residues), which are essential for targeting nascent proteins destined for 
secretion via the endoplasmic ret iculum (ER) (for reviews, see Jones 
and Robinson, 1989; Chrispeels, 1991). Furthermore, they play a role in 
translocation of the nascent protein across the ER membrane (Dorel et 
al., 1988). Signal sequences do not exhibit conserved primary sequence 
homology, but may be characterised by the common dis t r ibut ion of 
different types of residues in the signal sequence (von Heijne, 1983). 
There are three distinct regions of the signal peptide; the n-region, at 
the N-terminus; the h-region, the hydrophobic core; and the c-region, 
at the carboxy-terminus. The n-region, located at the N-terminus, is 
highly variable in length and composition, but has a net positive charge 
(approximately + 1.7). The h-region is rich in Leu, Ala, Met, Val , He, 
Phe and Trp (and occasionally Pro, Gly, Ser or Thr) and characterises the 
hydrophobic core (von Heijne, 1985). The length of the hydrophobic 
core, 10 +_ 3 residues, distinguishes i t f r o m membrane spanning 
sequences, 24 + 2 residues, and f rom hydrophobic segments of globular 
proteins, 6 - 8 residues (Gierasch, 1989). The so-called c-region ( 5 - 7 
residues), has a high polarity compared to the h-region immediately N -
terminal to the c-region. The c-region cleavage site conforms to the (-1, 
-3) rule. The residues -1 and -3 of the cleavage site are small and 
neutral, Ala, Ser, Gly, Cys, Thr (occasionally Glu, Pro or Leu) and Ala , 
Ser, Gly, Cys, Thr, He, Leu, or Val, respectively. Aromatic, charged, or 
large polar residues, are absent in the -1 and -3 positions (von Heijne, 
1983). The residues common to position -2 are often large and bu lky 
(von Heijne, 1983). The hydrophobic core is thought to be essential for 
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its funct ion in translocating nascent proteins. Deletions or additions to 

the hydrophobic core can prevent translocation (Benson et al., 1985). 

Targeting of the signal sequence is thought to be achieved by binding to 
signal recognition particle (SRP) (Prehn et al., 1987; for review, see 
Vitale et al., 1993). SRP binds to putative ER receptors (Prehn et al., 
1987). Despite the lack of primary sequence homology, it is thought 
that there is only one SRP, which has the ability to recognise different 
signal sequences. Synthesis and translocation of plant mRNAs has 
been observed to proceed in animal (Gallili et al., 1987) and fungal 
systems (Rothstein et al., 1987). Signal peptidase cleaves the signal on 
the lumenal side of the ER where the polypeptide undergoes various 
post-translational modifications and secretion to its destined cellular 
location (for reviews, see Jones and Robinson, 1989; Chrispeels, 1991). 

1.11 The Heat Shock Protein Gene Family 

The heat shock response has been found to be conserved in a diverse 
range of eukaryotes and prokaryotes (for review, see Lindquist, 1986) 
and is characterised by the synthesis of a set of proteins, termed heat 
shock proteins (Hsps), in response to increased temperature. Further 
investigation led to the discovery of constitutively expressed hsps, 
shown to be essential under normal growth conditions (Lindquist , 
1986; Gething and Sambrook, 1992) and a number of hsps which were 
developmentally induced (Kurtz et al., 1986; Winter and Sinibaldi, 
1991), or induced in response to a variety of stresses e.g. arsenite 
(Edelman et al., 1988), heavy metals (Winter et al, 1988). 

There are several classes of Hsps, designated by their molecular weights 

in kDa: H s p l l O , Hsp90, Hsp70, Hsp60 and low molecular weight 

( L M W ) Hsps (15 - 30 kDa), wh ich are s t ructural ly related, bu t 

funct ional ly distinct. The direct involvement of Hsps in prote in 

biogenesis, which has become apparent over the past few years, has led 

to the alternative term, molecular chaperone (Ellis and van der Vies, 

1991). 

The molecular chaperone activities of the Hsp70s have been 

investigated by a number of researchers (for reviews, see Hendrick and 
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Hard, 1993; Becker and Craig, 1994). Subsequently, the Hsp70 fami ly 
have been implicated in stabilisation of unfolded precursor proteins 
pr ior to assembly in to mult imolecular complexes in the cytosol; 
translocation into cell organelles, such as the endoplasmic ret iculum, 
the mitochondria and chloroplasts; maintenance of translocated 
proteins i n an unfolded state before fo ld ing and assembly in organelles; 
rearrangement of protein oligomers; resolution of protein aggregates; 
and modulation of receptor activities. 

The hsp70 genes have been found to exist as multi-gene families i n a 
number of eukaryotes and are expressed in response to various 
physiological conditions. The Hsp70s may be found in mitochondria 
(mt) and chloroplasts (Amir-Shapira et al., 1990), the cytosol (Wu et al., 
1988), endoplasmic reticulum (Munro and Pelham, 1986; Normington 
et al., 1989; Rose et al., 1989) and the nucleus. The hsp70 genes are 
highly homologous w i t h at least 50% similarity at the amino acid level; 
greatest homology is observed in the N-terminal two thirds of the 
predicted protein sequence. The Hsp70s exhibi t very s imilar 
biochemical properties. They all bind unfolded proteins and ATP, and 
have a weak ATPase activity, stimulated by binding unfolded proteins 
and synthetic peptides (Rothman, 1989). ATP-binding activity is 
located in the N-terminal two thirds of the polypeptide, while peptide 
binding is effected by the C-terminal third (Chappell et al., 1987). The 
structure of the ATP-binding domain has been determined (Flaherty et 
al., 1990) and consists of two lobes fo rming an ATP-binding cleft, 
s t ructural ly similar to the ATP-binding domains of G-actin and 
hexokinase (Flaherty et al., 1991). Release of bound peptides is 
dependent on ATP-binding and hydrolysis. BiP is the single Hsp70 
family member of the ER (Haas and Wahl, 1983). Hsp70s located in the 
ER are known to associate wi th newly synthesised proteins imported 
into the ER (Haas and Wahl , 1983), and are induced by the 
accumulation of misfolded proteins in the ER (Rose et al., 1989). The 
C-terminal of BiP is thought to contain seven amino acids involved in 
peptide binding. The 7-mer has an enriched aliphatic content w i t h no 
polar un-charged amino acids (Flynn et al., 1991). I t is thought that 
pept ide b i n d i n g and ATP hydro lys i s is accompanied by a 
conformational change (Liberek et al., 1991), resulting in release of 
bound peptides in a manner thought to be similar to the G protein 
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model (Palleros et al., 1993). The characteristic ability of Hsp70s to bind 
and release hydrophobic stretches of partially unfolded proteins enables 
a functional role for these proteins i n numerous essential intracellular 
ac t iv i t i es , such as p ro t e in synthesis, p r o t e i n f o l d i n g and 
oligomerisation and protein transport. 

A number of mi tochondr ia l Hsp70s have been isolated w i t h a 
characterisitic N- t e rmina l leader sequence for targeting to the 
mitochondria ( Craig et al., 1989; Watts et al., 1992). Analysis has 
shown that the mt Hsp70s are necessary for the import of translocated 
precursor proteins (Voos et al., 1993). They bind precursor proteins on 
penetration of the mt membrane in a manner comparable w i t h the 
role of BiP in the ER. The translocated precursor is stabilised in a 
partially folded state unt i l ATP hydrolysis permits release and further 
fo ld ing. 

Cytosolic hsp70s are closely associated wi th protein synthesis, fo ld ing 

and secretion. The accumulation of unfolded proteins (Anathan, 1986) 

or secretory precursors (Normington et al., 1989) in the cytosol has been 

observed to induce hsp70 expression. Studies of yeast cytosolic Hsp70s 

has revealed two groups, SSA and SSB which are functionally distinct. 

The two groups are also transcriptionally regulated in different ways. 

The SSA genes are induced by heat shock. Conversely, SSB genes are 

switched o f f (Werner-Washburne et al., 1989). The SSA genes are 

essential for cell viabil i ty. Studies of transport of precursor protein in 

yeast and mammalian cells support the role of cytosolic Hsps i n 

translocation of unfo lded secretory proteins and transport to cell 

organel les (Ch i r i co et al., 1988; Z i m m e r m a n et al., 1988). 

Consti tut ively expressed mammalian hsp70s, termed hsc70s, encode 

proteins which catalyse the ATP-dependent disassembly of clathrin-

coated vesicles in vitro (Chappell, et al., 1987; De Luca-Flaherty et al., 
1990). Some cytosolic Hsp70s appear to bind signal sequences in 

peptides destined for degradation (Chiang et al., 1989). It is thought 

that a similar mechanism may facilitate binding of Hsp70s to nuclear 

localisation signals for import into the nucleus (Dingwal l and Laskey, 

1992). They may also play a role in a signal recognition particle (SRP)-

independent protein translocation pathway. SRP is known to b ind 

signal sequences of proteins destined for secretion via the ER. 
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Inactivation of the genes encoding SRP does not produce a lethal 
phenotype. Thus, i t has been speculated that Hsp70s provide an 
alternative pathway for translocation to the ER (Hann and Walter, 
1991). Several plant cytosolic Hsp70s in Arabidopsis (Wu et al, 1988), 
petunia (Winter et al., 1988) and maize (Rochester et al., 1986) have 
been characterised, which are similar to the yeast SSA fami ly and 
human cytosolic Hsp70 genes. I t is thought that plants may contain 
mult iple genes encoding cytoplasmic Hsp70s. Variations in structure 
and regulation have yet to be characterised. The tomato hsp70 (Duck 
et al., 1989) is regulated in a complex tissue specific pattern and is not 
heat inducible. In situ hybridisation has located expression of the 
constitutively expressed tomato hsp70 in the vascular system of the 
ovary, inner integument of developing seeds and the lateral root tips. 
A number of cognate hsp70 genes have been demonstrated to be 
developmentally expressed in plants (Duck et al., 1989; Zimmerman et 
al., 1989; De Rocher et al, 1990; Kruse et al, 1993). 

In addition to evidence for the role of Hsp70s in protein folding, they 

are also implicated in dissociation of folded protein complexes. The E. 

coli Hsp70 homologue, DnaK, converts inactive dimeric forms of RepA 

to active monomers i n conjunction w i t h other proteins (Wickner et 
al, 1992). It is thought that the Hsp70 recognises specific peptide 

sequences resembling those exposed in partially unfolded proteins. 

Modi f ica t ion of Hsp70 funct ion has been shown to be induced by 

complex interactions w i t h other proteins leading to increased protein 

b ind ing and s t imulat ion of ATPase activity in the case of DnaK 

(Liberek et al, 1991; Langer et al, 1992). 

Hsp60s have similar biochemical properties to Hsp70 proteins, but 

appear to act sequentially in a common pathway facilitating different 

steps in protein fo ld ing and assembly. Evidence indicates that Hsp70s 

bind the peptide backbone in its extended conformation, while Hsp60 

binds the partially folded intermediate (Langer et al, 1992; Landry and 

Gierasch, 1991). Hsp70 proteins, together wi th Hsp90 and Hsp56 have 

also been f o u n d associated w i t h mammal ian steroid receptor 

heterocomplexes (for review, see Pratt, 1993 ). Hsp70 binds to the 

hormone binding domain of steroid receptors (Schowalter et al, 1991; 

Scherrer et al, 1993), and is required for b inding of Hsp90 to the 
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receptor (Hutchison et al., 1992). The resulting heterocomplex formed 
by Hsp70, Hsp90, Hsp56 and an unknown factor present i n rabbit 
reticulocyte lysate (Pratt, 1993), and steroid receptors is thought to be 
involved i n receptor t raff icking into and out of the nucleus through 
the cytoplasm via microtubules (Dalman et al., 1989). 

The regulation, intracellular location and mode of peptide recognition 
of the numerous heat induced and constitutive and developmentally 
specific Hsps w i l l need further examination to determine the precise 
significance of this complex gene family in plants. The large number 
of hsp70 genes and the complex expression patterns, constitutive and 
induced, lead to significant difficulties in characterisation of this gene 
family. Study of these genes is further complicated by the observation 
that in mammalian systems, differential processing at the 3' end of 
mRNAs is a major factor in control of expression (Petersen and 
Lindquist, 1988). 

1.12 Modi f ica t ion of the 3' Termini of mRNA 

Formation of mature eukaryotic mRNAs requires a transcriptional 

unit encoding informat ion, which can be transcribed into precursor 

mRNAs (pre-mRNAs) by polymerase I I . The pr imary transcript 

transcribed by polymerase I I in eukaryotes then undergoes a number of 

complex physical modifications to produce a mature mRNA. These 

include capping, cleavage to form new 3' termini , polyadenylation, 

splicing, base methylation and transport to the cytoplasm f rom the site 

of transcription in the nucleus (Nevins, 1983). Each maturation step 

provides a means of regulating mRNA formation and function. 

Nea r ly a l l eukaryo t i c m R N A p r i m a r y transcripts undergo 
endonuc leo ly t ic cleavage to generate a new 3' t e rminus . 
Endonucleolytic cleavage of the pre-mRNA is fol lowed by the addition 
of up to 250 adenylate residues (the poly (A) tail). The 3' terminus may 
be cleaved at different sites in different cell types or at different stages of 
development (Capetanaki et al., 1983; Dean et al., 1986; Hernandez-
Lucas et al., 1986; for reviews see Breinbart et al., 1987; Green, 1991). 
At tempts to determine conserved sequences fo r terminat ion of 
transcription in the 3' untranslated region of m R N A have proved less 
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straightforward than determination of site of init iat ion of transcription 
at the 5' termini. Al though a number of cis-acting signals and trans­
acting factors are now characterised in mammalian systems (for review 
see Wahle and Keller, 1992), much less is k n o w n of the factors 
determining 3' end formation of plant mRNAs. 

The conserved A A U A A A sequence 1 0 - 3 5 bases upstream f r o m the 
cleavage site, was f ina l ly established as a polyadenylation signal for 
correct processing and polyadenyla t ion in mammal ian systems 
(Proudfoot and Brownlee, 1976). A second GU- or U-rich element 
situated downstream of the poly (A) addition site was also discovered 
to be required for efficiency of 3' end processing (McDevitt et al., 1986). 
In contrast the cis-acting sequences for plant mRNA processing do not 
possess the downstream element (DSE), and in many cases do not have 
the conserved A A U A A A sequence. Even when present the 
A A U A A A moti f may not act as part of the polyadenylation signal 
(Sanfacon, 1994). Other similar consensus motifs have since been 
discovered in plants, which serve as polyadenylation signals w i t h 
varying degrees of efficiency (Wu et al., 1993; Joshi, 1987). 

Plant polyadenylation signals appear to be much more complex than in 

mammalian systems. Plant mRNAs appear to have cis-acting signals 

upstream of the cleavage site, as opposed to the DSE in mammalian 

systems (Sanfacon, 1994; W u et al., 1993; Sanfacon et al., 1991). 

Sequences close to the cleavage site (near upstream elements, NUEs), 

and regions further upstream (far upstream elements, FUEs), appear to 

play a role in polyadenylation and regulation of processing efficiency 

respect ively (Mogen et al., 1992). In the pea rubisco gene, 

polyadenylation sequences upstream and downstream of the poly (A) 

site are required for polyadenylation (Hunt and MacDonald, 1989). 

There is a high degree of variability in positioning of poly (A) tails and 

mul t ip le polyadenylation sites have been observed for a number of 

plant genes such as small subunit ribulose bisphosphate carboxylase 

(rbcS) genes of petunia , the bronze gene of Zea mays and chlorophyl l 

a/b b inding protein (Cab) (Dean et al., 1986). Studies on adenovirus 

transcription indicate that in i t ia t ion of transcription by d i f fe ren t 

promoters may lead to utilisation of different poly (A) sites (Nevins 

and Wilson, 1981). The possibility exists for regulating expression of a 
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transcriptional uni t by selecting transcriptional termination of R N A , 
poly (A) addition and RNA-chain cleavage (Ingelbrecht et al., 1989). 

Poly (A) addition is an early event in RNA formation, occurring pr ior 
to splicing (Nevins and Darnell, 1978). The subsequent splicing of the 
m R N A proceeds w i t h the involvement of small nuclear R N A s . 
Antibodies to ribonucleoprotein particles containing snRNAs prevent 
splicing of viral RNAs in adenovirus-infected cells (Yang et al., 1981). 
The abili ty to achieve alternative splicing provides another means of 
regulating gene expression. Various coding sequence assemblies 
processed via alternative mRNA splicing can alter gene output. 

The processed m R N A s are transported f r o m the nucleus to the 
cytoplasm for translation. This provides the cell w i th another means 
of regulating expression. The level of functional m R N A available for 
protein formation is dependent on the rate of delivery and stability in 
the cytoplasm. In addit ion, rapid degradation is necessary when a 
given gene is switched off. Several studies suggest that the poly (A) tail 
plays a role in mRNA stability (Gallie et al., 1989). Enzymatic removal 
of the poly (A) tail of globin m R N A was shown to result in rap id 
degradation of the m R N A and loss of globin synthesis (Marbaix et al., 
1975). Histone m R N A which naturally lacks a poly (A) tail was 
stabilised by poly (A) addition (Huez et al., 1978). Sequences in the 3' 
UTR of hsp70 mRNAs have been found to play a role in direct ing 
turnover of the transcript. Sequences in the 3' UTR of an hsp70 m R N A 
were able to alter stability in consequence to variations in temperature 
(Petersen and Lindquist , 1988). Post-transcriptional regulation may 
then be achieved through changes in cell physiology which alter 
m R N A degradation depending on 3' sequences (Simcox et al., 1985). 
Regulatory elements downstream of the polyadenylation sites can alter 
.mRNA processing and stability. Increased expression levels have been 
achieved using the PI- I I terminator (An et al., 1989). It is thought that 
various terminators may bind to terminator sequences of a gene and 
direct 3' cleavage. 
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1.13 GTP-binding Proteins and Vesicular Transport 

GTP-binding proteins are the gene products of various gene families 
found in a diverse range of species. There are two groups of GTP-
binding proteins found in eukaryotic cells. The first is the ot-subunit of 
the trimeric G proteins ( Gilman, 1987; Lochrie and Simon, 1988) and 
the latter is the ras superfamily. Members of the ras superfamily are 
monomeric proteins of 21 - 25 kDa in size and include the Ras, Rho, 
Ral and Rab /Yp t subfamilies ( for reviews, see Barbacid, 1987; 
Downward , 1990; Hal l , 1990; Valencia et al, 1991; Terryn et al., 1993). 
A l l the members of this group share at least 30 % homology to Ras 
proteins. The GTP-binding proteins all have characteristic biological 
and biochemical properties. These include GDP/GTP binding activity; 
intrinsic GTPase activity; Ras proteins and the a-subunit of G proteins 
seem to be encoded by small families of homologous genes; they 
appear to function by interaction w i t h various receptor and effector 
systems; and they are all associated wi th .membranes, and indeed, 
localisation at cell membranes appears to be essential for function. 

The G proteins are perhaps the best characterised group and are known 

to be involved in signal transduction utilising cyclic A M P (for reviews, 

see Gilman, 1987; Lochrie and Simon, 1988). It is believed that Ras 

proteins have a similar role in regulating cell metabolism through 

signal transduction involving coupling cell growth and cell division to 

external stimuli (Barbacid, 1987). 

Other members of the Ras superfamily have been implicated i n 
intracellular transport. Mammalian Rab proteins (Touchot et al., 1987; 
Bucci et al., 1988) and their yeast counterparts SEC (Goud et al, 1988; 
Wa lwor th et al, 1989) and Ypt (Segev et al, 1988) proteins, have been 
implicated i n intracellular t raf f icking of vesicles to their appropriate 
subcellular locations (for review, see Novick and Brenwald, 1993). A 
number of plant rab homologues have now been isolated and 
characterised (Matsui et al, 1989; Anuntalabhochai et al, 1991; Sano 
and Youssefian, 1991; Terryn et al, 1992; Drew et al., 1993; Nagano et 
al., 1993; Palme et al., 1993). The secretory pathway of eukaryotic cells 
utilises a vesicular-mediated transport system to transport proteins to 
their various intra- and extra-cellular locations (reviews, Balch, 1989; 
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Steinman et al, 1984). Secreted proteins are transported f rom the ER 
via the Golgi complex. Further transport through the Golgi complex is 
facilitated by budded vesicles and f inal ly in vesicular endosomes to the 
appropriate target membrane. The vesicular intermediates required 
for each step in this transport pathway must be regulated to ensure, 
directionality, targeting and fusion. GTP is implicated directly or 
indirectly in regulation of vesicular transport (review, Balch, 1990). 
Rab proteins are thought to undergo a transformational change upon 
hydrolysis of GTP, thus acting as a molecular switch determining 
directionality and specificity of membrane trafficking. On receiving a 
particular stimulus cell membrane receptors are thought to interact 
w i t h Rab proteins resul t ing in GTP binding. The resul t ing 
conformational change allows interaction of GTP bound Rab w i t h its 
effector system. Once the interaction has taken place, GTPase activity 
proceeds and GTP is replaced by GDP resulting in a conformational 
change, which leads to dissociation of Rab and its effector system. 

Different members of the Rab fami ly have been localised to specific 
exocytic and endocytic compartments of each transport step f r o m 
endoplasmic reticulum to late endosomes (Balch, 1990; Chavrier et al, 
1990; Gcud ct al, 1990; Plutner et al, 1990; Kinsella and Maltese, 1991; 
van der Sluis et al., 1992). In addition, any given organelle in vesicular 
transport may bear more than one Rab protein, each having a different 
biological function (Lombardi et al., 1993). 

A number of accessory proteins have been implicated in eff ic ient 

functioning of the Rab proteins. GAP (GTPase activating protein), has 

a stimulatory effect on GTP hydrolysis (Novick and Brennwald, 1993), 

GEF (guanine nucleotide exchange factor), stimulates the rate of GTP 

hydrolysis (Moya et al., 1993), and G D I (guanine dissociation inhibitor) 

acts to inhibi t dissociation of GDP f r o m Rab proteins (Novick and 

Brennwald, 1992). 

Evidence of a soluble pool in cytosol fractions was found by Goud et al. 
(1988), and it is thought that GTP-binding proteins involved i n 
vesicular transport may be recycled between membranes (van der 
Sluijs et al., 1992). Cell free systems reconstituting vesicular transport 
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have been utilised to identify the cytosolic and membrane components 
involved (Goda and Pfeffer, 1988). 

The conserved terminal Cys residues of Ras proteins undergo 
modification by isoprenyl groups of the isoprenoid precursor M V A 
(Farnsworth, 1991; Kinsella and Maltese, 1991). Either one or both of 
the terminal Cys residues have been implicated in post translational 
mod i f i ca t i on (Wi l lumsen et al., 1984a; Wil lumsen et al., 1984b; 
Molenaar et al., 1988; Khosravi-far ct al., 1991). It has been observed 
that Rab proteins wi th a CXC (where X is alanine, serine or glycine) or 
CC motif are substrates for addition of geranylgeranyl moieties via a 
thioether linkage to either one, or both, of the conserved terminal Cys 
residues (Khosravi-far el al., 1991; Kinsella and Maltese, 1992). A 
mammalian Rab GG transferase has been isolated (Andres et al., 1993; 
Seabra et al., 1992). Alternatively, Rab proteins may have C-terminal 
motifs similar to the CAAX box found in most ras proteins (where A is 
an aliphatic residue) (Palme ct al., 1993). It is also suggested that 
domains upstream of the conserved terminal Cys residues are required 
for prenylation (Andres et al., 1993; Wilson and Maltese, 1993). Some 
members of the Ras, Rho and Ral subfamilies have a basic sequence 
upstream of the Cys residues (Hall , 1990). This basic sequence is 
thought to be an additional signal for palmitoylation. The CXC 
carboxyl terminal mot i f together w i t h residues upstream (which 
exhibit greatest amino acid divergence between members of the Rab 
family members) mav determine specific localisation of each Rab 
protein in membranes involved in endocvtic and exocvtic pathways. 

The high degree of homology shared by the mammalian and plant Rab 

proteins w i t h their yeast counterparts, and the results of yeast 

complementation experiments suggest conserved mechanisms for 

regulation of vesicular transport in eukaryotes. A number of vps 

(vacuole protein targeting) mutants (Banta et al., 1988; HorazdovsTcy et 
al., 1994) have provided a means of ident i fy ing the precise step of 

vesicular transport regulated by a particular Ypt family member (Segev 

et al., 1988; Wichman et al, 1992). Functional complementation of 

yeast strains wi th mutations of specific Ypt proteins has been achieved 

w i t h plant (Cheon et al., 1993; Bednarek et al., 1994) and mammalian 

(Haubruck et al, 1989; Hengst et al., 1990) Rab/Ypt homologues. A 



minimal requirement for successful complementation appears to be an 
identical effector domain (Haubruck et al., 1989; Hengst et al., 1990). 
The Rab proteins have a conserved effector domain, which is required 
for regulation of GTP hydrolysis (Plutner et al., 1990). The effector 
domain is proposed to b ind a putative effector protein GAP (GTPase 
activating protein), which stimulates GTP hydrolysis. Other strategies 
adopted to investigate the function of plant Rab homologues include, 
overexpression in plants (Kamada et al., 1992) and expression analysis 
(Palme et al., 1992). 
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1.14 Specific Aims of the Project 

Initial work in the project aimed to characterise a cDNA selected f rom a 

differential screen of purple- and green-podded pea lines. I t was hoped to 

investigate its role in developing pods by examining expression in pods 

with different phenotype/genotype. 

The major aim of the project was the investigation of the genetic basis for 

phenotypic differences between pods with or without lignified 

sclerenchyma in the pod endocarp. It was planned to construct a cDNA 

library f rom pods with lignified sclerenchyma and perform differential 

screening to isolate clones containing cDNAs of differentially expressed 

genes. It was intended to correlate expression of differentially expressed 

genes with lignification by investigating the physiology of pod 

development and the expression pattern of differentially expressed genes in 

pods and other plant tissues. 
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2. MATERIALS A N D METHODS. 

2.1 Materials 

2.1.1 Chemical Reagents and Equipment Suppliers 

A l l reagents were obtained f rom BDH-Merck Ltd. , Lutterworth, Leics., 
Oxoid Ltd. , Basingstoke, A p i n Chemicals Ltd., Oxon, or Sigma Chemical 
Co., Poole, Dorset, except those listed below. The reagents used were of 
analytical grade or the best available grade. 

D N A size markers and restriction and D N A modi fy ing enzymes were 

obtained f r o m Nor thumbr i a Biochemicals L t d . , Craml ington , 

Northumberland, Promega, Southampton, Boehringer Mannheim U K 

Ltd., Lewes, E. Sussex, or Stratagene Ltd. , Cambridge. 

Agarose was supplied by GibcoBRL Life Technologies Ltd. , Paisley, 
Scotland. 

A Zap-cDNA synthesis k i t was purchased f r o m Stratagene L td . , 
Cambridge. A n in vitro transcription kit , RNase free RQ1 DNase and 
murine moloney reverse transcriptase were purchased f rom Promega, 
Southampton. 

A DIG Labelling Ki t was purchased f rom Boehringer Mannheim UK Ltd. , 

Lewes, E. Sussex. 

Alkal ine phosphatase conjugated polyclonal sheep anti-digoxygenin 

antibody was supplied by Sigma Chemical Co., Poole, Dorset. 

Microscope slides and chemicals for microscopy were purchased f r o m 

T A A B Laboratories Equipment Ltd . , Reading, Berks., except National 

Diagnostics Histo-clear, which was supplied by Fisons Scientific 

Equipment, Loughborough. 

D N A synthesiser and sequencers were supplied by Applied Biosystems 
Inc., Warrington, Ches. 
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Bacto-agar was obtained f rom Difco Laboratories, W. Molesey, Surrey. 
Oxoid yeast extract was supplied by Unipath L td . , Basingstoke and 
trypticase-peptone was obtained f rom Becton Dickinson, Cowley, Oxon. 

Radiochemicals and nylon filters were purchased f r o m Amersham 
International pic, Aylesbury, Bucks. 

Nitrocellulose filters, Schleicher and Schuell, grade BA-85, were supplied 
by Anderman and Co. Ltd. , Kingston-upon Thames, Surrey. 

National Diagnostics "Ecoscint" scintillation f lu id was supplied by B.S. & 

S. (Scotland Ltd.), Edinburgh. 

X-ray cassettes and X-ray f i l m were supplied by Genetic Research 

Instrumentation Ltd. , Dunmow, Essex. 

Fixer, Kodak Uni f ix , was supplied by Phase Separations Ltd., Deeside, 
C l w d . Developer, I l f o r d Phenisol, was supplied by I l f o r d L td . , 
Mobberly, Ches. 

3 M M filter paper was supplied by Whatman Labsales Ltd. , Maidstone, 

Kent. 

Disposable pipette tips and Eppendorfs were supplied by Greiner 

Labortechnik Ltd., Dursley, Glos. 

Microtitre plates and petri dishes were supplied by Bibby Sterilin Ltd. , 

Stone, Staffs. 

2.1.2 Plant Material 

Pea seed, L59, L58 and L1390 were kindly supplied by the Weibullsholm 
Institute, Sweden, and Feltham First (FF) and Purple podded (PP) 
cultivars were purchased f rom Sutton's Seeds, Torquay, Devon. L59 
have a l igni f ied parchment layer (genotype, PV), L58 has a partially 
l ignif ied layer (genotype, Pv) and the lignified parchment layer is absent 
in L1390 (genotype, pv) (Pea Gene Bank Catalogue, 1989). Subsequent 
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seed supplies were raised f rom plants grown under laboratory conditions 
at Durham University. 

2.1.3 Growth of Plant Material 

Pea seeds were germinated on damp tissue paper in darkness at 25 °C. 
Desiccation of the seeds was prevented by intermittent spraying wi th 
water. The germinated seeds were routinely planted at a density of 2 
seedlings/5 inch pot or 3 seedlings/7 inch pot in John Innes No. 1 
compost and placed on a polythene lined tray in a growth room. The 
compost, canes and pots were sterilised prior to use. Growing plants 
were routinely maintained in a heated growth room, or alternatively, 
plants were grown in glasshouses at the Durham University Botanic 
Gardens during the summer months between May and September. 
Temperature fluctuated, but extremes were never higher than 28 °C or 
lower than 12 °C. Extremes of temperature, greater than 28 °C or lower 
than 12 °C, caused various physiological problems, such as bud abortion, 
flower inhibition and poor pod development. Plants were abandoned if 
temperature extremes occurred during the flowering period. 

Consequently, plants grown tor the physiology experiment, involving 

exogenous application of plant growth regulators to emasculated flower 

buds to determine their effect on endocarp development, were removed 

to a growth cabinet in order to provide a more regulated environment. 

Plants grown for the physiology experiment were planted at a density of 

1 seedling/5 inch pot and were maintained in a growth cabinet at 25 °C 

wi th 12 hours fu l l light and at 22 °C wi th 4 hours half light and 8 hours 

darkness. Humidity was maintained at 65 %. Temperature fluctuations 

ranged f rom 18 °C - 26 °C, during the course of the experiment, as 

measured wi th a maximum/min imum thermometer. 

2.1.4 Bacterial Strains and Plasmid and Bacteriophage Vectors 

M13 and pUC vectors, DH5a and JM101 were purchased f r o m 

Northumbria Biologicals Ltd., Cramlington, or Pharmacia Biotech Ltd. , 

St. Albans. Bacterial strains, plasmid vectors and bacteriophage used in 

constructing the cDNA library, D N A screening and in vivo excision of 

inserts were purchased f r o m Stratagene Ltd. , Cambridge. The 
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Invitrogen pYES2 yeast expression vector and Top 10 F' were supplied by 
R & D Systems Europe Ltd. , Abingdon. 

Competent SURE and Top 10 F' were prepared as described (2.2.13) 

The bacterial strains, plasmids and bacteriophage vectors are listed below 
(Table 2.1). 

Table 2.1 Bacterial strains, plasmids and bacteriophage vectors 

Bacterial Strains 

D H 5 a (BRL): F", end Al, hsdRU (rK~,m]<+), supEU, thi-l, \', recAl, gyr A96, relAl, 
(argF-laczya)U169, (j)80dtocZAM15. 

JM101 (Yannisch-Perron et al. (1985) or BRL): supE,thiA(lacproAB)/F traD36, proA,B, 
( r K + , m K + ) , aqY\z A M15 

XLl-Blue (Stratagene): recAl, end Al, gyr AS 6, lhi-l, hsdRU, supE44, relAl, lac [F proAB, 

/acWZAM15,Tnl0(tetr)] 

S U R E strain (Stratagene): el4-(mcM), A(mcrCB-hsdSMR-mrr)171, sbcC, recB, 
recJ,umuC:Tn5 (kan r), uvrC, supE44, lac, gyrA96, relAl, thi-l, endAl, [F proAB, 
lactfZAM15, Tn20,(tetr)] 

S O L R S t r a i n (Stratagene): el4-(mcr), A(mcrCB-hsdSMR-mrr)17l,sbcC, recB, 
rec},umuC:Tn5, (kanO, uvrC, lac, gyrA%, relAl, thi-l, endAl, XR, ( F proAB, lacWZAMl5) 
Su" (non-suppressing) 

Top 10 F ' ( Invitrogen): F'(tet r )mcrA A (mrr-hsdRMS-mcrBO 0 8 0 
A\acAMl5lacX74deoRrecAlaraDl39A(amJeu)7679galUgalK\psL(Slrr)endAlnupG 

Plasmids 

pUC18 (Pharmacia): cloning vector 

pUC19 (Yannisch-Perron et al. (1985) or (Pharmacia): cloning vector 

pBluescript (Short et al. (1988) or Stratagene): cloning vector 

pYES2 (Invitrogen): yeast expression and cloning vector 
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Bacteriophage 

M13mpl9 (Yannisch- Perron et al. (1985) or Boehringer Mannheim): multiple cloning 
site 

M13mpl8 (Yannisch-Perron et al. (1985) or Boehringer Mannheim): multiple cloning 
site as for M13mpl9 

Lambda Z A P I I (Short et al. (1988) or Stratagene): multiple cloning site 

R408 helper phage (Stratagene): in vivo excision 

EXAssist helper phage (Stratagene): in vivo excision 

2.1.5 Growth Media for Bacterial and Bacteriophage Cultures 

Media routinely used for growth of bacterial and bacteriophage cultures 
are listed below (Table 2.2). 

Table 2.2 Media preparations 

L iqu id Media 

LB medium: 10 g NaCl, 10 g bacto-tryptone, 5 g yeast extract, per litre. 

LB/Maltose/MgS04: To autoclaved LB medium , add filter sterilised maltose 
solution to 0.2 % and MgSC>4 solution to 10 mM. 

i 
N Z Y medium: 5 g NaCl, 2 g MgSC>4.7H20, 5 g yeast extract, 10 g casein hydrolysate, 
per litre, pH 7.5 with NaOH. 

Terrific Broth: 12 g bacto-tryptone, 24 g yeast extract, 4 ml glycerol in 900 ml, 
autoclave. Then add 100 ml'of filter sterilised 0.17 M KH2PO4/O.72 M K2HPO4. 

2 X L : 20 g bacto-tryptone, 10 g yeast extract, 1 g NaCl, per litre, pH 7.0 with 1 M NaOH. 
Add 10 ml of filter sterilised 20 % glucose after autoclaving. 

Y T medium: 8 g bacto-tryptone, 5 g yeast extract, 5 g NaCl, per litre. 

2 x Y T medium: 16 g bacto-tryptone, 10 g yeast extract, 5 g NaCl, per litre. 
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Solid Media 

M9 minimal agar plates: Prepare 10 x M9 salts: 60 g Na2HP04, 30 g KH2PO4, 5 g 
NaCl, 10 g NH4CI, per litre. Add 20 ml of 10 x M9 salts to 3 g of agar in 175 ml of 
distilled water. Autoclave and cool to 55 °C - 60 °C before adding the following filter 
sterilised solutions: 0.2 ml of 1 M MgSC>4, 2 ml of 20 % ( w / v ) glucose, 0.2 ml of 
thiamine 10 mg/ml. Adjust the volume to 200 ml with sterile water and pour plates. 
The plates can be stored up to 3 months at 4 °C. 

L B , Y T and N Z Y Plates: Add 15 g of agar per litre of medium. Autoclave and pour 
plates while media is still molten. 

Top Agar: 10 g bacto-tryptone, 5 g NaCl, 8 g bacto-agar, per litre. 

NZY Top Agar: Add agarose to 0.7 % to NZY broth. 

Additives 

Antibiotics: ampicillin 50 u.g/ml of media 
kanamycin 50 (ig/ml of media 

tetracycline 12 | ig/ml of media 

X-Gal: 50 u.1 of 2 % X-Cal (in dimethylformamide) to 2 - 3 ml of top agar. 

I P T G : 15 |il of 0.1 M or 0.5 M IPTG (for plating out bacteria containing pBluescript) to 2 
- 3 ml of top agar. 

2.1.6 Maintenance of Bacterial Strains 

Bacterial strains for cloning experiments were maintained by mixing 1 m l 

of stationary phase culture wi th 1 ml of sterile 80 % glycerol. The culture 

was then stored at -80 °C. Revival was brought about by streaking 

aliquots on the appropriate selective media and incubating overnight at 

37 °C. Short term work ing strain stocks were maintained as bacterial 

streaks on appropriate media and stored at 4 °C. 

2.1.7 Frequently Used Buffers and Solutions 

10 x Column buffer : 1.5 M NaCl, 0.1 M EDTA, 1 % SDS , 0.5 M tris, p H 

7.5. 
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Chloroform/iso amyl alcohol: 24:1, saturated wi th tris buffer (pH 7.5), 
stored at 4 °C 

Denatur ing solution: 1.5 M NaCl, 0.5 M NaOH, 1 m M EDTA, filtered 
and stored frozen at -20 °C. 

50 x Denhardfs solution: 1 % Ficoll, 1 % PVP, 1 % BSA. 

Ethidium bromide: 10 m g / m l of deionised distilled water. 

Freshly deionised formamide: 1 g of amberlite resin MB1/10 m l of 

formamide, stirred for 1 hour, filtered and stored at -20 °C. 

10 x MOPS: 0.5 M MOPS, 0.01 M EDTA, p H 7.0. 

Neutralising solution: 3 M NaCl, 0.5 M tris, 1 m M EDTA, p H 7.0. 

Orange G: 3.125 m l glycerol, 2 ml 50 m M tris.HCl, p H 8.0, 0.2 M EDTA, 
4.375 m l deionised distilled water, 10 mg fast orange G. Sterilised by 
autoclaving. Aliquots stored at -20 °C. 

Phenol: redistilled, saturated wi th tris buffer (pH 7.5), stored frozen at 

-20 °C. 

SM buffer : 5.8 g NaCL, 2.0 g MgS04.7H20, 50 ml 1 M tris.HCl (pH 7.5), 

5 ml 2 % gelatin, sterilised by autoclaving. 

SOC Buffer : 2 % bacto-tryptone, 0.5 % yeast extract, 10 m M NaCl, 2.5 

m M KC1,10 m M MgCl2,10 m M MgS04, sterilised by autoclaving. Cool, 

then add filter sterilised glucose to 20 m M . 

20 x SSC: 175 g NaCl, 88 g tri-sodium citrate, p H 7.0. 

15 x SSPE: 1.5 M NaCl, 0.1 M NaH2P04, 0.01 M EDTA, p H 7.7. 

TAE buffer : 40 m M tris, 10 m M EDTA, p H 7.7. 
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TE buffer : 10 m M tris, 1 m M EDTA, p H 8.0 

Tris buf fer : 1 M tris(hydroxymethyl)methylamine, titrated to required 
p H w i t h HC1 

2.2 Methods 

2.2.1 Glass and Plasticware 

Glass and plasticware used in experimental w o r k was washed 
thoroughly with teepol, rinsed wi th tap water and given three rinses w i t h 
distilled water prior to use. Eppendorfs, pipette tips and vessels in 
contact w i t h D N A or R N A were autoclaved. Glass vessels used in 
contact w i t h D N A or R N A were siliconised by immersing i n 
dichlorodimethylsilane, d ry ing at room temperature, rinsing w i t h 
deionised distilled water to remove traces of HC1 formed dur ing the 
treatment, followed by autoclaving. Sterile disposable plasticware was 
used for RNA transfer and storage without further treatment. To ensure 
RNase free glassware for experimental work involving RNA, glassware 
was baked ove rn igh t at 180 °C, or immersed in 0.1 % 
diethylpyrocarbonate overnight followed by autoclaving. Gloves were 
worn throughout manipulations involving RNA and D N A to avoid 
nuclease contamination f rom the hands. 

2.2.2 Solutions 

Aqueous solutions were prepared w i t h deionised distilled water and 

steri l ised by autoclaving. Solutions for use i n min ipreps , 

transformations and restriction digests were stored at 4 °C. 

Solutions for work involv ing RNA manipulations were prepared using 

baked glassware (see 2.2.1). Aqueous solutions were prepared w i t h 0.1 

% diethylpyrocarbonate treated water (0.1% diethylpyrocarbonate was 

added to the water and allowed to incubate overnight at r oom 

temperature fol lowed by autoclaving). (Diethylpyrocarbonate was not 

used i n so lu t ions c o n t a i n i n g t r i s , as t r i s decomposes 

diethylpyrocarbonate producing ethanol and carbon dioxide.) 
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2.2.3 Pod Anatomy and Development Studies 

2.2.3.1 Preparation of Microscope Slides 

Microscope slides were immersed in 2 % TESPA (2 g of 3-
aminopropyltriethoxysilane dissolved in 100 ml of acetone) for 20 
seconds, followed by two rinses in acetone and a final rinse in deionised 
distilled water (DEPC treated water was used for slides to be used for in 
situ hybridisation). The slides were then dried in an oven at 45 °C. 
Treated slides were stored in foil prior to use. 

2.2.3.2 Preparation of Wax Embedded Pod Sections 

Transverse pod sections (2 - 3 m m thick) were immersed in 3 % 

paraformaldehyde, 1.25 % gluteraldehyde in 1 x PBS (phosphate buffer 

saline: 76.5 g NaCl, 7.2 g Xa?HPO.[ , 2.1 g KH2PO4, pH 7.4 - 7.6). 

Fixation was allowed to proceed on a rotating wheel at room temperature 

overnight, or at 4 °C if sections were to be used for in situ hybridisation. 

The tissues were then dehydrated in a series of ethanol solutions of 12.5 

%, 25 %, 50 %, 75 %, 95 % and finally 100 % ethanol at room temperature 

for 60 minutes each (ethanol solutions were prepared wi th DEPC treated 

water for dehydrating tissues being prepared for in situ hybridisation). 

The tissues were then incubated in ethanol/Histoclear (50:50), overnight 

at room temperature. 

This mixture was then replaced by Histoclear for at least the next 24 
hours, w i t h regular changes every 6 - 1 2 hours, to remove the ethanol. 
The tissue sections were then immersed in wax/Histoclear (50:50) 
overnight at 57 °C, before infiltrating wi th wax over a period of 48 hours 
wi th regular changes of molten wax to ensure removal of the Histoclear. 
The tissue sections were then blocked out in moulded trays. 

Transverse sections, 10 \xm thick, were cut f rom the pod sections 
embedded in the wax blocks on a microtome (Leitz 1512). The ribbons 
were floated in a waterbath at 45 °C (DEPC treated water for sections 
used for in situ hybridisation), then transferred to TESPA treated slides. 
The sections were baked onto the slides at 40 °C overnight. Special 
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precautions were taken in preparing wax embedded pod sections for in 
situ hybridisation w i t h regard to solutions, glassware and wearing of 
gloves (see 2.1.1 and 2.2.2). 

2.2.3.3 Preparation of Resin Embedded Pod Sections 

Transverse pod sections ( 2 - 3 mm thick) were fixed and dehydrated as 
above (2.2.3.2), then incubated overnight in ethanol/L.R. white resin 
(50:50). The sections were then infiltrated wi th resin over a period of 48 
hours at room temperature, wi th regular changes of resin. The pod 
sections were then baked individually in polypropylene tubes fil led w i t h 
L.R. white resin at 60 °C for 24 hours. Transverse resin embedded pod 
sections, 1 urn thick, were cut on a microtome (OmU3, C. Reichert, 
Austria). 

2.2.3.4 Phloroglucinol Staining of Fresh Pod Sections 

Razor cut transverse pod sections were cut as thin as possible, placed on 
microscope slides and a few drops of phloroglucinol solution (10 g 
phloroglucinol in 95 m l ethanol) added. After 1-3 minutes, 1-2 drops 
of concentrated hydrochloric acid were added. The sections were rinsed 
w i t h deionised distilled water and examined under a light microscope. 
Lignin is stained red by phloroglucinol (Gahan, 1984). 

2.2.3.5 Anatomical Analysis of the Pod Endocarp 

Transverse wax embedded pod sections (10 urn thick) were dewaxed in 

histoclear for 2 minutes, rinsed in 100 % ethanol and rehydrated through 

ethanol/water (50:50), then water and stained wi th toluidine blue (0.1 % 

toluidine blue in 1 % boric acid, filtered prior to use) for approximately 5 

minutes. The sections were rinsed w i t h distilled water and mounted 

w i t h DPX before examining under a light microscope. 

Transverse resin embedded pod sections (1 urn thick) were stained w i t h 
toluidine blue for approximately 5 minutes, rinsed w i t h distilled water 
and mounted wi th DPX before examining under a light microscope. 
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2.2.3.6 Induction of Parthenocarpic Fruit Set 

The emasculated ovaries of pea plants (grown as described above, 2.1.3>, 
were supplied w i t h exogenous applications of various plant growth 
regulators. Three ovaries were treated per plant. The stamens were 
removed 2 days before anthesis (day -2). A t day 0 (anthesis), 20 ul of the 
appropriate plant growth regulator in a 0.1 % ( v / v ) tween 20 aqueous 
solution was added to the emasculated ovaries. The compounds used 
were GA3 (gibberellic acid), 6-BAP (benzyladenine) and M V A 
(mevalonic acid). Stock solutions of 2 m g / m l of GA3 and M V A were 
dissolved in distilled water. A 6-BAP stock was prepared by boiling 500 
| i g / m l in water to dissolve. The plant growth regulator solutions were 
applied at a concentration of 100 | i g / m l by diluting aliquots of the stock 
solutions. The w o r k i n g solutions were stored at 4 °C and used 
throughout the experiment. Where combinations of plant g rowth 
regulators were applied they were prepared by di lut ing aliquots of stock 
solutions. Appropriate controls were obtained by applying 0.1 % tween 
20 in aqueous solution to emasculated ovaries, or alternatively, allowing 
pea pods to develop normally. The length of the ovaries were noted at 
day 6, :j.nd transverse sections (2 - 3 mm) were cut f rom the pod mid­
section, f ixed and embedded in L.R. white resin for microscopical 
examination of endocarp development as described above 2.2.3.3. and 
2.2.3.5 

2.2.3.7 Photomicroscopy 

Tissue sections were photographed using a N i k o n AFX Optiphot-2 

microscope fitted w i t h a Nikon FX-35 camera and 400 ASA colour print 

f i l m (Fuji, Holland). 

2.2.4 Minipreps of D N A 

2.2.4.1 Protocol for Alkal ine Lysis Plasmid Miniprep 

This method, based on that of Birnboim and Doly (1979), provides 
plasmid D N A , which is a good substrate for the action of restriction 
enzymes. However, the D N A is not of pure quality for sequencing, and 
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RNase must be added to restriction digests of D N A obtained by this 
method. 

Cells f r o m the required recombinant colony, were picked off w i t h a 
sterile cocktail stick, and placed in 10 ml of the appropriate selective 
media in a McCartney bottle and grown overnight at 37 °C. The culture 
was then spun at 3500 rpm for 10 minutes in a centrifuge (Mistral 3000). 
The supernatant was poured off and the McCartney bottle was inverted 
over absorbent paper for a few minutes. The pellet was then 
resuspended in 200 ul of a solution containing 2 m g / m l lysosyme, 50 m M 
glucose, 10 m M EDTA and 25 m M tris.HCl p H 8.0 and incubated on ice 
for 30 minutes. 600 ul of a NaOH/SDS solution (200 ul of 1 M NaOH, 
50 ul of 20 % SDS and 750 ul of sterile water) was added to the 
resuspended pellet. The mixture was transferred to an Eppendorf, 
vortexed gently and maintained on ice for 5 minutes. A 3 M sodium 
acetate solution (450 ul), p H 4.8, was added and mixed periodically over 
a 60 minute period of storage at 0 °C. 

1100 ul of the clear supernatant obtained after microfugation for 5 

minutes was removed to a fresh Eppendorf and 500 ul of isopropanol 

was added. The tube was incubated at -20 °C for 30 minutes. The 

resultant precipitate was collected by microfugation for 5 minutes. The 

supernatant was poured off and the pellet was dissolved in 400 ul of 0.1 

M sodium acetate/0.05 M tris.HCl p H 9.0 and reprecipitated wi th 1 ml of 

ethanol at -20 °C for 10 minutes. Care was taken to ensure complete 

solvation of the pellet. The precipitate was collected as before and 

resuspended in 0.01 M sodium acetate/0.05 M tris.HCl p H 9.0 and 

ethanol precipitated as above. The pellet was then dried under vacuum 

and resuspended in 50 ul -100 ul of sterile distilled water. 

2.2.4.2 Plasmid Min ip rep Alkal ine Sequencing Quali ty 

D N A for sequencing was prepared by a further modification of the above 
method (2.2.4.1). E. coli containing recombinant plasmids were grown 
up overnight and spun in a centrifuge as above (2.2.4.1). The bacterial 
pellet was then resuspended in 200 ul of 50 m M glucose, 10 m M EDTA, 
and 25 m M tris.HCl, p H 8.0 and stored on ice for 30 minutes. 400 ul of a 
freshly prepared NaOH/SDS solution (see above 2.2.4.1) was added to 
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the bacterial suspension and mixed gently, stored on ice for 5 minutes 
and then transferred to a 1.5 ml Eppendorf. Ice cold 5 M acid potassium 
acetate (600 ul of 5 M potassium acetate, 115 ul of glacial acetic acid and 
285 ul of ddH20), 300 ul , was added and mixed by gently inverting. The 
sample was then stored on ice for 20 minutes before centrifuging for 30 
minutes. 0.7 ml of the clear supernatant was then pipetted off into a 
fresh Eppendorf and 2 ul of 10 m g / m l RNase (DNase free) added. The 
mixture was incubated at 37 °C for 20 minutes. 

The mixture was then extracted w i t h phenol /ch loroform/ i soamyl 
alcohol to remove proteins followed by ethanol precipitation (see 2.2.5). 
The pellet was then resuspended in 16.8 ul of sterile water and 3.2 ul of 5 
M sodium chloride and 20 ul of 13 % PEG 8000 were added, wi th mixing 
on addition of each solution. The suspension mixture was incubated on 
ice for 20 minutes, before microfugation for 10 minutes. The supernatant 
was pipetted off carefully. The pellet was rinsed wi th 70 % ethanol and 
the D N A was redissolved in 15 ul of sterile water. 

2.2.4.3 Preparation of M13 Template for Sequencing 

The desired recombinant plaque was picked off a plate of selective media 
wi th a sterile cocktail stick and placed in a McCartney bottle containing 
1.8 ml of 25 ml of 2 x YT media inoculated w i t h 20 ul of JM101 
exponentially growing cells. The culture was incubated on a rotating 
wheel at 37 °C for 6 - 7 hours. 

Cultures were then transferred to an Eppendorf and spun for 10 minutes 

at 3500 r p m in a centrifuge. The supernatant was transferred to a second 

tube and spun for a further 10 minutes to isolate the M13 particles. The 

pellets were labelled and stored for up to one month at 4 °C should 

regrowth be required. (The supernatant may also be stored at this stage 

for up to one month at 4 °C.) 1.25 m l of each supernatant was then 

transferred to a fresh Eppendorf and suspended in 125 ul of 40 % PEG 

and 125 ul of 5 M sodium chloride. The suspension was left at room 

temperature for 20 minutes. 

The PEG/phage suspension was then spun fo r 5 minutes, before 

removing the PEG via a pipette, taking care to avoid removing the 
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precipitate. Each tube was then spun briefly and the excess PEG 
removed by pipette. Removal of the PEG and salt was critical to avoid 
inhibit ion of extension reactions. Each pellet was then resuspended i n 
200 ul of TE buffer. 

Isolation of the single stranded D N A f rom the M l 3 suspension was 
facilitated by extracting wi th phenol/chloroform/isoamyl alcohol (2.2.5). 
The resulting aqueous phase was extracted wi th 200 u.1 of water saturated 
ether (to remove traces of phenol, which may affect dye performance) 
and vortex mixed unt i l the cloudiness disappeared. The emulsion was 
spun for 1 minute to separate the phases, and the upper organic layer 
was removed to a waste container. Any remaining ether was then 
removed by air drying under a fume hood for 10 minutes. The D N A 
was then precipitated wi th ethanol (2.2.5) and resuspended in 20 (il of TE 
pH8.0. 

2.2.5 Phenol Extraction and Ethanol Precipitation of Nucleic Acids 

D N A solutions were extracted wi th an equal volume of tris saturated 

phenol/chloroform/isoamyl alcohol (25:24:1). The mixture was vortex 

mixed and centrifuged for 3 minutes to separate the phases. The upper 

aqueous phase was removed by pipette to a fresh Eppendorf, and 

extracted once more w i t h an equal volume of tris saturated 

chloroform/isoamyl alcohol (24:1). The aqueous phase was collected by 

centrifugation and ethanol precipitated wi th the fol lowing: 1 i l l glycogen 

solution, 5 M ammonium acetate (4 | i l /100 | i l ) and 2 - 2.5 volumes of 

ethanol. This mixture was incubated for at least an hour at -20 °C before 

spinning at 4 °C for 20 minutes. The supernatant was then poured of f 

carefully and the pellet rinsed wi th 1 ml of 70 % ethanol. The mixture 

was spun for 5 minutes at 4 °C and the supernatant again poured off . 

The pellet was then vac dried for 5 minutes. The D N A was resuspended 

in sterile water and stored at -20 °C. 
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2.2.6 Restriction Endonuclease Digestion 

2.2.6.1 Plasmids and Bacteriophage D N A 

D N A samples, up to 1 ug, were cleaved in an Eppendorf i n a total 
volume of 30 ul, w i t h an excess of the appropriate restriction enzyme in a 
volume of 1 ul, and 3 ul of the appropriate 10 x buffer (supplied w i t h the 
enzyme). Restriction digests were allowed to proceed for 2 hours at 37 
°C. 

2.2.6.2 Genomic digests 

10 - 20 ug quantities of genomic D N A were digested wi th a five times 
excess of the appropriate enzyme (in a volume of 2 - 5 ul) and 5 ul of the 
appropriate 10 x buffer (supplied with the enzyme). 1 ul of RNase (10 
m g / m l ) was added and the volume made up to 50 ul wi th sterile water. 
The mixture was tapped and spun before incubating in a water bath at 37 
°C. After 15 minutes the digest was placed on a shaker at 37 °C for 4 
hours. During this period the digest was twice removed f r o m the 
shaker, tapped and spun, and replaced on the shaker. On the second 
occasion the digest was vortex mixed. 

2.2.7 Agarose Gel Electrophoresis 

2.2.7.1 Agarose gels 

Agarose gels, 18.5 cm x 15.0 cm, were used to separate and, or, isolate 

D N A fragments. The required amount of agarose (0.6 - 0.8 %, w / v ) was 

dissolved in 180 ml of water by warming in a microwave. The molten 

agarose was cooled to 60 °C and 20 m l of 10 x TAE buffer and 20 ul of 

ethidium bromide solution (10 m g / m l ) were added. The gel was then 

cast i n a perspex frame mounted on a base consisting of a glass plate and 

sealed w i t h silicone grease. A wel l former was suspended 

approximately 1 m m above the glass base. The gel was placed i n a 

horizontal submarine electrophoresis tank when set and 1 x TAE buffer 

was added to the tank to a level sufficient to just cover the gel. Samples 

were loaded into the wells wi th 10 ul of orange G and electrophoresed for 
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4 hours at 100 V, or overnight at 25 V, Lambda Pst was routinely used as 
a size marker. 

Minigels, 50 ml of 0.7 % (single-stranded D N A ) , or 0.5 % (double-
stranded D N A ) agarose, were used to determine the quantity and quality 
of miniprep D N A and to ident i fy the presence of inserts of interest. 
D N A samples were loaded wi th 5 ul of orange G and electrophoresed in 
a Pharmacia minigel apparatus at 50 V for 1 - 2 hours i n 1 x TAE buffer. 

2.2.7.2 Alka l ine Agarose Gels 

Alkaline agarose gels were prepared for the analysis of labelled first and 
second strand cDNA synthesised f r o m mRNA. 1.6 g of agarose was 
dissolved in 180 ml of water by warming in a microwave. The molten 
agarose was cooled to less than 60 °C, before adding 20 ml of 10 x 
alkaline buffer (0.3 M NaOH, 0.01 M EDTA) and casting the gel as above 
(2.2.7.1). 1 x alkaline buffer was used as the electrolyte solution. 
Samples were loaded into the wells w i th an equal volume of 2 x alkaline 
loading buffer (200 ul glycerol, 730 ul water, 46 ul saturated bromophenol 
blue, 25 ul 1 M NaOH) and electrophoresed overnight at 100 mA. 

2.2.7.3 Formaldehyde Agarose Gels 

Formaldehyde gel electrophoresis was used to separate small molecular 

weight RNAs under denaturing conditions according to a method based 

on that of Mil ler (1987). A 18.5 cm x 15.0 cm gel was prepared by 

dissolving 1.4 g of agarose in 67 ml of water. The molten agarose was 

cooled to less than 60 °C and 9.3 ml of 10 x MOPS buffer (see 2.1.7) and 17 

ml of formaldehyde (37 % solution) were added. The gel was allowed to 

set for 1 hour in a fume hood prior to use. 

The fo l lowing buffers were prepared: buffer A (294 ul of 10 x MOPS, 706 

ul of DEPC treated water), fo rmaldehyde / formamide (89 u l of 

formaldehyde, 250 ul of formamide, freshly deionised), dyes (322 ul of 

buffer A , 5 mg of xylenol cyanol, 5 mg bromophenol blue, 400 mg 

sucrose), gel loading buffer (2 ul formaldehyde, 5 ul of formamide, 7 ul 

dyes) and electrophoresis buffer (1 x MOPS). 

73 



Samples of RNA in a volume of 1 ul (dilute samples of R N A were 
concentrated using a Uniscience Speed-Vac) were prepared by adding 
the following: 4.4 ul of buffer A and 11.6 ul of formaldehyde/formamide. 
The samples were heated to 70 °C for 10 minutes, then chilled on ice. 1.5 
ul of gel loading buffer was added to the samples, mixed, and loaded in 
the wel ls of the fo rmaldehyde agarose gel, w h i c h was pre-
electrophoresed at 60 V for 3 minutes. The gel was electrophoresed at 
100 V for 4 hours in circulating buffer. 

Formaldehyde minigels, used for routine qualitative analysis of total 

RNA preparations, were prepared by dissolving 0.37 g of agarose in 43 

m l of water, fol lowed by 2.47 ml of 10 x MOPS buffer and 4.44 m l of 

formaldehyde. Formaldehyde minigels were electrophoresed at 30 - 40 V 

for 2 hours. 

Ribosomal RNA, 5 - 1 0 ug, f rom pea and E. coli were routinely used as 
size markers, giving the fo l lowing size bands: pea ribosomal RNA, 3.65 
kb and 2.09 kb; E . coli ribosomal R N A 3.15 kb and 1.56 kb . 
Formaldehyde gels were stained w i t h ethidium bromide solution (5 
ug /ml ) for 5 minutes, then destained in DEPC treated water unti l the 
ribosomal bands were visible. 

2.2.8 Visualisation and Photography of Ethidium Bromide Stained 

Gels 

Gels were drained and photographed wi th a UVP gel documentation 

system using inc ident i l l u m i n a t i o n w i t h m i n i m u m handl ing . 

I l luminat ion was achieved by placing the gel on a transilluminator, 

wavelength 254 nm fo r D N A / R N A visualisation, thus effect ing 

fluorescence of the e th id ium b romide -DNA/RNA complex. It was 

necessary to have a m i n i m u m of 0.1 ug for visualisation of the 

D N A / R N A by this method. 

U V can be harmful to eyes and skin i f exposure is prolonged, therefore, 
goggles were worn and care was taken to avoid prolonged exposure to 
skin. Gloves were worn while handling gels and solutions containing 
ethidium bromide, which is a powerful carcinogen. 
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2.2,9 Determination of Nucleic Acid Concentration 

2.2.9.1 Spectrophotometry Determination of Nucleic acid 
Concentration 

Spectrophotometric measurement of U V absorbance at 260 nm was used 
as a simple and accurate measurement for quant i fying nucleic acid 
concentration of relatively pure samples. A Pye Unicam SP8-150 
U V / V I S dual beam spectrophotometer was used to measure U V 
absorbance in a 1 cm path length cuvette. Absorbance readings of 1 | i l of 
nucleic acid solution i n 1 ml of sterilised water (DEPC water for R N A 
samples) were obtained at A260, A235 and A280. The 
spectrophotometric measurement of absorbance at A 280 and A 235 was 
measured to determine the presence of protein or carbohydrate 
contamination, respectively. A n A 260/A 280 of less than 1.7 - 1.8 
indicates probable protein contamination, and an A 260/A 235 of less 
than 1.8 - 2.0 indicates probable carbohydrate contamination. A 1 
m g / m l solution of D N A was assumed to give an OD26O of 20, and a 1 
m g / m l solution of RNA an OD26O of 25. 

2.2.9.2 Determination of D N A Concentration by D A B A Assay 

The D A B A (diamine benzoic acid) determination of D N A concentration 

is based on that of Thompson and Farquhar (1978) and was used to 

ascertain accurate determinations of D N A concentration in the presence 

of contaminating RNA. Duplicate samples of standard amounts of D N A 

f rom 0.1 - 10 | ig were ethanol precipitated and vacuum dried. 20 | i l of 

freshly prepared DABA solution (400 m g / m l of sterile water) was added 

to each of the standard D N A samples together w i t h two blanks 

containing no D N A , vortex mixed and incubated at 60 °C for 30 minutes. 

The samples were cooled on ice and 1 ml of 1 M hydrochloric acid was 

added. Fluorescence was measured w i t h a Baird-Atomic Fluoripoint 

spectrofluorimeter set at 405 nm excitation and 505 nm emission in a 1 cm 

path length cuvette, w i t h the addi t ion of another 1 m l of 1 M 

hydrochloric acid. 

A standard curve was plotted of fluorescence against amount of D N A 

(fig). Aliquots of solutions of D N A of unknown concentration were 
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assayed, as above, and concentration determined f rom the standard 
curve. 

2.2.10 D N A Sequencing 

The method used was developed f r o m the dideoxy chain termination 
method (Sanger et al, 1977) for single stranded phage M13 vectors. The 
protocol followed for sequencing of the clone pPP406 was that outlined 
in the Amersham booklet "Ml3 Cloning and Sequencing Handbook" 
(P l /129 /84 /10) using an App l i ed Biosystems model 370A D N A 
sequencer. Subsequent sequencing was performed using the Appl i ed 
Biosystems PRISM Ready Reaction Dye Primer Cycle Sequencing K i t 
(Part Number 401386) using an Appl i ed Biosystems model 370A. 
Sequencing work was performed by Ms. J. Bryden. 

2.2.11 Synthesis of Oligo Nucleotide Primers 

Synthetic oligo deoxynucleotide primers, PI and P2 (Figure 2.1), for D N A 
sequencing and RT-PCR were synthesised on an Appl ied Biosystems 
381A D N A synthesiser by Mr. J.S. Gilroy. 

2.2.12 Orientation Test (C - Test) of Inserted D N A 

The C-test (Messing, 1983) enabled identification of insert orientation i n 

M13 transformants. Minipreped D N A (1 ul) f rom a pair of clones to 

be C tested was mixed w i t h 7.5 ul of 1 M sodium chloride and 5 | i l of dye 

mix (3 % SDS, 0.1 % bromophenol blue, 60 % deionized formamide, 25 

m M EDTA). The sample was incubated for 1 hour at 65 °C, before 

electrophoresing on a 0.7 % agarose gel, wi th a sample of the original 

single stranded prepped D N A . Inserts of opposite orientation are 

complimentary, producing a hybridised molecule w i t h reduced mobil i ty 

i n agarose gels compared to single circular transformed M13. I f 

annealing has occurred the insert fragments must be the opposite strand 

of the same insert. 
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Figure 2.1 The nucleot ide sequence . of the synthetic 

oligonucleotide primers used for LP18 sequencing and RT-PCR. 
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PI sense primer 

5' C A A A T C A T G C A C A T C T G G 3' 

P2 antisense primer 

5' G C T G A A G G T T C A T T T T G C 3' 



2.2.13 Preparation of Competent Escherichia coli Cells 

Transformation competent cells were prepared based on a method by 
Alexander et al. (1984). A n aliquot (1 ml) of a 5 ml culture of E. coli grown 
up overnight at 30 °C, was used to inoculate 100 m l of 2XL media, 
prewarmed to 30 °C in a 500 ml flask. The culture was incubated at 30 
°C on a shaker platform. A t OD600 = approximately 0.2 (performed 
using a micro-titre plate reader), sterile 2 M MgCl2 was added to 20 m M . 
The culture was re-incubated until OD600 = 0.5 (0.45 - 0.55), then placed in 
ice-water for 2 hours. Approximately 50 ml aliquots were spun down in 
sterile Falcon tubes at 3000 rpm in a centrifuge (Mistral 3000). The 
supernatant was poured off and the pellets resuspended, wi th gentle 
shaking, in one half the original culture volume of ice-cold C a / M g 
medium (100 m M CaCb, 70 m M MnCl2, 40 m M NaAc, p H 5.5). The 
C a / M g medium was prepared fresh, starting f r o m a sodium acetate 
solution of p H 7.0 and adjusting the p H down. The cells were incubated 
on ice for 1 hour and collected by centrifuging at 3000 rpm for 5 minutes. 
The pellet was resuspended in 1/20 the original culture volume w i t h 
C a / M n solution, containing 15 % ( v / v ) glycerol. Aliquots of 50 (il were 
collected i n 1.5 m l Eppendorfs and frozen in l iqu id nitrogen. The 
competent cells were stored at -80 °C until required. 

2.2.14 Cloning c D N A 

2.2.14.1 Ligation Procedure 

Vector D N A (0.1 - 0.2 u.g) and cDNA to be ligated were mixed in 1:1 or 

2:1 ratios w i t h 1 ul of T4 D N A ligase and 1 ul of 10 x ligation buffer 

(supplied wi th the enzyme) in a total volume of 10 ul . Ligations were 

performed at 15 °C for 48 hours. Ligation mixtures were stored at -20 °C 

unti l required. 

2.2.14.2 Transformation of Competent Cells w i t h Plasmid Vectors 

A n aliquot of ligated plasmid was added to 20 - 50 (il of competent cells 
(freshly thawed), mixed and incubated for 20 minutes on ice. The cells 
were then heat shocked for 2 minutes at 45 °C to facilitate uptake of the 
plasmid D N A by the cells. SOC buffer , 80 ul, was added and the cells 
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incubated for 1 hour at 37 °C. Aliquots of the transformed cells were 
plated out on appropriate selective media and incubated overnight at 37 
°C. 

2.2.14.3 Transformation of Competent Cells w i th M13 Vectors 

A n aliquot of the ligated M13 was added to 50 ul of commercially-
available DH5a competent cells and incubated on ice for 40 minutes. 
The incubated cells and M l 3 were heat shocked for 2 minutes at 45 °C to 
facilitate uptake of the recombinant M13. The cells were cooled and 
mixed w i t h 200 (il of exponentially growing JM101 cells. The cells were 
then plated out on the appropriate selective media wi th 3 ml of TB agar, 
10 | i l of 0.1 M IPTG and 50 ul of 2 % X-Gal. The plate was incubated at 
37 °C overnight. Colourless plaques contain recombinant M13 particles. 

2.2.15 Elution of D N A f r o m Agarose Gel 

Electrophoresed ethidium bromide stained DNA was cut f rom gels in as 

small a gel slice as possible. The gel slice was inserted into a piece of 

dialysis tubing f i l led w i t h electrolyte buffer (1 x TAE) and clamped at 

both ends. The dialysis tube was placed horizontally to the f l ow of 

electric current in a Pharmacia minigel apparatus containing electrolyte 

buffer (1 x TAE). Electrophoresis was carried out for 15 minutes at 50 

mA. The gel in the tubing was then viewed using a transilluminator to 

determine whether the D N A had been eluted f rom the gel. The buffer 

containing the dialysed D N A was pipetted into an Eppendorf. The gel 

slice in the dialysis tube was given a rinse wi th 200 | i l of TE buffer. The 

D N A solution was phenol extracted and ethanol precipitated (as 

described 2.2.5). 

2.2.16 Random Primed Labelling of D N A Inserts 

Approximately 100 ng of D N A for labelling (prepared by cleavage f r o m 

plasmid and electroelution) was labelled wi th 50 uCi of [a?2?] dCTP 

>400 C i / m m o l (or >3000 C i / m m o l for genomic blots) by the random 

primed method (Feinberg and Vogelstein, 1983). Labelling was allowed 

to proceed overnight at room temperature to a specific activity >10^ 

cpm/ug (>108 cpm/ | i g for genomic blots). 
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The reaction was stopped by the addition of 20 % SDS (5 ul/100 ul of 
probe) and the radiolabeled probe was separated f r o m unincorporated 
[ a 32p] dCTP by gel fi l tration, using a 5 m l Sephadex G50 column washed 
wi th 1 x column buffer. The movement of the radiolabeled probe was 
fol lowed w i t h a min i monitor and the appropriate fractions collected as 
they were eluted f r o m the column. 

Aliquots of labelled probes were counted wi th Ecoscint scintillation 
f l u i d . D N A probes were boiled for 5 minutes prior to use to render 
single-stranded D N A for hybridisation experiments. 

2.2.17 Preparation of Genomic D N A 

Genomic D N A was prepared as specified by Ellis et al. (1984). 1 g of 
frozen plant tissue was ground in a mortar cooled in dry ice. 5 m l of JI 
extraction buffer (0.45 M NaCl, 0.045 M tri-sodium citrate, 0.1 M sodium 
diethyl dithiocarbonate, 0.1 M EDTA, p H 8.9, filter sterilised) was added 
and mixed. On thawing, 100 ul of 20 % SDS was added, mixed, and the 
mixture extracted w i t h 10 m l of chloroform/isoamyl alcohol 24:1 in a 30 
ml Corex tube, and centrifuged at 400 rpm for 10 minutes. 

The aqueous phase was transferred to a siliconised 100 m l beaker and 20 

ml of ethanol at room temperature was slowly pipetted onto the surface. 

The D N A was then spooled out w i t h a sterile pipette t ip into an 

Eppendorf and dried under a f low of N2 f rom a pressurised gas cylinder. 

The D N A was resuspended overnight in 500 | i l of TE buffer, p H 8.0, on a 

rotating wheel at 4 °C. The resuspended genomic D N A was then 

extracted wi th an equal volume of phenol. The aqueous phase, collected 

after microfugation for 3 minutes, was transferred to a fresh Eppendorf. 

1 m l of ethanol was added and the D N A clot was removed wi th a sterile 

pipette t ip, dried w i t h N2 and resuspended in 500 (il of TE buffer as 

before. Genomic D N A preparations were stored at -80 °C. 

Genomic D N A was quantitatively and qualitatively analysed by cleaving 

10 | i l of the genomic D N A solution w i t h restriction enzymes, EcoRI or 

H i n d l l l , fo l lowed by electrophoresis. Accurate determination of 

concentration was then obtained by DAB A assay (as described 2.2.9.2). 
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2.2.18 Southern Analysis of D N A 

2.2.18.1 Southern Blot t ing of D N A by Alkal ine Transfer 

Plasmid D N A and RT-PCR amplification products were Southern blotted 
by alkaline transfer onto nylon filters using a vacuum blotter. The gel 
containing D N A to be transferred was rinsed in 0.4 M NaOH, 2 x 30 
minutes. The D N A was then blotted onto nylon filters using the 
Appligene vacuum blotter according to the manufacturers instructions, 
using 0.4 M NaOH as the transfer buffer and a vacuum of 50 mbar for 1 
hour. The well positions were marked wi th a pencil and the filter was 
rinsed briefly in 2 x SSC, air dried for 30 minutes and baked at 80 °C for 

1 - 2 hours. The blotted gel was re-stained w i t h ethidium bromide 
(2.2.7.3) to ensure that D N A transfer was complete. 

2.2.18.2 Southern Hybridisat ion Using Hybsol 

Southern blot filters were prehybridised in a hybridisation tube at 65 °C 

for 4 - 6 hours in sufficient Hybsol hybridisation solution (Yang et al, 
1993) to cover the fi l ters. The Hybsol solution consisted of the 

fo l lowing: 1.5 x SSPE, 3 % PEG, 7 % SDS, 250 u.g/ml heparin and 100 

H-g/ml denatured, sonnicated herring sperm DNA. Hybridisation was 

performed for 16 -18 hours at 65 °C in fresh Hybsol solution containing 

2 - 10 n g / m l of [cc 3 2 P] dCTP labelled D N A probe. The filters were 

washed 2 x 30 minutes w i t h 2 x SSC/0.1 % SDS and 2 x 30 minutes w i t h 1 

x SSC/0.1 % SDS. Washing to a final stringency of 0.1 x SSC/0.1 % SDS 

at 65 °C was achieved by washing for a period of time sufficient to 

remove background (changing the wash solution i f necessary after 30 

minutes) as monitored w i t h a minimonitor. The filter was radiographed 

before drying out completely (see 2.2.19). 

2.2.18.3 Genomic Blot t ing and Hybridisat ion 

Digests of genomic D N A for analysis by genomic blotting were loaded 

onto 0.6 % - 0.7 % agarose gels and electrophoresed overnight at 25 - 30 

V (see 2.2.7.1), Cleaved plasmid D N A was diluted to give samples of 

various gene copy numbers using the fol lowing formula: 
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plasmid size (bp) x genomic D N A on gel (g) 
1 gene copy equivalent = 

size of pea genome (4.8 x 109) 

Prior to blotting, the gel was treated as follows: 2 x 30 minutes in 0.25 M 
hydrochloric acid, fol lowed by 2 x 30 minutes in denaturing solution, and 
finally, 2 x 30 minutes in neutralising solution. 

The washed gel was then transferred to NC filters by capillary blotting 

essentially as described by Sambrook et a l . (1989). Blotting was allowed 

to proceed for 16-18 hours wi th 20 x SSC. 

The positions of the wells were marked on the NC filter wi th a pencil 

and the filter was air dried for 30 minutes, then baked in a vacuum oven 

at 80 °C for 1 to 2 hours. The blotted gel was re-stained wi th ethidium 

bromide (2.2.7.3) to ensure D N A transfer was complete. 

Genomic blot filters were prehybridised in a heat sealed polythene bag at 
65 °C for 4 - 6 hours in sufficient hybridisation solution to cover the filter. 
The hybridisation solution consisted of 6 x SSC, 5 x Denhardt's solution, 
0.5 % SDS, 100 ( i g / m l sonnicated herring sperm D N A . Fol lowing 
prehybridisation the filters were hybridised at 65 °C for 16 -18 hours i n 
fresh hybridisation solution containing 5 - 1 0 n g / m l of a^2p dCTP 
labelled probe. The filters were washed as described above (2.2.18.2) and 
radiographed (see 2.2.19). 

2.2.19 Autoradiography 

Filters hybridised w i t h radiolabeled D N A were placed on cling f i l m 
wrapped 3 M M paper and overwrapped wi th cling f i l m while still damp. 
The filter orientation was marked wi th radioactive ink (writing ink w i t h a 
small quantity of 32p added). This assembly was then placed in a f i l m 
cassette f i t ted w i t h intensifying screens and a pre-flashed f i l m and 
radiographed at -80 °C. 
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2.2.20 Removal of Radiolabeled Probes f rom Filters 

Radiolabeled probes were removed f rom Southern blotted nylon filters 
by washing the filter in a hybridisation oven wi th 50 m l of 0.4 M N a O H 
for 30 minutes at 45 °C, fol lowed by washing wi th 50 m l of 0.1 x SSC, 0.1 
% SDS, 0.2 M tris.HCl p H 7.5 for 30 minutes at 65 °C. Nitrocellulose 
filters were stripped of radiolabeled probes by immersing in 0.1 % SDS 
at 90 °C for 10 minutes for northern blot filters and 0.5 % SDS for 
Southern blot filters. Washing was repeated if necessary after checking 
removal of the probe was complete by radiography. Filters were stored 
in 3 M M paper until required for re-hybridisation. 

2.2.21 I d e n t i f i c a t i o n of Inserts i n Trans formed Bacteria b y 
Hybridisat ion 

Bacterial colonies transformed wi th recombinant plasmids were screened 
by hybridisation. Sterile cocktail sticks were used to transfer individual 
transformed colonies plated out on selective media in a grid pattern onto 
two agar plates wi th a nitrocellulose filter laid on the surface of the agar. 
A n unrransformed bacterial colony was also transferred as a negative 
control. The plates and filter were marked wi th a sterile needle to allow 
orientation of the bacterial streaks. The plates were incubated 16 - 18 
hours at 37 °C. 

The master plate was sealed and stored at 4 °C. The bacterial colonies on 

the nitrocellulose fi l ter f rom the second plate were lysed and bound to 

the nitrocellulose by placing the filter on 3 M M paper soaked in 10 % SDS 

for 3 minutes. The filter was then transferred to a second sheet of 3 M M 

paper saturated w i t h denaturing solution (0.5 M NaOH, 1.5 M NaCl) for 

5 minutes, fol lowed by neutralisation for 5 minutes on 3 M M paper 

saturated wi th neutralising solution (1.5 M NaCl, 0.5 M tris.HCl, p H 7.4). 

A f inal 5 minute rinse wi th 2 x SSC was performed, before air drying the 

f i l ter , and baking for 1 - 2 hours at 80 °C in a vacuum oven. The 

immobilised D N A was then hybridised, as for Southern hybridisation 

using Hybsol, wi th 3 2 P labelled insert cDNA (see 2.2.18.2). 
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2.2.22 Preparation and Analysis of R N A 

Plant cells contain a variety of RNA species. The R N A content of plant 
cells comprises mainly ribosomal R N A together w i t h low molecular 
weight species (transfer R N A , small nuclear RNA etc.) and m R N A . 
MessengerRNA is heterogeneous in size and sequence, but can be 
isolated f rom total R N A extracts by means of the poly (A) tail attached to 
the majority of mRNAs. The mRNA thus obtained collectively encodes 
the cell polypeptides. The procedures outlined in 2.2.1 and 2.2.2 were 
followed in order to obtain good preparations of plant RNA, minimising 
ribonuclease act ivi ty and avoiding the in t roduct ion of traces of 
ribonucleases f rom solutions and glassware. Plant material for R N A 
extraction was harvested, frozen immediately in l iqu id nitrogen, and 
stored at -80 °C unti l required. 

2.2.22.1 Preparation of Total RNA by the Hot SDS Method 

Total R N A was extracted by the hot SDS method based on that of Hal l et 
al. (1978). 10 g of frozen plant material, wrapped in fo i l , was placed on 

ice for 10 minutes before transferring to a polytron tube and adding 26 m l 

of RNA extraction buffer (0.2 M boric acid, 1 % SDS, p H 9.0. DTT to 5 

m M and EGTA to 30 m M added after autoclaving), warmed to 100 °C. 

Nescofilm was wrapped around the tube and polytron blade to prevent 

splashing. The plant material was homogenised wi th the polytron for 20 

seconds. The homogenised plant material was then transferred to a 50 

m l Oakridge tube w i t h the addition of isoamyl alcohol (as l i t t le as 
required) to reduce foaming, and cooled to 40 °C. 8 m g of proteinase K 

was added and the mixture was incubated at 37 °C, w i t h occasional 

mixing, for 1 hour. 

2 ml of 2 M potassium chloride was added and the mixture was cooled 
on ice for 30 - 40 minutes to precipitate the protein-KDS (potassium 
dodecyl sulphate) complex. The precipitate of KDS was collected by 
spinning at 10 K (Sorvall) for 10 minutes at 4 °C. The suspension was 
then transferred to a fresh Oakridge tube and solid l i th ium chloride 
added to 2 M (0.085 g / m l ) . The tube was shaken over ice to dissolve the 
l i thium chloride. The mixture was then incubated overnight at 4 °C: 
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The supernatant of a 10 K spin for 10 minutes at 4 °C was poured off and 
the pellet washed twice w i t h an equal volume of 2 M l i th ium chloride. 
The resulting pellet was resuspended in 3 ml of 0.2 M potassium acetate 
p H 5.5 and spun at 10 K for 10 minutes at 4 °C. The supernatant was 
poured into a Corex tube and precipitated overnight w i t h 2.5 volumes of 
ethanol at -20 °C. 

The ethanol precipitate was collected by spinning at 10 K for 10 minutes 

at 4 °C and resuspending in 2 ml of tris buffer, p H 7.5. The sample was 

then extracted twice wi th equal volumes of phenol/chloroform/isoamyl 

alcohol (25:24:1). The resulting aqueous phase was precipitated wi th 5 M 

ammonium acetate (4 ul/100 ul sample volume) and 2.5 volumes of 

ethanol at -20 °C overnight. 

The ethanol precipitate was collected by spinning at 10 K for 10 minutes 
at 4 °C, rinsed wi th 70 % ethanol and dried under vacuum for 5 minutes. 
The m R N A was then resuspended in 250 - 500 ul of DEPC treated water. 
A n aliquot, 1 ul, was taken for spectrophotometric determination of 
concentration (see 2.2.9.1) and an aliquot containing 10 ug of total R N A 
was taken for qualitative analysis by formaldehyde gel electrophoresis 
(see 2.2.7.3). 

2.2.22.2 Preparation of Total RNA by the Guanid ium Thiocyanate 
Method 

Total R N A was extracted wi th guanidium thiocyanate based on a method 
by Logeman et al. (1987). This method was used for isolation of high 
yields of total RNA f rom small amounts of tissue. Frozen tissue, 1 g, was 
ground w i t h a mortar and pestle, before adding 5 ml of GuHCl extraction 
buffer (8 M HC1, 20 m M Na2EDTA, p H 7.0 wi th NaOH, filtered and 

stored in a dark bottle, 2-mercaptoethanol to 50 m M was added fresh 

prior to use). The tissue and extraction buffer were ground together and 

the mixture was added to a 15 ml Corex tube and spun in a centrifuge at 

10 K for 10 minutes at 4 °C. The supernatant was filtered through 

miracloth into a fresh Corex tube and extracted w i t h 1 volume of 

p h e n o l / c h l o r o f o r m / i s o a m y l alcohol (25:24:1). The layers were 

separated by centrifugation at 10 K for 45 minutes at room temperature. 

The aqueous phase was removed to a fresh Corex tube and 0.7 volumes 
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of ethanol and 0.2 volumes of 1 M acetic acid were added. The RNA was 

precipitated at -20 °C overnight. The RNA was then pelleted by 

centrifugation at 10 K for 30 minutes and given a f inal rinse wi th 70 % 

ethanol and dissolved in 100 f i l of DEPC treated water. 

The R N A solution was then treated w i t h DNase to remove traces of 
genomic DNA. RNase free DNase (2 U) was added to the RNA solution, 
together w i t h 1 ul of 2 M MgCl. The mixture was then incubated for 15 
minutes at 37 °C. The R N A solution was then extracted wi th equal 
volumes of phenol/chloroform / isoamyl alcohol (25:24:1), followed by 
chloroform/isoamyl alcohol (24:1), and precipitated w i t h 0.5 volumes of 
7.5 M ammonium acetate and 3 volumes of ethanol at -80 °C for 30 
minutes. The RNA was then pelleted in a microcentrifuge and re-
precipitated wi th 100 (il of 1 M ammonium acetate and 3 volumes of 
ethanol at -80 °C overnight. The R N A pellet was obtained by 
microfugation for 30 minutes and resuspended in 50 - 100 ul of DEPC 
treated water. A n aliquot, 1 ul , was taken for spectrophotometric 
determination of concentration (see 2.2.9.1) and an aliquot containing 5 
f ig of total RNA was taken for qualitative analysis by formaldehyde gel 
electrophoresis (see 2.2. 7.3). 

2.2.22.3 Isolation of Poly ( A)+ RNA 

Isolation of poly ( A ) + R N A was performed using a PolyATtract m R N A 

Isolat ion System I I I (Promega) according to the manufacturers 

instructions. This system utilises a biotinylated oligo(dT) primer to 

hybridise at high efficiency to the poly (A) tail of mRNAs in total R N A 

samples. The biotin-oligo(dT) primers bind to the poly (A) tail of 

mRNAs in a sample of total RNA. Streptavidin coupled to paramagnetic 

particles (SA-PMPs ) are added to the total RNA sample hybridised w i t h 

biotin-oligo (dT) primers. The biotin-oligo (dT) hybridised mRNAs bind 

to the SA-PMPs and are then magnetised to a magnetic separation stand. 

The SA-PMPs are washed to high stringency to remove the aqueous 

phase components, and the mRNAs are eluted f rom the solid phase w i t h 

ribonuclease-free deionized water. 

Total R N A samples (0.1 -1.0 mg), extracted as described above (2.2.22.1), 

were made up to a volume of 500 ul w i t h RNase-free water in a 1.5 m l 
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Eppendorf. The RNA sample was then placed at 65 °C for 10 minutes 
prior to adding 3 ul of biotinylated-oligo(dT) primer (50 pmol /u l ) and 13 
[i l of 20 x SSC. The solution was mixed gently, and after cooling to room 
temperature, was added to a tube containing 0.5 x SSC washed SA-PMPs. 
After incubating for 10 minutes at room temperature the SA-PMPs were 
captured using a magnetic stand. The supernatant was then removed 
without disturbing the SA-PMP pellet. The particles were washed four 
times w i t h 0.1 x SSC by resuspending the SA-PMP pellet each time and 
then collecting the SA-PMP pellet using a magnetic stand. 

Finally the mRNAs were eluted by resuspending in 100 ul of RNase-free 
water. The eluted mRNA aqueous phase was removed to a sterile 
Eppendorf and the SA-PMPs eluted w i t h an additional 150 ul of sterile 
RNase free water. The two eluates were pooled to give 250 ul of m R N A 
solution. The yield of mRNA was insufficient for qualitative analysis, 
but was estimated to be approximately 1 % of the total RNA, as predicted 
by Promega. The mRNA solutions were stored at -80 °C until required. 

2.2.22.4 Analysis of RNA by Northern Blotting 

Total pod RNAs, 10 ug, were electrophoresed in formaldehyde gels (see 
2.2.7.3). Ribosomal RNA size markers run in the outside lane of the gel 
were excised after electrophoresis, stained wi th ethidium bromide (5 
| i g / m l ) , destained overnight in DEPC water and photographed w i t h a 
ruler alongside. 

The R N A in formaldehyde gels was transferred to NC or nylon filters by 

capillary blott ing, essentially as described by Sambrook et al. (1989). 

Blotting was allowed to proceed for 16 -18 hours wi th 20 x SSC. 

The positions of the wells were marked on the filter w i t h a pencil and the 
filter was air dried for 30 minutes, then baked in a vacuum oven at 80 °C 
for 1 to 2 hours. The blotted gel was re-stained wi th ethidium bromide, 
as above, to ensure RNA transfer was complete. 
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2.2.22.5 Northern Hybridisat ion Using Formamide 

Northern blot filters were prehybridised in a hybridisation tube or a heat 1 

sealed polythene bag at 42 °C for 4 - 6 hours in sufficient hybridisation 
solution to cover the filter. The prehybridisation solution consisted of 
the fol lowing: 50 % formamide (freshly deionised), 5 x Denhardt's, 5 x 
SSC, 0.1 % SDS and 100 ( i g / m l herring sperm D N A . Fol lowing 
prehybridisation filters were hybridised at 42 °C for 16 - 18 hours in 
hybridisation solution containing 50 % formamide (freshly deionised), 2 
x Denhardt's, 5 x SSC, 0.1 % SDS and 100 ( i g /ml herring sperm D N A and 
2-10 n g / m l of [a32p] dCTP labelled probe. The filters were washed to a 
f inal stringency of 0.1 x SSC at 65 °C and radiographed (as described 
2.2.19). 

2.2.22.6 Northern Hybridisat ion Using Hybsol 

Northern hybridisation using Hybsol was performed as described above 
(2.2.18.2). 

2.2.22.7 Analysis of R N A by Dot Blott ing 

Total RNA, 5-10 u.g, in a total volume of 10 \il was incubated at 68 °C for 

5 minutes i n 2 volumes of formamide (freshly deionised), 7 ul of 

formaldehyde (37 % solution) and 2 p.1 of 10 x MOPS buffer. The 

samples were chilled on ice and 2 volumes of 20 x SSC added. Samples 

were then dot blotted onto a NC fil ter using a H y b r i Dot M a n i f o l d 

(Bethesda Research Laboratories, Scotland) according to the 

manufacturers instructions. The filter was dried at room temperature for 

30 minutes, then baked at 80 °C in a vacuum oven for 1 to 2 hours. 

Filters were hybridised using Hybsol (as described above 2.2.18.2). 

2.2.23 Construction of a L59 Ligni f ied Pod cDNA Library 

Total R N A was extracted f rom L59 pea pods (phenotype, l i gn i f i ed 
endocarp; genotype PV) harvested 4 - 6 DAF. The embryos and main 
veins were excised prior to RNA extraction by the hot SDS method (see 
2.2.21.1). Isolation of poly ( A ) ^ R N A was performed using the 
PolyATtract mRNA Isolation System I I I (as described 2.2.22.3). 
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A Stratagene ZAP-cDNA Synthesis K i t was used for construction of a 
l ignif ied pod cDNA library using the L59 4 - 6 DAF pod mRNAs as a 
template for reverse transcription. The prepared cDNAs were ligated into 
Un i -ZAP XR vector and cloned in SURE cells according to the 
manufacturers instructions. The L59 cDNA library was then amplif ied 
in E. coli strain XLl-Blue . 

2.2.23.1 Synthesis of First and Second Strand L59 Total Pod cDNA 

The mRNAs extracted f rom 4- 6 DAF L59 pea pods (approximately 7 u.g, 
based on Promega PolyATract m R N A Isolation System I I I recovery 
prediction), were dried down in a Uniscience Speed-Vac and rehydrated 
in 31.5 ul of DEPC treated water. First and second strand synthesis was 
then performed according to the manufacturers instructions. 

The 50 base oligo shown below was used as a primer for reverse 

transcription w i t h M - M u L V R T (Moloney-Murine Leukemia Virus 

Reverse Transcriptase): 

Poly dT 

5' G A G A G A G A G A G A G A G A G A G A A C T A G T C T C G A G T T T T T T T T T T T T T T T T T T 3' 

"GAGA" sequence Xhol 

The "GAGA" sequence serves as protection for the Xhol restriction 

enzyme recognition sequence. The Xhol restriction site allows the 

subsequent synthesised cDNA to be ligated into the Uni-ZAP XR vector 

in a sense orientation (EcoRI - Xhol) w i t h respect to the LacZ promotor. 

The 18 base poly(dT) sequence bound to the 3' poly (A) region of 

messenger RNA templates allows reverse transcription by the M -

MuLVRT to proceed. The Stratagene cDNA synthesis ki t utilises a dNTP 

mixture which includes 5-methyl dCTP for first strand synthesis. The 

incorporation of methylated cytosine bases protects the cDNA f rom the 

restriction enzymes used in subsequent cloning steps. 

Second strand synthesis was achieved w i t h RNase H and D N A 

Polymerase I . RNase H nicks the R N A template producing mul t ip le 

fragments, which serve as primers for D N A Polymerase I synthesis of 
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second strand cDNA. The use of unmethylated dNTPs in the second 
strand nucleotide mixture ensures that the linker-primer can be cleaved 
by restriction enzymes. 

Aliquots of the L59 pod cDNA first and second strand reactions were 
removed for later analysis (as recommended by the manufacturer) to 
assess quantity and quality of the synthesised cDNA, as described below 
(2.2.23.5). A 5 | i l aliquot of the first strand reaction mixture was pipetted 
into a separate tube containing 0.5 ul of [a^2p] dATP (5 uCi) as a control, 
al lowing analysis of first strand synthesis. A n aliquot, 4.5 ul, of the 
second strand reaction was removed and frozen at -20 °C for later 
analysis. The c D N A termini of the remaining 39 ul of second strand 
cDNAs were blunt ended using T4 D N A polymerase according to the 
manufacturers instructions. 

2.2.23.2 Ligation of L59 Pod Total cDNA to EcoRI Adaptors 

The blunt ended L59 pod total cDNA was phenol/chloroform / isoamyl 
alcohol (25:24:1) extracted and pelleted by microfugation, followed by 
ligation to EcoRI adaptors according to the manufacturers instructions. 
The ligation was allowed to proceed for 2 days at 8 °C. The ligase was 
then heat inactivated in a waterbath at 70 °C for 30 minutes. 

The EcoRT adaptor molecules consisted of the fo l lowing 9-mer and 13-

mer oligos: 

5 ' A A T T C G G C A C G A G 3 ' 
3 ' G C C G T G C T C 5 ' 

The 9-mer oligo is kinased to facilitate blunt-ended ligation to c D N A 

termini. The adaptor 13-mer oligo remains dephosphorylated to prevent 

ligation of cohesive ends. It is possible that the adaptor blunt termini 

may ligate. 

2.2.23.3 Kinasing the EcoRI Ends of L59 Pod cDNA:EcoRI Adaptor 

Molecules 

The ligated L59 pod cDNA:EcoRI adaptor molecules were then kinased 

w i t h T4 polynucleotide kinase, according to the manufacturers 

90 



instructions, in preparation for ligation to the dephosphorylated vector 
arms. The kinase was then heat inactivated for 30 minutes at 70 °C, 
before cooling to room temperature. 

2.2.23.4 Xho l Digestion and Precipitation of L59 Pod cDNA 

Xhol restriction enzyme was used to cleave the EcoRI adaptors and 

residual linker-primers f rom the 3' end of the L59 pod total cDNAs and 

the resulting fragments were separated on a Sephacryl spin column, 

prepared f r o m a 1 m l plastic syringe, spun at 600 g in a table top 

centrifuge according to the manufacturers instructions. 

Three L59 pod total cDNA fractions were collected f rom the Sephacryl 
spin column. The fractions were pooled and extracted wi th equal 
volumes of p h e n o l / c h l o r o f o r m / i s o a m y l alcohol (25:24:1) and 
chloroform/isoamyl alcohol (24:1), fol lowed by precipitation w i t h 2 
volumes of ethanol overnight at -20 ° C The cDNAs were then pelleted 
by microfugation for 60 minutes at 4 °C, rinsed w i t h an equal volume of 
80 % ethanol and vacuum dried for 5 minutes. The L59 pod total cDNA 
pellet was resuspended in 30 ul of water. 

2.2.23.5 Analysis of First and Second Strand cDNAs in A l k a l i n e 
Agarose Gels 

The first and second strand cDNAs extracted f rom the above synthesis of 

f i rs t and second strand L59 pod total c D N A (2.2.23.1) were 

electrophoresed on an alkaline agarose gel (see 2.2.7.2). 

The size marker lane was excised f rom the gel containing radiolabeled 

first and second strand cDNAs, neutralised by washing twice w i t h 

neutralising solution, stained with ethidium bromide and photographed 

wi th a ruler alongside. The gel containing the first and second strand 

cDNAs was then immersed in 7 % trichloroacetic acid for 30 minutes and 

dried for 8 hours at room temperature using a Bio-Rad model 483 slab 

dryer. The gel was then placed on a glass plate and wrapped in cling 

f i lm . The well position was marked w i t h radioactive ink and the gel was 

exposed to sensitised f i l m and an in tens i fy ing screen at room 

temperature. 
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2.2.23.6 Tr ia l Ligation of L59 Pod c D N A into Uni-ZAP XR Vector Arms 

A n init ial trial ligation of the prepared L59 pod total cDNAs wi th Un i -
ZAP XR vector was performed. A 2.5 aliquot of the prepared L59 pod 
total cDNAs was ligated according to the manufacturers instructions for 
2 days at 4 °C in a total volume of 5 | i l . 

2.2.23.7 Packaging the Recombinant Uni-ZAP XR 

A 1 | i l aliquot of the L59 pod c D N A / U n i - Z A P XR trial ligation was 
packaged into Gigapack I I Gold packaging extract (Stratagene) according 
to the packaging instructions supplied by the manufacturer. 500 ul of 
SM buffer and 1 ,ul of chloroform were added to the packaged phage and 
stored at 4 °C. 

2.2.23.8 Plating and Ti ter ing the L59 Lignif ied Pod c D N A Library 

The titer of the packaged phage mixture was ascertained before 

packaging the remaining 4 [il of ligation mixture as above. Serial 

dilutions of the packaged phage , 10"! - 10"6, were cloned in SURE cells 

according to the manufacturers instructions. SURE is an mcrA-, mcrB-

strain, preventing digestion of the methylated C containing DNA. Each 

serial dilution was pre-incubated wi th 200 | i l of SURE cells at OD600 = 0.5 

(performed using a micro-titre plate reader), for 20 minutes prior to 

plating out wi th 3 ml of N Z Y top agar containing 15 | i l of 0.5 M EPTG and 

50 | i l of X-gal (250 m g / m l ) onto NZY plates. The plates were incubated 

at 39 °C overnight. The number of recombinant plaques (colourless 

plaques) counted on the serial diluted plates was used to estimate the 

titer of the original phage mixture. 

2.2.23.9 Ampl i f i ca t ion of the L59 Lignif ied Pod c D N A Library 

One round of amplification of the Uni-ZAP XR L59 l ignif ied pod c D N A 

library was performed to make a large, stable quantity, of high titer stock. 

Aliquots of the packaged recombinant phage, containing approximately 

1.3 x 10^ plaques, were mixed wi th 600 \i\ of exponentially growing SURE 

cells. The phage and host cells were pre-incubated for 20 minutes at 37 
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°C prior to plating out on a 200 m m 2 NZY plate w i t h 50 ml of N Z Y top 
agar. The top agar was allowed to set and the plate was then incubated 
at 39 °C for 6 - 8 hours unt i l plaques of approximately 1 - 2 m m were 
visible. 

Each plate was overlaid w i t h 100 ml of SM buffer and stored overnight at 
4 °C. The next day the bacteriophage suspension was poured f r o m each 
plate into sterile polypropylene tubes. The plate was rinsed w i t h an 
addit ional 10 ml of SM buffer and pooled wi th the bacteriophage 
suspension in the polypropylene tubes. The bacteriophage suspension 
was then spun for 10 minutes at 2000 g. The supernatant was transferred 
to sterile medical flats and 5 ul of chloroform was added to each 
container. This stock was stored at 4 °C. The titer of the library was 
checked by plating out 10~1 -10" 6 dilutions wi th XLl-Blue on NZY plates 
as described (2.2.23.8). 

Aliquots of the Uni-ZAP XR L59 cDNA library were stored frozen w i t h 

the addition of DMSO [dimethyl sulphoxide] to a final concentration of 7 

% . Each aliquot was plunged into l iquid nitrogen and transferred to a 

freezer at -80 °C for long term storage (Sambrook et ai, 1989). 

2.2.23.10 In Vivo Excision of cDNA Inserts 

Recombinant phage were cored f r o m plates and inserted into an 

Eppendorf containing 500 ul of SM buffer and l u l of chloroform. Cored 

plaques were incubated at room temperature for 4 hours or overnight at 4 

°C before taking a 200 ul aliquot and mixing wi th 200 ul of XLl -Blue 

(OD6oo=l-0) and 1 ul of R408 helper phage or Ex-assist helper phage i f 

using the EXAssist/SOLR system. This bacteria/phage mixture was 

then incubated for 20 minutes at 37 °C. A control consisting of l u l of 

helper phage and 200 u l of X L l - B l u e was performed. The 

bacteria/phage mixture was then added to 3 ml of 2 x YT in McCartneys 

and incubated at 37 °C for 2 - 2.5 hours. The cultures were then 

incubated at 70 °C for 20 minutes before spinning for 5 minutes at 2500 

rpm in a centrifuge (Mistral 3000). 1 m l of the resultant supernatant was 

transferred to a sterile Eppendorf. The rescued phagemid could be 

stored at 4 °C for 1 - 2~ months at this stage. A 50 ul aliquot of the 

rescued phagemid was pre-incubated w i t h 200 u l of X L l - B l u e 
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(OD 6 0o=1.0), or SOLR if using the EXAssist/SOLR system, at 37 °C for 20 
minutes. The rescued phagemid were then spread on LB/amp plates 
and incubated overnight at 37 °C. The colonies on the LB/amp plates 
contain double stranded pBluescript containing the cloned D N A insert. 

2.2.23.11 In Vivo Excision of Tr i a l Inserts f r o m L59 L i g n i f i e d Pod 
cDNA Library 

Six plaques were cored f rom the recombinant phage plated out f rom the 

test ligation to check for the presence of inserts. The trial rescued 

plasmids were grown up in LB/amp and minipreped. The rescued 

plasmids containing L59 lignified pod cDNAs were Xhol cleaved and 

electrophoresed on a minigel. 

2.2.23.12 cDNA Library Screening Protocol 

The library was titered to determine concentration and 4 x 10^ - 5 x 10^ 
plaques were pre-incubated wi th 600 | i l of XLl-Blue OD600 = 0.5 cells for 
20 minutes before plating out on 200 m m ^ plates of NZY agar w i t h 50 
ml of NZY top agar. The plates were incubated at 37 °C for 6 - 8 hours, 
unti l the plaques, 1-2 mm, were visible. The plates were then cooled at 
4 °C for at least 2 hours prior to transfer of the plaques to NC filters. 
Duplicate plaque lifts were performed by placing NC filters on the agar 
surface, w i th the first l i f t performed for 2 minutes and the second for 4 
minutes. During transfer the filter was pricked w i t h a needle through 
the agar for orientation. The filters were blotted briefly on 3 M M paper 
to reduce d i f fus ion and blurr ing of the plaques dur ing subsequent 
treatments. The filters were then placed plaque side up in a tray 
containing 3 layers of 3 M M paper soaked wi th denaturing solution for 2 
minutes. This was fol lowed by similar treatment w i t h neutralising 
solution for 5 minutes, and finally rinsing solution (0.2 M tris-HCl p H 7.5, 
2 x SSC) for 30 seconds. The filters were air dried for at least 30 minutes 
prior to baking in a vacuum oven at 80 °C for 2 hours. The transferred 
agar stock plates were then stored at 4 °C for use after screening. 

The filters were prehybridised in a hybridisation tube at 65 °C for 4 hours 
w i t h 20 m l of 5 x SSC, 5 x Denhardt's, 0.1 % SDS, 200 ( i g / m l denatured, 
sonnicated herring sperm DNA. Hybridisation was performed for 16 -
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18 hours at 65 °C in 20 m l of 5 x SSC, 5 x Denhardt's, 0.1 % SDS, 100 
M-g/ml denatured, sonnicated, herring sperm D N A and 2 - 10 ng of 
[ a 32p] labelled probe. The filters were washed to a f inal stringency of 
0.1 x SSC at 65 °C (as described 2.2.18.2) and radiographed (as described 
2.2.19). Alternatively, hybridisation was performed using Hybsol (as 
described 2.2.18.2). 

After radiography the f i l m was marked wi th a pen corresponding to the 
needle pricks orientating the fi l ter. A plug was cored f r o m the 
transferred stock plate where strongly hybridised putative positive clones 
lined up w i t h the orientated f i l m and placed in 1 ml of SM buffer in an 
Eppendorf. Putative positive clones were titered by plating out serial 
dilutions (as described 2.2.23.8) to give approximately 50 - 200 plaques on 
a petri dish of NZY agar. The plates were incubated overnight at 37 °C. 
Plaque lifts were transferred onto NC filters as before, prehybridised and 
hybridised as before. 

Isolates were then cored f rom the secondary screen plates. If positive 
plaques were too close to background plaques, a tertiary screen was 
performed as for the secondary screen. Cored isolates were stored at 4 
°C in SM buffer unt i l required for excision to obtain the insert-containing 
pBluescript vector. 

2.2.23.13 Tr ia l Screen of L59 Lignif ied Pod cDNA Library 

A trial screen was performed to check that the L59 l ignif ied pod c D N A 

library contained f u l l length cDNA representative of developing pods. 

The L59 lignified pod cDNA library was plated out at a density of 5 x 10^ 

plaques/200 m m 2 plate and screened as described above (2.2.23.12) using 

[ a 3 2 P ] dCTP labelled PP406 cDNA. The PP406 cDNA encodes a GTP-

binding protein, Psa-rab, which was found to be expressed in developing 

pods f r o m different pea lines (Drew et al., 1993). 

2.2.24 Dif ferent ia l Screen of the L59 Lign i f i ed Pod c D N A Library 

A dif ferent ia l screen of the L59 l ign i f i ed pod c D N A library was 

performed according to a method based on that of Olszewski et al. (1989), 

using [ a 3 5 S ] dCTP and [ a 3 2 P ] dCTP labelled total cDNAs synthesised 
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f r o m 4 - 6 DAF pod mRNAs f r o m L59 and L1390 respectively. 
Secondary and tertiary screens were performed using [ a 3 2 P ] dCTP 
labelled cDNA probes f r o m both lines. The differential screening 
strategy is shown (Figure 2.2). 

2.2.24.1 Primary D i f f e r e n t i a l Screen of L59 L i g n i f i e d Pod c D N A 
Library 

The L59 l ignif ied pod c D N A library was plated out on two 200 m m 2 

plates (4 x 10^ plaques/plate). The plaques were transferred, i n 
duplicate, onto NC filters and treated as described above (2.2.23.12). 
One filter was hybridised w i t h 100 ng of L59 pod total cDNAs labelled 
wi th [ a 3 2 S ] dCTP and the duplicate filter was hybridised with 100 ng of 
L1390 pod total cDNAs labelled wi th [ a 3 2 P ] dCTP as described above 
(2.2.23.12). The pod total cDNAs f rom L59 and L1390 were prepared as 
for pod total cDNAs for construction of the L59 l ignif ied pod c D N A 
library. The fillers were radiographed as shown in Figure 2.3. 

2.2.24.2 Secondary and Tertiary Di f fe ren t ia l Screen of L59 L i g n i f i e d 
cDNA Library 

Putative positive plaques were cored f rom the primary screen stock 
plates on the basis of observed hybridisation wi th the [a 35s] labelled L59 
pod total cDNA, but not to the [ a 3 2 P ] labelled L1390 pod total cDNA as 
described above (2.2.23.12). Secondary and tertiary rounds of screening 
were performed by hybridising duplicate lifts of 50 - 100 plaques on N C 
filters as described above (2.2.23.12) wi th either [oc 3 2P] dCTP labelled L59 
pod total cDNA or [ a 3 2 P ] dCTP labelled LI390 pod total cDNA. 

Putative differentially expressed clones were selected on the basis of 
consistent hybridisation to radiolabeled L59 pod total cDNAs through 
three rounds of differential screening. 

2.2.25 In situ Hybridisat ion 

Wax embedded transverse pod sections, 10 urn thick, were dewaxed in 
histoclear 5 -10 minutes, rinsed wi th ethanol 1 -2 minutes, rinsed w i t h 
ethanol/DEPC treated water (50:50), followed by two rinses wi th DEPC 
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Figure 2.2 Strategy for isolating differentially expressed 
genes as cDNAs representing the l ignif ied endocarp 
phenotype. 
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Mutant phenotype: unlignif ied endocarp 
Genotype: pv 
Experimental pea line: L1390 

mRNA isolated from L1390 4 - 6 
DAF pod total RNA preparation 

Normal phenotype: lignified endocarp 
Genotype: PV 
Experimental pea line: L59 

mRNA isolated from L59 4 - 6 
DAF pod total RNA preparation 

pod total cDNA L1390 pod total cDNA L59 

L1390 cDNA probe L59 cDNA probe 

Differential Screening 

Isolation of cDNA clones specific to the 
normal phenotype: lignified endocarp, 

genotype: PV 



Figure 2.3 Autoradiography of L59 l ignified pod cDNA library 

primary differential screen filters. 
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film cassette, with intensifying screens blocked 

mfflfflffl 

- sensit ised film 

- NC filter containing plaques from L59 lignified 
pod cDNA library hybridised to radio labeled total 
cDNA probes from L59 and L1390 4 - 6 DAF 
pods. 

- 3 MM paper 

- a 3 2 P labelled L1390 4 -6 DAF pod total cDNA 

- a 3 5 S labelled L59 4 - 6 DAF pod total cDNA 



treated water. Excess water was drained f rom the slide and 50 ul of 
hybridisation solution was added to each pod section containing 50 % 
formamide, 4 x SSC, 1 x Denhardt's, 1 g dextran sulphate, 500 n g / m l 
herring sperm D N A and digoxygenin labelled probe ( l u g / m l ) . The 
probe was prepared using a digoxygenin (DIG) D N A labelling k i t 
(Boehringer Mannheim) according to the manufacturers instructions. 
Parafilm was placed on top of the sections to ensure close contact of the 
hybridisation solution w i t h the pod sections and placed in a moist 
chamber at 42 °C for 16 -18 hours. 

A n alternative procedure involved a proteinase K treatment prior to 
hybridisation and an RNase treated control. Sections were dewaxed as 
above and treated wi th proteinase K (10 u g / m l in TE buffer, p H 7.5) for 
10 minutes at 37 °C. RNase treated controls were also dewaxed as 
above, and treated wi th RNase (10 ug/ml) for 10 minutes at 37 °C. The 
treated sections were then rinsed in water, followed by 1 x PBS, followed 
by 10 minutes in f ix ing solution. The sections were then rinsed for 10 
minutes in 1 x PBS, fol lowed by water and hybridised as above. 

Hybridised sections were rinsed wi th 2 x SSC/0.1 % SDS, twice, at room 
temperature, followed by two rinses in 2 x SSC/0.1% SDS at 42 °C. The 
sections were then dehydrated through a series of ethanol solutions 
buffered wi th 300 m M ammonium acetate, then allowed to air dry. 

The sections were then incubated in 2 % sheep serum in buffer A (100 

m M tr is .HCl p H 8.0, 150 m M NaCl) for 30 minutes, fol lowed by 

incubation in alkaline phosphatase conjugated polyclonal sheep anti-

digoxygenin antibody (1:500 dilution in buffer A) for 2 hours at room 

temperature. The sections were then rinsed in buffer A for 1 hour w i t h 

fresh changes of buffer A every 15 minutes. Freshly prepared substrate 

solution containing 0.5 m M napthol AS-MX phosphate and 2.0 m M fast 

red TR in tris buffer p H 8.0 was added to each section. Colour 

development was allowed to proceed in darkness at room temperature 

wi th monitoring by microscopic examination. Colour development was 

arrested by rinsing wi th distilled water, followed by air drying. 

99 



2.2.26 Semi-Quantitative RT-PCR for Expression of LP18 mRNA 

Total R N A was prepared f rom four, f ive and six DAF pods f rom each of 
the experimental pea lines, L59, L58, L1390 and Feltham First by the acid 
guanidium thiocyanate method (as described 2.2.22.2). The R N A 
concentration of each total R N A sample was then determined by 
spectrophotometry. Qualitative analysis of each total RNA sample was 
ascertained by comparison of ethidium bromide stained ribosomal bands 
after formaldehyde gel electrophoresis. 

Semi-quantitative RT-PCR for expression of LP18 m R N A was performed 
according to the method described by Chang et al. (1993) (see Figure 2.4). 
A synthetic RNA species (for use as an internal standard) was prepared 
by ligating an Ndel cleaved lambda fragment of 556 bp into Ndel cleaved 
pLP18 to produce a synthetic c D N A clone pRLP18 (Figure 2.4). 
Synthetic RNA was reverse transcribed wi th T3 polymerase f rom rRLP18 
using an in vitro transcription ki t (Promega). The concentration of 
rRLP18 was determined by spectrophotometry. 

The optimal concentration of rRLP18 to be incorporated in each reaction 

tube was determined according to the procedure outlined by Chang et al. 
(1993). A fixed amount of L59 6 DAF total RNA (1 ug) was selected to 

perform reverse transcription, fo l lowed by PCR amplification w i t h 

increasing concentrations of internal standard, rRLP18. A serial di lut ion 

of rRLP18 was prepared and a series of reverse transcription reactions 

were performed wi th various amounts of rRLP18, 0.005 ng - 3.1 ng. To 

each rRLP18 standard, 1 | ig of L59 6 DAF total pod R N A and 100 ng of 

P2 3'-end antisense primer was added. The volume of each sample was 

adjusted to 42 ul and incubated at 65 °C for 15 minutes. The samples 

were cooled on ice and the fo l lowing added: 5 u.1 of 5 x reverse 

transcription buffer (Promega), 4 U of Promega RNase inhibitor, RNasin, 

0.5 m M 4 dNTPs, 200 U of Mu-LVRT and DEPC treated water to a total 

volume of 50 ul. First strand cDNAs were reverse transcribed f rom the 

RNA samples for 1 hour at 37 °C. The reactions were stopped by the 

addition of 150 ul of 100 m M tris.HCl/100 m M EDTA, p H 7.5, and 

phenol /chloroform/isoamyl alcohol (25:24:1) extracted. The reverse 

transcription products were then obtained by ethanol precipitation 

overnight at -80 °C. 
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Figure 2.4 Schematic representation of RT-PCR for expression of the 

putative blue copper protein cDNA, LP18, in 4, 5 and 6 DAF pea pods. 

[A] The pLP18 clone encoding target mRNA. The location and 

orientation of the oligonucleotide primers used for reverse transcription 

and PCR amplification are indicated. [B] Outline of procedure for 

construction of synthetic gene, RLP18, and the quantitative RT-PCR 

protocol. 



[A] Clone pLP18, containing the EcoRI 
- Xhol located LP18 cDNA insert. 

T3 promoter 
P1 

275 bp 

[B] Preparation of a synthetic RNA, 
rRLP18, by ligating an Ndel lambda fragment 
into the internal Ndel site of the LP18 insert 
between the synthetic oligo primers P1 
and P2. 

EcoRI Xhol 
Promoter 

831 bp 

EcoRI 

in vitro transcription of 
pRLP18 

with ligated 556 bp lambda 
fragment using T3 RNA 

polymerase 
• 

spectrophotometric 
determination of 
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synthetic RNA, 

rRLP18 

Total RNA from 4, 5 or 6 DAF pods 
from either L59, L58 L1390 orFF 

reverse transcription of specific Ist strand cDNA with 
- ^ • P 2 synthetic 3' antisense oligo primer 

Synthetic RNA 
rRLP18 

cDNA of target LP18 + cDNA of synthetic RNA RLP18 

PCR amplification with synthetic 
oligo primers P1 • • and T 

275 bp, LP18 target PCR product + 831 bp, RLP18 internal standard 
PCR product 

aliquot of PCR products Southern blotted and 
hybridised with radiolabeled LP18 1 

- hybridised bands excised from filter 
and scint counted to determine cpm 

Quantification of target mRNA, LP18, using the ratios of the two species of PCR 
products as a Quantitative Index: 

internal standard cpm = amount of internal standard rRLP18 ng 
target cpm amount of target LP18 ng 

Hence, Quantitative Index = amount of internal standard. rRLP18 x target cpm 
internal standard cpm 



The first strand cDNAs were resuspended in 40 ul of water. Aliquots, 10 
ul , of each first strand reverse transcription reaction were taken for PCR 
amplif icat ion. The PCR amplif icat ion mixture contained 1 x Taq 
polymerase buffer (supplied wi th the enzyme), 0.2 m M 4 dNTPs, 1 u M 
each of 5' and 3' primers, P I and P2 respectively (see Figure 2.1), in a total 
volume of 100 ul. The reaction mixtures were overlaid wi th 100 u l of 
mineral oi l and heated to 95 °C for 3 minutes. The reaction mixtures 
were then chilled on ice prior to adding 2 U of Taq D N A polymerase and 
ampl i fy ing w i t h a Techne PHC-3 thermal cycler. The PCR prof i le 
involved denaturation at 94 °C for 30 seconds, primer annealing at 47 °C 
for 30 seconds (based on the f o l l o w i n g calculation of annealing 
temperature: 4(G + C) + 2(A + T)) and extension at 72 °C for 1 minute. 
Amplif ication was carried to 21 cycles. 

Analysis of the PCR ampli f ica t ion products was performed by 
electrophoresis of a 30 ul aliquot through 0.8 % agarose gel. The gel was 
stained w i t h e thidium bromide and photographed. The D N A was 
transferred to nylon filters by the alkaline transfer method using a 
vacuum blotter (as described 2.2.18.1). The Southern blots were 
hybridised wi th [ a 3 2 P ] dCTP labelled LP18 insert in 15 ml of Hybsol (as 
described 2.2.18.2). The hybridised target and internal standard bands 
were then excised f r o m the filters and scintillation counted in Ecoscint 
after radiography. The ratio of internal standard cpm to target R N A 
cpm determined by scint i l la t ion counting the hybridised PCR 
amplification products was plotted against internal standard (ug) to 
ascertain the l imit of the linear response, and thus, a suitable amount of 
internal standard to be added to the RT-PCR reactions. 

Subsequent RT-PCR reactions using 1 ug of total pod RNAs f rom L59, 

L58 and L1390 at four, f ive and six days after flowering were achieved by 

the reverse transcription and PCR amplification procedure outl ined 

above, w i t h a f ixed amount of internal standard, rRLP18. Semi­

quantitative analysis for the presence of LP18 mRNA transcripts in the 

pod total R N A samples was achieved by hybridising Southern blots of 

the electrophoresed PCR amplification products w i t h [a32p] dCTP 

labelled LP18. The hybridised target and internal standard bands were 

then excised f rom the filters and scintillation counted after radiography. 

A quantitative index was calculated (see Figure 2.4) to give a comparison 
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of the level of LP18 m R N A expression relative to the amount of internal 
standard added. Expression of LP18 mRNA was also determined by RT-
PCR, using 1 j ig of total R N A from root, leaf and stem tissue. 

A l l RT-PCR reactions were performed in duplicate. Control PCR 
reactions were performed with each set of RT-PCR reactions consisting of 
a blank containing water only, rRLP18 only, and L59 6 DAF total pod 
RNA only. Filters were re-exposed to f i l m after excision of hybridised 
PCR amplification products for scintillation counting, to determine that 
the correct area of the filter had been removed. 
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3. RESULTS. 

3.1 I N V E S T I G A T I O N OF A c D N A CLONE, pPP406, SELECTED 

FROM A DIFFERENTIAL SCREEN OF PURPLE- A N D GREEN-

PODDED PEA LINES 

A cDNA library was constructed in the vector pUC18, using m R N A 
isolated f r o m 5 DAF purple pea pods (with embryos removed) (Bown, 
1992). A differential screen of the PP (purple pod) cDNA library was 
then performed by Bown (1992) in an attempt to isolate clones 
associated wi th the purple-podded phenotype. A clone, designated 
pPP406, was isolated f r o m the different ial screen on the basis of 
appearing to give a greater degree of hybridisation to pod total c D N A 
prepared f rom the PP pea line, compared to hybridisation to pod total 
cDNA f r o m the green-podded pea line (FF). 

3.1.1 Subcloning and Sequencing of PP406 

The insert f r o m pPP406 was f u l l y sequenced on both strands by 
ut i l i s ing restriction fragments to make a series of subclones; both 
double-stranded plasmid template and single-stranded templates (after 
subcloning into M13) were used. A restriction map of the PP406 c D N A 
and the sequencing strategy are shown in Figure 3.1. 

The sequenced insert comprised a cDNA of 915 bp, which contained an 

open reading frame of 621 bp, encoding a putative polypeptide of 206 

amino acid residues f rom an initiation codon at nucleotides 72 - 74 and 

a termination codon at nucleotides 690 - 692 (Figure 3.2). The putative 

3' non-coding region of 223 base pairs contained a single mo t i f 

corresponding exactly to the consensus eukaryotic polyadenylation 

signal, A A T A A A , at nucleotides 719 - 724 (Proudfoot and Brownlee, 

1976). The molecular mass of the native translation product w o u l d be 

23 kDa. The nucleotide sequence is available f rom the EMBL database, 

accession number X65650. 
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Figure 3.1 The sequencing strategy for the cDNA insert, PP406, 
showing restriction enzyme sites for subcloning. The sequenced 
fragments and the direction of sequencing are indicated by the arrows. 
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Figure 3.2 Psa-rab nucleotide sequence and predicted 

polypeptide. The amino acids underlined indicate 

conserved domains in ras-related GTP-binding proteins. 

The polyadenylation sequence is i n bold. 
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10 20 30 40 50 
CTAGTTGAAG TAAAAAAAGA TCATCAAACA CAAGCAAACA ACAGTTTCTT 

60 70 80 90 100 
CTTCTTCCAC CGATCCGTAC TATGCCTTCT CGCAGAAGAA CTCTCTTAAA 

M P S R R R T L L K 
110 120 130 140 150 

GGTCATCATT CTCGGTGACA GCGGTGTGGG GAAGACGTCT TTGATGAACC 
V I I L G P S G V G K T S L M N Q 

160 170 180 190 200 
AATATGTGAA TAAGAAGTTT AGTAATCAGT ACAAGGCAAC CATTGGAGCG 

Y V N K K F S N Q Y K A T I G A 
210 220 230 240 250 

GATTTCTTAA CCAAAGAAGT GCAATTTGAA GATAGGCTTT TCACCTTACA 
D EL L T T E V Q F E D R L F T L Q 

260 270 280 290 300 
GATTTGGGAT ACAGCTGGCC AGGAGAGATT CCAAAGCCTA GGAGTTGCTT 

I W D T A G Q E R F Q S L G V A F 
310 320 330 340 350 

TCTATCGTGG TGCTGATTGC TGTGTTCTTG TATATGATGT TAATTCAGTG 
Y R G A D C C V L V Y D V N S V 

360 370 380 390 400 
AAGTCATTTG ACAACCTTAA TAACTGGAGG GAAGAGTTTC TCATTCAAGC 
K S F D N L N N W R E E F L I Q A 

410 420 430 440 450 
AAATCCTTCT GATCCAGAGA ATTTTCCCTT TGTCGTTATA GGAAACAAGA 

N P S O P E N F D F V V I G N K I 
460 470 480 490 500 

TAGATATTGA TGGTGGAAAC AGTAGAGTGG TTTCTGAAAA GAAGGCTCGG 
D I D G G N S R V V S E K K A R 

510 520 530 540 550 
GCATGGTGTG CAGCAAAAGG AAATATCCCA TATTTTGAGA CATCTGCTAA 
A W C A A K G N I P Y F E T S A K 

560 570 580 590 600 
AGAAGGTATT AATGTTGAAG AAGCATTCCA AACCATAGCA AAGGATGCCC 

E G I N V E E A F Q T I A K D A L 
610 620 630 640 650 

TGAAAAGTGG GGAAGAGGAA GAATTATACC TGCCGGACAC AATTGATGTT 
K S G E E E E L Y L P D T I D V 

660 670 680 690 700 
GGAAACAGCA GTCAGCCAAG GTCAACAGGA TGTGAGTGCT GAACATATAG 
G N S S Q P R S T G C E C * 

710 720 730 740 750 
ATTTTGTTCT CAATACAAAA TAAAGTATAT TATTTAAAAA TCATTTTGGC 

760 770 780 790 800 
ATGTCTAGCC ATTGCTGTCT ATGAGGTTTT ATTGTACATT TATGTTTGAT 

810 820 830 840 850 
CAAGTGCGAT CTGTTGGGTG CTTGTTTGGC TTGTGTTAAT CGATCATGTT 

860 870 880 890 900 
GTTCTCCTTG TATGCTATTC CAACATTGTG AAAAAAACAG CAAAGGATCA 

910 
TTCTGAAGTT ATTTC 



3.1.2 A m i n o Acid Sequence Comparison of the Polypeptide Encoded by 
Clone pPP406 

A homology search of the polypeptide predicted by clone pPP406 
against Gene Bank data revealed highest homologies w i t h the 
polypeptide products of BRL-ras f r o m rat liver (Bucci et al., 1988) and 
canine Rab7 (Chavrier et al., 1990) (70% and 67% respectively). The 
polypeptide predicted by pPP406 was therefore designated Psa-rab. The 
funct ion of the BRL-ras gene product is not known; however the 
product of the canine gene Rab7 has been found in association wi th late 
endosomes (Chavrier et al., 1990), and may be involved in l inking late 
endosomes to lysosomes, or to the trans Golgi network (Goda and 
Pfeffer, 1988). A similar role for Psa-rab is possible on the basis of 
sequence similarity. The predicted amino acid sequence also showed 
considerable, but lower homology (30 - 37%) w i t h nzs-related gene 
products f rom a range of eukaryotic species (Table 3.1) 

The predicted polypept ide has the fo l l owing domains, which are 

conserved in GTP-binding proteins (Pai et al., 1989) (see Figure 3.2): 

(i) GDSGVGK (nucleotides 114 - 134), involved in M g 2 + and phosphate 
binding; 

(ii) TIGADF (nucleotides 189 - 206), effector residues; 

(iii) D T A G (nucleotides 258 - 269), in the highly conserved WDTAGE 

motif shared by Rab/Ypt and ras proteins, which interacts wi th the y-
phosphate of GTP; 

(iv) YRG (nucleotides 303 - 311), a highly conserved motif shared by 

the Rab/Ypt proteins; 

(v) N K X D (nucleotides 444 - 455), the guanine specificity region; 

(vi) ETSA (nucleotides 537 - 548), which interacts w i t h the D residue 

(nucleotides 453 - 455); 

(vii) CXC (nucleotides 681 - 689), the C-terminal motif shared by Rab 

proteins and a substrate for geranylgeranyl-moieties. 

Analysis using the CLUSTAL computer package (Higgins and Sharp, 
1988) was performed to compare the Psa-rab predicted polypeptide w i t h 
several Rab/Ypt amino acid sequences and several plant GTP-binding 
proteins The dendogram constructed (Figure 3.3), based on the 
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Table 3.1 A m i n o acid homology of Psa-rab w i t h various ras-
related GTP-binding proteins. 

Organism Protein % identi ty w i t h 
Psa-rab prote in 3 

rat BRL-ras 70% 
dog Rab7 67% 

slime-mould SAS1 39% 
slime-mould SAS2 38% 
rat RablB 36% 
yeast ras 36% 
human Rab2 35% 
A. thaliana ara 35% 

a Sequence homology between Psa-rab and other related amino acid sequences was 

searched using the FASTA programme package (Pearson and Lipman, 1988). 
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Figure 3.3 A dendogram of predicted amino acid sequences f rom 

12 ras-related GTP-binding proteins produced using CLUSTAL 

(Higgins and Sharp, 1988). The figures along each branch are 

percentage divergence along that particular branch of molecular 

evolution. The tree was rooted half way along the longest branch 

(54.7%). The dendogram was constructed by calculating crude 

similarity scores by the Wilbur and Lipman (1983) method and 

using these calculations to generate a preliminary dendogram by the 

UPGMA method of Sneath and Sokal (1973). The preliminary 

dendogram is then used to dictate the order of sequence alignment 

for the f inal multiple alignment. Percent divergence figures were 

then calculated between all pairs of sequence after mul t ip le 

alignment, generating a tree by the Neighbour Joining method of 

Saitou and Nei (1987). Bootstrapping techniques were then used to 

confi rm the significance of the groupings obtained. The input 

sequences were derived f rom the fol lowing sources: rablb (Vielh et 
al., 1989), rab2 and rab4 (Touchot et al., 1987), rab5 (Zahroui et al., 
1989), rab7 (Chavrier et al., 1990) and BRL-ras (Bucci et al., 1988) 

f rom rat, canine and human cDNA libraries; ara (Matsui et al., 1989) 

and rha l (Anuntalabhochai et al., 1991) f r o m Arabidopsis thaliana, 

r g p l (Kamada et al., 1992) f rom rice; and y p t l (Wichmann et al., 
1989) and ypt3 (Miyake et al., 1990) f rom yeast. 
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method for reconstructing phylogenetic trees by Saitou and Nei (1987), 
showed that the pea sequence is more closely related to the BRL-ras and 
Rab7 sequences than to other plant ras-related proteins previously 
isolated. The BRL-ras, Rab7 and Psa-rab polypeptides show a 
considerable degree of divergence f r o m the other Rab/Ypt and plant 
ras-related amino acid sequences. This cluster of three sequences forms 
a separate sub-family distinct f rom the other Rab/Ypt family members, 
which include the other plant ras-related proteins. 

3.1.3 Genomic Analysis of PP406 

The Psa-rafr cDNA was hybridised to pea genomic D N A in Southern 
blot t ing experiments to investigate the number of Psa-rab genes in 
Pisum sativum (Figure 3.4). PP genomic D N A was cleaved w i t h 
EcoRI, BamHI or H i n d l l l and blotted onto an NC fil ter w i t h Psa-rab 
gene copy equivalents and hybridised w i t h the entire PP406 c D N A 
sequence (as described 2.2.18.3). The fi l ter was washed to h igh 
stringency (0.1 x SSC/0.1 % SDS at 65 °C). Different hybridisation 
patterns were observed in each digest (Figure 3.4). One strongly 
hybridised band was observed in all three digests and one other more 
weakly hybridising band was observed in the H i n d l l l genomic digest 
and possibly the EcoRI digest. As the PP406 cDNA does not contain 
EcoRI or H i n d l l l restriction enzyme sites, the Southern data indicate 
that there are one to two genes encoding the Psa-rab protein in pea. I t 
is possible that Psa-rafr contains an intron wi th these restriction sites, 
which could result in the more weakly hybridising fragment in the 
H i n d l l l and EcoRI genomic digests. Alternatively, the more weakly 
hybridising band may represent a related sequence belonging to the Rab 
sub-family of ras-related proteins. 

3.1.4 Expression Analysis of PP406 in Pods f rom Dif ferent Pea Lines 

3.1.4.1 Expression of PP406 in PP, FF and GP Pods 

Expression analysis of PP406 in PP, GP and FF pods was performed by 

Dr. D a v i d Bown (Durham Univers i ty ) to investigate possible 

differential expression in the purple-pod phenotype. The PP406 insert 

f rom clone pPP406 was used to probe northern blots containing total 
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RNA f r o m PP, FF and GP (mutant green pod f r o m the PP line). The 
PP406 insert hybridised w i t h similar intensity to a 1.1 kb mRNA species 
in all of these lines (Figure 3.5). Background hybridisation to ribosomal 
RNA bands was also observed, as indicated by R N A size markers, even 
when the blot was washed to high stringency. 

3.1.4.2 Expression of PP406 in L59, L58 and L1390 Pods 

It has been observed that ER, Golgi and cytoplasmic vesicles are 
numerous and predominant in close proximi ty to the wal l of cells 
undergoing different ia t ion and formation of l i gn i f i ed sclerenchyma 
cells (Lawton and Harris, 1979; Harris, 1984; Vercher et al, 1987). The 
ER, Golgi and the electron dense and electron transparent vesicles are 
presumed to be involved in intracellular transport of wal l materials 
and enzymes requ i red for construction of new cell wal ls i n 
differentiating sclerenchyma and for l ignin formation. It was observed 
f r o m microscopic examination of PP, GP and FF transverse p o d 
sections that these lines all have a d i f fe ren t i a t ed endocarp. 
Considering that Psa-rab may play a role in intracellular transport, 
based on sequence similari ty wi th other Rab proteins, and the strong 
and invariant expression in the PP, GP and FF pods, i t was thought that 
Psa-rab expression may be associated w i t h the intense intracellular 
transport activity associated w i t h the different iat ing pod endocarp 
present in all of these experimental pea lines. 

The endocarp development of experimental pea lines, L59, L58 and 

L1390 has been characterised as a result of investigation of the genetic 

basis for l ignification of the pod endocarp (described below 3.2.1 and 

3.2.2). Expression of PP406 in total pod RNA f rom L59, L58 and L1390 

was investigated i n order to determine any variation in expression, 

which may be associated wi th the distinct differences in pod endocarp 

development in these lines. 

Hybridisation of the Psa-rab cDNA to total pod R N A f rom L59, L58 and 

L1390 in a northern blot t ing experiment showed a similar degree of 

hybridisation to a m R N A species of approximately 1.1 kb in all lines 

(Figure 3.6). I t does not, therefore, seem likely that PP406 expression is 

associated specifically w i t h vesicular transport i n the differentiat ing 
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Figure 3.S Northern blot hybridisation of total pod R N A (10 ug) of 

three varieties of pea - purple-podded (PP), Feltham First (FF) and 

green-podded (GP) - probed w i t h Psa-nzfr cDNA 3 2 P-labelled by 

random priming. The pods were harvested 5 days after f lowering and 

the seeds were excised. Hybridisation was performed for 14 hours at 

42 °C in 50 ml of a solution containing: 5 x SSC, 2 x Denhardfs reagent, 

50 % formamide and 200 u.g/ m l salmon sperm DNA. The blots were 

washed to a stringency of 0.1 x SSC, 0.1 % SDS at 50 °C for 2 x 20 

minutes. 
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Figure 3.6 Northern blot hybridisation of total pod R N A (10 ug) of 
three pea lines - L59 (phenotype: lignified endocarp), L58 (phenotype: 
partially l ign i f i ed endocarp) and L1390 (phenotype: un l ign i f i ed 
endocarp) - probed w i t h Psa-rab cDNA 3 2 p _ i a D e n e c i by random 
priming. The pods were harvested 4 - 6 days after f lower ing and the 
seeds and main veins were excised. Hybridisation was performed for 
14 hours at 42 °C in 50 m l of a solution containing: 5 x SSC, 2 x 
Denhardt's reagent, 50 % formamide and 200 u g / ml salmon sperm 
DNA. The blots were washed to a stringency of 0.1 x SSC, 0.1 % SDS at 
50 °C for 2 x 20 minutes. 
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endocarp, which is present in L59, reduced in L58 and absent in L1390 
(see Plate 3.3). 

3.1.5 Complementation of the Yeast YPT7 Mutant w i t h PP406 

A YPT7 n u l l mutant was observed to have an altered phenotype, 
characterised by abnormally fragmented vacuoles (Wichmann et al., 
1992). The YPT7 nul l mutant carries a defective YPT7 gene, which is a 
homologue of the mammalian Rab7. In contrast, the wi ld type has a 
prominent vacuoler compartment, wh ich may be observed by 
fluorescence microscopy (Makarow, 1985). 

The YPT7 nul l mutant, Y7Ll:Mata ura31eu2 his4 lys2 barl ypt7::LEU2) 
was obtained f r o m Dr. Dietrich Scheglman (Max-Planck-Institute for 
Biophysical Chemistry, Gottingen). I t was hoped to attempt to 
complement the fragmented vacuole phenotype of the YPT7 nu l l 
mutant w i t h Psa-rafr, which is 55.5 % homologous to YPT7 and has an 
identical effector domain, thought to be necessary for successful 
complementation in yeast (see Figure 3.7). 

3.1.5.1 Construction of a Yeast Expression Vector Containing the PP406 
c D N A 

EcoRI cleaved PP406 insert was ligated into an EcoRI cleaved pYES2 

vector. The pYES2 vector has an S. cerevisiae GAL1 gene for inducible 

transcription f rom the T7 promoter. The ligated products were used to 

transform DH5a and plated out on LB/ampici l l in plates. The pYES2 

vector does not allow blue/whi te colour selection. Hence, 20 colonies 

were selected f r o m 100 - 200 transformants at random and D N A 

prepared for analysis. None of the plasmids contained the PP406 insert 

as determined by cleavage w i t h restriction enzymes. In addi t ion, 

electrophoresis of prepped D N A was of poor quality w i t h diffuse bands 

observed. Hence, i t was decided to plate out the ligations w i t h 

competent TOP 10 F (as recommended by Invitrogen) and the presence 

of inserts was identified by hybridisation to lysed bacterial streaks (as 

described 2.2.21). 
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Figure 3.7 Alignment of the Psa-rab amino acid sequence w i t h 

mammalian RAB7 and yeast YPT7 homologues. The identical 

effector domains are underl ined. The colons (:) represent 

identical residues and the periods (.) represent residues defined 

as "similar' in the mutat ion matrix using the FASTA protein 

sequence comparison programme (Pearson and Lipman, 1988). 

Gaps have been introduced for maximal alignment. 
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Figure 3.8 Hybridisat ion of 3 2 P - l a b e l l e d PP406 to bacteria 

transformed wi th the yeast expression vector, pYES2, containing the 

PP406 cDNA. 
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A selection of 169 lysed transformed bacteria were hybridised wi th a^ 2P 
labelled PP406. Two bacterial streaks of TOP 10 F transformed w i t h 
pYES2 were used as controls to determine background hybridisation 
levels. Five putative positive transformed bacteria, designated pYP52, 
pYP69, pYP87, pYP92, pYP143 and pYP145, were identified (Figure 3.8). 
D N A prepared f r o m the five putative positives picked of the replica 
stock plate for restriction enzyme analysis confirmed the presence of an 
insert of approximately 900 bp. Restriction enzyme analysis w i t h 
H i n d i and BamHI or H i n d i and Xho l was performed on the f ive 
colonies and confirmed that the clones designated pYP52, pYP92 and 
pYP145 contained PP406 inserts in the correct orientation wi th respect 
to the T7 promotor (Figure 3.9). 

D N A for sequencing was prepared f rom pYP52. Sequencing f rom the 
T7 site confirmed the identification of the PP406 insert in the correct 
orientation for inducible transcription. 

3.1.5.2 Complementation of the Yeast YPT7 Mutant w i t h PP406 

Transformation of the yeast strain, Y7L1 (Mata ura31eu2 his4 lys2 ba r l 

ypt7::LEU2), w i th the pYP52 vector and analysis of the complemented 

yeast strain was performed by Ms. Caroline Hartley and Dr. Mar t in 

Watson (Durham Univers i ty ) . The transformed yeast strain, 

designated Y711YP52, was induced by incubation in a glucose minus 

media containing galactose and the resulting phenotype was examined 

by fluorescence microscopy. Results to date (October, 1994) have been 

inconclusive due to poor growth of the yeast strain; this work is 

continuing. 

3.2 PHYSIOLOGY OF L I G N I F I C A T I O N OF THE PEA POD 

ENDOCARP 

3.2.1 Histochemical Staining for L ign in i n the Pea Pod Endocarp 

Transverse pod sections cut f rom fresh pods of L59, L58, L1390 and FF 

were stained w i t h ph lo rog luc ino l (as described 2.2.3.4) and 

photographed (2.2.3.7) (Plate 3.1). Lignification of the pod endocarp of 

L59 (genotype, PV) and Feltham First was observed to occur at around 
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Figure 3.9 Schematic representation of the yeast expression vector, 
designated pYP52, containing the PP406 cDNA nucleotide sequence. 
The restriction enzyme sites used to determine insert orientation are 
shown. MCS indicates the multi-purpose cloning site and the location 
of the upstream activating promotor sequences from the 5. cerevisiae 
GAL1 gene and the T7 primer site are shown. The numbering 
corresponds to nucleotide positions in the pYES2 vector, which is 5.9 
kb in size. 
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Plate 3.1 Histochemical staining for l ignin in the pea pod endocarp. 

Light micrographs of transverse pod sections (fresh tissue) stained 

w i t h phloroglucinol. Phloroglucinol staining produces a red 

coloration on reaction w i t h l ignin (Monties, 1989). A , L59 6 DAF; 

B, L58 6 DAF; C, L1390 6 DAF; D, FF 6 DAF. En, endocarp; M , 

mesocarp. A l l figures at the same magnification, bar = 100 urn 
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six DAF, indicated by the presence of red staining in the endocarp of the 
phloroglucinol stained pod sections (Plates 3.1A and 3.ID). The 
positive staining in pods of FF 6 DAF confirmed the PV genotype i n FF. 
The extent of endocarp lignification in mature pods at 12 DAF is also 
shown (Plate 3.2A). There was no positive staining for l ignin w i t h 
phloroglucinol i n L58 (genotype, Pv) pods at 6 DAF (Plate 3. IB) . 
However patches of sclerenchyma became apparent i n mature pods of 
L58 (Plate 3.2B). The absence of lignification in the endocarp of L1390 
(genotype, pv) at six DAF was verified (Plate 3.1C). N o lignification of 
the L1390 pod endocarp was apparent in mature pods at 12 DAF (Plate 
3.2C), confirming the L1390 genotype, pv. 

3.2.2 Pod Endocarp Development i n L59, L58 and L1390 

Microscopic examination of the fresh transverse pod sections revealed 
possible differences i n the morphology of the endocarp i n L1390 
compared to L59 and L58 (Plates 3.1 and 3.2). Hence, i t was decided to 
prepare resin embedded pod sections f r o m L59, L58 and L1390 for a 
more detailed examination of the pod endocarp. Transverse pod 
sections, 1 urn thick, were prepared and stained w i t h toluidine blue (as 
described 2.2.3.3 and 2.2.3.5). 

Examination of the structural development of resin embedded sections 

of the pod endocarp f rom four, five and six DAF pods of L59, L58 and 

L1390 revealed distinct morphological differences in development (see 

Plate. 3.3). A t four DAF, L59 exhibits the typical four layered endocarp 

as described by Vercher et al. (1987) (Plate 3.3A). The endocarp consists 

of a layer of endodermal cells, a middle zone consisting of three to four 

strata of meristematic cells, the transition layer consisting of a layer of 

cells similar to parenchymatous mesocarp cells, but smaller, and a layer 

of elongating cells situated between the middle zone and the transition 

layer. A t five DAF the elongating cell layer adjacent to the transition 

layer has begun to differentiate to fo rm sclerenchyma (Plate 3.3B). A t 

six DAF the elongating cells have differentiated to fo rm sclerenchyma 

which have commenced l ignif icat ion (as indicated by staining w i t h 

toluidine blue) (Plate 3.3C). A t 12 DAF there are three layers of 

l ignified sclerenchyma in the pod endocarp of L59 (Plate 3.4A). 
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Plate 3.2 Histochemical staining for l ignin in the pea pod endocarp 

at 12 DAF. Light micrographs of transverse pod sections (fresh 

tissue) stained w i t h phloroglucinol . Phloroglucinol staining 

produces a red coloration on reaction w i t h l ignin (Monties, 1989). 

A, L59 12 DAF; B, L58 12 DAF; C, L1390 12 DAF. En, endocarp; 

M , mesocarp. A l l figures at the same magnification, bar = 100 (im 
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Plate 3.3 Development of the endocarp of L59, L58 and L I 390 f rom 

four to six days after f lowering. Light micrographs of 1 urn thick 

transverse pod sections stained wi th toluidine blue. A , L59 4 DAF; 

B, L59 5 DAF; C, L59 6 DAF; D, L58 4 DAF; E, L58 5 DAF; F, L58, 6 

DAF; G, L1390 4 DAF; H , L1390 5 DAF; I , L1390 6 DAF. a, 

endodermal layer; b, middle zone; c, pre-sclerenchyma layer; d, 

transition layer; Sc, sclerenchyma; En, endocarp; M , mesocarp. 

A l l figures at the same magnification, bar = 50 urn. 
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Plate 3.4 Development of the endocarp of L59, L58 and L1390 at 12 
DAF. Light micrographs of 1 urn thick transverse pod sections 
stained w i t h toluidine blue. A, L59 12 DAF; B, L58 12 DAF; C, 
L1390 12 DAF. a, endodermal layer; b, middle zone; c, pre-
sclerenchyma layer; d, transition layer; Sc, sclerenchyma; En, 
endocarp; M , mesocarp. A l l figures at the same magnification, bar 
= 50 um. 
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Pods of L58 at four., f ive and six DAF have similar morphology to the 
L59 pods in that they have the characteristic endodermal layer, a 
middle zone of meristematic cells, a transition layer and an elongating 
cell layer (Plates 3.3D, 3.3E and 3.3F). However, there is no 
differentiation to produce l ignified sclerenchyma in the elongating cell 
layer of L58. Mature pods of L58 show patches of l i g n i f i e d 
sclerenchyma in the endocarp (Plate 3.4B). Hence, differentiation of 
some of the cells of the elongating cell layer does occur, but at a later 
stage of development compared to pods of L59. 

L1390 revealed none of the morphological changes in the endocarp 
exhibited by L58 and L59. The chaivicierisitic four layered endocarp is 
absent. The endocarp of L1390 at four, five and six DAF consists of a 
layer of endodermal cells, wi th one to two layers of small parenchyma­
like cells adjacent to the larger mesocarp parenchyma cells (Plates 3.3G, 
3.3H and 3.31). Microscopic examination of 12 DAF pods revealed no 
further structural development of the endocarp in LI390 (Plate 3.4C). 

3.2.3 The Effect of Plant Growth Regulators on Endocarp Development 

Fertilised ovules are normally necessary for normal pod development 
and growth of the pod wall (see 1.7). Furthermore, it has been 
observed that plant hormones supplied by the fertilised ovule provide 
a major stimulus for ovary development (Eeuwens and Schwabe, 1975; 
Garcia-Martinez and Carbonell, 1980; Vercher et al, 1984). 

Plant growth regulators were applied to emasculated ovaries (as 

described 2.2.3.6) to determine whether the various treatments could 

alter the course of endocarp development in the normal, or mutant 

pod phenotypes of L59, L58 and LI390. The pea flowers were 

emasculated at day -2 (prior to flower opening) to prevent poll ination 

and fertilisation, thus preventing input signals for development f r o m 

the fert i l ised ovule (see 1.7). The exogenous application of plant 

growth regulators to ovaries at day 0 (corresponding to day at which 

fertilisation would occur in seedy pods), circumvented the ovule as a 

route for the transfer of hormonal s t imuli , and ensured that all pods 

received the signal to develop at a similar stage of development. The 

pods were harvested at day 6, the pod length was measured (Table 3.2) 



Table 3.2 Parthenocarpic pod development i n response to 

exogenous application of plant growth regulator treatments. 

Treatment 3 Pod Length (mm) b 

L59 L58 L1390 

M V A 27.5±8.5 28.0+6.0 36.5±7.5 

M V A + G A 3 62.0±3.0 61.5±3.5 53.5+2.5 

6-BAP 36.5±6.5 31.0±6.0 44.5±2.5 

6-BAP + G A 3 62.5±4.5 64.5±2.5 63.0±7.0 

G A 3 66.0±4.0 61.0±6.0 53.0+5.0 

Tween 20.5±7.5 36.5±7.5 41.5±8.5 

Se!f-pollinated 58.0+5.0 63.5±6.5 66.0±6.0 

a In each case the first three flowers on each plant were treated with 

one application at day 0. 
b The value for pod length is the mean value of the length of the three 

pods treated per plant. 
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and the endocarp development of the harvested pods was observed by 
microscopic examination of resin embedded sections (prepared as 
described 2.2.3.3 and 2.2.3.5) (see Plates 3.5,3.6 and 3.7). 

As shown in Table 3.2 parthenocarpic f ru i t set and development was 
induced to a varying degree in all of the treated pods. GA3 was the 
most effective treatment in inducing f ru i t set and development in L59. 
The L59 pods treated w i t h GA3 were longer than those of seedy pods 
and d i d not show any deformity . Endocarp development was 
enhanced w i t h a greater degree of lignification than the corresponding 
normal fertilised pod (Plates 3.5A and 3.5F). In contrast, the L58 and 
L1390 pods treated w i t h GA3 were smaller than the normal fertilised 
pods. It would appear that the L1390 pods have a reduced response to 
exogenous application of GA3 compared to L59. L58 pods treated w i t h 
GA3 are also smaller than normal fertilised pods, but exhibit enhanced 
endocarp development in comparison to L58 normal fertilised pods 
(Plates 3.6A and 3.6F). 

L59 pods'.appear to show the greatest response to the cytokinin, 6-BAP, 

when compared w i t h L58 and L1390, wi th a slightly increased growth 

compared to the respective tween treated control. Cytokinin appears 

to have significantly enhanced endocarp development in L59 pods 

(Plate 3.5D). The pods are considerably smaller than fertilised pods 

(being only slightly larger than the tween treated control (Plate 3.5G), 

but endocarp development is considerable, w i t h d i f ferent ia ted, 

l ignif ied sclerenchyma observed (Plate 3.5D). L1390 pods treated w i t h 

6-BAP were also slightly larger in size compared to the tween treated 

controls for L1390. L58 pods treated wi th 6-BAP were slightly smaller 

in size compared to the tween treated controls for L58. The endocarp 

of 6-BAP treated L58 pods (Plate 3.6D) is also less wel l developed than 

the fertilised pod (Plate 3.6A). 

The mixed applications of 6-BAP and GA3 to emasculated flowers of 
L59 produced pods smaller than single applications of GA3, bu t 
s i g n i f i c a n t l y l a rge r than s ingle app l i ca t i ons of 6 -BAP. 
Correspondingly, the 6-BAP/GA3 treated pods have a less w e l l 
developed endocarp (Plate 3.5E) compared to GA3 treated pods of L59 
(Plate 3.5F). The mixed application of 6-BAP/GA3 to emasculated 
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Plate 3.5 Endocarp development in parthenocarpic pods of L59 

treated w i t h plant growth regulators. Light micrographs of 1 (im 

thick transverse pod sections stained w i t h toluidine blue. A , 

normal fertilised pod, 6 DAF; B, M V A treated pod, 6 DAF; C, 

M V A / G A 3 treated pod, 6 DAF; D, 6-BAP treated pod, 6 DAF; E, 6-

BAP/GA3 treated pod, 6 DAF; F, GA3 treated pod, 6 DAF; G, 

tween treated control pod, 6 DAF. a, endodermal layer; b, middle 

zone; c, pre-sclerenchyma layer; d, transition layer; Sc, 

sclerenchyma; En, endocarp; M , mesocarp. A l l figures at the same 

magnification, bar = 50 um. 
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Plate 3.6 Endocarp development in parthenocarpic pods of L58 

treated w i t h plant growth regulators. Light micrographs of 1 | i m 

thick transverse pod sections stained w i t h toluidine blue. A , 

normal fertilised pod, 6 DAF; B, M V A treated pod, 6 DAF; C, 

M V A / G A 3 treated pod, 6 DAF; D, 6-BAP treated pod, 6 DAF; E, 6-

BAP/GA3 treated pod, 6 DAF; F, GA3 treated pod, 6 DAF; G, 

tween treated control pod, 6 DAF. a, endodermal layer; b, middle 

zone; c, pre-sclerenchyma layer; d, transition layer; Sc, 

sclerenchyma; En, endocarp; M , mesocarp. A l l figures at the same 

magnification, bar = 50 (im. 
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Plate 3.7 Endocarp development in parthenocarpic pods of L1390 

treated w i t h plant growth regulators. Light micrographs of 1 um 

thick transverse pod sections stained w i t h toluidine blue. A, 

normal fertilised pod, 6 DAF; B, M V A treated pod, 6 DAF; C, 

M V A / G A 3 treated pod, 6 DAF; D, 6-BAP treated pod, 6 DAF; E, 6-

BAP/GA3 treated pod, 6 DAF; F, GA3 treated pod, 6 DAF; G, 

tween treated control pod, 6 DAF. En, endocarp; M , mesocarp. 

A l l figures at the same magnification, bar = 50 um. 
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flowers of L58 and L1390 produced pods larger than single applications 
of either, GA3 or 6-BAP. The mixed applications of 6-BAP and GA3 to 
emasculated flowers of L1390 produced pods nearest in size to L1390 
normal fertilised pods. The endocarp of L58 pods treated wi th mixed 
applications of 6-BAP/GA3 (Plate 3.6E) is of greater w id th than the 
single applications of 6-BAP (Plate 3.6D) and the normal fertilised pods 
Plate 3.6A). 

L59 pods treated w i t h M V A showed a slight increase in g rowth 
compared to the tween treated controls, whereas L58 and L1390 pods 
treated w i t h M V A appeared to be slightly smaller than the respective 
tween treated controls. The endocarp development of M V A treated 
L58 pods and the tween treated controls are very similar (Plates 3.6B, 
and 3.6G); whereas the endocarp of the M V A treated L59 pods has 
increased in size compared to the tween treated control (Plate 3.5B and 
3.5G). Mixed applications of M V A and GA3 to emasculated flowers of 
L59 produced pods slightly smaller than single applications of GA3, but 
significant') ' larger than single applications of M V A . Correspondingly, 
the endocorp development was considerably greater than the M V A 
treated L59 pods (Plate 3.5B), but less than the GA3 treated pod (3.5F). 
Mixed applications of M V A and GA3 to emasculated flowers of L58 
produced pods and a pod endocarp (Plate 3.6C), which were similar i n 
size to pods in these lines treated w i t h single applications of GA3 (Plate 
3.6F), and significantly larger than single applications of M V A (Plate 
3.6B). 

Parthenocarpic development of tween treated controls was observed to 

a varying degree in L59, L58 and L1390. Parthenocarpic development 

in tween treated control pods was greatest in LI390, fol lowed by L58, 

w i t h L59 tween treated controls producing the smallest pods. This is 

reflected i n the development of the endocarp i n the tween treated 

control pods compared to the corresponding normal fertilised pods 

(Plate 3.5A and 3.5G). The length of normal fertilised pods in each 

experimental line exhibits a similar pattern in length variation, w i t h 

L1390 producing the longest seedy pods, fol lowed by L58, w i t h L59 

producing the smallest seedy pods. However, the ratio of the length of 

seedy pod to the length of tween treated control in each line, indicates 

that parthenocarpic development of tween treated controls occurs to a 
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greater degree in L1390 (ratio = 1.59), followed by L58 (ratio = 1.7), w i t h 
parthenocarpic development least in L59 (ratio = 2.9) (as measured by 
pod length). 

3.3 L59 LIGNIFIED POD cDNA LIBRARY 

3.3.1 Construction of the L59 Ligni f ied Pod cDNA Library 

Histochemical s taining for l ign in and subsequent microscopical 
examination of pod endocarp development revealed that the onset of 
l ignification occurred at around 6 DAF (see 3.2.1 and 3.2.2). The pod 
endocarp development studies further revealed that differentiation of 
cells u l t imate ly f o r m i n g l ign i f i ed sclerenchyma in the endocarp 
occurred during the period of pod growth 4 - 6 DAF (see 3.2.2). Hence, 
i t was decided to use pods f rom 4 - 6 DAF to construct the L59 l ignif ied 
pod c D N A l ibrary for the investigation of the genetic basis of 
lignification in the pea pod endocarp. 

Total R N A was extracted f rom L59 pea pods (phenotype, l i gn i f i ed 
endocarp; genotype PV) harvested 4 - 6 DAF. The embryos and main 
veins were excised prior to RNA extraction by the hot SDS method (as 
described 2.2.22.1). Isolation of poly ( A ) + RNA was performed using 
the PolyATtract m R N A Isolation System I I I (as described 2.2.22.3) . 

A Stratagene ZAP-cDNA Synthesis Ki t was used for construction of a 

l ignif ied pod c D N A library using the L59 4 - 6 DAF pod mRNAs as a 

template for reverse transcription. First and second strand cDNAs 

were synthesised (as described 2.2.23.1). Electrophoresis analysis on an 

alkaline agarose gel (as described 2.2.23.5) indicated the presence of 

second strand L59 4 - 6 DAF pod total cDNAs of approximately 0.5 - 2.8 

kb. 

3.3.2 Tr i a l Ligation of the L59 L ign i f i ed Pod c D N A into Uni-ZAP XR 

Vector Arms 

The ini t ial trial l igation of the prepared L59 total pod cDNAs w i t h 

U n i - Z A T XR vector was performed as described, 2.2.23.6. The 

packaged reaction contained 2.1 x 10^ recombinant phage. The 
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remainder of the test ligation was packaged (as described 2.2.23.7) and 
the titer was ascertained to be 4.0 x 10^ recombinant phage. The L59 
l ignif ied pod cDNA library was then amplified in E. coli strain X L 1 - ' 
Blue (as described 2.2.23.9). 

3.3.3 In Vivo Excision of Tr ia l Inserts f rom the L59 Lign i f ied Pod c D N A 

Library 

Analysis of the Xhol linearised t r ia l rescued plasmids by min ige l 
electrophoresis (as described 2.2.7.1) revealed the presence of 
pBluescript carrying inserts f rom approximately 0.5 - 2 kb. Due to 
problems w i t h helper phage co- in fec t ion , the a l t e rna t ive 
ExAssist/SOLR in vivo excision protocol suggested by Stratagene, was 
followed. The ExAssist helper phage contains an amber mutation that 
prevents replication of the phage genome in a non-suppressing E. coli 
host strain, SOLR. 

3.3.4 Tria l Screen of the L59 Ligni f ied Pod cDNA Library 

The PP40ti rnRNA was previously shown to be expressed in developing 

pods f r o m different pea lines at 4 - 6 DAF (see Figures 3.5 and 3.6). The 

PP406 c D N A was therefore used in a trial screen as representing a gene 

expressed in developing pea pods at 4 - 6 DAF. I t was also hoped to 

establish the presence of full-length cDNAs. The trial screen of 5 x 10^ 

plaques of the amplif ied L59 l ignif ied pod cDNA library using a^2p 

labelled PP406 insert as a probe (see 2.2.23.12), yielded fourteen putative 

positives f r o m the primary screen. The putative positives were isolated 

and subjected to secondary and tertiary screening. Three clones, 

designated LP4, LP12 and LP13 were isolated f rom tertiary screening on 

the basis of strong hybridisation to the PP406 probe on duplicate filters 

(Figure 3.10). The cDNA inserts f rom clones LP4, LP12 and LP13 were 

plasmid rescued and the D N A inserts puri f ied to produce D N A for 

sequencing. Partial sequencing w i t h forward and reverse primers 

revealed three full- length clones which were identical to pPP406 over 

the regions sequenced, apart f r o m extra sequence at the 5' end 

(nucleotides 0 to -23) and the 3' end (nucleotides 916 to 1024) (Figure 

3.11). 
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Figure 3.10 Tertiary screen of putative positive clones selected 
f rom the 14 putative positive clones isolated f rom the primary 
trial screen. A, LP4; B, LP12; and C, LP13. Duplicate plaque 
lifts of the putative positive clones were hybridised w i t h 32p_ 
labelled PP406. The filters were exposed to sensitised f i l m at -80 
°C for 48 hours. 
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Figure 3.11 Al ignment of the PP406 nucleotide sequence w i t h 
nucleotide sequences obtained f r o m partial sequencing of inserts LP4, 
LP12 and LP13 f r o m the homologous clones isolated f r o m the trial 
screen of the L59 l ignif ied pod cDNA library. Colons (:) represent 
identical nucleotides. The insert, LP4, was sequenced f r o m clone pLP4 
w i t h fo rward and reverse primers and inserts, LP12 and LP13, were 
sequenced f r o m clones pLP12 and pLP13 respectively, w i t h forward 
pr imer . The number ing corresponds to the PP406 c D N A . 
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- 2 0 - 1 0 
LP 4 TGA AGACGGTGTG AGAGAGAGTC 

10 20 30 40 50 
PP4 0 6 CTAGTTGAAG TAAAAAAAGA TCATCAAACA CAAGCAAACA A C A G T T T C T T 
LP 4 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 

60 70 80 90 100 
PP4 0 6 C T T C T T C C A C CGATCCGTAC T A T G C C T T C T CGCAGAAGAA CTCTCTTAAA 
LP 4 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 

110 120 130 140 150 
PP4 0 6 GGTCATCATT CTCGGTGACA GCGGTGTGGG GAAGACGTCT TTGATGAACC 
LP 4 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 

160 170 180 190 200 
PP4 0 6 AATATGTGAA TAAGAAGTTT AGTAATCAGT ACAAGGCAAC CATTGGAGCG 

210 220 230 240 250 
PP406 GATTTCTTAA CCAAAGAAGT GCAATTTGAA GATAGGCTTT TCACCTTACA 

260 270 280 290 300 
PP4 06 GATTTGGGAT ACAGCTGGCC AGGAGAGATT CCAAAGCCTA GGAGTTGCTT 

310 320 330 340 350 
PP4 0 6 TCTATCGTGG TGCTGATTGC T G T G T T C T T G TATATGATGT TAATTCAGTG 

360 370 380 390 400 
PP4 06 AAGTCATTTG ACAACCTTAA TAACTGGAGG GAAGAGTTTC TCATTCAAGC 

410 420 430 440 450 
PP4 0 6 AAATCCTTCT GATCCAGAGA A T T T T C C C T T TGTCGTTATA GGAAACAAGA 

460 47 480 490 500 
PP4 06 TAGATATTGA TGGTGGAAAC AGTAGAGTGG TTTCTGAAAA GAAGGCTCGG 

510 520 530 540 550 
PP4 06 GCATGGTGTG CAGCAAAAGG AAATATCCCA TATTTTGAGA CATCTGCTAA 

560 570 580 590 600 
PP4 0 6 AGAAGGTATT AATGTTGAAG AAGCATTCCA AACCATAGCA AAGGATGCCC 

610 620 630 640 650 
PP4 0 6 TGAAAAGTGG GGAAGAGGAA GAATTATACC TGCCGGACAC AATTGATGTT 
L P 1 2 : : 
L P 1 3 : : 

660 670 680 690 700 
PP4 0 6 GGAAACAGCA GTCAGCCAAG GTCAACAGGA TGTGAGTGCT GAACATATAG 
LP4 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 
L P 1 2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 
L P 1 3 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 

710 720 730 740 750 
PP4 06 A T T T T G T T C T CAATACAAAA TAAAGTATAT TATTTAAAAA T C A T T T T G G C 
LP4 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 
L P 1 2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 
L P 1 3 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 

760 770 780 790 800 
PP4 0 6 ATGTCTAGCC ATTGCTGTCT ATGAGGTTTT ATTGTACATT TATGTTTGAT 
LP4 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 
L P 1 2 . : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 
L P 1 3 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 

810 820 830 840 850 
PP4 06 CAAGTGCGAT CTGTTGGGTG C T T G T T T G G C TTGTGTTAAT CGATCATGTT 
LP4 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 
L P 1 2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 
L P 1 3 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 

860 870 880 890 900 
PP4 0 6 G T T C T C C T T G TATGCTATTC CAACATTGTG AAAAAAACAG CAAAGGATCA 
LP4 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 
L P 1 2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 
L P 1 3 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 



910 920 930 940 950 
PP4 0 6 TTCTGAAGTT ATTTC 
LP4 :::::::::: :::::ATTAG TTATTTTTCT TTCCCGTACA AAATATTGTA 
LP13 :::::::::: :::::::::: :::::::::: :::::::::: :::::::::: 
LP12 :::::::::: :::::::::: :::::::::: :::::::::: :::::::::: 

960 970 980 990 1000 
LP4 ATCAATGGTG ATTGGTGGTT GTGGTGATGC TTTGAGTTAT TAAATTTGTT 
LP13 :::::::::: :::::::::: :::::::::: :::::::::: :::::::::: 
LP12 :::::::::: :::::::::: :::::::::: :::::::::: :::::::::: 

1010 1020 
LP4 TGAACAAAAA AAAAAAAAAA AAAA 
LP12 :::::::::: :::::::::: :::: 
LP13 :::::::::: :::::::::: ::: : 



3.4 DIFFERENTIAL SCREEN OF THE L59 LIGNIFIED POD cDNA 
LIBRARY 

A differential screen of the amplified L59 l ignif ied pod cDNA library 
was performed (as described 2.2.24) using [oc3 5S] dCTP and [ a 3 2 P ] dCTP 
labelled total cDNAs synthesised f rom 4 - 6 DAF pod mRNAs f rom L59 
(phenotype, l ignif ied endocarp; genotype, PV) and L1390 (phenotype, 
un l ign i f i ed endocarp, genotype, pv) respectively, i n an attempt to 
isolate cDNAs involved in differentiation and l ignif icat ion of the pea 
pod endocarp (see Figure 2.2). The secondary and tertiary screens were 
performed using [ a 3 2 P ] dCTP labelled cDNA probes f rom both lines. 
It was decided to use a 3 2 P labelled probes in the secondary and tertiary 
screen, as the positives were more readily identif ied when screening 
the relatively fewer numbers of clones in the secondary and tertiary 
screens. In addition, exposure time for radiographs was minimised 
wi th a 3 2 P dCTP labelled probes. 

3.4.1 Preparation of the cDNA Probes for the Di f ferent ia l Screen 

L59 pod total cDNA prepared for construction of the L59 lignified pod 
c D N A l ibrary was used for preparing radiolabeled probe for the 
differential screen. LI390 pod total cDNA was prepared as for L59 total 
pod cDNA (see 2.2.23.1). Aliquots containing 100 ng of L59 and L1390 
pod total cDNA were used to prepare [oc 3 5S] and [ a 3 2 P ] dCTP labelled 
probes respectively (as described 2.2.16). 

3.4.2 Primary Dif ferent ia l Screen of the L59 Ligni f ied Pod cDNA Library 

A primary differential screen of 8 x 10^ plaques (as described 2.2.24.1) 

yielded 16 positives on the basis of observed hybridisation to the 3 ^S 

labelled L59 pod total cDNAs, but not to the 3 2 P labelled L1390 pod total 

cDNAs. 

3.4.3 Secondary and Tertiary Di f fe ren t ia l Screen of the L59 L i g n i f i e d 
cDNA Library 

The putative positive plaques cored f r o m the pr imary screen stock 

plates were subjected to secondary and tertiary rounds of screening by 
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hybridising duplicate lifts of 50 - 100 plaques on NC fillers (as described 
2.2.24.2) wi th either [oc 3 2P] dCTP labelled L59 pod total cDNA (100 ng) or 
[ a 3 2 P ] dCTP labelled L1390 pod total cDNA (100 ng). 

Putative differentially expressed clones, designated pLP18, pLP19 and 
pLP28, were selected on the basis of consistent hybridisation to a total 
cDNA probe f rom the l ignifying pods of L59, but not to a total cDNA 
probe f rom pods of L1390, which do not l ignify, through three rounds 
of differential screening (Figures 3.12, 3.13 and 3.14). The other clones 
selected f rom the primary screen failed to give consistent preferential 
hybridisation to the total cDNA probe f rom the l ignif ied pods of L59 
compared to the total cDNA probe from pods of L1390. 

3.4.4 Clone pLP28 Isolated from the Di f fe ren t ia l Screen of the L59 

Lignif ied Pod cDNA Library 

A clone, designated pLP28, was isolated from the differential screen of 
the L59 cDNA library representing poly ( A ) + R N A f rom developing 
pea pods ( 4 - 6 DAF) which have a l ignif ied endocarp (see 3.4.2 and 
3.4.3). Selection was on the basis of hybridisation to a total c D N A 
probe f rom the l ign i fy ing pods of L59, but not to a total cDNA probe 
f rom pods of LI390, which do not i ignifv. Subsequent selection of the 
putatively differentially expressed clone, pLP28, was made fo l lowing a 
secondary and tertiary screen (see Figure 3.14). 

The cDNA insert f rom clone pLP28 was plasmid rescued. Cleavage 

w i t h E c o R l / X h o I y ie lded a res t r ic t ion enzyme f ragment of 

approximately 500 bp. Partial sequencing of the clone pLP28 using 

reverse primer yielded a cDNA fragment of 225 bp encoding a 

polypeptide fragment of 75 amino acid residues (Figure 3.15). 

A homology search of the polypeptide fragment predicted by clone 

pLP28, using the FASTA programme package (Pearson and Lipman, 

1988) revealed no significant homology wi th database sequences. I t 

was considered that further characterisation of clone pLP28 would be 

inappropriate considering the small size of the LP2S cDNA and the 

failure to ident ify homology wi th database sequences. Hence, further 

experimental work on clones isolated f rom the differential screen of 
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Figure 3.13 Tertiary screen of clone pLP19. Duplicate plaque lifts of 
pLP19 hybridised with (A) 3 2P-labelled L59 pod total cDNAs and with 
(B) 3 2P-labelled L1390 pod total cDNAs. The filters were exposed to 
sensitised film at -80 °C for 7 days. 
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Figure 3.14 Tertiary screen of clone pLP28. Duplicate plaque 
lifts of pLP28 hybridised with (A) 3 2P-labelled L59 pod total 
cDNAs and with (B) 3 2P-labelled L1390 pod total cDNAs. The 
filters were exposed to sensitised film at -80 °C for 7 days. 
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Figure 3.15 Partial nucleotide sequence of LP28 and predicted 
polypeptide. 
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1 / 1 3 1 / 1 1 

G C A C G A G C G G C A C G A G C T G C G G G C T C C C T C G T A T T A A A A G A T G C C C C T C C C C G C 
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2 1 1 / 7 1 
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the L59 l ignif ied pod cDNA library was concentrated on clones pLP18 
(see 3.5) and pLP19 (see 3.6). 

3.5 CLONE, pLP18, ISOLATED FROM T H E DIFFERENTIAL 
SCREEN OF THE L59 LIGNIFIED POD cDNA LIBRARY 

The clone designated pLP18 was isolated from the differential screen of 
the L59 cDNA library representing poly ( A ) + R N A f rom developing 
pea pods (4 - 6 DAF) which have a l ignif ied endocarp (see 3.4). 
Selection was on the basis of hybridisation to a total cDNA probe f rom 
the l ign i fy ing pods of L59, but not to a total cDNA probe from pods of 
L1390, which do not l igni fv . Subsequent selection of the putatively 
differentially expressed clone, pLPIS, was made fol lowing a secondary 
and tertiarv screen (see Figure 3.12). 

3.5.1 Sequencing of LP18 

The insert in pLPIS was characterised by D X A sequencing using M13 

primers and synthetic oligo primers (Figure 3.16). The cDNA was 790 

bp in length, plus a poly (A) tail of 18 bp and contained an open reading 

frame of 570 bp, encoding a putative polypeptide of 189 residues f rom 

an ini t iat ion codon at nucleotides 21 - 23 to a termination codon at 

nucleotides 5S8 - 590 (Figure 3.17). The 3' non-coding region of 218 bp 

contained a single motif , A A T A T A , corresponding to the consensus 

eukaryotic polyadenylation signal, A A T A A A , at nucleotides 770 - 775 

(Proudfoot and Brownlee, 1977). The nucleotide sequence is available 

from the EMBL database, accession number Z25471. 

3.5.2 Amino Acid Sequence Comparison of the Polypeptide Encoded by 
LP18 

A homology search of the whole polypeptide sequence predicted by 
clone pLPIS, using the FASTA programme package (Pearson and 

Lipman, 1988) revealed significant homology wi th blue type I copper 

proteins. The highest similarities were wi th the polypeptide products 

of stellacyanin (Sc) (47.7 %) from the latex of lacquer tree (Engeseth, et 
al.r 1984), cucumber basic blue protein (CBP) (36.1 %) (Murata et at, 
1982), cucumber peeling cupredoxin (CPC) (36.8 %) (Mann et al, 1992) 



Figure 3.16 (A) The cloned cDNA insert, LP18, in pBluescript SK-
within the Lambda ZAP I I vector. (B) The sequencing strategy for 
the cDNA insert, LP18, excised in the pBluescript plasmid by co-
infection with helper phage. PI and P2 are synthetic oligo 
nucleotide primer sites. The direction of sequencing is indicated 
by the arrows. 
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Figure 3.17 Nucleotide sequence of LP18 cDNA and predicted polypeptide, 

PBP. The polyadenylation signal is underlined. 
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1 3 0 / 4 

T C T C C T C A G T A T A T C A T C C A A T G G C A T T C T C T A A T G C T T T G G T T T T G T G C T T C C T T T T A 

M A F S N A L V L C F L L 

6 0 / 1 4 9 0 / 2 4 

G C A A T C A T C A A C A T G G C A C T T C C A T C C C T T G C A A C T G T C T A C A C T G T T G G A G A T A C T T C A 

A I I N M A L P S L A T V Y T V G D T S 

1 2 0 / 3 4 1 5 0 / 4 4 

G G T T G G G T G A T T G G T G G T G A T T A T A G C A C A T G G G C T A G T G A C A A A A C C T T T G C A G T T G G T 

G W V F G G D Y S T W A S D K T F A V G 

1 8 0 / 5 4 2 1 0 / 6 4 

G A T A G C C T C G T G T T C A A C T A T G G A G C T G G T G C G C A C A C T G T G G A T G A A G T T A A A G A A A G T 

D S L V F N Y G A G A H T V D E V K E S 

2 4 0 / 7 4 2 7 0 / 8 4 

G A C T A C A A A T C A T G C A C A T C T G G A A A T T C A A T T A G T A C A G A C A G T A C T G G T G C G A C A A C C 

D Y K S C T S G N S I S T D S T G A T T 
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and a blue copper b inding protein (BCD) (31.1 %) f rom Arabidopsis 
thaliana (Van Gysel et. ai, 1993) (Figure 3.18). These polypeptides are 
known as blue type I copper proteins, which are thought to be involved 
in electron transfer reactions. Clone pLP18 was therefore designated 
PBP (putative blue copper protein). The molecular mass of the 
translated polypeptide would be 19.4 kDa. The polypeptide predicted 
by clone pLP18 has four distinguishable domains: a hydrophobic N -
terminal region of 24 residues (1 - 24); a central domain (25 - 126); a 
domain rich in serine and threonine (127 - 161); -and a hydrophobic C-
terminal domain (162 - 189). A hydropathy plot shows a 
hydrophobicitv profi le of the PBP amino acid sequence (Figure 3.19) 
(Kyte and Doolittle, 1982). The hydrophobic NT-terminal and the 
hydrophobic C-terminal are easily identif ied. Comparison of the 
predicted polypeptide of LP18 w i t h the CBP and Sc amino acid 
sequences suggest that the N-terminal region may be a signal peptide 
wi th a cleavage site between residues A24 and T25. Comparison w i t h 
von Heijnes's data (1983) also support a signal cleavage site at A24/T25. 
The central C u 2 + binding domain is C-terminally flanked by a region 
rich in threonine and serine (residues 127- 161). The corresponding 
serine, threonine and hydroxvproline rich region in BCB is thought to 
play a structural role in anchoring and targeting of the blue copper 
protein to membranes (Van Gysel ct ai, 1993). The C-terminal 
hydrophobic region of PBP and the threonine and serine rich region 
shows no signif icant homology when compared w i t h database 
sequences. 

The central region of PBP is most similar to the copper binding regions 

of the other blue type I copper proteins stellacyanin, CBP, CPC and BCB 

(Figure 3.18). The central region contains the conserved copper 

binding ligands and two conserved cysteine residues (Figure 3.18). The 
three dimensional structure of CBP and Sc as determined by X-ray 
diffract ion has shown the single copper atom to be bound by His39, 

Cys79, His84 and Met89 (Guss et al, 1988) and His46, Cys87, His90 and 
Glu97, respectively (Vangaard, 1972). These Cu binding residues are 
conserved in a number of type I blue copper proteins such as azur in/ 

plastocyanin and rusticyanin. Comparison wi th the Cu binding sites 
of CBP and Sc suggest the fo l lowing Cu binding sites in LP18: His67, 
C y s l l l , H i s l 16 and Met l21 . Besides the conserved Cu binding ligands 
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Figure 3.18 Comparison of PBP amino acid sequence with blue type I 
copper proteins BCB (blue copper binding protein), Sc (stellacyanin), 
CPC (cucumber peeling cupredoxin) and CBP (cucumber basic blue 
protein). The colons (:) represent identical residues and the periods 
(.) represent residues defined as "similar", using the mutation 
matrix- in the FASTA protein sequence comparison programme 
(Pearson and Lipman, 1988). Gaps have been introduced for 
maximal alignment. The conserved copper binding residues are in 
bold print. The putative cysteine residues forming a disulphide 
bridge in Sc and CBP and the corresponding cysteine residues in PBP 
are underlined. 
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Figure 3.19 A Kyte and Doolittle (1982) hydropathy plot of the PBP 
amino acid sequence determined using a DNA Strider programme 
package (Marck, 1988). The profile indicates the putative 
hydrophobic N-terminal signal peptide and the hydrophobic C -
terminal. 
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(Engeseth et al, 1984) and CBP (Guss et at, 1988) to f o r m a disulphide 
bridge. 

3.5.3 Genomic Analysis of LP18 

The PBP cDNA was hybridised to pea genomic D N A f rom L59 in a 
Southern b lo t t ing experiment (Figure 3.20). Washing to h igh 
stringency (0.1 x SSC, 65 °C) showed the PBP probe hybridised to a 
single band in each of three genomic digests w i th different restriction 
enzymes, suggesting that a single gene probably encodes this 
polypeptide. 

3.5.4 Northern Analysis of LP18 

Northern hybridisation of PBP cDNA to 10 (ig of total pod RNA f r o m 

different pea lines showed hybr idisa t ion to a m R N A species of 

approximately 0.95 kb in lines L59 and Feltham First, and possibly L58 

(Figure 3.21). N o hybridisation was observed in L1390. Background 

hybridisation to ribosomal RNA bands was also observed, as indicated 

by R N A size markers, even when the blot was washed to h igh 

stringency 

3.5.5 In situ Hybridisat ion of LP18 m R N A in Pod 

A series of trial in situ hybridisation experiments were performed w i t h 

the intention of attempting to localise LP18 gene expression i n L59 

pods. The first in situ hybridisation experiments were performed on 

L59 5 D A F transverse pod sections, wi thout proteinase K treatment (as 

described 2.2.25). Pod sections were hybridised w i t h digoxigenin 

labelled LP18 cDNA. A digoxigenin labelled PP406 cDNA was used as a 

positive control (PP406 mRNA expression was k n o w n to occur i n 

developing pea pods (see 3.1.4 and 3.1.5) and a digoxigenin labelled 

leg4.4 c D N A (a seed specific gene) (Thompson, 1989) was used as a 

negative control . N o colour development was observed after 

incubation w i t h substrate solution for one hour. 

It was considered that the lack of positive hybridisation signals may be 

due i n part to low, or a lack of expression in the 5 DAF L59 pods chosen 
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Figure 3.20 Southern blot hybridisation of total pea leaf D N A from 

L59 w i t h LP18 cDNA probe. D N A (10 ug) was digested w i t h 

BamHI (lane A), EcoRI (lane B) or H i n d l l l (lane C), electrophoresed 

on 0.6 % agarose gel, denatured and transferred to nitrocellulose 

filters. Filters were hybridised w i t h a radio-labelled LP18 cDNA. 

The filter was washed to a final stringency of 0.1 x SSC at 65 °C and 

exposed to sensitised f i l m for 4 weeks at -SO °C. 
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Figure 3.21 Northern blot hybridisation of 10 j ig of total pod RNA, 

4 - 6 DAF, prepared f rom four pea lines - L59, Feltham First (FF), 

L58 and L1390 - probed wi th radio-labelled LP18 cDNA, isolated 

f rom a differential screen of a cDNA library constructed f rom 4 - 6 

DAF L59 pods. The filter was exposed to sensitised f i l m for 3 

weeks at -80 °C. 
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for in situ hybridisation. Previous northern expression analysis of L59 
pod total RNA revealed expression of the putative positive probes, 
PP406 and LP18 in 4 - 6 DAF pods (see 3.1.5). Hence, it was not known 
at which day after f lower ing the PP406 was most highly expressed i n 
L59. Nor thern analysis performed on 5 DAF PP pod total R N A 
revealed fair ly strong expression of PP406. Hence, in situ hybridisation 
was repeated using PP 5 DAF transverse pod sections and digoxigenin 
labelled PP406 probe. Digoxigenin labelled PP406 was hybridised to 
proteinase K treated pod sections, an RNase treated control, and an 
untreated pod section (as described, 2.2.25). The proteinase K 
treatment was performed in an attempt to increase the level of exposed 
RNA strands available for hybridisat ion in the pod sections. A n 
RNase treated control was used to s impl i fy the in situ hybridisat ion 
procedures. Microscopic examination after treatment wi th substrate 
solution revealed an absence of colour development in any of the pod 
sections. 

I t was decided that the technique w o u l d require further trials to 
produce conclusive and reproducible results. The substantial t ime 
necessary to complete such experiments was considered excessive w i t h 
regard to the time l imi ts for completion of this project and the 
necessity to complete other experimental work in progress. 

3.5.6 Semi-Quantitative RT-PCR for LP18 mRNA Expression 

The fa i lure to detect m R N A expression in pod tissues by in situ 
hybridisation strategies led to the adoption of RT-PCR strategies i n an 

attempt to correlate LP18 gene expression wi th the l ignif ied phenotype. 

3.5.6.1 De te rmina t ion of the O p t i m a l Concentration of In te rna l 

Standard R N A to be Used for Semi-quantitative RT-PCR 

A synthetic RNA species, rRLP18, was prepared and used to determine 

the opt imal concentration required for use in semi-quantitative RT-

PCR for LP18 mRNA expression (as described 2.2.26). 

Figure 3.22 shows that w i t h a f ixed amount of 1 (ig of total R N A 
(containing the target mRNA) , increasing the concentration of internal 



Figure 3.22 Competitive RT-PCR w i t h serial d i lu t ion of internal 
standard, rRLP18 and 1 ug of L59 total pod R N A . [A] 
Autoradiograph of Southern blots of RT-PCR products hybridised 
wi th radio-labelled LP18 probe. [B] Hybridised bands in [A] were 
cut f r o m the fi l ter and scint counted. The ratio of radioactivitv 
[cpm] of the RT-PCR products of internal standard synthetic RNA, 
rRLP18, to that of target mRNAs, LP18, were plotted against the 
amount of original internal standard RNA incorporated in each 
reaction. 
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standard increases the ratio of the signal of the internal standard to 
target RNA. The ratio is linear up to approximately 0.125 ng of 
internal standard R N A and begins to plateau above 0.625 ng. 
Therefore, 0.025 ng was selected as the f ixed amount of internal 
standard to be incorporated in all samples for reverse transcription and 
subsequent PCR, as this concentration lies close to the region giving a 
linear response. 

3.5.6.2 Semi-quantitative RT-PCR for LP18 m R N A Expression i n Pea 

Pods 

The results of RT-PCR of L59, L58 and L1390 pods are shown in Figure 
3.23. It confirms differential expression in the different pea lines and 
the pattern of LP18 gene expression in the pods at four, five and six 
days after f lowering. The results of RT-PCR of pods for LP18 gene 
expression show that transcription occurs in varying degrees in all of 
the pod lines being investigated. LP18 transcripts are most abundant 
in L59 and FF and expression of LP18 mRNA appears to increase f r o m 
four through to six DAF. L58 has lower levels of LP18 mRNA than 
L59 and FF. However, in similarity wi th L59 and FF, the expression 
levels do increase f r o m four through to six DAF. LI390 has the lowest 
levels of LP18 transcripts. The levels of LP18 m R N A during the period 
of pod development f r o m four to six days after f lowering appear to 
remain stable at around 0.01 - 0.02. These results are consistent w i t h a 
role for the blue copper protein predicted by LP18 in endocarp 
development. 

3.5.6.3 Semi-quantitative RT-PCR for LP18 m R N A Expression i n Pea 

Tissue 

If the blue copper protein encoded by LP18 is involved in l ignification 

in the pods in fo rming the sclerenchymatous layer where present, it 

should also be present in l ignifying vascular tissue, accounting for the 

low level of expression in L1390. On this basis, it should also be 

expressed throughout the plant in developing vascular tissue. Hence, 

RT-PCR was performed on root, leaf and stem tissue f rom L59, L58 and 

L1390 at 4 weeks after planting out seedlings. The main stems were 

harvested and the leaf tissue was stripped f r o m the main vein and 
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Figure 3.23 Semi-quantitative RT-PCR for LP18 gene expression in 

four, f ive and six DAF pea pods w i t h different phenotype and 

genotype. For RT-PCR, 0.025 ng of internal standard RNA, rRLP18 

was added to 1 ug of total pod R N A f r o m each pod. [ A ] 

Autoradiographs of Southern blots of RT-PCR products hybridised 

wi th radio-labelled LP18 probe. [B] Bands shown in [A] were 

excised and radioactivity was determined by l iquid scintillation 

counting. A quantitative index was calculated giving the amount 

of target, LP18 mRNA, relative to the 0.025 ng of internal standard 

RNA^-RLPIS, incorporated in-each RT-PCR reaction. A n average 

and standard deviations were calculated f r o m duplicate 

experiments. 
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petiole. The results show that LP18 m R N A is indeed expressed 
throughout the plant (Figure 3.24). Comparable levels of LP18 m R N A 
expression were observed in each tissue type for the three pea lines. 
Highest expression of LP18 mRNA was observed in the stem for the 
three pea lines. This is consistent w i t h a role for the blue copper 
protein encoded by LP18 in l ignif icat ion, which is required in the 
growing stem for vascular formation and support. 

3.6 CLONE., pLP19, ISOLATED FROM T H E DIFFERENTIAL 
SCREEN OF THE L59 LIGNIFIED POD cDNA LIBRARY 

The clone, designated pLP19, was isolated f rom the differential screen 
of the L59 l ignif ied pod cDNA library representing poly ( A ) + R N A 
f rom developing pea pods (4 - 6 DAF), which have a lignified endocarp 
(see 3.4) . Selection was on the basis of "hybridisation "to a total c D N A 
probe f rom the l ign i fy ing pods of L59, but not to a total cDNA probe 
f rom pods of LI390, which do not l igni fy . Subsequent selection of the 
putatively differentially expressed clone, pLP19, was made fo l lowing a 
secondary and tertiary screen (see Figure 3.13). 

3.6.1 Subcloning and Sequencing of LP19 

The insert in pLP19 was characterised by D N A sequencing. A 

restriction map of the LP19 cDNA and the sequencing strategy are 

shown (Figure 3.25). The cDNA fragment was 1072 bp in length, 

including a 3' non-coding region of 256 bp, plus a poly (A) tail of 18 bp. 

The c D N A fragment encoded 271 residues of the C-terminal of a 

putative polypeptide (Figure 3.26). A single motif , A A T A A A , at 

nucleotides 1068 - 1073, corresponds exactly to the consensus eukaryotic 

polyadenylation signal. However, the motif is not usually situated 

immediately adjacent to the poly (A) tail. Eukaryotic poly (A) signals 

are usually situated 10 - 35 amino acids upstream of the po ly (A) 

addition site (Proudfoot and Brownlee, 1976). Subsequent analysis of 

LP19 transcripts w i t h heterogeneous 3' UTRs suggest that this mot i f is 

not a polyadenylation signal (see 3.6.4). 
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Figure 3.24 Semi-quantitative RT-PCR for LP18 gene expression in 

root, leaf and stem tissue f rom the experimental pea lines, L59, L58 

and L1390. For RT-PCR, 0.025 ng of internal standard RNA, 

rRLP18 was added to 1 ug of total RNA f rom each tissue. [A] 

Autoradiographs of Southern blots of RT-PCR products hybridised 

w i t h radio-labelled LP18 probe. [B] Bands shown in [A] were 

excised and radioactivity was determined by l iqu id scintillation 

counting. A quantitative index was calculated giving the amount 

of target, LP18 mRNA, relative to the 0.025 ng of internal standard 

RNA, rRLP18, incorporated in each RT-PCR reaction. A n average 

and standard deviat ions were calculated f r o m duplicate 

experiments. 
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Figure 3.25 (A) The cloned cDNA insert, LP19, in pBluescript SK-
within the Lambda ZAP I I vector. (B) The sequencing strategy for 
the cDNA insert, LP19, excised in the pBluescript plasmid by co-
infection w i t h helper phage. The restriction enzyme sites for 
subcloning are indicated. The sequenced fragments and the 
direction of sequencing are indicated by the arrows. 
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Figure 3.26 Nucleotide sequence of the LP19 cDNA and predicted 
polypeptide encoding the carboxy-terminal fragment of an Hsp70 
homologue. 
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G G T G G T G C T G G T GGA GAT G T G C C T ATG GGA GAT G G T A T G C C T G G T G G T C G T T C T AAT GGA 
G G A G G D V P M G D G M P G G R S N G 
7 8 1 / 2 61 8 1 1 / 2 7 1 

T C T GGA C C T G G T C C T AAG A T T GAA GAG G T T GAG TAA AGA AGC C A T A C G AGG G C T AGG G C C 

S G P G P K I E F V '0 

84 1 / 2 81 8 7 1 / 2 9 1 

T A G GGG C A T GT(" T G T T T T TAA G A C C T T G G T TGG G T C T A T GGA G T T A C T ATG AAA G T G T C T 
9 0 1 / 3 0 1 9 3 1 / 3 1 1 
T A T AAC T T G Y G T A T G T T A T G T T A T AGA ATG TAG G T T T G G TAA AGT GGG T T T G T T GAG T C T 
9 6 1 / 3 2 1 9 9 1 / 3 3 1 

T T A T G T T i l ' T T A AGC T T T T T G TGA A C T ATG T A T T T T G T T T T T T T A T C A AGT A C T T A T GAA 
1 0 2 1 / 3 4 1 1 0 5 1 / 3 5 1 

T A G T G T A AT T T C GAG AGA TGA AGA TGA A T G TAA T T T AAT T T T C T T T A T CAA TAA AAA AAA 

1 0 8 1 / 3 6 1 
AAA AAA AAA A 



3.6.2 A m i n o Acid Sequence Comparison of the Polypeptide Fragment 
Encoded by LP19 

A homology search of the putat ive C-terminal of the polypeptide 
predicted by clone pLP19 against Gene Bank data using the FASTA 
programme package (Lipman and Pearson, 1988) revealed s imilar i ty 
w i t h the C-terminal of the Hsp70 fami ly of proteins. Highest 
homology was w i t h the plant Hsp70s f rom soybean (89.7 %) (Roberts 
and Key, 1991), tomato (83.2 %) (L in et al., 1991a), petunia (81.3 %) 
(Winter et al, 1988), maize (79.9 %) (Rochester et al., 1986) and carrot 
(79.2%) (Lin et al., 1991b) (Figure 3.27). The high degree of homology 
indicates that LP19 encodes the C-terminal of a pea Hsp70 protein. The 
Hsp70 fami ly of proteins have been implicated in protein biogenesis, 
exhibiting a diverse range of biological functions (see 1.11). 

3.6.3 Expression Analysis of LP19 in 4 - 6 DAF Pods 

Dot blot analysis of total RNA f rom L59, L58, LI390 and Feltham First, 

hybridised wi th 32p labelled LP19 confirmed differential expression of 

LP19 m R N A (Figure 3.28). Strong hybridisation was observed w i t h 

L59, L58 and FF. Hybridisation to L1390 total R N A was not above 

background hybridisation to E. coli ribosomal RNA. 

Northern hybridisation of the 32p labelled LP19 insert to 10 (ig of total 

pod R N A f rom the experimental pea lines showed hybridisation to a 

number of m R N A transcripts of va ry ing molecular we igh t . 

Hybridisation to a major transcript of 2.6 kb was observed in L59, L58 

and FF. Hybridisation to the major 2.6 kb transcript was greatest i n 

L59 and FF, wi th a significantly lower degree of hybridisation to the 2.6 

kb transcript in L58. Hybridisation to minor transcripts of 1.85 kb and 

1.0 kb i n L59 and 1.0 kb in FF were observed. No hybridisation was 

observed in L1390. 

The major 2.6 kb transcript possibly represents unprocessed LP19 
m R N A , while the 1.85 kb transcript in L59 may represent processed 
LP19 m R N A . Similar northern banding patterns have been observed 
w i t h the maize and petunia Hsp70s. The petunia and maize Hsp70s 
have an intron, producing a transcript of 2.8 kb and 2.6 kb respectively 

159 



Figure 3.27 Comparison of the carboxy terminal fragment 

encoded by LP19 w i t h the carboxy terminals of the soybean Hsp70 

(Roberts and Key, 1991), maize Hsp70 (Rochester et al, 1986) and 

the petunia Hsp70 (Winter et al., 1988) amino acid sequences. 

The numbering corresponds to the soybean Hsp70 amino acid 

sequence. The colons (:) represent identical sequences and the 

periods (.) represent residues def ined as "similar" in the 

mutation matrix using the FASTA protein sequence comparison 

programme (Pearson and Lipman, 1988). 
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380 390 400 410 420 
LP19 AAVQAAILTGEGDEKVQDLLLLDVTPLSLGLETAGGVMTVLIPRNTTIPT 

Soybean Hsp7 0 AAVQAAILSGQGDEKVQDLLLLDVTPLSLGLETAGGVMTVLIPRNTTIPT 

M a i z e H s p 7 0 AAVQAAILSGEGNEKVQDLLLLDVTPLSLGLETAGGGMTVLIPRNTTIPT 

P e t u n i a Hsp70 AAVQAAILSGEGNERS-DLLLLDVTPLSLGLETAGGVMTVLIPRNTTIPT 

430 440 450 460 470 
LP19 KKEQIFSTYSDNQPGVLIQVFEGERARTKDNNLLGKFELTGIPPAPRGVP 

Soybean Hsp7 0 KKEQIFSTYSDNQPGVLIQVFEGERARTKDNNLLGKFELTGIPPAPRGVP 

M a i z e Hsp7 0 KKEQVFSTYSDNQPGVLIQVYEGERARTKDNNLLGKFELSGIPPAPRGVP 

P e t u n i a Hsp70 KKEQVFSTYSDNQPGVLIQVYEGERARTKDNNLLGKFELSGIPPAPRGVP 

480 490 500 510 520 
LP19 QVNVCFDIDANGILNVSAEDKTAGVKNKITITNDKGRLSKEEIEKMVKDA 

Soybean Hsp7 0 QVNVCFDIDANGILNVSAEDKTAGVKNKITITNDKGRLSKEEIEKMVKDA 

Mai z e H s p 7 0 QITVCFDIDANGILNVSAEDKTTGQKNKITITNDKGRLSKEEIERMVQEA 

P e t u n i a Hsp7 0 QITVTFDIDVNNILNVSAEDKTTG-KNKITITNDKGRLSKEEIEKMVQEA 

530 540 550 560 570 
LP19 EKYKAEDEEVKRKVEAKNSLENYAYNMRNTIKDDKIGGKLSNDDREKIEK 

Soybean Hsp7 0 ERYKAEDEEVKKKVEAKNSLENYAYNMRNTIKDEKIGGKLSPDEKQKIEK 

M a i z e HspVO EKYKSEDEELKKKVEAKNALENYAYNMRNTIKDDKINSQLSAADKKRIED 

P e t u n i a Hsp7 0 EKYKAEDEEVKKKVDAKNALENYAYNMRNTIKDDKIASKLPAEDKKKIED 

580 590 600 610 620 
LP19 AVEEAIQWLEGNQLGEVEEFEDKQKELEGVCNPIIAKMYQG—GAGGDVP 

Soybean Hsp7 0 AVEDAIQWLEGNQMAEVDEFEDKQKELEGICNPIIAKMYQGAAGPGGDVP 

M a i z e Hsp70 AVDGAISWLDSNQLAEVEEFEDKMKELEGICNPIIAKMYXG—EGAGMGA 

P e t u n i a Hsp7 0 AIDEAIKWLDNNQLAEADEFEDKMKELESICNPIIAKMYQG—GAGGATM 

630 640 
LP19 MGDGMPGGRSNGS—GPGPKIEEVD 

Soybean Hsp7 0 MGADMP AA—GAGPKIEEVD 

M a i z e Hsp7U AAGMDEDAPSGGS—GAGPKIEEVD 

P e t u n i a H i p 7 0 AGMD-EDAPSGGS—GAGPKIEEVD 



Figure 3.28 Dot blot (A) and northern blot (B) hybridisation of 5 u.g 

and 10 ug, respectively, of total pod R N A 4 - 6 DAF, prepared f rom 

four pea lines - L59, Feltham First, L58 and L1390 - probed w i t h 

radio-labelled LP19 cDNA, isolated f rom a differential screen of a 

cDNA library constructed f rom 4 - 6 DAF L59 pods. The filters 

were exposed to sensitised f i l m for 1 week at -80 °C. 
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(A) E.coli 
L59 L58 L1390 F F rRNA 

(B) 



(Rochester et al., 1986; Winter et al., 1988). The minor 1.0 kb transcript 
has been observed in northern analysis of Hsp70 expression in maize 
(Rochester et al., 1986). 

3.6.4 Genomic Analysis of LP19 

The LP19 cDNA was hybridised to pea genomic D N A from L59, L58 and 
L1390 in a Southern blot t ing experiment (Figure 3.29) in order to 
establish tne presence of the LP19 gene in the three experimental pea 
lines. Washing to high stringency (0.1 x SSC/0.1 % SDS, 65 °C) showed 
the LP19 probe hybridised to a single band in each of the two digests 
w i t h different restriction enzymes, in all three pea lines, suggesting 
that a single gene probably enco_des this polypeptide. A l l three 
experimental pea lines have a gene homologous to the LP19 transcript 
on the same restriction fragment. 

3.6.5 Screening of the L59 Lignif ied Pod cDNA Library for a Full-length 
LP19 cDNA 

Duplicate plaque lif ts of 5 x 10^ clones of the L59 l ignif ied pod c D N A 

library v t - r e screened w i t h 32p labelled LP19 insert (as described 

2.2.23.12) in an attempt to isolate a ful l - length LP19 cDNA. The 

primary screen yielded nine putative positive clones (Figure 3.30). The 

putative positive clones, designated LP19/1 - LP19/9, were cored f r o m 

the primary stock plate and subjected to secondary screening. Strongly 

hybridised positive clones f rom the secondary screen were cored and 

plasmid rescued (as described 2.2.23.10). Plasmid D N A prepared f r o m 

the puta t ive LP19 homologues was EcoRI - Xho l cleaved and 

electrophoresed (Figures 3.31A and 3.32A). The EcoRI - Xhol cleaved 

putative LP19 homologues were Southern blotted onto nylon filters by 

alkaline transfer (as described 2.2.18.1). The Southern blotted fil ters 

were then hybridised (as described 2.2.18.2) w i t h 3 2 P labelled LP19 

probe.. Positive hybridisation was observed for clones, LP19/1, LP19/2, 

LP19/3, LP19/4, LP19/6, LP19/7 and LP19/9 (Figures 3.31B and 3.32B). 
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Figure 3.29 Southern blot hybridisation of total pea leaf D N A from 

L59, L58 and L1390 w i t h LP19 cDNA probe. DNA (20 ug) was 

digested w i t h BamHI (L59 lane A; L58 lane C; L1390 lane E) or 

HindTII (L59 lane B; L58 lane D; L1390 lane F), electrophoresed on 

0.7 % agarose gel, denatured and transferred to a nitrocellulose 

filter. The filter was hybridised wi th a radio-labelled LP19 cDNA, 

washed to a f inal stringency of 0.1 x SSC at 65 °C and exposed to 

sensitised f i l m for 7 days at -80 °C. 
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Figure 3.30 Re-screen of L59 lignified pod cDNA library for f u l l -

length LP19 cDNA. Duplicate pr imary screen filters were 

hybridised wi th 32p-i abelled LP19 cDNA insert. The filters were 

washed to a final stringency of 0.1 x SSC at 65 °C and exposed to 

sensitised f i l m for 7 days at -80 °C. 
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Figure 3.31 Southern blot hybridisation of EcoRI/XhoI cleaved 
pLP19 (lane 1) and the pLP19/3 homologue (lane 2) isolated f rom 
the re-screen of the L59 l igni f ied pod c D N A library. (A) The 
cleavage products were electrophoresed on 0.7 % agarose gel, and 
transferred to a nylon filter by alkali transfer. (B) The filter was 
hybridised w i t h a radio-labelled LP19 cDNA. The f i l ter was 
washed to a final stringency of 0.1 x SSC at 65 °C and exposed to 
sensitised f i l m for 24 hours at -80 °C. 
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Figure 3.32 Southern blot hybridisation of EcoRI/XhoI cleaved 

pLP19 (lane 1) and pLP19 homologues (pLP19/ l , lane 2; pLP19/2, 

lane 3; pLP19/4, lane 4; pLP19/5, lane 5; pLP19/6, lane 6; 

pLP19/7, lane 7; pLP19/8, lane 8; pLP19/9, lane 9) isolated from 

the re-screen of the L59 l igni f ied pod c D N A library. (A) The 

cleavage products were electrophoresed on 0.7 % agarose gel, and 

transferred to a nylon filter by alkali transfer. (B) The filter was 

hybridised w i t h a radio-labelled LP19 cDNA. The f i l ter was 

washed to a final stringency of 0.1 x SSC at 65 2 C and exposed to 

sensitised f i l m for 24 hours at -80 °C. 
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3.6.6 Partial Sequencing of LP19 c D N A Homologues 

D N A f r o m the clones containing the largest inserts, as determined 
f r o m the band pattern observed in gels containing the EcoRI - Xho l 
cleaved pLP19 homologues (see Figures 3.31A and 3.32A), was prepared 
for sequencing. LP19/1 and LP19/2 yielded similar EcoRI - X h o l 
cleavage products. I t was suspected that one of the cloning sites was 
lost as the linearised plasmid fragment was s l ight ly larger than 
pBluescript. Subsequent cleavage wi th either Xhol or EcoRI revealed 
that the Xhol cloning site appears to have been lost. Cleavage w i t h 
EcoRI yielded two restriction enzyme fragments of approximately 600 
bp and 800 bp. The linearised plasmid fragment was estimated to 
contain the remainder of the insert, approximately 300 bp. LP19/3 and 
LP19/7 gave similar EcoRI - Xhol cleavage products.. The insert size 
was estimated to be approximately 1.7 kb. Therefore, pLP19/ l , pLP19/2, 
pLP19/3 and pLP19/7 were sequenced w i t h the reverse p r imer 
conf i rming the clones were homologous to the LP19 insert and 
sequenced w i t h the fo rward primer to establish whether the inserts 
were f u l l length cDNAs. 

LP19/3 and LP19/7 were identical clones, 21 amino acids short of the 
methionine start residue and LP19/1 and LP19/2 were identical clones, 
missing only two nucleotides of the methionine start codon, by 
comparison w i t h the homologous maize and petunia Hsp70 amino 
acid sequences. 

Hence, a full- length clone was not isolated. However, an interesting 

observation was made w i t h regard to the 3' UTRs of the LP19 

homologues. The LP19 transcripts contained heterogeneous 3' UTRs 

w i t h transcription termination and poly (A) addi t ion occurring at 

different sites (Figure 3.33). Therefore, it was decided to sequence the 

other LP19 homologues, pLP19/4, pLP19/6 and pLP19/9, which gave 

positive hybridisation signals (see Figure 3.32B). These three clones 

appeared to encode identical transcripts w i th yet another termination 

and poly (A) addition site and identical truncated 5' termini (Figure 

3.33). 
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Figure 3.33 The nucleotide sequence of the 3' untranslated 
regions of the LP19 cDNAs. The putative polyadenylation 
signal of LP19/1 and LP19/2 is underlined. Identical 3' non-
coding sequence is represented by the dashed l ine. The 
numbering indicates the position of nucleotides downstream of 
the termination codon, T A A / * . 
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+ 25 
LP19/1 and LP19/2 TAA AGA AGC CAT ACC AGG GCT AGG GCC TAG GGG CAT GTC TGT TTT TAA 

LP19 

LP19/4, LP19/6 and 
LP19/9 

LP19/3 and LP19/7 

+50 +75 
LP19/1 and LP19/2 GAC CTT GGT TGG GTC TAT GGA GTT ACT ATG AAA GTG TCT TAT AAC TTG 

LP 19 

LP19/4, LP19/6 and 
LP19/9 

LP19/3 and LP19/7 

••100 +125 
LP19/1 and LP19/2 TGT ATG TTA TGT TAT AGA ATG TAG GTT TGG TAA AGT GGG TTT GTT GAG 

LP 19 

LP19/4, LP19/6 and 
LP19/9 

LP19/3 and LP19/7 

-150 +175 
LP 19/1 and u» '19 /2 TCT TTA TGT TTT TTA AGC TTT TTG TGA ACT ATG TAT TTT GTT TTT TTA 

LP 19 

LP19/4, LP19/6 ana 
LP19/9 

LP19/3 and LP19/7 

-200 +225 
LP19/1 and LP19/2 TCA AGT ACT TAT GAA TAG TGT AAT TTC GAG AGA TGA AGA TGA ATG TAA 

LP 1 9 

LP19/4, LP19/6 and 
LP19/9 

LP19/3 and LPL9/7 (A ) n 

-2 50 +2 7 5 
LP19/1 and LP19/2 TTT AAT TTT CTT TAT CAA TAT ATC ACT TAA ATC CCT GTT 

LP 19 (A ) n 

LP19/4, LP19/6 and lA) n 
LP19/9 

LP19/1 and LP19/2 AGA TAT GTA(AI 



LP19/1 and LP19/2 have the longest 3' UTR of 285 bp, followed by LP19 
wi th a 3" UTR of 258 bp (Figure 3.33). LP19/4, LP19/6 and LP19/9 have 
a 3' UTR of 252 bp and LP19/3 and LP19/7 have the shortest 3' UTR 6f 
226 bp (Figure 3.33). 
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4. DISCUSSION. 

4.1 Invest igat ion of the c D N A Clone, pPP406, Selected f r o m a 
Dif ferent ia l Screen of Purple- and Green-podded Pea Lines 

4.1.1 Isolation and Identif icat ion of the cDNA clone, pPP406 

The cDNA clone, pPP406, was isolated f r o m a differential screen of a 
purple pea pod cDNA library in an attempt to isolate clones associated 
wi th the purple-podded phenotype. The clone was initially selected on 
the basis of an apparently higher degree of hybridisation to PP (purple-
pod) total cDNA probe compared to green-podded total cDNA probe. 
Subsequent-northern-analysis revealed strong and invariant expression 
of PP406 in total RNA f rom purple- and green-podded pea lines. The 
polypeptide predicted by the PP406 cDNA, designated Psa-rab, encoded a 
polypeptide w i t h high homology to BRL-ras and Rab7 and lower 
overall homology w i t h a number of ras-related proteins, particularly 
the Rab/Ypt subfamily. The Psa-rab predicted polypeptide has several 
domains conserved in small ras-related GTP-binding proteins 
including the consensus motifs for GTP-binding, GTP hydrolysis and 
GTPase activity and the YRG motif highly conserved in Rab f a m i l y 
members. The identification of a novel plant ras-related cDNA was 
considered worthy of further investigation as very few plant ras-related 
genes had been investigated at the time. 

The Rab proteins and their counterparts in yeast, Ypt proteins, are 

known to be involved in vesicular t raf f icking of membrane bound 

vesicles through the secretory pathway. Immunolocal isa t ion 

experiments have shown that Rab and Ypt proteins are associated w i t h 

endoplasmic reticulum, Golgi apparatus and early to late endosomes. 

The closest functional homologue to Psa-rab, the canine Rab7 gene 

product, is associated w i t h late endosomes (Chavrier et al., 1990), and 

may l ink early to late endosomes, late endosomes to lysosomes, or late 

endosomes to the trans Golgi network (Goda and Pfeffner, 1988). Few 

details of vesicle-mediated intra- and inter-cellular transport in plants 

has been investigated. However, a similar role for Psa-rab is possible 
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on the basis of sequence similarity w i t h the Rab/Ypt sub-family of ras-
related proteins. 

CLUSTAL analysis further indicates that the Rab7, BRL-ras and Psa-rab 
amino acid sequences are closely related. The Psa-rab predicted 
polypeptide is less similar to the other plant ras-related amino acid 
sequences isolated, sharing more overall sequence homology w i t h the 
mammalian Rab7 and BRL-ras amino acid sequences. This may reflect 
funct ional differences between the Psa-rab/Rab7/BRL-ras cluster, 
which al l have identical effector-binding regions in the N-terminal 
portion of the protein, and the other Rab homologues analysed. 

The C-terminal cysteine residues of the Psa-rab predicted polypeptide 

are similar to the C-terminal CXC motifs of BRL-ras, Rab3, Rab4 and 

Rab7 proteins (C = cysteine and X = any amino acid), and differ f r o m 

those found in a number of the ras-related GTP-binding proteins so far 

identif ied in plants. The C-terminal motifs found in the plant GTP-

binding proteins ara (Anai et al., 1991), yp tm (Palme et al., 1992), r ha l 

(Anuntalabhochai et al., 1991) and r g p l (Sano et al., 1991 ) have tandem 

Cys residues followed by two to three amino acids, similar to the C A A X 

(C = cysteine, A = any aliphatic amino acid and X = any amino acid) 

mot i f f o u n d in most ras proteins. It has been observed that Rab 

proteins w i t h the CXC motif are substrates for the addition of geranyl-

geranyl moieties (Farnsworth et al., 1991; Khosravi-far et al., 1991; 

Kinsella and Maltese, 1992) and that those wi th CC or CAAX motifs are 

modi f i ed by isoprenylation. Psa-rab has an acidic region, four 

consecutive Glu residues, upstream of the terminal Cys residues, as 

opposed to some members of the ras, rho and ral subfamilies, which 

have a basic sequence upstream of the Cys residues (Hall , 1990), 

thought to be an additional signal for palmitoylation. Neither basic 

nor acidic sequences upstream of the terminal Cys residues is common 

in the Rab/Ypt families previously characterised. 

4.1.2 Genomic Analysis of Psa-raf? 

Hybridisat ion to pea genomic D N A under high stringency conditions 

indicates that there are possibly one to two copies of the Psa-rab genes 

in pea. This may indicate a small multigene family, or the presence of 
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an intron i n the Fsa-rab gene. Introns have been observed in other 
plant rab gene family members (Palme et al. 1993; Matsui et al., 1989). 
Hybridisat ion at low stringency revealed a high degree of non-specific 
hybridisat ion of the Fsa-rab sequence (data not shown). The high 
degree of non-specific hybridisation at low to moderate stringency of 
the smal l GTP-binding proteins has been observed by other 
investigators. Nagano and coworkers isolated 100 cDNAs f rom a pea 
leaf c D N A library using plant Rab homologues as probes. Half of the 
isolated clones were related to GTP-binding proteins and the other half 
were unrelated to GTP-binding proteins (Yukio Nagano, personal 
communication). Under low-stringency washing conditions the rgpl 
cDNA, a plant Ypt3 homologue, was shown to cross-hybridise w i t h 
D N A fragments f r o m different plant species and even humans 
(Kamada et al., 1992). Hence, pre-adsorbing Fsa-rab probes to genomic 
blot filters prior to use in final hybridisation for genomic analysis at 
low stringency may have yielded better results (see Yoshida et al., 1993). 

4.1.3 Expression of Fsa-rab 

The strong and invariant expression of Fsa-rab in PP, GP and FF pods 

observed f r o m northern analysis d i d not provide evidence of a 

correlat ion between Fsa-rab expression and the purple-podded 

phenotype. It was proposed that Fsa-rab expression may be associated 

w i t h the differentiated endocarp phenotype, as it was observed that all 

of these lines have a differentiated endocarp and intense intracellular 

transport act ivi ty is associated w i t h the fo rmat ion of l i g n i f i e d 

sclerenchyma in the differentiated pod endocarp phenotype (see 1.6). 

Alternat ively, cell division in the middle layer of the differentiated 

endocarp phenotype may require the expression of Rab proteins, as 

plant cells divide by fusion of Golgi derived vesicles in one plane 

across the dividing cell wall that separates the daughter cells (Gunning, 

1982). Small GTP-binding proteins have been associated w i t h 

cytodifferentiation (Saxe and Kimmel, 1990), which is a prerequisite of 

the differentiation and formation of l ignif ied sclerenchyma in the pod 

endocarp. However, the expression of Fsa-rab in pods of L59, L58 and 

L1390, wh ich have distinct morphological differences in endocarp 

formation (described 3.2.2) d id not reveal any significant differences in 
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expression which could be correlated w i t h the differentiated endocarp 
phenotype. 

Considerable progress has been made in the ident i f ica t ion and 
characterisation of plant ras-related genes during the past 2 years (Anai 
et al, 1991; Palme et al, 1992; Nagano et al, 1993; Cheon et al, 1993; 
Bednarek et al., 1994). Psa-rab homologues, sRab7p and vRab7p (71 % 
s imi lar i ty w i t h Psa-rab), were isolated f r o m soybean and Vigna 
aconitifolia, respectively (Cheon et al., 1993). Induction of vrab7 was 
observed dur ing nodulation involving the endocytosis of Rhizobium 
by fusion of newly synthesised vesicles. Antisense vrab7 nodules were 
smaller in size and showed lower nitrogenase activity (Cheon et al., 
1993). Electron microscopy of nodules expressing antisense vrab7 
revealed, an .accumulation of many small unfused vesicles- and some 
large multivesicular bodies. 

The observation of Fsa-rab expression in a number of phenotypically 

different pea pods (purple-podded, green-podded, w i t h and wi thou t a 

differentiated or l ignif ied endocarp) seems to indicate that Psa-rab has 

an essential function in developing pea pods. The pod total R N A for 

northern analysis was extracted f rom pods during the rapid expansion 

phase of growth when there is presumably an active production of 

secretory vesicles directed to the provision of new components for the 

rapid expansion of the plasma membrane and cell wal l . Pea pod 

mesocarp cells have been observed to increase in size f rom 24 urn at 

day 0 to 80 urn at day +4 after fertilisation, and pod wall thickness to 

increase f rom 323 + 24 | im at day 0 to 700 + 83 urn at day 4 (Vercher et 
al., 1984). The epidermal cells undergo elongation as the pod develops. 

I t may be that Psa-rab is required by developing pods for the vesicle 

production necessary dur ing rapid pod growth. Expression of a 

number of plant rab homologues has been observed dur ing pol len 

development (Palme et al., 1993), when rapid cell expansion is 

observed in the extending tip of germinating pollen tubes w i t h a 

subsequent high vesicle production rate (Steer and Steer, 1989). Morre 

and van der Woude (1974) observed vesicle production rates of 1000 to 

5000 vesicles per minute in pollen tubes of Lilhim and Tradescantia. 
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The observation that the Psa-rab plant homologue, vrab7, is expressed 
dur ing vesicular membrane proliferation, associated wi th Rhizobium 
infection and nodule formation, is consistent w i t h a role for the plant 
vrab7 homologues i n membrane format ion i n rap id ly expanding 
tissue. The nodules expressing antisense vrabl produce only small 
nodules wi th abnormal vesicle formation. Expression of Psa-rab has 
also been observed to occur in pea leaf epidermal cells (Martin Cannell, 
personal communication). Perhaps expression of Psa-rab, associated 
w i t h membrane proliferation, has a functional role in plant tissues 
which are undergoing cell expansion and elongation. 

4.1.4 Complementation of the YPT7 N u l l Mutant w i t h Psa-rab 

Functional classification of the effector-binding region of ras-related 
proteins has been extended to predict g roup ing of func t iona l 
homologues (Haubruck et ai, 1989). Hence, phylogenetic comparisons 
may reflect function (Palme et a\, 1993) (see CLUSTAL analysis, Figure 
3.). This has led to the selection of plant and mammalian Rab 
homologues which successfully complement yeast strains w i t h non­
functional Ypt proteins (Cheon et a\., 1993; Palme et ai, 1993; Bednarek 
et ai, 1994). Thus, it was considered that the Psa-rab cDNA may be able 
to functionally complement the fragmented vacuole phenotype of the 
Ypt7 nul l mutant, Y7L1. 

Difficult ies were experienced in inducing Y7L1 transformed w i t h Psa-

rab expression vector, pYP52 (see 3.1.5), which may be due to a 

reduction in vigour resulting in part f rom high expression levels f r o m 

the GAL1 promoter. Yptl mutant yeast strains complemented w i t h 

the maize Yptl homologues exhibi ted slow g r o w t h on m i n i m a l 

selective media wi th galactose (Palme et ai, 1993). Slow growth of the 

Y7L1 strain on glucose minus media was also observed by Dr. Dietrich 

Scheglmann (personal communication). 
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4.2 Investigation of the Genetic Basis for Lignification of the Pea Pod 
Endocarp 

4.2.1 Lignification and Pod Endocarp Development in the 
Experimental Pea Lines 

Histochemical staining w i t h phloroglucinol established the onset of 
l ignif icat ion in the endocarp of L59 and FF at around 6 DAF g iv ing 
posit ive confirmation of a l ign i f i ed endocarp phenotype and the 
corresponding, PV genotype. Lignif ied sclerenchyma were absent in 
the endocarp of L58 and L I 390 at 6 DAF. The patches of lignin in the 
endocarp indicated by phloroglucinol staining of 12 DAF pods of L58 
confirmed the partially l ignif ied endocarp phenotype and Pv genotype. 
Pods of~LT390 at 12 DAF d i d not l igr i i fy conf i rming the unl igni f ied 
endocarp phenotype and pv genotype. The pattern of l i g n i n 
f o r m a t i o n in the pod endocarp was fur ther characterised by 
examination of 1 urn resin embedded pod sections stained w i t h 
to lu idine blue. Distinct differences in endocarp morphology and 
developraent were observed. The differentiated endocarp w i t h the 
characteiistic meristematic layer which gives rise to the pre-
sclerenchyma layer was absent in L1390 pods. The differentiated 
endocarp is present in L58. However, only a few of the pre-
sclerenchyma cells undergo d i f f e r en t i a t i on to f o r m l i g n i f i e d 
sclerenchyma. The cells in the L58 endocarp which do differentiate to 
fo rm sclerenchyma do so at a later stage of development than in L59. 

4.2.2 Plant Growth Regulators and Pod Development 

It is k n o w n that pod development is regulated by various plant 

hormones (Carbonell and Garcia-Martinez, 1980; Vercher et al., 1987). 

Hence, i t was considered that the abnormal development observed in 

the endocarp of L1390 and L58 pods may be due to some abnormality i n 

the hormonal signalling required for normal pod development. The 

induction of pod development is thought to require correct temporal 

and spatial transduction of extracellular signals f rom the pollen and, or 
the fertilised ovule (Garcia-Martinez and Carbonell, 1980; Gillaspy et 
al., 1993). Hence, plant growth regulators, GA3, 6-BAP and M V A 

k n o w n to be involved in f ru i t set and development were applied 
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directly to emasculated ovaries of L59, L58 and LI390 at day 0. GA3 
applied to unpollinated ovaries has been observed to provide a major 
stimulus to enlargement of the mesocarp cells and differentiation of 
the endocarp (Vercher et al., 1984). Cytokinins are wel l characterised as 
cell d ivis ion factors (McGaw, 1988) and are also associated w i t h early 
phases of differentiation to fo rm l ign i fy ing xylem tissue (Aloni , 1982). 
Therefore, i t was hypothesised that cytokinin may play a role in the cell 
d iv i s ion of the meristematic layer of the normal pod endocarp 
phenotype and, or subsequent d i f ferent ia t ion to f o r m l i g n i f y i n g 
sclerenchyma. M V A is the precursor to several compounds involved 
in f r u i t set and development (Bach, 1987; Gillaspy et al., 1993). 
Applicat ion of M V A to unpollinated tomato produced parthenocarpic 
development. It was considered that exogenous application of M V A 

-to- the--unpollin"ated~pea ovaries may increase the precursor pools 
required for normal pod development. It was hoped that some 
correlation between pod endocarp phenotype and genotype, w i t h 
regard to the hormonal signals received at day 0 would be identified. 

A number of interesting observations were made w i t h regard to 

development of the emasculated pods receiving plant growth regulator 

treatments. Endocarp phenotype remained true to the corresponding 

genotype, regardless of the plant growth regulator treatment applied or 

in the absence of plant growth regulator treatment, as in the tween 

treated controls (see Plates 3.5, 3.6 and 3.7). However, the growth of 

each pod in response to a particular plant growth regulator appeared to 

d i f fer depending to which experimental line the pod belonged. For 

example the response of emasculated pods to GA3 varied. While GA3 

applied to emasculated L59 pods enhanced the rapid growth and 

l ignif icat ion of the endocarp associated wi th normal pods of L59, the 

GA3 treated pods of L58 and LI390 appear to exhibit a reduced response 

to GA3 treatment (see Table 3.2). Consequently the GA3 treated pods 

of L58 and L1390 are smaller than the respective normal fertilised pods, 

whi le GA3 treated pods of L59 are longer than the corresponding 

normal fert i l ised pods. However, GA3 does appear to stimulate 

endocarp development in L58 pods (Plate 3.6F) in comparison to the 

endocarp development of L58 normal fertilised pods (Plate 3.6A). 
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The cytokinin-treated pods f r o m each line also varied i n their 
ind iv idua l response. L59 pods appeared to have a positive growth 
response to application of 6-BAP, as these pods were larger than the 
Tween-treated controls. The cytokinin 6-BAP appears to considerably 
stimulate lignification in the endocarp of L59, as although the pods are 
small in comparison to norma! fertilised pods of L59, they exhibit a 
considerable degree of lignification (Plate 3.5D). A slight stimulatory 
effect w i t h 6-BAP treatment was also observed for L1390, but the 6-BAP 
treated L58 ovaries were smaller that the Tween-treated controls. This 
inhibitory effect in L58 appears to be overcome by GA3/6-BAP mixed 
applications, producing pods of approximately the same size as the 
normal fertilised L58 pods. The effect of the mixed GA3/6-BAP 
appl icat ion enhanced pod g rowth in L1390 compared to the 
corresponding single applications. In contrast, the GA3/6-BAP mixed 
application applied to L59 produced smaller pods than the single GA3 
applicat ion. Hence, i t appears that the reduced response of 
unpollinated ovaries to single applications of GA3 or 6-BAP in L58 and 
L1390 is associated wi th the ratio of GA3 and 6-BAP. Thus, addition of 
a mixed application of GA3/6-BAP produces an enhanced g rowth 
response. 

Absisic acid has been shown to inhibit pod development. This effect 

may be overcome by GA3 application (Garcia-Martinez and Carbonell, 

1980). I f the experimental pods have different levels of absicic acid, 

different amounts of GA3 would be necessary to overcome inhibi t ion. 

Hence, it is possible that sub-optimal amounts of GA3 were applied to 

L58 and L1390 pods preventing stimulation to develop similar to their 

respective normal fertilised pods. However, this explanation would 

appear to contradict the observation that the Tween-treated 

emasculated pod controls develop to a greater extent in L58 and L1390. 

Conversely, the LI390 and L58 pods may have lower levels of absicic 

acid and, or higher levels of endogenous GA3, or the GA12 and GA20 

precursors. Hence, the application of GA3 may lead to supra-optimal 

levels resulting in a feedback mechanism, causing down regulation of 

reception and , or, processing of GA3, resulting in a reduced growth 

response. The GA3 stimulus in L59 produces a positive g rowth 

advantage, possibly by enhancing endogenous auxin-like compounds. 
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GA3 application has been observed to produce such an effect in other 
fruits (Sastry and Muir , 1963). 

The response to M V A was inconclusive. The single application of 
M V A appears to slightly enhance pod growth in L59, and produce 
some growth inhibition in L5S and L1390. When mixed application of 
M V A / G A 3 are applied, the pod growth in L58 and LI390 is similar to 
single applications of GA3. This suggests that M V A has little or no 
effect on pod growth or the putative inhibitory effect is overcome by 
GA3. The mixed application of M V A / G A 3 to L59 pods produces pods 
s l ight ly smaller than single applications of GA3 indicat ing that 
exogenous application of M V A mav have an inhibitory effect on pod 
development. The possibility of M V A inhibi t ing pod growth when 
applied singly, or_in mixed_applications, could perhaps be due to some 
feedback inhibition causing a clown regulation of HMG-CoA reductase 
and reduct ion of some l i m i t i n g compounds involved in pod 
development. Al though M V A application has been observed to 
induce normal development in tomato, it may be that the application 
method used in this instance resulted in poor uptake by the pea ovary. 
The concentration of M V A received by the treated ovaries may have 
been sub-optimal as a result of poor uptake by the ovaries, too low a 
concentration or degradation of the M V A . 

It was observed that Tween-treated, emasculated, control pods of L58 

and L1390 were larger that L59 Tween-treated emasculated control 

pods. Fruit set of the Tween-treated controls would appear to indicate 

that endogenous signals f r o m the ovary or signals f r o m the 

surrounding sporophytic tissues are sufficient to induce parthenocarpic 

f ru i t set in the experimental pea lines. Subsequently, inductive signals 

appear to be greatest in LI390, followed by.L58, or conversely, levels of 

inhibitory signals are reduced. A source of inhibit ion of unpollinated 

pea ovaries has been located in developing leaves (Garcia-Martinez and 

Carbonell, 1980). Haan (1930) observed parthenocarpic development of 

emasculated ovaries of some pea varieties. 
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4.2.3 Differential Screening of the L59 Lignified Pod cDNA Library 

I t was hoped that differential screening strategies wou ld yield cDNAs 
associated wi th the l ignif ied pod phenotype. Hence, a L59 lignified pod 
cDNA library was prepared f rom L59 4 - 6 DAF pod total RNA, as it was 
observed that L59 pods undergo dif ferent ia t ion and format ion of 
l ignif ied sclerenchyma during this stage of growth (see 3.2.1 and 3.2.2). 

The in vivo excision of trial inserts indicated the presence of a range of 
differently sized inserts, 0.5 kb - 2 kb. To test whether fu l l - length 
cDNAs typical of developing pods were present, a test screen of the L59 
l igni f ied pod cDNA library was performed using Psa-rab as a probe. 
Three identical ful l- length clones derived f rom the Psa-rab gene were 
isolated and-designated- LP4, LP-l-2-a-nd LP-1-3.- The clones were-slightly 
longer than Psa-rab, having additional 5' non-coding sequence and 3' 
UTR. Hence, the L59 l ignif ied pod cDNA library was considered to be 
suitable for performing a differential screen using pod total c D N A 
probes f rom 4 - 6 DAF pods of L59 and LI390. Clones were selected for 
further characterisation on the basis of consistent hybridisation to the 
L59 (phenotype, l igni f ied endocarp; genotype, PV) pod total c D N A 
probe and not to the L1390 (phenotype, un l ign i f i ed endocarp; 
genotype, pv) pod total cDNA probe. 

The method used to ident i fy cDNA clones representing differential ly 

expressed RNAs was based on that of Olszewski et al. (1989). This 

method relies on labelling cDNAs prepared f r o m the total pod RNAs 

of the l igni f ied pods of L59 wi th 35$ Total pod RNAs f r o m the 

unlignif ied pods of L1390 are labelled wi th 32p. The 35s and 32p decay, 

producing p - particles of 0.1674 and 1.710 MeV respectively (Weast and 

Astle, 1980). The energy difference provides a means of detecting f 3 -

emissions f r o m the 35s particles or ig ina t ing f r o m clones w h i c h 

hybridise to the l ignif ied pod total cDNA probe and not to the LI390 

total c D N A probe, by using an attenuator (3 M M paper in this case, see 

Figure 2.3). (The ability of the 3 M M paper to block 35$ p - emissions 

was ascertained by trial radiographs of P^S] dCTP and [32P] dCTP 

spotted on NC filters.) In the absence of the attenuator both isotopes 

are detected. 
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However, problems were encountered in detecting hybridised clones 
representing the differential ly expressed RNAs using this differential 
screening protocol. The longer exposure necessary for detection of the 
35s hybridised clones on radiographs led to over exposure of 32p 
hybridised clones. Also, the presence of the attenuator led to the f i l m 
recording 32p alone being slightly out of focus, even when the 
intensifying screens were blocked. Therefore, only colonies giving a 
clear indication of differential expression were chosen. Subsequently, 
low numbers of true positive clones were selected from the differential 
screen. Perhaps a greater number o f clones hybridising to RNAs that 
are more abundant in the l ign i f i ed pods of L59, compared to 
unlignif ied pods of L1390, would have been isolated if the density of 
plaques per hybridised primary screen filter was reduced. 

4.2.4 Isolation and Identification of the cDMA Clone, pLP18 

The cDNA clone pLPIS, isolated from the differential screen of the L59 

l ign i f i ed pod c D N A l ibrary, was shown to encode a predicted 

polypeptide, PBP, w i t h significant homology to a number of blue 

copper proteins. PBP has the conserved copper binding residues 

(Vangaard, 1972; Guss et. al., 1988) and two conserved Cvs residues, 

which have been shown in Sc (Engeseth ct ill., 1984) and CPB (Guss et 
al., 1988) to form a disulphide bridge. Crystallographic studies have 

confirmed that the geometry of the copper binding site is that of a 

distorted tetrahedron as a result of the extended C u - + - m e t h i o n i n e 

bond distance (Fields et al., 1991). The other copper ligands are two 

histidines and a cysteine. These Cu binding residues are conserved in 

a number of type I blue copper proteins such as azurin, plastocyanin 

and rusticvanin. Comparison with the Cu binding sites of CBP, Sc and 

CPC suggest the fo l lowing Cu binding sites in LP18: His67, C y s l l l , 

H i s l l 6 and Met l21 . C u l l and Cul occupy almost identical positions in 

blue copper proteins, thus facilitating electron transfer wi th min imal 

geometric change and a reduction in structural changes in the protein. 

By analogy PBP likely binds C u - + and functions as an electron carrier. 

The PBP predicted polypeptide has a hydrophobic N-terminal leader 

sequence. The genes of various blue copper proteins appear to encode 

a polypeptide w i t h a leader sequence, which serves as a signal for 

protein translocation over the cytoplasmic membrane into the 
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periplasmic space, w i t h subsequent cleavage of the signal peptide 
(Canters and Gilardi, 1993). 

The region rich in threonine and serine in PBP (residues 127- 161) 
corresponds to the region rich in serine, hydroxy-pro l ine and 
threonine residues in BCB and serine and hydroxy-proline rich in CPC. 
The threonine and serine rich region is followed by a hydrophobic C-
terminal. Van Gysel ct al. (1993) proposed that the hydrophobic C-
terminal domain is enzymatically cleaved in analogy to homologous 
regions in the variant surface protein of Trypanosoma and the cell 
adhesion proteins of Dictyostclium (Ferguson ct al., 1985; Low ct al., 
1986; Noegel ct al., 1986). By analogy wi th BCB and the truncated 
stellacyanin and CBP amino acid sequences isolated f rom plant tissues, 
this site may be cleaved in PBP to produce a mature, membrane-bound 
protein. 

4.2.4.1 Genomic Analysis of LP18 

There appears to be one gene encoding PBP per haploid pea genome. 

The small family of type 1 blue copper proteins identified in plants 

show highly conserved amino acid sequence homology in the copper 

b inding region, w i t h the lower overall homology perhaps indicating 

different biological functions. Hence, there may be other type I copper 

genes in pea, but sequence divergence is likely to be such that cross-

hybridisation wi th PBP would only occur under very low stringency 

washing conditions. 

4.2.4.2 Correlation of LP18 mRNA Expression w i t h Lignin Biosynthesis 

Semi-quantitative RT-PCR for LP 18 mRNA provided a more sensitive 

analysis of gene expression than northern analysis of total RNA f rom 4 

- 6 DAF pods conf i rming differential expression of LP18 m R N A and 

the relative expression pattern of LP18 mRNA in each experimental 

pea line at four, five and six days after flowering. The incorporation of 

synthetic RNA, rRLP18, in each reaction, gave a precise internal control 

for both reverse transcription and PCR amplification, using the same 

primers P I and P2 and producing a product d i f fer ing f rom the target 

R N A in size. This method of RT-PCR allowed the calculation of a 
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quantitative index for the relative expression of LP18 mRNA in each 
pod line at four, five and six days after flowering relative to the 0.025 ng 
of internal standard incorporated in the initial reaction. 

Several ways of counting the hybridised bands were considered e.g. 
staining D N A wi th ethidium bromide in gels (not sensitive enough for 
small amounts of D N A , and inaccuracies due to ethidium bromide 
complexed to the lambda fragment in the internal standard bands); 
Cerenkov counting of dry filters using ^ H channel of a scintil lation 
counter (assay of 32p i s approximately 25 % counting efficiency, deemed 
unacceptable for small amounts of D N A ) ; counting dry fi l ters i n 
sc int i l la t ion f l u i d , using 32p channel of a scint i l lat ion counter 
(efficiency almost 100 %) (Wallace, 1987). Hence, counting of dry filters 
in scintillation f l u id using the -3-2.p channel was selected as the most 
accurate estimation of the radioactivity in the hybridised bands and the 
most suitable for samples containing low counts. 

Small amounts of genomic D N A contamination were encountered 

using the guanidium thiocyanate method for preparation of total 

R N A , hence, the DNase treatment. However, this method was 

selected to produce high yields f rom small amounts of tissue a l lowing 

rapid processing of numerous samples. The size band at 650 bp 

observed in the calibration RT-PCR reactions was presumed to be 

a m p l i f i c a t i o n of res idual genomic D N A containing the gene 

corresponding to LP18 plus intron. The band is not observed in PCR 

w i t h RLP18 only. A similar result is obtained by Chang et ai (1993), 

presumably again caused by contamination by an intron containing 

gene (they also used a guanid ium thiocyanate RNA extract ion 

method). The effect on data calculations was not considered by Chang 

et al. (1993) and was also not considered here, since the purpose of the 

calibration, wi th a series amount of internal standard, was to ascertain 

an amount of internal standard which does not produce excessive 

compet i t ion for primers etc. Condit ions in subsequent RT-PCR 

reduced amplif icat ion of the putative intron containing LP18 gene 

sequence to a m i n i m u m unlikely to alter quantitative estimations. It 

is possible that a "plateau effect" resulting f rom attenuation of product 

accumulation may be occurring at the highest concentration of internal 

standard. A consequence of reaching plateau is that an ini t ia l ly l ow 
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concentration of, in this case, a putative contaminating genomic D N A 
can continue to amplify preferentially (Innis and Gelfand, 1992). 

The calibration reactions performed w i t h a series amount of internal 
standard RNA wi th a fixed amount of pod R N A (L59 in this case, 
chosen as northern hybridisation indicated this sample was likely to 
contain target) determines an amount of internal standard, which may 
be included in the RT-PCR reaction as a control to test reaction 
efficiency, and eliminate sample-to-sample and tube-to-tube variations. 
The optimal amount is ascertained to prevent excessive competition 
wi th target amplification. Subsequently 0.025 ng was selected, as this 
amount was close to the linear region of the plot and detectable on 
blots. A smaller amount of internal standard may have produced 
more accurate estimation of target RNA. I-IoYv'evcr, die use of very 
low amounts of internal standard mav cause greater fluctuations by 
amplifying pipetting errors. Therefore, 0.025 ng was chosen as being a 
reasonable amount close to the linear region. 

RT-PCR correlates LP18 expression w i t h l i g n i n biosynthesis. 
Expression of LP 18 mRNA increases in L59 and FF as lignification in 
the end.oca.rp is imminent ( 4 - 6 DAF). This expression pattern is 
observed in L58, but LP18 mRNA levels are reduced by comparison 
wi th L59 and FF. Expression of LP18 mRNA is lowest in L1390 and 
remains stable through the same stages of pod development ( 4 - 6 
DAF), perhaps reflecting basal levels of LP18 m R N A necessary for 
lignification in developing vascular tissue. 

It was proposed that i f LP18 niRNA was necessary for lignin formation, 

it wou ld be expressed throughout the plant. RT-PCR results revealed 

this to be the case in all of the experimental lines, wi th each line 

showing comparable levels of expression, in the respective root, stem 

and leaf tissues. Highest expression levels were observed in the stem 

for all of the experimental lines consistent w i th a role for the PBP 

encoded by LP18 in lignification of vascular and support tissues of the 

growing stem. 

http://end.oca.rp


4.2.5 Isolation and Identification of the cDNA Clone, pLP19 

The cDNA clone pLP19 isolated f rom a differential screen of the L59 
l igni f ied pod cDNA library, was shown to encode the C-terminal 
fragment of an Hsp70 homologue. High homology was observed w i t h 
a number of Hsp70 proteins from a diverse range of species. However, 
highest homology was wi th the plant Hsp70s f rom soybean (89.7 %) 
(Roberts and Key, 1991), tomato (83.2 %) (Lin ct al., 1991a), petunia (81.3 
%) (Winter ct al., 1988), maize (79.9 %) (Rochester ct al., 1986) and carrot 
(79.2%) (Lin et al., 1991b). The C-terminal of Hsp70s are known to be 
more divergent than the amino terminal, which would further suggest 
that the high homology observed indicates that the C-terminal 
fragment predicted by LP19 is the counterpart in pea of the plant Hsp70s 
listed above. The LP19 predicted amino acid sequence contains a 
motif, GPK1EEVD (residues 264 - 271), similar to the eukaryotic Hsp70 
cytosolic consensus sequence, GPT1EEVD (Gupta ct al., 1994), suggesting 
that LP19 encodes the C-terminal of a cytosolic Hsp70. The other 
identify!)-;? feature of cytoplasmic Hsp70s is the lack of a leader 
sequence r / i e r l ing , 1991). However, the absence of a leader sequence 
could not be verified as re-screening the L59 lignified pod cDNA library 
failed to yield a full-length LP'19 cDNA. 

4.2.5.1 D i f f e r e n t i a l Expression of LP19 m R N A in Pods of the 

Experimental Pea Lines 

The expression pattern of LP19 m R N A in 4 - 6 DAF pods indicates 

some correlation wi th the lignified endocarp phenotype. Expression is 

highest in pods of L59 and FF, which both have a differentiated 

endocarp wuh lignification commencing at around 6 DAF. Expression 

levels of LP19 m R N A are lower in L5S, which has a differentiated 

endocarp, but differentiation of the pre-sclerenchyma layer is delayed 

and reduced, w i th small numbers of l ignif ied cells only present in 

pods at a later stage of development. LP19 mRNA expression is absent 

in L1390 4 - 6 DAF pods, which do not have a differentiated l igni f ied 

endocarp. This pattern of expression is also observed in northern dot 

blot analysis of 4 - 6 D A F pod total R N A f rom L59, FF, L58 and L1390. 

Genomic analysis revealed hybridisat ion to a single band i n the 

experimental pea lines, L59, L58 and L1390, indicating that the LP19 
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gene is present in L1390 and the LP 19 nucleic acid sequence f rom L59 is 
specifically hybridised to the corresponding sequence in L1390. This 
would suggest that the lack of hybridisation of the LP19 cDNA to L1390 
4 - 6 DAF pod total RNA is due to an absence of LP19 expression or 
expression at levels too low to be detected. 

A number of transcript sizes were detected in the northern blot of 4 - 6 
DAF pod total RNA. HspTO transcripts of varying size have been 
observed bv other researchers (Rochester et al., 1986; Winter et al., 
1988). Large transcripts of 2.6 - 2.8 kb are presumed to be unprocessed 
mRNAs of the corresponding intron-containing HspTO gene and 
smaller transcripts of 2.1 - 2.2 kb are presumed to be the processed 
transcript of the corresponding Hsp70 amino acid sequence (Rochester 
et al, 1986; Winter et al, 1988). The putative unprocessed transcript is 
the major transcript apparent in 4 - 6 DAF pods of L59 and FF and is the 
only detectable transcript in L5S. The processed transcript is detectable 
in L59, indicating a post-transcriptional control mechanism for LP19 
expression. The 1.1 kb transcript may be a LP19 mRNA breakdown 
product, which hybridises to the 3' end of the LP19 mRNA. A similar 
hybridised transcript of 1 kb has been observed in northern analysis of 
maize hsp70 (Rochester et al., 1986). 

Hsp70s have been proposed to plav a role in differentiat ion and 

development (Bienz, 1984; Singh and Yu, 1984; Kurtz ct al., 1986; 

Lindquist. 1986). It is proposed that the lack of processed transcripts in 

L58 may be a result of the delay in commencement of differentiation 

and l ignification of the discrete regions of pre-sclerenchyma in L58. 

Hence, LP19 mRNA expression may indicate the differentiation event 

occurring in the pre-sclerenchyma of the pod endocarp. Subsequently, 

there is no detectable LP19 mRNA expression in LI390 4 - 6 DAF pods, 

as the pre-sclerenchyma layer is absent. Expression of tomato Hsc70 
has been detected in secretory tissue and organs wi th rapidly d iv id ing 

and differentiating cells (Duck ct al., 1989). It has been suggested that 

some conserved developmental function requires the aid of Hsc/Hsp70 
in ovaries (Winter and Sinibaldi, 1991). 

Some of the Hsp70 genes are classified as cognate (Hsc) genes, which are 

expressed at normal temperature and contain an intron. The LP19 



Hsp70 is expressed at normal growth temperatures, but the presence of 
an i n t r o n can only be inferred by the presence of a putat ive 
unprocessed transcript in northern blots, similar to other plant Hsp7Qs 
(Rochester et al., 1986; Winter et al, 1988). However, this definition is 
fur ther confused by the reports of heat-induced expression of 
maize Hs/?70s which contain introns (Rochester et al., 1986). 

4.2.5.2 Heterogeneous 3' UTRs of the LP19 mRNA Transcripts 

The 3' termini encoded by the LP 19 transcripts isolated f rom the re-
screen of the L59 lignified pod cDNA library (see 3.6.5) are identical up 
to the d i f fe r ing polv (A) addition sites, suggesting that they are all 
transcribed from one gene. This is further supported by genomic blot 
analysis, which indicates that the LP 19 gene was present as a single copy 
gene and that hybridisation was specific at high stringency. Mult ip le 
polyadenylation sites have been observed in other eukaryotic genes 
(Setzer et al, 1982; Parnes et al, 1983; Yassemi et al, 1983; Dean et al., 
1986; Hernandez-Lucas et al., 1986). 

Only the LP19/1 and LP19/2 transcripts have a polvadenvlation signal, 

while tlv.-j oihev heterogeneous LP19 3 UTRs do not. The absence of 

polyadenylation signals in several of the heterogeneous 3' UTRs of the 

mouse dihvdrofolate reductase gene has also been observed (Setzer et 
al., 1982). Dean et al. (1986) proposed that b ind ing of proteins to 

different terminator sequences in the 3' untranscribed region could 

alter the selection of the 3' cleavage she. 

Heterogeneous 3' UTRs have been implicated in mRNA translation 

eff ic iency or s tabi l i ty (Gallie et al., 1993). It may be that the 

heterogeneous 3' UTRs exhibited by LP19 transcripts may play a role in 

mRNA stability. Ingelbrecht et al. (1989) observed a 60-fold difference 

in m R N A levels using d i f fe ren t 3' UTRs on reporter genes. 

Differentiat ing cells have a varying mRNA population depending on 

the stage of different iat ion. Subsequently, rapid changes in the 

differentiated state of a cell w i l l necessitate rapid changes in R N A 

transcription. Developmental regulation of 3' end cleavage and poly 

(A) site addi t ion has also been observed in the case of v iment in 

(Yassemi et al., 1983) and pro a2(I) (Aho et al, 1983). Hence, it may be 
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expected that i f the LP19 Hsp70 is involved in the differentiation event 
associated w i t h pre-sclerenchyma in the pod endocarp, as suggested 
above, i t wou ld require tight transcriptional or translational control. 
This may be facilitated by altering the stability of the LP19 m R N A 
transcripts as cell differentiation and development progresses. 
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5. CONCLUDING DISCUSSION. 

The clone pPP406 encoded a polypeptide, designated Psa-rab, belonging 
to the Rab sub-family of small GTP-binding proteins, which are 
involved in intracellular vesicular transport (Zahraoui et al., 1989; 
Plutner ct al., 1990; Horazdovsky ct al., 1994). Northern analysis 
revealed invar iant expression of Psa-rab in the dif ferent pod 
phenotypes investigated in this study, indicating an essential role for 
Psa-rab in developing pods. The observation that a number of plant 
Rab homologues are expressed in rapidly expanding tissues (Cheon et 
al., 1993; Palme ct al., 1993) is consistent wi th the observation of Psa-rab 
expression in developing pods. Psa-rab may be associated w i t h the 
active production of secretory vesicles directed to the provision of new 
components-for~the~rapid expansion of the pfasma membrane and cell 
wall dur ing the rapid expansion phase of pod growth. One of the Rab 
family proteins is highly expressed in tomato f ru i t during the rapid 
expansion phase of growth (Gillaspv ct al., 1993). 

A successful conclusion to the yeast complementation experiments 
subsequent to submission of this thesis would confi rm the assumed 
functional role of Psa-rab. Transgenic pea lines expressing sense and 
antisense Psa-rab wou ld be useful to enable further analysis of the 
functional role of Psa-rab. This approach has been successful w i th rgpl 
f rom rice (Kamada ct al., 1992) and vrab'l and vrabV f rom Vigna (Cheon 
et al., 1993). 

Two different ia l ly expressed clones, pLPIS and pLP19, encoding a 

putative blue type I copper protein, designated PBP, and the C-terminal 

of an Hsp70 homologue respectively, were isolated f rom a pea pod 

cDNA library representing poly ( A ) + RNA purified f rom L59 pea pods 

at 4 - 6 DAF (with embryos and main veins excised). The clones, pLP18 

and pLP19, were isolated on the basis of apparent d i f fe ren t i a l 

expression on screening the L59 pod cDNA library wi th total c D N A 

probes prepared f r o m 4 - 6 DAF pod mRNAs f r o m L59 d ign i f i ed 

endocarp) and L1390 (unlignified endocarp). 



The predicted polypeptide encoded by LP18, PBP, has significant 
homology to a number of blue type I copper proteins. In analogy to 
these blue copper proteins, PBP probably binds copper and functions as 
an electron carrier. A putative signal peptide, residues 1 - 24, indicates 
that PBP may be translocated over the cytoplasmic membrane i n 
analogy to the function of signal peptides of other blue copper proteins 
(Canters and Gilardi, 1993). The serine/threonine rich domain and the 
short hydrophobic C-terminal may play a role in membrane anchorage 
and/or targeting, as suggested for BCB (Van Gysel et al, 1993). The 
higher expression levels and the pattern of expression in the 
experimental pods of L59 and FF compared to L58 and L1390 is 
consistent w i t h a role in development of the l ign i f i ed endocarp 
phenotype. In addition, the high expression of LP18 mRNA in stems 
f rom the pea lines L59, L58 and LI390 is also consistent wi th a role in 
lignification. It is suggested that this protein is involved in oxidative 
polymerisation reactions characteristic of l ignif icat ion in plant cells 
(Dean and Eriksson, 1992). The cross-linking enzymes giving rise to 
l ign in i n plant cell walls are oxidases, inc luding copper oxidases 
(Williams, 1988; Ohkawa et al, 1989; McDougall, 1991; O'Malley et al, 
1993; Sato et al, 1993; Liu et al, 1994). The blue copper protein, PBP, 
may work in series w i t h such oxidases to transfer electrons generated 
by the free radical polymerisation reactions of l ignin monomers to each 
other or to cell wal l components. 

The C-terminal fragment of an Hsp70, encoded by the LP19 cDNA may 

also be correlated w i t h the lignified endoearp phenotype. Expression is 

greatest i n the L59 and FF pods (phenotype, l ign i f i ed endocarp; 

genotype, PV), w i t h reduced expression in L58 (phenotype, part ial ly 

l ignif ied endocarp; genotype, Pv), and no detectable expression in L1390 

(phenotype, unlignif ied endocarp; genotype, pv). The transcriptional 

regulation of the Hsp70 gene family is known to be very complex and 

they are implicated in a number of functional roles in cells (Lindquist, 

1986). Hsp70 family members recognise and stabilise partially folded 

intermediates dur ing polypeptide folding, assembly and disassembly 

(Beckmann et al, 1990; Nelson et al, 1992) and are involved i n 

receptor recycling (Hutchison et al, 1992; Pratt, 1993). They may be 

stress inducible (Fernandes et al, 1994), while others may be expressed 

constitutively (Benaroudj et al, 1994), or be induced at specific stages of 
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development (Hatayama et. al., 1993; Winter and Sinibaldi, 1991). The 
complexity of the Hsp70 gene family is further indicated here, wi th the 
putative post-transcriptional processing of mRNA transcripts observed 
in northern analysis (see Figure 3.28) and the isolation of LP19 m R N A 
transcripts w i th heterogeneous 3' UTRs (see Figure 3.33). The 
expression pattern of the LP19 Hsp70 transcripts and the evidence for 
the involvement of Hsp70s in differentiat ion and development are 
consistent w i t h the LP19 Hsp7{) homologue playing a role in the 
differentiating events in the pod endocarp leading to the formation of 
l ign i f ied sclerenchyma. LP19 expression may be regulated in the 
differentiating cells by some mechanism involving the generation of 
heterogeneous 3' UTRs and subsequent R \ : A processing. The 3' UTR 
of Hsp83 in Leishiria nia is invo lved in temperature-dependent, 
regulated .decay (Aly et al, 1994), The Lcislimania parasite undergoes 
stage different iat ion triggered by a change in temperature, wh ich 
results in an increase in steady state levels of Hsp83 transcripts by a 
differential decay mechanism. The 3' UTRs of several other genes 
are implicated in gene regulation and RNA processing (Birnsteil et al., 
1985; Petersen and Lindquist, 1988; A n ct al., 1989; Ingelbrecht et al., 
1989). Further clues as to the mechanisms controlling LP19 expression 
may be gained by sequencing the LP19 gene. The identification of a 
promoter(s) and terminator(s), and the presence, or absence of an 
intron, w o u l d be useful to further characterise this particular pea 
Hsp70. 

Conclusive proof of the involvement of the blue copper protein, PBP, 

and the LP19 Hsp70 homologue in development of the l i g n i f i e d 

endocarp phenotype awaits localisation, in the pods of the experimental 

pea lines. 

The PGR treatments failed to produce any radical change in the cell fate 
pathway of the cells of the inner pod wall in any of the pod phenotypes 
(see Plates 3.5, 3.6 and 3.7). The PGRs wou ld appear to provide 
necessary stimuli for pod growth to a varying degree. However, they 
do not appear to control the formation of the differentiated l ign i f ied 
endocarp, although they can enhance, or inhibi t its development 
where present (see Plates 3.5 and 3.6). This is particularly notable w i t h 
regard to lignification in the endocarp of 6-BAP treated pods of L59, 
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which are small, but have a relatively advanced degree of l ignification 
compared to the normal fertilised pods of L59. 

The observat ion that tween treated contro l pods developed 
parthenocarpically wou ld appear to indicate that endogenous s t imul i 
and, or, st imuli f rom surrounding tissue also plays a significant role i n 
pod development. This is also the case in developing tomato f r u i t 
(Gillaspy et al, 1993). Furthermore, levels of such s t imul i w o u l d 
appear to vary in the dif ferent experimental pea lines. The 
experimental pea lines are closely related genetically. Hence, the 
differences in sensitivity to PGRs and the degree of parthenocarpic 
development may be linked to the pod genotypes. 

There is strong evidence that each cell determines its position relative 

to others during development and differentiates accordingly, imp ly ing 

cell-cell communication (Verbeke, 1992). The gene programme for 

each cell can then be set or re-set in response to extracellular s t imul i 

f r o m surrounding tissues or adjacent cells (Greenwald and Rubin , 

1992). Those cells receiving and transducing specific signals f r o m 

surrounding cells and tissues respond by differentiating. Those not 

receiving or f a i l ing to transduce such signals f o l l o w the defaul t 

pathway. Positional signalling occurs wi th in groups of cells (Poethig, 

1987; Dave and Freeling, 1991). Stochastic elements create the in i t ia l 

difference and feedback f rom surrounding cells conf i rm this in i t i a l 

difference by altering signalling or receiving potential. The cell 

recognition mechanisms are thought to-involve-the binding of signal 

molecules wi th membrane bound receptors (Verbeke, 1992). Hence, i t 

may be hypothesised that the fate of the cells destined to form the pod 

endocarp are responding to positional effects and the subsequent 

perception of extracellular signals f r o m surrounding cells and tissues. 

The completion of normal endocarp development then depends on 

successful transduction of these signals. I f this is the case i t w o u l d 

appear that this chain of events is disrupted in L58 and L1390. 

The tissues that contribute to the growing f ru i t differentiate f r o m cells 

in the carpel (Blixt, 1974). Hence, i t is suggested that stochastic 

elements at the very early stages of ovary formation in the carpel of 

L1390 w o u l d appear to have failed to produce the ini t ial differences i n 
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the cells destined to fo rm the inner pod wall . The gene programme of 
the cells of the inner pod wall then fai l to set and subsequently fo l low a 
default pathway in pods of L1390. Conversely, the cells in the carpel 
destined to fo rm the inner pod wal l in L58 do respond to stochastic 
elements, creating the differences which lead to setting the gene 
programme for endocarp differentiation. Hence, i t would appear that 
one functional P or V allele is sufficient for this early stage of endocarp 
formation. It is at a later stage of development that some of the cells of 
the pre-sclerenchyma layer of L58 pods fa i l to complete the gene 
programme for differentiation to f o r m l ignif ied sclerenchyma. I t is 
suggested that the cell lineage resulting f r o m cell division in the 
endocarp predicts those cells of the endocarp which differentiate. Cells 
in the carpel destined to form the endocarp then ultimately acquire a 
unique genetic programme depending_ on t h e i r p o s i t i o n _.im the 
endocarp, analogous to the patterning processes described for other 
plant organs and tissues (Wareing and Philips, 1970; Poethig, 1987; 
Steeves and Sussex, 1989; Doerner, 1993; Dolan et al., 1994). Different 
patterns of lignification are observed in the partially lignified endocarp 
of pV and. Pv pods. The pV pods have a strip of l ignified sclerenchyma 
close to the main veins, whereas the Pv pods f o r m patches of 
sclerenchyma (Lamprecht, 1953; Bowling and Crowden, 1973). The P 
and V alleles may therefore direct differentiat ion specific events of 
different regions of the endocarp depending on the cell lineage. 

However , the intricate cascade of signal pathways directing cell 

differentiation to fo rm the differentiated endocarp phenotype are l ikely 

to remain elusive unt i l the mechanisms controlling expression of the 

genes that are uniquely and highly expressed in the carpels and 

growing pod are characterised. Differential display techniques using 

m R N A isolated f r o m the carpel of L59 and L1390 may enable the 

isolation of genes expressed at the early stages of pod development. 

Morphological analysis, tracing the or igin of the endocarp cells, the 

pattern of cell division, cell expansion and cellular differentiation, may 

provide a more meaningful analysis of subsequent genetic analysis. 

The "symptoms" exhibited by pods of pea lines carrying the p and v 
mutant alleles have been observed to be complex. However , 
differential screening as an investigative approach has provided some 
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insight as to the biochemical complexity of these effects, such as the 
differential expression of mRNAs encoding the putative blue copper 
protein and a member of the Hsp70 family of proteins. Investigation 
of such complexities is ul t imately necessary for a complete and 
coherent description of the differentiat ion and development of the 
l ignified endocarp phenotype. In addition, knowledge obtained may 
be of use in studying other tissues undergoing differentiation and , or 
l ignif icat ion. 

Differential display techniques have been used more recently to isolate 
d i f fe ren t ia l ly expressed mRNAs. However, the avai labi l i ty of 
commercially available c D N A l ibrary construction kits and the 
standard protocols developed for differential screening still make 
d i f fe ren t ia l .-screening s-t-rat-eg-i-es- a viable approach" to isolat ing 
differential ly expressed mRNAs. In addition, refinements such as 
subtractive hybridisation to eliminate or reduce the population of 
mRNAs encoding housekeeping genes and PCR techniques a l lowing 
construction of cDNA libraries f rom small amounts of tissue (making 
construction of a cDNA library solely f rom the pod endocarp possible) 
could lead to greater success in isolating different ia l ly expressed 
mRNAs associated wi th the lignified endocarp phenotype. 

The alternative approach, positional cloning, to identify the mutant 

genes at the P and V loci and determination of their function, presents 

an enormous task, perhaps exemplif ied by the efforts to iden t i fy 

mutant genes causing genetic diseases in humans. However , 

restr ict ion-fragment- length-polymorphism (RFLP) techniques have 

proved of some use in the diagnosis of monogenic diseases in humans 

(see Davies and Tilghman, 1991). The construction of RFLP maps for 

Pisum and the identif icat ion of marker genes is presently being 

undertaken (Dr. John McCallum, personal communication) and. may 

provide a useful resource for location of mutant genes of pea in the 

future. RAPD (random amplif ied polymorphic D N A ) analysis has 

also been investigated as a means of iden t i fy ing polymorphisms 

amplif ied by arbitrary primers, which can be used as genetic markers 

(Will iams et al., 1990). RFLP and RAPD analysis strategies may be 

employed using the experimental lines, L59, L58 and L1390, which are 

all closely related genetically, together wi th heterozygotes for the P and 

193 



V alleles obtained by crossing the experimental lines to confirm 
mutations in the gene fragments. 

Ultimately, the identification and cloning of mutant genes and the 
study of their function requires an integrated approach combining 
molecular biology, biochemistry, genetics, together with an 
understanding of the anatomy and physiology of the observed 
phenotype(s) attributed to the mutant gene(s) under investigation. 
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