

Durham E-Theses

A study of the affects of Habitat fragmentation on the woodland edge microclimate and on the structure and composition of woodland ground flora

Dunn, Shona Hunter

How to cite:

Dunn, Shona Hunter (1994) A study of the affects of Habitat fragmentation on the woodland edge microclimate and on the structure and composition of woodland ground flora, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5879/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

A Sturdy of the Affects of Habitat Fragmentation on the Woodlamd Edge Microclimate and on the Structurre amd Compositiom of woodlamed $\mathbb{G r o u n d}$ Flora.

Shoma Humter Duamm

A dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Advanced Ecology.

Department of Biological Sciences
 University of Durham September 1994.

The copyright of this thesis rests with the author.
No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.

Abstract

Abstreact

A study of the affects of habitat fragmentation on the microclimate and ground flora at the edge of an area of secondary woodland was conducted. Vegetation was sampled in an array of 60 quadrats arranged in transects running parallel with the edge of the woodland and at increasing distances from it. Species abundance at each quadrat was measured using the Domin scale. Point quadrats were used to allow assessment of vegetation structure and canopy cover at each quadrat was described using a point centred quarter method. Environmental variables including illumination, P.A.R., soil temperature, air temperature, soil moisture, soil organic content and pH were measured at each quadrat.

Data was analysed using a variety of univariate and multivariate statistics. Results indicated a microclimatic and vegetational 'transition zone' of approximately 10 metres in diameter at the northern boundary of Moorhouse Wood and adjacent habitats. This was indicated by; 1. Illumination, P.A.R., soil and air temperature, soil moisture and soil organic content all underwent significant alterations over this distance and continued to change more gradually further into the wood. 2. Edge oriented patterns of variation were found in both canopy and ground floral community composition and in general, species with ecological preferences for disturbed or for warm and light conditions were increased in abundance at the edge of the woodland. Some evidence of invasion by non-woodland species was found but these did not appear to be colonising the woodland interior. 3. Ground vegetation structure was altered by proximity to the woodland edge. This was shown to be unrelated to most microclimatic variables and it is suggested that a high level of disturbance is more likely to be responsible for the decreased height of vegetation at the boundary.

Comments are made concerning the significance of these findings and their importance in understanding the affects of habitat fragmentation on the woodland microclimate and ground flora.

Acsmowledgements

I would like to express my gratitude to Dr. Phil Gates, Dr. Brian Huntley and Dr. Phil Hulme for all of their support and advise throughout this project. I would also like to thank Dr. Val Standon for the information she provided about Moorhouse Wood and all the other people who lent a hand whenever it was needed.

Contents

Page
Abstract i
Acknowledgements ii
List of Tables 3
List of Figures 4
List of Appendices 5
1.(1) Introduction 6
2.0 Site Description 10
3.0 Methods and Materials 14
3.1 Vegetation sampling. 15
3.2 Environmental measurements. 16
3.3 Analysis - 3.3.1 Decorana. 17
3.3.2 Canoco. 17
4.0 Results 18
4.1 Affects of fragmentation on microclimate at the edge 18of the woodland.
4.2 Affects of edge and edge related environmental variables 23on ground flomal composition.
4.3 Affects of edge and edge related environmental variables 34
on ground floral structure -
4.3.1 Chi-Square analysis. 34
4.3.2 Two way analysis of variance. 39
5.0 Discussion 44
5.1 Microclimatic changes at the edge of the woordand. 44
5.2 Affects of edge and edge oriented environmental variables 46on plant community composition-
5.2.1 Variation in canopy composition with 47distance from the edge of the wood.
5.2.2 Affects of edge related environmental 48
variables on ground flora community composition.
5.3 Affects of edge and edge oriented environmental variables 52on ground flora community structure-
5.3.1 All ground flora species. 52
5.3.2 Rubus fruticosus and Milium effusus. 54
Summary 57
References 58
Appendices 62

List of Tables

3.1 The Domin scale of species abundance.
4.1 Two way ANOVA illustrating the significance of variation in environmental variables between transects.
4.2 Eigenvalues of the first four principal axes of the DCA of canopy data.
4.3 Eigenvalues of the first four principal axes of the CCA, plus values for percentage of variation deseribed by each CCA axis.
4.4 Canonical coefficients and t-values for each CCA axis.
4.5 Ranked correlation of species. Domin scores.
4.6 Chi-square and P-values illustrating significant variation within each vegetation height category, with distance into the wood.
4.7 Two way ANOVA illustrating the significance of variation in mean height of vegetation with distance into the wood.
4.8 Chi-square and P-values illustrating significant variation within each vegetation height category, with variation in environmental variables.

List of Figures

2.1 Photographs of the Northern edge of Moorhouse wood.
4.1 Variation in envirommental variables with distance from the edge of the wood.
4.2 Contour diagrams illustrating variation in envirommental variables with distance from edge of wood.
4.3 DCA ordination diagram of samples/quadrats along the first and second principal axes of variation.
4.4 DCA ordination diagram of samples/quadrats along the first and third principal axes of variation.
4.5 CCA ordination diagram with sample scores and envirommental biplots for principal axes one and two.
4.6 CCA ordination diagram with species scores and environmental biplots for principal axes one and two.
4.7 Variation of total vegetation touches, in all height categories at 0, 20 and 60 m into the wood.
4.8 Variation of Rubus finticosus touches, in all height categories at 0,20 and 60 m into the wood.
4.9 Variation in mean height of total vegetation Rubus fruticosus and Milium effusum with distance into the wood.

List of Appendices

1. Environmental variable seores for all quadrats plus correbation coefficients.
2. Total tree density and basal area values for each quadrat.
3. Sample scores on the first four axes of DCA.
4. Species variable codes used in DCA.
5. Tables of observed and expected numbers plus chi-square values for touches of a. total vegetation b. Rubus fruticosus and c. Milium effusum at each distance from the wordland edge.
6. Tables of observed and expected numbers plus chi-square values for touches of total vegetation at each height and within each category of a soil organic content
b. soil moisture content \mathbf{c}. air temperature d. soil temperature e. illumination and f. P.A.R..
7. Species codes for CCA.
8. Ranked correlation conefficients of species abundances and environmental variables.

1.0 Introduction

Vegetation at deciduous woodland margins in the Northern Hemisphere is often clearly distinct from that of the woodland interior (Matlack 1994). Both in their structure and composition, all levels of vegetation frequently exhibit striking changes where they are exposed to microclimatic gradients and therefore the changes in resource availability, which exist over the boundary between fragmented woodland and surrounding habitas. This phenomenon has been widely studied in many types of forest and woodland ecosystems (Matlack 1994, Laurance 1991, Williams-Linera 1990), however it has often been the case that these studies have focused primarily on the effect of edge creation on woody species and particularly the canopy (Wales 1972). A large number of different factors affect the way in which an area of woodland may respond to the creation of an artificial edge due to for example, the spead of agriculture or urban development. This study concentrates on the investigation of just one such woodland edge and still further on its herbaceous ground flora. Whilst it will therefore be impossible to construct any generalisations from the results of this study, it is intended that as full a picture as possible of the ${ }^{2}$ pffect of past fragmentation on the ground flora of this small area of woodland may be produced.

Throughour much of the world, both in tropical and temperate regions, the majority of our woodlands and forests have become fragmented and isolated due to increasing human development (Laurance 1991). Today in an attempt to preserve what remains of these ecosystems, reserves have been created. It has long been a matter of contention however as to the extent these isolated fragments can sustain a representative biota (Laurance 1991). The theory of Island biogeography (MacArthur and Wilson 1967) has, in the past, been applied to the behaviour of these fragments and serves to some extent to explain why population dynamics within an isolated woodland area are fundamentally altered. Just as on an istand, gene flow between populations of species confined to woodland ecosystems is restricted. Unlike an island however, an area of
fragmented woodland is usually surrounded by modified habitats which contain components capable of invasion into the woodland, particularly as enviromental conditions at the woodland boundary are often $\notin f f e c t e d$ in the invaders favour.

In order to protect and conserve diminishing woodland and forest areas it is extremely important to establish amongst other things; 1 . how and to what extent vegetational composition and structure of a woodland area alters from the bounghy to the interior and 2. whether this is related in any way to microclimatic changes caused by the influence of adjacent conditions. Although many studies of this type have been completed in the past, there has been a conspicuous tack of agreement in the details of such factors as; width of the microclimatic transition zone at the woodland/field boundary, relative importance of particular microclimatic features and the extent of invasion by generalists from other communities (Matlack 1993). Equally there has been a particular lack of information concerning the role of the 'edge effect' in the ecology of forest herbs and the ground foral community as a whole (Dunne and Picketl 1985).

Those studies which have been completed have shown that the picture of environmental and plant community changes at a woodland or forest edge is very complex. As most of our pristine forest ecosystems now survive only in the tropics, this is where most work in this area has been completed. In 1990 Williams-Linera published the results of a major study of vegetation structure and environmental conditions of forest edges in Panama. This study reported, amongst other effects, an increase at the boundary in solar radiation, air temperature, wind velocity and rainfall reaching the soil in comparison to the forest interior, it also reported a decrease in humidity at the boundary. Most of these microclimatic changes hovever were found only up 101.5 metres into the forest. Vegetation structure was found to be altered at the boundary where there was an increased density of trees of $<10 \mathrm{~cm}$ in diameter and where the canopy was found to be most open. In 1991 Laurance reported similar environmental changes, however in stark contrast to the Williams-Linera study (1990), where no evidence of compositional
change was reported, this author demonstated an elevated abundance of light loving and pioneer species at the forest boundary. Other studies have disagreed with the envirommental dala presented by both these authors and reported microclimatic changes up to 40 metres into forest areas (Matlack 1993). Despite their differences, most studies agree that fragmentation is likely to have more serious consequences in temperate climates than in the tropics. In complex tropical ecosystems resistance 10 alteration is high and regrowth of vegetation at the boundary is rapid, decreasing the chance of a significant shifi towards nonrainforest vegetation. Less complex deciduous ecosystems are believed to be more susceptible to invasion and are slow to replace damaged vegetation at the boundaries.

Many studies completed in the Northern Hemisphere have agpeed with the above hypothesis to some degree however, most have been equally ambiguous in their results. Some studies reported microclimatic alterations up to 50 metres into a woodland (Matlack 1993) whereas others found alterations only up to 20 metres from the edge (Wales 1972). Behaviour of a woodland ecosystem at any particular time and as a result of the creation of an artificial edge will often differ depending upon numerous variables including time since creation, level of disturbance, orientation and size of the fragment (Janzen 198.3). These and other variables may have important and significant affects and are often responsible for much of the disagreement between reports. Studies completed in deciduous woodlands have frequently demonstrated much greater 'edge effects' on a south facing and therefore more sunny edge than on a North facing one (Wales 1972). Equally a younger edge which has had little time for regrowth is characterised by much steeper envirommental gradients across the boundary and is likely to show stronger vegetational gradients (Matlack 1994).

In general many of the responses of woodland vegetation to fragmentation in the temperate region appear similar to those in the tropics i.e. higher densities of saplings and shrubs on the wordland margins and a more open
canopy (Wales 1972, Matlack 1994). There is very little information however to indicate how ground florat composition and structure might be effected on the edge of a woodland fragment. In the past some authors have found substantial alterations in species composition at the woodland edge, with the presence of greatly increased numbers of shade intolerant species (Wales 1972). Some have suggested that this is due to invasion of species more typical of open habitats and have reported differing composition, density and form of vegetation on borders (Gysel 1951). Others have found no species present at the edges of a woodland which are not present in the interior and thus believe that the edge offers no opportunity for colonisation from the outside (Matlack 1994). Once again the affects of the creation of an artificial edge on ground vegetation seem likely to vary considerably with each individual case due to the large numbers of influencing factors.

In the British isles most of our woodland areas are no longer original ancient woodland. This study concentrates on an area of secondary woodland and aims to establish the fundamental patterns of variation within the ground vegetation and it's microclimate, which may be associated with distance from the elge of the woodland. No comparison is made with other sites due to the short duration of the study and therefore no comment is made concerning the affects of orientation or age of the edge. The aim of this study is simply to provide an in-depth picture of the effects of this particular edge on the woodland ground flora, it's microdimate and the ir interaction.

2.0 Site Description

The study was conducted in an area of woodland situated between Durham and Sunderland (NZ310460) known as Moorhouse Woods (see fig 2.1).

The woodland was selected partially due to its convenient position, but primarily because its northerly edge provided the most suitable site for a study of this kind in the vicinity of Durlam.

The woodland covers an area of appoximately 8.3 ha and is roughly square in shape. The area is bordered on three sides by arable farmland and on the fourth, (used in this study), by closely grazed pasture.

The site is owned by the National Tiust and leased to the Durham Wildlife Trust. The history of the area is therefore fairly well documented. Today the site contains semi-natual mixed deciduous woodland believed to have been planted in the eighteenth century on an ancient woodland site, however the documented history of the site extends as far back as the sixteenth century. The woodland site would originally have been part of the Ramon Park and Mallygill wood complex but was cut off from these riverine areas by the construction of the A1(M). Moorhouse wood is said to be shown on a map of 1570 and its boundary appears on Armstrong's map of 1776. On the Tithe Plan of 1846 the area is shown as partly wood and partly plantation. Evidence that mining has occurred in the woods at some point is found on a map of 1896 which shows an old coal pit. The woodland is now befieved to be suffering some subsidence. The remains of a building, a coal washing pit and a mine shaft are found on the east corner of the wood.

During the Second World War the majority of the woodland was felled but was later partially replanted and partially left tor regrow from cut stumps. The current northerly edge, used in this study, has therefore been present for at leas the past 4(1-50 years.

Figure2.1 Photographs of the Northern edge of Moorhouse wood.

Geologically the area is described as coal measure shale overlain by boulder clay. At least one small gill runs through the wood cutting through shale and exposing coal seams although this dries up in the summer. Two public footpaths also cross the woodland and the area is well used by local people although it is not believed that illegal felling in a major problem.

Biologically the canopy is dominated over much of the area by Quercus petraca (sessile oak), although a wide variety of other species occur including Acer pseudoplatanus (sycamore), Ulmus procera and U. glabra (elm and wych elm), Fraxinus excelsior (ash), Fagus sylvaticus (beech), Castanea sativa (sweet chestnut), Cratuegus monogyna (hawthorn) and Carpinus betulus (hombeam). Understorey species include Ilex aquifolium (holly), Corylus avellana (hazel), Crataegus monogyna (hawthom), Sambucus nigra (elder) and some Malus sylvestris (crab apple). Ground floral species, the subject of this study, are varied and include Mercurialis perennis (dog's mercury), Anemone nemorosa (wood anemone), Galium odoratum (sweet wood ruft), Chryosplenium oppositifolium (opposite leaved golden saxifrage), Oxalis acetosella (wood sorrel), Viola riviniana (dog violet), Geum urbanum (wood avens), Geranium robertianum (heri) mbert) and Veronica montana (wood speedwell). Despite this wide variety of ground floral species, disturbance in the wood continues at a constantly high level and thus, as with many semi-natural woodlands, the ground vegetation is dominated by only a few species including Rubus fruticosus (bramble), Hedera helix (ivy) and Milium effusum (wood millet).

The study site was chosen due to it ${ }^{x}$ suitable length and the fact that unlike so many other woodland edges bordering farm land, it had not been completely embedded by the planting of C. monogyna bushes. Within the bounds of this study it was obviously necessary that any edge used should be as natural as possible.

Most of the information in this site description was provided by Dr. Val Standen (chairperson of the reserve management committee) in a document produced in 1993.

3.0 Materials and Methods

All field work was conducted in the period from the beginning of June, when the canopy was considered to be fully developed, until mid July. It has been demonstrated that even in the winter, a northern hemisphere deciduous canopy can reduce light levels incident upon the ground flom by up to 30% (Matlack 1993) and probably affect other environmental vamables equally. Despite this it was fell that the study would be most successful in exposing any edge orientated patterns in the ground floma if conducted when there was maximum contrast in environmental conditions between the edge of the woodland and the interior, i.e. after canopy closure. Whether the enviromental conditions at this time of year are of either equat or greater importance to ground fora performance than those at other times is discussed later. It was not possible however to establish, within the scope of this study, the amual patterns of enviromental change in this woodland or their ecological significance. It is therefore assumed that envirommental conditions measured are responsible for patterns found in the vegetation.

Prior to vegetation sampling, the site was explored on foot and a species list compiled. Both at this time and during vegetation sampling all vascular plants and bryophytes found were identified to species level where possible. Vascular plants were mostly identified in the field using Clapham, Tutin and Mooy (1987), bryophytes were mainly returned to the lab for identification using Smith (1978). Many species which would have been more difficult to identify earlier in the year were in flower and presented no difficulties, however some such as the Willow herbs which had yet to flower were recorded simply as Epilobium spp. Micospecies of Rubus fruticosus and Rosa canina were not separated. Nomenclature of all higher plants follows Clapham et. al. (1987). Bryophyte nomenclature follows Smith (1978).

The study site consisted of an array of sixty $1 \times 4 \mathrm{~m}$ quadrats giving each quadrat an area of $4 \mathrm{~m}^{2}$, that generally regarded as sufficient to
be representative of the woodland ground floral community (Rodwell 1991, Mueller-Dombois and Ellenberg 1974)). Quadrats were arranged in six transects running parallel to the edge of the woodland and at $0,5,10,20,40$ and 60 metres from it. The ten quadrats within each mansect were placed at 10 metre intervals and were rectangular, as opposed to square, so that close to the edge of the woods, quadrats in adjacent transects were as widely spaced as possible.

3.1 Vegetation Sampling

At each quadrat several measures of the vegetation both in and around the quadrat were taken. A species list was constructed and abundance of each species was quantified using the Domin scale (table 3.1). All shrubs over 0.5 metres high, within a 1×8 marea centred on each quadrat, were identified and noted. The canopy in the vicinity of each quadrat was described using a point centred quarter method (Cottam et. al. 1953). This technique divides the area around the central point of the quadrat into four equal segments using the cardinal points of the compass. The nearest tree to the cental point in each yuater is then identified and ifs distance from that point (in metres) plus if girth at breast height (1.5 m from the ground) are measured.

Table 3.1 The Domin scale of species abundance.

The Domin Scale

1
2
3
4
5
6

7
8
9
10
\% Cover
$<4 \%$, 1 or 2 individuals
$<4 \%$, a few individuals $<4 \%$ numerous individuals

4-10\%
$10-25 \%$
$25-33 \%$
33-50 \%
$50-75 \%$
$75-90 \%$
$90-100 \%$

In order to gain an insight into the structure of the vegetation at each quadrat 20 point quadrats were also positioned, equally spaced, within the boundaries of each $1 \times 4 \mathrm{~m}$ quadrat. The structure of the vegetation at each point quadrat was recorded by placing a pole marked in centimetre divisions into the vegetation and noting the height of every touch up the pole and the identity of the touching species.

3.2 Environmental Measurements

For each quadrat seven environmental variables were measured. Soil moisture content, soil organic content and pH measurements were made from a single soil sample taken from the 10 p 10 cm of soil in the centre of each quadrat. All soil samples were taken on the same day to eliminate possible problems arising due to rainfall ete. The soil was weighed, ready for oven drying and pH readings were laken, on the same day as collecaion. This was intended to ensure no alterations in these variables had oceurred by the time measurements were made. After the removal of plant material and mixing with an approximately equal volume of distilled water, the pH of each soil sample was measured using a standard glass electrode pH meter. To detemine soil moisture content, soil samples were dried in an oven at $80^{2} \mathrm{c}$ for 48 hours then re-weighed. To detemine soil organic content samples were ashed in a muffle oven at 650 for for 2 hours.

The other envirommental variables considered were illumination, PAR and air temperature at the level of the ground vegetation and also soil temperature in the lop 5 cm of the soil. On four sunny and four cloudy days during the period fiom the beginning to the middle of July, all four variables were measured at the sme time, at each quadrat, at some point between $12 \mathrm{a} . \mathrm{m}$. and 2 p.m. Each variahle was therefore measured eight times at each quadrat. Illumination and P.A.R. were measured using a Macam quantum radiometer/photometer model Q101. Air and soil temperature were measured using an Ebsero temperature meter. In analysis, the average of 'sunny day' means and 'cloudy day' means were used for these variables to give a representative measure
of their average value throughou the summer. Had it been possible, measurements of red and far red light would also have been acquired to give some indication as to how the quality of light changed with distance from the edge of the woodland, unfortunately the necessary equipment was not available.

3.3 Amalysis

Environmental and species data were first analysed with the use of univariate methods including two way analysis of variance and Chi-square tests. Multivariate methods were then employed in the case of some data sets to achieve more detailed results.
3.3.1 Decorana (Detrended correspondence analysis or DCA)

This is an eigenvector ordination technique which extracts the principle axis of variation within the data set (Hill 1979). Although based on reciprocal averaging, it has been retined to avoid the problems of arch distortion and compression at the end of the axis (Hill \& Gauch 1980). An ordination diagram is produced, in which similar species or samples are clumped together and dissimitar ones are apart.
3.3.2 Canoco (canonical correspondence analysis or CCA)

This technigue is a combination of ordination and multiple regression (Ter Bratk 1988). It explains variation in floristic composition by ordination axes that are constained to be linear combinations of environmental factors. It assumes a response model common to all species and the presence of a single set of environmental gradients to which all species respond. Results are displayed as an environmental hipolt in which the species or samples are ordinated and the envirommental variables are represented as arows. The length and direction of the arrows indicates the degree of their contribution to the patterns exhibited by the principal axes.

4. $10 \mathbb{R}$ esults

4.1 Aftects of Frangmentation on Microclinaate at the Edge of the Woodlarod.

Overall, data collected from seven of the envirommental variables, namely P.A.R., illumination, soil temperature, air temperature, pH , soil moisture and soil organic content, indicated some striking changes in enviromental conditions with distance from the edge of the wood. Initial comelation of each variable with distance from the edge however, revealed few strong corretation's, with only air temperature showing a corretation (negative) of greater than 0.5 (tables of enviromental measurements and correbation's may be found in appendix 1).

Further analysis of the data using two way analysis of variance did indicate signifizant variation in six of the above seven variables and demonstrated that the apparent lack of comelation with distance was due, in the most case, to the fact that variables did not decrease or increase consistently with distance into the woodland. Instead, the fiffect of distance on many variables was chatacterised by a mpid change at the wondland edee followed by stabilisation. Table 4.1 shows probability values generated by the two-way ANOVA, which indicate a highly significant difference in envirommental conditions between the transects and therefore with distance into the woodland (variation within each transect was found of be insignificant). Only pH showed no apparent variation attributable to distance from the edge of the wood. Temperature and light reading showed particularly high significance values, demonstrating a very strong trend to decrease with distance from the edge of the woodland. Soil moisture and organic content were also significamt in this respect, although to a lesser degree.

Figures 4.1 and 4.2 illustrate the patterns of variation in the above envirommental variables with distance from the edge of the woodland. Having estahlished the lack of variaton within tansects, mean values were used

Figure 4.1 Variation in Envirommental vambles with distance fom the edge of the woodland.

Variation in Illumination and I'.A.R. with Distance fiom Edge of Woad

Variation in soil and Air Temperature with

 Distance from Edge of Woad
$\frac{\text { Variation in Soil Moisture and Organic Content }}{\text { with Distance from Didge of Wood }}$

—A-agcom -a- mactan

Distance into wood (m)

Figure 4. 2 Contour diagrams showing variation in environmental variables with distance from edge of wood.
"®्ष \mathbb{V}^{2} dI

Distance into wood

Distance into wood (m)

distance into wood (m)

Distance into wood (m)

for the production of these graphs. In the case of illumination and P.A.R., figure 4.1 shows the presence of a transition zone between 0 and 5 metres where there is a sharp decline in the value of these variables. This is followed by a more gradual decrease between 10 and 40 metres. A similar pattern is evident for air and soil temperature although for soil temperature, the ransition zone seems to stretch from 0 to 10 metres into the woods. The pattern of variation in soil moisture and organic content with distance from the edge appears to be much less distinct. There is a sharp rise in both of these variables until the 5 metre mark and a slight overall increase in their value from the edge of the woodtand to the interior.

Table 4.1 Two-way analysis of variance illustrating significance of variation in environmental variahles with distance into the wond.

	degrees of freedom		
	5	Palue value	
Illumination	5	7.75	$2.49 E-05$
P.A.R.	5	8.32	$1.25 E-05$
Soil Temperature	5	11.56	$3.24 E-07$
Air Temperature	5	18.52	$5.96 E-10$
Soil Moisture	5	4.87	0.0012
Organic Content	5	3.19	0.015
pH	5	1.25	0.30

The contour diagrams in figure 4.2 use data from all quadrats as opposed lo mean values and illustrate, in detail, the pattems of variation in some of the environmental variables. Again it is clear that many show distinct upward or downward trends particularly in the first 10 metre from the edge of the wood. What is also apparent in both figures 4.1 and 4.2 is the strong correlations which exist between many of the envirommental variables themselves (see appendix 1 for details). Illumination and P.A.R. are almosi perfectly correlated and correlations also exist between both soil and air temperatare and
between soil moisture and organic content. Other high correlations, as expected, were air temperature wioh hoin illumination and P.A.R. (0.7 and 0.71 respectively) and soil temperature with illumination and P.A.R. (0.58 and 0.56 respectively). Soil temperature was also correlated with soil moisture levels.

Considering that the purpose of this study was to establish e the affects of edge aftered microclimate on the strocture and composition of the ground flora, eanopy rebated variables were also included amongst the environmental conditions which required characterisation. From measurements taken by the point eentred yuater method, total basal area (m ha- ${ }^{-1}$) and tree density (ha- ${ }^{-1}$ were calculated for each quadrat (appendix 2). Two way analysis of variance of these values however, demonstated that neither varied significantly either within or between the transects. Figure 4.2 alsu demonsarates the lack of any coherent pattern in these variables with distance into the wood

4.2 The Affects of Edge and Edge Related Environmental Variables on

 Vegetation Composition.In order to expose patterns of variation within the ground floral composition and any relation these might bear to edge orientated environmental gadients, malivatiate analysis techniques were employed. CCA on Canonical Correspondence Analysis was used for this purpose, however prior to this a DCA or Detrended Comespondence Analysis was used with canopy data, in order to extract the dominam patterns of variation within the camopy. Individual species frequency, density and basal area values at each quadrat were used. It was felt that, as varation in total hasal area and canopy density alone had proven to be unconnected fo distance from the edge of the word, wher more imporant axes of variation may be extracted in this way. These axes might possibly represent important environmental variables as far as the microclimate of the ground flom was concerned and therefore might be important of include in the CCA.

4.2.1 Detrended Correspondance Analysis

Table 4.2 shows the eigenvalues of the first four principal axes of variation extracted from the canopy data by DCA. From this table it can be seen that the first two axes describe the majority of the variation found.

Table 4.2 Eigenvalues for the lst Four Principal Axes of the DCA analysis of canopy data.

Axis	Eigenvalue
1	0.859
2	0.527
3	0.389
4	0.280

Figure 4.3 shows a DCA ordination diagram of all samples i.e. quadrats, along the fars and second principal axes of variation within the canopy. Sample codes correspond to quadrat numbers i.e. $1-10$ equals the transect at the woodland edge, 11-20, at 5 metres from the edge etc. A number of code numbers are deleted for clarity, however a full table of sample seores for the first four axes of the DCA can be found in appendix 4. This diagram also omits three outlying samples which were highly unusual in their canopy composition. Inspection of the ordination diagran in conjunction with ranked species variable scores, also produced for the first four axes by the DCA, gives an indication of the pattern of canopy variation within the samples and therefore whether this is related to distance from the edge.

The first principal axis isolates, at its positive end, quadrats which are dominated by I. apuifolium, C. monogyna and F. excelsior (39, 59 and 6(0). The cluster towath zero on this axis $(54,49,13)$, is characterised more by Sorbus ancuparia (rowan), Q. perbea and C. monogyna. The majority of quadrats however are not well separated by this axis and are clumped at the lower end. These are chameterised by a mixture of common deciduous trees including Q. petraca, C. monogyna, A. pruedophamus and U. glabra (To make the sample numbers within this group more distinguishable many have been cut out). Although
it is not completely clear in figure 4.3 , detailed inspection reveals that all but one of the 0 and 5 metre quadrats are found in this cluster.

The second principal axis helps to separate the largest cluster a litte more athough distinctions are still unclear. At the negative end quadrats containing Samhucus migra (elder) are isolated (40, 21) and at the top of the eluster three groups have begun to develop. Group A are those which amongst other species contain A. palaelloplanams. Quadrats containing Bemla pendula (silver birch) are found in group B and those in group C and generally dominated by Q. petraea, C. monogyna and U. glabra.

Figure 4.4 is another ordination diagram of samples, this time using principal axes one and three. Axis I describes the same variation as above, Axis three however provides a much higher degree of sample separation. This time at the positive end of the axis, quadrats which contain Carpinus betulus (hombeam) and sometimes S. migra $(21,22,46)$ are separated from those which are dominated by the more common combinations of A. psighoplatams, Q. petraea, C. monogyna ete.. At the bottom of the 3rd axis quadrats are dominated by C. monogyma and A. palyfloplanams ($x, 4,43,45,25$) and in the middle are two groups, yuadrats containing Q. petraca and C.monogyna (32. 3x, 53, 50, 35) and those containing F. excelsior and C. monogyna (58, 56, 42).

The fourth primary axis improved litte upon the separation of the samples gained in the first three axes. Quadrats which contained (Corylus avellana (hazel) were isolated $(32,38,55)$, as were those containing only Q. petraca and A. payedroplanams (4, 6, 7). Overall in terms of distance from the edge of the woodland, very bew clear pattems were apparent and it would seem that the canopy is unaffected by proximity to the edge of the wood except in one respect. Whitst it would non be true to say that most C. monogyad, Q. petrace and A. pseudoplatanus occur along the edge of the word in would seem whe the case

that most edge quadrats ate dominated by combinations of these trees e.g. 1 and 5

- C. momogymand Q. petraer, 4 and 6-Q. peadea and A. piewdoplatamus, 8 and

9 - C. monogyna and A. peudoplatams, 7 - Q. peiraca C. monogyna and A.pseudoplatamus. There are no oceurences of 1 . aquifolium, S. nigra, S. aucuparia, F. excelsion, F. sylvatica, C. avellana, C. betulas, B.pendula or U. procera within the first tansect, a stantion which may refled these species inability 6 survive in the tansition zone at the edge of a woodland.

The first three principal axes of the DCA were considered to adequately describe the variation in the woodland canopy and were used as additional environmental variables in the CCA.

4.2.2 Canonical Correspondance Analysis

This technique, a multivariate direat gradient analysis method, allows variation in species and species abundance, in this case between quadrats, to be directly related to envirommental gradients. Data from all quadrats and eleven environmental variables were initally included. These included the seven variables discussed in section 4.1 , distance and the three DCA axes.

Table 4.3 gives eigenvalues and the percentage of total variation in the data set aceonated for, by each of the four principal axes. As before, the eigenvalues indicate by their size, the relative imporance of each of the four axes in describing the variation between samples. Fom these values it would seem that there is litte difterence in the importance of the four although, as always, the first describes most variation. The percentage values when summed come to substatially less than 100% indicating that envionmental varables other than those explored here are casing a substantial quantity of the variation in the data set.

Table 4.4 shows canonical coefficients and eorresponding $1-$ values for each of the environmental variables on each of the four axes. These figures give an indication of the importance of each environmental variable in explaning the sample vatian deseribed by each axis. Strictly spaking these $1-$
values can mon be used to test whether the affect of each envirommental variable on the data set is significant or not, because they are based on camonical conefficients. They may stifl give a good indication honvever as to relative importance and likely significance of each variable.

Table 4.3 Eigenvalues of the first four principal axes of the CCA, plus values for 'percentage Variation aceounted for' by each CCA axis.

Axis	Eigenvalue	Percentage Variance
	0.295	20.2
2	0.239	16.4
3	0.223	15.3
4	0.142	9.7

From table 4.4 we can see that on the first principal axis the two enviromental variables most responsible for separation of the samples are soil temperature in a negative direction and the DCA axis 2 in a positive direction. Separation on the second principal axis is strongly effected by soil temperature, illumination and DCA axis two in a positive direction and PAR, organic content and air temperature in a negative direction. Distance contributes strongly to sample separation atong axis three.

Significance of the relationship between the environmental variables as a whole and the sample variation described by both the first axis and all axes was tested using the Monte-Carlo permutation test. With 99 permutations performed, enviromental variables were found to be significantly related to sample variation on the 1st canonical axis ($\mathrm{P}=0 .(12$), and on all axes ($\mathrm{P}=0.01$).

Figure 4.5 shows the constrained ordination diagram of variation in sample data plus envirommental biplots for CCA axis one and two (biplot seores are multiplied by ten to emphasise the direction of their exfect). It is immediately elear than the prime ipal enviromental variables affecting ordination on
these two axis logether, are lemperature and light variables in one direction and moisture and organic: content in the other.

Table 4.4 Canonical coefficients and T-Values of Environmental Variables Measured by each CCA axis.

	Axis 1		Axis 2		Axis 3		$\text { Axis } 4$	
	Cacour	T-value	Cacher	T-value	ratenem	T-valus		T-value
distance	0.05 .3	0.0 .3	-10.196	-2.27	(1.419	9. 18	-10.020)	-0.36
pH	-10.120	-1.85	-0.121	-1.6.8	-10.144	-1.15	11.018	0.18
org con.	-10.12?	-11.34	-(0).233	-3.00)	-0.1.30	-3.17	-0.151	-3.61
moist con.	-10.17.3	-11.91	0.040	11.48	0.10 .36	0.12	10.191	3.58
air temp	0.103	0.48	-0.307	-2.83	0.037	0.04	-0.245	-3.51
soil temp	-0.288	-3.25	0.496	5.40	-0.086	-1.78	0.026	0.44
Illumin	-0.050	-1).3	0.410	2.35	0.298	3.24	-11.538	-4.79
P.A.R.	0.0 .50	0.3	-0.314	-1.84	-1).171	-1.87	11.5ッ゙	537
DCA Ax.l	-0.0.100	-11944	0.001	0.102	0.182	4.7	-11.1211	-2.54
HCA Ax.2	. 2×2	8.57	0.344	4.89	-0.073	-1.96	-0.05	-1.29
DCA Ax. 3	0.016	0.26	0.1154	0.83	0.003	0.10	-1.1172	-1.73

Elfectively those samples/quadrats drawn upowards, lowards the temperature and light variables, are those which contain species and combinations of species for which these resources are particularly important. The further towads the arow heads the samples ate drawn the more important these resources are to the species within them. Within the group of samples drawn out in this direction are nine of the ten quadrats which lie along the edge of the wood. Of the remaning twelve a futher five are from the 5 metre transect. It is elear that transects at or near the edge of the woodand contain relatively more species for which warmth and light are important. The species associated with these quadrats are many, athongh few ate exclusive ow the edge environment as a fex unusual interior quadrats are aho found in this group and suppont simitar ground fomat
communities. Figure 4.6 shows the ordination diagram of species scores with environmental biplots (biploi scores are multiplied by one hundred to emphasise the direction of the e effect), species codes can be found in appendix 8 . Those species which are found to be $\neq f$ ffected most by light and temperature variables and are therefore found more frequently in the three transects closest to the edge include Veronica montuna, Stellaria media, Anthriscus sylvestris, Lamium album, Bromus ramosus, Deschampsia cespitosa, Geum urbanum, Rumex sanguineus and Cerastium fontanum. Slightly further removed from the arrowheads are species such as Geramium fohertiamum, Stellaria graminea, Galium aparine and Heracleum sphondylium.

In the upposite direction, samples/quadrats which contain species to which the environmental characteristics of moist organic soils are important, are drawn out. Of the 21 samples found in this group only one is from the 0 and 5 metrok transects indicating that quadrats in the interior of the woodland contain relatively more species of this type. From figure 4.6 we can see that those species found to oceur more often in these conditions include Oxalis acetosella, Lonicera pericylmemam, Holcus mollis, Deschampsia flexuosa, Dryopteris dilatata, Dryopteris carthusiana and Lolium perenne.

Although it is clear that DCA axis two has a strong 登ffect in the positive direction of the 1st principal axis, it can be seen that this affects very few of the samples. It may be an indication however that ground flora in certain quadrats is effected by a particular and unusual type of canopy, PH and the other DCA axes do not appear to acoount for any significant quantity of the variation in the data set.

Axes three and four of the CCA analysis provided little improvement on the description of the data set gained in axes one and iwo. Samples are still dawn in different directions towards the two major groups of variables and although some further separation was ganed, it provided no greater insight into possible causal factors.

It is imporant to note at this point that for some species presence in, for example edge quadrats may be due to an association with another species as opposed to a direct preference for edge microclimate. A ranked correlation table was produced using the Domin scores of all species in each quadrat, in order to consider this possibility. Table 4.8^{5} contains those species which had a correlation grater than 0.6, this must be considered in the interpretation of these results (for complete correlation table see appendix 8). It is also impontant to consider the possibility that variation which appears to be accounted for in the way described above, may actally resuht from unmeasured envirommental variahles which happen to correspond, in their pattern of variation, with measured variables.

Table 4.5 Species with corretaion coefficients of greater than 0.0. (s = seedling)

Correlated Species	Correlation Conticient
Quercus petraea (s) - Sambucus migra (s)	0.7
Dactylus glomerata - Urica diolica	0.65
Stachys syluatica - Chypoyplenium opp.	0.7
Carpinus betulus (s) - Sambucus migra (s)	0.7
Urlica dioica - Chr ensplenium opp. $^{\text {s }}$	0.64
Viola riviniana - Valeriana officimalis	0.96
Geramiam sylwalicam - Viola rivimiama	1.0
Geranium sylvaicum - V offecinalis	0.97

E
 4.3 The Affects of Edge and Edge Related Environmental Variables on Vegetation Structure.

As herb growth performance has often been associated with envirommental gradients (Matack 1904). vegetation structure may also change with distance from the edge of the woodand. This hypothesis was tested with the use of classical statistics inchuding Chi-square and two way amasis of variance.

4.3.1. Chi-square analysis Using Distance.

Chi-square tests were carried out for total vegetation and several individual species. Cumulative numbers of touches within each transect
were used to establish if there was a significant difference in the numbers of touches of vegetation in each height eategory with distance into the wood and. Clearly this did not allow for any problems of heterogeneity wimin transects, however no patatical way round this problem could be obtained. As later two-way ANOVA analyses revealed no significant heterogeneity of mean vegetation heights within transects, it was assumed that this was not a major difficulty.

Table 4.6 gives the Chi-square values and statistical probabilities for numbers of touches of total vegetation, Ruhus fromicosius and Milium cffusum at all height categories and indicates whether there is a statistically significant variation within each height category between the different transects. In Rubus fruticosus and Milium effusum tests some height categories had to be combined due to low touch scores. Chisquare tests on many other species also encountered this problem and are non reported here due to the resultant instability of the results. Most of these species, as shown in section 4.2 are not aclually present in all areas of the sudy site.

As ean be seen from table 4.6 both total vegetation and Rubus fraticosus show signiticant variation between transects in both the lowest and the highest heght ategories. Interpretation of these values is possible with closer imspection of the original tables of observed and expected values which can be found in appendix 6.

For onat vegetation, the highly significant results in height categories $0-5 \& 5-10 \mathrm{~cm}$ are explaned by 1. a grater number of tomehes in these
categories than inspected, in the first two transects i.e. between o \& 10 m into the woodand and 2. a smatler number of tomehes in these categomes than expected, in the last three thansects i.e. $20-60 \mathrm{~m}$ into the woodand. The opposite of this pattern explains the highly significant Chi-squate values for total vegetation in height categries beaveen 3.56 .5 em, i.e. a smatler number of touches from tall

Figgore 4.7 Variation of total vegetation touches in all height categories at 0,20 and 60 meters into the woodland.

Oneters from edge of wood

20 meters firm edge of wood

(i) meters from edge of wood

vegetation than expected towards the edge of the wood and a greater number of touches fowards the interior. Intermediate height categories demonstrate no significant devation from expected values at any distance from the edge of the woodland. Figure 4.7 illustrates this general trend of more abundant, short vegetation at the worodland edge and more abundant tall vegetation in the interior.

The results for the same analysis of Rubus fruticosus structure indicated an almost identical pattern. Bramble in the lower height categories was again found to be more frequent than expected at the edge of the woodland and less frequent than expected in the interior. In the upper categories although data for the range $50-65 \mathrm{~cm}$ had to be clumped to allow the analysis, Bramble tonches recorded within the range $40-65 \mathrm{~cm}$ were similarly found to be more frequent in the interior than expected. Fig 4.8 illustrates this pattern.

Table 4.6 Chi-square and P-values illustrating any significant variation within each vegetation height category with distance into the wood.

	Total Vegetation		Rubus fruticosas		Milium effusum	
	Chi ${ }^{2}$ value	P-value	Chia ${ }^{2}$ value	P-value	Chi ${ }^{2}$ value	1 -value
0.5 cm	6.3 .14	0.01	35.95	0.101	30.07	0.01
5.111 cm	25.75	11.01	21.33	(1.01	6.38	motsig.
$10-15 \mathrm{~cm}$	3.15	now sig.	11.16	0.05	12.39	0.05
15.20 cm	8.99	not sig.	12.010	0.05	8.19	now sig.
$20-25 \mathrm{~cm}$	9.42	nousig.	6.89	notsig.	7.76	nol sig.
25.310 cm	7.44	notsig.	4.14	notsig.	10.44	now sig.
30.35 cm	0.56	nousig.	${ }^{9} .43$	notsig.		
$35-40 \mathrm{~cm}$	18.69	0.01	10.43	not sig.	110.52	1 motsig.
40.45 cm	30.8 .3	0.01	39.38	0.01		
$45-50 \mathrm{~cm}$	28.63	(1.01	12.65	0.05		
$50-55 \mathrm{~cm}$	32.72	0.01			$\{11.63$	10.05
$55-60 \mathrm{~cm}$	32.21	0.01	159.44	0.01		
60.65 cm	25.80	0.01			-	$-$

Figure 4.8 Variation of Ruhus fruticosus touches in all height categories at 0,20 and 60 meters into the worotland

Olmeters from edge of wood

20 meters from edge of wood

60 meters fromedge of woud

The only other Chi-square test which was successfully completed was that for Milium cffusum. The pattern illustrated by this analysis is much weaker, probably due to the much smaller data set. It is still true to say however that for those categories which do exhibit a significant deviation from the expected values, the causal pattern is again the same as for total vegetation and Bramble.

4.3.2. Two way amalysis of variance.

Two-way ANOVA analyses also indicated a significant change in the mean height of total vegetation and Ruhus fruticosas with distance from the edge of the wood. In these amalyses mean values from each individual quadrat were used so that the potential problem of heterogeneity within transects could be discounted. Table 4.7 shows the results of two-way ANOVA tests for total vegetation, Rubus frumicosus and Milium effusum. Inspection of the P-values 5 indicate that there is a significant difference in mean height of total vegetation and Rubus fruticosus between ransects although Milium effusum shows no such pattern. There are no significant difference values for quadrats within transects. Two-way ANOVA analyses on other individual species were not conducted due to the paucity of quadrats in which most of them oceurred.

Table 4.7 Two-way ANOVA results illustrating significant variation in Mean Height of vegetation with distance into the wood.

	degrees of freedom				F value	P value
Total Vegetation	5 and?	2.87	0.037			
Rubus fruficosus	5 ond?	4.57	0.002			
Milleum effusum	5 an?	1.17	0.30			

Having established the lack of significant variation within transects, figure 4.9 uses the mean height of vegetation for each transect to
illustrate the direction of variation in mean height with distance into the woodland. For Rubus fruticosus in particular a clear trend towards increasing mean height with distance into the wood can be seen. A bar chart for Milium effusum is also included despite the insignificance of the two-way ANOVA results. It too would seem to indicate a general trend for increasing vegetation height from the edge to the interior of the woodland.

Having established that a pattern of variation in vegetation structure does exist with distance trom the edge of the wood. Further Chi-square tests were conducted, this time lesting variation in vegetation structure with changes in environmental conditions. The aim of this was to try to establish which envirommental variables, known to vary with distance from the edge of the wood, were responsible for the changes in structure. Numbers of touches in each height category were compared for each envirommental variable, having first divided each variable itself into between three and five categories.

Table 4.8 P-values indicating the significance of variation in numbers of total vegetation touches in each height category, with variation in each of six environmental variables

	Illumin.	I.A.R.	suil Temp.	Air Temp.	Ory. come	Moist. con.
$0-5 \mathrm{~cm}$	0.01	0.05	0.01	0.01	0.01	0.01
$5-10 \mathrm{~cm}$	not sig.	notsig.	0.01	not sig.	0.01	not sig.
$10-15 \mathrm{~cm}$	0.05	not sig.	not sig.	not sig.	0.01	not sig.
$15-20 \mathrm{~cm}$	not sig.	$0.0 .5$	not sig.	not sig.	0.01	not sig.
$20-25 \mathrm{~cm}$	0.01	0.01	not sig.	0.05	0.01	0.01
$25-30 \mathrm{~cm}$	0.01	$0.0 .5$	$0.0 .5$	not sig.	not sig.	not sig.
$30-35 \mathrm{~cm}$	0.01	not sig.	nol sig.	not sig.	not sig.	not sig.
$35-40 \mathrm{~cm}$	0.01	0.0)	not sig.	not sig.	not sig.	not sig.
$40-45 \mathrm{~cm}$	not sig.	notsig.	not sig.	not sig.	not sig.	not sig.
$45-50 \mathrm{~cm}$	not sig.	notsig.	0.01	$0.0 .5$	0.01	not sig.
$50-55 \mathrm{~cm}$	not sig.	notsig.	not sig.	0.05	0.05	not sig.
$55-60 \mathrm{~cm}$	not sig.	notsig.	not sig.	notsig.	0.01	not sig.
60-65 cil	not sig.	0.05	not sig.	not sig.	0.05	not sig.

Figure 4.9 Variation in Mean Height of Total Vegetation, Rubus fruticosus and Milium effiusum with distance from the edge of the wood.

Variation In mean height of
vegetation with distance from edge of wood

Variation in mean height of Bramble with distance firom edge of wood

Variation in mean height of Wood
Millet with distance from edge of
woud

Table $4 . x$ shows the Chi-square values and their significance for all height categories in each of the six analyses completed. These analyses were only completed for total vegetation as it was felt that this would be most likely to reveal any significant patterns. Also only those variables previously demonstrated to have a strong correlation with distance and an efffect on the vegetation were analysed.

As is evident from table 4.8 most envirommental variables do not appear to affect vegetation structure in the way we would expect if they alone were responsible for the pattern found in Chi-square tests conducted using distance. Soil and air temperature and illumination and P.A.R. Iave all been shown to decrease sharply with distance from the woodland edge. If these represented the important influences on vegetation structure we would expect to see a pattern of more frequent short vegetation than expected in high light and temperature quadrats and more frequent tall vegetation than expected in lower light and temperature guadrats. This is obviously not the case and in fact there is no clear pattern of significance for any of these variabes over the range of vegetation heights. Indeed it would have been surprising had such patterns emerged as they would have suggested that higher light and temperature levels resulted in decreased growth. Soil organic and moisture content on the other hand have been shown to increase with distance from the edge of the woodland and could togically account for some of the structural changes found. No clear pattern exists in the Chi-square results for soil moisture (for ohserved and expected tables see appendix 6), however inspection of the organic content data indicates that patterns of structural variation with increasing onganc content are very similar to those seen for increases in distance from the edge of the wood. This introduces the idea that edge orientated changes in organic content mabe one of the important factors regulating overall community height however, as for vegetational composition, it is very likely that other variables, not investigated here are equally important.

5.0 Discussionn

5. 1 Microclibnatic changes at thoe edge of the woodland

The results of this study have demonstrated clear and specific alterations in several microclimatic elements at the boundary of this woodland. Many of the findings coincide with previous work, conducted in both temperate and tropical areas and suggest the existence of a 'tansition zone' where important environmental variables are subject to the 'edge effect'. The boundary of a woodland separates the wide climatic fluctuations of surrounding open habitats from the relatively stable enviroment of the woodland interior. It is crossed by gradients of light, temperature, moisture ete. which have often been implicated in the performance of forest herbs (Matlack 1994). In this study significant gradients in six such microclimatic and edaphic factors have been exposed.

At the northerly edge of Moorhouse wood, illumination, P.A.R., air temperature and soil temperature were all shown to be significantly greater than in the interior. Illumination and P.A.R. decreased rapidly over a 5-10 metre distance and continued to decline more gradually further into the wood. Similarly soil and air temperatures fell sharply from the edge of the woodland to the interior whilst soil moisture and organic content underwent a slight but significant increase in this direction. It would appear that a microclimatic transition zone approximately 10 metres wide is in place at the northem boundary of Moorhouse Wood.

These results are mostly as predicted and compare favourably with previous studies both of woodland edges and of woodland gaps. Gap dynamics have been widely studied and although the changes in microclimatic conditions within a gap are usually weaker than at an edge, there are many similarities. As reported eartier, studies conducted by Latuance (1991) and Williams-Linera (1990) at tropical forest margins, illustrated very similar responses to fragmentation as those described in this study. Increases in air temperature and solar radiation, and demeases in soil moisture were all apparent at the forest edge
(Laurance 1991). An air temperature tansition zone between 2.5 and 12 metres into the forest was recorded and overall, envirommental conditions were said to be significantly $\neq f$ fected up to 20 metres into the woodland (Williams-Linera 1990). Collins and Pickell (1987) reported increased radiation levels reaching the herth layer in gaps in a northern hemisphere hardwond forests and a variety of other authors (Matlack 1993, Runkle 1987, Moore and Vankat 1987) have described edge and gap effects in light, temperature and monsture variables.

At an artificial edge, where solar radiation enters the trunk space, the woodland floor may become a thermodynamically active surface (Matack 1993). The increased adation load will naturally result in the higher illumination and femperature levels freguenty reported. In this study however, decreased soil moisture levels were also recorded; this disagrees to a harge extent with many past studies (e.g. Willams-Linera 1990). Cullins and Pickett (1987) reported that soil moisture levels on the edge of a woodland will often increase due to a greater amount of precipitation reaching the woodland floor. Soil moisture depends on precipitation throughfall, evaporation and transpiation. A canopy intercepts more ainfall and returns a large proportion to the atmosphere without it ever reaching the ground. The apparent discrepancy between this and other reports may be due to a number of factors but is most likely to be explained by; I. In the present study, canopy density does not increase as expected with distance from the woodtand edge. As a result there is no reason to expect more rainfall to reach the soil at the boundary. 2. soil moisture measurements were taken from the top 10 cm of the soil. As other authors have deseribed, moisture in the top few centimetres is often decreased at the edge of a woodland due to increased evaporation, particularly during the summer months (Laurance 1991, Auclair 1975). The results presented here may simply not reflect the prevailing soil moisture conditions throughou the year or at a greater depth.

Very few studies have included measurements of soil organic content in their description of the woodland boundary. The fact that this
variable seems to run parallel with soil moisture levels however, is not surprising. Cool damp conditions often hinder the process of complete decomposition of plant material and we would therefore expect to encounter higher levels of organic matter in the moist soil of the wondland interion.

Within this study three environmental variables did not show a significant edge oriemation. The fact that this is an area of secondary woodland and is a highly and comtinually disturbed habitat probahly explains why no clear patterns of canopy density and basal area, with distance from the edge of the wood, were found. The lack of amy pattern of variation in pH is a litte harder to explain but probably reflects the lange number of factors which can influence this variable e.g. underlying parent material, historical influences etc.

One thing which is clear from both this and previous work in this area is that very few genematisations can be made. Each microclimatic element responds differently to the creation of an artificial edge and responses can vary widely between differen sites. Matack (1993) recorded elevated light zones extending 35 minto worded sites but conceded that even within this she study of temperate deciduous forests, there was comsiderable site-to-site variation in the strength and chamater of edge effects. Other studies have reponted edge effects reaching only 1 (Om into wooded areas (Wales 1972), whilst some have found effects at more than 50 m into a woodland. The magnitude of alteration of the environment due to edge creation depends on many things e.g. shape, size, age, aspect, lime of year, camopy densily etc. (Collins and Pickelll9r7). South facing edges in the nothern hemisphere are exposed to a greal deal more direa bean radiation than nomb facing edges and as a result tend to show much greater edge effects and wider micreclimatic tamsition zones (Matlack 1994). The fact that this study was conducted on a north facing edge however, indicates that the consequences of fiagmentation, whilst possibly weaker on a north facing edge, may stifl be considerable. Age of the woodland is atso an importan consideration as regrowth at the woodland boundary will amelionate the climatic influence of
variable seems to run parallel with soil moisture levels however, is not surprising. Cool damp conditions often hinder the process of complete decomposition of plant material and we would therefore expect to encounter higher levels of organic matter in the moist soil of the woodland interior.

Within this study three environmental variables did not show a significant edge orientation. The fact that this is an area of secondary woodland and is a highly and continually disturbed habitat probably explains why no clear patterns of canopy density and basal area, with distance from the edge of the wood, were found. The lack of any pattem of variation in pH is a little harder to explain but probably reflects the large number of factors which can influence this variable e.g. underlying parent material, historical influences etc.

One thing which is clear from both this and previous work in this area is that very few genealisations can be made. Each microchmatic element responds differently to the creation of an artificial edge and responses can vary widely between different sites. Matack (1993) recorded elevated light zones extending 35 m into wooded sites but conceded that even within this one study of temperate deciduous forests, there was considerable site-to-site variation in the strength and character of edge effects. Other studies have reported edge effects reaching only 10 m into wooded areas (Wales 1972), whilst some have found effects at more than 50 m into a woodland. The magnitude of alteration of the environment due to edge creation depends on many things e.g. shape, size, age, aspect, time of year, canopy density etc. (Collins and Pickett1987). South facing edges in the northern hemisphere are exposed to a great deal more direct heam radiation than noth facing edges and as a result tend to show much greater edge effects and wider microclimatic transition zones (Matlack 1994). The fact that this study was conducted on a nonth facing edge however, indicates that the consequences of fagmentation, whitst possibly weaker on a north facing edge, may still be considerable. Age of the woodand is also an important consideration as regrowth at the woodland boundary will ameloorate the elimatic influence of
surrounding habitats on the woodland interior. Once again the microclimatic responses recorded here may be weaker than in other studies due to the age of the edge, but show that fifty years on from edge cration, woodland microclimate can still be affected by fragmentation.

The strength of microclimatic responses at a woodland edge and the resultant width of transition zone will have important affects on the woodland ground foral community and therefore the ability of an area to sustain a representative biota. It is important to remember though that the conditions reported here refer only to the summer months. During the winter the conditions on a north facing edge may be influenced by strong prevailing winds causing large drops in temperature and increases in soil moisture, even in the top 10 cm (Laurance 1991). Conditions during the spring and summer months are those most likely to affect the impontant growth and reproductive stages of herbaceous plants; conditions at other times however, may also play an important role in the distribution of woodland herbs. Many other aspects of the microclimate, not explored here, may also have an influence. For example it has been reported that light reaching the herbacens layer in forest gaps is emriched in far red, green and blue light (Collins, Dunne and Pickett 1985). Consequences of edge formation such as these are also bound to influence the distribution of woodland herbs.

5.2 Affects of edge and edge oriented envirommental variables on plant community composition.

Composition of the ground floral community at the northern boundary of Moorhouse Wood was demonstrated to be significantly Qffected by environmental condtions imposed by the 'edge effect'. Multivariate analysis techniques allowed the description of the variation in community composition with distance into the wood and demonstrated how this was related to microclimatic and edaphic variables.

It was not the intention of this study to look at canopy composition except in relation to its fffect on the ground flora. The DCA was
undertaken simply to highlight any canopy patterns which might be relevant to the distribution of the ground floral species. In the process however, a picture of how canopy composition itself varied with distance from the edge of the wood was constructed and requires some discussion.

5.2.1 Variation in canopy composition with distance from the edge of the wood

Results of the DCA appear to suggest that many traditional deciduous woodland species are unable to regenerate at the boundary of a fragmented woodland. There has been ample time since the creation of this edge for the establishment of new individuals of many species e.g. S. aucuparia, F. sylvatica, C. betulus, and yet there is no evidence whatsoever that these species are recolonising this boundary. There are several possible explanations for this;

1. Disturbance levels at the edge of the woodland are too great to allow establishment.
2. Enviromental conditions at the edge are mo longer suitable for the success of these species.
3. They are out-competed by species which are better adapted for life on the edge'. It is most likely that a combination of these factors has resulted in the absence of many species from the woodland boundary. Some evidence of this can be obtained by studying the ecology of those species which dominate at the edge and those which seem whe exeluded.

Two of the dominant species in edge transects in this study were A. pseudoplatamus and C. momogyna. Both of these possess characteristics which would suit them to the edge environment. In Grime, Hodgson and Hunt (1988) A. psendoplatanus is described as a common seedling weed which establishes easily in unshaded conditions. The seedling/are capable of more rapid growth than most British tree species and it is reported that they are usually the first to colonise highly disturbed sites. C. monogyma is also reponted to be highly tolerant of disturbance, occuring frequently in heavily grazed hahitats. Some of the
C. monogyna on the edge of this site may have been planted but this would only account for a small proportion. The species is described as frequent in unshaded positions and seems to have difficulty regenerating in shaded conditions.

Species which do not occur on the edge of this worodland include S. aucuparia, F. excelsior; B. pendula and F. sylvatica. In wooded habitats S. aucuparia is reported as always forming part of the wood itself rather than the serub and requiring shaded conditions for establishment and seedling growth (Grime, Hodgson and Hunt l988). The small seedling is considered to be exceptionally shade tolemant (Pigott 1983). F. sylvaica also exhibits ecological preferences which seem to make in unsuited to the edge environment. It requires moist conditions for establishment and once again seedings are highly shade tolerant (Watt 1934).

The position is not quite as clear however as the story so far would suggest. Many species which oceur only in the interion such as B. pendula and F. excelsior should, theoretically, be able to colonise the unshaded conditions of the edge. F. excelsior is said to prefer sheltered and moist soils hat it also thrives in tairly open conditions (Crime, Hodgson and Hunt l988). It is likely, in this case, that levels of disturbance and exposure place the woodand edge in the extremities of the ecological niche of this species, allowing it to be out-competed by the more vigorous A. pseudoplatamus and C. monogyna. Equally B. pendula is said to be unable to persist under shaded conditions (Grime, Hodgson and Hunt 1988). Although this may well be the case it would seem that canopy disturbance, away from the woodtand edge, is sufficient in this case to allow its continued presence. The presence of latge numbers of Q. petrace at the edge of the wood and would also seem strange. The ecologial preferences of this species would not seem to suit it to the edge enviromment however this may simply be explaned by the dominance of Q. petraed throughout the woodland and the possibility that edge individuals of this long lived species are those which have survived from before edge creation.

5.2.2 The ${ }^{e}$;ffects of edge related envirommental variables on ground floral community composition.

Previous studies which have considered the iffects of edge creation on the herbaceous community of woodands have all found considerable alterations, believed to be due to environmental change. This basic 'truth' is no longer in question. However, as with microclimatic elements themselves, site-tosite variation causes disagreement about the details of edge ground floral community alterations. The results presented here suggest a number of things about the situation on the northern edge of this particular woodand and in general these agree with many previous reports. In this study it has heen shown that;

1. close to the boundary of Moorhouse Wood, many species with ecological preferences which suit them to the edge environment, are increased in abundance.
2. that species which are not well adapled to edge conditions are, on many occasions, restricted to the woodland interior
3. that most species present on the woodland edge are also found in the interior but a few non-woodland species are exclusively edge dwelling.

Although most studies admit to some altemation of the herbaceous community at a woodland edge, most disagree about the strength of the effect. Laurance (1991) reported an elevated abundance of 'light loving' species at the edge of a wooded area hut, as mentioned earlier, Williams-Linem recorded no significant changes in foristic composition from the edge to the interior. Despite clear microclimatic atterations and abundant light-loving species in adjoining habitats, in the Williams-Linea study, light demanding species were not more abundant at the forest edge. Williams-Lineara does comment that changes in floristic composition at the edge of a lemperate deciduous woodland may be more pronounced than in the tropies. Changes in the composition of herbaceous communities, correlated with edaphic and micachimatic variation, have been established in a wide variely of temperate studies (Matlack 1994, Pitelka, Stanton and Peckham 1980, Wales 1972) but results are still equivocal.

The results of the present study show that, in this case, there is a division of species into those which are most abundant in edge transects and appear to have requirements for warm unshaded conditions and those which are not abundant at the woodland edge and which would appear to require moist organic soils. Once again the recognised ecological preferences of these species may indicate whether this is actually the case. Most of the species which are abundant on the edge of the woodland are true woodland species but ones which would normally only dominate in natural gaps or in disturbed areas. Most are also flexible enough to have become colonisers of other habitats. Veromica momana for example, is described as usually becoming dominant where other species have been suppressed by disturbance. Stellaria media is a short lived ruderal which has a rapid growth rate and is usually associated with recently disturbed soils (Grime, Hodgson and Hunt 1988). Others such as Bromus ramosus and Cerastium fontanum are known to prefer drier unshaded sites and Geum urbanum will only set seed in unshaded conditions (Grime, Hodgson and Hunt 1988).

In the woodand interion there are many species which are simply not found at the woodland edge. The reasons for this are likely to be simitar to those which prevented the recolonisation of the woodland boundary by many tree species. Oxalis aceosella is a small prostrate species with a slow growth rate and high shade tolerance. It is physiongically attoned to low light and temperature conditions and, due to its shallow roon system, is restricted to areas with continually moist soils (Grime, Hodgson and Hunt 1988) oDryopteris dilatata is long lived, highly shade wherant and also has a requirement for continually moist conditions. Other species such as Lonicera periclymemum and Deschampsia flexuosa are relatively show growing, shade tolerant species and are also restricted to the woodland interior. Once again some species which only occur in the woodand interior should, theoretically, be able to colonise the edge. Holcus mollis is a wondtand species which prefers reasonably open conditions but seems to be
excluded from the boundary area either due to competition and disturbance or to some factor which has not been explored in this study.

As the results of the CCA demonstrated, a significant amount of the variation in the herbaceous community composition was not explained by the environmental variables investigated in this study. Many other factors may influence the distribution of species in this woodiand including soil depth, nutrient content, historical disturbance, winter chilling etc. Species interactions and associations are also likely to play an important role in community composition at any one point and are outside of the scope of this study.

One major area of discourse in previous studies of this subject has always been whether edge conditions, created by fragmentation of a habitat, allow the invasion of non-woodland species from sumounding manmodified habitats, into the woodland ecosystem. Latuance (1991) reported that fragments of Costa Rican forests were subject to 'massive seed rain' from generalist plants in adjacent hahitats which are gradually altering the composition of the original forest. This finding has been substantiated by many studies (e.g. Matack 1994, Collins and Pickell 1987, Janzen 1983); however others have disagreed and concluded that edges offered litte opportunity for entry by invasives and ruderals (Williams-Linera 1990).

In this study it was established that whilst most species found at the woodland edge were also present in the interion, a few were not woodland species at all. Amhrisctes sytuestris is a ruderal species, described as a 'follower of humans' (Grime, Hodgson and Hunt 198s), which is generally only found in hedgerows and on grasstands. This species was almost exclusive to the edge transect. Similarly Lamium alhum is a species, which dominates where others have been suppressed by disturhance. It prefers light, well dained sites and is, again, characteristic of hedgemons and roadsides.

Although many studies have shown that non-woodland species can and sometimes do invade at the edge of a fragmented woodiand, most
also point out that it is mate 10 find these species colonising beyond the microclimatic transition zone (Lauance 1991). The current results agree with these conclusions and with the hypothesis that a microclimatic and vegetational transition zone may even act as a buffer against further change to the woodland interior. In this case however, the woodland area has been so fundamentally altered by disturbance that it is difficult to conclude that no non-worodtand species have extended heyond the edge zone. Some may simply have colomised throughout the entire woodland.

In conclusion the results of this part of the study show that ground flom community composition is fundamentally altered by the gradients of microclimatic elements created at the boundary of the woodtand. Although some non-woodland species have invaded and colonised at the edge, most alterations relate simply to changes in ahundance of woodland species. These changes in dominance at the woodland edge are likely to have altered the community ecology of the area. Dominance of a particular species is, however, unlikely to lead to its dominance in the interior of the wondand where microclimatic conditions are not affected by proximity to the edge.

5.3 Xtfects of edge and edge oriented envirommental variables on plant community structure.

Despite the fact that only the briefest of analyses were possible with the data set acyuired from point guadrats, a very clear pattern of changes in vegetation structure, from the edge to the interion of the woodtand, was immediately apparent. Effects such as these have been reported in past studies (Williams-Linera 1990). In this case however, as at no other time in these results, it was indieated that something other than the mieroctimate was the overriding factor in detemining patterns of variation.

5.3.1 All ground flomal vegetation.

Buth chi-square and two-way ANOVA tests indieated a clear gradient in the height of ground flom vegetation with distance from the edge
of the wood. Chi-square analyses demonstated a higher than expected abundance of vegetation in the heigh backet ($1-10 \mathrm{~cm}$ at the edge of the woodland and a higher than expected abundance of vegetation in the height bracket $35-65 \mathrm{~cm}$ in the interior. In conjunction with an increasing mean vegetation height fiom the edge to the interior, (as indicated by the twoway ANOVA), it is clear than in genemal vegetation at the edge of this woodland is shorter than in the interior. There are two possible explanations for this; I. that there is a greater abundance of smaller species at the edge of the wordtand. 2. that individuals of all species at the edge of the woodland do not grow as tall as in the centre.

Both of these explanations are likely to contribute to the pattern seen, but to what extent does the edge microclimate plays a significant role in the production of these patterns? A great deal of work has been conducted into the affects of microclimatic change on the performance of forest herts. Most of the affects are well known and unsurprising. Although the environmental responses of woodland herbs will vary depending upon their physiology, high light and temperature eonditions have frequenty been linked to increases in assimitation rates, vegetative growth and reproductive potential (Moore and Vankat 1986 , Collins, Dunne and Pickett 1985, Mathack 1994). Theoretically the high light and temperature conditions of the edge if no other factors were involved, should lead to increases in vegetation height at the edge of the woodland; totally the reverse of what was actually found in this study.

Statistical investigation of structural responses to increases of temperature and light, at this woodland edge, indicate that in fact variation in these variahles has litte to do with the structural patterns seen and demonstate that other factors are far more intluential. Chi-square analyses revealed that the only environmental variabte which was significantly linked to structural changes in the vegetation was soil organie content and suggest that the lower levels of organic content at the edge of the woodand may have a detrimental effect on vegetation growth.

Despite this, it is the conclusion of this study that edaphic and microclimatic variation has little influence in the structural differences at the edge of this woodland. It has been reported in some studies that increases in illumination and P.A.R. may actually have very little ffect on the growth patterns of forest herbs, as many are already at their light saturation point in the shade of the woodland interior. These species would be unable to benefit from, and may even be detrimentally affected by, increases in these resources. The same may also be true of air and soil temperatures and may explain the apparent lack of vegetational response to these variables. It is also the conclusion of this study that changes in organic content into the woodland, although statistically significant, are unlikely to have any real ecological significance when considered independently of other variables. Similarly, although previous studies have suggested that soil moisture is an important factor in determining herb layer structure no evidence of such an effect was found here (Anderson, Loucks and Swain 1969).

Whether changes in vegetation structure at the edge of the woodland are due (1) stunted growth or w changes in species abundance, it is far more likely that high levets of disturbance, and not the edge microclimate itself, are responsible. Disturbance at the edge of the woodland could account for both a decrease in the height of individuals which were not well suited to these conditions and for an increase in the abundance of species which were more suited to this enviromment. High disturbance rates select for fast-growing, short-lived species which place a high prionity on reproduction (Grime 1974). These species rarely grow to the size of longer lived perennial woodland herbs which are, to a large extent, excluded from the boundary area.

5.3.2 Rubus fruticosus and Milium effusum.

Identical patterns of structural change with distance from the edge of the wood were also illustrated for both Ruhus fruticosus and Milium effusum (although for the latter, significance of the pattern was less dear). These results indicate quite clearly that decreases in vegetation height at the edge of the
woodland are, at least in part, due to the presence of smaller individuals, and not just to changes in community composition favouring smaller species. Rubus fruticosus is said to achieve dominance more easily in shaded places (Watt 1934). Milium effusum is also described as a species which has improved vigour in moist, shaded places where the dominance of other species is suppressed. Overall it would seem that the woodland edge, far from providing an enviromment of improved conditions for growth, decreases the vigour of many species. Both microclimatic changes and increased disturbance levels at the woodland boundary ensure that many woodland species, which would otherwise thrive, are reduced in their potential for vegetative growth and may even be excluded completely.

One of the major points which has emerged from this study is the vast numbers of factors which may influence the way in which a woodland responds to the creation of an artificial edge. In this report only a few of the variables which may affect ground vegetation at the woodland edge were investigated and it has been shown that these do not account for a great deal of the variation found. It may never be possible to make generalisations about the affects of habitat fragmentation, but further study into a number of areas would build upon present understanding.

Within this study measurements of a number of other edaphic and mictrelimatic varibles would have been useful. Nutrient (N and P) levels, soil depth, litter depth and soil coarseness may all have an influence on the vegetation as well as the quality, and not just the quantity, of light. Further studies would also be improved by the measurement of microclimatic variables at other times of the year and at edges with different ages and different aspectis. One other aspect which, due to the lack of available time, was not considered in the interpretation of these results was the physiological plasticity of individual species and their ability to respond to edge microclimate changes. In depth studies of
individual species are clearly vital for the complete understanding of ground floral distribution at the edge of a wordand.

In general, all plants use the same limited number of resources; growing space, sunlight, nutrients, oxygen, carbon dioxide and water. Plant perfomance varies in relation to composite environmental variables and depends upon underlying patterns of resource availability and conditions of temperature and atmospheric water potential. The cental goal of plant ecology is to understand factors which control the distribution of plant species and therefore plant community composition (Barton 1993, Latham 1992). The creation of an artificial edge by fragmentation of a woodland habitat has been shown, here, to fundamentally alter the ground floral community by changing those patterns of resource availability. The creation of an edge affects every level of the plant community in a woodland. In the tropics, Latrance (1991) reported that exposure at the forest boundary led to a perpetual cycle of canopy damage. In other studies, previously discussed, invasion by mon-woodland species has been reported and in many it has been suggested that this could lead to the gradual loss of native woodland species.

Understanding the extent to which isolated areas of woodland can sustain a representative biota gives an insight into the importance of preventing fragmentation and is essential when devising strategies of reserve design that will help to minimise the affeets of habitat loss. It is possible that the creation of a vegetational transition zone at the edge of a woodland may offer some protection to the woodland interion should more serious threats to its integrity occur. Although it seems unlikely, it is also possible however, that this zone itself may become the more serious threat.

Sumananry

1. A microclimaice mansition zone, appoximately 10 metres wide, was found at the northern boundary of Moorhouse Wood. Illumination, P.A.R. soil and air temperatures decreased rapidly over this distance and continued fo decline more graduatly further into the wood. Soil moisture and organic matter content underwent a slight but significant increase in this direction.
2. Edge oriented patterns of vamation were found in both canopy and ground foral community composition. In general, species with ecological preferences for disturbed or for warm and light conditions were increased in abundance at the edge of the woodland. Some evidence of invasion by non-woodland species was found but these did not appear to be colonising the woodland interior.
3. Ground vegetation structure was altered by proximity to the woodland edge. This was shown to be untelated to most microchamatic variables and it is sugested that a high level of disturance is more likely to be responsible for the decreased height of vegetation at the boundary.

Refferences

1. Anderson R.C., O.L. Loucks and A.M. Swain. (1969). Herbacenus response to canopy cover, light intensity and throughtall precipitation in coniferous forests. Ecology 50: 255-263.
2. Ashmun W.I. and L.F. Pitelka. (1984). Light induced variation in the growth and dynamics of transplanted ramets of the understory herb Aster acuminatus. Oecologia 64: 255-262.
3. Auclair A.N. (1975). Sprouting responses in Prunus serolina Erhr: Multivariate amalysis of site forest structure and growth rate relationships. American Midtand Naturalist. 94: 72-87.
4. Barton A.M.. (1993). Fators controlling plant distributions: Drought, Competition and fire in Montene Pines in Arizona. Ecological Monographs 63: 367-397
5. Clapham A.R., T.G. Tutin and D.M.Moom (1987). 3rd edition. Flora of the British Isles. Cambridge University Press. Cambridge.
6. Collins B.S. K.P. Dunne and S.T.A. Pickett.. (1985). Responses of forest herbs to canopy gaps. In: The ecology of natural disturlance and pateh dynamics. Ed. Picketı S.T.A. and P.S.White. Academic Press 218-234.
7. Collins B.S. and S.T.A. Pickett.. (1987). Influence of canopy opening on the enviroment and hesh hayer in the morthern hardwood forest. Vegetatio 70: 310.
8. Grime J.P.. (1974). Vegetation classification by reference to stategies. Nature (London). 250: 26-31.
9. Grime J.P., J.G. Hodgson and R. Hunt. (1988). Comparative Plant Ecology. Unwin Hyman.
10. Gysel L.W.. (1951). Borders and opening of Beech-Maple woodands in Southern Michigan. Journal of Forestry. 49: 13-19.
11. Hill M.O. (1979). DECORANA - a FORTRAN program for detrended correspondence analysis and reciprocal averaging. Ecology and Systematics, Cornell University, Ithace, New York.
12. Hill M.O. and H.G. Gatuch. (19s0). Detrended correspondance analysis: an improved ordination technique. Vegelatio 42: 47-58.
13. Janzen D.H.. (1983). No park is an island: increase in interference from outside as park size decreases. OIKOS 41: 402-410.
14. Latham R.E.. (1992). Co-occuring tree species change rank in seedling performance with resources varied experimentally. Ecology 73: 2129-2144.
15. Latance W.F.. (1991) Edge eftect in mopical forest fragments: Application of a model for the design of nature reserves. Biological Comsermation 57: 205 219.
16. Matack G.R.. (1993). Microenvironment variation within and among forest edge sites in the eastern united states. Biological Conservation 66: 185-194.
17. Matlack G.R.. (1994). Vegetation dynamics of the forest edge - Trends in space and successional time. Journal of Ecology 82: 113-123.
18. Moore M.R. and J.L. Vankat. (1986). Responses of the herb layer to the gap dynamics of a mature Beech-Maple forest. American Midtand Naturalist 115: 336-347.
19. Mueller-Dombois D. and Ellenberg H.. (1974). Aims and methods of vegetation ecology. John Wiley and Sons. London.
20. Pigott C.D.. (1983). Regeneration of Oak-Birch woodland following exclusion of sheep. Joumal of Ecology 71: 629-646.
21. Pitelka L.F., D.S. Stanton and M.O. Peckham. (1)80). Effects of light and density on resource allocation in a forest herb: Aster acuminalus. American Journal of Botany 67: 942-948.
22. Rodwell J.S. (1991). British plant communitites. Vol.1. Woodlands and serub. Cambridge University Press. Cambridge.
23. Smith A.J.E. (1978). The moss flora of Britain and Ireland. Cambridge University Press. Cambridge.
24. Ter Braak C.J.F.. (I98(). Camonical Correspondence Analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: $1167-1179$.
25. Wales B.A.. (1972). Vegetation analysis of North and South edges in a mature oak-hickory forest. Ecological Monographs 42: 451-471.
26. Watt A.S.. (1934). The Vegetation of the Chiltem Hills with special reference to the Beech worods and their seral relationships. Iourmal of Ecology 22: 445507.
27. Williams-Linem G.. (199()). Vegetation structure and environmental conditions of forest edges in Panama. Journal of Ecology. 78: 356-373.

 P.A.R.
143.13
188.13
179.38
211.88
125
73.5
42.94
91.34
301.25
96.5
43.13
34.88
31.25
27.69
25.44
49
32
112.69
87.69
223.13
51.94
111.5
94.54
20.42
22.51
34.13
48.82
19.82
17.09 illum. (Lux)

	Distance	pH	Organic content	Moisture content	Air temp.	Soil Temp.	Illumination	$\mathbb{P} . \mathbf{A} . \mathbb{R}$.	$\begin{gathered} \text { DCA Axis } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \text { DCA Axis } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \text { DCA Axis } \\ 3 \end{gathered}$
Distance	1										
pH	0.194155	1									
Organic content	0.013221	-().33361	1								
Moisture Content	0.293021	-0.26332	0.465922	1							
Air Temp.	-0.52821	-0.0)0504	-0.14927	-0.33233	1.						
Soil Temp.	-0.28236	0.221069	-0.45181	-0.57489	0.553985	1					
Illumination	-0.33278	0.100027	-0.24709	-0.2846	0.6971 .62	0.559317	1				
P.A.R.	-0.34693	0.096012	-0.28912	-0.34895	0.707507	0.5811 .36	0.936735	1			
$\begin{gathered} \text { DCA Axis } \\ 1 \end{gathered}$	0.151941	-0.19989	0.096548	0.004975	-0.35769	-0.04103	-0.09802	-0.15132	1		
$\begin{gathered} \hline \text { DCA Axis } \\ 2 \end{gathered}$	0.378517	0.220843	0.105712	0.061863	-0.22439	-0.04258	-0.22747	-0.20601	-0.0455	1	
$\begin{array}{\|c\|} \hline \text { DCA Axis } \\ 3 \end{array}$	0.099403	-0.08112	0.276549	0.149997	-0.15229	-0.30697	-0.16106	-0.18291	-0.05065	-0.01822	1

Appendix 2. Total tree density and basal area values for each quadrat

Tree Density (ha-1)

quadrat	quadrat		
1	692.52	31	911.36
2	711.11	32	911.36
3	462.48	33	1129.86
4	1245.66	34	661.7
5	840.16	35	804.79
6	501.18	36	1007.81
7	946.98	37	4839.32
8	5173.47	38	2844.44
9	2138.4	39	591.27
10	1534.08	40	4596.38
11	653.27	41	1718.17
12	706.39	42	1083.85
13	1584.12	43	1189.06
14	1220.42	44	1616.12
15	613.44	45	1410.65
16	740.43	46	1057.57
17	1649.1	47	1264.2
18	1437.52	48	2138.39
19	997.12	49	2294.8
20	740.44	50	1334.4
21	1168.82	51	810.52
22	570.28	52	679.04
23	750.61	53	665.96
24	5289.26	54	1359.12
25	5102.04	55	2350.76
26	621.11	56	816.32
27	2596.45	57	1890.36
28	3173.97	58	1199.36
29	1451.25	59	2596.46
30	961.48	60	992

Basal Area (m² ha- ${ }^{-1}$

quadrat	quadrat		
1	30.2	31	16.63
2	69.26	32	21.99
3	9.16	33	50.79
4	82.27	34	29.61
5	66.99	35	44.49
6	45.86	36	74.14
7	81.53	37	79.63
8	40.65	38	32.2
9	35.51	39	55.54
10	33.62	40	31.02
11	24.41	41	38.88
12	76.34	42	43.57
13	19.5	43	15.79
14	62.56	44	56.76
15	27.48	45	31.5
16	56.84	46	77.2
17	23.24	47	48.2
18	37.29	48	26.27
19	19.56	49	29.24
20	20.2	50	28.46
21	75.7	51	14.17
22	44.69	52	22.75
23	29.14	53	30.95
24	82.1	54	49.94
25	64.84	55	93.04
26	20.03	56	32.39
27	70.94	57	51.99
28	51.61	58	63.72
29	105.2	59	63.72
30	54.62	60	87.07

Appendix 3. Sample Scores on the First Four Axes of DCA

Quad.	Axis1	Axis2	Axis3	Axis4
1	-110	-27	-80	238
2	-109	-54	-73	-65
3	-106	-13	82	-2
4	-110	-77	44	69
5	-105	-6	-65	-111
6	-110	-77	46	69
7	-110	-80	-55	-35
8	-110	-67	-152	-32
9	-112	-100	-161	2
10	-110	-71	-55	-34
11	-106	-9	7	-48
12	-109	-58	-1	6
13	16	121	51	23
14	-106	-13	85	-1
15	-109	-63	-74	-67
16	-106	-7	-56	-101
17	-109	-61	73	62
18	-106	-13	82	-2
19	-109	-66	1	7
20	-110	-27	-80	240
21	-121	-193	313	5
22	-113	-78	202	-58
23	-106	-13	82	-3
24	-105	-6	-65	-108
25	-100	35	-167	5
26	-106	-9	9	-45
27	-106	-12	83	-2
28	-106	-13	85	-1
29	-106	-15	92	2
30	-107	-18	161	1

Quad.	Axis1	Axis2	Axis3	Axis $\&$
31	799	-9	0	0
32	-95	45	111	179
33	-106	-9	9	-45
34	696	14	0	0
35	-108	-38	105	-38
36	-109	-57	-1	3
37	-106	-11	17	-38
38	-96	44	46	152
39	148	-125	-28	-65
40	-121	-223	-65	-35
41	115	-41	9	10
42	-34	106	73	-38
43	-105	-2	-137	-95
44	-102	-16	-68	496
45	-115	-151	-184	62
46	-113	-77	267	-2
47	-107	-17	159	1
48	-107	-16	158	0
49	29	145	-64	33
50	-112	-48	102	-24
51	-154	905	-3	0
52	-106	-10	15	-39
53	-124	329	15	-5
54	21	141	-11	-49
55	-95	48	-28	98
56	-70	67	73	-34
57	-73	20	-1	-34
58	-3	113	99	0
59	183	-132	5	0
60	189	-141	16	48

Appendix 4. Species variables codes used in the DCA

Code	Species Variable
1	Crataegus monogyna Frequency
2	Crataegus monogyna Density (ha-1)
3	Crataegus monogyna Basal area (m^{2} ha- ${ }^{1}$)
4	Ulmus glabra Frequency
5	Ulmus glabra Density (ha-1)
6	Ulmus glabra Basal area (m^{2} ha- ${ }^{-1}$)
7	Quercus petraea Frequency
8	Quercus petraea Density (ha^{-1})
9	Quercus petraea Basal area (m^{2} ha-19)
10	Acer pseudoplatanus Frequency
11	Acer pseudoplatanus Density (ha-1)
12	Acer pseudoplatanus Basal area (m^{2} ha-1)
13	Sorbus aucupariaFrequency
14	Sorbus aucuparia Density (ha-1)
15	Sorbus aucuparia Basal area (m^{2} ha- ${ }^{\text {) }}$)
16	Carpinus betulus Frequency
17	Carpinus betulus Density (ha-1)
18	Carpinus betulus Basal area (m^{2} ha- ${ }^{1}$)
19	Sambucus nigra Frequency
20	Sambucus nigra Density (ha- ${ }^{-1}$)
21	Sambucus nigra Basal area ($\mathrm{m}^{2} \mathrm{ha-1}$)
22	Betula pendula Frequency
23	Betula pendula Density (ha-1)
24	Betula pendula Basal area (m^{2} ha- ${ }^{\text {) }}$)
25	Corylus avellanaFrequency
26	Corylus avellana Density (ha^{-1})
27	Corylus avellana Basal area (m^{2} ha- ${ }^{-1}$)
28	Ilex aquifolium Frequency
29	Hex aquifolium Density (ha-1)
30	Hex aquifolium Basat area (m^{2} ha-1)
31	Fraxinus excelsior Frequency
32	Fraximus excelsior Density (ha-1)
33	Fraxinus excelsior Basal area (m² ha-1)
34	Fagus sylvatica Frequency
35	Fagus sylvatica Density (ha-1)
36	Fagus sylvatica Basal area (m^{2} ha-1)
37	Ulmus procera Frequency
38	Ulmus procera Density (ha-1)
39	Ulmus procera Basal area (m^{2} ha- ${ }^{\text {) }}$)

Appendix 5.a. Tables of observed and expected numbers, plus Chi ${ }^{2}$ values, for touches of total vegetation in each height category and at each distance from the woodand edge.

	0 m	5m	10 m	20 m	40 m	60 m	totals
0.5 cm	131	143	89	55	43	129	590
5.10 cm	156	197	135	113	99	1.58	858
10.15 cm	107	152	113	106	117	149	744
15.20 cm	94	118	110	78	109	115	624
$20-25 \mathrm{~cm}$	66	82	72	74	78	70	442
25.30 cm	44	69	56	62	58	62	351
30.35 cm	44	51	44	45	47	65	296
35.40 cm	32	29	54	35	45	67	262
$40-45 \mathrm{~cm}$	28	25	30	40	36	81	240
$45-50 \mathrm{~cm}$	20	13	7	28	34	39	141
50.55 cm	19	6	13	27	36	37	138
55.60 cm	18	11	0	31	30	38	134
610.65 cm	15	6	4	21	24	25	95
totals	774	902	733	715	756	1035	4915
Expected Values.							
	0 m	5 m	10 m	20m	40 m	60 m	totals
$10-5 \mathrm{cmi}$	92.9115	108.276	87.9898	85.8290	90.7507	124.242	590
$5-10 \mathrm{~cm}$	135.1154	157.46	127.958	124.815	131.973	180.677	858
10.15 cm	117.163	136.538	110.956	108.231	114.438	156.671	744
15.20 cm	98.26572	114.516	93.0604	90.7751	95.9804	131.408	624
20.25 cm	69.60488	81.1157	65.9178	64.2990	67.4861	93.0763	442
25.30 cm	55.27447	64.415	52.3464	51.0010	53.9890	73.9135	351
30.35 cm	40.61322	54.3218	44.1440	43.0600	45.5292	62.3316	296
35.40 cm	41.259	48.0822	39.0734	38.1139	40.2994	55.1719	262
410.45 cm	37.79451	44.0447	35.7924	34.9135	36.9155	50.5391	240
45.50 cm	22.20427	25.8763	21.0280	20.5117	21.6878	29.6917	141
$50-55 \mathrm{~cm}$	21.73184	25.3257	20.5806	20.07 .52	21.2264	29.0600	138
$55-6.10 \mathrm{~cm}$	21.10193	24.5916	19.9841	19.4933	20.6111	28.2177	134
$60-65 \mathrm{~cm}$	14.96033	17.4343	14.1678	13.8199	14.6124	20.0050	95
totals	774	902	733	715	756	1035	4915
Chi ${ }^{2}$ Values							
	10 m	5 m	10 m	20 m	40 m	60 mm	totals
0.5 cm	15.6141	11.1354	0.01159	11.0735	25.1252	0.18220	63.1421
5.10 cm	3.22811	4.92893	0.38753	1.11850	8.23825	2.84634	25.7477
10.15 cm	0.48155	1.75078	0.03762	0.04602	0.05734	0.37563	3.14897
15.20 cm	0.18517	0.10597	3.08347	1.79790	1.76607	2.04730	8.98902
20.25 cm	0.18669	0.00963	0.56120	1.46359	1.47496	5.72127	9.41737
25.30 cm	2.29968	0.32628	0.25499	2.34348	0.29798	1.92024	7.44268
30.35 cm	0.14650	0.20313	0.00047	0.08740	0.04751	0.11423	0.59925
35.40 cm	2.07782	7.57307	5.70213	0.25441	0.54826	2.53577	18.6914
40.45 cm	2.53862	8.23487	0.93742	0.74103	0.02270	18.3592	30.8335
45.50 cm	1.21882	6.40737	9.35829	2.73378	6.98951	2.91809	28.6258
50.55 cm	0.34341	14.7472	2.79226	2.38859	10.2823	2.16941	32.7232
55.610 cm	0.45597	7.51202	9.78556	6.79215	4.27679	3.39125	32.2137
610.65 cm	0.00010	7.49927	7.29717	3.73035	6.03095	1.24714	25.805
totals	28.1762	75.4340	40.2097	34.5708	65.1579	43.8281	287.377

Appendix 5b, Tables of observed and expected numbers, plus Chi ${ }^{2}$ values, for touches of Rubus fruticosus in each height category and at each distance from the woodland edge.

Observed Values

	0 m	5m	10 m	20 m	40 m	610 m	totals
1. 5 cm	18	4	14	7	1	1	45
5.10 cm	28	20	36	19	2	11	116
10-15 cm	24	32	34	22	11	10	133
15.20 cm	15	27	49	25	8	10	134
20.25 cm	13	26	29	24	4	13	109
25.30 cm	12	24	31	19	4	14	104
30.35 cm	5	23	26	15	4	21	94
35.40 cm	4	16	31	9	9	12	81
40-45 cm	2	7	12	15	10	29	75
45.50 cm	3	6	6	9	8	10	42
50. 65 cm	9	11	14	12	21	38	175
totals	133	190	282	176	82	169	1108
Expected Values							
	0 m	5 m	11 mm	20 m	40 m	610 m	totals
1.5 cm	5.765896	8.49711	12.22 .543	7.630058	3.554913	7.32659	45
5.10 cm	14.8632	21.90366	31.51445	19.66859	9.163776	18.88632	116
10.15 cm	17.04143	25.11368	36.13295	22.55106	10.50674	21.65414	133
15.20 cmi	17.16956	25.3025	36.40462	22.72062	10.58574	21.81696	134
20.25 cm	13.96628	20.58180	29.61272	18.4817	8.61079	17.74663	109
25.30 cm	13.32563	19.63776	28.25434	17.03391	8.21 .58	16.93256	104
30.35 cm	12.04432	17.74952	25.53757	15.93834	7.425819	15.30443	94
35.40 cm	10.37861	15.2448	22.00578	13.7341	6.398844	13.18786	81
40.45 cm	9.609827	14.16185	20.37572	12.71676	5.924855	12.21098	75
45-50 cm	5.381503	7.930636	11.4104	7.121387	3.317919	6.83815	42
50.65 cm	21.00632	30.95668	44.53971	27.79783	12.95126	26.69224	175
totals	140.5526	207.1301	298.0137	185.9944	86.65647	178.5969	1108

Chi ${ }^{2}$ Values

	0 m	5	10.	21 m	drn	610 m	
1.5cm	25.9583	2.380	0.257585	0.052028	1.836214	5	35.94739
5.	11.61093	0.16 .5448	0.638442	0.022727	5.6000278	3.293074	21.3309
10-15 cm	2.	1.88827	0.125909	0.013466	0.023157	.27	
15.20 cm	1.2741	1.113882	4.357784	0.228673	0.63161	6.400547	
20	$1)$	1.426299	0.012678	1.647667	4	4	6.891980
25	0	0.969005	0.266815	0.10583	2.163267	0.507893	
30-35 cm	4.	1.	0	0	1.	2.119615	9.436823
35-40 cm	3.920245	0.	3.	1.	1.	0.106993	10.42509
40.45 cm	6.026067	3.62	3.44	0.409945	2.802904	23.08341	39.
45-50 cm	1.053898	0.469994	2.56542	0.495576	6.607118	1.461988	12.65399
50) -65 cmin	6.862301	12.86537	20.9402	8.978094	5.0019995	4.790362	59.438
totals	62.86609	25.4858 C	36.29237	13.6410	29.7733	54.76872	222

Appendix 5.c. Tables of observed and expected numbers, plus Chi ${ }^{2}$ values, for touches of Milium effusum in each height category and at each distance from the woodland edge.

Observed Values

	0 m	5m	10 m	20m	40 m	610 m	totals
1.5 cm	18	8	9	8	1	6	50
5.16 cm	33	12	7	26	19	17	114
10.15 cm	29	4	17	32	25	22	134
15.20 cm	34	20	8	22	22	26	132
20.25 cm	26	13	6	33	40	23	141
25-30 cm	10	11	2	21	23	26	93
30-45 cmi	27	12	3	42	26	41	1.51
45.65 cmm	12	6	4	24	26	30	102
total	189	91	56	208	182	191	917

Expected Values

	0 m	5 m	10 m	20m	40 m	60 m	ot
1-5 cm	10.30534	4.961832	3.053435	11.34133	9.923664	10.41439	50
5.10 cm	23.49618	11.31298	0.961832	25.85823	22.62595	23.74482	114
10.15 cm	27.61832	13.29771	8.183206	30.39477	26.59542	27.91058	134
15-20 cm	27.20611	13.09024	8.061069	29.94111	26.19847	27.494	132
20. 25 cm	29.06107	13.99237	8.610687	31.98255	27.98473	29.36859	141
25-30 ct	19.16794	9.229008	5.679389	21.09487	18.45802	19.37077	3
30) -45 cm	31.12214	14.98473	9.221374	34.25082	29.96947	31.45147	151
45-60 cm	21.0229	10.12214	6.229008	23.13631	20.24427	21.24537	102
tot	189	91	56	208	82	191	

Chi^{2} Values

	1 ln	5 m	10 m	211 m	40 m	61111	tutals
1-5cm	5.745344	1.860294	11.58094	0.984407	8.024433	1.871149	30.0065
5-10 cm	3.844136	0.041722	0.000209	0.0007777	0.581082	1.915896	6.38382
10-15 cm	0.069122	1.388984	9.499437	0.084777	0.095707	1.251074	12.3897
15.20 cmil	1.696567	3.635367	0.0004463	2.106176	0.672832	0.081183	8.19
20-25 cmi	0.322429	0.070381	0.791538	0.032368	5.158764	1.381032	7.75651
25-30 cmi	4.384984	0.339843	2.38369	0.000427	1.117651	2.208708	0.4953
30-45 cm	0.545978	0.594514	4.197367	1.753238	0.525757	2.898891	10.5157
45-60 cm	3.872574	1.678698	0.797635	0.032242	1.636432	3.607546	11.
total	20.48113	9.609803	29.25128	4.994412	17.81260	15.27608	97.4253

Appendix 6.a. Tables of observed and expected numbers plus Chi ${ }^{2}$ values for touches of total vegetation, in each height category, within each category of soil organic content. Observed Values

		5.10%.	10-15\%.	15-20\%	20.25%.	25-30\%	total
	0.5cm	47	297	144	66	36	590
	$5-10 \mathrm{~cm}$	33	369	276	97	83	858
	10.15cm	27	258	242	116	101	744
	$15-20 \mathrm{~cm}$	18	221	183	105	97	624
	20-25cm	3	167	133	74	64	441
	25-30cm	8	141	99	61	45	354
	30.35 cm	10	126	78	45	36	295
	35.40 cm	11	104	70	39	38	262
	40-45cm	7	118	57	29	29	240
	45.51 cm	0	81	21	19	22	143
	50.55cm	2	68	26	15	27	138
	55-60cm	5	72	18	10	23	134
	60.65 cm	3	52	14	10	16	95
	totals	174	2074	1361	692	617	4918
Expected Values							
		5-10\%.	10.15%,	15-20\%	20-25\%.	25-30\%.	total
	10.5 cm	20.87434	248.8125	163.2757	83.01749	74.01993	590
	$5-10 \mathrm{~cm}$	30.35624	361.8325	237.4416	120.7271	107.6425	858
	10-15cm	26.3229	313.7568	205.8935	104.6865	93.34038	744
	$15-20 \mathrm{~cm}$	22.07727	263.1509	172.6848	87.80155	78.28548	624
	20.25 cm	15.60268	185.9768	122.0417	62.05205	55.32676	44.1
	25-30) cm	12.5246	149.2875	97.96543	49.81049	44.41196	354
	30-35cm	10.43717	124.4063	81.63786	41.50874	37.009996	295
	35.40 cm	9.269622	110.4896	72.50549	36.86539	32.86987	262
	40.45 cm	8.491257	101.2119	60.41724	33.76983	30.1098	240
	$45-50 \mathrm{~cm}$	5.059374	60.30541	39.57361	20.12119	17.94042	143
	50-55cmı	4.882473	58.19683	38.18991	19.41765	17.31314	138
	55.60 cm	4.740952	56.50996	37.08296	18.85482	10.81131	134
	60.65 cm	3.361122	40.06303	26.29016	13.36722	11.91846	95
	totals	174	2074	1.361	692	617	4918
Chi ${ }^{2}$ Valucs							
		5.10\%.	11-15\%.	15-20\%	20.25\%.	25-30\%	total
	(1).5cm	32.69805	9.332459	2.27562	3.48836	19.52873	67.32321
	$5-10 \mathrm{~cm}$	0.230248	0.141982	6.261525	4.603214	5.6414	16.93837
	10.15 cm	0.017417	9.908381	0.331832	1.222663	0.628557	18.10885
	15-20.m	0.752997	6.751626	0.616167	3.368811	4.473795	15.9634
	20.25cm	10.17951	1.936369	0.983965	2.300543	1.359652	16.76004
	25-30 cm	1.634546	0.460071	0.010926	2.513629	0.007786	4.626958
	30-35cmil	0.018311	0.020417	0.162107	0.293646	0.027561	0.522041
	35-4 1 cm	0.323013	0.38117	0.086579	0.1236	0.800681	1.715043
	40.45 cm	11.261895	2.784665	1.335263	0.673715	0.040906	5.096446
	45-50cm	5.159374	7.10162	8.717398	0.002475	0.918005	21.85947
	50-55cm	1.70173	1.0 .5133	3.890923	1.005046	5.419893	13.66892
	55-60) cil $^{\text {a }}$	0.014155	4.245999	9.620127	0.43225	2.278225	16.79076
	601-65cm	0.1038794	3.550674	5.74542	(1.84820	1.397743	11.58684
	totals	52.93014	48.27276	46.23785	20.99010	42.52353	210.9603

Appendix 6.b. Tables of observed and expected numbers plus Chi^{2} values for touches of total vegetation, in each height category, within each category of soil moisture content.

		15-25\%.	25-35\%.	$35-45 \% .$	45.55%	total
	0-5cm	196	216	128	48	588
	5.10 cm	206	323	243	67	839
	10.15 cm	162	288	216	53	719
	15.20 cm	146	236	186	43	611
	20.25 cm	109	192	111	18	430
	25-30cm	98	135	92	26	351
	30.35 cm	(6)	120	90	14	293
	$35-40 \mathrm{~cm}$	54	107	78	23	262
	40.45 cm	45	99	79	17	240
	45.50 cm	28	60	43	12	143
	50.55 cm	33	45	46	14	138
	55.60 cm	33	52	36	12	133
	60.65 cm	23	34	32	6	95
	totals	1202	1907	1380	353	4842
Expected Values						
		5-10\%.	10.15\%.	15-20\%.	20-25\%	total
	0.5 cm	145.9678	231.5812	167.5836	42.86741	588
	5.10 cm	208.2772	330.4304	239.1202	61.10625	839
	10.15 cm	178.4878	283.1749	204.9195	52.4178	719
	15.20 cm	151.6774	240.6396	174.1388	44.5442	611
	20.25 cm	106.7451	169.3536	122.5527	31.34862	430
	25.311 cm	87.13383	138.2398	100.0372	25.58922	351
	30.35 cm	72.73565	115.3967	83.50682	21.3608	293
	$35-410 \mathrm{~cm}$	05.04007	103.1875	74.67162	19.10078	262
	40.45 cm	59.57869	94.52292	68.40149	17.4969	240
	45.50 cm	35.49897	56.31991	40.75589	10.42524	143
	50.55 cm	34.25774	54.35068	39.33080	10.06072	138
	$55-60 \mathrm{~cm}$	33.01652	52.38145	37.90582	9.6962	133
	$611-65 \mathrm{~cm}$	23.58323	37.41532	27.07559	0.925857	45
	totals	1202	1907	1380	353	4842
Chi ${ }^{2}$ Values						
		5-10\%	10.15\%.	15-20\%	20-25\%.	total
	0.5 cm	17.14915	1.048327	9.349748	0.614534	28.16175
	5.10 cm	0.024897	0.167354	0.062951	0.550395	0.811507
	10.15 cm	1.523062	0.082215	0.509155	0.006466	2.210899
	15.20 cm	0.21251	0.089453	0.80791	0.053532	1.163405
	20.25 cm	0.047631	3.028343	1.089034	5.684001	9.849009
	25.30 cm	1.355084	0.075927	0.645722	0.006594	2.083327
	30.35 cm	0.19186	0.183628	0.51 .48886	2.536487	3.416861
	35.40 cm	1.873969	0.14086	0.148357	0.795982	2.959108
	40.45 cm	3.567351	0.212057	1.042194	0.014112	5.4 .35713
	$45-50 \mathrm{~cm}$	1.584117	0.240467	0.123566	0.237872	2.186022
	50.55 cm	0.046177	1.608724	1.130855	1.542428	4.328184
	55.60 cm	$8.27 \mathrm{E}-16$	0.002778	0.095821	0.547379	0.645986
	611.65 cm	0.014424	0.311756	0.895634	0.12377	1.345583
	totals	27.59124	7.191887	17.09583	12.71955	64.59751

Appendix 6.c. Tables of observed and expected numbers plus Chi ${ }^{2}$ values for touches of total vegetation, in each height category, within each category of air Temperature.

Observed Values					
		19-20"c.	20-21\%	21-22"c.	total
	0.5 cm	308	206	83	597
	5.11 cm	467	322	82	871
	10.15 cm	410	267	73	750
	$15-20 \mathrm{~cm}$	32.5	251	54	630
	20.25cm	210	201	35	446
	25-30) cm	195	136	26	357
	30.35 cm	157	122	20	299
	35.40 cm	130	117	18	265
	40.45 cm	136	96	11	243
	45.50 cm	81	60	4	145
	50.55 cm	85	57	4	146
	55.601 cm	80	46	9	135
	60.65 cm	55	40	2	97
	totals	2639	1921	42.1	4981
Expected Values					
		19-209\%.	20-21"c.	21-220'c.	total
	0.5 cm	316.2985	230.2423	50.45914	597
	5.10 cm	461.4674	335.9147	73.61795	871
	10.15 cm	397.30	289.2491	63.39089	750
	15.20 cm	333.7824	242.9603	53.24834	630
	20.25 cm	236.2967	172.0068	37.69645	446
	25.30 cm	189.1433	137.6826	30.17406	357
	30.35 cm	158.4142	115.314	25.27183	299
	35.40 cm	140.4005	102.2014	22.39811	265
	40.45 cm	128.7446	93.71672	20.53865	243
	45.50 cm	76.82293	55.9215	12.25557	145
	50.55 cm	77.35274	56.30717	12.34009	146
	55.601 cm	71.52479	52.06485	11.410130	135
	610.65 cm	51.39189	37.49956	8.198555	97
	totals	26.34	1921	421	4981
Chi ${ }^{2}$ Valles					
		19.20゙く.	20.219 ${ }^{\circ} \mathrm{C}$.	21-22**.	total
	$0-5 \mathrm{~cm}$	11.217724	2.552485	20.98544	23.75565
	5 -10cm	0.066332	0.576391	0.95437	1.597093
	10.15 cm	0.40208	1.711412	1.456599	3.570091
	$15-20 \mathrm{~cm}$	0.231079	1.265434	0.01061	0.507124
	20.25 cm	2.926481	4.887039	0.192878	8.006399
	$25-30 \mathrm{cmi}$	0.181346	0.020563	0.577409	0.779318
	30.35 cm	0.012024	0.387601	1.099731	1.500016
	35.40 cm	0.771144 .5	2.142825	0.863617	3.776887
	411.45 cm	0.40 1875	0. 1055629	4.429979	4.894483
	45.50 cm	0.227119	10.297455	5.5611	0.085674
	50.55 cm	1.756012 .5	10.00108525	5.630679	0.401229
	55.600 cm	1.004255	0.706472	0.509172	2.219899
	60.65 cm	0.253317	0.179377	4.040445	5.119139
	totals	7.457701	13.79127	46.96403	68.213

Appendix 6.d. Tables of observed and expected numbers plus Chi ${ }^{2}$ values for touches of total vegetation, in each height category, within each category of soil temperature.

Observed Values

		12-13"\%	13.14 ${ }^{\text {a }}$ c	14-15 ${ }^{\prime \prime} \mathrm{c}$.	15-16"c.	total
	0.5cm	31	78	304	101	574
	5.10 cm	$3{ }^{3}$	205	417	160	820
	10.15 cm	36	222	316	128	702
	15.20 cm	30	213	248	110	601
	20-25cm	18	156	166	82	422
	$25-30 \mathrm{~cm}$	7	135	145	63	350
	$30-35 \mathrm{~cm}$	9	107	125	51	292
	35.40 cm	11	96	107	47	261
	40.45 cm	10	91	106	32	239
	45.50 cm	2	60	51	24	143
	50.55 cm	5	56	51	20	138
	55-601) ${ }^{\text {anm }}$	3	51	52	27	133
	610-65cm	1	39	39	16	95
	totads	2111	1515	2127	927	4770
Expected Vialues						
		12-130c.	13-14 ${ }^{\text {a }}$ c	14-150.	15-16\%	total
	0.5 cm	24.18742	182.3082	255.9535	111.5509	574
	$5-10 \mathrm{~cm}$	34.55346	260.4403	365.6478	150.3585	820
	10.15 cm	29.58113	222.9623	313.0302	130.4264	702
	15.20 cm	25.32516	190.8836	267.9931	116.7981	601
	211.25 cm	17.782.39	134.0314	188.1748	82.01132	422
	25.30 cm	14.74843	111.1635	156.0692	68.01887	350
	30.35 cm	12.3044	92.74214	130.2063	56.74717	292
	35-41) cm	10.99811	22.s9623	110.383	50.72204	261
	40.45 cm	10.07107	75.90881	106.573	40.44717	234
	45.50 cm	6.025786	45.41824	63.76541	27.79057	143
	50.55 cm	5.815094	43.83019	61.53585	26.81887	138
	55.60 cm	5.604403	42.24214	59.30629	25.84717	133
	60.65 cm	4.003145	30.17296	42.36164	18.46226	95
	lotals	201	1515	2127	927	4770
Chi ${ }^{\text {V }}$ Values						
		12.13"c.	13.14*	14-15"c.	15-160\%.	total
	0.5 cmin	1.918817	59.68024	9.019101	21.92011	92.53827
	5.10 cm	0.343776	11.80164	7.211491	11.002582	19.35999
	10-15cm	1.392843	0.004153	0.028175	0.52046	1.945631
	$15-20 \mathrm{~cm}$	1.862943	2.562467	1.491543	0.395677	5.31263
	20.25 cm	0.002603	3.600777	2.613121	1.50E-106	6.216563
	25.30 cm	4.070816	5.111188	0.78508	0.370324	10.33741
	30.35 cm	0.887412	2.191955	0.208173	0.582055	3.869595
	35.40 cm	3.24E-07	2.071372	0.756477	0.273213	3.101061
	$40-45 \mathrm{~cm}$	0.000502	3.000234	0.00308	4.493723	7.497539
	45.50 cm	2.6806	4.326845	2.55555	10.517024	15.08902
	50.55 cm	0.114251	3.379048	1.803893	10.0251003	5.322195
	55.60 cm	1.2110283	1.815726	0.900105	0.051418	3.977532
	611.65 cm	2.252948	2.582336	0.266769	1.3228380	5.430435
	totals	15.740×5	107.128	27.64305	29.47098	179.9979

Appendix 6.e. Tablesof observed and expected numbers plus Chi ${ }^{2}$ values for touches of total vegetation, in each height category, within each category Illumination.

Observed Values

$0-5 \mathrm{~cm}$
$5-10 \mathrm{~cm}$
$10-15 \mathrm{~cm}$
$1.5-20 \mathrm{~cm}$
20.25 cm
$25-30 \mathrm{~cm}$
30.35 cm
$35-40 \mathrm{~cm}$
$40-45 \mathrm{~cm}$
45.50 cm
$50-55 \mathrm{~cm}$
$55-60 \mathrm{~cm}$
$60-65 \mathrm{~cm}$
totals

Expected Values

		1-20Lux.	20-40Lux.	40-601.ax.	60-80Liox.	80-1001ux	total
	0.5 cm	286.1224	187.7491	49.7865	38.98943	27.35258	590
	5.10 cm	416.0899	273.0317	72.40138	56.69088	39.77715	858
	10.15 cm	360.8052	236.7548	62.78162	49.16633	34.49207	744
	15.20 cm	302.0108	198.5685	52.65555	41.23627	28.92883	624
	20-25cm	213.8644	140.3345	37.2133	29.14294	20.4449	441
	25.30 cm	171.6734	112.6495	29.8719	23.39366	16.41155	354
	30.35 cm	143.0612	93.87454	24.89325	19.49471	13.67629	295
	35.40 cm	127.15 .577	83.37332	22.10858	17.31395	12.1464	262
	410.45 cm	116.3858	76.37251	20.25214	15.86011	11.12647	240
	45.50 cm	64.34831	45.50529	12.0669	9.44998	6.629524	143
	50.55 cm	(6, 02355	43.91419	11.64498	9.119561	6.397723	138
	$55-60 \mathrm{cmI}$	64.98373	42.04132	11.30744	8.855226	6.212281	134
	60.65 cm	46.177056	30.23078	8.01647	6.277959	4.404229	95
	totals	2385	156.5	415	325	228	4918
Chi ${ }^{2}$ Values							
		1-201.inx.	210-401.ux.	40-6011.ax.	6(1-8017ix.	80-100Lux	total
	0.5 cm	2.57101 .5	0.319833	1.217791	10.27004	18.75163	33.13031
	5.10 cm	0.28607	0.033604	3.276216	0.093308	0.685776	4.375034
	10.15 cm	4.043296	4.259110	1.85155	0.949818	0.1810053	11.28383
	15.20 cm	1.117482	1.06886	0.76444	0.037064	2.755868	5.743714
	210.25 cm	5.448504	3.554574	5.107667	6.863509	6.410676 .5	27.38102
	25-30) cm	0.016312	0.479635	4.924054	4.617837	3.347098	13.38494
	30.35 cm	1.80310	0.104059	10.4210	1.548721	0.394816	14.27235
	35.40 cm	7.591095	12.76787	0.201103	0.16419	0.1082	20.83306
	40.45 cm	2.034684	2.431615	0.0)03139	0.621619	0.114047	5.205104
	45.50 cm	0.412475	0.443958	0.0000371	11.222481	0.847596	1.926881
	50.55 cm	0.230127	2.748529	0.600760	0.492627	0.898613	5.020561
	55.60 cm	0.244217	0.445533	0.967431	1.11681	0.007254	2.781245
	610.65cm	0.186272	1.253607	4.51 .5443	(1.826558	1.529899	7.311838
	totals	25.48521	2r.96091	33.85157	27.32458	36.12762	152.6499

Appendix 6.f. Table of observed and expected numbers plus Chi ${ }^{2}$ values for touches of total vegetation, in each height category, within each category of P.A.R.

Observed Valucs

	10.304Em-35.1				200-300\% E in ${ }^{2} \mathrm{~S}-1$.	total
0.5 cm	91	170	172	83	74	590
5.10 cm	141	266	279	115	57	858
10.15 cm	137	243	218	103	43	744
15.20 cm	95	210	193	102	24	624
20.25 cm	76	155	131	69	10	441
25.30 cm	44	112	133	53	12	354
30.35 cm	57	69	96	54	19	295
$35-40 \mathrm{~cm}$	36	60	112	37	17	262
40.45 cm	47	52	90	36	15	240
45.50 cm	32	32	49	21	9	143
50.55 cm	32	34	51	17	4	138
55.60 cm	30	38	40	18	8	134
60.65 cm	22	34	26	5	8	95
totals	840	1475	1590	713	300	4918

Expected Values

	10-301, Emin-ss.
11.5 cm	100.7727
5.10 cm	146.5474
10.15 cm	127.076
$15-2(1) \mathrm{cm}$	106.5799
20.25 cm	75.3233
$25-30 \mathrm{~cm}$	60.4636
30.35 cm	50.38634
$35-40 \mathrm{~cm}$	44.7499
40.45 cm	40.99227
$45-50 \mathrm{~cm}$	24.42456
50.55 cm	23.57056
$55-60 \mathrm{~cm}$	22.88735
$611-65 \mathrm{~cm}$	16.22611
totals	840

310-50)				tal
176.952	190.7483	85.5368	35.99024	590
257.3302	277.3932	124.3908	52.33835	858
223.1395	240.5368	107.8634	45.3843	744
187.1492	201.7405	90.46604	38.06425	624
132.2641	142.5763	63.93514	26.90118	441
$10 \% .1712$	114.449	51.32208	21.59414	354
88.47601	95.37414	42.7684	17.99512	295
78.57804	84.70516	37.98414	15.98211	262
71.98048	77.59252	34.79463	14.6401	240
42.88837	46.23221	20.7318	8.723058	143
41.38878	44.6157	20.00691	8.418056	138
40.1891	43.32249	19.427	8.174054	134
28.49227	30.7137	13.77288	5.795039	95
1475	1590	713	300	49

Chi ${ }^{2}$ Values

$30.5012 \mathrm{E}, 1 \mathrm{~m}-\mathrm{S}-\mathrm{C}$

			turals
1.842731	0.075235	40.1426	43.28142
0.009307	0.708953	0.415202	1.635548
2.111558	0.21928	0.125261	4.99879
0.37869	1.47052	5.196561	11.09399
0.930915	0.401232	10.61849	15.87395
3.006938	0.054858	4.262619	12.12728
0.004107	2.949579	0.056114	8.16511
8.795308	0.025498	0.064829	14.98913
1.984027	0.041757	0.008848	8.461329
0.1657	0.00347	0.008792	5.291839
0.913565	0.45192	2.318732	8.017858
0.254808	0.10482	0.003706	2.692955
0.723423	5.588037	0.838968	10.26968

Appendix 7. Species codes for the CCA.

Code	Species name	Code
1	Lamium album	32
2	Anthriscus syluaticum	33
3	Geum urbanum	34
4	Hedera helix	35
5	Geranium robertamum	36
6	Rumex stnguineus	37
7	Milium effusam	38
8	Galium aparine	39
9	Rubus fruticosus	40
10	Mniami hornum	41
11	A cgopodiam podagaria	42
12	Agrostis stolomifere	43
13	Hyacinthoides non-scriptus	44
14	Veronica momama	45
1.5	Arun mactlaram	46
16	Ramunculus repens	47
17	Acer pseudoplatanus seedling	48
18	Quercus petrnea seedling	49
19	Hex aquifolium	50
20	Oxalis aceoosella	51
21	Sumbucas nigra	52
22	Taxus baccala	53
23	Euhtyncium praclongum	54
24	Rumer acetosa	55
25	Holcus lamaus	56
26	Stellariar media	57
27	Rosa canima	58
28	Crataegus monogyna	59
29	Brachylhesium ruabulum	60
30	Suchys sylvatica	61
31	Stellaria, graminca	

Species name
Taraxicam valgaris
Deschampsia cespitosa
Cerastium fontamum
Dactylus glomeraus
Conopodium majus
Heracleum sphondylium
Ranunculus ficaria
Carpinus betula seedling
Sambucus nigra seedling
Gulium odoralum
Holcus mollis
Lolium perenne
Fraxinus excelsior seedling
Bromus rumosus
Urrica diocia
Anemone nemorosa
Lonicera periclymenum
Dryopteris carthusiana
Ulmus glabra scedling
Carpimus betulus
Epilobium spp.
Dryopteris dilatata
Chryosplenium oppositofolium
Geranum sylvaticum
Viola riviniana
Valerium officinalis
Silene dioica
Cirriphyllum piliferum
Deschampsia flexuosa
Mercurialis perennis
H．non－
scriptus

 $\stackrel{o}{\stackrel{0}{E}}$
 8
$\stackrel{8}{2}$
$\stackrel{y}{6}$
$\stackrel{y}{6}$
8 $\stackrel{\infty}{7}$
Agrostis
stolonifera $-\frac{0}{2}$ $\stackrel{\text { 侖 }}{\substack{\circ}}$

2
8
8
8
8

 n

0
0
0 $\stackrel{?}{\stackrel{?}{s}}$
年
Rubus
fruticosus 1
-0.15184右
$\frac{8}{8}$

0 | 8 |
| :--- |
| 8 |
| 8 |
| 8 |
| 8 | 0.055848 -0.01777

n
$\stackrel{n}{6}$
$\stackrel{0}{0}$

 $\stackrel{\stackrel{N}{4}}{\frac{\pi}{3}}$ $\underset{\text { aparine }}{\text { Galium }}$ $\begin{array}{r}6 \\ -\quad \begin{array}{r}6 \\ 0 \\ \hline\end{array} \\ \hline\end{array}$合 n
0

\vdots | 关 |
| :--- |
| $\stackrel{6}{6}$ |
| | － 10.01955 $\stackrel{\square}{\stackrel{3}{7}}$

$\stackrel{\circ}{2}$
$\stackrel{n}{1}$
$\stackrel{0}{8}$

0
8
8 $\stackrel{y}{3}$
$\stackrel{0}{8}$
$\stackrel{0}{8}$ 8
8
8
8
-8
$\begin{array}{cc}\text { Geranium } & \begin{array}{c}\text { Rumex } \\ \text { robertianum } \\ \text { sanguiners }\end{array}\end{array} \begin{gathered}\text { Milium } \\ \text { effisum }\end{gathered}$
$\begin{array}{cc}\text { Hedera } \\ \text { helix } & \begin{array}{c}\text { Geranium } \\ \text { roberilianum }\end{array}\end{array}$
1
-0.07745 -0.06454 -0.0858 $\stackrel{8}{8}$ $=$
0
0
0
0

 $\stackrel{y}{4}$
$\stackrel{3}{3}$
8 0.063361 $\stackrel{\text { 亭 }}{\substack{+\vdots}}$ -0.14753 $\stackrel{3}{8}$

J
C
C
C

$\underset{\text { urbanum }}{\text { Geum }}$ -0.14876 0.266854 0.525348 0.074995 0.266068 -0.01829 0.148172 0.172381 0.278376 0.055205
 $\stackrel{\stackrel{3}{2}}{\stackrel{3}{2}}$ 0.082195

 $\stackrel{\stackrel{n}{n}}{\stackrel{n}{3}}$ $\overline{2}$
$\stackrel{0}{8}$
$\stackrel{0}{0}$ Anthriscus
sylvestris 1
0.406063 $0.1513+5$ 0.213014 0.524724 0.114158
 $0.1493 ; 4$ $\frac{n}{c}$
$\frac{c}{=}$

$=$ 0.01782 0.060189 0.101456 0.045198 -0.05073 0.05395 -0.14085 0.05073 | 管 |
| :--- |
| | $\overline{7}$

$\stackrel{\rightharpoonup}{n}$
$\stackrel{1}{1}$ N
0
0
0
\vdots $\stackrel{\circ}{2}$
$\stackrel{3}{3}$

 0.07745 0.385219 0.048308 0.078204 $\frac{\infty}{\frac{\infty}{c}}$ 0.237993 0.060567 －8．50E－18 -0.03448 -0.02195 0.195402 0.095349 | 喜 |
| :--- |
| $\stackrel{0}{6}$ | 7

2
2
3 $\frac{2}{2}$ -0.20457 -0.05181 $\stackrel{\infty}{3}$ Lamium album
Anthriscus syivestris Geum urbanum
Hedera helfx
Gerantum obertianum
Rumer sanguinters Milium
effusum S会 fruticosus
Mium hornum． Acgopodium podagaria
Agrostis stolonifera定 Veronica montana $\underset{\substack{\text { Arum } \\ \text { maculatum }}}{\text { and }}$ Ranunculus repens platanus（s） Oin 5 aquifolium cetosella等为 baccata

Veronica montana	$\begin{gathered} \text { Arum } \\ \text { maculatum } \end{gathered}$	Rarunculus: repens	A. psendoplatanns (s)	Quercus patraea	llex aquifoliun	Oxalis acetosella	Sambucus nigra	Taxus baccata	Eurhynkium praelongum	Rumex acetosa	Holcus lanatus	Stellaria media	Rosa canina
				.									
1													
0.263345	1												
0.261398	0.3542	1											
-0.06964	0.132214	0.090184	1										
-0.08778	-0,03443	-0.05134	-1.)19574	1									
-0.0338	-0.17119	-0.06203	-1.0.0.37	-0.07119	1								
-0.11414	0.05044	-0.21513	0.08781	-0.16254	0.04796?	1							
0.172474	-0.05181	0.024583	0.172304	-0.05181	-0.07511	-0.05474	1						
-0.06154	.0.02418	-0.036	-0.06712	-0.02418	-0.04991	-0.14342	0.29897	1					

Eurhinkium praelongum	-0.11668	0.050713	0.285845	0.163839	-0.08105	0.193099	0.279406	0.145846	-0.18877	0.050329	-0.1211	0.223383	0.082203
Rumex acetosa	-0.03929	-0.05781	0.097855	-0.12732	-0.1036	-0.08129	-0.19517	-0.02228	-0.12439	-0.0678	0.023006	0.25642	-0.03929
Holcus lanatus	-0.06577	-0.09676	0.118296	0.016645	-0.00214	-0.07559	-0.29877	0.070444	-0.08985	-0.11349	0.243885	0.086709	-0.06577
Stellaria media	-0.03448	-0.05073	0.055205	-0.18916	-0.15827	0.014267	-0.05416	-0.07821	-0.24878	-0.0595	-0.060057	0.531876	-0.03448
Rosa canina	-0.06034	-0.08877	-1.03898	0.228312	-0.05365	-0.12483	0.030604	0.106243	0.05915	-0.10411	-0.10598	-0.10927	-0.06034
Crataegus	.0.05333	-0.01961	0.138736	-0.01026	-0.14712	0.18755	-0.01585	0.083155	-0.04613	0.023004	-0.09367	0.371735	0.146654
monogyn $B .$. 0.05288	0.077787	-0.0.0094 1	0.252745	0.092945	-0.10939	-0.01571	-0.02998	-0.07007	-().09124	-0.09287	-0.12547	-0.05288
rulabulum Staches swhatica	-0.0491	-001032	-003369	0.081674	0.144516	0.159605	0.05687	0.198842	-0.10636	-1108471	-0.08623	-0.04161	-0.0491
Sicllaria gramineat	-0.07371	-0.09053	0.202392	-0.01446	0.137664	-0.07757	-0.35148	0296199	0.012116	-113582	0.173452	-0.18679	-0.07871
Taraxacum Fulgaris	.0.05288	0.272255	0.378582	-0.05258	$0.054 \geq 18$	0.240655	0.118972	0.149909	0.046711	. 0.09124	3.74E-17	0.282318	-0.05288
Deschampsia cespitosa	-0.04808	-0.0101	0.260228	-0.16459	0.222004	0.602842	-0.18923	0.1129 .37	-0.0359	-0.08296	0.349845	-0.11409	-0.04808
Cerastum fontanum	-0.02418	-0.03556	-1,09031	-0.01629	-0.04013	-1.05001	. 0.00718	0.01371	-0.09433	. 0.04171	-0.04246	-0.05737	-0.02418
Dacalis glomeratus	-0.07835	0.295924	0.159325	-0.05278	0.099459	0.342554	0.19785	0.222115	-0.03445	-0.13518	-0.09298	0.077882	-0.07835
Conopodium majus	-0.04661	-0.06856	0.214515	0.02018	0.195706	-0.09642	0.000989	0.310512	0.088349	-0.08042	$-7.70 \mathrm{E}-18$	-0.1106	-0.04661
Heracleam sphondylium	-0.05599	-0.08237	0.179271	0.242479	0.005468	-0.06023	-0.04516	0.234927	-0.02061	0.096607	-0.01967	-0.13286	-0.05599
Rantucuhes ficaria	-0.07052	0.320661	0.343827	0.04504	0.192324	0.379314	0.085187	0.265362	0.057579	0.210173	0.078823	0.072262	0.217971
Carpinus betulus (s)	. 0.03448	-0.05073	0.055205	0.043142	0.195308	-0.07134	-0.09808	0.097761	0.055848	-0.0595	-0.06057	-0.08183	-0.03448
Sampucus uigra (s)	-0.02418	-0.03556	-0.09031	0.07678	0.17234	-0.0500)	- 0.19192	0.09596	-1.04093	-0.04171	-0.04246	-0.05737	-0.02418
Galium odoratum	-0.02418	-0.03556	-0.09031	0.262912	-0.11096	-1.05001	-(i) 19192	0.068539	0.172635	-0.04171	-0.04246	-0.05737	-0.02418
Holcus mollis	-0.09973	-0.14672	-0.16947	-0.18843	-0.16941	-0.19329	0.047242	-0.33335	0.465837	-0.17208	-0.11986	. 0.15259	-0.09973
Lolium perenne	-0.02418	-0.03556	-0.09031	-0.10935	0.172341	-0.0500]	0.115974	0.068539	0.012458	-0.04171	-0.04246	.0.05737	-0.02418
Fraximus excelsior	-0.02418	-0.03556	0.232221	-0.15589	0.101516	-0.05001	0.054395	-0.09596	0.119243	-0.04171	0.127389	0.200788	-0.02418
Bromus ramosus	-0.06337	0.509181	0.374614	0.098055	0.266115	0.449795	0.167426	0.063576	-0.04271	0.227109	-0.11131	-0.01157	0.229121
Urtica dioica	-0.05383	0.110867	0.056179	0.093252	0.076223	0.222725	0.162253	0.289966	-0.04954	-0.09288	-0.09455	-0.0511	-0.05383
Allemone nemorosa	-0.03935	-0.0082 ${ }^{7}$	-0.10201	0.157449	-0.03239	-0.0535	0.117187	-0.09882	0.21894	-0.0679	-0.06912	-0.05336	-0.03935

0.290266	-0.05038	0.105472	-0.03997	-0.11668	-0.06075	-0.1168	0.146495	-0.0818	1				
-0.10003	-0.03929	-0.0585	-0.05715	-0.03929	-0.08112	0.086219	-0.05904	-0.02755	0.048347	1			
-0.11162	0.056028	-0.03575	-0.06667	-0.06577	-0.11632	0.239342	0.036319	-0.04611	-0.05395	0.313672	1		
-0.05778	-0.03448	0.278712	-0.09574	-0.03448	-0.0023	-0.1205	-0.05181	.0.02418	0.400408	0.550113	0.080388	1	
-0.1051	-0.06034	-0.00878	-0.04157	-0.06034	-0.11188	0.230473	0.041476	-10.0423	0.16216	-0.06876	0.450269	-0.06034	1
0.220605	-0.05333	0.303427	-0.09519	-0.05333	0003019	-0.15385	0.151006	-0.03739	0.465457	-0.06077	0.011302	0.546618	0.01719
0.134606	0.05388	-1.07873	-0.0769	-10.05288	-0.10916	0.116022	-0.07945	-1.0.03707	0.055389	0.06025	(1.04856	-0.05288	0.053563
0.276743	-0,0.091	$0.374+43$	-0.08067	-0.0491	-1.1617333	0.067828	0.023508	-11.03442	-0.03668	-1.05595	0.3×2006	-0.0491	0.321032
-0.14573	1921468	-10.441-4	-0.01419	-0107871	-0.1635	0.269254	0.038887	-0.105519	-0.1371	0.334326	$0 .+48948$	-0.07871	0.178601
0.269211	-0.05288	$0.11504 ?$	-0,00699	-0.05288	-0.119155	-0.20626	0.042779	-0.03707	0.248036	-0.06025	-0.0.12615	0.079314	0.00487
-0.04371	0.157968	0.01607	0.029966	-104808	-0.0.19925	0.23387	0.02302	-0.03371	-0.05176	0.033479	0.403197	. 0.04808	0.143588
-0.06154	-0.02418	0.272534	0.316436	-0.02418	0.04991	0.151281	0.29897	. 0.01695	0.035518	-0.02755	0.15883	-0.02418	0.224877
0.439309	-0.07835	0.40297	-0.06635	-0.07835	0.015934	-0.26861	-0.05898	-0.05493	0.257596	0.127881	-0.05968	0.175747	-0.09029
-0.05191	-0.04661	-0.06939	0.009243	.0.04661	-1).0031	0.19222	0.010773	-0.03268	-0.11738	0.212435	0.10865	-0.04661	0.304756
0.413338	0.055989	-008336	0.288699	0.005599	0.063387	0.159254	-0.08412	-0.03925	0.146389	0.191403	0.083061	-0.05599	-0.09797
0.591603	0.12180°	-0.04364	-0.0178	-0.07052	0.02092	-0.0198	0.171929	-0.04944	0.234666	-0.03036	0.196466	-0.07052	-0.10569
-0.08778	-0.03448	-0.05134	-0.09574	0.482759	0.07119	0.04764	.0.05181	-0.02418	-0.11668	0.0 .03929	-0.06577	-0.03448	0.320755
-0.06154	-1.02418	-0.036	-0.06712	0.791089	-0.64991	-0.08448	-003632	-0.01695	-0.0818	-0.02755	-0.0.14611	-0.02418	-0.0423
-0.06154	-0.02418	-0.036	-0.06712	-0.02418	-0.14991	0.09234	-0.03632	-0.01695	-0.0818	-0.02755	-0.04611	-0.02418	0.0423
-0.16369	-0.09973	-0.14849	-0.00625	-1.09973	-0,0664	0.355343	-0.14985	-0.06992	-0.31324	0.000897	-0.19023	-0.09973	-0.17452
-0.06154	-0.02418	-0.036	0.124657	-0.02418	-0.0.4991	0.09234	0.131323	-0.01695	-0.0818	-0.0.12755	-0.04611	-0.02418	-0.0423
0.2154	-0.02418	.0.036	-0.06712	-0.02418	-0.0499!	-0.14342	-0.03632	.0.01695	-0.0818	-0.02755	-0.04611	-0.02418	-0.0423
0.378503	0.034124	0.123391	-0.05994	. 0.06337	-0.05292	-0.09072	0.242836	-0.04443	0.336641	-0.07222	-0.12088	-0.06337	-0.1109
0.3974	-0.05383	0.349219	-0.06405	. 0.05383	0.060942	-0.31935	-0.08088	-0.0.03774	0.190418	-0.06134	-0.10268	-0.05383	-0.0942
-0.01431	-0.03935	-0.05859	0.024529	-0.03935	0.098466	0.177728	-0.05913	-0.02759	-0.09425	-0.04484	-0.07506	-0.03935	-0.06886

Crataegus monogyna	B. rutabulum	Stachys sylvatica	Scellaria graminea	Taraxacum Vulgaris	D. cespitosa	Cerastium fontanum	Dactylis glomeratus	Conopodium majus	Heracleum sphondylium	Ranunculus ficaria	Carpinus betulus (s)	Sambucus nigra (s)	Galium odoratum
1													
0.122662	1												
0.003525	0.193586	1											
-0.12173	-6.63-92	0.66358	1										
0.22488	-0.06108	-0.07538	-0.03292	1									
$-1,07435$	0.136913	0.015367	0.523033	0.031595	1								
$-0.0 .3739$.0.03707	-0.03442	0.185626	0.333639	0.255206	1							
0.050757	-6.12014	0.340664	-0,08393	0.253258	-0.05862	0.123214	1						
-0.07208	-0.07147	-0.06636	0.357856	.0.07147	0.143885	-0.03268	0.001431	1					
0.043295	-0.08585	-0.07972	0.1510 .46	.0.08585	-067806	0.03925	0.244102	0.264859	1				
0.235559	-0.10514	-0.06129	0.006652	0.113052	0.246444	-0.04944	0.300367	0.002166	0.447601	1			
-0.0.05333	-0,05288	-0.0491	0.093027	-0.05288	0.157968	-0.02418	-0.07835	0.47714	-0.05599	-0.07052	1		
.0.03739	-0.03707	-0.03442	-0.05519	-0.03707	-0.03371	-0.01695	-0.05493	-0.03268	-0.03025	-0.04944	0.701089	1	
-0.03739	-1.03707	-0.63442	0.06522	.0.03707	-0.0.3371	-0.01695	-0.05493	-0.03268	-0.03925	-0.04944	-0.02418	-0.01695	1
.0.09336	0.068417	-0.142	-0.0708	0.028172	0.02927	-0.06992	-0.13957	-0.1348	0.08523	. 0.20396	-0.04973	-0.06992	(1.095682
-0.03730	0.0 .03707	-0.03442	-0.05519	-0.03707	-0.03371	-0.01695	-0.05493	0.457452	-0.03925	-0.04944	-0.02418	-0.01695	. 0.01695
0.03739	.0.03707	-0.03442	-0.05519	0.518993	.0.03371	-0.01695	0.212285	-0.03268	-0.03925	-0.0.04944	0.02418	-0.01695	0.01695
0.015078	0.201832	0.177484	-0.09611	.0.09718	0.028158	-0.04443	0.394839	-0.03624	0.182053	0.522951	-0.06337	. 0.04443	-0.04443
0.041625	-0.08254	0.416055	-0.07596	0.165088	0.0 .07505	-0.03774	0.65118	0.036378	0.122365	0.295235	-0.05383	-0.03774	-0.03774
0.004347	0.025862	-0.05603	0.08983	0.068966	-0.05487	-0.02759	-0.08941	-0.05319	0.045642	0.013588	-0.03935	-0.02759	-0.02759

Lonicera pericylmenum	-0.06604	-0.09715	-0.2467	-0.17161	-0.29707	-0.12638	0.106539	-0.19893	0.147981	-0.06647	-0.116	-0.15672	-0.06604
Dryopteris carthusiana	-0.0426	0.062672	-0.00758	-0.00137	0.386899	-0.08813	-0.19352	-0.07247	-0.38575	-0.07351	-0.07483	-0.10109	-0.0426
Ulmus glabra	-0.03929	-0.05781	0.062907	0.225639	0.011512	-0.01626	0.155137	-0.02228	-0.05207	0.158199	-0.06902	-0.02331	-0.03929
Carpinus betulus	-0.02943	-0.0433	-0.07854	0.025495	-0.06611	-().06089	0.291154	-0.07677	0.015168	-0.05079	-0.0517	-0.00698	-0.02943
Epilobium spp.	-0.02413	-0.03556	0.039704	-0.01629	$0.1723+1$	-6.05061	0.239132	0.068539	0.012458	-0.04171	0.04246	0.200788	-0.02418
Dropieris dilatata	-0.07801	-0.11476	-0.17399	0.317047	0.104891	-0.08193	0.099095	0.098671	0.035782	0.014955	-0.13702	-0.16375	-0.07801
Gerantum sheaticum	.0.02418	-1.03556	0.232221	0.169846	0.101516	0.070019	-0.00718	0.068539	-0.20111	0.375423	-0.04246	-0.05737	-0.02418
Vola rithiana	-0.02+18	-1.03556	0.232221	0.169836	0.191516	(1.1704119	-0.00718	0.068539	- 11.20111	0.37543	-0.04246	-0.05737	-0.02418
Impatiens	-0.1479\%	-007059	-0.17925	0.266160	-0,0047	-1.6993)	11.267706	0.261614	0.116575	-618279	-0.064 28	-6.1138	-0.04798
balsamifera Valeriana officinalis	0.0093	.0.0433	0.204201	0.172301	0.071861	0.056022	0.021243	0.123506	-0.17985	0.355517	-0.0517	-1.06985	-0.02943
Silene dioica	-0.02418	-1.03556	-0.09031	0.216379	(1.1015 516	-0.05601	(1.239132	0.315282	-3.04093	-0.04171	-0.04246	-10.05737	-0.02418
Cirriphylum piliferum	-0.03002	-10.04417	-0.11215	-0.00085	.1007916	-0.06211	$0.05905 ?$	-0.00567	-6. 20554	-0.0518	-0.05273	-0.07124	-0.03002
D. Flextosa	-0.02418	-0.03556	-0.00031	-0.15589	-0.11096	-10.05001	0.300712	-0.01371	0.06585	-0.0417	-0.04246	-0.05737	-0.02418
Mercuralis peremis	-0.03448	-0,05073	10147213	0.043142	-0.00673	-0.07134	0.121503	0.039105	-0.05839	-0.0595	-0.06057	-0.08183	-0.03448
C. oppositifolium	-0.02418	-0.09556	-0.09031	-0.01629	0.101516	0.310084	0.115974	0.233034	-0,09433	-0.04171	-0.04246	-0.05737	-0.02418
organic content	0.064597	0.186637	0.1372	0.353149	00.158486	0.319765	0.112405	0.137074	-0.21784	0.331702	-0.01414	-0.01677	0.214906
moisture content	-0.07863	0.075716	-0.0906	-0.02941	0.2145	-0.04481	-0.10629	0.026752	-0.07341	0.104841	0.234166	0.227093	0.128671
alr temperature	-0.29845	0.031548	-0.15974	-0.05039	-0.14921	.0.0385	0.125409	-0.17389	0.153138	-0.2251	-0.17139	-0.40266	-0.12331
soil	-0.30559	-6. 20506	-0.33474	.0.02459	-0.035393	-0.14685	-0.007706	-0.0079	0.13222	.0.23985	-0.32206	-0.12977	-0.04289
temperature illumination	-0.16441	-0.09307	.0.06819	-0.04317	0.003141	0.005767	0.066233	0.268732	0.086436	-0.28677	-0.11112	. 0.31742	-0.2359
P.A.R.	-0.25198	0.129348	0.068188	0.100271	11.032984	0.054569	0.0066	0.185437	-0.13617	-0.17268	0.18896	-0.04008	-0.12867

-0.15236	-0.06604	-0.09833	0.242301	-0.06604	0.366686	0.171745	-0.09923	-0.0463	-0.16632	-0.07526	-0.12597	-0.06604	-0.11556
0.054225	-0.0426	-0.06343	-0.11828	-0.0426	0.195757	-0.07963	-0.06401	-0.02987	-0.0131	-0.04855	-0.08126	-0.0426	-0.07455
0.100029	0.091686	-0.0585	0.046757	-0.03929	-0.05495	0.277818	0.03179	-0.0.0755	0.350514	-0.04478	-0.01943	-0.03929	0.401695
-0.07493	-0.02943	-0.04383	-0.03502	-0.02943	-0.03724	0.141133	0.037422	. 0.112064	-0.08601	-0.03354	-0.00624	-0.02943	-0.01398
-0.06154	$002+18$	-0.036	0.124657	-0.02418	0.046689	0.210221	0.29397	-0.01695	-0.02603	-0.02755	0.15833	-0.02418	0.091287
0.015276	0.002	0.11615	-0.12138	-0.07801	0.062739	0.312586	-0.08946	-0.0.5469	0.128281	-0.08889	-0.13183	-0.07801	0.117713
1).307714	0.217579	-0.0.06	0.124657	-(t)2418	-0.04991	0.269161	-0.03632	-0.11695	0.197063	-0.02755	904611	.0.02418	-0.0423
0.307714	11.217579	-0.036	11.121657	-0.02418	-0.0.4991	0.269181	-0.03632	-0.111695	0.197063	-0.02755	0.04611	-0.024 18	-0.0423
0.216115	-0.04748	-11.07144	-0.13323	-0.104798	-0.099006	0.129285	-0.012 1	-0.13304	1.4 4 (1816\%	0.0546 .9	0.009152	-0.04795	0.242375
11.414614	11.260645	-1,64383	0.105675	-6.02943	-1,160017	4.28 .4658	-0104423	0.02064	0.23993 .3	-0.03354	-0.05614	-9.02943	-0.05151
-0.06154	-6.1924	-0,036	-6,06712	-0.02418	-1.04991	019934	-0.13632	-0.1695	0.197063	-0.02755	-0.04611	-0.02418	0.091287
-0.07642	-0.030102	-0.0447	-0.08335	-0.03002	-1.06198	-0.05611	-0.04511	-0.02105	-0.0.0463	-0.03421	-0.05726	-0.03002	-0.01567
-0.06154	-0.0.2418	-0.036	0.124657	-0.0248	-1.04991	0.0334	-0.03632	-0.01695	-0.0818	.0.02755	-0.04611	-0.0. 2418	-0.0423
0.109727	-0.03448	-0.05134	0.041032	-0.03448	0.204379	-0.20457	-0.05181	-0.02418	0.360632	-0.03929	-0.06577	-0.03448	-0.06034
0.307714	-0.02418	1.581063	0.06712	-0.02418	-0.04991	-0.14342	-0,03632	-0.01695	-0.0818	-0.02755	-0.04611	-0.02418	-0.0423
0.239604	-0.0535	1.050506	-0.0499	-0.0374	-0.02644	-0.14855	0.204392	0.146905	0.384932	0.096039	0.166064	0.010915	0.314255
-0.00068	0.1108	0.025088	-0.23321	0.064336	0.008926	-0.20391	0.003098	0.131556	-0.18676	0.040729	-0.0428	-0.02145	-0.11505
0.087348	-0.15441	-9.13684	0.197766	-0.17156	0.149599	0.102825	-0.11711	-0.22177	0.007009	. 0.13237	-0.26626	-0.24662	-0.1585
-0.0245	-0.25556	.014597	-0.11979	-0.00536	0.031776	0.307169	0.004337	0.19921	0.022263	0.28917	.0.04962	-0.0697	0.157511
-0.06073	. 0.08936	0.007982	0.037568	-0.23054	1.254568	0.218286	-0.18155	0.020673	-0,01361	.0.27899	-0.16778	.0.20909	-0.141572
0.055957	-0.16441	-0.04447	0.017721	-0.27343	. 0.00464	0.065791	-0.18403	0.22177	0.293957	-0.2464i	-0.06249	0.010723	0.036045

-0.10213	-0.06962	-0.09403	-0.06852	-0.10127	-0.09208	-0.0463	-0.15005	-0.03926	0.053615	-0.13506	-0.06604	-0.0463	-0.0463
-0.06588	0.370178	0.112644	-0.02652	-0.06533	0.110308	-0.02987	-0.09679	-0.05758	-0.06917	-0.08712	-0.0426	-0.02987	-0.02987
-0.06077	. 0.05025	0.023976	-0.0897	-0.06025	-0.05479	-0.02755	-0.08928	-0.05311	0.191403	0.175329	-0.03929	-0.02755	-0.02755
-0.04552	0.315948	0.029934	-0.06719	-0.04514	-0.0.4104	-0.02064	-0.06688	-0.03978	-0.04779	-0.0.0736	-0.02943	-0.02064	-0.02064
-0.03739	-0.03707	0.26061	-0.05519	-0,03707	-0.03371	-0.01695	-0.05493	-0.03268	-0.03925	0.085398	-0.02418	-0.01695	-0.01695
-0.12064	-0.09895	-0,08665	-0.07845	-6.11962	-0.10876	-0.05469	-0.11828	-0.10543	0.029229	-06145	. 0.07801	-0.05469	-0.05469
-0.0.03739	-0.03707	-1,05442	-0.05519	-19.03767	-003371	-0.01695	-0.05493	-r.03268	0.431788	0.355075	0.02418	. 0.01695	-001695
-0.63739	-0.613707	-003+4?	-0.05519	-1103707	-0.63371	-0.01695	-0.05493	-0.03263	0.431788	0.355075	-0.02418	- 0.01695	. 0.01695
11.197042	-0.07358	-0.06:33?	- 1.10954	-10.0735	-0.0669	-0.03364	0.118567	-0.06435	0.209761	0.148913	-0.0.4708	-0.03364	-0.03364
0.022761	-0.04514	-604191	-0.06719	-11.04514	-0.04104	-0.02064	0019882	-0.03078	0.52572	0.432319	-0.02943	-0.02064	-0.02064
-0.03739	-0.63707	-1.03+4?	-0.05519	-01.03767	-0.63371	-0,01695	-0.05493	-0.03268	-0.03925	-0.04944	-0.02418	-0.01695	-0.01695
-0.04643	-0,04604	-0.04274	. 0.06853	-11.04604	-0.0.14156	-0.02105	-0.06321	-0.04058	-0.04875	-0,0614	-0.03002	-0.02105	-0.02105
-0.63739	-0.03707	-0.03+42	-0.05519	-0.03707	-0.03.371	-0.01695	-0.05493	-0.03268	-0.03925	-0.04944	-0.02418	-0.01695	-0.01695
-0.05333	-0.05288	-0.0491	-0.07871	-005288	-0.04308	-0.02418	0.429839	0.128167	0.279945	0.217971	-0.0344,	-0.02418	-0.02418
-0.03739	-0.03767	0.703155	-0.05519	-11.03707	-0.13371	-0.01695	0.563567	-0.03268	-0.03925	-0.04944	-0.02418	-0.01695	-0.01695
0.056316	00071615	0.203341	0.013999	0.136096	0.035534	0.222176	0.327735	-0.05055	0.120575	0.326723	0.000179	-0.01869	-0.17676
-1.14717	0.07673	-0.02944	-0.02S26	0.615077	-0.0929	-0.109	. 0.05498	-0.04348	-0.27632	-0.12559	-0.03753	0.078934	0.146591
-0.1223	-0.0137	-0.08506	-0.18135	-0.15757	-0.10145	-0.10149	0.059588	-0.06159	0.147987	0.185397	-0.04289	-0.03383	-0.15411
0.068404	-0.029466	0.125403	-0.13907	-0.20416	-1319582	-0.10149	-0.12148	0.059781	-0.07138	-003588	0.262794	(1.199214	0.154109
-0.17827	-0.15072	0.013036	0.010903	-0.04111	0.156974	-0.09397	0.098435	-0.0108	0.019151	0.009968	0.016723	-0.109	0.206731
0.30471	0.054807	0.007633	-0.06386	0.104134	-0.0267	-0.09397	0.106995	0067023	0.078346	0.158484	-0.03217	-0.16914	-0.08645

